ISSN 0031-0204

日命古生物学會 報告·紀事

Transactions and Proceedings

of the

Palaeontological Society of Japan

本古生物学会 H

Palaeontological Society of Japan September 30, 1989

Co-Editors Hisayoshi Igo, Hiroshi Noda and Kei Mori

Editorial Board

Yoshikazu Hasegawa (Yokohama National University), Itaru Hayami (University of Tokyo), Hisayoshi Igo (University of Tsukuba), Makoto Kato (Hokkaido University), Itaru Koizumi (Hokkaido University), Yasumochi Matoba (Akita University), Kei Mori (Tohoku University), Hiroshi Noda (University of Tsukuba), Kazushige Tanabe (University of Tokyo), Tsunemasa Saito (Yamagata University), Kazuhiko Uemura (National Science Museum), Akira Yao (Osaka City University)

Officers for 1989-1990

President : Itaru Hayami

Honorary President: Teiichi Kobayashi

- Councillors: Kiyotaka Chinzei, Takashi Hamada, Yoshikazu Hasegawa, Itaru Hayami, Hiromichi Hirano, Hisayoshi Igo, Noriyuki Ikeya, Junji Itoigawa, Tadao Kamei, Makoto Kato, Tatsuaki Kimura, Itaru Koizumi, Kei Mori, Hiroshi Noda, Ikuwo Obata, Kenshiro Ogasawara, Tsunemasa Saito, Yokichi Takayanagi, Kazushige Tanabe, Hiroshi Ujiié
- Members of Standing Committee : Kazushige Tanabe (General Affairs), Hiromichi Hirano (Finance), Hisayoshi Igo (Editor in Chief, TPPSJ), Hiroshi Noda, Kei Mori (Co-Editors, TPPSJ), Noriyuki Ikeya (Planning), Kiyotaka Chinzei (Membership), Ikuwo Obata (Foreign Affairs), Yokichi Takayanagi (Editor, "Fossils"), Juichi Yanagida, Sumio Sakagami (Co-Editors, Special Paper), Tatsuaki Kimura (Friends of Fossils)
- Secretaries : Katsumi Abe, Tatsuo Oji (General Affairs), Shuko Adachi (Editorial of TPPSJ), Ryuichi Majima (Planning), Terufumi Ono (Membership), Yukimitsu Tomida (Foreign Affairs), Kunihiro Ishizaki (Editorial of "Fossils"), Takeshi Ishibashi (Editorial of Special Paper), Tamiko Ohana (Friends of Fossils)

Auditor : Sakae O'Hara

The fossil on the cover is *Phillipsia ohmorensis* Okubo, an Early Carboniferous trilobite from the Hikoroichi Formation in the Higuchizawa valley, Ofunato City, Iwate Prefecture, northeast Japan (Collected by A. Haga, PAt 5766, $\times 3.0$; after Kobayashi and Hamada, 1980, pl. 6, fig. 4).

All communication relating to this journal should be addressed to the PALAEONTOLOGICAL SOCIETY OF JAPAN

> c/o Business Center for Academic Societies, Yayoi 2-4-16, Bunkyou-ku, Tokyo 113, Japan

880. NEW TAXA IN THE LATE TRIASSIC DAEDONG FLORA, SOUTH KOREA. PART 2*

TATSUAKI KIMURA

Institute of Natural History, 24-14-3 Takada, Toshima-ku, Tokyo, 171 Japan

and

BONG-KYUN KIM

c/o Department of Geology, Seoul National University, Seoul, 151 Korea

Abstract. Continued from our previous issue (Part 1), this paper deals with the description of the following newly recognized taxa in the Daedong Flora: *Pterophyllum cheondaeriense*, sp. nov., *Anthrophyopsis decurrens*, sp. nov., *Drepanozamites* sp. A, *Podozamites* ex gr. schenki Heer, P. sp. A, *Cycadocarpidium* sp. cf. C. asaense Kon'no, C. sp. cf. C. nagatoense Kon'no, C. sp. A, *Taeniopteris cheondaeriensis*, sp. nov. and T. mungyeongensis, sp. nov.

Key words. Daedong flora, Korea, Late Triassic.

Systematic description

Specimens described in this paper are kept in the National Science Museum of Korea, Daejeon City.

Bennettitales (continued from our previous paper) Genus Pterophyllum Brongniart, 1828 Pterophyllum cheondaeriense Kimura et Kim, sp. nov.

Figures 10a-f

Material: Holotype; Reg. no. T-0126A (Cheondaeri). Paratypes; Reg. nos. T-0109, 0110 0127 (Cheondari). Examined specimens: Reg. nos. T-0032, 35, 38, 57, 64, 74, 107, 113, 121, 122 and 126B-C. Stratum

*Received July 9, 1987: revised manuscript accepted July 30, 1989.

typicum: Amisan Formation at Cheondaeri. *Locus typicus*: Cheondae Coal-Mine, Cheondaeri, Janggog-myeon, Hongseonggun, Chungcheongnam-do (see Kimura and Kim, 1988, p. 604). *Derivatio nominis*: After the locality.

Diagnosis: Leaf more than 15 cm long, oblanceolate in outline, 8.4 cm wide at the widest portion; rachis marked with three longitudinal striations, up to 2 mm wide below. Pinnae borne closely at an angle of 65-90 degrees, long and narrow, and nearly parallel-sided for the most part; the longest 4.7 cm long and 4-5 mm wide above, but shorter, elongate-triangular in form below. Pinnae not expanding distally, but slightly expanded at base. Pinna apex mostly acutely or sometimes obtusely pointed. Veins weak, arising from the lateral sides of rachis, 9-12 in number (10-12 per cm) at the base of each pinna, mostly simple, but one of them once forked at or near the base, parallel, ending at the distal margin.

Distribution and occurrence: Pterophyllum cheondaeriense is locally common, the broken leaves being often thickly massed, but is only known from the Amisan Formation at the Cheondaeri area.

Discussion and *comparison*: In our leaves examined, cuticle is not preserved. The petiole and reproductive organs are not known.

This new species is characterized by its long and narrow pinnae above and elongatetriangular ones below, both having an acutely or obtusely pointed apex and mostly simple veins, 10-12 per cm in density.

There are many *Pterophyllum* species similar in form and size to ours as listed below, but they are all distinguished from *P. cheon-daeriense* on account of various features as briefly mentioned below :

- Pterophyllum astartense Harris : Harris, 1932b, Rhaetian of Greenland : Adjacent pinnae sometimes separated. Basal pinnae variable in form, with rounded or truncated apex. Veins mostly forked at all levels.
- P. ctenoides Oishi: Oishi, 1932a, Upper Triassic Nariwa Group: Rachis thick, nearly 1 cm wide at the base. Pinnae more than 10 cm long. Veins 8 in number in each pinna, basiscopic veins decurrent.
- P. jaegeri Brongniart: Brongniart, 1828 and others, e.g. Leuthardt, 1903. Mainly from the Upper Triassic of Europe: Rachis thick. Pinna apex truncated.
- P. longifolium Brongniart (non Jaeger): Brongniart, 1828 and others. Mainly from the Upper Triassic of Europe:

Pinnae expanded distally, with truncated apex. Veins 4-5 in number in each pinna.

- P. subaequale Hartz: Hartz, 1896, Liassic of Greenland; Johansson, 1922 (identified as P. andraeanum): Rachis always transversely wrinkled. Basal pinnae with rounded or truncated apex.
- P. thomasi Harris: Harris, 1952, 1969, Middle Jurassic of Yorkshire: Rachis thick, up to 8 mm wide. Veins 4 in number in each pinna.
- P. tietzei Schenk: Schenk, 1887; Zeiller, 1902-1903 and others, Upper Triassic of Iran, North Viet Nam, China and elsewhere: Pinna apex rounded. Veins 15-22 in number at the middle of each pinna.
- P. xiphipterum Harris: Harris, 1932b, Rhaetian of Greenland: Rachis thick. Pinnae attached to the upper sides of rachis. Basal pinnae with truncated apex. Veins forked at all levels, 50 per cm in distal half of pinna.

Under the circumstances, we propose *Pterophyllum cheondaeriense* as a new species herein.

Cycadales Genus Anthrophyopsis Nathorst, 1878 Anthrophyopsis decurrens Kimura et Kim, sp. nov.

Figures 12a-b

Material : Holotype ; Reg. no. 81-023T (Cheondaeri). Paratype ; Reg. no. 81-038T (Cheondaeri). Stratum typicum : Amisan Formation. Locus typicus : Cheondae Coal-Mine, Cheondaeri, Janggog-myeon,

[→] Figures 10 (a-f)-11. All natural size. 10. Pterophyllum cheondaeriense Kimura et Kim, sp. nov. : All from Cheondaeri (Cheondae Coal-Mine). 10a. Apical portion of a leaf (Reg. no. T-0126A, Holotype). 10b. Showing the occurrence. Broken leaves are thickly massed (Reg. no. T-122). 10c. Drawn from Figure 10a. 10d. Middle portion of a leaf (Reg. no T-0127, Paratype). 10e. Basal portion of leaf (Reg. no. T-0127C, Paratype). 10f. Proximal part of a leaf, with detailed venation (Reg. no. T-126B). 11. Drepanozamites sp. A : A part of a leaf, showing the mode of attachment of pinnae and venation (Reg. no T-0196). Loc. Cheondaeri

Hongseong-gun, Chungcheongnam-do (see Kimura and Kim, 1988, p. 604). *Derivatio nominis*: From markedly decurrent lateral veins.

Diagnosis: Leaf elongate-obovate in outline, more than 14.6 cm long and 6 cm wide at the widest portion. Margins entire. Rachis thick, 1.05 cm wide below and 0.25 cm above, longitudinally striated on its surface, giving off lateral veins at an angle of 40 degrees below and 50-60 degrees middle to above, and at intervals of 1.5 mm (6.7 per cm in density). Lateral veins parallel, markedly decurrent near their origin, forming elongatereticulate meshes. Meshes varied in length according to their position, typically 7-8 mm long and 1-1.5 mm wide.

Distribution and occurrence: Two leaves

Figure 12. Anthrophyopsis decurrens Kimura et Kim, sp. nov.: Natural size. 12a. Holotype (Reg. no. 81-023T). Loc. Cheondaeri. 12b. Drawn from Figure 12a.

were obtained from the Amisan Formation at the Cheondaeri area.

Discussion and comparison: The present leaves, though their both ends are missing, resemble those of Anthrophyopsis, Ctenis and Glossopteris because of their networked venation. We prefer to assign our leaves to Anthrophyopsis, because Ctenis leaves are usually not entire but segmented and Glossopteris leaves have been known mostly from the Permian plant-beds in the Gondwana Floristic Province. However, resemblance between our leaves and some Glossopteris leaves is quite remarkable. We are of the opinion that Anthrophyopsis decurrens is a spurious imitation of some Glossopteris leaves.

Anthrophyopsis decurrens is distinguished from the following hitherto known Anthrophyopsis species by its markedly decurrent lateral veins:

- Anthrophyopsis crassinervis Nathorst: Upper Triassic of Sweden (Nathorst, 1878a, 1886): Greenland (Harris, 1926, 1932a); Western Pamir (Vladimirovich, 1958); South China (Sze and Hsü, 1954; Sze et al., 1963; Feng et al., 1977; Chen et al., 1978; Zhou, 1978).
- A. leeiana (Sze) Florin: Upper Triassic of South China (Sze, 1931; Sze and Hsü, 1954; Sze et al., 1963; Li, 1964).
- A. miassica Viadimirovich: Upper Triassic of Eastern Ural (Vladimirovich, 1958).
- A. naruensis Doludenko et Svanidze: Lower Jurassic? of Georgia (Doludenko and Svanidze, 1970).
- A tuberculata Chow et Yao and A. venulosa Chow et Yao: Upper Triassic of South China (in Feng et al., 1977; Chen et al., 1978; He et al., 1979).

Sagenopteris glossopteroides originally described by Hsü et al. (1974) from the Upper Triassic Daqiaode Formation Yunnan, China has leaflets similar in form and venation to our leaves, but it is distinguished from ours by its palmately compound leaf. In our leaves cuticle is not preserved.

Unclassified Cycadopsida Genus Drepanozamites Harris, 1932b Drepanozamites sp. A

Figure 11

Material : Reg. no. T-0196 (Cheondaeri).

Description : Obtained specimen is a single leaf-fragment, more than 8 cm long with 5 pairs of subopposite pinnae borne on the lateral sides of the slender rachis (2 mm wide). The pinnae are 2.4 cm long and 0.9 cm wide at the middle portion, broadest at the base, with more or less auriculated acroscopic base, attached by a somewhat decurrent basiscopic basal corner, and tapering to a rounded apex usually pointing backwards; margins are entire. The veins are slender, diverging from the point of attachment of pinna, mostly forked thrice freely, 14-15 in number per cm at the middle of pinna. Cuticle is not preserved.

Distribution and occurrence: Very rare. Known only from the Amisan Formation at the Cheondaeri area.

Remarks: Judging from its slender rachis, the present specimen appears to represent the middle or upper part of a leaf, because in Harris' type species, *Drepanozamites nilssoni*, basal rachis is fairly thick, being 3-4 mm wide. If our specimen is indeed that part of a leaf, our pinnae differ in size from those of *Drepanozamites nilssoni*, because in the typespecies the pinnae on the middle to upper parts of a leaf are more elongated and about twice as large as ours.

Drepanozamites p'ani originally described by Sze (1956b) from the Upper Triassic Yanchang Formation, North China is distinguished from ours by its thick rachis (5 mm wide) and by the presence of a vaguely defined midrib in its pinnae.

According to Sze (1956b), *Rhacopteris* (?) gothani originally described by Sze (1933b) from the Upper Triassic Anyuan Formation in Jiangxi, which was later referred by Harris (1937) to Drepanozamites nilssoni, is different from the type species despite the margin of pinnae being more or less dissected distally, crenated and occasionally even lobed. Therefore, Sze (1956b) proposed to refer those leaves to Drepanozamites gothani in his discussion. In their later monograph (Sze et al., 1963), however, they regarded those leaves as Drepanozamites nilssoni together with additional specimens from the Upper Triassic Xujiahe Formation in Sichuan.

Our leaf is somewhat different from these Chinese leaves in having less elongated pinnae which point backwards. *Drepanozamites* ? sp. indet. from the Upper Triassic Nariwa Group (Oishi and Huzioka, 1938) differs from ours in its trapezoid pinna with a small number of veins.

Coniferales

Genus Podozamites Braun in Münster, 1843 Podozamites ex gr. schenki Heer

Figures 13a-c

Podozamites schenki Heer: Kawasaki, 1925, p. 55, pl. 41, figs. 112-113; pl. 45, fig. 120.

Material : Reg. no. 81-123 (Hanaeri) and many other leaf-fragments.

Description : Figure 13a shows a broken leafy shoot, 8 cm long. The axis is slender, 0.8 mm wide, traversed longitudinally by a few ridges and furrows, and sends off spirally arranged leaves which lack petiole. The leaves are mostly long and slender, nearly parallel-sided for the most part but narrowed gradually towards both ends, being 4.3 cm long and 2 mm wide (a leaf indicated by the arrow-A in Figure 13b); the apex is obtusely pointed. A leaf shown by the arrow-B (Figure 13b) is elongate-oval in outline, 1.8 cm long and 2.5 mm wide; its apex is rounded and base is markedly decurrent and appressed to the axis; the ratio (L/W) of our leaves ranges from 7.2 to 31.3, typical number being 21.5. The veins are dichotomously forked near the base, parallel to each other, not converging at apex, typical numbers being 7-8 (40-47 per cm) in each leaf; in a leaf indicated by the arrow-B (Figure 13b), the veins number 11 but the vein-density is normal (44 per cm). Cuticle is not preserved.

Distribution and occurrence : Podozamites ex gr. schenki is locally common in the Gimpo, Nampo and Bansong Groups.

Remarks: Our specimens are closely referable macroscopically to those of *Podozamites schenki* known widely from the older Mesozoic plant-beds. At present we regard them as *Podozamites* ex gr. *schenki*, because our leafy shoots occasionally bear such elongateoval leaves as shown in Figure 13a (an arrow-B in Figure 13b) which have not been recorded from other localities.

The leafy shoots described by Kawasaki (1925) from the Gimpo and Nampo Groups as *Podozamites schenki* are indistinguishable

[→] Figures 13 (a-c) – 17 (a-b). Natural size, unless otherwise indicated. 13. Podozamites ex gr. schenki Heer: 13a. A typical leafy shoot (Reg. no. 81-123). 13b. Drawn from Figure 13a. 13c. Drawn from a leaf indicated by an arrow-A in Figure 13b, showing the venation. Loc. Hanaeri. 14. Podozamites sp. A: 14a. A broken leafy shoot with elongate leaves (Reg. no. 81-053). Loc. Hanaeri. 14b. A broken leafy shoot with 6 spirally arranged leaves (Reg. no. 81-031T). Loc. Cheonndaeri. 14c. Drawn from Figure 14b. 14c'. Enlarged from a leaf indicated by an arrow-A in Fgiure 14c, showing the detailed venation. 14d. Drawn from Figure 14a. 14d'. Enlarged from a leaf indicated by an arrow in Figure 14d, showing the detailed venation. 15. Cycadocarpidium sp. cf. C. asaense Kon'no: 15a-b. Enlarged bracts with biovuliferous scale-scars (Reg. no. 81-002T). Loc. Cheondaeri. 15c. Drawn from Figure 15b. 15d. A bract with digitate and biovuliferous scales (Reg. no. 81-002T). Loc. Cheondaeri. 16. Cycadocarpidium sp. cf. C. nagatoense Kon'no: 16a. Enlarged bract; ovuliferous scales are missing (Reg. no. 81-003T). 16b, d. Bracts with two scars of seeds (the other one is invisible) (Reg. no. 81-008T). 16c. A bract with three scars of seeds (Reg. no. 82P-B). 16e. Drawn from Figure 16a (16a, b, d; from Cheondaeri, 16c; from Hanaeri). 17. Cycadocarpidium sp. A: 17a. An enlarged bract with two large-sized scale-lobes and ovules. Loc. Cheondaeri. 17b. Drawn from Figure 17a.

from ours.

In Japan, it is noted that *Podozamites* leafy shoots bearing such long and narrow leaves are restricted to the Late Triassic floras. Our *Podozamites* ex gr. *schenki* resembles externally *P. gramineus* originally described by Heer (1876) from Ust-Balei. Heer's original specimen (*P. gramineus*) is a single detached leaf and is distinguished from ours by its more elongated leaf with four veins. However, leafy shoots regarded as *Podozamites gramineus* by many authors (*e.g.* Vakhrameev, 1958; Vassilevskaja and Pavlov, 1963; Prosviryakova, 1966) are externally indistinguishable from ours except for the elongateoval-shaped leaf.

Podozamites agardhianus (Brongniart) Nathorst known from the Upper Triassic of Sweden resembles in leaf-form P. ex gr. schenki, but it is distinguished by its leaves being rather expanded near the base as shown by Nathorst (1878c, pl. 3, fig. 14).

Podozamites sp. A Figures 14a-d'

Material: Reg. nos. 81-031T (Cheondaeri), 81-020, 046, 053 (Hanaeri) and many other broken leafy-shoots and detached leaves.

Description : Many incomplete leafy-shoots were obtained. The axis is slender, 0.9 mm wide below and 0.7 mm above and gives off spiraly arranged leaves. The leaves are sessile and varied in size and form. The leaves on the distal part of a shoot are generally longer than those on the proximal part of the same shoot. The longer leaves are typically elongate-oval in form, up to 4 cm long and at most 0.5 cm wide, with obtusely pointed or rounded apex, and they are attached to the axis at a narrow angle as shown in Figure 14d. The leaves on the proximal part of a shoot are typically oblanceolate in form, and measure up to 3 cm long and at most 0.45 cm wide, with rounded apex and they are

attached to the axis at a wide angle as shown in Figure 14c. The veins are dichotomously forked at or near the base, then running parallel to each other, ending at distal and lateral margins, and not converging at apex, and their numbers range from 13 to 15 in each leaf. Cuticle is not preserved.

Distribution and occurrence: Podozamites sp. A is locally common in the Mungyeong and Chungnam Coal-Fields, especially so at the Cheondaeri and Hanaeri localities.

Remarks : Podozamites sp. A is characterized by its small-sized leafy-shoots, and it is distinguished from P. ex gr. distans (Presl) Braun and P. ex gr. schenki Heer (both are common elements in the Daedong Flora) by its small-sized leaves and its leaf-form, respectively. Our Podozamites sp. A resembles somewhat some detached leaves described as P. lanceolatus var. (or forma) eichwaldi Heer from China by Schenk (1883, pl. 50, figs. 2?, 3; pl. 51, fig. 3; pl. 52, fig. 8), Krasser (1905, pl. 4, fig. 4), Sze (1933b, pl. 8, fig. 7), Sze et al. (1963, pl. 99, fig. 5=Krasser's specimen) in leaf-form and venation.

Podozamites sp. A also resembles in its leaf-size P. agardhianus (Brongniart) Nathorst var. acuminatus proposed by Kon'no (1961) from the Carnian Momonoki Formation, but P. sp. A is distinguished by having leaves whose apex is obtusely pointed or rounded instead of being acuminate, and by possessing 13-15 veins in each leaf compared with 8-10 in the latter.

The leaves of *Podozamites agardhianus* known from the Upper Triassic of Sweden (Nathorst, 1878c) are longer, twice as long as those of P. sp. A and bear smaller number of veins (9 at middle).

Seed-bearing fructifications Genus Cycadocarpidium Nathorst, 1886

Cycadocarpidium organs are rather abundant in Upper Triassic formations of Yamaguchi Prefecture, Japan. They were described by Kon'no (1961) together with Podozamites leafy-shoots. In his paper, Kon'no distinguished seven Cycadocarpidium species or forms and four Podozamites species or varieties. However, until now no Cycadocarpidium species has been described from Korea in spite of its common occurrence from the Amisan Formation at Cheondaeri and the Bongmyeongri Formation at Hanaeri. Thus, we made here the first record of this genus and distinguished four forms, including a questionably identified one (C. ? sp. B).

Florin (1951, 1953) stated that the conescale was not a compound carpellary leaf carrying ovuliferous pinnae at its base but one composed of a bract with an axillary fertile shoot or seed-scale complex. In this study, we could not confirm this statement by Florin.

Key to the species or forms (excluding C. ? sp. B)

- 1. Bract narrowly lanceolate, veins 10 in number.....C. sp. cf. C. asaense
- 2. Bract ovate or elongate-ovate, veins 7-12C. sp. cf. C. nagatoense

> Cycadocarpidium sp. cf. C. asaense Kon'no

> > Figures 15a-d

Compared : Cycadocarpidium asaense Kon'no : Kon'no, 1961, p. 202, pl. 24, figs. 2-4.

Material: Reg. nos. 81-002T, 011T, 030T (Cheondaeri), 82-PA, 81-127G (Hanaeri) and many other bract-fragments.

Description: Cone-scale consists of bract and ovuliferous scales. The bract is lanceolate in outline, being 2.6 cm long and 0.35 cm wide (Figure 15b) and more than 2 cm long and 0.45 cm wide (Figure 15a), and has an acutely pointed apex. The veins fork dichotomously near the base or simply, run parallel to each other and to the lateral margins of bract. They number 10 at the middle and are not converging at apex. The ovuliferous scale is bidigitate and biovuliferous; the lobe of ovuliferous scale is nearly triangular or oblong, measures 0.35 cm long and 1.5 mm wide and bears a pointed apex. The ovule is ovate in form, 3.5 mm long and 2 mm wide, and directed downwards. The pedicel of cone-scale is well defined, more than 7.5 mm long, and up to 0.8 mm wide. Cuticle is not preserved.

Distribution and occurrence: Common in the Amisan Formation at Cheondaeri and in the Bongmyeongri Formation at Hanaeri. Associated Podozamites species include P. ex gr. distans and P. sp. A at Cheondaeri, and P. ex gr. schenki and P. sp. A at Hanaeri.

Remarks: The present specimens are identifiable, in their form and venation of bract and biovuliferous scale, with *Cycadocarpidium asaense* originally described by Kon'no (1961) from the Ladino-Carnian Hiramatsu Formation. In our specimens, however, the ovules are shorter (3.5 mm) than those of the original specimens (6 mm) and the bracts are slender (3.5-4.5 mm wide) than those of original ones (6.5-7 mm wide). Thus, we herein refrain from making a full identity of our specimens with Kon'no's species.

Cycadocarpidium sp. cf. C. asaense is clearly distinguishable from C. sp. cf. C. nagatoense and C. sp. A both of which are described together because of its slender habit of bract.

Some specimens of *Cycadocarpidium swabii* illustrated by Harris (1935) are similar in form and size of cone-scale to ours, but they are distinguished in having smaller numbers of veins converging at apex and indistinct ovuliferous lobes. *Cycadocarpidium swabii* described by Oishi (1932c) from the Momonoki Formation is similar in form of bract, but it is distinct in its veins converging at apex and possessing longer ovules (6 cm long and 2 mm wide).

Biovuliferous Cycadocarpidium issykkul-

ense, C. insignis and C. dzerganense all described by Genkina (1963, 1966) from the Upper Triassic Issyk-Kul Basin are distinguished from ours by their large-sized bracts and in the last mentioned species by its small-sized circular ovules (1 mm in diameter).

Cycadocarpidium erdmanni Nathorst (sensu lato) is also similar to ours in form of bract and ovuliferous scale and size of ovule, but it is clearly distinguishable by its small number of veins (4-6).

Kon'no (1961) mentioned that Cycadocarpidium asaense was associated with Podozamites sp. cf. P. astartensis Harris which bears large-sized and oblong-ovate leaves. In Korea, there found are no such large-sized Podozamites leaves as those referable to P. sp. cf. P. astartensis, except for P. ex gr. distans.

> Cycadocarpidium sp. cf. C. nagatoense Kon'no

> > Figures 16a-e

Compared : Cycadocarpidium nagatoense Kon'no : Kon'no, 1961, p. 203, pl. 23, figs. 7-8.

Material: Reg. nos. 81-003T, 008T (Cheondaeri), 81-092, 82-PB (Hanaeri) and many other fragments of sterile bracts.

Description : Among the collection, there are three complete bracts; their dimensions excluding short pedicel are 1.85 cm long and 7.5 mm wide, 2 cm long and 6 mm wide, and 2 cm long and 8 mm wide. The pedicel is 3-4 mm long and 1 mm wide, but it expands abruptly at its upper end into the broad base of bract. The bract is ovate or elongateovate in outline, with an obtusely pointed or rounded apex. The veins fork dichotomously once or twice near the base, then running parallel to each other and to the margins, and do not converge at apex; they number 7-12 at the middle of bract. No interstitial vein has been observed. The ovules shed to leave their scars; the largest ovule is 3.5 mm long and 2.5 mm wide. The ovules are three in number (triovuliferous) (Figure 16c). No trace of ovuliferous lobe has been recognized. Cuticle is not preserved.

Distribution and occurrence: Common in the Amisan Formation at Cheondaeri and in the Bongmyeongri Formation at Hanaeri. Associated Podozamites species are P. ex gr. distans and P. sp. A at Cheondaeri, and P. ex gr. schenki and P. sp. A at Hanaeri.

Remarks: The present specimens are, in form of bract, venation and size of ovules, most close to *Cycadocarpidium nagatoense* originally described by Kon'no (1961) from the Carnian Momonoki Formation. However, we were unable to identify fully our specimens to Kon'no's species because of the indistinctness of our ovuliferous scales.

Harris (1935) showed the form-variation of cone-scales of *Cycadocarpidium swabii* Nathorst (*sensu lato*). *Cycadocarpidium swabii* differs from *C. nagatoense* in its biovuliferous scale. Some of Harris' specimens agree with ours in form of bract but our bracts are further distinguished from those of *Cyadocarpidium swabii* by the veins not converging at apex.

Cycadocarpidium swabii described by Oishi (1932c) from the Momonoki Formation is not triovuliferous but apparently biovuliferous, and differs from the present specimens in its veins converging at apex.

Cycadocarpidium swabii described by Sun (1979) from the Upper Triassic Malugou Formation, Jilin, Northeast China is comparable with ours in venation, but it is distinguished from ours by its biovuliferous habit and its obovate or elongate-oval bracts.

Some specimens regarded as *Cycadocarpidium tricarpum* Prynada by Stanislavsky (1976) from the Upper Triassic of the Donetz Basin are similar in form of bract to the present specimens, but they are distinguished by a small number of veins (4-8 in each bract).

Kon'no (1961) mentioned that Cycadocarpidium nagatoense and Podozamites distans var. *nagatoensis* Kon'no bearing small-sized ovate leaves might belong to the same plant. However, no such small-sized *Podozamites* leaves have been found in association with the present *C*. sp. cf. *C. nagatoense* in Korea.

Cycadocarpidium sp. A

Figures 17a-b

Material: Reg. no. 81-031T (Cheondaeri). Description : There obtained was a single broken cone-scale characterized by its multinerved bract, bidigitate and biovuliferous scales and large-sized ovules. The bract is 9 mm wide but its whole shape is not acertained. Pedicel is thick, being 2 mm wide. The veins fork dichotomously once or twice near the base, then run parallel to each other, number 16 at the middle, and possibly do not converge at apex, judging by the right one ending the lateral margin of bract as shown in Figure 17b. The ovuliferous lobe is possibly triangular in form and is 6 mm long. The still-preserved ovule is oval in form, 5 mm long and 3 mm wide, and arranged perpendicularly to the pedicel.

Distribution and *occurrence* : Only a single specimen was obtained at Cheondaeri in close association with *Podozamites* sp. A.

Remarks : Cycadocarpidium sp. A is comparable with C. giganteum originally described by Sun (1979) from the Upper Triassic Malugou Formation, Jilin, Northeast China in its large-sized and multi-nerved bract and also large-sized ovules. According to Sun (1979), his biovuliferous Cycadocarpidium giganteum is characterized by a broadly lanceolate bract, typically 5.5-6 cm long (the largest 8 cm) and 1.3-1.4 cm wide, 14-17 veins traversing the middle of bract, and large-sized oval ovules which are 6-7 mm long and 4-5.5 mm wide. Thus Cycadocarpidium sp. A resembles closely C. giganteum, but we at present reserve to make its specific identity later, because of our cone-scale being represented only by a single broken one.

Unclassified plants Form-genus *Taeniopteris* Brongniart, 1828 *Taeniopteris cheondaeriensis* Kimura et Kim, sp. nov.

Figures 18a-g

Material: Holotype; Reg. no. 81-007TA (Cheondaeri). Paratypes; Reg. nos. 81-007TB-E (Cheondaeri). Examined specimens; Reg. nos. T-0082, 81-003T-035T (Cheondaeri), 81-113A, 127D, 240A (Hanaeri). *Stratum typicum*: Amisan Formation at Cheondaeri. *Locus typicus*: Cheondae Coal-Mine, Cheondaeri, Janggog-myeon, Hongseong-gun, Chungcheongnam-do (see Kimura and Kim, 1988, p. 604). *Derivatio nominis*: From the locality.

Diagnosis : Taeniopteroid leaves variable in form and size, shortly petioled, typically elongate-oblanceolate to elongate-oblong in outline. The longest one more than 11 cm, width variable depending on leaves, ranging from 1 cm to 2.2 cm at the widest portion. Lamina attached to the lateral sides of slender rachis up to 1 mm wide, gradually narrowed to the well-defined petiole. Margins entire or broadly wavy. Lateral veins originating from rachis at an angle of 75 degrees ; angle reduced towards the base of lamina ; usually forked once at their origin ; density 20-33 per cm, but in those unusually elongated laminae veins sometimes simple and sparse.

Distribution and occurrence: The present new species is common in the Amisan Formation at Cheondaeri and in the Bongmyeongri Formation at Hanaeri.

Discussion and comparison: The present new species is characterized by its elongated leaves usually with veins forked once at their origin. In some unusually elogated laminae (e.g. Figure 18f), however, they show unusual venation, either simple or forked once and rather sparsely distributed. Figure 18g also shows a cuneate base of lamina which unusually has simple and sparse veins. Unfortunately, in our specimens cuticle is not preser-

ved and their apices are all missing.

The following species are similar in size and form to our *Taeniopteris cheondaeriensis*, but they are distinguished from ours by those features which are briefly mentioned below :

- Taeniopteris mcclellandi (Oldham et Morris) Feistmantel, 1876, p. 36; Zeiller, 1902-1903, p. 61, pl. 9, figs. 3-5: Larger in size with stout rachis. Kawasaki's specimens (1925, p. 34, pl. 20, figs. 62-63), regarded by him as *T. mcclellandi*, are referable to *T. richthofeni* as mentioned by Oishi (1940, p. 141, 149).
- T. minensis Oishi (Oishi, 1932c, p. 60, pl. 2, figs. 1-5): Lateral veins are simple or forked once at variable distance from their origin; the veins are somewhat coarser (20-25 per cm) than ours.
- T. shitakensis Oishi (Oishi, 1932b, p. 10, pl. 3, fig. 8): This species was defined on the basis of a single leaf with stout rachis. Lateral veins are simple or forked once near their origin, and are somewhat coarser (25-30 per cm) than ours.
- T. stenophylla Kryshtofovich (Kryshtofovich, 1910, p. 11, pl. 2 fig. 1): Lateral veins are forked once or twice at variable distances from their origin, and are coarser (20-25 per cm) than ours.
- *T. tenuinervis* Brauns (Nathorst, 1878b, p. 47, pl. 7, fig. 6; pl. 8, figs. 8, 11-12, 14-16; pl. 10, figs. 2-5; 1879, p. 59, pl. 11, fig. 9): Lateral veins are mostly simple.

Taeniopteris mungyeongensis Kimura et Kim, sp. nov.

Figures 19a-k

Material : Holotype ; Reg. no. 81-163B (Hanaeri). Paratypes ; Reg. nos. 81-163A, C, D (Hanaeri). Examined specimens : Reg. nos. 81-052, 063, 073, 101A, B, C, 113, 127, 151, 0240 (Hanaeri). Stratum typicum : Bongmyeongri Formation, Bansong Group. Locus typicus : Hanaeri (East side), Maseong-myeon, Mungyeong-gun, Gyeongsangbuk-do (see Kimura and Kim, 1988, p. 604). Derivatio nominis : From the name of Mungyeong Coal-Field.

Diagnosis : Leaf oblanceolate-obovate in outline, shortly petioled, apex broadly rounded, lamina attached to the upper sides of rachis, with markedly cuneate or rarely rounded base, more than 15 cm long, width variable according to leaves, up to 3 cm at the widest portion. Rachis rather slender, 1.2 mm wide at base, giving off numerous veins at a wide angle. Margins entire or irregularly undulated. On the most part of lamina, veins usually forked twice, the first forked at the base, the second near the base; density 20-42 per cm at the margin; often bending downwards near the base. On the cuneate part of lamina, a half of veins forked twice and the rest once, the first forked at the base, the second on the midway; density 21 per cm at the margin. In some of the leaves, veins either simple or forked once irregularly.

Distribution and occurrence: The present

[←] Figures 18 (a-g) – 19 (a-k). All natural size. 18. Taeniopteris cheondaeriensis Kimura et Kim, sp. nov.: 18a. (Reg. no. 81-007TA, Holotype). 18b. One of paratypes (Reg. no. 81-007TB). 18c. The widest leaf (2 cm wide) with rounded apex (Reg. no. 81-035T). 18d. The longest leaf (more than 11 cm); veindensity 28 per cm (Reg. no. 81-240A). 18e. A leaf with waved margins; vein-density 20 per cm (Reg. no. T-0082). 18f. An unusually cuneate leaf-base with disordered veins (Reg. no. 81-127D). 18g. A cuneate base with simple and sparse veins (Reg. no. 81-003T). Loc. Cheondaeri (18a-c, e. g) and Hanaeri (18d, f). 19. Taeniopteris mungyeongensis Kimura et Kim, sp. nov.: 19a. Holotype (Reg. no. 81-163B). 19b. A slightly distorted leaf; vein-density 35 per cm (Reg. no. 81-127B). 19c. A distorted leaf; vein-density 30 per cm (Reg. no. 81-127A). 19d-e. Cuneate bases with disordered veins (Reg. nos. 81-240B, 81-101A). 19f, g, h, i. Leaves with once or twice forked veins (19f; vein-density 42 per cm, 19g; 40 per cm). Reg. nos. 81-073B (19f, g), 81-127C (19h, i). 19j. An unusual leaf with disordered veins (Reg. no. 81-151). 19k. An unusually small-sized leaf with oblong lamina (Reg. no. 81-0240C). Loc. Hanaeri.

new species is common but only known from the Bongmyeongri Formation at Hanaeri.

Discussion and *comparison*: The present new species is characterized by its oblanceolate-obovate leaves with regularly twice forked veins except for the basal cuneate part, and it differs in venation from any known Mesozoic taeniopteroid species from East Asia. According to our present knowledge, Mesozoic taeniopteroid leaves with twice forked veins are rather rare.

A leaf shown in Figure 19k displays unusual venation, either simple or forked once irregularly. However, we consider it to be rare example and it indeed belongs to this species, because that leaf occurred among other normal leaves of *Taeniopteris mun*gyeongensis.

Taeniopteris mungyeongensis, sp. nov. resembles T. nabaensis, a little known species first described by Oishi (1932a) from the Norian Nariwa Group in its leaf-size and venation, but in Oishi's species, the second vein-forking occurs in their mid-course of extent unlike ours with forking regularly occurring close to their origin.

Taeniopteris lanceolata also first described by Oishi (1932a) from the Nariwa Group has once or twice forked veins. However, their forking occurs at variable distances from the base.

References

- Antevs, E., 1919: Die liassische Flora des Hörsandsteins. K. svensk. Vet.-Akad. Handl., 59 (8), p. 1-71, pls. 1-6.
- Brongniart, A., 1828-1837: Histoire des végétaux fossiles, ou recherches botaniques et géologique sur les végétaux renformés dans les diverses couches du globe. I (1828-1837), xii+488 pp., 171 pls. Paris.
- Carruthers, W., 1872: Notes on fossil plants from Queensland, Australia. *Quart. Journ. Geol. Soc., London*, **28**, p. 350-358, pl. 27.
- Chen, Y., Duan, S.Y., Yang, X.H. and Guo, S.X., 1978: Plant. In SW China Inst. Geol. Sci. ed.: Fossil atlas of Southwest China, Sichuan, Volume II. p. 460-537, pls. 153-191. Geol. Publ.

House, Beijing (in Chinese).

- Doludenko, M.P. and Svanidze, C.I., 1970: A new species of Anthrophyopsis from Georgia. Jour. Bot., Acad. Sci. USSR, 55, p. 559-562, pls. 1-2 (in Russian).
- Feistmantel, O., 1876: Fossil flora of the Gondwana System. Jurassic (Oolitic) flora of Kach. *Palaeont. Indica*, **11** (2-1), p. 1-80, pls. 1-12.
- Feng, S.N., Chen, G.X., Xi, Y.H. and Zhang, C.F., 1977: Plant. In Hubei Inst. Geol. Sci. and others eds.: Fossil atlas of Middle-South China, II. p. 622-674, pls. 230-253. Geol. Publ. House, Beijing (in Chinese).
- Florin, R., 1951 : Evolution in *Cordaites* and conifers (Lectures at Harvard University in 1948-1949). *Acta Horti Bergiani*, **15** (11), p. 285-388.
- —, 1953: On the morphology and taxonomic position of the Genus *Cycadocarpidium* Nathorst (Coniferae). *Ibid.*, **16**(9), p. 257-275.
- Frenguelli, J., 1942 : Contribuciones al conocimiento de la flora del Gondwana Superior en la Argentina. X. Chiropteris barrealensis n. sp. Notas del Museo de La Plata, 7 (51), p. 341-353, pls. 1-3.
- Genkina, R.Z. 1963: Fossil flora of the Mesozoic coal-bearing deposits of the East Ural-field of Orsk Coal Basin. 115 pp., 51 pls. Inst. Geol. Exploit. Foss. Fuel., Acad. Sci. USSR, Nauka, Moscow (in Russian).
- —, 1966: Fossil flora and stratigraphy of the Lower Mesozoic strata of the Issyk-Kul Basin (Northern Kirghizia). 148 pp., 61 pls. Nauka, Moscow (in Russian).
- Gu, D.Y. and Hu, Y.F., 1979: On the discovery of Dictyophyllum-Clathropteris flora from 'Karroo Rocks', Sinkiang. Rep. Jianghan Sch., no. 1 (1979-no. 1), p. 1-18, incl. pls. 1-2 (in Chinese with English abstract).
- Gu and Zhi (Nanjing Inst. Geol. Palaeont. and Bot. Inst., Acad. Sinica) eds., 1974: Fossil plants in China. I. Palaeozoic plants in China. 277 pp., 130 pls. Sci. Press, Beijing (in Chinese).
- Halle, T.G., 1927: Palaeozoic plants from Central Shansi. Palaeont. Sinica, A, 2 (1), p. 1-317, pls. 1-64.
- Harris, T.M., 1926: The Rhaetic flora of Scoresby Sound East Greenland. Medd. om Grønland, 68 (2), p. 44-148, pls. 1-13.
- —, 1931: The fossil flora of Scoresby Sound East Greenland. *Ibid.*, **85** (2), p. 1-104, pls. 1-18.
- ----, 1932a : Ditto. Part 2. Ibid., 85 (3), p. 1-114, pls. 1-9.
- ----, 1932b : Ditto. Part 3. Ibid., 85 (5), p. 1-133, pls. 1-18.
- ----, 1935 : Ditto. Part 4. Ibid., 112 (1), p. 1-176, pls. 1-29.
- ----, 1937 : Ditto. Part 5 : Stratigraphic relations of

the plant beds. Ibid., 112 (2), p. 1-114, pl. 1.

- -, 1947: Notes on the Jurassic flora of Yorkshire, 34-36. Ann. Mag., Nat. Hist., 11, 13, p. 649-662 (dated 1946).
- -, 1952: Ditto, 55-57. Ibid., 12, 5, p. 614-627.
- —, 1961: *The Yorkshire Jurassic flora*. I. 212 pp. Brit. Mus. (Nat. Hist.).
- -----, 1969 : Ditto. III. 186 pp., 7 pls. Ibid.
- Hartz, N., 1896: Plateforsteninge fra Gap Stewart i Ostgrønland. Medd. om Grønland, 19, p. 217-247, pls. 6-19.
- He, Y.L., Wu, X.N., Wu, X.W., Li, P.J., Li, H.M. and Guo, S.X., 1979: *Plant. In* Inst. Geol. Palaeont., Acad. Sinica and Qinghai Inst. Geol. Sci. eds.: Fossil atlas of Northwest China. Qinghai Volume II. p. 129-167, pls. 50-82. Geol. Publ. House, Beijing (in Chinese).
- Heer, O., 1876: Beiträge zur Jura-Flora Ostsibiriens und des Amurlandes. (*in* Flora fossilis arctica, Bd. 4, Heft 2). Acad. imp. sci. St.-Pétersb., Mém., 22, p. 1-122, pls. 1-31.
- Hsü, J. (Xu, R.), Zhu, J.H., Chen, Y., Duan, S.Y., Hu, Y.F. and Zhu, W.Q., 1974: New genera and species of the Late Triassic plants from Yungjen, Yunnan. I. Acta Bot. Sinica, 16 (3), p. 266-278, pls. 1-8 (in Chinese with English summary).
 , ___, ___, ___, ___, and ____, 1979: Late
 - Triassic Baoding flora, SW Sichuan, China. 130 pp., 75 pls. Sci. Press, Beijing (in Chinese).
- Huang, Z.G. and Zhou, H.Q., 1980: Fossil plants. In Mesozoic stratigraphy and palaeontology in the Shaan-Gan-Ning Basin, I. p. 43-114, pls. 1-60. Geol. Publ. House, Beijing (in Chinese).
- Iminov, Y.C., 1976: Cycadophytes of the Late Triassic and Jurassic of Middle Asia and their stratigraphic significance. 72 pp., 48 pls. Fan, Tashkent (in Russian).
- Jacob, K., Shukla, B.N. and West, W.D., 1955 : Jurassic plants from the Saighan Series of Northern Afghanistan and their palaeoclimatological and palaeogeographical significance. *Palaeont. Indica*, N.S, **33** (2), p. 1-64, pls. 1-13.
- Johansson, N., 1922: Die r\u00e4tische Flora der Kohlengruben bei Stabbarp und Skromberga in Schonen. K. svensk. Vet.-Akad. Handl., 63 (5), p. 1-78, pls. 1-8.
- Kawasaki, S., 1925 : Some older Mesozoic plants in Korea. Bull. Geol. Surv. Chosen (Korea), vol. 4, pt. 1, p. 1-71, pls. 1-47.
- —, 1926: Addition to the older Mesozoic plants in Korea. *Ibid.*, vol. 4, pt. 2, p. 1-35, pls. 1-11.
- —, 1927: The flora of the Heian System. Part 1. Equisetales and Sphenophyllales. *Ibid.*, vol. 6, pt. 1, p. 1-30 (English part), p. 1-5 (Japanese part), pls. 1-14.
- ----, 1931 : *Ditto*. Part 2. *Ibid*., vol. 6, pt. 2, 83 pls.

-----, 1934 : *Ditto*. Part 2. Text. *Ibid*., vol. 6, pt. 4, p. 47-311.

- —, 1939: Second addition to the older Mesozoic plants in Korea. *Ibid.*, vol. 4, pt. 3, p. 1-69, pls. 1-16.
- Kim, B.K. and Kimura, T., 1986: Study on the Daedong flora, Korea. Proc. Korean Acad., Nat. Sci., 25, p. 145-195 (in Korean with English abstract).
- Kim, J.H. and Kimura, T., 1988: Lobatannularia nampoensis (Kawasaki) Kawasaki from the Upper Triassic Baegunsa Formation, Nampo Group, Korea. Proc. Japan Acad., 64B(8), p. 221-224.
- Kimura, T. and Hirata, M., 1975: Early Cretaceous plants from Kochi Prefecture, Southwest Japan. *Mem. Natn. Sci. Mus., Tokyo*, no. 8, p. 68-90, pls. 10-13.
- and Kim, B.K., 1982: Coreanophyllum variisegmentum gen. et sp. nov. from the Daedong Supergroup, Korea. Proc. Japan Acad., 58B (6), p. 152-155.
- and —, 1984a: General review on the Daedong flora, Korea. Bull. Tokyo Gakugei Univ., 4, 36, p. 201-236 (in Japanese with English abstract).
- and —, 1984b: Geological age of the Daedong flora in the Korean Peninsula and its phytogeographical significance in Asia. *Proc. Japan Acad.*, **60B**(9), p. 337-340.
- and —, 1985: Outline of the Late Triassic Daedong flora in the Korean Peninsula. III Cong. Latinoamer. Paleont., Mexico, Mem., p. 1-4.
- and —, 1988: New taxa in the Late Triassic Daedong flora, South Korea. Part I. *Trans. Proc. Palaeont. Soc. Japan, N.S.*, no. 152, p. 603-624.
- —, and Ohana, T., 1982: *Neocalamites carrerei* (Zeiller) Halle (Equisetales), found *in situ* from the Daedong Supergroup, Korea. *Proc. Japan Acad.*, **58B**(6), p. 156-159.
- and Ohana, T., 1980: Some fossil ferns from the Middle Carnic Momonoki Formation, Yamaguchi Prefecture, Japan. Bull. Natn. Sci. Mus., Tokyo, C, 6 (3), p. 73-92, pls. 1-6.
- Kiritchkova, A.I., 1969: Data to the research on the Early Mesozoic floras of Eastern Ural. Bull. VNIGRI, vol. 268, p. 70-315, pls. 1-17 (in Russian).
- Kobatake, N., 1954: On the Mesozoic verticillate leaves from Japan and Korea with some views on *Lobatannularia* and its affinities. *Sci. Rep., South & North Coll., Osaka Univ.*, no. 3, p. 71-80.
- Kobayashi, T., 1975: Upper Triassic estherids in Thailand and the conchostracan development in

Asia in the Mesozoic Era. Geol. Palaeont. SE Asia, vol. 16, p. 57-90, pl. 7.

- Kon'no, E., 1938: A new Chiropteris and other fossil plants from the Heian System, Korea. Jap. Journ. Geol. Geogr., 16, p. 105-114, pls. 5-7.
- —, 1944: Contribution to our knowledge of Swedenborgia. Ibid., 19, p. 27-66, pls. 1-5.
- —, 1961: Some Cycadocarpidium and Podozamites from the Upper Triassic formations in Yamaguchi Prefecture, Japan. Sci Rep., Tohoku Univ., 2nd Ser., 32 (2), p. 195-211, pls. 22-24.
- —, 1968 : Some Upper Triassic species of Dipteridaceae from Japan and Borneo. Journ. Linn. Soc. (Bot.), 61 (384), p. 93-105, pls. 1-2.
- and Asama, K., 1950: On the genus Lobatannularia Kawasaki 1927 from Permian beds in South Manchuria and Shansi, China. Short Pap., IGPS, no. 1, p. 18-31, pl. 4.
- Krasser, F., 1905: Fossile Pflanzen aus Transbaikalien, der Mongolei und Manchurei. Denkschr. Akad. Wiss. Wien, 78, p. 1-46, pls. 1-4.
- Krassilov, V.A. 1969: Taxonomical revision of the genus Tyrmia. In Fossil fauna and flora of the Far East, I. Far East Geol. Inst., Komarov Far East Filial, Sib. Br., Acad. Sci. USSR, p. 95-116, incl. pls. 11-15 (in Russian).
- Kryshtofovich, A.N., 1910: Jurassic plants from Ussuriland. Mém. Com. Géol., St.-Pétersb., N. S., 56, p. 1-23, pls. 1-3 (in Russian).
- —, 1923 : Pleuromeia and Hausmannia in Eastern Siberia, with a summary of recent contribution to the palaeobotany of the region. Amer. Journ. Sci., (5), 5 (27), p. 200-208.
- and Prynada, V., 1932: Contribution to the Mesozoic flora of the Ussuriland. *Bull. Geol. Prosp. Serv. USSR*, Moscow, **51**, p. 363-373, pls. 1-2.
- Leuthardt, F., 1903: Die Keuperflora von Neuewelt bei Basel, I. Teil. Phanerogamen. Abhandl. schweiz. paläont. Gesells., 30, p. 1-15, pls. 1-10.
- Li, P.J. (Lee, P.C.), 1964: Fossil plants from the Hsuchiaho Series of Kwangyüan, Northern Szechuan. Mem. Inst. Geol. Palaeont., Acad. Sinica, no. 3, p. 101-178, pls. 1-20 (in Chinese with English abstract).
- Li, P.J., Tsao, C.Y. and Wu, S.C., 1976: Mesozoic plants from Yunnan. In 'Mesozoic fossils of Yunna, I'. p. 87-160, pls. 1-47, Sci. Press, Beijing (in Chinese).
- Lilienstern, H.R. von, 1931: Über Chiropteris Kurr. Palaeont. Zeitsch., 13 (4), p. 253-277, pls. 7-9.
- —, 1932 : Nachtrag zu meiner Arbeit über Chiropteris Kurr. Ibid., 14, p. 229-232.
- Lundblad, A.B., 1950: Studies in the Rhaetic-Liassic floras of Sweden. I. Pteridophyta, Pteridospermae and Cycadophyta from the Mining District

of NW Scania. K. svensk. Vet.-Akad. Handl., N.S., 1 (8), p. 1-82, pls. 1-13.

- Möller (Moeller), H., 1902: Bidrag till Bornholm fosila flora. Pteridofyter. Lunds Univ. Arsskr., 38, p. 1-63, pls. 1-6.
- Nathorst, A.G., 1876: Bidrag till Sbeidges fossila flora. K. svensk. Vet.-Akad. Handl., 14 (3), p. 1-82, pls. 1-16.
- —, 1978a: Beiträge zur fossilen Flora Schwedens. Über einige rhätische Pflanzen von Palsjö in Schonen. 34 pp., 16 pls. Stuttgart.
- ..., 1878b-1886: Om floran i Skanes kolförande Bildningar. I. Floran vid Bjuf. Svergig. geol. Unders. Afh., (C), 27, 33, 85, p. 1-131, pls. 1-26.
- -----, 1878c : *Ditto*. II. Floran vid Höganäs och Helsingborg. *Ibid.*, **29**, p. 1-53, pls. 1-8.
- —, 1906: Über Dictyophyllum und Camptopteris spiralis. K. svensk. Vet.-Aad. Handl., 41 (5), p. 1-24, pls. 1-7.
- Ngo, C.K. (Ao, Z.K.), 1956: Preliminary notes on the Rhaetic flora from Siaoping Coal-Series of Kwangtung. J. Cent. South Inst. Min. Met., no. 1, p. 18-32, pls. 1-7 (in Chinese).
- Oishi, S., 1930: Notes on some fossil plants from the Upper Triassic beds of Nariwa, Prov. Bitchu, Japan. Jap. Journ. Geol. Geogr., 7 (2), p. 49-58, pl. 7.
- —, 1932a: The Rhaetic plants from the Nariwa District, Prov. Bitchu (Okayama Prefecture), Japan. Journ. Fac. Sci., Hokkaido Imp. Univ., (4), 1 (3-4), p. 257-380, pls. 19-53.
- —, 1932b: The Jurassic plants from Shitaka (the Maizuru Coal-Field), Prov. Tango (Kyoto Prefecture), Japan. *Ibid.*, 2 (1), p. 1-13, pls. 1-3.
- —, 1932c: Rhaetic plants from Province Nagato (Yamaguchi Prefecture), Japan. *Ibid.*, 2(1), p. 51-67, pls. 9-10.
- —, 1935: Notes on some fossil plants from Tungning, Prov. Pinchiang, Manchoukuo. *Ibid.*, 3 (1), p. 79-95, pls. 6-8.
- ----, 1940: The Mesozoic floras of Japan. *Ibid.*, 5 (2-4), p. 123-480, pls. 1-48.
- and Huzioka, K., 1938: Fossil plants from Nariwa. A supplement. *Ibid.*, 4(1-2), p. 69-101, pls. 7-12.
- and Takahasi, E., 1936: The Rhaetic plants from Province Nagato. A supplement. *Ibid.*, 3 (2), p. 113-133, pl. 10.
- and Yamasita, K., 1936: On the fossil Dipteridaceae. *Ibid.*, 3(2), p. 135-184.
- Prosvirjakova, Z.P., 1966: Jurassic flora from Mangwishlak and its significance for stratigraphy. 172 pp., 35 pls. VSEGEI, Acad. Sci. USSR, Nauka (in Russian).
- Schenk, A., 1864: Beiträge zur Flora des Keupers und der rhätischen Formation. Naturf. Gesell. Bamberg Ber., 7, p. 51-142, pls. 1-8.

- —, 1883: Pflanzen aus der Steinkohlen Formation. In Richthofen, F. von: China. IV. Palaeontologischer Theil (288 pp., 54 pls.). p. 211-244, pls. 30-45.
- —, 1884: Die während der Reise des Grafen Bela Szechenyi in China gesammelten fossilen Pflanzen. *Palaeontographica*, **31** (3), p. 164-181, pls. 13-15.
- —, 1887: Fossile Pflanzen aus der Albourskette. Bibl. bot., Stuttgart, 6, p. 1-12, pls. 1-9.
- Schimper, W.P., 1869: Traité de Paléontologie Végétale, ou la Flora du Monde primitif dans ses raports avec les formations géologiques et la Flore du Monde actuel. Première Partie. 738 pp., 53 pls. Paris.
- Seward, A.C., 1903: Fossil floras of Cape Colony. Ann. South Afr. Mus., 4, p. 1-122, pls. 1-14.
- Sixtel, T.A., Sabitskaja, L.I., Khudaiberdyev, R. Kh., Loseva, N.M., Burakova, A.T. and Iminov, J. Kh., 1971: Jurassic plants from the standard sections of Kugitanga and Shuraba. In 'Palaeontological evidences of standard section of the Jurassic System in Uzbek and its adjacent district. KGSPE, no. 10', Leningrad. p. 164-206, pls. 1-27 (in Russian).
- Stanislavsky, F.A., 1971: Fossil flora and stratigraphy of the Upper Triassic of Donbass. 139 pp., 36 pls. Inst. Geol. Sci., Acad. Sci. USSR, Kiev (in Russian).
- —, 1976: Middle Keuper flora from the Donets Basin. 168 pp., 87 pls. Acad. Sci. Ukraina, Kiev (in Russian).
- Sun, G., 1979: On the discovery of Cycadocarpidium from the Upper Triassic of Eastern Jilin. Acta Palaeont. Sinica, 18 (3), p. 312-325, pls. 1-2 (in Chinese with English abstract).
- Sze, H.C., 1931: Beiträge zur liassischen Flora von China. Mem. Natn. Res. Inst. Geol., Acad. Sinica, no. 12, p. 1-85, pls. 1-10.
- —, 1933a: Fossile Pflanzen aus Shensi, Szechuan und Kueichow. *Palaeont. Sinica*, (A), 1 (3), p. 1-33, pls. 1-6.
- —, 1933b: Beiträge zur mesozoischen Flora von China. *Ibid.*, 4(1), p. 1-68, pls. 1-12.
- —, 1933c: Jurassic plants from Shensi. Mem. Natn. Res. Inst. Geol., Acad. Sinica, no. 13, p. 77-86, pls. 8-10.
- —, 1949: Die mesozoischen Flora aus der Hsiangchi kohlen Series in West Hupeh, China. Palaeont. Sinica, N.S., (A) 2, p. 1-71, pls. 1-15.
- —, 1956a: The fossil flora of the Mesozoic oilbearing deposits of the Dzungaria-Basin, Northwestern Sinkiang. Acta Palaeont. Sinica, 4(4), p. 461-476, pls. 1-3 (in Chinese with English abstract).
 - -, 1956b: Older Mesozoic plants from the Yenchang Formation, Northern Shensi. Palaeont.

Sinica, N.S., (A) 5, 1-111 (Chinese part), p. 113-217 (English part), pls. 1-56.

- and Hsü, J., 1954: Index fossils of China (plants). In Inst. Palaeont., Acad. Sinica ed. 83 pp., 68 pls. Geol. Publ. House, Beijing (in Chinese).
- —, Li, X.X., Li, P.J., Zhou, Z.Y., Wu, S.Q., Ye, M. N. and Shen, G.L., 1963: Mesozoic plants from China. Fossil plants of China, 2. 429 pp., 118 pls. Sci. Press, Beijing (in Chinese).
- Vakhrameev, V.A., 1958: Stratigraphy and fossil plants from the Jurassic and Cretaceous deposits of the Vilui Basin and Verchojansk foredeep. Reg Stratigr., USSR, no. 3, 136 pp., 32 pls. Moscow (in Russian).
- Vassilevskaja, N.D. and Abramova, L.N., 1966: Materials for the knowledge of Early Cretaceous flora in the Lena Basin. In Studies report of palaeontology and biostratigraphy, vol. 16. Sci. Rep., Inst. Arct. Geol., Leningrad. p. 73-96, pls. 1-8 (in Russian).
- and Pavlov, V.V., 1963: Stratigraphy and flora from Cretaceous beds of Lena-Olenek region of the Lena Coal-Basin, II. Problems of oil and gas content beds in Arctica. Bull. Inst. Arct. Geol., Min. Geol. Protect. Undergr. Res., USSR, vol. 128, p. 1-96, pls. 1-49 (in Russian).
- Vladimirovich, V.P., 1958: The first finding of genus Anthrophyopsis from the Upper Triassic of USSR. Journ. Bot., Acad. Sci. USSR, 43 (12), p. 1761-1762.
- Wu, S.Q., Ye, M.N. and Li, B.X., 1980: Upper Triassic and Lower and Middle Jurassic plants from the Hsiangchi Group, Western Hubei. *Mem. Nanjing Inst. Geol. Palaeont., Acad. Sinica*, no. 14, p. 63-131, pls. 1-39 (in Chinese with English abstract).
- Yabe, H., 1922: Notes on some Mesozoic plants from Japan, Korea and China, in the collection of the Institue of Geology and Palaeontology of the Tohoku Imperial University. Sci. Rep., Tohoku Imp. Univ., 2nd. Ser., 7 (1), p. 1-28, pls. 1-4.
- and Koiwai, K., 1928: Remarks on the genera Annulariopsis, Lobatannularia and Annularites. Proc. Imp. Acad., Japan. 4(9), p. 537-540.
- and Oishi, S., 1929: Notes on some fossil plants from Korea and China belonging to the genera Nilssonia and Pterophyllum. Jap. Journ. Geol. Geogr., 6 (3-4), p. 85-101, pls. 18-20.
- Yokoyama, M., 1905 : Mesozoic plants from Nagato and Bitchu. Journ. Coll. Sci., Imp. Univ. Tokyo, 20 (5), p. 1-13, pls. 1-3.
- Zeiller, M.R., 1886: Note sur les empreintes végétales recueillies par M. Sarran dans les couches de combustible du Tonkin. Bull. Soc. Géol. France, (5), 14, p. 575-581.

—, 1902-1903: Flore fossile des gîtes de Charbon du Tonkin (Etudes de gîtes minéraux de la France). 328 pp., 56 pls. Paris.

Zhang, J.H., 1978: Plant. In Stratigr. Geol. Working Team, Guizhou Prov. ed.: Fossil atlas of Southwest China. Guizhou volume I. p. 662-663, 797, pl. 140. Geol. Publ. House, Beijing (in Chinese).

Zhang, W., Zhang, Z.C. and Zheng, S.L., 1980:

Plant. In Palaeontological atlas of Northeast China. (2) Mesozoic and Cenozoic volume. p. 221-239, pls. 103-210. Geol. Publ. House, Beijing (*in Chinese*).

Zhou, T.S., 1978: On the Mesozoic coal-bearing strata and fossil plants from Fujian Province. *Prof. Pap. Stratigr. Palaeont.*, no. 4, p. 88-134, pls. 15-30. Geol. Publ. House, Beijing (*in Chinese*).

Korea: Amisan 峨嵋山, Baegunsa 白雲寺, Bansong 盤松, Bongmyeongri 鳳鳴里, Cheondaeri 天台里, Chungcheongnam-do 忠清南道, Chungnam 忠南, Daedong 大 同, Dangi 壇紀, Danyang 丹陽, Dobung 桃豊, Gimpo (Kimpo) 金浦, Gobangsan 高坊山, Gyeongsangbuk-do 慶尚北道, Hajo 下鳥, Hanaeri 下乃里, Jogaegog: Having no Chinese characters, Mungyeong 聞慶, Nampo 藍浦, Pyeongyang 平壌, Samcheog 三陟, Seongjuri 聖住里, China: Anhui 安徽, Anyuan 安源, Chengzihe 城子河, Dakeng 大坑, Daqiaode 大喬地, Fujian 福建, Fuxian 冨県, Gansu 甘肅, Guangdong 広東, Guizhou 貴州, Hebei 河北, Heilongjiang 黒龍江, Hubei 湖北, Jiangxi 江西, Jilin 吉林, Junggaer 准噶爾, Keramayi 克拉瑪依, Liaoning 遼寧, Linjia 林 家, Malugou 馬鹿溝, Qinghai 青海, Shanxi 山西, Shihezi 石盒子, Sichuan 四川, Sunjiawan 孫家湾, Wenbinshan 文賓山, Xiangxi 香渓, Xiangyun 祥雲, Xiaoping 小坪, Xingjiang 新彊, Xizang 西藏, Xujiahe 須家河, Yanchang 延長, Yingchen 営 城, Yipinglang 一平浪, Yunnan 雲南, Zieza 結札, Japan: Hiramatsu 平松, Momonoki 桃木, Nariwa 成羽, Ryoseki 領石, Yamaguchi 山口. (Detailed seats of Korean localities, see Kimura and Kim, 1984a, p. 204)

韓国大同累層群産後期三畳紀植物化石の新種ほか:韓半島の大同,金浦,璉川,忠南,聞 慶および丹陽炭田地域に露出する非海成の大同累層群の植物化石は,かつて矢部長克,川 崎繁太郎,大石三郎,小畠信夫らによって研究されたが,1945年以来その研究は途絶えて いた。筆者らは1973年以来,この地域の炭田の開発にともない,おもに忠南および聞慶炭 田地域の新産地から多くの植物化石を入手することに成功し,現在までに,38属79種を識 別し,またこれらの中には,従来知られていなかった分類群,1新属および10新種を加え 20属33種を含む。本論文は以上の新種を含むこの植物群の特徴種14属19種を記載した。 大同累層群の植物群の時代は,かつて,ジュラ紀初~中期と考えられたが,少なくとも金 浦,忠南,聞慶炭田地域から得られた化石植物群集に関する限り,その組成は,日本,沿 海州南部および中国東北の東南部,および中国南部の三畳紀後期植物群と完全に一致し,こ れら地域のジュラ紀初~中期植物群とは著しく異なる。

881. AN EARLY MIDDLE PLEISTOCENE MURID RODENT MOLAR FROM THE KOBIWAKO GROUP, JAPAN*

YOSHINARI KAWAMURA

Department of Earth Sciences, Aichi University of Education, Kariya, 448

and

KAZUAKI IIDA

Satte Senior High School, Satte, Saitama Prefecture, 340-01

Abstract. A murid M¹ obtained from the Hiraen Clay Member of the Kobiwako Group is the oldest record of the family in the Japanese Islands. The molar is assigned to the small Japanese field mouse, *Apodemus argenteus*, an endemic species living in the islands today. It indicates that this species originated by the early Middle Pleistocene (0.65-0.7 Ma). Moreover, the molar contributes to reconstructing the Quaternary mammalian faunal succession in Japan, because the faunal content of mammalian biozone QM3 (0.5 to 0.73 Ma) is poorly known.

Key words. Murid, *Apodemus argenteus*, early Middle Pleistocene, Kobiwako Group, central Japan.

Introduction

Until recently, murid remains from the Japanese Islands were known only from sediments younger than the early Middle Pleistocene. They were mostly obtained from cave and fissures, and their ages were ambiguous. A murid molar described here was collected from a lacustrine clay bed of the Kobiwako Group, which is dated with confidence as the early Middle Pleistocene. Therefore this find is very important from biostratigraphic view, and is now regarded as the oldest record of murids in the islands.

Mammalian remains of the early Middle Pleistocene are extremely rare in Japan (Kamei *et al.*, 1988). Only a few forms of large mammals are known. Therefore the present specimen provides the important information on micro-mammals of this period.

The main purpose of this paper is to present a detailed systematic description of the specimen. Furthermore, we briefly describe the stratigraphic sequence of the Kobiwako Group around the fossil locality, and discuss the biostratigraphic problems.

Geological setting

The Kisen River is a small stream that runs from west to east through the northern part of the Katata Hills into Lake Biwa (Figure 1). A branch of the river flowing down from the southern outskirts of Kurihara cuts a small gorge. The murid molar was found by one of us (Iida) in a clay block lying on the riverbed of the branch in October 1986. The block had undoubtedly fallen down from a

^{*}Received August 30, 1988; revised manuscript accepted July 1, 1989.

Figure 1. Map showing the location of the fossil locality (A), geological map of the same area (B) and section along X-X' (C). 1-13: lithologic units (5-12: members of the Kobiwako Group). 1: alluvium. 2: lower terrace deposits. 3: middle terrace deposits. 4: higher terrace deposits. 5: Ryuge Sand and Gravel. 6: Sakawa Clay. 7: Kurihara Alternation of Sand and Clay (7a: upper part, 7b: middle part, 7c: lower part, 7d: lowest part). 8: Hiraen Clay. 9: Takashiro Alternation of Sand and Clay. 10: Kisen Clay. 11: Kitahama Sand. 12: Nijigaoka Clay. 13: basement rocks (Pre-Tertiary). a-g: volcanic ash layers. a: Sakawa II. b: Kurihara III. c: Kurihara II. d: Kurihara I. e: Biotite II. f: Biotite I. g: Kisen.

Figure 2. Columnar section of the Kobiwako Group observed along the gorge wall of the fossil locality.

clay bed exposed on the northern wall of the gorge. This bed is 5.6 m in thickness, and consists of bluish gray massive clay with remains of plants and freshwater shells (Figure 2). Teeth and bones of freshwater fishes are also contained but rare. They show the same state of preservation as that of the murid molar.

After finding the molar, 161 kg of sediment were collected from the clay bed, and washed through screen (0.5 mm mesh). Although remains of freshwater fishes and shells were obtained, no other mammalian fossils were found.

On the basis of the stratigraphy of the gorge

wall, the clay bed is assigned to the lowest part of the Hiraen Clay Member. This member is the fifth lithologic unit of the Katata Formation, Kobiwako Group (Hayashi, 1974; Figure 3). Around the fossil locality, westward dipping beds allow the ascending stratigraphy of the formation to be observed from east to west (Figure 1).

Iida (1988, MS) inferred from the sedimentological analyses that the Hiraen Clay Member was deposited in a shallow lake. On the other hand, the Research Group for Natural History of Lake Biwa (1986) studied green algae, diatoms, protozoans, molluscs and insects from the lower part of the Katata Formation including the Hiraen Clay, and considered that it was deposited in the littoral zone of a shallow lake.

Eighteen volcanic ash layers intercalated in the Katata Formation play an important role as marker beds (Figure 3). Among them, the Kisen and B Volcanic Ash Layers in the Kisen Clay Member, and the E Volcanic Ash Layer in the Ryuge Sand and Gravel Member are correlated with the Azuki, Sayama and Kasuri Volcanic Ash Layers in the Osaka Group, respectively (Ishida and Yokoyama, 1969; Hayashi, 1974; Yoshikawa, 1983). The Azuki and Kasuri Volcanic Ash Layers were dated at 0.87 ± 0.07 Ma and 0.37 ± 0.04 (or 0.38 ± 0.03) Ma, respectively by fission track (Nishimura and Sasajima, 1970). On the other hand, Suzuki (1988) determined the ages of the Sayama and Kasuri Volcanic Ash Layers as 0.77 ± 0.31 Ma and 0.42 ± 0.08 Ma. respectively by the same method. Additionally, a fission track age of 0.7 + 0.14 Ma was obtained from the Biotite I Volcanic Ash Layer in the Kisen Clay Member by Nishimura and Yokoyama (1975). On the other hand, Hayashida et al. (1976) designated the Brunhes-Matuyama geomagnetic boundary to the horizon about 10 m above the Biotite I Volcanic Ash Layer in the section of the Kisen River. On the basis of these chronological data, the horizon of the murid molar is estimated as about 0.65 to 0.7 Ma in age.

Figure 3. Generalized sequence of the Katata Formation and stratigraphic distribution of fossil mammals. The fission track ages in parentheses indicate those of the correlative volcanic ash layers in the Osaka Group. 1: Nijigaoka Clay Member. 2: Kitahama Sand Member. 3: Kisen Clay Member. 4: Takashiro Alternation Member. 5: Hiraen Clay Member. 6: Kurihara Alternation Member. 7: Sakawa Clay Member. 8, 9: Ryuge Sand and Gravel Member, and Yamashita Alternation Member.

Biostratigraphic consideration

Proboscideans and artiodactyls are reported from the Katata Formation in the Katata Hills (Naumann, 1881; Hiki, 1915; Matsumoto and Ozaki, 1959; Ikebe *et al.*, 1966; Kamei, 1966; Okazaki and Matsuoka, 1979; Tamura *et al.*, 1982; Taruno *et al.*, 1983; Kamei, 1984 *etc.*). The murid specimen is the first record of micro-mammal in the formation. The stratigraphic position of these mammalian remains is summarized in Figure 3. The murid specimen occurs at the lowest horizon among them.

Kamei *et al.* (1988) proposed a mammalian biozonation of the Late Neogene and Quaternary sediments in the Japanese Islands. They divided the Middle Pleistocene into three biozones, QM3 (0.73 to 0.5 Ma), QM4 (0.5 to 0.3 Ma) and QM5 (0.3 to 0.12 Ma). The faunal contents of QM4 and QM5 are abundant, but that of QM3 is almost unknown. Only two forms, *Mammuthus* cf. *armeniacus* and *Bison* sp., were reported from QM3. Accordingly the present specimen is an important addition to the mammalian fauna of this biozone.

Systematic description

Descriptive terminology and method of measurements are given in Figure 4. The specimen described here is stored in the Department of Geology and Mineralogy, Faculty of Science, Kyoto University.

Order Rodentia Bowdich, 1821 Family Muridae Gray, 1821 Genus Apodemus Kaup, 1829 Apodemus argenteus (Temminck, 1844)

Figure 5

Mus argenteus Temminck, 1844, p. 51, pl. 15, fig. 1. Other synonyms are given in Kawamura (1989).

Material.— 1 isolated left M¹ (KUJC 100718). Locality.— Kurihara, Shiga-cho, Shigagun, Shiga Prefecture (135°54'13"E; 35°9'37" N).

Horizon.— Hiraen Clay Member, Katata Formation, Kobiwako Group.

Age.— Early Middle Pleistocene (ca. 0.65 to 0.7 Ma).

Description.— The crown is as high as those of the living species of *Apodemus*, but somewhat higher than those of *Micromys* (B and C of Figure 5). In occlusal view, it has an oval outline, and comprises three chevronshaped cusp rows (anterior, middle and posterior chevrons), which are the basic pattern of murid M^1 . The buccal cusps (labial anterocone, paracone, metacone and posterior cingulum) and central cusps (lingual anterocone, protocone and hypocone) are inclined to the front, while the lingual cusps (anterostyle, enterostyle and posterostyle) are almost erect. The central cusps are larger than other cusps.

The dentine fields of the three cusps of the

Figure 4. Terminology and method of measurements of murid M^1 . The terminology is based mainly on Jacobs (1978).

anterior chevron are well confluent with each other. Neither precingulum nor prestyle are recognized. The occlusal surface of the labial anterocone is considerably anterior to that of the anterostyle. The posterior spur of the former cusp is well defined, while that of the latter cusp is indistinct. The anterior chevron is clearly separated from the middle chevron by a deep transverse valley. No accessory cusps are observed at the lingual or buccal entrance of the valley.

The dentine fields of the three cusps of the middle chevron are also confluent. Moreover, that of the paracone is continuous with that of the metacone in the posterior chevron. The occlusal surfaces of the paracone and enterostyle are approximately set in the same transverse line. The transverse valley between the middle and posterior chevrons is deep, but opens only lingually.

The dentine fields of the four cusps of the posterior chevron are confluent with each other. The morphology of this chevron is of the "*argenteus* type" as discussed by Kawamura (1989). Namely, the posterior cingulum is well developed and strongly connected to the metacone and hypocone. Furthermore, the hypocone is directly connected to

Figure 5. Apodemus argenteus (Temminck, 1844). Left M¹ from the Hiraen Clay Member (KUJC100718). A: occlusal view. B: lingual view. C: buccal view.

the metacone. The valley between the hypocone and posterior cingulum is distinct, but becomes a slender closed pit. The posterostyle is well developed and elongate antero-posteriorly.

A root below the lingual anterocone is preserved. It extends antero-superiorly. It is thick and has an antero-posteriorly elliptical cross section.

Measurement.— The specimen was measured by a profile projector (Nikon V-12) with an electric digital counter (Nikon CM-65). The measurements of the comparative living materials (Figure 6) were also obtained by the same instrument.

Length of crown (L).....1.77 mm Width of crown (W).....1.08 mm Comparison and discussion.— The present specimen was compared with the actual molars of six living murid genera known from Japan (Apodemus, Diplothrix, Micromys, Mus, Rattus and Tokudaia), and with the descriptions and illustrations of the molars of 46 living murid genera (Abditomys, Anonymomys, Archboldomys, Bandicota, Batomys, Berylmys, Bullimus, Bunomys, Carpomys, Celaenomys, Chiromyscus, Chiropodomys, Chrotomys, Crateromys, Cremnomys, Crunomys, Dacnomys, Diomys, Echiothrix, Eropeplus, Golunda, Hadromys, Haeromys, Hapalomys, Kadarsanomys, Lenomys, Lenothrix, Leopoldamys, Limnomys, Margartamys, Maxomys, Melasmothrix, Millardia, Nesokia, Niviventer, Palawanomys, Paruromys, Phloeomys, Pithecheir, Rhynchomys, Srilankamys, Sun-

damys, Taeromys, Tateomys, Tryphomys, Vandeleuria) given by Misonne (1969), Musser (1981, 1982a, b), and Musser and Newcomb (1983). Additional comparisons were carried out on the basis of the descriptions and illustrations of the molars of 15 fossil murid genera (Antemus, Anthracomys, Castillomys, Chardinomys, Karnimata, Occitanomys, Orientalomys, Paraethomys, Parapelomys, Parapodemus, Progonomys, Rhagamys, Rhagapodemus, Stephanomys, Valerymys) given by Schaub (1938), Michaux (1969), Bruijn and Meulen (1975), Weerd (1976), Jacobs (1978), and Jacobs and Li (1982).

As the result, it is strongly suggested that the morpological characters of the specimen are best coincident with those of *Apodemus*, to which the specimen is undoubtedly assigned.

The genus *Apodemus* comprises many living and fossil species. The following species are representatives of the genus :

- A. mystacinus (Danford et Alston)
- A. jeanteti Michaux
- A. *flavicollis* (Melchior)
- A. sylvaticus (Linnaeus)
- A. dominans Kretzoi
- A. microps Kratochvil et Rosicky
- A. argenteus (Temminck)
- A. speciosus (Temminck)
- A. peninsulae (Thomas)
- A. giliacus (Thomas)
- A. draco (Barrett-Hamilton)
- A. latronum Thomas
- A. semotus Thomas
- A. agrarius (Pallas)

Kawamura (1989) distinguished three morphotypes in the posterior chevrons of M^1 and M^2 of *Apodemus*. In the "*speciosus* type", the posterior cingulum is absent, or forms a weak projection of the hypocone. In the latter case, it is never connected to the metacone, but the hypocone is connected to the metacone by a strong ridge, which is separated from the posterior cingulum. In the

Figure 6. Scatter diagram showing the relationship between the length and width of crown for the present specimen and M^1 of the Japanese living *Apodemus*.

"giliacus type", the posterior cingulum is situated on the ridge between the metacone and hypocone. The "argenteus type" is characterized by a well-developed posterior cingulum which is connected to the hypocone and metacone, but separated from the ridge between the last two cusps.

Among the above-listed species, A. mystacinus, A. jeanteti, A. flavicollis, A. sylvaticus, A. dominans, A. microps, A. speciosus, A. peninsulae, A. giliacus, A. semotus and A. agratius are different from the present specimen in having M^1 with the posterior chevron of the speciosus or giliacus type. Moreover, M^1 of these species except A. microps are larger than the present specimen. Although available information on the dental morphology of A. draco and A. latronum is poor, M^1 of these two species seem to be larger than the specimen.

 M^1 of the remaining species, A. argenteus, strongly resembles the specimen in outline and height of crown, arrangement and morphology of each cusp (especially the posterior chevron with the pattern of the argenteus type) and size. As shown in Figure 6, the length and width of the specimen plot in the center of the cluster of the living A. argenteus. Because no significant differences are found between the specimen and M^1 of A. argenteus, the specimen can be referred to A. argenteus.

Kawamura (1989) described many specimens of *A. argenteus* from middle Middle Pleistocene to Holocene localities in the Japanese Islands. These are very similar to the present specimen in the morphology of crown and size. He also pointed out that *A. argenteus* remained almost unchanged in these characters from the middle Middle Pleistocene to Holocene. The present specimen indicates that such an unchanged condition can be traced back to the early Middle Pleistocene. Therefore, it is inferred that *A. argenteus* originated from its ancestral species in or prior to the Early Pleistocene.

The Early Pleistocene fossil records of

Apodemus in China are very important for considering the ancestry of A. argenteus. Unfortunately, they are very few. A. cf. sylvaticus from Huaiyu (Teilhard, 1940) is the only comparable form. However, this form is considerably different from A. argenteus (Kawamura, 1989). Furthermore, as mentioned above, the Early Pleistocene and Pliocene fossil species from Europe such as A. jeanteti and A. dominans also differ from A. argenteus. Consequently, the ancestry of A. argenteus remains unknown. As pointed out by Kawamura (1989), this species seems to have evolved along an independent lineage from the other known species of Apodemus.

Conclusion

The murid molar found in the Hiraen Clay Member of the Kobiwako Group is undoubtedly referred to M¹ of Apodemus. The comparisons with many species of the genus show that the morphology and size of the molar are best compared with those of A. argenteus, an endemic species of the present Japanese Islands. Because the geological age of the molar is estimated to be 0.65 to 0.7 Ma, it is concluded that the biostratigraphic range of A. argenteus extends back to QM3, and this species already inhabited in the islands in the early Middle Pleistocene. The occurrence of the molar strongly supports the opinion of Kawamura (1989) that A. argenteus arose from its ancestral species in or prior to the Early Pleistocene.

Acknowledgment

We are deeply indebted to Professor T. Kamei (Shinshu University) and Associate Professor L.L. Jacobs (Southern Methodist University) for critical reading of the draft of this paper, and to Associate Professor T. Kosaka (Shinshu University) for discussing and encouraging us in numerous ways. Thanks are also due to Dr. K. Takemura (Kyoto University), Mr. H. Taruno (Osaka Museum of Natural History), Dr. Y. Tomoda, Dr. F. Kumon (Shinshu University) and Mr. T. Hayashi (Nishiura Senior High School) for providing us valuable suggestions. We are grateful to Mr. K. Hayashi (Yayoi Primary School) and Miss Y. Asano (Yutakagaoka Primary School) for helping us in the screening of the sediments, and to Mr. F. Iguchi and Mrs. C. Iguchi for giving us facilities in our field survey.

References cited

- Bruijn, H. de and Meulen, A.J. van der, 1975: The Early Pleistocene rodents from Tourkobounia-1 (Athens, Greece). Proc. Kon. Ned. Akad. Wetensch., Ser. B, vol. 78, no. 4, p. 314-338.
- Hayashi, T., 1974: The Kobiwako Group in the Katata Hills, Shiga Prefecture, Japan. Jour. Geol. Soc. Japan, vol. 80, no. 6, p. 261-276. (in Japanese with English abstract)
- Hayashida, A., Yokoyama, T., Takemura, K., Danhara, T. and Sasajima, S., 1976: Preliminary report on magnetostratigraphy of the Kobiwako Group on the west coast of Lake Biwa, Central Japan. In Horie, S. ed., Paleolimnology of Lake Biwa and the Japanese Pleistocene, vol. 4, p. 96-108.
- Hiki, T., 1915: Bubalina remains from the Province of Omi. Mem. Coll. Engineer. Kyoto Imp. Univ., vol. 1, no. 5, p. 245-247, pls. 1-3.
- Iida, K., 1988, MS: The Kobiwako Group of the Katata Hills, Shiga Prefecture, especially on the paleoenvironments induced from sedimentary facies and fossil fish fauna. 193p., Master Thesis of Shinshu Univ. (in Japanese with English abstract)
- Ikebe, N., Chiji, M. and Ishida, S., 1966: Catalogue of the Late Cenozoic Proboscidea in the Kinki District, Japan. Jour. Geosci. Osaka City Univ., vol. 9, article 3, p. 47-56, pls. 1-8.
- Ishida, S. and Yokoyama, T., 1969: Tephrochronology, paleogeography and tectonic development of Plio-Pleistocene in Kinki and Tokai Districts, Japan. Quat. Res. (Daiyonki-Kenkyu), vol. 8, no. 2, p. 31-43. (in Japanese with English abstract)
- Jacobs, L.L., 1978: Fossil rodents (Rhizomyidae & Muridae) from Neogene Siwalik Deposits, Pakistan. Mus. Northern Arizona Press Bull., Ser. 52, p. i-xi+p. 1-103.
 - and Li C.K., 1982: A new genus (*Char-dinomys*) of murid rodent (Mammalia, Rodentia) from the Neogene of China, and comments on its

biostratigraphy. *Geobios*, no. 15, fasc. 2, p. 255-259.

- Kamei, T., 1966: Notes on Elephas shigensis (Matsumoto and Ozaki) from the Osaka Group and Paleo-Biwa Group. Mem. Fac. Sci. Kyoto Univ., Ser. Geol. Min., vol. 32, no. 4, p. 381-394, pls. 12-14.
- —, 1984: Fossil mammals: Lake Biwa and fossil mammals: Faunal change since the Pliocene time. In S. Horie ed., Lake Biwa, p. 475-495, Dr. W. Junk Publ., Dordrecht, Boston and Lancaster.
- —, Kawamura, Y. and Taruno, H., 1988: Mammalian stratigraphy of the Late Neogene and Quaternary in the Japanese Islands. *Mem. Geol. Soc. Japan*, no. 30, p. 181-204. (*in Japanese with English abstract*)
- Kawamura, Y., 1989: Quaternary rodent faunas in the Japanese Islands (Part 2). Mem. Fac. Sci. Kyoto Univ., Ser. Geol. Min., vol. 54, no. 1-2, p. 1-235.
- Matsumoto, H. and Ozaki, H., 1959: On a new geological subspecies of Archidiskodon paramammonteus Matsumoto discovered at Ono, Shiga Town, Province of Omi. Bull. Nat. Sci. Mus., vol. 4, no. 4, p. 355-357, pls. 55-57.
- Michaux, J., 1969 : Muridae (Rodentia) du Pliocène superieur d'Espagne et du Midi de la France. *Paleovertebrata*, vol. 3, no. 1, p. 1-25, pls. 1-2.
- Misonne, X., 1969: African and Indo-Australian Muridae, evolutionary trends. Ann. Mus. Roy. de l'Afrique Centrale, Ser. In-8°, Zool., no. 172, p. 1-219, pls. 1-27.
- Musser, G.G., 1981 : Results of the Archbold Expeditions. No. 105. Notes on systematics of Indo-Malayan murid rodents, and descriptions of new genera and species from Ceylon, Sulawesi and the Philippines. Bull. Amer. Mus. Nat Hist., vol. 168, article 3, p. 225-334.
- —, 1982a: Results of the Archbold Expeditions. No. 107. A new genus of arboreal rat from Luzon Island in the Philippines. Amer. Mus. Novit., no. 2730, p. 1-23.
- —, 1982b: Results of the Archbold Expeditions. No. 110. Crunomys and the small-bodied shrew rats native to the Philippine Islands and Sulawesi (Celebes). Bull. Amer. Mus., Nat. Hist., vol. 174, article 1, p. 1–95.
- and Newcomb, C., 1983 : Malaysian murids and the giant rat of Sumatra. *Ibid.*, vol. 174, article 4, p. 327-598.
- Naumann, E., 1881: Ueber japanische Elephanten der Vorzeit. *Palaeontographica*, vol. 28, p. 1-39, pls. 1-7.
- Nishimura, S. and Sasajima, S., 1970: Fission track age of volcanic ash-layers of the Plio-Pleistocene Series in Kinki District, Japan. *Earth Sci.*, vol.

24, no. 6, p. 222-224. (in Japanese with English abstract)

- and Yokoyama, T., 1975: Fission track ages of volcanic ashes of core samples of Lake Biwa and the Kobiwako Group (2). In Horie, S. ed., Paleolimnology of Lake Biwa and the Japanese Pleistocene, vol. 3, p. 138-142.
- Okazaki, Y. and Matsuoka, C., 1979: A review of mammalian fossils in Shiga Prefecture. In Land and Life in Shiga: Separate Volume for Geomorphology and Geology and Geologic Map of Shiga Prefecture 1: 100,000 in Scale, p. 391-467, Foundation of Nature Conservation in Shiga Prefecture. (in Japanese with English summary)
- Research Group of Natural History of Lake Biwa, 1986: Freshwater fossil assemblages from the Pleistocene Kobiwako Group on the southwest side of Lake Biwa. *Bull. Mizunami Fossil Mus.*, no. 13, p. 57-103, pls. 9-20. (*in Japanese with English abstract*)
- Schaub, S., 1938: Tertiär und quanttäre Murinae. Abh. Schweiz. Paläont. Ges., vol. 61, p. 1-39, 1 pl.
- Suzuki, M., 1988: Fission track ages of the Quaternary tuff layers. Mem. Geol. Soc. Japan, no. 30, p. 219-221. (in Japanese with English abstract)
- Tamura, M., Okamura, Y. and Matsuoka, C., 1982:

Discovery of *Cervus (Nipponicervus) kazusensis* Matsumoto from the Katata Formation of the Plio-Pleistocene Kobiwako Group. *Jour. Geol. Soc. Japan*, vol. 88, no. 3, p. 199-202. (*in Japanese*)

- Taruno, H., Hayashi, T. and Tsuji, S., 1983: Discovery of fossil molar of Stegodon akashiensis (Takai) in the Kobiwako Group at Katata Hills, Shiga Prefecture. Shizenshi-Kenkyu (Occ. Pap. Osaka Mus. Nat. Hist), vol. 1, no. 16, p. 155-158. (in Japanese with English abstract)
- Teilhard de Chardin, P., 1940: The fossils from Locality 18 near Peking. *Palaeont. Sinica, New* Ser. C, no. 9, p. 1-94, pls. 1-3.
- Temminck, J.C., 1842-1844: Aperçu genéral et spécifique sur les mammifères qui habitent le Japon et les îles que en dépendent. In Siebold P.F. de, Temminck, J.C. and Schlegel, H., Fauna Japonica. Arnz et Socii, Lugduni Batavorum.
- Weerd, A. van de, 1976: Rodent faunas of the Mio-Pliocene continental sediments of the Teruel-Alfambra Region, Spain. Utrect Micropaleont. Bull., Spec. Publ. 2, p. 1-217.
- Yoshikawa, S., 1983: Correlation of volcanic ash layers in the Osaka and Kobiwako Groups, Kinki District, Japan. Monogr. Assoc. Geol. Collab. Japan, no. 25, p. 45-61. (in Japanese with Engish abstract)

Hiraen 比良園, Huaiyu 灰峪, Kamiogi 上仰木, Katata 堅田, Kisen 喜撰, Kitahama 北浜, Kobiwako 古琵琶湖, Kurihara 栗原, Nijigaoka 虹ヶ丘, Otani 大谷, Ryuge 龍華, Sakawa 佐川, Sayama 狭山, Shiga-cho 志賀町, Shiga-gun 滋賀郡, Takashiro 高城, Yamashita 山下.

古琵琶湖層群から産出した中期更新世前期の齧歯目ネズミ科の臼歯化石:古琵琶湖層群の比良園粘土層から産出した齧歯類の上顎第1大臼歯は、ネズミ科の化石としては日本列島最古のものである。この化石は、現在の日本列島の固有種であるヒメネズミ Apodemus argenteus に同定される。このことは、本種が中期更新世前期の0.65-0.7 Ma までに種分化していたことを示している。さらに日本では、中期更新世前期に相当する哺乳動物化石帯のQM3帯(0.5 Ma から0.73 Ma)の動物相の内容が現在ほとんど知られていないことから、今回の化石は日本列島の哺乳動物相の変遷史を考える上で重要である。

河村善也·飯田和明

882. DENTICULOPSIS PRAEHYALINA, SP. NOV.: AN EARLY MIDDLE MIOCENE PENNATE DIATOM FROM DOGO, OKI ISLANDS, SOUTHWEST JAPAN*

YOSHIHIRO TANIMURA

Department of Geology, National Science Museum, Hyakunin-cho, Shinjuku-ku, Tokyo, 169

Abstract. A new pennate diatom, *Denticulopsis praehyalina*, from the early Middle Miocene diatomite of the Oki Islands is described. This species has many affinities to *Denticulopsis hyalina* but differs from it by having areolation on valve face. The new species combines morphological features of two *Denticulopsis* species, *D. hyalina* and *D. lauta*. A predominance or acme of *D. praehyalina* is restricted to the uppermost part of Middle Miocene *D. hyalina* Zone in the Northwest Pacific, and it is a good maker for the horizon.

Key words. Denticulopsis, diatom, Middle Miocene, Oki Islands.

Introduction

Early Middle Miocene diatomite collected from Dogo, Oki Islands contains a new *Denticulopsis* species which has morphological characteristics similar to those reported for *Denticulopsis hyalina* (Schrader) Simonsen (Schrader, 1973a; Simonsen, 1979).

Denticulopsis hyalina is characterized by the double-layered perforation of mantle and hyaline valve surface. The new species also has the same mantle structure. Distinct areolation, however, is found on valve face of the new species.

This paper will present a description of the new species, and its biostratigraphical and evolutional implication.

Geological notes

The Neogene in Dogo, Oki Islands crops out around the basement complex, gneisses

and granitic rocks, exposed in the central part of the island. It is divided into the Tokibariyama, Kori, Kumi, Tsuma and Yui Formations in ascending order, with unconformities separating each of the formations (Tomita, 1936; Okubo, 1984; Yamazaki, 1984). The Tokibariyama and Kori Formations consist mostly of acidic to intermediate lava and pyroclastic rocks, but contain some intercalated conglomerate, sandstone and mudstone. The Kumi Formation, from the base upward, is composed of sandstone, shale and thick massive diatomite (Yamazaki, 1984). The formation ranges from a few meters to about 200 meters in thickness. The Tsuma Formation is mainly composed of sandstone and sandy mudstone. The Yui Formation is characterized by basic lava and pyroclastic rocks with some intercalated clastic rocks.

The massive diatomite of the Kumi Formation is early Middle Miocene in age on the basis of diatom-based correlations (Yokota, 1984; Okubo and Yokota, 1984).

All the samples for this study were collected from the diatomite bed of the Kumi

^{*}Received November, 29, 1988; accepted July 1, 1989.

Formation.

Outcrops and material

Thirty-six samples were collected for this study from three outcrops of the Kumi Formation (Figures 1, 2). The linoyama outcrop is a working diatomite mine located on the south side of Saigo-wan. This outcrop, from the base upward, contains dark gray stratified siliceous shale and yellowish white massive diatomite. The siliceous shale grades upward into diatomite which is unconformably overlain by a thick stratified carbonaceous sandstone of the Tsuma Formation. The thickness of the diatomite reaches more than 40 meters at the thickest part. The uppermost part of the diatomite is tuffaceous with large quantity of glauconitic minerals and sponge spicules. Fourteen samples were collected from the stratigraphic section of the mine at one to ten meters intervals.

At Minoura, the formation consists of dark

CHINA

USSR

133°20′E

ISLANDS

gray siliceous shale and yellowish white massive diatomite, as in the Iinoyama outcrop, but it contains some intercalated pale orange fine-grained sandstone in the lowermost part. The diatomite is estimated to be 26 meters thick. Nodules of opaline cristbalite, 10 to 30 centimeters thick, is commonly found in the diatomite. Three layers of glauconitic minerals are also found in the upper part.

The Tsuma outcrop is composed of three small roadside cliffs. The formation contains dark gray siliceous shale and yellowish white massive diatomite about 13 meters thick. Twenty-two samples were collected from the Minoura and Tsuma outcrops at one to five meters stratigraphic intervals.

Methods

Twenty-five samples were selected for this study. A preparation of slide was done as follows; about one gram of dried sample was placed in a 200 ml beaker with a boiled solution of hydrogen peroxide (H_2O_2 , 15%) for disaggregation of rocks. After boiling for about 20 minutes, the beaker was filled with distilled water, and kept at room temperature for about 7 hours. Then fine material in

Figure 1. Location of outcrops.

Figure 2. Stratigraphic occurrences of *Denticulopsis* species in the upper part of the Kumi Formation. Dh; first common occurrence of *Denticulopsis hustedtii*.

suspension was carefully removed by decantation, and the beaker was filled again with distilled water. This procedure was repeated at three times. A 0.1 to 0.5 ml of the final residue was diluted by distilled water to obtain a suspension of proper density. For slide preparation, 0.5 ml of the suspension was taken with an automatic micropipette with disposable plastic tips, and was placed on a square cover glass, 18×18 mm in size. After drying, it was mounted on slide glass with Pleurux. Observation and identification of diatoms were made at $\times 1,250$ magnification with direct transmitted light and Nomarskii differential interference contrast. For scanning electron microscopic observation, diatom valves were collected by filteration of the suspension within 0.8 μ m milipore filter.

Relative abundance of each *Denticulopsis* species in a flora was estimated by counting over 200 valves while traversing a slide under a LM.

Observations

Denticulopsis praehyalina Tanimura, sp. nov.

Figures 3-1-9; 4-1-7

Synonym: Denticulopsis lauta (Bailey) Simonsen; Schrader, 1973a, pl. 2, figs. 21-22; Schrader, 1973b, pl. 1, fig. 20.

Description .- Valves heavily silicified, elliptical to linear-elliptical with bluntly rounded ends, 10-40 μ m long, 5-9 μ m wide. Valve face slightly convex or almost flat. Primary pseudosepta about 3 in $10 \,\mu$ m. Marginal ribs short and thick. Secondary pseudosepta absent, but one or two apical pseudosepta present at each apex of most specimens. Apical pseudosepta usually oblique to transapical axis. The punctae arrangement on valve face is fairly variable. Valve face sporadically or densely punctated, 12-24 punctae in $10 \,\mu$ m. Transapical striae of densely punctated specimens about 15-20 in 10 µm; punctae more or less decussate arrangement. In some sporadically punctated specimens, only one or two lines of transapical striae found near each pseudosepta. In many sporadically punctated specimens, clusters of puncta are arranged in a line along the raphe-bearing valve margin. Under a LM observation, each cluster looks like a rounded triangle to hexagonal large pore, about 0.5-0.7 μ m. wide, 6-8 in 10 μ m. Round large depression, about $1.5 \,\mu m$ in diameter, present in two apically arranged rows. Small spinule form a line along the both sides of valve face edges, about 10-13 in 10 μ m. Raphe situated on the upper part of valve mantle. Mantle is high and perforated. The pore of mantle consists of an outer fine perforation, 32-38 in $10 \mu m$, and an inner round to hexagonal large pore, 7-10 in 10 μ m. Foramen of septum oval to elliptical, about 3 in 10 μ m. Thickening between each two foramens 2-4 μ m long, about 0.5-1.5 μ m wide.

Holotype.— MPC (Micropaleontology collection, National Science Museum, Tokyo) slide 04231 (sample OKI 3-8), illustrated in Figures 3-2a, b.

Paratype.— MPC slide 04232 (sample OKM 18A), illustrated in Figures 3-3a, b.

Type locality.— Minoura outcrop, Dogo, Oki Islands, Shimane Prefecture.

Stratigraphic range.— Rare to common in early Middle Miocene.

Remarks.— This new species is close to Denticulopsis hyalina and D. miocenica (Schrader) Simonsen (Schrader, 1973a; Simonsen, 1979). The most striking feature of the new species is the double-layered areolation of mantle (Figures 4-3, 4). This characteristic structure is also found in D. hyalina and D. miocenica. A definite difference between D. hyalina and this species is the absence of valve face punctae of the former. This species also differs from D. miocenica by the rhombic valve shape, well-developed broad septum deck and small round septum foramen of the latter.

Some densely punctated specimens (Figures 3-5; 4-4) of this species closely resemble *Denticulopsis lauta* (Bailey) Simonsen, (Simonsen et Kanaya, 1961; Simonsen, 1979) in valve view under a LM observation. In the specimens from the Kumi Formation, however, they can be distinguished from the latter by their broad valve shape and coarse punctae of valve face. In addition, the mantle structure is an easily discernible diagnostic structure under a SEM observation.

Three forms described and illustrated by Schrader (Schrader, 1973a, pl. 2, figs. 21–22; 1973b, pl. 1, fig. 20) as *Denticula lauta* are

[→] Figure 3. 1–9. Denticulopsis praehyalina, n. sp.; 2–4, 6–9, Sporadically punctated specimen; 1, 5, Densely punctated specimen; 2a, 2b, Holotype; 3a, 3b, Paratype. 10–14, Denticulopsis hyalina, Kumi Formation. 15, Denticulopsis hustedtii (Simonsen et Kanaya) Simonsen, Kumi Formation. 16–17, Denticulopsis lauta (Bailey) Simonsen, Kumi Formation. 18, 19, Denticulopsis miocenica (Schrader) Simonsen, Kumi Formation. (Scale bar=10 μ m)

identical with the new species. These show the common features in heavily silicified valves, sporadically arranged puncta and the line of rounded triangle to hexagonal large pores on valve face.

Okuno (1964) described the two varieties of Denticula (= Denticulopsis) lauta from the diatomite of the Kumi Formation, Minoura outcrop; D. lauta var. punctata Okuno (Okuno, 1964, pl. 504, fig. b) and D. lauta var. valida (Pedicino) Okuno (Okuno, 1964, pl. 505, bottom figs.). Some sporadically punctated types of the new species (Figures 3-1; 4-1) are possibly identical with D. lauta var. punctata. Definite identification, however, are difficult. Because, the mantle structure, the most distinctive feature of the new species, is not shown in Okuno's description and illustration of the variety. In addition, the repository of type material is uncertain, so the re-examination of the type slides is impossible (Okuno, per. com., 1988).

The figured specimens of *D. lauta* var. valida (Okuno, 1964, pl. 505) consist of two different forms. Secondary pseudosepta are present in the top figures and absent in the bottom. The former is assignable to be *Denticulopsis hustedtii* (Simonsen et Kanaya) Simonsen (Simonsen and Kanaya, 1961; Simonsen, 1979) or its allied species, and the latter corresponds to his description (Okuno, 1965) about the variety.

Denticula elegans var. valida Pedicino which was described from the hot springs of Ischia Island, the Gulf of Napoli (Pedicino, 1867), was raised to the specific rank, D. valida, by Grunow (van Heurck, 1881). Denticula valida is recombined with D. lauta as its variety, D. lauta var. valida, by Okuno (1964). Denticula lauta var. valida is not the same form as *D. elegans* var. valida or *D. valida*. The valve outline of *D. elegans* var. valida (Pedicino, 1867, pl. 1, figs. 42-45) and *D. valida* (van Heurck, 1881, pl. 49, fig. 5; Hustedt, 1928, pl. 3, figs. 6, 8) are more lanceolate with elongated apices, while the poles of *D. lauta* var. valida (Okuno, 1964, pl. 505, bottom left fig.; Okuno, 1965, pl. 2, fig. h) are broadly rounded and the valve sides are more or less linear. Therefore, it is highly probable that Okuno's recombination is not appropriate.

The bottom left figure of plate 505 (Okuno, 1964) resembles some morphological types (Figures 3-5; 4-4) of the new species. These show the common features in heavily silicified valves and densely arranged puncta, so the specimen (Okuno, 1964, pl. 505, bottom left fig.; not Okuno, 1964, pl. 505, reconstruction diagram and Okuno, 1965, pl. 2, figs. f, g) probably is a densely punctated type of the new species.

Stratigraphic distribution

Figure 2 shows the stratigraphic distribution of *Denticulopsis* species in the three outcrops investigated. At the Iinoyama and Minoura outcrops, *D. praehyalina* is sparse in the lower part of the diatomite sections. The species occupies 0.5 to 2.5% of the flora. An increase in abundance appears in the upper or uppermost part of the sections. Here, *D. praehyalina* accounts for more than 3% (up to 7%) of the flora. Abundant to common specimens of *D. lauta* are also found at and around the same horizons.

Denticulopsis hyalina is present in the

[→] Figure 4. 1–7. Denticulopsis praehyalina, n. sp. 1, Sporadically punctated specimen, oblique exterior view of valve; Arrows with letter symbols d and s indicate large depression and small spinule, respectively; Outer fine perforation of mantle is dissolved; 2, Oblique girdle view of broken valve; 3, Sporadically punctated specimen; a) Valve exterior, note clusters of punctae along valve margin; b) Oblique girdle view showing double-layered perforation of mantle; 4, Densely punctated specimen, a) Valve exterior, b) Oblique girdle view showing double-layered perforation of mantle; 5, Sporadically punctated specimen, oblique view of valve exterior; Valve is thickened by silica overgrowth; 6, Sporadically punctated specimen, valve interior, note apical pseudosepta; 7, Oblique internal view of valve. (Scale bar= 5μ m)

middle to upper part of the diatomite sections. In the middle part it comprises 0.5-2.5% of the flora, and increases upward. In the uppermost part of the sections, there is a sudden drop in abundance of *D. hyalina*, and it is followed by the first common occurrence of *D. hustedtii* (open triangle with letter symbol *Dh*). The characteristic distributions of these species are not found in the section of the Tsuma outcrop, for the reason that the diatomite section of the Tsuma outcrop represents only the lower to middle part of the whole diatomite bed of the Kumi Formation.

These biostratigraphical data show that the occurrence of *D. praehyalina* ranges from the upper part of the *D. lauta* Zone (Koizumi, 1973) to the horizon just above the *D. hyalina* Zone (Maruyama, 1984).

The stratigraphic occurrence of D. hyalina and D. hustedtii have been documented in several localities of Japanese Islands and adjacent seas, for example Matsushima, Northeast Honshu (Akiba et al., 1982), Pacific side sections of Honshu (Maruyama, 1984) and DSDP Hole 438A (Maruyama, 1984). In these localities the predominance or acme of D. hyalina is reported to be in the uppermost part of the D. hyalina Zone, and to be just below the first common occurrence of D. hustedtii. The absolute age of the horizon of this predominance or acme was estimated to be 15-14 Ma on the basis of radioisotopic dating- and paleomagnetic stratigraphy-based correlations (Koizumi, 1985). An abundant occurrence of D. praehyalina at and around the same horizon is also a good marker of the horizon.

Notes on evolutionary trends

In as much as *Denticulopsis praehyalina*, *D. hyalina* and *D. miocenica* share a doublelayered perforation of mantle, the most characteristic morphological feature of these species, it may be inferred that these three species are on the same evolutionary line. The fact that intermediate forms occur fairly commonly among these three species supports this inference.

The stratigraphic occurrence of *Denticulopsis* species have been well documented in many localities of North Pacific (Simonsen and Kanaya, 1961; Schrader, 1973a, b; Barron, 1980; Koizumi, 1985; Akiba and Yanagisawa, 1986). In these works, it has been generally accepted that *D. hyalina* evolves from *D. lauta*. Two abrupt morphological changes, however, were involved in the evolution; a formation of double-layered perforation of valve mantle and complete reduction of *D. praehyalina*, the gradual evolution from *D. lauta* to *D. hyalina* can be understood easily.

Denticulopsis praehyalina occurs in the lowermost part of diatomite bed of the Kumi Formation. The species probably evolves from D. lauta or its variety. Denticulopsis hyalina is a descendant of the species. This group shows tendency to create hyaline surface structure. This evolutionary line seems to go on into Denticulopsis katayamae Maruyama (Maruyama, 1984) which possesses secondary pseudosepta, shallower valve mantle and valve face edge punctae. The doublelayered mantle pore are also found in D. katayamae valve by SEM observation (Akiba and Yanagisawa, 1985, p. 489, pl. 20, figs. 4, 5, 7).

Acknowledgments

I am grateful to Drs. Itaru Koizumi of Hokkaido University, John A. Barron of the U.S. Geological Survey (Menlo Park), Fumio Akiba of Japan Petroleum Exploration Company and Kazuhiko Uemura of National Science Museum for kindly reviewing the manuscript and for many valuable suggestions. I also thank Drs. Haruo Okuno of Professor Emeritus of Kyoto Institute of Technology, Yasuji Saito of National Science Museum, Yukio Yanagisawa of Geological Survey of Japan and Toshiaki Maruyama of Tohoku University for their helpful advice.

Four samples marked Mu were collected by Dr. Yasuji Saito and Mr. Takashi Mitsuoka of the same Museum.

References cited

- Akiba, F., 1986: Middle Miocene to Quaternary diatom biostratigraphy in the Nankai trough and Japan trench, and modified Lower Miocene through Quaternary diatom zones for middle-to-high latitudes of the North Pacific. *In*: Kagami, H., *et al. eds., Init. Repts. DSDP*, vol. 87, p. 393-481, pls. 1-30. U.S. Gevernment Printing Office, Washington.
- and Yanagisawa, Y., 1986: Taxonomy, morphology and phylogeny of the Neogene diatom zonal marker species in the middle-to-high latitudes of the North Pacific. *In*: Kagami, H., *et al. eds., Ibid.*, vol. 87, p. 483-554, pls. 1-53. U. S. Government Printing Office, Washington.
- —, —, and Ishii, T., 1982: Neogene diatom biostratigraphy of the Matsushima Area and its environs, Miyagi Prefecture, northeast Japan. Bull. Geol. Surv. Japan, vol. 33, no. 5, p. 215-239, pls. 1-3.
- Heurck, H. van, 1881: Synopsis des diatomees de Belgique. Atlas, pls. 31-77, Anvers.
- Hustedt, F., 1928 : Untersuchungen uber den Bau der Diatomeen, IV. Ber. Deutsch. Bot. Ges., vol. 46, p. 148-164, pl. 3.
- Koizumi, I., 1983: The Late Cenozoic diatoms of sites 183-193, Leg 19, Deep Sea Drilling Project. *In*: Creager, J.S., *et al.*, *eds.*, *Init. Repts. DSDP*, vol. 19, p. 805-855, pls. 1-8. U.S. Government Printing Office, Washington.
- —, 1985: Diatom biochronology for Late Cenozoic Northwest Pacific. Jour. Geol. Soc. Japan, vol. 91, p. 195-211.
- Maruyama, T., 1984: Miocene diatom biostratigraphy of onshore sequences on the Pacific side of Northeast Japan, with reference to DSDP hole

438A (part 2). Sci. Repts., Tohoku Univ., Ser. 2 (Geol.), vol. 55, p. 77-140, pls. 11-15.

- Okubo, M., 1984: Outline of geology of Oki Islands. Geol. Rep. Shimane Univ., vol. 3, p. 75-86.
- and Yokota, M., 1984: On the fossil assemblages of diatoms in Dogo, Oki Islands. *Jour. Geol. Soc. Japan*, vol. 90, no. 6, p. 411-414.
- Okuno, H., 1964: Fossil diatoms. In: Helmcke, J.-G. and Krieger, W., eds., Diatomeenschalen im elektronenmikroskopischen Bild V, pls. 504-505. Cramer, Weinheim.
- —, 1965: Diatomaceous earth in Oki Island (2). Jour. Japanese Bot., vol. 40, no. 1, p. 7-11, pls. 1-2.
- Pedicino, N.A., 1867: Pochi studj sulle diatomee viventi presso alcune terme dell'isola d'Ischia. *Atti Accad. Sci. Fis. Napol.*, vol. 3, no. 20, p. 1– 17, pls. 1–2.
- Schrader, H.-J., 1973a: Cenozoic diatoms from the Northeast Pacific, Leg 18. In: Klum, L.D., et al., eds., Init. Repts. DSDP, vol. 18, p. 673-797, pls. 1-26. U.S. Government Printing Office, Washington.
- —, 1973b: Stratigraphic distribution of marine species of the *Denticula* in Neogene North Pacific sediments. *Micropaleontology*, vol. 19, p. 417– 430, pl. 1.
- Simonsen, R., 1979: The diatom system: Ideas on phylogeny. *Bacillaria*, vol. 2, p. 7-91.
- and Kanaya, T., 1961: Notes on the marine species of the diatom genus *Denticula* Kütz. *Internat. Rev. Hydrobiol.*, vol. 46, no. 4, p. 498-513.
- Tomita, T., 1936: Geology of Dogo, Oki Islands, in the Japan Sea. *Jour. Shanghai Sci. Inst., Sec.* 2, no. 2, p. 37-146.
- Yamazaki, H., 1984: Geological study of the Miocene Series of Dogo, Oki Islands. Geol. Rep. Shimane Univ., no. 3, p. 87-97.
- Yokota, M., 1984 : Diatomaceous earth in Dogo, Oki Islands. *Ibid.*, no. 3, p. 139-144, pls. 1-2.

linoyama 飯山, Kamaya 釜谷, Kori 郡, Kumi 久見, Minoura 箕浦, Saigo 西郷, Tokibariyama 時張山, Tsuma 都万, Yui 油井.

Denticulopsis praehyalina, 隠岐島後産中期中新世初期羽状目珪藻の一新種: 隠岐諸島, 島後に発達する中期中新世海成珪藻土より産する一新種 Denticulopsis praehyalina を記 載・報告する。同種は Denticulopsis hyalina と形態上多くの共通点を有する。しかし, 殻 面に点絞を有することで明確に区別される。D. praehyalina は D. lauta と D. hyalina の形 態上の特徴をあわせもち,進化上両種の中間に位置づけられるものと考えられる。また同 新種は、中期中新世の珪藻化石帯 D. hyalina Zone の最上部で多産し、この層準を識別す るよい示準となる。

883. CENOMANIAN (CRETACEOUS) INOCERAMIDS (BIVALVIA) FROM HOKKAIDO AND SAKHALIN — I

Birostrina nipponica (Nagao et Matsumoto)*

TATSURO MATSUMOTO

c/o Department of Geology, Kyushu University 33, Fukuoka 812

and

AKITO ASAI

Division of Geology, Department of Mineral Industry, School of Science and Engineering, Waseda University, Tokyo 160

Abstract. In this paper *Birostrina nipponica* (Nagao et Matsumoto, 1939) is redefined and fully described. It is markedly inequivalve, with very small or scarcely discernible posterior wing; left valve is very convex, with much incurved umbo; ornament is fine and weak. This species is very variable and includes at least three forms, *viz.* (α) slender form with a strongly projected left umbo, (β) form with subrounded main part of valve which shows a uniform convexity and (γ) narrowly convex form with a summit along the growthaxis. The three forms seem to intergrade. None of them is identical to any of the variable forms of Albian *B. concentrica* (Parkinson) nor to Middle Cenomanian *B. tamurai* which has a posterior radial groove and develops irregular ribs in late growth-stage.

Some of the specimens hitherto called *Inoceramus concentricus* var. *nipponicus* are transferred to certain other species. For instance, those from the Zone of *Mantelliceras japonicum* (Lower Cenomanian) should be mostly referred to *I. tenuis* Mantell; a few are to be referred to a Turonian species allied to *I. inaequivalvis* Schlüter. *B. nipponica* in a revised sense occurs so far from the high Middle to low Upper Cenomanian of Hokkaido and Sakhalin. A form represented by several specimens is allied to but different from this species and described tentatively under *B. aff. nipponica*.

Key words. Birostrina, Inoceramus, Albian, Cenomanian, Hokkaido, Sakhalin.

Introduction

Twelve species of the Inoceramidae which occur in the Cenomanian of Japan have been recently described in five successive papers (I to V) (Matsumoto and Noda, 1986; Matsumoto *et al.*, 1987, 1988; Matsumoto and Tanaka, 1988; Matsumoto, 1989).

There are still more specimens to be described and illustrated. As the major title shows, we now include the older collections from South Sakhalin (mainly the Naibuchi and northeasterly adjacent Aikawa areas) in addition to those from selected areas of Hokkaido. The results are to be published in a series of numbered papers, which may be written by a variety of different authors.

In this paper (Part I) we give a revised description of *Birostrina nipponica* (Nagao et Matsumoto, 1939), and clarify both its taxonomic status and geological age. The material for the restudy of B. *nipponica* consists primarily of the specimens obtained by one of us (Matsumoto, 1942-43), sometimes with a

^{*}Received December 5, 1988; revised manuscript accepted June 20, 1989.

coworker (Matsumoto and Okada, 1973), and those recently acquired by the other (A.A.) through field works in the Ashibetsu and Obirashibe (simply called Obira) areas. The syntypes of Nagao and Matsumoto (1939) and hypotypes of Ikegami and Omori (1957), with prefix OM, have been examined, so far as they are accessible.

The repositories of the described and/or discussed specimens are as follows, with abbreviations in parentheses:

- British Museum (Natural History), London (BM)
- Geological Collections, Kyushu University (GK)
- Collections of Geology and Mineralogy, Hokkaido University, Sapporo (GMH)
- Institute of Geology and Palenotology, Tohoku University, Sendai (IGPS)
- School of Education, Waseda University, Tokyo (WE)
- Sedgwick Museum, University of Cambridge (SM)
- University Museum, University of Tokyo (UMUT)

As to the technical terms and their abbreviations, we follow those defined and used in the aforementioned five papers, especially Matsumoto and Noda (1986, p. 410-411) and Matsumoto *et al.* (1987, p. 147). In addition to them we propose to measure the length of the curved line along the axis of growth, which is abbreviated to G. In a highly convex valve, with a much incurved umbo, the ratio G/H is a useful parameter. A curvimeter is used for the measurement of G.

For the locality records and stratigraphy readers may refer to Matsumoto (1942-1943), Ikegami and Omori (1957), Matsumoto and Okada (1973) and Sekine *et al.* (1985). Asai is preparing a paper on the Upper Cretaceous stratigraphy of the Ashibetsu area.

Palaeontological description

Family Inoceramidae Zittel, 1881 Genus *Birostrina* J. Sowerby, 1821

Birostrina nipponica (Nagao et Matsumoto, 1939)

Figures 1-28, 32

- 1939. Inoceramus concentricus Parkinson var. nipponicus Nagao et Matsumoto, p. 267, pl. 25 (3) figs. 1, 3, 6 (non pl. 24 (2), fig. 2; pl. 25 (3), figs. 2, 4, 5).
- 1957. Inoceramus concentricus var. nipponicus Nagao et Matsumoto ; Ikegami and Omori, pl. 5, fig. 1 ; pl. 6, figs. 1, 2.
- 1966. Inoceramus nipponicus (Nagao et Matsumoto); Pergament, p. 32, pl. 2, figs. 1-4.
- 1976. Inoceramus concentricus nipponicus Nagao et Matsumoto; Noda and Matsumoto, pl. Cr-31, fig. 1 (non fig. 2).

Lectotype.— IGPS specimen (BV) figured by Nagao and Matsumoto (1939, pl. 25, fig. 1), from the Ugui-zawa (sometimes called Ugoi-zawa), a tributary to the River Naibuchi (=Naibuti or Naibu), South Sakhalin, designated by Pergament (1966, p. 32).

Material.- Fairly well preserved specimens in our collections, i.e. (1) GK. H440 (BV, comp. int. m. with inner shell layer partly preserved and outer shell layer on the umbonal part of LV) (Figure 1) collected by T.M. from loc. Y216p, in the Shiyubari area, northeast of Oyubari; (2-6) GK. H8262 (BV) (Figure 2), H8263 (BV) (Figure 3), H8264 (Figure 4), H8265 (LV) and H8266 (juvenile LV) (Figure 5) comp. int. m. with altered inner shell layer partly preserved, and also ext. m. of LV of H8262, all in one and the same nodule collected by H. Okada and T.M. with assistance of T. Nishida, from loc. R101, about 900 m west of Kiritachi Pass on Highway 239 between Soueushinai and Kotanbetsu.

(7-33) Numerous specimens from one and the same nodule collected by T.M. from loc. N67-68p of the Birin-zawa, a branch of the

Figure 1. Birostrina nipponica (Nagao et Matsumoto). GK. H440 (BV) (form α) from loc. Y216p, Shiyubari area (T. M. Coll.). Left (a) and right (b) lateral, anterior (c) and posterior (d) views, $\times 1$. Duplicate figures (a' b' d') in dissimilar lights are complementary to show minor details of the ornamentation. The very apex of the beak in LV is destroyed. A tiny juvenile crops out from the rock matrix on the ventral margin of LV. Photos (Figures 1–20) by M. Noda and S. Toshimitsu.

River Naibuchi, derived from the sandy siltstone of the fossiliferous uppermost part of the Kawakita Group (marked as Mh-Kz), of which the numbered specimens are GK. H244A (LV) and B (RV); GK. H245A, B (both LV) (Figures 7, 8), C (LV) (Figure 6) and D (LV); GK. H246A (Figure 9), B, C, D, and E (all LV); GK. H247A and B (both BV) (Figures 14-16), C (RV) and D (LV) (Figure 17), E and F (both RV) (Figures 18, 19); GK. H248A (LV) (Figure 20), B (LV), C (RV), D-G (LV) and H (BV); GK. H249A (RV) (Figure 13), B (LV) and C (RV); GK. H250A (LV) (Figure 10), B (RV) (Figure 11), C (RV) (Figure 12) and D (LV); GK. H251A (BV). These are mostly composite internal moulds, with inner shell layer partly attached. There is an external mould (B') for H250B.

In the WE Collections the following, speci-

mens are selected : (34-36) WE. P025A (LV and displaced RV with incomplete umbonal part) (Figure 21), WE P026A (LV) (Figure 22) and WE. P027A (BV) (Figure 23) these three internal moulds, with a prominent altered, dark green inner shell layer are from loc. As 1065, the Poroko-ashibetsu, a tributary to the upper reaches of the River Ashibetsu, central Hokkaido (A. Asai Coll.); (37-39) WE. P028T (LV) (Figure 24), WE P030T (LV) (Figure 25) and WE. P031T (RV) (Figure 26) — these three composite internal moulds, with inner shell layers adhered to some portions, are from loc. T6082a86, Member Mh on the River Obirashibe, northwestern Hokkaido (A. Asai Coll.); (40-41) P041A (LV) (Figure 27) and WE WE. P042A (LV) (Figure 28), both comp. int. m., with an altered, dark green inner shell layer adhered to a considerable area, from a drifted boulder on the Tsukimi-zawa, a western tributary to the River Ashibetsu, central Hokkaido (A. Asai Coll.).

(42) GMH. 7167 (LV) (Nagao and Matsumoto, 1939, pl. 25, fig. 6), from Hakkin-zawa, Ovubari area; (43) GMH. 7163 (LV) (Ditto, pl. 25, fig. 3), from the Naibuchi area, South Sakhalin (now missing); (44-46) OM. II-476 (BV) (Ikegami and Omori, 1957, pl. 5, fig. 1), comp. int. m., covered with inner shell layer for the major part, from loc. IK B-6 (Coll. Yoshimi Yamaguchi), OM. II-478 (LV) (Ditto, pl. 6, fig. 1), comp. int. m. with inner shell layer partly adhered, from loc. IK B-5 (Coll. Satosi Ikuno) and OM. II-479 (BV) (Ditto, pl. 6, fig. 2) comp. int. m. from loc IK R-19 (Coll. T. Omori) (read anterior view for posterior view in their explanation of pl. 6), the above three from the lower part of Member IIc (=Mk2 of Ikegami and Omori), Mikasa Formation of the Ikushumbets Valley, central Hokkaido. They were obtained during the construction of the water way tunnel from the Katsura-zawa dam to the electric power station.

Diagnosis.— Shell small, highly inequivalve. Left valve very convex and much elongated along the axis of growth; its umbonal part prominent, exceeding greatly the hinge line, and curving markedly inward to somewhat prosocline beak. Right valve less convex than the left, with simple prosocline beak.

Outline of shell inequilateral and considerably variable. The umbonal part of left valve more or less narrow; the main disk oblong to suboval or rather subround, with the axis of growth nearly straight or gently concave forward. Hinge line short; anterior margin nearly straight and somewhat concave below the umbonal part; ventral margin more or less narrowly rounded and somewhat asymmetric, passing to a long, arcuate posterior margin. Posterior wing very narrow or scarcely discernible.

Surface of shell typically nearly smooth, only with fine concentric lirae at juvenile stage which develop to concentric rings later; in addition to them, concentric subcostae and/or major concentric undulations or weak ribs may sometimes occur, with or without somewhat deeper interspaces, at middle to late growth-stages.

Dimensions.— See Table 1.

Observation.—This species is so variable that at least three forms are distinguished as follows:

 (α) — The slender, oval form, represented by GMH. 7167 (one of the synthypes of Nagao and Matsumoto, 1939, pl. 25, fig. 6) and GK. H440 (Figure 1) from the Oyubari-Shiyubari area, OM. II-476 (Ikegami and Omori, 1957, pl. 5, fig. 1) (Figure 32 in this paper) from the Ikushumbets area, WE. P041A (Figure 27) and WE. P042A (Figure 28) from the Ashibetsu area. The left valve is slender and greatly elongated along the growth-axis. Its narrow umbilical part broadens gradually to the suboval main part of the disk. The outline of the right valve is subtrapezoid-oblong. The shell is ornamented with fine concentric lirae on the surface or rings on some parts and later faint concentric undulation may appear, with subcostae on

Specimens	v	form	Н	L	L/H	G	G/H	G/L	b	b/H	S	s/L	α	γ	δ
Lectotype	LV	$\alpha(\beta)$	~50	~ 34	.68	~70	1.40	2.06	~17	.34					
GK. H440	LV	α	64.0	41.2	.64	~92	1.44	2.23	20.5	.32			$\beta =$	58°	
"	RV	α	54.4	41.2	.76	~62	1.14	1.50	~12	.22	16.0	.39	100°	115°	65-70°
WE. P041A	LV	α	56.6	36.1	.64	~90	1.59	2.49	~21	.37			$\beta =$	~60°	
GK. H8262	LV	β	33.8	23.8	.70	~53	1.57	2.23	13.3	.39					
"	RV	β	29.3	23.8	.81	~34	1.16	1.43	7.8	.27	10.2	.43	105°		65-75°
GK. H8263	LV	β	32.8	24.0	.73	~52	1.58	2.17	12.5	.38			$\beta =$	~63°	
"	RV	β	27.5	23.7	.86	~33	1.20	1.39	8.6	.31	10.6	.45	105°	~100°	63°
WE. P026A	LV	$\beta(\alpha)$	30.2	21.2	.70	~42	1.39	1.98	11.5	.38					
WE. P028T	LV	$\beta(\alpha)$	41.8	~28	.67	~64	1.53	2.29	15.8	.38					
GK. H247B	LV	γ	37.0	20.0	.54	~55	1.49	2.75	16.3	.44					
″ A	RV	γ	29.7	16.6	.56	~37	1.25	2.23	9.3	.31	~7.8	.47	~90°	127°	68°
WE. P025A	LV	γ	33.0	~17	.52	~52	1.58	3.06	15.0	.45					
WE. P030T	LV	γ	34.0	18.4	.54	~60	1.76	3.26	17.0	.50					

Table 1. Measurements of Birostrina nipponica on selected specimens.

some of their summits.

The lectotype is referable to this α form, with respect to its nearly smooth shell with faint undulations at late stage; however its shell form is not so slender as WE. P041A, being intermediate between α and β forms. As it had no register number, it is not traced with certainty at IGPS, but we cannot state that it is lost. It may be deposited in the old building of the IGPS at Katahira-cho. Pergament designated it as the lectotype without inspecting the actual specimen.

 (β) — The tumid, suboval form, represented by GK. H8262 (Figure 2) and GK. H8263 (Figure 3) from loc. R101, Kotanbetsu route. This is smaller, less high and broader, with larger L/H, and more inflated than the form α ; however G/H or G/L is not very different between the two forms. It shows rather uniform convexity on the main part of the valve. The umbonal part of its left valve is not so narrow as that of the form α and gradually broadens to the main part. The ventral margin is well rounded, though somewhat asymmetrical. The fine concentric lirae on the shell or fine rings on the composite internal mould are as characteristic as those in the form α . They may be better shown on the othrwise smooth young part (see Figure 5). Concentric subcostae or narrow ribs develop at the middle to late stages. Some of them are accompanied by constriction-like deeper interspaces.

WE. P026A (Figure 22), from the Porokoashibets, and WE. P028T (Figure 24), from the Obirashibe, are referable to form β with respect to the shell-form, but their subcostae are weaker and the constriction is almost undeveloped as in the form α . Incidentally, the very apex of the beak is missing in these two specimens. S. Toshimitsu (personal communication) has suggested that the incurved apical portion of the beak must have been in a hollow state, while the main part of the

[→] Figures 2-5. Birostrina nipponica (Nagao et Matsumoto). Four specimens, respresenting the form β , all from loc. R101 on Highway 239 (Kotanbetsu-Soeushinai) (Coll. T. M. and H. Okada, assisted by T. Nishida). 2: GK. H8262; 3: GK. H8263; 4: GK. H8264; 5: GK. H8266 (juvenile). Different views of the same specimen are connected by dotted lines. The views (left lateral, right lateral, anterior, posterior and dorsal) are self-explanatory and not repeated. The same way of illustration is kept also for Figures 6 -32. Magnification for 2-4: ×1.5, 5: ×2.

valve was filled with mud. In one example (WE. P026A) there is a trace of later calcification in the hollowed apical portion.

 (γ) — The oblong form, with highly convex left value, is represented by GK H247A, B (Figures 14-16) and many others (Figures 6-10) in the population of the Birin-zawa, Naibuchi area. WE. P025A (Figure 21), which came from the same locality as the aforementioned, WE. P026A, is also an example of the form γ .

This form is small, being less than 35 mm in H of LV. Its left valve is highly convex not only from the beak to the ventral margin but also from the anterior margin to the posterior, forming a summit along the major part of the growth-axis, which itself is nearly straight. Thus, the left valve is narrow, erect, highly convex and very oblong. The right valve is also erect, less convex and more or less oblong (elongate-subelliptical), showing an asymmetric curvature of the ventral to posterior margin. The surface of the shell is mainly smooth, with only fine concentric lirae and rings. At more or less late growthstages, a few narrow ribs or subcostae appear on both valves, normally with associated deep interspaces or narrow constrictions.

Smaller examples, *e.g.* GK. H245C (Figure 6) and WE. P027A (Figure 23), which do not show the distinct ribs or constrictions, as mentioned above are probably juveniles of this form. GK. H245A (Figures 7, 8), GK. H246A (Figure 9) and GK. H250A (Figure 10), which are slightly larger than the above two show a constriction with or without associated riblet at or near the preserved ventral margin. WE. P030T (Figure 25) (internal mould of LV) is certainly assigned to the form γ in view of its diagnostic shell-

form, but its ornament is very weak as compared with GK. H247A and B of nearly equal size. It shows faint concentric undulations and weak, partial subcostae, like those of the form α . It should be noted further that this specimen was obtained at the same locality as WE. P031T (RV of rather α type) (Figure 26) and WE. P028T (LV of rather β type) (Figure 24) mentioned above.

On the other hand, GK. H248A (Figure 20) and GK. H247C and D (Figure 17) and probably H247E and F (Figures 18, 19) are intermediated between the forms β and γ . Incidentally GK. H247A, B and some others from the same locality show a particular posture of embedding (see Figures 14, 15), which may be taphonomically explained (S. Toshimitsu, pers. comm.).

To sum up, the three forms, which we designate α , β and γ for convenience, do not deserve to be ranked as subspecies, because they occur sometimes in the same place or in the same fossiliferous zone and because we see occasionally intermediate or transitional forms and also forms with mixed characters.

Comparison and discussion.— Inoceramus concentricus Parkinson var. nipponicus Nagao et Matsumoto, 1939 (p. 267) was evidently a mixture of several species. Birostrina nipponica (Nagao et Matsumoto) in a revised definition is described above and some of the syntypes described and illustrated 40 years ago should be excluded from this species. For example, GMH. 5965 and GMH. 5971, figured by Nagao and Matsumoto (1939, pl. 25, figs. 2, 5), were collected by the late Dr. Kenichiro Otatume from Nutapomanai of Kami-hobetsu in the upper reaches of the River Hobetsu. By courtesy of Professor T. Kato, one of us (T.M.) had an

[→] Figures 6–13. Birostrina nipponica (Nagao et Matsumoto). All the specimens from a large nodule at loc. N67-68p, Birin-zawa, a branch of the River Naibuchi, derived from the fossiliferous Zone Mh-Kz, South Sakhalin (T.M. Coll.), mostly representing the form γ unless otherwise stated. All ×1.5, except 6: ×2 and 8': ×1. 6: GK. H245C (LV); 7: GK. H245A (LV); 8: GK. H245A (above) and GK. H245B (LV) (below); 8': same as 8 with some other incompletely exposed specimens; 9: GK. H246A (LV); 10: GK. H250A (LV); 11: GK. H250B (RV); 12: GK. H250C (RV); 13: GK. H249 (RV), one of the abundantly assembled specimens.

185

opportunity to read Otatume's unpublished thesis in the Institute of GMH to compare his route map with a result of T.M.'s field work (Matsumoto, 1981, fig. 2). It is now evident that the above two specimens came from the Turonian part of the section. They have a triangular postero-dorsal wing or ear, which is well demarcated from the inflated umbonal part of the left valve, being clearly shown by the actual specimen of GMH. 5971 and partly concealed by the rock matrix in GMH. 5965. Nagao and Matsumoto failed to show the wing in the illustration. This form is allied to, if not identical with, Inoceramus inae*quivalvis* Schlüter (1877, p. 265) (=I. striatus of Goldfuss, 1836, pl. 112, fig. 2; non Mantell, 1822).

Another example which should now be excluded from B. nipponica is UMUT. MM6478 (=Tk. I-687), a syntype of Nagao and Matsumoto (1939, pl. 24, fig. 2). It was collected in 1901 by the late Professor Hisakatsu Yabe, when he was a graduate student. Its locality on the label by Yabe's handwriting is "the middle course of the River Obirashibets" (now shortend to Obirashibe or Obira), but its provenance is not exactly known. As small ammonites referable to Desmoceras (Pseudouhligella) cf. japonicum Yabe are in the rock matrix, a Cenomanian age may be suggested. The left valve has a flat postero-dorsal wing; the inflated umbonal part inclines abruptly and steeply to the flat wing but the fine concentric rings continue from the main part of the disk to the wing. The umbo is somewhat (but not strongly) incurved and the apex of the beak is acutely pointed. The ornament on the composite internal mould consists of numerous, fine and even, concentric rings which are at

middle to late growth-stages combined with regular, weak to moderate concentric ribs. The hinge line is nearly a half of the shell length and the valve is moderately (not strongly) convex. This specimen is referable to *Inoceramus pictus minus* Matsumoto (1989, p. 19) (see also Kauffman, 1977, p. 174).

Birostrina nipponica of the Cenomanian age is certainly similar to B. concentrica (Parkinson) of the Albian, but how these two species are related has yet to be worked out. Kauffman (1978a, p. iv • 2-iv • 3) wrote his preliminary observation on the British material, expecting successive change with stratigraphic sequence from the upper Lower Albian to the highest Upper Albian. The earliest form which he called B. concentrica, n. subsp. A, from the upper part of the Zone of Douvillieiceras mammillatum (uppermost Lower Albian) is described as "a small, highly convex, narrow and very elongated along the height axis (nearly tear-drop shaped)" and seems to be similar to the form α of B. nipponica in shell-form. According to Kauffman, it has "an anterior sulcus and a few coarse, widely and unevenly spaced, concentric rugae". Therefore, it seems to be quite dissimilar to our form α with respect to the ornamentation. Anyhow, it is difficult to fully understand the subspecies A, B, C, D and subsp. brasiliensis (White) from England, without full descriptions and adequate illustrations.

Pending the issue of Kauffman's monograph, we should compare *B. nipponica* with the typical form of *B. concentrica*, that is *B. concentrica* concentrica in the sense of Kauffman (1978a, p. iv-3). Although Parkinson's (1819, p. 59, pl. 1, fig. 5) holotype

[→] Figures 14–20. Birostrina nipponica (Nagao et Matsumoto). Some other specimens from a large nodule at loc. N67-68p, Birin-zawa of Naibuchi area, Zone Mh-Kz, South Sakhalin (T. M. Coll.) (continued from Figs. 6–13), all ×1.5. 14: GK. H247A (BV) (above) and B (BV) (below), showing the lateral view of RV and posterior view of LV; 15: Ditto, lateral view of LV of H247A and dorso-lateral view of LV of H247B; 16: GK.H247B, normal lateral view; 17: GK. H247C (RV) (above) and D (LV) (below), both somewhat distorted secondarily; 18: GK.H247E(RV) (above) and F (RV) (below), the latter somewhat inclined to the posterior; 19: GK.H247F, normal lateral view; 20: GK : H248A (LV), intermediate form between β and γ .

cannot be traced (Woods, 1911, p. 267), the specimens from the Gault at Folkestone illustrated by Woods (1911, pl. 46, figs. 1-7) are regarded as representing the typical form of B. concentrica, which is said to range from the upper half of Middle Albian to the basal Upper Albian (cristatum nodule bed) (Kauffman, 1978a, p. iv.3). One of us (T. M.) once looked at these specimens of Woods at Sedgwick Museum and British Museum (Natural History). This typical form of B. concentrica has a rather evenly convex and rounded main part of the valves, and is somewhat similar to the form β of *B*. *nipponica*, but there are some differences. In the left valve of the former the umbonal part is narrow and broadens abruptly to the main part, whereas in that of the latter the umbonal part gradually broadens to the main flank. Generally the former is more oblique than the latter. In both forms the young part is nearly smooth, showing only fine and dense concentric rings. On the middle to late part, weak subcostae may appear occasionally and irregularly in the former, whereas subcostae develop more frequently in the latter, some of which are raised to narrow ribs and accompanied by constrictions of deep interspaces. The forms α and γ of *B*. *nipponica* are undoubtedly different from the typical form of B. concentrica.

Pergament (1966, p. 32, pl. 2, figs. 1-4) described some examples of B. *nipponica* from the Cenomanian of the Koryak-Kamchatka region, Far East of the USSR. They seem to

be generally referable to the form β in this paper, although some inclination towards the form α is shown by those with weak ornamentation (pl. 2, figs. 1, 2) and that towards the form γ by another (pl. 2, fig. 3). However, without inspecting the actual specimens, we cannot confirm these identifications. The same remarks are applied to the incompletely preserved specimens from the Cenomanian of the Naibu (Naibuchi) area of Sakhalin, which Pergament (1966, p. 30, pl. 1, figs. 1-4) described under "Inoceramus cf. concentricus".

On numerous but often incompletely preserved specimens from the Albian of the Antarctic Peninsula region, Crame (1980, 1985) has fully describd Birostrina concentrica. The outline of the left valve is so variable that he distinguished at least three main types. The first of these (represented by figs. 5, 6 in Crame, 1985, pl. 59) may be similar to the slender form (α) of B. nipponica, but the former is more oblique and has an expanded, postero-dorsal, wing-like flat area. The second, pear-shaped type (Crame, 1985, pl. 59, figs. 1, 7, 8) may be somewhat similar to the form β of *B*. *nipponica* in the convex, subrounded main part of the valve, but the left umbonal part of the latter is not so narrow as that of the former, showing gradual broadening (*i.e.* increase of L/H) toward the main part. The third, squatter type of Crame (1985, pl. 59, fig. 10) has no counterpart in B. *nipponica*, but some variety of our form β could be similar to it, at least superficially.

[→] Figures 21-28. Birostrina nipponica (Nagao et Matsumoto). Examples of various forms in the WE Collections. 21: WE. P025A (form γ) (LV; with a deficient RV attached in perpendicular to LV), from loc. As 1065 of the Poroko-ashibetsu, tributary on the west side of the Ashibetsu Valley (A. A. Coll.), × 1.2. 22: WE. P026A (LV) (form β with some inclination to α), from the same locality as above (A. A. Coll.), × 1.2. Note that the apex of the incurved beak was destroyed away. 23: WE. P027A (BV) (juvenile, probably intermediate form between β and γ), from the same locality as above (A.A. Coll.), × 1.2. 24: WE. P028T (LV) (from β somewhat inclined to α) from loc. T6082a86, left bank of the upper main course of the River Obirashibe (A.A. Coll.), ×1. The figure on the left side above is in normal lateral view, that on the left side below in dorsal-lateral view. The apex of the beak was again destroyed away. 25: WE. P030T (LV) (form γ), from the same locality as above (A.A. Coll.), ×1. (form α or β), from the same locality as above, ×1. 27: WE. P041A (LV) (form α), from a boulder at loc. As3028 on the Tsukimi-zawa, Ashibetsu Valley (A.A. Coll.), ×1. 28: WE. P042A (LV)(juvenile of form α), from the same locality as above (A.A. Coll.), ×0.9. Photos (21-23) by M. Noda; others by A. Asai.

There is no example in the specimens illustrated by Crame which is comparable with the form γ of *B. nipponica*, although an example of the right valve (Crame, 1985, pl. 59, fig. 13) seems to be somewhat similar to, but not quite identical with, some right valves (*e.g.* RV of GK. H247A, Figure 14 above; GK. H250A, Figure 12 of this paper) of the form γ .

According to Crame (1985, p. 508) "no rigid morphologic or stratigraphic divisions can be placed between the three types and it is almost certain that they intergrade". The same statement can be applied to the three forms in our material. There is, however, no identical forms between the populations of the Antarctic Albian and those of the Japanese Cenomanian (precisely speaking Middle to Upper Cenomanian). Likewise, there are no similarities between the populations of the British Albian and those of the Japanese Cenomanian.

Birostrina concentrica itself is long ranging. According to Dhondt and Dieni (1988, p. 24), that species ranges from the Douvilleiceras mammillatum Zone (upper Lower Albian) to the Upper Albian (Hysteroceras varicosum Subzone included) and shows world-wide distribution.

Taking all the characters into consideration, as well as the separation in geological occurrences, we are inclined to distinguish B. *nipponica* as a species independent of B. *concentrica*, although the phylogenetic relationship between the two species has yet to be worked out.

Birostrina tamurai Matsumoto et Noda (1986, p. 411, pl. 81, figs. 1-6; pl. 82, figs. 1-3; pl. 83, figs. 1-3; pl. 85, figs. 4-5), from the Middle Cenomanian of Kyushu and Hokkaido, is similar to B. nipponica in shell-form but distinguished in having a radial sulcus on the posterior part and stronger but often irregular ribs at more less late growth-stages. On the average B. nipponica is less oblique than B. tamurai, although the variations of the two species in this regard may overlap to some extent and the secondarily deformed specimens should be excluded from this comparison.

Inoceramus concentricus var. costatus Nagao et Matsumoto (1939, p. 270) needs careful restudy. Its lectotype was designated by Tamura and Matsumura (1974, p. 49) as UMUT. MM6480 (=Tk. I-690) (Nagao and Matsumoto, pl. 24, fig. 1). It was obtained in 1935 by T.M. at loc. Ik12 (precisely 12-12, southern one of the two points at 12 on the route map of fig. 1 in Nagao et al., 1938), from the middle part of Member IId, i.e. the upper part of the tripartite Mikasa Formation on the eastern wing of the Ikushumbets anticline. The bed at Ik 12-2 is one of the sandstone beds with intercalated layers of conglomerate rich in Glycymeris and slightly below the zone characterized by Inoceramus hobetsensis Nagao et Matsumoto. It is somewhat above the predominant tuffite, a key marker of the Lower Turonian Zone of Mytiloides mytiloides in central Hokkaido. Therefore, the type locality (Ik-12) is evidently assigned to the Turonian, probably rather low in the Middle Turonian.

The lectotype of var. costatus itself is somewhat inequivalve, but its left umbo is not so prominent and not so strongly incurved as that of B. nipponica and its right valve is moderately convex. It is ornamented with concentric rings and subcostae which are clearly coarser than those of B. nipponica. Thus it represents, together with similar specimens from various areas of Hokkaido, a distinct species, Inoceramus costatus Nagao et Matsumoto, which is independent of B. nipponica and B. concentrica. A faint posterior radial depression is descernible on the left valve of the lectotype, although it is not so distinct as that of B. tamurai. The left umbo of I. costatus is not so prominent and incurved as that of B. tamurai and the subcostae of I. costatus is more uniform and not so irregularly strong as those on the late part of B. tamurai. One of us (T.M.) presumes that I. mametensis Pergament (1971, p. 44, pl. 4, figs. 2, 3; pl. 5, figs. 2-5; pl. 7, figs. 2, 3) could be a junior synonym or a subspecies of I. costatus. More precise description of I. costatus based on a large number of specimens from Japan is now in preparation by M. Noda.

Matsumoto (1977, fig. 1, ; also fig. 1 in Takayanagi and Matsumoto, 1981) once set the Zone of *Inoceramus nipponicus* in the upper Lower Cenomanian in parallel with the Zone of *Mentelliceras japonicum*, but this was a mistake. It is now evident that *I*. *nipponicus* in those charts is mostly *I*. *tenuis* Mantell, which has a less prominent and much less incurved left umbo and less narrowly rounded ventral margin than *B*. *nipponica* (see Matsumoto *et al.*, 1987).

Occurrence.— The lectotype was collected from the Ugui-zawa, a tributary to the River Naibuchi. This stream runs maily along Zone Mh2 (i.e. the Turonian Zone of Inoceramus hobetsensis; see geological map by Matsumoto, 1942, pl. 5), but several small branches come from the ridge formed by sandstones of the upper part of the Kawakita Group across the Cenomanian fossiliferous zones of Kz-Mh and Mho. As this specimen belongs to the old collections of IGPS, its exact provenance is hardly decided, but the label indicates No. II Group, which is the late Dr. Shimizu's (1935, p. 169) division and Cenomanian on the evidence of ammonites. From the position in the stratigraphic section, Mho is probably referable to the upper Cenomanian and Kz-Mh the lower Upper or upper Middle Cenomanian.

GMH. 7167, an example of the form α which was called the typical form by Nagao and Matsumoto (1939), came from the upper reaches of the Hakkin-zawa, where Cenomanian strata are extensively exposed, but what part of the Cenomanian is not precisely recorded.

OM. II-476, figured by Ikegami and Omori (1957), is one of the best specimens of the form α . This and two other specimens were collected from the lower part of Member IIc

of the Mikasa Formation in the Ikushumbets valley, *i.e.* the lower Upper Cenomanian on the evidence of *Eucalycoceras pentagonum* (Jukes-Browne) described by Matsumoto (1975).

WE. P041A and WE. P042A (both form α) were in a drifted nodule at loc. As 3029 in the Tsukimi-zawa of the Ashibetsu valley. From the lithological character and the location of As 3029, their provenance is inferred as the middle part (silty fine-grained sandstone to sandy siltstone) of the Mikasa Formation, i.e. upper part of the Cenomanian (For the stratigraphic section across the western wing of the Ashibetsu syncline, see Matsumoto and Okada, 1973, fig. 10, although it is along the Hachigatsu-zawa, north of the Tsukimi-zawa.). The loc. As 3029 is stratigraphically about 50 m higher than the loc. As 3211 of Tsukimi-zawa, where several specimens of Calycoceras (Newboldiceras) sp. were obtained along with Desmoceras (Pseudouhligella) japonicum.

GK. H8262-H8266, which represent the form β , were in a nodule from the mudstone of loc. R101. on highway 239 (between Kotanbetsu and Soeushinai), which is stratigraphically somewhat (about 60 m) higher than the loc. R100, where *Calycoceras* (*New-boldiceras*) sp. was found, and is assigned tentatively to the lower part of the Upper Cenomanian (see Matsumoto and Okada, 1973, fig. 8).

Loc. As. 1065 of the Poroko-ashibetsu in the Ashibetsu valley, where WE. P025A. P027A (both γ -form) and WE. P026A (rather β -form) were obtained, is referable to somewhere in the middle to upper part of the Cenomanian, for it is slightly higher than the layer where *Desmoceras* (*Pseudouhligella*) *japonicum* occurs commonly and considerably below the layer with *Mytiloides mytiloides* (Mantell), although the minor gelogic structures are somewhat complicated in the outcrops along this stream.

Loc. T6082a86, where WE. P028T (form β with some inclination to α), WE. P030T

(form γ) and WE. P031T (RV of form α ?) were obtained, is a cliff on the left side of the meandering main course of the River Obirashibe, 100 m west of loc. MH390 of Tanaka (1963, map II), mudstone of the Member Mh, Upper Cenomanian.

Loc. N67-68p, a large nodule in the Birinzawa, a branch of the River Naibuchi (South Sakhalin), in which numerous specimens of the form γ and some of form β were contained, must have been derived from the fossiliferous, silty sandstone, marked Mh-Kz (Matsumoto, 1942) at the top of the Kawakita Group. This is either the upper part of the Middle Cenomanian or lower part of the Upper Cenomanian, from its stratigraphic position (no acanthoceratid ammonite has been found there).

To sum up, *B. nipponica* is early Late Cenomanian and possibly also late Middle Cenomanian in age, on the evidence of the representative specimens described in this paper. To know the true range, further material from more sections in various areas should be investigated.

The three forms, called α , β and γ , occur predominantly in particular lithofacies of different places, although there may be intermingling to a minor degree. This fact suggests that each of them may have adapted to a particular type of environment (S. Toshimitsu, personal discussion with T.M.). To confirm this idea satisfactorily, further analyses will be necessary.

Birostrina aff. nipponica (Nagao et Matsumoto, 1939)

Figures 29-31

Material.— GK. H221 (Figure 29) (LV with shell adhering to major part) from loc. N309h, left bank of the River Naibuchi immediately south of the entrance to the Yunosawa, Zone Mho of Matsumoto (1942) (T. M. Coll.); GK. H8276A, B (Figure 30) (LV) and C (BV but half concealed by rock matrix)

(comp. int. m., with inner shell layer adhering to some portions), from loc. Ik2020e, gorge of the River Pombets a tributary to the River Ikushumbets, central Hokkaido (T.M. Coll.); WE. P029T (Figure 31) (LV, comp. int. m., with inner shell layer adhering partly), from loc. T6054a84, right side of the River Obirashibe (see Sekine *et al.*, 1985, fig. 3•2), northwestern Hokkaido (Coll. by Y. Tanaka, S. Ago and A. Matsuzawa).

Description.— Shell small and inequivalve. Left valve highly convex, with much incurved and prosocline umbo and beak; axis of growth sigmoidal, with forward convex curvature on the main or late part of the valve; outline obliquely suboval, with somewhat expanded postero-ventral part which tends to be flattened; anterior margin slightly concave blow the beak and very broadly convex in the main part, passing to the asymmetrically rounded ventral margin; posterodorsal margin gently concave, forming an obtuse angle with the postero-ventral margin. Right valve less convex than the left and subtrapezoid-suboval in outline.

Surface of the shell marked by fine concentric striae. The internal mould at first smooth and then ornamented with concentric rings which correspond to the interspaces of the striae on the shell surface. Concentric subcostae or narrow and weak ribs may develop at more or less late growth-stage. A very faint radial depression may be discernible in some specimens (GK. H8276 A and C).

Comparison. — Although B. nipponica is considerably variable and includes several forms as described above, we exclude this particular form from that species. It is indeed somewhat similar to the form β of B. nipponica, but clearly distinguished by its sinuous growth-axis which curves obliquely to the posterior with growth, forming anteriorly convex curvature on the main part of the valve.

This form looks somewhat similar to *B*. concentrica brasiliensis (White) (1887, p. 56,

Figures 29–31. Birostrina aff. nipponica (Nagao et Matsumoto). **29**: GK. H221 (LV), from loc. N309h, Zone Mho, Naibuchi valley (T.M. Coll.), $\times 1.3$. **30**: WE. P029T (LV), from loc. T6054a84, Member Mh, Obirashibe valley (collected by Y. Tanaka, S. Ago and A. Matsuzawa), $\times 1.5$. **31**: GK. H8276A and B (both LV), from loc. IK2020e, Pombets Gorge, lower part of Mikasa Formation, Ikushunbets valley (T.M. Coll.), $\times 1.2$. a : lateral view of H8276A and posterior view of H8276B; b : lateral view of partly concealed H8276B, with a postero-dorsal portion of H8267A at the right corner; c : anterior view of H8276A; d : anterior view of H8276B on the left and dorsal-lateral view of H8276A. Photos (21-23) by M. Noda.

Figure 32. Birostrina nipponica (Nagao et Matsumoto). OM. II-476 (BV) (form α), collected by Yoshimi Yamaguchi from loc. IK B-6 of the water-way tunnel from the Katsura-zawa dam to the station of the electric power, Ikushumbets valley (reproduced from Ikegami and Omori, 1957, by permission). Scale bar: 10 mm.

Table 2. N	Measurements	of	Birostrina	aff.	nipponica	on	selected	specimens.	
------------	--------------	----	------------	------	-----------	----	----------	------------	--

Specimens	v	Н	L	L/H	G	G/H	G/L	b	b/H
GK. H221	LV	32.0	24.0	.75	52.0	1.63	2.2	13.4	.42
GK. H8276A	LV	36.0	25.6	.71	53.0	1.47	2.1	16.0	.44
WE. P029T	LV	36.5	~26	.71	55.0	1.51	2.1	16.5	.45

pl. 3, figs. 11, 12; Maury, 1937, pl. 8, figs. 9, 10, 13; Kauffman, 1978b, pl. 1, figs. 11, 16), from the Middle Albian of Brazil, South Africa and elsewhere, but its left beak is not so strongly prosogyrous as in that subspecies and its occurrence is much separated in geological age. Therefore, the similarity may be due to a homeomorphy.

Dimensions.— See Table 2.

Occurrence.— Loc. N309h, Zone Mho, sandy siltstone in the lower part of the Miho Group, upper part of the Cenomanian.

Loc. Ik2020e, calcareous nodule in the greenish grey fine to medium-grained sand-

stone in the lower part of the Mikasa Formation on the western wing of the Ikushumbets anticline. It is slightly above the layer in which fragmentary pieces of *Calycoceras* (*Newboldiceras*) sp. are intermingled with abundant trigonian shells, probably upper part of the Middle Cenomanian.

Loc. T6054a84, mudstone of the Member Mh (Tanaka, 1963) of the Obirashibe valley, upper part of the Cenomanian.

The stratigraphic range of this form has yet to be worked out by the study of more material from various sections.

Acknowledgements

We wish to thank Professor Hiromichi Hirano for his pertinent supervision to one of us (A.A.) and for generous help in various ways to both of us; also Drs. Masayuki Noda and Seiichi Toshimitsu for fruitful discussions and for kind help in taking photographs of the GK and some of WE specimens.

We owe much to the persons who assisted us in the field works. Their names are indicated in the item *Material*. Thanks are extended to Dr. J.A. Crame who has kindy read our first draft, giving valuable suggestion and information, and also to the late Dr. J.B. Reeside, Jr. and Dr. Peter Bengtson who supplied to one of us (T.M.) with Brazilian papers which were inaccessible in Fukuoka. Miss Saiko Nitani assisted us in preparing the typescript.

References cited

- Crame, J.A., 1980: The occurrence of the bivalve Inoceramus concentricus on Dundee Island, Joinville Island Group. Bull. Br. Antarct. Surv., no. 49, p. 283-286.
- —, 1985: Lower Cretaceous inoceramid bivalves from the Antarctic Peninsula region. *Palaeontology*, vol. 28, part. 3, p. 475-525, pls. 54-61.
- Dhondt, A.V. and Dieni, I., 1988 : Early Cretaceous bivalves of eastern Sardinia. Mem. Sci. Geol., Univ. Padova, vol. 40, p. 1-97, pls. 1-13.
- Goldfuss, A., 1836 : *Petrefacta Germaniae*. pt. 2, p. 106-118, pls. 108-115, Düsseldorf.
- Ikegami, S. and Omori, T., 1957: On the Mikasa Formation in the Katsurazawa dam site area of the Ikushumbetsu River, Mikasa, Hokkaido. *Jour. Hokkaido Gakugei Univ.*, Sec. IIB, vol. 8, no. 1, p. 70-89, pls. 1-14 (J).
- Kauffman, E.G., 1977: Middle Cretaceous Euramerican and North Pacific Inoceramidae. *Palaeont. Soc. Japan, Spec. Pap.*, no. 21, p. 169-212.
- —, 1978a: British Middle Cretaceous inoceramid biostratigraphy. Ann. Mus. d'Hist. Nat. Nice, vol. 4 (for 1976), p. iv•1-iv•12.
- —, 1978b: South African middle Cretaceous Inoceramidae. *Ibid.*, xvii•1-xvii•6.
- Mantell, G., 1822: Fossils of the South Downs; or illustrations of the geology of Sussex. 320 p.,

42 pls., London.

- Matsumoto, T., 1942: Fundamentals in the Cretaceous stratigraphy of Japan. Part I. Mem. Fac. Sci., Kyushu Imp. Univ., Ser. D, Geol., vol. 1, p. 130-280.
- ----, 1943 : *Ditto*. Parts II and III. *Ibid*., vol. 2, no. 1, p. 97-237.
- —, 1975 : Additional acanthoceratids from Hokkaido (Studies of the Cretaceous Ammonites from Hokkaido and Saghalien-XXVIII). *Ibid.*, vol. 22, no. 2, p. 99-163, figs. 1-18, pls. 11-23.
- —, 1977: Zonal correlation of the Upper Cretaceous in Japan. *Palaeont. Soc. Japan, Spec. Pap.*, no. 21, p. 63-74.
- —, 1981: The specimens of *Inoceramus* (Bivalvia) donated to the Kitakyushu Museum of Natural History. *Bull. Kitakyushu Mus., Nat. Hist.*, vol. 3, p. 15-26, pls. 2-5 (J).
- —, 1989: Some inoceramids (Bivalvia) from the Cenomanian (Cretaceous) of Japan.—V. A world-wide species *Inoceramus pictus* Sowerby from Japan. *Trans. Proc. Palaeont. Soc. Japan.*, N.S., no. 153, p. 12-24, 10 figs.
- —, Asai, A. and Hirano, H., 1987: Ditto. II. Three species from Hokkaido, well known abroad but hitherto undescribed in Japan. Ibid., no. 147, p. 146-164, 8 figs.
- —, —, —, and Noda, M., 1988: Ditto. III. Three species occurring commonly in the North-west Pacific region. Ibid., no. 149, p. 378-395, 9 figs.
- and Noda, M., 1986: Ditto. I. New or little known four species from Hokkaido and Kyushu. *Ibid.*, no. 143, p. 409-421, pls. 81-85.
- and Okada, H., 1973: Saku Formation of the Yezo geosyncline. Sci. Repts., Dept. Geol., Kyushu Univ., vol. 11, no. 2, p. 275-309 (J).
- and Tanaka, K., 1988: Some inoceramids (Bivalvia) from the Cenomanian (Cretaceous) of Japan. — IV. An interesting new species from Hokkaido. Trans. Proc. Palaeont. Soc. Japan, N.S., no. 151, p. 570-581, 15 figs.
- Maury, C.J., 1937: O Cretaceo de Sergipe. Monografia Serv. Geol. Min. Brasil, no. 11 (for 1936), 283+xxxv pp., 28 pls.
- Nagao, T. and Matsumoto, T., 1939: A monograph of the Cretaceous *Inocramus* of Japan. Part I. *Jour. Fac. Sci., Hokkaido Imp. Univ., Ser. 4*, vol. 4, nos. 3-4, p. 241-299, pls. 23-34.
- ----- and -----, 1940 : *Ditto*. Part II. *Ibid*., vol. 6, no. 1, p. 1-64, pls. 1-20.
- —, Saito, R. and Matsumoto, T., 1938: Preliminary note on the succession of Cretaceous strata along the course of the Ikushumbets, Hokkaido. *Jour. Geol. Soc. Japan*, vol. 45, no. 533, p. 259-263.
- Noda, M. and Matsumoto, T., 1976: Mesozoic mol-

luscan fossils of Japan 4 (Cretaceous Inoceramus). Atlas of Japanese Fossils, no. 45, Cr. 31-Cr. 36, Tsukiji-Shokan, Tokyo (J).

- Parkinson, J., 1819: Remarks on the fossils collected by Mr. Phillips near Dover and Folkestone. *Trans. Geol. Soc. London*, vol. 5, p. 53-59.
- Pergament, M.A., 1966: Zonal stratigraphy and *Inoceramus* of the lowermost Upper Cretaceous of the Pacific coast of the USSR. *Trans. Acad. Sci. USSR, Geol. Inst.*, vol. 146, 83 pp., 36 pls. (R).
- —, 1971: Biostratigraphy and *Inoceramus* of Turonian-Coniacian deposits of the Pacific regions of the USSR. *Ibid.*, vol. 212, 202 pp., 73 pls. (R).
- Schlüter, C., 1877: Kreide-Bivalven zur Gattung Inoceramus. Palaeontographica, vol. 24, p. 249-288, pls. 36-39.
- Sekine, H., Takagi, A. and Hirano, H., 1985: Biostratigraphical study of the Upper Cretaceous of the north-east part of the Obira area, Hokkaido. *Fossils* (Palaeont. Soc. Japan), no. 38, p. 1-15 (J).
- Shimizu, S., 1935: The Upper Cretaceous cephalopods of Japan, Part I. Jour. Shanghai Sci. Inst., Sec. 2, vol. 1, p. 159-226.

- Takayanagi, Y. and Matsumoto, T., 1981: Recent advances in the Cretaceous biostratigraphy of Japan coordinating mega- and micro-fossils. *Recent Progress Nat. Sci. Japan*, no. 6, p. 125-138.
- Tamura, M. and Matsumura, M., 1974: On the age of the Mifune Group, central Kyushu, Japan. *Mem. Fac. Educ., Kumamoto Univ.*, no. 23, Sec. 1 (Nat. Sci.), p. 47-56, pl. 1.
- Tanaka, K., 1963: A study on the Cretaceous sedimentation in Hokkaido, Japan. *Rept. Geol. Surv. Japan*, no. 197, 122 pp., 2 maps, 3 pls.
- White, C.A., 1887: Contributions to the paleontology of Brazil; comprising descriptions of Cretaceous invertebrate fossils, mainly from the Provinces of Sergipe, Pernembuco, Para and Bahia. Archiv. Mus. Nac. Rio. de Janeiro, vol. 7, v+273 pp., 27 pls. (originally published in 1887; reprinted in 1888).
- Woods, H., 1911: A monograph of the Cretaceous Lamellibranchia of England. vol. 2, part. 7, *Palaeontogr. Soc. Monogr.* for 1910, p. 261-284, pls. 45-50.

Aikawa 相川, Ashibetsu 芦別, Birin-zawa 備林沢, Hachigatsu-zawa 八月沢, Hakkinzawa 白金沢, Hobetsu 穂別, Ikushumbets (Ikushunbetsu) 幾春別, Kami-hobetsu 上 穂別, Katahira 片平, Katsura-zawa 桂沢, Kawakita 川北, Kiritachi 霧立, Kotanbetsu 古丹別, Miho 美保, Mikasa 三笠, Naibuchi (=Naibuti or Naibu) 内淵, Nutapomanai ヌタポマナイ, Obira 小平, Obirashibe (Obirashibetsu) 小平蘂, Oyubari 大夕張, Pombets (Ponbetsu) 奔別, Poroko-ashibetsu 幌子芦別, Sakhalin サハリン, Shiyubari シュ ウバリ (主夕張), Soeushinai 添牛内, Tsukimi-zawa 月見沢, Ugui-zawa (Ugoi-zawa) う ぐい沢, Yu-no-sawa 湯の沢.

北海道・サハリン産白亜紀セノマニアン期のイノセラムス類 — I. Birostrina nipponica (Nagao et Matsumoto): Inoceramus concentricus var. nipponicus Nagao et Matsumoto, 1939 は定義が不明確で,その地質時代の記録にも誤があった。今回新資料も加えて再検討 した。改正種は Birostrina に属するが、アルビアンの B. concentrica (Parkinson),本階中 部の B. tamurai Matsumoto et Noda とは識別される。変異が著しく、便宜上 3型 (α , β , γ) に分けて各々の形質を記した。しかし 3 者は密接で漸移する。レクトタイプは α 型だが β 型に移行の傾向を示す。検討した標本は上部セノマニアンの下部のが多いが、一部同階中 部の上部にわたる可能性がある。3型の産出時代に差はないが、生息環境に若干の差があっ たのかもしれない。従来の I. concentricus nipponicus 中には I. tenuis Mantell, I. pictus minus Matsumoto, B. aff. nipponica (本文末尾に記述)、さらにチューロニアンの I. inaequivalvis Schlüter に近縁のものさえ含まれていた。

⁽J): in Japanese with English abstract or brief explanation. (R): in Russian.

884. DINOFLAGELLATE CYST ANALYSIS OF HOLOCENE SEDIMENTS FROM LAKE HAMANA IN CENTRAL JAPAN*

NATSUHIKO KOJIMA

Department of Biology, Faculty of Science Osaka City University, Osaka 558

Abstract. Dinoflagellate cysts occur in the Holocene sediments of Lake Hamana, Central Japan. The cyst assemblages are dominated by *Brigantedinium* spp., *Selenopemphix quanta* and *Seleno. hamanaensis* of the Peridinioid Lineage, and *Polykrikos schwartzii, Poly. kofoidii and Pheopolykrikos hartmannii* of the Gymnodinioid Lineage. A few cysts of the Gonyaulacoid and Tuberculodinioid Lineages are also present in the samples. Six dinoflagellate cyst assemblage zones are established based on differences of species composition. From the cores of central Lake Hamana, environmental changes from stable inner bay to brackish-water lake and then to freshwater lake and finally to brackish-water lake were recorded in the cyst composition. One new species, *Selenopemphix hamanaensis*, and four cysts are described.

Key words. Dinoflagellate cyst, Holocene, paleoenvironment, Lake Hamana.

Introduction

Studies of Quaternary dinoflagellate cysts have been carried out mainly in the North Atlantic region since the 1960's. Initially, the majority of these studies were descriptive works (*e.g.*, Rossignol, 1961, 1962); later studies focused on comparisons of the Quaternary assemblages with modern cyst distributions (*e.g.*, Harland, 1977; Reid and Harland, 1977). More recently, dinoflagellate cysts have been useful in paleoenviromental studies (*e.g.*, Dale 1985; Long *et al.*, 1986) and Harland (1988) suggested the possibility of paleoclimatic analysis using such cysts.

In Japan, there have been only a few works on Quaternary cysts. Matsuoka (1976) described palynomorphs including dinoflagellate cysts from the Pleistocene Osaka Group. Harada (1984) carried out a paleoenvironmental study based on dinoflagellates in the samples obtained from the New Kansai International Airport in Osaka Bay. These has been only one work on cysts in Holocene sediments. Matsuoka (1987a) discussed the Holocene paleoenvironment based on dinoflagellate cyst assemblages in core samples from Kawasaki City.

This paper describes the Holocene dinoflagellate cyst assemblage and discusses paleoenvironmental changes in Lake Hamana.

Samples

Samples were collected from two locations as shown in Figure 1. These core samples were taken to investigate environmental changes by a research team from Shizuoka University (Representative: N. Ikeya). These samples were taken with a thin-walled sampler and triple-tube sampler.

85H-1 (Location: 34°45′59″N, 137°35′31″ E)

This site is situated in the northern part of Lake Hamana and has the deepest water (about -12 m) (Figure 1). The core samples

^{*}Received December 26, 1988; revised manuscript accepted August 1, 1989.

Figure 1. Location of coring sites, 85H-1 and 85H-2.

were obtained from a depth of $1.45 \sim 16.75$ m from the bottom of the lake.

The sediments in this core mainly consist of homogeneous gray silt and the geologic ages were confirmed by tephra intercalated at three horizons (Figure 2). These tephra were Osawa scoria ($-6.49 \sim -6.55$ m, ca. 3,000 y.B.P.), Kawagodaira pumice ($-6.56 \sim -6.58$ m, ca. 3,000 y.B.P.) and Kikai-Akahoya tephra (-14.18 ~ -14.32 m, ca. 6300 y.B.P.) in descending order (Ikeya *et al.*, 1987). The sedimentation rate at this site is calculated to be approximately 0.22 cm/year based on these ages.

85H-1B (Location: about 1m north of 85H-1)

These samples correspond to the loss in the upper part of core 85H-1. The supplementary core ranges $-0.32 \sim -1.22$ m from the bottom of the lake. They consist mainly of

Figure 2. Columnar section of the sampling sites. Os : Osawa scoria, Kgp : Kawagodaira pumice, Ah : Kikai-Akahoya tephra (adapted from Ikeya *et al.* 1987).

dark greenish-gray silt laminated with black and light gray silt. They contain shell fragments and give off a hydrogen sulfide (Ikeya *et al.*, 1987).

85H-2 (Location : 34°45′03″N, 137°35′31″ E)

This site is situated at the edge of a trough in the lake (Figure 1). The water depth is approximately 5 m. The recovered core material ranges in depth from 0 to -41.64 m and is composed of alternating beds of silt and sand. The sediments are more sandy than those of 85H-1 and the sedimentary facies changes frequently.

The ¹⁴C ages measured for eight horizons (Figure 2) are as follows (Ikeya *et al.*, 1987):

Depth (m)	Age (y.B.P.)	Sample
0.86	790 ± 100	Gastropoda
1.90	3980 ± 120	Gastropoda
2.80	5240 ± 100	Gastropoda

3.09	5500 ± 160	Gastropoda
4.12	5190 ± 110	Gastropoda
4.38	5780 ± 120	Phytoclast
29.84	7470 <u>+</u> 130	Gastropoda
36.61	9720 <u>+</u> 130	Pelecypoda
Only one	tephra bed w	was recognized as
•1 • • 1 1	. 1 ()	0.00 (200

Kikai-Akahoya tephra (-8.98 m, ca.	6,300 y.
B.P.) in this core (Ikeya et al., 1987).	•

Methods

All the samples were processed using palynological preparation techniques (Shimazaki, 1979). However, they were not treated with in order to avoid damaging the cysts (Matsuoka, 1984b). An outline of the process used follows:

- An approximately 10% solution of hydrochloric acid is added to the sample (1 cc) to dissolve the calcium carbonate particles.
- (2) The remains are treated with an approximately 50% solution of hydrofluoric acid to remove silicate particles.
- (3) The organic remnants are sieved through a 150-mesh screen to exclude large grains.
- (4) The residue is sieved through a 635mesh screen to trap cysts, and the refined material is examined microscopically.

The refined samples (with water) mixed with a solution of polyvinyl alcohol are spread over cover glasses $(18 \text{ mm} \times 24 \text{ mm})$ and dried on a hot plate at about 40°C. Each cover glass with the specimen is mounted in polyester resin.

Forty three samples of 85H-1 and 85H-1B, and forty-six samples of 85H-2 were examined by palynological analysis. The absolute number of cysts per three slides was calculated for 85H-1 and 85H-1B, and the absolute number of cysts per 0.1 cc of refined sample was counted for 85H-2.

Dinoflagellates often have two scientific names, one for the vegetative stage, and the other for the resting cyst stage. Some cysts with no cyst-based name are referred to by their vegetative cell names in this paper.

Although there are disagreements over the taxonomic classification of the genus *Polykrikos* (Fukuyo, 1982; Harland, 1981; Matsuoka, 1984a), Matsuoka's (1985b) criterion for *Poly. schwartzii*, the network structure on the periphragm is followed here.

Dinoflagellate cyst assemblage zone

Investigation of dinoflagellate cysts revealed six assemblage zones in cores 85H-1 and 85H-2 (Tables 1-3, Figures 3-6). Assemblage zone A (85H-1, $[1] \sim [3]$; 85H-2, [1])

						0		-										
Depth(m)	38	78	18	61	10	41	81	. 26	.61	. 01	.61	. 01	14	.81	. 16	.61	. 01	.41
	37-0.	77-0.	17-1.	60-1.	. 00-2.	40-2.	. 80-2.	. 25-3.	60-3.	. 00-4	. 60-4	.00-5	. 40-5.	. 80-5	. 15-6	. 60-6	. 00-7	40-7
Species		0.	.1	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	(5)	(6)	(1)		(6)	ē.	([])	(12)	[13]	3	(15)	(16) 6	(11)	(18)
GONYAULACOID LINEAGE	Ē	1																
Spiniferites aff. S. berelius																		
S. bulloideus	1											L		L			<u> </u>	1
S. cf. hyperacanthus																		
S. ramosus	1						1	L									<u> </u>	
S. spp.	1	1	2				L				ļ		1			1	L	
Operculodinium centrocarpum	1												1				\square	
0. aff. crassum														L		L		l
0. cf. israelianum	1						L						L					
0. spp.	2										L	L			L	L		
Lingulodinium machaerophorum			I				L											L
PERIDINIOID LINEAGE	Ļ		ļ														L	I
Brigantedinium cf.assymetricum						L												L
B. cariacoense																		
<u> </u>															L	l		
B. majusculum														L	1			
B. simplex		L	I	ļ								l			L			
<u> </u>		4							I						2	6	3	1
Stelladinium abei					L	L												
Stellad. reidii																L		
Selenopemphix alticincutum			1															
Seleno. quanta	2	1								1						6		4
Seleno, hamanaensis																1		
Trinovantedinium capitatum																		
<u>T. sp.</u>									L									
Votadinium carvum																		
V. spinosum	3		1															
Lejeunecysta concreta				L												3		
L fallax										l								
L. spp.	_			I														
Maltispinula? minuta			3															
Protoperidinium type C	L																	
Cyst of Proto. lattisimum	2		L				-									1		
Cyst of Proto.	2															_2_		2
GYMNODINIOID LINEAGE			L															
Polykricos kofoidii	29	1	2													2		2
Poly. schwartzii	42	2	65							39		1				8	16	2
Pheopolykricos hartmannii																11		L
TUBERCULODINIOID LINEAGE		<u> </u>		L														ļ
Iuberculodinium vancampoae			<u> </u>													3		L
TOTAL	86	9	71	0	0	0	1	0	0	40	0	1	2	0	3	43	19	12
DELINITYCEAE						ļ												<u> </u>
regiastrum sp.				L		4	10						3					L
Straustrum sp.						_8												<u> </u>
INCERIAE SEDIS						L												
r. rudina	1																1	1

 Table 1.
 List of dinoflagellate cysis in core 85H-1.

This zone is characterized by an abundance of *Polykrikos* cysts. *Poly. schwarztii* makes up $40 \sim 92\%$ of samples 85H-1, [1] and [3]. *Poly. kofoidii* increases suddenly at the top of this zone, sample 85H-1, [1]. *Pseudoschizaea rubina*, with unidentified microfossils, occurs in this zone. Assemblage zone B (85H-1, [4]~[15]; 85H-2, [2]?)

There are a few cysts in this zone. *Poly.* schwartzii is very abundant in sample 85H-1, [11]. Gonyaulacoid cysts are recorded in samples 85H-1, [7] and [13]. Peridinioid cysts are found in samples 85H-1, [10] and

(19) 7.80-7.81	(20) 8. 25-8. 26	(21) 8.60-8.61	(22) 9.05-9.06	(23) 9.40-9.41	(24) 9.80-9.81	(25) 10.20-10.21	(26) 10.60-10.61	(27) 11.00-11.01	(28) 11.40-11.41	(29) 11.80-11.81	(30) 12.00-12.01	(31) 12.20-12.21	(32) 12.55-12.56	(33) 13.00-13.01	(34) 13. 20-13. 21	(35) 13.60-13.61	(36) 13.80-13.81	(37) 14.00-14.01	(38) 14.20-14.21	(39) 14.35-14.36	(40) 14.60-14.61	(41) 14.80-14.81	(42) 15.00-15.01	(43) 15.60-15.61
				1			<u> </u>																	
				1													1				1			
		2		1		1								1										
3			1	1		1	1						1	2	1	2	1			<u> </u>	1	L	2	<u> </u>
					3	<u> </u>				2	,		1	3	2	3	2		1		1			-
					<u> </u>						1		1	4	3	1	2	3			$\frac{3}{1}$			- 2
							1				-			-	<u> </u>	<u> </u>		- <u> </u>			<u> </u>			
				2				3				1		1			2							
3		1			 	<u> </u>		3		5_	1					8		1			4	I		
					<u> </u>		<u> </u>					1				1								
			-			<u> </u>										<u> </u>					3			
														1	2		2							
		5		1										1					1	2	1			
				L										7	5	3	7	1		4		1	1	
7	10	46	49	60	49	11	21	16	9	21	50	34	22	23	74	71	38	44	16	21	74	14	4	25
<u> </u>				3														1				$\frac{1}{2}$		
<u> </u>	2	4		1			$\overline{1}$	1		2	1		1	4	2	1	1	2		2	7	1	1	
26		33	18	65	58	12	27	31	6	19	49	17	33	31	27	58	38	68	17	17	29	6	2	16
8	5	7	8	12	21	54	73	18	7		19	109	84	13	16	8	49	59	26		3			
<u> </u>		1															1							
				0	6	10					2	4	2	3		5	18	3		2				3
		1	4	1	<u> </u>	10	1				1	1	1	1			1	Ĵ		1	2			
		1	2	4	11	1	9	35	5	10	9	2	2	8		5	53	5	2	1	15	2		_11
																		1						
										<u> </u>				10			2			2				
						8	1	2				4	5	16			$\frac{1}{1}$		2	4				ь
<u> </u>			1					2		1				2		1								
1			8	1		1	2	3	4	1	2	3	2	4	2	6	5	1		2	1			5
																	L						ļ	
3	3	9	1	6	1	5	3	11				17		$\frac{1}{c}$		10	E					1		1
40	17	14	13	18	13	95	30	07	3.	1	3	13	- D - 46	20	63	10	20	<u> </u>	170	153	50	6		12
<u> </u>		23	44	10	1.5	- 35	- 24					10	10			10	- 20		1.0	100	00	Ľ		
9		3	8	3	6	1		1			3		1	3	1	1	4		1	2	1			1
102	37	159	138	200	200	214	201	200	36	70	145	206	205	153	200	198	249	200	244	216	200	34	14	89
 	L		ļ									<u> </u>					ļ						<u> </u>	
					<u> </u>																			
1																								

Table 1. Continued.

Natsuhiko	
Kojima	

Table 2. List of dinoflagellate cysts in core 85H-2.

Donth (m)				Τ	Π		Τ	T				_	=[5 5		: =	=	5	5	51	202	5 2	33	12	2	= =		: 5	=	1	12	12	=	Ξ	Ξ	76	19	=	5	3012
Debru(m)	8	96	e e	26	90	86	5 7	5	Ξ	8	9	-1-	-1-		7	-	5	9.	1	<u>∞</u>	<u>.</u>	12	3	1	ک	9 5		g	ŝ	=	2			5.	. <u>.</u>	36.	₩.	<u></u>	6	<u> </u>
	C	ċ	- -	i er	4	4 4	i u		∞	~	7						6	0	c	C I	، د ا			0	0				6	6	0	9	C	0	c	2	C	0	c	00
	l C	95	2 4	12	05	85	10	$ \tilde{\sim}$	ĕ	8		-		-10	3 ~	~		с. С.	7.3	8	2 - X	-16		5	5.7	41		20		1		~	1	2	6.0	6.7	1.6	8.	9.2	1.2
Species /	0		-1-	il co	-		9	10	138	218					6	6	10	1	2)	33	2	6)9	12	8]2	9)2(6	10	2]6	3]9	1	53	613	133	33		0]3	5	3	<u>ا</u> ین	÷,	V(g)
	=	2 5		5	<u>ع</u>	<u> </u>	100	5	=	- 13		-	: =	드	두	F	E	2		212			E	E	2 5		<u></u>	10	<u> </u>	2	F	<u> </u>	<u> </u>	8	Ξ_	F	-	-	ž f	ĒĒ
Spiniferites bulloideus			+	<u> </u>		+-	+		\vdash	-+	+		+	+	+-	+	+-	-	$\left \cdot \right $			-		+	-	+	+-	+-	+	┢	+	+	1	+	\vdash	\vdash	\rightarrow	-+	-+	+
S ramosus		+	┿	+	\vdash		+						+	+	+-	+-	+	1	\vdash		+		+	\vdash	-+	+	+	+		1	+	2	11	1	-	\vdash	-+	-+	-+	+-
S. Spp.		+	+	+	+		+	+	$\left \right $	+	+	-	+	+-	+	+	1	-		-	1	+	-	-		+-	+	+	+	1 ·	\vdash	1	1		\vdash	\vdash	$\neg \uparrow$	-		
Lingulodinium machaerophorum			+-	1		+	1	1		-	+	+	+	+	1	+	t			+	+	1		-	-+	+	+	1		-	4	+	1	1	H	\vdash	\uparrow	-	\neg	
Operculodinium centrocarpum				1	\square		1	1			1	+	+			1-	\uparrow					+	1	-		+-		\uparrow			1	1	+	1				-	-	+-
0, ? sp.			-	1-			1	-		1		+	+	+		1	1					1	1		+		+	+		t	F	Ê	1-					-	+	1
PERIDINIOID LINEAGE	_		1	+		+	1	1		÷	+	+	+-	+		1					+	1	1				+	1	1-	-	1-	t	<u>i</u>					-	-†	-
Brigantedinium cariacoense	1		T	1	\square		1	1					1	+	1	1				-	+				-			T		1	T		Γ					+	+	+
B. irregurale								1													1				-	1		1			1	1								-
B. simplex	2	1									1				T						Τ									Γ										
B. majusculum								1	1			1	2	2		1					Τ	1	-											1	\square					
B. spp.	6			2	2	1	2	2	1	5	1	2 5	5 3	3	Τ		1	2	1		5	1	1	4	1	4		3	1	6	4	2	1	2	5	\square	T			
Selenopemphix alticincutum				1			1	1				1		Τ		Τ										Τ						1								
Seleno. quanta	1	1	1	1		1	1	4		5 4	1		2	2				2	1					4	2	4	1		6	12	7	10	7	1	2					
Seleno. hamanaensis								2	1	1													1		1				14	19	5	10	1							
Votadinium carvum		1				1		1		1				1										1		1				2	2	1								
V. spinosum	1																															2	1							
Lejeunecysta concreta																										1			1	1	2	4	4		1			\square		_
Cyst of Proto. oblongum		1																													2	1								
Multispinula? minuta		1					1					1																												
Trinovantedinium sp.A		_																_															1		\square				\perp	
Cyst of Protop.									_																					1	2									
GYMNODINIOID LINEAGE																																								
Polykricos kofoidii	6																															1	1			\square				
Poly. schwartzii	7	2									1		1													1	1						1							
Pheopolykricos hartmannii			2				1			22	0	1	5	1										65				1	1	7	2	4	4							
TUBERCULODINIOID LINEAGE																																								
Tuberculodinium vancampoae		4					1		1									1						1					1	2	3	2				\square				
INCERTAE SEDIS																																								
Dino.? cyst type A]																														
Dino.? cyst type D							1			1		Γ		1										2				1							\square	Ш				
Dino.? cyst type E																														2	68		5			\square	\square	$ \rightarrow $	\perp	\downarrow
TOTAL	24	0 11	3	3	2	1 2	7	12	4	52	6 3	8	11	1 2	0	0	1	6	2	0 0	8	1	2	75	4 () 12	2 2	4	24	51	34	41	22	5	8	0	0	0	0	00

TOTAL: except INCERTAE SEDIS

Figure 3. Vertical distributions of dinoflagellate cysts in core 85H-1.

[15]. The samples in this zone incude freshwater planktonic algae, *Pediastrum* and *Staurastrum*.

Assemblage zone C (85H-1, $[16] \sim [27]$; 85H-2, $[3] \sim [38]$?)

Brigantedinium spp., Selenopemphix hamanaensis, Poly. kofoidii, Poly. schwartzii and Pheopolykrikos hartmannii are continu-

Figure 4. Vertical distributions of dino-flagellate cysts in core 85H-2.

ous throughout this zone. Gonyaulacoid cysts are present at less than 3%. Brigantedinium spp. are observed abundantly from sample 85H-1, [21] to [24]. Seleno. hamanaensis is found plentifully in the upper part of this zone. Polykrikos cysts are found evenly throughout these samples. Votadinium carvum and Lejeunecysta concreta are restricted to the samples from the middle to upper parts and their occurrence corresponds with cyst abundance. The number of cysts

Assemblage zone	Age (y.B.P.)	Sample No.	Depth (m)	Sample No.	Depth (m)
A	168~ 536	85H-1-[1]~[3]	0.37~ 1.18	85H-2-[1]	0.05~0.06
В	727~2800	[4]~[15]	1.60~ 6.16	1	
С	3000~5005	[16]~[27]	6.60~11.01	[3]	1.65~
D	5182~5368	[28]~[29]	11.40~11.81	↓ ↓	
E	5455~6641	[30]~[40]	12.00~14.61	↓	
F	6727~7095	[41]~[43]	14.80~15.61	[38]	~ 34.30
				[39]~[40]?	35.10~36.01

Table 3. Dinoflagellate cyst assemblage zone for cores 85H-1 and 85H-2.

decreases higher in the zone.

Assemblage zone D (85H-1, $[28] \sim [29]$; 85H-2, $[3] \sim [38]$?)

This zone is distinct in 85H-1 but indistinct in core 85H-2. The number of cysts, especially Gymnodinioid cysts, decreases in this zone. Brigantedinium spp. and Seleno. quanta are frequent and Lejeunecysta concreta is found in constant numbers, but Seleno. hamanaensis is rarely found.

Assemblage zone E (85H-1, $[30] \sim [40]$; 85H-2, $[3] \sim [38]$?)

This zone is marked by the cyst dominance. Brigantedinium spp., Seleno. quanta and Pheo. hartmannii are also recorded throughout the samples, and Seleno. hamanaensis is also present except sample 85H-1, [39]. These four cysts make up a high percentage in the assemblage. Tuberculodinium vancampoae also occurs throughout the samples, but is not as abundant. Gonyaulacoid cysts are concentrated around the middle part of this zone. Samples 85H-1, [38] and [39] are characterized by a dominance of Pheo. hartmannii. These two samples may correspond to 85H-2, [13] and [28] which also have a high percentage of Pheo. hartmannii.

Assemblage zone F (85H-1, $[41] \sim [43]$; 85H-2, $[39] \sim [40]$?)

The samples in this zone are characterized by a continuous occurrence of *Brigantedinium* spp., *Seleno. quanta* and *Pheo. hartmannii*, and the amounts of cysts decrease higher in the zone. The assemblage zone for the samples of 85H-2, [39] and [40] is unclear because there are a few cysts.

Paleoenvironment

Using cyst assemblages, geographical distribution data on modern dinoflagellate cysts provide important information for environmental analysis. A relationship between environmental inclinations and cyst distribution in surface sediments has been recognized since William's report (1971a, b).

Wall *et al.* (1977) and Harland (1983) described modern cyst distribution in the North Atlantic Ocean. The former authors examined the relationship between cyst assemblage types and their oceanographic environments. Similar investigations have been carried out since the 1970's (*e.g.*, Williams 1971a, b; Davey and Rogers, 1975), although there are still insufficient data on the environmental information derived from cysts. Harland (1983) compiled the data as accumulated results and they have since proved valuable, although more detailed information on cyst distribution is needed.

Paleoenvironmental research in Japan is mainly based on local information on cyst distribution (Harada, 1974; Kobayashi *et al.*, 1986; Matsuoka, 1976, 1982, 1985a, b, 1987b) and the use of cyst studies for paleoenvironmental analysis data (Harada, 1984; Matsuoka, 1987a). Dinoflagellate cyst distribution shows distinct provincialism.

In Nagasaki Bay southwestern Japan, the percentage of cyst species of the Peridinioid group is 40.3% in the outer part of the bay and the average number of species is 7.5. The corresponding values for the inner area of the bay are 32.3% and 5.7, respectively. The species number of the Peridinioid group,

[→] Figure 5. All photographs ×600. 1, 2. Selenopemphix hamanaensis, sp. nov. 1; holotype, polar view. 2; holotype, polar view showing archeopyle (arrow), slide 85H-1 $10.60 \sim 10.61 \text{ m}$ (97.1/33.2 L). 3. Selenopemphix hamanaensis, sp. nov., paratype, polar view, slide 85H-1 $10.60 \sim 10.61 \text{ m}$ (99.9/36.0L). 4. Selenopemphix hamanaensis, sp. nov., paratype, polar view, slide 85H-1 $10.60 \sim 10.61 \text{ m}$ (100.2/38.6 L). 5. Selenopemphix hamanaensis, sp. nov., polar view, slide 85H-1 $13.80 \sim 13.81 \text{ m}$ (99.0/23.2 L). 6. ? Selenopemphix hamanaensis, polar view, short-spined type ?, slide 85H-2 $31.20 \sim 31.21 \text{ m}$ (101.0/38.2 L). 7. Selenopemphix quanta (Bradford) Matsuoka, polar view, slide 85H-1 $10.60 \sim 10.61 \text{ m}$ (99.5/40.2 L). 8. Selenopemphix quanta (Bradford) Matsuoka, polar view, slide 85H-1 $14.20 \sim 14.21 \text{ m}$ (99.5/40.2 L).

Figure 7. *Polykrikos* cyst percentages in the cores 85H-1 and 85H-2.

therefore, generally decreases toward the inner bay (Matsuoka, 1985a).

Akkeshi Bay and Lake Saroma are situated in eastern Hokkaido, which is in northern Japan. In Akkeshi Bay, which is open to the inflow of oceanic water, the percentage of cyst species of the Peridinioid group is 53% and the average number of species is 10.8. On the other hand, Lake Saroma, which has a narrow lake mouth, has corresponding values of 34.7% and 5.2, respectively. The average rate and species number are smaller than those in Akkeshi Bay (Matsuoka, 1987a). The number of cyst species of the Peridinioid group tends to decrease in the presence of fresh water.

The decrease in the number of cyst species of the Peridinioid group in Lake Hamana at approximately 5,000 y.B.P. indicates the presence of oceanic water untill that time. The cysts of the genus Polykrikos are distributed in inner bay areas around Japan (Matsuoka, 1985b). The period, ca. 4,000 v.B.P. ~ ca. 3, 000 y.B.P., of this species coincides with the period of freshwater diatoms (Kashima, 1987) and the occurrence of planktonic algae living in fresh to brackish water. The high ratio in the occurrence of Polykrikos cysts indicates a period of desalination of the environment of a decrease in the amount of oceanic water. Figure 7 illustrates these environmental oscillations. The relative ratio of *Polykrikos* cyst in 85H-1 clearly shows the environmental history at this site. Especially, obvious environmental changes appear to have occurred at the -8 m and -11 m horizons. The same standardized graph of 85H-2 is discontinuous because of the unstable sedimentary conditions at this site. The upper part of this core shows a high percentage of Polykrikos and this is in accord with the trend in 85H-1.

The changing aspects of the assemblages and data on an absolute age scale obtained by radiocarbon dating, tephra and sedimentation rate revealed the paleoenvironmental history in the northern and central area of Lake Hamana.

Ca. 9,700 y.B.P. \sim ca. 7,500 y.B.P. (85H-2, [34] \sim [38] : 85H-1, not observed) : Many

[←] Figure 6. All photographs ×600. 1. Lejeunecysta concreta (Reid) Matsuoka, dorso-ventral view, slide 85H-1 13.80~13.81 m ② (95.2/39.4L). 2. Cyst of Protoperidinium oblongum, dorsal view, slide 85H-1 10.60~10.61 m ③. 3. Cyst of Protoperidinium sp., ventral view, slide 85H-1 13.80~13.81 m ① (95.7/25. 3L). 4. Polykrikos schwartzii Bütschli, dorso-ventral view, slide 85H-1 11.00~11.01 m ① (93.3/45.6 L). 5. Votadinium spinosum Reid, dorso-ventral view, slide 85H-1 11.00~11.01 m ① (87.5/36.7 L). 6. Brigantedinium simplex (Wall) Reid, slide 85H-1 9.40~9.41 m ③ (94.1/29.9 L). 7. Pheopolykrikos hartmannii (Zimmermann) Matsuoka and Fukuyo, slide 85H-1 10.60~10.61 m ①. 8. Dinoflagellate cyst ? type E, slide 85H-2 32.00~32.01 m ① (100.2/27.8 L). 9. Dinoflagellate cyst ? type A, slide 85H-1 7.60~7. 61 m ① (98.5/29.3 L). 10. Dinoflagellate cyst ? type D, slide 85H-2 29.50~29.51 m ① (91.0/43.8).

cyst species are found and *Tuberculodinium* vancampoae occurs throughout this interval. This species has been observed in bay areas around Japan (Matsuoka 1985b). This evidence may indicate inner bay conditions during this period.

Ca. 7,500 y.B.P. \sim ca. 6,400 y.B.P. (assemblage zone F): There are a few species. This condition indicates lake obstruction or inflow of marine water.

Ca. 6,400 y.B.P. ~ca. 5,400 y.B.P. (assemblage zone E): Many species occur through this interval. A large number of cysts is also observed. The ratio of *Polykrikos* decreases in comparison in the upper part of this core and the occurrence of *Operculodinium centrocarpum* is frequent. Species of Gonyaulacoid cysts increases in the middle part of this interval. The distribution of *Polykrikos* cysts is known to be inner bay areas and *O*. *centrocarpum* increases from the inner bay to the bay mouth (Matsuoka, 1985a, Kobayashi *et al.*, 1986). These observations indicate that oceanic water invaded the bay in large quantities.

Ca. 5,400 y.B.P. \sim ca. 5,200 y.B.P. (assemblage zone D): An abrupt reduction of cyst number suggests closing of the bay mouth.

Ca. 5,200 y.B.P. ~ ca. 3,000 y.B.P. (assemblage zone C): Cysts increase again, but the ratio of Polykrikos rises to more than the level in the period before ca. 5,400 y.B.P. The environment returned to a stable inner bay, but obstruction to sea water is greater than before. This is reflected in a decreased number of Peridinioid cysts. These conditions indicate that the flow of marine water is blocked. Thereafter, the number of cyst gradually decreased and the relative ratio of Polykrikos increased further. At this time, planktonic freshwater algae occurred and brackish water diatoms increased (Kashima, 1987). These data suggest that desalination of the lake progressed slowly.

Ca. 3,000 y.B.P. \sim ca. 536 y.B.P. (assemblage zone B): Occurrence of cysts is scarce, but a lot of *Polykrikos* cysts are regularly found

during this period. The lake was almost completely filled with fresh water but was periodically invaded with marine water.

Ca. 536 y.B.P.~present (assemblage zone A): This interval yields a stable number of cysts again. The cyst assemblage resembles that of surface sediments (Kojima, unpublished data). Therefore the conditions of this lake became similar to the present conditions which were formed by a tsunami in 1498 (Nonaka 1977).

This paper describes paleoenvironment based on the distribution of cysts, but this type of research has just started in Japan.

Taxonomy

There are two systems used for the classification of dinoflagellate cysts and motile forms, but at the present the two systems have not yet been unified. Because the relationship between motile and cyst forms is not well understood and some dinoflagellates do not produce cysts. Furthermore, we cannot estimate motile forms of fossil species. Although the systems have been improved, in this paper the criterion set forth by Matsuoka (1985a, 1987b) are followed.

All specimens are stored in the Laboratory of Paleobotany at Osaka City University (OCU).

Class Dinophyceae Fritsch, 1929 Family Peridiniaceae Ehrenberg, 1832

Cyst-genus Selenopemphix Benedek, 1972 emend. Bujak 1980

Type species; Selenopemphix nephroides Benedek, 1972

Selenopemphix hamanaensis, sp. nov.

Figures 5-1-6

Derivation of name: From its occurrence in Lake Hamana.

Holotype: Core 85H-1, interval $10.60 \sim$ 10.61 m, slide 85H-1 10.60 ~ 10.61 m (1) (97.1/ 33.2 L) (OCU-1). Holocene, Lake Hamana, Shizuoka Pref., Central Japan.

Diagnosis: Intermedia pentagonia cysta brunneola in coloris compressaque in directionis polaris. Murus cum lubrica pagina ornatus flexibilis angustis aciculatis spinis, aequaliter distributis supra testam. Archeopyla intercalata 2a.

Diagnosis: The intermediate pentagonal cyst is compressed in the polar direction and is pale brown in color. The wall has a smooth surface and is ornamented with flexible slender acicular spines uniformly distributed on the test. Archeopyle intercalary 2a.

Descriptions: The test is peridinioid from the equatorial view and nearly circular from the polar view. The cyst wall consists of an autophragm only. The epicyst has domelike or conical structure and the hypocyst may have a slightly antapical lobe. The paracingulum is confirmed by faint ridges but each adcingular border may be marked by rows of spines. The parasulcus is occasionally recognized by a slight indentation.

Dimensions : Width $74 \sim 54 \ \mu$ m, Thickness $72 \sim 48 \ \mu$ m, Length of spine $4 \sim 24 \ \mu$ m (20 specimens measured).

Remarks : Seleno. hamanaensis is similar to Seleno. armata and Seleno. quanta, but the former differs from the latter in being more completely circular from the polar view and having more slender spines. This species has a relatively constant width but the spines show various lengths, ranging from 4 μ m to 24 μ m. The cyst is mostly observed from the polar view because the morphological characteristics cause the cyst to be oriented in the same direction. No motile form of this cyst is known, but it probably belongs to Protoperidinium.

Genus Protoperidinium Bergh, 1882

Cyst of Protoperidinium sp.

Figure 6-3

Description : A medium-sized, brown cyst made up of two layers. The periphragum forms a membranous structure. The external form from the dorso-ventral view is pentagonal. The epicyst is conical to dome-like in shape, and the hypocyst is trapezoidal from the equatorial view. Both the apical and antapical parts have no prominent projections. The paracingulum is obviously distinguished by a membranous ridge. The parasulcus is obscure. Archeopyle intercalary, formed by the loss of plate 2a (?).

Dimensions : Length $50 \sim 60 \ \mu$ m, Breadth $58 \ \mu$ m, Breadth of cingulum $6 \sim 7 \ \mu$ m (2 specimens measured) (OCU-2).

Incertae sedis

Dinoflagellate cyst ? type A

Figure 6-9

Description: This small spherical cyst is dark brown in color. The test is covered with spines but there are not many. The spines are short (about $1 \mu m$) and conical in shape. The shell is approximately $30 \mu m$ in diameter except for the spines. The archeopyle is chasmic.

Occurrence : 85H-2, $-9.60 \sim -9.61$ m. (OCU-3)

Dinoflagellate cyst ? type D

Figure 6-10

Descriptive remarks: Type D is small, spherical and pale brown. Its test is covered by spines but there are only a few. Spines are each about $4 \mu m$ in length. The central body is approximately $30 \mu m$ in diameter. This acritarchous cyst is similar to "Dinoflagellate cyst? type A", but differs in having longer processes and a lighter-colored wall.

Occurrence : 85H-2, $-6.40 \sim -6.41$ m, -

 $8.80 \sim -8.81$ m, $-12.60 \sim -12.61$ m, $-24.70 \sim -24.71$ m, $-29.50 \sim -29.51$ m.(OCU-4)

Dinoflagellate cyst ? type E

Figure 6-8

Descriptive remarks: Like type A, type E is small spherical and dark brown. Its test is overlaid by spines, but the spine density is higher than in types A and D. Spines are each $1 \sim 3 \,\mu$ m in length. The test is $20 \sim 30 \,\mu$ m in diameter, except for the spines.

Occurrence : 85H-2, $-31.20 \sim -31.21$ m, $-32.00 \sim -32.01$ m, $-34.30 \sim -34.31$ m. (OCU-5)

Acknowledgments

I am much indebted to Drs. S. Kokawa and S. Tsuji of Osaka City University for their useful suggestions and encouragement. Thanks are also due to Dr. K. Matsuoka of Nagasaki University for helpful advice on dinoflagellate cysts, critical reading of the manuscript and providing the samples. I would like to thank Dr. S. Nishida of Nara University of Education for his helpful criticism of the manuscript. I wish to thank Drs. H. Morimoto of Osaka City University and M. Yoshida of Nagasaki University for their help with Latin translations. I am also grateful to all my colleagues of Osaka City University for their help and support.

References

- Dale, B., 1985: Dinoflagellate cyst analysis of Upper Quaternary sediments in core GIK 15530-4 from the Skagerrak. Norsk Geologisk Tidsskrift., vol. 65, p. 97-102.
- Davey, R.J. and Rogers, J., 1975: Palynomorph distribution in Recent offshore sediments along two traverses off south west Africa. *Mar. Geol.*, vol. 18, p. 213-225.
- Fukuyo, Y., 1982: Cysts of naked dinoflagellates. In "Fundamental studies of the effects of marine environment of the outbreaks of red tides", p. 205-214, Rep. Enviro. Sci., B148-R14-8, Monbusho. (in Japanese)

- Harland, R., 1977: Recent and late Quaternary (Flandrian and Devensian) dinoflagellate cysts from marine continental shelf sediments around the British Isles. *Palaeontographica*, Abt. B. 164, p. 87-126.
- —, 1981: Cysts of the colonial dinoflagellate Polykrikos schwartzii Bütschli 1873, (Gymnodiniales), from Recent sediments, Firth of Forth, Scotland. Palynology, vol. 5, p. 65-79.
- —, 1983: Distribution maps of Recent dinoflagellate cysts in bottom sediments from the North Atlantic Ocean and adjacent seas. *Palaeontology*, vol. 36, p. 321-387.
- —, 1988: Dinoflagellate, their cysts and Quaternary stratigraphy. *The new phytologist.*, vol. 108, p. 111-120.
- Harada, K., 1974: Distribution of fossil microplankton in surface sediments on the continental margin on the Pacific off Japan. Master thesis. Kyoto Univ., Japan (MS).
- —, 1984: Study of dinoflagellates from the submarine strata at the Kansai International Airport in Osaka Bay off Senshu, Central Japan. In Nakaseko, K (ed.) Geological survey of the submarine strata at the Kansai International Airport in Osaka Bay, Central Japan. Rep. Calam. Sci. Inst. (in Japanese)
- Ikeya, N., Wada, H. and Ohmori, M., 1987: On the boring core sediments from Hamana Lake. Geosci. Rep. Shizuoka Univ., vol. 13, p. 67-111. (in Japanese whth English abstract)
- Kashima, K., 1987: Holocene paleoenvironment in the Lake Hamana, presumed by diatom analysis. *In* "Abstracts of Japan Association for Quaternary Research 17", p. 66-67, Kobe. (*in Japanese*)
- Kobayashi, S., Matsuoka, K. and Iizuka, S., 1986: Distribution of dinoflagellate cysts in surface sediments of Japanese coastal waters. I. Omura bay, Kyushu. Bull. Plankton Soc. Jap., vol. 33, no. 2, p. 81-93. (in Japanese with English abstract)
- Long, D., Bent, A., Harland, R., Gregory, D.M., Graham, D.K. and Morton, A.C. 1986: Late Quaternary paleontology, sedimentology and geochemistry of a vibrocore from the Witch Ground Basin, central North Sea. *Mar. Geol.*, vol. 73, p. 109-123.
- Matsuoka, K., 1976: Paleoenvironmental study of the Saho and the Saidaiji Formations from a view point of palynology. *Bull. Mizunami Fossil Mus.*, no. 3, p. 99-117.
- —, 1982: Dinoflagellate cysts in surface sediments of Omura Bay, West Kyushu, Japan. In "Fundamental studies of the effects of marine environment of the outbreaks of red tides", p. 197-204, *Rep. Environ. Sci.*, B148-R14-8, Monbusho. (in
Japanese)

- —, 1984a: List of synonyms of late Pleistocene-to-Holocene dinoflagellate cysts II. Peridinium and Gymnodinium groups. News Osaka Micropal., 12, p. 1-15. (in Japanese with English abstract)
- —, 1984b: Preparation method of dinoflagellate cyst. In "Akashiwo manual V" Study methods of red-tide organisms. In Adachi, R. and Irie, H. (eds.), p. 49-54, The Working Party on Taxonomy in the Akashiwo Kenkyukai. (in Japanese)
- —, 1985a: Organic-walled dinoflagellate cysts from surface sediments of Nagasaki Bay and Senzaki Bay, West Japan. Bull. Fac. Lib. Arts Nagasaki Univ., Nat. Sci., vol. 25, no. 2, p. 21-115.
- —, 1985b: Distribution of the dinoflagellate cyst in surface sediments of the Tsushima Warm Current. Quat. Res. (Daiyonki-kenkyu), vol. 24, no. 1, p. 1-12. (in Japanese with English abstract)
- —, 1987a: Dinoflagellate cyst assemblages of the alluvial deposits in the Tama River Lowland (Loc. 3). In Matsushima, Y. (ed.). The geological studies on the alluvial deposits in the Tama and Tsurumi Rivers Lowland, Kawasaki., p. 83-88, Collection Commitee for the Kawasaki Museum. (in Japanese)
- —, 1987b: Organic-walled dinoflagellate cysts from surface sediments of Akkeshi Bay and Lake Saroma, north Japan. Bull. Fac. Lib. Arts, Nagasaki Univ., Nat. Sci., vol. 28, no. 1, p. 35-

123.

- Nonaka, T., 1977: Transition of Lake Hamana. Hamana, no. 190, p. 2-3. Shizuoka Pref. Fish. Exp. Stn. (in Japanese)
- Reid, P.C. and Harland, R., 1977: Studies of Quaternary dinoflagellate cysts from the North Atlantic. Cont. Ser. Amer. Ass. Stra. Paly., 5A, p. 147-169.
- Rossignol, M., 1961: Analyse pollinique de sédiments marins Quaternaries en Israël. I. Sédiments Récent. *Pollen et Spores*, vol. 3, p. 303-324.
- —, 1962: Analyse pollinique de sédiments marins Quaternaires en Israël. II. Sédiments Pleistocenes. *Ibid.*, vol. 4, p. 121-148.
- Shimazaki, T., 1979: Introduction of palynological processing technique using screens. Jap. Jour. Paly., no. 23. p. 33-45. (in Japanese with English summary)
- Wall, D., Dale, B., Lohman, G. P. and Smith, W.K., 1977: The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Ocean and adjacent seas. *Mar. Micropal.*, vol. 2, p. 121-200.
- Williams, D.B., 1971a: The distribution of marine dinoflagellates in relation to physical and chemical conditions. p. 91-96, *In Funnel*, B.M. and Riedel, W. R., (eds.) *The micropaleontology of* oceans. Cambridge. Univ. Press.
- —, 1971b: The occurrence of dinoflagellates in marine sediments. *Ibid.*, p. 231-243.

浜名湖の完新統から産出する渦鞭毛藻シストの分析:浜名湖の完新統コア試料から渦鞭 毛藻シストが産出した。産出したシスト群集は主にペリディニウムグループに属する Brigantedinium spp., Selenopemphix quanta, Seleno. hamanaensis,ギムノディニウムグ ループに属する Polykrikos schwartzii, Poly. kofoidii, Pheopolykrikos hartmannii からなり, ゴニオラックスグループ,テュバクロディニウムグループに属するシストも少量産出した。 これらのシストは6つの群集帯にわかれ、構成種の変化より安定内湾域から汽水湖,さら に淡水湖をへて再び汽水湖という環境変化が推定された。なお、1 新種 (Selenopemphix hamanaensis) を含む5種を記載した。

885. FOORDICERAS AND DOMATOCERAS (NAUTILOID CEPHALOPODS) FROM THE UPPER PERMIAN TOYOMA FORMATION, SOUTHERN KITAKAMI MASSIF, NORTHEAST JAPAN*

MASAYUKI EHIRO

Department of Earth Sciences, College of General Education, Tohoku University, Sendai 980

and

FUMINORI TAKIZAWA

Kinki and Chubu Center, Geological Survey of Japan, Osaka 540

Abstract. Two specimens of nautiloids, identified as *Foordiceras* cf. *F. wynnei* and *Domatoceras ogatsuense*, n. sp., are described from the Lower Toyoman Series (Upper Permian, Dzhulfian) in the Southern Kitakami Massif. The genus *Foordiceras* is first described from the Dzhulfian in Japan, and the genus *Domatoceras* is also first recorded from Japan in this paper. These nautiloids are closely related to those from the Dzhulfian beds of the Central Tethys.

Key words. Foordiceras, Domatoceras, nautiloid, Permian, Southern Kitakami, Northeast Japan.

Introduction

During his geological studies in the Ogatsu district, Southern Kitakami Massif, one of the authors (F.T.) collected two specimens of nautiloids, referable to *Foordiceras* and *Domatoceras*, from the Upper Permian (Dzhulfian) Toyoma Formation. They warrant description because the occurrence of cephalopods is quite limited in the younger Paleozoic formations of Japan. Additionally, the present specimen of *Domatoceras* represents a new species.

The authors express their appreciation to Professor Brian F. Glenister of University of Iowa and Professor Kei Mori of Tohoku University for their critical reading of the manuscript.

Geological and paleontological note

The specimens described here as *Foordicer*as cf. F. wynnei (Waagen) and *Domatoceras*ogatsuense, n. sp., were discovered in 1985 and in 1987, respectively, from sandy shale of the basal part of the Toyoma Formation exposed on a river-bed, about 500 m northeast of Myojin, Ogatsu-cho, Monoo-gun, Miyagi Prefecture (Figure 1). The Permian of the Ogatsu district is composed of the Oyakejima Formation and the overlying Toyoma Formation. The latter is unconformably overlain by the Triassic (Upper Scythian) Hiraiso Formation. Some cephalopods, such as Stacheoceras sp. and Timorites intermedium have been reported from the Oyakejima Formation.

^{*}Received January 23, 1989; revised manuscript accepted August 1, 1989.

Figure 1. Map showing the fossil locality.

mation (Hayasaka, 1940; Ehiro et al., 1986), and Cycloceras nov. sp. (= Protocycloceras cf. P. cyclophorum), Stacheoceras otomoi and S. sp. from the Toyoma Formation (Hayasaka, 1924; Shimizu and Obata, 1936; Ehiro et al., 1986). Murata and Shimoyama (1979) divided the Toyoman Series into three zones based on molluscan fossils and they recognized the lower two zones in the Ogatsu district. The present specimens were obtained from the lowest zone *i.e.* Lower Toyoman Series. The Lower-Middle Toyoman Series corresponds to the Araxoceras Zone of Ehiro (1987) and is correlated to the Dzhulfian of Transcaucasia and Iran, and to the Wujapingian of South China (Ehiro and Bando, 1985; Ehiro, 1987).

Species of *Foordiceras* have already been reported in the Japanese Islands from the formations slightly older than the Toyoma Formation, *i.e.*, the Kanokura Formation (Guadalupian-Abadehian) or its correlatives. They are *Foordiceras wynneiforme* from the Oguradani beds of Central Japan (Hayasaka and Ozaki, 1955) and from the Kanokuran Series in the Southern Kitakami Massif (Koizumi, 1975), F. gregarium from the Kashiwadaira Formation in the Abukuma Massif, Northeast Japan (Yanagisawa, 1967), and F.akiyamai and F.? sp. from the Kanokuran Series in the Southern Kitakami Massif (Hayasaka, 1960, 1962). The present study is the first description of Domatoceras from Japan.

The species Foordiceras wynnei, to which the Ogatsu specimen is compared, is only known as a single specimen collected from the Upper Productus Limestone (Chhidru Formation) in the Salt Range of Pakistan (Waagen, 1879). The Chhidru Formation is now correlated to the Upper Dzhulfian, based on paleontological evidence (Pakistani-Japanese Research Group, 1985). Domatoceras ogatsuense, n. sp., is closely related to D. hunicum, originally described by Diener (1903) from a limestone of Chitichun in the Tibetan Himalayas in association with ammonoids such as Cyclolobus walkeri Diener and Xenodiscus carbonarius Waagen. It is also known from the Dzhulfian Araxoceras beds of Soviet Dzhulfa (Ruzhentsev and Sarycheva, 1965) and those of Iranian Julfa (Teichert and Kummel, 1973).

Systematic description

Family Tainoceratidae Hyatt, 1883 Genus Foordiceras Hyatt, 1893 Type species : — Nautilus goliatus Waagen, 1879

Foordiceras cf. F. wynnei (Waagen)

Figures 2-1a, 1b

cf. Nautilus wynnei Waagen, 1879, p. 55, pl. 3, figs. 1a-b.

Material : — A single internal mold, obtained by F. Takizawa in 1985, from Myo-

jin, Ogatsu. GSJ. (Geol. Surv. Japan) F. 12866.

Description: — The specimen is deformed into an ellipse and only its right side is preserved. It is fairly large, thickly discoidal, evolute, with a wide umbilicus. Measurements at the preserved end, in the deformed state, are as follows (in mm):

 Diameter (D)
 116

 Umbilical diameter (U)
 44 (U/D 0.38)

 Height (H)
 38 (H/D 0.33)

The whorl section is rectangular to trapezoidal, with an apparently broadly arched venter, and flat side that converge dorsally. Ventral shoulders are narrowly rounded, and umbilical shoulders more broadly rounded. Prominent transverse ribs extend from the ventral shoulders to the umbilical shoulders. They are nodose on the ventral margin and diminish gradually toward the umbilical shoulder. The number of ribs is estimated to be nineteen on the last whorl. Suture is unknown.

Comparison: — With respect to the general shell-form and shell ornamentation, the Ogatsu specimen is comparable with Foordiceras wynnei (Waagen, 1879), from the Upper Productus Limestone of the Salt Range, Pakistan. Our specimen has less sinuous ribs, however, than those of the latter.

The present specimen somewhat resembles another Salt Range species *Nautilus flemingianus* Koninck (Waagen, 1879, p. 48, pl. 3, figs. 2a, b) in the general shell form, but it is distinguished from the latter in having prominent nodes at the ventro-lateral shoulders. The Japanese species *Foordiceras wynneiforme* Hayasaka and Ozaki (1955, p. 183, pl. 1, fig. 1) is closely allied to *F. wynnei* and consequently to the present specimen. However, the former differs from the last two in its less conspicuous nodes (Hayasaka and Ozaki, 1955, p. 184). Occurrence: — Dark gray sandy shale of the basal part of the Toyoma Formation, NE of Myojin, Ogatsu-cho, Monoo-gun, Miyagi Prefecture, Northeast Japan.

Family Grypoceratidae Hyatt, in Zittel, 1900 Genus Domatoceras Hyatt, 1891 Type species : — Domatoceras umbilicatum Hyatt, 1891

Domatoceras ogatsuense Ehiro and Takizawa, n. sp.

Figures 2-2a-2d

Material : — A single fragmental internal mold, obtained by F. Takizawa, in 1987, from Myojin, Ogatsu. Holotype, GSJ. F. 12867.

Diagnosis: — *Domatoceras* with nodose ribs on the lateral zone and a subcircular cross section in early stage; at maturity, the flanks are smooth and the cross section sub-quadrate.

Description : — The specimen is elliptically deformed, with parts of two volutions. The conch is fairly large, thickly discoidal, evolute, with a wide and deep umbilicus. Fine biconvex growth lines are preserved on the umbilical wall and on a part of the lateral zone of the inner whorl. The outer whorl is of subquadrate section, with smooth surface. The venter is slightly convex and the flanks are flat, converging slightly toward the venter. The whorl height near the adapical end of the outer volution is about 35 mm, and the corresponding greatest width, near the umbilical shoulder, measures about 35 mm. The ventrolateral and umbilical shoulder, measures about 35 mm. The ventrolateral and umbilical shoulders are rounded. The inner whorl is of subcircular section, with prominent ribs on the lateral zone. They are

 \rightarrow Figure 2. 1a-1b, Foordiceras cf. F. wynnei (Waagen), GSJ. F. 12866, 1a, lateral view; 1b, cross section, thin line shows the cross section through rib, $\times 0.8$. 2, Domatoceras ogatsuense, n. sp., Holotype, GSJ. F. 12867, 2a, lateral view; 2b, 2c, cross sections; 2d, suture line $\times 0.8$. Arrows (b, c) mark the position of the cross sections.

nodose at the ventrolateral margin and diminish toward the umbilical shoulder. Height and width at the adoral end of the inner whorl are 16 and 15 mm, respectively, in the deformed state.

The suture (Figure 2-2d) has a ventral lobe that occupies most of the venter and a moderately deep lateral lobe that occupies nearly all of the flank.

Comparison: —In the general shape of the whorl section and in the form of the suture, the present new species is comparable to *Domatoceras hunicum* (Diener, 1903, p. 5, pl. 1, figs. 1a-c; Shimansky, *in* Ruzhentsev and Sarycheva, 1965, p. 41, pl. 15, figs. 12a-b; Teichert and Kummel, 1973, p. 421, pl. 1, figs. 7-8, pl. 2, figs. 3-4), but it differs from the latter in having convex venter in the outer whorl, deeper umbilicus and prominent ribs in the inner whorl.

Upper Permian species, *Domatoceras parallelum* (Abich, 1878, p. 17, pl. 3, fig. 2; Arthaber, 1900, p. 213, pl. 18, figs. 2a-2c; Shimansky, *in* Ruzhentsev and Sarycheva, 1965, p. 41, pl. 15, fig. 10; Teichert and Kummel, 1973, p. 421, pl. 2, figs. 1-2, 9-10) and *D. gracile* Shimansky (Shimansky, *in* Ruzhentsev and Sarycheva, 1965, p. 160, pl. 16, fig. 1), are clearly distinguished from the present specimen in the compressed whorl section.

Occurrence: — Dark gray sandy shale of the basal part of the Toyoma Formation, NE of Myojin, Ogatsu-cho, Monoo-gun, Miyagi Prefecture, Northeast Japan.

References

- Abich, H.W., 1878: Geologische Forschungen in den kaukasischen Ländern. Th. 1, Eine Bergkalkfauna aus der Araxesenge bei Djoulfa in Armenien. 126 p., Alfred Hölder, Wien.
- Arthaber, G., 1900: Das jungere Paläozoicum aus der Araxes-Enge bei Djulfa. In, Frech, F. and Arthaber, G., Das Paläozoicum in Hocharmenien und Persien. Beitr. Paläont. Geol. Österr.-Ungarns Orients, Band 12, p. 209-308.
- Diener, C., 1903: Permian fossils of the Central Himalayas. *Paleont. Indica, Ser. 15*, vol. 1, pt. 5, p. 1-204.

- Ehiro, M., 1987 : Permian ammonoids of the southern Kitakami Massif, Northeast Japan — Their stratigraphic distribution and zonation of the Permian. Jour. Geol. Soc. Japan, vol. 93, p. 823-832 (in Japanese with English abstract).
- and Bando, Y., 1985: Late Permian ammonoids from the southern Kitakami Massif, Northeast Japan. Trans. Proc. Palaeont. Soc. Japan, N. S., no. 137, p. 25-49.
- —, Shimoyama, S. and Murata, M., 1986: Some Permian cyclolobaceae from the southern Kitakami Massif, Northeast Japan. *Ibid.*, no. 142, p. 400-408.
- Hayasaka, I., 1924: Fossils in the roofing slate of Ogachi, Prov. Rikuzen. Japanese Jour. Geol. Geogr., vol. 3, p. 45-53.
- —, 1940: On two Permian ammonoids from the Kitakami Mountains, north Japan. Jour. Geol. Soc. Japan, vol. 47, p. 422-427.
- —, 1960: A new Permian species of Foordiceras from the Kitakami Mountains. Bull. Nat. Sci. Mus., vol. 5, p. 86-94.
- —, 1962: Two species of *Tainoceras* from the Permian of the Kitakami Mountains. *Ibid.*, vol. 6, 137-143.
- and Ozaki, K., 1955: A *Foordiceras* from the Permian Formation of Central Japan. *Sci. Rep. Kanazawa Univ.*, vol. 3, p. 183-186.
- Koizumi, H., 1975: Palaeozoic Cephalopods of Japan. 149 p. Teiseki Bunko, Chiba (in Japanese).
- Murata, M. and Shimoyama, S., 1979: Stratigraphy near the Permian-Triassic boundary and the Pre-Triassic unconformity in the Kitakami Massif, Northeast Japan. *Kumamoto Jour. Sci.*, *Geol.*, vol. 11, p. 11-31 (*in Japanese with English abstract*).
- Pakistani-Japanese Research Group, 1985: Permain and Triassic Systems in the Salt Range and Surghar Range, Pakistan. In Nakazawa, K. and Dickins. J.M., eds., The Tethys. Her paleogeography and paleobiogeography from Paleozoic to Mesozoic, p. 219-312, Tokai University Press, Tokyo.
- Ruzhentsev, V.E. and Sarycheva, T.G., 1965: Development and change of marine organisms at the Paleozoic-Mesozoic boundary. *Trudy Paleont*. *Inst. Acad. Nauk, SSSR*, vol. 108, p. 1-431 (*in Russian*).
- Shimizu, S. and Obata, T., 1936: Remarks on Hayasaka's Protocycloceras cfr. cyclophorum and the Permian and Carboniferous orthoconic nautiloids of Asia. Jour. Geol. Soc. Japan, vol. 43, p. 11-29 (in Japanese with English abstract).
- Teichert, C. and Kummel, B, 1973: Nautiloid cephalopods from the Julfa beds, Upper Permian, Northwest Iran. *Bull. Mus. Comp. Zool.*, vol.

144, p. 409-434.

- Waagen, W., 1879: Salt Range fossils: Productus Limestone fossils. Mem. Geol. Surv. India, Palaeont. Indica, Ser. 13, vol. 1, pt. 1, p. 1-72.
- Yanagisawa, I., 1967: Geology and paleontology of the Takakurayama-Yaguki area, Yotsukura-cho, Fukushima Prefecture. Sci. Rep., Tohoku Univ., Ser. 2, vol. 39, p. 63-112.

Hiraiso 平磯, Kanokura 叶倉, Kashiwadaira 柏平, Monoo-gun 桃生郡, Myojin 明神, Ogatsu 雄勝, Oguradani 小椋谷, Oyakejima 大八景島, Toyoma 登米.

南部北上山地の上部ペルム系登米層産ノーチロイド Foordiceras および Domatoceras: 南部北上山地の下部登米統(上部ペルム系ズルファー階)産の1新種を含むノーチロイド 2種, Foordiceras cf. F. wynnei および Domatoceras ogatsuense, n. sp. を記載した。Foordiceras はわが国のズルファー階から, Domatoceras はわが国からはじめて報告された。こ れらはそれぞれ中部テチス地域のズルファー階から産するものに近縁である。 永広昌之・滝沢文教

886. TAXONOMY AND MORPHOLOGIC DIVERSITY OF *MANDARINA* (PULMONATA) IN THE BONIN ISLANDS*

SATOSHI CHIBA

Geological Institute, University of Tokyo, Hongo 7-3-1, Tokyo 113

Abstract. Fifteen fossil and extant species including seven new species of the Pleistocene. Recent land snail genus *Mandarina* (Pulmonata; Camaenidae) of the Bonin Islands are described, and their morphologic and possible interspecific relationships are considered. *Mandarina* has undergone remarkable adaptive radiation in this small, isolated archiperago. The diversified shell morphology of these snails is characterized by complex allometric trends generated by the interplay of juvenile shell form and later shell growth patterns. Morphologic features in the juvenile stage are little influenced by habitat conditions, and the classification of species based on juvenile shells matches well with that based on genitalia. In contrast, adult shell characters are strongly influenced by environmental conditions, suggesting that they are useful to consider habitats of fossil species. Phylogenetic relationships of these species were preliminarily reconstructed from quantitative analysis of juvenile shell and penial morphology. It is assumed that not only distinct diversification of shell morphology in the same stock but also convergence of adult shell features between the two species of different stocks has been occurred.

Key words. Mandarina, adaptive radiation, island biogeography, Bonin Islands.

Introduction

Mandarina, a peculiar land snail genus belonging to the pulmonata Camaenidae, has undergone adaptive radiation in the Bonin Islands in northwestern Pacific, as Darwin finches have done in Galapagos. Indeed, the Bonin Islands have been entirely isolated from other regions, and most animals and plants are indigenous.

The biota in small isolated islands has attracted many biologists' attention, and their works have much contributed to establish theories on biogeography and evolution. "In the science of biogeography, the island is the first unit that the mind can pick out and begin to comprehend. By studying clusters of islands, biologists view a simpler microcosm of the seemingly infinite complexity of continental and oceanic biogeography" (MacArthur and Wilson, 1967, p. 3). I regard that land snails are one of the best materials to study the island life from the viewpoint of evolution because of their low dispersal ability and diverse life habits as well as their rich fossil records. Indeed, Gould (1969a) recognized in his study on Bermudian land snails that extinction and speciation as well as very rapid morphological change frequently occurred during the Pleistocene. Similar events can be expected well in the fossil record of *Mandarina* in Bonin, and this is the main reason why I treat the land snail in this study. The final object is to understand the tempo and mode of evolution from various paleontological and neontological viewpoints. But there are two problems to be conquered. First, the taxonomy of Man-

^{*}Received January 25, 1989; revised manuscript accepted August 10, 1989.

darina has not yet been studied sufficiently. Two Holocene fossil species M. luhuana (Sowerby, 1839), and M. pallasiana (Pfeiffer, 1850), which were formerly regarded as Pleistocene fossil species (Iwasaki and Aoshima, 1970, Habe, 1973), and six living species. M. mandarina (Sowerby, 1839), M. hirasei Pilsbry, 1902, M. hahajimana Pilsbry, 1902, M. ponderosa Pilsbry, 1901, M. exoptata Pilsbry, 1902, and M. suenoae Minato, 1978, were hitherto described (Sowerby 1839, Pfeiffer 1850; Pilsbry 1901, 1902a, b, c, d; Minato 1978). The descriptions of these species by previous authors are mostly too insufficient to realize the exact taxonomic relationship because they are based on the external morphology of adult shells and genitalia in small samples. Second, no paleontological description was made on Mandarina except for the Holocene species, and abundant occurrence of fossil from the Pleistocene deposits has never been recorded in the Bonin Islands before this work. Thus the main purpose of this paper is (1) to revise the previous descriptions, (2) to describe fossil forms, and (3) even if preliminarily, to reconstruct the phylogenetic relationships of these living and fossil species.

The genus *Mandarina* was proposed by Pilsbry (1894), designating M. mandarina as the type species. Pilsbry (1894, 1928) regarded the genus as indigenous to Bonin. Subsequently, Emura (1943) and Minato (1978) supported Pilsbry's view from the observation of genitalia.

Mandarina is strikingly diversified in the Bonin Islands, occupying various habitats such as tree, ground, mountain forest and coastal bush. This is probably because no other large land snails could reach this archipelago. The adaptive radiation produced unusually wide inter- and intraspecific variation in adult shell size and form (*e.g.*, apertural shape, presence or absence of umbilicus and keel) and shell coloration. For this reason, it is difficult to classify *Mandarina* species simply only from adult shell characters. In this paper I evaluate taxonomic significance of various morphologic characters of the shell and genitalia in living samples, and the results are applied to the classification of fossil samples.

Material

The present study is based on 43 living samples belonging to 10 species and 27 fossil samples belonging to 11 species (6 extant and 5 extinct species). The symbol, number of individuals and age of each samples are indicated in Table 1, and the exact locality is shown in Figure 1. Though the number of individuals is not always sufficiently large for statistical treatment, these living samples seem to represent local populations. Fossils were collected from the Holocene dunes and Pleistocene cave or fissure deposits. All of the specimens are deposited in the University Museum, University of Tokyo (UMUT).

Because the cave and fissure deposits are commonly poorly stratified, it is often difficult to recognize fossil populations on the basis of these samples. They may represent some mixtures of allochronic living popula-Therefore, I determined the absolute tions. age of selected individuals of fossil specimens by electron spin resonance (ESR) method. As shown in Table 2, the result of ESR dating suggests considerably long time spans for such fossil samples. For instance, the ESR age for a sample from the fissure deposit of Minamizaki (Loc. 14) ranges from 16,000 yr B.P. to 53,500 yr B.P., suggesting a mixture of allochronic individuals. The result, however, is coincident with the ${}^{14}C$ age (32,400 \pm 700 yr B.P.) which was obtained about a bulk of 50 gram individuals. Because the present results of ESR and ¹⁴C datings must be further cross-checked by other method, they are applied in this paper only to the preliminary estimation and discrimination of sample ages.

	•				-				
Species (forma)	Sample	Loc.	Ν	Age	Species (forma)	Sample	Loc.	Ν	Age
M. aureola	A18	18	25	L	M. hayamii	Y14(P)	14	14	Р
	A18(P)	18	24	P	<i>M</i> . sp.	F1	1	2	L
	A24	24	20	L	M. mandarina	M3	3	19	L
	A24(H)	24	7	Н		M4	4	12	L
	A25	25	30	L		M5	5	10	L
	A26	26	25	L		M6	6	10	L
	A27	27	25	L		M8	8	18	L
	A27(H)	27	10	н	M. nola	N14(P)	14	12	Р
	A28(H)	28	11	н	M. chichijimana (A)	Ca3	3	30	L
M. polita	O17	17	4	L		Cal4(P)	14	52	Р
	O20	20	15	L	M. chichijimana (B)	Cb7	7	8	L
	O21	21	6	L		Cb8	8	7	L
	O22	22	19	L		СЪ9	9	7	L
	O23	23	23	L		Cb10(H)	10	18	Н
	O23(P)	23	25	Р		СЪ11	11	2	L
M. ponderosa (A)	Pa26	26	16	L		Сb12	12	17	L
	Pa27	27	25	L		Cb13	13	24	L
	Pa27(H)	27	14	н		Cb14	14	25	L
	Pa28(H)	28	1	н		Cb14(H)	14	32	Н
	Pa29	29	9	L		Cb15(H)	15	30	Н
	Pa30	30	7	L		Cb14(P)	14	16	Р
M. ponderosa (B)	Pb18	18	4	L	M. chichijimana (C)	Cc2	2	14	L
	Pb18(P)	18	12	Р	M. hirasei	H2	2	4	L
	Pb19	19	24	L		H5	5	18	L
	Pb20	20	9	L		H10(H)	10	10	Н
M. ponderosa (C)	Pc23(P)	23	4	P		H13	13	4	L
M. hahajimana	J18	18	4	L		H14(H)	14	22	Н
	J19	19	10	L		H15(H)	15	10	Н
	J20	20	10	L	M. io	I14(P)	14	16	Р
	J23	23	8	L	M. luhuana (A)	La14(H)	14	30	Н
	J26	26	1	L		La15(H)	15	30	Н
	J27	27	6	L	M. luhuana (B)	Lb14(P)	14	30	Р
M. exoptata	E20	20	10	L	M. luhuana (C)	Lc10(H)	10	8	Н
M. suenoae	S6	6	3	L	M. luhuana (D)	Ld10(H)	10	1	Н
	S8	8	10	L	M. titan	T15(P)	15	4	Р

Table 1. Sample list of Mandarina. L: Living, H: Holocene, P: Pleistocene.

Methods

Genital apparatus: Genital morphology, which seems to be important for the systematics of Mandarina, has previously been examined only to a little extent (Emura 1943; Minato 1978). In the present study, not only the external but also the internal morphology of penis was examined under an optical microscope about five to ten specimens for each living species.

Shell form : I examined various shell char-

Figure 1. Sample localities of fossil and living population of Mandarina.

1: Byobuyama, 2: Hironeyama, 3: Anijima (Central part of plateau area), 4; Mansakuhama, 5: Mikazukiyama, 6: Yoakeyama 7: Sakaiura, 8: Hatsuneyama, 9: Kohiyama, 10: Kominato, 11: Higashikaigan, 12: Nishikaigan, 13: Takayama, 14: Minamizaki (John Beach), 15: Minamijima, 16: Higashiyama, 17: Nagahama 18: Sekimon, 19: Sakaigatake, 20: Chibusayama, 21: Kensakiyama, 22: Nishiura, 23: Okimura, 24: Nankinhama, 25: Nakanodaira, 26: Houraine, 27: Minamizaki, 28: Hirashima, 29: Imotojima, 30: Meijima. Contour interval: 100 m.

Table 2. Cross check between ¹⁴ C and ESR ages of fossil sa	mples.

Locality		Fasia	Data y.BP			
Locan	Locanty		Carbon 14	ESR		
Chichijima	·····					
Minamijima	(Loc. 15)	Dune	960 ± 50	_		
Minamizaki	(Loc. 14)	Red soil	1550 ± 60	1500—2500		
Minamijima	(Loc. 15)	Brown soil	_	5000-13000		
Minamizaki	(Loc. 14)	Fissure deposits	32400 ± 700	16800-53500		
Hahajima						
Minamizaki	(Loc. 27)	Red soil	1990 ± 60	_		
Sekimon	(Loc. 18)	Cave deposits	9140 <u>+</u> 110	_		
Okimura	(Loc. 23)	Cave deposits	13300 ± 130			

acters at different growth stages. For this purpose, each shell was cut along the coiling axis and various portions were measured with an aid of a digital micrometer (accuracy, 1 μ m) attached to a profile projector (Nikon, V16D). Basic morphology and measure-

ments of a *Mandarina* specimen in cross section are diagrammatically shown in Figure 2. Geometric parameters explaining the shape of spire and aperture analyzed are listed in Table 3. Adult shell can be easily recognized by their thickened and reflected outer

Figure 2. Linear measurements on a cross section of shell. For abbreviation of measurements see Table 3.

lip.

Color pattern: Longitudinal reddish bands are visible on the shells of some *Mandarina* species. Although the number and state of development of color bands are considerably variable even in a single population sample, their position on the whorls is invariable in many species: two bands appear on the upper part of whorls and one band on the lower part. In addition, the umbilical portion is sometimes tinged with reddish color.

I adopted a coding method to describe the color banding patterns in the samples examined; 1 for the uppermost band, 2 for the band just below the periphery, 3 for the band between periphery and umbilicus, and 4 for the band near the umbilicus (Figure 3). In the case of a very narrow band compared with the light colored ground, the code is described as "n". If a band is perfectly absent, the code is described as 0. In the case of fused bands, the code number is enclosed by parentheses.

Classification : Discrimination of living species is based on the following criteria.

1. If the specimens from a given locality or area can be classified into two groups on the basis of disjunct difference of genital Table 3. Linear measurements and indices used in this paper. Peripheral angularity was provided at the 1/2 whorl before the adult aperture by the rank from 0 (rounded periphery) to 5 (periphery with distinctly sharp keel). IPA was measured at the 1/2 whorl before the adult aperture. Juvenile umbilicus was measured at the second whorl.

WH	:	number of whorls
Н	:	shell height
HI	:	shell height of the first whorl
D	:	shell diameter
D1	:	shell diameter of the first whorl
AH	:	apertural height
AHI	:	apertural height of the first whorl
AW	:	apertural width
AWI	:	apertural width of the first whorl
IH	:	height of inner lip
IW	:	width of inner lip
PA	:	length of aperture from top to periphery
IPA	:	index of peripheral position (PA/AH)
P 1	:	value of PA in the first whorl
U	:	width of umbilicus
UM	:	relative width of umbilicus (U/D)
UI	:	juvenile umbilicus width
UJ	:	relative width of juvenile umbilicus
KE	:	index of peripheral angularity

morphology (especially penial internal ornamentation), the two groups are regarded as different species.

2. If the two samples from the two geographically separated areas are conchologically differentiated but have the same or only slightly different genital morphology, they are judged as belonging to different subspecies here treated as formae of the same species.

3. If the two samples with similar genital morphology occur at the same locality but inhabit different habitats, they are judged as different species.

By use of these criteria, more objective and biological classification was attempted. However, it is not easy to apply rigid biological species concept. For instance, a complex hybridization may occur between popula-

Figure 3. The coding system for banding patterns. Uppermost band: 1, band above the lower periphery: 2, subperipheral band: 3, band around umbilicus: 4.

tions. Populations having similar genital morphology may be sometimes reproductively isolated from one another, as reviewed by Emberton (1988). In the case of fossil samples, species discrimination is based mainly on the disjunct difference of shell morphology in the early growth stage and its comparison with intrapopulational variation of shell morphology in living species.

Comparative morphology

Genital apparatus : External and internal penial morphology in Mandarina is diagram-

matically shown in Figure 4. The penial tube is long in every species, extremely narrow at the middle portion in some species (*M. aureola*, *M. ponderosa*, *M. polita*). The basal penis is thick in these three species. A collar-like muscular sheath attaches to the basal penis. External morphology of penis in each species is illustrated in Figure 5. The internal ornamentation of penis consisits basically of several columns of equal-sized pilasters. In some species they show markedly longitudinal outgrowth. They vary both in size and shape among species. At the uppermost portion of penis, conical shaped or relatively flat verge is present surrounding the ejaculatory pore. Its shape, sculpture and size are different among species. Internal wall of basal penis is smooth without pilasters. It has longitudinally arranged smooth regular folds. Atrium, which is the portion between the genital pore and vaginal opening, has a smooth wall covering randomly arranged folds.

Seasonal variation in the size and shape of hermaphroditic duct, albumen gland and vagina are significant. Also, variation of

Figure 4. Diagrammatic genital morphology and terminology of Mandarina.

Satoshi Chiba

penis length, sheath length, retractor-muscle length, and shape of folds in the basal penis within a given population is wide because of the difference of the contractile condition of the organ. The use of these characters for systematics therefore should be cautious. On the other hand, intra- and inter-populational variation of sculptural details within a species is insignificant. For example, the internal penial morphology of two populations of M. *chichijimana* is essentially similar, though they can be apparently discriminated by shell features as forma A and forma B (Figures 6a-1, 6a-2). Because of the genital morphological stability, each species seems to be defined adequately by the penial sculpture.

Shell morphology and color pattern: The shell shape of Mandarina changes remarkably with growth. The ontogenetic change is explained by plotting the ratio of height to shell diameter versus whorl number for a typical specimen of each species (Figure 7). Some species having mutually similar shape in the juvenile stage show extremely different shape in the adult stage. On the other hand some other species having mutally different shape in the juvenile stage show similar shape in the adult stage. In addition, color pattern

Figure 6a. Internal penial morphology in *Mandarina* species: 1: *M. chichijimana* (B), Cb14; 2: *M. chichijimana* (A), Ca3; 3: *M. mandarina*, M3; 4: *M. hirasei*, H5. Scale bar indicates 1 cm.

[←] Figure 5. External penial morphology in Mandarina species: 1: M. chichijimana (B), Cb14; 2: M. chichijimana (A), Ca3; 3: M. hirasei, H5; 4: M. mandarina, M3; 5: M. aureola, A18; 6: M. aureola, A25; 7: M. polita, O22; 8: M. ponderosa (A), Pa27; 9: M. hahajimana, J20; 10: M. suenoae, S8. Each scale bar represents 1 cm.

Figure 7. Ontogenetical change of shell hegiht index versus whorl number in typical specimens of eight species of *Mandarina*. This indicates that the characters of juvenile shell in *Mandarina* species are overcome by the later shell growth pattern.

is often different between juvenile and adult stage. The variation of adult shell morphology in living and fossil species are summarized in Table 4. The variation of juvenile shell morphology among species are presented in Table 5.

Systematic description

Order Stylommatophora Family Camaenidae Genus Mandarina Pilsbry, 1894

- 1894. Mandarina Pilsbry, Man. of Conch., (2), 9: 214
- 1901. Boninia Pilsbry, Ann. Mag. Natural History, 7, 8:4

Type species : *Helix mandarina* Sowerby, 1839 by original designation.

Diagnosis. Shell solid, quite variable in shape. Shell diameter from 20 mm to 72 mm. Spire from high to low. Some species with umbilicus or sharp peripheral angle. Coloration variable within each species, but commonly with 2-4 reddish brown bands

 \leftarrow Figure 6b. 1: *M. ponderosa* (A), Pa27; 2: *M. aureola*, A25; 3: *M. polita*, O22; 4: *M. haha-jimana*, J20; 5: *M. suenoae*, S8. Scale bar indicates 1 cm.

Table 4. Linear measurements in mm, ratios and indices of adult shells. \bar{x} : mean, s: standard deviation. Sample sizes are given in Table 1.

	WH	D	Н	H/D	AH/AW	IW/AW	IH/AH	IPA	UM	К	E
Samples	x (s)	 x (s)	 x (s)	 <u>x</u> (s)	$\frac{1}{\bar{x}(s)}$	 	 x (s)			Min.	Max
M3	5.67(.16)	25.6(1.2)	20.1(1.0)	.788(.027)	.940(.030)	.628(.030)	.542(.057)	.434(.033)		0	0
M4	5.54(.14)	22.5(1.3)	18.2(1.1)	.808(.013)	.941(.025)	.616(.008)	.564(.027)	.431(.025)		0	0
M6	5.66(.14)	27.3(1.1)	21.7(1.7)	.794(.051)	.935(.043)	.578(.027)	.580(.053)	.428(.039)		0	0
M8	5.86(.17)	26.6(1.2)	21.7(1.3)	.814(.026)	.943(.032)	.595(.040)	.520(.034)	.454(.040)		0	0
N14(P)	5.10(.08)	22.0(.69)	17.7(.43)	.805(.031)	1.10(.027)	.508(.065)	.476(.024)	.431(.025)	.092(.101)	0	0
Ca3	5.15(.17)	23.8(1.2)	18.0(1.2)	.756(.029)	.956(.031)	.529(.046)	.465(.029)	.462(.030)	.078(.014)	0	1
Cal4(P)	4.80(.18)	29.4(1.6)	19.8(1.0)	.674(.037)	.961(.039)	.458(.037)	.469(.032)	.395(.034)	.103(.010)	0	4
Cb7	5.80(.22)	25.6(.46)	21.5(1.1)	.840(.037)	.933(.024)	.587(.029)	.531(.038)	.449(.043)		0	0
Cb8	5.85(.09)	26.0(.77)	21.0(.65)	.810(.010)	.960(.050)	.581(.047)	.563(.043)	.439(.024)		0	0
Cb10	5.80(.21)	25.3(1.5)	21.3(1.2)	.852(.042)	.978(.038)	.591(.034)	.554(.041)	.441(.029)		0	0
Cb12	5.73(.12)	24.6(1.2)	21.3(.70)	.865(.032)	.964(.026)	.564(.035)	.537(.034)	.443(.032)		0	0
Cb13	5.72(.15)	24.0(.75)	20.1(.83)	.835(.038)	.959(.019)	.611(.043)	.532(.033)	.425(.033)		0	0
Cb14	5.61(.16)	23.9(1.1)	19.2(.98)	.805(.035)	.964(.029)	.600(.038)	.533(.027)	.440(.020)		0	0
Cb14(H)	5.61(.16)	23.7(.98)	18.4(.85)	.777(.029)	.993(.057)	.594(.051)	.520(.025)	.437(.027)		0	0
Cb14(H)	5.52(.13)	23.8(.75)	19.1(.72)	.803(.025)	.973(.040)	.604(.050)	.484(.020)	.466(.033)		0	0
Cb14(P)	5.83(.16)	28.3(1.0)	22.9(1.5)	.806(.035)	.976(.052)	.607(.029)	.508(.024)	.427(.039)		0	0
Cc2	5.51(.08)	25.4(1.1)	20.7(.94)	.816(.033)	.933(.032)	.497(.021)	.480(.010)	.471(.039)		0	0
H2	5.03(.045)	22.9(.64)	15.4(.34)	.674(.021)	.930(.090)	.440(.031)	.449(.026)	.427(.015)	.100(.010)	0	1
Н5	4.78(.16)	21.9(.90)	14.5(.89)	.662(.030)	.952(.041)	.432(.048)	.418(.048)	.425(.030)	.110(.014)	0	2
H10(H)	4.63(.10)	20.0(.95)	12.5(.73)	.626(.029)	.939(.043)	.458(.038)	.476(.019)	.431(.023)	.104(.008)	0	1
H14(H)	4.84(.18)	21.7(1.1)	13.3(.90)	.614(.026)	.943(.018)	.442(.035)	.420(.043)	.419(.032)	.092(.009)	0	1
I14(P)	4.96(.14)	29.2(1.2)	20.0(1.0)	.686(.030)	.957(.022)	.486(.035)	.452(.026)	.423(.030)		0	0
Lal4(H)	5.94(.19)	42.0(1.6)	21.7(1.5)	.516(.035)	.975(.042)	.276(.026)	.520(.023)	.231(.032)	.208(.015)	0	2
La15(H)	5.95(.12)	42.7(2.0)	23.2(.76)	.545(.024)	.968(.045)	.323(.044)	.497(.029)	.213(.029)	.210(.017)	0	2
Lb14(P)	5.76(.19)	47.3(2.4)	25.0(1.5)	.528(.025)	1.02(.042)	.416(.038)	.538(.052)	.214(.056)	.140(.009)	3	5
Lc10(H)	5.70(.15)	40.6(2.4)	24.5(1.1)	.603(.017)	.900(.014)	.532(.029)	.496(.034)	.371(.017)	.127(.007)	3	5
Ld10(H)	5.50(-)	42.0(-)	21.2(-)	.505(-)	.837(-)	.420(-)	.519(-)	.392(-)	.129(-)	0	0
T15(P)	6.10(-)	72.0(-)	33.1(-)	.520(-)	.862(-)	.386(-)	.416(-)	.337(-)	.192(-)	1	1
A18	5.56(.15)	26.5(1.3)	19.9(1.3)	.752(.030)	.974(.030)	.550(.028)	.491(.024)	.426(.003)		0	0
A18(P)	5.41(.21)	29.2(1.2)	21.1(1.3)	.723(.041)	.958(.031)	.580(.039)	.509(.024)	.426(.024)		0	0
A24	5.67(.16)	24.7(1.2)	19.8(.81)	.800(.029)	.955(.024)	.601(.022)	.501(.024)	.448(.028)		0	0
A25	5.65(.19)	24.4(.97)	20.0(.94)	.823(.039)	.990(.046)	.577(.050)	.489(.033)	.465(.034)		0	0
A27	5.58(.19)	23.7(1.1)	18.4(.86)	.777(.024)	.986(.034)	.569(.034)	.483(.045)	.444(.018)		0	0
A28(H)	5.81(.21)	22.3(.75)	19.0(.99)	.851(.034)	.977(.038)	.590(.034)	.511(.025)	.465(.024)		0	0
017	5.75(.05)	22.3(.56)	18.5(.41)	.831(.006)	.960(.041)	.608(.033)	.488(.003)	.451(.025)		0	0
O20	5.32(.18)	23.3(.76)	17.6(.75)	.755(.024)	.954(.041)	.553(.026)	.516(.032)	.456(.031)		0	0
O22	5.50(.19)	23.8(1.2)	18.4(1.7)	.776(.074)	.990(.057)	.589(.036)	.494(.036)	.459(.036)		0	0
O23	5.51(.16)	21.4(.68)	18.4(1.1)	.862(.041)	.990(.050)	.600(.038)	.489(.024)	.474(.035)		0	0
O23(P)	5.24(.18)	27.2(.86)	18.9(.98)	.728(.029)	.980(.023)	.596(.038)	.511(.027)	.438(.025)		0	1
Pa27	5.85(.16)	22.1(.72)	21.0(.87)	.947(.046)	1.00(.041)	.570(.024)	.488(.035)	.490(.041)		0	2
Pa27(H)	6.10(.11)	24.2(1.2)	22.6(.42)	.939(.054)	.985(.041)	.587(.044)	.472(.026)	.497(.022)		0	0
Pa29	6.00(.25)	21.1(1.5)	20.1(1.7)	.952(.051)	1.01(.027)	.580(.029)	.530(.021)	.507(.030)		0	0
Pa30	6.13(.19)	21.0(1.0)	19.4(1.2)	.922(.023)	.980(.037)	.592(.027)	.491(.008)	.500(.020)		3	5
Pb18(P)	5.89(.12)	26.5(.49)	21.4(.92)	.809(.038)	.940(.025)	.587(.054)	.518(.039)	.446(.022)		2	5
Pb19	5.64(.15)	23.8(.57)	18.7(.85)	.788(.030)	.944(.025)	.610(.031)	.495(.030)	.417(.014)		3	4
Pc23(P)	5.93(.03)	26.4(.40)	20.5(.29)	.775(.025)	.990(.050)	.610(.031)	.518(.034)	.465(.017)		0	0
J19	4.86(.19)	19.5(1.0)	15.0(1.1)	.769(.048)	.934(.057)	.570(.041)	.479(.036)	.497(.030)		0	0
J20	4.93(.23)	20.2(.74)	15.7(.63)	.779(.039)	.894(.013)	.587(.023)	.462(.028)	.514(.008)	.068(.016)	0	1
J23	4.60(.12)	19.9(.64)	13.0(.90)	.650(6030)	.936(.028)	.448(.056)	.468(.016)	.446(.016)	.104(.003)	0	0
J27	4.90(.17)	21.5(.94)	15.8(.21)	.738(.035)	.946(.037)	.561(.037)	.512(.066)	.452(.043)	.065(.038)	0	1
E20	4.51(.08)	21.2(1.6)	12.9(1.1)	.609(.022)	.895(.032)	.514(.026)	.418(.043)	.420(.015)	.107(.007)	4	5
S8	5.52(.23)	19.5(1.1)	17.0(1.0)	.878(.062)	.937(.027)	.565(.038)	.474(.028)	.527(.029)	.035(.037)	1	2
Y14(P)	4.88(.14)	27.4(1.4)	17.8(1.0)	.652(.033)	.894(.029)	.559(.032)	.487(.029)	.472(.031)		4	5
F 1	6.10(—)	20.5(-)	18.8(—)	.917(—)	1.01 (—)	.597(-)	.477(-)	.424(-)		0	0

Samples N	N	DI	D1 H1		AH1/AW1	P1/H1	UJ
Samples	I N	x (s)					
M3	10	2.14(.18)	2.69(.22)	1.26(.041)	2.02(.11)	.099(.018)	.096(.010)
M8	14	2.00(.12)	2.55(.13)	1.27(.049)	2.00(.11)	.103(.020)	.080(.010)
N14(P)	5	2.61(.04)	3.13(.12)	1.20(.030)	1.91(.11)	.103(.012)	.107(.014)
Ca3	10	2.18(.17)	2.72(.18)	1.25(.076)	2.12(.18)	.090(.021)	.120(.009)
Cal4(P)	25	2.43(.18)	3.11(.16)	1.28(.071)	2.09(.14)	.084(.019)	.170(.020)
Cb13	13	1.98(.14)	2.50(.20)	1.26(.064)	2.01(.14)	.098(.011)	.100(.011)
Cb14	17	2.02(.14)	2.60(.17)	1.28(.057)	2.06(.17)	0.94(.018)	.113(.029)
Cb14(P)	9	2.16(.11)	2.63(.16)	1.23(.073)	2.02(.18)	.085(.024)	.113(.021)
H5	10	1.92(.22)	2.35(.09)	1.24(.130)	1.94(.10)	.110(.020)	.149(.010)
H14(H)	14	1.85(.21)	2.31(.13)	1.26(.110)	1.99(.10)	.120(.015)	.137(.013)
I14(p)	12	2.14(.16)	2.67(.11)	1.26(.070)	2.05(.14)	.072(.020)	.164(.025)
Lal4(H)	15	2.33(.14)	2.96(.21)	1.28(.086)	2.02(.12)	.082(.018)	.214(.031)
Lal4(P)	15	2.49(.18)	2.98(.17)	1.19(.050)	1.95(.12)	.076(.017)	.176(.022)
A18	12	1.95(.15)	2.16(.11)	1.12(.079)	1.80(.14)	.121(.022)	.094(.017)
A27	14	2.02(.10)	2.36(.29)	1.14(.046)	1.86(.12)	.146(.020)	.093(.010)
A28(H)	5	2.13(.09)	2.47(.06)	1.16(.046)	1.81(.10)	.132(.016)	.107(.011)
O20	3	1.89(.11)	2.08(.11)	1.12(.031)	1.78(.09)	.112(.014)	.040(.012)
O23	15	2.05(.14)	2.27(.11)	1.11(.050)	1.81(.10)	.150(.020)	.054(.010)
O23(P)	8	1.98(.14)	2.26(.21)	1.13(.038)	1.76(.09)	.102(.015)	.043(.014)
Pa27	12	2.08(.10)	2.45(.14)	1.15(.100)	1.82(.11)	.119(.023)	.119(.011)
Pb19	12	1.84(.20)	2.19(.17)	1.19(.060)	177(.11)	.106(.017)	.116(.016)
J20	7	1.85(.17)	2.00(.17)	1.08(.017)	1.66(.13)	.153(.018)	.108(.016)
J27	11	1.97(.15)	2.19(.14)	1.10(.040)	1.71(.08)	.147(.021)	.118(.015)
E20	6	1.83(.28)	1.87(.19)	1.03(.060)	1.56(.12)	.158(.025)	.112(.005)
S8	6	1.78(.24)	1.94(.16)	1.10(.066)	1.61(.12)	.220(.020)	077(.015)
Y14(P)	6	2.15(.22)	2.34(.15)	1.05(.041)	1.55(.18)	.185(.019)	.088(.014)

Table 5. Linear measurements (in mm) and ratios of juvenile shell. \bar{x} : mean, s: standard deviation.

or without color bands. Penis cylindrical in shape, with thick sheath and without penial appendix. Internal part of uppermost penis with verge. Internal penial wall ornamented with some numbers of strongly or weakly folding pilasters.

Mandarina mandarina (Sowerby, 1839)

Figures 5-4, 6a-3, 8-1, 15-1

- 1839. *Helix mandarina* Gray, MS.; Sowerby, *in* Richardson *et al.* p. 143, pl. 34, fig. 2; pl. 38, fig. 3.
- 1894. Helix mandarina Gray; Pilsbry, p. 124-125,

pl. 31, fig. 32.

- 1930. *Mandarina mandarina* (Sowerby); Kuroda, p. 206-207, pl. 14, fig. 1.
- 1978. *Mandarina mandarina* (Sowerby); Minato, p. 38, 39, 48, 49, pl. 3 fig. 4.

Material. RM18400 (N = 19, sample M3), RM18401 (N = 12, sample M4), RM18402 (N = 10, sample M5), RM18403 (N = 4, sample M6), RM18404 (N = 18, sample M8).

Diagnosis. Medium-sized species of Mandarina characterized by color pattern 1(23)0 in both juvenile and adult stages and upper penis sculptured by columns of weekly,

Figure 8. 1: *M. mandarina*, RM18403-a from Loc. 6; 2: *M. nola*, CM18405-a (holotype) from Loc. 14 (Pleistocene); 3: *M. hirasei*, RM18421-a from Loc. 5; 4: *M. io*, CM18426-a (holotype) from Loc. 14 (Pleistocene); 5: *M. chichijimana* (B), RM18415-a (holotype) from Loc. 14; 6: *M. chichijimana* (B), CM18418-a from Loc. 14 (Pleistocene); 7: *M. chichijimana*(A) RM18406-a from Loc. 3; 8: *M. chichijimana* (A), CM18407-a from Loc. 14 (Pleistocene); 9: *M. chichijimana* (C), RM18419 from Loc. 2; 10: *M. chichijimana* (A), CM18407-b from Loc. 14 (Pleistocene). All in natural size.

irregularly folded, merged pilasters.

Description.

Genital morphology : Externally, flagellum uniformly slender with a sharp and slender

tip. Epiphallus invariably thick. Penis uniformly thick and covered by sheath at the basal portion. The thickness of penis almost the same as that of vagina. Internally, lower penis covered with 7-8 columns of regularly and equilaterally folded, unmerging, equalsized pilasters. Center of the column slightly ridged. Upper penis covered with many randomly complex merging column of irregularly and weekly folded pilasters. Verge large, longer than wide, with a ventrally subterminal pore and sculptured with slightly folded cords continued from upper penial wall.

Shell morphology: Shell medium in size for the genus and solid. Spire rather high and domed. Body whorl inflated. Umbilicus closed. Base circular and convex. Aperture rather oblique, semicircular in shape. Periostome slightly thickened, expanded and reflected. Whorls 5.3-6.0 in number.

Measurements (mm).

 Specimen
 WH
 D
 H
 AH
 AW
 IPA

 RM18400-a:
 5.6
 26.8
 21.5
 14.2
 15.6
 0.45

Observation and comparison. Some geographical variation in shell size can be found; specimens from coastal area of Anijima (Loc. 4) have smaller shell than that from other areas, and specimens from mountain area of Chichijima (Loc. 6) have very large shell. However, geographical variation in shell shape is insignificant for the genus.

Several specimens from Sakaiura samples (Loc. 6) have intermediate features between M. mandarina and M. chichijimana. These intermediates are assumed to be hybrids between the two species.

Distribution. The distribution area of M. mandarina is restricted to Anijima and the northeastern part of Chichijima (Locs. 3, 4, 5, 6, 8).

Mandarina nola, n. sp.

Figures 8-2, 15-2

Material. Holotype : CM18405-a selected from sample N14 (P). Paratypes : CM18405 [N=11, sample N14 (P)].

Diagnosis. Small sized species of Mandarina. Shell with distinctly high aperture and clear umbilicus. Color pattern 1 (23) in both adult stage and juvenile stage.

Description. Shell solid and conical in shape. Umbilicus clear and deep. Spire high and strongly domed. The number of whorls in adult shell from 5.0 to 5.2. Aperture oblique in shape and high for the genus. Base circular and convex. Periostome thickened and reflected.

Measurements (mm).

 Specimen
 WH
 D
 H
 AH
 AW IPA
 U

 Holotype (CM18405-a):
 5.1
 23.2
 17.5
 13.1
 12.4
 0.41
 2.1

Observation and comparison. This species has similar color pattern to M. mandarina. However, the new species is distinguished from M. mandarina in having distinctly higher aperture, smaller shell, narrower color bands and clear umbilicus.

Distribution. This species occurs in the John beach fissure deposits (Loc. 14) of before 33,000 yr B.P.

Mandarina chichijimana, n. sp.

Figures 5-1-2, 6a-1-2, 8-5-10, 15-3-5

- 1969. Mandarina mandarina (Sowerby); Habe, p. 21, pl. 2, figs. 5-7.
- 1973. *Mandarina mandarina* (Sowerby); Habe, p. 51, pl. 4, figs. 6-8.
- 1978. *Mandarina mandarina* (Sowerby); Minato, p. 38, 41, 49, figs. 1, 6-7.

Material. Holotype (forma A): RM 18415-a selected from sample Cb14. Paratypes: RM18406 (N = 30, sample Ca3) CM18407 [N = 52, sample Cal4 (P)],RM18408 (N=8, sample Cb7), RM18409 (N = 7, sample Cb8), RM18410 (N = 7, sample)Cb9), RM18411 [N = 18, sample Cb10 (H)], RM18412 (N=2, sample Cb11), RM18413 (N = 17, sample Cb12), RM18414 (N = 24,sample Cb13), RM18415 (N = 24, sample Cb14), CM18416 [N = 32, sample Cb14 (H)], CM18417 (N = 30, sample)Cb15(H)], CM18418 [N = 16,sample Cb14(P)], RM18419 (N = 14, sample Cc2).

Diagnosis. Medium-sized species of Mandarina characterized by color pattern 1n34, nnn4, 0n04, 0000 in adult shell, 0n04 or 0000 in juvenile shell, and internal penial wall uniformly sculptured by longitudinal columns with regularly, equilateraly folded pilasters.

Description.

Genital morphology : Externally, flagellum slender with a sharp and slender tip. Epiphallus uniformly thin. Penis uniformly thin and covered by sheath at the basal portion. Usually, penis far thinner than vagina. Internally, middle and upper penial wall uniformly covered with 7-8 rows of columns of regularly, equilaterally folded, unmerging, equal-sized pilasters. Verge large, longer than wide, sculptured with longitudinal and lateral regular cords.

Shell morphology: Three forms, formae A, B and C, are distinguishable in this species. The holotype belongs to forma B.

Forma A: Shell of medium-size for the genus and solid. Spire low or medium in height. Umbilicus clearly open. Body whorl rounded or with weak to strong peripheral angle. Aperture circular in shape. Periostome moderately thick and slightly reflected. Base rounded and convex. Whorls 4.6-5.5 in number. Color pattern 1n34, nnn4 (band 1, 3, 4 sometimes incomplete and flamed) 0n04, 0000 in adult shell, and 0n04, 0000 in juvenile shell.

Forma B: Shell medium-sized for the genus and solid. Spire rather high and strongly domed. Body whorl inflated. Umbilicus closed. Base rounded, convex. Aperture rather oblique, semicircular in shape. Periostome slightly thickened, expanded and reflected. Whorls 5.2-6.1 in number. Color pattern 1n34 band sometimes incomplete and flamed in adult shell, and 0n04 in juvenile shell. Forma C: Shell morphology almost the same as forma B except for having shorter inner-lip. Color pattern 1n34 (band sometimes incomplete and flamed) in adult shell, and 0n04 in juvenile shell.

Measurements. (mm)										
Specimens	WH	D	Н	AH	AW	IPA	U			
Holotype (RM18415-a) :	5.6	24.0	19.5	13.0	13.6	0.43	_			
Paratype (CM18418-a) :	5.6	27.0	21.6	14.5	14.5	0.43	_			
Paratype (CM18407-a) :	4.6	28.9	18.7	14.3	15.2	0.38	2.9			
Paratype (RM18406-a) :	5.1	23.8	17.2	12.2	13.1	0.47	2.0			

Observation and comparison. Forma A and forma B are apparently different in shell shape but the difference of genital morphology is almost negligible. They are regarded as subspecific status. Though the genitalia of forma C could not examined in this study, it may be regarded as another subspecies of M. chichijimana, because of its similarity in color patterns and shell shape with forma B.

Forma A shows a significant change of shell morphology in the fossil record; most specimens before 40,000 yr B.P. and some specimens of 25,000-30,000 yr B.P. both have a sharp peripheral angle on the last whorl and a shallow suture on the spire. However, specimens of 30,000-40,000 yr B.P. and living specimens both show no or only a weak peripheral angulation on the whorl and have a deep suture on the spire. In addition, fossil specimens are generally larger and wider than living specimens.

Remarks. Previous authors (Pilsbry 1894; Habe 1969, 1973; Minato 1978) regarded this species as belonging to *M. mandarina*. For instance, Minato (1978) attributed the difference between *M. chichijimana* and *M. mandarina* to the geographic variation within the same species. The former, how-

 $[\]leftarrow$ Figure 9. 1: *M. luhuana* (A), CM18428-a from Loc. 15 (Holocene); 2: *M. luhuana* (B), CM18429-a from Loc. 15 (Pleistocene); 3: *M. luhuana* (C), CM18430-a from Loc. 10 (Holocene); 4: *M. luhuana* (D) CM18431 from Loc. 10 (Holocene); 5: *M. titan*, CM18432-a (holotype) from Loc. 15 (Pleistocene). All in natural size.

ever, can be distinguished from the latter because of the difference of sculpture on upper penial wall and existence of the two species at the same locality.

Distribution. In the deposits before 25,000 yr B.P., forma A is abundant. About 25,000 yr B.P., however, forma A seems to have been replaced by forma B in the southern part of Chichijima. Now, forma B is distributed in the southern part of Chichijima (Locs. 7-15). Forma A already became extinct in Chichijima, and its distribution area is now restricted to Anijima (Loc. 3). Forma C is now distributed in Ototojima (Loc. 2), and its fossil occurrence has not yet been confirmed.

Mandarina hirasei Pilsbry, 1902

Figures 5-3, 6a-4, 8-3, 15-6

- 1902. Mandarina hirasei Pilsbry, p. 141.
- 1973. *Mandarina hirasei*; Pilsbry; Habe, p. 52, pl. 4, figs. 9-11.
- 1978. *Mandarina hirasei* Pilsbry; Minato, p. 41, 42, 48, 49, fig. 4, pl. 4, figs. 1, 2.

Material. RM18420 (N = 4, sample H2),

RM18421 (N=18, sample H5), CM18422 [N=10, sample H10 (H)], RM18423 (N=4, sample H13), CM18424 [N=22, sample H14 (H)], RM18425 [N=10, sample H15 (H)].

Diagnosis. Small-sized species of *Mandarina* characterized by low spire, smooth surface without color bands, clear umbilicus and thin shell. Penial wall covered by columns of regularly, equilaterally folded, equal-sized pilasters.

Description.

Genital morphology: Externally, flagellum long with a slender tip. Epiphallus regularly slender. Penis uniformly narrow and covered by sheath at the position of basal penis. Internally, lower penial walls uniformly covered with 5-7 columns of regularly, equilaterally folded pilasters. Middle penial wall covered with 6-7 columns of straight or slightly meandering pilasters. Upper penial wall covered with 10-13 numbers of slightly meandering pilasters. Verge large and longer than wide.

Shell morphology: Shell small, flat and thin for the genus. Umbilicus wide. Surface smooth. Aperture relatively large and oval in shape. Body whorl inflated with

IPA value

Figure 10. Histograms of index of peripheral position (IPA) in five samples of M. luhuana. This indicates that the present species can be divided into two groups; one is forma A and forma B and the other is forma C and forma D.

obtuse peripheral angle. Periostome slightly colored, thickened and reflected. Color pattern usually 0000, but sometimes 1030 or 0200.

	nts. (mm)	Measurements.
--	-----------	---------------

Specimen	WH	D	Н	AH	AW	IPA	U
RM18421-a	5.0	21.1	13.4	11.0	11.5	0.49	1.9

Distribution. This species is usually found in the basal portion of the leaves of Livistona and Pandanus.

Living and Holocene specimens can be found in coastal area of Chichijima (Locs. 5, 10, 13, 14, 15) and Ototojima (Loc. 2). The occurrence of M. hirasei was recorded also in Nakodojima (Loc. 1) (Habe 1969). This species is abundant in Holocene dunes, although there is no fossil record in the deposits older than 5,000 yr. B.P.

Mandarina io, n. sp.

Figures 8-4, 15-7

Material. Holotype : CM18426-a selected from sample I14(P). Paratype : CM18426 (N = 14, sample I14 (P)).

Diagnosis. Medium-sized species of Mandarina. Shell thin. Spire flat. Body whorl markedly inflated. Color pattern 0000.

Description. Shell thin and medium-sized for the genus. Body whorl remarkably inflated and periphery rounded. Umbilicus wide in juvenile shells but closed in adult shells. Surface smooth. Most specimens lack color band. Spire flat and weakly doming. Aperture oblique and semicircular in shape. Periostome thickened and reflected. Base rounded and convex. Suture distinctly deep. Whorls 4.5-5.0 in number. Color pattern 0000.

Measurements. (mm)

Specimens	WH	D	Н	AH	AW	IPA
Holotype (CM18426-a)	4.9	29.1	18.1	15.5	16.4	0.41
Paratype (CM18426-b)	4.7	29.9	19.9	16.9	17.5	0.43

Observation and comparison. This species is similar to M. chichijimana forma A of 30, 000-40,000 yr. B.P. in having a deep suture and a round periphery on the body whorl. The former however differs from the latter in having thinner shell, smoother surface, relatively larger and more inflated body whorl, oblique shape of aperture, and closed umbilicus in adult stage.

Distribution. This species occurs in the John beach fissure deposits (Loc. 14) of about 22,000-32,000 yr. B.P.

Mandarina luhuana (Sowerby, 1839)

Figures 9-1-4, 15-8-9

- 1839. Helix luhuana Sowerby, p. 143. pl. 35, fig. 4.
- 1850. Helix pallasiana Pfeiffer, p. 67.
- 1886. *Helix pallasiana* Pfeiffer; Tryon, p. 131, pl. 44, figs. 49, 50.
- 1890. Euhadra luhuana Sowerby; Pilsbry, p. 305.
- 1890. Nanina ruschenbergeri Pilsbry, p. 186, text-fig.3.
- 1902. Mandarina ruschenbergeri Pilsbry; Pilsbry, p. 141.
- 1930. *Mandarina luhuana* (Sowerby); Kuroda, p. 206, pl. 14, figs. 3, 4.
- 1930. Mandarina pallasiana (Pfeiffer); Kuroda, p. 206, pl. 14, fig. 2.
- 1969. *Mandarina luhuana* (Sowerby); Habe, p. 19, 23, pl. 1, figs. 3, 4.
- 1969. *Mandarina pallasiana* (Pfeiffer); Habe, p. 19, 23, pl. 1, figs. 1, 2.
- 1973. *Mandarina luhuana* (Sowerby); Habe, p. 51, pl. 4, figs. 1-3.
- 1973. Mandarina pallasiana (Pfeiffer); Habe, p. 51, pl. 4, fig. 4.
- 1978. *Mandarina luhuana* (Sowerby); Minato, p. 43, 50, pl. 4, figs. 7, 8.
- 1978. *Mandarina pallasiana* (Pfeiffer); Minato, p. 44, 50, pl. 4, figs. 9, 10.

Material. CM18427 [N = 30, sample La14 (H)], CM18428 [N = 30, sample La15 (H)], CM18429 [N = 30, Lb14 (P)], CM18430 [N = 4, Lc10 (H)], CM18431 [N = 1, Ld10 (H)].

Diagnosis. Large species of *Mandarina* characterized by flat spire and wide umbilicus.

Description. Four forms, i.e. formae A, B,

C and D are distinguishable in this species.

Forma A : Shell large, solid, heavy for the genus. Spire very low but domed. Suture deep. Umbilicus distinctly wide. Body whorl with obtuse peripheral angle. Aperture oblique in shape. Base rounded and convex. Periostome reflected and thickened. Whorls 5.6-6.5 in number. Color pattern of juvenile shell 0n04. The basic color pattern of adult shell 1n34, 0n04, 0(23)4, 1(23)4 or (123)4, but sometimes the band incomplete and flamed.

Forma B: Shell large, solid, heavy for the genus. Spire very low and slightly domed. Suture shallow. Umbilicus wide for the genus, but narrower than that of forma A. Surface sculptured by many numbers of spiral lines. Body whorl with sharp peripheral angle. Aperture oblique in shape and higher than forma A. Periostome thinner and more weakly reflected than that of forma A. Whorls 5.4-6.0 in number. The color pattern of juvenile shell 0n04. Basic color pattern of adult shell (123)4. The band sometimes incomplete and flamed.

Forma C: The basic features of forma C is similar to forma B. But forma C has lower peripheral position than forma B (Figure 10).

Forma D: The basic features of forma D is similar to forma A. But forma D has lower peripheral angle and narrower umbilicus than forma A (Figure 10). Forma B and forma C are easily discriminated from forma D in having sharply angulated periphery.

Measurements (mm).

Specimens	WH	D	Н	AH	\mathbf{AW}	IPA	U	KΕ
CM18428-a	5.8	42.0	19.0	18.0	19.5	0.22	9.90	1
CM18429-a	5.8	51.0	27.3	25.0	25.5	0.21	7.21	5

CM18430-a5.738.023.117.919.50.384.904CM18431-a5.542.021.218.522.10.395.460

Remarks. All the specimens described as M. *luhuana* by previous authors belong to forma A. Forma C was described as M. *pallasiana* (Pfeiffer, 1850) but is regarded here as one of the formae of M. *luhuana*. No intermediate specimen between pairs of these four formae could be found in the Holocene specimens. However, in Pleistocene sample [Lb14 (P)], a few intermediate specimens between forma A and forma B, and forma B and forma C can be found.

Distribution. The occurrence of M. luhuana is limited to the southern part of Chichijima. Forma A mainly occurs in the Holocene dune deposits at Minamizaki (Loc. 14) and Minamijima (Loc. 15). Forma B and a few intermediate specimens between forma A and forma B occur from the Pleistocene fissure deposits at John beach (Loc. 14). Forma C occurs in the Holocene dune deposits of Kominato (Loc. 10). Forma D also occurs in the Holocene dune deposits of Kominato (Loc. 10).

Mandarina titan, n. sp.

Figures 9-5, 15-10

Material. Holotype: CM18432-a selected from sample T15 (P). Paratytes: CM18432 (N=3, sample T15(P)).

Diagnosis. Remarkably large species of *Mandarina* characterized by low spire, thick and reflected periostome, and wide umbilicus.

Description. Shell remarkably large, solid, heavy, exceeding 70 mm in diameter. Spire very low and weakly domed. Aperture

← Figure 11. 1: *M. aureola*, RM18448-a from Loc. 25 (holotype); 2: *M. aureola*, CM18445 from Loc. 18 (Pleistocene); 3: *M. aureola*, CM18452-a from Loc. 28 (Holocene); 4: *M. polita*, RM18457-a (holotype) from Loc. 23; 5: *M. polita*, CM18458-a from Loc. 23 (Pleistocene); 6: *M. ponderosa* (B), RM18439-a from Loc. 19; 7: *M. ponderosa* (A), RM18434-a from Loc. 27; 8: *M. ponderosa* (A), RM18437-a from Loc. 29; 9: *M. ponderosa* (A), RM18438-a from Loc. 30; 10: *M. ponderosa* (C), CM18443-a from Loc. 23 (Pleistocene); 11: *M. suenoae*, RM18467-a from Loc. 8: 12: *M. hayamii*, CM18468-a (holotype) from Loc. 14 (Pleistocene); 13: *M. exoptata*, RM18465-a from Loc. 20; 14: *M. hahajimana*, RM18461-a from Loc. 20; 15: *M. hahajimana*, RM18460-a from Loc. 19, 16: *M. sp.*, RM18469-a from Loc. 1 All in natural size.

oblique, semicircular in shape. Periostome thickened, markedly expanded and reflected. Base rounded and convex. Body whorl with weakly angular periphery. Whorls about 6 in number. Color pattern (123)4.

Measurements. (mm)

 Specimen
 WH
 D
 H
 AH
 AW
 IPA
 U
 KE

 Holotype
 6.1
 72.0
 33.1
 33.2
 37.2
 0.34
 13.8
 1

 (CM18432-a)

Observation and comparison. M. titan is the largest species of Mandarina. It is morphologically distinct from M. luhuana in the much larger shell size, low spire and markedly expanded, reflected periostome.

Distribution. The present species occurs from the fissure deposits of Minamijima (Loc. 15). It appeared about 13,000 yr. B.P. and possibly became extinct before 8,000 yr B.P.

Mandarina ponderosa Pilsbry, 1901

Figures 5-8, 6b-1, 11-6-10, 15-13-14

- 1901. Mandarina mandarina var. ponderosa Pilsbry, p. 402-403.
- 1902. Mandarina mandarina var. conus Pilsbry, p. 6.
- 1969. Mandarina ponderosa Pilsbry; Habe, p. 21, pl. 2, fig. 8.
- 1969. Mandarina conus Pilsbry; Habe, p. 21, pl. 2, fig. 1.
- 1978. Mandarina ponderosa Pilsbry; Minato, p. 39, 49, pl. 3, figs. 8, 9.
- 1978. Mandarina mandarina (Sowerby); Minato, p. 49, pl. 3, fig. 3.
- 1987. Mandarina ponderosa Pilsbry; Maeda et al., p. 68, pl. 20, figs. 288a-c.
- 1987. Mandarina mandarina (Sowerby); Maeda et al., p. 68, pl. 20. fig. 283.

Material. RM18433 (N=16, sample Pa26), RM18434 (N=25, sample Pa27), CM18435 [N=14, sample Pa27 (H)], CM18436 [N=1, sample Pa28 (H)], RM18437 (N=4, sample Pa29), RM18438 (N=6, sample Pa30), RM18439 (N=4, sample Pb18), CM18440 [N=12, sample Pb18), CM18441 (N=19, sample Pb19), RM18442 (N=9, sample Pb20), CM18443 [N=4, sample Pc23 (P)].

Diagnosis. Medium-sized species of *Mandarina* characterized by upper penial wall sculptured with columns of slightly meandering zig-zag fold and lower penial wall sculptured with tightly folded pustules. Color pattern n(23)0 in juvenile shell, and 1(23)0 or (123)0 in adult shells.

Description.

Genital morphology: Externally, flagellum distinctly large, occupying one-third of total penial portion in length, and curved near the tip. Epiphallus short and uniformly thick. Penis relatively thick at the uppermost portion, distinctly narrowed at the middle portion. Penis distinctly thickened, cylindrical in shape in the middle to basal region and covered with sheath at the basal portion. Internally, upper penial wall sculptured with columns of irregularly meandering fold. Middle and upper basal portions the wall sculptured with 7 or 8 columns of tightly, equilaterally folded pilasters. The center of each column ridged.

Shell morphology: Three forms (formae A, B and C) are distinguishable in this species, although they are all moderate in size.

Forma A: Shell conical in shape. Spire high and domed. Body whorl rounded or barely angulated at the periphery. Umbilicus closed in the adult stage. Aperture rounded and high. Periostome markedly thickened and slightly reflected. Base rounded, convex. Whorls 5.3 to 6.2 in number. Color pattern n(23)0 in juvenile shells, and 1(23)0 or (123)0 in adult shells. The bands sometimes flamed. Usually, ground color dark, but the specimens from Meijima reveal light ground color with flamed bands.

Forma B: Spire from low to high and weakly or strongly domed. Suture shallow. Surface rough with clear spiral lines. Body whorl with a strong peripheral angle. Aperture rounded in shape and relatively wide. Periostome markedly thickened and reflected. Base flattened. Whorls 5.4 to 6.0 in number. Color pattern n(23)0 in juvenile shell; 1 (23) 0 or (123)0 in adult shells. Ground color sometimes dark as well as color bands.

Forma C: Shell distinctly domed. Suture shallow. Body whorl with angular periphery. Aperture round and high. Periostome markedly thickened. Whorls about 6 in number. Color pattern 1(23)0.

Measurements (mm).

Specimens	WH	D	Н	AH	\mathbf{AW}	IPA	KE
RM18434-a	5.7	22.5	20.9	13.0	13.1	0.50	0
RM18441-a	5.7	23.8	18.0	12.5	13.0	0.41	4
CM18443-a	5.9	26.8	20.1	15.2	15.0	0.45	4

Remarks. The type specimen of M. ponderosa seems to belong to forma B. Some specimens of forma A were described as M. mandarina conus by Pilsbry (1902). Minato (1978) regarded forma A as a variant of M. mandarina. The present species is, however, distinguishable from M. mandarina by the difference of external and internal morphology of penis and color pattern in juvenile shells.

Distribution. Living populations of forma A are distributed in the coastal area of the southern part of Hahajima (Locs. 26, 27), Meijima (Loc. 30), and Imotojima (Loc. 29). Forma B is found in mountain area of Hahajima (Locs. 18-20). Pleistocene fossils belonging to forma A occur in the cave deposits of Sekimon (Loc. 18). Forma C occurs in the Pleistocene deposits of Okimura cave (Loc. 23). Specimens of forma A were also obtained from the Holocene dune deposits of Minamizaki (Loc. 27) and Hirasima (Loc. 28), and their shell morphology is quite similar to that of living specimens of the same forma.

Mandarina aureola, n. sp.

Figures 5-5-6, 6b-2, 11-1-3, 15-11

- 1978. Mandarina mandarina (Sowerby); Minato, p. 41, fig. 2.
- 1987. Mandarina mandarina (Sowerby); Maeda et al., p. 68, pl. 20, fig. 287b.

Material. Holotype: RM18448-a from

sample A25). Paratypes: RM18444 (N=25, sample A 18), CM18445 [N=24, sample A18 (P)], RM18446 (N=20, sample A24), CM18447 [N=7, A24 (H), RM18448 (N=29, sample A25], RM18449 (N=25, sample A26), RM18450 (N=25, sample A27), CM18451 [N=10, sample A27 (H)], CM18452 [N=11, sample A28 (H)].

Diagnosis. Medium-sized species of *Mandarina* characterized by pilastral pustules of lower penis and lower penial wall sculptured by columns of regularly and tightly folding large pilasters, and upper penial wall sculptured by columns of regularly meandering zig-zag pilasters.

Description.

Genital morphology : Externally, flagellum short with a sharp tip. Epiphallus uniformly long and narrow. Penis relatively thick at the upper part, but distinctly narrow at the middle part. Middle and base penis distinctly thickened and the shape cylindrical, slightly bent. Basal penis covered with sheath. Internally, upper penis sculptured with columns of irregularly folding pilasters. Middle and upper basal portions of the penis sculptured with 5-8 numbers of columns of tightly, equilaterally folded pilasters. The pilasters are remarkably developed at the upper half. Verge small and wider than long.

Shell morphology: Shell medium-sized for the genus. Spire moderate in height. Suture deep. Body whorl inflated with rounded periphery. Umbilicus closed in adult shells. Base rounded and convex. Aperture rounded. Periostome thickened and reflected. Whorls 5.1-6.1 in number. Color pattern 0200, 1n30 in juvenile stage; basically 1230, (band 1 and band 3 sometimes narrowed, fused or lacked) and sometimes 1n30, 1030, (123)0 in adult stage.

Mesurements (mm).

Specimens	WH	D	Н	AH	AW	IPA
Holotype (RM18448-a)	5.8	25.8	21.0	14.8	14.4	0.49
Paratype (CM18445-a)	5.4	30.8	22.6	16.8	17.8	0.46

Figure 12. Scatter diagram showing the relationship between the diameter of the first whorl (D1) and juvenile umbilicus width (UJ) for samples of M. *polita* and M. *aureola*. The two species is clearly distinguished by the difference of UJ.

Paratype (RM18452-a) 6.1 22.1 19.9 12.5 12.3 0.47

Observation and comparison. This species shows slight geographic variation in the penial morphology. For instance, the specimens from Sekimon (Loc. 18) and Nankinhama (Loc. 24) both have the similar features as those from Minamizaki (Loc. 27), although the former have longer flagellum than the latter. The shape of flagellum of the Sekimon and Nankinhama specimens are similar to that of M. polita. Conchologically, geographic variation is conspicuous; Sekimon specimens (Loc. 18) have relatively large, flat, reddish colored shells, while Nakanodaira specimens (Loc. 25) have relatively small, high, yellowish colored shells. Furthermore, Minamizaki (Loc. 27) specimens have relatively wide, light colored shell. Hirashima specimens (Loc. 28) are small with a high spire.

The Pleistocene fossil specimens (about 10,000 yr B.P.) occur from the deposits of Sekimon cave. These specimens have flatter and larger shell than living specimens. The Holocene fossil specimens (about 2,000 yr B.

P.) occurs at Minamizaki. Basic features of them are the same as living specimens.

Remarks. The present Hahajima species was regarded as inclusive in the geographic variation of M. mandarina by previous authors (Habe 1969; Minato 1978). However, the new species is distinguished from M. mandarina from Chichijima in having distinctly thicker basal penis, narrower middle penis and the larger pilaster. The discrepancy of penial morphology between M. mandarina and this species is more significant than the difference between M. mandarina and M. chichijimana. Conchologically, this species is somewhat similar to *M*. chichiiimana, but differs from the latter in the lower shell, wider aperture and absence of band 4 in the juvenile stage.

Distrbution. This species is distributed only in Hahajima islands. Living populations are found in Sekimon (Loc. 18) and Minamizaki-Nankinhama (Locs. 24-28) areas of Hahajima, Imotojima and Meijima. Holocene fossils occur in dune deposits of Nankinhama (Loc. 24), Minamizaki (Loc. 27) and Hirasima (Loc. 28).

Mandarina polita, n. sp.

Figures 5-7, 6b-3, 11-4-5, 15-12

Material. Holotype: RM18457-a selected from sample O23. Paratypes: RM18453 (N=6, sample 017), RM18454 (N=15, sample O20), RM 18455 (N=6, sample O21), RM18456 (N=19, sample O22), RM18457 (N=22, sample O23), CM18458 [N=25, sample O23 (P)].

Diagnosis, Medium-sized species characterized by markedly thick basal penis and small umbilicus in juvenile shell.

Description.

Genital morphology: Flagellum long and slender. Epiphallus uniformly long. Penis narrowed at the middle position. Basal penis covered with sheath and distinctly thickened, knob-like in shape. Internally, uppermost penial wall sculptured with irregularly folding pilasters. Middle and upper penial walls ornamented with 5 to 7 columns of tightly, equilaterally folding pilasters. Middle and lower penial walls sculptured with about 5 columns of tightly folding and distinctly developed pilasters. Verge small and wider than long.

Shell morphology: Shell medium in size, usually not exceeding 30 mm in diameter, solid for the genus. Spire domed. Last whorl with rounded periphery. Umbilicus almost closed in juvenile stage and never open in adult stage. Aperture rounded. Periostome thickened and reflected. Base rounded and convex. Whorls 5.0-5.8 in number. Color pattern basically 1n30, but it is sometimes variable among specimens from the same locality. Ground color usually reddish.

Measurements (mm).

 Specimens
 WH
 D
 H
 AH
 AW
 IPA

 Holotype (RM18457-a)
 5.8
 21.5
 19.3
 12.2
 12.5
 0.48

 Paratype (CM18458-a)
 5.4
 27.9
 20.7
 15.8
 16.8
 0.44

Observation and comparison. In the genital features M. polita is similar to M. aureola and M. chichijimana. M. aureola differs from this species in having wider umbilicus in the juvenile stage and with yellowish ground color (Figure 13) and apparently different shape of penis. M. chichijimana is distinguished from this species in having higher aperture in juvenile stage and the presence of band 4.

The present species shows a significant geographic variation in shell shape, size and coloration. For instance, color pattern in both living and fossil samples from Locs. 17, 21, 22 and 23 is invariably 1n30, but such patterns as 12n0, 1nn0, 1020, 1n30 are found in the sample from Loc. 20. Specimens from Loc. 20 possess a very low spire (mean value of H/D is 0.755), while those from Loc. 23 mostly have a remarkably high spire (mean value of H/D is 0.862). The Pleistocene fossil sample from Loc. 23 consists of unusu-

ally large shells (mean value of diameter is 27.2 mm) with a relatively low spire (mean value of H/D is 0.775).

Remarks. M. polita was previously regarded as inclusive in the geographic variation of M. mandarina by Habe (1969) and Minato (1978). However, the former differs from the latter in having thicker basal penis and narrower middle penis. The discrepancy of penial morphology between M. mandarina and this species is more significant than that between M. mandarina and M. chichijimana.

Distribution. Living populations are distributed in the central and northern parts of Hahajima (Locs. 16, 17, 20, 21, 22, 23). The Pleistocene fossil specimens occur in the cave deposits at Okimura (Loc. 23).

Mandarina hahajimana Pilsbry, 1902

Figures 5-9, 6b-4, 11-14-15, 15-15

- 1902. Mandarina mandarina var. hahajimana Pilsbry, p. 29.
- 1969. Mandarina hahajimana Pilsbry; Habe, p. 21, pl. 2, fig. 4.
- 1978. *Mandarina hahajimana* Pilsbry; Minato, p. 40, 41, 50, pl. 4, figs. 3, 4.
- 1987. Mandarina hahajimana Pilsbry; Maeda et al., p. 68, pl. 20, figs. 285a, b.

Material. RM18459 (N = 4, sample J18), RM18460 (N = 10, sample J19), RM18461 (N = 10, sample J20), RM18462 (N = 8, sample J23), RM18463 (N = 1, sample J26), RM18464 (N = 6, sample J27).

Diagnosis. Small-sized species of *Mandarina* characterized by upper penial wall ornamented with separate columns of irregularly and slightly folded pilasters.

Description.

Genital morphology: Flagellum short with a sharp tip. Epiphallus of uniform thickness and relatively short. Penis uniformly long and covered with sheath near the basal penis. Middle penial wall ornamented with 7 or 8 columns of zig-zag, fold-like pilasters. Upper penial wall ornamented with 10 or 11 columns of slightly meandering, fold-like pilasters. Vorge conical in shpe and longer than wide.

Shell morphology: Shell small, thin with smooth surface. Spire weakly domed. Last whorl with rounded or barely angulated periphery. Umbilicus closed or open. Aperture oblique in shape, wider than high and narrowed at the basal position. Periostome rather thick and slightly reflected. Base rounded and convex. Whorls 4.5-5.2 in number. Color pattern 1030, n0n0, nnn0, 0000.

Measurements (mm).

Specimens	WH	D	Н	AH	AW	IPA	U
RM18461-a	5.1	22.5	16.0	12.0	13.0	0.458	—
RM18464-a	5.0	21.3	15.9	12.1	13.1	0.389	1.9

Observation and comparison. All individuals of the sample collected from Loc. 19 have a relatively high spire and a closed umbilicus. In contrast, a clear umbilicus can be seen in some specimens from Loc. 20 and Loc. 27. The sample from Loc. 23 consists of specimens with a low spire and a clear and wide umbilicus.

Distribution. This species is found on leaves or trunks of trees in Hahajima (Locs. 17, 18, 19, 20, 23, 25, 26, 27). Fossils are unknown.

Mandarina exoptata Pilsbry, 1902

Figures 11-13, 15-16

- 1902. Mandarina exoptata Pilsbry, p. 117.
- 1969. Mandarina exoptata Pilsbry; Habe, p. 21, pl. 2, fig. 3.
- 1978. *Mandarina exoptata* Pilsbry; Minato, p. 43, 49, pl. 3, figs. 1, 2.
- 1987. Mandarina exoptata Pilsbry; Maeda et al., p. 68, pl. 20, fig. 284.

Material. RM18465 (N = 10, sample E20). Diagnosis. Small-sized species of Mandarina characterized by angular periphery and clear umbilicus.

Description. Shell small for the genus. Spire low and weakly domed. Suture shal-

low. Body whorl relatively large with strong peripheral angle. Umbilicus widely open. Aperture oblique in shape. Periostome slightly thickened and reflected. Whorls about 4.5 in number. Color pattern 0000.

Measurements (mm).

 Specimen
 WH
 D
 H
 AH
 AW
 IPA
 U
 KE

 RM18465-a
 4.5
 21.5
 13.0
 10.8
 12.5
 0.43
 2.3
 4

Distribution. Central mountain area of Hahajima (Locs. 19, 20). Fossils are un-known.

Mandarina suenoae Minato, 1978

Figures 5-10, 6b-5, 11-11, 15-17

1978. *Mandarina suenoae* Minato, p. 40, 41, 50, pl. 3, figs. 5, 6.

Material. RM18466 (N = 3, sample S6), RM18467 (N = 10, sample S8).

Diagnosis. Small-sized species of *Mandarina* characterized by upper penial wall ornamented with separate columns of weakly folded pilasters.

Description.

Genital morphology: Flagellum short with a sharp tip. Epiphallus slender and relatively long. Penis uniformly long, covered with sheath at the basal position. Upper penial wall ornamented with 10 or 11 separate columns of weakly meandering, fold-like pilasters. Middle penial wall ornamented with straight columns of pilasters. Verge longer than wide.

Shell morphology: Shell small, thin, olive in color and conical in shape with a pointed apex. Spire high but weakly domed. Surface smooth. Suture shallow. Last whorl with an obtuse peripheral angle. Umbilicus closed or small but sometimes clearly open. Aperture oblique in shape. Periostome thickened and reflected. Whorls 5.2-5.8 in number. Color pattern usually 0000 and sometimes 1020.

Measurements (mm).

 Specimen
 WH
 D
 H
 AH
 AW
 IPA
 KE

 RM18467-a
 5.6
 21.5
 17.1
 11.6
 12.6
 0.53
 1

Figure 13. Scatter diagram showing the relation between the apertural height-breadth ratio (AH1/AW1) and the flank height-whorl height ratio (P1/AH1) of the first whorl in thirteen of *Mandarina* species. Horizontal and veritcal bars indicate the range of one standard deviation for each species. Samples used in this figure are indicated in Table 5.

Observation and comparison. This species is similar to M. hahajimana in genital morphology. However, the former differs from the latter in having more tightly meandering, fold-like pilasters on upper and middle penial walls and in having longer epiphallus.

Distribution. This species is found on leaves of trees in central mountain area of Chichijima (Locs. 6, 7, 8).

Mandarina hayamii, n. sp.

Figures 11-12, 15-18

Material, Holotype : CM18468-a selected from sample Y14 (P). Paratype : CM18468 [N=13, sample Y14(P)].

Diagnosis. Medium-sized species of Mandarina characterized by sharp peripheral angle, closed or very small umbilicus and sharply pointed apex.

Description. Shell medium in size, thin and triangular in shape. Apex pointed

(mean P1/H1 value is 0.185). Spire weakly domed and relatively low. Suture shallow. Last whorl inflated with a strong peripheral angle. Umbilicus closed or very small. Whorls 4.7-5.0 in number. Color pattern 0000.

Measurements (mm).

 Specimens
 WH
 D
 H
 AH
 AW
 IPA
 KE

 Holotype (CM18468-a)
 4.9
 27.2
 17.9
 13.5
 16.0
 0.47
 5

 Paratype (CM18468-b)
 4.9
 25.9
 17.8
 13.4
 14.2
 0.49
 5

Observation and comparison. This species resembles M. exoptata in the general morphology of shell. However, the former differs from the latter in having apparently larger shell and sharper apex, almost or perfectly closed umbilicus and lower position of peripheral angle (mean of IPA: 0.472 (M. hayamii), 0.420 (M. exoptata)).

Distribution. All the specimens were collected from the Pleistocene fissure deposits at Loc. 14 in Chichijima.

Mandarina sp.

Figure 11-16

- 1903. Mandarina mandarina var. trifasciata Pilsbry, p. 137, fig. 7.
- 1978. Mandarina mandarina: Minato, p. 49, pl. 3, fig. 5. (non Sowerby, 1839).

Material. RM18469 (N=2, sample F1) Description. Shell medium-sized for the genus. Spire rather high and domed. Suture deep. Last whorl with rounded periphery. Aperture rounded in shape. Base rounded and convex. Periostome thickened and reflected. Whorls 5.5 in number. Color pattern 1n30.

Measurements (mm).

 Specimen
 WH
 D
 H
 AH
 AW
 IPA

 RM18469-a
 6.1
 20.5
 18.8
 12.0
 11.9
 0.42

Observation and comparison. The present species is regarded as M. mandarina trifasciata Pilsbry, 1903 described from Nakodojima on account of the color pattern (nnn0) and general shell shape. This species is similar to M. chichijimana in shell form and color pattern. However, it is at present difficult to determine whether this is conspecific with M. chichijimana or not, because genital morphology and juvenile shell features have not yet been realized.

Distribution. Nakodojima (Mukojima Islands) at present.

Discussion

Classification of Mandarina species. All the extant Mandarina species have their own characteristics in the external and internal penial features and juvenile shell morphology. On this basis, I here consider the probable phylogenetic relationship of Mandarina including fossil species.

Penial morphology in the extant species can be classified into three types : A, B and C, as summarized below.

Type A. Basal penis slender, upper and middle penis uniformly thicked. Middle penial wall ornamented with columns of tightly, regularly, equilaterally folded pilasters (Figure 5). Verge large, longer than wide. *M. mandarina, M. chichijimana* and *M. hirasei* possess the penis of this type.

Type B. Basal penis distinctly thick, middle penis narrow. Middle and upper basal penial walls sculptured with columns of regularly, tightly, equilaterally folded pilasters. The pilasters distinctly outgrowth (Figure 5). Verge small, wider than long. The penis of this type is observed in *M. aureola*, *M. polita* and *M. ponderosa*.

Type C. Basal penis slender, upper penis slightly thick. Middle and upper penial walls uniformly sculptured with separate columns of slightly meandering, fold-like pilasters. Verge large, longer than wide. *M. suenoae* and *M. hahajimana* have the penis of this type.

In most species geographic variation of juvenile shell characters is much smaller than that of adult shell characters. In M. chichi-

Figure 14. Scatter plots of shell weight vs. apertural area for 14 samples of 12 Mandarina species. This figure shows that tree snails and ground snails can be clearly classified into two clusters by the two characters.

jimana, for example, the range of variation of the mean value of the character H/D (see Table 4) is from 0.674 to 0.865, while that of the character H1/D1 (see Table 5) is from 1.23 to 1.28. Based on the statistical data listed in Table 5, juvenile shell features of extant and extinct *Mandarina* species are grouped in the following three morphotypes.

Morphotype 1. Juvenile shells with a high spire (mean H1/D1=1.19-1.28) and a long aperture (mean AH1/AW1=1.94-2.12) with a high position of periphery (mean P1/H1=0.072-0.120). This form is shared by M. mandarina, M. nola, M. chichijimana, M. hirasei, M. luhuana, M. titan and M. io.

Morphotype 2. This type is characterized by a moderately high spire (mean H1/D1 = 1.11-1.19) and rounded aperture (mean AH/AW = 1.76-1.86) with a moderately high position of periphery (mean P1/H1 = 0.102-0.150). *M. aureola, M. polita* and *M. ponderosa* possess the juvenile shells of this type.

Morphotype 3. Juvenile shell having a low spire (mean H1/D1=1.03-1.10) and a wide aperture (mean AH1/AW1=1.55-1.71) with a low position of periphery (mean P1/H1=0.147-0.200). *M. hahajimana, M. exoptata, M. suenoae* and *M. hayamii* share the juvenile shell morphology of this type.

At least in extant species, the classification of *Mandarina* based on penial morphology matches well with that based on juvenile shell morphology. This fact strongly suggests that

Figure 15. Juvenile shell morphology of 14 species of Mandarina (cross section) 1: M. mandarina, M8; 2: M. nola, N14(P); 3: M. chichijimana (A), Ca3; 4: M. chichijimana (A), Ca14(P); 5: M. chichijimana (B), Cb14; 6: M. hirasei, H14(H); 7: M. io, I14(P); 8: M. luhuana (A), La14(H); 9: M. luhuana (B), Lb14(P); 10: M. titan, T15(P); 11: M. aureola, A25; 12: M. polita, P 23; 13: M. ponderosa(A), Pa 27; 14: M. ponderosa (B), Pb 19; 15: M. hahajimana, J20; 16: M. exoptata, E20; 17: M. suenoae, S8; 18: M. hayamii, Y14(P). Scale bar indicates 1 mm.

juvenile shell characters are useful for reconstructing phylogenetic relationships of *Mandarina* species. Based on juvenile shell features, extinct species could be classified as well as living species.

I treat the species with Type A, Type B and Type C penis as constituting Stock I, Stock II and Stock III, respectively. I tentatively include extinct species belonging to Morphotype 1 in Stock I, Morphotype 2 in Stock II and Morphotype 3 in Stock III.

Among the species belonging to Stock III, M. exoptata and M. hahajimana are now restricted in distribution to Hahajima Island, while M. suenoae and M. hayamii are found in Chichijima Island. The former two species share more pointed apex and narrower juvenile umbilicus than the latter two species. Judging from the overall shell morphologies, M. exoptata and M. hahajimana are respectively regarded as allopatric sister taxa of M.suenoae and M. hayamii. It seems certain that the former two and the latter two species have evolved independently in Hahajima and Chichijima, forming two substocks.

Species forming Stock I (M. mandarina, M. nola, M. chichijimana, M. hirasei, M. io, M. luhuana and M. titan) are all distributed in Chichijima Islands. Adult shell morphologies of M. luhuana and M. titan are distinct from those of other Mandarina species in having markedly large and flat shells.

However, these two species are phylogenetically close to M. mandarina or M. chichijimana, which have similar adult shells to M. aureola or M. polita belonging to Stock II. It suggests that remarkable radiation of adult shell morphology has occurred in Chichijima Islands. Extant species of Stock I occurring in Chichijima include both tree species (M. hirasei) and ground species (M. mandarina and M. chichijimana). This fact suggests that the adaptation of M. hirasei to the trees occurred in Chichijima Islands at different times from that of other tree species (M. suenoae, M. exoptata and M. hahajimana).

Species forming Stock II (M. aureola, M. polita and M. ponderosa) are all ground snails and indigenous to Hahajima Islands, though their adult morphology is often superficially similar to that of some species of Stock I of Chichijima Islands. This fact indicates speciation occurred independently in Chichijima and Hahajima Islands.

Adaptive significance of adult shell form. Classification of Mandarina species based on adult shell characters is little correlated with that relying on penial anatomy. However, adult shell form is useful to assume the habitats of fossil species. The plots of shell weight versus apertural area in adult shells (Figure 14) show that tree snails (M. hirasei, M. hahajimana, M. exoptata and

Figure 16. Scatter plots of height vs. diameter in adult shell of the 3 *Madarina* species, showing the wide shell size variation among samples from different habitats.

M. suenoae) have a relatively lighter shell and a larger apertural area than ground snails, which enables climbing life. Tree snails have usually a wide aperture (smaller AH/AW) with a relatively shorter innerlip (smaller IW/AW or IH/AH). In Mandarina, tree snails show pale coloration. For instance, M. hirasei, M. suenoae and M. exoptata lack any dark coloration, and M. hahajimana has no or narrow color bands. These tree snails undoubtedly share (1) a light shell, (2) a large and wide aperture with a short innerlip, and (3) pale coloration. By using these criteria, habitat of each fossil species can be assumed. M. io and M. hayamii were probably tree snails, while other fossil species are regarded as ground snails (Figure 14).

It is difficult to recognize the adaptive significance of shell morphology in the tree snails. Large aperture and thin shell may be advantageous for tree snails to adhere to trunks or leaves. However, there is an alternative interpretation for the above morphologic characteristics. For instance, it is probable that tree snails cannot obtain sufficient calcium carbonate to construct a thick shell. The peculiar shell features of these tree snails may have resulted both from adaptational and environmental factors. The mutually similar features of tree snails, especially *M*. *hirasei* and *M*. *hahajimana*, are interpreted as due to convergence.

Adult shell features in ground species of *Mandarina* also seem to indicate their habitats. Scatter diagram of shell height versus shell width in some samples of three selected species (Figure 16) shows that samples from mountain or relatively wet habitats (Locs. 10, 18, 20) and Pleistocene fossil samples have larger shell size than samples from coastal localities (Locs. 14, 23, 25). In *M. polita* and *M. aureola*, mountain and Pleistocene samples share a relatively low shell. The same

Figure 17. The set of non-paedomorph, forma A (left) and paedomorph, forma B (right) and their juvenile of M. ponderosa.

relationship can be seen in other ground species of *Mandarina*. This suggests that mountain environment prevailed over coastal environment during the Pleistocene when sea stood lower level. On the contrary, mountain environment had been replaced by coastal condition as the sea-level ascended. The reason of these relationships between the size or flatness of shell and the environment is poorly known. However, in the Bermudian land snail *Poecilozonites* larger shell is produced under wet climate (Gould 1969a). Also, Gould (1969b) suggested that in another land snail *Cerion* the larger shell size of Pleistocene samples than living samples was probably due to the rich vegetation of the Pleistocene time. Gould's idea can be applied to the case of Mandarina judging from the similar historical change of adult shell size in many species. Emberton (1988) mentioned that increase of flatness is an adaptive feature for crevice-dwelling life habit in the Triodopsinae land snails. However, such morphologic feature cannot be well documented in M. chichijimana and M. polita. For instance, M. polita commonly occurs in limestone crevices (e.g. sample 023), but the crevice specimens have rather higher spire than the animals living under fallen leaves. Vermeij (1980) suggested that in many land snails high spire is produced under severe environment (for instance, dry climate or deficient foods) owing to the slow down of growth rate. Higher spire of coastal and living samples than mountain and the Pleistocene samples in M. aureola and M. polita may be attributable to dry and less favorable condition.

Deep coloration of adult shell is a common feature in the Pleistocene and extant mountain *Mandarina* species. For instance, speci-

Figure 18. Chronologic ranges of fossil species, indicated by ESR and ¹⁴C datings.

mens in mountain samples of M. aureola have a wider color band than those in coastal samples (some specimens with color pattern (123)0 in coastal samples are assumed to be hybrids with M. ponderosa). And in the Pleistocene samples of M. aureola the color band is markedly wide to merge with other band, suggesting their mountainous habitat. The Pleistocene form of M. luhuana has color pattern (123)0, but this color pattern is rare in the Holocene form.

Evolutionary history of Mandarina. Gould (1969a) documented that in Bermudian *Poecilozonites* that a paedomorph subspecies branched from a non-paedomorph subspecies in the glacial period. Paedomorph and non-paedomorph combination like Bermudian land snails can be found in Mandarina. In Mandarina, angular periphery, thinner shell and clear striation on the shell surface are all considered to he produced by paedomorphosis. Based on these criteria, forma B and forma C of M. luhuana are regarded as paedomorphs of forma A and forma D of the same species. The paedomorph forma B is an extinct form, occurring only in the Pleistocene deposits. The other paedomorph forma C occurs in non-limestone area, and non-paedomorph forma A are known from the Holocene deposits of limestone area. The three formae of M. ponderosa also show a paedomorphic relationship (Figure 17). In the last glacial period (ca, 13,300 yr B.P.) a paedomorph, forma C, was distributed in Okimura area, Hahajima Island. It became extinct in the Holocene period in this area. Another paedomorph, forma B is restricted to the mountain area, while forma A, a nonpaedomorph of forma B, never occur in the mountain area. Such a paedomorph is thought to be adaptive to mountainous (cool and wet) condition and lime-poor environment. The reason of local extinction of paedomorphs in limestone area can be explained as follows; in glacial period wet

climate produced thick humus soil and it was favorable to paedomorphs. In Holocene the present coastal area became dry, and limestone was exposed. In short frequent extinction event of paedomorphs may have resulted from the above climatic change since the last glacial period.

M. chichijimana has an interesting morphotype set; one morphotype possesses a clear umbilicus and narrow color bands, and another a closed umbilicus and wide and dark color bands. The former is forma A, and the latter is formae B and C. Living animals of forma A are distributed in Anijima, but fossil forma A occurs in the southern part of Chichijima. Forma B, now living in the southern part of Chichijima, appeared in 25,000 yr. B.P., when the sea probably stood at the lowest level, and at that time forma A was disappeared in that area. Living forma A is distributed on plateau where is moderately dry environment covered with scrubby sclerophyllous evergreen forest, and never occurs surrounding the plateau. On the other hand, forma B occurs from both areas of plateau and valleys. Such a plateau area is widely distributed in Anijima but occupies small area in Chichijima, and this is the reason why forma A is not distributed in Chichijima now. However, it is assumed that suitable condition for forma A prevailed widely at that time also in Chichijima, because such a wide plateau as that of Anijima is thought to have covered Chichijima formerly (Asami 1970). The erosion of the plateau is thought to be progressed especially in the main glacial period because of the effect of the lower sea level. The substitution of these two formae is thought to have been rapidly accomplished in view of their fossil records and the result of ESR dating (Figure 18). The following two possibilities can be presumed about the process of substitution.

1. Forma B evolved from forma A about 25,000 yr B.P. in the southern part of Chichijima. 2. Forma B migrated to the area where forma A became extinct.

The possibility of the case 2 is rather unlikely, because forma B of M. chichijimana can live both on the dry plateau and in the wet valley. Judging from the later appearance of fossil record and the distribution of forma B, I regard that forma B evolved from forma A about 25,000 yr. B.P. in the valley area newly developed in southern Chichijima. Owing to the low mobility, the distribution area of the two formae have been unchanged since that time.

Forma C of M. chichijimana is now distributed in Ototojima. Though there is no fossil record of forma C, the mutual resemblance in shell form between forma B and forma C indicates that the latter branched from forma A in the similar manner with the appearance of the former. The above phenotypic level evolution in M. chichijimana had occurred in Chichijima and Ototojima independently.

The presence of morphologically dissimilar populations within the same species or among species of the same stock strongly suggests that the adult shell morphology is remarkably flexible and strongly influenced by the local environment.

Conclusion

The endemic land snail genus *Mandarina* in the Bonin Islands seems to be an interesting organism for considering the tempo and mode of evolution from the viewpoint of historical biology. Analyses of genitalia anatomy and shell morphology on many living and fossil samples have lead me to the following conclusions.

1. Classification of *Mandarina* based on the early shell characters matches well with that based on genitalia. In every species juvenile shell morphology is little influenced by habitat conditions, and it can be used for phylogenetic reconstruction.

2. Mandarina species can be classified

into three stocks, Stock I, Stock II and Stock III. Stock I consists of seven species containing two tree species, Stock II three ground species and Stock III four tree species. Species belonging Stock III are distributed in both Chichijima and Hahajima Islands and have counterparts in both islands. However, Stock I and Stock II are restricted to Chichijima and Hahajima, respectively. Speciation in Stock I and Stock II, and in each counterpart in Stock III occurred distinctly in Chichijima and Hahajima Islands at several times, often followed by surprisingly rapid and remarkable morphological change and by radiation to tree and ground habitats. Mutual resemblance of shell features among M. hirasei, M. hahajimana and M. exoptata belonging to different stocks is interpreted as convergence owing to their leave- or trunkadhering life habit.

3. In many species adult shell features are strongly influenced by habitat or environmental conditions. By analyzing these characters quantitatively, we can presume the life habits and habitat conditions of fossil species.

Acknowledgments. I thank Professor Itaru Hayami and Associate Professor Kazushige Tanabe for their critical reading of this manuscript and for numerous helpful suggestions. Drs. Katsumi Abe and Tatsuo Oji, and other colleagues at the Paleobiological Laboratory of University of Tokyo kindly provided fruitful discussion for improvement of this paper. Mr. Kiyonori Tomiyama of Tokyo Metropolitan University, Mr. Rei Ueshima of University of Tsukuba and Mr. Eisaku Özeki of Hahajima tourism officer supplied me with many specimens of Mandarina and offered me valuable suggestion. Mr. Kazuhiro Tanaka of the Central Electric Power Institute gave me an opportunity to use an ESR equipment, to whom I express my sincere gratitude.

References

- Asami, S., 1970: Geomorphology and geology. p. 91-108. In Asami, S. and Tsuyama, N. (eds.), The nature in the Bonin Islands. Hirokawa Shobo, Tokyo (in Japanese).
- Emberton, K. C., 1988 : The genitalic, allozymic, and conchological evolution of the eastern north American Toriodopsinae. *Malacologia*, vol. 28, p. 159-273.
- Emura, S., 1943: On the systematic positions of the genera *Mandarina* and *Dolicheulota*. *Venus*, vol. 13, p. 34-38 (*in Japanese*).
- Gould, S. J., 1969a: An evolutionary microcosm: Pleistocene and recent history of the land snail P. (*Poecilozonites*) in Bermuda. Bull. Mus. Comp. Zool., vol. 138, p. 407-532.
- —, 1969b: Character variation in two land snails from Dutch Leeward Islands: Geography, environment, and evolution. Syst. Zool., vol. 18, p. 185-200.
- Habe, T., 1969: Mollusca in the Bonin Islands. The Heredity, vol. 23, no. 8 p. 19-25 (in Japanese).
- —, 1973: Fossil land snails from Minami-jima, Bonin Islands. Sci. Rep., Tohoku Univ. 2nd Ser. (Geol.), Special Vol., 6, p. 51-53, pl 4.
- Iwasaki, Y. and Aoshima, M., 1970: Report on geology of the Bonin Islands. Ogasawara shoto shizen keikan hokokusho. Tokyo Metropolitan Office, p. 205-220 (in Japanese).
- Kuroda, T., 1930: Land and freshwater mollusks from Bonin Islands. Bull. Biogeogr. Soc. Jap., vol. 1, p. 195-204 (in Japanese).
- MacArthur, R.H. and Wilson, E.O., 1967: The theory of island biogeography. 203 pp. Princeton Univ. Press, Princeton, New Jersey.
- Maeda, K. Ohta, S., Osato, A., Shikano, Y. and Ueshima, R., 1987: Catalogue of the Hirase Shell Collection deposited in the Yokosuka City

Museum Part 2. Terresterial molluses (2): Prosobranchia & Pulmonata (other than Bradybaenidae) p. 1-71.

- Minato, H., 1978: Speciation of the genus Mandarina from the Ogasawara Islands (Pulmonata, Camaenidae). Mem. Natn. Sci. Mus. Tokyo, vol. 11, p. 37-51 (in Japanese).
- Pilsbry, H.A., 1890: A new species of Mandarina. Nautilus, vol. 4, p.64-66.
- —, 1984: Helicidae. Manual of Conchology, (2), vol. 9, p. 366.
- —, 1901a: New Japanese marine, land and freshwater Mollusca. Proc. Nat. Acad. Sci. Phila., vol. 53, p. 358-407.
- —, 1901b: Notes o the recent literature of Japanese land snails. Ann. Mag. Nat. Hist., (7) vol. 8, p. 1-9.
- —, 1902b: Notice of new land shells of the Japanese Empire. *Ibid.*, vol. 15, p. 141-142.
- —, 1902c: Notice of new land shells of the Japanese Empire. *Ibid.*, vol. 16, p. 4-7.
- —, 1902d : New land Mollusca from Japan and the Bonin Islands. Proc. Nat. Acad. Sci. Philadelphia, vol. 54, p. 25-32.
- ----,1903 : Illustrations of some Japanese land shells. *Nautilus*, vol. 16, p. 136-137.
- —, 1928: Helix luhuana Sowerby: A case of mistaken identity. Proc. Malac. Soc. Lond., vol. 18, p. 130-132.
- Richardson, M.D. Vigors, N.A., Lay, G.T., Bennett, E.T., Richard, O., Gray, J.E., Buckland, R.M., and Sowerby, G.B., 1938 : Zoology of Captain. Beechey's Voyage. 143 pp.
- Vermeij, G.J., 1980: Gastropod shell, growth rate, allometry and adult size: environmental implications. p. 379-394. In Rhoads, D.C. and Lutz, R.A. (eds.), Skeletal growth of aquatic organisms: Biological records of environmental Change. Plenum Press, New York.

Mukojima 婿島, Ototojima 弟島, Anijima 兄島, Chichijima 父島, Minamijima 南 島, Hahajima 母島, Hirasima 平島, Imotojima 妹島, Meijima 姪島.

小笠原諸島における陸貝, Mandarina の分類と形態変異:小笠原諸島に固有分布する陸 貝, Mandarina 属について7新種を含む15種を記載するとともに、その形態変異と系統関 係について考察した。Mandarina は、小笠原諸島において著しい適応放散を行ない、その 設形態は、種間のみならず同種内においても極めて変異に富む。ただし、成長初期の殻の 特徴は生息様式や環境の影響をあまり受けておらず、これに基づく分類は生殖器に基づく 分類とよく一致する。一方、成貝の殻形態は、生活様式や環境の影響を強く受けており、こ れを用いて化石種の生活様式を推測することができる。これらの種群の系統関係は、主と して初期殻の量的形質と雄性生殖器の特徴を用いて推測され、その結果、異なる系統間に おける殻形態の収れんや、同一系統内における殻形態の急速な分化が予想された。

千葉 聡

PROCEEDINGS OF THE PALAEONTOLOGICAL SOCIETY OF JAPAN

日本古生物学会第 138 回例会

日本古生物学会第138回例会が1989年6月24日-25日 に長崎大学教養部で開催された(参加者140人).

国際学術集会出席報告

第四回現生および化石渦鞭毛藻会議(ウッズホール: 1989年4月)……松岡敷充

特別講演

Aquilapollenites 花粉 グ ループ と *Normapolles* 花粉 グ ループ - その分布と層位学的意義- ……高橋 清

個人講演

東シナ海の脊椎動物化石群大塚裕之
A whale skeleton at 1,200 m below sea level: ta-
phonomic implications for vertebrate carcass falls in
deep watersAllison, P.A.
福岡市の第四紀層に発達するアナジャコ様生痕化石の産
状
山口県北西部の漸新統日置層群から産する Thalas-
sinoides と Callianassa について早坂竜児
下部白亜系南海層群中の非石灰岩-石灰岩相と底生動物
群森野善広・香西 武・田代正之・前田晴良
山中地溝帯西部に分布する石堂層産出の白亜紀前期六放
珊瑚化石について
山際延夫・田村美佐・久田健一郎・上川容市
島根県邑智郡羽須美村から産出した石炭紀四射サンゴ化
石について
古生物タイプおよび図示標本の保全について
現生オウムガイ類の比較形態とその分類学的意義
ーフィリッピン、フィジーおよびパラオの個体群を例
として棚部一成・塚原潤三・早坂祥三
On <i>Hauericeras</i> de Grossouvre. 1894, a Cretaceous
ammonite genus (白亜紀アンモナイト属 Hauericeras
について)Matsumoto. T.
白亜紀アンモナイト Puzosia kuratai Tokunaga et Shi-
mizu, 1926 について (On Puzosia kuratai Tokunaga
et Shimizu, a Cretaceous ammonite species)

······松本達郎·根本 守·渡辺俊光

石炭紀ネオイコセラス科アンモナイトの分類学	的検討
······久間裕子 •	西田民雄
秋吉石灰岩層群下部層のプロレカナイト亜目ア	ンモナイ
ト・・・・・西田民雄・	久間裕子
漸新世芦屋層群の大型海鳥(骨質歯鳥)化石 …	岡崎美彦
福岡県大牟田市万田層群産出の始新世ネズミザ	メ目の歯
化石飯本美孝・上野輝彌・	野田 栄
"Neosaimiri" (中期中新世の広鼻猿化石) の再相	 食討
高井正成・瀬	戸口烈司
南米コロンビアの中新世の新型霊長類化石	
·····································	高井正成
内湾性介形虫類の優占度を規定する要因	
塩崎正道・	池谷仙之
光合成藻類と共生する現生 Fragum 属二枚貝の	生態
	——20. 大野照文
小笠原産陸貝. Mandarina の形態変化について	-
	千華 胶
日本沿岸におけるヒザラガイ類の生物地理	オト次里
温阜(有明海)の更新統の目化石について	山尾腎一
福島県いわき市中新世辺ノ内目化石群の再給封	тљд ·
福岡东 (4) 2 市 千 府 色 伯 / 門 只 化 石 研 9 行 侯 的	畑田勝里
W山水戸・ Hayaming 尾の一新種について 香西一武。	ゴロ協力
Trayumina 属の 新種について The La	шқша
	m dh th
Notes on Tanuinteria of argentee (Conso	四十 均 1858)
(Rivelvie) from the Upper Monstrichtion (Co	u, 1838)
of Hokkaida	Nodo M
of Hokkaldo	+0 m 4n 7
Nipponiirigonia の形態変化	松田督于 1 屈官)
如 相 暦 杆 上 部 亜 暦 杆 の ヵ キ 化 石 に つ い て その し	1. 眉序と
分布利光誠一•田代正之•	加納 字
Pseudononion japonicum Asanoの形態変異に~	ついて
	高柳洋吉
Benthic foraminifera from the brackish Lak	te Naka-
noumi, San-in district, Southwestern Honshu	ı, Japan
·····Nomura, R. and	Seto, K.
四国沖下部斜面海盆における最終氷期以降の有	孔虫群変
遷安田尚登・	村山雅史
沖縄県宮古島の島尻層群における浮遊性有孔虫	化石層序
••••••	佐藤由理
中国地方の中新世底生有孔虫化石帯と脊梁山地	の運動像
	野村律夫

フィリッピン海北部の姶良 (AT)・アカホヤ (Ah) 火山 灰層準のナンノプランクトン化石……西田史朗 フィリッピン海北部の姶良 (AT)・アカホヤ (Ah) 火山 灰層準の放散虫化石…………川端良子・西田史朗 別府湾の最終氷期以降の古環境変遷 -15 m ピストン コアリングの成果―……………………………………… 岡村 眞・中田 高・島崎邦彦・千田 昇・宮武 隆 日本海溝セディメント・トラップJT-01・02中の浮遊性 四国中央部産コノドントの CAI 一三波川帯南縁~秩 Pseudoschwagerina sp. (n. sp.) from the Kamloops area in British Columbia, CanadaSada, K. and Danner, W.R. 白亜紀後期付加帯仁頃層群およびそれを基盤とする暁新 世サロマ層群からの放散虫群 ······岡村 眞・秋山達志・相田吉昭 中・上部ジュラ系の Hsuum 属 2 種 ………指田勝男 Brachiopods from the Permian Karita Formation, Hiro-

	•••••	····Yaı	nagid	a, J., 1	Imam	ura, S	., and	Kav	vai,	M.
中	国北部,	・シホ	テア	リンと	日本の	の中期	ペル	ム紀	腕足	類
	フォーナ	-の関連	も性…		•••••		•••••	…田	沢純	<u>i</u>
日ス	本の沿岸	*性汽力	と 湖沼	におり	ナる珪	藻の分	} 布特	性と	珪薄	藯
6	の運搬・	堆積過	過程…	•••••	•••••	•••••	•••••	…鹿	島	薫
有权	幾質微化	七石の自	自家性	、光色。	と分類	学的意	意義…	…松	岡婁	充
岩	手県種市	「層の才	も粉・	胞子種	洋集に	ついて	C			
•	•••••	•••••	•••••	•••••	•••••	…高橋	喬 清	・杉	山了	Ξ
北	毎道上部	『白亜矛	系産の)ヤシ種	斗に属	すると	:考え	られ	る果	実
1	化石	•••••	•••••	•••••	•••••	…大7	花民子	・木	村達	明
中	•北部力	L州後其	朋新生	代の化	化石植	ī物群	その	4	芳野	層
(中部更新	新統)・	•••••	•••••		…長谷	} 義隆	・岩	内明	子
美袖	尓層群産	医植物化	と石 (2 新種	i) …	•••••	•••••	内藤	源太	郎

夜間小集会

第3回テチス国際会議国	国内組織委員会	
	世話人	小笠原憲四郎
IGBP (地球圈一生物圈)	国際共同研究計画)	集会
世話人	高柳洋吉・鎮西清	高・小西健二

New members approved at the Council Meeting on June 23, 1989

Chang-Suk Shin Peter Anthony Allison Mitsuharu Nakajima Takashi Hasegawa Hajime Taru Manabu Takasu

Seceding members

shima, Japan

(Ordinary members)

Yoshimasa Kurashige Kyuya Shinbo Chounosuke Okamura (Fellow) Masahisa Amano Deceased member (Honarary member) Kiyoshi Asano Hikaru Nishizawa Junichi Iwai

Masahiko Shiba

Takashi Sato

Atsuo Igarashi

Yuji Takakuwa

Hiroshi Sugano

Yoshiko Kawabata

Kenichi Miyata Gen Ishizaki Hiromi Matsuoka Masao Iwai Hisayoshi Kato

Yoshijiro Kato Manabu Kobayashi

報告・紀事に投稿される方に編集者からのお願い

報告・紀事の編集作業を円滑に進めるため,投稿される方は「化石」No. 44 に掲載されている日本古生物学会報告・紀事投稿規定を順守され,原稿 を作成して下さい。特に英文に難点の多い原稿が見受けられますが,投稿 規定の B. 著者への指針 I) 1. を参照して下さい。また最近ワードプロ セッサを使用される方が多くなりましたが,割付作業を円滑にするため に、字体はパイカかクーリエに準拠した大きさで10 ピッチとし、1 ページ の行数は A4 版で25 ないし28 行にしてプリントして下さい。また最近コ ピーをオリジナル原稿とされる方がありますが、これは避けて下さい。以 上ご協力下さるようお願い致します。

日本古生物学会特別号の原稿募集

PALAEONTOLOGICAL SOCIETY OF JAPAN, SPECIAL PAPERS, NUMBER 32 を 1991 年度に刊行したく,その原稿を公募します。本会会員で適当な原稿をお持ちの方は,日 本古生物学会特別号投稿規定(1988 年 1 月 27 日制定,化石 44 号 69 頁参照)を熟読の上 原稿及び同コピーその他必要書類をそえて,下記宛に申し込んでください。

申し込み先:〒812 福岡市東区箱崎 6-10-1 九州大学理学部地質学教室気付 日本古生物学会特別号編集委員会

(代表者 柳田 壽一)

申し込み及び原稿提出締切: 1990年5月31日(必着)

採否は編集委員会が必要に応じレフェリーと相談の上内定し,1991年1月の評議員会で 審議決定の上,申込者に回答の予定です。ただしその前または後に申込者との細部の交渉 を,編集委員から求めることがあるかもしれません。

なお他からの印刷経費支出の見込みがない場合は、1991 年度の文部省刊行助成金(「研究成果刊行費補助金」)を申請します。文部省の刊行助成金の申請は、著者に代って編集委員が行い(例年は12月上旬に申請締切)、その採否・金額など決定後印刷にとりかかります。ただし、文部省出版助成金が得られなかった場合には、出版を繰延べることがあるかもしれません。

行事子定

 ◎1990年年会・総会は1990年2月2日~4日早稲田大学で開催の予定です。講演申込は1989年11月20日までです。お忘れなきようお願いいたします。

 ◎講演申込は共著を含めて一人2題までとし、講演時間は討論を含め15分です。一題目ずつ葉書で期日までに下記宛申し込んで下さい。

 ◎1990年137回例会は6月30日・7月1日に瑞浪市化石博物館で開催される予定で準備が進められています。詳細は追ってお知らせいたします。

 〒113東京都文京区弥生2-4-16日本学会事務センター日本古生物学会行事係
 (行事係)

編集委員会 (1989-1990)

長谷り	善和	速水	格
猪郷	久義(委員長)	加藤	誠
小泉	格	的場	保望
森	啓	野田	浩司
棚部	一成	斎藤	常正
植村	和彦	八尾	昭

本誌の発行に要する費用は会員の会費以外に文部省科学研究費補助金ならびに賛助会員からの 会費が当てられています。現在の賛助会員は下記の通りです。

アラビア石油株式会社	インドネシア石油株式会社	関東天然ガス株式会社
北九州市立自然史博物館	住友石油開発株式会社	石油資源開発株式会社
ダイヤコンサルタント	帝国石油株式会社	日本石油開発株式会社
三井石油開発株式会社(アイウエオ順)	

○文部省科学研究費補助金(研究成果公開促進費)による。

	発行者 日本古生物学会
1989年9月25日 印 刷	〒113 東京都文京区弥生2-4-16
1989年9月30日 発 行	日本学会事務センター内
	電話 03-817-5801
ISSN 0031-0204	編集者 猪鄉久義 · 野田浩司
日 本 古 生 物 学 会 報 告 • 紀 事	森 啓
新篇155号	編集幹事 安達修子
	印 刷 者 仙台市若林区六丁の目西町8-45
2,500 円	笹氣出版印刷株式会社 笹氣幸緒
	本社 022-288-5555 東京 455-4415

Transactions and Proceedings of the Palaeontological Society of Japan

New Series No. 155

September 30, 1989

CONTENTS

TRANSACTIONS

880.	Tatsuaki Kimura and Bong-Kyum Kim: New taxa in the Late Triassic
	Daedong Flora, South Korea, Part 2141
881.	Yoshinari Kawamura and Kazuaki Iida: An early Middle Pleistocene murid
	rodent molar from the Kobiwako Group, Japan159
882.	Yoshihiro Tanimura: Denticulopsis praehyalina, sp. nov.: An early Middle
	Miocene pennate diatom from Dogo, Oki Islands, southwest Japan169
883.	Tatsuro Matsumoto and Akito Asai: Cenomanian (Cretaceous) inoceramids
	(Bivalvia) from Hokkaido and Sakhalin I. Birostrina nipponica (Nagao et
	Matsumoto)178
884.	Natsuhiko Kojima: Dinoflagellate cyst analysis of Holocene sediments from
	Lake Hamana in central Japan197
885.	Masayuki Ehiro and Fuminori Takizawa: Foordiceras and Domatoceras
	(nautiloid cephalopods) from the Upper Permian Toyoma Formation, south-
	ern Kitakami Massif, northeast Japan212
886.	Satoshi Chiba: Taxonomy and morphologic diversity of Mandarina (Pul-
	monata) in the Bonin Islands218
PROC	CEEDINGS