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Remember that the theory of spinor genera is the “abelian part” in the problem of

study the difference between local and global information, that is:

gen(Λ) = GA.Λ

|

spn(Λ) = GG′A.Λ

|| If G is not compact at some archimedean place.

cls(Λ) = G.Λ

where

#{spinor genera in gen(Λ)} = |JK/K∗HA(Λ)| = [ΣΛ : K],

and HA(Λ) is the “image” of the spinor norm1 ΘA : GA → JK/J
n
K . This theory can be

used to study representation problems as:

Given a lattice M ⊂ Λ (Λ fixed of maximal rank), how many classes (orbits G.Λ) in the

genus of Λ (in the orbit GA.Λ) contain an isomorphic copy of M?

We will focus on the case of orders (lattices with additional structure) in central simple

algebras (CSA’s). So, we have to have some background material about CSA’s and orders

inside them.

Motivation. Central simple algebras and orders appear in different places, for

instance:

1. Number theory. Brauer groups play a central role in class field theory.

2. Theory of hyperbolic varieties. Arithmetical Kleinian and Fuchsian groups can be

described in terms of maximal orders2.

1n is 2 in the cases of forms and the degree of the central simple algebra in that case.
2See for example, L.E. Arenas-Carmona, Representation fields for cyclic orders, Acta arithmetica,

156.2 (2012)
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3. Theory of modular forms. Studying maximal orders in CSA’s is one way to gen-

eralize the classic theory of modular forms3. There is also a connection between

a certain space defined in terms of the ideal class group of a maximal order in a

quaternion algebra and the space of modular forms of weight 2 and certain level4

(related with the ramification of the quaternion algebra).

4. Wireless communication. There is a recent book5 from the AMS showing applica-

tions of CSA’s via the characterization of space-time codes problems in terms of

matrices.

1 Central Simple Algebras (CSA’s)

Let K be a field (we think K as a number field or one of its completions). Let A be a

finite dimensional K-algebra6.

Definition. We say that A is

1. Central, if Z(A) = K.

2. Simple, if it has no two-sided (non trivial) ideals.

3. Central simple, if it is central and simple.

Examples.

1. A field K is a K-CSA.

2. Quaternion algebras
(
α,β
K

)
are central simple. Hence, H =

(−1,−1
R

)
and M2(K) ∼=(

1,−1
K

)
are CSA’s.

3. A K-division algebra D is simple and is central simple over its center7 Z(D).

4. Mn(K) is a CSA and it can be shown by using properties8 of tensor product of

algebras, that9 Mn(D) ∼= Mn(K)⊗K D is a central simple algebra for any division

CSA D over K.
3If you google for Quaternion algebras and shimura curves you will find a couple of short introductions

that make use of maximal orders in quaternion algebras to produce curves.
4See A. Pacetti, G. Tornaria, Shimura correspondence for level p2 and the central values of L-series,

J. of Number Theory, 124 (2007)
5G. Berhuy, F Oggier, An Introduction to Central Simple Algebras and Their Applications to Wireless

Communication, mathematical surveys and monographs, vol 191, AMS (2013)
6For us, an algebra A will always be an associative algebra with 1, so K“ = ”1 ·K ⊂ A.
7Z(D) is a field because xy = yx⇔ y−1x−1 = x−1y−1 for every x, y ∈ D.
8E.g. Azumaya-Nakayama (1947) theorem concerning ideals in a tensor product in §5.1 of Further

Algebra and Applications by P.M. Cohn.
9For any K-algebra B, Mn(B) ∼= Mn(K)⊗K B.
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Theorem. (Wedderburn10, 1907) Let A be a finite dimensional simple K-algebra.

Then there exists an integer n ≥ 1 and a division ring D ⊃ K such that A ∼= Mn(D).

Moreover, D is unique up to isomorphism.

As an immediate consequence, we have that a CSA over a finite field is a matrix

algebra over a field11.

Corollary. A CSA A over an algebraically closed field K satisfies A ∼= Mn(K).

Proof. A ∼= Mn(D), where D ⊃ K is a division ring. Now, every element in D defines

an algebraic extension of K, but K is algebraically closed, so D = K.

We conclude that there is always a field extension L/K such that A⊗K L ∼= Mn(L).

We say that a field L with the last property is a splitting field of the CSA A.

Example. If A ∼=
(
α,β
K

)
, then it is clear that K(

√
α) is a splitting field for A.

It can be proved12 that a CSA has always a separable13 splitting field L with L ⊂ A

and [L : K] = n. As a consequence, a CSA A has square dimension and we say that√
dim(A) is the degree of A.

Now we proceed to state the beautiful Skolem-Noether theorem which implies that

the group of automorphisms of a CSA A is isomorphic to A∗/K∗.

Theorem. (Skolem-Noether14, 1927) Let A be a CSA over K and B a simple K-

algebra. Let σ, τ : B → A be two algebra homomorphisms. Then there exists an inner

automorphism φ of A such that τ = φσ.

If we take B = A and σ = idA in the theorem, we conclude that every automorphism

in a CSA is a conjugation (inner). Hence, we have a surjection A∗ � Aut(A) with kernel

K∗.

Example. We characterize15 central simple algebras of dimension 4. Let A be a

CSA with dimK(A) = 4. By Wedderbun’s we have A ∼= Mn(D) and 4 = dimK(A) =

n2 · dimK(D). We have two options: n = 1 or n = 2. If n = 2, we have A ∼= M2(K). If

n = 1, A is a division algebra. Take a separable splitting field L ⊂ A. It is clear that

L = K(a) is a quadratic extension of K and we can choose a such that a2 ∈ K. By

Skolem-Noether’s we have an element b ∈ A∗ such that bab−1 = σ(a), where σ is the non

trivial automorphism of Gal(L/K). Hence, A = L ⊕ bL and b2 = β ∈ K = Z(A). So, if

we define α = a2, we have A ∼=
(
α,β
K

)
.

Now, we will define an analogue to the determinant in a CSA. This map will be

10It is in everywhere, but you can see for instance §8 in W. Scharlau, Quadratic and Hermitian forms,
Springer (1985).

11A finite division ring is commutative.
12See Scharlau’s book.
13Hence, there is always a Galois extension of K (not necessarily contained in A) that is a splitting

field of A. CSA’s containing Galois splitting fields are called crossed products in the literature.
14See Scharlau’s book.
15When the base field has characteristic different from 2.
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essentially our spinor norm.

Reduced Norm.
We know that, going up, we have AL = A ⊗K L ∼= Mn(L), so we have an inclusion

A ↪→ AL and we can see an element a ∈ A as a matrix. Hence, we define the characteristic

polynomial of a ∈ A as χa(x) := χφ(a)(x) ∈ L[x], where φ is any isomorphism φ : AL →
Mn(L). This polynomial does not depend on φ because of Skolem-Noether’s theorem. It

can be proved that, χa(x) is independent of the field L and χa(x) ∈ K[x]. Note that

χa(0) = (−1)ndet(φ(a)).

Definition. We say that the map N : A→ K given by a 7→ (−1)nχa(0) = det(φ(a))

is the reduced norm of a ∈ A. We have immediate consequences:

1. N(ab) = N(a)N(b),∀a, b ∈ A.

2. N(λa) = λnN(a), ∀a ∈ A, λ ∈ K.

A less immediate consequence is (in the quaternionic case, this is immediate16 because

you can express the inverse of an element q as (Nq)−1q̄): a ∈ A∗ if and only if N(a) 6= 0.

Let’s prove it. It is clear that if a is invertible, then N(a) 6= 0. Now take a ∈ A

with N(a) 6= 0. We know that (taking a galois splitting field L and an isomorphism

φ : AL → Mn(L)) φ(a) ∈ Mn(L) is invertible because its determinant (= N(a)) is not 0.

Let b ∈ AL be the inverse of a. If we prove that b ∈ A we are done. Take G = Gal(L/K)

and Ĝ = idA ⊗G ⊂ Aut(A⊗K L). It is clear that the set of fixed points of Ĝ is A. Hence,

it is enough to prove that σ(b) = b for every σ ∈ Ĝ. If σ(b) 6= b, then σ(b) would be

another inverse of a, which can not occur by uniqueness of inverses.

Note that we used a (nice) “going up and down” or “descent” argument which is

frequently used in field theory, galois cohomology and, of course, CSA’s theory.

If a ∈ A, there is a relation between N(a) and la, where la : A→ A is the linear map

given by la(b) = ab. The relation is (the matrix of la in a splitting field is diag(a, ..., a))

det(la) = N(a)n.

Finally, if L ⊂ A is a maximal splitting field17, then for every a ∈ L,

N(a) = NL/K(a).

16It can be checked, by using the inclusion
(
α,β
K

)
↪→M2(K(

√
α)) given by i 7→

( √
α 0

0 −
√
α

)
, j 7→(

0 1
β 0

)
, that the quaternion norm q 7→ qq̄ is the reduced norm of the quaternion algebra.

17A splitting field L ⊂ A with [L : K] = n, where dimK(A) = n2.
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