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I. INTRODUCTION

We begin, as a way of entering our subject, by characterizing a particu-

lar interpretation of quantum theory which, although not representative of

the more careful formulations of some writers, is the most common form

encountered in textbooks and university lectures on the subject.

A physical system is described completely by a state function if! ,
which is an element of a Hilbert space, and which furthermore gives in-

formation only concerning the probabilities of the results of various obser-

vations which can be made on the system. The state function if! is

thought of as objectively characterizing the physical system, i.e., at all

times an isolated system is thought of as possessing a state function, in-

dependently of our state of knowledge of it. On the other hand, if! changes

in a causal manner so long as the system remains isolated, obeying a dif-

ferential equation. Thus there are two fundamentally different ways in

which the state function can change: 1

Process 1: The discontinuous change brought about by the observa-

tion of a quantity with eigenstates rpl' rp2"'" in which the state

if! will be changed to the state rpj with probability I(if! ,rpj)12•

Process 2: The continuous, deterministic change of state of the

(isolated) system with time according to a wave equation t= Uif!,

where U is a linear operator.

1 We use here the terminology of von Neumann [17].
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The question of the consistency of the scheme arises if one contem-

plates regarding the observer and his object-system as a single (composite)

physical system. Indeed, the situation becomes quite paradoxical if we

allow for the existence of more than one observer. Let us consider the

case of one observer A, who is performing measurements upon a sYjtem S,

the totality (A + S) in turn forming the object-system for another observer,

B.

If we are to deny the possibility of B's use of a quantum mechanical

description (wave function obeying wave equation) for A + S, then we

must be supplied with some alternative description for systems which con-

tain observers (or measuring apparatus). Furthermore, we would have to

have a criterion for telling precisely what type of systems would have the

preferred positions of "measuring apparatus" or "observer" and be sub-

ject to the alternate description. Such a criterion is probably not capable

of rigorous formulation.

On the other hand, if we do allow B to give a quantum description to

A + S, by assigning a state function r/JA+S, then, so long as B does not

interact with A + S, its state changes causally according to Process 2,

even though A may be performing measurements upon S. From B's point

of view, nothing resembling Process 1 can occur (there are no discontinui-

ties), and the question of the validity of A's use of Process 1 is raised.

That is, apparently either A is incorrect in assuming Process 1, with its

probabilistic implications, to apply to his measurements, or else B's state

function, with its purely causal character, is an inadequate description of

what is happening to A + S.

To better illustrate the paradoxes which can arise from strict adher-

ence to this interpretation we consider the following amusing, but extremely

hypothetical drama.

Isolated somewhere out in space is a room containing an observer,

A, who is about to perform a measurement upon a system S. After

performing his measurement he will record the result in his notebook.

We assume that he knows the state function of S (perhaps as a result
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of previous measurement), and that it is not an eigenstate of the mea-

surement he is about to perform. A, being an orthodox quantum theo-

rist, then believes that the outcome of his measurement is undetermined

and that the process is correctly described by Process 1.
In the meantime, however, there is another observer, B, outside

the room, who is in possession of the state function of the entire room,

including S, the measuring apparatus, and A, just prior to the mea-

surement. B is only interested in what will be found in the notebook

one week hence, so he computes the state function of the room for one

week in the future according to Process 2. One week passes, and we

find B still in possession of the state function of the room, which

this equally orthodox quantum theorist believes to be a complete de-

scription of the room and its contents. If B's state function calcula-

tion tells beforehand exactly what is going to be in the notebook, then

A is incorrect in his belief about the indeterminacy of the outcome of

his measurement. We therefore assume that B's state function con-

tains non-zero amplitudes over several of the notebook entries.

At this point, B opens the door to the room and looks at the note-

book (performs his observation). Having observed the notebook entry,

he turns to A and informs him in a patronizing manner that since his

(B's) wave function just prior to his entry into the room, which he

knows to have been a complete description of the room and its contents,

had non-zero amplitude over other than the present result of the mea-

surement, the result must have been decided only when B entered the

room, so that A, his notebook entry, and his memory about what

occurred one week ago had no independent objective existence until

the intervention by B. In short, B implies that A owes his present

objective existence to B's generous nature which compelled him to

intervene on his behalf. However, to B's consternation, A does not

react with anything like the respect and gratitude he should exhibit

towards B, and at the end of a somewhat heated reply, in which A

conveys in a colorful manner his opinion of B and his beliefs, he
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rudely punctures B's ego by observing that if B's view is correct,

then he has no reason to feel complacent, since the whole present

situation may have no objective existence, but may depend upon the

future actions of yet another observer.

It is now clear that the interpretation of quantum mechanics with which

we began is untenable if we are to consider. a universe containing more

than one observer. We must therefore seek.a suitable modification of this

scheme, or an entirely different system of interpretation. Several alterna-

tives which avoid the paradox are:

Alternative 1: To postulate the existence of only one observer in the

universe. This is the solipsist position, in which each of us must

hold the view that he alone is the only valid observer, with the

rest of the universe and its inhabitants obeying at all times Process

2 except when under his observation.

This view is quite consistent, but one must feel uneasy when, for

example, writing textbooks on quantum mechanics, describing Process 1,

for the consumption of other persons to whom it does not apply.

Alternative 2: To limit the applicability of quantum mechanics by

asserting that the quantum mechanical description fails when

applied to observers, or to measuring. apparatus, or more generally

to systems approaching macroscopic size.

If we try to limit the applicability so as to exclude measuring apparatus,

or in general systems of macroscopic size, we are faced with the difficulty

of sharply defining the region of validity. For what n might a group of n

particles be construed as forming a measuring device so that the quantum

description fails? And to draw the line at human or animal observers, i.e.,

to assume that all mechanical aparata obey the usual laws, but that they

are somehow not valid for living observers, does violence to the so-called
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principle of psycho-physical parallelism,2 and constitutes a view to be

avoided, if possible. To do justice to this principle we must insist that

we be able to conceive of mechanical devices (such as servomechanisms),

obeying natural laws, which we would be willing to call observers.

Alternative 3: To admit the validity of the state function description,

but to deny the possibility that B could ever be in possession of

the state function' of A + S. Thus one might argue that a determi-

nation of the state of A would constitute such a drastic interven-

tion that A would cease to function as an observer.

The first objection to this view is that no matter what the state of

A + S is, there is in principle a complete set of commuting operators for

which it is an eigenstate, so that, at least, the determination of these

quantities will not affect the state nor in any way disrupt the operation of

A. There are no fundamental restrictions in the usual theory about the

knowability of any state functions, and the introduction of any such re-

strictions to avoid the paradox must therefore require extra postulates.

The second objection is that it is not particularly relevant whether or

not B actually knows the precise state function of A + S. If he merely

believes that the system is described by a state function, which he does

not presume to know, then the difficulty still exists. He must then believe

that this state function changed deterministically, and hence that there

was nothing probabilistic in A's determination.

2 In the words of von Neumann([17], p. 418): ..... it is a fundamental requirement
of the scientific viewpoint - the so-called principle of the psycho-physical parallel-
ism - that it must be possible so to describe the extra-physical process of the sub-
jective perception as if it were in reality in the physical world - i.e., to as'sign to
its parts equivalent physical processes in the objective environment, in ordinary
space."
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Alternative 4: To abandon the position that the state function is a

complete description of a system. The state function is to be re-

garded not as a description of a single system, but of an ensemble

of systems, so that the probabilistic assertions arise naturally

from the incompleteness of the description.

It is assumed that the correct complete description, which would pre-

sumably involve further (hidden) parameters beyond the state function

alone, would lead to a deterministic theory, from which the probabilistic

aspects arise as a result of our ignorance of these extra parameters in the

same manner as in classical statistical mechanics.

Alternative 5: To assume the universal validity of the quantum de-

scription, by the complete abandonment of Process 1. The general

validity of pure wave mechanics, without any statistical assertions,

is assumed for all physical systems, including observers and mea-

suring apparata. Observation processes are to be described com-

pletely by the state function of the composite system which in-

cludes the observer and his object-system, and which at all times

obeys the wave equation (Process 2).

This brief list of alternatives is not meant to be exhaustive, but has

been presented in the spirit of a preliminary orientation. Wehave, in fact,

omitted one of the foremost interpretations of quantum theory, namely the

position of Niels Bohr. The discussion will be resumed in the final chap-

ter, when we shall be in a position to give a more adequate appraisal of

the various alternate interpretations. For the present, however, we shall

concern ourselves only with the development of Alternative 5.

It is evident that Alternative 5 is a theory of many advantages. It has

the virtue of logical simplicity and it is complete in the sense that it is

applicable to the entire universe. All processes are considered equally

(there are no "measurement processes" which play any preferred role),

and the principle of psycho-physical parallelism is fully maintained. Since
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the universal validity of the state function description is asserted, one

can regard the state functions themselves as the fundamental entities,

and one can even consider the state function of the whole universe. In

this sense this theory can be called the theory of the "universal wave

function, " since all of physics is presumed to follow from this function

alone. There remains, however, the question whether or not such a theory

can be put into correspondence with our experience.

The present thesis is devoted to showing that this concept of a uni-

versal wave mechanics, together with the necessary correlation machinery

for its interpretation, forms a logically self consistent description of a

universe in which several observers are at work.

We shall be able to Introduce into the theory systems which represent

observers. Such systems can be conceived as automatically functioning

machines (servomechanisms) possessing recording devices (memory) and

which are capable of responding to their environment. The behavior of

these observers shall always be treated within the framework of wave

mechanics. Furthermore, we shall deduce the probabilistic assertions of

Process 1 as subjective appearances to such observers, thus placing the

theory in correspondence with experience. We are then led to the novel

situation in which the formal theory is objectively continuous and causal,

while subjectively discontinuous and probabilistic. While this point of

view thus shall ultimately justify our use of the statistical assertions of

the orthodox view, it enables us to do so in a logically consistent manner,

allowing for the existence of other observers. At the same time it gives a

deeper insight into the meaning of quantized systems, and the role played

by quantum mechanical correlations.

In order to bring about this correspondence with experience for the

pure wave mechanical theory, we shall exploit the correlation between

subsystems of a composite system which is described by a state function.

A subsystem of such a composite system does not, in general, possess an

independent state function. That is, in general a composite system can-

not be represented by a single pair of subsystem states, but can be repre-
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sented only by a superposition of such pairs of subsystem states. For

example, the Schrodinger wave function for a pair of particles, r/J(x1,x2),

cannot always be written in the form r/J = c;6(X1)77(X2),but only in the form

r/J = 2aijc;6i(x1)~(x2)' In the latter case, there is no single state for
i,j

Particle 1 alone or Particle 2 alone, but only the superposition of such

cases.

In fact, to any arbitrary choice of state for one subsystem there will

correspond a relative state for the other subsystem, which will generally

be dependent upon the choice of state for the first subsystem, so that the

state of one subsystem is not independent, but correlated to the state of

the remaining subsystem. Such correlations between systems arise from

interaction of the systems, and from our point of view all measurement and

observation processes are to be regarded simply as interactions between

observer and object-system which produce strong correlations.

Let one regard an observer as a subsystem of the composite system:

observer + object-system. It is then an inescapable consequence that

after the interaction has taken place there will not, generally, exist a

single observer state. There will, however, be a superposition of the com-

posite system states, each element of which contains a definite observer

state and a definite relative object-system state. Furthermore, as we shall

see, each of these relative object-system states will be, approximately,

the eigenstates of the observation corresponding to the value obtained by

the observer which is described by the same element of the superposition.

Thus, each element of the resulting superposition describes an observer

who perceived. a definite and generally different result, and to whom it

appears that the object-system state has been transformed into the corre-

sponding eigenstate. In this sense the usual assertions of Process 1

appear to hold on a subjective level to each observer described by an ele-

ment of the superposition. We shall also see that correlation plays an

important role in preserving consistency when several observers are present

and allowed to interact with one another (to "consult" one another) as

well as with other object-systems.
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In order to develop a language for interpreting our pure wave mechan-

ics for composite systems we shall find it useful to develop quantitative

definitions for such notions as the "sharpness" or "definiteness" of an

operator A for a state Ifr, and the "degree of correlation" between the

subsystems of a.composite system or between a pair of operators in the

subsystems, so that we can use these concepts in an unambiguous manner.

The mathematical development of these notions will be carried out in the

next chapter (II) using some concepts borrowed from Information Theory.3

We shall develop there the general definitions of information and correla-

tion, as well as some of their more important properties. Throughout

Chapter II we shall use the language of probability theory to facilitate the

exposition, and because it enables us to introduce in a unified manner a

number of concepts that will be of later use. We shall nevertheless sub-

sequently apply the mathematical definitions directly to state functions,

by replacing probabilities by square amplitudes, without, however, making

any reference to probability models.

Having set the stage, so to speak, with Chapter II, we turn to quantum

mechanics in Chapter III. There we first investigate the quantum forma-

lism of composite systems, particularly the concept of relative state func-

tions, and the meaning of the representation of subsystems by non-

interfering mixtures of states characterized by density matrices. The

notions of information and correlation are then applied to quantum mechan-

ics. The final section of this chapter discusses the measurement process,

which is regarded simply as a correlation-inducing interaction between

subsystems of a single isolated system. A simple example of such a

measurement is given and discussed, and some general consequences of

the superposition principle are considered.

3 The theory originated by Claude E. Shannon [19].
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This will be followed by an abstract treatment of the problem of

Observation (Chapter IV). In this chapter we make use only of the super-

position principle, and general rules by which composite system states

are formed of subsystem states, in order that our results shall have the

greatest generality and be applicable to any form of quantum theory for

which these principles hold. (Elsewhere, when giving examples, we re-

strict ourselves to the non-relativistic Schrodinger Theory for simplicity.)

The validity of Process 1 as a subjective phenomenon is deduced, as well

as the consistency of allowing several observers to interact with one

another.

Chapter V supplements the abstract treatment of Chapter IV by discus-

sing a number of diverse topics from the point of view of the theory of

pure wave mechanics, including the existence and meaning of macroscopic

objects in the light of their atomic constitution, amplification processes

in measurement, questions of reversibility and irreversibility, and approxi-

mate measurement.

The final chapter summarizes the situation, and continues the discus-

sion of alternate interpretations of quantum mechanics.



II. PROBABILITY, INFORMATION, AND CORRELATION

The present chapter is devoted to the mathematical development of the

concepts of information and correlation. As mentioned in the introduction

we shall use the language of probability theory throughout this chapter to

facilitate the exposition, although we shall apply the mathematical defini-

tions and formulas in later chapters without reference to probability models.

We shall develop our definitions and theorems in full generality, for proba-

bility distributions over arbitrary sets, rather than merely for distributions

over real numbers, with which we are mainly interested at present. We

take this course because it is as easy as the restricted development, and

because it gives a better insight into the subject.

The first three sections develop definitions and properties of informa-

tion and correlation for probability distributions over finite sets only. In

section four the definition of correlation is extended to distributions over

arbitrary sets, and the general invariance of the correlation is proved.

Section five then generalizes the definition of information to distributions

over arbitrary sets. Finally, as illustrative examples, sections seven and

eight give brief applications to stochastic processes and classical mechan-

ics, respectively.

91. Finite joint distributions

We assume that we have a collection of finite sets, !,'lJ, ... ,Z, whose

elements are denoted by xi (!, Yj ('lJ,..., zk (Z, etc., and that we have

a joint probability distribution, P = P(xi'Yj,,,,,zk)' defined on the carte-

sian product of the sets, which represents the probability of the combined

event xi'Yj"'" and zk' We then denote by X,Y, ... ,Z the random varia-

bles whose values are the elements of the sets !,'lJ, ... ,Z, with probabili-

ties given by P.

13
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For any subset Y, ... ,Z, of a set of random variables W,... ,X, Y, ... ,Z,

with joint probability distribution P(wi"",Xj'Yk, ... ,ze), the marginal dis-

tribution, P(Yk, ... ,ze), is defined to be:

(1.1) P(Yk, ... ,ze) = l P(wi,,,,,Xj'Yk, ... ,ze) ,
i, ... ,j

which represents the probability of the joint occurrence of Yk,... ,ze, with

no restrictions upon the remaining variables.

For any subset Y, ... ,Z of a set of random variables the conditional

distribution, conditioned upon the values W= wi""'X = Xj for any re-
wi"",Xj(ymaining subset W,... ,X, and denoted by P k, ... ,ze), is defined

to be:!

(1.2)

which represents the probability of the joint event Y = Yk'''''Z = ze, con-

ditioned by the fact that W,... ,X are known to have taken the values

wi .... 'Xj. respectively.

For any numerical valued function F(Yk'''' .ze). defined on the ele-

ments of the cartesian product of 'Y •...• Z. the expectation. denoted by

Exp [F], is defined to be:

(1.3) Exp [F] l P(Yk.... ,ze) F(yk •...• ze) .
k, ... ,e

We note that if P(Yk'" .•ze) is a marginal distribution of some larger dis-

tribution P(wi •... 'Xj.Yk' ... 'ze) then

(1.4) Exp [F] l (l P(Wi'''''Xj'Yk, ••. 'Ze») F(Yk.... 'ze)
k, ... ,e e,... ,j

l P(wi"",Xj'Yk"",ze)F(yk"",ze)'
i, ... ,j,k, ... ,e

We regard it as undefined if P(wi, .... xj> = O. In this case P(wi, .... xj'

Yk, ... ,ze> is necessarily zero also.
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so that if we wish to compute Exp [F] with respect to some joint distri-

bution it suffices to use any marginal distribution of the original distribu-

tion which contains at least those variables which occur in F.

We shall also occasionally be interested in conditional expectations,
which we define as:

(1.5) Expwi, ... ,Xj [F] = l P wi, ... ,xj(Yk, ... ,ze) F(Yk, ... ,ze) ,

k•.•.•e
and we note the following easily verified rules for expectations:

(1.6) Exp [Exp [F]] = Exp [F] •

(1. 8) Exp [F+G] = Exp [F] + Exp [G] .

We should like finally to comment upon the notion of independence.

Two random variables X and Y with joint distribution P(xi' Yj) will be

said to be independent if and only if P(xi' Yj) is equal to P(xi) P(Yj)

for all i,j. Similarly, the groups of random variables (U... V). (W... X), ...•

(Y... Z) will be called mutually independent groups if and only if

P(ui, ,Vj' Wk,... ,xe, ... ,ym, ... ,zn) is always equal to P(ui, ... ,Vj)

P(wk, ,xe).', P(Ym•... 'zn).

Independence means that the random variables take on values which

are not influenced by the values of other variables with respect to which

they are independent. That is, the conditional distribution of one of two

independent variables, Y, conditioned upon the value xi for the other.

is independent of xi' so that knowledge about one variable tells nothing

of the other.

92. Information for finite distributions
Suppose that we have a single random variable X, with distribution

P(xi). We then define2 a number, IX' called the information of X, to be:

2 This definition corresponds to the negative of the entropy of a probability
distribution as defined by Shannon [19].
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which is a function of the probabilities alone and not of any possible

numerical values of the xi's themselves.3

The information is essentially a measure of the sharpness of a proba-

bility distribution, that is, an inverse measure of its "spread." In this

respect information plays a role similar to that of variance. However, it

has a number of properties which make it a superior measure of the

"sharpness" than the variance, not the least of which is the fact that it

can be defined for distributions over arbitrary sets, while variance is de-

fined only for distributions over real numbers.

Any change in the distribution P(xi) which "levels out" the proba-

bilities decreases the information. It has the value zero for "perfectly

sharp" distributions, in which the probability is one for one of the xi and

zero for all others, and ranges downward to -In n for distributions over

n elements which are equal over all of the Xi. The fact that the informa-

tion is nonpositive is no liability, since we are seldom interested in the

absolute information of a distribution, but only in differences.

We can generalize (2.1) to obtain the formula for the information of a

group of random variables X, V, ... ,Z, with joint distribution P(xi'Yj, ... ,zk)'

which we denote by IXV ... Z:

(2.2) IXV ... Z I P(Xi' Yj,... ,zk)ln P(Xi' yj'.'.'Zk)
i,j •...• k

3 A good discussion of information is to be found in Shannon [19], or Woodward
[211. Note. however, that in the theory of communication one defines the informa-
tion of a state Xi' which has a priori probability Pi' to be -In Pi. We prefer.
however, to regard information as a property of the distribution itself.
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which follows immediately from our previous definition, since the group of

random variables X, Y, ... ,Z may be regarded as a single random variable

W which takes its values in the cartesian product ! x'lJ x ... x z.
v , ,w

Finally, we define a conditional information, IX~ Z n, to be:

a quantity which measures our information about X, Y, ,Z given that we

know that V... W have taken the particular values vm' 'wn.

For independent random variables X, Y, ... ,Z, the following relation-

ship is easily proved:

(2.4) IXY ... Z = IX + Iy + ... + IZ (X, Y, ... ,Z independent) ,

so that the information of XY... Z is the sum of the individual quantities

of information, which is in accord with our intuitive feeling that if we are

given information about unrelated events, our total knowledge is the sum

of the separate amounts of information. We shall generalize this definition

later, in SS.

S3. Correlation for finite distributions

Suppose that we have a pair of random variables, X and Y, with

joint distribution P(xi' Yj). If we say that X and Yare correlated,

what we intuitively mean is that one learns something about one variable

when he is told the value of the other. Let us focus our attention upon

the variable X. If we are not informed of the value of Y, then our infor-

mation concerning X, IX' is calculated from the marginal distribution

P(xi). However, if we are now told that Y has the value Yj' then our

information about X changes to the information of the conditional distri-

bution pYj(Xi)' I~t According to what we have said, we wish the degree

correlation to measure how much we learn about X by being informed of
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V's value. However, since the change of information, It - IX' may de-

pend upon the particular value, Yj' of Y which we are told, the natural

thing to do to arrive at a single number to measure the strength of correla-

tion is to consider the expected change in information about X, given

that we are to be told the value of Y •. This quantity we call the correla-

tion information, or for brevity, the correlation, of X and Y, and denote

it by IX, Y!. Thus:

(3.1) Ix,Y! = Exp [It - IX] = Exp [It] - IX
Expanding the quantity Exp [It] using (2.3) and the rules for expecta-

tions (1.6)-(1.8) we find:

Exp [It] = Exp [ExpYj [In pYj(Xi)]]

(3.2) Exp [In P~~~j~j)J = Exp [In P(xi' Yj)] - Exp [In P(Yj)]

= IXY - Iy ,

and combining with (3.1) we have:

(3.3)

Thus the correlation is symmetric between X and Y, and hence also

equal to the expected change of information about Y given that we will

be told the value of X. Furthermore, according to (3.3) the correlation

corresponds precisely to the amount of "missing information" if we

possess only the marginal distributions, Le., the loss of information if we

choose to regard the variables as independent.

THEOREM 1. IX, Y!= 0 if and only if X and Yare independent, and

is otherwise strictly positive. (Proof in Appendix I.)
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In this respect the correlation so defined is superior to the usual cor-

relation coefficients of statistics, such as covariance, etc., which can be

zero even when the variables are not independent, and which can assume

both positive and negative values. An inverse correlation is, after all,

quite as useful as a direct correlation. Furthermore, it has the great ad-

vantage of depending upon the probabilities alone, and not upon any

numerical values of xi and Yj' so that it is defined for distributions

over sets whose elements are of an arbitrary nature, and not only for dis-

tributions over numerical properties. For example, we might have a joint

probability distribution for the political party and religious affiliation of

individuals. Correlation and information are defined for such distributions,

although they possess nothing like covariance or variance.

We can generalize (3.3) to define a group correlation for the groups of

random variables (U... V), (W... X), ... , (Y ... Z), denoted by IU... v, W... X,

... , Y ... Z\ (where the groups are separated by commas), to be:

(3.4) IU... v, W... X,... , Y... Z\ = IU... VW... X... Y... Z

-IU ... V-IW ... X- ... -Iy ... Z '

again measuring the information deficiency for the group marginals. Theo-

rem 1 is also satisfied by the group correlation, so that it is zero if and

only if the groups are mutually independent. We can, of course, also de-

fine conditional correlations in the obvious manner, denoting these quanti-

ties by appending the conditional values as superscripts, as before.

We conclude this section by listing some useful formulas and inequali-

ties which are easily proved:

(3.5)
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I...,U,V, \ '" 1...,UV, ... \ + IU,V\ ,

I...,U,V, ,W,... \ '" I...,UV ... W,... \ + IU,v, ... ,W\ (comma removal)

(3.8) I....U.VW, ... ! -I. ...UV,W, ... ! '" IU,v!-IV,W\ (commutator) ,

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

Ix\ '" 0 (definition of bracket with no commas) ,

I...,XXV, ... \ = I...,XV, ... \

(removal of repeated variable within a group) ,

I...,UV,VW, ... ! = 1...,UV,w, ... \-lv,w\- IV

(removal of repeated variable in separate groups) ,

IX,X\ = - IX (self correlation) ,

... wj"" ...Wj'"
IU,vw,x\ = IU,v,x\ ,

IU,W,X\"'wj", = IU,X(,Wj'"

(removal of conditioned variables) ,

Ixy,z\ ~ IX,z\ ,

Ixy,z\ ~ IX,z\ + IY,Z\ - IX,Y\ ,

IX,Y,z\ ~ IX,Y! + IX,z\ .

Note that in the above formulas any random variable W may be re-

placed by any group XY... Z and the relation holds true, since the set

XY... Z may be regarded as the single random variable W, which takes

its values in the cartesian product :t x 'lJ x ... x Z.

94. Generalization and further properties of correlation

Until now we have been concerned only with finite probability distri-

butions, for which we have defined information and correlation. We shall

now generalize the definition of correlation so as to be applicable to joint

probability distributions over arbitrary sets of unrestricted cardinality.
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We first consider the effects of refinement of a finite distribution. For

example, we may discover that the event xi is actually the disjunction

of several exclusive events xt, ...,xf, so that xi occurs if anyone of

the xf occurs, i.e., the single event xi results from failing to distin-

guish between the xi. The probability distribution which distinguishes

between the xi will be called a refinement of the distribution which does

not. In general, we shall say that a distribution P' = p'(xi, ...,'Yj') is a

refinement of P = P(xi""'Yj) if

(all i, ... ,j) .( ) ~ , -11 _v)
P xi'''''Yj = k P (xi , ... ,yj

11... V

We now state an important theorem concerning the behavior of correla-

tion under a refinement of a joint probability distributions:

(4.1)

THEOREM 2. P' is a refinement of P =9!x, ... ,yl' ~ IX, ... ,YI so that

correlations never decrease upon refinement of a distribution. (Proof in

Appendix I, S3.)

As an example, suppose that we have a continuous probability density

P(x, y). By division of the axes into a finite number of intervals, xi' Yj'

we arrive at a finite joint distribution Pij' by integration of P(x, y) over

the rectangle whose sides are the intervals xi and Yj' and which repre-

sents the probability that X (Xi and Y (Yj" If we now subdivide the

intervals, the new distribution P' will be a refinement of P, and by

Theorem 2 the correlation IX,YI computed from P' will never be less

than that computed from P. Theorem 2 is seen to be simply the mathemati-

cal verification of the intuitive notion that closer analysis of a situation

in which quantities X and Yare dependent can never lessen the knowl-

edge about Y which can be obtained from X.

This theorem allows us to give a general definition of correlation

which will apply to joint distributions over completely arbitrary sets, i.e.,
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for any probability measure4 on an arbitrary product space, in the follow-

ing manner:

Assume that we have a collection of arbitrary sets X, 'Y, ... , Z, and a

probability measure, MpCXx'Y x ..• xZ), on their cartesian product. Let

Pil be any finite partition of X into subsets Xr, 'Y into subsets

'Yf...., and Z into subsets Z:, such that the sets Xr x 'Yf x .•. x Z:
of the cartesian product are measurable in the probability measure Mp.

Another partition pv is a refinement of PIl, pv ~ PIl, if pv results

from pil by further subdivision of the subsets Xr, 'Yj, ... , Zk' Each par-

tition Pil results in a finite probability distribution, for which the corre-

lation, IX, Y, ... , Z!pll, is always defined through (3.3). Furthermore a

refinement of a partition leads to a refinement of the probability distribu-

tion, so that by Theorem 2:

(4.8) pv ~ Pil ~ IX, Y, ... , Z!pv ~ IX, Y, ... , Z!pll

Now the set of all partitions is partially ordered under the refinement

relation. Moreover, because for any pair of partitions P, P' there is

always a third partition P" which is a refinement of both (common lower

bound), the set of all partitions forms a directed set. 5 For a function, f,

on a directed set, $, one defines a directed set limit, lim f,:

DEFINITION. lim f exists and is equal to a ~for every E> 0 there

exists an a ($ such that If(f3)- al < E for every fJ ($ for which fJ ~ a.

It is easily seen from the directed set property of common lower bounds

that if this limit exists it is necessarily unique.

4 A measure is a non-negative, countably additive set function. defined on some
subsets of a given set. It is a probability measure if the measure of the entire set
is unity. See Halmos [12].

5 See Kelley [IS], p. 65.
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By (4.8) the correlation {X,Y,... ,ZIP is a monotone function on the

directed set of all partitions. Consequently the directed set limit, which

we shall take as the basic definition of the correlation IX,Y, ... ,zl,

always exists. (It may be infinite, but it is in every case well defined.)

Thus:

DEFINITION. IX,Y, ... ,zl = lim {X,Y,... ,ZIP ,

and we have succeeded in our endeavor to give a completely general defi-

nition of correlation, applicable to all types of distributions.

It is an immediate consequence of (4.8) that this directed set limit is

the supremum of IX,Y, ... ,ZIP, so that:

(4.9) PIx,Y, ... ,zl = sup IX,Y, ... ,zl ,
P

which we could equally well have taken as the definition.

Due to the fact that the correlation is defined as a limit for discrete

distributions, Theorem 1 and all of the relations (3.7) to (3.15), which

contain only correlation brackets, remain true for arbitrary di'stributions.

Only (3.11) and (3.12), which contain information terms, cannot be extended.

We can now prove an important theorem about correlation which con-

cerns its invariant nature. Let X, '!J, ... , Z be arbitrary sets with proba-

bility measure Mp on their cartesian product. Let f be anyone-one

mapping of X onto a set '11, g a one-one map of '!J onto 0, ... , and h

a map of Z onto ro. Then a joint probability distribution over

X x Y x ... x Z leads also to one over '11x 0 x .•• x ill where the probability

M'p induced on the product 'U x 0x •.. x ill is simply the measure which

assigns to each subset of '11x 0 x ..• x ill the measure which is the measure

of its image set in X x Y x ... x Z for the original measure Mp. (We have

simply transformed to a new set of random variables: U = f(X), V = g(Y),

... , W= h(Z).) Consider any partition P of X, Y, ,Z into the subsets

lXii, l'!Jjl, ... , IZkl with probability distribution Pij k = Mp(Xixy(, ... ,xZk)'

Then there is a corresponding partition P' of '11,0, , ro into the image
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P P'IX,Y, ... ,Z\ = IU,v, ... ,W\

sets of the sets of P,I'Uil,H\I, ... ,Hflk\, where 'Ui = f<Xi), Dj = g(lJj)"'"

mk = h(Zk)' But the probability distribution for P' is the same as that

for P, since p'.. k = M'p(lJ. x D.x '" x mk) = Mp<X.x Y .x ... x Zk) =IJ... 1 J 1 J
Pij ... k' so that:

(4.10)

Due to the correspondence between the P's and P"s we have that:

(4.11) P P'sup IX,Y, ... ,zl = sup lu,v, ... ,wl ,
P P'

and by virtue of (4.9) we have proved the following theorem:

THEOREM 3. IX,Y, ,Z\ = IU,v, ... ,wl, where '11, D, ... , m are anyone-

one images of X, Y, , Z, respectively. In other notation: IX,Y, ... ,Z\ =

If(X), g(Y), ... , h(Z)1 for all one-one functions f, g, ... , h.

This means that changing variables to functionally related variables

preserves the correlation. Again this is plausible on intuitive grounds,

since a knowledge of f(x) is just as good as knowledge of x, provided

that f is one-one.

A special consequence of Theorem 3 is that for any continuous proba-

bility density P(x, y) over real numbers the correlation between f(x)

and g(y) is the same as between x and y, where f and g are any

real valued one-one functions. As an example consider a probability dis-

tribution for the position of two particles, so that the random variables

are the position coordinates. Theorem 3 then assures us that the position

correlation is independent of the coordinate system, even if different

coordinate systems are used for each particle! Also for a joint distribu-

tion for a pair of events in space-time the correlation is invariant to arbi-

trary space-time coordinate transformations, again even allowing different

transformations for the coordinates of each event.
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These examples illustrate clearly the intrinsic nature of the correla-

tion of various groups for joint probability distributions, which is implied

by its invariance against arbitrary (one-one) transformations of the random

variables. These correlation quantities are thus fundamental properties

of probability distributions. A correlation is an absolute rather than rela-

tive quantity, in the sense that the correlation between (numerical valued)

random variables is completely independent of the scale of measurement

chosen for the variables.

S5. Information for general distributions

Although we now have a definition of correlation applicable to all

probability distributions, we have not yet extended the definition of infor-

mation past finite distributions. In order to make this extension we first

generalize the definition that we gave for discrete distributions to a defi-

nition of relative information for a random variable, relative to a given

underlying measure, called the information measure, on the values of the

random variable.

If we assign a measure to the set of values of a random variable, X,

which is simply the assignment of a positive number ai to each value Xi

in the finite case, we define the information of a probability distribution

P(xi) relative to this information measure to be:

(5.1)

If we have a joint distribution of random variables X,Y, ... ,Z, with

information measures Iai I,Ibj I,...,Ick I on their values, then we define

the total information relative to these measures to be:

(5.2) IXY ... Z ~
ij ... k
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so that the information measure on the cartesian product set is always

taken to be the product measure of the individual information measures.

We shall now alter our previous position slightly and consider informa-

tion as always being defined relative to some information measure, so

that our previous definition of information is to be regarded as the informa-

tion relative to the measure for which all the ai's, bj's,... and ck's are

taken to be unity, which we shall henceforth call the uniform measure.

Let us now compute the correlation IX,Y, ... ,ZI' by (3.4) using the

relative information:

(5.3) IX,Y, ... ,ZI' = I'XY... Z - I'X - Iy - ...-I'Z

Exp

IX,Y, ... ,ZI,

so that the correlation for discrete distributions, as defined by (3.4), is

independent of the choice of information measure, and the correlation re-

mains an absolute, not relative quantity. It can, however, be computed

from the information relative to any information measure through (3.4).
If we consider refinements, of our distributions, as before, and realize

that such a refinement is also a refinement of the information measure,

then we can prove a relation analogous to Theorem 2:

THEOREM 4. The information of a distribution relative to a given informa-

tion measure never decreases under refinement. (Proof in Appendix 1.)

Therefore, just as for correlation, we can define the information of a

probability measure Mp on the cartesian product of arbitrary sets
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x, '!j,..., Z, relative to the information measures /lX' /ly, ... , /lZ' on the

individual sets, by considering finite partitions P into subsets {Xi I,

l'!jj I, ... ,IZkl, for which we take as the definition of the information:

P Mp<Xi,'!jj"'" Zk)
(5.4) IXY ... Z = ~ Mp<Xi,'!jj'"'' Zk) In <X dJ (Z

ij...k /lX i) /ly j)" ./lZ k)

Then I~y ... Z is, as was {X,y, ... ,ZIP, a monotone function upon the

directed set of partitions (by Theorem 4), and as before we take the

directed set limit for our definition:

27

(5.5) IXY ... Z = lim I~y ... Z = s~ I~y ... Z

which is then the information relative to the information measures

/lx, /ly, ... , /lZ'
Now, for functions f, g on a directed set the existence of lim f and

lim g is a sufficient condition for the existence of lim (f + g), which is

then lim f + lim g, provided that this is not indeterminate. Therefore:

THEOREM 5. IX, ... ,YI = lim {X, ... ,yIP = lim G~...y-I~- ... -I~J =
IX... y - IX - ... - Iy, where the information is taken relative to any in-

formation measure for which the expression is not indeterminate. It is

sufficient for the validity of the above expression that the basic measures

/lX'"'' /ly be such that none of the marginal informations IX ... Iy shaII

be positively infinite.

The latter statement holds since, because of the general relation

IX... Y ~ IX + ... + Iy, the determinateness of the expression is guaranteed

so long as all of the IX, ... ,Iy are < +00.

Henceforth, unless otherwise noted, we shall understand that informa-

tion is to be computed with respect to the uniform measure for discrete

distributions, and Lebesgue measure for continuous distributions over real
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numbers. In case of a mixed distribution, with a continuous density

P(x,y, ... ,z) plus discrete "lumps" P'(xi'Yj, ... ,zk)' we shall understand

the information measure to be the uniform measure over the discrete range,

and Lebesgue measure over the continuous range. These conventions

then lead us to the expressions:

(unless otherwise noted)

L P'(xi, ... ,zk)ln P(xi, ... ,zk)
i...k

(5.6) IXY ... Z

L P(xi'Yj, ... ,zk)ln P(Xi'Yj, ... ,Zk)} (discrete)
ij..•k

f P(x,y, ... ,z) In P(X,y, ... ,Z)dXdY... dZ} (cont.)

l(mixed)

P(x, ... ,z)ln P(X, ... ,Z)dX... dZ)

The mixed case occurs often in quantum mechanics, for quantities

which have both a discrete and continuous spectrum.

S6. Example: Information decay in stochastic processes

As an example illustrating the usefulness of the concept of relative

information we shall consider briefly stochastic processes.6 Suppose that

we have a stationary Markov7 process with a finite number of states Si'

and that the process occurs at discrete (integral) times 1,2, ... ,n, ... , at

which times the transition probability from the state Si to the state Sj

is T ij" The probabilities Tij then form what is called a stochastic

6 See Feller [10]. or Doob [6].

7 A Markov process is a stochastic process whose future development depends
only upon its present state, and not on its past history.
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matrix, i.e., the elements are between 0 and 1, and 2 Tij = 1 for all
i

i. If at any time k the probability distribution over the states is IPfl

then at the next time the probabilities will be Pf+l = 2 PfTij"

In the special case where the matrix is doubly-stochastic, which

means that 2 iT ij' as well as 2? ij' equals unity, and which amounts

to a principle of detailed balancing holding, it is known that the entropy

of a probability distribution over the states, defined as H = - 2iPi In Pi'

is a monotone increasing function of the time. This entropy is, however,

simply the negative of the information relative to the uniform measure.

One can extend this result to more general stochastic processes only

if one uses the more general definition of relative information. For an

arbitrary stationary process the choice of an information measure which is

stationary, i.e., for which

(6.1)

leads to the desired result. In this case the relative information,

(6.2) 2 p.
I = .P.ln -...!.

1 1 ai'

is a monotone decreasing function of time and constitutes a suitable

basis for the definition of the entropy H = -I. Note that this definition

leads to the previous result for doubly-stochastic processes, since the

uniform measure, ai = 1 (all i), is obviously stationary in this case.

One can furthermore drop the requirement that the stochastic process

be stationary, and even allow that there are completely different sets of

states, ISrl, at each time n, so that the process is now given by a se-

quence of matrices Trj representing the transition probability at time n

from state Sr to state Sj+l. In this case probability distributions

change according to:
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(6.3)
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p~+1 "= ~ .P~T!l..
J .k 1 1 1J

If we then choose any time-dependent information measure which satisfies

the relations:

(6.4) a~+1 = ~ a~T~. (all j, n) ,
J .k 1 1J

then the information of a probability distribution is again monotone de-

creasing with time. (Proof in Appendix I.)

All of these results are easily extended to the continuous case, and

we see that the concept of relative information allows us to define entropy

for quite general stochastic processes.

97. Example: Conservation of information in classical mechanics

As a second illustrative example we consider briefly the classical

mechanics of a group of particles. The system at a'ly instant is repre-

db . (111111 nnnnnn). hsente y a pomt, x,y,z ,Px,Py,Pz, ... ,x ,y ,z ,Px,Py,Pz' m the p ase

space of all position and momentum coordinates. The natural motion of

the system then carries each point into another, defining a continuous

transformation of the phase space into itself. According to Liouville's

theorem the measure of a set of points of the phase space is invariant

under this transformation.8 This invariance of measure implies that if we

begin with a probability distribution over the phase space, rather than a

single point, the total information

(7.1) Itotal
= I lylZlplplpl XnynZnpnpnpn

X xyz'" xyz'

which is the information of the joint distribution for all positions and

momenta, remains constant in time.

8 See Khinchin [16], p. 15.
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In order to see tha.t the total information is conserved, consider any

partition P of the phase space at one time, to' with its information

relative to the phase space measure, IP(to)' At a later time t1 a parti-

tion p', into the image sets of P under the mapping of the space into

itself, is induced, for which the probabilities for the sets of p' are the

same as those of the corresponding sets of P, and furthermore for which

the measures are the same, by Liouville's theorem. Thus corresponding

to each partition P at time to with information IP (to)' there is a parti-

tion P' at time t1 with information IP(t1), which is the same:

(7.2)

Due to the correspondence of the P's and P"s the supremums of each

over all partitions must be equal, and by (5.5) we have proved that

(7.3)

and the total information is conserved.

Now it is known that the individual (marginal) position and momentum

distributions tend to decay, except for rare fluctuations, into the uniform

and Maxwellian distributions respectively, for which the classical entropy

is a maximum. This entropy is, however, except for the factor of Boltz-

man's constant, simply the negative of the marginal information

(7.4) Imarginal = IX + Iy + IZ + ... + Ipn + Ipn + Ipn ,
1 1 1 x Y z

which thus tends towards a minimum. But this decay of marginal informa-

tion is exactly compensated by an increase of the total correlation informa-

tion

(7.5) Itotall = Itotal - Imarginal '

since the total information remains constant. Therefore, if one were to

define the total entropy to be the negative of the total information, one

could replace the usual second law of thermodynamics by a law of
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conservation of total entropy, where the increase in the standard (marginal)

entropy is exactly compensated by a (negative) correlation entropy. The

usual second law then results simply from our renunciation of all correla-

tion knowledge (stosszahlansatz), and not from any intrinsic behavior of

classical systems. The situation for classical mechanics is thus in sharp

contrast to that of stochastic processes, which are intrinsically irreversible.



III. QUANTUM MECHANICS

Having mathematically formulated the ideas of information and correla-

tion for probability distributions, we turn to the field of quantum mechanics.

In this chapter we assume that the states of physical systems are repre-

sented by points in a Hilbert space, and that the time dependence of the

state of an isolated system is governed by a linear wave equation.

It is well known that state functions lead to distributions over eigen-

values of Hermitian operators (square amplitudes of the expansion coeffi-

cients of the state in terms of the basis consisting of eigenfunctions of

the operator) which have the mathematical properties of probability distri-

butions (non-negative and normalized). The standard interpretation of

quantum mechanics regards these distributions as actually giving the

probabilities that the various eigenvalues of the operator will be observed,

when a measurement represented by the operator is performed.

A feature of great importance to our interpretation is the fact that a

state function of a composite system leads to joint distributions over sub-

system quantities, rather than independent subsystem distributions, i.e.,

the quantities in different subsystems may be correlated with one another.

The first section of this chapter is accordingly devoted to the development

of the formalism of composite systems, and the connection of composite

system states and their derived joint distributions with the various possible

subsystem conditional and marginal distributions. We shall see that there

exist relative state functions which correctly give the conditional distri-

butions for all subsystem operators, while marginal distributions can not

generally be represented by state functions, but only by density matrices.

In Section 2 the concepts of information and correlation, developed

in the preceding chapter, are applied to quantum mechanics, by defining

33
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<A>if! = (if!, AifJ) .

information and correlation for operators on systems with prescribed

states. It is also shown that for composite systems there exists a quantity

which can be thought of as the fundamental correlation between subsys-

tems, and a closely related canonical representation of the composite sys-

tem state. In addition, a stronger form of the uncertainty principle, phrased

in information language, is indicated.

The third section takes up the question of measurement in quantum

mechanics, viewed as a correlation producing interaction between physical

systems. A simple example of such a measurement is given and discussed.

Finally some general consequences of the superposition principle are con-

sidered.

It is convenient at this point to introduce some notational conventions.

We shall be concerned with points if! in a Hilbert space J{, with scalar

product (if! l' if!2)' A state is a point if! for which (if!, if!) = 1. For any

linear operator A we define a functional, < A > if!, called the expectation

of A for if!, to be:

A class of operators of particular interest is the class of projection opera-

tors. The operator [cPl, called the projection on cP, is defined through:

For a complete orthonormal set

square-amplitude distribution, Pi'

lcPiI through:

lcPil and a state if! we define a

called the distribution of if! over

In the probabilistic interpretation this distribution represents the proba-

bility distribution over the results of a measurement with eigenstates cPi'

performed upon a system in the state if!. (Hereafter when referring to the

probabilistic interpretation we shall say briefly "the probability that the

system will be found in cPt, rather than the more cumbersome phrase

"the probability that the measurement of a quantity B, with eigenfunc-
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tions Ic,bil, shall yield the eigenvalue corresponding to c,bi," which is

meant.)

For two Hilbert spaces J{l and J{2' we form the direct product Hil-

bert space J{3 = J{l 0}{2 (tensor product) which is taken to be the space

of all possiblel sums of fOT"lalproducts of points of }{1 and }{2' Le.,

the elements of }{3 are those of the form I ai;i 71iwhere ~i {-J{1 and
i

71i( }{2' The scalar product in }{3 is taken to be ( ~ ai ei 71i'~bj ej 71j)=

I a;bj(ei, ejH71i' 71j)' It is then easily seen that if leil and 171il form
ij

complete orthonormal sets in }{1 and }{2 respectively, then the set of

all formal products lei '7jl is a complete orthonormal set in J{3' For any

pair of operators A, B, in }{l and }{2 there corresponds an operator

C = A 0 B, the direct product of A and B, in }{3' which can be defined

by its effect on the elements ei '7j of }{3:

CJ:.'7' '= A0Bg.'7' = (Ag.HB'7')
"'1 J 1 J 1 J

91. Composite systems

It is well known that if the states of a pair of systems 51 and 52'

are represented by points in Hilbert spaces }{l and }{2 respectively,

then the states of the composite system 5 = 51 + 52 (the two systems

51 and 52 regarded as a single system 5) are represented correctly by

points of the direct product J{1 0 }{2' This fact has far reaching conse-

quences which we wish to investigate in some detail. Thus if leil is a

complete orthonormal set for }{1' and l'7jl for }{2' the general state of

5 = 51 + 52 has the form:

(1.1)

I Morerigorously",one considers only finite sums, then completes the resulting
space to arrive at 1\10~.
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In this case we shall call Pij = aijaij the joint square-amplitude distri.

bution of ljJ5 over I~) and 17]jI. In the standard probabilistic interpre-

tation aijaij represents the joint probability that 51 will be found in

the state ~i and S2 will be found in the state 7]i' Following the proba-

bilistic model we now derive some distributions from the state ljJ5. Let

A be a Hermitian operator in 51 with eigenfunctions rPi and eigen-

values '\i' and B an operator in 52 with eigenfunctions OJ and eigen-

values /lj" Then the joint distribution of ljJS over IrPil and IrPjl, Pij'

is:

(1.2)

The marginal distributions, of ljJ5 over IrPil and of ljJ5 over IrPjl,

are:

(1.3) Pi = P(rPi) = L Pij = L l(rPiOJ' ljJSl ,
j j

Pj = P(Oj) = L Pij = L \(rPiOJ' ljJ5)1
2

,
i i

(1.4)

(1.5)

and the conditional distributions pi and pf are:

. p ...
J ) IJPi = P(rPi conditioned on rPj = p":" '

J

We now define the conditional expectation of an operator
0.

conditioned on OJ in 52' denoted by Exp J [A], to be:

0. L j LExp J [A] = ,\.p. = (liP.) p .. ,\.
1 1 J IJ 1

i i
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and we define the marginal expectation of A on 51 to be:

(1.6) Exp (A] '= L Pi\ '= L ,\Pij '= L !(ef>iOj,t/J5)\2(ef>i,Aef>i)
i ij ij
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We shall now introduce projection operators to get more convenient

forms of the conditional and marginal expectations, which will also exhibit

more clearly the degree of dependence of these quantities upon the chosen

basis Ief>i 0/ Let the operators (ef>i] and (ef>j] be the projections on

ef>i in 51 and ef>j in 52 respectively, and let II and 12 be the identi-

ty operators in SI and 52' Then, making use of the identity t/JS '=

L (ef>iOJ' t/JS)ef>iOJ for any complete orthonormal set Ief>iOJ I, we have:
ij

(1. 7) < (ef>iHOj]> t/JS '= (t/JS, (ef>i](Oj]t/J5) '=

S * S'= (.J...O.,t/J ) (ef>.O.,t/J ) '= p.. ,'f'1 J 1 J IJ

so that the joint distribution is given simply by < (ef>i](ef>j]>t/JS.
For the marginal distribution we have:

(1.8) Pi '= LPij '= ~ < [ef>iHOj]>t/JS '= <[ef>i](~ [Oi]»t/JS '= <[ef>i]I2>t/JS ,
j J J

and we see that the marginal distribution over the ef>i is independent of

the set IOj 1 chosen in 52' This result has the consequence in the ordi-

nary interpretation that the expected outcome of measurement in one sub-

system of a composite system is not influenced by the choice of quantity

to be measured in the other subsystem. This expectation is, in fact, the

expectation for the case in which no measurement at all (identity operator)

is performed in the other subsystem. Thus no measurement in S2 can
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affect the expected outcome of a measurement in 51' so long as the re-

sult of any 52 measurement remains unknown. The case is quite different,

however, if this result is known, and we must turn to the conditional dis-

tributions and expectations in such a case.

We now introduce the concept of a relative state-function, which will

playa central role in our interpretation of pure wave mechanics. Consider

a composite system S = S1 + S2 in the state 1/J5. To every state TJ of

S2 we associate a state of S1' I/J~el' called the relative state in 51 for

TJ in 52' through:

(1.9)

where I~il is any complete orthonormal set in 51 and N is a normali-

zation constant. 2

The first property of I/JTJ I is its uniqueness,3 i.e., its dependencere
upon the choice of the basis I~il is only apparent. To prove this, choose

another basis It"kl, with ~i = 2 bikt"k' Then 2bi'j bik = 8jk, and:
k i

~(~iTJ,1/J5)~i = ~ (~bijt"jTJ,1/J5)(2k bikt"k)
1 1 J

= 2 (2bi'jbik)(t"jTJ,I/J~t"k= 28jk(t"jTJ,1/J5)t"k
jk i jk

= 2 (t"kTJ,1/J5)t"k .
k

The second property of the relative state, which justifies its name, is

that I/J()jl correctly gives the conditional expectations of all operators in
re

51' conditioned by the state ()j in 52' As before let A be an operator

in 51 with eigenstates ~i and eigenvalues \. Then:

2 In case "i.i(~iTJ,i/JS)~i = 0 (unnonnalizable) then choose any function for the
relative function. This ambiguity has no consequences of any importance to us.
See in this connection the remarks on p. 40.

3 Except if "i.i(~i71. I/JS)~i = O. There is still, of course, no dependence upon
the basis.
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(). ~ (). (). )
<A>l/J J1 == l/J J1,Al/J J1re re re

== (N ~ (4)i(}j,l/JS)4>i'AN ~ (4)m(}j,l/JS)4>m)
1 1m

== N2 I.Ai Pij .
i
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At this point the normalizer N2 can be conveniently evaluated by using

(1.10) to compute: <11 >t/J~!1== N2 I1 Pij == N2Pj == 1, so that
i

(1.11) N2 == liP.
J

Substitution of (1.11) in (1.10) yields:

(1.12)

and we see that the conditional expectations of operators are given by the

relative states. (This includes, of course, the conditional distributions

themselves, since they may be obtained as expectations of projection

operators.)

An important representation of a composite system state l/JS, in terms

of an orthonormal set \OJ I in one subsystem S2 and the set of relative

states {l/J~!1} in Sl is:

(1.13) l/JS == ~ (4)i(}j,l/JS)4>i(}j == ~ (~(4>i(}j,l/JS)4>i)(}j
lJ J 1

== ; ;j rj ~ (4)i OJ' l/JS)4>iJOj

~ 1 O. S
== ..i:.J N. l/Jr~l OJ , where lIN2

J
• == P j == < II [OJ] > l/J

j J
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Thus, for any orthonormal set in one subsystem, the state of the composite

system is a single superposition of elements consisting of a state of the

given set and its relative state in the other subsystem. (The relative

states, however, are not necessarily orthogonal.) We notice further that a

particular element, 1//)jl OJ" is quite independent of the choice of basis
re O.

10k!. ktj, for the orthogonal space of OJ' since tfrr~l depends only on

OJ and not on the other Ok for k';' j. We remark at this point that the

ambiguity in the relative state which arises when ~(c/>iOj,tfr5)c/>i = 0
i

(see p. 38) is unimportant for this representation, since although any

state tfr°j
l

can be regarded as the relative state in this case, the termO. re
tfrr~l OJ will occur in (1.13) with coefficient zero.

Now that we have found subsystem states which correctly give condi-

tional expectations, we might inquire whether there exist subsystem states

which give marginal expectations. The answer is, unfortunately, no. Let

us compute the marginal expectation of A in 51 using the representa-

tion (1.13):
2 5 (~1 O. 2 ~ 1 Ok )

(1.14) Exp[A]=<AI >tfr = fNjtfrr~IOj,AI ~NktfrrelOk

= ~ Nj~k (tfr~!l' Atfr~!I)Ojk

= ~ -L1tfr°j , Atfr°j )= ~ p. <A>tfr°j .
~ N.2 ~ reI reI ~ J reI

J J J

Now suppose that there exists a state in 51' tfr', which correctly gives

the marginal expectation (1.14) for al1 operators A (Le., such that

Exp [A] = < A> tfr' for all A). One such operator is [tfr'], the projection

on tfr', for which < [tfr']> tfr' = 1. But, from (1.14) we have tha~ Exp [tfr'] =

~Pj<tfr'>tfr~!l' which is <1 unless, for all j'Pj = 0 or tfrrJt =tfr', a
j

condition which is not generally true. Therefore there exists in general

no state for 51 which correctly gives the marginal expectations for all

operators in 51'
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(1.15)

However, even though there is generally no single state describing

marginal expectations, we see that there is always a mixture of states,

namely the states lJ1~~l weighted with Pj' which does yield the correct

expectations. The distinction between a mixture, M, of states epi'

weighted by Pi' and a pure state lJ1 which is a superposition, lJ1=

~ ai epi' is that there are no interference phenomena between the various

states of a mixture. The expectation of an operator A for the mixture is

ExpM[A] = ~ Pi<A>epi = ~ Pi(epi,Aepi)' while the expectation for the
i i

pure state lJ1 is <A>lJ1=(~ aiepi,A ~ajepj)= ~aiaj(epi,Aepj)'
i J IJ

which is not the same as that of the mixture with weights Pi = arai' due

to the presence of the interference terms (epi' Aepj) for j.j, i.

It is convenient to represent such a mixture by a density matrix,4 p.

If the mixture consists of the states lJ1j weighted by Pj' and if we are

working in a basis consisting of the complete orthonormal set lepil, where

lJ1j = ~ a{epi' then we define the elements of the density matrix for the
i

mixture to be:

PkO - ~ p. aj* aj (aj - (,/.... f.»
L - k J e k i - 'f'l' 'I' j

j

Then if A is any operator, with matrix representation Aie = (epi' Aepe)
in the chosen basis, its expectation for the mixture is:

(1.16) ExpM[A] = ~ Pj(lJ1j' AlJ1j)'" ~ Pj [:t a{* a~(epi' Aepp~

= ~ (~Pj al* a~)(epi' Aepp) = ~ PPi AiP
if j i,e

= Trace (p A) .

4 Also called a statistical operator (von Neumann (17]).
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(1.18)

Therefore any mixture is adequately represented by a density matrix.5

Note also that Pke = pek' so that p is Hermitian.

Let us now find the density matrices pI and p2 for the subsystems

51 and 52 of a system 5 = 51 + 52 in the state l/J5. Furthermore, let

us choose the orthonormal bases \gil and \71jl in 51 and 52 respec-

tively, and let A be an operator in 51' B an operator in 52. Then:

(1.17) Exp [A] = < AI2 >l/J5 ~ (~(gi 71j'l/J5)gi 71j'AI l (ge71m, l/J5)ge71m)
~ em

~ 5 * 5
= "'- (gi71j,l/J ) (ge71m,l/J )(gi,Age)(71j,71m)

ijfm

= ~ [~(gi 71j'l/J5) * (ge71j' l/J5~ (gi' Age)

= Trace (pI A) ,

where we have defined pI in the \gil basis to be:

~ 5* SPei "'- (gi 71j'r/J ) (ge71j' l/J )
j

In a similar fashion we find that p2 is given, in the \71jl basis, by:

(1.19)

It can be easily shown that here again the dependence of pI upon the

choice of basis \71jl in 52' and of p2 upon \gil, is only apparent.

5 A better, coordinate free representation of a mixture is in terms of the opera-
tor which the density matrix represents. For a mixture of states l/Jn (not neces-

sarily orthogonal) with weights p , the density operator is p = I p [l/J ], where
n n n n[l/Jn] stands for the projection operator on l/Jn.
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In summary, we have seen in this section that a state of a composite

system leads to joint distributions over subsystem quantities which are

generally not independent. Conditional distributions and expectations for

subsystems are obtained from relative states, and subsystem marginal

distributions and expectations are given by density matrices.
There does not, in general, exist anything like a single state for one

subsystem of a composite system. That is, subsystems do not possess

states independent of the states of the remainder of the system, so that

the subsystem states are generally correlated. One can arbitrarily choose

a state for one subsystem, and be led to the relative state for the other

subsystem. Thus we are faced with a fundamental relativity of states,
which is implied by the formalism of composite systems. It is meaning-

less to ask the absolute state of a subsystem - one can only ask the

state relative to a given state of the remainder of the system.

92. Information and correlation in quantum mechanics
We wish to be able to discuss information and correlation for Hermi-

tian operators A, B, ... , with respect to a state function ifJ. These

quantities are to be computed, through the formulas of the preceding

chapter, from the square amplitudes of the coefficients of the expansion

of ifJ in terms of the eigenstates of the operators.

We have already seen (p. 34) that a state ifJ and an orthonormal basis

{«Pil leads to a square amplitude distribution of ifJ over the set {«Pil:

(2.1)

so that we can define the information of the basis («Pi' for the state ifJ,
I{«p/ifJ), to be simply the information of this distribution relative to the

uniform measure:
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We define the information of an operator A, for the state !/J,IA(!/J),

to be the information in the square amplitude distribution over its eigen-

values, i.e., the information of the probability distribution over the results

of a determination of A which is prescribed in the probabilistic interpre-

tation. For a non..cfegenerate operator A this distribution is the same as

the distribution (2.1) over the eigenstates. But because the information

is dependent only on the distribution, and not on numerical values, the

information of the distribution over eigenvalues of A is precisely the

information of the eigenbasis of A, Ic,biI. Therefore:

We see that for fixed !/J, the information of all non-degenerate operators

having the same set of eigenstates is the same.

In the case of degenerate operators it will be convenient to take, as

the definition of information, the information of the square amplitude dis-

tribution over the eigenvalues relative to the information measure which

consists of the multiplicity of the eigenvalues, rather than th.e uniform

measure. This definition preserves the choice of uniform measure over

the eigenstates, in distinction to the eigenvalues. If c,bij(j from 1 to mi)

are a complete orthonormal set of eigenstates for A', with distinct eigen-

values \ (degenerate with respect to j), then the multiplicity of the ith

eigenvalue is mi and the information lA' (!/J) is defined to be:

(2.4)

~ < [c,bij] >!/J

IA,(!/J)= ~(~<[c,bijl>!/J)ln j mi .
1 J

The usefulness of this definition lies in the fact that any operator AN

which distinguishes further between any of the degenerate states of A'

leads to a refinement of the relative density, in the sense of Theorem 4,

and consequently has equal or greater information. A non-degenerate

operator thus represents the maximal refinement and possesses maximal

information.
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It is convenient to introduce a new notation for the projection opera-

tors which are relevant for a specified operator. As before let A have

eigenfunctions <f>ij and distinct eigenvalues Ai' Then define the projec-

tions Ai' the projections on the eigenspaces of different eigenvalues of

A, to be:

(2.5) Ai ""I [<f>ij) .
j=l

To each such projection there is associated a number mi' the multiplicity

of the degeneracy, which is the dimension of the ith eigenspace. In this

notation the distribution over the eigenvalues of A for the state t/f, Pi'

becomes simply:

(2.6) p. = P(A.) = <A1.>t/f,
1 1

and the information, given by (2.4), becomes:

(2.7)

Similarly, for a pair of operators, A in Sl and B in S2' for the

composite system S = Sl + S2 with state l/JS, the joint distribution over

eigenvalues is:

(2.8)

and the marginal distributions are:

(2.9) Pi = ~ Pij = <Ai(~ Bj) > l/JS = <AiI
2
>l/JS ,

Pj = ~ Pij = «~Ai)Bj>l/JS "" <11Bj>l/JS .

The joint information, lAB' is given by:

S
Pij S < AiBj>l/J

(2.10) lAB = I Pij In m:n:- = I < AiBj >l/J In m.n. '
ij 1 J ij 1 J
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where mi and nj are the multiplicities of the eigenvalues '\ and /lj'

The marginal information quantities are given by:

(2.11)

.. <IIB.>t/JS

IB = L<IIBj>t/JS In d.
j J

and finally the correlation, lA, Blt/JS is given by:

where we note that the expression does not involve the multiplicities, as

do the information expressions, a circumstance which simply reflects the

independence of correlation on any information measure. These expres-

sions of course generalize trivially to distributions over more than two

variables (composite systems of more than two subsystems).

In addition to the correlation of pairs of subsystem operators, given

by (2.12), there always exists a unique quantity IS1' S21, the canonical

correlation, which has some special properties and may be regarded as

the fundamental correlation between the two subsystems SI and S2 of

the composite system S. As we remarked earlier a density matrix is

Hermitian, so that there is a representation in which it is diagonal. 6 In

6 The density matrix of a subsystem always has a pure discrete spectrum, if
the composite system is in a state. To see this we note that the choice of any
orthonormal basis in 52 leads to a discrete (i.e., denumerable) set of relative
s~~es in 51' The density matrix in 51 then represents this discrete mixture,
t/J J1 weighted by P.. This means that the expectation of the identity, Exp [I] =

re (). (). J • •
IjPj(t/JrJl' It/JrJl) = IjPj = 1 = Trace (pI) = Trace (p). Therefore p has a fInite
trace and is a completely continuous operator, having necessarily a pure discrete
spectrum. (See von Neumann [17], p. 89, footnote 115.)
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particular, for the decomposition of S (with state ifJS) into SI and S2'

we can choose a representation in which both pSI and pS2 are diagonal.

(This choice is always possible because pSI is independent of the basis

in S2 and vice-versa.) Such a representation will be called a canonical

representation. This means that it is always possible to represent the

state ifJS by a single superposition:

(2.13)

where both the /!fil and the 11Jil constitute orthonormal sets of states

for SI and S2 respectively.

To construct such a representation choose the basis 11Jil for S2 so

that p S2 is diagonal:

(2.14)

and let the ( be the relative states in SI for the 1Ji in S2:

(2.15) !fi = Ni ~ (!/JjTfi,ifJS)!/Jj (any basis /!/Jjl) .
j

Then, according to (1.13), ifJS is represented in the form (2.13) where the

11Jil are orthonormal by choice, and the l!fil are normal since they are

relative states. We therefore need only show that the states /!fiI are

orthogonal:

(2.16) (ej,ek) = (Nj ~ (!/JeTfj,ifJS)!/Je, Nk ~ (!/JmTfk,ifJS)!/Jm)
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S2since we supposed p to be diagonal in this representation. We have

therefore constructed a canonical representation (2.13).
The density matrix pSI is also automatically diagonal, by the choice

of representation consisting of the basis in S2 which makes p S2 diago-

nal and the corresponding relative states in SI' Since It"iI are ortho-

normal we have:

(2.17)

*
t:(t"i77k' ~amt"m77m) (~j77k' ~ aet"e77e)

~ a~aeOimOkmOjeOke = ~ aiajOkiOkj

= a~a.o .. = p.o ..
1 1 IJ 1 IJ '

where Pi = aiai is the marginal distribution over the l~il. Similar com-

putation shows that the elements of p S2 are the same:

(2.18)

Thus in the canonical representation both density matrices are diagonal

and have the same elements, Pk, which give the marginal square ampli-

tude distribution over both of the sets l~il and 177il forming the basis

of the representation.

Now, any pair of operators, A in SI and Ii in S2' which have as

non-degenerate eigenfunctions the sets l~il and 177jl (i.e., operators

which define the canonical representation), are "perfectly" correlated in

the sense that there is a one-one correspondence between their eigen-

values. The joint square amplitude distribution for eigenvalues \ of A
and Ilj of Ii is:

(2.19) P(,\l; and IlJ') = P(t"l' and 77')= p .. = a~a.o .. = p.o ...
J IJ 1 1 IJ 1 IJ
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Therefore, the correlation between these operators, IA,HlifJS is:

49

We shall denote this quantity by Isl, S21ifJS and call it the canonical

correlation of the subsystems SI and S2 for the system state ifJS. It

is the correlation between any pair of non-degenerate subsystem operators

which define the canonical representation.

In the canonical representation, where the density matrices are diago-

nal «2.17) and (2.18)), the canonical correlation is given by:

(2.21)

s S
= -Trace(p 2lnp 2)

But the trace is invariant for unitary transformations, so that (2.21) holds

independently of the representation, and we have therefore established

the uniqueness of ISI ,S21 ifJS.

It is also interesting to note that the quantity - TraceCp In p) is

(apart from a factor of Boltzman's constant) just the entropy of a mixture

9f states characterized by the density matrix p.7 Therefore the entropy

of the mixture characteristic of a subsystem SI for the state ifJS =

ifJSI + S2 is exactly matched by a correlation information I SI ,S21, which

represents the correlation between any pair of operators A, H, which

define the canonical representation. The situation is thus quite similar

to that of classical mechanics.8

7

8

See von Neumann [l71. p. 296.

Cf. Chapter II, 97.
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Another special property of the canonical representation is that any

operators A, B defining a canonical representation have maximum margi-

nal information, in the sense that for any other discrete spectrum opera-

tors, A on SI' B on S2' IA ~ IA and IB ~ lB' If the canonical repre-

sentation is (2.13), with l~),171iI non-degenerate eigenfunctions of A,
H, respectively, and A, B any pair of non-degenerate operators with

eigenfunctions lepkl and IOel, where ~i = ~ cikepk' 71i= ~ dieOe,

then t/fS in ep, ° representation is: k e

(2.22)

im

and the joint square amplitude distribution for epk,Oe is:

2

Pke = I(~ aicikdie)1(2.23)

while the marginals are:

(2.24) Pk = ~ Pke = ~ aiamcikcmk ~ diedme
e im e

and similarly

= ~ aiamcikcmkoim = ~ aiaicikcik '
im

(2.25) Pe = ~ Pkf = ~ aiaidiedif
k

Then the marginal information IA is:

(2.26)

where Tik = ci'kcik is doubly-stochastic (~ Tik = ~ Tik = 1 follows
i k

from unitary nature of the cik)' Therefore (by Corollary 2, 94, Appendix I):
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(2.28)

and we have proved that A has maximal marginal information among the

discrete spectrum operators. Identical proof holds for B.
While this result was proved only for non-degenerate operators, it is

immediately extended to the degenerate case, since as a consequence of

our definition of information for a degenerate operator, (2.4), its informa-

tion is still less than that of an operator which removes the degeneracy.

We have thus proved:

THEOREM. IA;;;; lA' where A is any non-degenerate operator defining

the canonical representation, and A is any operator with discrete spec-

trum.

We conclude the discussion of the canonical representation by conjec-

turing that in addition to the maximum marginal information properties of

A, H, which define the representation, they are also maximally correlated,

by which we mean that for any pair of operators C in 51' 0 in 52'

IC,OI ;;;;IA,BI, i.e.,:

CONJECTURE.9 IC,Oll/l5;;;; IA,Hll/IS = 151,521l/15

for all C on 51' 0 on 52.

As a final topic for this section we point out that the uncertainty

principle can probably be phrased in a stronger form in terms of informa-

tion. The usual form of this principle is stated in terms of variances,

namely:

9 The relations IC,B} $IA','BI = IS1's21 and IA,DI;;;;IS1's21 for all C on SI'
D on S2' can be proved easily in a manner analogous to (2.27). These do not,
however, necessarily imply the general relation (2.28).
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a2a2 > 1x k = 4

where a; = <X2>if/ - [<x>if/]2 and

2 (a)2 [ a J2 (P)2 [P J2ak = < -i ax >if/ - <-i ax>if/ = < i >if/ - <1i>if/

The conjectured information form of this principle is:

(2.30) for all if/(x).

Although this inequality has not yet been proved with complete rigor, it

is made highly probable by the circumstance that equality holds for if/(x)
1

of the form if/(x) = (1/27Tl exponent [x:J the so called "minimum un-
4ax

certainty packets" which give normal distributions for both position and

momentum, and that furthermore the first variation of (Ix + Ik) vanishes

for such if/(x). (See Appendix I, 96.) Thus, although In (1/7Te) has not

been proved an absolute maximum of Ix + Ik, it is at least a stationary

value.

The principle (2.30) is stronger than (2.29), since it implies (2.29)

but is not implied by it. To see that it implies (2.29) we use the well

known fact (easily established by a variation calculation: that, for fixed

variance a2, the distribution of minimum information is a normal distribu-

tion, which has information I = In (1/ a y27Te). This gives us the general

inequality involving information and variance:

(2.31) I ~ In (1/ay27T e) (for all distributions)

Substitution of (2.31) into (2.30) then yields:

(2.32) In (1/ axy!27Te)+ In (1/ ak y27Te) :s Ix + Ik :s In (1/7Te)

~ (1/axak27Te) :s (l/7Te) ~ aia~ ~ } ,

so that our principle implies the standard principle (2.29).
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To show that (2.29) does not imply (2.30) it suffices to give a counter-

example. The distributions P(x) = ~8(x) + ~8(x-10) and P(k) = ~8(k) +

~8(k-10), which consist simply of spikes at 0 and 10, clearly satisfy

(2.29), while they both have infinite information and thus do not satisfy

(2.30). Therefore it is possible to have arbitrarily high information about

both x and k (or p) and still satisfy (2.13). We have, then, another

illustration that information concepts are more powerful and more natural

than the older measures based upon variance.

33. Measurement

We now consider the question of measurement in quantum mechanics,

which we desire to treat as a natural process within the theory of pure

wave mechanics. From our point of view there is no fundamental distinc-

tion between "measuring apparata" and other physical systems. For us,

therefore, a measurement is simply a special case of interaction between

physical systems - an interaction which has the property of correlating a

quantity in one subsystem with a quantity in another.

Nearly every interaction between systems produces some correlation

however. Suppose that at some instant a pair of systems are independent,

so that the composite system state function is a product of subsystem

states (.pS = .pSI .pS2). Then this condition obviously holds only instan-

taneously if the systems are interactingIO- the independence is immediate-

ly destroyed and the systems become correlated. We could, then, take the

position that the two interacting systems are continually "measuring" one

another, if we wished. At each instant t we could put the composite

system into canonical representation, and choose a pair of operators A(t)

10 If U~ is the unitary operator generating the time dependence for the state

function of the composite system S = Sl + S2' so that .p~ = U~ .p~, then we

shall say that Sl and S2 have not interacted during the time interval [o,d if

and only if U~ is the direct product of two subsystem unitary operators, i.e., if

US = US1 <8l US2
t t t'
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in Sl and B(t) in S2 which define this representation. We might then

reasonably assert that the quantity A in Sl is measured by B in S2

(or vice-versa), since there is a one-one correspondence between their

values.

Such a viewpoint, however, does not correspond closely with our in.

tuitive idea of what constitutes "measurement," since the quantities A
-and B which turn out to be measured depend not only on the time, but

also upon the initial state of the composite system. A more reasonable

position is to associate the term "measurement" with a fixed interaction

H between systems,ll and to define the "measured quantities" not as

those quantities A(t), B(t) which are instantaneously canonically corre-

lated, but as the limit of the instantaneous canonical operators as the time

goes to infinity, Aoo' Boo - provided that this limit exists and is inde-

pendent of the initial state.12 In such a case we are able to associate the

"measured quantities," Aoo' Boo' with the interaction H independently

of the actual system states and the time. Wecan therefore say that H is

an interaction which causes the quantity Aoo in Sl to be measured by

Boo in S2. For finite times of interaction the measurement is only ap-

proximate, approaching exactness as the time of interaction increases in-

definitely.

There is still one more requirement that we must impose on an inter-

action before we shall call it a measurement. If H is to produce a

measurement of A in Sl by B in S2' then we require that H shall

11 Here H means the total Hamiltonian of S, not just an interaction part.

12 Actually, rather than referring to canonical operators A, H, which are not
unique, we should refer to the bases of the canonical representation, Ie-.} in SI
and l71j} in S2' since any operators A = IiAi[e-i], B = Ij Ilj[71j], with Ithe COm-
pletely arbitrary eigenvalues Ai' Ilj' are canonical. The limit °thenrefers to the
limit of the canonical bases, if it exists in some appropriate sense. However, we
shall, for convenience, continue to represent the canonical bases by operators.
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never decrease the information in the marginal distribution of A. If H

is to produce a measurement of A by correlating it with B, we expect

that a knowledge of B shall give us more information about A than we

had before the measurement took place, since otherwise the measurement

would be useless. Now, H might produce a correlation between A and

B by simply destroying the marginal information of A, without improving

the expected conditional information of A given B, so that a knowledge

of B would give us no more information about A than we possessed

originally. Therefore in order to be sure that we will gain information

about A by knowing B, when B has become correlated with A, it is

necessary that the marginal information about A has not decreased. The

expected information gain in this case is assured to be not less than the

correlation {A,BI.

The restriction that H shall not decrease the marginal information

of A has the interesting consequence that the eigenstates of A will not

be distrubed, i.e., initial states of the form t/J~ = ep Tlo' where ep is an

eigenfunction of A, must be transformed after any time interval into
states of the form t/J~ = ep TIt' since otherwise the marginal information of

A, which was initially perfect, would be decreased. This condition, in

turn, is connected with the repeatability of measurements, as we shall

subsequently see, and could alternately have been chosen as the condition

for measurement.

We shall therefore accept the following definition. An interaction H

is a measurement of A in Sl by B in S2 if H does not destroy the

marginal information of A (equivalently: if H does not disturb the

eigenstates of A in the above sense) and if furthermore the correlation

{A,BI increases toward its maximum13 with time.

13 The maximumof {A,BI is -IA if A has only a discrete spectrum, and ""
.if it has a continuous spectrum.
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We now illustrate the production of correlation with an example of a

simplified measurement due to von Neumann.14 Suppose that we have a

system of only one coordinate, q, (such as position of a particle), and

an apparatus of one coordinate r (for example the position of a meter

needle). Further suppose that they are initially independent, so that the

combined wave function is r/tg+A= ep(q) "1(r), where ep(q) is the initial

system wave function, and "1(r) is the initial apparatus function. Finally

suppose that the masses are sufficiently large or the time of interaction

sufficiently small that the kinetic portion of the energy may be neglected,

so that during the time of measurement the Hamiltonian shall consist only

of an interaction, which we shall take to be:

(3.1) HI = - in q a~.

Then it is easily verified that the state r/t~+A(q,r):

(3.2)

is a solution of the SchrOdinger equation

(3.3)

for the specified initial conditions at time t = O.

Translating (3.2) into square amplitudes we get:

(3.4)

where

and

Pt(q,r) = PI (q)P2(r-qt) ,

P1(q) = ep*(q)ep(q), P2(r) = "1*(r)"1(r) ,

."s+A *( ",s+APt(q,r) = 'l't q,r)'I't (q,r) ,

14 yon Neumann (I71. p. 442.
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IQR(t) = Jf Pt(q,r) In Pt(q,r) dqdr

= Jf PI (q)P2(r-qt) In PI(q)P2(r-qt) dqdr

(3.5)

and we note that for a fixed time, t, the conditional square amplitude

distribution for r has been translated by an amount depending upon the

value of q, while the marginal distribution for q has been unaltered.

We see thus that a correlation has been introduced between q and r by

this interaction, which allows us to interpret it as a measurement. It is

instructive to see quantitatively how fast this correlation takes place. We

note that:

so that the information of the joint distribution does not change. Further-

more, since the marginal distribution for q is unchanged:

(3.6)

and the only quantity which can change is the marginal information, JR,

of r, whose distribution is:

Application of a special inequality (proved in 95, Appendix I) to (3.7)

yields the relation:

(3.8)

so that, except for the additive constant JQ(O), the marginal information

JR tends to decrease at least as fast as In t with time during the inter-

action. This implies the relation for the correlation:
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But at t = 0 the distributions for Rand Q were independent, so that

IRQ(O)= IR(O)+ IQ(O). Substitution of this relation, (3.5), and (3.6) into

(3.9) then yields the final result:

(3.10)

Therefore the correlation is built up at least as fast as In t, except for

an additive constant representing the difference of the information of the

initial distributions P2(r) and P1(q). Since the correlation goes to in-

finity with increasing time, and the marginal system distribution is not

changed, the interaction (3.1) satisfies our definition of a measurement of

q by r.

Even though the apparatus does not indicate any definite system value

(since there are no independent system or apparatus states), one can

nevertheless look upon the total wave function (3.2) as a superposition of

pairs of subsystem states, each element of which has a definite q value

and a correspondingly displaced apparatus state. 1 5 Thus we can write

(3.2) as:

(3.11) ifJrA = J !/>(q')8(q-q') 71(r-q't) dq' ,

which is a superposition of states ifJq' = 8(q-q') 7J{r-q't). Each of these

elements, ifJq', of the superposition describes a state in which the sys-

tem has the definite value q = q', and in which the apparatus has a state

that is displaced from its original state by the amount q't. These ele-

ments ifJq' are then superposed with coefficients !/>(q') to form the total

state (3.11).

15 See discussion of relative states, p. 38.
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Conversely, if we transform to the representation where the apparatus

is definite, we write (3.2) as:

(3.12)

where

and

tfrr-A = J (l/Nr,)(rCq)8(r-r')dr' ,

(r'(q) = Nr, if>(q)7l(r'-qt)

(1/Nr,)2 = J if>*(q) if>(q)71*(r'-qt) 71(r-qt) dq

Then the (r'(q) are the relative system state functions for the apparatus

states 8(r-r') of definite value r = r'.

We notice that these relative system states, eCq), are nearly eigen-

states for the values q = r'lt, if the degree of correlation between q and

r is sufficiently high, i.e., if t is sufficiently large, or 71(r) sufficiently

sharp (near 8(r)) then (r'(q) is nearly 8(q-r'/t).
This property, that the relative system states become approximate

eigenstates of the measurement, is in fact common to all measurements.

If we adopt as a measure of the nearness of a state tfr to being an eigen-

function of an operator A the information IA(tfr), which is reasonable

because IA(tfr) measures the sharpness of the distribution of A for r/J,
then it is a consequence of our definition of a measurement that the rela-

tive system states tend to become eigenstates as the interaction proceeds.

Since Exp[IQ] = IQ + {Q,RI, and IQ remains constant while {Q,RI

tends toward its maximum (or infinity) during the interaction, we have that

Exp [Ib] tends to a maximum (or infinity). But Ib is just the information

in the relative system states, which we have adopted as a measure of the

nearness to an eigenstate. Therefore, at least in expectation, the relative

system states approach eigenstates.

We have seen that (3.12) is a superposition of states tfrr', for each

of which the apparatus has recorded a definite value r', and the system

is left in approximately the eigenstate of the measurement corresponding

to q = r'/t. The discontinuous "jump" into an eigenstate is thus only a
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relative proposition, dependent upon our decomposition of the total wave

function into the superposition, and relative to a particularly chosen appa-

ratus value. So far as the complete theory is concerned all elements of

the superposition exist simultaneously, and the entire process is quite

continuous.

We have here only a special case of the following general principle

which will hold for any situation which is treated entirely wave mechani-

cally:

PRINCIPLE. For any situation in which the existence of a property Ri
for a subsystem Sl of a composite system S will imply the later property

Q~ for S, then it is also true that an initial state for Sl of the form

t/J 1 = ~ ai t/Jr~i] which is a superposition of states with the properties

Ri, will result in a later state for S of the form t/JS= ~ ait/JrQ.],
i 1

which is also a superposition, of states with the property Qi' That is,

for any arrangement of an interaction between two systems Sl and S2'

which has the property that each initial state f,bfl t/JS2 will result in a

final situation with total state t/Jfl +S2, an initial state of Sl of the

form ~ ai f,b~l will lead, after interaction, to the superposition

~ ai :,.Sit+S2~ 'I' for the whole system.

This follows immediately from the superposition principle for solutions

of a linear wave equation. It therefore holds for any system of quantum

mechanics for which the superposition principle holds, both particle and

field theories, relativistic or not, and is applicable to all physical sys-

tems, regardless of size.

This principle has the far reaching implication that for any possible

measurement, for which the initial system state is not an eigenstate, the

resulting state of the composite system leads to no definite system state

nor any definite apparatus state. The system will not be put into one or

another of its eigenstates with the apparatus indicating the corresponding

value, and nothing resembling Process 1 can take place.
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S.f,A
cPi'l'O -+

for the

To see that this is indeed the case, suppose that we have a measur-

ing arrangement with the following properties. The initial apparatus state

is I/J~. If the system is initially in an eigenstate of the measurement,

ep~, then after a specified time of interaction the total state ep~l/J~ will

be transformed into a state ep~I/J~, Le., the system eigenstate shall not

be disturbed, and the apparatus state is changed to I/J~, which is differ-

ent for each cP~. (I/J~ may for example be a state describing the appara-

tus as indicating, by the position of a meter needle, the eigenvalue of cP~.)
However, if the initial system state is not an eigenstate but a superposi-

tion ~ ai cP~, then the final composite system state is also a superposi-
i

tion, ~ ai cP~I/J~. This follows from the superposition principle since
i

all we need do is superpose our solutions for the eigenstates,

cP~I/J~, to arrive at the solution, ~ ai cP~I/J~ -+ ~ ai cP~I/J~,
i i

general case. Thus in general after a measurement has been performed

there will be no definite system state nor any definite apparatus state,

even though there is a correlation. It seems as though nothing can ever

be settled by such a measurement. Furthermore this result is independent

of the size of the apparatus, and remains true for apparatus of quite mac-

roscopic dimensions.

Suppose, for example, that we coupled a spin measuring device to a

cannonball, so that if the spin is up the cannonball will be shifted one

foot to the left, while if the spin is down it will be shifted an equal dis-

tance to the right. If we now perform a measurement with this arrangement

upon a particle whose spin is a superposition of up and down, then the

resulting total state will also be a superposition of two states, one in

which the cannonball is to the left, and one in which it is to the right.

There is no definite position for our macroscopic cannonball!

This behavior seems to be quite at variance with our observations,

since macroscopic objects always appear to us to have definite positions.

Can we reconcile this prediction of the purely wave mechanical theory
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with experience, or must we abandon it as untenable? In order to answer

this question we must consider the problem of observation itself within

the framework of the theory.



IV. OBSERVATION

We shall now give an abstract treatment of the problem of observation.

In keeping with the spirit of our investigation of the consequences of pure

wave mechanics we have no alternative but to introduce observers, con-

sidered as purely physical systems, into the theory.

We saw in the last chapter that in general a measurement (coupling of

system and apparatus) had the outcome that neither the system nor the

apparatus had any definite state after the interaction - a result seemingly

at variance with our experience. However, we do not do justice to the

theory of pure wave mechanics until we have investigated what the theory

itself says about the appearance of phenomena to observers, rather than

hastily concluding that the theory must be incorrect because the actual

states of systems as given by the theory seem to contradict our observa-

tions.

We shall see that the introduction of observers can be accomplished

in a reasonable manner, and that the theory then predicts that the appear-

ance of phenomena, as the subjective experience of these observers, is

precisely in accordance with the predictions of the usual probabilistic

interpretation of quantum mechanics.

sl. Formulation of the problem

We are faced with the task of making deductions about the appearance

of phenomena on a subjective level, to observers which are considered as

purely physical systems and are treated within the theory. In order to

accomplish this it is necessary to identify some objective properties of

such an observer (states) with subjective knowledge (i.e., perceptions).

Thus, in order to say that an observer 0 has observed the event a, it

63
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is necessary that the state of 0 has become changed from its former

state to a new state which is dependent upon a.

It will suffice for our purposes to consider our observers to possess

memories (i.e., parts of a relatively permanent nature whose states are in

correspondence with the past experience of the observer). In order to

make deductions about the subjective experience of an observer it is suf-

ficient to examine the contents of the memory.

As models for observers we can, if we wish, consider automatically

functioning machines, possessing sensory apparata and coupled to re-

cording devices capable of registering past sensory data and machine

configurations. We can further suppose that the machine is so constructed

that its present actions shall be determined not only by its present sen-

sory data, but by the contents of its memory as well. Such a machine will

then be capable of performing a sequence of observations (measurements),

and furthermore of deciding upon its future experiments on the basis of

past results. We note that if we consider that current sensory data, as

well as machine configuration, is immediately recorded in the memory,

then the actions of the machine at a given instant can be regarded as a

function of the memory contents only, and all relevant experience of the

machine is contained in the memory.

For such machines we are justified in using such phrases as "the

machine has perceived A" or "the machine is aware of A" if the occur-

rence of A is represented in the memory, since the future behavior of

the machine will be based upon the occurrence of A. In fact, all of the

customary language of subjective experience is quite applicable to such

machines, and forms the most natural and useful mode of expression when

dealing with their behavior, as is well known to individuals who work

with complex automata.

When dealing quantum mechanically with a system representing an ob-

server we shall ascribe a state function, t/JO, to it. When the State t/JO
describes an observer whose memory contains representations of the
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events A,B, ... ,C we shall denote this fact by appending the memory se-

quence in brackets as a subscript, writing:

1/10
[A,B, ... ,C]

The symbols A,B, ... ,C, which we shall assume to be ordered time wise,

shall therefore stand for memory configurations which are in correspond-

ence with the past experience of the observer. These configurations can

be thought of as punches in a paper tape, impressions on a magnetic reel,

configurations of a relay switching circuit, or even configurations of brain

cells. Weonly require that they be capable of the interpretation "The

observer has experienced the succession of events A,B, ... ,C." (We shall

sometimes write dots in a memory sequence, [. .. A,B, ... ,C], to indicate

the possible presence of previous memories which are irrelevant to the

case being considered.)

Our problem is, then, to treat the interaction of such observer-systems

with other physical systems (observations), within the framework of wave

mechanics, and to deduce the resulting memory configurations, which we

can then interpret as the subjective experiences of the observers.

We begin by defining what shall constitute a "good" observation. A

good observation of a quantity A, with eigenfunctions l<Pil for a system

S, by an observer whose initial state is I/IE.J' shall consist of an inter-

action which, in a specified period of time, transforms each (total) state

into a new state

where ai characterizes the state <Pi' (It might stand for a recording of

the eigenvalue, for example.) That is, our requirement is that the system

state, if it is an eigenstate, shall be unchanged, and that the observer
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state shall change so as to describe an observer that is "aware" of which

eigenfunction it is, i.e., some property is recorded in the memory of the

observer which characterizes epi' such as the eigenvalue. The require-

ment that the eigenstates for the system be unchanged is necessary if the

observation is to be significant (repeatable), and the requirement that the

observer state change in a manner which is different for each eigenfunc-

tion is necessary if we are to be able to call the interaction an observa-

tion at all.

92. Deductions

From these requirements we shall first deduce the result of an obser-

vation upon a system which is not in an eigenstate of the observation. We

know, by our previous remark upon what constitutes a good observation

that the interaction transforms states epi 1/f0[ ] into states epiI/f?[ .] .
••• 1 ••• ,a1

Consequently we can simply superpose these solutions of the wave equa-

tion to arrive at the final state for the case of an arbitrary initial system

state. Thus if the initial system state is not an eigenstate, but a general

state l ai epi' we get for the final total state:
i

(2.1)

This remains true also in the presence of further systems which do

not interact for the time of measurement. Thus, if systems SI,S2"",Sn

are present as well as 0, with original states I/fSl,I/fS2, ... ,I/fSn, and

the only interaction during the time of measurement is between 51 and

0, the result of the measurement will be the transformation of the initial

total state:

into the final state:

(2.2)
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I Sl Sl) Slwhere ai = \c/>i ,r/J and c/>i are eigenfunctions of the observation.

Thus we arrive at the general role for the transformation of total state

functions which describe systems within which observation processes

occur:

Rule 1. The observation of a quantity A, with eigenfunctions c/>~l, in

a system Sl by the observer 0, transforms the total state according to:

where

If we next consider a second observation to be made, where our total

state is now a superposition, we can apply Rule 1 separately to each ele-

ment of the superposition, since each element separately obeys the wave

equation and behaves independently of the remaining elements, and then

superpose the results to obtain the final solution. We formulate this as:

Rule 2. Rule 1 may be applied separately to each element of a superposi-

tion of total system states, the results being superposed to obtain the

final total state. Thus, a determination of B, with eigenfunctions 71~2.

on S2 by the observer 0 transforms the total state

into the state

~
Sl S2 S3 Sn 0

aib).c/>i 71)' r/J ... r/J r/J.. [ t:l .]
• • 1) ••• ,ai' f-')
103

where bj = (71~2,r/JS2), which follows from the application of Rule 1 to

Sl S2 Sn 0each element c/>i r/J ... r/J r/J.[ .], and then superposing the results
1 ••• ,a1

with the coefficients ai'
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These two roles, which follow directly from the superposition princi-

ple, give us a convenient method for determining final total states for any

number of observation processes in any combinations. We must now seek

the interpretation of such final total states.

Let us consider the simple case of a single observation of a quantity

A, with eigenfunctions ifJi, in the system S with initial state t/J"S, by

an observer 0 whose initial state is t/J"E .. r The final result is, as we

have seen, the superposition:

(2.3)

We note that there is no longer any independent system state or observer

state, although the two have become correlated in a one-one manner. How-

ever, in each element of the superposition (2.3), ifJi t/J"?[ ]' the object-
1 •••,ai

system state is a particular eigenstate of the observer, and furthermore

the observer-system state describes the observer as definitely perceiving

that particular system state.1 It is this correlation which allows one to

maintain the interpretation that a measurement has been performed.

We now carry the discussion a step further and allow the observer-

system to repeat the observation. Then according to Rule 2 we arrive at

the total state after the second observation:

I At this point we encounter a language difficulty. Whereas before the observa-
tion we had a single observer state afterwards there were a number of different
states for the observer, all occurring in a superposition. Each of these separate
states is a state for an observer, so that we can speak of the different observers
described by the different states. On the other hand, the same physical system
is involved, and from this viewpoint it is the same observer, which is in different
states for different elements of the superpl'"sition (i.e., has had different experi-
ences in the separate elements of the superposition). In this situation we shall
use the singular when we wish to emphasize that a single physical system is in-
volved, and the plural when we wish to emphasize the different experiences for
the separate elements of the superposition. (e.g., "The observer performs an ob-
servation of the quantity A, after which each of the observers of the resulting
superposition has perceived an eigenvalue.")
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Again, we see that each element of (2.4), epi !/fC?[ ]' describes a sys-
11 ••• ,ai,ai

tem eigenstate, but this time also describes the observer as having ob-

obtained the same result for each of the two observations. Thus for every

separate state of the observer in the final superposition, the result of the

observation was repeatable, even though different for different states.

This repeatability is, of course, a consequence of the fact that after an

observation the relative system state for a particular observer state is

the corresponding eigenstate.

Let us suppose now that an observer-system 0, with initial state

!/f[0 ]' measures the same quantity A in a number of separate identical
... Sl S2 S

systems which are initially in the same state,!/f = !/f = ... =!/f n =

l ai epi (where the epi are, as usual, eigenfunctions of A). The initial
i

total state function is then

(2.3)

We shall assume that the measurements are performed on the systems in

the order Sl'S2, ... ,Sn' Then the total state after the first measurement

will be, by Rule 1,

(2.4)

(where af refers to the first system, Si)

After the second measurement it will be, by Rule 2,

(2.5)
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and in general, after r measurements have taken place (r;£ n) Rule 2

gives the result:

We can give this state, t/Jr' the following interpretation. It consists

of a superposition of states:

(2 7) .1.' .I..SI S2 Sr Sr+l Sn 0
, 'I' iJ'... k = 'f"i rPJ' ... rPk t/J ... t/J t/Jl'J' k[ ~ 2 r]... ...,al ,aj ,... ,ak

each of which describes the observer with a definite memory sequence

[.. :,a! ,aj ,... ,ak], and relative to whom the (observed system states are

the corresponding eigenfunctions rP~1,rPf2,... , rP~r, the remaining sys-

tems, Sr+l' ",Sn' being unaltered.

In the language of subjective experience, the observer which is de-

scribed by a typical element, t/Jij... k' of the superposition has perceived

an apparently random sequence of definite results for the observations. It

is furthermore true, since in each element the system has been left in an

eigenstate of the measurement, that if at this stage a redetermination of

an earlier system observation (Se) takes place, every element of the re-

sulting final superposition will describe the observer with a memory con-

figuration of the form [... ,af ,... ,~, ... ,ak'~] in which the earlier memory

coincides with the later - Le., the memory states are correlated. It will

thus appear to the observer which is described by a typical element of the

superposition that each initial observation on a system caused the system

to "jump" into an eigenstate in a random fashion and thereafter remain

there for subsequent measurements on the same system. Therefore, quali-

tatively, at least, the probabilistic assertions of Process 1 appear to be

valid to the observer described by a typical element of the final super-

position.

In order to establish quantitative results, we must put some sort of

measure (weighting) on the elements of a final superposition. This is
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necessary to be able to make assertions which will hold for almost all of

the observers described by elements of a superposition. In order to make

quantitative statements about the relative frequencies of the different

possible results of observation which are recorded in the memory of a

typical observer we must have a method of selecting a typical observer.

Let us therefore consider the search for a general scheme for assign-

ing a measure to the elements of a superposition of orthogonal states

2ai cPi. We require then a positive function ~ of the complex coeffi-

cients of the elements of the superposition, so that ~(ai) shall be the

measure assigned to the element cPi' In order that this general scheme

shall be unambiguous we must first require that the states themselves

always be normalized, so that we can distinguish the coefficients from

the states. However, we can still only determine the coefficients, in dis-

tinction to the states, up to an arbitrary phase factor, and hence the func-

tion ~ must be a function of the amplitudes of the coefficients alone,

(i.e., ~(ai) = ~(Varai»' in order to avoid ambiguities.

If we now impose the additivity requirement that if we regard a subset
n

of the superposition, say 2 ai cPi' as a single element a cP':
i=l

(2.8)
n

a cP' = 2 ai cPi '
i=l

then the measure assigned to cP' shall be the sum of the measures

assigned to the cPi (i from 1 to n):

(2.9) ~(a) = 2 ~(ai) ,
i

then we have already restricted the choice of ~ to the square amplitude

alone. <'R(ai) = arai)' apart from a multiplicative constant.)

To see this we note that the normality of cP' requires that la I =

jJ" aiai. From 00' <em",ks upoo the dependeoce of lJl upoo the ampli-

tude alone, we replace the ai by their amplitudes Ili = lail.
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(2.9) then requires that
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Defining a new function g(x):

(2.11) g(x) =: '1R( {X) ,

we see that (2.10) requires that

(2.12)

so that g is restricted to be linear and necessarily has the form:

(2.13) g(x) =: ex (c constant) .

Therefore g(x2) =: cx2
=: '1RN = '1R(x) and we have deduced that '1R is re-

stricted to the form

(2.14)

and we have shown that the only choice of measure consistent with our

additivity requirement is the square amplitude measure, apart from an arbi-

trary multiplicative constant which may be fixed, if desired, by normaliza-

tion requirements. (The requirement that the total measure be unity implies

that this constant is 1.)

The situation here is fully analogous to that of classical statistical

mechanics, where one puts a measure on trajectories of systems in the

phase space by placing a measure on the phase space itself, and then

making assertions which hold for "almost all" trajectories (such as

ergodicity, quasi-ergodicity, etc).2 This notion of Ualmost all" depends

here also upon the choice of measure, which is in this case taken to be

Lebesgue measure on the phase space. One could, of course, contradict

2 See Khinchin [16].
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the statements of classi<;:al statistical mechanics by choosing a measure

for which only the exceptional trajectories had nonzero measure. Never-

theless the choice of Lebesgue measure on the phase space can be justi-

fied by the fact that it is the only choice for which the "conservation of

probability" holds, (Liouville's theorem) and hence the only choice which

makes possible any reasonable statistical deductions at all.

In our case, we wish to make statements about "trajectories" of ob-

servers. However, for us a trajectory is constantly branching (transform-

ing from state to superposition) with each successive measurement. To

have a requirement analogous to the "conservation of probability" in the

classical case, we demand that the measure assigned to a trajectory at

one time shall equal the sum of the measures of its separate branches at

a later time. This is precisely the additivity requirement which we im-

posed and which leads uniquely to the choice of square-amplitude measure.

Our procedure is therefore quite as justified as that of classical statisti-

cal mechanics.

Having deduced that there is a unique measure which will satisfy our

requirements, the square-amplitude measure. we continue our deduction.

This measure then assigns to the i.j ..... kth element of the superposition

(2.6),
(2.15)

the measure (weight)

(2.16) M.. k:; (a.a .... ak)* (a.a .... ak) •lJ... 1 J 1 J

so that the observer state with memory configuration [. ... a~ ,af ..... ak) is

assigned the measure aiaiajaj ... akak = Mij... k. We see immediately that

this is a product measure. namely

(2.17)

where

M.. k = M.M.... Mk 'lJ... 1 J
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so that the measure assigned to a particular memory sequence

[ ... ,af ,af ,... ,ak] is simply the product of the measures for the individual

components of the memory sequence.

Wenotice now a direct correspondence of our measure structure to the

probability theory of random sequences. Namely, if we were to regard the

Mij... k as probabilities for the sequences L..,al,af ,... ,ap, then the se-

quences are equivalent to the random sequences which are generated by

ascribing to each term the independent probabilities Me = alae. Now the

probability theory is equivalent to measure theory mathematically, so that

we can make use of it, while keeping in mind that all results should be

translated back to measure theoretic language.

Thus, in particular, if we consider the sequences to become longer

and longer (more and more observations performed) each memory sequence

of the final superposition will satisfy any given criterion for a randomly

generated sequence, generated by the independent probabilities aiai' ex-

cept for a set of total measure which tends toward zero as the number of

observations becomes unlimited. Hence all averages of functions over

any memory sequence, including the special case of frequencies, can be

computed from the probabilities aiai' except for a set of memory sequen-

ces of measure zero. We have therefore shown that the statistical asser-

tions of Process 1 will appear to be valid to almost all observers de-

scrlbed by separate elements of the superposition (2.6), in the limit as

the number of observations goes to infinity.

While we have so far considered only sequences of observations of

the same quantity upon identical systems, the result is equally true for

arbitrary sequences of observations. For example, the sequence of obser-

vations of the quantities AI, A2, ... , An, ... with (generally different)

eigenfunction sets lef>f \, lef>jl, ... , 1ef>&I,... applied successively to the

systems 51' 52 ,oo., 5n, ... , with (arbitrary) initial states r/J51, r/J52, ••• , r/J5n,

.,. transforms the total initial state:

(2.18)
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by rules 1 and 2, into the final state:
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(2.19)
i,j, .••,k

where the memory sequence element ae characterizes the eth eigen-

function, !/>e of the operator Ar. Again the square amplitude measure

for each element of the superposition (2.19) reduces to the product mea-

sure of the individual memory element measures, I(!/>e' rfr Sr)1
2

for the

memory sequence element ae. Therefore, the memory sequence of a typi-
cal element of (2.19) has all the characteristics of a random sequence,

with individual, independent (and now different), probabilities \(!/>e' rfrSr)1
2

for the rth memory state.

Fjnally, we can generalize to the case where several observations are

allowed to be performed upon the same system. For example, if we permit

the observation of a new quantity B, (eigenfunctions 71m, memory char-

acterization f3i) upon the system Sr for which Ar has already been

observed, then the state (2.19):

(2.20)

is transformed by Rule 2 into the state:

,,1,.1 "I,.r-l r ,,1,.1+1 "I,.n .,.0
'fIi •.. 'fI1l ••• 71m."'fI1I ... 'fIk... 'f'[ 1 r n f3r ] .- ... ,ai ,... ,af, ... ,ak'.'.' ..1!!.•••
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The relative system states for S have been changed from the eigenstates

of Ar,l4>il, to the eigenstates of Br,I7J~1. We notice further that, with

respect to our measure on the superposition, the memory sequences still

have the character of random sequences, but of random sequences for

which the individual terms are no longer independent. The memory states

~~ now depend upon the memory states ae which represent the result of

the previous measurement upon the same system, Sr. The joint (normal-

ized) measure for this pair of memory states, conditioned by fixed values

for remaining memory states is:

(2.22)

The joint measure (2.15) is, first of all, independent of the memory

states for the remaining systems (SI ... Sn excluding Sr). Second, the

dependence of ~~ on ae is equivalent, measure theoretically, to that

given by the stochastic process3 which converts the states 4>e into the

states 7J~ with transition probabilities:

(2.23)

3 Cf. Chapter II, 96.
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If we were to allow yet another quantity C to be measured in Sr' the

new memory states a~ corresponding to the eigenfunctions of C would

have a similar dependence upon the previous states {3~, but no direct

dependence on the still earlier states aC. This dependence upon only the

previous result of observation is a consequence of the fact that the rela-

tive system states are completely determined by the last observation.

We can therefore summarize the situation for an arbitrary sequence of

observations, upon the same or different systems in any order, and for

which the number of observations of each quantity in each system is very

large, with the following result:

Except for a set of memory sequences of measure nearly zero, the

averages of any functions over a memory sequence can be calculated

approximately by the use of the independent probabilities given by Process

1 for each initial observation, on a system, and by the use of the transi-

tion probabilities (2.23) for succeeding observations upon the same system.

In the limit, as the number of all types of observations goes to infinity the

calculation is exact, and the exceptional set bas measure zero.

This prescription for the calculation of averages over memory sequen-

ces by probabilities assigned to individual elements is precisely that of

the orthodox theory (Process 1). Therefore all predictions of the usual

theory will appear to be valid to the observer in almost all observer states,

since these predictions hold for almost all memory sequences.

In particular, the uncertainty principle is never violated, since, as

above, the latest measurement upon a system supplies all possible infor-

mation about the relative system state, so that there is no direct correla-

tion between any earlier results of observation on the system, and the

succeeding observation. Any observation of a quantity B, between two

successive observations of quantity A (all on the same system) will

destroy the one-one correspondence between the earlier and later memory

states for the result of A. Thus for alternating observations of different

quantities there are fundamental limitations upon the correlations between

memory states for the same observed quantity, these limitations expressing

the content of the uncertainty principle.
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In conclusion, we have described in this section processes involving

an idealized observer, processes which are entirely deterministic and con-

tinuous from the over-all viewpoint (the total state function is presumed

to satisfy a wave equation at all times) but whose result is a superposi-

tion, each element of which describes the observer with a different memory

state. Wehave seen that in almost all of these observer states it appears

to the observer that the probabilistic aspects of the usual form of quantum

theory are valid. We have thus seen how pure wave mechanics, without

any initial probability assertions, can lead to these notions on a subjec-

tive level, as appearances to observers.

93. Several observers

We shall now consider the consequences of our scheme when several

observers are allowed to interact with the same systems, as well as with

one another (communication). In the following discussion observers shall

be denoted by 01'02'"'' other systems by 51,52,,,,, and observables

by operators A, B, C, with eigenfunctions l<Pil, l'I7jl, {~\Irespectively.

The symbols ai' f3j, Yk' occurring in memory sequences shall refer to

characteristics of the states <Pi' 'l7j' e-k, respectively. (r/fC:[ ] is inter-
t •••,ai

preted as describing an observer, OJ' who has just observed the eigen-

value corresponding to <Pi' i.e., who is "aware" that the system is in

state <Pi')
We shall also wish to allow communication among the observers, which

we view as an interaction by means of which the memory sequences of

different observers become correlated. (For example, the transfer of im-

pulses from the magnetic tape memory of one mechanical observer to that
of another constitutes such a transfer of information.)4 We shall regard

these processes as observations made by one observer on another and

shall use the notation that

4 Weassume that such transfers Illerely duplicate, but do not destroy, the origi-
nal information.
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represents a state function describing an observer OJ who has obtained

the information ai from another observer, Ok' Thus the obtaining of in-

formation about A from 01 by 02 will transform the state

into the state

(3.1)

Rules 1 and 2 are, of course, equally applicable to these interactions. We

shall now illustrate the possibilities for several observers, by considering

several cases.

Case 1: We allow two observers to separately observe the same quantity

in a system, and then compare results.

We suppose that first observer 01 observes the quantity A for the

system S. Then by Rule 1 the original state

is transformed into the state

(3.2)

We now suppose that 02 observes A, and by Rule 2 the state be-

comes:

(3.3)
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We now allow 02 to "consult" °1, which leads in the same fashion

from (3.1) and Rule 2 to the final state

(3.4)

Thus, for every element of the superposition the information obtained

from 01 agrees with that obtained directly from the system. This means

that observers who have separately observed the same quantity will always

agree with each other.

Furthermore, it is obvious at this point that the same result, (4.4), is

obtained if 02 first consults °1, then performs the direct observation,

°except that the memory sequence for 02 is reversed ([... ,ai 1,ail instead

°of [. .. ,a i,a i 1n. There is still perfect agreement in every element of the

superposition. Therefore, information obtained from another observer is

always reliable, since subsequent direct observation will always verify it.
We thus see the central role played by correlations in wave functions for

the preservation of consistency in situations where several observers are

allowed to consult one another. It is the transitivity of correlation in

these cases (that if 51 is correlated to 52' and 52 to 53' then so is

51 to 52) which is responsible for this consistency.

Case 2: We allow two observers to measure separately two different, non-

commuting quantities in the same system.

Assume that first 01 observes A for the system, so that, as before,

the initial state l/J5l/J01 l/J02 is transformed to:

(3.5)

Next let 02 determine {3 for the system, where l"7jl are the eigen-

functions of {3. Then by application of Rule 2 the result is



(3.6)
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02 is now perfectly correlated with the system, since a redetermination

by him will lead to agreeing results. This is no longer the case for °1,

however, since a redetermination of A by him will result in (by Rule 2)

Hence the second measurement of 01 does not in all cases agree

with the first, and has been upset by the intervention of 02'

We can deduce the statIstical relation between 01 's first and second

results (ai and ak) by our previous method of assigning a measure to

the elements of the superposition (3.7). The"measure assigned to the

(i, j, k)th element is then:

(3.8)

This measure is equivalent, in this case, to the probabilities assigned by

the orthodox theory (Process 1), where 02 's observation is regarded as

having converted each state cPi into a non-interfering mixture of states

71j' weighted with probabilities I(71j'cPi)!2, upon which 01 makes his

second observation.

Note, however, that this equivalence with the statistical results ob-

tained by consider~ng that 02 's observation changed the system state

into a mixture, holds true only so long as 01 's second observation is

restricted to the system. If he were to attempt to simultaneously deter-

mine a property of the system as well as of 02' interference effects

might become important. The description of the states relative to °1,

after 02 's observation, as non-interfering mixtures is therefore incom-

plete.
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Case 3: We suppose that two systems 51 and 52 are correlated but no

longer interacting, and that 01 measures property A in 51' and 02
property f3 in 52.

We wish to see whether 02 's intervention with 52 can in any way

affect 01's results in 51' so that perhaps signals might be sent by

these means. We shall assume that the initial state for the system pair is

(3.9)

We now allow 01 to observe A in 51' so that after this observa-

tion the total state becomes:

(3.10)

01 can of course continue to repeat the determination, obtaining the

same result each time.

We now suppose that 02 determines f3 in 52' which results in

(3.11) 2 2 2 1 2 °1 °2ifJ"= a{'l.,ep.)ep.TJ.ifJ.[ ]ifJ.[ f3].
.. 1 J 1 1 J 1 •••,ai J ••• , j
1,J

However, in this case, as distinct from Case 2, we see that the inter-

vention of 02 in no way affects 01 's determinations, since 01 is

still perfectly correlated to the states ep~1 of 51' and any further obser-

vations by 01 will lead to the same results as the earlier observations.

Thus each memory sequence for 01 continues without change due to

02 's observation, and such a scheme could not be used to send any

signals.

Furthermore, we see that the result (3.11) is arrived at even in the

case that 02 should make his determination before that of °1, There-

fore any expectations for the outcome of 01 's first observation are in no

way affected by whether or not 02 performs his observation before that
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of °1, This is true because the expectation of the outcome for 01 can

be computed from (4.10), which is the same whether or not 02 performs

his measurement before or after °1,

It is therefore seen that one observer's observation upon one system

of a correlated, but non-interacting pair of systems, has no effect on the

remote system, in the sense that the outcome or expected outcome of any

experiments by another observer on the remote system are not affected.

Paradoxes like that of Einstein-Rosen-PodolskyS which are concerned

with such correlated, non-interacting, systems are thus easily understood

in the present scheme.

Many further combinations of several observers and systems can be

easily studied in the present framework, and all questions answered by

first writing down the final state for the situation with the aid of the

Rules 1 and 2, and then noticing the relations between the elements of

the memory sequences.

5 Einstein [8].





V. SUPPLEMENTARY TOPICS

We have now completed the abstract treatment of measurement and

observation, with the deduction that the statistical predictions of the

usual form of quantum theory (Process 1) will appear to be valid to all

observers. We have therefore succeeded in placing our theory in corre-

spondence with experience, at least insofar as the ordinary theory cor-

rectly represents experience.

We should like to emphasize that this deduction was carried out by

using only the principle of superposition, and the postulate that an obser-

vation has the property that if the observed variable has a definite value

in the object-system then it will remain definite and the observer will per-

ceive this value. This treatment is therefore valid for any possible quan-

tum interpretation of observation processes, i.e., any way in which one

can interpret wave functions as describing observers, as well as for any

form of quantum mechanics for which the superposition principle for states

is maintained. Our abstract discussion of observation is therefore logi-

cally complete, in the sense that our results for the subjective experience

of observers are correct, if there are any observers at all describable by

wave mechanics. 1

In this chapter we shall consider a number of diverse topics from the

point of view of our pure wave mechanics, in order to supplement the ab-

stract discussion and give a feeling for the new viewpoint. Since we are

now mainly interested in elucidating the reasonableness of the theory, we

shall often restrict ourselves to plausibility arguments, rather than de-

tailed proofs.

1 They are, of course, vacuously correct otherwise.

85
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91. Macroscopic objects and classical mechanics
In the light of our knowledge about the atomic constitution of matter,

any "object" of macroscopic size is composed of an enormous number of

constituent particles. The wave function for such an object is then in a

space of fantastically high dimension (3N, if N is the number of parti-

cles). Our present problem is to understand the existence of macroscopic

objects, and to relate their ordinary (classical) behavior in the three di-

mensional world to the underlying wave mechanics in the higher dimension-

al space.

Let us begin by considering a relatively simple case. Suppose that

we place in a box an electron and a proton, each in a definite momentum

state, so that the position amplitude density of each is uniform over the

whole box. After a time we would expect a hydrogen atom in the ground

state to form, with ensuing radiation. We notice, however, that the posi-

tion amplitude density of each particle is still uniform over the whole box.

Nevertheless the amplitude distributions are now no longer independent,

but correlated. In particular, the conditional amplitude density for the

electron, conditioned by any definite proton (or centroid) position, is not
uniform, but is given by the familiar ground state wave function for the

hydrogen atom. What we mean by the statement, "a hydrogen atom has

formed in the box," is just that this correlation has taken place - a corre-

lation which insures that the relative configuration for the electron, for a

definite proton position, conforms to the customary ground state configura-

tion.
The wave function for the hydrogen atom can be represented as a

product of a centroid wave function and a wave function over relative

coordinates, where the centroid wave function obeys the wave equation

for a particle with mass equal to the total mass of the proton-electron sys-

tem. Therefore, if we now open our box, the centroid wave function will

spread with time in the usual manner of wave packets, to eventually occu-

py a vast region of space. The relative configuration (described by the

relative coordinate state function) has, however, a permanent nature, since
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it represents a bound state, and it is this relative configuration which we

usually think of as the object called the hydrogen atom. Therefore, no

matter how indefinite the positions of the individual particles become in

the total state function (due to the spreading of the centroid), this state

can be regarded as giving (through the centroid wave function) an ampli-

tude distribution over a comparatively definite object, the tightly bound

electron-proton system. The general state, then, does not describe any

single such definite object, but a superposition of such cases with the

object located at different positions.

In a similar fashion larger and more complex objects can be built up

through strong correlations which bind together the constituent particles.

It is still true that the general state function for such a system may lead

to marginal position densities for any single particle (or centroid) which

extend over large regions of space. Nevertheless we can speak of the

existence of a relatively definite object, since the specification of a

single position for a particle, or the centroid, leads to the case where the

relative position densities of the remaining particles are distributed

closely about the specified one, in a manner forming the comparatively

definite object spoken of.

Suppose, for example, we begin with a cannonball located at the origin,

described by a state function:

where the subscript indicates that the total state function t/J describes a

system of particles bound together so as to {arm an object of the size and

shape of a cannonball, whose centroid is located (approximately) at the

origin, say in the form of a real gaussian wave packet of small dimensions,

with variance ~ for each dimension.

H we now allow a long lapse of time, the centroid of the system will

spread in the usual manner to occupy a large region of space. (The spread

in each dimension after time t will be given by 0; = o~ + (h2t2 /4 0~m2),
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0/ = J axyz 0/[ ( )]dxdydz ,Cj x,y,z

where m is the mass.) Nevertheless, for any specified centroid position,

the particles, since they remain in bound states, have distributions which

again correspond to the fairly well defined size and shape of the cannon-

ball. Thus the total state can be regarded as a (continuous) superposition

of states

each of which (0/[ ( )]) describes a cannonball at the position
Cj x,y,z

(x, y, z). The coefficients axyz of the superposition then correspond to

the centroid distribution.

It is not true that each individual particle spreads independently of

the rest, in which case we would have a final state which is a grand super-

position of states in which the particles are located independently every-

where. The fact that they are in bound states restricts our final state to

a superposition of "cannonball" states. The wave function for the cen-

troid can therefore be taken as a representative wave function for the

whole object.

It is thus in this sense of correlations between constituent particles

that definite macroscopic objects can exist within the framework of pure

wave mechanics. The building up of correlations in a complex system

supplies us with a mechanism which also allows us to understand how

condensation phenomena (the formation of spatial boundaries which sepa-

rate phases of different physical or chemical properties) can be controlled

by the wave equation, answering a point raised by SchrOdinger

Classical mechanics, also, enters our scheme in the form of correla-

tion laws. Let us consider a system of objects (in the previous sense),

such that the centroid of each object has initially a fairly well defined

position and momentum (e.g., let the wave function for the centroids con-

sist of a product of gaussian wave packets). As time progresses, the
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centers of the square amplitude distributions for the objects will move in

a manner approximately obeying the laws of motion of classical mechanics,

with the degree of approximation depending upon the masses and the

length of time considered, as is well known. (Note that we do not mean

to imply that the wave packets of the individual objects remain indepen~

dent if they are interacting. They do not. The motion that we refer to is

that of the centers of the marginal distributions for the centroids of the

bodies.)

The general state of a system of macroscopic objects does not, how-

ever, ascribe any nearly definite positions and momenta to the individual

bodies. Nevertheless, any general state can at any instant be analyzed

into a superposition of states each of which does represent the bodies

with fairly well defined positions and momenta.2 Each of these states

then propagates approximately according to classical laws, so that the

general state can be viewed as a superposition of quasi~classical states

propagating according to nearly classical trajectories. In other words, if

the masses are large or the time short, there will be strong correlations

between the initial (approximate) positions and momenta and those at a

later time, with the dependence being given approximately by classical

mechanics.

Since large scale objects obeying classical laws have a place in our

theory of pure wave mechanics, we have justified the introduction of

2 For any E one can construct a complete orthonormal set of (one particle)
states cPp.,v' where the double index p.,v refers to the approximate position and

momentum, and for which the expected position and momentum values run indepen-
dently through sets of approximately uniform density, such that the position and

momentum uncertainties, a and a, satisfy a ~ CE and a ~ C .1!. for eachx p x - p - 2E
cPp. v' where C is a constant .....60. The uncertainty product then satisfies

axup:;; C2}, about 3,600 times the minimum allowable, but still sufficiently low

for macroscopic objects. This set can then be used as a basis for our decomposi-
tion into states where every body has a roughly defined position and momentum.
For a more complete discussion of this set see von Neumann [t7], pp. 406-407.
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models for observers consisting of classically describable, automatically

functioning machinery, and the treatment of observation of Chapter IV is

non-vacuous.

Let us now consider the result of an observation (considered along

the lines of Chapter IV) performed upon a system of macroscopic bodies

in a general state. The observer will not become aware of the fact that

the state does not correspond to definite positions and momenta (i.e., he

will not see the objects as "smeared out" over large regions of space)

but will himself simply become correlated with the system - after the ob-

servation the composite system of objects + observer will be in a super-

position of states, each element of which describes an observer who has

perceived that the objects have nearly definite positions and momenta,

and for whom the relative system state is a quasi-classical state in the

previous sense. and furthermore to whom the system will appear to behave

according to classical mechanics if his observation is continued. We see,

therefore, how the classical appearance of the macroscopic world to us

can be explained in the wave theory.

92. Amplification processes

In Chapter III and IV we discussed abstract measuring processes,

which were considered to be simply a direct coupling between two sys-

tems, the object-system and the apparatus (or observer). There is, how-

ever, in actuality a whole chain of intervening systems linking a micro-

scopic system to a macroscopic observer. Each link in the chain of inter-

vening systems becomes correlated to its predecessor, so that the result

is an amplification of effects from the microscopic object-system to a

macroscopic apparatus, and then to the observer.

The amplification process depends upon the ability of the state of one

micro-system (particle, for example) to become correlated with the states

of an enormous number of other microscopic systems, the totality of which

we shall call a detection system. For example, the totality of gas atoms

in a Geiger counter, or the water molecules in a cloud chamber, constitute

such a detection system.
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The amplification is accomplished by arranging the condition of the

detection system so that the states of the individual micro-systems of the

detector are metastable, in a way that if one micro-system should fall from

its metastable state it would influence the reduction of others. This type

of arrangement leaves the entire detection system metastable against

chain reactions which involve a large number of its constituent systems.

In a Geiger counter, for example, the presence of a strong electric field

leaves the gas atoms metastable against ionization. Furthermore, the

products of the ionization of one gas atom in a Geiger counter can cause

further ionizations, in a cascading process. The operation of cloud cham-

bers and photographic films is also due to metastability against such

chain reactions.

The chain reactions cause large numbers of the micro-systems of the

detector to behave as a unit, all remaining in the metastable state, or all

discharging. In this manner the states of a sufficiently large number of

micro-systems are correlated, so that one can speak of the whole ensemble

being in a state of discharge, or not.

For example, there are essentially only two macroscopically distin.

guishable states for a Geiger counter; discharged or undischarged. The

correlation of large numbers of gas atoms, due to the chain reaction effect,

implies that either very few, or else very many of the gas atoms are ionized

at a given time. Consider the complete state function ifJG of a Geiger

counter, which is a function of all the coordinates of all of the constituent

particles. Because of the correlation of the behavior of a large number of

the constituent gas atoms, the total state ifJG can always be written as

a superposition of two states

(2.1)

where ifJ[U] signifies a state where only a small. number of gas atoms

are ionized, and ifJlO] a state for which a large number are ionized.
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To see that the decomposition (2.1) is valid, expand tfrG in terms of

individual gas atom stationary states:

(2.2)

S
where tfre r is the eth state of atom r. Each element of the superposi-

tion (2.2)

(2.3)

(2.4)

must contain either a very large number of atoms in ionized states, or else

a very small number, because of the chain reaction effect. By choosing

some medium-sized number as a dividing line, each element of (2.2)can

be placed in one of the two categories, high number of low number of

ionized atoms. If we then carry out the sum (2.2) over only those elements

of the first category, we get a state (and coefficient)

1 ~' Sl S2 Sn
al tfr[D] = k.i aij ... ktfri tfrj ... tfrk

ij...k

The state tfr[D] is then a state where a large number of particles are

ionized. The subscript [D] indicates that it describes a Geiger counter.

which has discharged. If we carry out the sum over the remaining terms

of (2.2) we get in a similar fashion:

(2.5)

where [U] indicates the undischarged condition. Combining (2.4) and

(2.5) we arrive at the desired relation (2.1). So far, this method of decom-

position can be applied to any system, whether or"not it has the chain re-

action property. However, in our case, more is implied, namely that the

spread of the number of ionized atoms in both tfr(D] and tfr(U] will be

small compared to the separation of their averages, due to the fact that
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the existence of the chain reactions means that either many or else few

atoms will be ionized, with the middle ground virtually excluded.

This type of decomposition is also applicable to all other detection

devices which are based upon this chain reaction principle (such as cloud

chambers, photo plates, etc.).

We consider now the coupling of such a detection device to another

micro-system (object-system) for the purpose of measurement. If it is true

that the initial object-system state CPl will at some time t trigger the

chain reaction, so that the state of the counter becomes rP[O]' while the

object-system state CP2 will not, then it is still true that the initial

object-system state a1CPl + a2CP2 will result in the superposition

(2.6)

at time t.

For example, let us suppose that a particle whose state is a wave

packet cP, of linear extension greater than that of our Geiger counter,

approaches the counter. Just before it reaches the counter, it can be de-

composed into a superposition cP = a1CPl + a2CP2 (cpl' CP2 orthogonal)

where CPl has non-zero amplitude only in the region before the counter

and CP2 has non-zero amplitude elsewhere (so that CPl is a packet which

will entirely pass through the counter while CP2 will entirely miss the

counter). The initial total state for the system particle + counter is then:

where rP[u] is the initial (assumed to be undischarged) state of the

counter.

But at a slightly later time CPl is changed to cpi, after traversing

the counter and causing it to go into a discharged state rP[O]' while CP2
passes by into a state cP;' leaving the counter in an undischarged state

rP[Ur Superposing these results, the total state at the later time is
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(3.1)

in accordance with (2.6). Furthermore, the relative particle state for

t/F[D]' cf>i, is a wave packet emanating from the counter, while the rela-

tive state for t/F[U] is a wave with a "shadow" cast by the counter. The

counter therefore serves as an apparatus which performs an approximate

position measurement on the particle.

No matter what the complexity or exact mechanism of a measuring

process, the general superposition principle as stated in Chapter III, 93,
remains valid, and our abstract discussion is unaffected. It is a vain hope

that somewhere embedded in the intricacy of the amplification process is

a mechanism which will somehow prevent the macroscopic apparatus state

from reflecting the same indefiniteness as its object-system.

93. Reversibility and irreversibility
Let us return, for the moment, to the probabilistic interpretation of

quantum mechanics based on Process 1 as well as Process 2. Suppose

that we have a large number of identical systems (ensemble), and that the

jth system is in the state t/Fj. Then for purposes of calculating expecta-

tion values for operators over the ensemble, the ensemble is represented

by the mixture of states t/Fj weighted with 1/N, where N is the number

of systems, for which the density operato~3 is:

1 ~ .
P ::: N k [t/FJ] ,

j

where [t/Fj] denotes the projection operator on t/Fj. This density operator,

in turn, is equivalent to a density operator which is a sum of projections

on orthogonal states (the eigenstates of p):4

3

4

Cf. Chapter III, 91.

See Chapter Ill, 92, particularly footnote 6, p. 46.
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P =. ~ Pi [1Ji1, (1Ji'1Jj) = 8ij' ~ Pi = 1 ,
i
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so that any ensemble is always equivalent to a mixture of orthogonal

states, which representation we shall henceforth assume.

Suppose that a quantity A, with (non-degenerate) eigenstates Ir/>jl

is measured in each system of the ensemble. This measurement has the

effect of transforming each state 1Ji into the state r/>j' with probability

ICr/>j,1Ji)/2; i.e., it wi11 transform a large ensemble of systems in the state

1Ji into an ensemble represented by the mixture whose density operator is

~ I(r/>j'1Ji)\2 [r/>jl. Extending this result to the case where the original
j

ensemble is a mixture of the 1Ji weighted by Pi «3.2)), we find that the

density operator P is transformed by the measurement of A into the new

density operator p';

(3.3) P' = ~ Pi ~j 1(1Ji,r/>j)12[r/>jl= ~ (~Pi(r/>j' (1Ji' r/>j)1Ji))[r/>jl
1 J 1

= ~(r/>j' ~ Pi[1Ji1r/>j\[r/>jl = ~ (r/>j,pr/>j)[r/>} •
J 1 J J

This is the general law by which mixtures change through Process 1.

However, even when no measurements are taking place, the states of

an ensemble are changing according to Process 2, so that after a time

interval t each state c/J will be transformed into a state c/J' = Ut c/J ,
where Ut is a unitary operator. This natural motion has the consequence

that each mixture p = ~ Pi[1Ji1 is carried into the mixture p' = ~ Pi[Ut1Ji1
i i

after a time t. But for every state ~,

(3.4) p'~ = ~ Pi [Ut 1Ji]~ = ~ Pi (Ut 1Ji' OUt 1Ji
i

= Ut ~ Pi (1Ji' Ut -l~)1Ji == Ut ~ Pi [1Ji](Ut-1~)
i i
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(3.5)
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, U U-1P = tP t

which is the general law for the change of a mixture according to Process 2.

We are now interested in whether or not we get from any mixture to

another by means of these two processes, i.e., if for any pair p, p', there

exist quantities A which can be measured and unitary (time dependence)

operators U such that p can be transformed into p' by suitable appli-

cations of Processes 1 and 2. We shall see that this is not always possi-

ble, and that Process 1 can cause irreversible changes in mixtures.

For each mixture p we define a quantity Ip:

(3.6) Ip = Trace (p In p) .

This number, Ip' has the character of information. If p = ~ Pi [71i]' a
i

mixture of orthogonal states 71i weighted with Pi' then Ip is simply

the information of the distribution Pi over the eigenstates of p (relative

to the uniform measure). (Trace (p In p) is a unitary invariant and is

proportional to the negative of the entropy of the mixture, as discussed in

Chapter III, 92.)

Process 2 therefore has the property that it leaves Ip unchanged,

because

(3.7) Ip' = Trace (p'ln p') = Trace (UtPUt
lln UtPUt

1)

= Trace (Utp In p Uti) = Trace (p In p) = Ip .

Process 1, on the other hand, can decrease Ip but never increase it.

According to (3.3):

(3.8) p' = ~ (if>j' pif>jHif>j] = ~ Pi I(71i'if>j)\2 [if>j] = ~ Pj [if>j] ,
j Lj j
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where pj I Pi T ij and T ij = I(71i'epj)\2 is a doubly-stochastic
i

matrix.5 But Ip' = I Pj In Pj and Ip = I Pi In Pi' with the Pi' Pj
j i

connected by T ij' implies, by the theorem of information decrease for

stochastic processes (11-96), that:

(3.9)

Moreover, it can easily be shown by a slight strengthening of the theorems

of Chapter II, 96 that strict inequality must hold unless (for each i such

that Pi> 0) Tij = 1 for one j and 0 for the rest (T ij = 5ikj)' This

means that \(71i'epj)!2 = 5ikj, which implies that the original mixture was

already a mixture of eigenstates of the measurement.

We have ,answered our question, and it is not possible to get from any

mixture to another by means of Processes 1 and 2. There is an essential

irreversibility to Process 1, since it corresponds to a stochastic process,

which cannot be compensated by Process 2, which is reversible, like

classical mechanics.6

Our theory of pure wave mechanics, to which we now return, must give

equivalent results on the subjective level, since it leads to Process 1
there. Therefore, measuring processes will appear to be irreversible to

any observers (even though the composite system including the observer

changes its state reversibly).

5 Since I Ti. = I \<71"ep.)\2 = I <ep., [71.]ep.) = <ep.,I [71.]ep.) = <ep., Iep.) = I,
i J i 1 J i J 1 J J ,i 1 J J J

and similarly I Too = 1 because Too is symmetric.
j 1J 1J

6 For another, more complete, discussion of this topic in the probabilistic in-
terpretation see von Neumannh7], Chapter V, 94.
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There is another way of looking at this apparent irreversibility within

our theory which recognizes only Process 2. When an observer performs

an observation the result is a superposition, each element of which de-

scribes an observer who has perceived a particular value. From this time

forward there is no interaction between the separate elements of the super-

position (which describe the observer as having perceived different results),

since each element separately continues to obey the wave equation. Each

observer described by a particular element of the superposition behaves

in the future completely independently of any events in the remaining ele-

ments, and he can no longer obtain any information whatsoever concerning

these other elements (they are completely unobservable to him).

The irreversibility of the measuring process is therefore, within our

framework, simply a subjective manifestation reflecting the fact that in

observation processes the state of the observer is transformed into a

superposition of observer states, each element of which describes an ob-

server who is irrevocably cut off from the remaining elements. While it is

conceivable that some outside agency could reverse the total wave func-

tion, such a change cannot be brought about by any observer which is

represented by a single element of a superposition, since he is entirely

powerless to have any influence on any other elements.

There are, therefore, fundamental restrictions to the knowledge that

an observer can obtain about the state of the universe. It is impossible

for any observer to discover the total state function of any physical sys-

tem, since the process of observation itself leaves no independent state

for the system or the observer, but only a composite system state in which

the object-system states are inextricably bound up with the observer states.

As soon as the observation is performed, the composite state is split into

a superposition for which each element describes a different object-system

state and an observer with (different) knowledge of it. Only the totality

of these observer states, with their diverse knowledge, contains complete

information about the original object-system state - but there is no possi-

ble communication between the observers described by these separate
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states. Any single observer can therefore possess knowledge only of the

relative state function (relative to his state) of any systems, which is in

any case all that is of any importance to him.

We conclude this section by commenting on another question which

might be raised concerning irreversible processes: Is it necessary for

the existence of measuring apparata, which can be correlated to other

systems, to have frictional processes which involve systems of a large

number of degrees of freedom? Are such thermodynamically irreversible

processes possible in the framework of pure wave mechanics with a re-

versible wave equation, and if so, does this circumstance pose any diffi-

culties for our treatment of measuring processes?

In the first place, it is certainly not necessary for dissipative proces-

ses involving additional degrees of freedom to be present before an inter-

action which correlates an apparatus to an object-system can take place.

The counter-example is supplied by the simplified measuring process of

III - ~3, which involves only a system of one coordinate and an apparatus

of one coordinate and no further degrees of freedom.

To the question whether such processes are possible within reversi-

ble wave mechanics, we answer yes, in the same sense that they are

present in classical mechanics, where the microscopic equations of motion

are also reversible. This type of irreversibility, which might be called

macroscopic irreversibility, arises from a failure to separate "macroscopi-

cally indistinguishable" states into "true" microscopic states.7 It has a

fundamentally different character from the irreversibility of Process 1,

which applies to micro-states as well and is peculiar to quantum mechan-

ics. Macroscopically irreversible phenomena are common to both classical

and quantum mechanics, since they arise from our incomplete information

concerning a system, not from any intrinsic behavior of the system.8

7

8

See any textbook on statistical mechanics, such as ter Haar [U], Appendix I.

Cf. the discussion of Chapter II, ~7. See also yon Neumann[17], Chapter V, ~4.
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Finally, even when such frictional processes are involved, they pre-

sent no new difficulties for the treatment of measuring and observation

processes given here. We imposed no restrictions on the complexity or

number of degrees of freedom of measuring apparatus or observers, and if

any of these processes are present (such as heat reservoirs, etc.) then

these systems are to be simply included as part of the apparatus or ob-

server.

94. Approximate measurement

A phenomenon which is difficult to understand within the framework

of the probabilistic interpretation of quantum mechanics is the result of

an approximate measurement. In the abstract formulation of the usual

theory there are two fundamental processes; the discontinuous, probabilis-

tic Process 1 corresponding to precise measurement, and the continuous,

deterministic Process 2 corresponding to absence of any measurement.

What mixture of probability and causality are we to apply to the case

where only an approximate measurement is effected (i.e., where the appa-

ratus or observer interacts only weakly and for a finite time with the

object-system)?

In the case of approximate measurement, we need to be supplied with

rules which will tell us, for any initial object-system state, first, with

what probability can we expect the various possible apparatus readings,

and second, what new state to ascribe to the system after the value has

been observed. We shall see that it is generally impossible to give these

rules within a framework which considers the apparatus or observer as

performing an (abstract) observation subject to Process 1, and that it is

necessary, in order to give a full account of approximate measurements,

to treat the entire system, including apparatus or observer, wave mechan-

ically.

The position that an approximate measurement results in the situation

that the object-system state is changed into an eigenstate of the exact

measurement, but for which particular one the observer has only imprecise
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information, is manifestly false. It is a fact that we can make successive

approximate position measurements of particles (in cloud chambers, for

example) and use the results for somewhat reliable predictions of future

positions. However, if either of these measurements left the particle in

an "eigenstate" of position (0 function), even though the particular one

remained unknown, the momentum would have such a variance that no such

prediction would be possible. (The possibility of such predictions lies in

the correlations between position and momentum at one time with position

and momentum at a later time for wave packets9 - correlations which are

totally destroyed by precise measurements of either quantity.)

Instead of continuing the discussion of the inadequacy of the proba-

bilistic formulation, let us first investigate what actually happens in

approximate measurements, from the viewpoint of pure wave mechanics.

An approximate measurement consists of an interaction, for a finite time,

which only imperfectly correlates the apparatus (or observer) with the

object-system. We can deduce the desired rules in any particular case by

the following method: For fixed interaction and initial apparatus state

and for any initial object-system state we solve the wave equation for the

time of interaction in question. The result will be a superposition of

apparatus (observer) states and relative object-system states. Then

(according to the method of Chapter IV for assigning a measure to a super-

position) we assign a probability to each observed result equal to the

square-amplitude of the coefficient of the element which contains the

apparatus (observer) state representing the registering of that result.

Finally, the object-system is assigned the new state which is its relative

state in that element.

For example, let us consider the measuring process described in Chap-

ter III - ~3, which is an excellent model for an approximate measurement.

After the interaction, the total state was found to be (III - (3.12»:

9 See Bohm [1]. p. 202.
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(4.1)
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Then, according to our prescription, we assign the probability density

per') to the observation of the apparatus coordinate r'

(4.2)

wh,ich is the square amplitude of the coefficient (N~,)of the element

e-r (q)o(r- r') of the superposition (4.1) in which the apparatus coordinate

has the value r = r'. Then, depending upon the observed apparatus coordi-

nate r', we assign the object-system the new state

(4.3)

(where cP(q) is the old state, and 77(r) is the initial apparatus state)

which is the relative object-system state in (4.1) for apparatus coordinate r'.

This example supplies the counter-example to another conceivable

method of dealing with approximate measurement within the framework of

Process 1. This is the position that when an approximate measurement

of a quantity Q is performed, in actuality another quantity Q' is pre-

cisely measured, where the eigenstates of Q' correspond to fairly well-

defined (i.e., sharply peaked distributions for) Q values.10 However,

any such scheme based on Process 1 always has the prescription that

after the measurement, the (unnormalized) new state function results from

the old by a projection (on an eigenstate or eigenspace), which depends

upon the observed value. If this is true, then in the above example the

new state e- r'(q) must result from the old, cP(q), by a projection E:

(4.4)

10 cr. von Neumann [17], Chapter IV, 94.
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where N, Nr, are normalization constants). But E is only a projection

if E2 = E. Applying the operation (4.4) twice, we get:

N' 2= N c/>(q) T/ (r' - qt) ,

and we see that E cannot be a projection unless T/(q)= T/2(q) for all

q (i.e., Tf(q)= 0 or 1 for all q) and we have arrived at a contradiction

to the assumption that in all cases the changes of states for approximate

measurements are governed by projections. (In certain special cases,

such as approximate position measurements with slits or Geiger counters, 11

the new functions arise from the old by multiplication by sharp cutoff

functions which are 1 over the slit or counter and 0 elsewhere, so that

these measurements can be handled by projections.)

One cannot, therefore, account for approximate measurements by any

scheme based on Process 1, and it is necessary to investigate these pro-

cesses entirely wave-mechanically. Our viewpoint constitutes a frame-

work in which it is possible to make precise deductions about such mea-

surements and observations, since we can follow in detail the interaction

of an observer or apparatus with an object-system.

~5. Discussion of a spin measurement example

We shall conclude this chapter with a discussion of an instructive

example of Bohm.12 Bohm considers the measurement of the z component

of the angular momentum of an atom, whose total angular momentum is !,
which is brought about by a Stern-Gerlach experiment. The measurement

11 ce. ~2, this chapter.

12 Bohm[1], p. 593.
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is accomplished by passing an atomic beam through an inhomogeneous

magnetic field, which has the effect of giving the particle a momentum

which is directed up or down depending upon whether the spin was up or

down.

The measurement is treated as impulsive, so that during the time that

the atom passes through the field the Hamiltonian is taken to be simply

the interaction:

(5.1)

....
where H is the magnetic field and a the spin operator for the atom. The

particle is presumed to pass through a region of the field where the field

is in the z direction, so that during the time of transit the field is

approximately Hz ~ Ho + z H~ fHo = (Hz) and H~ = (~) ), and
~ z=o az z=o

hence the interaction is approximately:

(5.2)

where Sz denotes the operator for the z component of the spin.

It is assumed that the state of the atom, just prior to entry into the

field, is a wave packet of the form:

(5.3)

where v+ and v_are the spin functions for Sz = 1 and -1 respec-

tively. Solving the SchrOdinger equation for the Hamiltonian (5.2) and

initial condition (5.3) yields the state for a later time t:

Therefore, if ~t is the time that it takes the atom to traverse the field, 13

each component of the wave packet has been multiplied by a phase factor

13 This time is, strictly speaking, not well defined. The results, however, do
not depend critically upon it.
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:!:iIL(J{o+zJ{~)Llt/li
e , i.e., has had its mean momentum in the z direction

changed by an amount :!:J{~flLlt, depending upon the spin direction. Thus

the initial wave packet (with mean momentum zero) is split into a super-

position of two packets, one with mean z-momentum +J{~flLlt and spin

up, and the other with spin down and mean z-momentum -J{~flLlt.

The interaction (5.2) has therefore served to correlate the spin with

the momentum in the z-direction. These two packets of the resulting

superposition now move in opposite z-directions, so that after a short

time they become widely separated (provided that the momentum changes

:!:J{~flLlt are large compared to the momentum spread of the original

packet), and the z-coordinate is itself then correlated with the spin -

representing the «apparatus" coordinate in this case. The Stern-Gerlach

apparatus therefore splits an incoming wave packet into a superposition

of two diverging packets, corresponding to the two spin values.

We take this opportunity to caution against a certain viewpoint which

can lead to difficulties. This is the idea that, after an apparatus has

interacted with a system, in "actuality" one or another of the elements

of the resultant superposition described by the composite state-function

has been realized to the exclusion of the rest, the existing one simply

being unknown to an external observer (Le., that instead of the super-

position there is a genuine mixture). This position must be erroneous

since there is always the possibility for the external observer to make

use of interference properties between the elements of the superposition.

In the present example, for instance, it is in principle possible to de-

flect the two beams back toward one another with magnetic fields and re-

combine them in another inhomogeneous field, which duplicates the first,

in such a manner that the original spin state (before entering the appa-

ratus) is restored.I4 This would not be possible if the original Stern-

Gerlach apparatus performed the function of converting the original wave

14 As pointed out by Bohm [1], p. 604.
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packet into a non-interfering mixture of packets for the two spin cases.

Therefore the position that after the atom has passed through the inhomo-

geneous field it is "really" in one or the other beam with the correspond-

ing spin, although we are ignorant of which one, is incorrect.

After two systems have interacted and become correlated it is true

that marginal expectations for subsystem operators can be calculated

correctly when the composite system is represented by a certain non-

interfering mixture of states. Thus if the composite system state is
51+52 ~ 51 52 I It/J = ~ iai epi 71i ' where the 77i are orthogonal, then for pur-

poses of calculating the expectations of operators on 51 the state
.1.51+52. . I h . f' . f t ,/..51 52'I' IS equlva ent to tenon-Inter enng mIxture 0 sates 'f'i 71i

weighted by Pi = ai'ai' and one can take the picture that one or another

of the cases ep~I77~2 has been realized to the exclusion of the rest, with

probabilities p/5

However, this representation by a mixture must be regarded as only a

mathematical artifice which, although useful in many cases, is an incom-

plete description because it ignores phase relations between the separate

elements which actually exist, and which become important in any inter-

actions which involve more than just a subsystem.

In the present example, the "composite system" is made of the "sub-

systems" spin value (object-system) and z-coordinate (apparatus), and

the superposition of the two diverging wave packets is the state after

interaction. It is only correct to regard this state as a mixture so long as

any contemplated future interactions or measurements will involve only

the spin value or only the z-coordinate, but not both simultaneously. As

we saw, phase relations between the two packets are present and become

important when they are deflected back and recombined in another inhomo-

geneous field - a process involving the spin values and z-coordinate

simultaneously.

15 See Chapter III, 91.
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It is therefore improper to attribute any less validity or "reality" to

any element of a superposition than any other element, due to this ever

present possibility of obtaining interference effects between the elements.

All elements of a superposition must be regarded as simultaneously

existing.

At this time we should like to add a few remarks concerning the notion

of transition probabilities in quantum mechanics. Often one considers a

system, with Hamiltonian H and stationary states I<pi!' to be perturbed

for a time by a time-dependent addition to the Hamiltonian, H1(t). Then

under the action of the perturbed Hamiltonian H' = H + HI(t) the states

l<Pi! are generally no longer stationary but change after time t into new

states Ith(t)!:

(5.5) <Pi -+ tfri(t) = I (<Pj,tfri(t»<Pj= Iaij(t)<Pj ,
j j

which can be represented as a superposition of the old stationary states

with time-dependent coefficients aij(t).

If at time r a measurement with eigenstates <Pj is performed, such

as an energy measurement (whose operator is the original H), then

according to the probabilistic interpretation the probability for finding the

state <Pj' given that the state was originally <Pi' is Pij(r) = laij(r)!2.

The quantities laij(r)12 are often referred to as transition probabilities.
In this case, however, the name is a misnomer, since it carries the conno-

tation that the original state <Pi is transformed into a mixture (of the <Pj
weighted by Pij(r», and gives the erroneous impression that the quantum

formalism itself implies the existence of quantum-jumps (stochastic pro-

cesses) independent of acts of observation. This is incorrect since there

is still a pure state I aij(r)<pj with phase relations between the <Pj'
j

and expectations of operators other than the energy must be calculated

from the superposition and not the mixture.

There is another case, however, the one usually encountered in fact,

where the transition probability concept is somewhat more justified. This
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is the case in which the perturbation is due to interaction of the system

sl with another system s2' and not simply a time dependence of sl's

Hamiltonian as in the case just considered. In this situation the interac-

tion produces a composite system state, for which there are in general no

independent subsystem states. However, as we have seen, for purposes

of calculating expectations of operators on sl alone, we can regard sl

as being represented by a certain mixture. According to this picture the

states of subsystem sl are gradually converted into mixtures by the

interaction with s2 and the concept of transition probability makes some

sense. Of course, it must be remembered that this picture is only justi-

fied so long as further measurements on sl alone are contemplated, and

any attempt to make a simultaneous determination in sl and s2 involves

the composite state where interference properties may be important.

An example is a hydrogen atom interacting with the electromagnetic

field. After a time of interaction we can picture the atom as being in a

mixture of its states, so long as we consider future measurements on the

atom only. But in actuality the state of the atom is dependent upon

(correlated with) the state of the field, and some process involving both

atom and field could conceivably depend on interference effects between

the states of the alleged mixture. With these restrictions, however, the

concept of transition probability is quite useful and justified.



VI. DISCUSSION

We have shown that our theory based on pure wave mechanics, which

takes as the basic description of physical systems the state function -

supposed to be an objective description (i.e., in one-one, rather than

statistical, correspondence to the behavior of the system) - can be put in

satisfactory correspondence with experience. We saw that the probabilis-

tic assertions of the usual interpretation of quantum mechanics can be

deduced from this theory, in a manner analogous to the methods of classi-

cal statistical mechanics, as subjective appearances to observers -

observers which were regarded simply as physical systems subject to the

same type of description and laws as any other systems, and having no

preferred position. The theory is therefore capable of supplying us with

a complete conceptual model of the universe, consistent with the assump-

tion that it contains more than one observer.

Because the theory gives us an objective description, it constitutes a

framework in which a number of puzzling subjects (such as classical level

phenomena, the measuring process itself, the inter-relationship of several

observers, questions of reversibility and irreversibility, etc.) can be in-

vestigated in detail in a logically consistent manner. It supplies a new

way of viewing processes, which clarifies many apparent paradoxes of the

usual interpretationl - indeed, it constitutes an objective framework in

which it is possible to understand the general consistency of the ordinary

view.

1 Such as that of Einstein, Rosen, and Podolsky [8], as well as the paradox of
the introduction.

109
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We shall now resume our discussion of alternative interpretations.

There has been expressed lately a great deal of dissatisfaction with the

present form of quantum theory by a number of authors, and a wide variety

of new interpretations have sprung into existence. We shall now attempt

to classify briefly a number of these interpretations, and comment upon

them.

a. The "popular" interpretation. This is the scheme alluded to in

the introduction, where if! is regarded as objectively characteriz-

ing the single system, obeying a deterministic wave equation when

the system is isolated but changing probabilistic ally and discon-

tinuously under observation.

In its unrestricted form this view can lead to paradoxes like that men-

tioned in the introduction, and is therefore untenable. However, this view

is consistent so long as it is assumed that there is only one observer in

the universe (the solipsist position - Alternative 1 of the Introduction).

This consistency is most easily understood from the viewpoint of our own

theory, where we were able to show that all phenomena will seem to follow

the predictions of this scheme to any observer. Our theory therefore justi-

fies the personal adoption of this probabilistic interpretation, for purposes

of making practical predictions, from a more satisfactory framework.

b. The Copenha~en interpretation. This is the interpretation develop~

by Bohr. The if! function is not regarded as an objective descrip-

tion of a physical system (i.e., it is in no sense a conceptual

model), but is regarded as merely a mathematical artifice which

enables one to make statistical predictions, albeit the best predic-

tions which it is possible to make. This interpretation in fact

denies the very possibility of a single conceptual model applicable

to the quantum realm, and asserts that the totality of phenomena

can only be understood by the use of different, mutually exclusive

(i.e., "complementary") models in different situations. All state-
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ments about microscopic phenomena are regarded as meaningless

unless accompanied by a complete description (classical) of an

experimental arrangement.

While undoubtedly safe from contradiction, due to its extreme conserva-

tism, it is perhaps overcautious. We do not believe that the primary pur-

pose of theoretical physics is to construct "safe" theories at severe cost

in the applicability of their concepts, which is a sterile occupation, but

to make useful models which serve for a time and are replaced as they are

outworn. 2

Another objectionable feature of this position is its strong reliance

upon the classical level from the outset, which precludes any possibility

of explaining this level on the basis of an underlying quantum theory. (The

deduction of classical phenomena from quantum theory is impossible simply

because no meaningful statements can be made without pre-existing classi-

cal apparatus to serve as a reference frame.) This interpretation suffers

from the dualism of adhering to a "reality" concept (i.e., the possibility

of objective description) on the classical level but renouncing the same

in the quantum domain.

c. The "hidden variables" interpretation. This is the position

(Alternative 4 of the Introduction) that '" is not a complete de-

scription of a single system. It is assumed that the correct com-

plete description, which would involve further (hidden) parameters,

would lead to a deterministic theory, from which the probabilistic

aspects arise as a result of our ignorance of these extra parameters

in the same manner as in classical statistical mechanics.

2 ce. Appendix n.
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The if-function is therefore regarded as a description of an ensemble
of systems rather than a single system. Proponents of this interpretation

include Einstein,3 Bohm,4 Wiener and Siegal. 5

Einstein hopes that a theory along the lines of his general relativity,

where all of physics is reduced to the geometry of space-time could satis-

factorily explain quantum effects. In such a theory a particle is no longer

a simple object but possesses an enormous amount of structure (Le., it is

thought of as a region of space-time of high curvature). It is conceivable

that the interactions of such "particles" would depend in a sensitive way

upon the details of this structure, which would then play the role of the

"hidden variables.,,6 However, these theories are non-linear and it is

enormously difficult to obtain any conclusive results. Nevertheless, the

possibility cannot be discounted.

Bohm considers if to be a real force field acting on a particle which

always has a well-defined position and momentum (which are the hidden

variables of this theory). The if-field satisfying SchrOdinger's equation

is pictured as somewhat analogous to the electromagnetic field satisfying

Maxwell's equations, although for systems of n particles the if-field is

in a 3n-dimensional space. With this theory Bohm succeeds in showing

that in all actual cases of measurement the best predictions that can be

made are those of the usual theory, so that no experiments could ever rule

out his interpretation in favor of the ordinary theory. Our main criticism

of this view is on the grounds of simplicity - if one desires to hold the

view that if is a real field then the associated particle is superfluous

since, as we have endeavored to illustrate, the pure wave theory is itself

satisfactory.

3

4

5

6

Einstein [7].

Bohm [2].

Wiener and Siegal [20].

For an example of this type of theory see Einstein and Rosen [9].
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Wiener and Siegal have developed a theory which is more closely tied

to the formalism of quantum mechanics. From the set N of all non-

degenerate linear Hermitian operators for a system having a complete Set

of eigenstates, a subset I is chosen such that no two members of I com-

mute and every element outside I commutes with at least one element of

1. The set I therefore contains precisely one operator for every orienta-

tion of the principal axes of the Hilbert space for the system. It is postu-

lated that each of the operators of I corresponds to an independent ob-

servable which can take any of the real numerical values of the spectrum

of the operator. This theory, in its present form, is a theory of infinitel/

many "hidden variables," since a system is pictured as possessing (at

each instant) a value for everyone of these "observables" simultaneously,

with the changes in these values obeying precise (deterministic) dynamical

laws. However, the change of anyone of these variables with time depends

upon the entire set of observables, so that it is impossible ever to discover

by measurement the complete set of values for a system (since only one

"observable" at a time can be observed). Therefore, statistical ensembles

are introduced, in which the values of all of the observables are related to

points in a "differential space," which is a Hilbert space containing a

measure for which each (differential space) coordinate has an independent

normal distribution. It is then shown that the resulting statistical dynamics

is in accord with the usual form of quantum theory.

It cannot be disputed that these theories are often appealing, and might

conceivably become important should future discoveries indicate serious

inadequacies in the present scheme (i.e., they might be more easily modi-

fied to encompass new experience). But from our viewpoint they are

usually more cumbersome than the conceptually simpler theory based on

pure wave mechanics. Nevertheless, these theories are of great theoretical

importance because they provide us with examples that "hidden variables"

theories are indeed possible.

7 A non-denumerable infinity, in fact, since the set I is uncountable!
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d. The stochastic process interpretation. This is the point of view

which holds that the fundamental processes of nature are stochas-

tic (i.e., probabilistic) processes. According to this picture

physical systems are supposed to exist at all times in definite

states, but the states are continually undergoing probabilistic

changes. The discontinuous probabilistic "quantum-jumps" are

not associated with acts of observation, but are fundamental to the

systems themselves.

A stochastic theory which emphasizes the particle, rather than wave,

aspects of quantum theory has been investigated by Bopp.8 The particles

do not obey deterministic laws of motion, but rather probabilistic laws,

and by developing a general "correlation statistics" Bopp shows that his

quantum scheme is a special case which gives results in accord with the

usual theory. (This accord is only approximate and in principle one could

decide between the theories. The approximation is so close, however,

that it is hardly conceivable that a decision would be practically feasible.)

Bopp's theory seems to stem from a desire to have a theory founded

upon particles rather than waves, since it is this particle aspect (highly

localized phenomena) which is most frequently encountered in present day

high-energy experiments (cloud chamber tracks, etc.). However, it seems

to us to be much easier to understand particle aspects from a wave picture

(concentrated wave packets) than it is to understand wave aspects (diffrac-

tion, interference, etc.) from a particle picture.

Nevertheless, there can be no fundamental objection to the idea of a

stochastic theory, except on grounds of a naked prejudice for determinism.

The question of determinism or indeterminism in nature is obviously for-

ever undecidable in physics, since for any current deterministic {proba-

bilistic] theory one could always postulate that a refinement of the theory

8 Bopp {S].
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would disclose a probabilistic [deterministic] substructure, and that the

current deterministic [probabilistic] theory is to be explained in terms of

the refined theory on the basis of the law of large numbers [ignorance of

hidden variables). However, it is quite another matter to object to a mix-

ture of the two where the probabilistic processes occur only with acts of

observation.

e. The wave interpretation. This is the position proposed in the

present thesis, in which the wave function itself is held to be the

fundamental entity, obeying at all times a deterministic wave

equation.

This view also corresponds most closely with that held by Schrodinger.9

However, this picture only makes sense when observation processes them-

selves are treated within the theory. It is only in this manner that the

apparent existence of definite macroscopic objects, as well as localized

phenomena, such as tracks in cloud chambers, can be satisfactorily ex-

plained in a wave theory where the waves are continually diffusing. With

the deduction in this theory that phenomena will appear to observers to be

subject to Process I, Heisenberg's criticismlO of Schr5dinger's opinion -

that continuous wave mechanics could not seem to explain the discontinui-

ties which are everywhere observed - is effectively met. The "quantum-

jumps" exist in our theory as relative phenomena (i.e., the states of an

object-system relative to chosen observer states show this effect), while

the absolute states change quite continuously.

The wave theory is definitely tenable and forms, we believe, the

simplest complete, self-consistent theory.

9 Schrodinger [18].

10 Heisenberg [14].
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We should like now to comment on some views expressed by Einstein.

Einstein'sll criticism of quantum theory (which is actually directed more

against what we have called the "popular" view than Bohr's interpreta-

tion) is mainly concerned with the drastic changes of state brought about

by simple acts of observation (Le., the infinitely rapid collapse of wave

functions), particularly in connection with correlated systems which are

widely separated so as to be mechanically uncoupled at the time of obser-

vation.12 At another time he put his feeling colorfully by stating that he

could not believe that a mouse could bring about drastic changes in the

universe simply by looking at it.13

However, from the standpoint of our theory, it is not so much the sys-

tem which is affected by an observation as the observer, who becomes

correlated to the system.

In the case of observation of one system of a pair of spatially sepa-

rated, correlated systems, nothing happens to the remote system to make

any of its states more "real" than the rest. It had no independent states

to begin with, but a number of states occurring in a superposition with

corresponding states for the other (near) system. Observation of the near

system simply correlates the observer to this system, a purely local pro-

cess - but a process which also entails automatic correlation with the

remote system. Each state of the remote system still exists with the same

amplitude in a superposition, but now a superposition for which element

contains, in addition to a remote system state and correlated near system

state, an observer state which describes an observer who perceives the

state of the near system.14 From the present viewpoint all elements of

11 Einstein (71-

12 For example, the paradox of Einstein. Rosen. and Podolsky (8].

13 Address delivered at Palmer Physical Laboratory, Princeton. Spring, 1954.

14 See in this connection Chapter IV. particularly pp. 82, 83.
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this superposition are equally "real." Only the observer state has

changed, so as to become correlated with the state of the near system and

hence naturally with that of the remote system also. The mouse does not

affect the universe - only the mouse is affected.

Our theory in a certain sense bridges the positions of Einstein and

Bohr, since the complete theory is quite objective and deterministic ("God

does not play dice with the universe"), and yet on the subjective level,

of assertions relative to observer states, it is probabilistic in the strong

sense that there is no way for observers to make any predictions better

than the limitations imposed by the uncertainty principle.15

In conclusion, we have seen that if we wish to adhere to objective

descriptions then the principle of the psycho-physical parallelism requires

that we should be able to consider some mechanical devices as represent-

ing observers. The situation is then that such devices must either cause

the probabilistic discontinuities of Process 1, or must be transformed into

the superpositions we have discussed. We are forced to abandon the for-

mer possibility since it leads to the situation that some physical systems

would obey different laws from the rest, with no clear means for distin-

guishing between these two types of systems. We are thus led to our

present theory which results from the complete abandonment of Process 1

as a basic process. Nevertheless, within the context of this theory,

which is objectively deterministic, it develops that the probabilistic

aspects of Process 1 reappear at the subjective level, as relative phenom-

ena to observers.

One is thus free to build a conceptual model of the universe, which

postulates only the existence of a universal wave function which obeys a

linear wave equation. One then investigates the internal correlations in

this wave function with the aim of deducing laws of physics, which are

15 Cf. Chapter V, 92.
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statements that take the form: Under the conditions C the property A

of a subsystem of the universe (subset of the total collection of coordi-

nates for the wave function) is correlated with the property B of another

subsystem (with the manner of correlation being specified). For example,

the classical mechanics of a system of massive particles becomes a law

which expresses the correlation between the positions and momenta

(approximate) of the particles at one time with those at another time.16

All statements about subsystems then become relative statements, i.e.,

statements about the subsystem relative to a prescribed state for the re-

mainder (since this is generally the only way a subsystem even possesses

a unique state), and all laws are correlation laws.

The theory based on pure wave mechanics is a conceptually simple

causal theory, which fully maintains the principle of the psycho-physical

parallelism. It therefore forms a framework in which it is possible to dis-

cuss (in addition to ordinary phenomena) observation processes them-

selves, including the inter-relationships of several observers, in a logical,

unambiguous fashion. In addition, all of the correlation paradoxes, like

that of Einstein, Rosen, and Podolsky,17 find easy explanation.

While our theory justifies the personal use of the probabilistic inter-

pretation as an aid to making practical predictions, it forms a broader

frame in which to understand the consistency of that interpretation. It

transcends the probabilistic theory, however, in its ability to deallogi-

cally with questions of imperfect observation and approximate measurement.

Since this viewpoint will be applicable to all forms of quantum mechan-

ics which maintain the superposition principle, it may prove a fruitful

framework for the interpretation of new quantum formalisms. Field theories,

particularly any which might be relativistic in the sense of general rela-

16 Cf. Chapter V, 92.
17 Einstein, Rosen, and Podolsky [8].
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tivity, might benefit from this position, since one is free to construct

formal (non-probabilistic) theories, and supply any possible statistical

interpretations later. (This viewpoint avoids the necessity of considering

anomalous probabilistic jumps scattered about space-time, and one can

assert that field equations are satisfied everywhere and everywhen, then

deduce any statistical assertions by the present method.)

By focusing attention upon questions of correlations, one may be able

to deduce useful relations (correlation laws analogous to those of classi-

cal mechanics) for theories which at present do not possess known classi-

cal counterparts. Quantized fields do not generally possess pointwise

independent field values, the values at one point of space-time being

correlated with those at neighboring points of space-time in a manner, it

is to be expected, approximating the behavior of their classical counter-

parts. If correlations are important in systems with only a finite number

of degrees of freedom, how much more important they must be for systems

of infinitely many coordinates.

Finally, aside from any possible practical advantages of the theory.

it remains a matter of intellectual interest that the statistical assertions

of the usual interpretation do not have the status of independent hypoth-

eses, but are deducible (in the present sense) from the pure wave mechan-

ics, which results from their omission.





APPENDIX I

We shall now supply the proofs of a number of assertions which have

been made in the text.

s1. Proof of Theorem 1
We now show that IX,Y, ... ,Z! > 0 unless X,Y, ,Z are independent

random variables. Abbreviate P(xi'Yj,,,,,zk) by Pij k, and let

(1.1) Q.. k '=1J ...

P.. k1J ...

(Note that PiPj ... Pk,= 0 implies that also Pij ... k'= 0.) Then always

(1.2) p.. k '= Q.. kP.P .... Pk1J... 1J... 1 J '

and we have

(1.3) lx.y ..... zl " Ex. [In p~~~:::~J"Ex. [ In Qi; ... k]

'= L PiPj'"Pk Qij ... k In Qij ... k
ij ... k

Applying the inequality for x ~ 0:

(1.4) xlnx>x-1 (except for x '= 1)

(which is easily established by calculating the minimum of x In x - (x-i»
to (1.3) we have:

121



122 HUGH EVERETT, m

(1.5) PiPj",Pk Qij ... k In Qij ... k > PiPj",Pk (Qij ... k -1)

(unless Qij ... k = 1) .

Therefore we have for the sum:

(1.6) I PiPj,,,Pk Qij ... k In Qij ... k > I PiPj",Pk Qij ... k - I PiPj",Pk '
ij...k ij...k ij... k

unless all Q.. k = 1. But ~ P.P .... Pk Q.. k = ~ p.. k = 1, andIJ... ~ 1 J IJ... ~ IJ...
ij...k ij...kI PiPj'"Pk = 1, so that the right side of (1.6) vanishes. The left

ij... k
side is, by (1.3) the correlation IX,Y, ... ,zl, and the condition that all of

the Qij ... k equal one is precisely the independence condition that

Pij ... k = PiPj",Pk for all i,j, ... ,k. We have therefore proved that

(1.7) Ix,Y, ... ,ZI > 0

unless X,Y, ... ,Z are mutually independent.

92. Convex function inequalities
We shall now establish some basic inequalities which follow from the

convexity of the function x In x.

LEMMA 1. x. 2: 0 p. 2: 0 ~ Pl' = 11-' 1-' ~
i

~ (~ P.x.) In (~ P.x.) :5 ~ p.x. In x.~ll ~11-~11 1
i i i

This property is usually taken as the definition of a convex function, 1

but follows from the fact that the second derivative of x In x is positive

for all positive x, which is the elementary notion of convexity. There is

also an immediate corollary for the continuous case:

1 See Hardy, Littlewood, and Polya [13], p. 70.
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=i> [J P(X)g(X)dX] In [J P(X)g(X)dX] ~

COROLLARY 1. g(X) ~ 0, P(X) ~ 0, .( P(x)dx = 1

J P(x) g(x) In g(x) dx .

We can now derive a more general and very useful inequality from

Lemma 1:

LEMMA 2.

Proof: Let Pi = ai /I ai' so that Pi ~ 0 and I Pi = 1. Then by

Lemma 1: i i

Substitutionfor Pi yields:

which reduces to

(2.3)

and we. have proved the lemma.
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We also mention the analogous result for the continuous case:

COROLLARY 2, f(x) ~ 0, g(x) ~ 0 (all x)

~ [f f(X)dX] In [j:~:~::J< f f(x) In (~)dX .g(x)

93. Refinement theorems
We now supply the proof for Theorems 2 and 4 of Chapter II, which

concern the behavior of correlation and information upon refinement of the

distributions. We suppose that the original (unrefined) distribution is

P P( ) d h h f. d d' 'b' , p,/li,Vj, ... ,17k
ij ... k = xi'Yj"",zk' an t at t e re zne Istn uhon IS ij ... k '

where the original value Xi for X has been resolved into a number of

values xri, and similarly for Y, ... ,Z. Then:

(3.1) etc.

Computing the new correlation {X,Y, ... ,zl' for the refined distribution

P,/li,Vj, ... ,11k f' d'"k we In .IJ ...

(3.2) {X,Y, ... ,zl'= 2
ij... k

However, by Lemma 2, 92:

(3.3)
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Substitution of (3.3) into (3.2), noting that ~ PilLi,p(j"",Pk17k is
lLi... 17k

equal to (~PilLi)(2P(j)"'(2Pk17k). leads to:
lLi IIj 17k

p .. k
= 2 Pij ... k In P.~: .. P

k
= IX,y .....zl •

ij... k 1 f"

and we have completed the proof of Theorem 2 (Chapter II), which asserts

that refinement never decreases the correlation.2

We now consider the effect of refinement upon the relative information.

We shall use the previous notation, and further assume that ailLi,bjllj, ... ,

ck17k are the information measures for which we wish to compute the rela-

tive information of Pie:~j,""17k and of Pij ... k' The information mea-

sures for the unrefined distribution Pij ... k then satisfy the relations:

~ lLi ~ v.
ai = k ai' hj = k bj J , ...

lLi IIj

The relative information of the refined distribution is

(3.6) I' - ~XY ... Z - k
i...j

and by exactly the same procedure as we have just used for the correla-

tion we arrive at the result:

2 Cf. Shannon [19], Appendix 7, where a quite similar theorem is proved.
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(3.7)
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I' ~ ~ p.. In Pij k
XY... Z - k IJ ... k a.b ck

i...k 1 J
IXY ... z '

and we have proved that refinement never decreases the relative informa-

tion (Theorem 4, Chapter 11).

It is interesting to note that the relation (3.4) for the behavior of

correlation under refinement can be deduced from the behavior of relative

information, (3.7). This deduction is an immediate consequence of the

fact that the correlation is a relative information - the information of the

joint distribution relative to the product measure of the mar~inaI distribu-

tions.

94. Monotone decrease of information for stochastic processes

We consider a sequence of transition-probability matrices Tij

1 for all n, i, and 0 ~ Tfj ~ 1 for all n, i,

measures af (af ~ 0) having the property that

(~T~.=k IJ
j

j), and a sequence of

(4.1) a~+l = ~ a~T~. .
J k 1 IJ

i

We further suppose that we have a sequence of probability distributions,

pf, such that

(4.2) p'.l+l = ~ P'.lT~..
J k 1 IJ

i

For each of these probability distributions the relative information

In (relative to the af measure) is defined:

(4.3)

Under these circumstances we have the following theorem:

THEOREM.
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Proof: Expanding In+1 we get:

(4.4)
(~PiTij)

(~ aiTij)
1

However,by Lemma2 (92, AppendixI) we have the inequality

(4.5)
(l PiTij \ p!1T!1.

(
~ P!1T!1.~In i V $ ~ P!1T!1.In ~
~ 1 1J (l )-~ 1 1J a!1T!1.
i a!1T!1. i 1 1J

1 1J
i

Substitution of (4.5) into (4.4) yields:

(4.6) l ~l
n n Pi) l n(l n~ (Pi)< p. T.. In - = p. T.. In -=. . 1 1J a!1 1. 1J a!1

J 1 1 i J 1

~ n (Pi) n= "7Pi In \ai = I ,

and the proof is completed.

This proof can be successively specialized to the case where T is
stationary (Tij = Tij for all n) and then to the case where T is

doubly-stochastic (l Tij = 1 for all j):
i

COROLLARY 1. Tij is stationary (Tij = Tij' all n), and the measure
ai is a stationary measure (aj = l aiTij)' imply that the information,

i
In = ~ Pi In (pi/ai), is monotone decreasing. (As before, pj+l =

i

lPiTir)
i

Proof: Immediateconsequence of preceding theorem.
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COROLLARY 2. T ij is doubly-stochastic (I Tij = 1, all j) implies
i

that the information relative to the uniform measure (ai = 1, all i), In =
I pf In pf, is monotone decreasing.
i

Proof: For ai=l (all i) we have that IaiTij= ITij=l=aj'
i i

Therefore the uniform measure is stationary in this case and the result

follows from Corollary 1.

These results hold for the continuous case also, and may be easily

verified by replacing the above summations by integrations, and by re-

placing Lemma 2 by its corollary.

95. Proof of special inequality for Chapter IV (1.7)

LEMMA. Given probability densities P(r), PI (x), P2(r), with P(r) =J PI (x)P/r-XT)dx. Then IR ~ IX - InT, where IX = J PI (x) In PI (x)dx

and IR = J P(r) In P(r)dr.

Proof: We first note that:

(5.1) (all r)

and that furthermore

(5.2) (all x) .

We now define the density pr(x):

(5.3) -rP (x) = TP2(r-xT) ,

which is normalized, by (5.1). Then, according to 92, Corollary 1 Appen-

dix I), we have the relation:
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Substitution from (5.3) gives

(5.5) (r J P2(r-xr)PI (X)dX) In tJ P2(r-xr)PI (X)dX)

~ r J P2(r-xr)PI (x) In PI (x)dx .

The relation Per) = J PI (x)P2(r-xr)dx, together with (5.5) then implies

(5.6) Per) In rP(r) ~ J P2(r-xr)PI(x) In PI(x)dx ,

which is the same as:

(5.7) Per) In Per) ~ J P2(r-x r)PI (x) In PI(x)dx - Per) Inr .

Integrating with respect to r, and interchanging the order of integration

on the right side gives:

(5.8) IR = J Per) In P(r)dr ~ f[f P2(r-Xr)dr] PI (x) In PI (x)dx

- (In r) J P(r)dr .

But using (5.2) and the fact that J P(r)dr = 1 this means that

(5.9) IR ~ J PI (x) In PI (x)dx - Inr = IX - Inr ,

and the proof of the lemma is completed.

S6. Stationary point of IK + IX

We shall show that the information sum:

(6.1)

where

IK + IX = foo ep*ep(k)In ep*ep(k)dk + Joo t/J*t/J(x)In t/J*t/J(x)dx ,

~~k) = (1/..{br) Joo e-ikx ~~x)dx

-00
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is stationary for the functions:

(6.2)

with respect to variations of ifJ, 8ifJ, which preserve the normalization:

(6.3) IOO

8 (ifJ*ifJ)dx = o.
-00

(6.4)

The variation 8ifJ gives rise to a variation oifJ of ifJ(k):

8ifJ = (1/..{iTr) Ioo

e-ikx8ifJdx .

-00

To avoid duplication of effort we first calculate the variation oI( for an

arbitrary wave function u«(). By definition,

(6.5)

so that

I( =Ioo

u*(Ou(O In u*(Ou(Od( ,
-00

(6.6) 8I( =Ioo

[u*u 8(ln u*u) + 8(u*u) In u*ul d(
_00

00

=I (1 + In u*u)(u*8u tWu*)d( .
-00

We now suppose that u has the real form:

(6.7)

and from (6.6) we get

u(O = a e-b(2 = u*(O ,

00

(6.8) 8 I( = f (1 + In a2 - 2b( 2) a e-b( 2(8u) d( + complex conjugate.
_00

We now compute 8IK for ifJo using (6.8), (6.2), and (6.4):
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where 1

a '" (2oi/IT)4, b' '" oi .
Interchanging the order of integration and performing the definite integra-

tion over k we get:

(6.10) OIK\4>o = Joo ~ (In a,2 + ~) e-(X
2
/4b')0o/(x)dx + c.c. ,

-00

while application of (6.8) to #0 gives

(6.11)

00

OIxl% = J (1-t In aN2_2bNx2)aNe-bNx2 oo/(x)dx + c.c. ,

-00
where

1
4

aN = (1/2ITOi), bN = (1/4oi) .
Adding (6.10) and (6.11), and substituting for a', b', aN, bN

, yields:
1

JOO 4" _(x2 /4~)
(6.12) O(IK+lx)l% = (1-lnlT) (1/2IToi) e x oo/(x)dx + c.c.

_00

But the integrand of (6.12) is simply %(x)oo/(x), so that

(6.13) O(IK+IX)I =: (1_lnlT)!00 %0o/dx + c.c.
#0 -00

O(IK+1X)I#0 '" (1-lnlT)J
oo

o(o/*o/)dx = 0 ,
-00

(6.14)

Since tPo is real, 0/0°0/ + c.c. = o/~oo/ + c.c. '" o/~oo/ + 0/0°0/* =: 0(0/*0/),
so that

due to the normality restriction (6.3), and the proof is completed.





APPENDIX II

REMARKS ON THE ROLE OF THEORETICAL PHYSICS

There have been lately a number of new interpretations of quantum

mechanics, most of which are equivalent in the sense that they predict the

same results for all physical experiments. Since there is therefore no hope

of deciding among them on the basis of physical experiments, we must turn

elsewhere, and inquire into the fundamental question of the nature and pur-

pose of physical theories in general. Only after we have investigated and

come to some sort of agreement upon these general questions, i.e., of the

role of theories themselves, will we be able to put these alternative inter-

pretations in their proper perspective.

Every theory can be divided into two separate parts, the formal part,

and the interpretive part. The formal part consists of a purely logico-

mathematical structure, i.e., a collection of symbols together with rules

for their manipulation, while the interpretive part consists of a set of

"associations," which are rules which put some of the elements of the

formal part into correspondence with the perceived world. The essential

point of a theory, then, is that it is a mathematical model, together with

an isomorphism! between the model and the world of experience (i.e., the

sense perceptions of the individual, or the "real world" - depending upon

one's choice of epistemology).

I By isomorphism we mean a mapping of some elements of the model into ele-
tnents of the perceived world which has the property that the model is faithful,
that is, if in the model a symbol A implies a symbol B, and A corresponds
to the happening of an event in the perceived world, then the event corresponding
to B must also obtain. The word homomorphismwould be technically more
correct, since there may not be a one-one correspondence between the model and
the external world.
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The model nature is quite apparent in the newest theories, as in nuclear

physics, and particularly in those fields outside of physics proper, such

as the Theory of Games, various economic models, etc., where the degree

of applicability of the models is still a matter of considerable doubt. How-

ever, when a theory is highly successful and becomes firmly established,

the model tends to become identified with "reality" itself, and the model

nature of the theory becomes obscured. The rise of classical physics

offers an excellent example of this process. The constmcts of classical

physics are just as much fictions of our own minds as those of any other

theory we simply have a great deal more confidence in them. It must be

deemed a mistake, therefore, to attribute any more "reality" here than

elsewhere.

Once we have granted that any physical theory is essentially only a

model for the world of experience, we must renounce all hope of finding

anything like" the correct theory." There is nothing which prevents any

number of quite distirict models from being in correspondence with experi-

ence (i.e., all "correct"), and furthermore no way of ever verifying that

any model is completely correct, simply because the totality of all experi-

ence is never accessible to us.

Two types of prediction can be distinguished; the prediction of pheno-

mena already understood, in which the theory plays simply the role of a

device for compactly summarizing known results (the aspect of most

interest to the engineer), and the prediction of new phenomena and effects,

unsuspected before the formulation of the theory. Our experience has

shown that a theory often transcends the restricted field in which it was

formulated. It is this phenomenon (which might be called the "inertia"

of theories) which is of most interest to the theoretical physicist, and

supplies a greater motive to theory constmction than that of aiding the

engineer.

From the viewpoint of the first type of prediction we would say that

the "best" theory is the one from which the most accurate predictions

can be most easily deduced - two not necessarily compatible ideals.
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Classical physics, for example, permits deductions with far greater ease

than the more accurate theories of relativity and quantum mechanics, and

in such a case we must retain them all. It would be the worst sort of

folly to advocate that the study of classical physics be completely dropped

in favor of the newer theories. It can even happen that several quite dis-

tinct models can exist which are completely equivalent in their predictions,

such that different ones are most applicable in different cases, a situation

which seems to be realized in quantum mechanics today. It would seem

foolish to attempt to reject all but one in such a situation, where it might

be profitable to retain them all.

Nevertheless, we have a strong desire to construct a single a11-

embracing theory which would be applicable to the entire universe. From

what stems this desire? The answer lies in the second type of prediction

- the discovery of new phenomena - and involves the consideration of

inductive inference and the factors which influence our confidence in a

given theory (to be applicable outside of the field of its formulation). This

is a difficult subject, and one which is only beginning to be studied seri-

ously. Certain main points are clear, however, for example, that our con-

fidence increases with the number of successes of a theory. If a new

theory replaces several older theories which deal with separate phenomena,

i.e., a comprehensive theory of the previously diverse fields, then our

confidence in the new theory is very much greater than the confidence in

either of the older theories, since the range of success of the new theory

is much greater than any of the older ones. It is therefore this factor of

confidence which seems to be at the root of the desire for comprehensive

theories.

A closely related criterion is simplicity - by which we refer to con-

ceptual simplicity rather than ease in use, which is of paramount interest

to the engineer. A good example of the distinction is the theory of general

relativity which is conceptually quite simple, while enormously cumber-

Some in actual calculations. Conceptual simplicity, like comprehensive-

ness, has the property of increasing confidence in a theory. A theory
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containing many ad hoc constants and restrictions, or many independent

hypotheses, in no way impresses us as much as one which is largely free

of arbitrariness.

It is necessary to say a few words about a view which is sometimes

expressed, the idea that a physical theory should contain no elements

which do not correspond directly to observables. This position seems to

be founded on the notion that the only purpose of a theory is to serve as

a summary of known data, and overlooks the second major purpose, the

discovery of totally new phenomena. The major motivation of this view-

point appears to be the desire to construct perfectly "safe" theories

which will never be open to contradiction. Strict adherence to such a

philosophy would probably seriously stifle the progress of physics.

The critical examination of just what quantities are observable in a

theory does, however, playa useful role, since it gives an insight into

ways of modification of a theory when it becomes necessary. A good ex-

ample of this process is the development of Special Relativity. Such

successes of the positivist viewpoint, when used merely as a tool for de-

ciding which modifications of a theory are possible, in no way justify its

universal adoption as a general principle which all theories must satisfy.

In summary, a physical theory is a logical construct (model), consist-

ing of symbols and rules for their manipulation, some of whose elements

are associated with elements of the perceived world. The fundamental

requirements of a theory are logical consistency and correctness. There

is no reason why there cannot be any number of different theories satisfy-

ing these requirements, and further criteria such as usefulness, simplicity,

comprehensiveness, pictorability, etc., must be resorted to in such cases

to further restrict the number. Even so, it may be impossible to give a

total ordering of the theories according to "goodness," since different

ones may rate highest according to the different criteria, and it may be

most advantageous to retain more than one.

As a final note, we might comment upon the concept of causality. It

should be clearly recognized that causality is a property of a model, and
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not a property of the world of experience. The concept of causality only

makes sense with reference to a theory, in which there are logical depend-

ences among the elements. A theory contains relations of the form UA

implies B," which can be read as U A causes B," while our experi-

ence, uninterpreted by any theory, gives nothing of the sort, but only a

correlation between the event corresponding to B and that corresponding

to A.





REFERENCES

[1] D. Bohm, Quantum Theory. Prentice-Hall, New York: 1951.

[2] D. Bohm, Phys. Rev. 84, 166, 1952 and 85, 180, 1952.

[3] N. Bohr, in Albert Einstein, Philosopher-Scientist. The Library of
Living Philosophers, Inc., Vol. 7, p. 199. Evanston: 1949.

[4] N. Bohr, Atomic Theory and the Description of Nature.

[5] F. Bopp, Z. Naturforsch. 2a(4), 202, 1947; 7a 82, 1952; 8a, 6, 1953.

[6] J. L. Doob, Stochastic Processes. Wiley, New York: 1953.

[7] A. Einstein, in Albert Einstein, Philosopher-Scientist. The Library
of Living Philosophers, Inc., Vol. 7, p. 665. Evanston: 1949.

[8] A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777, 1935.

[9] A. Einstein, N. Rosen, Phys. Rev. 48, 73, 1935.

[10] W.Feller, An Introduction to Probability Theory and its Applications.
Wiley, New York: 1950.

[11] D. ter Haar, Elements of Statistical Mechanics. Rinehart, New York,
1954.

[12] P. R. Halmos, Measure Theory. Van Nostrand, New York: 1950.

[13] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities. Cambridge
University Press: 1952.

[14] W.Heisenberg, in Niels Bohr and the Development of Physics.
McGraw-Hill, p. 12. New York: 1955.

139



140 HUGH EVERETT, III

[15] J. Kelley, General Topology. Van Nostrand, New York: 1955.

[16] A. I. Khinchin, Mathematical Foundations of Statistical Mechanics.

(Translated by George Gamow) Dover, New York: 1949.

[17] J. von Neumann, Mathematical Foundations of Quantum Mechanics.

(Translated by R. T. Beyer) Princeton University Press: 1955.

[18] E. Schrodinger, Brit. ]. Phil. Sci. 3, 109, 233, 1952.

[19] C. E. Shannon, W. Weaver, The Mathematical Theory of Communica-

tion. University of Illinois Press: 1949.

[20] N. Wiener, I. E. Siegal, Nuovo Cimento Suppl. 2, 982 (1955).

[21] P. M. Woodward, Probability and Information Theory, with Applica-

tions to Radar. McGraw-Hill, New York: 1953.


	page1
	titles
	The Many- Worlds 
	of Quantum Mechanics 


	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	titles
	4 


	page11
	titles
	5 


	page12
	page13
	page14
	page15
	page16
	page17
	titles
	11 


	page18
	page19
	page20
	titles
	k, ... ,e e, ... ,j 

	images
	image1


	page21
	images
	image1


	page22
	images
	image1
	image2


	page23
	images
	image1


	page24
	titles
	(3.1) Ix, Y! = Exp [It - IX] = Exp [It] - IX 

	images
	image1


	page25
	images
	image1


	page26
	page27
	titles
	(4.1) 


	page28
	titles
	(4.8) 


	page29
	titles
	P 
	P 


	page30
	titles
	24 
	P P' 
	P P' 
	P P' 


	page31
	titles
	~ 

	images
	image1
	image2
	image3


	page32
	images
	image1
	image2
	image3


	page33
	titles
	P Mp<Xi, '!jj"'" Zk) 
	(5.4) IXY ... Z = ~ Mp<Xi, '!jj'"'' Zk) In <X dJ (Z 
	ij ... k /lX i) /ly j)" ./lZ k) 
	(5.5) 
	/lx, /ly, ... , /lZ' 


	page34
	images
	image1


	page35
	images
	image1


	page36
	titles
	(7.1) 


	page37
	titles
	(7.2) 
	(7.3) 

	images
	image1
	image2


	page38
	page39
	page40
	images
	image1
	image2


	page41
	titles
	(1.1) 

	images
	image1
	image2


	page42
	titles
	(1.4) 
	0. L j L 

	images
	image1
	image2
	image3
	image4
	image5


	page43
	titles
	S * S 
	'= (.J...O.,t/J ) (ef>.O.,t/J ) '= p .. , 
	'f'1 J 1 J IJ 

	images
	image1
	image2


	page44
	images
	image1


	page45
	titles
	N2 == liP. 

	images
	image1
	image2


	page46
	titles
	2 5 (~1 O. 2 ~ 1 Ok ) 


	page47
	titles
	if j i,e 


	page48
	titles
	= ~ [~(gi 71j' l/J5) * (ge71j' l/J5~ (gi' Age) 

	images
	image1


	page49
	images
	image1
	image2


	page50
	images
	image1


	page51
	titles
	(2.6) 
	(2.7) 
	(2.9) 

	images
	image1
	image2


	page52
	images
	image1
	image2


	page53
	titles
	47 

	images
	image1
	image2
	image3


	page54
	titles
	* 

	images
	image1
	image2


	page55
	titles
	s S 

	images
	image1
	image2
	image3


	page56
	titles
	e im e 

	images
	image1
	image2
	image3
	image4


	page57
	images
	image1
	image2


	page58
	images
	image1


	page59
	page60
	titles
	54 
	- 


	page61
	titles
	55 


	page62
	titles
	HI = - in q a~ . 
	."s+A *( ",s+A 

	images
	image1
	image2


	page63
	titles
	(3.8) 

	images
	image1
	image2
	image3
	image4
	image5


	page64
	images
	image1
	image2


	page65
	titles
	59 


	page66
	page67
	titles
	S.f,A 


	page68
	page69
	page70
	page71
	titles
	1/10 

	images
	image1
	image2


	page72
	images
	image1
	image2
	image3


	page73
	images
	image1
	image2


	page74
	images
	image1


	page75
	images
	image1
	image2
	image3
	image4


	page76
	titles
	... ...,al ,aj , ... ,ak 

	images
	image1


	page77
	titles
	71 
	a cP' = 2 ai cPi ' 


	page78
	images
	image1
	image2
	image3


	page79
	titles
	M.. k = M.M .... Mk ' 

	images
	image1
	image2


	page80
	titles
	74 

	images
	image1


	page81
	titles
	- ... ,ai , ... ,af, ... ,ak'.'.' ..1!!. ••• 

	images
	image1
	image2
	image3
	image4
	image5
	image6


	page82
	images
	image1
	image2
	image3
	image4


	page83
	page84
	page85
	images
	image1
	image2
	image3
	image4
	image5
	image6


	page86
	titles
	° 
	(3.5) 

	images
	image1
	image2


	page87
	images
	image1
	image2
	image3


	page88
	titles
	82 
	(3.9) 

	images
	image1
	image2


	page89
	page90
	page91
	page92
	titles
	86 


	page93
	images
	image1


	page94
	page95
	page96
	page97
	titles
	(2.1) 

	images
	image1


	page98
	titles
	92 
	(2.2) 

	images
	image1
	image2
	image3


	page99
	titles
	93 
	(2.6) 

	images
	image1
	image2


	page100
	titles
	(2.7) 
	1 ~ . 

	images
	image1


	page101
	titles
	95 

	images
	image1


	page102
	titles
	, U U-1 


	page103
	titles
	5 Since I Ti. = I \<71" ep.)\2 = I <ep., [71.]ep.) = <ep., I [71.]ep.) = <ep., Iep.) = I, 

	images
	image1


	page104
	page105
	page106
	page107
	page108
	images
	image1
	image2
	image3
	image4


	page109
	titles
	N' 2 

	images
	image1


	page110
	titles
	.... 
	~ z=o az z=o 

	images
	image1
	image2
	image3
	image4
	image5


	page111
	titles
	105 


	page112
	page113
	titles
	107 


	page114
	page115
	page116
	page117
	titles
	111 


	page118
	page119
	titles
	113 


	page120
	page121
	page122
	page123
	page124
	page125
	titles
	119 


	page126
	page127
	titles
	P .. k 
	(1.3) lx.y ..... zl " Ex. [In p~~~:::~J" Ex. [ In Qi; ... k] 
	(1.4) 

	images
	image1
	image2


	page128
	page129
	images
	image1
	image2
	image3
	image4
	image5


	page130
	titles
	124 
	(3.1) 
	"k we In . 
	(3.3) 

	images
	image1
	image2
	image3
	image4


	page131
	titles
	I' - ~ 
	XY ... Z - k 

	images
	image1
	image2


	page132
	titles
	(~T~.= 

	images
	image1
	image2


	page133
	images
	image1


	page134
	titles
	128 

	images
	image1
	image2


	page135
	titles
	(6.1) 

	images
	image1


	page136
	titles
	(6.5) 

	images
	image1
	image2


	page137
	titles
	a '" (2oi/IT)4, b' '" oi . 
	aN = (1/2ITOi), bN = (1/4oi) . 


	page138
	page139
	page140
	page141
	page142
	page143
	page144
	page145
	page146



