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One-page summary

• This assessment reports the status of canary rockfish (Sebastes pinniger) off the U.S. West Coast using
data through 2022.

• Canary rockfish is a long-lived shelf rockfish caught primarily north of Point Conception in commercial
trawl, commercial non-trawl, and recreational fisheries.

• The most recent full stock assessment was conducted in 2015. Catch-only projections were conducted
in 2017, 2019, and 2021.

• Canary rockfish have an unusual pattern in sex ratio, where the percent of fish that are female decreases
rapidly starting around age 20. The cause for this pattern is unknown and could be because females
experience higher mortality rates, move into habitat inaccessible to fishing gear, some combination of
the two, or something different altogether.

• The major changes to this assessment compared to the previous benchmark assessment are:

– Data were reanalyzed and extended to 2022.
– This model estimates separate female and male natural mortality rates that are constant across

ages, and separate selectivity by sex for larger fish. This is in contrast to the 2015 model, which
estimated separate natural mortality only for older females, and assumed the same selectivity
between sexes.

– This model estimates coastwide recruitment deviations. The 2015 assessment estimated addi-
tional spatial recruitment deviations by state.

– This model estimates separate selectivity curves for fishing fleets by state. The 2015 model
assumed selectivity was the same along the coast.

– The method for weighting data from different sources has been aligned with current standard
practices.

• The model estimates recovery from the population’s low abundance in 1995 to be slower than was
estimated in the 2015 assessment, but more similar to estimates from earlier assessments. The change
from the 2015 model is primarily due to different assumptions regarding natural mortality and current
data weighting practices on the updated data.

• Current depletion (spawning output relative to unfished spawning output) in 2023 is 0.351, and is in
the “precautionary zone” between the target of 0.4 and the limit of 0.25.

• The estimate of recent fishing intensity (measured as 1-spawning potential ratio) in 2022 is 0.469, and
is close to the reference point of 0.5.
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Executive summary

Stock

This assessment reports the status of canary rockfish (Sebastes pinniger) off the U.S. West Coast using data
through 2022. The stock of canary rockfish was modeled as a single coastwide population. While canary
rockfish are modeled as a single population, spatial aspects are addressed through geographic separation
of data sources/fleets where possible. There is currently no genetic evidence suggesting distinct biological
stocks of canary rockfish off the U.S. West Coast. This assessment does not account for populations located
in Canadian or Mexican waters and assumes that these northern and southern populations do not contribute
to nor take from the population being assessed here.

Catches

Canary rockfish is caught in both commercial and recreational fisheries off the U.S. West Coast, with the
majority of catches coming from commercial sources (Figure i). The rockfish fishery off the U.S. West Coast
developed off California late in the 19th century and was catching an average of almost 2,500 metric tons
per year over the period 1916-1940 (with an increase in catches in 1916, during World War I). To the north,
the rockfish fishery developed slowly and became established during the early 1940s, when the United States
became involved in World War II and wartime shortages of red meat created an increased demand for other
sources of protein. Catches of canary rockfish increased considerably during this period. Canary rockfish
catches dropped somewhat following the war, and were generally stable from the 1950s to the 1960s. In
1977, when the Magnuson-Stevens Fishery Conservation and Management Act (MSFCMA) was enacted, the
large foreign-dominated rockfish fishery that had developed since the late 1960s had its catches eliminated,
and the domestic trawl fishery subsequently increased its catches. The trawl fishery reached a peak for
canary rockfish in the early 1980s (1982: 5,155 mt) and subsequently decreased after the establishment of
strict management restrictions starting in the mid-1990s. The decrease in the trawl fishery allowed the
recreational and non-trawl fisheries to take a larger proportion of total catch of canary rockfish beginning in
the 2000s. Following the removal of the overfished designation in 2015, catches of canary rockfish increased
considerably, though to levels well below those seen during much of the period of industrial fishing. Today,
most catch of canary rockfish still occurs in the trawl fishery (particularly in a growing midwater trawl fleet),
though there is a sizable recreational component of landings as well (Table i).
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Table i: Summary of total removals (mt) by fleet (TWL = trawl, NTWL = non-trawl, Rec = recreational, ASHOP = at-sea hake)
over the last ten years. Removals from the foreign and CA ASHOP fleets are not shown because they did not have removals within
the last ten years. Dead discards are included with landings for each fleet, so total removals and total dead catch are equivalent.

Year CA
TWL

OR
TWL

WA
TWL

CA
NTWL

OR
NTWL

WA
NTWL

CA Rec OR Rec WA Rec OR
ASHOP

WA
ASHOP

Total
Dead

2013 1.5 6.1 4.6 6.4 2.8 3.3 14.8 4.0 1.0 0.1 0.6 45.0
2014 2.0 10.3 2.2 4.4 1.8 6.0 22.4 3.0 1.4 0.4 0.3 54.1
2015 7.0 41.1 4.0 5.2 3.2 9.6 26.9 14.3 2.2 0.1 0.1 113.7
2016 2.8 17.0 5.0 3.1 6.7 5.1 23.7 9.8 1.9 0.2 0.3 75.6
2017 75.3 148.1 37.3 7.2 5.7 3.3 83.4 28.2 4.6 1.8 4.8 399.7

2018 139.7 173.9 156.3 7.5 4.4 2.2 61.8 43.6 3.9 3.0 2.5 598.7
2019 176.2 194.5 65.4 10.6 6.2 1.7 71.4 38.7 11.9 0.7 4.3 581.8
2020 73.7 186.6 78.9 18.6 7.5 3.0 76.7 60.6 7.3 0.2 0.7 513.7
2021 78.5 223.5 73.6 25.6 6.6 1.4 73.0 38.6 32.2 3.2 2.7 558.7
2022 90.1 315.3 102.4 22.5 11.0 0.9 62.6 55.6 34.2 4.2 1.5 700.4
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Figure i: Total removals of canary rockfish over full assessment period by fleet (TWL = trawl, NTWL =
non-trawl, Rec = recreational, ASHOP = at-sea hake, FOR = foreign)

Data and assessment

Canary rockfish was most recently assessed in 2015 using an age-structured population model that allowed
for spatial differences in recruitment deviations and depletion by state. The current assessment uses an
areas-as-fleets approach to account for different sizes and ages of fish available in each state, but returns to
a coastwide population model configuration.
This assessment uses the stock assessment framework Stock Synthesis (SS3; version 3.30.21). The assessment
model is a two-sex age-structured model operating on an annual time step covering the period 1892 to 2022,
with a twelve-year projection, and assumes an unfished population prior to 1892. Population dynamics are
modeled for ages 1 through 35, with age 1 including dynamics for age 0, and age 35 being the accumulator
age. The model also allows for differences in selectivity between sexes.
This assessment includes updated total removals (dead discards plus landings) from five fleets (commer-
cial trawl, non-trawl, foreign, at-sea hake, and recreational), each of which is divided across three states;
fishery-independent indices from the NWFSC West Coast Groundfish Bottom Trawl Survey (WCGBTS),
AFSC/NWFSC West Coast Triennial Shelf Survey (Triennial Survey), and a pre-recruit survey; and age and
length data from the fishery and the WCGBTS and Triennial Survey. It extends all of these data sets from
the previous assessment through 2022, and also includes any updates to previously used data.
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Growth is assumed to follow the von Bertalanffy growth model, and the assessment explicitly estimates
all parameters describing somatic growth. Recruitment dynamics are assumed to follow the Beverton-Holt
stock-recruit function, and recruitment deviations are estimated. In addition, this assessment includes a
maturity curve based on newly analyzed ovaries; updated biological relationships for fecundity, steepness,
and mortality; and new assumptions on the modeling of natural mortality.

Model uncertainty is explicitly included in this assessment by parameter estimation uncertainty. Model
specification uncertainty is explored through sensitivity analyses addressing alternative input assumptions
such as data treatment and weighting, and treatment of life history parameters, selectivity, and recruitment.
Base models were selected that best fit the observed data while balancing the desire to capture the central
tendency across sources of uncertainty, ensure model realism and tractability, and promote robustness to
potential model mis-specification.

Stock biomass and dynamics

The base model estimate of spawning output in millions of eggs is estimated to be 8009. It declined to a
minimum of 487 million eggs in 1995. Since 1995 the stock is estimated to have recovered at a positive but
recently slowing rate to a recent peak of 2809 million eggs in 2023. In terms of spawning output relative to
unfished levels, the minimum was 0.061, also reached in 1995, and the current 2023 estimate is 0.351 (Table
ii, Figures ii and iii).

Table ii: Spawning output (millions of eggs) and fraction of unfished spawning output for the last ten years.
Upper and lower confidence intervals are 2.5 percent and 97.5 percent, respectively.

Year Spawning
Output

Lower
Interval

Upper
Interval

Fraction
Unfished

Lower
Interval

Upper
Interval

2013 2136.39 1586.79 2685.99 0.27 0.21 0.32
2014 2262.34 1685.71 2838.97 0.28 0.22 0.34
2015 2386.05 1783.11 2988.99 0.30 0.24 0.36
2016 2497.02 1869.79 3124.25 0.31 0.25 0.38
2017 2603.03 1953.69 3252.37 0.33 0.26 0.39
2018 2674.36 2004.74 3343.98 0.33 0.27 0.40
2019 2715.07 2026.70 3403.44 0.34 0.27 0.41
2020 2749.66 2043.61 3455.71 0.34 0.27 0.41
2021 2784.46 2061.05 3507.87 0.35 0.28 0.42
2022 2808.02 2067.01 3549.03 0.35 0.28 0.42
2023 2808.87 2050.19 3567.55 0.35 0.28 0.42
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Figure ii: Estimate of spawning output (millions of eggs) over full assessment period. Dashed lines cover
95% confidence interval.
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Figure iii: Estimate of spawning output relative to unfished over full assessment period. Dashed lines cover
95% confidence interval.

Recruitment

Recruitment dynamics (Table iii, Figures iv and v) are assumed to follow a Beverton-Holt stock-recruit
function and the steepness parameter was fixed at the value of 0.72, which is the mean of steepness prior
probability distribution. The level of virgin recruitment (ln(R0)) is estimated to inform the magnitude of the
initial stock size. Annual recruitment is treated as stochastic with ‘main’ recruitment deviations estimated
for 1960–2022 and ‘early’ deviations for 1892–1959.

The recruitment time series is punctuated by a large recruitment event in 1968, following by a generally
declining trend until the 2000s where recruitment varies around a relatively stable average. Among recent
years, large events occurred in 2003, 2007, 2013, and 2021–2022, as well as in 2023 where recruitment was
pulled from the stock-recruit curve. The 1968 recruitment was estimated at about 6 million age-0 recruits
while the latter six were around 3 million. Recent (since 2000) recruitment has averaged around 2.1 million
recruits. Recruitment follows a cyclical pattern since 2000 but has more often had deviations below the
average (negative recruitment deviations) than above the average.
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Table iii: Estimates of recruitment (1000s of fish) and recruitment deviations over last ten years with 95
percent confidence interval

Year Recruitment Lower Interval Upper Interval Recruitment
Deviations

Lower Interval Upper Interval

2013 2880.70 2141.07 3875.83 0.08 -0.14 0.30
2014 1538.69 1074.34 2203.74 -0.56 -0.86 -0.26
2015 1506.96 1039.05 2185.58 -0.60 -0.91 -0.28
2016 1943.69 1358.40 2781.17 -0.35 -0.65 -0.06
2017 973.78 618.12 1534.08 -1.06 -1.46 -0.65
2018 926.82 549.61 1562.91 -1.11 -1.60 -0.62
2019 1812.21 914.58 3590.84 -0.44 -1.12 0.23
2020 2234.81 914.62 5460.59 -0.24 -1.16 0.69
2021 3199.87 1408.69 7268.58 0.07 -0.77 0.91
2022 2825.14 1114.56 7161.05 -0.11 -1.08 0.86
2023 3149.97 1237.02 8021.15 0.00 -0.98 0.98

Figure iv: Estimate of age-0 recruitment (1000s of fish) over full assessment period. Bars represent 95%
confidence intervals.
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Figure v: Estimate of multiplicative devations from stock-recruit relationship (recruitment deviations)
over full assessment period. Bars represent 95% confidence intervals. Blue points are early and forecast
recruitment deviations, while black points are for the main period.

Exploitation status

There are two measures of exploitation status (Table iv). The target harvest rate is determined by 1-SPR
or “fishing intensity.” SPR is the spawning potential ratio, or percent of unfished spawning output that
would result at equilibrium from fishing at a given rate. Because the target is based on 1-SPR, a value of
0 means no fishing is occurring (at equilibrium, unfished spawning output would result from fishing at the
current rate), and a value of 1 means at equilibrium all spawning fish would be killed before spawning, and
the population would collapse. The second measure is the exploitation rate, or total dead catch divided by
total age 5+ biomass.

Fishing intensity rose from zero to consistently near the target starting around 1950, and then rose from
the target starting in the 1970s towards 1.0 (Figure vi). Intensity remained slightly below 1.0 from 1980 to
the mid-1990s as the population rapidly depleted. Exploitation rates dropped dramatically in 2000 with the
overfished designation, and the population has been slowly increasing since. Exploitation rates rose again in
2017 and are currently close to target levels. Spawning output remains slightly below the target, indicating
additional yield may be possible if the population further increases.
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Table iv: Estimates of 1-SPR (spawning potentital ratio) and exploitation rate over last ten years with 95
percent confidence interval.

Year 1-SPR Lower
Interval

Upper
Interval

Exploita-
tion Rate

Lower
Interval

Upper
Interval

2013 0.05 0.04 0.06 0.00 0.00 0.00
2014 0.06 0.04 0.07 0.00 0.00 0.00
2015 0.11 0.08 0.13 0.00 0.00 0.01
2016 0.07 0.06 0.09 0.00 0.00 0.00
2017 0.29 0.23 0.34 0.01 0.01 0.02
2018 0.39 0.31 0.46 0.02 0.02 0.03
2019 0.38 0.31 0.46 0.02 0.02 0.03
2020 0.36 0.29 0.44 0.02 0.01 0.02
2021 0.39 0.31 0.47 0.02 0.01 0.02
2022 0.47 0.38 0.56 0.03 0.02 0.03
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Figure vi: Estimates of 1-SPR (spawning potential ratio, i.e., fishing intensity) versus spawning output
relative to unfished level for full time series. Vertical dashed lines are at 0.25 (limit), 0.4 (target), and 1
(unfished level). Horizontal dashed lines are at 0.5 (target) and 1 (population cannot persist in equilibrium).
Arrows point in chronological direction with red to yellow colors representing years early in the assessment
period and dark blue representing present-day. Gray oval is 95% confidence ellipse for joint distribution of
depletion and fishing intensity in terminal model year (2022), with solid gray vertical and horizontal lines
representing 95% confidence interval of each quantity individually.

Ecosystem considerations

Although ecosystem factors have not been explicitly modeled in this assessment, there are several important
aspects of the recent California current ecosystem that appear to warrant consideration. Lingcod (Ophiodon
elongatus), a potentially important predator of small canary rockfish, have increased over the last two
decades. To the extent that the component of natural mortality of canary rockfish added by predation from
lingcod and other predators has been increasing over recent years, recruitment may be underestimated. This
effect could also lead to longer than predicted recovery times for canary rockfish. Conversely, Pacific salmon
are known to consume young canary rockfish, and their populations have generally declined in recent years.
Canary rockfish recruitment, growth, and condition have all been found to be associated with the Pacific
Decadal Oscillation (PDO), as well as other basin-scale indices. However, relationships between productivity
of fish populations with non-mechanistic basin-scale indicators such as the PDO have been degrading in recent
years due to climate change, so these relationships may not be reliable predictors moving forward. According
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to a recent California Current climate vulnerability analysis that ranked species on a scale of low, moderate,
high, and very high, canary rockfish have high exposure and high sensitivity to climate change, similar to
most rockfish. The prevalence of a strong 1999 year-class for many west coast groundfish species suggest
that environmentally driven recruitment variation may be correlated among species with relatively diverse
life-history strategies. Much research is currently underway to explore these phenomena, and it appears
likely that more explicit exploration of ecosystem processes and influences may be able to be incorporated
into management both within and outside of future canary rockfish stock assessments.

Reference points

The management target for canary rockfish is 40% of unfished spawning output, or SO40%. This is associated
with an annual exploitation rate of 0.0325 yr-1 (95% confidence interval, 0.0314-0.0336) and yield of 1152
mt (1018-1286). The target fishing intensity is SPR=0.5, which leads to an equilibrium spawning output of
3573 million eggs (3121-4025). Table v contains a full list of model estimates and 95% confidence intervals of
target spawning output, target 1-SPR, target exploitation rate, and target yield for targets based on spawning
depletion (SO40%), 1-SPR (SPR50), and the model estimate of MSY (maximum sustainable yield), as well
as key population quantities at unfished levels and their current values.
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Table v: Summary of reference points and management quantities, including estimates of 95 percent
confidence intervals

Estimate Lower Interval Upper Interval

Unfished Spawning Output (millions of eggs) 8008.63 6996.09 9021.17
Unfished Age 5+ Biomass (mt) 75272.70 67024.76 83520.64
Unfished Recruitment (R0) 3716.87 3296.97 4136.77
Spawning Output (millions of eggs) (2023) 2808.87 2050.19 3567.55
Fraction Unfished (2023) 0.35 0.28 0.42

Reference Points Based SO40%
Proxy Spawning Output (millions of eggs) SO40% 3203.45 2798.43 3608.47
SPR Resulting in SO40% 0.46 0.46 0.46
Exploitation Rate Resulting in SO40% 0.03 0.03 0.03
Yield with SPR Based On SO40% (mt) 1151.99 1018.02 1285.96

Reference Points Based on SPR Proxy for MSY
Proxy Spawning Output (millions of eggs) (SPR50) 3573.08 3121.33 4024.83
SPR50 0.50
Exploitation Rate Corresponding to SPR50 0.03 0.03 0.03
Yield with SPR50 at SO SPR (mt) 1093.67 966.45 1220.89

Reference Points Based on Estimated MSY Values
Spawning Output (millions of eggs) at MSY (SO MSY) 2063.47 1797.25 2329.69
SPR MSY 0.33 0.33 0.33
Exploitation Rate Corresponding to SPR MSY 0.05 0.05 0.05
MSY (mt) 1246.13 1101.31 1390.95

Management performance

Total mortality of canary rockfish is generally well below the annual catch limit (Table vi). However, for
catch limits in 2013–2016 the stock was in an overfished designation. During that time, attainment averaged
around 60%. In 2015 the full annual catch limit (ACL) was nearly achieved (93% attainment). Beginning in
2017, the ACL increased more than tenfold with the lifting of the overfished designation. Since that time,
catches have increased and attainment has averaged around 40%.
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Table vi: The OFL (overfishing limit), ABC (allowable biological catch), ACL (annual catch limit), and
total mortality (landings + dead discards), all in units of metric tons

Year OFL ABC ACL Total Mortality

2013 752 719 116 45.00
2014 741 709 119 54.09
2015 733 701 122 113.69
2016 729 697 125 75.61
2017 1793 1714 1714 399.66

2018 1596 1526 1526 598.69
2019 1517 1450 1450 581.78
2020 1431 1368 1368 513.68
2021 1459 1338 1338 558.68
2022 1432 1307 1307 700.36

Unresolved problems and major uncertainties

The major uncertainty in this assessment is treatment of natural mortality. This issue has been a long-
standing uncertainty for canary rockfish assessments, and remains so. This uncertainty arises from obser-
vations in survey and fishery data that age-based sex-ratios are male skewed starting around age 20. This
could be explained by females being less susceptible to capture, or to fewer females in the population, or to
some combination of both. No refugia for old females has been found thus far suggesting mortality may be
a more probable culprit, however sex ratios within Oregon fishery data have been nearer to equal in the last
decade. Regardless, there is uncertainty on how best to model this dynamic.

The choice of how to model natural mortality matters. Assuming fixed sex-specific age-invariant natural
mortality results in a more pessimistic outlook because natural mortality for females is fixed at the lower
prior (0.0643) value. If natural mortality is age-dependent, female natural mortality is estimated to be higher
at older ages, and the magnitude of the value increases with the age at which the break in natural mortality
occurs. A higher natural mortality estimate results in a more optimistic population trajectory that increases
dramatically in the 2000s from low abundance in the late 1990s. Modeling selectivity as sex-dependent,
as in the base model, reflects a middle ground in the estimate of natural mortality, in that age-invariant
estimates between males and females differ by 20 percent (with females higher), while avoiding the less
common biological assumption that natural mortality increases with age. However, applying sex-dependent
selectivity results in larger females having greater selectivity values than males, which would seem to be
opposite to treatments in past assessments for explaining the male-skewed sex ratio due to older females
being less susceptible to capture. Assuming no sex-dependent selectivity results in a worse fitting model,
and also has a different population outlook in that natural mortality for females is estimated lower than the
prior estimate (0.055) while high recruitment in recent years results in a greater population increase than
would be expected under such a low natural mortality estimate under average recruitment deviations.

A challenge with the current base model is that it is highly parameterized with many correlations between
parameters above 0.8, including some parameters with correlations as high as 0.97. Earlier versions of the
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model suggested a flat likelihood surface. Although the current base model is more stable due to simplifi-
cations to the Washington recreational and Oregon non-trawl selectivity blocks, the number of selectivity
parameters and correlations among them indicate additional simplification may be warranted. Simplifying
the number of selectivity parameters by reducing the number of time-varying blocks degrades model fit by
a large degree and does not appear to be a solution for reducing model complexity. Modeling selectivity as
a three parameter double-normal reduces correlation in parameters compared to a four parameter formu-
lation, however modeling sex-dependent selectivity reintroduces a fourth selectivity parameter. Alternative
forms for modeling selectivity and continued explorations into ways to model processes that lead to high
male sex ratios in older ages may help reduce parameter correlations, and limit concerns about potential
over-parameterization.

Decision table and projections

A ten-year projection of the base model with catches equal to the estimated ACL based on the category
1 time-varying 𝜎 (0.5) with 𝑃 ∗ = 0.45 (i.e., termed the “buffer”) for years 2025-2034 is shown in Table
vii. The removals in 2023 and 2024 were set equal to the recommended fleet-specific values as provided by
the Groundfish Management Team (GMT). At the end of the projection period, 2034, the projected ACL
removals result in spawning output relative to unfished to be 33.1 percent.

The axis of uncertainty in the decision table is based on the uncertainty around natural mortality. Alternative
structural assumptions around natural mortality were used to identify the low and high states of nature,
where the base model is assigned a 50 percent probability of being the true state of nature and both the low
and high states of nature are assigned a 25 percent probability. The alternative states of nature were based
on the M ramp (high state) and single M (low state) sensitivity runs. The proposed decision table assumes
full ACL removal during the projection period under alternative catch streams based on a 𝑃 ∗ = 0.45 and
𝑃 ∗ = 0.40 (Table viii).
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Table vii: Projections of estimated OFL (mt), ABC (mt), resulting ACLs (mt) based on 40-10 rule and applied buffers, and
estimated spawning output in millions of eggs, and spawning output relative to unfished for 2025-2034, with assumed removals in
2023 and 2024 based on recommended values from the Groundfish Management Team.

Year Adopted
OFL
(mt)

Adopted
ABC
(mt)

Adopted
ACL
(mt)

Assumed
removals
(mt)

OFL (mt) Buffer ABC ACL Spawning
Output

Fraction
Unfished

2023 1413 1284 1284 863.16 2808.87 0.35
2024 1401 1267 1267 860.19 2782.56 0.35
2025 646.93 0.935 604.88 571.28 2739.40 0.34
2026 654.71 0.930 608.88 572.51 2709.94 0.34
2027 674.29 0.926 624.39 583.52 2670.26 0.33
2028 703.06 0.922 648.22 601.48 2625.73 0.33
2029 737.31 0.917 676.11 623.09 2584.62 0.32
2030 773.77 0.913 706.45 647.92 2556.58 0.32
2031 809.71 0.909 736.03 674.16 2548.98 0.32
2032 843.09 0.904 762.15 699.96 2564.13 0.32
2033 872.65 0.900 785.38 725.64 2599.27 0.32
2034 897.79 0.896 804.42 749.34 2649.08 0.33
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Table viii: Decision table with 10-year projections beginning in 2025 for alternative states of nature based
around modeling natural mortality. ’Mgmt’ refers to the two management scenarios (A) the default harvest
control rule 𝑃 ∗ = 0.45, and (B) harvest control rule with a lower 𝑃 ∗ = 0.40. Catch (in mt) is from the
projections from the base model for each management scenario, and is applied to each state of nature.
Catches in 2023 and 2024 are fixed at the ACLs and have been set for that year with values provided by the
GMT. The alternative states of nature (’Low’, ’Base’, and ’High’) are provided in the columns, and assume
female natural mortality is either fixed at the prior estimate (Single M; low state), estimated as age-invariant
(base), or is estimated at older ages (M ramp; high state). Spawning output (’Spawn’, in millions of eggs)
and fraction of unfished (’Frac’) is provided for each state of nature.

Mgmt Year Catch Low
Spawn

Single M

Low
Frac

Single M

Base
Spawn

Base
Frac

High
Spawn

M ramp

High
Frac M

ramp

A 2023 863 2523.10 0.244 2808.87 0.351 3098.08 0.430
2024 860 2494.43 0.241 2782.56 0.347 3068.81 0.426
2025 533 2449.39 0.237 2739.40 0.342 3021.70 0.419
2026 533 2424.82 0.234 2713.76 0.339 2989.89 0.415
2027 542 2392.15 0.231 2678.11 0.334 2946.34 0.409
2028 558 2355.98 0.228 2637.77 0.329 2897.29 0.402
2029 577 2323.21 0.224 2601.05 0.325 2853.02 0.396
2030 598 2301.84 0.222 2577.72 0.322 2825.45 0.392
2031 621 2298.39 0.222 2575.43 0.322 2823.73 0.392
2032 645 2315.69 0.224 2596.64 0.324 2850.17 0.395
2033 667 2352.54 0.227 2638.56 0.329 2899.70 0.402
2034 686 2405.68 0.232 2695.91 0.337 2964.22 0.411

B 2023 863 2523.10 0.244 2808.87 0.351 3098.08 0.430
2024 860 2494.43 0.241 2782.56 0.347 3068.81 0.426
2025 571 2449.39 0.237 2739.40 0.342 3021.70 0.419
2026 573 2420.81 0.234 2709.94 0.338 2986.12 0.414
2027 584 2383.86 0.230 2670.26 0.333 2938.59 0.407
2028 601 2343.21 0.226 2625.73 0.328 2885.43 0.400
2029 623 2305.70 0.223 2584.62 0.323 2836.83 0.393
2030 648 2279.22 0.220 2556.58 0.319 2804.60 0.389
2031 674 2269.97 0.219 2548.98 0.318 2797.59 0.388
2032 700 2280.56 0.220 2564.13 0.320 2817.93 0.391
2033 726 2309.81 0.223 2599.27 0.325 2860.65 0.397
2034 749 2354.31 0.227 2649.08 0.331 2917.64 0.405
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Scientific uncertainty

The model estimate of 𝜎OFL, the uncertainty around the overfishing limit, is 0.145. Given the significant
structural uncertainty in the model, particularly around natural mortality, selectivity, and the processes
leading to the lack of older females in the population, this is considered an underestimate. It is also lower
than the default Category 1 uncertainty value of 0.5, so projections will use the default value of 𝜎OFL = 0.5.

Research and data needs

We list current research recommendations and prioritize them from high to low. Lower priority needs should
not not be interpreted as unimportant, but rather lower relative to other priorities listed here. The topics
are further expanded upon in the full document.

1. Continued research into the mechanism leading to skewed sex ratios and empirical studies to estimate
natural mortality rates. (High)

2. The WCGBTS has low encounter rates with canary rockfish in part because it has limited access
to rocky habitat. We recommend exploration of non-trawl coast-wide fishery-independent indices.
(Medium)

3. Similar to recommendations 1 and 2, other biological relationships can be updated to better understand
dynamics for canary rockfish. Few samples of canary rockfish are available to inform estimates of
fecundity. Fecundity for canary rockfish was based on a genus level relationship. (Medium)

4. This assessment model does not include any ecosystem or climate considerations, but canary rockfish
are considered highly vulnerable and highly exposed to climate change. (Medium)

5. Establish a process by which research-based assessments can be done to explore differences in spatial
and non-spatial modeling structure, stability, and results. (Medium)

6. Research to inform understanding of movement rates for a spatial model, as well as improve estimates
of natural mortality. (Low)

7. Revision of the ageing error matrices, incorporating the new aged canary rockfish data and utilizing
new analytical methods. (Low)
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1 Introduction

1.1 Basic Information

Canary rockfish (Sebastes pinniger) are distributed in the northeastern Pacific Ocean from the western Gulf
of Alaska to northern Baja California; however, the species is most abundant from British Columbia to
central California (Miller and Lea 1972; Hart 1973; Love et al. 2002). Adults are primarily found along the
continental shelf shallower than 300 m, although they are occasionally observed in deeper waters. Juvenile
canary rockfish are found in shallow and intertidal areas (Love et al. 2002).

From 2001 to 2011, the canary rockfish stock assessment models structured the population as a single
coastwide stock, but used an areas-as-fleets approach to varying degrees to account for spatial differences in
sizes and ages observed in fisheries along the coast. The most recent assessment in 2015 instead modeled
three distinct areas along the coast, but assumed biological relationships and fishery selectivity were constant
across latitudes (Thorson and Wetzel 2016). Research since the previous assessment indicates that canary
rockfish are genetically well-mixed along the U.S. west coast (Budrick 2016), that the previous assessment
model had poor numerical stability, and that the spatially explicit parameters that the model attempted to
estimate were not in fact identifiable (Monnahan et al. 2019).

Spatial models have commonly been utilized for populations where spatial differences in growth and/or
movement exist (Punt 2019), but have also been applied for populations with regional differences in catch
histories (Cope and Punt 2011). In these situations spatial models have generally performed well. However,
research has also argued for parsimony (Goethel et al. 2023), and identified that there are tradeoffs in model
stability (Punt 2019) and performance (Punt et al. 2015). There is limited evidence suggesting biological
differences among regions and little information to inform movement dynamics for spatial models of canary
rockfish. The 2015 assessment also found results from a spatial model and single-area (coastwide) model were
similar (Thorson and Wetzel 2016). For these reasons, and because early attempts to maintain the spatial
structure applied in the 2015 assessment to the 2023 base model indicated model instability, we return to
the historical single-area (coastwide) model for this assessment with fishery selectivity generally estimated
by state (Figure 1).

1.2 Life History

Canary rockfish are a medium to large-bodied rockfish and achieve a maximum size of around 70 cm. Female
canary rockfish reach larger sizes than males. Canary rockfish are relatively long-lived, with a maximum
observed age in the literature of 84 years. However, in both the California Current and the coastal waters off
British Columbia, only males are commonly observed above the age of 50, while females tend to be rare above
age 30. The degree to which this pattern reflects behavioral differences translating to reduced availability to
fishery and survey fishing gear, or an increase in relative mortality for older females has been the focus of
much discussion and remains unclear. A similar pattern has been observed for yellowtail rockfish (Sebastes
flavidus) and black rockfish (Sebastes melanops), two closely related species (Wallace and Lai 2005; Cope et
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al. 2016; Rasmuson et al. 2023). Since the 2002 assessment, this pattern has been accommodated within the
stock assessment model by allowing female natural mortality to increase at approximately the age of first
sexual maturity, as justified by an increase in behavioral risk or physiological stress resulting from female
spawning.

Adult canary rockfish primarily inhabit areas in and around rocky habitat. They form very dense schools,
leading to an extremely patchy population distribution that is reflected in both fishery and survey encounter
rates, and this distribution strongly affects the calculation and interpretation of population indices and age-
or size-composition data. Juvenile canary rockfish are found in shallow and intertidal areas (Love et al. 2002).
Canary rockfish spawn in the winter, producing pelagic larvae and juveniles that remain in the upper water
column for 3-4 months (Love et al. 2002). These juveniles settle in shallow water around nearshore rocky
reefs, where they may congregate for up to three years (Boehlert and Yoklavich 1984; Sampson 1996) before
moving into deeper water. The mean size of individuals captured in the trawl survey shows a characteristic
ontogenetic shift to deeper water with increasing body size. In addition, the age and size of canary rockfish
appears to vary by latitude, with the oldest largest fish occurring in more northerly latitudes and declining
southward along the coast, with some evidence of breakpoints in size occurring along central California or
southern Oregon (Keller et al. 2018; Brooks 2021).

The most recent research indicates limited stock structure of canary rockfish along the U.S. west coast.
Limited tagging research conducted off Oregon found that of 10 canary rockfish recovered, 2 moved between
5 and 30 km, and 5 moved more than 100 km over a period of up to several years (DeMott 1982). A
single canary from that study moved 236 km to the south, and those that moved the farthest also moved to
much greater depths than the shallow reefs at which they had been tagged. Another study in central and
southern California tagged 13 canary rockfish but recaptured none (Hanan and Curry 2012). Early genetic
research found patterns suggestive of some population structuring between the northern California/southern
Oregon and northern Oregon/southern Washington, but this work was based on limited sampling and also
found evidence of reduced gene flow between shallow and deeper areas (Wishard et al. 1980). Using
modern population genetic methods (Gomez-Uchida et al. 2003), Budrick (2016) found little support for
population structure of canary rockfish within the California Current. Supporting the genetic analysis, otolith
microchemistry indicates no differentiation in natal or juvenile habitat between canary rockfish collected in
Oregon and Washington waters (Gao et al. 2013).

There are few biogeographic boundaries clearly applicable to rockfish on the U.S. and Canadian west coasts.
However, canary rockfish are not found in large numbers south of Point Conception. The divergence zone at
the northern edge of Vancouver Island likely creates a barrier for pelagic dispersal and productivity for many
species (Ware and McFarlane 1989); therefore it is the southern portion of the B.C. canary resource that
is most likely to have dynamics linked to the U.S. resource. It is likely that canary rockfish cross the U.S.
Canadian border as pelagic larvae, juveniles, and possibly adults making their ontogenetic shift to deeper
water or moving between areas of rocky habitat.

The 2002 assessment integrated what had previously been separate north-south assessments based on the
observations of highest density occurring near headlands and International North Pacific Fishery Com-
mission (INPFC) boundaries commonly used to delineate management and assessment areas (Methot and
Piner 2002). They reasoned that splitting stocks or assessments at any INPFC boundaries would divide
high-density areas that most likely are biologically linked. This logic was followed in the 2005 benchmark
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assessment and subsequent 2007 and 2009 update assessments, separating fishing fleets geographically to
account for potential spatial patterns while retaining a coast-wide assessment area. All U.S. assessments
have used the U.S.-Canadian border as the northern boundary for the stock, although the basis for this
choice appears to be largely based on both (1) consistency with current management needs, and (2) data
availability and feasibility of expanding data from multiple jurisdictions within a single stock assessment.

1.3 Ecosystem Considerations

Canary rockfish are reported to have a diverse diet. Pelagic juveniles consume copepods, amphipods and krill,
while adults consume krill and many species of small fish (Love et al. 2002). The California Current Trophic
Database includes records of canary rockfish consuming amphipods, copepods, euphausiids, isopods, mysids,
pandalid shrimp, myctophids, herring, and chaetognaths, as well as unidentified bony fish and crustaceans
(Bizzarro et al. 2023). The degree to which variability in food supply may affect body condition, spawning
success or annual growth is unknown. Young-of-the-year canary rockfish have been reported in stomachs
of Chinook and coho salmon (Oncorhynchus tshawytscha and Oncorhynchus kisutch, Thayer et al. 2014;
Bizzarro et al. 2023), and they are also consumed by seabirds (Warzybok et al. 2018). Although canary
rockfish are difficult to identify to the species level in stomach contents, they are likely preyed upon by other
large fish such as lingcod (Ophiodon elongatus). A 47 cm canary rockfish was once reported in the stomach
of a 24 kg Lingcod off the coast of Monterey, California (Phillips 1959). According to a recent California
Current climate vulnerability analysis that ranked species on a scale of low, moderate, high, and very high,
canary rockfish have high exposure and high sensitivity to climate change, similar to most rockfish (McClure
et al. 2023).

Although ecosystem factors have not been explicitly modeled in this assessment, there are several important
aspects of the recent California current ecosystem that appear to warrant consideration. Lingcod, a poten-
tially important predator of small canary, have rebuilt over the last two decades (Johnson et al. 2021; Taylor
et al. 2021b). To the extent that the component of natural mortality of canary rockfish added by predation
from Lingcod and other predators has been increasing over recent years, recruitment may be underestimated.
This effect could also lead to longer than predicted recovery times for canary rockfish (Oken and Essington
2016). Conversely, Pacific salmon are known to consume young canary rockfish, and their populations have
generally declined in recent years (Bizzarro et al. 2023). Canary rockfish productivity as estimated in the
last assessment is significantly associated with the PDO (Mantua et al. 1997; Bell et al. 2023), and growth
and condition were also found to be associated with the PDO and other basin-scale indices (Keller et al.
2018). However, relationships between productivity of fish populations with non-mechanistic basin-scale
indicators such as the PDO have been degrading in recent years due to climate change (Litzow et al. 2020;
Werb and Rudnick 2023), so these relationships may not be reliable predictors moving forward. In contrast
to predictions from the climate vulnerability analysis, there is evidence that canary rockfish productivity
has been trending upward recently (Bell et al. 2023). The prevalence of a strong 1999 year-class for many
west coast groundfish species suggest that environmentally driven recruitment variation may be correlated
among species with relatively diverse life-history strategies (Thorson et al. 2013; Stachura et al. 2014).
Much research is currently underway to explore these phenomena, and it appears likely that more explicit
exploration of ecosystem processes and influences may be able to be incorporated into management both
within and outside of future canary rockfish stock assessments.
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1.4 Historical and Current Fishery Information

Canary rockfish is caught in both commercial and recreational fisheries off the U.S. West Coast alongside
other rockfish species, with the majority of catches for canary rockfish coming from commercial sources
(Tables 1–2, and Figure 2). The rockfish fishery off the U.S. West Coast developed off California late in the
19th century and was catching an average of almost 2,500 metric tons per year across species over the period
1916-1940 (with an increase in catches in 1916, during World War I). To the north, the rockfish fishery
developed slowly and became established during the early 1940s, when the United States became involved in
World War II and wartime shortages of red meat created an increased demand for other sources of protein
(Harry and Morgan 1961; Alverson et al. 1964). Rockfish catches dropped somewhat following the war, and
were generally stable from the 1950s to the 1960s.

Historically, the vast majority of canary rockfish off the U.S. West Coast have been harvested by commercial
trawling vessels, followed by hook-and-line (primarily vertical longline), shrimp trawls, and various miscel-
laneous gears (e.g., nets and pots). In 1977, when the MSFCMA was enacted, the large foreign-dominated
rockfish fishery that had developed since the late 1960s had its catches eliminated, and the domestic trawl
fishery subsequently increased its catches. Canary rockfish were also sought by recreational anglers and
considered to be a moderately important species caught in the private vessel and charter boat fisheries off
Washington, Oregon, and northern California.

Inspection of the historical catch reconstructions for canary rockfish (see Section 2.2.1 for details) shows that
reconstructed catches from 1892 to 2022 were highest historically in the trawl and foreign fisheries (Figure 2).
The trawl (TWL) fishery was high around the end of World War II (1945: 3,724 mt), but decreased during
the 1950s-1960s. A foreign fleet (FOR) operated 1966-1976, and nearly exceeded the domestic trawl landings
in 1966 (TWL: 1,658 mt, FOR: 1,599 mt). The foreign fleet was replaced by the domestic bottom trawl fleet
following the MSFCMA (1978 TWL: 3,945 mt). The trawl fishery reached a peak in the early 1980s (1982:
5,155 mt) and subsequently decreased after the establishment of strict management restrictions starting in
the mid-1990s. The decrease in the trawl fishery allowed the recreational and non-trawl fisheries to take a
larger proportion of total catch beginning in the 2000s. Following the removal of the overfished designation
due to findings from the 2015 assessment (Thorson and Wetzel 2016), catches increased considerably, though
to levels well below those seen during much of the period of industrial fishing. Today, most catch still occurs
in the trawl fishery (particularly in a growing midwater trawl fleet), though there is a sizable recreational
(REC) component of landings as well (2022 TWL: 507 mt, REC: 152 mt). Trawl catches are highest in
Oregon, whereas non-trawl and recreational catches are highest in California.

1.5 Summary of Management History and Performance

The first regulations established on the canary rockfish fishery off the U.S. West Coast were implemented in
1983 as trip limits (40,000 lb. per trip) on the entire Sebastes complex (a market category that included all
rockfish species except Pacific Ocean perch Sebastes alutus and widow rockfish Sebastes entomelas) harvested
from the U.S. Vancouver and Columbia INPFC areas (Pacific Fishery Management Council 2002). Com-
mercial vessels were not required to separate most rockfish catches into individual species, but rather, only
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into mixed-species categories, such as the Sebastes complex. Port biologists in each state routinely sample
market categories (e.g., Sebastes complex) to determine the actual species composition of these mixed-species
categories. Since 1967, various port sampling programs have been utilized by state and federal marine fishery
agencies to determine the species compositions of the commercial groundfish landings off the U.S. West Coast
(Sampson and Crone 1997). Stratified, multistage sampling designs are currently used in the port sampling
programs for purposes of evaluating the species compositions of the total landings, as well as for obtaining
biological data on individual species Pearson and Erwin (1997).

From 1983 through 1994, canary rockfish were monitored as part of the Sebastes complex, with various trip
limits imposed over this 10-year span. In 1993 and 1994, commercial fishermen communicated that fewer
canary rockfish were being caught in their rockfish tows (Pacific Fishery Management Council 2002). The
1994 canary rockfish stock assessment (Sampson and Stewart 1994) confirmed that the observed declines in
the field were likely the result of a population that had not responded favorably to recent levels of fishing
pressure and further recommended that the canary rockfish Acceptable Biological Catch (ABC) be reduced
to allow the stock to recover. Beginning in 1995, the ABC for canary rockfish was reduced nearly 60%, to
1,250 mt. In 1995, trip limits specific to canary rockfish (cumulative monthly trip limit of 6,000 lb.) were
imposed and commercial vessels were required to sort canary rockfish from other rockfishes. In 1998, catches
of canary rockfish were regulated using a two-month cumulative trip limit of 40,000 lb. for the Sebastes
complex, of which, no more than 15,000 lb. (38%) could be composed of canary rockfish. That is, although
this species was allocated its own market category, it was still being managed as part of the mixed-species
complex. The ABC was further reduced to 1,045 mt.

The two stock assessments conducted in 1999 (California and Washington-Oregon) found the stock to be
depleted and an overfished determination was made in 2000. Subsequently, commercial and recreational
fishing opportunities were severely restricted and removals were mainly from bycatch. Canary rockfish
became a limiting species for fisheries that target other commercially important species on the continental
shelf. The optimum yield (OY) in 2003 was 44 mt; which was only about 1% of the peak annual catches in
the early 1980s. Management regulations were sufficiently strict to keep the catch that year to only 51 mt.
During the overfished time period, the fishery was far below ABC levels. Shelf rockfish species (including
canary) could no longer be retained by vessels using bottom trawl footropes with a diameter of greater than
8 inches. The use of small-footrope gear increases the risk of gear loss in rocky areas, and this restriction
was intended to discourage trawlers from fishing in high-relief, rocky habitat. The impact of the change in
gear regulations was reinforced through reductions in landing limits for all other shelf rockfish species.

In 2002, the trawl and non-trawl Rockfish Conservation Areas (RCAs) were implemented as depth-based
closed areas to reduce bycatch of overfished rockfish species such as canary rockfish in the northern portion
of the coast and bocaccio (Sebastes paucispinis) in the south. Specific boundaries for the trawl RCA have
varied across bimonthly periods within and among years in response to changing discard rates and fishery
dynamics. There was generally a dynamic pattern of the closed area extending from the shoreline (or 75
fm) out to 150 fm (274 m), 200 fm (366 m) or 250 fm (457 m). Deeper depths are generally closed in the
winter months and there are a number of latitudinal differences in the extent of the current RCA; however
the large majority of depths deeper than 75 fm (137 m) where canary rockfish occur were closed to all
commercial on-bottom fishing for groundfish. It is possible that by closing most of the depth range of the
species the RCA influenced the size range of canary rockfish available to the fishery. The Pacific Fishery
Management Council (PFMC) eliminated the trawl RCA off of the coasts of California and Oregon in 2018,
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and the decision went into effect in 2020. The non-trawl RCA has also seen relaxation for some gear types
over certain latitudes in recent years.

Beginning in 2005, the modified “flatfish” trawl gear was required shoreward of the RCA. This gear was
found to reduce the catch-per-unit-effort of canary rockfish relative to standard commercial gear in pilot
experiments (King et al. 2004). Recreational limits were also substantially reduced for more than a decade.
After first reducing bag limits, starting in 2003 all three states allowed no retention of canary rockfish
during recreational fishing. From 2005 to the end of the overfished designation, mortality associated with
recreational fishing was primarily comprised of discard mortality from fish caught while targeting other
species such as Pacific halibut (Hippoglossus stenolepis) or other rockfish.

A groundfish trawl rationalization program was commenced in 2010 via Amendment 20 to the Groundfish
Fisheries Management Plan. Under this program, groundfish limited entry trawl vessels making shoreside
deliveries are managed primarily through a system of individual transferable or tradeable quotas (ITQs).
Trawl permit holders were provided with quota share percentages of the allowable catch of major species
and assemblages, based on historical fishery participation. After ACLs are set for species for a given year,
the shares are used to calculate individual quotas (in weight) that represent the amount of species’ catch
the permitted individual (and associated vessel) are entitled to catch. Unlike previous management, which
relied on limiting the landings of vessels, the new system holds individual vessels responsible for retained
and discarded catch. Discard amounts are verified by 100% at-sea observation of participating vessels.
Vessel accountability for discards has generally led to a reduction in fleet discards since implementation
for Pacific rockfishes as a whole. A system for tracking quota balances was also created, and vessels are
not allowed to fish when they have negative balances for any species/assemblage. Quota pounds have been
transferable between permit holders since the program’s beginning, and now the shares of most species may
be sold. Accumulation of shares or pounds is subject to accumulation and usage caps. Additionally, the
program provided the opportunity for trawl pounds to be fished with other gears on qualified vessels (“gear
switching”).

Catch accountability for motherships and associated catcher-vessels in the mothership sector for Pacific
hake (Merluccius productus) was achieved through a system of regulated cooperatives. Pacific hake catcher-
processors operated for years as a voluntary cooperative, and that arrangement was formalized by provisions
of Amendment 20 (NMFS 1992). Cooperatives in both of these sectors received annual poundage allocations
of hake and non-hake species, based on the entitlements of cooperative members, and these amounts are not
transferable between cooperatives. There is also no provision for voluntary transfers of pounds or shares
between fishery sectors. Beginning in 2020, the separate allocations for catcher-processors and motherships
were combined into a single at-sea hake set-aside.

Canary rockfish was declared rebuilt following the 2015 stock assessment (Thorson and Wetzel 2016). As a
result, in 2017 the ACL increased more than tenfold from 125 mt to 1714 mt (Table 3). Catches increased
substantially following this relaxation, especially in the recreational fishery and in a growing midwater trawl
fishery (Figure 2). Since rebuilding, total mortality (catches plus dead discards) has generally been around
40% of the ACL. Areas and depths previously restricted have since started to reopen.
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1.6 Foreign and Alaska Fisheries

Canary rockfish in Canadian waters off the coast of British Columbia appear to have similar life history
characteristics to those found off the U.S. West Coast. Similar to the U.S. West Coast, male age samples
display a long tail past 60, but there are few females older than 40 (DFO 2023). A 2022 assessment
successfully estimated both male and female natural mortality (constant across ages) as 0.065 and 0.093
yr−1, respectively (DFO 2023). The canary rockfish population in Canadian waters reached a similar trough
around 2000 to that observed in the U.S. (DFO 2023). Removals are dominated by the trawl fishery and by
catches off the west coast of Vancouver Island (areas 3C and 3D, DFO 2023). Catches were highest (>1200
mt) in the decade from 1986-1995, and then declined and have remained relatively stable since, averaging
around 800 mt since 1996, and around 540 mt during that time for the west coast of Vancouver Island (DFO
2023).

It is difficult to conclude what the current status of canary rockfish is off of Alaska. The North Pacific Fishery
Management Council (NPFMC) assesses and manages canary rockfish as a minor part of an assemblage
including seven species of demersal shelf rockfishes (Joy et al. 2022). The primary component of this group
is yelloweye rockfish (Sebastes ruberrimus), although quillback (Sebastes maliger), copper (Sebastes caurinus),
China (Sebastes nebulosus), tiger (Sebastes nigrocinctus) and rosethorn (Sebastes helvomaculatus) rockfishes
are also included. No species in the assemblage are the target of a commercial fishery. Yelloweye rockfish
biomass is estimated from an autoregressive random effects model applied to submersible biomass estimates
(crewed 1994-2009, and remotely operated 2012-2022) and the IPHC longline survey (Joy et al. 2022). A
bayesian state-space surplus production model that incorporated catches was also recently presented as a
research model. Canary rockfish, in particular, is managed as Tier 6, and no direct indices of canary rockfish
abundance in the Gulf of Alaska have been reported.

2 Data

Data comprise the foundational components of stock assessment models. The decision to include or exclude
particular data sources in an assessment model depends on many factors. These factors often include,
but are not limited to, the way in which data were collected (e.g., measurement method and consistency);
the spatial and temporal coverage of the data; the quantity of data available per desired sampling unit;
the representativeness of the data to inform the modeled processes of importance; limitations imposed by
the PFMC Groundfish Terms of Reference; and the presence of an avenue for the inclusion of the data
in the assessment model. Attributes associated with a data source can change through time, as can the
applicability of the data source when different modeling approaches are explored (e.g., stock structure or
time-varying processes). Therefore, the specific data sources included or excluded from this assessment
should not necessarily constrain the selection of data sources applicable to future stock assessments for
canary rockfish. Even if a data source is not directly used in the stock assessment, it can provide valuable
insights into biology, fishery behavior, or localized dynamics.

Data from a wide range of programs were available for possible inclusion in the current assessment model.
Descriptions of each data source included in the model and sources that were explored but not included in
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the base model are provided below. In some cases, the inclusion of excluded data sources were explored
through sensitivity analyses (see Section 3.5.2).

2.1 Data Sources Used in this Assessment

This assessment updates the data that were used in the 2015 benchmark assessment and the corrections to
catch applied for the 2017 catch only update, as well as utilizes additional data that were collected since
the last benchmark. Fishery data sources (including length composition, age composition, and catch time
series) are split among three strata to make comparisons to and explorations from the 2015 benchmark
assessment more direct, whereas abundance indices and corresponding length and age compositions from the
fishery-independent surveys are combined across these strata to match the population scale reflected in the
model. Each data source is summarized here, and then discussed in more detail below:

1. Data regarding total removals of canary rockfish are compiled for years 1892-2022. These data are
obtained from several sources:

a. In California, landed recreational (1928–2022) and commercial (1916–2022) catches along with
estimates of recreational dead discards come from multiple data sources including state recon-
structions, CalCOM database for the California Cooperative Survey (CalCOM), Recreational
Fishery Information Network (RecFIN), and Pacific Fisheries Information Network (PacFIN).
Historical recreational landings up to 1980 are based on those used in the previous benchmark
assessment.

b. In Oregon, landed recreational and commercial (1892–2022) catches along with estimates of
recreational dead discards were provided directly by Oregon Department of Fish and Wildlife
(ODFW) and come from multiple data sources including state reconstructions, PacFIN, and
RecFIN.

c. In Washington, landed recreational catches (1967–2022) along with estimates of recreational re-
leases were provided directly by Washington Department of Fish and Wildlife (WDFW). Histor-
ical commercial landed catches (1935–1980) are based on those used in the previous assessment.
Commercial landed catches from 1981–2022 are from PacFIN.

d. Foreign trawl fleet catches from 1966–1976 are based on Rogers (2003).
e. Total removals of canary in the at-sea hake fishery (1973–2022) were provided by the Northwest

Fisheries Science Center (NWFSC) At-Sea Hake Observer Program (ASHOP).
f. Total commercial discards for recent years (2003–2021) are estimated in the annual mortality re-

port using data from a variety of sources including the West Coast Groundfish Observer Program
(WCGOP), and are publicly available.

g. Discard rates for 1981-1994 are obtained from the Pikitch study (Pikitch et al. 1988) as analyzed
by J. Wallace.

2. Fishery-independent data are included from three different surveys:

a. The Triennial Survey conducted by the Alaska Fisheries Science Center provides abundance
index, length composition, and age-composition samples and was included for years 1980-2004.
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b. The WCGBTS conducted by the NWFSC provides abundance index, length composition, and
age-composition samples, and was available for years 2003-2022, with the exception of 2020 due
to the COVID-19 pandemic.

c. The pre-recruit survey, which combines data collected by the Southwest Fisheries Science Center
(SWFSC), NWFSC, and Pacific Whiting Conservation Cooperative provides a relative index of
density for pre-recruit fish, and was included for most years from 2001-2022. Composition data
are not used for this survey.

3. Fishery-dependent composition data are included from the following sources:

a. Commercial length and age composition data were obtained from PacFIN.
b. Recreational length and age composition data from state sampling programs or historical sam-

pling efforts were either provided by the state agencies or were obtained from RecFIN.
c. Length and age data for canary rockfish from the at-sea hake fishery were obtained from the

NWFSC ASHOP.

4. Estimates of life history parameters are generated from various sources, and include:

a. Updated maturity schedule from analyses based on functional age-at-maturity, which accounts
for abortive maturation, wherein young spawners may have yolk present but are not yet spawning
capable, and skip spawning, wherein mature individuals do not spawn in every year.

b. Updated fecundity relationship based on a meta-analysis assuming fecundity is a power function
of length.

c. Updated prior for natural mortality rate along with updated treatment of mortality as age-
invariant but sex dependent.

d. Updated prior on steepness according to best practices.
e. Updated weight-at-length relationship as estimated from the WCGBTS.
f. Estimates of ageing error for break-and-burn ages were maintained from the previous benchmark

assessment.

These data sources are illustrated in Figure 3.

2.2 Fishery-Dependent Data

2.2.1 Total Removals

Removals (1892-2022) for canary rockfish were compiled from multiple data sources. This assessment includes
total removals (landings plus dead discards) by state for the following fleets: trawl, non-trawl, recreational,
foreign trawl, and at-sea hake. A summary of total removals are provided in Table 1 and Table 2, and Figure
2.

2.2.1.1 Commercial Landings by State
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2.2.1.1.1 Washington Commercial landings data in Washington were available from 1935–2022. His-
torical landings (1935–1980) were retained from the last full assessment where they were assumed to be
for trawl gears (Stewart 2007; Thorson and Wetzel 2016). Recent landings (1981–2022) for the trawl and
non-trawl (mainly hook and line) gears were obtained from PacFIN, the central repository for West coast
commercial landings (extracted on 03/23/2023, Pacific States Marine Fisheries Commission (PSMFC), Port-
land, Oregon). A small update to 2022 landings from PacFIN values was provided by WDFW on 06/18/2023.

2.2.1.1.2 Oregon Commercial landings data in Oregon were available from 1892–2022. Historical
landings from 1892 to 1986 were provided by ODFW (Karnowski et al. 2014). Landings in 1987–1999 were
compiled from a combination of PacFIN, (extracted on 03/23/2023), and a separate ODFW reconstruc-
tion that delineated canary rockfish-specific landings among unspecified species categories within PacFIN
(e.g. URCK and POP1, Oregon Department of Fish and Wildlife 2017). Canary rockfish landings from this
reconstruction were substituted for the URCK and POP1 landings available from PacFIN and added to
PacFIN landings from other categories for a complete time series of canary rockfish during this time period.
Commercial landings in 2000–2022 were available on PacFIN (extracted on 03/23/2023).

2.2.1.1.3 California Commercial landings data in California were available from 1916–2022. Historical
landings from 1916 to 1980 were obtained following the process described in the southern California vermilion
rockfish (Sebastes miniatus) assessment (see Dick et al. 2021b for complete details). Briefly, landings
1916–1968 came from a state reconstruction (Ralston et al. 2010). Landings from unknown gears in known
regions were allocated proportional to landings from known gears within the same region for each year.
Landings from unknown locations (Region 0) and unknown gears were allocated proportional to the landings
from known gears across all known locations for each year. Landings from 1969–1980 came from CalCOM,
which for 1969–1977 incorporates fish ticket data including mixed species categories for rockfish that were
assigned to individual species using the earliest species composition samples (from the late 1970s and ealy
1980s). Recent (1981–2022) landings by trawl and non-trawl gears were obtained from PacFIN (extracted
on 03/23/2023).

Additional catches caught off the coast of Oregon or Washington but landed in California from 1948-1968
were included, as these were not incorporated within the Ralston et al. (2010) reconstruction (E. Dick,
SWFSC, personal communication, 3/16/23). These final landings are in the California landings history for
consistency with treatment for other states, because historical catches landed in Oregon or Washington but
caught in the other state’s waters are similarly attributed to the state where they were landed.

2.2.1.2 Commercial Discards Discarding was not estimated in the model. Estimates of dead dis-
cards were combined with landed catch to provide estimates of total removals that were used as input within
the assessment model. In recent years (2000–2022), estimates of dead discards were calculated from discard
data, but in earlier years (before 2000), estimates of dead discards were calculated based on assumed discard
ratios.

The ratio of discarded weight to landed weight (hereafter termed the “discard ratio”) for the domestic trawl
and non-trawl fisheries was assumed at the following values: 1% discard ratio for 1892–1980, based on
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the assumption that discard rates were low prior to management actions due to the high-value nature of
the fishery (and consistent with the previous assessment, Thorson and Wetzel 2016); 5% discard ratio for
1981–1994 which is approximately the value calculated by J. Wallace, NMFS using data from Pikitch et al.
(1988); 20% discard ratio for 1995–1999, based on the assumption that discard ratios would be higher than
previous years but less than years when discard data was present due to the period of non-retention (and
consistent with the previous assessment, Thorson and Wetzel 2016).

Onboard observers were deployed on fishing vessels starting in 2002 to collect data on discarding practices.
Discard amounts for the domestic trawl and non-trawl fleets from 2002–2021 were determined based on
WCGOP data provided in the Groundfish Expanded Mortality Multi-Year (GEMM) product, available
publicly. The GEMM provides estimates of dead discards coastwide. Therefore, the total coastwide estimates
of dead discards in trawl and fixed gears as provided in the GEMM were allocated by state based on the
total observed landings and discards for each state as observed by WCGOP. Dead discards were added to
landings to obtain total removals for 2002–2021. Total removals in 2000, 2001, and 2022 where no WCGOP
data were available were calculated by applying the average discard ratios from 2002–2004 (for estimates in
2000 and 2001) and 2019–2021 (for estimates in 2022) for each gear to landings for that gear.

2.2.1.3 Recreational Landings and Discards by state

2.2.1.3.1 Washington Washington recreational landings, in number of fish retained, were provided
by WDFW for 1967 and 1975–2022. Landings estimates starting in 1990 were reworked by the WDFW
sport sampling unit since the previous assessment. For 1968–1974, a linear ramp between the values in 1967
and 1975 was used to approximate landings. Recreational landings were assumed to be zero prior to 1967.
Documentation for landing estimates compiled for 1987–1989 could not be located by WDFW, but were
used in lieu of linear interpolation between estimates in 1986 and 1990.

Discard estimates for 2002–2022, in number of fish released, were also provided by WDFW. Numbers released
in specific depth categories were available from 2005–2022, and estimates of the proportion of releases that
occurred using descender devices were available from 2016–2022. Released fish at unknown depths were
allocated proportional to released fish at known depths in years with depth-specific values. For 2002–2004,
which had no depth-specific information, the average total release mortality rate in 2005–2007 was used to
calculate the number of dead discards. Depth-specific release-mortality rates were based on agreed upon
values for canary rockfish for surface releases (Table 1-10, Pacific Fishery Management Council 2014) and
releases with descender devices (Table 1-13, Pacific Fishery Management Council 2014). The release mortality
rates using descender devices in deep waters (30+ fathoms) in Pacific Fishery Management Council Pacific
Fishery Management Council (2014) were binned at a finer scale than in the provided data on descender
device usage. Number of releases decreased with water depth, so the release morality in 30+ fathoms when
using descender devices was assumed as the average of release mortality rates for 30–50 fathoms and 50-100
fathoms from Pacific Fishery Management Council (2014).

The total discard mortality rate (release rate multiplied by release mortality rate) for 2002 was also applied
to 2000–2001 landings. All three years shared a two canary daily bag limit, and were assumed to have
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similar discarding practices. We assumed zero recreational releases prior to 2000 when canary rockfish was
included as part of a ten rockfish daily limit, and release rates were generally low (P. Anderson, personal
communication, 03/20/23).

Total removals in the Washington recreational fleet were converted from numbers to weight to maintain con-
sistency with units from other fleets. Length data for sport catches were provided by WDFW for 1979–2022.
The average length of canary rockfish by year was calculated and converted to average weight based on
parameters of the length-weight relationship (𝛼 = 1.040E-05 and 𝛽 = 3.084 for length in cm and weight
in kg) as used in RecFIN. In years where the number of length samples was fewer than 25, lengths were
borrowed from the nearest neighboring years to calculate a three year weighted-average. A value of 25 was
used because it was the ‘small sample size’ threshold used by Dick et al. (2021a) and had increased percent
standard error compared to other sample sizes. Borrowing lengths from neighboring years was only applied
from years with roughly similar fishing regulations. Thus, lengths were only calculated from neighboring
years in the periods <1999 (canary rockfish part of group daily bag limits), 2000–2003 (canary rockfish
with individual daily bag limits), 2004–2016 (period of no retention), and 2017–2022 (post non-retention).
Any years without lengths were assigned the non-weighted-average length across years within a period. A
non-weighted length was applied to give each year equal weight in calculating an overall average for each
period.

2.2.1.3.2 Oregon Historic Ocean Boat Landings and Discards (1979–2000)

Recently, ODFW undertook an effort to comprehensively reconstruct all marine fish recreational ocean
boat landings prior to 2001 (Whitman 2023, in review). Reconstructed catch estimates from the ODFW
Oregon Recreational Boat Survey (ORBS) improve upon estimates from the federal Marine Recreational
Fisheries Statics Survey (MRFSS), which have known biases related to effort estimation and sampling (van
Voorhees et al. 2000) that resulted in catch estimates considered implausible by ODFW. However, the ORBS
sample estimates are known to lack the comprehensive spatial and temporal coverage of MRFSS. Addressing
this coverage issue is a major part of this reconstruction. In general, the base data and methodology for
these reconstructed estimates are consistent with recent assessments for other nearshore species (Cope and
Whitman 2021; Langseth et al. 2021; Taylor et al. 2021b; Wetzel et al. 2021).

Prior to 2001, ORBS monitored marine species in both multi-species categories, such as rockfish, flatfish,
and other miscellaneous fishes, and individual species, such as lingcod or halibut. For this comprehensive
reconstruction, four species categories were selected to reconstruct, including rockfish, lingcod, flatfish and
miscellaneous, which constitute the bulk of the managed marine fish species. Canary rockfish are a component
of the rockfish species category.

Category-level estimates were expanded to account for gaps in sampling coverage in two separate pathways.
First, estimates from five major ports were expanded to include unsampled winter months in years lacking
complete coverage. Expansions were based on available year-round sampling data and excluded years where
regulations may have impacted the temporal distribution of catch. Second, all other minor port estimates
were expanded to include seasonal estimates in years lacking any sampling based on the amount of minor
port catch as compared to all major port estimates. A subset of landings were sampled by ORBS for
species compositions within these categories. Once category-level landings were comprehensive in space and
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time, species compositions were applied for the three multi-species categories, including rockfish, flatfish and
miscellaneous fish. Borrowing rules for species compositions were specific to the category and determined
based on a series of regression tree analyses that detailed the importance of each domain (year, month, port
and fishing mode) to variability in compositions.

Ocean boat estimates 1979–2000 in numbers of fish of canary rockfish from the above described methods were
converted to biomass using biological samples from MRFSS (A. Whitman, ODFW, personal communication,
2023). MRFSS biological data are available 1980–1989 and 1993–2000. An annual average weight was applied
to the total annual number of fish to obtain an annual biomass estimate of the landings. Several years of
missing biological data (1979, 1990–1992) were filled in using neighboring years or interpolation. Landings
from 1979 to 2000 averaged 29.9 mt and are of similar magnitude to the previous assessment, though landings
appear to have less interannual variability than the previous assessment (Thorson and Wetzel 2016). Landings
were relatively high in the first year of available data (1979) and so landings from 1972 to 1978 were initiated
at zero in 1972 and linearly ramped up to the value in 1979. The provided landings do not include an estimate
of discarded fish, and thus are assumed as total removals. Bag limits in the recreational fishery during this
time period (prior to 2001) were generally liberal and ODFW staff recommended that no additional mortality
of discarded fish be included prior to 2001.

Modern Ocean Boat Landings and Discards (2001 – 2022)

Recreational landings for ocean boat modes from 2001–2022 are available from RecFIN. Both retained and
released estimates of mortality are included, though retained mortality contributes the vast majority to total
mortality in years outside the overfished designation for canary rockfish. Release mortality is estimated
from angler-reported release rates and the application of discard mortality rates from the PFMC (Pacific
Fishery Management Council 2014). The average proportion of canary rockfish discarded averaged 4.5%
in 2001–2003 and 2017–2022. During years where canary rockfish retention was prohibited, discard rates
increased to 96.1% on average (2004–2016). From 2001 to 2022, total landings averaged 16.0 mt, ranging
from 1.7 to 60.6 mt. In 2022, estimated ocean boat landings were 55.7 mt.

2.2.1.3.3 California Recreational landings in California were available from 1928–2022. Historical es-
timates of recreational landings 1928–1979 were obtained from the previous assessment (Thorson and Wetzel
2016), which were in turn were obtained from CalCOM. For years since 1979, recreational landings along
with estimates of dead discards came from RecFIN via the MRFSS (1980–2003) and California Recreational
Fisheries Survey (CRFS) (2005–2022) sampling programs. Landings and dead discards were added together
to obtain estimates of total removals. Discards prior to 1980 were assumed to be zero.

A number of years with missing or incomplete estimates for recreational removals were filled in. The removals
in 1980 from MRFSS were not used due to survey quality problems related to 1980 being the first year of
MRFSS (Karpov et al. 1995; Cope and Key 2009). Removals for this year were averaged across removals
in 1979 and 1981. No or minimal party/charter (PC) estimates were available from 1993–1995, so PC mode
removals for these years were calculated assuming an average ratio of private/rental (PR) to PC modes
across all years with data within MRFSS and added to PR values to obtain total recreational estimates. The
MRFSS sampling program did not sample from 1990–1992, and so estimates during these three years were
obtained as averages from neighboring years. Estimates in 1990 were the average from 1987–1989, estimates
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in 1991 were the average from 1987–1989 and 1993–1995, and estimates in 1992 were the average from 1993-
1995. Because of the transition from MRFSS to CRFS, no estimate was available in either database in 2004
for this assessment cycle. California Department of Fish and Wildlife (CDFW) provided a value of 10.59
mt for 2004 (J. Budrick, CDFW, personal communication, 3/20/23), based on an available previous pull of
MRFSS data for the gopher rockfish (Sebastes carnatus) assessment. Estimates for California recreational
removals from the previous canary rockfish assessment were not used because these appeared to only reflect
estimates of landings, and not total removals.

CA Recreational Data Impacted by COVID-19 Pandemic

The COVID-19 pandemic impacted recreational port sampling in 2020 and 2021. No sampling occurred
at all in April-June, 2020. CDFW provided proxy values for these months (M. Parker, CDFW, personal
communication, 2/22/23). Total proxy values for canary rockfish weight were summed across district and
added to the existing estimate for 2020 from RecFIN. In addition, California recreational total mortality
estimates in the “rockfish genus” were inflated due to CRFS samplers being unable to closely examine catch
and identify catch to species. This was a problem for both PR and PC modes in 2020 and primarily for
the PC mode in 2021. An effort was made to allocate some of the rockfish genus mortality to other rockfish
species for these modes and years (J. Coates, CDFW, personal communication, 2/10/23). An expected
value of rockfish genus mortality in 2020 and 2021 was generated by mode and year according to the average
proportion to the total rockfish mortality that this category represented in 2018 and 2019, when regulations
were consistent with 2020 and 2021. Mortality above this expected value was attributed to the other species
also based on proportions each species represented to the total from 2018 and 2019. Calculations were made
by year, mode, and district. The shore-based modes were grouped in with the PR mode. Calculations were
initially made in numbers of fish because rockfish genus mortality is only recorded this way. Numbers of
fish by species were then converted to weight in kilograms based on average weights of fish recorded by the
CRFS program by district in 2019. Total reallocated values for canary rockfish weight were summed across
modes and districts and added to existing estimates for 2020 from the sum of the proxy value and RecFIN
and for 2021 from RecFIN.

2.2.1.4 At Sea Hake Fishery Catches of canary rockfish are monitored aboard the vessel by ob-
servers in the ASHOP and were provided for the years 1975–2022 (V. Tuttle, NOAA, personal communication,
4/3/23). Observers use a spatial sample design, based on weight, to randomly choose a portion of the haul
to sample for species composition. For the last decade, this is typically 30-50% of the total weight. The total
weight of the sample is determined by all catch passing over a flow scale. All species other than hake are
removed and weighed, by species, on a motion compensated flatbed scale. Observers record the weights of
all non-hake species. Non-hake species total weights are expanded in the database by using the proportion
of the haul sampled to the total weight of the haul. The catches of non-hake species in unsampled hauls is
determined using bycatch rates determined from sampled hauls. Since 2001, more than 97% of the hauls
have been observed and sampled.

Values for percentages of the catch that was retained were available in the data starting in 1997. When
not provided, we assumed percent retained was 100 percent. We also assumed that any canary rockfish not
retained were dead. We therefore added the retained landings to the amount of landings not retained to
obtained total removals.
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Total removals were partitioned to state based on latitude, with retrieved hauls from 46.25∘N to 49∘N assigned
to Washington, 42∘N to 46.25∘N assigned to Oregon, and < 42∘N assigned to California. Starting in 1992,
processing of at-sea hake was restricted to north of 42∘N (NMFS 1992). Very small catches from south of
42∘N during this time were assigned to Oregon. Due to confidentiality, catches in 1975 were not reported or
used within the model, and catches in 1976 were combined and assigned to Oregon.

2.2.1.5 Foreign Catches From the 1960s through the early 1970s, foreign trawling enterprises har-
vested considerable amounts of rockfish off Washington and Oregon, including large quantities of canary
rockfish. Foreign catches of individual species were estimated by Rogers (2003) and attributed to INPFC
areas from 1966-1976 for canary rockfish. INPFC areas do not coincide with the fleet areas defined in this
assessment. Therefore, INPFC catches were translated to states in the following manner: catches from
the US Vancouver INPFC area were designated to Washington, catches in the Columbia INPFC area were
allocated to Oregon, and catches from the Eureka and Monterey INPFC areas were assigned to California.
These definitions match where the majority of commercial trawl landings occur by state for each INPFC
area within PacFIN.

2.2.2 Composition Data

Commercial landings of rockfish and the biological characteristics of these landings were not consistently
sampled for scientific purposes until the early 1960s (Niska, 1976). Statewide sampling programs to determine
species compositions of the landed catches began in the late 1960s. The first rigorous monitoring programs
that included routine collection of biological data (e.g., sex, age, size, maturity states, etc.) were begun
in 1980. Currently, port biologists employed by each state fishery agency (ODFW, WDFW) or PSMFC
with the California Cooperative Groundfish Survey (CCGS) collect species-composition information and
biological data from the landed catches of commercial vessels that have completed their fishing trips. The
sampling sites are commonly processing facilities located at ports along the coasts of California, Oregon
and Washington. The monitoring programs currently in place are generally based on stratified, multistage
sampling designs.

Recreational landings of rockfish and the biological characteristics of these landings were not consistently
sampled for scientific purposes until the late 1970s. The first rigorous monitoring programs that included
routine collection of biological data (e.g., sex, age, size, maturity states, etc.) began in 1980 by the na-
tional MRFSS program under the PSMFC and by state sampling programs. State sampling programs
replaced MRFSS in the 2003–2004 period to better support in season management. Currently, port biol-
ogists employed by each state fishery management agency (CDFW, ODFW, WDFW) collect catch, effort,
and biological data from the landed catches of recreational vessels that have completed their fishing trips.
Onboard sampling also occurs on party/charter vessels in Oregon and California.

Twenty-eight bins from 12 to 66 cm were used to summarize the length frequency distributions of fishery-
dependent and fishery-independent sources of catch. The first bin includes all observations less than 12
cm and the last bin includes all fish larger than 66 cm. Thirty-five data bins from age 1 to age 35 were
used to summarize the age frequency distributions of fishery-dependent sources of catch, with the last bin
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including all fish aged greater than 35 years and the first bin including the (very small) number of age-0
fish. Conditional age at length data was used to summarize fishery-independent sources of age data, and is
described in more detailed in Section 3.3.5.3.

2.2.2.1 Commercial Trawl and Non-trawl Fisheries Length- and marginal age-frequency dis-
tributions were calculated for each commercial fleet for which observations were available. Biological length
and age data were extracted from the PacFIN Biological Data System on May 8, 2023. Biological data were
divided into trawl and non-trawl fleets for each state according to the fleet structure used for this assessment
(see Section 3.3.5.1). Length samples were available starting in 1977 for California fleets, 1973 for Oregon
fleets, and 1968 for Washington fleets. Age samples were available starting in 1980 for all states’ fleets. There
was a mix of biological length and age samples with and without sex information but the majority of length
and nearly all age samples included information on sex, so were modelled as sex specific compositions.

During data exploration it was noted that samples previously labelled as special project samples from Oregon
were appropriate to represent dynamics from the fishery. The majority of these occurred during 1973–1986,
and therefore 5,859 special project samples from Oregon through 1986 were retained for composition data.
Also during data exploration, there were 700 age samples from Washington without a final age determination.
These represented a small proportion of samples among the years which they occurred and so were excluded.

Among age samples, 6,645 were from surface reads, starting in 1973 for Oregon and 1975 for Washington.
Ages of surface reads were truncated to around 30 prior to 1980, and were more similar to break and burn
reads when both were available starting in 1980. Given known biases of surface reads, and the clear truncation
in years where only surface years were available, we excluded surface reads from age compositions.

For commercial trawl and nontrawl fleets, the raw observations (compiled from PacFIN) were expanded to
the sample level, to allow for any fish that were not measured, then to the trip level to account for the relative
size of the landing from which the sample was obtained. These expanded length and age observations were
then combined within a year for each fleet.

The input sample sizes for the expanded commercial length and age data were calculated based on a com-
bination of the number of trips or hauls and fish by year:

Input effN = 𝑁trips + 0.138 ∗ 𝑁fish if 𝑁fish/𝑁trips < 44

Input effN = 7.06 ∗ 𝑁trips if 𝑁fish/𝑁trips ≥ 44

The magnitude of sampling for each fleet and year are given in Table 4 and Table 5, which shows the different
magnitudes of sampling across time and between state agencies. These tables show both the total number
of fish sampled as well as the number of trips by year and state over which samples were obtained. During
modeling we noticed sparse length and age composition data of unsexed fish for several years across fleets.
Composition data with very few unsexed length and age samples relative to sexed samples within a year
were excluded from the model.
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The weighted commercial length-frequency distributions are shown in Figures 4-9. A number of important
patterns are visible in the data, although the data are noisy. The trawl fleets appear to show a decline
in mean length of the catch from 1978 to 1990 for California and from around 1980 to 2000 for Oregon
(Figures 4 and 5), with variable length since 2000 and some increase from around 2013 for the Oregon and
Washington trawl fleets (Figures 5 and 6). The length-frequency distributions from the non-trawl fleet are
much more sparse compared to the trawl fleet, especially during the period of non-retention where no lengths
were sampled, making it difficult to discern a pattern in the mean length landed (Figures 7-9). However,
Oregon non-trawl lengths show some decline during the 1990s and Oregon and California non-trawl lengths
show increases in the most recent years, though these can also be explained by changes in regulations for
canary rockfish in recent years.

The weighted marginal commercial age-frequency distributions are shown in Figures 10-15. Age data for
California were sparse (no data between 1987 and 2001 as well as in 2008 and 2011–2012) compared to
age data from Oregon and Washington (Figure 10) but sample sizes have increased in recent years. Age
compositions for the trawl fleets were generally similar, ranging from approximately 5 to 25 years, with
peaks at 10 years of age for both sexes. Mean age from the Oregon trawl fleet shows a clear decline from
around age 20 from the mid-1980s to around age 10 in 2000, with periods of increases each decade since
2000 (Figure 11). Washington age data show highly variable patterns that make general patterns difficult
to determine (Figure 12). Age data for the non-trawl fleet for all states are sparse enough that no pattern
can reliably be discerned (Figures 13–15) though the distribution of ages in Washington is shifted towards
older canary rockfish compared to other states’ non-trawl and trawl fisheries, possibly due to the lack of a
nearshore non-trawl fishery in Washington.

2.2.2.2 At-sea hake fishery Length- and marginal age-frequency distributions were calculated for
the at-sea hake fishery using data collected by the NWFSC ASHOP (extracted on 3/31/23 for lengths and
5/1/2023 for ages). Length and age observations were available starting in 2003, which was after the period
that at sea processing was restricted to north of 42∘N. Consequently, length and age compositions were
only available for Oregon and Washington components of the at-sea hake fishery. Raw observations were
aggregated within a year for each fleet, and the input sample sizes for composition data was the number of
hauls.

The magnitude of sampling for the at-sea hake fishery is given in Table 6 and Table 7. These tables show
both the total number of fish samples as well as the number of trips by year and state over which samples
were obtained and which were used as input sample sizes. During modeling we noticed sparse length and
age composition data of unsexed fish for several years across fleets. Composition data with very few unsexed
length and age samples relative to sexed samples within a year were excluded from the model.

The at-sea hake fishery was comprised of similarly sized canary rockfish relative to the commercial trawl
fisheries and exhibited little trend over time (Figures 16-17). Age data were also comparable to ages from
the commercial trawl fisheries and show little discernible pattern over time (Figures 18-19).

2.2.2.3 Foreign fishery No length or age data were available from foreign fleets. Selectivity of these
fleets was assumed to be the same as the respective state trawl fleets.
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2.2.2.4 Recreational fishery Length- and marginal age-frequency distributions were calculated for
each recreational fleet for which observations were available. Biological length and age composition data
were extracted from various sources. For Washington, biological samples starting in 1979 (for lengths) were
obtained from sport biodata as provided by WDFW on April 27, 2023. Age samples began in 2004. For
Oregon, biological samples starting in 1980 (for lengths) were obtained from ODFW via the MRFSS and
ORBS sampling programs as accessed via RecFIN on January 25, 2023 for lengths and April 28, 2023 for
ages. Age samples began in 1999. For California, length samples 1980–2003 were obtained via the MRFSS
sampling program as accessed via RecFIN (accessed March 30, 2023) and provided by CDFW. Length
samples starting in 2003 were obtained via the CRFS sampling program as accessed via the RecFIN website
(accessed April 14, 2023). Length samples collected from the Deb Wilson-Vandenberg onboard CPFV survey
for 1987–1998 were also obtained from CDFW. California has no aged samples of canary rockfish available
from MRFSS or CRFS sampling.

Between 1987-1989 and 1993-1998 there were recreational length data for the CPFV fleet from both MRFSS
and the Deb Wilson-Vandenberg data sets. During data exploration it was determined that the lengths
in MRFSS from 1997 and 1998 were also in the Deb Wilson-Vandenberg data, indicating that these data
sources were duplicated for these years but also potentially other years where they overlapped. In order to
avoid duplicate data, the length data from MRFSS for private/charter mode, which had far fewer length
samples for the overlapping years than Deb Wilson-Vandenberg for the CPFV fleet, were removed from the
data used within the model. A sensitivity was run using only the MRFSS data to test the effect of this
choice (see Section 3.5.2).

Biological length data were aggregated across party/charter and private/rental mode based on similarity
in the overall length distributions, and consistent with past canary rockfish assessments. There was a mix
of biological length and age samples with and without sex information. The majority of length samples
for Washington and Oregon, and all length samples for California did not include information on sex. The
majority of age samples included information on sex, so were modeled as sex-specific age distributions. Only
lengths from retained fish were used and only samples from ocean areas. In addition, ODFW provided
MRFSS length samples with the addition of a column that flagged length values imputed from weights to
allow for selection of directly measured values. A sensitivty to using lengths from both retained and released
fish was explored and described in Section 3.5.2. Altogether there were very limited number of samples from
inland/estuary areas and from which direct measurements were not available so no sensitivity of inclusion
of these samples was done.

For each fleet, the raw observations were aggregated within a year. A catch-weighted approach was explored
for Oregon and Washington observations from RecFIN because these states have a formalized appraoch
(E.J. Dick, SWFSC, personal communication, 3/28/23) and a separate data table exists within RecFIN
(J. Edwards, PSMFC, personal communication, 3/30/23) that includes the weightings. The catch-weighted
distributions were very similar to the distributions based on raw observations, so raw distributions were used
for simplicity.

The approach to determine the input sample sizes for the recreational length and age data varied by data
source and data type. Some data sources had unique trip numbers within the data such as the Deb Wilson-
Vandenberg data and the Oregon CPFV releases. Other data sources that lacked a clear trip identifier used
combinations of multiple fields to attempt to estimate unique combinations that represented the number of
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trips sampled. In general the number of trips for both age and length composition data was estimated based
on a mix of time, location, and fishery type. The number of trips for length and age compositions from
Washington sport biodata was estimated using a combination of fish sample date (or sample date if blank),
fish (or sample) punch card area, and fishing mode. The number of trips for length compositions from ORBS
sampling was estimated using a field (ANGLER_ID) that encompasses time, area, and fishing mode. The
number of trips for age composition from ORBS sampling was estimated using sampling date, sampling site
(PORT_NAME), and fishing mode. The number of trips for length compositions from MRFSS sampling
was estimated using year and id code, MRFSS area code and sampling location (INTSITE for California
or ORBSport for Oregon), and fishery mode. The number of trips for length compositions from CRFS
sampling was estimated using sampling date, sampling site (COUNTY_NUMBER), and fishing area and
mode. Collectively, the estimates for the number of trips are meant to represent a reasonable starting point
that generally reflects the degree of similarity of information from sampling a given number of likely similar
fish within any sampling event.

The magnitude of sampling for each fleet and year is given in Table 8 and Table 9, which show the different
sampling frequencies employed over different time periods and between state agencies. These tables show
both the total number of fish samples as well as the number of trips by year and state over which samples were
obtained and which were used as input sample sizes. During modeling we noticed sparse age composition
data of unsexed fish for a few years across recreational fleets. Composition data with very few unsexed age
samples relative to sexed samples within a year were excluded from the model.

The recreational length-frequency distributions are shown in Figures 20-22. All three recreational fleets
appear to generally catch smaller fish relative to the commercial fleets within the same state, likely due to
differences in fishing depth. Recreational lengths from California are highly variable, with sizes typically
between 20-40 cm, but with sudden shifts in time (Figure 20). Recreational lengths from Oregon are less
variable and typically range 25-40 cm, but had limited and variable sampling during the period of non-
retention (Figure 21). In Washington, recreational lengths tend to be larger than in either California and
Oregon, typically ranging from 30-45 cm (Figure 22). Length distributions for all recreational fleets showed
an increase is sizes in recent years, which could be due to changes in regulations. Length distributions
aggregated over all years for Oregon and Washington also showed patterns of bimodality with a peak around
35 cm and then another around 50 cm (Figure 23). This pattern was not due to combining across modes as
it was present for both party/charter and private/rental modes.

The recreational marginal age-frequency distributions are shown in Figures 24-25. Recreational ages were
typically younger than in commercial fisheries. Ages ranged between 5-10 years but had long tails of older
fish, with a larger proportional tail of older fish observed in Washington compared to Oregon. An increase
in the age of sampled catch was observed in both Washington and Oregon recreational fleets, although the
few years of Washington samples makes comparisons difficult. The changes in regulations in recent years
complicate whether this pattern was due to increased ages of fish in the population or changes in fishing
practices.
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2.3 Fishery-Independent Data

Fishery-independent data are derived from three main sampling programs: the Triennial Survey (1980-2004),
the WCGBTS, and the pre-recruit survey (2001-2022). Each source of information is used to generate an
index of abundance. The Triennial Survey and WCGBTS also provide age and length-composition sampling
data and were extracted on May 1, 2023 and February 13, 2023, respectively.

2.3.1 West Coast Groundfish Bottom Trawl Survey

The WCGBTS is based on a random-grid design, covering the coastal waters from a depth of 55-1,280 m
(Bradburn et al. 2011). This design uses four vessels per year (except in years 2004 and 2014, when only
three vessels were available, and 2020 when the survey did not occur due to COVID-19), assigned to a
roughly equal number of randomly selected grid cells divided into two ‘passes’. Two vessels fish from north
to south during each pass between late May to early October. This design therefore incorporates both vessel-
to-vessel differences in catchability, as well as variance associated with selecting a relatively small number
(approximately 700) of possible cells from a very large set of possible cells spread from the Mexican to the
Canadian borders.

The WCGBTS encounters canary infrequently, generally in less than 10% of the total tows conducted,
though this includes slope tows well beyond the depth canary inhabit (Table 10). However, when canary
aggregations are encountered, catches can be as large as 4.9 mt in a single 12-15 minute tow; this equates
to an average density of approximately 1 kg every 2.5 m2 or 0.4 kg·m−2. There are 19 tows that have
encountered at least 500 kg of canary, and 4 tows have encountered over 1000 kg (2088 kg in 2015, 3033
kg in 2017, 3650 kg in 2018, and 3984 kg in 2006). These large tows are located primarily off the northern
Washington coast near the Canadian border, with some located off the Oregon or Northern California coasts
(Figure 26) . The presence of infrequent very large tows creates a strongly right-skewed distribution of catch
rates, still visible after log-transformation. These very large catches do not appear to be dominated by either
very large individuals or very small individuals, indicating that these areas represent neither recruitment
‘hot-spots’, nor unexploited ‘pockets’ of very old canary rockfish.

2.3.2 Triennial Survey

Prior to the WCGBTS, the triennial shelf trawl survey conducted by NMFS starting in 1977 served as the
main fishery-independent data source regarding the abundance of canary rockfish in the California Current
(Dark and Wilkins 1994). The sampling methods used in the survey over the 24-year period are most recently
described in Weinberg et al. (2002); the basic design was a series of equally spaced transects from which
searches for tows in a specific depth range were initiated. In some parts of the coast this led to a very
non-random allocation of stations with regard to the entire shelf area. In general, all of the surveys were
conducted in the mid-summer through early fall: the survey in 1977 was conducted from early July through
late September; the surveys from 1980 through 1989 ran from mid-July to late September; the survey in 1992
spanned from mid-July through early October; the survey in 1995 was conducted from early June to late
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July; the 1998 survey ran from early June through early August; and the 2001/2004 surveys were conducted
in May-July. The initial year of the survey in 1977 was based on a sampling design that spanned from 50
to 260 fm (91 to 475 m) and did not come as far inshore (30 fm) as the subsequent surveys conducted on a
triennial basis from 1980 to 2001.

Surveys that have extended south of Monterey have detected only very small abundances relative to the
north, so changes in sampling in this area does not influence the relative index. Because of the large number
of ‘water hauls’ eliminated in 1977, especially in the U.S. Vancouver INPFC area, and because the sampling
depths were not the same as the other years, the 1977 survey year was not used in the assessment. A full
description of the water haul issue can be found in Zimmerman et al. (2001).

2.3.3 Pre-recruit survey

The Fishery Ecology Division of the SWFSC has conducted a standardized pelagic juvenile trawl survey (the
Rockfish Recruitment and Ecosystem Assessment Survey) during May-June every year since 1983 (Ralston
et al. 2013; Sakuma et al. 2016; Field et al. 2021). A primary purpose of the survey is to estimate the
abundance of pelagic juvenile rockfishes (Sebastes spp.) and to develop indices of year-class strength for use
in groundfish stock assessments on the U. S. West Coast. This is possible because the survey samples young-
of-the-year rockfish when they are ~100 days old, an ontogenetic stage that occurs after year-class strength
is established, but well before cohorts recruit to commercial and recreational fisheries. This survey has
encountered tremendous interannual variability in the abundance of the species that are routinely indexed,
as well as high apparent synchrony in abundance among the ten most frequently encountered species (Ralston
et al. 2013). Past assessments have used data from this survey to provide indices of year-class strength (as
relative age-0 abundance), including the 2015 Canary rockfish assessment, and assessments for widow rockfish
(Adams et al. 2019), blue/deacon rockfish (Dick et al. 2018), bocaccio (He et al. 2015), shortbelly rockfish
(Sebastes jordani, Field et al. 2007), and chilipepper rockfish (Sebastes goodei, Field et al. 2015).

Historically, the survey was conducted between 36∘30′N and 38∘20′N latitude (the ‘core area’ from approxi-
mately Carmel, CA to just north of Point Reyes, CA), but starting in 2004 the spatial coverage expanded to
cover from the U.S./Mexico border to Cape Mendocino. Additionally, since 2001 data are available from com-
parable surveys conducted by the Pacific Whiting Conservation Cooperative and the NWFSC (2001–2009)
and the NWFSC “Pre-recruit” survey (2011–2022) for waters off of Oregon and Washington (Field et al.
2021). Coastwide data have revealed both spatial differences in species composition (e.g. north and south
of Point Conception) and interannual shifts in the distribution of most pelagic juvenile rockfishes: The near
absence of fish in the core survey area during the 2005–2007 period, which saw two of the lowest abundance
levels of juvenile rockfish ever observed in the core area time series, was associated with an apparent re-
distribution of fish, both to the north and the south (Ralston and Stewart 2013). As the core area index
seems to have failed to capture the magnitude of the 1999 year class for most stocks, the recommendations
from the juvenile rockfish survey workshop held in 2005 were to use only the coastwide data (since 2001)
for juvenile indices rather than the longer-term ‘core area’ indices unless a convincing case could be made
otherwise. We used data from 2001 to 2022, the period for which we have coastwide coverage. On account
of the COVID-19 pandemic, sampling in 2020 was very limited and restricted to the historical core area, so
this year is excluded. In the years 2010, 2012, and 2022, sampling did not span the entire coastwide spatial
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domain, with data lacking from northern CA and OR. These years were not included in the model, but
sensitivity of the stock assessment to inclusion of the index for these years is explored in sensitivities.

Catch per tow was adjusted to a common age of 100 days (see Ralston et al. (2013) for details) to account
for interannual differences in age structure, as has been done for prior assessment indices using this dataset.
Similar to the previous assessment, the data were used as an index of spawning output × exp(recruitment
deviation), or recruitment before density dependence has occurred. We also explored using the data as an
index of age-0 recruits, and results were identical.

2.3.4 Index standardization

Geostatistical models of biomass density were fit to all three survey datasets using Template Model Builder
(TMB) (Kristensen et al. 2016) via the R package Species Distribution Models with TMB (sdmTMB) (An-
derson et al. 2022). These models can account for latent spatial factors with a constant spatial Gaussian
random field and spatiotemporal deviations to evolve as a random walk Guassian random field (Thorson et
al. 2015). Tweedie, delta-binomial, delta-gamma, and mixture distributions, which allow for extreme catch
events, were investigated. Results are only shown for the distribution that led to the best model diagnos-
tics, e.g., similar distributions of theoretical normal quantiles and model quantiles, high precision, lack of
extreme predictions that are incompatible with the life history, and low Akaike information criterion (AIC).
Estimates of biomass from this best model were predicted using a grid based on available survey locations.
Code to reproduce the analysis is publicly available.

2.3.4.1 WCGBTS The data were truncated to depths less than 275 m prior to modelling given that
there were zero positive encounters in depths deeper than 275 m. The prediction grid was also truncated to
only include available survey locations in depths between 55–275 m to limit extrapolating beyond the data
and edge effects.

The model used a delta model with a lognormal distribution for the catch-rate component. A logit-link
was used for encounter probability and a log-link for positive catch rates. The response variable was catch
(mt) with an offset of area (km2) to account for differences in effort. Fixed effects were estimated for each
year. Pass was also included as a covariate. Vessel-year effects, which have traditionally been included in
index standardization for this survey, were not included as the estimated variance for the random effect was
close to zero. Vessel-year effects were more prominent when models did not include spatial effects and were
included for each unique combination of vessel and year in the data to account for the random selection of
commercial vessels used during sampling (Helser et al. 2004; Thorson and Ward 2014).

Spatial and spatiotemporal variation was included in the encounter probability model and spatial variation
was included in the positive catch rate model. The variance of the spatiotemporal effect was estimated to
be less than 0.01 for the positive catch rate model and was therefore not included in the final model. Spatial
variation was approximated using 200 knots, where more knots led to non-estimable standard errors because
the positive encounters are too sparse to support the dense spatiotemporal structure.
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2.3.4.2 Triennial Survey The data were truncated to depths less than 366 m and latitudes north
of 37∘N prior to modelling to control for temporal changes in survey extent. No canary rockfish were ever
encountered below 366 m and only 13 tows encountered canary rockfish south of 37∘N out of 831 total tows
that encountered canary. The data also excluded any tows outside of the U.S. exclusive economic zone (i.e.,
in Canadian waters). The prediction grid was truncated to these same extents to limit extrapolating beyond
the data and edge effects.

The model used a delta model with a lognormal distribution for the catch-rate component. A logit-link
was used for encounter probability and a log-link for positive catch rates. The response variable was catch
(mt) with an offset of area (km2) to account for differences in effort. Fixed effects were estimated for each
year. No other covariates were modeled. Vessel-year effects, which have traditionally been included in index
standardization for this survey, were not included as the estimated variance for the random effect was close to
zero. Vessel-year effects were more prominent when models did not include spatial effects and were included
for each unique combination of vessel and year in the data to account for the random selection of commercial
vessels used during sampling (Helser et al. 2004; Thorson and Ward 2014).

Spatial and spatiotemporal variation was included in the encounter probability model and spatial variation
was included in the positive catch rate model. The variance of the spatiotemporal effect was estimated to
be less than 0.01 for the positive catch rate model and was therefore not included in the final model. Spatial
variation was approximated using 200 knots, where more knots led to non-estimable standard errors because
the positive encounters are too sparse to support the dense spatiotemporal structure.

2.3.4.3 Pre-recruit survey For the index model, we used data from 35–48.2∘N latitude (just north
of Point Conception to La Push, WA). Canary rockfish were never caught south of 35∘N. Since catch (and
sampling) varied over space and time, we modeled catch using a spatial GLM with the package sdmTMB
(Anderson et al. 2022). The 100-day-standardized catch per tow was modeled as a function of fixed year
effects along with Julian date (GAM smoother with k=4) to account for seasonality, a spatial random field,
and IID spatiotemporal random fields.

We fit the model using 3 different error structures: tweedie, delta-lognormal, and delta-gamma. Dharma
quantile residuals from model simulations suggested that tweedie distribution was the best fit, and so was
used. The tweedie model also best reproduced the observed proportion of zeros in the data based on
simulations from the fitted model. As expected, the Julian date effect showed a decline in catch towards the
end of the sampling season, as juveniles begin to settle out of the water column.

For the coastwide index, predictions from the model were made for all active sample stations within the
survey region, for the mean Julian date, for each year. Predictions were added together for each year to
produce the index. Active stations are those regularly and consistently sampled, and are located on a semi-
regular grid spanning the sampling region. Interpolating to a finer spatial grid had little impact on the
resulting index.
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2.3.5 Survey composition data

Biological data were extracted from the NWFSC data warehouse on February 13, 2023 for the WCGBTS
and May 1, 2023 for the Triennial Survey. For the length-composition samples from the WCGBTS, data
bins are populated with a modest, but consistent degree of sampling: 32-84 tows and 306-1467 fish lengths
per year (Table 10). The Triennial Survey (Table 11) had both more positive tows each year (42-177) and
more fish lengths per year (356-2781). Compositions and input sample sizes were calculated by standard
procedures in the nwfscSurvey package using sample size multipliers from Stewart and Hamel (2014) for
shelf rockfish (2.43 ∗ 𝑁tow) and the following strata separations:

• WCGBTS latitudes: 32 (Mexican border), 34.5 (change in survey design), 42 (California-Oregon
border), 46 (Oregon-Washington border), 49 (Canadian border) degrees North

• WCGBTS depths: 55 (minimum survey extent), 183 (change in survey design), 350 (depth limit of
canary rockfish) meters

• Triennial Survey latitudes: 37 (southernmost latitude with consistent sampling across years), 42, 46,
49 degrees (as noted above) degrees North

• Triennial Survey depths: 55 (minimum survey extent), 183 (change in survey design), 350 (depth limit
of canary rockfish) meters

State strata were included to account for the fact that age and length tends to increase northward along the
coast (Keller et al. 2018; Brooks 2021).

The survey length-frequency distributions are shown in Figures 27-29 and indicate the WCGBTS catches a
wide range of lengths with generally little change in size over time, and that lengths in the Triennial Survey
were also similar over time except smaller sizes in 1992 and larger sizes in 2004.

The conditional-age-at-length samples consist of approximately one-quarter as many fish as the samples
for length (Table 10 and 11). These distributions show a tight range of ages at a given length, and show
the growth trajectory of females reaching larger sizes than males for a given age (see Section 2.4). Besides
the addition of recent survey years, this assessment also includes data for the first time from recently aged
otoliths from the 1986 Triennial Survey. Compositions were again calculated using the nwfscSurvey package
and the same strata as the length compositions, with input sample sizes fixed at the number of unique fish
within a given length bin (Wetzel et al. 2023).

2.4 Biological Data

2.4.1 Natural Mortality

Due to an unexplained male-skewed sex ratio at older ages observed across fishery-independent and fishery-
dependent data sources, canary rockfish natural mortality has been modeled in a number of ways over the
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years. Sampson (1996) modeled a linear ramp in female natural mortality from 0.06 yr−1 at age 9 to roughly
0.18 yr−1 at age 25, the plus group. In 1999, the ramp was adjusted to be from 0.06 at age 11 to 0.20 at age
25, and the document contains an extensive review of life history theory regarding increasing female natural
mortality (Crone et al. 1999). Methot and Piner (2002) fixed male and young female natural mortality
at 0.06, but estimated an offset for older females, and based the slope of increasing natural mortality on
maturity, not age, resulting in a non-linear ramp by age. In 2005, that option was no longer available in
stock synthesis, so the assessment approximated the 2001 pattern by using a linear ramp from age 6 to age
14, again estimating a female offset (Methot and Stewart 2005). This has been the approach for all canary
rockfish assessments since 2005.

The increased ramp in natural mortality was also used in yellowtail rockfish assessments prior to 2005 with
support from Tagart (1991) that the senescent mortality hypothesis fit the fishery age data well, and was a
better biological explanation for the disappearance of older age females than the alternative hypothesis that
the older females were not vulnerable to the fishery. The pattern of male-skewed sex ratio at older ages has
been observed along the U.S. West Coast in fishery data off Oregon (Rasmuson et al. 2023), Canada (DFO
2023), and Alaska and in black rockfish in addition to canary and yellowtail rockfishes. Although it has
been found in these three semi-pelagic species, the pattern has not been observed for bocaccio, chilipepper
rockfish, shortbelly rockfish, or dusky rockfishes (Sebastes ciliatus, in Alaska), which are also semi-pelagic.
However, starting in the 2010’s the sex ratio has been less skewed in fishery data off Oregon (Rasmuson et
al. 2023). The sex ratio has remained male-skewed within the WCGBTS in recent years.

In this assessment, we elect to model natural mortality for males and females separately as has been done
in past assessments. After consultation with state biologists, we also elect to model natural mortality as
age-invariant. This provides a more parsimonious approach to modeling natural mortality than using a linear
ramp (as mentioned in PFMC 2023) which has been done for past assessments. Secondly, both a linear ramp
and breakpoint with increasing female natural mortality at age does not align with the general life history
belief that natural mortality declines with age (Lorenzen 1996). We updated the longevity-based prior for
the natural mortality rate for males and females based on Hamel and Cope (2022), using a maximum age
of 84 yrs, the same age used in the previous assessment (Love et al. 2002; Thorson and Wetzel 2016).
This results in a lognormal prior with a log-mean of -2.74, a log-standard deviation of 0.31, and a median
natural mortality of 0.0643 yr−1 for both sexes. As was done in the previous assessments, we fixed the male
natural mortality value at the prior and estimate female natural mortality. The same maximum age for
males and females was used. Estimating separate male and female natural mortality removes the need for a
user-selected breakpoint or linear ramp, and has been done in the past assessments for yellowtail (Stephens
and Taylor 2017) and black rockfish for Washington and California (Cope et al. 2016). Sensitivities to the
choice of natural mortality structure are described in Section 3.5.2.

2.4.2 Maturity

We estimate the maturity schedule using available histological measurements from female ovaries. This
includes 226 samples collected by ODFW and WDFW during winter (October–February) in 2014, 2015, and
2016; and 527 ovaries collected during the WCGBTS in 2009–2016 across a range of depths (57–222 m) and
latitudes (35.7–48.3∘𝑁) and 53 collected during the Hook and Line Survey between 2009–2022.
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We use functional maturity rather than biological maturity as the measure of maturity in this assessment.
Rockfish begin the process of maturing several years before they reach spawning potential. Thus biological
maturity would indicate that yolk is present but not that the fish is spawning capable. Juveniles in abortive
maturation and adults in skip spawning would be marked as biologically mature but functionally immature.
Biological maturity indicates the fish was putting energy reserves toward spawning, but not necessarily
spawning capable for the year; functional maturity captures the actual spawners.

We estimate maturity in this assessment using age at maturity. Not all histological samples included ages,
so a total of 777 samples were used for estimating age at maturity. We assume age at maturity follows a
two-parameter logistic regression model with an asymptote at 1 based on the findings of Head et al. (2016)
and fits to histological samples. Parameters were fixed in the model at estimates from the logistic regression,
and were 𝐴50% = 10.87 and slope 𝛼 = −0.69. This relationship is an improvement to the maturity curve used
in the previous assessment, as it uses functional maturity instead of biological maturity. This, in addition to
the use of age instead of length, eliminated the need for a third parameter in the maturity curve estimating
the probability of skip spawning. Due to variation in the growth rate, a given length can represent a wide
range of ages, especially at larger sizes. The new relationship results in a rightward shift in maturity and
increase in maturity at older ages compared to the relationship derived within the 2015 assessment (Figure
30).

2.4.3 Fecundity

Fecundity was fixed at the parameter values from the meta-analysis in Dick et al. (2017). Existing species
specific fecundity information for canary rockfish is limited and only 9 samples of canary rockfish exist
within the rockfish fecundity database housed at the Southeast Fisheries Science Center (SEFSC) (S. Beyer,
University of Washington, personal communication, 5/22/23). Dick et al. (2017) performed their analysis on
subgenera with at least three species, which excluded canary rockfish, so the relationship in Dick et al. (2017)
for general Sebastes species was used for this assessment. Fecundity was assumed as a power function of
length, as in Dick et al. (2017), whereas the previous assessment assumed fecundity was linearly proportional
to weight and used parameter estimates from Dick (2009). Although these reflect different parameterizations,
they are transferrable based on the weight-length relationship. The fecundity relationship for this assessment
was 7.218𝑒 − 08𝐿4.04 in millions of eggs where 𝐿 is length in cm. The new relationship results in a decrease
in fecundity at larger sizes compared to the relationship used in the 2015 assessment (Figure 31).

2.4.4 Steepness

Steepness is defined as the proportion of average recruitment for an unfished population that is expected
for a population with 20% of unfished spawning output. It represents a measure of compensation in the
spawner-recruit relationship. It is typically difficult to estimate using data for a single population (Conn et
al. 2010), which has led to a series of meta-analyses to estimate its likely value (Myers et al. 1995; Dorn
2002).
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Steepness in this assessment was fixed at the prior mean value. The SSC-approved prior for steepness in
2023 assumes a beta distribution with a mean of 0.72 and standard deviation of 0.16 (PFMC 2023). The
prior parameters are based on the Thorson-Dorn rockfish prior (commonly used in past West Coast rockfish
assessments) which was reviewed and endorsed by the Scientific and Statistical Committee (SSC) in 2017.
However, this approach was subsequently rejected for future analysis in 2019 when the new meta-analysis
resulted in a mean value of approximately 0.95. In the absence of a new method for generating a prior for
steepness the default approach reverts to the previously endorsed method, the 2017 value.

2.4.5 Length-Weight Relationship

The length-weight relationship for canary rockfish was estimated outside the model using available coastwide
biological data collected from the WCGBTS. This included 3593 females and 4576 males. The estimated
length-weight relationship for canary rockfish was 𝑊 = 1.19𝑒 − 05𝐿3.09 for females and 𝑊 = 1.08𝑒 − 05𝐿3.12

for males, where 𝐿 is fork length in cm and 𝑊 is weight in kg and is similar between sexes (Figure 32).
The curve was fit as a linear model in log space and then corrected for lognormal bias. The relationship is
similar to the relationship used in the previous 2015 benchmark assessment which also indicated that male
and female canary rockfish have similar length-weight relationships (Figure 33).

2.4.6 Growth (Length-at-Age)

Canary rockfish display sexually dimorphic growth. Females reach larger maximum sizes than males and
take longer to reach that size. Recent research also indicates that canary rockfish growth varies latitudinally
(Gertseva et al. 2017; Keller et al. 2018; Brooks 2021). Using WCGBTS and Hook and Line Survey data
and considering breakpoints at the biogeographic boundaries of Point Conception and Cape Mendocino,
Keller et al. (2018) found growth differences that were statistically significant but inconsistent across sexes.
However, the bulk of the canary rockfish population, and particularly the bulk of older individuals needed to
reliably estimate a growth curve, are found north of Cape Mendocino. More consistent with theory, Brooks
(2021) found that individuals of both sexes tended to grow slower and to larger sizes farther north, with
a break point estimated between Coos Bay, OR and Newport, OR based on data from samples collected
in untrawlable habitat, with similar numbers coming from each major port along the coast. We explored
estimating two growth curves external to the assessment model split at Coos Bay, OR, but using the more
expansive WCGBTS data (1567 vs. 8424 samples; maximum age of 51 vs. 65). Results indicated that
although individuals captured north of Coos Bay did grow to slightly larger sizes than those captured south
of Coos Bay, particularly female individuals, the differences were biologically minor and did not warrant
the additional complexity in the stock assessment model (Figure 34). Thus, growth was assumed constant
across the coast, as was assumed in the 2015 benchmark assessment. Externally estimated von-Bertalanffy
growth parameters for canary rockfish using WCGBTS data were as follows: 𝐿∞ = 57.9 cm and 𝑘 = 0.143
for females with length at age 1 equal to 11.38 cm, and 𝐿∞ = 51.3 cm and 𝑘 = 0.175 for males with length at
age 1 equal to 11.36 cm. We therefore assume size of young males and females are identical, consistent with
the assumptions in the 2015 benchmark assessment. Though the estimates differ slightly, these parameters
(𝐿∞, 𝑘, length at age 1) are identical to those estimated internally within the stock assessment model.
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2.4.7 Sex Ratio

As described in the mortality section, the observed sex ratio is skewed towards males at older ages (Figure
35). The sex ratio based on length is skewed towards females at larger sizes due to the sexually dimorphic
growth (Figure 36). For young fish, there were limited sex-specific observations by length or age across data
sources. The WCGBTS had the highest frequency of small fish observed. However, as revealed in the figures
above, many of the small fish observed by the survey were too small for sex determination. In the absence
of evidence of a differential sex ratio at birth, the sex ratio of young fish was assumed to be 1:1.

2.4.8 Ageing Precision and Bias

The ageing error matrices used in the 2015 benchmark assessment for break and burn samples were retained
for this analysis. Ageing error was explored in the 2015 assessment including extensive model selection and
exploration on the ageing methods to include and the appropriate ageing lab to treat as unbiased (Thorson
and Wetzel 2016). An extensive description on the history of including ageing error and bias into past canary
assessments was also provided in the 2015 assessment (Thorson and Wetzel 2016). Surface read ages were
not included in this assessment and therefore surface read ageing error matrices from the 2015 assessment
were not retained in the model.

Per the 2015 assessment, ages from the CAPS ageing laboratory were assumed unbiased, and a linear bias for
break-and-burn reads from ODFW and WDFW ageing labs were estimated along with a constant coefficient
of variation (CV) for imprecision for break-and-burn reads from CAPS, ODFW, and WDFW. The estimated
pattern for bias and imprecision from the 2015 assessment indicates that ODFW break-and-burn reads are
almost unbiased relative to CAPS break-and-burn reads, and the WDFW break-and-burn reads have a
positive bias relative to CAPS break-and-burn reads (+3.76 yrs. at age 30, their Figure 38 in Thorson and
Wetzel 2016).

There is little evidence to suggest ageing estimation has changed over time relative to the samples included in
the previous analyses. A new TMB-based ageing error software has been developed (A. Punt, University of
Washington, personal communication, 2023) but has not yet been fully explored or documented. Therefore,
revision of the ageing error matrices has been left as a research project to be completed in time for the next
full assessment.

2.5 Environmental and Ecosystem Data

This assessment does not include any environmental or ecosystem data.
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2.6 Data Sources Considered But Not Used

2.6.1 California Commercial Collection Report System (CCRS)

From 1977–1985, CCRS provided data on commercial passenger fishing vessels sampled at dockside. This
study was very limited in spatial scale, focusing efforts on a limited portion of the species range in the
Monterey Bay, California area representing only the southern end of the distribution of canary rockfish. In
addition, this region is unique in providing access to deeper depths a short distance from shore along the
sub-marine canyons of Monterey and Carmel Bays potentially biasing representation relative to the entire
coast north of Point Conception within California where they are commonly found. Though 488 canary
rockfish were sampled during the duration of the survey limited geographic representation at the southern
edge of the species range and lack of representation from other ports with more distant grounds on the
shelf/slope limits the utility of this data and comparability to other data sets.

2.6.2 Historical CDFW Dockside Sampling

A dockside sampling effort was undertaken by CDFW during the 1950s-1970s to collect data from the
private and rental boat and party charter fleets. Data collected from 1958 to 1972 was from (Miller and
Gotshall 1965) and (Miller and Geibel 1973) and efforts were made to digitize data from sample sites in
the Monterey Bay Area from Ano Nuevo to Point Sur. Over the course of the survey, 1032 canary rockfish
lengths were collected from party boats and 461 from private boats. The limited geographic representation
at the southern edge of the species range and lack of representation from other ports with more distant
grounds on the shelf/slope limits the utility of this data and comparability to other data sets.

2.6.3 California Recreational Indices

2.6.3.1 California Collaborative Fisheries Research Program (CCFRP) The CCFRP
has conducted fishery-independent data collection efforts onboard commercial passenger fishing vessels both
inside and outside of MPAs between 2007 and present. Aspects of canary rockfish life history make the data
set less than ideal. One important consideration is the limitation of sampling to less than 150 ft to minimize
barotrauma for fish released by this hook and line survey, which limits access to the primary depth distribu-
tion of adult canary rockfish. In addition, until 2017 the sampling was focused on central California. While
additional data has been collected subsequently to better represent the statewide abundance of groundfish
stocks, and sampling of only shallow waters could have the potential to inform year class strength, the limited
depths sampled and spatial limitations early in the survey reduce the utility and representativeness of the
survey for this northerly distributed stock at this time. Lastly, the high degree of vagility of canary rockfish
makes accounting for MPA effects of lesser importance reducing the impetus to account for trends in closed
areas for this species.
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2.6.3.2 Deb Wilson-Vandenberg Index for CPFV/PC Mode The Deb Wilson-Vandenberg
data set originated from an onboard observer survey conducted by CDFW in central California from
1988–1998 and is referred to as the Deb Wilson-Vandenberg onboard observer survey (Reilly et al. 1998).
The fine-scale catch and effort data allow better filtering of the data for indices to fishing stops within suit-
able habitat for the target species. Length data from this dataset was applied in the assessment but the
representativeness as a fishery-dependent index to inform coastwide dynamics is questionable. As such, we
did not pursue development of an index from this dataset.

2.6.3.3 CRFS Onboard CPFV Index The state of California implemented a statewide onboard
observer sampling program in 1999 (Monk et al. 2014). The program surveys the commercial passenger
fishing vessel (CPFV) fleet fishing out of 15 coastal counties and two counties inside San Francisco Bay,
representing 46 site locations. Observers collect spatially-explicit catch and release records. During an
onboard observer trip the sampler rides along on the CPFV and records location-specific catch and discard
information to the species level for a subset of anglers onboard the vessel. Due to similar concerns about
representativeness of a coastwide index as other state specific indices of abundance, as well as concerns with
shifts in fishing due to significant changes in the regulations during this time period, we did not pursue
development of an index from this dataset.

2.6.4 California Remotely Operated Vehicle Survey

CDFW in collaboration with Marine Applied Research and Exploration (MARE) have been conducting
remote operated vehicle (ROV) surveys along the California coast in Marine Protected Area (MPA) and
reference sites adjacent to them since 2007 for the purposed of long-term monitoring of changes in size,
density (fish/sq meter) and length of fish and invertebrate species along the California coast. Surveys of
the entire coast have been undertaken twice, taking three years to complete each resulting in super years of
2015 (2014–2016) and 2020 (2019–2021) available for analysis. The use of this data in stock assessments was
approved by the SSC for use in stock assessments after a methodology review conducted in 2019 for use as an
index of abundance or absolute abundance estimate using seafloor mapping as the basis for expansion to rocky
reef habitat. Ultimately, this survey was not used for this assessment due to limited temporal coverage (two
three-year periods) and highly variable estimates, as well as limited representation to coastwide dynamics.

2.6.5 Washington Sport Dockside Interview Data

The WDFW provided recreational dockside fisheries data from 1981 through 2022 for consideration in
this assessment. Data were collected at the trip level, with the number of landed fish and the number
of anglers on each vessel being recorded. The amount of time fished by each angler was not recorded.
The recreational dockside data was considered for use in this assessment, however, management measures
implemented over the past several decades impeded extracting a reliable signal for use as abundance indices.
In 2003, management restricted summer fishing depths to shallower than 20-fathoms in WDFW marine areas
3 and 4, and in 2006 modified this depth restriction to 30-fathoms in marine areas 2, 3, and 4. Additionally,
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daily rockfish limits were 15 fish from 1981-1991, 12 fish from 1992-1994 (except in area 1 where it remained
at 15), 10 fish from 1995-2016, and a reduction to 7 fish from 2017-2022. The effects of these management
changes to CPUE of canary rockfish could not be reconciled with changes in the abundance indices and
therefore this dataset was not used in this assessment.

2.6.6 Washington Nearshore Rod-and-Reel Survey

Fishery-independent data available for this assessment came from two distinct WDFW research projects.
The first was the Rockfish Tagging Program that was initiated in the early 2010s primarily off the central
coast of Washington with sparse coverage in the northern and southern coast. The second data set was
from the standardized Coastwide Rod-and-Reel Survey that began in 2019. The tagging program had strong
focus on black rockfish and had little information for canary. The new nearshore survey was impacted by the
COVID pandemic and was not completed as originally designed. Due to their short time spans and spatial
coverage limited to Washington waters, these two datasets are not used in this assessment.

2.6.7 WA olympic coast YOY survey (NOAA)

Dive surveys represent a promising data source for canary rockfish as their habitat preferences for rocky
untrawlable habitat means they have relatively low encounter rates by NMFS trawl surveys. However, this
seven-year dataset covering juvenile rockfish habitat (2015-2022, missing 2020) contained three years without
any canary observations, and only covers the northern Washington coast. Due to limited sample sizes and
coverage of only a small fraction of the assessed area, this dataset was deemed insufficient for inclusion in
the assessment. Future research could synthesize dive surveys from throughout the range of canary to build
a more robust recruitment index post-density dependence that may be more appropriate for inclusion in an
assessment.

2.6.8 Oregon Indices

Two indices of relative abundance were developed for canary rockfish in Oregon using the sdmTMB package,
one fishery-dependent and the other fishery independent, but ultimately not included in the base model due
to their limited representation of coastwide canary rockfish dynamics. Given the period of non-retention for
canary rockfish, the only viable fishery-dependent index was based on onboard sampling of charter vessels
that includes both retained and released fish. A second index from Oregon’s marine reserve hook and line
survey was also developed, but not used because of its spatial coverage limited to the state of Oregon.

2.6.9 Hook and Line Survey

This survey operates south of Point Conception, whereas canary rockfish density decreases substantially
after that major biogeographic barrier. Thus, this survey does not cover the main spatial range of the stock

31



and was not considered representative.

2.6.10 IPHC Longline Survey

Data from the IPHC longline survey data were examined for their utility in providing an index of abundance
for canary rockfish. This survey caught 178 canary rockfish over 23 years, and thus was deemed insufficient
for developing an index.

3 Assessment Model

3.1 History of Modeling Approaches

3.1.1 Early assessment history

The first formal assessment of the canary rockfish resource off the U.S. West Coast was done in 1984 (Golden
and Demory 1984). The final results from the initial assessment in 1984 were largely based on qualitative
examinations of trends in age and size distributions generated from both fishery and survey data. The
1984 research also included exploratory efforts to fit dynamic models to time series data, using tools such
as Virtual Population Analysis and Stock Reduction Analysis, but due to highly variable sample data and
its lack of availability in all years, results from the modeling were not considered scientifically valid. The
1984 assessment concluded that the canary rockfish resource was generally stable at that time and that the
current restrictions were still reasonable.

The canary rockfish assessment conducted in 1990 was the first evaluation to incorporate separable catch-at-
age analysis and in particular, the first to use the Stock Synthesis Model (Golden and Wood 1990; Methot and
Wetzel 2013). All subsequent stock assessments have used the Stock Synthesis Model to evaluate the status
of canary rockfish, although the model has undergone considerable development. The Columbia INPFC area
was the only portion of the canary rockfish resource formally modeled in 1990. The 1990 assessment was
the first to propose two broad assumptions regarding the absence of old females in the sample information
relative to males: (1) the females are subject to a different rate of natural mortality than males; or (2) the
females are less vulnerable to the fishing and sampling gears. Based on a 𝐹35% management model, results
from the 1990 assessment indicated the ABC for the canary rockfish resource in the Columbia INPFC area
should be decreased by roughly 30 percent.

The assessment conducted in 1994 again utilized the age-based version of the Stock Synthesis model to
evaluate the status of the canary rockfish population in the Columbia, INPFC area, as well as the U.S.
Vancouver INPFC area (Sampson and Stewart 1994). The data sources in the previous assessment (1990)
were updated, with the exception of the commercial trawl effort index from the fishery due to sample and
estimation biases associated with logbook data. Results from the 1994 assessment clearly indicated that
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the current level of F exerted on the canary rockfish population exceeded 𝐹20% (the overfishing threshold at
that time) and thus, the researchers recommended that the ABC be reduced to allow the stock to recover
(Sampson and Stewart 1994).

In 1996, the canary rockfish stock was assessed using similar methods and configurations as in 1994 (Sampson
1996). The model was largely similar to that in 1994. One difference between the 1994 and 1996 assessments
was the manner in which error associated with age-composition data from the fisheries was accommodated.
In the 1996 assessment, a single, percent-agreement error structure was used to describe the variability in
the age-related data, whereas in 1994, an error-transition matrix was used to standardize multiple sets of age
estimates generated from two age readers. Newly obtained data supported findings from the 1994 analyses
and final results further indicated that the canary rockfish stock had suffered fishing in excess of 𝐹20%.

In 1999, two age-structured stock assessments were adopted. Williams et al. (1999) completed an assess-
ment for the southern INPFC areas (Eureka and Monterey) and Crone et al. (1999) conducted a separate
assessment for the Northern INPFC areas (Columbia and US Vancouver). Both assessments concluded that
the abundance of canary rockfish was below the overfished threshold. A major source of uncertainty was
the role that natural mortality and adult movements played in the relative lack of old females. The north-
ern assessment was performed using an age-based stock synthesis model and relied on age distributions to
summarize changes in the age-structure. The Southern assessment was a length-based (although still age-
structured) model in AD Model Builder (ADMB). The southern assessment also tried to account for effects
of sized-based removals on population growth. The subsequent rebuilding analysis relied upon recruitment
information from the northern area where the larger portion of the stock occurs.

3.1.2 2002 Benchmark

The 2002 assessment unified the previous northern and southern assessments into a coast-wide model (Methot
and Piner 2002). This assessment was the first to incorporate the newly available survey information from
the WCGBTS. This assessment focused on the exploration of two states of nature that were considered in
previous assessments: age-dependent natural mortality for females versus dome-shaped female selectivity.
Together with the STAR panel, it was concluded that these need not represent discrete hypotheses and that
both scenarios could be modeled simultaneously. The 2002 assessment concluded that the canary stock was
still at very low levels, 8% of the estimated unexploited conditions.

3.1.3 2005 Benchmark

The 2005 assessment converted and updated the 2002 effort using Stock Synthesis 2 (Methot and Stewart
2005). The assessment reconfigured the spatial separation of fisheries to separate northern and southern
California due to the north-south difference in occurrence of larger fish and the varying north-south distribu-
tion of fishery sampling. Fishery removals were divided among more fleets; separating trawl, non-trawl, and
recreational fleets by state with some state/gear combinations. This assessment switched from age-based se-
lectivity to length-based selectivity, and assumed asymptotic selectivity for males and allowed dome-shaped
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selectivity for females. Numerous changes to data in the model were utilized including adding ageing error
bias, iterative re-weighting of data sources, dropping the trawl and recreational fishery CPUE, and fixing
the parameters defining the variability in size-at-age at values estimated outside the model.

SSC review of the canary rockfish assessment concluded that the parametric variance around a single base
model underestimated the overall uncertainty in the canary rockfish assessment. After considerable deliber-
ation, the SSC and STAT concluded that the base (selectivity allowed to differ by sex) and alternate (sex
invariant selectivity) models were equally likely and supported a statistically based blend of the two models
as the basis for the rebuilding analysis, with both indicating low levels of depletion.

3.1.4 2007 Benchmark

The 2007 benchmark assessment proceeded by rebuilding all data streams and re-examining all assumptions
regarding selectivity, growth, and mortality (Stewart 2007). The 2007 assessment updated to using a double-
normal selectivity option which was simpler than the double-logistic used in the 2005 assessment by 2
parameters (6 vs. 8). The 2007 assessment incorporated substantial new assessment data as well as the
addition of the at-sea hake fleet, research catches, improved ageing-error definitions and the introduction
of conditional age-at-length data for survey fleets. Due to the use of conditional age data in place of
marginal age-frequency distributions and mean-length at age data used in 2005, the parameters describing
the distribution of length at a given age were also freely estimable. These changes had a larger effect
than the selectivity parameterization, serving to increase the estimate of 𝑆𝐵0 and current stock size, but
had little effect on relative trend over the time series. Changes to the stock-recruit relationship included
fixing steepness at 0.51, estimating the full time series of recruitment deviations and adding a ramp to bias
correction. The 2007 assessment also eliminated several discrete time-blocks for changes in fishery selectivity
prior to recent management actions. In aggregate, these changes further scaled the estimate of the time
series of spawning biomass up, but retained the relative trend. The 2007 assessment was also the first to
split the triennial indces into an early and late period due to changes in the survey’s timing.

The 2007 model was subsequently updated twice, in 2009 (Stewart 2009) and 2011 (Wallace and Cope 2011).
The 2009 update decreased the catch time series prior to World War II, reducing the estimate of spawning
biomass by an average of 14 percent (19 percent in the first 10 years of the series and 47 perecent in the last
10), and the 2011 update resulted in little additional change.

3.1.5 2015 Benchmark

The 2015 stock assessment updated data streams and biological relationships from the 2007 benchmark, and
changed the modeled population structure compared to past assessments (Thorson and Wetzel 2016). The
most significant change in parameters governing biological relationships was an increase in the steepness
parameter from 0.511 in 2007 to 0.773 in 2015, due to updates in the Thorson-Dorn rockfish prior from past
meta-analysis (Dorn 2002). Additional changes in biological relationships were in parameters governing the
maturity relationship, which explicitly accounted for the presence of skip spawning, as well as updates to

34



the fecundity relationship and the addition of a natural mortality prior. While values from the steepness
prior distribution were used in assigning alternative states of nature in 2007, values of both steepness and
natural mortality were used (separately) in assigning alternative states of nature in 2015.

The 2015 assessment modeled the population of canary rockfish along the U.S. West Coast across three
areas by state. The spatial structure was modeled as a tool to “visualize and explore model residuals and
a method to identify time-varying selectivity at the stock-wide level, rather than as a basis for spatially
varying fisheries management”. The spatial areas in the 2015 assessment were similar in many ways in that
they shared the same growth parameters, and no movement in adults among the areas was assumed. The
authors applied small movement rates (0.01 to 0.05) starting at age 3 as sensitivities and found little change
in model results. The only connection modeled between the three areas therefore was apportionment of
recruits from a single shared stock-recruitment relationship to each area. Sensitivity to the assumed spatial
structure found that results were similar to a coast-wide representation of the population.

In addition to updates in biological parameters, and spatial changes to the population model, the 2015 stock
assessment made improvements in the analysis of age-error matrices for better accounting for uncertainty
and bias in age reads for canary rockfish, and significant improvements in including spatial-autocorrelation
of survey data when calculating abundance indices. Analysis in ageing error bias resulted in the inclusion of
surface reads from the late 1970s and early 1980s in that strong bias in surface read ages could be accounted
for based on the ageing-error matrices, although the presence of surface reads was found through sensitivities
to have negligible effect on model results. Improved survey index calculation is now accepted practice for
U.S. West Coast assessments.

The 2015 assessment model indicated that canary rockfish was above the management target (>40 percent)
for spawning output relative to unfished levels, and was subsequently used to support the declaration that
the stock was rebuilt. There have been three subsequent catch-only projections of this assessment to account
for actual and projected removals. They occurred in 2017 (Thorson and Wallace 2017), 2019 (Wallace 2019),
and 2021 (Correa and Wetzel 2021). The 2017 catch-only projection corrected an error found during the
2017 assessment cycle in the database used to inform historical catches for the California commercial fleets
prior to 1951, which were found to be about half the amount used in the 2015 assessment model. The 2021
catch-only projection corrected the catch time series in 2016–2018 that were used in the 2019 catch-only
projection.

3.2 Most Recent STAR panel and SSC Recommendations

The 2015 STAR panel and SSC did not list any major deficiencies for the previous assessment. Responses
to research recommendations from the 2015 STAR panel reported are below.

Recommendation: The historical catch data ultimately used in the assessment differed from that which
was given in the original draft assessment presented for review at the panel. The review process would be
improved by ensuring that any such issues (i.e. disagreements about the best available historical catch) are
resolved well in advance of the assessment review meeting. One possible approach might be to have an
earlier step in the process intended to sign-off on the input data, analogous to the way that the STAR panel
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signs-off on the stock assessments. Ongoing efforts to reconstruct Washington catch data, in the way that
has already been done for Oregon and California, should help to resolve these issues in the medium term,
but until then, there will still be a need to work with agreed, interim catch estimates for inclusion in stock
assessments.

Response: Significant progress has been made to streamline the review process to reduce the number
of changes to catch streams during STAR reviews. The TOR outlines the steps for finalizing catch time
series by a designated data deadline, which we have done. Increased communication between the STAT,
management and advisory bodies, and state agencies have resulted in changes to the catch history during
model development, and as of time of writing, not during the STAR review.

Recommendation: Catch and discard history for this stock in U.S. waters is highly uncertain. While
the STAT was able to construct alternative upper and lower bounds for catch using simple multipliers on
certain years of historical catch, this is arbitrary. Work to assess the uncertainty related to each individual
data source would allow a better investigation of the overall combined uncertainty and its effect on 10 stock
assessments.

Response: This assessment includes a new reconstruction of canary rockfish landings in Oregon within
unspecified PacFIN categories from 1987-1999. A formal Washington reconstruction is nearing completion,
but was not yet ready for use in this assessment. Increased variation about catch time series was explored
as a sensitivity.

Recommendation: Improved documentation is required to clearly outline the process used to construct
the historical catch and discard time series from the various data sources. Such documentation should also
include the process for construction of alternative catch histories that are used to propagate such uncertainty
into the stock assessment.

Response: This assessment report has attempted to more clearly document the process used to construct
the historical catch and discard time series. In addition, the use of github for this assessment means that
the code used to construct the time series, and many of the decisions involved, is publicly available and the
process is reproducible. Finally, the STAT has communicated repeatedly with state partners and the GMT
to ensure that catch time series are appropriate, per the TOR. This communication did result in changes to
the catch history during model development.

Recommendation: Additional work on the geospatial index is required to better resolve differences in
abundance trends among areas.

Response: This assessment did not use a spatially stratified abundance index, although during early index
development separate year by area covariates were considered for use in index development.

Recommendation: Work towards a combined US/Canadian stock assessment would greatly aid our overall
understanding of stock status.

Response: Little progress has been made on a combined US/Canadian stock assessment. The STAT
did obtain catches and estimated recruitment and recruitment deviations from a recent British Columbia
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assessment. We have conducted a sensitivity with these catches added to Washington fleets, and compared
the recruitment deviations estimated within our base model and the Canadian model to look for synchrony.
Other than fisheries under a binational treaty, U.S. West coast assessments use the U.S.-Canadian border as
the northern limit for data to use within models.

Recommendation: If data permit, the trawl fleet should be divided into separate components so that
bycatches in the shrimp and pelagic trawls are separated from catches in the main bottom trawl fleet. In
the current assessment, composition data for the trawl fleet have a major influence on the estimated stock
trends, so it would be desirable to use data that are more representative of the main fleet in order to improve
estimated selectivity of the fleet.

Response: Due to the already complex fleet structure in this model, the shrimp and pelagic trawls were
maintained within the main trawl fleet. The number of samples for the shrimp trawl gear is less than 1%
of the samples compared to the trawl gear in Oregon, so is expected to have a small effect on selectivity
estimates. The midwater trawl component has more samples and removals are higher in recent years (in part
because midwater trawl codes were only available starting in 1979 for Oregon and in 2000 for Washington).
However, selectivity blocks are imposed, and are expected to limit the effect of midwater trawl composition
data on the entire trawl time series. Moreover, initial analyses indicated length and composition data from
the shrimp and midwater trawl fisheries within PacFIN were comparable to other trawl gears.

Recommendation: Basic life history research may help to resolve assessment uncertainties regarding ap-
propriate values for natural mortality and steepness, and how to best account for the apparent loss of older
females in the population.

Response: This assessment includes fecundity and maturity curves based on new data made available since
the last benchmark assessment. While efforts have been undertaken to understand the apparent loss of older
females, this has not resulted in any clear resolution. A research study sampling in non-trawlable habitat
along the U.S. West Coast found a similar lack of old females in the data (Brooks 2021). Examination of
data from the Oregon trawl fleet indicates that in the decade from 2010-2020 the fraction of females in older
age classes was not lower than the fraction of females in younger age classes, unlike sex ratio patterns seen
in previous decades (Rasmuson et al. 2023).

3.3 Model Structure and Assumptions

3.3.1 Modeling Platform and Structure

We used Stock Synthesis version 3.30.21, compiled February 10, 2023 by Rick Methot at the National
Oceanic & Atmospheric Administration (NOAA) NWFSC using the 64-bit version of ADMB 13.1 (Methot
and Wetzel 2013). This most recent version includes improvements and corrections to older model versions.
The previous benchmark assessment used an older version of Stock Synthesis, version 3.24V. The R package
r4ss, version 1.48.0 (Taylor et al. 2021a), along with R version 4.2.2 (R Core Team 2022) were used to
investigate and plot model fits.
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3.3.2 Balance of Realism and Parsimony

The base assessment model for canary rockfish was developed to balance parsimony and realism, and the
goal was to estimate a spawning output trajectory for the population of canary rockfish off the U.S. West
Coast. The model contains many assumptions to achieve parsimony and uses many different sources of data
to estimate reality. A series of investigative model runs were done to achieve the final base model, some
of which are described as sensitivities (Section 3.5.2) and some of which are included in the bridging steps
described below. Notably, we simplify the population structure of the last benchmark assessment model by
assuming a single coastwide stock, yet increase spatial fleet structure by unmirroring fleet selectivities among
states and allowing sex-dependent selectivity at larger sizes. We balance the increased complexity in spatial
fleet structure by simplifying the selectivity parameterization and combining fleets and minimizing the use
of blocks where possible, and assuming natural mortality to be age-invariant, as opposed to increasing with
age for females.

3.3.3 Model Changes from the Last Assessment

The assessment model structure has been significantly altered from the 2015 benchmark stock assessment
(Thorson and Wetzel 2016). The primary change affecting model results is the change in modeling of
natural mortality. We model natural mortality as sex-dependent and age-invariant which offers a simplified
and more biologically common approach to modeling natural mortality than an increasing linear ramp in
female natural mortality. While natural mortality of females and males likely is similar at young ages, given
that the fisheries and surveys do not fully select the smaller, younger fish, natural mortality at young ages
does not matter as much as a reasonable cumulative natural mortality at older ages. Assumptions to this
choice are tested with sensitivities and described in Section 3.5.2.

Another substantial change is in the treatment of spatial structure in the model, both in terms of population
spatial structure as well as fishery fleet structure. We simplify modeling the population structure of canary
rockfish along the U.S. West Coast by assuming a coastwide population, yet increase the spatial complexity
of the fishery. This amounts to using an areas-as-fleets approach (Punt 2019). Although an areas-as-fleets
approach does not account for potential regional differences in depletion, because catches are assumed to act
over the entire modeled area, early explorations indicated instability when unmirroring fleets and updating
the selectivity parameterization and blocks, thus suggesting that the data may not support realistic fleet
complexity within the spatial model. Through bridging of the spatial model (described below) we show
that the change in population structure does not have a large effect on model results, especially relative to
changes in the modeling of natural mortality and the relative contribution of various data sources to model
estimates.

By reducing complexity in the population structure of the model, we could increase the spatial complexity of
the fishery. Spatial fleet dynamics allow the model structure to account for varying selectivity and historical
management actions that may have impacted the fishery and the available data in specific ways. In the 2015
assessment, fleets were assumed to have the same selectivity across states. We allowed selectivity estimates
to be informed by the dynamics in waters where they fish, although we have mirrored some fleets where we
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believe the data indicate it is appropriate to do so. We have also increased the number of selectivity blocks
for the non-trawl and recreational fisheries, which is appropriate given the large changes in regulations for
canary rockfish. Lastly, we have elected to include sex-dependent selectivity, which both improves fits to
data and allows dynamics between male and also female natural mortality to align better with observed
sex-ratios. Sensitivities to choices about selectivity are described in Section 3.5.2.

While, in general, fleet structure in the base model is more complex than in the 2015 assessment, we simplified
our fleets where reasonable. We treated survey fleets as exclusively survey fleets, and did not model the small
amount of catches from these surveys. It is no longer standard practice to include surveys as fishing fleets
in West Coast assessments. We also removed the California at-sea hake fishery composition data, which was
very sparse, and incorrectly assigned to California, and combined selectivity for the Washington and Oregon
fleets, which have similar dynamics and fish across state boundaries.

Data have also been updated for this assessment. The synthesis and treatment of data has been altered for
this assessment based on updated best practices and extensive work by NWFSC to document, reproduce,
and standardize data processing steps, along with extensive work by staff at state agencies and PSMFC in
providing consistent and accurate data in a more easily obtainable manner. Catch time series have been
updated according to current best knowledge. States have updated their historical reconstructions, and past
issues with catch time series mentioned in the last assessment review process and in subsequent catch-only
updates have been corrected. Catch time series for the foreign fleets was also repartitioned to states in a
manner more consistent with patterns observed in the domestic fishery. We assigned data from shrimp trawls
as part of the trawl, where for the 2015 assessment they were included within the non-trawl fleets. Available
length and age data have been processed using updated and more reproducible approaches. Substantial
effort was made by the NWFSC ageing lab in providing age reads for new and previously collected canary
rockfish otoliths. These allow age composition data for recreational fleets to be included as well as additional
years of data for other fishery and survey fleets. Although more age data were available, we elected to
remove surface age reads from the model due to known biases in addition to their removal having little effect
on model results of the 2015 assessment. Sensitivities to assumptions around data choices are described in
Section 3.5.2.

In addition to updated data, the process in which data contributes to the likelihood was updated. The pre-
vious assessment applied equal data weights to each fleet type across areas, and preferentially downweighted
age data based on the relative sample size compared to the number of length samples by applying impact
factors (i.e. lambdas) to composition data of less than one. Furthermore, the previous assessment did not
apply data weighting to conditional-age-at-length data data from the surveys. In whole, these steps are not
currently standard practice. For this assessment we do not adjust lambda values. Rather we allow the data
weighting procedure to offset the contributions of age and length data, including conditional-age-at-length
data in the data weighting, while checking that the sample sizes of composition data do not exceed the
number of fish actually sampled.

Lastly, a number of changes due to updating fixed parameter estimates and prior values were made for this
assessment compared to the 2015 assessment. These changes include updates to the steepness prior, natural
mortality prior, the fecundity relationship, and a change in maturity from length-at-biological maturity to
age-at-functional-maturity based on additional analysis of maturity samples by Melissa Head at NWFSC.
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Changes to biological parameters are more completely described in Section 2.4. The effect of these changes
on model results is described below in the bridging analysis.

3.3.4 Bridging Analysis from the 2015 Benchmark Assessment

The exploration of models began by bridging from the 2015 benchmark assessment model to the newest
version of Stock Synthesis, version 3.30.21. Using the newest Stock Synthesis version resulted in a slightly
lower spawning output starting around 1995 (Figures 37 and 38) due to a higher value of catchability for
the Washington late triennial survey. From there, bridging from the 2015 benchmark assessment model to
the current base model followed five general steps:

1. Update data inputs to reflect best information currently available. Data was updated by source (fishery
independent, fishery independent) and type (catch, compositions, indices).

2. Update life history information including natural mortality value and pattern, maturity, steepness,
fecundity, and weight-length relationship.

3. Update the structure of the modeled population, going from a spatial structure for recruitment to a
single-area structure for recruitment.

4. Reapply current data weighting practices.
5. Update structure of selectivity.

To arrive at a final base model additional revisions were made after these five steps to determine the best fit
to the data. These include correcting an error in the generation of the triennial index of abundance, which
was found late in the bridging process, adding in recent commercial age samples that were inadvertently
omitted in earlier bridging steps, revisions to the fleet structure, weightings, selectivity blocks, selectivity
parameterizations, and extending the period of early recruitment deviations.

A thorough description of the current base model is presented separately below. This section is intended
only to more clearly identify where substantive changes were made from the previous benchmark assessment.
Sensitivities to many of the components within the steps above are included in the Sensitivities (Section
3.5.2).

Changes due to updating data streams are shown in Figures 39 and 40. Updating the fishery catch and
composition data increases initial spawning output and produces a steady increase in recent spawning output.
Updating survey indices and composition data results in a decreasing trend in spawning output in the most
recent years. Changes in life history parameter values are shown in Figures 41 and 42. Individually these
changes produce different estimates for initial spawning output, but collectively offset and result in continuing
the trajectory from the 2015 benchmark assessment.

Changes due to altering the structure of natural mortality are more substantial than changes to data and
biology (Figures 43 and 44). Assuming age-invariant natural mortality results in a female natural mortality
estimate of 0.076, which is larger at young ages but smaller at older ages than estimates using a ramp
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in natural mortality as applied previously. Although assuming age-invariant natural mortality results in
similar recent spawning output and trajectory, doing so increases the estimate of 𝑙𝑛(𝑅0) and thus reduces
the degree of recovery in spawning output relative to unfished, as also shown within sensitivities from the
2015 benchmark assessment. Also similar to the findings from the 2015 benchmark assessment, changing
the structure of the population from spatial to non-spatial resulted in small changes in the current model
(Figures 45 and 46). Updating the data weighting process to current standard weighting practices and to
account for the new updated data however resulted in a decrease in the degree of recovery in spawning
output relative to unfished, due in part to a reduced estimate for female natural mortality to 0.065 in the
coastwide model and 0.071 in the spatial model.

Changes in how selectivity was modeled are shown in Figures 47 and 48. Allowing selectivity to be sex-
dependent resulted in a large change in the degree of recovery in spawning output relative to unfished, due
to an increase in the estimated value of female natural mortality. Other changes in selectivity including
unmirroring fleets and using an alternative parameterization of the double normal (three parameter instead
of four) resulted in small changes. Various additional changes as described above result in the final base
model.

3.3.5 Key Assumptions and Structural Choices

3.3.5.1 Definition of Fleets and Areas To foster comparability between the coastwide base model
and a state-stratified model more similar to the 2015 base model, we retain state-specific fleets for each fleet
type from the 2015 assessment, with the exception of survey fleets which are coastwide. All fleets are ordered
from south to north. That is, fleet 1 is California trawl, fleet 2 Oregon trawl, and fleet 3 Washington trawl,
etc.

Fleets in the base model include:

1-3 Trawl – Bottom trawl gears, including shrimp trawl and mid-water trawl.

4-6 Non-trawl – The non-trawl fleet includes a variety of sources of directed and bycatch mortality in
commercial fisheries.

7-9 Recreational – Including both private-rental and party-charter modes.

10-12 At-sea hake – The at-sea hake fleet includes both tribal and non-tribal at-sea hake fisheries.

13-15 Foreign – The foreign fleet operated 1966-1976, and does not include any composition data. We assume
that the foreign fleets have selectivity equal to that of their respective trawl fleet.

28 WCGBTS

29 Triennial Survey early – because canary rockfish sampling should be minimally impacted by the
changes in the triennial survey that occurred in 1995, we chose to mirror selectivity and catchability
between the early (1980–1992) and late triennial (1995–2004) fleets, but maintain two fleets to explore
sensitivity to this assumption.
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30 Triennial Survey late

31 Pre-recruit survey

Fleets 16 through 27 were holdovers from the previous model structure and were not used.

3.3.5.2 Initialization of the Model We start the model in the first year of reconstructed catch
data, 1892. The population is assumed to experience no fishing mortality prior to this year, and to start in
a stable age-distribution. Early recruitment deviations are estimated starting in the first model year. Main
period recruitment deviations begin in 1960 and end in 2022.

3.3.5.3 Conditional Age at Length Data Age-frequency data from the WCGBTS and Triennial
Survey were compiled as conditional age-at-length distributions by sex and year. The approach consists of
tabulating the sums within rows as the standard length-frequency distribution and, instead of also tabulating
the sums to the age margin, the distribution of ages in each row of the age-length key is treated as a separate
observation, conditioned on the row (length) from which it came.

This approach has several benefits for analysis above the standard use of marginal age compositions. First,
age structures are generally collected as a subset of the fish that have been measured. If the ages are to be used
to create an external age-length key to transform the lengths to ages, then the uncertainty due to sampling
and missing data in the key are not included in the resulting age-compositions used in the stock assessment.
The second major benefit to using conditional age-composition observations is that in addition to being able
to estimate the basic growth parameters inside the assessment model, the distribution of lengths at a given
age that is usually controlled by the CV of length at some young age and the CV at a much older age, are also
more reliably estimated. This information could only be derived from marginal age-composition observations
where very strong and well-separated cohorts existed, and that are quite accurately aged and measured; rare
conditions at best. By fully estimating the growth specifications within the stock assessment model, bias due
to size-based selectivity and length-stratified ageing is avoided, and known sources of variation are included
when estimating growth parameters.

3.3.6 Model Parameters

3.3.6.1 Model Likelihood Components The model contains four primary likelihood components:

1. Fit to survey indices of abundance (included for fleets 28-31).
2. Fit to length composition samples (included for fleets 1-12 with the exception of fleet 10, and fleets

28-30; i.e., all fishing fleets except the foreign and California at-sea hake fleets, and the pre-recruit
survey).

3. Fit to age composition samples (marginal ages are included for fisheries, i.e., fleets 1-6 and 8-9, and
11-12, and conditional age-at-length samples are included for surveys, fleets 28-30).
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4. Penalties on recruitment deviations which range from 1892-2022 as well as penalties from prior likeli-
hoods for parameters estimated with prior distributions and for uncertainty around catches.

Indices of abundance are assumed to exhibit lognormal measurement errors, where the log-standard deviation
from the model used to standardize the relevant survey data is treated as an accurate estimate of measurement
errors. Length, marginal age, and conditional-age-at- length samples are all assumed to follow a multinomial
sampling distribution, where the sample size is fixed at the input sample size for the composition data, and
where this input sample size is subsequently weighted to account for additional sources of overdispersion.
Recruitment deviations are assumed to follow a lognormal distribution, where the standard deviation of this
distribution is set to be 0.5. Total removals are assumed to follow a lognormal distribution with standard
deviation set to 0.05. Priors for select biological parameters are described below.

3.3.6.2 Data Weighting Length and age composition data for the commercial fleets started with a
sample size determined from the equation listed in Section 2.2.2.1. The exception to this was for the at-sea
hake fishery where input sample sizes were based on the number of hauls. Input sample size for length
and age composition data for the recreational fishery was determined based on the number of estimated
trips (described in Section 2.2.2.4). Length composition data for the WCGBTS and Triennial Survey were
based on input sample sizes calculated as a multiple of the number of tows (described in Section 2.3.5 and
conditional-age-at-length input sample sizes were set equal to the number of ages within a given length bin.

The base model was weighted using the “Francis method”, which was based on equation TA1.8 in Francis
(2011), as this method accounts for correlation in the data (i.e., the multinomial distribution), and is widely
used among West Coast stock assessments. This formulation looks at the mean length or age and the variance
of the mean to determine if across years, model explains the variability in the data. If the variability around
the mean does not encompass the model predictions, then that data source should be weighted, and typically
is down-weighted. We iterated the Francis method until weights stabilized. The weighting of both the length
and age composition was allowed to exceed one, and we confirmed that data sources that were upweighted
did not have a weighted sample size above the number of fish sampled that would be a cause for concern.
Weights for conditional-age-at-length data, which were a direct count of the number of available ages, were
all less than one.

Sensitivities were performed examining the difference in the model fits and results due to weighting using
the McAllister-Ianelli Harmonic Mean Weighting (McAllister and Ianelli 1997) method and are described in
Section 3.5.2. Note however that this method was found to be inferior to the Francis method (Punt 2017).
We also explored the Dirichlet Multinomial Weighting (Thorson et al. 2017), which is appealing because
it conducts the data weighting internally by estimating one additional model parameter per data type and
source and does not require additional iterations. However, Dirichlet-multinomial weighting has not been
thoroughly simulation tested, and nearly all data weights for both lengths and ages were estimated close to
one. This was deemed implausible and the method was not explored further.

3.3.6.3 Priors and Constraints on Parameters Priors were used for fixed parameter values for
male natural mortality and steepness in the base model, as well as for the estimated parameter value for
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female natural mortality. Details on the choice and value of priors for these parameters are described in
Section 2.4 for natural mortality and steepness and are not repeated here. We model recruitment deviations
around the stock-recruit relationship which are penalized towards zero with standard deviation of 𝜎𝑅 = 0.5
and constrained to sum to one over the main period. For estimated parameters, we set lower and upper
bounds to keep the minimization algorithms within a reasonable parameter space. We do not include any
other informative priors or structural constraints on parameters.

3.3.6.4 Selectivity assumptions Length-based selectivity is allowed to be dome-shaped for all sur-
veys and fisheries. Selectivity curves were estimated using a double-normal pattern for every fishery and
survey, except where selectivity was mirrored among fleets. A double-normal selectivity pattern allows
flexibility in the model to estimate either asymptotic or dome-shaped selectivity.

We specifically estimated three parameters for each selectivity curve, including:

1. Parameter 1: the minimum length at which selectivity is one (i.e. the “peak”).
2. Parameter 3: the width of the ascending curve for selectivity at lengths less than the peak, which

controls the slope at which selectivity approaches the peak.
3. Parameter 4: the width of the descending curve for selectivity at lengths greater than the peak, which

controls the slope at which selectivity declines from the peak.

The parameter that controls the width over which selectivity is one (parameter 2) was fixed at a low value.
Parameters 5 and 6 were set to have selectivity at small sizes start at zero (parameter 5 set to a low value),
and allow selectivity for larger sizes to be non-zero and decay according to parameter 4 (parameter 6 set to
-999). Setting parameter 6 this way simplifies the selectivity parameters and allows a single parameter to
govern the dome-ness of the selectivity shape instead of two.

The foreign fishery does not have length or age composition samples available. Therefore, selectivity is
mirrored to the domestic trawl fishery for each state. We also specify that commercial trawl selectivity is
mirrored between Oregon and Washington due to similar composition data and the fact that many vessels
cross the border while fishing and then return to home ports to land their catch. These landings and,
particularly, composition data that is caught off of the coast of one state and landed in the other is difficult
to disentangle. Finally, we specify that selectivity for the at-sea hake fleet is mirrored among all three states.

We additionally allow selectivity to be time-varying for the trawl, non-trawl, and recreational fleets. Time-
varying selectivity in the trawl fleet was blocked at 2000 (reflecting changes in fishing behavior following
the declaration of overfished status for canary rockfish in 2000), and at 2011 (reflecting a change in fishing
behavior following the implementation of individual transferable quotas). Time-varying selectivity in the
non-trawl fleet was limited by the sparseness of composition data between the period when canary rockfish
was declared overfished and when regulations relaxed in 2017. Based on patterns in the data and discussion
with state partners about regulation changes, we included selectivity blocks for the Oregon and California
non-trawl fleets at 2000 and then again at 2020, to reflect the general period of relaxed regulations for the
fishery initiated by the rebuilt declaration. Due to high correlation among parameters in the most recent
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block, selectivity for the Oregon non-trawl was mirrored between the early (< 2000) and late (> 2019)
periods. The Washington non-trawl fleet had very sparse composition data until 2017, so for parsimony we
did not apply any time blocking for this fleet. Regulations for the recreational fleets across the coast have
been variable, based on seasonal or depth closures and bag limits. Time blocks were applied to the California
recreational fleet in 2004 and again in 2017, corresponding to the imposition and lifting of the most stringent
regulations. Time-blocks were applied to the Oregon recreational fleet in 2004 and again in 2015, and for
the Washington recreational fleet in 2006 and again in 2021, which correspond roughly to the periods where
depth restrictions were imposed (for the first block) and again lifted (for the second block). Due to high
correlation among parameters in the most recent block, selectivity for the Washington recreational fleet was
mirrored between the early (< 2006) and late (> 2020) periods. For each break-point change in selectivity,
we re-estimate all parameters. Sensitivities to selectivity assumptions include the use of a four parameter
parameterization, fixing fleets to have asymptotic selectivity, and simplified blocking (Section 3.5.2).

Early model explorations around structuring natural mortality indicated the data did not support estimating
higher female natural mortality than fixed male natural mortality when natural mortality was constant
across ages. This was somewhat surprising given the observed male-skewed sex-ratios at age among trawl
and survey landings. There appeared to be lack of support for young females, in particular, to have higher
natural mortality. When age-varying natural mortality was assumed, as done in previous stock assessments
for canary rockfish, higher values for older female natural mortality were estimated. We found that by
allowing sex-dependent selectivity in parameter 4, which governs how steeply selectivity declines at larger
sizes, the estimate for female natural mortality increased and the fit to the data improved. Sex-dependence
on other selectivity parameters was explored, but parameter 4 had the largest per-parameter improvement
in likelihood, and was large enough to warrant the additional number of selectivity parameters. We therefore
estimate sex-dependent selectivity in the base model, modeled as a logarithmic female offset to parameter
4 for all fleets and blocks with sex-specific composition data (i.e. all fleets and blocks except the California
recreational fleet and the 2004-2014 block of the Oregon recreational fleet). Sensitivity to excluding sex-
dependent selectivity is described in Section 3.5.2.

3.3.6.5 Stock Recruitment Function In this assessment ln(R0) (the natural logarithm of unfished
recruitment) was estimated, while steepness was fixed at its prior mean of 0.72. Lognormal deviations from
the standard Beverton-Holt stock-recruit relationship were estimated from 1892–2022 with a fixed 𝜎𝑅 value
of 0.5. There is limited information regarding recruitment prior to 1960 but deviations are estimated in the
base model to account for uncertainty around the unfished condition to a degree consistent with estimated
variability in recruitment. The early deviations are estimated from the beginning of the model period until
1960 in order to fully propagate uncertainty in recruitment and allow population age-structure to represent
plausible deviations from the equilibrium at the start of composition data. Main phase recruitment deviations
are estimated beginning in 1960, shortly before composition data becomes available in 1968.
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3.4 Base Model Results

3.4.1 Parameter Estimates

The base model parameter estimates along with approximate asymptotic normal standard errors (SD column)
are shown in Table 12. This table enumerates a total of 232 estimated parameters. These include one
parameter for ln(R0), one parameter for female natural mortality, nine parameters describing growth, one
parameter for survey catchability in the Triennial Survey, one parameter for extra variability for the pre-
recruit survey, 69 parameters for length-based selectivity and blocks along with 19 parameters for sex-
dependent selectivity and blocks, and 131 recruitment deviations. The likelihood components from fitting
the base model to data are shown in Table 13. The estimated data weights by the Francis method are shown
in Table 14.

The full r4ss plotting output is available in the supplementary material on the Pacific Fishery Management
Council website.

3.4.1.1 Biology Parameters The estimates of growth parameters by sex varied relative to the exter-
nally estimated parameters (Table 12). The length-at-age 1 was less than the external estimate from survey
data for both sexes while the 𝐿∞ estimates for both sexes were higher than the external estimates. The
internally estimated 𝑘 for females and males was less than than the values estimated externally, with the
value for females being more similar. The 95% confidence interval of the internally estimated growth curves
(Figure 49) contains the externally estimated curves. The coefficient of variation in growth was assumed
to be function of length-at-age. Estimates for the coefficient of variation at 𝐿∞ were slightly less than half
those at length-at-age 1 for males and females. However, given the estimates for length at older and younger
ages, this still results in greater variability in length at older ages.

3.4.1.2 Selectivity Estimated selectivity curves are shown in Figure 50 and 52 for females and Figures
51 and 53 for males, with selectivity parameters provided in Table 12. Nearly all fleets show a strong dome-
shaped pattern with the exception of 1) selectivity for females by the Oregon and Washington trawl fleets
from 2000–2011, 2) selectivity for females by the Oregon non-trawl fleet prior to 2000 and after 2019, and 3)
selectivity for both sexes by the Triennial Survey. Sensitivity to allowing for one asymptotic fleet is shown
in section 3.5.2.

For the trawl fleets, the length at peak selectivity is greatest prior to 2000, with the California peak at 45
cm and the mirrored Oregon and Washington peak at 50 cm. Selectivity shifts towards smaller fish in recent
time periods between 0–6 cm depending on the fleet and time block. The pattern of dome-ness between time
periods is stronger in California in recent years whereas for Oregon and Washington the curve tends to shift
towards smaller fish, and to an asymptotic pattern for females between 2000–2011. The foreign fleets are
mirrored to the trawl fleets and have the same selectivity curves.

For the non-trawl fleets, the patterns in selectivity are more variable, reflecting the sparseness of the compo-
sition data. In California, selectivity for smaller fish is greater in the non-trawl fleet than in the trawl fleet,
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with the period prior to 2000 peaking at the largest size of 36 cm. The range of lengths selected is more
compressed but has shifted towards smaller fish by 2–3 cm in more recent years. In Oregon, prior to 2000
and after 2019, peak selectivity was 31 cm. For females, selectivity was estimated to be asymptotic during
this time. From 2000–2019 peak selectivity increased slightly to 33, and also became much more domed for
both sexes. The Washington non-trawl fleet has sparse data so is modeled as having constant selectivity
across time, with a peak at 46 cm.

The at-sea hake fishery has mirrored selectivity across each state given the similarities in the fishery along
the coast. The selectivity curve is more narrow than that for either the trawl or non-trawl fleets, with a
steep increase around 40 cm and peak at 44 cm. No time-varying selectivity is applied to the at-sea hake
fishery.

For the recreational fishery, the length at peak selectivity is shifted towards smaller fish compared to the
commercial fleets. Selectivity increases sharply and reaches a peak of 29 cm in California, 31 cm in Oregon
and 35 cm in Washington. All recreational fleets show strong dome-ness with the exception of selectivity for
females in Washington before 2006 and after 2020, though this case is still not asymptotic.

The WCGBTS and Triennial Surveys are estimated to have a slowly increasing selectivity curve across a
wide range of lengths; starting at very small sizes and increasing to a peak near 43–44cm. This likely reflects
the spatial and bathymetric coverage and non-targeting nature of the survey design compared to the fishery.
Selectivity for the WCGBTS declines for larger individuals whereas for the Triennial Survey selectivity is
nearly asymptotic. No time-varying selectivity is applied for the surveys, and the Triennial Survey is mirrored
across the early and late period.

For all fleets and surveys, male selectivity shows a greater dome-ness than females. This is likely compensating
for a lower availability of large females given that their natural mortality estimate is higher than males. Thus,
greater selectivity for females still means that large females are less commonly caught than large males due
to their relatively lower occurrence in the population owing to their higher natural mortality rate. This also
allows for effective fishing mortality on larger and older females to be greater than for males, such that both
natural mortality and fishing mortality contribute to the smaller number of old females observed.

3.4.1.3 Catchability Catchability for surveys comparing observed to expected vulnerable biomass
across all years was analytically solved for the WCGBTS and pre-recruit survey, and estimated for the
Triennial Survey. The Triennial Survey was mirrored across the early and late period so catchability was
equivalent. The values for catchability of the adult surveys are commensurate with surveys for a species that
is partially inaccessible and caught on a subset of tows (Tables 10, 11). Catchability in regular space was
calculated as 0.45 for the WCGBTS, 0.06 for the pre-recruit survey, and estimated to be 0.28 for the mirrored
Triennial Survey (Table 12). Additional survey index variability for the pre-recruit survey that is process
error added directly to each year’s input standard deviation was estimated within the model at 0.51 Fits to
adult surveys were near enough to confidence intervals of the estimates of the survey that down-weighting
the survey data by estimating additional variability was not warranted.
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3.4.1.4 Stock-recruit Parameters In this assessment the natural logarithm of 𝑅0 was estimated,
while steepness was fixed at its prior mean of 0.72. Lognormal deviations from the standard Beverton-Holt
stock-recruit relationship were estimated from 1892–2022 with a fixed 𝜎𝑅 value of 0.5. There is limited
information regarding recruitment prior to 1960 but deviations are estimated in the base model to account
for uncertainty around the unfished condition to a degree consistent with estimated variability in recruitment.
The time series of estimated recruitments and annual recruitment deviations are shown in Figures 54 and
55. The spawner-recruit curve is shown in Figure 56.

Years with the highest recruitment deviations were estimated to have occurred in the 1960s and continued
through around 1990. Starting around 2005 recruitment deviations became more consistently negative and
reached their nadir in 2018. Much of this period corresponds to a period of relatively sparse composition
data. Deviations have increased closer to average levels since 2018 but these deviations are more uncertain
given the few years available to sample these age classes. The recruitment bias adjustment applied within the
model across years is shown in Figure 57. This relationship was updated during early model exploration with
the final version near to the suggested alternative provided within r4ss such that it was left at the earlier
values. Similarly, the value of 𝜎𝑅 was tuned to match the observed variation in recruitment deviations,
following Methot et al. (2011), and as provided in r4ss. The tuned value was similar (0.47 for the period
1960–2022) to that already used (0.5) so the value of 0.5 was retained.

3.4.2 Fits to the Data

Fits to the data are shown based on the Pearson residuals for length and marginal age compositions, annual
mean lengths and ages, and aggregated length and marginal age composition for the fishery. For the surveys,
similar metrics were used; however, fits of ages are conditioned on length, and fits to the survey indices
are also provided. For simplicity, within this section we refer to marginal age compositions as simply age
compositions.

The aggregated fit to the length composition data by fleet is shown in Figure 58. Fits are generally consistent
with observed data aggregated over all years for males, females, and combined when sex-specific data are
unavailable. Fits balance the bimodal patterns for Oregon and Washington recreational data and Oregon
non-trawl data, and are generally consistent for both Washington and Oregon trawl data, where selectivity
was mirrored. The mode of proportion at length is generally larger for females than males in trawl gear,
reflecting the dimorphic growth in canary, but are similar for other gears.

Pearson residual plots by fleet (fishery and survey) as well as mean lengths by year observed from the compo-
sition data are shown in (Figures 59–86). Yearly mean length is variable for canary rockfish, particularly for
non-trawl fleets both in terms of sample sizes within and across years. However, patterns are still discernible.
Patterns in length data indicate a declining trend in mean length of about 5 cm in the trawl fishery starting
in the early years (1980s) when data is available. The decline is best captured in the Oregon trawl lengths,
although the fit declines around 3 cm and underestimates the observed decline. The decline is also present
to a lesser extent in the California and Washington trawl lengths. Fits also reveal an increase in mean length
in recent years (up to 7 cm in California non-trawl data but less for other fleets), which is best captured
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by fits to the non-trawl and recreational fleets within the final time-varying selectivity block of each fleet.
Patterns in mean length for the at-sea hake fishery and the surveys are generally uninformative.

The aggregated fit to the age composition data by fleet is shown in Figure 87. Fits are generally consistent
with observed data aggregated over all years for males and females despite selectivity being based on lengths.
Fits are best for the trawl fleets, and poorer for Oregon and Washington non-trawl data, which are sparse
and variable. Fits do not capture the steeper decline and early long tail in the proportion of older fish in
the recreational fleets. The mode of proportion at age is generally similar for females and males, in contrast
to the patterns in length, especially for the trawl gear. The aggregated age compositions show that general
patterns of increasing selectivity for young individuals, and declining proportion at age for old individuals,
are generally captured. Summaries also exhibit the greater proportion of males in the plus-group (age 35+)
than females for the trawl fleets.

Pearson residual plots by fishery fleet as well as mean age by year observed from the composition data are
show in (Figures 88–107). The range of ages cover a larger range of modeled ages compared to the length
samples, but patterns are comparable to those observed from the length composition fits. Patterns in age
data also indicate a declining trend in mean age in the fishery starting in the early years (1980s) when data
is available. The decline is best captured in the fits to the Oregon trawl ages. The mean age in the data
declines from approximately a mean age of around 20 to a mean age of 11, although the fit underestimates
the magnitude of decline and starts around a mean age of 16. Fits to California trawl ages also indicate a
long term decline but data are sparse. Fits to Washington trawl ages are overestimated relative to observed
data, but also indicate a decline in mean age, albeit from younger ages than the Oregon trawl trend. As
with lengths, recreational mean ages are lower and suggest an increase in mean age in recent years. Patterns
in mean length for the non-trawl and at-sea hake fleets are generally uninformative.

Pearson residuals of conditional age-at-length compositions are shown for each survey (Figures 108–111).
These show variability in length at age over time, which is propagated into model uncertainty through the
use of conditional-age-at-length data. Positive residuals near the lower range of the data exist for the early
Triennial Survey and recent years of the WCGBTS. These suggest that older male canary rockfish at length
are observed than estimated in the model for these years, which is consistent with our comparison of externally
estimated growth parameters for males being near the lower uncertainty range for growth estimated internal
to the model. Predictive plots, where a well-fitting model has a predicted average and standard deviation of
age-at-length that is within the 95% predictive interval, are available within the r4ss documentation available
online. Predictive plots for all surveys generally show fits are within the 95% predictive interval, indicating
no evidence of poor fit to conditional age-at-length data. This suggests that a model with time-constant
growth provides a satisfactory approximation to the process governing age and length.

Fits to indices of abundance for each survey fleet (Figures 112–115). These plots show that fits to the
WCGBTS indices are generally within the 95% confidence interval bounds with the exception of 2009 and
2019. With 19 years of survey data, approximately one year is expected to fall outside of the 95% confidence
interval, and two falling outside the range would not be an usual occurrence. The residuals appear randomly
distributed, with no particularly long strings of positive or negative values. The survey index increases
slowly, with a minor break point between a “low” state until 2013 and a “high” state thereafter. The
triennial survey captures the general decline in population abundance during the 1980s and early 1990s and
the beginning of rebuilding in the late 1990s and early 2000s. The model is unable to capture the sharp rise
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and fall at the beginning of the time series, and thus falls outside of the 95% confidence interval in 1980 and
1983. The pre-recruit survey captures high estimated recruitment events in 2013, 2016, and 2021, though
the model underestimates recruitment in 2016 relative to the survey. The model falls outside of the input
95% confidence in five years (2002, 2004, 2007, 2009, and 2016), but in no years when including the extra
estimated standard deviation. Sensitivity to estimation of this additional variability is included in Section
3.5.2.

3.4.3 Population Trajectory

Summary time series of population trajectories are provided in Table 15. Total mortality estimates for 2023
and 2024 were provided by the GMT. The estimated spawning output (in millions of eggs) is shown in Figure
116, total biomass in Figure 117, spawning output relative to unfished in Figure 118, and fishing intensity
measured as one minus the spawning potential ratio (1-SPR) in Figure 119. Spawning output declines from
the 1940s with the increase in harvest (Figure 2), stabilizes in the 1970s, and then declines to its lowest point
in 1995. Spawning output stabilizes until 2000 when levels increase steadily to recent years with a slowing
trend. The estimated total biomass follows the same general trend as observed in spawning output, but with
a more pronounced decrease from 1980 to 1995 (Figure 117). The estimated spawning output relative to the
unfished equilibrium spawning output was at its lowest (6.1 percent) in 1995 and has since increased. It is
currently within the precautionary zone at 35.1 percent for 2023 (Figure 118). Population trajectories track
the patterns in fishing intensity, where fishing intensity was steadily above a fishing mortality that would
produce an SPR of 0.5 starting in the 1960s and lasting nearly four decades (Figure 119). Fishing intensity
has been low since 2000 but has recently increased to a fishing mortality corresponding to an SPR of near
0.5.

3.5 Model Diagnostics

3.5.1 Convergence Status

The base model has a final gradient of <0.00001 and the hessian is determinant. We therefore conclude
that the parameter estimates represent a global minimum. No parameters are at or within 2.5 percent of
a boundary but two parameter pairs have high correlation coefficients (0.97) with four others between 0.90
and 0.95.

3.5.1.1 Evidence of Search for Global Convergence A search for global convergence was
conducted multiple times during model development, and these led to the choices described within this
report for developing the current model. Analyses from earlier models suggested the likelihood surface
was flat around the maximum likelihood estimate, and found some improvements in the likelihood value.
However, model trajectories were similar suggesting improvements in the likelihood surface did not greatly
change model dynamics.
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Model convergence of the current model was determined by starting the minimization process from dispersed
values of the maximum likelihood parameter estimates. Starting parameters were jittered using the jitter
function built into Stock Synthesis, using a jitter fraction of 0.05. This was repeated 50 times with ten runs
returning to the original best likelihood value, and five runs being very close at just 0.01 likelihood units
above. No jitter runs resulted in an improved likelihood value. Given that this jitter analysis did not result
in a final better likelihood value, we conclude the model has obtained a global optimum, and we proceed
with this model as the current base model. Profiles of key parameters (Section 3.5.4) and sensitivity runs
(Section 3.5.2) also did not show evidence of instability and support the conclusion from the jitter analysis.

3.5.2 Sensitivity Analyses

The base model contains substantial uncertainty in both how data were processed, and structural assumptions
made. We test senstivity to a number of these assumptions. In general, structural assumptions regarding how
productive the population is and how the model handles the relative lack of old females in age composition
data led to the strongest changes in model outputs (Figure 120). All sensitivities with the exception of the
bomb radiocarbon age bias led to relatively similar estimates of growth parameters, indicating growth is well-
estimated in the model and we do not discuss it beyond the bomb radiocarbon sensitivity (Tables 16–19).
We divide the sensitivities into four groups: how data are prepared, how data are weighted, selectivity and
catchability, and population productivity.

3.5.2.1 Data Choices Compiling data for the assessment model required a number of choices and
assumptions. The following sensitivity models fall under data choices:

• No sparse comps: exclude all year-fleet combination of length and age composition data with input
sample sizes less than five.

• Pre-recruit data: include pre-recruit survey index from 2010, 2012, and 2022 which had more limited
sampling.

• Canada catch: add catches from the west coast of Vancouver Island to Washington trawl and non-trawl
fleets

• Catch SE 0.1: Increase the uncertainty in input catches from 0.05 to 0.1 for years before 1980. Years
before 1980 approximate the period with less extensive sampling, and where historical reconstructions
are used to estimate catch. Adjusting catch standard error was done in lieu of manually changing
catch streams to “low” and “high” scenarios.

• Bomb radiocarbon age error: Recent research based on radiocarbon signatures in otoliths from the
atomic testing era indicates that canary rockfish ages based on otolith annuli may be biased negatively
by approximately 10% from the true age (A. Stephens, NWFSC, personal communication, 4/19/23).
This sensitivity assumes all readers have an additional 10% negative ageing bias from whatever bias
was assumed in the base model.
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Overall, decisions with respect to input data had a low impact on model outcomes (Table 16, Figures 121 and
122). Sensitivities generally led to similar current biomass levels, but varying estimates of unfished biomass,
leading to somewhat different depletion estimates. Still, in all cases depletion in 2023 was within the 95%
confidence interval of the base model. Models produced similar estimates of female natural mortality. The
bomb radiocarbon sensitivity produced a somewhat lower estimate because the additional ageing error bias
allows for more older fish in the population than the base model assumes. The bomb radiocarbon sensitivity
also had a higher unfished and recent biomass (within the base model 95% confidence interval), higher
depletion (within base model 95% confidence interval), and lower estimates of von Bertalanffy growth rates
(slower growth) because the sensitivity increases all ages by 10%, but leaves lengths unchanged. Including
Canadian catches predictably increased the population scale substantially, well outside of the 95% confidence
interval. Because Canadian fishing continued during the period canary rockfish was declared overfished in
the U.S., including Canadian catches also resulted in a more muted recovery and somewhat lower depletion
in 2023.

3.5.2.2 Data Weighting The assessment model contains data from a variety of sources, some of
which are expected to be more informative than others. Sampling units from these different data sources
are not necessarily comparable (e.g., an observation from a survey index versus an observation of a fish
length). Data weighting procedures are objective algorithms that can be used to assign weights to different
data sources to optimize the fit of the model to the data. The following sensitivity models fall under data
weighting:

• McAllister-Ianelli data weighting: Use the algorithm suggested by McAllister and Ianelli (1997) instead
of Francis (2011)

• No extra SD: Do not estimate an extra standard deviation for the pre-recruit survey index. This
means the pre-recruit survey cannot be down-weighted to allow for better fitting of other data sources.

• Francis Ages X10: Upweight all age composition samples 10x relative to the weight assumed in the
base model

• Francis Length Weights X10: Upweight all length composition samples 10x relative to the weight
assumed in the base model

The choice of data weighting algorithm and the extra standard deviation on the survey index were not
influential (Table 17, Figures 123 and 124). Data weights for the McAllister-Iannelli method compared
to those used in the base model indicate the McAllister-Iannelli weights the composition data less relative
to the Francis method (Table 20). Eliminating the survey extra standard deviation did result in a larger
survey index negative log-likelihood (worse fit), supporting the choice of its estimation. Increasing the
weight of the age data led to a lower population scale (outside of the 95% confidence interval of the base
model), similar depletion in 2023, and a trajectory where the population begins declining after fishing effort
increases following the lifting of the overfished designation. Increasing the weight of length composition data
essentially does the opposite, increasing the unfished biomass and 2023 depletion (both outside of base model
95% confidence interval), and leading to a steep and rapid recovery of the population in recent years. While
age and length composition likelihoods are not comparable among these scenarios, the survey index negative
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log-likelihood increases both when upweighting lengths and when upweighting ages, indicating worse fits
to survey indices in both cases. Upweighting the length and age data by a factor of ten is not meant to
be realistic scenarios, but rather to illustrate how different data sources influence model results. All data
weighting scenarios generally produced similar estimates of female natural mortality, with the model using
the McAllister-Iannelli weights estimated a slightly larger value.

3.5.2.3 Selectivity and Catchability There are numerous possible ways to parameterize selectivity
in a stock assessment model, and its correct parameterization is generally a major source of structural
uncertainty. Selectivity is of particular importance for canary rockfish because it is unknown whether the
absence of old females in composition data is due to a lack of availability, old females are available but
experience higher natural mortality rates than their male counterparts, or some combination of the two.
Catchability represents the fraction of the population that is available to a survey. It can either be estimated
as a model parameter with uncertainty, or analytically calculated within the model. Because the base model
mirrors catchability between the early and late triennial periods, catchability for the triennial survey had
to be estimated rather than calculated analytically (“floated”). The following sensitivity models fall under
selectivity and catchability:

• No sex selectivity: Assume males and females have the same three-parameter double-normal selectivity
curve (applies to all fleets)

• Simpler blocks: Remove all selectivity blocks for California trawl, California non-trawl, California
recreational, and Oregon recreational fleets because each had relatively similar selectivity curves over
time. Combine the later two periods for Oregon-Washington trawl into one block (2000-2022) due to
similarities in the left hand side of their selectivity curves.

• WA NTWL asymptotic: Assume the Washington non-trawl fleet has asymptotic selectivity, applied
to males and females. The base model assumes all fleets can have dome-shaped selectivity, and many
do, which could lead to the presence of cryptic biomass. The Washington non-trawl fleet was deemed
most likely to have asymptotic selectivity because 1) it fishes in untrawlable habitat where larger fish
likely reside, 2) the average size of canary rockfish tends to increase northward along the coast, and 3)
there is no nearshore component so harvest would presumably be at depths where larger individuals
would be found.

• WCGBTS asymptotic: Assume the WCGBTS has asymptotic selectivity, applied to males and females.
This sensitivity serves a similar purpose as the sensitivity assuming the Washington non-trawl fleet has
asymptotic selectivity. The WCGBTS samples across the full range of deeper depths of canary rockfish
habitat where larger individuals likely reside, as well as samples across a wide range of latitudes, and
so could presumably encounter larger individuals.

• Float Q: Move all triennial data into the early triennial period and float Q (i.e., calculate it analyti-
cally).

• Unmirror tri: Estimate separate selectivity for early and late triennial. Calculate two Q values ana-
lytically, one for each period.
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Eliminating sex-specific selectivity was one of the most influential sensitivities tested, across all groups of
sensitivity analyses (Table 18, Figures 120 and 125–126). Eliminating sex-specific selectivity resulted in
a higher unfished and recent biomass and higher depletion in 2023, both well outside the 95% confidence
interval of the base model. The estimate of female natural mortality goes down substantially to a value even
lower than the fixed value of males. Fits to age and length composition data deteriorate, as expected, and
the survey negative log-likelihood also increases, indicating a worse fit to survey indices, particularly the
WCGBTS.

Treatment of the Triennial Survey catchability value and including an asymptotic selectivity curve for the
WCGBTS were not influential on model estimates, while simpler selectivity blocks, including an asymptotic
selectivity curve for the Washington non-trawl fleet, and unmirroring the Triennial Survey were moderately
influential (Table 18, Figures 125 and 126). The latter three scenarios resulted in higher estimates of unfished
biomass. Simplifying selectivity blocking led to a more rapid recovery over the past two decades, and a 2023
depletion above the target of 40%. Unmirroring the Triennial Survey similarly resulted in a more rapid
recovery compared to the base but leveled off in recent years and reached a 2023 depletion near the target of
40%. Assuming the Washington non-trawl fleet has asymptotic selectivity led to a depletion slightly lower
to that estimated in the base model, and the population trend increased at a consistent rate in recent years,
rather than leveling off as in the base model. Other than eliminating sex-specific selectivity, all sensitivities in
this group led to similar estimates of female natural mortality. Simplified blocking and asymptotic fleets both
increased the negative log-likelihood. Unmirroring the triennial, which is associated with estimating three
additional parameters, only decreased the negative log-likelihood by 1 unit, supporting mirroring the two
time periods. Fully combining the triennial and floating catchability does not have a comparable likelihood
to the base model because the composition data for the late period were all assigned to the early period
fleet, and therefore assigned a different Francis weight.

3.5.2.4 Population Productivity The base model makes a number of structural assumptions re-
lated to population productivity. These assumptions are known to be influential and drive how quickly
a population will recover from an overfished state. The following sensitivity models fall under population
productivity:

• Estimate h: Estimate steepness of the stock-recruit relationship

• Estimate male M: Estimate male natural mortality

• Single M: Fix female natural mortality to the median of the prior distribution, similar to males.

• M ramp: Fix female natural mortality at young ages to the median of the prior distribution, similar
to males. Assume, similar to recent assessments, natural mortality increases linearly from age 6 to 14,
and estimate female natural mortality for ages 14 and higher. This ramp roughly follows the maturity
curve, thus presuming that higher female natural mortality rates are associated with maturation and
spawning.

• M break 20: Similar to the M ramp scenario, but instead of a linear ramp in natural mortality between
a younger and older age, assume a single break-point in natural mortality. For this scenario we assume
a break-point of 20 (change starting at age 21) which is approximately the point at which the sex ratio
begins to change in survey and fishery data.
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Structural assumptions in the model that determine population productivity were strongly influential on
derived model outputs (Table 19, Figures 127 and 128). The model internally estimates steepness to be
0.895. This indicates expected recruitment of the population remains high even at low spawning outputs,
and led to a lower estimate of unfished biomass (within the 95% confidence interval), but a more rapid
recovery in the 2000s and 2010s, leading to a depletion above the target of 40%. Female natural mortality
was similar to the base model. The likelihood increased by two units despite estimating one additional
parameter, indicating that the model was likely close to, but not quite at, the global optimum for this
scenario.

The model internally estimated male natural mortality to be 0.0708 yr-1, higher than the fixed value of
0.0643 yr-1 (Table 19, Figures 127 and 128). When the model freely estimated male natural mortality, the
estimate of female natural mortality also increased to 0.084 yr-1. This increase in natural mortality for both
sexes resulted in a lower estimate of unfished biomass, but as with the estimation of steepness, a steeper
increase in population size in recent years and a higher depletion in 2023 near the 40% target, though still
within the base model 95% confidence interval. The negative log-likelihood decreased by only 1 unit with
the flexibility of estimating an additional parameter. This decrease of less than two units supports the choice
to fix male natural mortality in the base model.

Assuming that female natural mortality increases as they reach sexual maturity rather than remaining
constant throughout their lives led to lower unfished biomass than the base model (within or just beyond
the 95% confidence interval) and a higher depletion in 2023 (near to or above the management target; Table
19, Figures 127 and 128). The estimate of natural mortality for only old females as a ramp to age 14 was
higher than the estimate of natural mortality for all females (0.0934 versus 0.0779 yr-1, respectively), but
lower than for only old females as a break-point at age 20 (0.171 yr-1). The total likelihood was 2 units more
for the ramp scenario and 26 units lower for the break-point scenario compared to the base model. Both
scenarios estimate the same number of parameters as the base model. Together, this indicates some support
within the data to differentiate between the two biological hypotheses of constant versus increasing natural
mortality, conditional on the structure of selectivity. However, estimates for female natural mortality for the
better fitting break-point model would suggest a longevity of 32 years based on the natural mortality prior,
which is inconsistent with what is known about canary rockfish.

Finally, fixing female natural mortality at the median of the prior used for males resulted in a substantially
higher estimate of unfished biomass (outside the 95% confidence interval of the base model) and a much
more muted recovery, leading to a lower spawning output in 2023 and a significantly lower depletion (outside
the base model 95% confidence interval and below the minimum stock size threshold; Figures 127 and 128).
The direction of these results is expected, as the fixed rate is 20% lower than the rate estimated in the base
model, indicating a less productive population.

3.5.2.5 Sensitivities Not Included in Document Using MRFSS length samples instead of those
from the Deb Wilson-Vandenberg data, including lengths of released fish in California and Oregon recre-
ational composition data, and assuming the pre-recruit survey occurs after density-dependence instead of
before all had minimal impacts on model outputs. Dirichlet-multinomial data weighting, and estimating a
fourth parameter of the double-normal selectivity curve for all fleets led to models that did not converge
(final gradient >0.01 for Dirichlet-multinomial, gradient >100 for fourth selectivity parameter).
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3.5.3 Retrospective Analysis

A five-year retrospective was done by successively removing years of data to obtain models with ending
years ranging from 2017 to 2021. The retrospective analysis shows a negative retrospective bias in that
initial spawning output and recent spawning output generally decline as more years of data are removed,
but changes are within the uncertainty intervals of the base model (Figure 129). The largest change in scale
occurs when four years of data are removed, and although the exact reason for this is unknown this peel
is the first to miss the high value in the WCGBTS index and ends in the year with the lowest recruitment
deviation from the base model. The magnitude of change in initial and recent spawning output is generally
comparable across all peels, although recent spawning output declines slightly more for each peel and leads to
slightly lower estimates of spawning output relative to unfished (Figure 130). Estimates of Mohn’s 𝜌 (Mohn
1999), which measures the magnitude of retrospective bias, are -0.42 over all years (average of -0.084 per
year) for spawning output and -0.23 over all years (average of -0.046 per year) for spawning output relative
to unfished. According to Hurtado-Ferro et al. (2015), Mohn’s 𝜌 values on a per-year basis of less than -0.15
are not cause for concern, but should not be taken as lack of true bias.

3.5.4 Likelihood Profiles

We use likelihood profiles to assess the support of the data for the estimation of different key parameters
(steepness, average unfished recruitment, and female and male natural mortality rates). A likelihood profile
over a parameter fixes that parameter to a range of values, and then freely estimates the rest of the base
model at each fixed value. We separate the likelihood profile into contributions from different data sources
to assess the degree to which different data sources agree or conflict.

Low values of ln(R0) maximize the age composition likelihood, the recruitment penalties are minimized by
slightly higher values of ln(R0) than the full model estimates, and the indices support a value of ln(R0) close
to the full model estimate (Figures 131, 132). The Oregon recreational fleet most strongly drives the age
composition likelihood, but age composition data from many fleets support lower population scales. The
length composition data are relatively uninformative in determining population scale. The survey index
likelihood is mainly informed by the early and late triennial indices, which show the most contrast over their
survey period.

The likelihood profile over steepness indicates that a value higher than that fixed in the model, around 0.9,
maximizes the full likelihood (Figures 133, 134). This is similar to the internally estimated value of steepness
(0.895) found in section 3.5.2.4. We do not consider that to be plausible for a long-lived species such as
canary rockfish and therefore fix steepness at the mean of the prior distribution for rockfishes (ℎ = 0.72).
The profile is most strongly informed by recruitment penalties and age data. There is some conflict between
length data, which favor low steepness, and age data, which favor high steepness. There is some conflict
among fleets in the length data, with some fleets supporting higher steepness and other fleets supporting
lower steepness. The survey index favors steepness relatively close to the fixed value, around 0.7, and this is
mainly informed by the triennial surveys.

56



The female natural mortality likelihood profile is most strongly driven by length data, with some influence
of age data and recruitment penalties (Figures 135, 136). Survey indices contain little information to inform
female natural mortality estimation. The length composition data shows a conflict between trawl gears
supporting natural mortality close to the estimate, Washington non-trawl and recreational fleets supporting
lower values, and the Oregon recreational fleet supporting higher values.

The likelihood profile over male natural mortality shows relatively little information from the data to support
its estimation, confirming the choice to fix it to the median of the prior distribution (Figures 137, 138). The
profile is minimized at a similar value (around 0.070 yr-1) to the sensitivity that estimates male natural
mortality (Section 3.5.2.4) and slightly higher than the fixed value in the base model of 0.0643. Unlike
females, recruitment penalties are most influential on the male natural mortality profile. There is a conflict
between age data, which supports lower natural mortality values, and length data, which supports higher
values. Similar to females, survey indices contain very little information to estimate male natural mortality.

3.5.5 Comparison of Base Model to Previous Assessments

We plot summary biomass and recruitment from eight past benchmark and update assessments conducted
for canary rockfish, starting in 1994, and compare to current estimates (Figure 139). Summary biomass is
used because fecundity relationships have changed over time between biomass and egg production. Summary
biomass has most often been modeled as biomass of age 5 and above canary rockfish, with the exception of
the 2002 assessment, which used age 3 and above. A metric of summary biomass was not readily obtainable
for the 1999 assessment, so is excluded from the figure. The plot of summary biomass indicates that the
equilibrium scale of the current base model is very similar to that of the last three assessment models, and
is lower than other assessment models. Summary biomass around 1990 is similar for all models produced
from 1999 onward. The current base model indicates a slower rate of increase than either the 2007 or 2015
assessment models, and faster rate of increase since 1990 than the other assessment models. Age-0 recruits
are estimated to be slightly higher for the current base model compared to the 2015 assessment model and
similar to the 2009/2011 update assessments. Recruitment in recent years for the current base model is
similar in scale and general pattern to past assessments, although the individual trajectories are variable.

3.5.6 Comparison with Similar Stocks and Species

The recent assessment for canary rockfish in Canada shows a similar decline and subsequent rebuilding of the
stock in Canadian waters, where the magnitude of decline and the timing of the commencement of rebuilding
are generally similar to the current assessment (DFO 2023). The Canadian assessment was a catch-at-age
model and included six fishery-independent trawl survey series and a bottom trawl CPUE series. It internally
estimated constant male and female natural mortality at 0.065 and 0.093 yr-1, respectively, while assuming
asymptotic selectivity curves. The male natural mortality is similar to this assessment, while the female rate
is higher. The model penalized recruitment variability much less (𝜎𝑅 = 0.9), and estimated stock-recruit
steepness. Recruitment in the Canadian assessment showed a long-term increasing trend, unlike the long-
term decreasing trend estimated in this assessment. This may be because the Canadian assessment assumed
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selectivity remained constant over time. Detrended recruitment deviations show a minor correspondence
between the U.S. and Canada models (Figure 140, correlation = 0.23, two-sided 95% confidence interval
-0.01- 0.45). This indicates uncertainty in estimates of year-class strength between the two models. The
Alaska assessment is based upon density estimates of yelloweye rockfish from crewed or remotely operated
vehicles, as well as the IPHC long-line survey, and therefore contains no information for canary rockfish (Joy
et al. 2022).

3.5.7 Unresolved Problems and Major Uncertainties

The major uncertainty in this assessment is treatment of natural mortality. This issue has been a long-
standing uncertainty for canary rockfish assessments, and remains so. This uncertainty arises from obser-
vations in survey and fishery data that age-based sex-ratios are male skewed starting around age 20. This
could be explained by females being less susceptible to capture, or to fewer females in the population, or to
some combination of both. No refugia for old females has been found thus far suggesting mortality may be
a more probable culprit, however sex ratios within Oregon fishery data have been nearer to equal in the last
decade. Regardless, there is uncertainty on how best to model this dynamic.

The choice of how to model natural mortality matters. Assuming fixed sex-specific age-invariant natural
mortality results in a more pessimistic outlook because natural mortality for females is fixed at the lower
prior (0.0643) value. If natural mortality is age-dependent, female natural mortality is estimated to be higher
at older ages, and the magnitude of the value increases with the age at which the break in natural mortality
occurs. A higher natural mortality estimate results in a more optimistic population trajectory that increases
dramatically in the 2000s from low abundance in the late 1990s. Modeling selectivity as sex-dependent,
as in the base model, reflects a middle ground in the estimate of natural mortality, in that age-invariant
estimates between males and females differ by 20 percent (with females higher), while avoiding the less
common biological assumption that natural mortality increases with age. However, applying sex-dependent
selectivity results in larger females having greater selectivity values than males, which would seem to be
opposite to treatments in past assessments for explaining the male-skewed sex ratio due to older females
being less susceptible to capture. Assuming no sex-dependent selectivity results in a worse fitting model,
and also has a different population outlook in that natural mortality for females is estimated lower than the
prior estimate (0.055) while high recruitment in recent years results in a greater population increase than
would be expected under such a low natural mortality estimate under average recruitment deviations.

A challenge with the current base model is that it is highly parameterized with many correlations between
parameters above 0.8, including some parameters with correlations as high as 0.97. Earlier versions of the
model suggested a flat likelihood surface. Although the current base model is more stable due to simplifi-
cations to the Washington recreational and Oregon non-trawl selectivity blocks, the number of selectivity
parameters and correlations among them indicate additional simplification may be warranted. Simplifying
the number of selectivity parameters by reducing the number of time-varying blocks degrades model fit by
a large degree and does not appear to be a solution for reducing model complexity. Modeling selectivity as
a three parameter double-normal reduces correlation in parameters compared to a four parameter formu-
lation, however modeling sex-dependent selectivity reintroduces a fourth selectivity parameter. Alternative
forms for modeling selectivity and continued explorations into ways to model processes that lead to high
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male sex ratios in older ages may help reduce parameter correlations, and limit concerns about potential
over-parameterization.

4 Management

4.1 Reference Points

Reference points were calculated using the estimated selectivities and catch distribution among fleets in the
final year of the model, 2022. Average unfished spawning output is estimated to be 8009 million eggs and
unfished total summary (age 5+) biomass is estimated to be 75273 metric tons. A population at equilibrium
at a target of 𝐵40% is associated with a total dead catch of 1152 metric tons and spawning output of 3203
million eggs. A population at equilibrium at an SPR target of 50% is associated with a total dead catch of
1094 metric tons and spawning output of 3573 million eggs. A population at equilibrium at model-estimated
maximum sustainable yield is associated with a total dead catch of 1246 metric tons and spawning output
of 2063 million eggs. For a full list of reference points at the three different management targets, see Table
21.

The 2023 canary rockfish spawning output relative to unfished spawning output is within the precautionary
zone at 35.1 percent (Figure 118). The fishing intensity (1 − SPR) has been low since 2000 but has recently
increased to fishing mortality corresponding to an SPR near 0.5 (Figure 119). The yield curve indicates
current yield is below MSY estimated in the model, but above an optimum yield based on both proxy
targets (Figure 141).

4.2 Harvest Projections and Decision Tables

A ten-year projection of the base model with total catches equal to the estimated ACL based on the category
1 time-varying 𝜎 (0.5) with 𝑃 ∗ = 0.45 (i.e., termed the “buffer”) for years 2025-2034 is shown in Table 22.
Catches were apportioned to each fleet based on the relative fishing morality among fleets in the last four
years of the model. The removals in 2023 and 2024 were set equal to the recommended fleet-specific values
as provided by the GMT (W. Roberts, WDFW, personal communication, 7/6/23).

At the end of the projection period, 2034, the projected ACL removals result in spawning output relative to
unfished to be slightly lower than in 2025 at 33.1 percent, but starting to increase. The delayed increase in
spawning output relative to unfished is due in part to the long period of negative recruitment deviations over
the last decade. Projections were done assuming average recruitment, which given the age of maturity for
canary rockfish take a number of years to contribute to spawning output. If projected ACL removals were
applied to a model assuming lower than average recruitment during the projection period, such as during
the recent period of low recruitment deviations in 2014-2019, which reflects about half as much recruitment
compared to the base projections, then the spawning output relative to unfished at the end of the projection
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period would be 30.5 percent, and would be decreasing (Figure 142). The effect of alternative assumptions for
recruitment on a 10 year projection is limited given that recruits take time before contributing to spawning
output.

The axis of uncertainty in the decision table is based on the uncertainty around natural mortality. Alternative
structural assumptions around natural mortality as described in (Section 3.5.2) were used to identify the low
and high states of nature, where the base model is assigned a 50 percent probability of being the true state
of nature and both the low and high states of nature are assigned a 25 percent probability. The alternative
states of nature were based on the M ramp (high state) and single M (low state) sensitivity runs. We use
alternative model configurations because we think these better capture structural uncertainties for modeling
canary rockfish compared to states of nature based on percentiles from the base model, which assumes
different values around a single structural choice for the model. However, the range in 2023 spawning output
from the alternative states of nature is less than the range spanned by the 12.5 and 87.5 percentiles from
the base model, and is nearer to the 23 and 77 percentiles. The proposed decision table assumes full ACL
removal during the projection period under alternative catch streams based on a 𝑃 ∗ = 0.45 and 𝑃 ∗ = 0.40
(Table 23).

4.3 Evaluation of Scientific Uncertainty

The model estimated uncertainty around the 2023 spawning output for canary rockfish is 𝜎 = 0.14 and the
uncertainty around the OFL was 𝜎 = 0.15. Each of these are very likely to underestimate overall uncertainty
due to the necessity to fix several key population dynamics parameters (e.g., steepness, recruitment variance,
natural mortality for males) and because there is no explicit incorporation of model structural uncertainty
(although see the decision table for alternative states of nature).

Based on the considerations, explorations, and diagnostics described previously, we conclude that different
treatments and assumptions regarding data preparation, data weightings, and decisions around selectivity
blocks and mirroring have limited relative impact on estimates of stock status for canary rockfish compared
to choices around stock productivity. Estimates of stock status are sensitive to assumptions regarding the
biological parameters that govern productivity and the yield curve, especially the base natural mortality
rate, the assumption that female natural mortality is age-invariant is estimated separately from males, and
indirectly that male and female selectivity differs with respect to the rate of decline at larger lengths. We
therefore recommend that further understanding on the appropriate forms and values of natural mortality
are prioritized as a subject for future research.

4.4 Regional Management Considerations

Regional management differences exist across the U.S. West Coast based on various state-specific man-
agement measures. Spatial closures, bag limits, and depth restrictions can influence the effect of fishing
on populations of a species that can vary by region. Spatial closures are expected to increase the spatial
heterogeneity in abundance and size or age structure of fished stocks. This greater spatial variability can
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complicate the assumptions made in stock assessment models, particularly the assumption that the densities
and demographic structure of assessed populations are relatively homogeneous. Although a wide range of
factors above and beyond spatial management measures can also lead to violations of those assumptions,
the challenge can be particularly important for longer lived populations with lower movement rates. While
spatially explicit assessment models provide a means of more explicitly addressing these challenges, such
models are computationally intensive, require robust data from the specific areas being modeled, and may
also require detailed information regarding movement and dispersal rates (McGilliard et al. 2015; Berger et
al. 2017; Cadrin 2020).

The 2015 stock assessment used a spatial population model with spatial connectivity in the apportionment
of recruitment, and catches assigned to individual regions. Spatial models can provide regional estimates
in spawning output and spawning output relative to unfished levels, although estimates from individual
areas within spatial models can be biased even when estimates over the entire area are unbiased (Bosley
et al. 2022). Regional estimates of spawning output or relative spawning output were not provided in the
2015 stock assessment report (Thorson and Wetzel 2016). The text briefly mentions that California had
the largest declines in spawning output relative to unfished levels, and the model assumed recruitment was
apportioned approximately as 20-50-30 for California, Oregon, and Washington. Ultimately, Thorson and
Wetzel (2016) argued that a spatial approach was “a tool to visualize and explore model residuals and to
be a method to identify time-varying selectivity at the stock-wide level, rather than as a basis for spatially
varying fisheries management.”

For this assessment, we chose to focus efforts on a coastwide model. The reasons for doing so have been
described elsewhere, but briefly were based on principles of parsimony, evidence of concerns around model
stability, and the similar overall results between the coastwide and spatial models in our bridging analysis
as well as from Thorson and Wetzel (2016), even with low levels of movement among regions. We used an
area-as-fleets approach to approximate spatial structure in exploitation, and to capture potential differences
in population-structure by region within composition data. Such an approach performs well when the
underlying population is uniform, but can be biased when it is not (Bosley et al. 2022). Crucially, matching
movement dynamics is more important than matching spatial structure of the population (Bosley et al.
2022). The extent to which canary rockfish move remains uncertain, and thus understanding the magnitude
of movement would be beneficial to understanding the benefit of various modeling structures for assessing
canary rockfish. However, limited information from tagging, genetic, and otolith microchemistry analyses
indicates relatively high movement rates among areas (DeMott 1982; Gao et al. 2013; Budrick 2016).

Finally, using total survey biomass for apportioning quota to regions maximizes system yield (Bosley et
al. 2019). Thus, in lieu of reliable spatially explicit estimates of absolute and relative spawning output,
estimates from the WCGBTS can be used to apportion catch across regions, as is already standard for U.S.
West Coast assessments. Using model-based indices calculated for each state during the process of bridging
from a spatial to coastwide model, over the last five years (2017-2022) 15% of the canary rockfish population
has inhabited California waters, 36% Oregon, and 49% Washington.
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4.5 Research and Data Needs

4.5.1 Responses to Previous Assessment Research and Data Needs

Recommendations from the 2015 benchmark assessment are listed below and are summarized for brevity.
We provide our response to these below, and also provide updated research recommendations in the section
that follows based on our experience this cycle.

1. A historical catch reconstruction be initiated with the intent of estimating spatial location of catches.
Such a process has been initiated in other regions (e.g., the Northwest Atlantic, M. Pinsky, pers.
comm.), and will be important to validate the assumptions that are necessary when developing spatial
models.

Response: This assessment includes a new reconstruction of canary rockfish landings in Oregon within
unspecified PacFIN categories from 1987–1999. A formal Washington reconstruction is nearing completion,
but was not yet ready for use in this assessment. Some work was begun on separating canary rockfish landings
in Oregon into those caught in Oregon and Washington waters while compiling data for this assessment.
While logbook information may be sufficient to eventually approximate state of catch, the composition data
is much more challenging to separate and could not be done within the time available. A comprehensive
approach to account for trawl-caught fish across state boundaries is underway as a result of this analysis.
Because this assessment model returned to a coastwide configuration, this recommendation was given lower
priority.

2. We endorse a systematic (rather than ad hoc and species-specific) exploration and analysis of Canadian
data sources (length and age-composition, indices of abundance, landings, and discards) for several
rockfishes.

Response: Progress remains species-specific. However, progress for some groundfish species (sablefish,
Anoplopoma fimbria and petrale sole, Eopsetta jordani) is occurring outside of regular regional stock assess-
ment cycles so that it can be completed in a more intentional and less ad hoc fashion. Canary rockfish has
not been prioritized for these activities by NMFS or DFO. We explored Canadian canary rockfish landings
and estimates of recruitment deviations from an assessment conducted one year prior to this one.

3. We therefore recommend that future research explore methods to stitch these time series back together
(i.e., using covariates and a meta-analytic information regarding the ratio of catchability in the two
periods).

Response: Changes in the spatial (latitudinal and depth) extent of the triennial survey should not impact
canary rockfish, which are generally not found in the areas the survey expanded into. Canary rockfish are
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also not known to undertake seasonal migrations, so the change in timing should similarly not be influential.
Therefore, this assessment estimates the triennial index using a single spatial GLMM. Both composition
data and catch data are truncated so as not to include areas of survey expansion. The index is entered into
the assessment model as two different fleets to maintain the ability to test for sensitivity to combining the
periods, but catchability and selectivity are mirrored between these two fleets. Thus, they are treated as a
single time series with different age and length composition data weights.

4. We suggest that basic life history research be highly prioritized for future research.

Response: This assessment includes updated data and relationships on growth, condition (weight-length),
fecundity, and maturity. A number of studies on canary rockfish life history and population structure have
been published since the previous assessment (Budrick 2016; Keller et al. 2018; Brooks 2021). Unfortunately,
these have not resulted in a better understanding of natural mortality and the apparent loss of older females.
This remains a research priority. In absence of better understanding of canary rockfish natural mortality,
we use natural mortality rates from a recently updated prior (Hamel and Cope 2022).

4.5.2 Current Research and Data Needs

We list current research recommendations and prioritize them from high to low. Lower priority needs should
not not be interpreted as unimportant, but rather lower relative to other priorities listed here.

1. Continued research into the mechanism leading to skewed sex ratios and empirical studies to estimate
natural mortality rates. This remains a critical uncertainty for canary rockfish, as well as other species
of rockfish along the U.S. West Coast, but one that remains largely unknown. The rate of natural
mortality as well as whether and to what extent it increases with age is a major source of uncertainty
for this assessment, as it has been for past assessments. Recent evidence suggesting sex ratios are
nearer unity may be informative, but further research to understand the mechanism by which this
occurs would be beneficial for understand the ability of canary rockfish to recover. (High)

2. The WCGBTS has low encounter rates with canary rockfish in part because it has limited access
to rocky habitat. We recommend exploration of a non-trawl coast-wide fishery-independent indices.
This could mean an expansion of the Hook and Line Survey into more northern waters, or taking
advantage of developments in model-based index standardization to stitch together multiple similar
overlapping fishery-independent non-trawl sampling programs that have occurred over smaller spatial
and temporal scales than the WCGBTS. This also has the potential to provide biological data in
a variety of habitats and across latitudinal gradients which when aged using current best practices
can help inform biological parameters that have been suggested by Brooks (2021) to occur above the
southern range of canary rockfish but were not seen to the same extent in current WCGBTS data.
(Medium)

3. Similar to recommendations 1 and 2, other biological relationships can be updated to better understand
dynamics for canary rockfish. Few samples of canary rockfish are available to inform estimates of
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fecundity. Fecundity for canary rockfish was based on a genus level relationship from Dick et al.
(2017). The resulting curve from these two relationships did not greatly differ but did result in
changes in the spawning output within the bridging analysis. Greater species-specific information on
canary rockfish fecundity would ensure that biological relationships better reflect individual species
dynamics should they differ from other species in their genus. (Medium)

4. This assessment model does not include any ecosystem or climate considerations, but canary rock-
fish are considered highly vulnerable and highly exposed to climate change. To date, most research
has relied on non-mechanistic basin-scale indices that may not be reliable predictors of how environ-
mental conditions will impact productivity moving forward. In addition, the lack of correspondence
between recruitment deviations estimated in this assessment and in British Columbia is concerning,
as recruitment deviations are often used as response variables to understand environmental drivers of
productivity. We recommend further research into environmental drivers of canary rockfish productiv-
ity to understand how future and past climate change impact both short-term and long-term changes
in productivity. Doing this research in a multispecies manner across groundfish species, particularly
those with similar life histories, may lead to more statistical power to gain new insight. (Medium)

5. Further exploration of differences in spatial and non-spatial modeling structure, stability, and results.
The structure of canary rockfish stock assessments has varied over time. The 2015 assessment added
population structure so as to more explicitly describe potential regional differences in depletion. For
this assessment we return to a coastwide model for reasons explain previously. Although the 2015 model
showed little difference in results between a spatial and coastwide model, which is also supported
through bridging analyses both before and after data weighting, balancing spatial explorations of
differences in exploitation, movement, or biological patterns with the realities of model complexity and
stability within the time frame of production stock assessments is challenging. Given that this issue
could apply to other species in addition to canary rockfish we suggest the possibility of establishing
a process by which research-based assessments can be done to explore these issues, similar to the
research track process on the east coast of the U.S. (Medium)

6. Research to inform understanding of movement rates for a spatial model, as well as improve estimates of
natural mortality. Large scale movement patterns for canary rockfish are generally unknown. However,
even a small number of tagging samples collected intermittently can improve model estimates (Goethel
et al. 2019). Any method that determines both the extent and direction of movement would be useful;
the method need not be limited to tagging. (Low)

7. Ageing error matrices were not updated from the 2015 assessment. Revision of the ageing error
matrices, incorporating the new aged canary rockfish data and utilizing new analytical methods are
topics for future research. Potential bias in ageing of old canary rockfish based on bomb-radiocarbon
data (A. Stephens, NWFSC, personal communication, May 2023) should also be considered in these
analyses. (Low)
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7 Tables

Table 1: Total removals (mt) of canary rockfish for the trawl (TWL), non-trawl (NTWL), and recreational
(Rec) fleets used in the assessment model. See text for description of sources

Year TWL CA TWL OR TWL WA NTWL CA NTWL OR NTWL WA Rec CA Rec OR Rec WA

1892 0.0 0.0 0.0 0.0 5.8 0.0 0.0 0.0 0.0
1893 0.0 0.0 0.0 0.0 5.8 0.0 0.0 0.0 0.0
1894 0.0 0.0 0.0 0.0 5.8 0.0 0.0 0.0 0.0
1895 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0
1896 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0
1897 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0
1898 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0
1899 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0
1900 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0
1901 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0
1902 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0
1903 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0
1904 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0
1905 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0
1906 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0
1907 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0
1908 0.0 0.0 0.0 0.0 1.6 0.0 0.0 0.0 0.0
1909 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0 0.0
1910 0.0 0.0 0.0 0.0 1.9 0.0 0.0 0.0 0.0
1911 0.0 0.0 0.0 0.0 2.1 0.0 0.0 0.0 0.0
1912 0.0 0.0 0.0 0.0 2.2 0.0 0.0 0.0 0.0
1913 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0 0.0
1914 0.0 0.0 0.0 0.0 2.5 0.0 0.0 0.0 0.0
1915 0.0 0.0 0.0 0.0 2.6 0.0 0.0 0.0 0.0
1916 9.4 0.0 0.0 27.4 2.8 0.0 0.0 0.0 0.0
1917 14.4 0.0 0.0 44.3 2.9 0.0 0.0 0.0 0.0
1918 15.4 0.0 0.0 45.8 3.1 0.0 0.0 0.0 0.0
1919 11.9 0.0 0.0 26.6 3.2 0.0 0.0 0.0 0.0
1920 11.9 0.0 0.0 28.7 3.4 0.0 0.0 0.0 0.0
1921 9.3 0.0 0.0 25.7 3.5 0.0 0.0 0.0 0.0
1922 8.2 0.0 0.0 23.9 3.6 0.0 0.0 0.0 0.0
1923 9.6 0.0 0.0 28.9 3.8 0.0 0.0 0.0 0.0
1924 5.3 0.0 0.0 35.0 3.9 0.0 0.0 0.0 0.0
1925 3.6 0.0 0.0 43.0 4.1 0.0 0.0 0.0 0.0
1926 11.8 0.0 0.0 50.5 4.2 0.0 0.0 0.0 0.0
1927 15.2 0.0 0.0 40.7 4.3 0.0 0.0 0.0 0.0
1928 18.8 0.0 0.0 35.3 7.2 0.0 1.6 0.0 0.0
1929 34.4 0.0 0.0 23.9 12.3 0.0 3.2 0.0 0.0
1930 29.8 0.0 0.0 34.0 11.3 0.0 3.6 0.0 0.0
1931 41.2 0.0 0.0 33.1 9.0 0.0 4.9 0.0 0.0
1932 28.2 0.8 0.0 27.4 2.9 0.0 6.1 0.0 0.0
1933 38.4 0.5 0.0 10.9 4.7 0.0 7.3 0.0 0.0
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Table 1: Total removals (mt) of canary rockfish for the trawl (TWL), non-trawl (NTWL), and recreational
(Rec) fleets used in the assessment model. See text for description of sources (continued)

Year TWL CA TWL OR TWL WA NTWL CA NTWL OR NTWL WA Rec CA Rec OR Rec WA

1934 32.9 0.0 0.3 15.2 5.1 0.0 8.5 0.0 0.0
1935 33.7 0.4 2.3 23.1 4.6 0.0 9.7 0.0 0.0
1936 20.2 1.4 3.0 20.8 11.0 0.0 11.0 0.0 0.0
1937 30.7 2.8 2.7 13.2 13.1 0.0 13.0 0.0 0.0
1938 31.3 0.0 3.9 13.5 12.9 0.0 12.8 0.0 0.0
1939 41.5 4.0 4.1 12.9 7.3 0.0 11.2 0.0 0.0
1940 33.8 90.8 9.1 9.6 16.3 0.0 16.1 0.0 0.0
1941 26.8 139.7 3.4 12.3 21.8 0.0 14.8 0.0 0.0
1942 6.5 262.5 66.5 9.2 30.2 0.0 7.9 0.0 0.0
1943 32.0 917.6 214.8 7.6 74.8 0.0 7.5 0.0 0.0
1944 133.6 1610.2 89.3 28.6 19.2 0.0 6.2 0.0 0.0
1945 303.5 2484.5 935.7 69.5 12.3 0.0 8.3 0.0 0.0
1946 275.2 1529.8 471.7 71.6 15.1 0.0 14.2 0.0 0.0
1947 110.4 953.6 246.4 16.4 7.6 0.0 11.3 0.0 0.0
1948 125.7 679.5 400.1 32.0 12.5 0.0 22.7 0.0 0.0
1949 110.7 588.4 486.6 12.4 8.4 0.0 29.4 0.0 0.0
1950 99.8 616.2 467.7 10.1 7.8 0.0 35.8 0.0 0.0
1951 201.0 566.9 391.2 16.3 6.0 0.0 42.4 0.0 0.0
1952 143.5 587.2 373.1 12.3 5.7 0.0 37.0 0.0 0.0
1953 137.2 615.5 161.8 7.2 3.0 0.0 31.7 0.0 0.0
1954 98.3 781.5 232.1 17.5 3.5 0.0 39.9 0.0 0.0
1955 105.0 787.1 219.0 4.1 4.3 0.0 48.4 0.0 0.0
1956 102.5 1166.1 209.2 6.4 2.7 0.0 54.1 0.0 0.0
1957 116.0 1214.6 173.1 7.0 6.0 0.0 50.7 0.0 0.0
1958 154.2 830.1 219.1 9.1 1.2 0.0 86.3 0.0 0.0
1959 115.3 908.9 244.9 6.3 2.4 0.0 69.6 0.0 0.0
1960 88.5 1082.9 221.5 8.0 1.6 0.0 54.2 0.0 0.0
1961 69.0 982.8 262.9 6.5 4.5 0.0 38.1 0.0 0.0
1962 68.7 1148.5 366.4 9.3 4.1 0.0 46.5 0.0 0.0
1963 97.1 660.5 294.9 8.7 3.7 0.0 49.6 0.0 0.0
1964 61.4 1014.1 217.7 8.2 0.8 0.0 45.5 0.0 0.0
1965 82.5 832.2 485.2 9.1 6.2 0.0 69.4 0.0 0.0
1966 59.8 934.6 664.1 7.2 4.2 0.0 75.4 0.0 0.0
1967 82.3 152.0 324.2 7.7 11.9 0.0 79.4 0.0 0.8
1968 79.6 873.2 559.5 4.8 10.8 0.0 84.4 0.0 1.2
1969 198.2 282.5 545.4 19.0 24.0 0.0 92.3 0.0 1.5
1970 217.6 592.9 504.6 12.0 9.3 0.0 115.9 0.0 1.8
1971 329.7 776.7 578.1 21.1 19.0 0.0 101.1 0.0 2.2
1972 409.4 752.7 161.2 40.9 24.7 0.0 133.3 0.0 2.5
1973 318.2 928.1 361.2 19.6 26.3 0.0 155.2 5.1 2.8
1974 400.1 585.1 552.2 50.0 33.2 0.0 163.8 10.1 3.2
1975 435.2 415.0 759.4 36.0 17.5 0.0 158.9 15.2 3.5
1976 474.8 267.3 579.1 50.0 23.3 0.0 175.2 20.2 1.6
1977 460.4 622.3 486.0 59.5 28.7 0.0 167.5 25.3 4.0
1978 653.8 1877.7 1413.4 146.0 44.8 0.0 161.3 30.3 5.9
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Table 1: Total removals (mt) of canary rockfish for the trawl (TWL), non-trawl (NTWL), and recreational
(Rec) fleets used in the assessment model. See text for description of sources (continued)

Year TWL CA TWL OR TWL WA NTWL CA NTWL OR NTWL WA Rec CA Rec OR Rec WA

1979 314.6 1409.2 711.8 128.7 126.7 0.0 178.9 35.4 4.2
1980 442.7 2983.2 763.4 95.8 72.8 0.0 166.0 37.2 2.7
1981 546.8 2041.3 533.5 172.2 79.2 0.0 153.1 47.2 2.3
1982 807.1 3897.0 451.2 45.3 145.6 0.0 275.6 50.5 2.5
1983 513.1 3573.6 674.9 70.0 298.0 0.0 105.6 28.9 4.4
1984 402.0 1355.0 635.6 63.0 200.5 0.0 107.4 36.0 7.8
1985 332.4 1133.0 1076.5 117.4 199.3 0.0 163.8 19.3 3.8
1986 172.3 1099.9 932.4 58.6 158.6 0.0 226.8 38.5 6.2
1987 213.9 1597.5 1054.3 53.0 250.5 0.0 225.2 25.0 6.3
1988 231.7 1745.7 1015.6 56.5 208.3 0.0 184.2 19.5 6.1
1989 188.3 1652.4 1253.7 224.9 204.2 0.0 115.6 22.8 9.4
1990 337.9 1099.5 1140.8 216.7 268.0 0.0 175.0 14.2 8.9
1991 151.1 2095.8 1007.7 167.2 295.1 0.0 165.7 19.2 9.7
1992 233.4 1691.6 855.6 132.0 185.2 0.0 156.3 26.4 18.8
1993 93.3 1716.4 300.6 112.1 460.6 0.0 162.0 35.6 18.0
1994 124.6 754.2 155.1 97.7 120.8 0.0 133.7 28.2 10.4
1995 132.9 583.5 162.4 115.1 116.3 3.6 173.4 35.2 8.8
1996 219.0 792.8 191.4 125.7 164.2 3.5 63.1 22.0 8.5
1997 176.0 602.3 205.1 104.3 251.4 5.6 102.6 28.0 8.0
1998 159.1 713.2 204.6 81.2 246.3 6.2 26.6 42.0 13.5
1999 99.8 399.5 141.1 30.6 118.8 6.5 64.9 25.1 7.9
2000 14.8 40.6 13.0 13.5 12.5 3.8 77.1 20.8 6.2
2001 10.6 20.5 9.5 10.9 11.6 5.6 33.4 11.1 5.4
2002 16.1 29.4 23.7 0.1 0.5 4.3 6.2 9.1 2.4
2003 1.2 16.8 10.8 2.2 0.5 7.2 18.1 9.0 2.1
2004 2.4 7.6 7.8 2.4 5.9 2.2 10.6 2.2 0.9
2005 3.1 15.4 23.8 1.6 1.8 2.2 5.8 3.2 1.4
2006 9.4 16.4 9.1 2.6 2.7 1.1 14.1 1.7 0.8
2007 20.2 3.4 4.0 3.4 1.9 0.8 14.1 1.9 0.7
2008 9.9 4.6 3.2 1.2 0.9 5.4 7.6 2.5 0.6
2009 1.6 7.5 5.4 1.6 3.1 3.4 18.0 3.5 0.6
2010 0.5 4.0 6.7 5.2 1.0 4.8 15.8 4.5 1.0
2011 0.3 3.1 3.6 13.0 4.3 9.7 19.8 3.1 1.1
2012 0.6 6.7 5.0 4.2 1.9 6.1 18.2 3.0 1.0
2013 1.5 6.1 4.6 6.4 2.8 3.3 14.8 4.0 1.0
2014 2.0 10.3 2.2 4.4 1.8 6.0 22.4 3.0 1.4
2015 7.0 41.1 4.0 5.2 3.2 9.6 26.9 14.3 2.2
2016 2.8 17.0 5.0 3.1 6.7 5.1 23.7 9.8 1.9
2017 75.3 148.1 37.3 7.2 5.7 3.3 83.4 28.2 4.6
2018 139.7 173.9 156.3 7.5 4.4 2.2 61.8 43.6 3.9
2019 176.2 194.5 65.4 10.6 6.2 1.7 71.4 38.7 11.9
2020 73.7 186.6 78.9 18.6 7.5 3.0 76.7 60.6 7.3
2021 78.5 223.5 73.6 25.6 6.6 1.4 73.0 38.6 32.2
2022 90.1 315.3 101.2 22.5 11.0 0.9 62.6 55.6 34.2
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Table 2: Total removals (mt) of canary rockfish for the foreign (FOR) and at-sea hake (ASHOP) fleets used
in the assessment model. Removals before 1966 are zero. See text for description of sources

Year FOR CA FOR OR FOR WA ASHOP CA ASHOP OR ASHOP WA

1966 41 1445 113 0.0 0.0 0.0
1967 103 658 90 0.0 0.0 0.0
1968 415 286 109 0.0 0.0 0.0
1969 5 50 12 0.0 0.0 0.0
1970 0 73 28 0.0 0.0 0.0

1971 0 118 70 0.0 0.0 0.0
1972 13 318 68 0.0 0.0 0.0
1973 372 525 68 0.0 0.0 0.0
1974 150 81 288 0.0 0.0 0.0
1975 63 141 0 0.0 0.0 0.0

1976 49 114 0 0.0 8.1 0.0
1977 0 0 0 0.0 1.5 0.0
1978 0 0 0 0.4 11.9 0.6
1979 0 0 0 0.0 11.2 0.3
1980 0 0 0 0.4 8.4 1.7

1981 0 0 0 2.8 1.5 0.3
1982 0 0 0 0.1 0.2 27.0
1983 0 0 0 0.0 2.1 26.2
1984 0 0 0 0.0 1.2 2.1
1985 0 0 0 0.0 4.6 2.8

1986 0 0 0 0.0 0.9 3.8
1987 0 0 0 0.0 2.5 6.3
1988 0 0 0 0.2 3.7 2.2
1989 0 0 0 0.3 1.6 1.0
1990 0 0 0 0.1 2.2 1.8

1991 0 0 0 0.0 2.1 1.8
1992 0 0 0 0.0 0.1 2.2
1993 0 0 0 0.0 0.2 0.7
1994 0 0 0 0.0 0.7 4.0
1995 0 0 0 0.0 0.1 0.3

1996 0 0 0 0.0 0.0 1.0
1997 0 0 0 0.0 0.5 2.7
1998 0 0 0 0.0 0.2 4.7
1999 0 0 0 0.0 0.1 6.8
2000 0 0 0 0.0 0.2 2.2

2001 0 0 0 0.0 1.0 2.9
2002 0 0 0 0.0 2.4 2.8
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2003 0 0 0 0.0 0.2 0.7
2004 0 0 0 0.0 4.5 0.7
2005 0 0 0 0.0 0.5 0.9

2006 0 0 0 0.0 0.4 0.6
2007 0 0 0 0.0 1.8 0.2
2008 0 0 0 0.0 0.5 3.2
2009 0 0 0 0.0 0.0 2.5
2010 0 0 0 0.0 0.0 1.1

2011 0 0 0 0.0 0.0 1.1
2012 0 0 0 0.0 0.1 0.3
2013 0 0 0 0.0 0.1 0.6
2014 0 0 0 0.0 0.4 0.3
2015 0 0 0 0.0 0.1 0.1

2016 0 0 0 0.0 0.2 0.3
2017 0 0 0 0.0 1.8 4.8
2018 0 0 0 0.0 3.0 2.5
2019 0 0 0 0.0 0.7 4.3
2020 0 0 0 0.0 0.2 0.7

2021 0 0 0 0.0 3.2 2.7
2022 0 0 0 0.0 4.2 1.5
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Table 3: The OFL, ABC, ACL, and total mortality (landings + dead discards), all in units of metric tons

Year OFL ABC ACL Total Mortality

2013 752 719 116 45.00
2014 741 709 119 54.09
2015 733 701 122 113.69
2016 729 697 125 75.61
2017 1793 1714 1714 399.66

2018 1596 1526 1526 598.69
2019 1517 1450 1450 581.78
2020 1431 1368 1368 513.68
2021 1459 1338 1338 558.68
2022 1432 1307 1307 700.36
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Table 4: Summary of the number of length samples and trips for commercial trawl (TWL) and non-trawl
(NTWL) fleets for California (CA), Oregon (OR), and Washington (WA)

Year Trips
TWL
CA

Lengths
TWL
CA

Trips
TWL
OR

Lengths
TWL
OR

Trips
TWL
WA

Lengths
TWL
WA

Trips
NTWL
CA

Lengths
NTWL
CA

Trips
NTWL
OR

Lengths
NTWL
OR

Trips
NTWL
WA

Lengths
TWL
WA

1968 0 0 0 0 2 402 0 0 0 0 0 0
1969 0 0 0 0 2 718 0 0 0 0 0 0
1970 0 0 0 0 1 268 0 0 0 0 0 0
1971 0 0 0 0 8 1804 0 0 0 0 0 0
1972 0 0 0 0 2 501 0 0 0 0 0 0
1973 0 0 1 51 1 230 0 0 0 0 0 0
1974 0 0 4 370 0 0 0 0 0 0 0 0
1975 0 0 0 0 5 1244 0 0 0 0 0 0
1976 0 0 2 89 4 766 0 0 0 0 0 0
1977 25 64 8 750 2 481 0 0 0 0 0 0
1978 71 384 7 670 4 721 1 1 0 0 0 0
1979 32 170 6 600 8 800 13 49 0 0 0 0
1980 103 318 21 1034 18 1654 12 45 0 0 1 22
1981 60 192 7 603 18 1765 16 79 0 0 0 0
1982 90 437 20 1358 13 1300 10 70 0 0 0 0
1983 125 421 30 2836 17 1650 6 36 0 0 0 0
1984 82 373 21 2064 17 1550 10 33 0 0 0 0
1985 94 447 29 1891 18 1750 25 89 0 0 0 0
1986 57 396 16 1545 17 1650 29 100 0 0 0 0
1987 60 305 35 1751 25 1300 15 121 0 0 0 0
1988 52 272 23 1148 19 950 13 94 3 287 0 0
1989 45 247 23 1130 18 900 27 330 0 0 0 0
1990 49 349 22 1099 17 850 19 84 1 100 0 0
1991 36 191 22 869 22 1100 15 207 0 0 0 0
1992 29 229 34 1364 20 1000 148 1841 0 0 0 0
1993 34 252 22 1113 17 854 154 1415 0 0 0 0
1994 16 151 15 750 15 750 148 2057 0 0 0 0
1995 16 273 16 847 22 1100 83 1323 0 0 0 0
1996 24 442 19 1162 16 751 106 1390 1 37 0 0
1997 23 355 28 1545 26 870 80 1107 12 584 0 0
1998 14 210 28 1560 26 846 45 387 8 335 0 0
1999 14 305 28 1517 20 753 67 788 5 168 0 0
2000 11 87 16 496 7 229 16 148 24 176 2 3
2001 17 203 32 879 13 428 29 243 29 191 0 0
2002 15 294 58 1173 30 638 3 22 0 0 1 8
2003 5 46 35 273 21 271 1 1 0 0 0 0
2004 6 15 49 354 30 334 0 0 0 0 3 22
2005 9 67 49 350 31 413 0 0 0 0 0 0
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Table 4: Summary of the number of length samples and trips for commercial trawl (TWL) and non-trawl
(NTWL) fleets for California (CA), Oregon (OR), and Washington (WA) (continued)

Year Trips
TWL
CA

Lengths
TWL
CA

Trips
TWL
OR

Lengths
TWL
OR

Trips
TWL
WA

Lengths
TWL
WA

Trips
NTWL
CA

Lengths
NTWL
CA

Trips
NTWL
OR

Lengths
NTWL
OR

Trips
NTWL
WA

Lengths
TWL
WA

2006 6 52 58 360 26 455 0 0 0 0 1 35
2007 9 67 45 122 44 353 0 0 0 0 2 6
2008 10 23 60 202 18 305 0 0 0 0 0 0
2009 11 100 82 487 23 401 0 0 0 0 0 0
2010 10 57 33 365 13 312 0 0 0 0 1 3
2011 4 12 45 418 20 372 0 0 0 0 0 0
2012 13 167 59 494 27 455 0 0 0 0 0 0
2013 18 310 158 1175 23 386 0 0 0 0 1 10
2014 27 202 146 1322 11 127 0 0 0 0 0 0
2015 32 426 145 1912 23 291 0 0 0 0 0 0
2016 30 361 116 1290 29 409 0 0 0 0 0 0
2017 34 827 184 2533 59 901 26 158 125 514 9 53
2018 35 612 161 1916 28 788 26 176 119 426 15 86
2019 26 635 153 1534 36 625 9 35 174 816 24 145
2020 33 721 79 848 17 251 19 251 70 292 14 119
2021 35 600 94 1210 26 555 24 472 112 299 30 200
2022 26 362 102 1365 30 664 22 314 124 430 35 221
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Table 5: Summary of the number of aged samples and trips for commercial trawl (TWL) and non-trawl
(NTWL) fleets for California (CA), Oregon (OR), and Washington (WA)

Year Trips
TWL
CA

Ages
TWL
CA

Trips
TWL
OR

Ages
TWL
OR

Trips
TWL
WA

Ages
TWL
WA

Trips
NTWL
CA

Ages
NTWL
CA

Trips
NTWL
OR

Ages
NTWL
OR

Trips
NTWL
WA

Ages
NTWL
WA

1980 78 255 9 417 9 753 1 8 0 0 0 0
1981 47 161 7 428 18 1456 1 5 0 0 0 0
1982 51 210 14 457 12 1168 2 12 0 0 0 0
1983 116 396 29 2724 17 1524 2 6 0 0 0 0
1984 78 363 19 1856 17 1326 1 1 0 0 0 0
1985 76 401 24 1204 17 1647 3 29 0 0 0 0
1986 0 0 16 807 17 1501 0 0 0 0 0 0
1987 1 1 29 1448 24 1243 0 0 0 0 0 0
1988 0 0 16 459 19 948 0 0 0 0 0 0
1989 0 0 23 1055 18 887 0 0 0 0 0 0
1990 0 0 20 998 17 850 0 0 0 0 0 0
1991 0 0 22 850 20 984 0 0 0 0 0 0
1992 0 0 32 1280 20 1000 0 0 0 0 0 0
1993 0 0 22 1110 17 802 0 0 0 0 0 0
1994 0 0 4 200 15 749 0 0 0 0 0 0
1995 0 0 14 794 22 1100 0 0 0 0 0 0
1996 0 0 18 1093 15 741 0 0 0 0 0 0
1997 0 0 28 1537 17 846 0 0 1 17 0 0
1998 0 0 28 1554 17 819 0 0 4 87 0 0
1999 0 0 28 1516 15 737 0 0 0 0 0 0
2000 0 0 16 491 6 227 0 0 0 0 0 0
2001 1 28 24 733 13 425 0 0 5 39 0 0
2002 7 76 51 1008 30 634 3 22 0 0 1 8
2003 4 43 32 241 21 271 1 1 0 0 0 0
2004 5 12 47 333 29 318 0 0 0 0 3 22
2005 6 54 45 342 31 411 0 0 0 0 0 0
2006 5 32 47 240 26 453 0 0 0 0 1 35
2007 2 21 38 108 44 351 0 0 0 0 2 6
2008 0 0 58 195 18 304 0 0 0 0 0 0
2009 3 21 81 485 23 396 0 0 0 0 0 0
2010 1 5 31 340 13 307 0 0 0 0 1 3
2011 0 0 41 390 19 343 0 0 0 0 0 0
2012 0 0 58 493 27 436 0 0 0 0 0 0
2013 12 147 154 1150 22 334 0 0 0 0 1 10
2014 11 76 146 1319 6 81 0 0 0 0 0 0
2015 10 150 133 1607 22 284 0 0 0 0 0 0
2016 1 1 114 1237 29 383 0 0 0 0 0 0
2017 8 132 165 1194 59 866 0 0 6 14 8 52
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Table 5: Summary of the number of aged samples and trips for commercial trawl (TWL) and non-trawl
(NTWL) fleets for California (CA), Oregon (OR), and Washington (WA) (continued)

Year Trips
TWL
CA

Ages
TWL
CA

Trips
TWL
OR

Ages
TWL
OR

Trips
TWL
WA

Ages
TWL
WA

Trips
NTWL
CA

Ages
NTWL
CA

Trips
NTWL
OR

Ages
NTWL
OR

Trips
NTWL
WA

Ages
NTWL
WA

2018 11 190 148 856 20 603 0 0 4 9 13 81
2019 13 306 131 708 17 268 1 6 13 32 10 40
2020 5 79 76 841 8 88 12 119 53 238 10 78
2021 12 246 74 932 15 287 14 241 10 42 16 108
2022 20 295 92 710 17 391 11 189 8 44 17 108
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Table 6: Summary of the number of hauls and length samples for the at-sea hake fleets for Oregon (OR),
and Washington (WA). No samples were collected in California

Year Hauls OR Lengths OR Hauls WA Lengths WA

2003 36 46 49 119
2004 75 137 28 84
2005 94 140 86 180
2006 82 106 83 141
2007 189 428 37 68

2008 87 147 134 339
2009 5 5 132 236
2010 7 8 118 257
2011 3 3 76 202
2012 29 34 46 76

2013 19 22 45 121
2014 65 105 39 68
2015 18 23 17 34
2016 42 60 34 65
2017 223 443 229 644

2018 127 306 131 319
2019 59 114 132 339
2020 23 33 33 74
2021 143 416 28 87
2022 124 308 14 74
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Table 7: Summary of the number of trips and aged samples for the at-sea hake fleets for Oregon (OR), and
Washington (WA). No samples were collected in California

Year Hauls OR Ages OR Hauls WA Ages WA

2003 33 43 49 100
2004 75 121 27 53
2005 90 122 83 143
2006 80 104 81 126
2007 175 330 33 57

2008 86 143 129 299
2009 5 5 131 227
2010 7 8 118 233
2011 3 3 75 200
2012 28 33 44 74

2013 18 21 44 88
2014 63 98 38 66
2015 17 21 15 32
2019 35 46 83 139
2020 23 32 32 60

2021 56 80 14 20
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Table 8: Summary of the number of length samples and trips for recreational fleets for California (CA),
Oregon (OR), and Washington (WA)

Year Lengths CA Trips CA Lengths OR Trips OR Lengths WA Trips WA

1979 0 0 0 0 40 4
1980 873 207 112 32 15 5
1981 429 118 77 22 45 5
1982 616 153 193 55 6 1
1983 425 140 32 15 3 1

1984 534 180 281 73 0 0
1985 1108 314 306 81 0 0
1986 1384 293 135 36 0 0
1987 618 107 203 53 1 1
1988 1283 203 348 85 0 0

1989 1775 231 150 35 0 0
1990 571 60 0 0 0 0
1991 545 65 0 0 0 0
1992 1109 164 0 0 0 0
1993 1926 357 525 123 0 0

1994 1828 280 642 129 0 0
1995 2015 273 599 106 38 15
1996 1925 237 329 77 15 7
1997 2164 227 443 110 14 6
1998 715 121 705 169 0 0

1999 981 205 1158 202 0 0
2000 386 92 732 124 0 0
2001 175 65 1201 503 0 0
2002 110 48 1693 660 198 16
2003 48 33 1881 805 229 16

2004 209 106 23 18 44 7
2005 398 167 18 11 51 8
2006 599 182 20 11 15 6
2007 348 128 9 8 10 4
2008 141 70 29 19 13 7

2009 172 75 16 9 13 7
2010 92 54 28 17 12 3
2011 205 82 47 20 11 5
2012 127 56 32 15 9 4
2013 134 60 20 12 6 3

2014 136 63 19 12 8 4
2015 163 87 2822 1053 37 7
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2016 133 56 2323 943 31 14
2017 3252 667 4036 1139 1301 122
2018 2876 608 4577 1360 700 137

2019 3018 637 4490 1405 1455 232
2020 0 0 932 228 462 48
2021 2160 358 4255 1039 1219 100
2022 1841 469 3869 1057 1162 90
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Table 9: Summary of the number of aged samples and trips for recreational fleets for Oregon (OR), and
Washington (WA). No aged samples are available for the California recreational fleet

Year Ages OR Trips OR Ages WA Trips WA

1999 393 37 0 0
2000 367 30 0 0
2004 0 0 40 6
2005 0 0 44 6
2006 0 0 4 2

2007 0 0 7 2
2008 0 0 9 4
2009 0 0 8 3
2010 0 0 11 2
2011 0 0 1 1

2012 0 0 7 2
2014 0 0 8 4
2015 315 129 5 3
2016 259 102 4 4
2017 238 105 1193 85

2018 192 102 285 27
2019 201 102 398 25
2020 241 88 424 31
2021 616 130 823 45
2022 449 136 938 52
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Table 10: Summary of canary rockfish samples in the West Coast Groundfish Bottomtrawl Survey (WCG-
BTS)

Year N tows N positive tows N caught N ages N lengths

2003 542 50 455 262 423
2004 471 37 789 254 482
2005 637 53 850 231 530
2006 641 32 3618 247 623
2007 687 48 733 497 673

2008 679 35 830 452 792
2009 681 32 307 239 306
2010 714 51 1010 397 495
2011 695 46 786 364 573
2012 698 56 1316 596 852

2013 469 38 609 376 512
2014 682 75 2279 901 1467
2015 668 77 2530 735 1064
2016 692 80 1650 605 1055
2017 707 84 4724 528 970

2018 702 65 3273 474 719
2019 349 40 1345 359 544
2021 682 52 712 417 530
2022 632 51 1541 490 694
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Table 11: Summary of canary rockfish samples in the Triennial Shelf Survey (Triennial)

Year N tows N positive tows N caught N ages N lengths

1980 301 73 915 452 659
1983 479 177 6027 1441 2781
1986 483 169 5618 651 2544
1989 440 88 2672 307 1350
1992 421 66 530 93 361

1995 441 42 616 221 600
1998 468 82 370 195 356
2001 466 72 929 341 397
2004 383 62 443 211 412
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Table 12: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum
and maximum), estimation phase (negative values not estimated), status (indicates if parameters are near bounds), and prior type
information (mean and SD).

Parameter Value Phase Bounds Status SD Prior (Exp. Val, SD)

NatM uniform Fem GP 1 0.078 2 (0.02, 0.2) OK 0.002 Log Norm (-2.74, 0.31)
L at Amin Fem GP 1 8.159 3 (2, 15) OK 0.231 None
L at Amax Fem GP 1 59.223 3 (50, 70) OK 0.293 None
VonBert K Fem GP 1 0.139 3 (0.02, 0.21) OK 0.002 None
CV young Fem GP 1 0.089 4 (0.02, 0.21) OK 0.009 None
CV old Fem GP 1 0.039 4 (0.01, 0.21) OK 0.003 None
Wtlen 1 Fem GP 1 1.19e-05 -99 (0, 0.1) NA NA None
Wtlen 2 Fem GP 1 3.09 -99 (2, 4) NA NA None
Mat50% Fem GP 1 10.87 -99 (9, 12) NA NA None
Mat slope Fem GP 1 -0.688 -99 (-3, 3) NA NA None
Eggs scalar Fem GP 1 7.218e-08 -99 (1e-10, 0.1) NA NA None
Eggs exp len Fem GP 1 4.043 -99 (2, 6) NA NA None
NatM uniform Mal GP 1 0.064 -99 (0.02, 0.2) NA NA Log Norm (-2.74, 0.31)
L at Amin Mal GP 1 8.159 -99 (0, 15) NA NA None
L at Amax Mal GP 1 53.713 3 (50, 70) OK 0.262 None
VonBert K Mal GP 1 0.163 3 (0.02, 0.21) OK 0.003 None
CV young Mal GP 1 0.098 4 (0.02, 0.21) OK 0.009 None
CV old Mal GP 1 0.046 4 (0.01, 0.21) OK 0.003 None
Wtlen 1 Mal GP 1 1.08e-05 -99 (0, 0.1) NA NA None
Wtlen 2 Mal GP 1 3.118 -99 (2, 4) NA NA None
CohortGrowDev 1 -99 (-1, 1) NA NA None
FracFemale GP 1 0.5 -99 (1e-06, 0.999) NA NA None
SR LN(R0) 8.221 1 (7, 11) OK 0.058 None
SR BH steep 0.72 -99 (0.21, 0.99) NA NA Full Beta (0.72, 0.16)
SR sigmaR 0.5 -99 (0, 2) NA NA None
SR regime 0 -99 (-5, 5) NA NA None
SR autocorr 0 -99 (0, 2) NA NA None
Early RecrDev 1892 -0.011 5 (-5, 5) act 0.497 None
Early RecrDev 1893 -0.011 5 (-5, 5) act 0.497 None
Early RecrDev 1894 -0.012 5 (-5, 5) act 0.497 None
Early RecrDev 1895 -0.013 5 (-5, 5) act 0.497 None
Early RecrDev 1896 -0.014 5 (-5, 5) act 0.497 None
Early RecrDev 1897 -0.015 5 (-5, 5) act 0.496 None
Early RecrDev 1898 -0.015 5 (-5, 5) act 0.496 None
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Table 12: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum
and maximum), estimation phase (negative values not estimated), status (indicates if parameters are near bounds), and prior type
information (mean and SD). (continued)

Parameter Value Phase Bounds Status SD Prior (Exp. Val, SD)

Early RecrDev 1899 -0.016 5 (-5, 5) act 0.496 None
Early RecrDev 1900 -0.017 5 (-5, 5) act 0.496 None
Early RecrDev 1901 -0.018 5 (-5, 5) act 0.495 None
Early RecrDev 1902 -0.02 5 (-5, 5) act 0.495 None
Early RecrDev 1903 -0.021 5 (-5, 5) act 0.495 None
Early RecrDev 1904 -0.022 5 (-5, 5) act 0.495 None
Early RecrDev 1905 -0.023 5 (-5, 5) act 0.494 None
Early RecrDev 1906 -0.025 5 (-5, 5) act 0.494 None
Early RecrDev 1907 -0.026 5 (-5, 5) act 0.494 None
Early RecrDev 1908 -0.028 5 (-5, 5) act 0.493 None
Early RecrDev 1909 -0.03 5 (-5, 5) act 0.493 None
Early RecrDev 1910 -0.031 5 (-5, 5) act 0.492 None
Early RecrDev 1911 -0.033 5 (-5, 5) act 0.492 None
Early RecrDev 1912 -0.035 5 (-5, 5) act 0.491 None
Early RecrDev 1913 -0.037 5 (-5, 5) act 0.491 None
Early RecrDev 1914 -0.039 5 (-5, 5) act 0.490 None
Early RecrDev 1915 -0.042 5 (-5, 5) act 0.490 None
Early RecrDev 1916 -0.044 5 (-5, 5) act 0.489 None
Early RecrDev 1917 -0.047 5 (-5, 5) act 0.489 None
Early RecrDev 1918 -0.05 5 (-5, 5) act 0.488 None
Early RecrDev 1919 -0.052 5 (-5, 5) act 0.487 None
Early RecrDev 1920 -0.056 5 (-5, 5) act 0.486 None
Early RecrDev 1921 -0.059 5 (-5, 5) act 0.486 None
Early RecrDev 1922 -0.062 5 (-5, 5) act 0.485 None
Early RecrDev 1923 -0.066 5 (-5, 5) act 0.484 None
Early RecrDev 1924 -0.07 5 (-5, 5) act 0.483 None
Early RecrDev 1925 -0.073 5 (-5, 5) act 0.482 None
Early RecrDev 1926 -0.078 5 (-5, 5) act 0.481 None
Early RecrDev 1927 -0.082 5 (-5, 5) act 0.480 None
Early RecrDev 1928 -0.086 5 (-5, 5) act 0.479 None
Early RecrDev 1929 -0.09 5 (-5, 5) act 0.478 None
Early RecrDev 1930 -0.095 5 (-5, 5) act 0.477 None
Early RecrDev 1931 -0.099 5 (-5, 5) act 0.476 None
Early RecrDev 1932 -0.104 5 (-5, 5) act 0.475 None
Early RecrDev 1933 -0.108 5 (-5, 5) act 0.474 None
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Table 12: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum
and maximum), estimation phase (negative values not estimated), status (indicates if parameters are near bounds), and prior type
information (mean and SD). (continued)

Parameter Value Phase Bounds Status SD Prior (Exp. Val, SD)

Early RecrDev 1934 -0.113 5 (-5, 5) act 0.473 None
Early RecrDev 1935 -0.118 5 (-5, 5) act 0.471 None
Early RecrDev 1936 -0.125 5 (-5, 5) act 0.470 None
Early RecrDev 1937 -0.132 5 (-5, 5) act 0.468 None
Early RecrDev 1938 -0.139 5 (-5, 5) act 0.467 None
Early RecrDev 1939 -0.148 5 (-5, 5) act 0.465 None
Early RecrDev 1940 -0.157 5 (-5, 5) act 0.463 None
Early RecrDev 1941 -0.165 5 (-5, 5) act 0.461 None
Early RecrDev 1942 -0.172 5 (-5, 5) act 0.459 None
Early RecrDev 1943 -0.178 5 (-5, 5) act 0.458 None
Early RecrDev 1944 -0.183 5 (-5, 5) act 0.457 None
Early RecrDev 1945 -0.185 5 (-5, 5) act 0.457 None
Early RecrDev 1946 -0.184 5 (-5, 5) act 0.457 None
Early RecrDev 1947 -0.182 5 (-5, 5) act 0.457 None
Early RecrDev 1948 -0.178 5 (-5, 5) act 0.457 None
Early RecrDev 1949 -0.172 5 (-5, 5) act 0.458 None
Early RecrDev 1950 -0.162 5 (-5, 5) act 0.459 None
Early RecrDev 1951 -0.15 5 (-5, 5) act 0.461 None
Early RecrDev 1952 -0.134 5 (-5, 5) act 0.463 None
Early RecrDev 1953 -0.114 5 (-5, 5) act 0.466 None
Early RecrDev 1954 -0.09 5 (-5, 5) act 0.469 None
Early RecrDev 1955 -0.058 5 (-5, 5) act 0.474 None
Early RecrDev 1956 -0.014 5 (-5, 5) act 0.481 None
Early RecrDev 1957 0.048 5 (-5, 5) act 0.492 None
Early RecrDev 1958 0.137 5 (-5, 5) act 0.510 None
Early RecrDev 1959 0.26 5 (-5, 5) act 0.535 None
Main RecrDev 1960 0.238 5 (-5, 5) act 0.558 None
Main RecrDev 1961 0.32 5 (-5, 5) act 0.572 None
Main RecrDev 1962 0.259 5 (-5, 5) act 0.552 None
Main RecrDev 1963 0.107 5 (-5, 5) act 0.514 None
Main RecrDev 1964 -0.009 5 (-5, 5) act 0.485 None
Main RecrDev 1965 -0.029 5 (-5, 5) act 0.477 None
Main RecrDev 1966 0.077 5 (-5, 5) act 0.490 None
Main RecrDev 1967 0.32 5 (-5, 5) act 0.544 None
Main RecrDev 1968 0.594 5 (-5, 5) act 0.481 None
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Table 12: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum
and maximum), estimation phase (negative values not estimated), status (indicates if parameters are near bounds), and prior type
information (mean and SD). (continued)

Parameter Value Phase Bounds Status SD Prior (Exp. Val, SD)

Main RecrDev 1969 0.132 5 (-5, 5) act 0.479 None
Main RecrDev 1970 -0.212 5 (-5, 5) act 0.416 None
Main RecrDev 1971 -0.206 5 (-5, 5) act 0.408 None
Main RecrDev 1972 0.188 5 (-5, 5) act 0.391 None
Main RecrDev 1973 0.422 5 (-5, 5) act 0.343 None
Main RecrDev 1974 0.082 5 (-5, 5) act 0.383 None
Main RecrDev 1975 0.138 5 (-5, 5) act 0.324 None
Main RecrDev 1976 0.399 5 (-5, 5) act 0.230 None
Main RecrDev 1977 -0.072 5 (-5, 5) act 0.280 None
Main RecrDev 1978 0.292 5 (-5, 5) act 0.196 None
Main RecrDev 1979 0.23 5 (-5, 5) act 0.191 None
Main RecrDev 1980 -0.451 5 (-5, 5) act 0.282 None
Main RecrDev 1981 0.264 5 (-5, 5) act 0.176 None
Main RecrDev 1982 0.061 5 (-5, 5) act 0.209 None
Main RecrDev 1983 -0.162 5 (-5, 5) act 0.248 None
Main RecrDev 1984 0.187 5 (-5, 5) act 0.214 None
Main RecrDev 1985 0.135 5 (-5, 5) act 0.235 None
Main RecrDev 1986 -0.015 5 (-5, 5) act 0.268 None
Main RecrDev 1987 0.133 5 (-5, 5) act 0.228 None
Main RecrDev 1988 0.124 5 (-5, 5) act 0.206 None
Main RecrDev 1989 0.359 5 (-5, 5) act 0.160 None
Main RecrDev 1990 0.265 5 (-5, 5) act 0.173 None
Main RecrDev 1991 0.084 5 (-5, 5) act 0.204 None
Main RecrDev 1992 0.323 5 (-5, 5) act 0.183 None
Main RecrDev 1993 -0.066 5 (-5, 5) act 0.245 None
Main RecrDev 1994 0.276 5 (-5, 5) act 0.205 None
Main RecrDev 1995 0.417 5 (-5, 5) act 0.184 None
Main RecrDev 1996 0.402 5 (-5, 5) act 0.177 None
Main RecrDev 1997 0.02 5 (-5, 5) act 0.213 None
Main RecrDev 1998 0.021 5 (-5, 5) act 0.195 None
Main RecrDev 1999 -0.152 5 (-5, 5) act 0.226 None
Main RecrDev 2000 -0.022 5 (-5, 5) act 0.236 None
Main RecrDev 2001 0.245 5 (-5, 5) act 0.203 None
Main RecrDev 2002 0.072 5 (-5, 5) act 0.227 None
Main RecrDev 2003 0.457 5 (-5, 5) act 0.177 None
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Table 12: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum
and maximum), estimation phase (negative values not estimated), status (indicates if parameters are near bounds), and prior type
information (mean and SD). (continued)

Parameter Value Phase Bounds Status SD Prior (Exp. Val, SD)

Main RecrDev 2004 0.039 5 (-5, 5) act 0.220 None
Main RecrDev 2005 -0.591 5 (-5, 5) act 0.294 None
Main RecrDev 2006 -0.257 5 (-5, 5) act 0.226 None
Main RecrDev 2007 0.298 5 (-5, 5) act 0.140 None
Main RecrDev 2008 -0.747 5 (-5, 5) act 0.249 None
Main RecrDev 2009 -0.321 5 (-5, 5) act 0.165 None
Main RecrDev 2010 -0.026 5 (-5, 5) act 0.129 None
Main RecrDev 2011 -0.205 5 (-5, 5) act 0.137 None
Main RecrDev 2012 -0.119 5 (-5, 5) act 0.127 None
Main RecrDev 2013 0.082 5 (-5, 5) act 0.113 None
Main RecrDev 2014 -0.561 5 (-5, 5) act 0.153 None
Main RecrDev 2015 -0.596 5 (-5, 5) act 0.160 None
Main RecrDev 2016 -0.354 5 (-5, 5) act 0.150 None
Main RecrDev 2017 -1.055 5 (-5, 5) act 0.208 None
Main RecrDev 2018 -1.111 5 (-5, 5) act 0.248 None
Main RecrDev 2019 -0.444 5 (-5, 5) act 0.345 None
Main RecrDev 2020 -0.238 5 (-5, 5) act 0.472 None
Main RecrDev 2021 0.068 5 (-5, 5) act 0.428 None
Main RecrDev 2022 -0.109 5 (-5, 5) act 0.494 None
LnQ base WCGBTS(28) -0.788 -99 (-25, 25) NA NA None
LnQ base Tri early(29) -1.256 2 (-25, 25) OK 0.459 None
LnQ base prerec(31) -2.762 -99 (-25, 25) NA NA None
Q extraSD prerec(31) 0.507 2 (0, 3) OK 0.154 None
Size DblN peak CA TWL(1) 45.31 4 (13.001, 65) OK 0.797 None
Size DblN top logit CA TWL(1) -15 -99 (-99, 99) NA NA None
Size DblN ascend se CA TWL(1) 4.312 5 (0, 9) OK 0.147 None
Size DblN descend se CA TWL(1) 3.483 5 (0, 9) OK 0.374 None
Size DblN start logit CA TWL(1) -15 -99 (-99, 99) NA NA None
Size DblN end logit CA TWL(1) -999 -99 (-99, 99) NA NA None
SzSel Fem Descend CA TWL(1) 1.398 5 (-9, 9) OK 0.331 None
Size DblN peak OR TWL(2) 49.534 4 (13.001, 65) OK 0.493 None
Size DblN top logit OR TWL(2) -15 -99 (-99, 99) NA NA None
Size DblN ascend se OR TWL(2) 4.183 5 (0, 9) OK 0.090 None
Size DblN descend se OR TWL(2) 2.597 5 (0, 9) OK 0.331 None
Size DblN start logit OR TWL(2) -15 -99 (-99, 99) NA NA None
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Table 12: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum
and maximum), estimation phase (negative values not estimated), status (indicates if parameters are near bounds), and prior type
information (mean and SD). (continued)

Parameter Value Phase Bounds Status SD Prior (Exp. Val, SD)

Size DblN end logit OR TWL(2) -999 -99 (-99, 99) NA NA None
SzSel Fem Descend OR TWL(2) 2.235 5 (-9, 9) OK 0.692 None
Size DblN peak CA NTWL(4) 36.145 4 (13.001, 65) OK 1.076 None
Size DblN top logit CA NTWL(4) -15 -99 (-99, 99) NA NA None
Size DblN ascend se CA NTWL(4) 4.251 5 (0, 9) OK 0.221 None
Size DblN descend se CA NTWL(4) 5.219 5 (0, 9) OK 0.434 None
Size DblN start logit CA NTWL(4) -15 -99 (-99, 99) NA NA None
Size DblN end logit CA NTWL(4) -999 -99 (-99, 99) NA NA None
SzSel Fem Descend CA NTWL(4) 0.113 5 (-9, 9) OK 0.711 None
Size DblN peak OR NTWL(5) 31.054 4 (13.001, 65) OK 0.195 None
Size DblN top logit OR NTWL(5) -15 -99 (-99, 99) NA NA None
Size DblN ascend se OR NTWL(5) -7.368 5 (-9, 9) OK 25.393 None
Size DblN descend se OR NTWL(5) 6.118 5 (-9, 9) OK 0.362 None
Size DblN start logit OR NTWL(5) -15 -99 (-99, 99) NA NA None
Size DblN end logit OR NTWL(5) -999 -99 (-99, 99) NA NA None
SzSel Fem Descend OR NTWL(5) 7.715 5 (-9, 9) OK 27.402 None
Size DblN peak WA NTWL(6) 46.162 4 (13.001, 65) OK 0.775 None
Size DblN top logit WA NTWL(6) -15 -99 (-99, 99) NA NA None
Size DblN ascend se WA NTWL(6) 3.403 5 (-9, 9) OK 0.250 None
Size DblN descend se WA NTWL(6) 2.596 5 (-9, 9) OK 0.389 None
Size DblN start logit WA NTWL(6) -15 -99 (-99, 99) NA NA None
Size DblN end logit WA NTWL(6) -999 -99 (-99, 99) NA NA None
SzSel Fem Descend WA NTWL(6) 2.794 5 (-9, 9) OK 0.401 None
Size DblN peak CA REC(7) 28.823 4 (13.001, 65) OK 0.645 None
Size DblN top logit CA REC(7) -15 -99 (-99, 99) NA NA None
Size DblN ascend se CA REC(7) 3.479 5 (0, 9) OK 0.210 None
Size DblN descend se CA REC(7) 4.826 5 (0, 9) OK 0.132 None
Size DblN start logit CA REC(7) -15 -99 (-99, 99) NA NA None
Size DblN end logit CA REC(7) -999 -99 (-99, 99) NA NA None
SzSel Fem Descend CA REC(7) 0 -99 (-9, 9) NA NA None
Size DblN peak OR REC(8) 30.931 4 (13.001, 65) OK 0.556 None
Size DblN top logit OR REC(8) -15 -99 (-99, 99) NA NA None
Size DblN ascend se OR REC(8) 3.129 5 (-9, 9) OK 0.213 None
Size DblN descend se OR REC(8) 3.245 5 (-9, 9) OK 0.293 None
Size DblN start logit OR REC(8) -15 -99 (-99, 99) NA NA None
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Table 12: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum
and maximum), estimation phase (negative values not estimated), status (indicates if parameters are near bounds), and prior type
information (mean and SD). (continued)

Parameter Value Phase Bounds Status SD Prior (Exp. Val, SD)

Size DblN end logit OR REC(8) -999 -99 (-99, 99) NA NA None
SzSel Fem Descend OR REC(8) 2.303 5 (-9, 9) OK 0.266 None
Size DblN peak WA REC(9) 34.908 4 (13.001, 65) OK 1.542 None
Size DblN top logit WA REC(9) -15 -99 (-99, 99) NA NA None
Size DblN ascend se WA REC(9) 3.295 5 (-9, 9) OK 0.595 None
Size DblN descend se WA REC(9) 5.217 5 (-9, 9) OK 0.296 None
Size DblN start logit WA REC(9) -15 -99 (-99, 99) NA NA None
Size DblN end logit WA REC(9) -999 -99 (-99, 99) NA NA None
SzSel Fem Descend WA REC(9) 2.206 5 (-9, 9) OK 0.786 None
Size DblN peak CA ASHOP(10) 43.5 4 (13.001, 65) OK 0.509 None
Size DblN top logit CA ASHOP(10) -15 -99 (-99, 99) NA NA None
Size DblN ascend se CA ASHOP(10) 2.452 5 (0, 9) OK 0.287 None
Size DblN descend se CA ASHOP(10) 2.89 5 (0, 9) OK 0.233 None
Size DblN start logit CA ASHOP(10) -15 -99 (-99, 99) NA NA None
Size DblN end logit CA ASHOP(10) -999 -99 (-99, 99) NA NA None
SzSel Fem Descend CA ASHOP(10) 2.305 5 (-9, 9) OK 0.248 None
Size DblN peak WCGBTS(28) 48.178 4 (13.001, 65) OK 2.750 None
Size DblN top logit WCGBTS(28) -15 -99 (-99, 99) NA NA None
Size DblN ascend se WCGBTS(28) 7.018 5 (0, 9) OK 1.120 None
Size DblN descend se WCGBTS(28) 2.343 5 (0, 9) OK 1.623 None
Size DblN start logit WCGBTS(28) -15 -99 (-99, 99) NA NA None
Size DblN end logit WCGBTS(28) -999 -99 (-99, 99) NA NA None
SzSel Fem Descend WCGBTS(28) 2.412 5 (-9, 9) OK 1.318 None
Size DblN peak Tri early(29) 61.155 4 (13.001, 65) OK 23.316 None
Size DblN top logit Tri early(29) -15 -99 (-99, 99) NA NA None
Size DblN ascend se Tri early(29) 6.69 5 (0, 9) OK 1.347 None
Size DblN descend se Tri early(29) 4.818 5 (0, 9) OK 93.366 None
Size DblN start logit Tri early(29) -15 -99 (-99, 99) NA NA None
Size DblN end logit Tri early(29) -999 -99 (-99, 99) NA NA None
SzSel Fem Descend Tri early(29) 1.239 5 (-9, 9) OK 142.117 None
Size DblN peak CA TWL(1) BLK1repl 2000 43.681 4 (13.001, 65) OK 1.173 None
Size DblN peak CA TWL(1) BLK1repl 2011 45.075 4 (13.001, 65) OK 0.736 None
Size DblN ascend se CA TWL(1) BLK1repl 2000 3.79 5 (0, 9) OK 0.345 None
Size DblN ascend se CA TWL(1) BLK1repl 2011 4.293 5 (0, 9) OK 0.186 None
Size DblN descend se CA TWL(1) BLK1repl 2000 1.719 5 (0, 9) OK 1.130 None
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Table 12: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum
and maximum), estimation phase (negative values not estimated), status (indicates if parameters are near bounds), and prior type
information (mean and SD). (continued)

Parameter Value Phase Bounds Status SD Prior (Exp. Val, SD)

Size DblN descend se CA TWL(1) BLK1repl 2011 1.84 5 (0, 9) OK 0.584 None
SzSel Fem Descend CA TWL(1) BLK1repl 2000 2.371 5 (-9, 9) OK 0.917 None
SzSel Fem Descend CA TWL(1) BLK1repl 2011 1.886 5 (-9, 9) OK 0.418 None
Size DblN peak OR TWL(2) BLK1repl 2000 43.403 4 (13.001, 65) OK 0.964 None
Size DblN peak OR TWL(2) BLK1repl 2011 45.33 4 (13.001, 65) OK 0.497 None
Size DblN ascend se OR TWL(2) BLK1repl 2000 4.246 5 (0, 9) OK 0.203 None
Size DblN ascend se OR TWL(2) BLK1repl 2011 4.749 5 (0, 9) OK 0.102 None
Size DblN descend se OR TWL(2) BLK1repl 2000 3.826 5 (0, 9) OK 0.388 None
Size DblN descend se OR TWL(2) BLK1repl 2011 2.844 5 (0, 9) OK 0.222 None
SzSel Fem Descend OR TWL(2) BLK1repl 2000 8.732 5 (-9, 9) OK 7.550 None
SzSel Fem Descend OR TWL(2) BLK1repl 2011 1.867 5 (-9, 9) OK 0.189 None
Size DblN peak CA NTWL(4) BLK2repl 2000 33.606 4 (13.001, 65) OK 2.157 None
Size DblN peak CA NTWL(4) BLK2repl 2020 34.657 4 (13.001, 65) OK 2.033 None
Size DblN ascend se CA NTWL(4) BLK2repl 2000 3.045 5 (0, 9) OK 0.917 None
Size DblN ascend se CA NTWL(4) BLK2repl 2020 2.772 5 (0, 9) OK 1.077 None
Size DblN descend se CA NTWL(4) BLK2repl 2000 4.319 5 (0, 9) OK 0.756 None
Size DblN descend se CA NTWL(4) BLK2repl 2020 4.156 5 (0, 9) OK 0.412 None
SzSel Fem Descend CA NTWL(4) BLK2repl 2000 1.087 5 (-9, 9) OK 0.904 None
SzSel Fem Descend CA NTWL(4) BLK2repl 2020 0.911 5 (-9, 9) OK 0.320 None
Size DblN peak OR NTWL(5) BLK6repl 2000 32.908 4 (13.001, 65) OK 1.494 None
Size DblN ascend se OR NTWL(5) BLK6repl 2000 2.482 5 (-9, 9) OK 0.864 None
Size DblN descend se OR NTWL(5) BLK6repl 2000 4.345 5 (-9, 9) OK 0.361 None
SzSel Fem Descend OR NTWL(5) BLK6repl 2000 1.079 5 (-9, 9) OK 0.361 None
Size DblN peak CA REC(7) BLK3repl 2004 30.318 4 (13.001, 65) OK 0.824 None
Size DblN peak CA REC(7) BLK3repl 2017 32.117 4 (13.001, 65) OK 0.634 None
Size DblN ascend se CA REC(7) BLK3repl 2004 3.336 5 (0, 9) OK 0.297 None
Size DblN ascend se CA REC(7) BLK3repl 2017 3.306 5 (0, 9) OK 0.252 None
Size DblN descend se CA REC(7) BLK3repl 2004 3.715 5 (0, 9) OK 0.280 None
Size DblN descend se CA REC(7) BLK3repl 2017 4.213 5 (0, 9) OK 0.132 None
SzSel Fem Descend CA REC(7) BLK3repl 2004 0 -99 (-9, 9) NA NA None
SzSel Fem Descend CA REC(7) BLK3repl 2017 0 -99 (-9, 9) NA NA None
Size DblN peak OR REC(8) BLK4repl 2004 31.698 4 (13.001, 65) OK 1.795 None
Size DblN peak OR REC(8) BLK4repl 2015 30.915 4 (13.001, 65) OK 0.254 None
Size DblN ascend se OR REC(8) BLK4repl 2004 2.698 5 (-9, 9) OK 0.877 None
Size DblN ascend se OR REC(8) BLK4repl 2015 2.112 5 (-9, 9) OK 0.162 None
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Table 12: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum
and maximum), estimation phase (negative values not estimated), status (indicates if parameters are near bounds), and prior type
information (mean and SD). (continued)

Parameter Value Phase Bounds Status SD Prior (Exp. Val, SD)

Size DblN descend se OR REC(8) BLK4repl 2004 4.544 5 (-9, 9) OK 0.422 None
Size DblN descend se OR REC(8) BLK4repl 2015 4.174 5 (-9, 9) OK 0.099 None
SzSel Fem Descend OR REC(8) BLK4repl 2004 0 -99 (-9, 9) NA NA None
SzSel Fem Descend OR REC(8) BLK4repl 2015 1.112 5 (-9, 9) OK 0.099 None
Size DblN peak WA REC(9) BLK5repl 2006 32.069 4 (13.001, 65) OK 0.515 None
Size DblN ascend se WA REC(9) BLK5repl 2006 2.127 5 (-9, 9) OK 0.321 None
Size DblN descend se WA REC(9) BLK5repl 2006 4.577 5 (-9, 9) OK 0.130 None
SzSel Fem Descend WA REC(9) BLK5repl 2006 0.985 5 (-9, 9) OK 0.143 None
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Table 13: Likelihood components by source

Data type Total

TOTAL 3980.34
Catch 0.00
Equil catch 0.00
Survey -9.76
Length comp 1476.95

Age comp 2524.05
Recruitment -11.10
InitEQ Regime 0.00
Forecast Recruitment 0.00
Parm priors 0.18

Parm softbounds 0.02
Parm devs 0.00
Crash Pen 0.00
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Table 14: Data weightings applied to length and age compositions according to the ‘Francis’ method.
‘Obs.’ refers to the number of unique composition vectors included in the likelihood. ‘N input’ and ‘N adj.’
refer to the sample sizes of those vectors before and after being adjusted by the the weights. ‘CAAL’ is
conditional age-at-length data. The WCGBTS and Tri age comps are conditioned on length, so there are
more observations with fewer samples per observation.

Type Fleet Francis Obs. Mean N input Mean N adj. Sum N adj.

Length CA_TWL 0.240 80 42.2 10.2 812.9
Length OR_TWL 0.257 49 168.7 43.4 2127.6
Length WA_TWL 0.199 76 63.5 12.6 959.0
Length CA_NTWL 0.212 56 55.0 11.7 652.4
Length OR_NTWL 0.083 14 99.9 8.3 116.5
Length WA_NTWL 1.669 13 20.2 33.8 439.0
Length CA_REC 0.158 42 192.8 30.5 1279.2
Length OR_REC 0.259 51 233.5 60.4 3080.5
Length WA_REC 0.937 50 18.8 17.6 880.1
Length OR_ASHOP 0.190 20 72.5 13.8 276.0
Length WA_ASHOP 0.104 20 74.5 7.7 154.9
Length WCGBTS 0.047 19 127.3 6.0 113.3
Length Tri_early 0.103 5 94.6 9.8 48.8
Length Tri_late 0.047 4 149.5 7.0 28.0
Age CA_TWL 1.254 26 41.4 51.9 1349.2
Age OR_TWL 0.246 43 157.0 38.6 1658.7
Age WA_TWL 0.211 63 70.0 14.8 930.6
Age CA_NTWL 0.515 12 11.7 6.0 72.1
Age OR_NTWL 0.701 9 19.3 13.6 122.0
Age WA_NTWL 1.100 13 12.3 13.5 176.0
Age OR_REC 1.488 10 95.7 142.4 1423.9
Age WA_REC 0.818 18 16.8 13.7 247.0
Age OR_ASHOP 0.474 16 49.6 23.5 376.0
Age WA_ASHOP 0.106 16 62.2 6.6 105.7
CAAL WCGBTS 0.205 812 10.4 2.1 1727.4
CAAL Tri_early 0.119 188 13.2 1.6 294.6
CAAL Tri_late 0.183 128 6.9 1.3 162.0
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Table 15: Time series of population estimates from the base model and during the projection period.
Spawning output is in millions of eggs and age-0 recruits is in numbers of 1000s. Total mortality for 2023
and 2024 is based on estimates provided by the Groundfish Management Team.

Year Total
Biomass

(mt)

Spawn-
ing

Output

Total
Biomass

5+
(mt)

Frac-
tion
Un-

fished

Age-0
Re-

cruits

Total
Mortal-
ity (mt)

1-SPR Ex-
ploita-
tion
Rate

1892 76700.4 8008.63 75272.7 1.00 3676.85 5.79 0.00 0.00
1893 76694.2 8007.80 75266.9 1.00 3674.38 5.79 0.00 0.00
1894 76686.7 8006.96 75261.2 1.00 3671.75 5.79 0.00 0.00
1895 76676.4 8006.13 75255.6 1.00 3668.98 1.49 0.00 0.00
1896 76666.6 8005.91 75254.5 1.00 3666.06 0.36 0.00 0.00
1897 76653.3 8005.86 75242.2 1.00 3662.98 0.37 0.00 0.00
1898 76635.2 8005.78 75225.2 1.00 3659.72 0.21 0.00 0.00
1899 76612.5 8005.67 75203.5 1.00 3656.26 0.35 0.00 0.00
1900 76584.9 8005.38 75177.2 1.00 3652.58 0.49 0.00 0.00
1901 76552.9 8004.76 75146.4 1.00 3648.68 0.64 0.00 0.00
1902 76516.8 8003.58 75111.6 1.00 3644.53 0.78 0.00 0.00
1903 76477.0 8001.64 75073.2 1.00 3640.11 0.92 0.00 0.00
1904 76433.8 7998.86 75031.4 1.00 3635.40 1.07 0.00 0.00
1905 76387.5 7995.30 74986.7 1.00 3630.40 1.21 0.00 0.00
1906 76338.2 7991.12 74939.1 1.00 3625.11 1.35 0.00 0.00
1907 76286.3 7986.45 74888.9 1.00 3619.51 1.49 0.00 0.00
1908 76231.7 7981.39 74836.3 1.00 3613.61 1.64 0.00 0.00
1909 76174.6 7976.02 74781.1 1.00 3607.39 1.78 0.00 0.00
1910 76114.9 7970.37 74723.5 1.00 3600.82 1.92 0.00 0.00
1911 76052.6 7964.47 74663.5 0.99 3593.89 2.07 0.00 0.00
1912 75987.6 7958.34 74600.9 0.99 3586.54 2.21 0.00 0.00
1913 75919.9 7951.97 74535.7 0.99 3578.74 2.35 0.00 0.00
1914 75849.3 7945.37 74467.7 0.99 3570.50 2.50 0.00 0.00
1915 75775.7 7938.52 74396.8 0.99 3561.83 2.64 0.00 0.00
1916 75698.8 7931.41 74322.9 0.99 3552.72 39.63 0.01 0.00
1917 75580.2 7921.02 74207.5 0.99 3543.01 61.62 0.02 0.00
1918 75434.9 7908.37 74065.5 0.99 3532.74 64.22 0.02 0.00
1919 75283.0 7894.87 73917.1 0.99 3521.91 41.71 0.01 0.00
1920 75151.0 7882.47 73788.8 0.98 3510.58 44.01 0.01 0.00
1921 75013.6 7869.39 73655.2 0.98 3498.63 38.49 0.01 0.00
1922 74878.8 7856.35 73524.5 0.98 3486.11 35.76 0.01 0.00
1923 74743.5 7843.15 73393.5 0.98 3473.02 42.32 0.01 0.00
1924 74597.9 7829.12 73252.5 0.98 3459.37 44.18 0.01 0.00
1925 74446.5 7814.81 73105.8 0.98 3445.23 50.73 0.02 0.00
1926 74283.9 7799.79 72948.1 0.97 3430.60 66.55 0.02 0.00
1927 74100.1 7782.91 72769.6 0.97 3415.56 60.24 0.02 0.00
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Table 15: Time series of population estimates from the base model and during the projection period.
Spawning output is in millions of eggs and age-0 recruits is in numbers of 1000s. Total mortality for 2023
and 2024 is based on estimates provided by the Groundfish Management Team. (continued)

Year Total
Biomass

(mt)

Spawn-
ing

Output

Total
Biomass

5+
(mt)

Frac-
tion
Un-

fished

Age-0
Re-

cruits

Total
Mortal-
ity (mt)

1-SPR Ex-
ploita-
tion
Rate

1928 73918.2 7765.84 72593.0 0.97 3400.25 62.82 0.02 0.00
1929 73729.0 7747.82 72409.4 0.97 3384.79 73.85 0.03 0.00
1930 73523.7 7727.59 72209.9 0.96 3369.19 78.69 0.03 0.00
1931 73308.6 7706.80 72000.7 0.96 3353.49 88.29 0.03 0.00
1932 73078.5 7684.55 71776.5 0.96 3337.65 65.43 0.02 0.00
1933 72866.6 7664.37 71570.6 0.96 3321.47 61.84 0.02 0.00
1934 72653.4 7643.46 71363.5 0.95 3304.38 62.11 0.02 0.00
1935 72434.7 7622.34 71150.9 0.95 3285.74 73.80 0.03 0.00
1936 72198.3 7599.84 70920.9 0.95 3264.66 67.37 0.03 0.00
1937 71962.8 7577.27 70692.0 0.95 3240.74 75.48 0.03 0.00
1938 71712.8 7553.02 70449.1 0.94 3214.16 74.49 0.03 0.00
1939 71457.4 7528.28 70201.6 0.94 3186.07 81.02 0.03 0.00
1940 71188.5 7502.17 69941.4 0.94 3157.26 175.63 0.06 0.00
1941 70817.4 7463.96 69580.2 0.93 3130.42 218.94 0.07 0.00
1942 70397.8 7419.77 69171.0 0.93 3106.37 382.75 0.11 0.01
1943 69811.6 7354.19 68595.3 0.92 3084.62 1254.46 0.31 0.02
1944 68355.4 7182.44 67149.5 0.90 3062.09 1887.07 0.42 0.03
1945 66296.3 6938.86 65100.1 0.87 3044.55 3813.72 0.65 0.06
1946 62360.8 6470.40 61173.6 0.81 3021.95 2377.54 0.53 0.04
1947 59987.5 6180.37 58808.8 0.77 3011.27 1345.83 0.37 0.02
1948 58735.1 6015.99 57563.8 0.75 3012.97 1272.57 0.36 0.02
1949 57607.4 5870.43 56443.1 0.73 3023.09 1235.85 0.36 0.02
1950 56563.2 5736.83 55404.6 0.72 3043.20 1237.31 0.37 0.02
1951 55561.9 5611.10 54404.6 0.70 3072.47 1223.76 0.37 0.02
1952 54614.8 5495.84 53454.7 0.69 3112.65 1158.86 0.36 0.02
1953 53776.9 5392.39 52610.0 0.67 3165.49 956.31 0.32 0.02
1954 53188.1 5316.92 52010.5 0.66 3237.33 1172.83 0.37 0.02
1955 52426.5 5221.22 51234.6 0.65 3333.99 1167.91 0.37 0.02
1956 51723.8 5130.11 50512.3 0.64 3475.14 1541.02 0.45 0.03
1957 50708.6 4999.72 49470.5 0.62 3684.83 1567.41 0.46 0.03
1958 49749.5 4870.01 48473.9 0.61 4011.11 1300.01 0.42 0.03
1959 49151.4 4780.04 47823.5 0.60 4521.91 1347.41 0.43 0.03
1960 48607.5 4687.53 47208.0 0.59 4410.93 1456.77 0.46 0.03
1961 48098.2 4586.85 46592.5 0.57 4773.41 1363.86 0.44 0.03
1962 47843.9 4502.35 46216.7 0.56 4477.21 1643.56 0.50 0.04
1963 47483.2 4395.43 45757.4 0.55 3831.55 1114.54 0.39 0.02
1964 47826.5 4360.06 46106.2 0.54 3405.22 1347.75 0.44 0.03
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Table 15: Time series of population estimates from the base model and during the projection period.
Spawning output is in millions of eggs and age-0 recruits is in numbers of 1000s. Total mortality for 2023
and 2024 is based on estimates provided by the Groundfish Management Team. (continued)

Year Total
Biomass

(mt)

Spawn-
ing

Output

Total
Biomass

5+
(mt)

Frac-
tion
Un-

fished

Age-0
Re-

cruits

Total
Mortal-
ity (mt)

1-SPR Ex-
ploita-
tion
Rate

1965 48064.2 4309.98 46336.3 0.54 3332.89 1484.61 0.47 0.03
1966 48238.3 4262.08 46661.4 0.53 3689.44 3344.32 0.71 0.07
1967 46583.6 4024.63 45178.0 0.50 4619.93 1509.30 0.49 0.03
1968 46795.0 4011.48 45445.9 0.50 6025.32 2423.54 0.63 0.05
1969 46069.1 3926.35 44663.4 0.49 3752.80 1229.95 0.43 0.03
1970 46615.5 3985.95 45002.7 0.50 2645.77 1555.20 0.49 0.03
1971 46902.2 4029.10 45051.5 0.50 2644.60 2015.93 0.57 0.04
1972 46736.7 4029.31 44891.5 0.50 3888.18 1923.69 0.56 0.04
1973 46594.5 4039.26 45319.7 0.50 4875.04 2781.47 0.67 0.06
1974 45488.5 3946.97 44391.5 0.49 3426.60 2316.58 0.63 0.05
1975 44823.1 3892.30 43554.4 0.49 3586.57 2044.69 0.59 0.05
1976 44419.8 3861.05 42837.0 0.48 4614.06 1762.76 0.56 0.04
1977 44250.4 3867.03 42632.9 0.48 2857.79 1855.26 0.57 0.04
1978 44005.3 3868.15 42624.0 0.48 4077.52 4346.23 0.81 0.10
1979 41251.4 3598.89 39790.0 0.45 3780.88 2920.97 0.73 0.07
1980 39931.1 3463.34 38429.1 0.43 1899.73 4574.38 0.85 0.12
1981 37016.1 3129.26 35744.7 0.39 3801.32 3580.22 0.82 0.10
1982 35079.7 2902.16 33666.0 0.36 3052.73 5702.23 0.92 0.17
1983 31003.8 2460.92 29799.9 0.31 2345.87 5296.95 0.92 0.18
1984 27379.9 2056.54 26368.9 0.26 3162.47 2810.74 0.84 0.11
1985 26240.3 1919.91 24951.3 0.24 2940.76 3052.85 0.86 0.12
1986 24842.5 1778.05 23760.3 0.22 2469.63 2697.99 0.85 0.11
1987 23786.2 1679.97 22768.5 0.21 2811.61 3434.39 0.90 0.15
1988 21968.8 1515.45 20830.3 0.19 2687.68 3473.78 0.91 0.17
1989 20104.2 1342.44 19042.9 0.17 3246.18 3674.14 0.93 0.19
1990 18033.2 1148.63 17032.0 0.14 2773.01 3264.91 0.94 0.19
1991 16370.0 995.56 15302.5 0.12 2170.39 3915.34 0.96 0.26
1992 14096.1 776.97 13014.5 0.10 2439.11 3301.56 0.96 0.25
1993 12431.1 613.96 11324.5 0.08 1450.25 2899.30 0.97 0.26
1994 11155.8 492.62 10208.1 0.06 1784.19 1429.43 0.90 0.14
1995 11284.7 486.75 10464.8 0.06 2039.39 1331.69 0.88 0.13
1996 11448.2 501.89 10670.6 0.06 2047.53 1591.04 0.90 0.15
1997 11292.7 501.01 10669.3 0.06 1396.86 1486.50 0.89 0.14
1998 11175.7 515.01 10462.2 0.06 1422.37 1497.75 0.89 0.14
1999 10983.0 524.95 10244.4 0.07 1210.99 900.90 0.78 0.09
2000 11315.9 578.21 10648.9 0.07 1462.74 204.75 0.29 0.02
2001 12274.5 690.08 11737.9 0.09 2114.36 122.42 0.18 0.01
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Table 15: Time series of population estimates from the base model and during the projection period.
Spawning output is in millions of eggs and age-0 recruits is in numbers of 1000s. Total mortality for 2023
and 2024 is based on estimates provided by the Groundfish Management Team. (continued)

Year Total
Biomass

(mt)

Spawn-
ing

Output

Total
Biomass

5+
(mt)

Frac-
tion
Un-

fished

Age-0
Re-

cruits

Total
Mortal-
ity (mt)

1-SPR Ex-
ploita-
tion
Rate

2002 13257.2 813.28 12722.2 0.10 1942.67 97.05 0.15 0.01
2003 14246.1 940.18 13686.1 0.12 3066.90 68.83 0.11 0.01
2004 15237.3 1071.19 14557.9 0.13 2145.91 47.17 0.07 0.00
2005 16273.7 1203.67 15448.4 0.15 1201.48 59.78 0.09 0.00
2006 17349.2 1332.78 16475.4 0.17 1748.15 58.98 0.08 0.00
2007 18444.7 1458.49 17466.4 0.18 3152.72 52.29 0.06 0.00
2008 19502.7 1577.73 18804.3 0.20 1140.65 39.69 0.05 0.00
2009 20592.0 1689.19 19976.5 0.21 1787.84 47.31 0.05 0.00
2010 21657.6 1795.73 20845.9 0.22 2450.24 44.73 0.05 0.00
2011 22676.5 1902.95 21773.1 0.24 2086.84 59.08 0.06 0.00
2012 23649.1 2015.33 23058.2 0.25 2315.07 47.07 0.05 0.00
2013 24609.4 2136.39 23817.9 0.27 2880.70 45.00 0.05 0.00
2014 25536.2 2262.34 24648.0 0.28 1538.69 54.09 0.06 0.00
2015 26459.6 2386.05 25608.9 0.30 1506.96 113.69 0.11 0.00
2016 27306.6 2497.02 26400.0 0.31 1943.69 75.61 0.07 0.00
2017 28128.5 2603.03 27265.2 0.33 973.78 399.66 0.29 0.01
2018 28543.5 2674.36 27950.5 0.33 926.82 598.69 0.39 0.02
2019 28649.8 2715.07 28047.8 0.34 1812.21 581.78 0.38 0.02
2020 28635.9 2749.66 28043.4 0.34 2234.81 513.68 0.36 0.02
2021 28580.0 2784.46 28139.0 0.35 3199.87 558.68 0.39 0.02
2022 28397.8 2808.02 27841.7 0.35 2825.14 700.36 0.47 0.03
2023 28077.2 2808.87 27248.5 0.35 3149.97 863.16 0.57 0.03
2024 27645.4 2782.56 26634.2 0.35 3142.99 860.19 0.59 0.03
2025 27320.0 2739.40 26139.2 0.34 3131.32 571.28 0.45 0.02
2026 27430.3 2709.94 26289.2 0.34 3123.19 572.51 0.44 0.02
2027 27684.2 2670.26 26477.8 0.33 3112.03 583.52 0.44 0.02
2028 28060.1 2625.73 26857.1 0.33 3099.20 601.48 0.44 0.02
2029 28532.0 2584.62 27333.0 0.32 3087.05 623.09 0.43 0.02
2030 29073.4 2556.58 27878.1 0.32 3078.61 647.92 0.43 0.02
2031 29659.0 2548.98 28468.0 0.32 3076.30 674.16 0.43 0.02
2032 30266.7 2564.13 29080.1 0.32 3080.90 699.96 0.43 0.02
2033 30879.2 2599.27 29696.0 0.32 3091.42 725.64 0.43 0.02
2034 31482.6 2649.08 30301.0 0.33 3105.96 749.34 0.43 0.02
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Table 16: Estimates of likelihood components and major model parameters for data sensitivities. Likelihood is negative log-
likelihood, where a lower value would indicate better fit to data. However, because of differences in input data for these sensitivities,
likelihoods are generally uncomparable among scenarios.

Base No sparse
comps

Pre-recruit
data

Canada
catches

Catch
SE 0.1

Bomb
radiocarbon
age bias

TOTAL_like 3980 3750 3985 3992 3980 4015
Survey_like -9.76 -9.99 -8.06 -8.21 -9.75 -7.74
Length_comp_like 1477 1353 1480 1479 1477 1476
Age_comp_like 2524 2417 2525 2532 2524 2563
Parm_priors_like 0.184 0.189 0.184 0.179 0.184 0.134
Recr_Virgin_millions 3.72 3.69 3.72 4.63 3.72 3.94
SR_LN(R0) 8.22 8.21 8.22 8.44 8.22 8.28
NatM_uniform_Fem_GP_1 0.0779 0.0781 0.0779 0.0777 0.0779 0.0758
L_at_Amax_Fem_GP_1 59.2 59.2 59.2 59.3 59.2 59.3
L_at_Amax_Mal_GP_1 53.7 53.7 53.7 53.7 53.7 53.7
VonBert_K_Fem_GP_1 0.139 0.139 0.139 0.139 0.139 0.125
VonBert_K_Mal_GP_1 0.163 0.163 0.163 0.163 0.163 0.147
SSB_Virgin 8009 7908 8015 10033 8017 8417
Bratio_2023 0.351 0.344 0.35 0.313 0.351 0.414
SPRratio_2022 0.469 0.479 0.469 0.603 0.469 0.416
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Table 17: Estimates of likelihood components and major model parameters for data weighting sensitivities. Likelihood is negative
log-likelihood, where lower values indicate better fit to data. Because of differences in input data, likelihoods are only comparable
between the base model and the ‘No extra SD‘ model.

Base McAllister-Ianelli No extra SD Francis ages x10 Francis lengths x10

TOTAL_like 3980 5857 4002 25536 16669
Survey_like -9.76 -8.21 4.28 5.11 -5.95
Length_comp_like 1477 2340 1481 1833 13924
Age_comp_like 2524 3537 2528 23610 2764
Parm_priors_like 0.184 0.254 0.182 0.187 0.126

Recr_Virgin_millions 3.72 3.87 3.73 2.31 4.01
SR_LN(R0) 8.22 8.26 8.22 7.75 8.3
NatM_uniform_Fem_GP_1 0.0779 0.0806 0.0779 0.078 0.0755
L_at_Amax_Fem_GP_1 59.2 59.4 59.2 60.6 58.1
L_at_Amax_Mal_GP_1 53.7 53.6 53.7 54.1 52.6

VonBert_K_Fem_GP_1 0.139 0.138 0.139 0.131 0.153
VonBert_K_Mal_GP_1 0.163 0.165 0.162 0.161 0.175
SSB_Virgin 8009 7808 8054 5249 9031
Bratio_2023 0.351 0.342 0.348 0.361 0.463
SPRratio_2022 0.469 0.451 0.471 0.873 0.31
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Table 18: Estimates of likelihood components and major model parameters for selectivity sensitivities. Likelihood is negative
log-likelihood, where lower values indicate better fit to data. Because of differences in input data, likelihoods for the ‘Float Q‘
model are not comparable.

Base No sex
selectiv-
ity

Simpler
blocks

WA NTWL
asymptotic

WCGBTS
asymptotic

Float Q Unmirror Tri

TOTAL_like 3980 4257 4105 4017 3984 3950 3979
Survey_like -9.76 -2.99 -8.36 -9 -9.35 -9.66 -9.67
Length_comp_like 1477 1631 1559 1493 1479 1483 1475
Age_comp_like 2524 2641 2567 2547 2525 2487 2524
Parm_priors_like 0.184 0.124 0.185 0.141 0.184 0.182 0.195
Recr_Virgin_millions 3.72 3.95 4.1 3.93 3.73 3.7 3.87
SR_LN(R0) 8.22 8.28 8.32 8.28 8.22 8.22 8.26
NatM_uniform_Fem_GP_1 0.0779 0.0553 0.078 0.0761 0.0779 0.0779 0.0784
L_at_Amax_Fem_GP_1 59.2 61.1 59.4 58.9 59.1 59.2 59.3
L_at_Amax_Mal_GP_1 53.7 53.1 53.7 52.9 53.6 53.7 53.8
VonBert_K_Fem_GP_1 0.139 0.126 0.138 0.141 0.14 0.139 0.139
VonBert_K_Mal_GP_1 0.163 0.165 0.162 0.169 0.164 0.163 0.162
SSB_Virgin 8009 17660 8863 8769 8010 8011 8264
Bratio_2023 0.351 0.532 0.441 0.339 0.35 0.353 0.392
SPRratio_2022 0.469 0.182 0.347 0.414 0.467 0.468 0.431
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Table 19: Estimates of likelihood components and major model parameters for productivity sensitivities. Likelihood is negative
log-likelihood, where lower values indicate better fit to data.

Base Estimate h Estimate male M M ramp M break 20 Single M

TOTAL_like 3980 3978 3979 3982 3954 4015
Survey_like -9.76 -7.41 -8.98 -8.98 -8.16 -10.1
Length_comp_like 1477 1482 1475 1485 1469 1496
Age_comp_like 2524 2519 2527 2518 2504 2535
Parm_priors_like 0.184 0.164 0.404 0.709 4.94 0

Recr_Virgin_millions 3.72 3.37 4.14 3.6 3.53 3.27
SR_LN(R0) 8.22 8.12 8.33 8.19 8.17 8.09
SR_BH_steep 0.72 0.895 0.72 0.72 0.72 0.72
NatM_uniform_Fem_GP_1 0.0779 0.0775 0.084 NA NA 0.0643
NatM_uniform_Mal_GP_1 0.0643 0.0643 0.0708 NA NA 0.0643

NatM_break_2_Fem_GP_1 NA NA NA 0.0934 0.171 NA
L_at_Amax_Fem_GP_1 59.2 59.2 59.3 59.6 60.2 59.3
L_at_Amax_Mal_GP_1 53.7 53.7 53.7 53.4 53.2 53.5
VonBert_K_Fem_GP_1 0.139 0.139 0.139 0.137 0.134 0.138
VonBert_K_Mal_GP_1 0.163 0.163 0.163 0.165 0.166 0.165

SSB_Virgin 8009 7329 7645 7212 6809 10354
Bratio_2023 0.351 0.506 0.405 0.43 0.541 0.244
SPRratio_2022 0.469 0.386 0.418 0.407 0.339 0.577
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Table 20: Data weightings applied to length and age compositions according to the ‘Francis‘ and ‘McAlister
Ianelli‘ (MI) methods. ‘CAAL‘ is conditional age-at-length data.

Type Fleet Francis MI

Length CA_TWL 0.240 0.223
Length OR_TWL 0.257 0.658
Length WA_TWL 0.199 0.111
Length CA_NTWL 0.212 0.115
Length OR_NTWL 0.083 0.367

Length WA_NTWL 1.669 0.525
Length CA_REC 0.158 0.517
Length OR_REC 0.259 0.192
Length WA_REC 0.937 0.327
Length OR_ASHOP 0.190 0.302

Length WA_ASHOP 0.104 0.750
Length WCGBTS 0.047 0.506
Length Tri_early 0.103 0.913
Length Tri_late 0.047 0.443
Age CA_TWL 1.254 0.205

Age OR_TWL 0.246 0.975
Age WA_TWL 0.211 0.395
Age CA_NTWL 0.515 0.366
Age OR_NTWL 0.701 0.629
Age WA_NTWL 1.100 0.631

Age OR_REC 1.488 0.714
Age WA_REC 0.818 0.372
Age OR_ASHOP 0.474 0.326
Age WA_ASHOP 0.106 0.925
CAAL WCGBTS 0.205 0.248

CAAL Tri_early 0.119 0.190
CAAL Tri_late 0.183 0.429
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Table 21: Summary of reference points and management quantities, including estimates of 95 percent
intervals

Category Estimate Lower Interval Upper Interval

Unfished Spawning Output (millions of eggs) 8008.63 6996.09 9021.17
Unfished Age 5+ Biomass (mt) 75272.70 67024.76 83520.64
Unfished Recruitment (R0) 3716.87 3296.97 4136.77
Spawning Output (millions of eggs) (2023) 2808.87 2050.19 3567.55
Fraction Unfished (2023) 0.35 0.28 0.42

Reference Points Based SO40%
Proxy Spawning Output (millions of eggs) SO40% 3203.45 2798.43 3608.47
SPR Resulting in SO40% 0.46 0.46 0.46
Exploitation Rate Resulting in SO40% 0.03 0.03 0.03
Yield with SPR Based On SO40% (mt) 1151.99 1018.02 1285.96

Reference Points Based on SPR Proxy for MSY
Proxy Spawning Output (millions of eggs) (SPR50) 3573.08 3121.33 4024.83
SPR50 0.50
Exploitation Rate Corresponding to SPR50 0.03 0.03 0.03
Yield with SPR50 at SO SPR (mt) 1093.67 966.45 1220.89

Reference Points Based on Estimated MSY Values
Spawning Output (millions of eggs) at MSY (SO MSY) 2063.47 1797.25 2329.69
SPR MSY 0.33 0.33 0.33
Exploitation Rate Corresponding to SPR MSY 0.05 0.05 0.05
MSY (mt) 1246.13 1101.31 1390.95
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Table 22: Projections of estimated OFL (mt), ABC (mt), resulting ACLs (mt) based on 40-10 rule and applied buffers, and
estimated spawning output in millions of eggs, and spawning output relative to unfished for 2025-2034, with assumed removals in
2023 and 2024 based on recommended values from the Groundfish Management Team.

Year Adopted
OFL
(mt)

Adopted
ABC
(mt)

Adopted
ACL
(mt)

Assumed
removals
(mt)

OFL (mt) Buffer ABC ACL Spawning
Output

Fraction
Unfished

2023 1413 1284 1284 863.16 2808.87 0.35
2024 1401 1267 1267 860.19 2782.56 0.35
2025 646.93 0.935 604.88 571.28 2739.40 0.34
2026 654.71 0.930 608.88 572.51 2709.94 0.34
2027 674.29 0.926 624.39 583.52 2670.26 0.33
2028 703.06 0.922 648.22 601.48 2625.73 0.33
2029 737.31 0.917 676.11 623.09 2584.62 0.32
2030 773.77 0.913 706.45 647.92 2556.58 0.32
2031 809.71 0.909 736.03 674.16 2548.98 0.32
2032 843.09 0.904 762.15 699.96 2564.13 0.32
2033 872.65 0.900 785.38 725.64 2599.27 0.32
2034 897.79 0.896 804.42 749.34 2649.08 0.33
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Table 23: Decision table with 10-year projections beginning in 2025 for alternative states of nature based
around modeling natural mortality. ’Mgmt’ refers to the two management scenarios (A) the default harvest
control rule 𝑃 ∗ = 0.45, and (B) harvest control rule with a lower 𝑃 ∗ = 0.40. Catch (in mt) is from the
projections from the base model for each management scenario, and is applied to each state of nature.
Catches in 2023 and 2024 are fixed at the ACLs and have been set for that year with values provided by the
GMT. The alternative states of nature (’Low’, ’Base’, and ’High’) are provided in the columns, and assume
female natural mortality is either fixed at the prior estimate (Single M; low state), estimated as age-invariant
(base), or is estimated at older ages (M ramp; high state). Spawning output (’Spawn’, in millions of eggs)
and fraction of unfished (’Frac’) is provided for each state of nature.

Mgmt Year Catch Low
Spawn

Single M

Low
Frac

Single M

Base
Spawn

Base
Frac

High
Spawn

M ramp

High
Frac M

ramp

A 2023 863 2523.10 0.244 2808.87 0.351 3098.08 0.430
2024 860 2494.43 0.241 2782.56 0.347 3068.81 0.426
2025 533 2449.39 0.237 2739.40 0.342 3021.70 0.419
2026 533 2424.82 0.234 2713.76 0.339 2989.89 0.415
2027 542 2392.15 0.231 2678.11 0.334 2946.34 0.409
2028 558 2355.98 0.228 2637.77 0.329 2897.29 0.402
2029 577 2323.21 0.224 2601.05 0.325 2853.02 0.396
2030 598 2301.84 0.222 2577.72 0.322 2825.45 0.392
2031 621 2298.39 0.222 2575.43 0.322 2823.73 0.392
2032 645 2315.69 0.224 2596.64 0.324 2850.17 0.395
2033 667 2352.54 0.227 2638.56 0.329 2899.70 0.402
2034 686 2405.68 0.232 2695.91 0.337 2964.22 0.411

B 2023 863 2523.10 0.244 2808.87 0.351 3098.08 0.430
2024 860 2494.43 0.241 2782.56 0.347 3068.81 0.426
2025 571 2449.39 0.237 2739.40 0.342 3021.70 0.419
2026 573 2420.81 0.234 2709.94 0.338 2986.12 0.414
2027 584 2383.86 0.230 2670.26 0.333 2938.59 0.407
2028 601 2343.21 0.226 2625.73 0.328 2885.43 0.400
2029 623 2305.70 0.223 2584.62 0.323 2836.83 0.393
2030 648 2279.22 0.220 2556.58 0.319 2804.60 0.389
2031 674 2269.97 0.219 2548.98 0.318 2797.59 0.388
2032 700 2280.56 0.220 2564.13 0.320 2817.93 0.391
2033 726 2309.81 0.223 2599.27 0.325 2860.65 0.397
2034 749 2354.31 0.227 2649.08 0.331 2917.64 0.405
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8 Figures

Figure 1: Map of management and the 2023 assessment area along with fleet spatial structure and survey
ranges for canary rockfish off the U.S. West Coast
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Figure 2: Total removals for canary rockfish off the U.S. West Coast from 1892-2022 by fleet (TWL =
trawl, NTWL = non-trawl, Rec = recreational, ASHOP = at-sea hake, FOR = foreign)
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Figure 3: Illustration of types of data used for each fleet within the assessment for canary rockfish off the
U.S. West Coast
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Figure 4: Length composition data for the California trawl fishery for females (red), males (blue), and
unsexed (black)
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Figure 5: Length composition data for the Oregon trawl fishery for females (red) and males (blue)

122



Figure 6: Length composition data for the Washington trawl fishery for females (red), males (blue), and
unsexed (black)
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Figure 7: Length composition data for the California non-trawl fishery for females (red), males (blue), and
unsexed (black)
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Figure 8: Length composition data for the Oregon non-trawl fishery for females (red) and males (blue)
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Figure 9: Length composition data for the Washington non-trawl fishery for females (red) and males (blue)
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Figure 10: Age composition data for the California trawl fishery for females (red) and males (blue)
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Figure 11: Age composition data for the Oregon trawl fishery for females (red) and males (blue)
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Figure 12: Age composition data for the Washington trawl fishery for females (red) and males (blue)
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Figure 13: Age composition data for the California non-trawl fishery for females (red) and males (blue)
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Figure 14: Age composition data for the Oregon non-trawl fishery for females (red) and males (blue)

131



Figure 15: Age composition data for the Washington non-trawl fishery for females (red) and males (blue)
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Figure 16: Length composition data for the Oregon at-sea hake fishery for females (red) and males (blue)
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Figure 17: Length composition data for the Washington at-sea hake fishery for females (red) and males
(blue)
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Figure 18: Age composition data for the Oregon at-sea hake fishery for females (red) and males (blue)
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Figure 19: Age composition data for the Washington at-sea hake fishery for females (red) and males (blue)
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Figure 20: Length composition data for the California recreational fishery for unsexed (black)
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Figure 21: Length composition data for the Oregon recreational fishery for females (red), males (blue),
and unsexed (black)
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Figure 22: Length composition data for the Washington recreational fishery for females (red), males (blue),
and unsexed (black)
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Figure 23: Aggregate length composition data for the three fisheries with bimodal patterns in length
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Figure 24: Age composition data for the Oregon recreational fishery for females (red) and males (blue)

141



Figure 25: Age composition data for the Washington recreational fishery for females (red) and males (blue)
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Figure 26: Map of WCGBTS stations and density of catches of canary rockfish. Faint gray dots are tows
without canary rockfish. Larger redder circles indicate higher catch rates.
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Figure 27: Length composition data for the WCGBTS for females (red) and males (blue)
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Figure 28: Length composition data for the early years of the Triennial Survey for females (red) and males
(blue)
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Figure 29: Length composition data for the later years of the Triennial Survey for females (red) and males
(blue)
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8.1 Biology

Figure 30: Maturity at age relationship used for the current assessment (black), compared to the last
benchmark assessment (red). Sample sizes are shown as gray circles
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Figure 31: Fecundity at length relationship
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Figure 32: Weight-length relationship for male and females
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Figure 33: Weight-length comparisons for males and females with previous benchmark assessment
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Figure 34: Externally estimated age-length relationship by Sex and latitude, where “North” is latitudes
greater than 43.3672∘N (Coos Bay, OR) for females (red), males (blue), and unsexed (yellow). Note that in
the base model growth is estimated internally and is assumed constant across latitudes.
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Figure 35: Sex ratio by age in the WCGBTS for females (red), males (blue) and unsexed (green)
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Figure 36: Sex ratio by length in the WCGBTS for females (red), males (blue) and unsexed (green)
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8.2 Model bridging

Figure 37: Model version bridge comparison of estimated spawning output of the 2015 assessment
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Figure 38: Model version bridge comparison of estimated spawning output relative to unfished of the 2015
assessment
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Figure 39: Data bridge comparison of estimated spawning output. Each step is done individually from the
updated 2015 model except the final one (All data), which combines across steps

156



Figure 40: Data bridge comparison of estimated spawning output relative to unfished. Each step is done
individually from the updated 2015 model except the final one (All data), which combines across steps
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Figure 41: Life history parameters bridge comparison of estimated spawning output. Each step is done
individually from the ‘All data updated’ model except the final one (All biology and data), which combines
across steps
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Figure 42: Life history parameters b bridge comparison of estimated spawning output relative to unfished.
Each step is done individually from the ‘All data updated’ model except the final one (All biology and data),
which combines across steps
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Figure 43: Bridge comparison of estimated spawning output when updating the structure of natural
mortality. Each step is done cumulatively from the previous model
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Figure 44: Model version bridge comparison of estimated spawning output relative to unfished. Each step
is done cumulatively from the previous model
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Figure 45: Spatial population structure and data reweighting bridge comparisons of estimated spawning
output.
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Figure 46: Spatial population structure and data reweighting bridge comparisons of estimated spawning
output relative to unfished
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Figure 47: Selectivity bridge comparisons of estimated spawning output. Each step is done cumulatively
from the previous model
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Figure 48: Selectivity bridge comparisons of estimated spawning output relative to unfished. Each step is
done cumulatively from the previous model
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8.3 Model results

8.3.1 Estimated growth

Figure 49: Model estimated length-at-age in the beginning of the year. Shaded area indicates 95 percent
distribution of length-at-age around the estimated growth curve
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8.3.2 Selectivity

Figure 50: Selectivity curves for commercial fleets over time for females. If only one curve is included for
a fleet it is applied over all years.
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Figure 51: Selectivity curves for commercial fleets over time for males. If only one curve is included for a
fleet it is applied over all years.
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Figure 52: Selectivity curves for recreational and survey fleets over time for females. If only one curve is
included for a fleet it is applied over all years.
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Figure 53: Selectivity curves for recreational and survey fleets over time for males. If only one curve is
included for a fleet it is applied over all years.
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8.3.3 Recruitment

Figure 54: Estimated time series of age-0 recruits (1000s)
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Figure 55: Estimated time series of recruitment deviations (circles) and 95% confidence intervals (whiskers)
for the main recruitment deviations (black) and early or forecast deviations (blue)
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Figure 56: Stock-recruit curve with labels on first, last, and years with log-deviations greater than 0.50.
Point colors indicate year, with warmer colors indicating earlier years and cooler colors in showing later years
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Figure 57: Points are transformed variances. Red line shows current settings for bias adjustment specified in
control file. Blue line shows least squares estimate of alternative bias adjustment relationship for recruitment
deviations
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8.3.4 Fits to data

Figure 58: Length composition aggregated across years by fleet with the model estimated fit to the data
by sex (green unsexed, red female, and blue male)
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Figure 59: Pearson residuals for lengths in the California trawl fleet. Closed bubbles are positive residuals
(observed > expected) and open bubbles are negative residuals (observed < expected) for females (red),
males (blue), and unsexed (black)
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Figure 60: Mean length for the California trawl fleet with 95 percent confidence intervals based on current
samples sizes for unsexed (top panel) and sexed (bottom panel) samples
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Figure 61: Pearson residuals for lengths in the Oregon trawl fleet. Closed bubbles are positive residuals
(observed > expected) and open bubbles are negative residuals (observed < expected)for females (red) and
males (blue)
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Figure 62: Mean length for the Oregon trawl fleet with 95 percent confidence intervals based on current
samples sizes
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Figure 63: Pearson residuals for lengths in the Washington trawl fleet. Closed bubbles are positive residuals
(observed > expected) and open bubbles are negative residuals (observed < expected) for females (red), males
(blue), and unsexed (black)

180



Figure 64: Mean length for the Washington trawl fleet with 95 percent confidence intervals based on current
samples sizes for unsexed (top panel) and sexed (bottom panel) samples
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Figure 65: Pearson residuals for lengths in the California non-trawl fleet. Closed bubbles are positive
residuals (observed > expected) and open bubbles are negative residuals (observed < expected) for females
(red), males (blue), and unsexed (black)
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Figure 66: Mean length for the California non-trawl fleet with 95 percent confidence intervals based on
current samples sizes for unsexed (top panel) and sexed (bottom panel) samples
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Figure 67: Pearson residuals for lengths in the Oregon non-trawl fleet. Closed bubbles are positive residuals
(observed > expected) and open bubbles are negative residuals (observed < expected) for females (red), males
(blue), and unsexed (black)
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Figure 68: Mean length for the Oregon non-trawl fleet with 95 percent confidence intervals based on current
samples sizes
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Figure 69: Pearson residuals for lengths in the Washington non-trawl fleet. Closed bubbles are positive
residuals (observed > expected) and open bubbles are negative residuals (observed < expected) for females
(red) and males (blue)
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Figure 70: Mean length for the Washington non-trawl fleet with 95 percent confidence intervals based on
current samples sizes
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Figure 71: Pearson residuals for lengths in the California recreational fleet. Closed bubbles are positive
residuals (observed > expected) and open bubbles are negative residuals (observed < expected) for unsexed
(black)
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Figure 72: Mean length for the California recreational fleet with 95 percent confidence intervals based on
current samples sizes
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Figure 73: Pearson residuals for lengths in the Oregon recreational fleet. Closed bubbles are positive
residuals (observed > expected) and open bubbles are negative residuals (observed < expected) for females
(red), males (blue), and unsexed (black)
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Figure 74: Mean length for the Oregon recreational fleet with 95 percent confidence intervals based on
current samples sizes for unsexed (top panel) and sexed (bottom panel) samples
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Figure 75: Pearson residuals for lengths in the Washington recreational fleet. Closed bubbles are positive
residuals (observed > expected) and open bubbles are negative residuals (observed < expected) for females
(red), males (blue), and unsexed (black)
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Figure 76: Mean length for the Washington recreational fleet with 95 percent confidence intervals based
on current samples sizes for unsexed (top panel) and sexed (bottom panel) samples
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Figure 77: Pearson residuals for lengths in the Oregon at-sea hake fleet. Closed bubbles are positive
residuals (observed > expected) and open bubbles are negative residuals (observed < expected) for females
(red) and males (blue)
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Figure 78: Mean length for the Oregon at-sea hake fleet with 95 percent confidence intervals based on
current samples sizes
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Figure 79: Pearson residuals for lengths in the Washington at-sea hake fleet. Closed bubbles are pos-
itive residuals (observed > expected) and open bubbles are negative residuals (observed < expected) for
females(red) and males (blue)
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Figure 80: Mean length for the Washington at-sea hake fleet with 95 percent confidence intervals based on
current samples
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Figure 81: Pearson residuals for lengths in the West Coast Groundfish Bottomtrawl Survey. Closed bubbles
are positive residuals (observed > expected) and open bubbles are negative residuals (observed < expected)
for females (red) and males (blue)
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Figure 82: Mean length for the West Coast Groundfish Bottomtrawl Survey with 95 percent confidence
intervals based on current samples
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Figure 83: Pearson residuals for lengths in the early Triennial Survey. Closed bubbles are positive residuals
(observed > expected) and open bubbles are negative residuals (observed < expected) for females (red) and
males (blue)
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Figure 84: Mean length for the early Triennial Survey with 95 percent confidence intervals based on current
samples
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Figure 85: Pearson residuals for lengths in the late Triennial Survey. Closed bubbles are positive residuals
(observed > expected) and open bubbles are negative residuals (observed < expected) for females (red) and
males (blue)
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Figure 86: Mean length for the late Triennial Survey with 95 percent confidence intervals based on current
samples
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Figure 87: Age composition aggregated across years by fleet with the model estimated fit to the data by
sex (red female, and blue male)
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Figure 88: Pearson residuals for ages in the California trawl fleet. Closed bubbles are positive residuals
(observed > expected) and open bubbles are negative residuals (observed < expected) for females (red) and
males (blue)
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Figure 89: Mean age for the California trawl fleet with 95 percent confidence intervals based on current
samples sizes
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Figure 90: Pearson residuals for ages in the Oregon trawl fleet. Closed bubbles are positive residuals
(observed > expected) and open bubbles are negative residuals (observed < expected) for females (red) and
males (blue)
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Figure 91: Mean age for the Oregon trawl fleet with 95 percent confidence intervals based on current
samples sizes
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Figure 92: Pearson residuals for ages in the Washington trawl fleet. Closed bubbles are positive residuals
(observed > expected) and open bubbles are negative residuals (observed < expected) for females (red) and
males (blue)
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Figure 93: Mean age for the Washington trawl fleet with 95 percent confidence intervals based on current
samples sizes
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Figure 94: Pearson residuals for ages in the California non-trawl fleet. Closed bubbles are positive residuals
(observed > expected) and open bubbles are negative residuals (observed < expected) for females (red) and
males (blue)
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Figure 95: Mean age for the California non-trawl fleet with 95 percent confidence intervals based on current
samples sizes
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Figure 96: Pearson residuals for ages in the Oregon non-trawl fleet. Closed bubbles are positive residuals
(observed > expected) and open bubbles are negative residuals (observed < expected) for females (red) and
males (blue)
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Figure 97: Mean age for the Oregon non-trawl fleet with 95 percent confidence intervals based on current
samples sizes
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Figure 98: Pearson residuals for ages in the Washington non-trawl fleet. Closed bubbles are positive
residuals (observed > expected) and open bubbles are negative residuals (observed < expected) for females
(red) and males (blue)
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Figure 99: Mean age for the Washington non-trawl fleet with 95 percent confidence intervals based on
current samples sizes
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Figure 100: Pearson residuals for ages in the Oregon recreational fleet. Closed bubbles are positive residuals
(observed > expected) and open bubbles are negative residuals (observed < expected) for females (red) and
males (blue)
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Figure 101: Mean age for the Oregon recreational fleet with 95 percent confidence intervals based on
current samples sizes
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Figure 102: Pearson residuals for ages in the Washington recreational fleet. Closed bubbles are positive
residuals (observed > expected) and open bubbles are negative residuals (observed < expected) for females
(red) and males (blue)
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Figure 103: Mean age for the Washington recreational fleet with 95 percent confidence intervals based on
current samples sizes
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Figure 104: Pearson residuals for ages in the Oregon at-sea hake fleet. Closed bubbles are positive residuals
(observed > expected) and open bubbles are negative residuals (observed < expected) for females (red) and
males (blue)
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Figure 105: Mean age for the Oregon at-sea hake fleet with 95 percent confidence intervals based on current
samples sizes
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Figure 106: Pearson residuals for ages in the Washington at-sea hake fleet. Closed bubbles are positive
residuals (observed > expected) and open bubbles are negative residuals (observed < expected) for females
(red) and males (blue)
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Figure 107: Mean age for the Washington at-sea hake fleet with 95 percent confidence intervals based on
current samples sizes
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Figure 108: Pearson residuals for conditional age-at-length in the West Coast Groundfish Bottomtrawl
Survey (plot 1 of 2). Closed bubbles are positive residuals (observed > expected) and open bubbles are
negative residuals (observed < expected) and are separate for each sex (red female, and blue male)
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Figure 109: Pearson residuals for conditional age-at-length in the West Coast Groundfish Bottomtrawl
Survey (plot 2 of 2). Closed bubbles are positive residuals (observed > expected) and open bubbles are
negative residuals (observed < expected) and are separate for each sex (red female, and blue male)
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Figure 110: Pearson residuals for conditional age-at-length in the early Triennial survey. Closed bubbles
are positive residuals (observed > expected) and open bubbles are negative residuals (observed < expected)
and are separate for each sex (red female, and blue male)
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Figure 111: Pearson residuals for conditional age-at-length in the late Triennial survey. Closed bubbles
are positive residuals (observed > expected) and open bubbles are negative residuals (observed < expected)
and are separate for each sex (red female, and blue male)
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Figure 112: Fit of model to WCGBTS. Lines represent input 95 percent confidence interval of survey index
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Figure 113: Fit of model to early Triennial Survey. Lines represent input 95 percent confidence interval of
survey index
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Figure 114: Fit of model to late Triennial Survey. Lines represent input 95 percent confidence interval of
survey index
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Figure 115: Fit of model to log of pre-recruit survey index. Log scale is shown because model fits were
difficult to evaluate on absolute index scale. Thick lines represent input 95 percent confidence intervals.
Thin lines are 95% confidence intervals including estimated added survey standard deviation.
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8.3.5 Time series

Figure 116: Estimated time series of spawning output in million of eggs with 95% confidence interval
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Figure 117: Estimated time series of total biomass in mt
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Figure 118: Estimated time series of spawning output relative to unfished with 95% confidence interval
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Figure 119: Estimated time series of fishing intensity (1-SPR)
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8.4 Diagnostics

Figure 120: Comparison of the relative change in estimated management quantities as compared to the
base model for structural sensitivities. The quantities compared are 1) the estimate of unfished spawning
output (SB0), spawning output in 2023 (SB2023), the relative spawning output in 2023 (SB2023/SB0), the
yield resulting in a population at a spawning potential ratio of 0.5 (YieldSPR=0.50), and the fishing mortality
associated with that yield (FSPR=0.50). The thick lines at the top indicate the 95 percent confidence interval
around the point estimate of the quantity from the base model, where each color corresponds with a specific
quantity in the legend. Values to the right of the vertical dashed line indicate the quantity was estimated
higher than in the base model, whereas values to the left indicate the quantity was estimated lower.
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Figure 121: Comparison of spawning output for data sensitivities. Scenarios are described in section
3.5.2.1. Blue band represents 95% confidence interval from the base model.
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Figure 122: Comparison of spawning output relative to unfished for data sensitivities. Scenarios are
described in section 3.5.2.1. Blue band represents 95% confidence interval from the base model.
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Figure 123: Comparison of spawning output for data weighting sensitivities. Scenarios are described in
section 3.3.6.2. Blue band represents 95% confidence interval from the base model.
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Figure 124: Comparison of spawning output relative to unfished for data weighting sensitivities. Scenarios
are described in section 3.3.6.2. Blue band represents 95% confidence interval from the base model.
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Figure 125: Comparison of spawning output for selectivity and catchability sensitivities. Scenarios are
described in section 3.5.2.3. Blue band represents 95% confidence interval from the base model.
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Figure 126: Comparison of spawning output relative to unfished for selectivity and catchability sensitivities.
Scenarios are described in section 3.5.2.3. Blue band represents 95% confidence interval from the base model.
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Figure 127: Comparison of spawning output for productivity sensitivities. Scenarios are described in
section 3.5.2.4. Blue band represents 95% confidence interval from the base model.
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Figure 128: Comparison of spawning output relative to unfished for productivity sensitivities. Scenarios
are described in section 3.5.2.4. Blue band represents 95% confidence interval from the base model.
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Figure 129: Change in spawning output when the most recent five years of data are sequentially removed
from the model.
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Figure 130: Change in spawning output relative to unfished when the most recent five years of data are
sequentially removed from the model.
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Figure 131: Likelihood profile showing support from various data sources for different values of ln(R0),
the natural logarithm of unfished recruitment, relative to the base model. Values associated with likelihoods
that fall below the red dashed line are within the 95% chi-squared confidence interval.
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Figure 132: Likelihood profile of ln(R0), and impact of changing ln(R0) values from the base model (blue
dot) on depletion (top right), unfished spawning output (lower left), and terminal year spawning output
(lower right).
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Figure 133: Likelihood profile showing support from various data sources for different values of steepness,
relative to the base model. Change in log-likelihood is relative to the base model. Values associated with
likelihoods that fall below the red dashed line are within the 95% chi-squared confidence interval.
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Figure 134: Likelihood profile of steepness, and impact of changing steepness values from the base model
(blue dot) on depletion (top right), unfished spawning output (lower left), and terminal year spawning output
(lower right).
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Figure 135: Likelihood profile showing support from various data sources for different values of female
natural mortality. Change in log-likelihood is relative to the base model. Values associated the likelihoods
that fall below the red dashed line are within the 95% chi-squared confidence interval.
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Figure 136: Likelihood profile of female natural mortality, and impact of changing female natural mortality
values from the base model (blue dot) on depletion (top right), unfished spawning output (lower left), and
terminal year spawning output (lower right).
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Figure 137: Likelihood profile showing support from various data sources for different values of male
natural mortality. Change in log-likelihood is relative to the base model. Values associated the likelihoods
that fall below the red dashed line are within the 95% chi-squared confidence interval.
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Figure 138: Likelihood profile of male natural mortality, and impact of changing male natural mortality
values from the base model (blue dot) on depletion (top right), unfished spawning output (lower left), and
terminal year spawning output (lower right).
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Figure 139: Summary biomass of current and past full and update assessments in 1000s of mt. Summary
biomass shows age 5+ canary rockfish with the exception of the 2002 update, which provided summary
biomass for age 3+ canary rockfish
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Figure 140: Comparison of recruitment deviations estimated in DFO (2022) and this model. Deviations
are detrended using standard linear regression to account for opposite long-term recruitment trends in the
two models. Dashed line is the 1:1 line. Points that fall on this line have perfect correspondence between
the two models.
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8.5 Management

Figure 141: Estimated yield curve with various reference point proxies
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Figure 142: Comparison of spawning output relative to unfished for projections under average recruitment
assumptions (blue line) and when applying the base projected catch values to a model assuming low recruit-
ment (average recruitment from 2014-2019; red line). Blue band represents 95% confidence interval from the
base model. Shaded block indicates the projection period (2023-2034)
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