
APPENDIX 5 – BIODIVERSITY

Biodiversity Offset Strategy

Biodiversity Reports

Wilpinjong Coal Mine Stream Health Monitoring – Spring 2018

Prepared for Wilpinjong Coal Pty Ltd

30 March 2019

DOCUMENT TRACKING

Item	Detail
Project Name	Wilpinjong Coal Mine Stream Health Monitoring – Spring 2018
Project Number	18MUD-9579
Project Manager	Kalya Abbey Unit 1, Level 1, 79 Market St. Mudgee, 2850
Prepared by	Kate Maslen; Angelina Siegrist
Reviewed by	Kalya Abbey; Peter Hancock
Approved by	Daniel Magdi
Status	Final
Version Number	V2
Last saved on	30 March 2019
Cover photo	Site WO3 (downstream), taken 29/11/2018 (Credit: Cassandra Holt)

This report should be cited as 'Eco Logical Australia 2019. *Wilpinjong Coal Stream Health Monitoring – Spring 2018.* Prepared for Wilpinjong Coal Pty. Ltd.'

ACKNOWLEDGEMENTS

This document has been prepared by Eco Logical Australia Pty Ltd with support from WCPL

Disclaimer

This document may only be used for the purpose for which it was commissioned and in accordance with the contract between Eco Logical Australia Pty Ltd and Wilpinjong Coal Pty. Ltd. The scope of services was defined in consultation with Wilpinjong Coal Pty. Ltd, by time and budgetary constraints imposed by the client, and the availability of reports and other data on the subject area. Changes to available information, legislation and schedules are made on an ongoing basis and readers should obtain up to date information.

Eco Logical Australia Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report and its supporting material by any third party. Information provided is not intended to be a substitute for site specific assessment or legal advice in relation to any matter. Unauthorised use of this report in any form is prohibited.

Contents

1	Introduction1
1.1	Background1
1.2	Regional overview1
1.3	Scope of works
1.4	Previous aquatic ecology assessments1
2	Methods2
2.1	Survey overview
2.2	Survey methods4
2.2.1	Aquatic Habitat Assessment
2.2.2	Physico-chemistry
2.2.3	Macroinvertebrate Community 5
2.3	Climate and flow7
3	Results9
3.1	Habitat assessment and RCE9
3.2	Water quality14
3.3	Macroinvertebrate communities14
3.3.1	Taxa richness
3.3.2	SIGNAL
4	Discussion16
4.1	Habitat Assessment and RCE 16
4.2	Water quality16
4.3	Macroinvertebrate communities 17
5	Conclusions and recommendations18
6	References
Appen	dix A – Site photos
Appen	dix B - Macroinvertebrate data (presence and absence)

List of figures

Figure 1: Monitoring sites along Wilpinjong, Wollar and Cumbo Creeks	.3
Figure 2: Stream flow upstream of the WCPL mine discharge point (1/2/2012 to 30/11/2018)	.8
Figure 3: Stream flow downstream of the WCPL mine discharge point (1/2/2012 to 30/11/2018)	.8

List of tables

Table 1: 2018 monitoring sites	2
Table 2: Temperature and rainfall data for the spring 2018 monitoring period	7
Table 3: Temperature and rainfall data for the six months prior to monitoring	7
Table 4: Site by site results for the 13 RCE parameters	9
Table 5: Physico-chemical results	14
Table 6: Results of the two macroinvertebrate indices	15

Abbreviations

Abbreviation	Description
ANZECC	Australian and New Zealand Environment and Conservation Council
AUSRIVAS	Australian River Assessment System
DO	Dissolved oxygen
EC	Electrical conductivity
ELA	Eco Logical Australia
EPL	Environment Protection Licence
NP	National Park
RCE	Riparian, Channel and Environment
SHM	Stream Health Monitoring
SIGNAL	Stream Invertebrate Grade Number Average Level
SWMMP	Surface Water Management and Monitoring Plan
WCM	Wilpinjong Coal Mine
WCPL	Wilpinjong Coal Pty Ltd

1 Introduction

1.1 Background

The Wilpinjong Coal Mine (WCM) is located in the upper Hunter Valley, approximately 45 km north-east of Mudgee in New South Wales. The mine is owned and operated by Wilpinjong Coal Pty Ltd (WCPL), a wholly owned subsidiary of Peabody Energy Australia.

WCPL are required to undertake Stream Health Monitoring (SHM) as part of Appendix 2 of the Wilpinjong Water Management Plan (WCPL 2017). Eleven previous surveys have been undertaken, with the last occurring in spring 2017 (WCPL 2017)

1.2 Regional overview

Wilpinjong Creek is the main waterway flowing past the WCM. It is an intermittent creek with a narrow floodplain that has a history of cattle grazing. The main channel contains dense beds of *Phragmites* sp. (Common Reed) and *Typha* sp. (Bulrush) for most of the reach included in this assessment.

The northern edge of the floodplain is bordered by the Goulburn River National Park (NP). Wilpinjong Creek has three coal mines in its catchment, including Moolarben, Ulan, and Wilpinjong, with the latter being the most downstream. WCPL discharges water, treated by reverse osmosis, into Wilpinjong Creek at a point adjacent to the WCM.

Cumbo Creek flows north through land managed by WCPL, passing between Pit 3 and Pit 4. Cumbo Creek joins Wilpinjong Creek north of the eastern pit area.

Approximately 4.5 km downstream of where Wilpinjong Creek flows past WCM, it joins Wollar Creek, which continues another 13 km through the Goulburn River NP before it enters the Goulburn River.

1.3 Scope of works

Eco Logical Australia (ELA) was commissioned by WCPL to conduct the latest round of SHM. Monitoring included assessments of macroinvertebrate communities, basic water quality, habitat conditions, and channel conditions.

Appendix 2 of the WCPL Water Management Plan (2017) outlines the requirements for SHM along Wilpinjong, Cumbo and Wollar Creeks. These requirements include a survey of aquatic macroinvertebrates, a range of interpretive indices to evaluate environmental quality, a comparison of site indices against other sites and through time.

1.4 Previous aquatic ecology assessments

Surveys were conducted annually between 2010 and 2013 (Landline Consulting 2014). These were generally undertaken in September and October. Surveys recommenced in 2017, with an initial survey in January (ELA, 2017). Results from the 2010-2013 surveys indicate that Wilpinjong Creek is in relatively poor condition, suffering impacts from drought and long-term agricultural use. In January 2017, conditions appeared better, with improved water quality, and improved stream invertebrate grade number average level (SIGNAL2) scores. Many of the sites were still dry when sampled, and the number of invertebrate taxa was low at most sites.

2 Methods

2.1 Survey overview

The SHM spring survey was undertaken by ELA ecologists Cassandra Holt and Angelina Siegrist on 27, 29 and 30 November 2018.

The spring survey was undertaken at the 13-permanent monitoring sites specified in Appendix 2 of the WCPL Water Management Plan (WCPL 2017). These include two along Cumbo Creek, three along Wollar Creek, and eight along Wilpinjong Creek (**Table 1**, **Figure 1**). Photographs of each site are included at **Appendix A**.

Creek	Site	Easting	Northing		
	WC1	767680	6422970		
	WC2	768490	6422490		
	WC3	770080	6420730		
Wilniniang Crook	WC4	772270	6420330		
Wilpinjong Creek	WC5	773980	6420420		
	WC6	774580	6420860		
	WC7	775100	6421060		
	WC8	775860	6420820		
Cumba Creak	CC1	772710	6418130		
Cumbo Creek	CC2	772980	6418950		
	WO1	777940	6418170		
Wollar Creek	WO2	777780	6418950		
	WO3	777790	6420100		

Table 1: 2018 monitoring sites

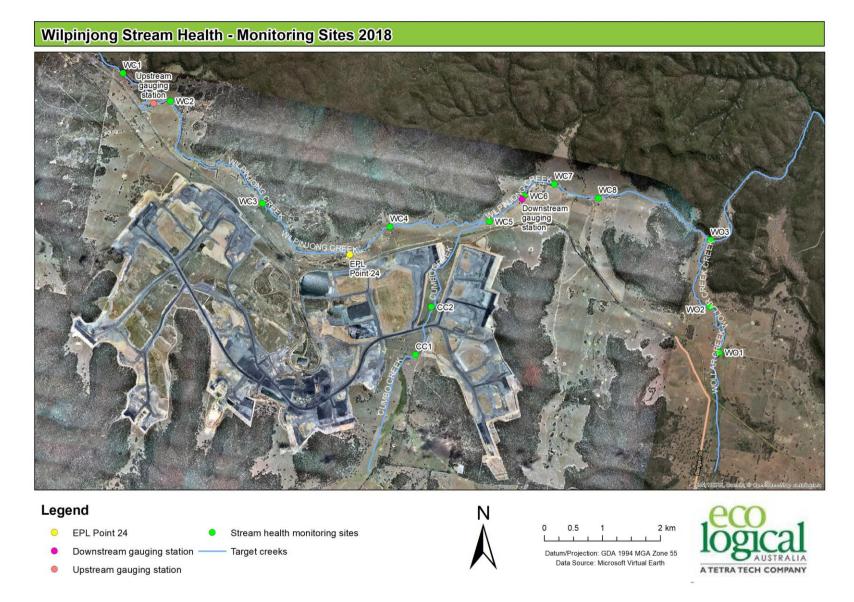


Figure 1: Monitoring sites along Wilpinjong, Wollar and Cumbo Creeks

2.2 Survey methods

2.2.1 Aquatic Habitat Assessment

Aquatic habitat assessments were based on the *Policy and Guidelines for Fish Habitat Conservation and Management* (DPI Fisheries 2013), which outlines the features important for fish habitat in freshwater, estuarine, and marine areas. Habitat assessments allow the significance of river reaches to be determined, regardless of whether target fish species are present permanently, or for brief periods of time.

Aquatic habitat variables (environmental data) were noted for each site, with observations made from the bank on the following characteristics:

- General signs of disturbance
- Habitat type
- Channel topography
- Current water level
- Bank and bed slope
- Degree of river shading
- Amount of detritus
- Macrophyte type and extent
- Riparian zone width
- Snags and large woody debris coverage
- Stream width and depth
- Surrounding land use
- Description of the natural substrate
- Extent of bank overhang
- Amount of trailing bank vegetation.

Riparian condition was assessed using a version of the Riparian, Channel and Environmental (RCE) inventory (Peterson 1992) that was modified for Australian conditions (Chessman *et al.* 1997). The modified RCE has 13 descriptors, each with a score from one (poor condition) to four (good condition).

Descriptors included width and condition of the riparian zone, surrounding land use, extent bank erosion, stream width, water depth, occurrence of pools, riffles and runs, sub-stratum type, presence of snags and woody debris, in stream and emergent macrophytes, algae, and barriers to fish passage. The total score for each site was derived by summing the score for each descriptor and calculating the result as a percentage of the highest possible score (up to 52).

Sites with a high RCE score indicate that the riparian zone is largely undisturbed, while those with a low score have undergone substantial modification. Based on the original classification established by Peterson (1992), site condition was rated as follows:

- Poor for RCE scores of 0-24%
- Fair for RCE scores of 25-43%
- Good for RCE scores of 44-62%
- Very good for RCE scores of 63-81%
- Excellent for RCE scores of 82-100%

2.2.2 Physico-chemistry

To complement biological data, physico-chemical parameters were measured at each site. Temperature, dissolved oxygen (DO), electrical conductivity (EC) and pH were measured with a YSI-556 meter, which was calibrated in the laboratory prior to the field survey. The DO probe was calibrated at the start of each survey day. A sample of water was collected and analysed for turbidity by Australian Laboratory Services (ALS).

2.2.3 Macroinvertebrate Community

Where sufficient water was present, three separate macroinvertebrate samples were collected at each site using the Australian Rivers Assessment System (AUSRIVAS) protocols (Turak *et al.* 2004). Samples were collected from 10 m of representative edge or riffle habitats using a standard AUSRIVAS kick net with 250 μ m mesh. The largest pool was selected at sites WC6 and WC7 as 10 m of water was not available to sample. The net was bounced along the bottom to disturb resting invertebrates, and then rapidly passed again through the water column to collect them. Edge habitats were defined as adjacent to the creek bank in areas of little or no flow, including alcoves and backwaters, with abundant leaf litter, fine sediment deposits, macrophyte beds and overhanging bank vegetation (Turak *et al.* 2004).

Macroinvertebrate samples were live-sorted in the field for a minimum of 40 minutes. If new taxa were collected in the period from 30 to 40 minutes, picking continued for 10 minutes. If no new taxa were found after the additional 10 minutes, sorting stopped. The maximum sorting time was 60 minutes. All picked animals were preserved in 70% ethanol solution and transferred to the laboratory for identification. Specific care was taken to ensure cryptic, fast moving taxa were represented.

Macroinvertebrates were identified to family level, except for *Acarina, Nematoda, Decepoda, Crustacae, Collembola, Oligochaeta* and *Tricladida,* which were identified to order.

The Stream Invertebrate Grade Number- Average Level (SIGNAL) is a biotic index that allocates a value to each macroinvertebrate family based upon their sensitivity to pollution. A macroinvertebrate family with a value of ten indicates high sensitivity, while a value of one indicates low sensitivity (i.e. high pollution tolerance) (Chessman *et al.* 1997). The SIGNAL score for the entire site is calculated by summing the SIGNAL grades for each family collected at that site and then dividing by the total number of families collected. SIGNAL scores are used to grade water quality into the following categories:

- SIGNAL Score > 6: Healthy Habitat
- SIGNAL Score 5-6: Mild Pollution

- SIGNAL Score 4-5: Moderate Pollution
- SIGNAL Score < 4: Severe Pollution

2.3 Climate and flow

During the three days of monitoring, the weather was warm. There was rainfall on 28 of November measuring 16.8 mm (**Table 2**). In the six months leading up to sampling, temperatures were all slightly above the historic mean. Rainfall during June, September and November was below average, rainfall during October, August and July were above historical means.

Date	Min. temp (°C)	Max. temp (°C)	Rainfall (mm)
27 Nov 2018	12.7	28.9	0
28 Nov 2018	15.7	22.1	16.8
29 Nov 2018	10.6	26.1	0
30 Nov 2018	13.5	27.6	0

Table 2: Temperature and rainfall data for the spring 2018 monitoring period

Source: WCPL Weather Station Sentinex 34

		2018	Historical means				
Month	Mean min. temp (°C)	Mean min. temp (°C)	Total Rainfall (mm)	Min. temp (°C)	Max. temp (°C)	Rainfall (mm)	
Nov 2018	13.58	26.92	47.4	12.1	26.6	56.0	
Oct 2018	11.46	24.20	56.8	10.0	23.9	48.5	
Sep 2018	5.71	20.85	39.6	4.8	20.2	51.0	
Aug 2018	1.58	16.90	43.8	0.8	16.1	25.5	
July 2018	0.58	16.62	6.8	-0.6	15.8	6.5	
June 2018	2.26	16.03	21.6	1.8	15.5	22.0	

Table 3: Temperature and rainfall data for the six months prior to monitoring

Source: 2018 data from the WCPL Weather Station Sentinex 34, historical data from the BoM weather stations at Mudgee Airport (temp) and Wollar (Barrigan St) weather station (rainfall)

Flow levels in Wilpinjong Creek since 2012 have averaged 3.1 ML/day downstream and 1.1 ML/day upstream of the Wilpinjong discharge point at Environment Protection Licence (EPL) point 24. Flow receded at both gauging stations throughout 2018, with no flow recorded at the upstream station in 2018. A high flow event occurred during spring 2016, although the long-term flow levels indicate Wilpinjong Creek has experienced mainly dry conditions over the last six years as seen in **Figure 2** and **Figure 3**.

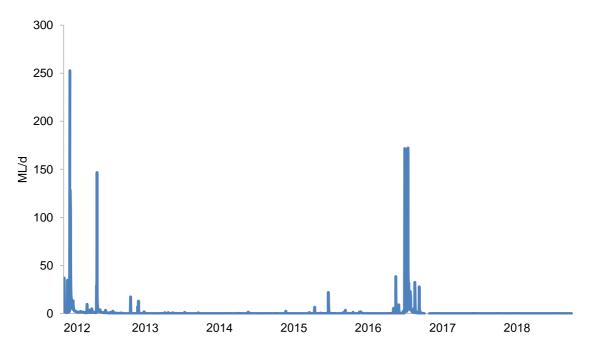


Figure 2: Stream flow upstream of the WCPL mine discharge point EPL Point 24 (1/2/2012 to 30/11/2018)

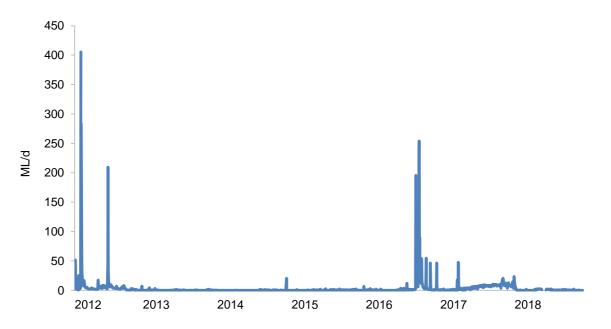


Figure 3: Stream flow downstream of the WCPL mine discharge point EPL Point 24 (1/2/2012 to 30/11/2018)

3 Results

3.1 Habitat assessment and RCE

Results of the habitat assessment, including water, substrate, vegetation, land use, and how these elements contribute to the RCE score are detailed below. A breakdown of how the 13 RCE parameters scored for each site is included in **Table 4**.

Descriptor	WC1	WC2	WC3	WC4	WC5	WC6	WC7	WC8	WO1	WO2	WO3	CC 1	CC 2
Land use pattern beyond immediate riparian zone	3	3	3	3	2	2	2	3	2	3	3	2	3
Width of riparian strip of woody vegetation	3	3	3	3	1	3	3	3	3	3	3	2	1
Completeness of riparian woody strip of vegetation	2	2	2	2	3	2	2	3	2	2	3	3	3
Vegetation of riparian zone within 10 m of channel	4	3	2	3	2	2	2	2	2	3	3	2	1
Stream bank	2	2	3	3	3	3	3	3	3	3	2	3	3
Bank undercutting	4	3	4	4	3	4	4	4	4	4	3	4	4
Channel form	2	3	3	3	3	3	3	3	2	3	3	2	3
Riffle/pool sequence	3	3	3	3	3	3	3	3	2	3	3	2	2
Retention devices in stream	1	1	2	1	1	1	2	2	1	2	3	3	1
Channel sediment accumulations	4	3	2	4	4	4	4	4	4	3	2	4	4
Stream bottom	1	2	2	2	2	2	3	1	2	1	3	2	1
Stream detritus	1	3	4	3	2	2	2	1	3	3	2	2	3
Aquatic vegetation	2	4	2	4	2	1	2	2	2	2	1	2	2
Total	32	35	35	38	31	32	35	34	32	35	34	33	31
Total %	61.5	67.3	67.3	73.1	59.6	61.5	67.3	65.4	61.5	67.3	65.4	63.5	59.6
Condition classification	G	VG	VG	VG	G	G	VG	VG	G	VG	VG	VG	G

Condition Classification: G - Good, VG - Very Good

Site WC1

This site is upstream of WCM within cleared pasture land along both sides of the bank. The stream bank is approximately 20 m wide and rose 1.5 m above the bed. There is an artificial dam present within the site. Erosion was present on parts of the bank possibly due to the movement of cattle, there was also a lack of groundcover along parts the bank which help to stabilise the bank.

Riparian vegetation consisted of mature and juvenile *Angophora floribunda* (Rough-barked Apple) and *Eucalyptus blakelyi* (Blakely's Red Gum) trees. The dominant shrub species was *Cassinia arcuata* (Sifton Bush). The trees, shrubs, grasses/sedges/ferns are 100% native. There are dense stands of macrophytes along the creek bed.

This site scored an RCE score of 61.5%, indicating that the riparian and channel condition is rated as 'Good'. The site had no logs or large boulders to act as retention devices, although there were dense stands of macrophytes present in the channel that would perform the same function. The site also had loose, mobile sediment along the stream bottom and had little organic detritus.

Site WC2

WC2 was dry when visited during November 2018. The northern bank of Wilpinjong Creek is severely eroded above a shelf of horizontal bedrock strata. The bank is approximately 20 m wide, with a height of 1 m tall. The site sites within cleared pasture land, which was present on both sides on the bank.

The dominant riparian vegetation included *Angophora floribunda* and *Eucalyptus melliodora* (Yellow Box). All vegetation species within the site were native. There is a bedrock outcrop extending from the northern bank.

The site scored an RCE index of 67.3%, which places it in the 'Very Good' category. There were few retention devices in the stream, and little or no macrophyte or algal growth along the creek bed.

Site WC3

WC3 was dry when visited during November 2018. The bank is 15 m wide and stood approximately 1.5 m above the sandy bed of the channel, and there was no woody vegetation on the western bank. The dominant substrate type consists of gravel and sand

Along the northern side of the bank there is cleared pastureland, along the southern side there is regenerating woodland. The channel bank is surrounded by *Phragmites australis*, although very little stands existed within the centre of the bank. The dominant riparian vegetation at the site included *Angophora floribunda* and *Eucalyptus blakelyi*.

This site had an RCE score of 67.3%, so is classified as being in the 'Very Good' condition. There was little in-stream detritus and no bank undercutting at the site, due to the gentle slope and the high abundance of vegetation along the bank.

Site WC4

This site is downstream of the Wilpinjong reverse-osmosis water discharge point, although was dry when visited during November 2018. The bed consists of a high abundance of bedrock. The bank is 30 m wide and 3 m in height. Along both banks the land use was cleared pasture.

Bedrock made up 15% of the site and was a dominant substrate within the creek, the other dominant substrate for approximately 50% of the creek was silt. In the northern side of the creek there was enough sediments to support dense stands of *Phragmites australis* (Common Reed) and *Typha orientalis* (Broadleaf Cumbungi). Other dominant riparian vegetation includes *Angophora floribunda*

and *Lomandra multiflora* (Many-flowered Mat-rush). Both banks are severely eroded due to a lack of vegetation stabilising the bank. The northern bank drops almost vertically to the bottom of the channel and the top is poorly vegetated with low numbers of juvenile *Angophora floribunda*.

This site scored 73.1% in the RCE index, so is classified as 'Very Good'. This site had the highest score out of all sites. The number of rock and log retention devices within the stream scored low, although stands of macrophytes scattered along the bed which perform a similar function. This site scored well due to there being no evidence of bank undercutting. It also scored well as there was little macrophytes growth along the majority of the creek bed.

Site WC5

This site was dry during the time of surveying in November 2018. The bank is 25 m wide, with an average bank height of 2 m. The land use at this site is agricultural with no canopy cover within 50 m.

The dominant substrate type along the stream bed is silt. There was some erosion on the southern bank where the soil is exposed, but it is mostly vegetated with a mixed native and exotic groundcover. The stream bed is dominated by *Typha orientalis*, while along the bank there is *Lomandra longifolia* (Spiny-headed Mat-rush). There is a mix of native and exotic grass species that may be stabilising the northern bank.

WC5 scored 59.6% in the RCE index, meaning it is classified as 'Good'. There was little woody vegetation in the riparian zone, as there was no shrub or canopy layer. The score for in-stream retention devices was also low, as no logs or rocks are present in the reach. While dense stands of macrophytes would act as retention devices in moderate and low flows.

Site WC6

Site WC6 has a small weir at the western end of the reach. Just downstream of the weir the stream flows across bedrock. There is a cleared mixed pasture along both sides of the creek and stock can access the water at this point along Wilpinjong Creek. During the survey the water contained a cow odour. During the survey there was a low flow level present within the stream.

The width of the bank is 15 m with a 4 m high bank. The southern bank has some exposed rock ledges and a short rocky side arm. The dominant riparian vegetation is *Eucalyptus blakelyi, Eucalyptus melliodora, Eucalyptus albens* (White Box) and *Lomandra longifolia*. Stands of macrophytes are located within the site, during times of survey the 2m pool of water was covered between 50 to 75% of filamentous algae.

The site scored 61.5% in the RCE index, giving it a classification of 'Good'. It scored high for as there was no bank undercutting, due to the ground cover along the northern bank. It also scored well as there was no evidence of loose sediment accumulations within the site. Although the site did score poorly on the lack of retention devices within the stream, as there was no logs or large rocks present. Although macrophytes present that would perform a similar function. This site also scored poorly on aquatic vegetation with substantial amounts of macrophyte and algal growth present at the site.

Site WC7

The creek bank at this site is 2 m tall and 20 m wide. During the time of survey there was a 3 m pool present, and water level was low. The land use along both sides of the bank is cleared mixed pasture. Stock have access to the creek and at the time of sampling there were piles of soil.

Both banks were vegetated with 15% exotic groundcover. The dominant riparian vegetation at the site is *Angophora floribunda, Eucalyptus blakelyi, Eucalyptus melliodora* and *Sporobolus sp.* There was little erosion along both sides of the bank due to the presence of native and exotic grasses.

WC7 scored 67.3% for the RCE index, giving it a classification of 'Very Good'. The site scored high as there was little erosion and no bank undercutting. It also scored high as there was little evidence of loose sediments within the water.

Site WC8

At the time of sampling, there was evidence of water inundation from a rainfall event within the previous 24 hours, causing some erosion. The creek bank is 1 m high and 15 m wide, the main substrate type was silt. During the time of survey there was a low flow level of the stream. The land use on both sides of the creek at this site is agricultural, however there is woody vegetation within 20 m of the creek on the southern side, while the northern bank immediately becomes pasture.

The dominant riparian vegetation within the channel is *Eucalyptus blakelyi, Eucalyptus albens* and *Angophora floribunda*. Nearly the whole reach is covered with dense *Phragmites australis* cover, although *Cyperus* sp., *Juncus* sp. and *Typha* sp. was also present.

WC8 scored 65.4% for the RCE index, giving it a classification of 'Very Good'. It scored high for a lack of channel sediment accumulations and an absence of evidence of bank undercutting. While this site scored poorly for a loose and mobile sediment along the stream bottom, as well as the high occurrence of stream detritus.

Site WO1

Site WO3 has a bank height of 1.5 m and 20 m wide. The land use along both sides of the bank is cleared pasture land. During the time of survey, the stream had a low flow level.

During the time of sampling there was *Typha* sp. and *Phragmites* sp. present within the site. The majority of the substrate is sand. There are dense stands of Typha located within portions of the creek. There is a considerable amount of shading along the channel although this is mostly provided an exotic willow, *Salix* sp.

This site scored 61.5% for the RCE index, giving it a classification of 'Good'. The site scored well on bank undercutting due to there being a good amount of groundcover which was stabilising the bank. The site also scored well on channel sediment accumulations. The lowest scoring parameters was the lack of retention devices within the stream, as there were no logs. Although the presence of native aquatic macrophytes would serve a similar purpose.

Site WO2

This site is on Wollar Creek, where the bank was 20 m wide and 2 m high. At the downstream end of the reach the creek passes under Mogo Road, a concrete creek-crossing. The creek would receive runoff from the road during rain events. Surveys were completed within 24 hours of a rainfall event, there was evidence of water inundation from this rainfall event.

At the time of sampling there was 7 m pool of water at WO2, there was 50% exotic groundcover along the bank. Some woody riparian vegetation is present including *Angophora floribunda*, *Eucalyptus blakelyi, Melaleuca* sp. and *Acacia* sp. There are also dense stands of *Typha* sp. and *Phragmites* sp. along the stream bank.

WO2 scored 67.3% for the RCE index, giving it a classification of 'Very Good'. It scored especially well on bank undercutting, as both banks slope gently and are stabilised by native and exotic groundcover.

Although it scored poorly as there was loose and mobile sediment being present along the stream bottom.

Site WO3

This site is along Wollar Creek, which had a moderate level flow at the time of sampling. Surveys occurred within 24 hours of a rainfall event, with evidence of water inundation. The total width of the bank is 25 m and 3 m high. At the downstream end of the reach the creek passes under Araluen Road, the creek would receive runoff from the road during rain events. This land along both sides of the bank has been partially cleared but transitions into native remnant vegetation.

There is a good canopy cover over the creek at this site, the overstory species are *Angophora floribunda* and *Eucalyptus blakelyi* and the banks are stabilised with a high abundance of exotic groundcover. Around the pool and along the reach there are variable amounts of dense *Typha* beds. The substrate is mainly silt, although there is cobble, pebble, gravel and sand present within the site.

WO1 scored 65.4% for the RCE index, giving it a classification of 'Very Good'. It scored well on-stream bank and undercutting, riffle/pool sequence. There was very little bare soil on either bank, meaning no erosion or bank undercutting. This site scored poorly on the aquatic vegetation present within the site, as there as algae present during the time of survey.

Site CC1

This site is located in Cumbo Creek. In the 24 hours before this survey there was a rainfall event and there was evidence of inflowing water. The land use along both sides of the site is pasture land and mining. The site is located at a point where an access track crosses Cumbo Creek and would receive runoff from this track during rain events.

Immediately beyond the riparian vegetation, there is mixed native and exotic pasture. The channel is dominated by *Typha* sp, *Cyperus* sp. *and Juncus* sp. There was one *Eucalyptus conica* (Fuzzy Box) located within the site. The substrate along the stream bed is mostly silt, although sand and gravel are also present.

This site scored 63.5% for the RCE index, giving it a classification of 'Very Good'. It scored especially high as there was no bank undercutting occurring as the channel was very shallow and the banks stabilised with a mix of native and exotic groundcover. It also scored well as there was no sediment accumulations along the stream.

Site CC2

Site CC2 was dry during the monitoring period. The land use on both sides of the stream is exotic pasture land and the channel is very wide and shallow, about 50 m wide with a bank height of 0.5 m. It mostly contains non-aquatic native and exotic grasses, with some *Juncus* sp. There is one canopy species *Eucalyptus conica* within the riparian zone. There would be no riffles during flow events.

This site scored 59.6% for the RCE index, giving it a classification of 'Good'. It was the lowest scoring of the sites overall, with poor scores for woody riparian vegetation, vegetation within 10 m of the channel, in-stream retention devices and loose and mobile sediment along stream bottom. Although this site scored well on the lack of channel sediment accumulation and no bank undercutting.

3.2 Water quality

The results of the water quality testing, including temperature, EC, DO, pH, and turbidity are detailed below. A breakdown of the results for each site is in **Table 5**. Note that there are no results for sites WC2, WC3, WC4, WC5 and CC2 as they were dry at the time of monitoring and no water samples could be taken.

Water temperatures at the time of sampling ranged between 17.43°C and 28.74°C. The warmest water was at site WC6, which was a small pool and sampled in the early-afternoon.

EC was high in the upper reaches of Wilpinjong Creek, with a maximum value of 2276 μ S/cm at WC1. However, at WC6, downstream of the reverse osmosis discharge point, EC was 361 μ S/cm. The lowest conductivity was 296 μ S/cm at WC8, which was the only site within the Australian and New Zealand Environmental and Conservation Council (ANZECC) range. EC in Wollar Creek increased, with 3300 μ S/cm measured at WO1, the highest reading during the survey.

Dissolved oxygen ranged between 34.5% saturation at WC1 to 173.5% saturation at WO1. There were no sites in Wilpinjong, Wollar and Cumbo Creeks that were within the recommended ANZECC range.

All sites had a pH between 7.07 and 10.81. Sites WC6 and WC7 were outside the ANZECC range. All sites within Wollar Creek and Cumbo Creek had pH values within the ANZECC range.

Turbidity was high in Wilpinjong Creek, with all sites above the ANZECC range. The highest being WC8 with 149 NTU. However, turbidity in Wollar Creek and Cumbo Creek were all within the recommended ANZECC Range. The lowest turbidity was measured at WO1 at 2 (**Table 5**).

Variable	ANZECC Range	WC1	WC2	WC3	WC4	WC5	WC6	WC7	WC8	WO1	WO2	WO3	CC1	CC2
Temperature (°C)		19.22					28.74	26.62	17.43	19.17	24.46	25.31	26.15	
Conductivity (µS/cm)	30-350	2276					361	546	296	1410	1434	3300	3171	
DO (% saturation)	90-110	34.5	DRY	DRY	DRY	DRY	110.1	65.1	129.6	38.9	167.5	173.5	154.4	DRY
DO (mg/L)		3.15					8.5	5.21	12.37	3.56	13.9	14.14	12.37	
рН	6.5-8.0	7.07					10.81	8.42	7.72	7.74	7.67	7.81	7.71	
Turbidity (NTU)	2-25	74.6					172	138	149	9.4	6.3	2.8	22.6	

Table 5: Physico-chemical results

Red cells indicate values outside the ANZECC range; green cells indicate values that are within the range.

3.3 Macroinvertebrate communities

3.3.1 Taxa richness

A total of 14 macroinvertebrate orders, comprising 21 taxa families, were collected from the 28 sites that had sufficient water for sampling. Taxa richness was highest at WO3 (21 taxa), and WC1 (18 taxa).

Taxa richness was lowest at WC7 with only 7 taxa identified. The most commonly occurring taxa were Crustacea and the hemipteran family Notonectidae both occurring at seven sites each.

3.3.2 SIGNAL

Pollution sensitivity ratings for each family/order were used to calculate the average SIGNAL score for each site. Where families/orders have no assigned sensitivity rating, they were not included in the averages, however are still represented in results for taxa richness. Average SIGNAL scores range from 2.0 to 3.3 (**Table 6**). All the sites had an average SIGNAL score of less than four, so they are classified as severely polluted.

Measure	WC1	WC2	WC3	WC4	WC5	WC6	WC7	WC8	WO1	W02	W03	CC1	CC2
Taxa richness	18	n/a	n/a	n/a	n/a	11	5	15	15	10	21	13	n/a
Average SIGNAL score	2.88	n/a	n/a	n/a	n/a	3.00	2.00	2.50	3.31	3.33	3.00	2.90	n/a
SIGNAL pollution condition	S	-	-	-	-	S	S	S	S	S	S	S	-

Table 6: Results of the two macroinvertebrate indices

SIGNAL2 pollution condition – Severe – S

4 Discussion

4.1 Habitat Assessment and RCE

All sites received either 'Good' or 'Very Good' classification for their RCE indices. This puts them in the mid-range for riparian and channel habitat quality. Conditions within Wilpinjong, Wollar and Cumbo Creeks were very similar and consistent. Compared to 2017 sites WC4 and WC5 are now dry, which is a change from last year. Many of the sites had less water, and none had more water than last year. This is a result of drought conditions and increased average temperatures compared to the historical means.

Lack of in-stream retention devices such as logs, and boulders was common at many sites, with mostly scores of one or two for this parameter. This is typical of streams in agricultural landscapes, as large debris is generally removed, and woody riparian vegetation that would provide fallen branches and logs is limited. In-stream retention devices help slow the movement of flow, which in turn reduces the water erosive power. Retention devices are also important for the accumulation of coarse particulate organic matter, an important energy source for macroinvertebrate communities, although there was aquatic vegetation at many sites, which can also provide a similar function in trapping organic matter.

Similarly, stream bottom also scored low, as there were loose and mobile sediments along the stream bottom at most sites. This is typical in a highly modified landscape where sites have reduced bank stability or increased bank erosion. Mobile sediments can accumulate in streams with low flow areas and have the potential to smother bottom dwelling macroinvertebrate communities and their habitats. The parameter aquatic vegetation received low scores in all but two sites.

4.2 Water quality

Water temperature overall was quite high (average temperature 23.4°C), which would be attributed to the generally small isolated pool sizes at many of the sites, the absence of riparian shading along most sites and the ambient temperature, as the sun would warm up the smaller pools. Because of this factor, the water temperature would be expected to fluctuate throughout the day and vary between pools at the same site. Increased water temperature decreases the waters ability to retain dissolved oxygen.

DO concentration was low at sites WC1, WC7 and WO1, this may be due to the high-water temperatures present within the small pools of water of these sites. Low oxygen concentrations provide anoxic conditions, which are detrimental to aquatic macroinvertebrates and fish. All other sites had DO concentration above the ANZECC guidelines. Sites WC8, CC1, WO2, and WO3 were surveyed 24 hours after a major rainfall event, which would aerate the water, and may have resulted in the high dissolved oxygen within these sites. The high DO concentrations may also have resulted from excessive algal photosynthesis.

As with water temperature, EC is high at all but one site. This is typical within small isolated pools in agricultural land, as cleared land can cause increased water runoff. EC may also be high in areas where salt bearing groundwater contributes to baseflow, especially during drought when there is not much rainfall to provide dilution. Within sites of high-water temperature and no riparian shading, evapo-concentration of minerals in the water can be high. There is also the potential for pollution from cattle to increase the electrical conductivity within the water.

Turbidity was within the ANZECC range at all sites within Wollar Creek and Cumbo Creek, although the Turbidity within all sites in Wilpinjong creek was over the ANZECC range. Turbidity is the measurement

of fine suspended sediment, as well as coloured dissolved components, in the water. Turbidity reduces the penetration of light within the water, which may reduce the ability for aquatic plants to photosynthesize. Increased turbidity will also impact on the breathing ability of fish.

The pH was within ANZECC range at nearly all the sites. However, the water located at sites WC6 and WC7 were basic.

4.3 Macroinvertebrate communities

Taxa richness was lower in the 2018 survey than in the previous 2017 survey, where 56 families were identified. Sites WC2, WC3, WC4 and WC5 were dry and not able to be tested. All sites have maintained the same SIGNAL2 pollution condition except for WC6 and WO3 which have changed from being classified as moderately polluted to severely polluted. All sites have a pollution condition classification of severe. These results may be due to decreased water levels within the pools across the sites.

Analysis of macroinvertebrates was simplified for the 2018 survey compared to previously due to time restraints and dry conditions preventing the collection of three replicate samples at each site. As such, the Shannon Index and evenness were not applied to the data.

5 Conclusions and recommendations

The habitat condition at all 13 sites were classified as either good or very good. The RCE parameters that have scored highly across all sites are bank undercutting and channel sediment accumulations. The two RCE parameters that scores poorly across all sites are stream bottom and aquatic vegetation.

The physico-chemical variables within most sites do not meet the ANZECC recommended range. DO saturation scored most poorly with no sites meet the guidelines. Conductivity also scored poorly with only site WC8 meeting the ANZECC guidelines. Turbidity was high within Wilpinjong creek although was within the ANZECC range at Wollar and Cumbo creek sites.

Aquatic health at sites along Wilpinjong Creek was generally poor, with the macroinvertebrate communities characterised by low diversity, and SIGNAL2 scores indicating severe pollution levels. Compared to previous survey rounds, the November 2018 results indicate a slight decrease in ecological health. This is likely a result of low rainfall and subsequent lower water levels.

Consistent annual monitoring may identify trends and potential impacts on macroinvertebrates, habitat and water quality. AUSRIVAS sampling protocols specify that monitoring should occur in both autumn and spring each year, and that the timeframe for sampling should be between 15 March to 15 June and 15 September to 15 December respectively. As there appears to have been little change between sampling events, only one event per year should be sufficient for monitoring stream health. However, the surveys should occur in September or October to be consistent with both the AUSRIVAS autumn and past surveys conducted in 2010-2013.

Climatic factors and flow regimes are a dominant influence on aquatic ecological communities. The lack of major flow events in Wilpinjong Creek since 2012 has potentially resulted more frequent periods of no flow or pool isolation.

6 References

Bureau of Meteorology (BoM). 2018. Daily Weather Observation, Mudgee: http://www.bom.gov.au

Chessman, B.C., Growns, J.E., Kotlash, A.R. 1997., *Objective derivation of macroinvertebrate family sensitivity grade numbers for the SIGNAL biotic index: application to the Hunter River System, New South Wales.* Marine and Freshwater Research, 48:159 – 172.

Department of Primary Industries (DPI). 2013. Policy and guidelines for fish habitat conservation and management.

Landline Consulting. 2013. *Wilpinjong Coal mine Stream Health Monitoring Aquatic Macroinvertebrate Survey*. Prepared for Wilpinjong Coal Pty. Ltd

Peterson R.C. 1992. The RCE: A Riparian, Channel, and Environmental Inventory for small streams in the agricultural landscape. Freshwater Biology, 21: 295 – 306.

Turak, E., Waddell N., Johnstone G. 2004. *New South Wales (NSW) Australian River Assessment System (AUSRIVAS) – Sampling and Processing Manual.* Department of Environment and Conservation, Sydney

Wilpinjong Coal Pty Ltd. 2017. Wilpinjong Coal Water Management Plan (Appendix 2). (WI-ENV-MNP-0040)

APPENDIX A -

Site

Site WC1 (from left to right: site location, upstream, downstream (27/11/18))

Site WC2 (from left to right: site location, upstream, downstream (27/11/18))

Site WC3 (from left to right: site location, upstream, downstream (27/11/18))

Site WC4 (from left to right: site location, upstream, downstream (27/11/18))

Site WC5 (from left to right: site location, upstream, downstream (27/11/18))

Site WC6 (from left to right: site location, upstream, downstream (27/11/18))

Site WC7 (from left to right: site location, upstream, downstream (27/11/18))

Site WC8 (from left to right: site location, upstream, downstream (29/11/18))

Site WO1 (from left to right: site location, upstream, downstream (30/11/18))

Site WO2 (from left to right: site location, upstream, downstream (29/11/18))

Site WO3 (from left to right: site location, upstream, downstream (29/11/18))

Site CC1 (from left to right: site location, upstream, downstream (29/11/18))

Site CC2 (from left to right: site location, upstream, downstream (29/11/18))

APPENDIX B - MACROINVERTEBRATE DATA (PRESENCE AND ABSENCE)

Wilpinjong Creek

Order	Family	Signal Score	WC1	WC2	WC3	WC4	WC5	WC6	WC7	WC8
Acarina			0					0	0	2
Coleoptera	Carabidae	3	0	-				0	0	0
	Curculionidae	2	1					0	0	0
	Dytiscidae	2	3					1	0	2
	Elmidae	7	2					1	0	0
	Hydraenidae	3	1					0	0	0
	Hydrophilidae	2	1					0	0	11
Collembola			0					0	0	0
Crustacae			10					13	0	8
Decapoda			0					0	2	0
Diptera	Ceratopogonidae	4	1	DRY	DRY	DRY	DRY	3	0	5
	Chironomidae	3	9					0	5	8
	Culicidae	1	0					0	0	0
	Stratiomyidae	2	1					0	0	0
	Tabanidae	3	0					0	0	0
Ephemeroptera	Baetidae	5	4					5	0	0
	Leptophlebidae	8	0					0	0	0
Gastropoda	Lymnaeidae	1	1					0	0	0
	Physidae	1	3					0	0	0
	Planorbidae	2	0					0	0	0
Hemitptera	Corixidae	2	0					5	1	2
	Micronectidae	2	6					9	1	3
	Notonectidae	1	3					9	3	1
	Saldidae	1	0					2	0	0
	Veliidae	3	2					0	0	6

Order	Family	Signal Score	WC1	WC2	WC3	WC4	WC5	WC6	WC7	WC8
Nematoda			0					0	0	0
	Aeshnidae	4	0					0	0	1
	Coenagrionidae	2	6					2	0	2
Odonata	Corduliidae	5	0					0	0	0
	Lestidae	1	0					0	0	1
	Libellulidae	4	0					1	0	2
Oligochaeta			4					0	0	1
Trickersterre	Ecnomidae	4	0					0	0	0
Trichoptera	Leptoceridae	6	3					0	0	0
Tricladida			0					0	0	0

Order	Family	Subfamily	Signal Score	WO1	WO2	WO3
Acarina				0	0	0
	Carabidae		3	0	0	0
	Curculionidae		2	0	0	0
Coloontorro	Dytiscid	ae	2	0	0	5
Coleoptera	Elmidae)	7	0	0	5
	Hydraei	nidae	3	0	0	0
	Hydropl	nilidae	2	1	0	5
Collembola				0	0	1
Crustacae				15	16	28
Decapoda	-			4	2	0
	Ceratop	ogonidae	4	3	2	3
	Chirono	midae	3	4	8	6
Diptera	Culicida	е	1	0	0	1
	Stration	nyidae	2	0	0	1
	Tabanic	lae	3	0	0	0
Enhomorontoro	Baetidae		5	1	1	2
Ephemeroptera	Leptoph	lebidae	8	1	0	0
	Lymnae	idae	1	0	0	0
Gastropoda	Physidae		1	3	0	1
	Planorb	idae	2	0	0	0
	Corixida	ne	2	2	0	3
	Micronectidae		2	9	0	2
Hemitptera	Notoneo	ctidae	1	4	3	1
	Saldida	9	1	0	0	1
	Veliidae		3	1	0	1
Nematoda				0	1	0
	Aeshnia	lae	4	0	0	3
	Coenag	rionidae	2	5	5	0
Odonata	Cordulii	dae	5	0	3	1
	Lestidae	9	1	0	0	0
	Libelluli	dae	4	0	0	0
Oligochaeta				0	2	7
Trichontera	Ecnomi	dae	4	1	0	0
Trichoptera	Leptoce	ridae	6	2	0	3
Tricladida				0	0	2

Wollar Creek

Cumbo Creek

Order	Family	Subfamily	Signal Score	CC1	CC2
Acarina			0		
	Carabid	ae	3	1	
0-1	Curculionidae		2	0	DRY
Coleoptera	Dytiscid	ae	2	6	
	Elmidae)	7	5	

Order	Family	Subfamily	Signal Score	CC1	CC2
	Hydraei	nidae	3	0	
	Hydropl	hilidae	2	4	
Collembola				2	
Crustacae				21	
Decapoda				0	
	Ceratop	ogonidae	4	3	
	Chirono	midae	3	0	
Diptera	Culicida	e	1	1	
	Stration	nyidae	2	3	
	Tabanic	lae	3	4	
Enhomorontoro	Baetida	е	5	0	
Ephemeroptera	Leptoph	lebidae	8	0	
	Lymnae	eidae	1	0	
Gastropoda	Physidae		1	0	
	Planorbidae		2	2	
	Corixida	ne	2	0	
	Micronectidae		2	0	
Hemitptera	Notoneo	ctidae	1	0	
	Saldida	е	1	0	
	Veliidae)	3	4	
Nematoda				1	
	Aeshnic	lae	4	0	
	Coenag	rionidae	2	0	
Odonata	Cordulii	dae	5	0	
	Lestidae	Э	1	0	
	Libellulidae		4	0	
Oligochaeta				0	
Trichoptor	Ecnomi	dae	4	0	
Trichoptera	Leptoce	eridae	6	0	
Tricladida				0	

HEAD OFFICE

Suite 2, Level 3 668-672 Old Princes Highway Sutherland NSW 2232 T 02 8536 8600 F 02 9542 5622

CANBERRA

Level 2 11 London Circuit Canberra ACT 2601 T 02 6103 2314 F 02 9542 5622

COFFS HARBOUR

35 Orlando Street Coffs Harbour Jetty NSW 2450 T 02 6651 5484 F 02 6651 6890

PERTH

Level 1, Bishop's See 235 St Georges Terrace Perth WA 6000 T 08 6218 2200 F 02 9542 5622

MELBOURNE

Level 1, 436 Johnston St Abbotsford, VIC 3076 T 1300 646 131

SYDNEY

Level 3 101 Sussex Street Sydney NSW 2000 T 02 9259 3800 F 02 9542 5622

NEWCASTLE

Suites 28 & 29, Level 7 19 Bolton Street Newcastle NSW 2300 T 02 4910 0125 F 02 9542 5622

ARMIDALE

92 Taylor Street Armidale NSW 2350 T 02 8081 2685 F 02 9542 5622

WOLLONGONG

Suite 204, Level 2 62 Moore Street Austinmer NSW 2515 T 02 4201 2203 F 02 4268 4361

BRISBANE

Level 5 12 Creek Street Brisbane QLD 2040 T 07 3239 9600 F 07 3854 0310

HUSKISSON

Unit 1, 51 Owen Street Huskisson NSW 2540 T 02 4201 2264 F 02 443 6655

NAROOMA

5/20 Canty Street Narooma NSW 2546 T 02 4302 1266 F 02 9542 5622

MUDGEE

Unit 1, Level 1 79 Market Street Mudgee NSW 2850 T 02 4302 1234 F 02 6372 9230

ADELAIDE

2, 70 Pirie Street Adelaide SA 5000 T 08 8470 6650 F 02 9542 5622

1300 646 131 www.ecoaus.com.au

Fly By Night Bat Surveys Pty Ltd ABN 48 068 562 005

PO Box 271 BELMONT NSW 2280 Tel: 02 4947 7794 Mobile: 0414 47794 Email: glenn@flybynightbatsurveys.com.au

15th May, 2018

Ian Flood Manager Project Development & Approvals Wilpinjong Coal Mine (Peabody Energy Pty Ltd) 1434 Ulan-Wollar Rd, WILPINJONG NSW 2850 Ph. (02) 6370 2528 Mobile: 0417 049 493 email:<u>iflood@peabodyenergy.com</u>

<u>Results of microbat survey of disused oil shale mine adit, Slate Gully, Wilpinjong,</u> <u>New South Wales.</u>

Dear Ian,

Following are the results of our latest survey of a disused oil shale mine adit at Slate Gully, Wilpinjong, New South Wales. Counts of bats exiting the adit were conducted from dusk on the evening of 4rd April 2018 using hand held counters. Following the counts a harp trap was placed at the adit mouth and bats re-entering the mine were captured from 9pm. Individuals of two species were captured, the Eastern Bent-wing Bat (*Miniopterus orianae oceanensis*) and Eastern Horseshoe Bat (*Rhinolophus megaphyllus*). Trapping of the adit was again undertaken from 4.00am until 6.00am on the morning of the 5th April. Bats were identified to species and sex and unmarked individuals had fur clipped.

The adit was again harp trapped on the evening of the 5th April to obtain an estimate of the number of individuals roosting within the disused workings. Weather conditions during the survey are detailed in *Table 1*.

May2018

Table 1Weather conditions during the survey

Date	Minimum Temperature (°C)	Maximum Temperature (°C)	Rainfall (mm)
3/04/2017	15.3	26.5	0
4/04/2017	15.6	27.3	0
5/04/2017	16.4	29.0	0

Weather was moderate to warm with no rain during the survey. Minimum temperatures varied from 15.3 to 16.3°C while maximum temperatures varied from 26.5 to 29.0°C.

Two species of predominantly cave roosting microbats were roosting within the disused mine workings at the time of survey; the Eastern Bent-wing Bat (*Miniopterus orianae oceanensis*) and Eastern Horseshoe Bat (*Rhinolophus megaphyllus*). Neither species were breeding at the time of survey. The colony of Eastern Bent-wing Bats roosting within the workings at the time of survey consisted of a mixture of males, females that had not yet given birth to young and older females that had reared young during previous breeding events.

As seen in *Table 2*, the number of bats utilising the workings during the April survey was between 500 and 1000 individuals based on hand counts. Tallies of bats exiting the mine workings on the evening of 4th April with hand held counters were 640 and 705 individuals. These counts match well with equivalent counts obtained during the April 2017 survey (603 and 669). It was not possible to count all the bats exiting from one position so the true number of bats exiting would have been between 700 and 900 individuals. As with previous surveys, Eastern Bent-wing Bats made up the majority of total bats roosting within the workings during the April 2018 survey. 25 individuals captured had previously been banded during the surveys undertaken during 2017. The relatively low percentage of recaptured suggests that there is considerable movement of individuals to other roosts in the area. This pattern has been observed in the closely related Southern Bent-wing Bat (*Miniopterus orianae bassan*i) which occurs in eastern South Australia and western Victoria (Van Harten *et al* 2018). From harp trap captures, the number of Eastern Horseshoe Bats roosting within the workings would number between ten and twenty individuals. This is consistent with previous surveys of the adit. While the majority of individuals captured were males, some females were also captured.

Fly By Night Bat Surveys Pty Ltd

May2018

References

- Biodiversity Monitoring Services (BMS) (2015) *Wilpinjong Extension Project Terrestrial Fauna* Baseline Report (Development Site). A report to Wilpinjong Coal Pty Ltd. July 2015.
- Ecological Australia (2016) *Slate Gully Baseline Microbat Monitoring*. A report to Wilpinjong Coal Pty Ltd. December 2016.
- Fly By Night Bat Surveys (2017) *Results of microbat survey of disused oil shale mine adit, Slate Gully, Wilpinjong, New South Wales.* A report to Wilpinjong Coal Pty Ltd. April 2017.
- Hoye, G.A. (2000) The Discovery of Two and Distinctive Maternity Roosts of the Large Bent-wing Bat in the Hunter Valley, NSW. Spoken Presentation. 9th Australasian Bat Conference. Tocal, New South Wales. April 2000.
- Hoye, G.A. and Hall, L.S. (2008) Eastern Bent-wing Bat (*Miniopterus schreibersii oceanensis*) in Van Dyck, S. & Strahan, R. ed. *The Mammals of Australia*. Third Edition. Reed New Holland, Chatswood. p.507-508.
- Rowse, E.G., Lewanzik, D., Stone, E.L., Harris, S. and Jones, G. (2016) Dark Matters: The Effects of Artificial Lighting on Bats. In C.C. Voigt and T. Kingston (eds.), Bats in the Anthropocene: Conservation of Bats in a Changing World, DOI 10.1007/978-3-319-25220-9_7
- Speakman, J.R., Webb, P.I. and Racey, P.A. (1991) Effects of disturbance on the energy expenditure of hibernating bats. *Journal of Applied Ecology*. 28:1087-1104.
- Stone, E.L., Harris, S. and Jones, G. (2015) Impacts of artificial lighting on bats: a review of challenges and solutions. *Mammalian Biology - Zeitschrift für Säugetierkunde*. 80(3):213– 219.
- Van Harten, E., Lawrence, R., Lumsden, L., Meyers, N., Reardon, T. and Weyland, J. (2018) Winter activity patterns of the critically endangered southern bent-wing in temperate Australia. Spoken paper at the 18th Australasian Bat Conference. Richmond, NSW. 3-6 April 2018

Best wishes

Glenn Hoye

and

Andrew Lothian

Fly By Night Bat Surveys Pty Ltd

May2018

Fly By Night Bat Surveys Pty Ltd ABN 48 068 562 005

PO Box 271 BELMONT NSW 2280 Tel: 02 4947 7794 Mobile: 0414 47794 Email: glenn@flybynightbatsurveys.com.au

29th November, 2018

Ian Flood Manager Project Development & Approvals Wilpinjong Coal Mine (Peabody Energy Pty Ltd) 1434 Ulan-Wollar Rd, WILPINJONG NSW 2850 Ph. (02) 6370 2528 Mobile: 0417 049 493 email:<u>iflood@peabodyenergy.com</u>

Results of a summer microbat survey of a disused oil shale mine adit during November 2018, Slate Gully, Wilpinjong, New South Wales.

Dear Ian,

Following are the results of our survey of a disused oil shale mine adit at Slate Gully, Wilpinjong, New South Wales. Counts of bats exiting the adit were conducted from dusk on the evening of 22nd November 2018 using hand held counters. Only nine individuals were counted exiting the adit from dusk. From their flight pattern, most of the individuals exiting were Eastern Horseshoe Bats (*Rhinolophus megaphyllus*) although a couple of individuals of the Eastern Bentwing-bat (*Miniopterus schreibersii oceanensis*) also appeared to be present. Harp trapping of the adit was undertaken on the evening of 24th November from dusk until 9.30pm. Five bats were captured, two Eastern Bentwing-bats and three Eastern Horseshoe Bats. The two bentwing-bats captured were both pregnant females.

In contrast with the survey undertaken in mid December 2017, the Eastern Bentwing-bat was present. Both females captured were heavily pregnant. These females are most likely among the last of the females from the Slate Gully colony yet to migrate to their maternity roost. But it is also possible that the small number of pregnant females present in the workings originate from a

Fly By Night Bat Surveys Pty Ltd

November 2018

different over-wintering roost. They may be using Slate Gully as a stopover en route to their maternity site. No bent-wings were recorded during the summer survey undertaken slightly later in the year during 2017. Eastern Bentwing-bats move from overwintering roosts to maternity roosts around September to find caves with more favourable conditions for birthing young. The bulk of female Eastern Bentwing-bats that were present within the workings during the autumn and winter surveys are en route or have already arrived at their breeding sites. These would be located at known maternity roosts within limestone karst systems or may be present in other disused mine workings (Hoye & Hall 2008).

While a few bent-wings were present, the majority of the small number of bats present were Eastern Horseshoe Bats (*Rhinolophus megaphyllus*). The three individuals of this species captured consisted of two males and a non-breeding female. These findings support the results of the December 2017 survey that breeding by this species is not undertaken within these workings.

Continued monitoring of the roost following works to stabilise the adit opening and adjacent mining would be worthy of consideration to ensure it has no detrimental effects on microbat roosting within the workings. A clear picture of the use of the workings during autumn, winter and summer has emerged from monitoring of the Slate Gully mine over the past two years. A small number of both male and female Eastern Horseshoe Bats are present throughout the year. No breeding is undertaken within the workings by this species. Numbers of the Eastern Bentwing-bat fluctuate more widely throughout the year from none or a few individuals in the middle of summer to just over one thousand individuals in the autumn and winter months. While capture of individuals during previous monitoring has allowed the sexual composition of the colony to be determined as well as the breeding status of individuals, it is quite intrusive and is not generally required for future monitoring use of the workings into the future. Counts during autumn would provide a means of estimating use of the workings on a yearly basis. Some additional counts undertaken in months not undertaken during previous monitoring would further delineate when microbat numbers change within the workings.

Weather Conditions during the Survey

Weather conditions during the survey are detailed in *Table 1*. Rainfall and maximum and minimum temperatures during the survey were recorded at Merriwa (Station No. 61287, Lat: 32.19° S Long: 150.17° E, Elevation: 375 m).

Table 1 Weather conditions during the survey

November 2018

Date	Minimum Temperature (°C)	Maximum Temperature (°C)	Rainfall (mm)
21/11/2018	17.7	24.3	8.0
22/11/2018	16.8	23.2	1.0
23/11/2018	11.9	21.9	0.0
24/11/2018	10.8	25.1	0.0

Weather was mild with cool nights. A small amount of rain was experienced the day prior to the survey. Minimum temperatures varied from 10.8°C to 17.7°C while maximum temperatures varied from 21.9°C to 25.1°C.

References

- Biodiversity Monitoring Services (BMS) (2015) *Wilpinjong Extension Project Terrestrial Fauna* Baseline Report (Development Site). A report to Wilpinjong Coal Pty Ltd. July 2015.
- Ecological Australia (2016) *Slate Gully Baseline Microbat Monitoring*. A report to Wilpinjong Coal Pty Ltd. December 2016.
- Fly By Night Bat Surveys PL (2017a) *Results of a summer microbat survey of a disused oil shale mine adit during November 2017, Slate Gully, Wilpinjong, New South Wales.* A report to Wilpinjong Coal Pty Ltd. January 2018.
- Fly By Night Bat Surveys PL (2017a) *Results of an autumn microbat survey of disused oil shale mine adit, Slate Gully, Wilpinjong, New South Wales.* A report to Wilpinjong Coal Pty Ltd. April 2017.
- Fly By Night Bat Surveys PL (2017b) *Results of a winter microbat survey of disused oil shale mine adit, Slate Gully, Wilpinjong, New South Wales.* A report to Wilpinjong Coal Pty Ltd. July 2017.
- Hoye, G.A. (2000) The Discovery of Two and Distinctive Maternity Roosts of the Large Bent-wing Bat in the Hunter Valley, NSW. Spoken Presentation. 9th Australasian Bat Conference. Tocal, New South Wales. April 2000.
- Hoye, G.A. and Hall, L.S. (2008) Eastern Bent-wing Bat (*Miniopterus schreibersii oceanensis*) in Van Dyck, S. & Strahan, R. ed. *The Mammals of Australia*. Third Edition. Reed New Holland, Chatswood. p.507-508.
- Rowse, E.G., Lewanzik, D., Stone, E.L., Harris, S. and Jones, G. (2016) Dark Matters: The Effects of Artificial Lighting on Bats. In C.C. Voigt and T. Kingston (eds.), Bats in the Anthropocene: Conservation of Bats in a Changing World, DOI 10.1007/978-3-319-25220-9_7
- Speakman, J.R., Webb, P.I. and Racey, P.A. (1991) Effects of disturbance on the energy expenditure of hibernating bats. *Journal of Applied Ecology*. 28:1087-1104.
- Stone, E.L., Harris, S. and Jones, G. (2015) Impacts of artificial lighting on bats: a review of challenges and solutions. *Mammalian Biology - Zeitschrift für Säugetierkunde*. 80(3):213– 219.

Best wishes

le- Asye

Glenn Hoye

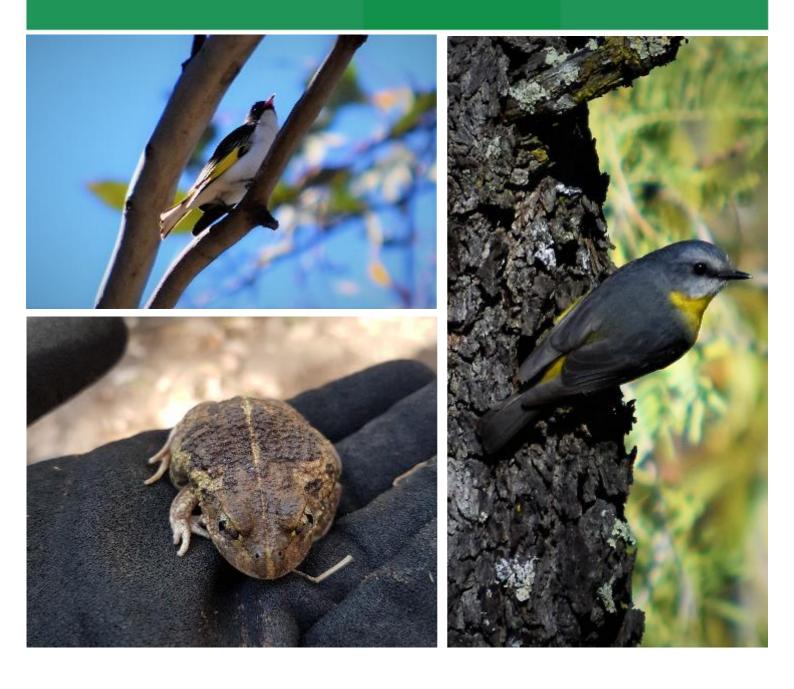
and

Andrew Lothian

Fly By Night Bat Surveys Pty Ltd

November 2018

November 2018



Wilpinjong Coal Mine

2018 Annual Biodiversity Monitoring Report

Prepared for Wilpinjong Coal Pty Ltd

29 March 2019

DOCUMENT TRACKING

Item	Detail
Project Name	Wilpinjong Coal Mine 2018 Annual Biodiversity Monitoring Report
Project Number	18MUD - 9579
Project Manager	Kalya Abbey Mudgee Office 02 4302 1238 / 0410 503 959 / kalyaa@ecoaus.com.au
Prepared by	Angelina Siegrist; Kate Maslen
Reviewed by	Kalya Abbey; Nicole McVicar
Approved by	Daniel Magdi
Status	Final
Version Number	V3
Last saved on	29 March 2019
Cover photo	Painted Honeyeater (Photo Credit: Tom Kelly), Spotted March Frog (Photo Credit: Cassandra Holt), Eastern Yellow Robin observed during winter bird monitoring (Credit: Tomas Kelly)

This report should be cited as 'Eco Logical Australia 2019. *Wilpinjong Coal Mine 2018 Annual Biodiversity Monitoring Report.* Prepared for Wilpinjong Coal Pty Ltd.'

ACKNOWLEDGEMENTS

This document has been prepared by Eco Logical Australia Pty Ltd with support from Wilpinjong Coal Pty Ltd.

Disclaimer

This document may only be used for the purpose for which it was commissioned and in accordance with the contract between Eco Logical Australia Pty Ltd and Wilpinjong Coal Pty Ltd. The scope of services was defined in consultation with Wilpinjong Coal Pty Ltd, by time and budgetary constraints imposed by the client, and the availability of reports and other data on the subject area. Changes to available information, legislation and schedules are made on an ongoing basis and readers should obtain up to date information.

Eco Logical Australia Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report and its supporting material by any third party. Information provided is not intended to be a substitute for site specific assessment or legal advice in relation to any matter. Unauthorised use of this report in any form is prohibited.

Template 29/9/2015

Contents

Sumn	nary of key findings	8
1	Introduction	9
1.1	Objective	9
1.2	Previous monitoring	12
1.3	Assessment against Interim Performance Targets	12
1.3.1	Vegetation	12
1.3.2	Landscape Function Analysis (LFA)	13
2	Methodology	14
2.1	Vegetation monitoring (Biometric)	14
2.2	Landscape Function Analysis	15
2.2.1	Landscape organisation index	15
2.2.2	Soil surface assessment (SSA)	16
2.3	Fauna monitoring	21
2.3.1	Winter bird monitoring	21
2.3.2	Spring fauna monitoring	21
3	Results and discussion	26
3.1	Vegetation monitoring	26
3.1.1	Assessment against Interim Performance Targets	26
3.2	Discussion of vegetation monitoring results	33
3.2.1	Management Domains	33
3.2.2	Reference sites	34
3.2.3	Review of IPTs against Trigger Action Response Plans	34
3.2.4	Multi-year comparisons	34
3.3	Landscape Function Analysis	44
3.3.1	Biodiversity Offset Areas	44
3.3.2	Enhancement and Conservation Areas (ECAs)	45
3.3.3	Regeneration Areas	45
3.3.4	Rehabilitation Areas	46
3.3.5	Reference sites	47
3.3.6	Discussion of LFA monitoring results	48
3.3.7	Review of LFA results against Trigger Action Response Plans	49
3.4	Fauna monitoring	50
3.4.1	Winter bird monitoring	50
3.4.2	Spring fauna monitoring	51
3.4.3	Biodiversity Offset Areas 1 - 5	54

3.4.4	Biodiversity Offset Areas D and E	59
3.4.5	Enhancement and Conservation Areas	61
3.4.6	Regeneration Areas	64
3.4.6 R	ehabilitation Areas	64
3.4.7	Reference sites	64
3.4.8	Fauna discussion	66
4	Recommendations and Conclusion	66
4.1.1	Vegetation	
4.1.2	Landscape stability	67
4.1.3	Fauna	67
4.2	General recommendations	68
5	References	72
Appen	dix A – Weather conditions	73
Appen	dix B – 2018 Biodiversity monitoring sites	76
Appen	dix C – Flora species list (autumn 2018 and spring 2018)	85
Appen	dix D – Vegetation structure data	
Appen	dix E – Interim Performance Targets / Benchmark Values	109
Appen	dix F – Fauna species list	111
Appen	dix G – Microbat analysis report	115

List of figures

Figure 1-1: WCPL Management Domains	.11
Figure 2-1: Autumn 2018 vegetation monitoring sites	.17
Figure 2-2: Autumn 2018 vegetation monitoring reference sites	.18
Figure 2-3: Spring 2018 vegetation and LFA monitoring sites	.19
Figure 2-4: Spring 2018 vegetation and LFA reference sites	20
Figure 2-5: Winter 2018 bird monitoring site	.23
Figure 2-6: Spring 2018 fauna monitoring sites	.24
Figure 2-7: Spring 2018 fauna reference sites	25

Figure 3-1: Total species richness across all management domains - spring 2015-2018	35
Figure 3-2: Total species richness across all management domains - autumn 2016-2018	36
Figure 3-3: Native species richness at all sites – spring and autumn 2015-2018	37
Figure 3-4: Native overstorey cover at all sites 2015-2018 compared against the 1-5-year IPT	39
Figure 3-5: Native midstorey cover at all sites 2015-2018 compared against the 1-5-year IPT	40
Figure 3-6: Combined native groundcover at all sites 2015-2018	41
Figure 3-7: Exotic cover at all sites 2015-2018 compared against the 1-5-year IPT	43
Figure 3-8: Bird species diversity at spring monitoring sites 2016 - 2018	53

List of tables

Table 1-1: WCPL Management Domains	10
Table 2-1: Fauna monitoring methods summary (WCPL 2017)	21
Table 3-1: Assessment against Interim Performance Targets Year 3- autumn 2018	27
Table 3-2: Assessment against Interim Performance Targets Year 4 - spring 2018	29
Table 3-3: Reference sites assessment against Benchmark Targets Year 3 - autumn 2018	31
Table 3-4: Reference sites assessment against Benchmark Targets Year 4- spring 2018	32
Table 3-5: Declared weeds recorded in 2018	44
Table 3-6: LOI and SSA results for BOA transects	45
Table 3-7: LOI and SSA results for ECA transects	45
Table 3-8: LOI and SSA results for Regeneration Area transects	46
Table 3-9: LOI and SSA results for Rehabilitation Area transects	46
Table 3-10: LOI and SSA results for Reference Sites	47
Table 3-11: Winter bird monitoring - Threatened species	50
Table 3-12: Threatened fauna recorded	51
Table 3-13: Results of the microbat analysis for BOAs 1-5 spring 2018	55
Table 3-14: Results of the microbat analysis for BOAs D and E spring 2018	59
Table 3-15: Results of the microbat analysis for A_104, B_101 and C_102 spring 2018	62

Table 3-16: Results of the microbat analysis for the WCPL Reference Sites	65
Table 4-1: Review of monitoring results and recommendations	69

Abbreviations

Abbreviation	Description
BC Act	Biodiversity Conservation Act 2016
BMP	Biodiversity Management Plan
BOA	Biodiversity Offset Area
DNG	Derived native grassland
EC	Exotic Cover
ECA	Enhancement and Conservation Area
EIS	Environmental Impact Statement
ELA	Eco Logical Australia Pty Ltd
EPBC Act	Environment Protection and Biodiversity Conservation Act 1999
FL	Fallen Logs
IPT	Interim Performance Target
LFA	Landscape Function Analysis
LOI	Landscape Organisation Index
Microbat	Microchiropteran bat
ML	Mining Lease
MOP	Mine Operations Plan
NGC	Native Ground Cover
NGCG	Native Ground Cover Grass
NGCO	Native Ground Cover Other
NGCS	Native Ground Cover Shrub
NMC	Native Midstorey Cover
NOC	Native Overstorey Cover
NP	National Park
NPWS	National Parks and Wildlife Service
NR	Nature Reserve
NSR	Native Species Richness
NTH	Number of Trees with Hollows
OR	Overstorey Regeneration
PA	Project Approval
SSA	Soil Surface Assessment
SVS	Site Value Score

TARP	Trigger Action Response Plan
WCM	Wilpinjong Coal Mine
WCPL	Wilpinjong Coal Pty Ltd
WEP	Wilpinjong Extension Project
WSDSF	Western Slopes Dry Sclerophyll Forest
WSGW	Western Slopes Grassy Woodland

Summary of key findings

Biodiversity monitoring undertaken at the Wilpinjong Coal Mine (WCM) during 2018 represented the third year of monitoring for autumn, and the fourth year of monitoring for spring under the methodology prescribed in the WCM Biodiversity Management Plan. Monitoring is undertaken across the WCM Management Domains, including Biodiversity Offset Areas (BOAs), Enhancement and Conservation Areas (ECAs), regeneration and rehabilitation areas. A series of reference sites are also monitoring to provide comparative results. Five new BOAs were added to the monitoring program in 2018. Monitoring consisted of:

- Vegetation monitoring autumn and spring
- Winter bird monitoring
- Landscape Function Analysis (LFA) spring
- General fauna monitoring spring

Monitoring results are analysed and compared against completion criteria prescribed by the BMP to measure the progress of the Management Domains towards biodiversity targets.

Vegetation monitoring surveys occurred within all Management Domains and Reference sites during 2018. Four autumn sites and eight spring sites achieved the Interim Performance Target (IPT). The majority of sites' site value score improved in comparison to the 2017 results. Although no sites achieved all the site attribute scores, all sites achieved at least half the site attributes scores. This is an improvement from previous monitoring periods. 'Native overstorey cover', 'exotic cover' and 'number of trees with hollows' were consistently the highest performing site attributes, with all sites achieving these attribute targets.

Monitoring results from Reference Sites during both autumn and spring 2018 continue to add to the dataset to be used for comparison against vegetation monitoring results within the Management Domains. Ongoing monitoring data collected at the Reference Sites will be used to develop more relevant, locally based benchmark values against which future monitoring data would be analysed.

Landscape Organisation Index scores, developed through analysis of the LFA monitoring data, remain consistently high across the monitoring program, despite decreasing at most sites compared to 2017 results. Similarly, low levels of erosion observed throughout previous monitoring seasons (2007-2013) can be correlated with the high Soil Surface Assessment (SSA) Stability scores and the lack of any substantial erosion (as recorded in the erosion SSA assessment) recorded since 2015. This is consistent with 2018 results, with only one failing to meet the Stability Completion Criteria. Overall these combined data sets demonstrate that consistently stable landforms occur across the Wilpinjong Coal Mine Domains.

Fauna monitoring undertaken in 2018 recorded 134 fauna species, including 106 birds, 13 reptiles, 11 mammals (including 10 positively identified microbat species) and four frogs. This is an overall increase compared to 2017 results, with bird and amphibian diversity increasing. Eleven species listed under the NSW *Biodiversity Conservation Act 2016* and/or the Commonwealth *Environmental Protection and Biodiversity Act 1999* were recorded. *Miniopterus schreibersii oceanensis* (Eastern Bentwing-bat) remained the most commonly occurring microbat species, whilst the *Pachycephala rufiventris* (Rufous Whistler) was the most commonly occurring bird species.

On-going monitoring is required to determine if the results are attributed to seasonal variation or are indicative of a long-term trend.

1 Introduction

Wilpinjong Coal Pty Ltd (WCPL), a wholly owned subsidiary of Peabody Energy Australia Pty Ltd (Peabody), operates the Wilpinjong Coal Mine (WCM) situated approximately 40 km north-east of Mudgee, within the Mid-Western Regional Council Local Government Area.

Eco Logical Australia (ELA) was engaged by WCPL to undertake biodiversity monitoring of terrestrial flora, fauna and landscape stability during autumn, winter and spring 2018, consistent with the requirements and methods outlined in the WCM Biodiversity Management Plan (BMP) (WCPL 2017). This report summarises the results of the biodiversity monitoring undertaken during autumn, winter and spring 2018 and provides an analysis against the Interim Performance Targets (IPT) and Completion Criteria set out in the BMP (WCPL 2017). A comparative analysis against the baseline data is included where applicable to inform future monitoring and to promote progress towards achieving the IPTs and Completion Criteria.

Project Approval (PA) 05-0021 was granted by the Minister for Planning under Part 3A of the NSW *Environmental Planning and Assessment Act 1979* on 1 February 2006. Development Consent SSD-6764 was granted on 24 April 2017 for the Wilpinjong Extension Project (WEP) and will replace PA 05-0021 once activities under the WEP commence.

The WCM BMP (WCPL 2017) was prepared to fulfil the requirements of the PA and in accordance with the Environmental Impact Statement (EIS) and Statement of Commitments. The BMP details the management strategies, procedures, controls and monitoring programs required to manage biodiversity within the Management Domains, which include Enhancement and Conservation Areas (ECAs), Biodiversity Offset Areas (BOAs), and Regeneration and Rehabilitation Areas. The Management Domains are listed below in **Table 1-1** with locations shown in **Figure 1-1**.

All land within BOAs D and E has been transferred to the National Parks Estate and is now under the management of the NSW National Parks and Wildlife Service (NPWS). In accordance with Schedule 3, Condition 42 of the Development Consent, the WCPL BMP does not apply to BOAs if they are transferred into National Parks Estate (WCPL 2017). Monitoring was conducted at BOAs D and E in 2018 to continue to add to the dataset to be used for comparison with vegetation sites within the various Management Domains. However, these BOAs will be treated as a separate management domain to the new BOAs added to the monitoring program in 2018.

BOAs 1-5 were added to the monitoring program in winter 2018. It is understood that these will also be transferred into the National Parks Estate in accordance with Schedule 3, Conditions 32 and 35 of Development Consent SSD-6764.

1.1 Objective

The objective of the biodiversity monitoring at WCPL is to measure the progress of the Management Domains towards the relevant Completion Criteria prescribed in the BMP (WCPL 2017). Biodiversity monitoring includes assessment of native vegetation and habitat complexity, landscape stability and fauna diversity. Monitoring results from spring 2015 and autumn 2016 represent the baseline (Year 0) data for each monitoring site, with the 2018 results presented in this report representing Year 2 and Year 3 data for autumn and spring respectively.

Management Domain	Area (ha)	Location Description	
BOA-D	50.36	Located approximately 12 km north-east of Mining Lease (ML) 1573	
BOA-E	160.18	Located approximately 3 km east of ML 1573	
ECA-A	189.56	Located to the south-east of ML 1573	
ECA-B	233.59	Located to the north of ML 1573	
ECA-C	96.23	Located in the south-east portion of ML 1573	
Regeneration Area 1	27.61	Located adjacent to the eastern boundary of the approved disturbance area	
Regeneration Area 2	14.00	Located on the western side of ECA-A	
Regeneration Areas 3, 7 and 8	1.28	Located adjacent to the south and south western boundary of the approved disturbance area	
Regeneration Area 4	6.53	Located on the north side of the mine, between the approved disturbance boundary and ECA-B	
Regeneration Area 5	23.66	Located towards the western end of ECA-B	
Regeneration Area 9	27.57	Located towards the western end of ECA-B	
Rehabilitation Areas	Variable	Includes areas within the approved disturbance area for the mine, including active and future mining areas, infrastructure areas and rehabilitation of disturbed areas that is undertaken on a progressive basis in accordance with the approved WCPL Mine Operations Plan (MOP) (WCPL 2014)	
BOA-1	201.12	Located to the south-west of ML 1573	
BOA-2	157.73	Located to the south of the ML 1573	
BOA-3	128.45	Located to the north-west of ML 1573, access via the Wollara Downs property	
BOA-4	39.02	Located to the north-west of ML 1573, access via Mogo Road	
BOA-5	221.24	Located to the west of ML 1573, access via the Wollara Downs property	

Table 1-1: WCPL Management Domains

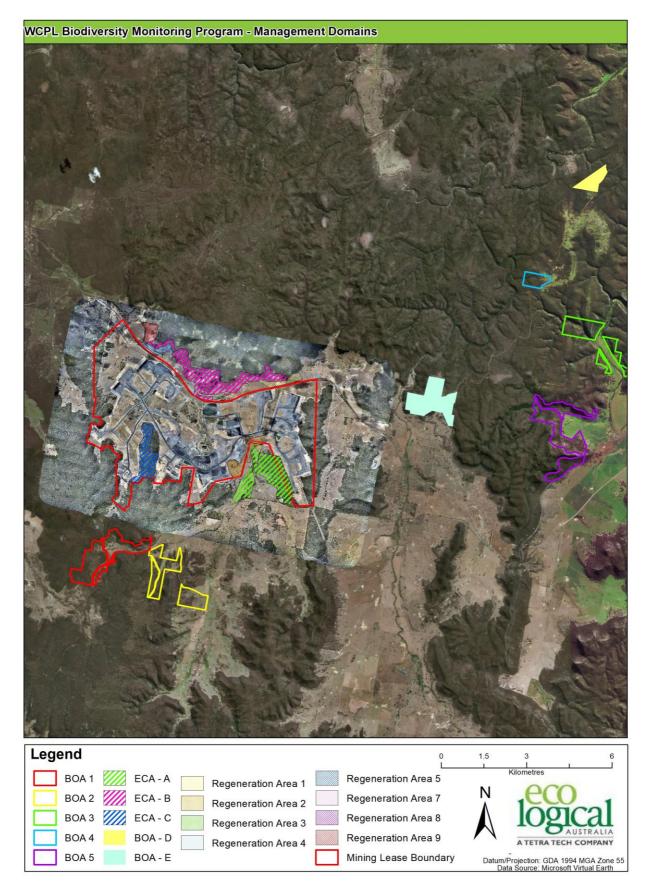


Figure 1-1: WCPL Management Domains

1.2 Previous monitoring

Biodiversity assessment and monitoring of the Management Domains was undertaken as part of the baseline studies and vegetation community mapping components of the EIS, as well as for the Rehabilitation Areas and ECAs under the rehabilitation monitoring requirements of the MOP (WCPL 2014). However, this data does not directly correlate with the performance criteria contained in the BMP (WCPL 2017), and therefore is unable to be used to measure the effectiveness of management practices to improve biodiversity values within the Management Domains.

The monitoring program outlined in the BMP (WCPL 2017) commenced in spring 2015. Monitoring undertaken during 2018 was consistent with the methods and approach described in the 2015, 2016 and 2017 annual monitoring reports (ELA 2016; ELA 2017; ELA 2018) and the BMP (WCPL 2017).

1.3 Assessment against Interim Performance Targets

The BMP (WCPL 2017) outlines IPTs that will be used to determine progression towards the Completion Criteria and overall mine closure objectives. The IPTs provide ongoing targets against which the progression of rehabilitation and regeneration activities can be assessed against over time. The Completion Criteria will be used to assess the success of establishment of rehabilitation and regeneration areas against the proposed final land use.

1.3.1 Vegetation

The BMP (WCPL 2017) defines IPTs and benchmark values (Completion Criteria) for low, moderate to good and high condition vegetation within each of the Keith Vegetation Classes (Western Slopes Dry Sclerophyll Forest (WSDSF) and Western Slopes Grassy Woodland (WSGW)).

Within this monitoring report, IPTs for years 1-5 have been used to assess the performance of individual floristic monitoring sites and to evaluate progress towards achieving benchmark condition. Sites established in 2018 used IPTs for Year 0. A colour coding system has been applied to all the Management Domain site attribute results, whereby:

- GREEN indicates site attributes that have met the relevant IPTs (indicating that no additional management intervention is required)
- AMBER indicates site attributes that have not met the relevant IPTs, but are within 50 <100% of the IPTs and do not show a substantial decrease compared to the previous year's monitoring results (indicating a requirement to monitor closely, management intervention may be required)
- RED indicates site attributes that are <50% of the relevant IPTs or show a substantial decline compared to the previous year's monitoring results (indicating that management intervention is required).

A 'substantial decline' is defined as a relative decline of 50% or greater compared to the previous year's results (e.g. a decline from a value of 20 to a value of 10 or less).

Reference sites were assessed against the relevant Benchmark values, utilising the same colour coding system described above (replacing reference to IPTs with Benchmark values).

Sites which obtain a site value score lower than the IPT trigger the Native Vegetation and Habitat Complexity (BioMetric) Trigger Action Result Plan (TARP) outlined in Table 26 of the BMP (WCPL 2017).

1.3.2 Landscape Function Analysis (LFA)

The BMP (WCPL 2017) defines Completion Criteria for a self-sustaining landform as achievement of a score of 50 or more for each Soil Surface Assessment (SSA) Index. A ranking system has been applied in this report, with sites obtaining an SSA Index score of 50 or above (thereby meeting the Completion Criteria) colour coded green, and sites with a SSA score of less than 50 colour coded red.

The BMP (WCPL 2017) further states that incremental improvement (an increase of five or more index points annually) is anticipated, with achievement of Completion Criteria by Year 10. Where sites did not achieve the Completion Criteria score of 50 for a particular SSA index, the changes in this index from spring 2017 to spring 2018 have been assessed against the predicted annual increase. In these cases, sites that achieved the target increase of five points or more within an SSA index are colour coded green, and sites that did not achieve this annual increase are colour coded red. Failure to achieve an increase of 5% in the annual LFA scores represents a trigger for the Landscape Stability (LFA) TARP.

2 Methodology

The 2018 biodiversity monitoring program was undertaken in accordance with the methods and survey techniques prescribed in the BMP (WCPL 2017). As per the requirements of the BMP (WCPL 2017), the biodiversity monitoring program comprised the following components:

- Vegetation monitoring
- Landscape stability monitoring using LFA
- Terrestrial fauna monitoring.

Weather conditions during the autumn, winter and spring 2018 monitoring are presented in Appendix A.

Additional information on all vegetation, LFA and fauna monitoring sites can be found in Appendix B.

2.1 Vegetation monitoring (Biometric)

Autumn vegetation monitoring was undertaken between 30 April and 8 May 2018 by ELA ecologists Clare Duck, Tom Kelly and Angelina Siegrist. Spring vegetation monitoring was undertaken between 10 September and 19 November 2018 by ELA ecologists David Allworth, Elise Keane, Tom Kelly, Kate Maslen and Cheryl O'Dwyer.

Vegetation monitoring was undertaken across all Management Domains and 24 reference sites located within NPWS managed estates. The locations of vegetation monitoring sites are illustrated below in **Figure 2-1, Figure 2-3** and .

Changes to the monitoring program since 2017 include the addition of two new vegetation monitoring sites, BOA1_100 and BOA2_100. Reference site 13b, which was excluded from 2017 monitoring due to the site having been affected by fire, was once again monitored in autumn 2018. With the expansion of the mine operational area, sites R1_101 and R7_101 have been removed from the monitoring program

Vegetation monitoring was undertaken utilising the method of plot assessment prescribed in the BMP (WCPL 2017). Permanent Biometric plots, comprising a 20 m x 20 m (0.04 ha) plot nested within a 20 m x 50 m plot, were established in spring 2015, autumn 2016. and spring 2018 and were monitored in accordance with the methods described in Section 9.1 of the BMP (WCPL 2017). Within each plot, the following data was collected:

- native species richness, cover and abundance within the 20 m x 20 m plot
- native and exotic tree cover and native midstorey cover at regular 5 m intervals along 50 m transect (10 points)
- native ground (grass, shrub, other) and exotic cover at regular 1 m intervals along 50 m transect (50 points)
- habitat features (number of trees with hollows, length of fallen logs (FL)) and proportion of overstorey species regeneration – within 20 m x 50 m plot.

All vascular plants species were recorded and identified to the lowest taxonomic level possible, with samples of unknown species collected for further identification.

2.2 Landscape Function Analysis

LFA monitoring was undertaken between 10 September and 19 November 2018, by ELA ecologists David Allworth, Elise Keane, Tom Kelly, Kate Maslen and Cheryl O'Dwyer. LFA monitoring was undertaken in accordance with the methods prescribed in Tongway and Hindley (2005) and the BMP (WCPL 2017).

In total, LFA assessments were undertaken at 20 monitoring sites, including 10 within WCPL Management Domains and 10 reference sites located within NPWS managed estate (**Figure 2-3** and). LFA assessment was not conducted at site R1_100 and R5_C due to the expansion of the mining operational area and the conclusion of the cattle grazing monitoring.

At each LFA site, a 50 m transect line was established downslope between transect start and end markers. The majority of LFA transects directly correspond to the 50 m Biometric transect of the respective monitoring site. However, at several sites, the LFA transect does not align with the Biometric transect, predominantly due to the Biometric transect being established across slope rather than downslope in these locations. Along each LFA transect, LFA attributes were assessed to monitor the Landscape Organisation Index (LOI) and SSA.

2.2.1 Landscape organisation index

The LOI characterises and maps the spatial patterns of resource loss or accumulation at a site. The LOI provides a proportion of the transect occupied by patches (patches being landscape elements that are relatively permanent and provide stable, resource accumulating structures, such as grassy tussocks, ground cover and logs). A higher LOI implies a more stable transect that is less prone to erosion, with a LOI of 1.00 indicating that an entire transect is occupied by patches. The SSA is more in-depth, providing an index (0-100) of Stability, Soil Infiltration and Nutrient Cycling for the whole of landscape (transect). Table 20 in the BMP (WCPL 2017) summarises the SSA attributes that contribute to each of these indices.

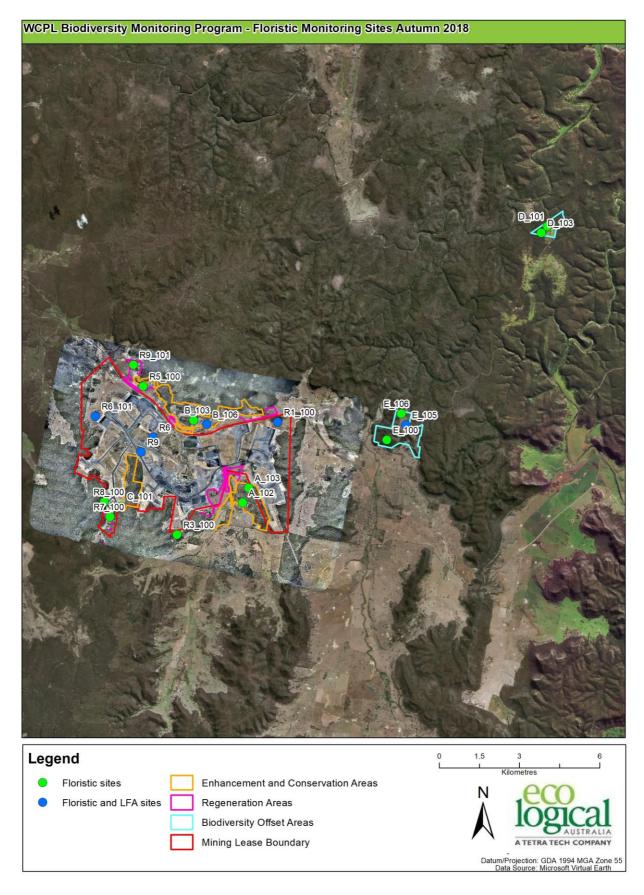
According to the LFA method, patches are long-lived/term features that obstruct or divert water flow and/or collect/filter out material from runoff and where there is evidence of resource accumulation. Inter-patches are zones where resources such as water, soil materials and litter may be mobilised and freely transported either down slope when water is the active agent or down-wind when aeolian processes are active.

The following data was recorded for each patch/inter-patch along each transect:

- distance (m) from the start of the transect
- patch width (cm)
- patch/inter-patch identification.

The following patch types were defined and monitored across all monitoring sites and monitoring periods:

- bare soil
- litter (including annual plants)
- rock (<5 cm diameter)
- log (>10 cm diameter)
- ground cover (perennial)
- shrub/tree
- cryptogam
- any combinations of the above (e.g. ground cover litter patch).


2.2.2 Soil surface assessment (SSA)

Each patch/inter-patch type identified in the landscape organisation data log was subject to a SSA. A subset of up to five occurrences of each patch/inter-patch type were monitored, and the following SSA attributes measured:

- rain splash protection
- perennial vegetation cover
- structural classification of vegetation, including the height of each canopy layer
- litter
- cryptogam cover
- crust brokenness
- soil erosion type and severity
- deposited materials
- soil surface roughness
- surface nature (resistance to disturbance)
- description of ephemeral drainage lines
- slake test
- soil texture.

Each of these parameters was assigned a simple score in the field. Data was entered into the LFA calculation spreadsheets and used to calculate stability, infiltration and nutrient cycling indices.

A self-sustaining landform is deemed to have been achieved when SSA scores of 50 or more are recorded (the LFA Completion Criteria, expected to be achieved by Year 10 of the management cycle). Incremental improvement toward that target is expected with each year of monitoring. Failure to achieve an increase of five in the annual LFA scores represents a trigger for implementation of the Landscape Stability LFA TARP described in Table 27 of the BMP (WCPL 2017). Comparative annual results have been colour-coded to provide a visual indicator, with green reaching or exceeding the incremental increase of five or more, and red showing an increase of less than five (or in some cases, a reduction from the previous year). Red coded cells indicate the TARP needs to be implemented. Results maintained at or above the Completion Criteria (50) have been coded green regardless of comparative incremental increase or decrease from previous monitoring.

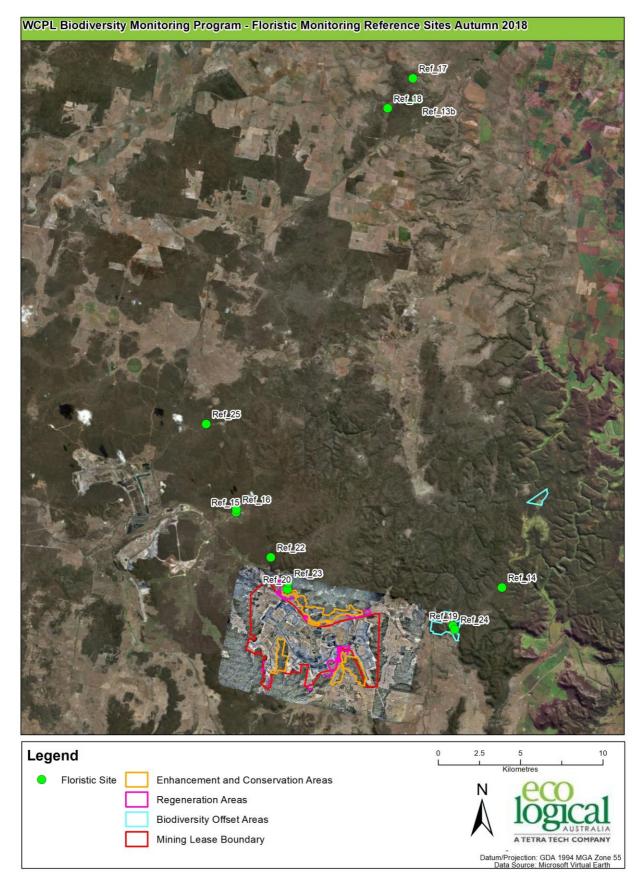


Figure 2-2: Autumn 2018 vegetation monitoring reference sites

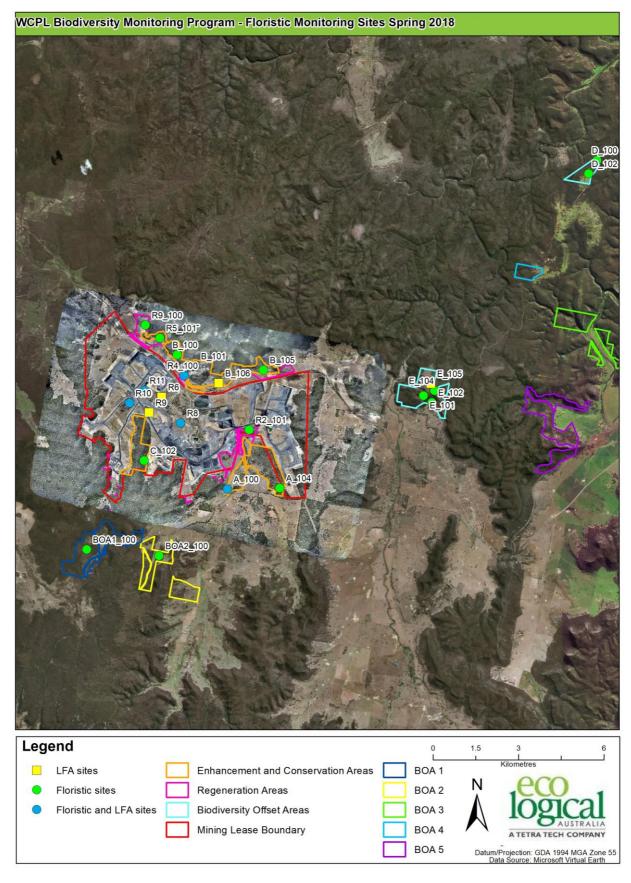


Figure 2-3: Spring 2018 vegetation and LFA monitoring sites

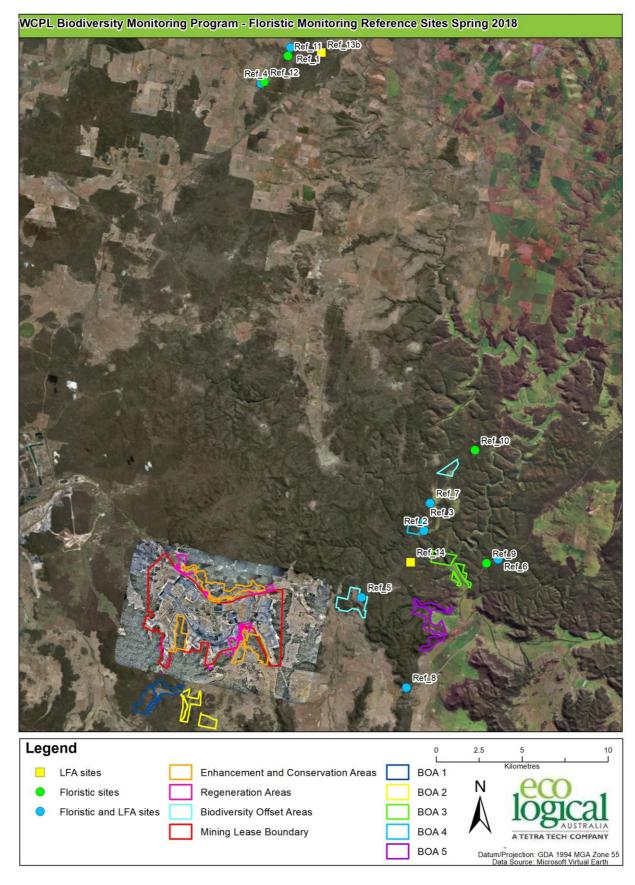


Figure 2-4: Spring 2018 vegetation and LFA reference sites

2.3 Fauna monitoring

2.3.1 Winter bird monitoring

Winter bird monitoring was undertaken at 19 general fauna monitoring sites and six diurnal bird monitoring sites from 9 to 13 July 2018, by ELA ecologists Cassandra Holt and Angelina Siegrist, shown below in **Figure 2-5**Error! Reference source not found.

During winter 2018, 13 new general fauna monitoring sites were established within the BOAs 1- to 5. Winter bird monitoring commenced at these sites from 31 July to 1 August 2018. Data collected at these sites forms baseline data and cannot be compared to previous data.

Bird surveys were conducted across two seasons to detect migratory species and specialist feeders. Winter surveys were undertaken to identify species that feed on the blossoms of winter-flowering eucalypts and lerps. The 37 monitoring sites are shown in **Figure 2-5**.

2.3.2 Spring fauna monitoring

Spring fauna monitoring was undertaken between 5 to 23 November 2018, by ELA ecologists Rodney Armistead, Cassandra Holt, Elise Keane, Tom Kelly, Kate Maslen, Nicole McVicar, Justin Russell and Angelina Siegrist.

Table 2-1 below outlines the methodology and survey effort for each target species and is based upon the methods prescribed within the BMP (WCPL 2017). During spring monitoring 2018, there were 23 general fauna monitoring sites, nine diurnal bird monitoring sites, and five reference sites. This includes the sites within BOAs 1 to 5 established in winter 2018. Data collected at these sites forms baseline data and cannot be compared to previous results. The locations of fauna monitoring sites are shown in **Figure 2-6**, with reference sites shown in **Figure 2-7**.

Microchiropteran bat (microbat) monitoring was undertaken at ten general fauna monitoring sites and five reference sites, as required by the BMP (WCPL 2017). Microbat analysis was undertaken by ELA ecologist Dr Rodney Armistead, with the analysis report provided in **Appendix G**.

Opportunistic fauna sightings, including fauna evidence such as scats and tracks, were also recorded, where identified across all fauna monitoring sites.

Target species	Fauna site	Methodology	Total Survey Effort
Birds	General fauna	Bird census consisting of 10 minutes recording all birds seen/heard within 50 m radius of central plot point, and further 10 minutes recording all birds seen/heard within balance of a 2 ha plot.	80 minutes per site (20 minutes per survey, per person, per site), over one morning and one afternoon (37 sites).
Ground fauna (amphibians, mammals, reptiles)	General fauna	Pit fall/funnel trap line of 30 m drift fence and five 20 L buckets/10 funnel traps spaced 5 m apart covering both sides of the drift fence.	Twice daily inspections of traps (morning and afternoon) for five days/four nights (23 sites).
Bats	Bat	Automated ultrasonic acoustic recording to identify all bat species occurring.	Recording for 2 nights (6pm – 6am) (10 sites).

Table 2-1: Fauna monitoring methods summary (WCPL 2017)

Target species	Fauna site	Methodology	Total Survey Effort
All	Opportunistic	Any sightings of fauna recorded whilst moving throughout the Project Area and located using a GPS.	Opportunistic
Mammals	Opportunistic	Opportunistic collection of scats and observations of tree scratching's, animal tracks and paw prints.	Opportunistic

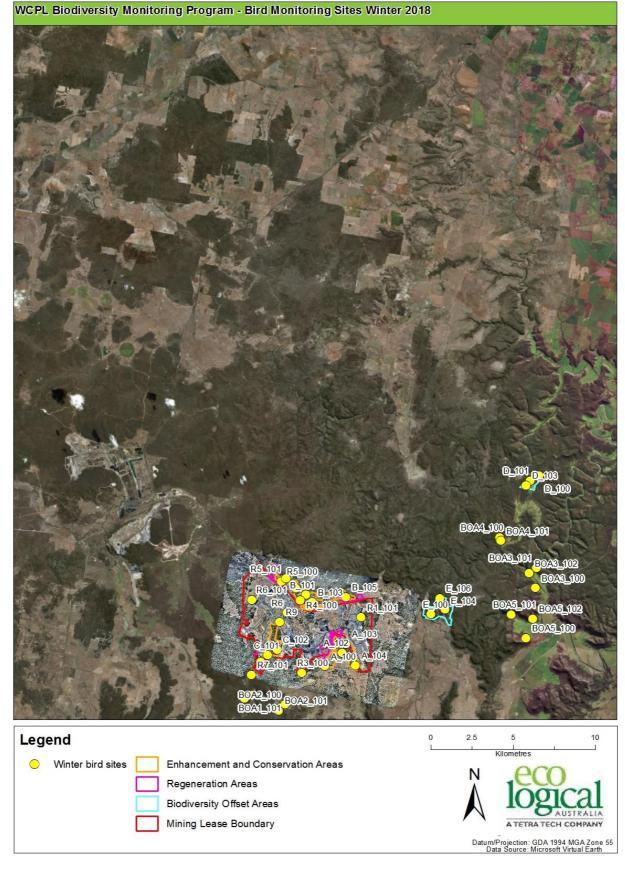


Figure 2-5: Winter 2018 bird monitoring site

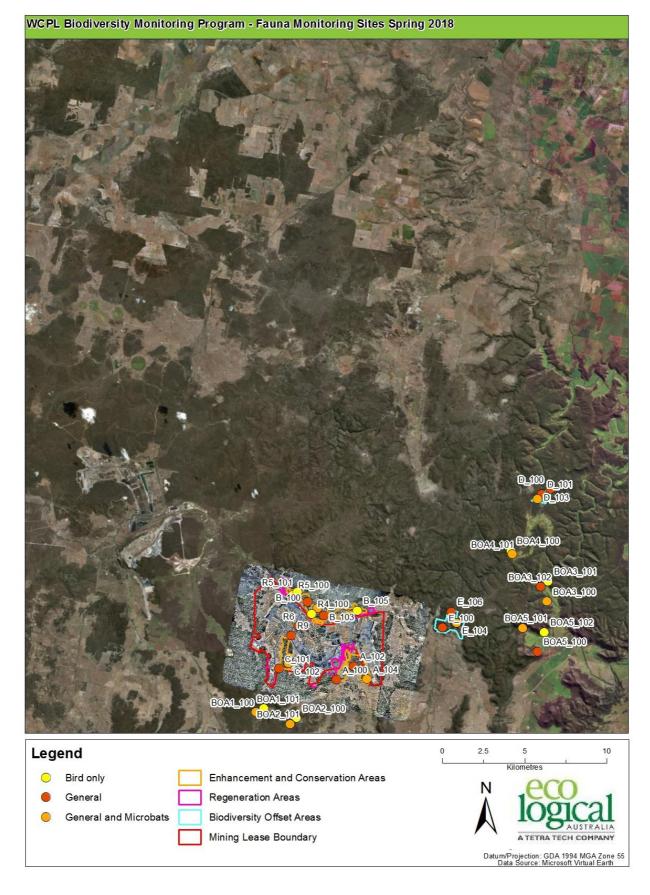


Figure 2-6: Spring 2018 fauna monitoring sites

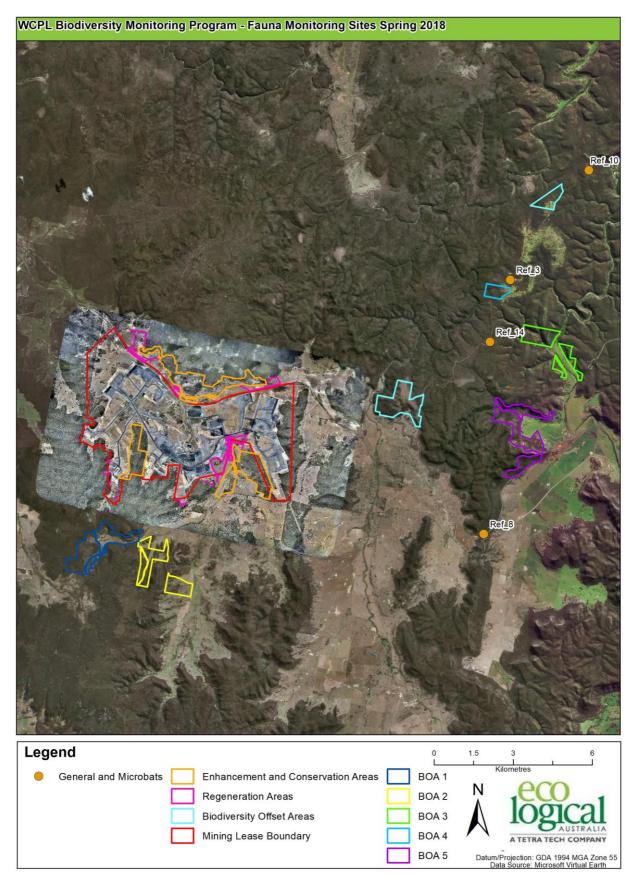


Figure 2-7: Spring 2018 fauna reference sites

3 Results and discussion

This section presents the 2018 monitoring results, including autumn and spring vegetation monitoring, winter bird monitoring, and spring LFA and fauna monitoring. Vegetation monitoring results are presented and discussed collectively for all Management Domains. LFA and fauna monitoring results are presented and discussed individually for each BOA, ECA, Regeneration and Rehabilitation Management Domains.

3.1 Vegetation monitoring

A total of 223 flora species were recorded across the Management Domains and Reference sites during autumn and spring 2018, consisting of 171 native species and 43 exotic species, with a further nine species unable to be identified as either native or exotic. A full list of all flora species recorded during autumn 2018 and spring 2018 surveys is included in **Appendix C**.

3.1.1 Assessment against Interim Performance Targets

Vegetation monitoring results are assessed against IPTs and Benchmark Targets (for Management Domains and Reference sites respectively (see **Appendix E**) and compared against the previous year's monitoring results to evaluate trends and progress towards achieving Completion Criteria, as set out in the BMP (WCPL 2017).

Site value scores were calculated for all 2018 monitoring sites to determine the vegetation condition for each site. Each site was then assessed relative to the IPT or Benchmark targets for the relevant condition within each Keith Vegetation Class as per the BMP (WCPL 2017). Both monitoring periods fall within the Year 1-5 IPTs, being Year 3 (autumn 2018 sites) and Year 4 (spring 2018 sites). However, the data collected from sites established in spring 2018 (BOA1_100 and BOA2_100) forms baseline data and as such results were ranked against the lower Year 0 (or baseline) IPTs.

Table 3-1 to Table 3-4: Reference sites assessment against Benchmark Targets Year 4- spring 2018 present the individual site attribute and site value scores for each 2018 monitoring site. Site value scores which do not meet the IPT are highlighted in red, demonstrating these sites have triggered the Native Vegetation and Habitat Complexity (BioMetric) Trigger TARP detailed in Table 26 of the BMP (WCPL 2017). Amber is not applied to the site value score as anything below the IPT triggers the TARP. A colour coding system has been applied to all site attribute results.

- GREEN indicates site attributes that have met the relevant IPTs (indicating that no additional management intervention is required)
- AMBER indicates site attributes that have not met the relevant IPTs, but are within 50 <100% of the IPTs and do not show a substantial decrease compared to the previous year's monitoring results (indicating a requirement to monitor closely, management intervention may be required)
- RED indicates site attributes that are <50% of the relevant IPTs or show a substantial decline compared to the previous year's monitoring results (indicating that management intervention is required).

	Vegetation	0.1	Vegetation	0.40				Sit	e attribute	es (% cove	ər)			
Management Domain	Community	Site	condition	SVS	NSR	NOC	NMC	NGCG	NGCS	NGCO	EC	NTH	OR	FL (M)
	WSDSF	D_101	MOD-GOOD	52	27	27.5	7	0	0	14	0	0	1	42
	WSDSF	D_103	MOD-GOOD	43	19	7.5	36	0	14	0	0	0	1	0
BOA	WSDSF	E_100	MOD-GOOD	64	30	23.5	14.5	4	0	4	0	0	1	112
	WSGW	E_105	LOW	23	24	0	0	24	0	16	28	0	0	0
	WSGW	E_106	MOD-GOOD	41	31	0.5	0	30	0	22	0	0	1	10
	WSGW	A_102	MOD-GOOD	39	19	0	8.6	44	2	4	0	0	0	0
	WSGW	A_103	MOD-GOOD	61	27	11.6	1.4	12	2	2	0	1	0.33	19
ECA	WSDSF	B_103	MOD-GOOD	56	35	35	5	4	6	0	0	0	0.5	28
	WSGW	B_106	LOW	20	17	0	0	24	0	30	8	0	0	0
	WSDSF	C_101	LOW	15	9	0	0	44	0	0	38	0	1	2
	WSGW	R1_100	LOW	7	7	0	0	6	0	0	34	0	0	0
	WSDSF	R3_100	LOW	14	16	0	0	62	0	0	18	0	0	0
Regeneration Areas	WSGW	R5_100	LOW	18	12	0	0	46	0	0	14	0	0	0
	WSGW	R6_101	LOW	9	10	0	0	24	0	0	12	0	0	0

Table 3-1: Assessment against Interim Performance Targets Year 3- autumn 2018

	Vegetation		Vegetation	0.40	Site attributes (% cover)									
Management Domain	Community	Site	condition	SVS	NSR	NOC	NMC	NGCG	NGCS	NGCO	EC	NTH	OR	FL (M)
	WSGW	R7_100	LOW	15	16	0	0	36	0	0	20	0	0	0
	WSDSF	R8_100	LOW	7	8	0	0	36	0	0	36	0	0	0
	WSGW	R9_101	LOW	19	20	0	0	50	0	4	12	0	0	0
	WSDSF	R6	LOW	13	15	1	2	0	0	0	46	0	0.75	0
Rehabilitation Areas	WSDSF	R9	LOW	32	20	0.1	22.3	0	0	0	18	0	1	37

SVS = Site Value Score, NSR = Native Plant Species Richness, NOC = Native Overstorey Cover, NMC = Native Midstorey Cover, NGCG = Native Ground Stratum Cover (grasses), NGCS = Native Ground Stratum Cover (shrubs), NGCO = Native Ground Stratum Cover (other), EC = Exotic Plant Cover, NTH = Number of Trees with Hollows, OR = Overstorey Regeneration and FL = Total Length of Fallen Logs

Management	Vegetation	Site	Vegetation	SVS		Site attributes (% cover)								
Domain	Community	Site	condition	272	NSR	NOC	NMS	NGCG	NGCS	NGCO	EC	NTH	OR	FL (M)
	WSDSF	D100	MOD-GOOD	50	20	6	6.5	0	4	0	0	1	1	59
	WSGW	D102	MOD-GOOD	36	33	3.5	0	14	0	14	0	0	0	6*
BOA D and E	WSDSF	E101	MOD-GOOD	45	18	2	16	24	6	8	0	0	1	3
	WSGW	E102	LOW	17	17	26	0	0	0	0	17	0	0	0
	WSGW	E104	MOD-GOOD	45	28	10	0	22	0	4	0	0	1	0
5014.5	WSDSF	BOA1_1 00	MOD-GOOD	54	26	16.5	39	2	4	0	0	0	0	94
BOA 1 to 5	WSDSF	BOA2_1 00	HIGH	72	37	17	55	0	4	0	0	7	0	110
	WSGW	A100	LOW	9	4	0	0	20	0	0	36	0	0	0
	WSGW	A104	HIGH	73	23	11.8	6.9	4	4	2	0	0	1	68
ECA	WSGW	B100	MOD-GOOD	57	36	19	3	2	0	2	0	0	0.67	25
ECA	WSGW	B101	LOW	23	19	0	0	30	0	8	2	0	0	0
	WSDSF	B105	LOW	17	16	0	0	36	0	0	14	0	0	0
	WSGW	C102	MOD-GOOD	63	34	11.7	2	0	4	0	0	1	0	50
	WSGW	R2_101	LOW	18	13	0	0	22	0	0	10	0	0	0
Regeneration	WSGW	R4_100	LOW	9	7	0	0	8	0	0	12	0	0	0
Areas	WSDSF	R5_101	LOW	17	17	0	0	44	0	0	8	0	0	0
	WSDSF	R9_100	LOW	23	27	0	7.7	26	0	4	4	0	0	0

 Table 3-2: Assessment against Interim Performance Targets Year 4 - spring 2018

Management	Site		Vegetation	0) (0				Si	te attribute	es (% cove	r)			
Domain	Community	Site	condition	SVS	NSR	NOC	NMS	NGCG	NGCS	NGCO	EC	NTH	OR	FL (M)
	WSGW	R8	LOW	9	6	0	0	0	0	12	20	0	0	0
Rehabilitation Areas	WSGW	R10	LOW	13	14	0	0	0	0	0	40	0	0	15
,	WSGW	R11	LOW	7	8	0	0.5	0	0	8	46	0	0	1

SVS = Site Value Score, NSR = Native Plant Species Richness, NOC = Native Overstorey Cover, NMC = Native Midstorey Cover, NGCG = Native Ground Stratum Cover (grasses), NGCS = Native Ground Stratum Cover (shrubs), NGCO = Native Ground Stratum Cover (other), EC = Exotic Plant Cover, NTH = Number of Trees with Hollows, OR = Overstorey Regeneration and FL = Total Length of Fallen Logs

* Substantial decline from 2017 monitoring which recorded 23m FL. Potential data recording error.

	Vegetation	0.1	Vegetation	0.40				Site	attribute	s (% cove	r)			
Management Domain	Community	Site	condition	SVS	NSR	NOC	NMC	NGCG	NGCS	NGCO	EC	NTH	OR	FL (M)
	WSDSF	Ref_13b	HIGH	72	25	24.5	8	4	0	20	0	3	0.5	58
	WSDSF	Ref_14	MOD-GOOD	54	29	25.5	12.5	2	2	2	0	0	0.83	35
	WSGW	Ref_15	MOD-GOOD	59	23	14.6	0	18	0	0	0	3	0	26
	WSGW	Ref_16	MOD-GOOD	51	32	14	0	18	2	2	0	0	0.33	43
	WSGW	Ref_17	MOD-GOOD	63	22	13	0	8	0	32	0	5	0.25	55
Deference cites	WSGW	Ref_18	HIGH	86	28	21.5	5.5	24	0	2	0	2	0.5	80
Reference sites	WSGW	Ref_19	MOD-GOOD	66	32	18.5	0	36	0	8	4	1	1	45
	WSDSF	Ref_20	MOD-GOOD	38	25	18	2.5	0	0	0	0	1	0	24
	WSDSF	Ref_21	MOD-GOOD	49	26	23	0.5	12	0	14	0	0	0.5	79
	WSDSF	Ref_22	MOD-GOOD	41	30	47	0.5	14	0	2	0	0	0.33	208
	WSGW	Ref_23	MOD-GOOD	43	23	21	0	12	0	28	0	0	0.66	3
	WSGW	Ref_24	HIGH	74	33	22.5	4	12	0	18	0	1	0.33	105

SVS = Site Value Score, NSR = Native Plant Species Richness, NOC = Native Overstorey Cover, NMC = Native Midstorey Cover, NGCG = Native Ground Stratum Cover (grasses), NGCS = Native Ground Stratum Cover (shrubs), NGCO = Native Ground Stratum Cover (other), EC = Exotic Plant Cover, NTH = Number of Trees with Hollows, OR = Overstorey Regeneration and FL = Total Length of Fallen Logs

			Vegetation					Site	attributes	(% cover)				
	Vegetation Community	Site	condition Vegetation condition	SVS	NSR	NOC	NMS	NGCG	NGCS	NGCO	EC	NTH	OR	FL (M)
	WSGW	Ref_1	MOD-GOOD	39	30	0	0	26	0	12	2	0	1	0
	WSDSF	Ref_2	MOD-GOOD	55	33	11	8.3	4	0	4	0	1	0.33	15
	WSDSF	Ref_3	MOD-GOOD	57	28	13.5	7	0	4	0	0	2	0.67	38
	WSGW	Ref_4	HIGH	84	28	19	2.5	8	0	2	0	5	1	36
Management Domain	WSDSF	Ref_5	MOD-GOOD	59	35	14	9	2	4	6	0	0	0.75	53
	WSDSF	Ref_6	MOD-GOOD	66	23	8.1	10.3	12	10	2	0	2	0.60	38
	WSDSF	Ref_7	MOD-GOOD	47	27	7	4	2	2	6	0	1	0.75	38
	WSGW	Ref_8	HIGH	87	31	19.5	1.7	8	0	18	0	3	1	64
	WSDSF	Ref_9	MOD-GOOD	50	31	24.5	4.7	24	6	4	0	2	0.67	0
	WSDSF	Ref_10	MOD-GOOD	59	29	9.5	13.2	0	8	4	0	2	0	175
	WSGW	Ref_11	MOD-GOOD	55	33	14.5	0	20	0	4	0	1	0.50	5
	WSGW	Ref_12	HIGH	70	36	13.5	0	6	0	2	0	1	0.50	58

Table 3-4: Reference sites assessment against Benchmark Targets Year 4- spring 2018

SVS = Site Value Score, NSR = Native Plant Species Richness, NOC = Native Overstorey Cover, NMC = Native Midstorey Cover, NGCG = Native Ground Stratum Cover (grasses), NGCS = Native Ground Stratum Cover (shrubs), NGCO = Native Ground Stratum Cover (other), EC = Exotic Plant Cover, NTH = Number of Trees with Hollows, OR = Overstorey Regeneration and FL = Total Length of Fallen Log

3.2 Discussion of vegetation monitoring results

A total of 321 flora species were recorded from all monitoring sites during 2018. This has declined since 2017, when 371 species were recorded. The full list of flora species recorded during 2018 is included in **Appendix C**.

3.2.1 Management Domains

Autumn 2018

Comparison of attributes from sites monitored during autumn 2018 (**Table 3-1** above) showed higher site value scores relative to the autumn 2017 results, with eleven of the 19 site value scores increasing, five remaining the same and only three decreasing. Despite this, 15 of the 19 sites did not meet their IPT and as such, trigger the Native Vegetation and Habitat Complexity (BioMetric) TARP. This includes all sites in low vegetation condition, which is defined in Table 10 of the BMP as sites with site value scores of less than 34 (WCPL 2017), making it impossible for sites to achieve the IPT of 34.

Consistent with 2017 monitoring, no sites met all the site attribute targets. Most sites (15 out of 19) did, however, meet the targets for seven or more of the ten site attributes. Consistent with previous monitoring, the BOA sites recorded the highest average site value scores, followed by the ECA sites. Regeneration and Rehabilitation sites recorded the lowest average scores for autumn. Native overstorey cover, exotic cover and number of trees with hollows were the highest performing site attributes for autumn 2018, with all sites meeting their targets for these attributes. This is largely consistent with previous monitoring; however, this is the first time all sites achieved the target for exotic cover. Despite improving compared to 2017 monitoring, fallen logs and overstorey regeneration remain the lowest performing site attributes.

Spring 2018

Eleven flora sites monitored during spring 2018 (**Table 3-2** above) recorded higher site value scores compared to 2017, whilst six sites decreased, and one site remained the same. Despite a general improvement, twelve of the 20 sites monitored failed to meet the IPT and therefore trigger the Native Vegetation and Habitat Complexity (BioMetric) TARP.

Whilst no site achieved all the site attribute targets, all sites achieved at least half. This is an improvement compared to last year, although it should be noted that monitoring at two of the lowest performing sites has been discontinued due to the conclusion of the cattle grazing monitoring. Consistent with 2017 and autumn 2018 results, native overstorey, exotic cover and number of hollow bearing trees were the highest performing site attributes, with all sites meeting their targets. This is an improvement in exotic cover compared to spring 2017. Native ground cover grass performance has improved compared to 2017, whilst native ground cover other performance has declined. Despite improving compared to 2017 monitoring, overstorey regeneration and fallen logs remained the lowest performing site attributes, with five and seven sites respectively achieving the targets.

The significant number of sites failing to meet the IPT may be correlated to the significant increases in IPT scores and several site attributes from management period Year 0 to Years 1-5. For example, the IPT for overstorey regeneration for low condition sites increases from 0% to 100% from Year 0 to Year 1. This increase is not reflective of the natural development of overstorey regeneration, and as such, it is expected to be several years until overstorey regeneration reaches its respective target. Furthermore, all sites in low condition vegetation failed to meet their IPT. This is likely due to the definition of low vegetation condition in Table 10 of the BMP as sites with site value scores of less than 34 (WCPL 2017), making it impossible for sites to achieve the Year 1-5 IPT of 34.

3.2.2 Reference sites

Reference sites monitored during 2018 are compared to the Benchmark targets for their respective vegetation community (**Table 3-3** and **Table 3-4:** Reference sites assessment against Benchmark Targets **Year 4- spring 2018**. Only two reference sites per season achieved their IPT in 2018. This is despite site value score in spring improving and no more reference sites being in low condition vegetation.

Consistent with monitoring in other Management Domains, exotic cover was the highest performing site attribute, with all reference sites achieving the benchmark. All reference sites monitored in autumn also met the benchmark for native over storey cover, however spring results were considerably more variable. Consistent with previous monitoring, native ground cover shrub and native mid storey cover were the most under-performing site attributes, with only four references sites achieving the benchmark. Similarly, only four reference sites achieved the benchmark for overstorey regeneration, however the majority of site were within the amber range, suggesting they are on the correct trajectory. Number of trees with hollows was variable between sites and seasons but had a high proportion of sites in red and amber.

3.2.3 Review of IPTs against Trigger Action Response Plans

As per the updated WCPL BMP (WCPL 2017), TARPs have been developed if IPTs are not being met. **Table 3-1** to **Table 3-4**: **Reference sites assessment against Benchmark Targets Year 4- spring 2018** identify those sites with SVS which don't meet the IPTs, colour-coded red. Table 26 of the BMP (WCPL 2017) details the TARPs to be implemented.

3.2.4 Multi-year comparisons

The results of key individual attributes have been graphed to illustrate the variability between 2015, 2016, 2017 and 2018 monitoring results for spring, and 2016, 2017 and 2018 monitoring results for autumn. The key attributes analysed include total native species richness, and the native vegetation structure attributes, including overstorey cover, midstorey cover and groundcover.

Species richness

Total species richness has been variable between sites and years. Spring species richness was highest in 2015 at 26 of the 39 sites (**Figure 3-1**), whilst autumn data was highest in 2017 at 15 of the 31 sites (**Figure 3-2**).

Native species richness for all sites is compared in **Figure 3-1**: Total species richness across all management domains - spring 2015-2018 is presented within **Figure 3-2**. Native species richness ranged from four species at site A_100, to 36 species at site B_100. Site A_100 has consistently had the lowest, or second lowest score in native species diversity from 2015 through to 2018. Spring 2018 saw 12 sites increase in native species richness compared to 2017. Similarly, in autumn, 10 sites improved compared to 2017 results. Autumn results appear to be more consistent between years than spring native species richness. BOA and ECA sites consistently recorded higher species richness compared to regeneration and rehabilitation sites. Reference sites performed better compared to sites within the Management Domains, with 23 being the lowest native species richness recorded in 2018. Native species richness at all sites within spring and autumn compared with the IPT is presented within **Figure 3-3**.

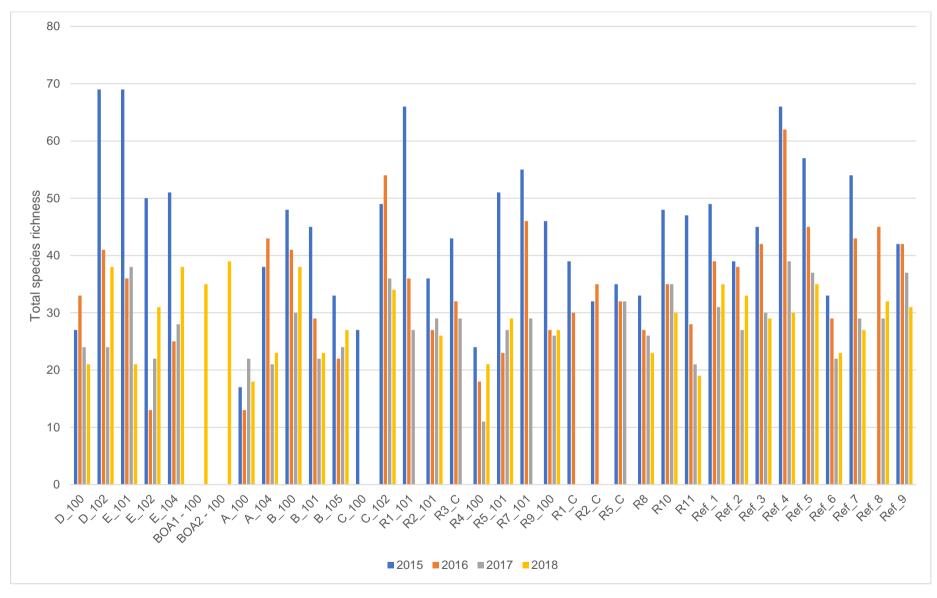
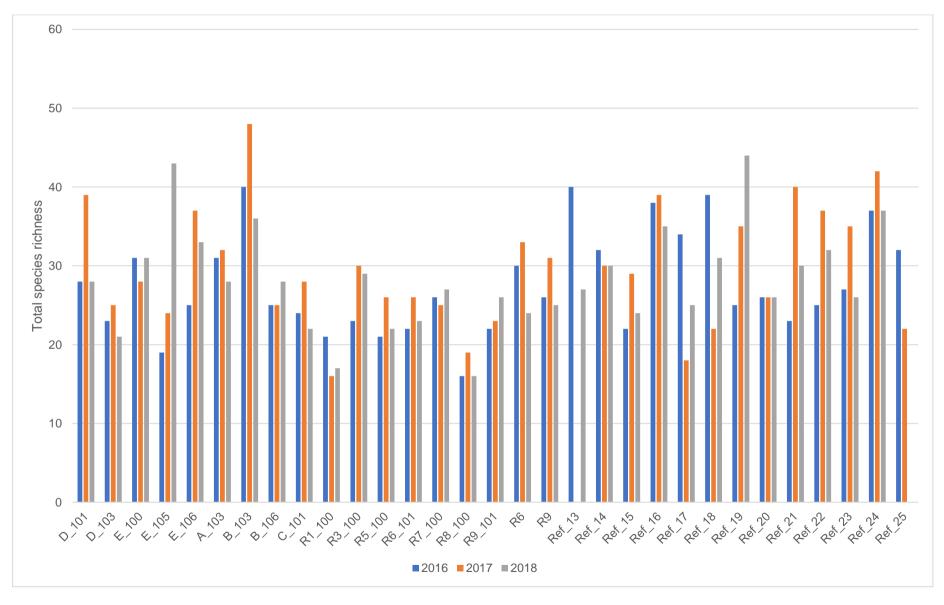



Figure 3-1: Total species richness across all management domains - spring 2015-2018

Figure 3-2: Total species richness across all management domains - autumn 2016-2018

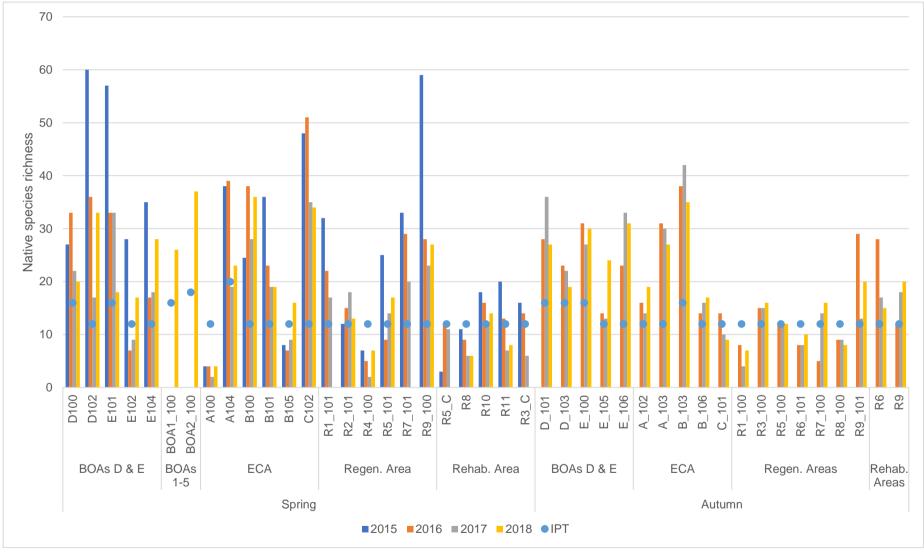


Figure 3-3: Native species richness at all sites – spring and autumn 2015-2018

Vegetation structure

Vegetation structure data recorded at the monitoring sites during autumn and spring 2018 monitoring (dominant species, height range and percentage foliage cover for all vegetation strata) is presented in **Appendix D**.

Comparison of vegetation structure attributes for the overstorey cover, midstorey cover and groundcover strata layers, compared to the IPT for year 1-5 and relevant vegetation condition, are illustrated below in **Figure 3-4**, **Figure 3-5** and **Figure 3-6**.

Consistently low scores for overstorey regeneration from 2016 to 2018 monitoring periods are likely attributable to the high level of natural ground layer competition found in grassy woodland communities, which can limit the ability for overstorey regeneration to develop. As expected, regeneration and rehabilitation sites do not yet have overstorey cover, however site R6 has registered one per cent overstorey cover for the first time in autumn 2018. Recruitment and establishment of overstorey species will be a slow process, which is reflected in the IPTs with low condition vegetation not expected to have native overstorey cover until Years 11-15.

Similarly, native midstorey cover is more common and generally higher in the BOA and ECA sites compared to the regeneration and rehabilitation sites. In autumn native midstorey cover was generally lower than previous monitoring, whilst in spring midstorey cover was generally higher than 2017 results.

Native ground cover in 2018 was generally lower than previous monitoring, with 23 of the 39 sites recording the lowest native ground cover since monitoring began. Results indicate that, although still present, exotic ground cover has also decreased compared to 2017 results. These results may be attributable to seasonal conditions, for example, prolonged dry periods.

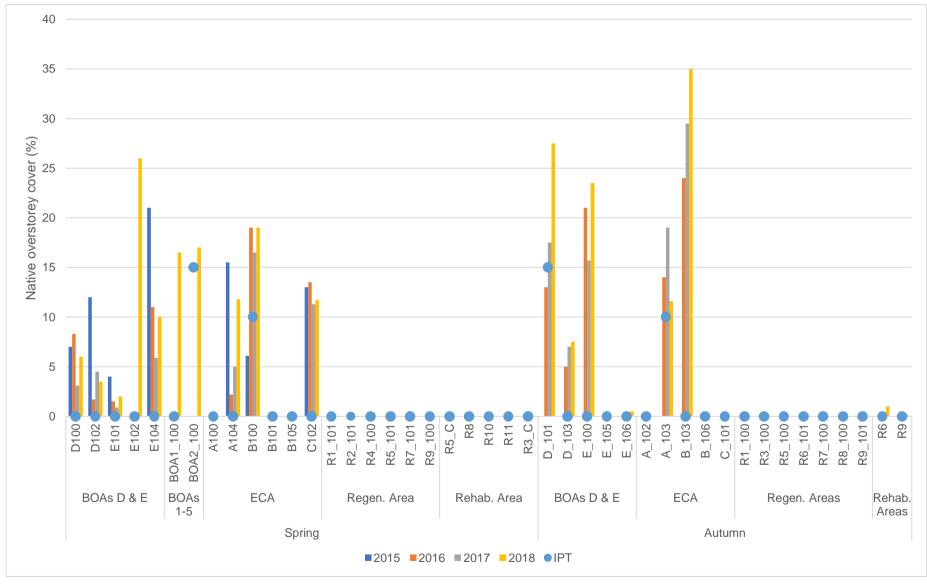


Figure 3-4: Native overstorey cover at all sites 2015-2018 compared against the 1-5-year IPT

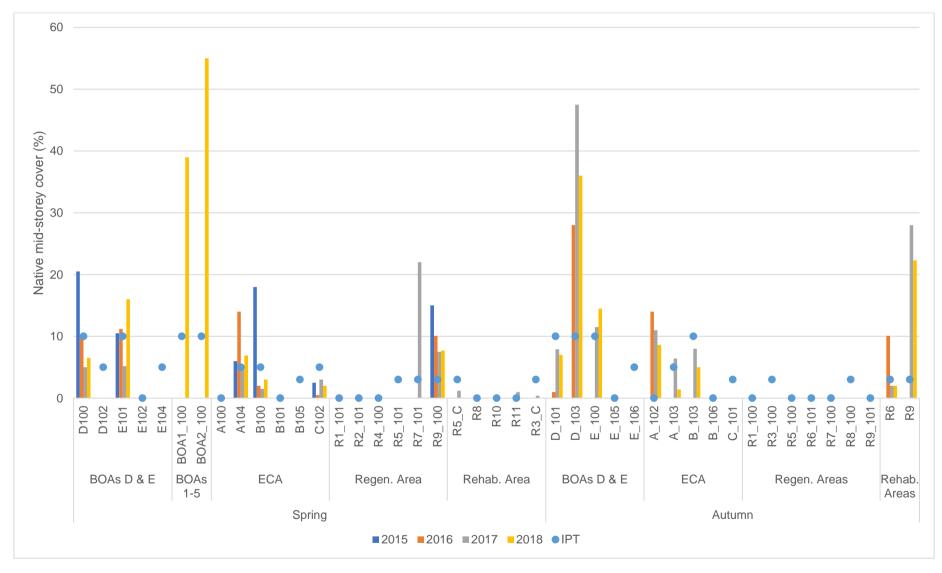


Figure 3-5: Native midstorey cover at all sites 2015-2018 compared against the 1-5-year IPT

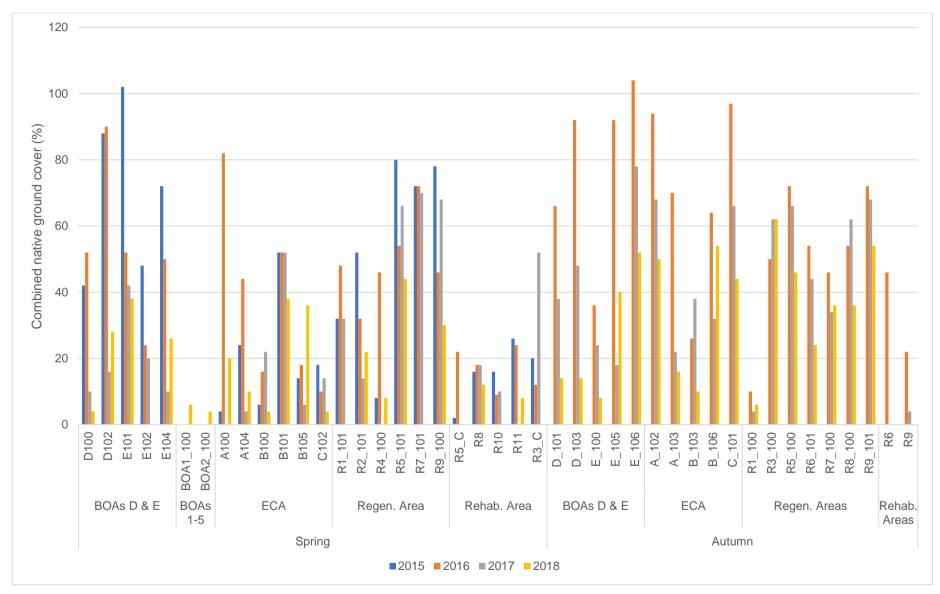


Figure 3-6: Combined native groundcover at all sites 2015-2018

Exotic flora species

Exotic species results were generally good across all Management Domain monitoring sites during 2018, with all sites achieving the exotic cover IPT for the first time since monitoring began. Exotic species diversity was highest at sites R8, R10 and E_105 in 2018, with 17, 16 and 15 species at each site respectively. This is consistent with previous results, with Rehabilitation sites consistently having the highest exotic species richness.

Exotic cover recorded at all sites except four sites (E_102, B_105, C_101 and R8_100) decreased from 2017 to 2018. Comparison of exotic cover attribute scores are illustrated below in **Figure 3-7**.

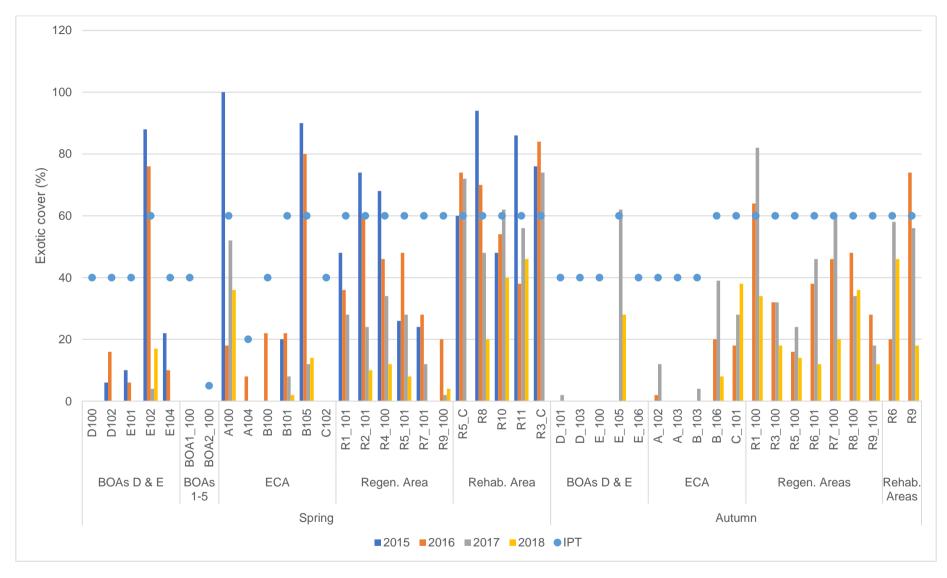


Figure 3-7: Exotic cover at all sites 2015-2018 compared against the 1-5-year IPT

Weeds classified as priority weeds under the Central Tablelands Regional Strategic Weed Management Plan 2017 - 2022 were identified at several monitoring sites across the Management Domains. These declared weeds and their site locations are presented below in **Table 3-5**.

Scientific Name	Common Name	State Priority Weed	Regional Priority Weed	Site	Management domain
Heliotropium			X	E_104	BOAs D & E
amplexicaule	Blue Heliotrope		Y	R6_101	Regeneration Areas
				B_101, C_101,	ECAs
Hypericum	St John's Wort		Y	R3_100, R5_100, R6_101, R7_100, R8_100, R9_101	Regeneration Areas
perforatum				Ref_17, Ref19	Reference Areas
				R6, R9, R10, R11	Rehabilitation Areas
				BOA1_100,	BOAs 1-5
				E_104, E-106,	BOAs D & E
Opuntia sp.	Common Pear, Prickly Pear	Y		Ref_4, Ref_12, Ref_13b, Ref_15, Ref_16, Ref_18, Ref_19, Ref_24	Reference Areas
Rosa rubiginosa	Sweet Briar		Y	BOA1_100	BOAs 1-5
Xanthium spinosum	Bathurst Burr		Y	C_101	ECAs

Table 3-5: Declared weeds recorded in 2018

3.3 Landscape Function Analysis

The LOI and SSA scores calculated from spring 2018 LFA monitoring are presented in **Table 3-6** to **Table 3-10** below. The results are presented as a comparison to the 2017 monitoring data to provide an assessment against the LFA completion criteria as described above in **Section 2.2.2**. It should be noted that there are several contributing factors in the data collection and calculation of scores which may result in minor inconsistencies from year to year. Attributes which are not meeting the annual incremental increase targets, and as such are marked in red, represent a trigger for the Landscape Stability (LFA) TARP outlined in Table 27 of the BMP (WCPL 2017).

3.3.1 Biodiversity Offset Areas

Site E_105 is the only LFA monitoring site within the BOA Management Domains. The LOI and SSA results for this site are presented in **Table 3-6**, with the spring 2017 monitoring results included to provide a comparative assessment to determine if sites are achieving the predicted annual incremental increase.

The LOI of 0.98 achieved at this site indicates that a high proportion of the transect continues to be occupied by patches of native perennial ground cover, leaf litter and rock. This is consistent between the 2017 and 2018 monitoring results. Stability continues to exceed the Completion Criteria (>50), with an increase of 9.7 from the spring 2017 monitoring results. Soil Infiltration and Nutrient Cycling are both below the annual incremental increase target, with Nutrient Cycling representing a reduction from the spring 2017 monitoring results.

		Landssons	Soil Surface Assessment						
Site	Monitoring Season	Landscape Organisation Index	Stability	Infiltration	Nutrient cycling				
	Spring 2018	0.98	63.5	38.7	34.0				
E_105	Spring 2017	1.00	53.8	45.2	33.3				
	Annı	al incremental increase	9.7	-6.5	0.7				

Table 3-6: LOI and SSA results for BOA transects

3.3.2 Enhancement and Conservation Areas (ECAs)

Two LFA monitoring sites are located within the ECA Management Domains, including site A_100 within ECA-A, and site B_106 within ECA-B. Both sites are located in regenerating vegetation.

The LOI and SSA results for these sites are presented in **Table 3-7**. During spring 2018 monitoring, site A_100 recorded a LOI of 1.00, being entirely covered by perennial ground cover and litter patches. This is consistent with previous results. Site B_106 recorded a LOI of 0.83, with extensive perennial ground cover and litter patches, and small patches of bare soil, which is an increase from 2017.

During spring 2018 monitoring, the Stability Completion Criteria was exceeded at B_106, and saw an increase compared to 2017 monitoring results. Stability at site A_100 decreased by four compared to 2017, bringing it below the Completion Criteria. The Soil Infiltration and Nutrient Cycling scores recorded during spring 2018 monitoring were below the Completion Criteria target of 50. Infiltration failed to achieve the annual incremental increase at both sites. Although Site A_100 achevied the annual incremental increase for Nutrient Cycling.

		Landsaana	Soil Surface Assessment						
Site	Monitoring Season	Landscape Organisation Index	Stability	Infiltration	Nutrient Cycling				
	Spring 2018	1.00	49.9	44.5	36.7				
A_100	Spring 2017	1.00	53.9	45.5	33.8				
	Annı	ual incremental increase	-4	-1	2.9				
	Spring 2018	0.83	57.4	38.4	28.8				
B_106	Spring 2017	0.90	56.4	39.0	31.0				
	Annu	ual incremental increase	1	-0.6	-2.2				

Table 3-7: LOI and SSA results for ECA transects

3.3.3 Regeneration Areas

One LFA monitoring site, R1_100, is located within the Regeneration Area Management Domains. The LOI and SSA results for this site is presented in **Table 3-8**.

During spring 2018 monitoring LOI decreased, with the transects being occupied with perennial groundcover and patches of litter, with 19 small patches of bare soil, which is up from 2017 results. The Soil Stability score exceeded the Completion Criteria, despite a small decrease compared to 2017. The Soil Infiltration score dropped under the Completion Criteria with a decrease of 14.3. The Nutrient Cycling scores once again failed to meet the Completion Criteria, experiencing a decrease compared to 2017 results.

		Landsaana	Soil Surface Assessment						
Site	Monitoring Season	Landscape Organisation Index	Stability	Infiltration	Nutrient Cycling				
	Spring 2018	0.76	52.9	36.2	30.1				
R4_100	Spring 2017	100	55.9	50.5	41.7				
	Annı	al incremental increase	-3	-14.3	-11.6				

Table 3-8: LOI and SSA results for Regeneration Area transects

3.3.4 Rehabilitation Areas

Six LFA monitoring sites are located within the Rehabilitation Areas, including R6; R8; R9; R10; R11 and R13. The LOI and SSA results for the sites are presented in **Table 3-9**.

Spring 2018 monitoring results indicate that all Rehabilitation Area transects experienced a drop in LOI scores compared to spring 2017 results. Sites R6 and R10 have decreased to below 0.8, due to increase in patches of bare soil at these sites. The Soil Stability scores recorded at sites R6, R9, R10, R11 and R13 exceeded the Completion Criteria. Site R8 experienced a decline of -5.2 from spring 2017 results and has now dropped under the Completion Criteria. The Soil Infiltration and Nutrients scores for all the Rehabilitation Area transects were below the Completion Criteria. Site R8 meets the annual incremental increase for Infiltration, while sites R6, R8 and R13 have met the annual incremental increase for nutrient cycling.

			Soil	Surface Assess	nent
Site	Monitoring Season	Landscape Organisation Index	Stability	Infiltration	Nutrient cycling
	Spring 2018	0.70	58.5	28.9	28.3
R6	Spring 2017	0.80	56.9	30.8	25.8
	Annı	al incremental increase	1.6	-1.9	2.5
	Spring 2018	0.93	48.0	35.3	28.3
R8	Spring 2017	0.95	53.2	31.4	24.2
	Annu	al incremental increase	-5.2	3.9	4.1
	Spring 2018	0.87	56.1	26.4	24.8
R9	Spring 2017	0.98	58.1	42.7	38.1
	Annu	al incremental increase	-2	-16.3	-13.3
D 10	Spring 2018	0.64	52.0	25.1	22.8
R10	Spring 2017	0.69	56.6	28.8	22.1

Table 3-9: LOI and SSA results for Rehabilitation Area transects

		Landagana	Soil Surface Assessment			
Site	Monitoring Season	Landscape Organisation Index	Stability	Infiltration	Nutrient cycling	
	Annual incremental increase		-4.6	-3.7	0.7	
	Spring 2018	0.95	52.9	34.4	31.9	
R11	Spring 2017	0.98	60.9	40.6	36.9	
	Annual incremental increase		-8	-6.2	-5	
	Spring 2018	0.87	51.5	32.0	30.7	
R13	Spring 2017	0.91	57.9	33.7	28.1	
	Annı	al incremental increase	-6.4	-1.7	2.6	

3.3.5 Reference sites

During spring 2018 monitoring, ten LFA transects were undertaken at Reference sites to provide comparative data to assist in guiding management of WCPLs Management Domains. The LOI and SSA scores for the Reference Site transects are presented in **Table 3-10**.

During spring 2018 monitoring, high LOI scores (above 0.9) were recorded at all the Reference sites, indicating that most of the sites were close to being entirely occupied with patches and have a stable landform. The Soil Surface Stability scores recorded at all Reference sites were above the Completion Criteria. Soil Infiltration was below the Completion Criteria for all sites except Ref_7, however Ref_1, Ref_3, Ref_4, Ref_6, Ref_7 and Ref_8 all achieved the incremental increase target. Nutrient Cycling for all reference site were below the Completion Criteria, sites Ref_1, Ref_2, Ref_3, Ref_4, Ref_5, Ref_6, Ref_7 and Ref_8 achieved the incremental increase target.

		Landesens	Soil	Surface Assessn	nent
SITE	Monitoring Season	Landscape Organisation Index	Stability	Infiltration	Nutrient cycling
	Spring 2018	0.95	54.9	43.2	34.3
Ref_1	Spring 2017	0.80	56.7	39.6	32.1
Anni		al incremental increase	-1.8	3.6	2.2
	Spring 2018	0.92	62.6	38.9	38.1
Ref_2	Spring 2017	1.00	54.3	40.5	35.2
Ar		al incremental increase	8.3	-1.6	2.9
	Spring 2018	0.91	59.4	48.5	41.7
Ref_3	Spring 2017	0.97	56.9	39.6	34.7
	Annı	al incremental increase	2.5	8.9	7
	Spring 2018	0.96	57.7	45.0	36.5
Ref_4	Spring 2017	0.78	50.0	35.3	25.5
	Annual incremental increa		7.7	9.7	11
Ref_5	Spring 2018	0.99	65.1	41.1	36.8

Table 3-10: LOI and SSA results for Reference Sites

		l	Soil	Surface Assessr	nent
SITE	Monitoring Season	Landscape Organisation Index	Stability	Infiltration	Nutrient cycling
	Spring 2017	0.82	54.4	45.7	33.4
	Annı	al incremental increase	10.7	-4.6	3.4
	Spring 2018	0.98	54.4	49.3	37.7
Ref_6	Spring 2017	0.96	54.3	42.3	32.8
	Annı	al incremental increase	0.1	7	4.9
	Spring 2018	0.97	60.0	50.6	42.0
Ref_7	Spring 2017	0.89	54.3	45.1	34.1
	Annual incremental increase		5.7	5.5	7.9
	Spring 2018	0.99	59.3	46.9	41.3
Ref_8	Spring 2017	1.00	55.7	39.1	33.6
	Annı	al incremental increase	3.6	7.8	7.7
	Spring 2018	0.98	58.1	43.9	36.8
Ref_13b	Spring 2017	0.98	54.4	42.7	35.2
Ar		al incremental increase	3.7	1.2	1.6
	Spring 2018	1.00	54.9	39.3	38.5
Ref_14	Spring 2017	1.00	59.3	43.1	38.8
	Annı	al incremental increase	-4.4	-3.8	-0.3

3.3.6 Discussion of LFA monitoring results

Most sites recorded relatively high LOI scores (>.80), indicating stable, functioning landform covered by patches at these sites. Although there has been a decrease in LOI scores below 0.80 at sites R6, R10 and R4_100, reflecting an increase in patches of bare soil compared to spring 2017 results, which represents a decreased stability within the landscape at these sites. However, LOI should be considered as an indicator only and correlation of these scores against vegetation and non-vascular ground cover data (for example, fallen logs) is important to gain a more detailed understanding of the overall functioning of the monitoring sites.

Within each of the Management Domains, the dominant patch types were groundcover, litter (with litter consisting of exotic annual species and/or leaf litter) and a mixture of groundcover and litter. The dense perennial groundcover at many monitoring sites is reflective of their vegetation type and condition, including regenerating DNG of grassy woodland communities.

All sites, except R8 and A_100, met the Completion Criteria target for stability, with 11 of the 20 sites experiencing an increase compared to 2017 monitoring results. The stability scores across the Management Domains monitoring sites were comparable to the Reference site scores. The changes in stability scores may be attributed to a range of factors, including changes in soil moisture levels affecting individual indicators (for example, surface resistance) or observer variation of field conditions.

Infiltration and Nutrient Cycling indices were lower, with no site achieving the Completion Criteria target within any of the Management domains. Although site R8 achieved the annual incremental increase for Infiltration, four sites A_100, R6, R8 and R13 all meet the annual incremental increase for nutrient cycling.

Similarly, several Reference sites failed to achieve the benchmark completion criteria, although six sites meet the annual incremental increase for infiltration and eight sites meet the annual incremental increase for nutrient cycling. Variations from the 2017 monitoring results may be a result of a reduction in grass cover due to drier field conditions in 2018, with the 2018 period experiencing 172.1 mm less rain than the historical average. Nutrient Cycling may be affected by perennial vegetation cover, litter cover and extent of decomposition, cryptogam cover and soil surface roughness. While many LFA sites have moderate to dense cover of perennial vegetation (grasses) and/or high litter cover, there was limited litter decomposition observed and largely flat soil micro topography. Low Soil Infiltration and Nutrient Cycling scores may be due to historical clearing and livestock usage across the BOAs, ECAs and Regeneration Sites. Low scores recorded within the Rehabilitation Sites may be due to the compacted artificial soils on which the Rehabilitation areas are located.

This decline in SSA scores within the Management Domains is consistent with results from the 2016 to 2017 monitoring periods, suggesting there may be a downward trend. Longer term data would be required to assess whether this reduction represents a short-term change (for example due to a reduction in grass cover from seasonal variance, data collection and calculation, observer variation) or an ongoing trend requiring management action.

3.3.7 Review of LFA results against Trigger Action Response Plans

As per the updated WCPL BMP (WCPL 2017), TARPs have been developed in the event that LFA results are not incrementally improving towards the respective Completion Criteria.

3.4 Fauna monitoring

Fauna monitoring was undertaken during winter and spring in 2018. Total species richness recorded in 2018 was 134 species, comprising 106 birds, four amphibians, 13 reptiles, 11 mammals (including ten positively identified microbat species) and four mammal species. A full list of all fauna species recorded during spring 2018 monitoring program is included in **Appendix E.**

3.4.1 Winter bird monitoring

A total of 76 species were identified during the 2018 winter bird monitoring across the existing and newly established sites. The data collected at the newly established sites forms baseline data and cannot be compared to previous year's data. A total of 61 species were identified at the existing fauna sites, this is a decrease compared to 2017 results when a total of 71 bird species were recorded.

Target eucalypt feed tree species were not yet in flower during the survey period. The survey methods were adept at detecting other species, including threatened species, however the decrease in bird species richness and abundance may be explained by the inopportune timing of the surveys, as this would also decrease the likelihood of detecting winter-feeding species. Winter-feeding specialists include *Anthochaera phrygia* (Regent Honeyeater) and *Lathamus discolor* (Swift Parrot), which are both listed as either critically endangered or endangered under the Commonwealth *Environment Protection and Biodiversity Conservation Act 1999* (EPBC Act) and the NSW *Biodiversity Conservation Act 2016* (BC Act).

Bird species richness at individual sites ranged from four species at sites R6 and R9 to 22 species at sites BOA2_101, BOA3_101 and BOA5_101. The most abundant species recorded was *Malurus cyaneus* (Superb Fairy-wren), with a total of 122 individuals recorded across the monitoring sites. This was closely followed by *Sturnus vulgaris* (Common Starling) with a total of 121 individuals recorded. This species was also the only introduced species recorded during the 2018 winter monitoring. The most commonly occurring species was *Manorina melanocephala* (Noisy Miner), which was recorded at 23 of the 38 monitoring sites.

Five species listed as vulnerable under the BC Act were identified, including *Chthonicola sagittata* (Speckled Warbler), *Climacteris picumnus victoriae* (Brown Treecreeper eastern subsp.), *Daphoenositta chrysoptera* (Varied Sittella), *Glossopsitta pusilla* (Little Lorikeet) and *Petroica boodang* (Scarlet Robin) (**Table 3-11**). At the previously established sites, the overall occurrence of threatened species has decreased since winter 2017 monitoring. However, the Scarlet Robin was not detected during winter 2017 monitoring.

Scientific Name	Common Name	Site Recorded	BC Act Listing	EPBC Act Listing
Climacteris picumnus victoriae	Brown Treecreeper (eastern subsp.)	BOA1_100, BOA5_500, BOA5_101, D_103	V	-
Chthonicola sagittata	Speckled Warbler	A_102, B_105, BOA3_101, BOA4_100, BOA5_100, BOA5_101, BOA5_102, D_103, E_104, E_106, R7_100, R7_101	V	-
Glossopsitta pusilla	Little Lorikeet	BOA1_100		

Table 3-11: Winter bird monitoring - Threatened species

Scientific Name	Common Name	Site Recorded	BC Act Listing	EPBC Act Listing
Daphoenositta chrysoptera	Varied Sittella	B_100, B_103, BOA5_100	V	-
Petroica boodang	Scarlet Robin	E_106	V	-

3.4.2 Spring fauna monitoring

The most commonly occurring bird species was *Pachycephala rufiventris* (Rufous Whistler), occurring at 31 of the 37 bird monitoring sites. Bird species richness ranged from 29 species at Ref_10 to five species at R6. *Miniopterus schreibersii oceanensis* (Eastern Bentwing-bat) was the most commonly occurring microbat species, positively identified at 11 of the 15 microbat monitoring sites, and potentially occurring at a further three sites. Microbat species richness is calculated using only positively identified species and excludes species complexes (where the individual species is unable to be identified), to avoid overestimating species richness. Microbat species richness ranged from zero species (A_104) to nine species (E_104).

Five introduced species, *Mus musculus* (House Mouse), *Sus scrofa* (pig) *Capra hircus* (Goat), Deer and *Oryctolagus cuniculus* (Rabbit), were recorded or evidence observed.

Six bird species and five microbat species listed as vulnerable under BC Act and / or the EPBC Act were recorded and are listed below in **Table 3-12**. Four more threatened bird species, including *Melithreptus gularis* (Black-chinned Honeyeater), *Stagonopleura guttata* (Diamond Firetail), *Neophema pulchella* (Turquoise Parrot) and *Daphoenositta chrysoptera* (Varied Sittella), were recorded opportunistically throughout the landscape.

Bird species diversity within all monitored sites is presented within **Figure 3-8.** Sites BOA 1 - 5 and Reference sites, commenced monitoring within 2018. Bird species diversity ranges from 5 in R6 to 26 in Ref_10. All sites except for R5_101 and A_100 saw a drop in the diversity within 2018.

Assemblage	Scientific Name	Common Name	Site Recorded	BC Act Listing	EPBC Act Listing
	Artamus cyanopterus	Dusky Woodswallow	BOA5_100	V	-
Birds	Calyptorhynchus lathami	Glossy Black-Cockatoo	D_103, Ref_10	V	-
	Chthonicola sagittata	Speckled Warbler	B_103, BOA5_102, R5_101	V	-
	Climacteris picumnus victoriae	Brown Treecreeper (eastern subsp.)	BOA1_100, D_101, Ref_2, Ref_8, Ref_14	V	-

Table 3-12: Threatened fauna recorded

Assemblage	Scientific Name	Common Name	Site Recorded	BC Act Listing	EPBC Act Listing
	Glossopsitta pusilla	Little Lorikeet	D_103	V	-
	Grantiella picta	Painted Honeyeater	B_100, BOA2_100, D_103, E_100, R5_101	V	-
	Chalinolobus dwyeri	Large-eared Pied Bat	BOA3_100, BOA4_101, BOA5_101, B_101, E_104	V	V
	Minioperus orianae oceanensis	Eastern Bentwing-bat	BOA1_100, BOA2_101*, BOA3_100, BOA4_101, BOA5_101, A_104*, B_101, C_102, D_103, E_104, Ref_2, Ref_3, Ref_8, Ref_10*, Ref_14*	V	
Microbats	Nyctophilus corbeni	Corben's Long-eared Bat	BOA1_100*, BOA2_101*, BOA3_100*, BOA5_101*, B_101*, C_102*, E_104*, Ref_3*, Ref_8*, Ref_14*	V	V
	Saccolaimus flaviventris	Yellow-bellied Sheathtail Bat	C_102*, Ref_14	V	
	Vespadelus troughtoni	Eastern Cave Bat	BOA2_101*, BOA3_100, BOA5_101, B_101, C_102*, D_103*, E_104, Ref_2*, Ref_3, Ref_8	V	

*Possible identification only. V = Vulnerable

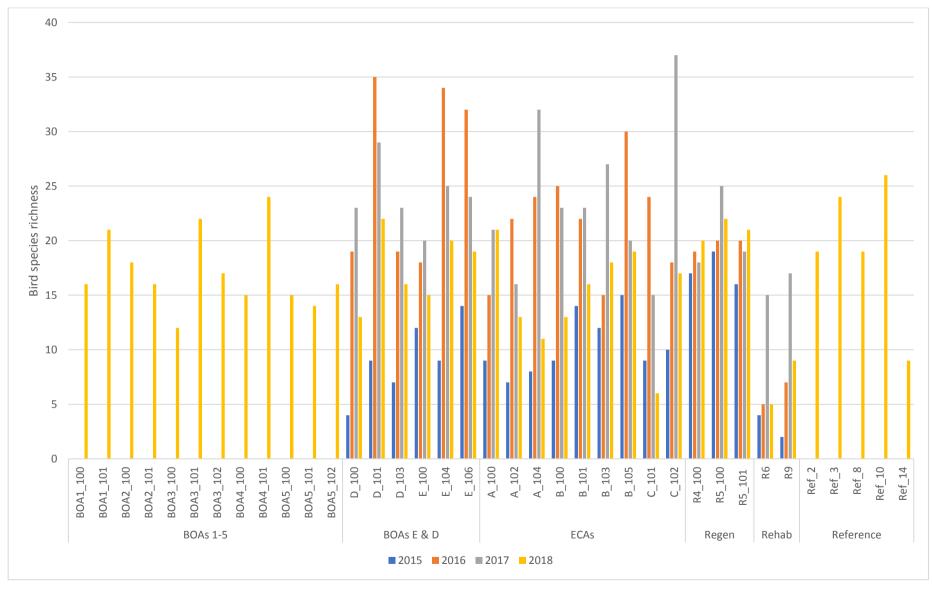


Figure 3-8: Bird species diversity at spring monitoring sites 2016 - 2018

3.4.3 Biodiversity Offset Areas 1 - 5

The results of microbat monitoring undertaken across BOA 1 to 5 during spring 2018 monitoring is presented below in **Table 3-13**. Total species diversity across BOAs 1 to 5 is 85 species, comprised of 66 birds, nine microbats, nine reptiles and one amphibian species. Three threatened microbat species were recorded across the BOAs, Large-eared Pied Bat, Eastern Bentwing-bat and Eastern Cave Bat. More detailed results from fauna monitoring are discussed per BOA below.

Species Name	Common Name	BOA1_100	BOA2_101	BOA3_100	BOA4_101	BOA5_101
Austronomus australis	White-Striped Free-tailed Bat	х			Х	
Chalinolobus dwyeri*1	Large-eared Pied Bat			х	Х	Х
Chalinolobus gouldii	Gould's Wattled Bat		Р	х	Х	Х
Chalinolobus gouldii / Ozimops complex	Gould's Wattled Bat / Free-tailed Bat complex			х	х	х
Chalinolobus gouldii / Scotorepens balstoni	Gould's Wattled Bat / Inland Broad-nosed Bat			x		х
Chalinolobus morio	Chocolate Wattled Bat	Р		х		Х
Chalinolobus morio / Vespadelus troughtoni*	Chocolate Wattled Bat / Eastern Cave Bat		x	x		х
Miniopterus orianae oceanensis*	Eastern Bentwing-bat	х	Ρ	x	x	х
<i>Miniopterus orianae</i> <i>oceanensis</i> * and any or all of the following species, <i>Vespadelus darlingtoni /</i> <i>Vespadelus regulus /</i> <i>Vespadelus vulturnus</i>	Eastern Bentwing-bat and any or all of the following species, Large Forest Bat / Southern Forest Bat / Little Forest Bat	x	x	x	x	x
<i>Nyctophilus spp.</i> In this region <i>N. geoffroyi, N. gouldii</i> and the threatened N. corbeni * ¹ are likely to be present.	In this region Lesser, Gould's and the threatened Corben's Long-eared Bat are likely to be present.	Ρ	x	x		x
Ozimops species complex. In this region the <i>O. petersi</i> , <i>O. ridei</i> and <i>O. planiceps</i> .	In this region the Inland, Ride's and South-eastern Free-tailed Bat are likely to be present.			x	х	х

Table 3-13: Results of the microbat analysis for BOAs 1-5 spring 2018

Species Name	Common Name	BOA1_100	BOA2_101	BOA3_100	BOA4_101	BOA5_101
Rhinolophus megaphyllus	Eastern Horseshoe Bat			х	х	Х
Scotorepens balstoni	Inland Broad-nosed Bat			х		Х
Scotorepens greyii	Lesser Broad-nosed Bat			Р		
Vespadelus darlingtoni	Large Forest Bat	Р	Р	Р	Р	Р
Vespadelus regulus	Southern Forest Bat	Р	Р	Р	Р	Р
Vespadelus troughtoni*	Eastern Cave Bat		Р	Х		Х
Vespadelus vulturnus	Little Forest Bat	Р	Р	Х	Р	Х
Species Diversity (Positive identification)		2	3	14	8	14
Species Diversity (Possible identification)		5	6	3	3	2

X = Definitely present, P = Possibly present, * Threatened species listed under BC Act / 1 Threatened species listed under the EPBC Act

Biodiversity Offset Area 1 (BOA 1)

BOA 1 is surrounded on three sides by Munghorn Gap Nature Reserve. There is evidence of past timber harvesting, the valley floor has been mostly cleared with remnants of *Angophora floribunda* (Roughbarked Apple) and *Eucalyptus blakelyi* (Blakely's Red Gum). There are no signs of recent livestock grazing (Peabody 2015).

BOA 1 is a management area which consists of two fauna sites, both located within a woodland / forested area. A total of 16 bird species were observed at BOA1_100, while at BOA1_101, 21 bird species were recorded. One reptile species *Anomalopus leuckartii* (Two-clawed Worm Skink) was observed at BOA1_100. Two microbat species were also positively identified at BOA1.

Biodiversity Offset Area 2 (BOA 2)

There are two woodland / forest sites located within BOA 2, BOA2_100 and BOA2_101. The western boundary adjoins Munghorn Gap Nature Reserve. Approximately 55% is vegetated, a large amount being advanced regeneration from prior clearing. There are several natural springs. BOA 2 has been recently grazed by livestock (Peabody 2015). One vulnerable species, the Painted Honeyeater, was observed at BOA2_100. At site BOA2_100, 18 bird species were observed, while at BOA2_101, 16 bird species were recorded.

BOA 2 had two vulnerable microbat species possibly present, the Eastern Bentwing-bat and the Eastern Cave Bat.

Biodiversity Offset Area 3 (BOA 3)

BOA 3 consists of high ridges and sandstone escarpments with numerous caves and shelters. This area is surrounded on three sides by the Goulburn River National Park. Approximately 75% is vegetated, most of which is largely undisturbed. There is an area of old growth dry rainforest dominated by *Backhousia myrtifolia* (Grey Myrtle). It is partially grazed by livestock in more cleared areas (Peabody 2015). There are three woodland / forest sites within this BOA.

Bird species diversity was highest at BOA3_101 with 22 species, BOA3_100 recorded 12 species and BOA3_102 recorded 17 species. Two reptile species, *Anilios nigrescens* (Blackish Blindsnake) and *Carlia tetradactyla* (Southern Rainbow Skink), were observed within BOA3_101 and BOA3_100 respectively.

BOA 3 recorded high microbat diversity, with eight species positively identified. This includes three species listed as vulnerable under the BC Act: Large-eared Pied Bat, Eastern Bentwing-bat and Eastern Cave Bat. The Large-eared Pied Bat is also listed as vulnerable under the EPBC Act.

Biodiversity Offset Area 4 (BOA 4)

BOA 4 is surrounded on three sides by the Goulburn River National Park. The land is generally flat with a central incised gully system extending to the west. There are low sandstone escarpments along this system. There are no signs of recent livestock grazing (Peabody 2015).

There are two woodland / forest sites located within this management area. There were 15 species of birds recorded at BOA4_100 and 24 species at BOA4_101. There were five reptile species and one amphibian species recorded across both sites.

BOA4_101 recorded a microbat species richness of five. This includes one vulnerable species listed under both the BC Act and EPBC Act, the Large-eared Pied Bat.

Biodiversity Offset Area 5 (BOA 5)

This area is surrounded on three sides by the Goulburn River National Park. Over 80% is vegetated, with evidence of some prior clearing and timber harvesting. This BOA consists of colluvial lower slopes surrounding an alluvial cultivated valley floor. It is partially grazed by livestock in more cleared areas (Peabody Energy 2015).

There are three woodland / forest sites located at both sites within this management domain. The Dusky Woodswallow, a vulnerable species under the BC Act, was recorded at BOA5_100. There were 15 species of bird recorded at BOA5_100, 14 at BOA5_101 and 16 at BOA5_10. Overall there were three reptile species recorded across all three sites.

BOA5_101 also recorded a high diversity of microbats, with eight species positively identified. This includes three species listed as vulnerable under the BC Act, the Large-eared Pied Bat, Eastern Bentwing-bat and Eastern Cave Bat. The Large-eared Pied Bat is also listed as vulnerable under the EPBC Act.

3.4.4 Biodiversity Offset Areas D and E

As per Section 5.1.1 of the BMP, BOAs D and E no longer require monitoring under the BMP (WCPL 2017), however results from 2018 monitoring are presented below.

The results of microbat monitoring undertaken across BOA-D and BOA-E during spring 2018 monitoring is presented below in **Table 3-14**. A total microbat species richness of nine was recorded across BOAs D and E. This includes three species listed as vulnerable under the BC Act, the Large-eared Pied Bat, Eastern Bentwing-bat and Eastern Cave Bat. The Large-eared Pied Bat is also listed as vulnerable under the EPBC Act. More detailed results from fauna monitoring are discussed per BOA below.

Species Name	Common Name	D_103	E_104
Austronomus australis	White-Striped Free-tailed Bat		х
Chalinolobus dwyeri*1	Large-eared Pied Bat		х
Chalinolobus gouldii	Gould's Wattled Bat	Р	x
Chalinolobus gouldii / Ozimops complex	Gould's Wattled Bat / Free-tailed Bat complex		х
Chalinolobus gouldii / Scotorepens balstoni	Gould's Wattled Bat / Inland Broad-nosed Bat		х
Chalinolobus morio	Chocolate Wattled Bat	Р	x
Chalinolobus morio / Vespadelus troughtoni*	Chocolate Wattled Bat / Eastern Cave Bat	х	х
<i>Miniopterus orianae oceanensis*</i>	Eastern Bentwing-bat	х	х
<i>Miniopterus orianae</i> <i>oceanensis</i> * and any or all of the following species, <i>Vespadelus darlingtoni /</i> <i>Vespadelus regulus /</i> <i>Vespadelus vulturnus</i>	Eastern Bentwing-bat and any or all of the following species, Large Forest Bat / Southern Forest Bat / Little Forest Bat	x	x
<i>Nyctophilus spp.</i> In this region <i>N. geoffroyi, N. gouldii</i> and the threatened N. corbeni * ¹ are likely to be present.	In this region Lesser, Gould's and the threatened Corben's Long-eared Bat are likely to be present.		х
<i>Ozimops</i> species complex. In this region the <i>O. petersi</i> , <i>O. ridei</i> and <i>O. planiceps</i> .	In this region the Inland, Ride's and South-eastern Free-tailed Bat are likely to be present.		х
Rhinolophus megaphyllus	Eastern Horseshoe Bat	х	х
Scotorepens balstoni	Inland Broad-nosed Bat		Х
Vespadelus darlingtoni	Large Forest Bat		Р
Vespadelus regulus	Southern Forest Bat		Р
Vespadelus troughtoni*	Eastern Cave Bat	Р	х

Table 3-14: Results of the microbat analysis for BOAs D and E spring 2018

Species Name	Common Name	D_103	E_104
Vespadelus vulturnus Little Forest Bat		Р	х
Species Diversity (Positive ident	4	15	
Species Diversity (Possible iden	4	2	

X = Definitely present, P = Possibly present, * Threatened species listed under BC Act / ¹ Threatened species listed under the EPBC Act

Biodiversity Offset Area D (BOA-D)

All sites occur in remnant eucalypt and *Callitris* dominated dry sclerophyll forest that contains a range of habitat features suitable for supporting various fauna assemblages.

A total of 35 fauna species were recorded within BOA-D during spring 2018, comprising 29 bird species, four reptile species and two microbat species. This is a decrease in diversity across the board compared to 2017. Similarly, all sites within BOA-D experienced a decrease in bird diversity compared to 2017 results. At site D_100 there was 13 individual bird species. D_101 recorded 22 individuals and D_103 recorded 16 species.

D_103 recorded three vulnerable bird species under the BC Act, whilst one threatened bird species was found within D_101.

The listed microbat species Eastern Bentwing-bat was positively identified. This suggests although microbat diversity is low, the habitat present within BOA D provides good habitat for selective species.

BOA D has abundant canopy and shrub layer foliage with minimal ground vegetation coverage. The presence of litter and fallen logs provides good habitat features for ground fauna. No surface water present. The site is adjacent to Goulburn River National Park and surrounded by significant tracts of remnant woodland.

Biodiversity Offset Area E (BOA-E)

Site E_100 is located within remnant dry sclerophyll forest, with sites E_104 and E_106 located in remnant grassy woodland communities. BOA-E contains a mix of canopy and shrub layer foliage and areas are dominated by groundcover vegetation. The site is located immediately south of Goulburn River National Park and is surrounded by significant patches of remnant native vegetation. Portions of this site contain litter, fallen logs and rock coverage which provides good habitat features for ground fauna. All three fauna monitoring sites contain substantial habitat features for a variety of fauna assemblages.

A total of 50 fauna species were recorded within BOA-E during spring 2018 monitoring, comprising of 35 bird species, 9 microbat species, 5 reptile species and 1 amphibian species. As with BOA D, this represents a decline across the board compared to 2017 results. Bird diversity has decreased at all sites compared to 2017 results. E_100 recorded 15 bird species, E_104 recorded 20 individuals and E_106 recorded 19 individual species.

One threatened bird species listed as vulnerable under the BC Act, the Painted Honeyeater, was recorded at E_100.

Three microbat species (Large-eared Pied Bat, Eastern Bentwing-bat and Eastern Cave Bat) listed under the BC Act were positively identified at site E_104. The Large-eared Pied Bat is also listed as vulnerable under the EPBC Act.

3.4.5 Enhancement and Conservation Areas

The results of microbat monitoring undertaken across ECA-A, ECA-B and ECA-C during spring 2018 monitoring is presented in

Table 3-15. Three listed microbat species were detected across the ECA areas. More detailed results from fauna monitoring are discussed per ECA below.

Bird diversity has declined at all ECA sites compared to spring 2017 results, except for site A_100 which has maintained the same diversity (**Figure 3-8**).

62

Species Name	Common Name	A_104	B_101	C_102
Austronomus australis	White-Striped Free-tailed Bat		х	х
Chalinolobus dwyeri*1	Large-eared Pied Bat		х	
Chalinolobus gouldii	Gould's Wattled Bat		х	Х
Chalinolobus gouldii / Ozimops	Gould's Wattled Bat /		X	X
complex	Free-tailed Bat complex		Х	Х
Chalinolobus gouldii / Scotorepens	Gould's Wattled Bat /		х	×
balstoni	Inland Broad-nosed Bat		^	X
Chalinolobus morio	Chocolate Wattled Bat		х	Х
Chalinolobus morio / Vespadelus	Chocolate Wattled Bat /		v	v
troughtoni*	Eastern Cave Bat		Х	Х
Miniopterus orianae oceanensis*	Eastern Bentwing-bat		х	х
	Eastern Bentwing-bat			
Miniopterus orianae oceanensis*	and any or all of the			
and any or all of the following species,	following species, Large	×	x	х
Vespadelus darlingtoni / Vespadelus	Forest Bat / Southern	Х		
regulus / Vespadelus vulturnus	Forest Bat / Little Forest			
	Bat			
Nyctophilus spp. In this region	In this region Lesser,			
N. geoffroyi, N. gouldii and the	Gould's and the			
threatened <i>N. corbeni</i> * ¹ are likely to	threatened Corben's		Х	Х
be present.	Long-eared Bat are likely			
	to be present.			
Ozimops species complex. In this	In this region the Inland,			
region the <i>O. petersi</i> , <i>O. ridei</i> and <i>O.</i>	Ride's and South-eastern		x	х
planiceps.	Free-tailed Bat are likely			
	to be present.			
Rhinolophus megaphyllus	Eastern Horseshoe Bat		Х	
Saccolaimus flaviventris*	Yellow-bellied			Р
	Sheathtail Bat			
Scotorepens balstoni	Inland Broad-nosed Bat		X	Х
Vespadelus darlingtoni	Large Forest Bat		Р	
Vespadelus regulus	Southern Forest Bat		Р	Р
Vespadelus troughtoni*	Eastern Cave Bat		Х	Р
Vespadelus vulturnus	Little Forest Bat		х	Х
Species Diversity (Positive ident	ification)	1	15	12
Species Diversity (Possible iden	tification)		2	3

Table 3-15: Results of the microbat analysis for A_104, B_101 and C_102 spring 2018

X = Definitely present, P = Possibly present, * Threatened species listed under BC Act / ¹ Threatened species listed under the EPBC Act

Enhancement and Conservation Area A (ECA-A)

Sections of ECA – A contain low floristic and forage resource diversity as the site is situated in a cleared paddock with no canopy and/or minimal shrub layer foliage, although a small portion of the site has a high

abundance canopy coverage. Landscape features within ECA-A provide habitat for a range of fauna assemblages.

A total of 32 species were recorded within ECA-A during spring 2018 monitoring, comprising of 29 bird species, one introduced mammal species and two reptile species. This is a decrease compared to 2017 results.

The only microbat activity recorded at ECA-A in 2018 was unable to be identified due to difficulty identifying or separating confidently between species, but has the potential to be the listed species, Eastern Bentwing Bat.

Enhancement and Conservation Area B (ECA-B)

ECA-B is located immediately south of the Goulburn River National Park, providing enhanced habitat values for the area through landscape connectivity. Most of the sites have a dominant canopy coverage, with litter cover and the presence of fallen logs provides further habitat values for ground fauna. Parts of this area has been extensively cleared. A creek line borders the southern and western edges of the site which contain bulrushes and some canopy coverage.

B_105 is bordered by two creeks. These landscape features are likely to influence which species utilise and are recorded at this site, which is consistent with it having the highest bird diversity of the ECA-B sites in spring 2018.

A total of 54 species were recorded in ECA-B during spring 2018 monitoring, comprising 44 bird species, nine microbat species, and one amphibian species. This is a slight decline compared to 2017 data, however microbat diversity has seen an increase in the same period.

Three threatened microbat species were detected during spring 2018, these were the Large-eared Pied Bat, Eastern Bentwing-bat and Eastern Cave Bat. Two threatened bird species, Painted Honeyeater and the Speckled Warbler were also recorded across the ECA-B area. This suggests the site can support a variety of species, which may be attributed to the presence of water at the site.

Enhancement and Conservation Area C (ECA-C)

Across the monitoring sites within this domain, landscape features provide habitat for a range of fauna assemblages. ECA-C is located adjacent to Munghorn Gap Nature Reserve (NR), which provides enhanced habitat values for the area through landscape connectivity. Site C_101 is located within DNG, whilst site C_102 is located in remnant eucalypt/cypress pine forest.

A total of 25 species were recorded in ECA-C during spring 2018 monitoring, comprising of 18 bird species, 6 mammal species (all positively identified microbat species) and 1 amphibian species. Overall species richness was lower than during spring 2017 monitoring.

The threatened species Large-eared Pied Bat and Eastern Bentwing-bat were positively identified, whilst the listed species Yellow-bellied Sheath-tailed Bat and the Eastern Cave Bat were also possibly present. C_102 contains high floristic and forage resource diversity with abundant canopy, shrub and ground layer coverage. The site is located on a rocky ridge which combined with the presence of fallen logs and litter coverage provides good habitat features for ground fauna. While site C_101 contains low floristic and forage resource diversity as site has been cleared. Limited litter, fallen log and rock cover, with no surface water present was observed at this site at the time of the monitoring program.

3.4.6 Regeneration Areas

Two of the three regeneration sites monitored in spring 2018 recorded the highest bird diversity since monitoring commenced. Whilst the third site, R5_100, recorded its second highest result, with spring 2017 topping spring 2018 results (**Figure 3-8**). More detailed results from fauna monitoring are discussed per Regeneration Area below.

Regeneration Area 4

Regeneration Area 4 is located south of the Goulburn River National Park. Creek lines border the site to the north and east. Site R4_100 is located within a regenerating paddock, with cover dominated by the exotic grasses *Phalaris aquatica* and *Vulpia* sp., and a high abundance of exotic forbs.

A total of 20 bird species were recorded at R4_100 which is an increase from the 2017 results. No threatened fauna species were recorded within Regeneration Area 4 during the monitoring period.

Regeneration Area 5

Regeneration Area 5 is located immediately south of Goulburn River National Park, which provides enhanced habitat values for the area through landscape connectivity. The site is comprised of moderate floristic and forage resource diversity with a scattered canopy coverage on the edge of the site. Both sites in this Management Domain are located within DNG. R5_101 is in close proximity to an area of Rough-barked Apple Woodland and Yellow Box Woodland, while R5_100 is bordered by an ephemeral vegetated creek line.

Site R5_100 saw a decrease in bird diversity in 2018 with 3 less species being recorded during the spring 2018 monitoring. This is a slight decline compared to 2017 results of 34 species. Site R5_101 saw an increase in bird diversity, recording 21 different species in 2018. The Painted Honeyeater and Speckled Warbler, both listed as vulnerable under the BC Act, were recorded at R5_101. No other species were detected, as general fauna monitoring was not conducted in Regeneration Area 5.

3.4.6 Rehabilitation Areas

Sites R6 and R9 are surrounded by active mine operations which presents limitations to landscape connectivity and fauna dispersal. Both sites have a dense groundcover dominated by exotic pasture species. These sites are to be rehabilitated to a woodland community, with scattered eucalypt seedlings and saplings being present.

A total of 16 species were recorded within both these Management Domains, comprising of 13 birds, 2 amphibians and 1 reptile species. Overall this is a decrease in species richness compared to monitoring conducted in spring 2017, although bat data collection did not occur during 2018 monitoring.

Moderate floristic and forage resource diversity due to abundant shrub and ground vegetation cover and presence of litter and rock coverage. No surface water was present.

3.4.7 Reference sites

Species richness, ranged from two positively identified species at Ref_2 to seven species at Ref_8. This is a decrease from 2017 where microbat diversity ranged between seven and ten species. Four threatened species were detected across the reference sites. Both the Eastern Horseshoe bat and the Chocolate wattled bat were positively identified across four of five sites, making them the most commonly listed species detected across all reference sites.

Ref_10, Ref_2, Ref_3 and Ref_8 all recorded two reptile species within their sites, and Ref_14 detected three reptile species. There was a total of seven reptile species detected across all reference sites.

Results for the microbat analysis at the five reference sites is shown in Table 3-16.

Species Name	Common Name	Ref_2	Ref_3	Ref_8	Ref 10	Ref 14
Austronomus australis	White-Striped Free- tailed Bat		х		х	х
Chalinolobus dwyeri*1	Large-eared Pied Bat		Х		Х	
Chalinolobus gouldii	Gould's Wattled Bat	Р	Р	Х		Р
Chalinolobus gouldii / Ozimops complex	Gould's Wattled Bat / Free-tailed Bat complex		х	Х		х
Chalinolobus gouldii / Scotorepens balstoni	Gould's Wattled Bat / Inland Broad-nosed Bat		х	Х		
Chalinolobus morio	Chocolate Wattled Bat	Х	Х	Х	Р	х
Chalinolobus morio / Vespadelus troughtoni*	Chocolate Wattled Bat / Eastern Cave Bat	х	х			
Miniopterus orianae oceanensis*	Eastern Bentwing-bat	Х	х	Х	Р	Р
Miniopterus orianae oceanensis* and any or all of the following species, Vespadelus darlingtoni / Vespadelus regulus / Vespadelus vulturnus	Eastern Bentwing-bat and any or all of the following species, Large Forest Bat / Southern Forest Bat / Little Forest Bat	Х	х	х	X	x
Nyctophilus spp. In this region <i>N. geoffroyi</i> , <i>N.</i> gouldii and the threatened <i>N. corbeni</i> * ¹ are likely to be present.	In this region Lesser, Gould's and the threatened Corben's Long-eared Bat are likely to be present.		x	х		Р
Nyctophilus spp. In this region <i>N. geoffroyi</i> , <i>N.</i> gouldii and the threatened <i>N. corbeni*</i> ¹ are likely to be present.	In this region Lesser, Gould's and the threatened Corben's Long-eared Bat are likely to be present.					Р
Ozimops (Mormopterus) spp.	Free-tailed Bat complex	Х	х	Х	Х	х
Rhinolophus megaphyllus	Eastern Horseshoe Bat		х	х	х	х
Saccolaimus	Yellow-bellied					х
flaviventris* Scotorepens balstoni	Sheathtail Bat Inland Broad-nosed		Р	X	Р	
	Bat			~		
Vespadelus regulus Vespadelus	Southern Forest Bat	P	X	P X	Р	
troughtoni*	Lastern Cave Bat	r	^	٨		
Vespadelus vulturnus	Little Forest Bat	Р	Р	Х	Х	Р

Table 3-16: Results of the microbat analysis for the WCPL Reference Sites

Species Name Common Name		Ref_2	Ref_3	Ref_8	Ref 10	Ref 14
Species Diversity (Pos	5	12	12	6	7	
Species Diversity (Pos	4	3	1	4	5	

X = Definitely present, P = Possibly present, * Threatened species listed under BC Act / ¹ Threatened species listed under the EPBC Act

3.4.8 Fauna discussion

The data collected at the sites established in 2018 (BOAs 1 to 5) and the Reference sites, forms baseline data and cannot be compared to previous data.

Overall species diversity across all management domains has increased. A total of 121 species were recorded within 2018. This comprises of 92 bird species,13 reptile species, 4 amphibian species and 12 mammal species (including 10 positively identified microchiropteran bat (microbat) species). A full list of all fauna species recorded during the winter and spring 2018 monitoring program is included in **Appendix F**.

Bird diversity has declined since 2017 monitoring across all sites except R4_100 and R5_101. This is likely due to rainfall and drier conditions experienced during the 2018 monitoring periods. Continued monitoring is recommended to determine if this is due to seasonal variation or if there is a continued trend. There is a positive trend within the regeneration areas with a gradual increase in bird species richness. Sites R4_100 and R5_101 both recorded their highest bird species richness in 2018, which may indicate that the quality of habitat within these sites is improving. Although on-going monitoring will be needed to determine if there is a continued trend.

Overall, reptile species recorded in 2018 was similar to the 2017 results. Ref_14 and BOA4_101 both had the highest reptile diversity, recording three different reptile species at each site. On-going monitoring will be needed to determine if there is a continued trend or seasonal variation.

Overall, amphibian diversity has increased across all fauna sites compared to 2017 results, with four different species recorded. Seven sites in total recorded at least one of the four recorded species. Site R6 had the highest species richness with two different species recorded at the site. High rainfall events create favourable conditions for amphibians, likely increasing abundance and activity, which in turn affects detectability. 2018 was a dry year so it is likely amphibian species richness will increase in wetter years.

Limitations

The 2018 monitoring program took place during a dry period. The months leading up to and during spring 2018 monitoring experienced below average rainfall. Drier conditions may have decreased foraging resource availability for birds, and therefore abundances could be potentially lower, with some species moving away to areas with more suitable conditions. Dry condition may also negatively impact on habitat quality and availability within streams and pools. A decline in available surface water could be expected to significantly impact amphibian activity and breeding cycles. Observer variation and human error can impact the consistency of data between seasons and years.

4 Recommendations and Conclusion

4.1.1 Vegetation

Vegetation monitoring was undertaken within all Management Domains and Reference sites prescribed by the WCPL BMP during 2018. Fifteen of the 19 autumn monitoring sites failed the meet the Year 1-5

IPT, triggering the Native Vegetation and Habitat Complexity (BioMetric) TARP (WCPL 2017). This includes all Regeneration and Rehabilitation sites. This is despite the majority of sites' site value scores improving compared to 2017. Similarly, despite no site meeting all ten site attribute benchmarks, there has been improvement compared to 2017, with 15 out of 19 sites meeting the targets for seven or more of the ten site attributes.

Results from spring are similar, with 12 of the 20 sites, including all Regeneration and Rehabilitation sites, failing to meet their IPT and triggering the Native Vegetation and Habitat Complexity (BioMetric) TARP (WCPL 2017). This is despite general improvements compared to 2017 results, with eleven of the 20 site value scores improving compared to last year.

Consistent with previous monitoring, native overstorey, exotic cover and number of trees with hollows are the site attributes that are continuing to perform well across the management domains. This includes the Regeneration and Rehabilitation areas, however the year 1-5 IPT for number of trees with hollows is zero, explaining the unusually high performance of this site attribute. Overstorey regeneration and fallen logs are consistently not meeting targets as these are attributes that naturally progress slowly through time. It is considered these sites require either the passage of time for natural development or management intervention in order to achieve this site attribute target.

The results collected at Reference Sites and BOAs D and E during both autumn and spring 2018 monitoring, continue to add to the dataset to be used for comparison with vegetation sites within the various Management Domains. The BMP suggests that baseline data collected from Year 0 monitoring at the Reference Sites will be used to develop more relevant, locally based benchmark values against which future monitoring data would be analysed.

ELA recommends that the IPT for low vegetation condition sites is updated. Low vegetation condition is defined in Table 10 of the BMP as sites with site value scores of less than 34 (WCPL 2017), which contradicts the Year 1-5 IPT, which is also 34. As a result, all sites in the low vegetation are currently failing to meet the IPT.

4.1.2 Landscape stability

Groundcover in the form of living flora species, litter and rock material has been monitored within ECAs since 2007, Rehabilitation Areas since 2009, Regeneration Areas (formerly Regrowth Areas) since 2011, and BOAs 1-5 since 2018. The LOI data captured during the 2015 – 2017 monitoring, demonstrated consistently high scores. Although 2018 data has demonstrated a decrease in LOI at most sites, only three sites have dropped below 0.8 indicating presence of bare soil at most sites remains low. All sites except for A_100 and R8 meet the stability Completion Criteria, this indicates that levels of erosion within the majority of sites are consistent with previous monitoring seasons. Infiltration and nutrient cycling within all management domains failed to meet the Completion Criteria, which is consistent with previous results. Therefore, it is recommended that LFA monitoring is continued at the same sites into the future. This will enable identification of long-term trends.

4.1.3 Fauna

Data collected from BOAs 1 to 5 forms baseline data and therefore cannot be compared to previous results. It is recommended monitoring is continued at all sites in future to increase the dataset and enable identification of long-term trends. It is also recommended that BOA_D and BOA_E remain within the monitoring program to be used as reference sites. Both these sites have been monitored since 2015 and provide a valuable dataset that can be used to provide information on long term trends at the sites.

Winter and spring results both saw a decrease in bird diversity compared to previous monitoring. Reptile diversity remained stable compared to 2017 results, whilst amphibian diversity increased. The

Regeneration areas appear to be showing a positive trend in bird diversity, with two of the three sites recording the highest species diversity in spring 2018. This may indicate foraging habitat for birds is improving within this management domain. However, on-going monitoring is required to determine if this is a long-term trend.

The varying weather conditions over the last four years of monitoring highlights limitations of the program, some of which can be addressed. Timing of both the bird surveys and fauna trapping surveys is a determinant of success. It is recommended winter bird monitoring is not commenced until flowering of key winter-flowering species is confirmed, to increase the likelihood of recording specialist feeders such as Regent Honeyeater and Swift Parrot. An additional method of herpetological survey may assist in increasing trap success during colder months; that is, placing sheets of metal on the ground at monitoring sites several months prior to spring. This may provide shelter for reptiles and amphibians, increasing detection rates in spring.

4.2 General recommendations

To inform the recommendations for the Management Domains, **Table 4-1** provides a review of the monitoring results and IPTs and provides recommendations to inform future monitoring and to meet the IPTs and progress towards the Completion Criteria.

An Annual Works Program (ELA 2018) has been developed separately to this Annual Monitoring Report to provide specific management actions to be considered in response to the findings of this report.

Interim Performance Target	Comment from results	Recommendations
Vegetation		
IPTs are listed in the BMP for Western Slopes Dry Sclerophyll Forest and Western Slopes Grassy Woodlands based on vegetation condition. Biometric site attribute scores for the Management Domain monitoring sites (ECAs, BOAs, Regeneration and Rehabilitation Areas) were compared to the IPTs whilst Reference Sites were compared to Benchmark Targets.	Management Domain sites surveyed during spring 2018 monitoring demonstrated a high level of achievement for most IPTs. Although overstorey regeneration and fallen logs are the two attributes that are consistently falling, failing to meet the benchmark set at many of the sites, and more focus needs to be placed on these two site attributes.	Ongoing weed management is recommended across all Management Domains with a focus on the occurrences of Priority weeds. Targeted planting of native overstorey and midstorey species is recommended to accelerate the establishment of the mid and upper strata. These recommendations are in line with short term biodiversity management strategies outlined in the BMP. Ongoing monitoring of the Reference Sites to inform the development of more relevant, site-specific benchmarks. Refer to the TARP for specific actions in the event that the SVS is below the IPT
The management of Priority weeds is listed as a priority in the BMP in accordance with the legal responsibility of WCPL under the (now repealed) <i>Noxious Weeds Act 1993</i> .	Declared weed species were recorded in all Management Domains.	Targeted weed management is recommended. Priority weed locations have been noted and their presence should be reviewed during future monitoring periods.
Land Function Analysis (LFA)		
Completion criteria for SSA indices (Slope Stability, Soil Infiltration and Nutrient Cycling) are listed in the BMP as a minimum score of 50. The BMP also anticipates a minimal annual increase by 5% for these scores.	LOI values indicate stable, functioning landforms, was recorded at most the sites except for sites R6, R10 and R4_100 which received scores below 0.80. Overall there has been a decrease in LOI indicating increased amounts of bare soil at many sites. Slope Stability was above completion criteria for all sites except for R8. Soil	Management measures to be implemented as recommended in the BMP would be expected to improve LFA monitoring results over time. Annual improvement of less than 5% for any of the SSA indices triggers the requirement for further investigation. WCPL should review

Table 4-1: Review of monitoring results and recommendations

Interim Performance Target	Comment from results	Recommendations			
	Infiltration and Nutrient Cycling scores were more variable and below completion criteria at all sites except for Reference sites. Many Soil Infiltration and Nutrient Cycling scores reduced instead of recording the anticipated annual improvement of five.	past management measures in these areas and consult the BMP recommended management actions going forward. Continued monitoring of sites to provide longer term data and determine the effectiveness of management actions. Refer to the TARP for specific actions in the event that the sites do not meet either the completion criteria or the minimal annual increase by five.			
Fauna					
Landforms and vegetation structure within WCPL Management Domains are inhabited or frequented by local fauna.	A broad variety of species were recorded in monitoring sites across the various Management Domains. These results demonstrated that the condition of landforms, vegetation structure and other habitat features at the monitoring sites, including the surrounding environment, were a key factor in determining species numbers and diversity.	Continue monitoring the fauna sites, targeting fauna groups such as birds and microbats. As discussed, birds and microbats are common and diverse throughout Australia. Due to the ease of surveying birds and microbats, they are regularly a focus of monitoring surveys and are analysed as an indicator of biodiversity. Comparison of bird and microbat assemblages can be undertaken and tracking of trends over time can indicate sites providing improved habitat. To continue to monitor sites BOA_D and BOA_E as future reference sites, as the database that has been collected provides evidence of long terms fauna trends Placement of permanent tiles to survey for reptiles and amphibians could improve survey results and provide greater species numbers and diversity at little cost and effort.			
Introduced feral and pest species control is essential to environmental management works with targeted programs implemented.	There was only one introduced species recorded during fauna monitoring in spring 2018. Targeted monitoring of introduced species would be necessary to determine abundance and activity levels.	Ongoing management of introduced species is recommended. Management methods are to be implemented as per the BMP (including poison baiting of predators and ripping rabbit warrens) and recommendations from this report. Control of herbivore populations should be prioritised within regeneration and rehabilitation areas to			

Interim Performance Target	Comment from results	Recommendations
		increase resilience. Ongoing control of introduced predators will reduce pressure on native species.

5 References

Bureau of Meteorology 2018. *Climate Statistics for Gulgong Post Office*, Bureau of Meteorology, Commonwealth Government of Australia. Available at http://www.bom.gov.au/climate/averages/tables/cw_062013.shtml. Page accessed January 2018.

ELA 2018. *Wilpinjong Coal Mine 2018 Autumn and Winter Summary Report.* Prepared for Wilpinjong Coal Pty Ltd.

ELA 2018. Wilpinjong Coal 2018 Annual Works Program. ELA, Mudgee NSW

ELA 2017. Wilpinjong Coal 2016 Annual Biodiversity Monitoring Report. ELA, Mudgee NSW.

ELA 2016. Wilpinjong Coal Biodiversity Monitoring Program, Spring 2015. ELA, Mudgee NSW.

Office of Environment and Heritage 2014. Biobanking Assessment Methodology. NSW OEH.

Peabody Energy 2015. Wilpinjong Extension Project Environmental Impact Statement. Appendix E Biodiversity Assessment Report and Biodiversity Offset Strategy.

Reardon, T.B., McKenzie, N.L., Cooper, S.J.B., Appleton, B., Carthew, S. and Adams, M. (2014). *A molecular and morphological investigation of species boundaries and phylogenetic relationships in Australian Free-tailed Bats* Mormopterus (*Chiroptera: Molossidae*). Australian Journal of Zoology 62: 109 – 136

Tongway, D.J. and Hindley, N.L. 2005. *Landscape Function Analysis: Procedures for monitoring and assessing landscapes with special reference to mine sites and rangelands*. CSIRO Sustainable ecosystems, Canberra, ACT.

Wilpinjong Coal Pty Ltd 2014. *Open cut operations Mining Operations Plan 2014 - 2019*. Peabody Energy Australia Pty Ltd, Brisbane.

Wilpinjong Coal Pty Ltd 2017. *Wilpinjong Coal Biodiversity Management Plan, August 2017*. Peabody Energy Australia Pty Ltd, Brisbane.

Appendix A – Weather conditions

		2018		Historical Averages			
Month	Min Temp (°C)	Max Temp (°C)	Total Rainfall (mm)	Min Temp (°C)	Max Temp (°C)	Rainfall Mean (mm)	
January	18.0	34.0	24.4	16.8	31.1	66.5	
February	16.5	31.0	77	16.4	30.0	62.4	
March	15.3	28.7	24.6	13.8	27.5	52.5	
April	11.9	26.4	42.2	9.9	23.5	39.1	
May	4.7	20.1	12.4	6.3	19.1	37.6	
June	2.3	16.0	21.6	3.7	15.5	44.2	
July	0.0	16.1	1.2	2.6	14.8	42.2	
August	1.58	16.87	43.8	3.4	16.5	41.1	
September	5.7	20.8	39.6	6.0	19.8	41.3	
October	11.5	24.2	56.8	9.3	23.7	51.1	
November	13.58	26.9	47.4	12.3	26.8	56.0	
December	16.2	31.4	31	15.0	29.8	60.1	

Table A-1: 2017 Monthly mean and historical average weather conditions

Source: WCPL (2018 data); Bureau of Meteorology, 2017 (Historical averages) Temperature data from Gulgong Post Office weather station number 62013. Rainfall from Wollar (Barrigan St) Weather station number:62032

Date	Min Temp (°C)	Max Temp (°C)	Rainfall (mm)	Average Wind Speed (km/hr)
Autumn monitoring				
30/04/18	6.4	20.5	0	1.2
01/05/18	5.8	22.1	0	1
02/05/18	9.5	22.9	0	0.3
03/05/18	14.4	25	0	0.5
04/05/18	11.4	22.6	0	2.5
05/05/18	2.5	22.9	0	0.1
06/05/18	1.4	22	0	1
07/05/18	3.2	24.4	0	0.4
08/05/18	6.4	22.9	0	0.2
Winter bird monitoring	•			
09/07/18	1.7	15.8	0	1.2

Date	Min Temp (°C)	Max Temp (°C)	Rainfall (mm)	Average Wind Speed (km/hr)
10/07/18	-2	15.2	0	0.7
11/07/18	-1.4	16.5	0	0.7
12/07/18	-2.1	14.6	0	1.5
13/07/18	0.1	12.4	0	2.1
Spring monitoring				
05/09/18	9.6	18.1	0.2	3.2
06/09/18	9.4	19.8	13.6	0.8
07/09/18	9.3	16.3	11	1.1
08/09/18	6.7	20.7	0.6	0.4
09/09/18	2.8	19.1	0	2.5
10/09/18	5.9	22.8	0	0.4
11/09/18	5.2	25.7	0	0.3
12/09/18	5.7	27	0	1.5
13/09/18	7	26.6	0	0.8
14/09/18	8.2	27	0	0.9
15/09/18	4.1	29	0	3.2
16/09/18	4.8	15.9	0	2.6
17/09/18	-0.1	18.7	0	0.9
18/09/18	1.7	24.4	0	1.7
19/09/18	4.8	22.8	0	2.2
20/09/18	1	18.2	0	1.1
21/09/18	1.1	21.4	0	0.7
22/09/18	2	22.4	0	0.9
23/09/18	3.7	24.6	0	0.9
24/09/18	10.6	16.6	0	4.7

Source: WCPL

Table A3: Monthly Rainfall from 2013 - 2017 (mm)

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total
2013	73.6	54.2	61.4	12.2	17.4	77.9	20.8	6.6	33.0	8.8	78.6	27.6	472.1
2014	15.6	60.0	112. 6	62.8	13.8	29.8	28.6	28.8	14.6	15.4	24.4	126. 7	533.1
2015	127. 6	11.6	9.4	108. 4	42.8	42.8	38.0	53.8	7.8	61.0	59.0	118. 4	680.6
2016	152. 1	7.2	23.5	14.8	66.8	104. 2	101. 1	40.9	198. 7	86.6	51.9	90.6	938.4

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total
2017	27.8	34.2	146	23	32.4	10.4	5.8	25.2	3	28.4	92.6	102. 6	531.4
2018	24.4	77	24.6	42.2	12.4	21.6	1.2	43.8	39.6	56.8	47.4	91.2	482.2
Historical Mean	66.5	62.4	52.5	39.1	37.6	44.2	42.2	41.1	41.3	51.1	56	60.1	590.6

Source: WCPL and Bureau of Meteorology, 2017 (Historical averages) Wollar (Barrigan St) Weather station number: 62032.

Appendix B – 2018 Biodiversity monitoring sites

Domain	Site	Management Domain	Condition	Keith Vegetation Class	Vegetation Community	Easting	Northing
	D_101	BOA-D	Native vegetation	WSDSF	Narrow-leaved Ironbark Woodland	784318	6427419
	D_103	BOA-D	Native vegetation	WSDSF	Mugga Ironbark Woodland	784084	6427171
BOA	E_100	BOA-E	Native vegetation	WSDSF	Narrow-leaved Ironbark - Brown Bloodwood - Dwyer's Red Gum Woodland	778311	6419426
-	E_105	BOA-E	Regeneration	WSGW	White Box Grassy Woodland (regenerating)	779016	6419982
	E_106	BOA-E	Native vegetation	WSGW	White Box Grassy Woodland (DNG)	778855	6420402
	A_102	ECA-A	Regeneration	WSGW	Box-Gum Grassy Woodland on Valley Floors (DNG)	772917	6417079
	A_103	ECA-A	Native vegetation	WSGW	Blakely's Red Gum Woodland	773142	6417621
ECA	B_103	ECA-B	Native vegetation	WSDSF	Grey Gum - Narrow-leaved Stringybark Forest	771079	6420160
	B_106	ECA-B	Regeneration	WSGW	Yellow Box Woodland (DNG)	771570	6420003
	C_101	ECA-C	Regeneration	WSDSF	White Box Shrubby Woodland (DNG)	768365	6416938
	R1_100	Regeneration Area 1	Regeneration	WSGW	Blakely's Red Gum Woodland (DNG)	774228	6420096
	R3_100	Regeneration Area 3	Regeneration	WSDSF	White Box Shrubby Woodland (DNG)	770462	6415880
	R5_100	Regeneration Area 5	Regeneration	WSGW	Rough-barked Apple Woodland (DNG)	769194	6421424
Regeneration	R6_101	Regeneration Area 6	Regeneration	WSGW	Rough-barked Apple Woodland (DNG)	767412	6420304
	R7_100	Regeneration Area 7	Regeneration	WSGW	Yellow Box Woodland (DNG)	767957	6416541
	R8_100	Regeneration Area 8	Regeneration	WSDSF	Rough-barked Apple Woodland (DNG)	767740	6417104
	R9_101	Regeneration Area 9	Regeneration	WSGW	Rough-barked Apple Woodland (DNG)	768829	6422231

Table B-1: Autumn 2018 Vegetation Monitoring Sites

Domain	Site	Management Domain	Condition	Keith Vegetation Class	Vegetation Community	Easting	Northing
	R6	Rehabilitation	Rehabilitation	WSDSF	NA	769566	6419516
R	R9	Rehabilitation	Rehabilitation	WSDSF	NA	769120	6418969
	Ref_13b	Turrill SCA	Native vegetation	WSDSF	Narrow-leaved Ironbark Woodland	776969	6451669
	Ref_14	Goulburn River NP	Native vegetation	WSDSF	Ironbark Bloodwood Red Gum Woodland	782174	6421967
	Ref_15	Goulburn River NP	Native vegetation	WSGW	Blakely's Red Gum Woodland	766024	6426575
	Ref_16	Goulburn River NP	Native vegetation	WSGW	Blakely's Red Gum Woodland	766047	6426748
Rehabilitation	Ref_17	Turill SCA	Native vegetation	WSGW	Blakely's Red Gum Woodland	776767	6452950
Renabilitation	Ref_18	Goulburn River NP	Native vegetation	WSGW	Rough-barked Apple Woodland	775232	6451125
	Ref_19	BOA-E	Native vegetation	WSGW	White Box Grassy Woodland	779189	6419668
	Ref_20	Goulburn River NP	Native vegetation	WSDSF	Grey Gum – Narrow-leaved Stringybark Forest	769129	6421893
	Ref_21	Goulburn River NP	Native vegetation	WSDSF	Rough-barked Apple Red Gum Forest	769832	6422848
	Ref_22	Goulburn River NP	Native vegetation	WSDSF	Grey Gum Rough-barked Apple Forest	768130	6423829
	Ref_23	Goulburn River NP	Native vegetation	WSGW	Yellow Box Grassy Woodland	769183	6422270
	Ref_24	BOA-E	Native vegetation	WSGW	White Box Shrubby Woodland	779295	6419440

Table B-2: Spring	2018 vegetation	monitoring sites
	Lono rogotation	mering ence

Domain	Site	Management Domain/Location	Condition	Keith Vegetation Class	Vegetation Community	Easting	Northing
	D_100	BOA-D	Native Vegetation	WSDSF	Narrow-leaved Ironbark - Box Woodland	784857	6427722
	D_102	BOA-D	Regeneration	WSGW	Grassy White Box Woodland	784563	6427262
	E_101	BOA-E	Regeneration	WSDSF	Shrubby regeneration	778761	6419564
BOA	E_102	BOA-E	Regeneration	WSGW	Yellow Box Woodland	779053	6419319
	E_104	BOA-E	Native Vegetation	WSGW	Grassy White Box Woodland	779148	6419734
	BOA1_100	BOA_1	Native Vegetation	WSDSF	White Box Shrubby Woodland	766944	6414592
	BOA2_100	BOA_2	Native Vegetation	WSDSF	White Box Shrubby Woodland	769159	6413073
	A_100	ECA-A	Regeneration	WSGW	DNG - other native (non-EEC)	771861	6416276
	A_104	ECA-A	Native Vegetation	WSGW	Narrow-leaved Ironbark Forest	773695	6416293
ECA	B_100	ECA-B	Native Vegetation	WSGW	Sandstone Ranges Shrubby Woodland	770111	6420997
20/1	B_101	ECA-B	Regeneration	WSGW	DNG - other native (non-EEC)	770542	6420592
	B_105	ECA-B	Regeneration	WSDSF	DNG - other native (non-EEC)	773141	6420468
	C_102	ECA-C	Native Vegetation	WSGW	Shrubby White Box Woodland	768940	6417281
Regeneration	R2_101	Regeneration Area 2	Regeneration	WSGW	DNG - other native (non-EEC)	772639	6418355
Area	R4_100	Regeneration Area 4	Regeneration	WSGW	DNG - other native (non-EEC)	770347	6420268

Domain	Site	Management Domain/Location	Condition	Keith Vegetation Class	Vegetation Community	Easting	Northing
	R5_101	Regeneration Area 5	Regeneration	WSDSF	DNG - other native (non-EEC)	769500	6421595
	R9_100	Regeneration Area 9	Regeneration	WSDSF	DNG - other native (non-EEC)	768975	6422067
	R8	Rehabilitation Area	Rehabilitation – Grassland	WSGW	N/A	770231	6418596
Rehabilitation Area	R10	Rehabilitation Area	Rehabilitation – Grassland	WSGW	N/A	768433	6419301
	R11	Rehabilitation Area	Rehabilitation – Grassland	WSGW	N/A	768896	6419664
	Ref_1	Turill SCA	Native vegetation	WSGW	Blakely's Red Gum Grassy Woodland	775261	6451958
	Ref_2	Goulburn River NP	Native vegetation	WSDSF	Narrow-leaved Ironbark - Box Woodland	224152	6424015
	Ref_3	Goulburn River NP	Native vegetation	WSDSF	Grey Gum – Narrow-leaved Stringybark Forest	217853	6424354
	Ref_4	Turill SCA	Native vegetation	WSGW	Grassy White Box Woodland	773477	6449770
Reference	Ref_5	WCPL Offset Area	Native vegetation	WSDSF	Ironbark Bloodwood Red Gum Woodland	779353	6419938
	Ref_6	Goulburn River NP	Native vegetation	WSDSF	Ironbark Bloodwood Red Gum Woodland	222265	6422430
	Ref_7	Goulburn River NP	Native vegetation	WSDSF	Narrow-leaved Ironbark - Box Woodland	218145	6425455
	Ref_8	Goulburn River NP	Native vegetation	WSGW	White Box Shrubby Woodland	781932	6414688
	Ref_9	Goulburn River NP	Native vegetation	WSDSF	Grey Gum – Narrow-leaved Stringybark Forest	221614	6422152

Domain	Site	Management Domain/Location	Condition	Keith Vegetation Class	Vegetation Community	Easting	Northing
	Ref_10	Goulburn River NP	Native vegetation	WSDSF	Narrow-leaved Ironbark - Box Woodland	220576	6428690
	Ref_11	Turill SCA	Native vegetation	WSGW	Blakely's Red Gum – White Box DNG	775036	6451459
	Ref_12	Turill SCA	Native vegetation	WSGW	Rough-barked Apple DNG	773663	6449945

Site	Management Domain	Easting	Northing	Zone	Туре
A_100	ECA-A	771861	6416276	55H	BioMetric and LFA
B_106	ECA-B	771571	6420001	55H	LFA
E_105	BOA-E	779002	6419978	55H	LFA
R10	Rehabilitation Area	768433	6419301	55H	BioMetric and LFA
R11	Rehabilitation Area	768896	6419664	55H	BioMetric and LFA
R13	Rehabilitation Area	770872	6418901	55H	LFA
R4_100	Regeneration Area 4	770347	6420268	55H	BioMetric and LFA
R6	Rehabilitation Area	769562	6419517	55H	LFA
R8	Rehabilitation Area 7		6418596	55H	BioMetric and LFA
R9	Rehabilitation Area	769118	6418973	55H	LFA
Ref_1	Turill SCA	775261	6451958	55H	BioMetric and LFA
Ref_13b	Turill SCA	777202	6449998	55H	LFA
Ref_14	Goulburn River NP	782171	6421993	55H	LFA
Ref_2	Goulburn River NP	224152	6424015	56H	BioMetric and LFA
Ref_3	Goulburn River NP	217853	6424354	56H	BioMetric and LFA
Ref_4	Turill SCA	773477	6449770	55H	BioMetric and LFA
Ref_5	WCPL Offset Area	779353	6419938	55H	BioMetric and LFA
Ref_6	Goulburn River NP	Ilburn River NP 222265 64		56H	BioMetric and LFA
Ref_7	Goulburn River NP	218145	6425455	56H	LFA
Ref_8	Goulburn River NP	781932	6414688	55H	BioMetric and LFA

Table B-4: Fauna monitoring sites

A == = =	Cite ID	Coor	dinates	Management Zana	Verstetion Class	Survey		
Area	Site ID	Easting	Northing	Management Zone	Vegetation Class	Fauna	Bats	Birds only
	A_100	771861	6416276	Regeneration (poor resilience)	Western Slopes Grassy Woodland	Y		
ECA-A	A_102	772926	6417078	Regeneration (moderate resilience)	Western Slopes Grassy Woodland	Y		
	A_104	773695	6416293	Native vegetation (good resilience)	Western Slopes Grassy Woodland	Y	Y	
	D_100	784857	6427722	Native vegetation (good resilience)	Western Slopes Dry Sclerophyll Forest	Y		
BOA-D	D_101	784306	6427422	Native vegetation (good resilience)	Western Slopes Dry Sclerophyll Forest	Y		
	D_103	784083	6427173	Regeneration (moderate resilience)	Western Slopes Dry Sclerophyll Forest	Y	Y	
	E_100	778299	6419408	Native vegetation (good resilience)	Western Slopes Dry Sclerophyll Forest	Y		
BOA-E	E_104	779148	6419734	Native vegetation (good resilience)	Western Slopes Grassy Woodland	Y	Y	
	E_106	778854	6420399	Native vegetation (good resilience)	Western Slopes Grassy Woodland	Y		
BOA-1	BOA1_100	766963	6414300	Native vegetation (good resilience)	Western Slopes Dry Sclerophyll Forest	Y	Y	
	BOA1_101	767441	6414516	Regeneration (moderate resilience)	Western Slopes Grassy Woodland			Y
BOA-2	BOA2_100	769440	6413937	Native vegetation (good resilience)	Western Slopes Dry Sclerophyll Forest	Y	Y	
	BOA2_101	769050	6413570	Native vegetation (good resilience)	Western Slopes Grassy Woodland			Y
BOA-3	BOA3_100	784649	6421025	Native vegetation (good resilience)	Western Slopes Grassy Woodland	Y	Y	
	BOA3_101	784714	6422246	Native vegetation (good resilience)	Western Slopes Grassy Woodland			Y

A ===		Coor	dinates	Monomout Zono	Verstetien Class	Survey		
Area	Site ID	Easting	Northing	Management Zone	Vegetation Class	Fauna	Bats	Birds only
	BOA3_102	784258	6421909	Native vegetation (good resilience)	Dry Rainforest	Y		
BOA-4	BOA4_100	782475	6424100	Native vegetation (good resilience)	Western Slopes Grassy Woodland			Y
	BOA4_101	782527	6423888	Native vegetation (good resilience)	Western Slopes Dry Sclerophyll Forest	Y	Υ	
	BOA5_100	784073	6417976	Native vegetation (good resilience)	Western Slopes Dry Sclerophyll Forest	Y	Y	
BOA-5	BOA5_101	783192	6419415	Native vegetation (good resilience)	Western Slopes Grassy Woodland	Y		
	BOA5_102	784493	6419150	Native vegetation (good resilience)	Western Slopes Dry Sclerophyll Forest			Y
	B_100	770111	6420997	Native vegetation (good resilience)	Western Slopes Grassy Woodland	Y		
	B_101	770542	6420592	Regeneration (moderate resilience)	Western Slopes Grassy Woodland	Y	Y	
ECA-B	B_103	771072	6420157	Native vegetation (good resilience)	Western Slopes Dry Sclerophyll Forest	Y		
	B_105	773141	6420468	Regeneration (moderate resilience)	Western Slopes Dry Sclerophyll Forest			Y
504.0	C_101	768377	6416929	Regeneration (moderate resilience)	Western Slopes Dry Sclerophyll Forest	Y		
ECA-C	C_102	768940	6417281	Native vegetation (good resilience)	Western Slopes Grassy Woodland	Y	Y	
Regeneration Area 4	R4_100	770347	6420268	Regeneration (no resilience)	Western Slopes Grassy Woodland			Y
	R5_100	769191	6421422	Regeneration (moderate resilience)	Western Slopes Grassy Woodland			Y
Regeneration Area 5	R5_101	769500	6421595	Regeneration (moderate resilience)	Western Slopes Dry Sclerophyll Forest			Y
Regeneration Area 6	R6_101	767406	6420303	Regeneration (no resilience)	Western Slopes Grassy Woodland			

A	Site ID	Coordinates		Monoromout Zono	Verstetien Class	Survey		
Area	Site ID	Easting	Northing	Management Zone	Vegetation Class	Fauna	Bats	Birds only
Rehabilitation	R6	769562	6419517	Rehabilitation - Woodland	Western Slopes Dry Sclerophyll Forest	Y		
Renabilitation	R9	769118	6418973	Rehabilitation - Woodland	Western Slopes Dry Sclerophyll Forest	Y		
	Ref_2	224153	6424016	Goulburn River NP	Western Slopes Dry Sclerophyll Forest	Y	Y	
	Ref_3	217853	6424354	Goulburn River NP	Western Slopes Grassy Woodland	Y	Y	
	Ref_5	779353	6419939	WCPL Offset Area	Western Slopes Grassy Woodland	Y	Y	
Reference Sites	Ref_8	781933	6414689	Goulburn River NP	Western Slopes Grassy Woodland	Y	Y	
	Ref_10	220576	6428690	Goulburn River NP	Western Slopes Grassy Woodland	Y	Y	
	Ref_14	782174	6421967	Goulburn River NP	Western Slopes Grassy Woodland	Y	Y	

Appendix C – Flora species list (autumn 2018 and spring 2018)

Family	Scientific Name	Native / Exotic
Amaranthaceae	Alternanthera nana	Native
Anthericaceae	Arthropodium minus	Native
Anthericaceae	Laxmannia gracilis	Native
Anthericaceae	Thysanotus sp.	Native
Apiaceae	Daucus glochidiatus	Native
Apiaceae	Hydrocotyle laxiflora	Native
Apiaceae	Platysace ericoides	Native
Apocynaceae	Gomphocarpus sp.	Exotic
Asphodelaceae	Bulbine bulbosa	Native
Asteraceae	Arctotheca calendula	Exotic
Asteraceae	Asteraceae sp.	Native/exotic
Asteraceae	Calocephalus citreus	Native
Asteraceae	Calotis cuneifolia	Native
Asteraceae	Calotis lappulacea	Native
Asteraceae	Carthamus lanatus	Exotic
Asteraceae	Carthamus sp.	Exotic
Asteraceae	Cassinia arcuata	Native
Asteraceae	Cassinia cunninghamii	Native
Asteraceae	Cassinia quinquefaria	Native
Asteraceae	Cichorium intybus	Exotic
Asteraceae	Cirsium vulgare	Exotic
Asteraceae	Conyza sp.	Exotic
Asteraceae	Cotula australis	Native

Family	Scientific Name	Native / Exotic
Asteraceae	Cymbonotus lawsonianus	Native
Asteraceae	Euchiton sp.	Native
Asteraceae	Euchiton sphaericus	Native
Asteraceae	Gamochaeta calviceps	Exotic
Asteraceae	Gamochaeta sp.	Exotic
Asteraceae	Hypochaeris glabra	Exotic
Asteraceae	Hypochaeris radicata	Exotic
Asteraceae	Lagenophora stipitata	Native
Asteraceae	Olearia elliptica	Native
Asteraceae	Senecio quadridentatus	Native
Asteraceae	Sigesbeckia orientalis	Native
Asteraceae	Sigesbeckia sp.	Native
Asteraceae	Silybum marianum	Exotic
Asteraceae	Solenogyne bellioides	Native
Asteraceae	Solenogyne dominii	Native
Asteraceae	Solenogyne gunnii	Native
Asteraceae	Solenogyne sp.	Native
Asteraceae	Sonchus oleraceus	Exotic
Asteraceae	Sonchus sp.	Exotic
Asteraceae	Tagetes minuta	Exotic
Asteraceae	Taraxacum officinale	Exotic
Asteraceae	Triptilodiscus pygmaeus	Native
Asteraceae	Vittadinia cuneata	Native
Asteraceae	Vittadinia sp.	Native
Asteraceae	Vittadinia sulcata	Native
Asteraceae	Vittadinia muelleri	Native

Family	Scientific Name	Native / Exotic
Asteraceae	Xanthium spinosum	Exotic
Boraginaceae	Cynoglossum australe	Native
Boraginaceae	Echium plantagineum	Exotic
Boraginaceae	Echium vulgare	Exotic
Boraginaceae	Heliotropium amplexicaule	Exotic
Brassicaceae	Brassicaceae sp.	Exotic
Brassicaceae	Lepidium africanum	Exotic
Brassicaceae	Rapistrum rugosum	Exotic
Cactaceae	Opuntia sp.	Exotic
Cactaceae	Opuntia stricta	Exotic
Campanulaceae	Wahlenbergia gracilis	Native
Campanulaceae	Wahlenbergia granitica	Native
Campanulaceae	Wahlenbergia sp.	Native
Caryophyllaceae	Cerastium glomeratum	Exotic
Caryophyllaceae	Paronychia brasiliana	Exotic
Caryophyllaceae	Polycarpon sp.	Exotic
Caryophyllaceae	Stellaria media	Exotic
Caryophyllaceae	Stellaria pungens	Native
Casuarinaceae	Allocasuarina gymnanthera	Native
Casuarinaceae	Allocasuarina luehmannii	Native
Chenopodiaceae	Dysphania pumilio	Native
Chenopodiaceae	Einadia hastata	Native
Chenopodiaceae	Einadia nutans	Native
Chenopodiaceae	Einadia trigonos	Native
Clusiaceae	Hypericum gramineum	Native
Clusiaceae	Hypericum perforatum	Exotic

Family	Scientific Name	Native / Exotic
Colchicaceae	Wurmbea dioica	Native
Convolvulaceae	Convolvulus erubescens	Native
Convolvulaceae	Dichondra repens	Native
Convolvulaceae	Dichondra sp. A sensu	Native
Crassulaceae	Crassula sieberiana	Native
Cucurbitaceae	Cucumis myriocarpus subsp. leptodermis	Exotic
Cupressaceae	Callitris endlicheri	Native
Cyperaceae	Carex appressa	Native
Cyperaceae	Carex inversa	Native
Cyperaceae	Cyperus gracilis	Native
Cyperaceae	Cyperus sp.	Native/exotic
Cyperaceae	Fimbristylis dichotoma	Native
Cyperaceae	Gahnia aspera	Native
Cyperaceae	Gahnia sieberiana	Native
Cyperaceae	Lepidosperma gunnii	Native
Cyperaceae	Lepidosperma laterale	Native
Dilleniaceae	Hibbertia circumdans	Native
Dilleniaceae	Hibbertia obtusifolia	Native
Dilleniaceae	Hibbertia riparia	Native
Epacridaceae	Acrotriche rigida	Native
Epacridaceae	Melaleuca erubescens	Native
Epacridaceae	Melaleuca uncinata	Native/exotic
Epacridaceae	Melichrus erubescens	Native
Epacridaceae	Melichrus urceolatus	Native
Epacridaceae	Styphelia triflora	Native
Ericaceae	Astroloma humifusum	Native

Family	Scientific Name	Native / Exotic
Ericaceae	Leucopogon muticus	Native
Ericaceae	Lissanthe strigosa	Native
Ericaceae	Monotoca scoparia	Native
Euphorbiaceae	Euphorbia drummondii	Native
Euphorbiaceae	Phyllanthus hirtellus	Native
Euphorbiaceae	Phyllanthus occidentalis	Native
Euphorbiaceae	Phyllanthus virgatus	Native
Fabaceae	Acacia decora	Native
Fabaceae	Acacia difformis	Native
Fabaceae	Acacia doratoxylon	Native
Fabaceae	Acacia implexa	Native
Fabaceae	Acacia ixiophylla	Native
Fabaceae	Acacia leucolobia	Native
Fabaceae	Acacia linearifolia	Native
Fabaceae	Acacia montana	Native
Fabaceae	Acacia penninervis	Native
Fabaceae	Acacia sp.	Native
Fabaceae	Acacia terminalis	Native
Fabaceae	Acacia triptera	Native
Fabaceae	Acacia uncinata	Native
Fabaceae	Acacia verniciflua	Native
Fabaceae	Bossiaea buxifolia	Native
Fabaceae	Bossiaea sp.	Native
Fabaceae	Daviesia ulicifolia	Native
Fabaceae	Desmodium brachypodum	Native
Fabaceae	Desmodium sp.	Native

Family	Scientific Name	Native / Exotic
Fabaceae	Desmodium varians	Native
Fabaceae	Glycine clandestina	Native
Fabaceae	Glycine tabacina	Native
Fabaceae	Gompholobium huegelii	Native
Fabaceae	Hardenbergia violacea	Native
Fabaceae	Hovea lanceolata	Native
Fabaceae	Podolobium ilicifolium	Native
Fabaceae	Pultenaea microphylla	Native
Fabaceae	Swainsona galegifolia	Native
Fabaceae	Swainsona monticola	Native
Fabaceae	Swainsona sp.	Native
Fabaceae	Trifolium arvense	Exotic
Fabaceae	Trifolium campestre	Exotic
Fabaceae	Trifolium repens	Exotic
Fabaceae	Trifolium sp.	Exotic
Fabaceae	Trifolium subterraneum	Exotic
Geraniaceae	Erodium botrys	Exotic
Geraniaceae	Erodium cicutarium	Exotic
Geraniaceae	Erodium crinitum	Native
Geraniaceae	Geranium solanderi	Native
Goodeniaceae	Goodenia hederacea	Native
Goodeniaceae	Goodenia hederacea subsp. Hederacea	Native
Goodeniaceae	Goodenia ovata	Native
Goodeniaceae	Goodenia rotundifolia	Native
Goodeniaceae	Goodenia sp.	Native
Haloragaceae	Gonocarpus elatus	Native

Family	Scientific Name	Native / Exotic
Haloragaceae	Gonocarpus tetragynus	Native
Haloragaceae	Haloragis heterophylla	Native
hormiaceae	Dianella longifolia	Native
hormiaceae	Dianella revoluta	Native
Iridaceae	Patersonia sericea	Native
Juncaceae	Juncus sp.	Native/exotic
Juncaceae	Juncus usitatus	Native
Lamiaceae	Ajuga australis	Native
Lamiaceae	Marrubium vulgare	Exotic
Lamiaceae	Mentha diemenica	Native
Lamiaceae	Mentha satureioides	Native
Lamiaceae	Salvia verbenaca	Exotic
Lauraceae	Cassytha pubescens	Native
Lomandraceae	Lomandra confertifolia	Native
Lomandraceae	Lomandra filiformis	Native
Lomandraceae	Lomandra filiformis subsp. coriacea	Native
Lomandraceae	Lomandra filiformis subsp. filiformis	Native
Lomandraceae	Lomandra glauca	Native
Lomandraceae	Lomandra longifolia	Native
Lomandraceae	Lomandra multiflora	Native
Lomandraceae	Lomandra multiflora subsp. multiflora	Native
Loranthaceae	Amyema miquelii	Native
Loranthaceae	Amyema quandang	Native
Loranthaceae	Amyema sp.	Native
Malvaceae	Brachychiton populneus	Native
Malvaceae	Brachyloma daphnoides	Native

Family	Scientific Name	Native / Exotic
Malvaceae	Malva parviflora	Exotic
Malvaceae	Modiola caroliniana	Exotic
Malvaceae	Sida corrugata	Native
Malvaceae	Sida cunninghamii	Native
Malvaceae	Sida sp.	Native
Myoporaceae	Eremophila debilis	Native
Myrtaceae	Angophora floribunda	Native
Myrtaceae	Calytrix tetragona	Native
Myrtaceae	Corybas sp.	Native
Myrtaceae	Corymbia trachyphloia	Native
Myrtaceae	Eucalyptus albens	Native
Myrtaceae	Eucalyptus blakelyi	Native
Myrtaceae	Eucalyptus bridgesiana	Native
Myrtaceae	Eucalyptus crebra	Native
Myrtaceae	Eucalyptus dealbata	Native
Myrtaceae	Eucalyptus dwyeri	Native
Myrtaceae	Eucalyptus fibrosa	Native
Myrtaceae	Eucalyptus melliodora	Native
Myrtaceae	Eucalyptus moluccana	Native
Myrtaceae	Eucalyptus punctata	Native
Myrtaceae	Eucalyptus rossii	Native
Myrtaceae	Eucalyptus sideroxylon	Native
Myrtaceae	Eucalyptus sparsifolia	Native
Myrtaceae	Kunzea ambigua	Native
Myrtaceae	Leptospermum parvifolium	Native
Myrtaceae	Leptospermum polygalifolium	Native

Family	Scientific Name	Native / Exotic
Myrtaceae	Leptospermum sphaerocarpum	Native
Myrtaceae	Leptospermum trinervium	Native
Myrtaceae	Sannantha cunninghamii	Native
Nyctaginaceae	Boerhavia dominii	Native
Orchidaceae	Orchidaceae sp.	Native
Orchidaceae	Pterostylis sp.	Native
Oxalidaceae	Oxalis perennans	Native
Oxalidaceae	Oxalis sp.	Native/exotic
Phyllanthaceae	Poranthera corymbosa	Native
Phyllanthaceae	Poranthera microphylla	Native
Pittosporaceae	Bursaria spinosa	Native
Plantaginaceae	Plantago debilis	Native
Plantaginaceae	Plantago lanceolata	Exotic
Poaceae	Aristida ramosa	Native
Poaceae	Aristida sp.	Native
Poaceae	Aristida vagans	Native
Poaceae	Arundinella nepalensis	Native
Poaceae	Austrostipa scabra	Native
Poaceae	Austrostipa scabra subsp. Scabra	Native
Poaceae	Austrostipa sp.	Native
Poaceae	Austrostipa verticillata	Native
Poaceae	Bothriochloa macra	Native
Poaceae	Briza minor	Exotic
Poaceae	Bromus hordeaceus	Exotic
Poaceae	Cenchrus clandestinus	Exotic
Poaceae	Chloris gayana	Exotic

Family	Scientific Name	Native / Exotic
Poaceae	Chloris truncata	Native
Poaceae	Chloris ventricosa	Native
Poaceae	Cleistochloa rigida	Native
Poaceae	Cymbopogon refractus	Native
Poaceae	Cynodon dactylon	Native
Poaceae	Dichanthium sericeum	Native
Poaceae	Dichelachne micrantha	Native
Poaceae	Digitaria brownii	Native
Poaceae	Digitaria diffusa	Native
Poaceae	Digitaria eriantha	Exotic
Poaceae	Digitaria ramularis	Native
Poaceae	Digitaria sp.	Native/exotic
Poaceae	Echinopogon sp.	Native
Poaceae	Eleusine tristachya	Exotic
Poaceae	Enneapogon sp.	Native
Poaceae	Eragrostis brownii	Native
Poaceae	Eragrostis cilianensis	Exotic
Poaceae	Eragrostis curvula	Exotic
Poaceae	Eragrostis curvula var. Consol	Exotic
Poaceae	Eragrostis leptostachya	Native
Poaceae	Lolium perenne	Exotic
Poaceae	Lolium rigidum	Exotic
Poaceae	Microlaena stipoides	Native
Poaceae	Microlaena stipoides var. stipoides	Native
Poaceae	Panicum effusum	Native
Poaceae	Panicum sp.	Native/exotic

Family	Scientific Name	Native / Exotic
Poaceae	Paspalidium sp.	Native
Poaceae	Paspalum dilatatum	Exotic
Poaceae	Phalaris aquatica	Exotic
Poaceae	Phalaris sp.	Exotic
Poaceae	Rytidosperma pallidum	Native
Poaceae	Rytidosperma racemosum	Native
Poaceae	Rytidosperma sp.	Native
Poaceae	Setaria sp.	Exotic
Poaceae	Sporobolus creber	Native
Poaceae	Sporobolus elongatus	Native
Poaceae	Themeda triandra	Native
Poaceae	Vulpia sp.	Exotic
Polygonaceae	Acetosella vulgaris	Exotic
Polygonaceae	Polygonum aviculare	Exotic
Polygonaceae	Rumex brownii	Native
Polygonaceae	Rumex sp.	Native/exotic
Portulaceae	Portulaca sp.	Native/exotic
Primulaceae	Lysimachia arvensis	Exotic
Proteaceae	Grevillea sericea	Native
Proteaceae	Hakea dactyloides	Native
Proteaceae	Persoonia curvifolia	Native
Proteaceae	Persoonia linearis	Native
Pteridaceae	Cheilanthes sieberi	Native
Pteridaceae	Cheilanthes sieberi subsp. sieberi	Native
Ranunculaceae	Clematis aristata	Native
Ranunculaceae	Clematis glycinoides	Native

Family	Scientific Name	Native / Exotic
Rhamnaceae	Cryptandra spinescens	Native
Rosaceae	Acaena echinata	Native
Rosaceae	Acaena ovina	Native
Rosaceae	Acaena sp.	Native
Rosaceae	Rosa rubiginosa	Exotic
Rubiaceae	Asperula conferta	Native
Rubiaceae	Opercularia diphylla	Native
Rubiaceae	Opercularia hispida	Native
Rubiaceae	Pomax umbellata	Native
Rubiaceae	Richardia stellaris	Exotic
Rubioideae	Galium sp.	Native/exotic
Rutaceae	Boronia rubiginosa	Native
Rutaceae	Correa reflexa var. reflexa	Native
Rutaceae	Phebalium squamulosum	Native
Rutaceae	Phebalium squamulosum subsp. Lineare	Native
Santalaceae	Exocarpos cupressiformis	Native
Santalaceae	Exocarpos strictus	Native
Sapindaceae	Dodonaea viscosa	Native
Sapindaceae	Dodonaea viscosa subsp. cuneata	Native
Sapindaceae	Dodonaea triangularis	Native
Scrophulariaceae	Verbascum virgatum	Exotic
Scrophulariaceae	Veronica plebeia	Native
Simaroubaceae	Ailanthus altissima	Exotic
Solanaceae	Solanum campanulatum	Native
Solanaceae	Solanum prinophyllum	Native
Solanaceae	Solanum sp.	Native/exotic

Family	Scientific Name	Native / Exotic
Stackhousiaceae	Stackhousia monogyna	Native
Stackhousiaceae	Stackhousia sp.	Native
Stackhousiaceae	Stackhousia viminea	Native
Thymelaeaceae	Pimelea linifolia	Native
Thymelaeaceae	Pimelea sp.	Native
Urticaceae	Urtica incisa	Native
Verbenaceae	Verbena bonariensis	Exotic
Xanthorrhoeaceae	Xanthorrhoea johnsonii	Native
Zamiaceae	Macrozamia communis	Native
Zamiaceae	Macrozamia secunda	Native

Appendix D – Vegetation structure data

Management Domain	Site number	Stratum	Lower height (m)	Upper height (m)	Percent cover (%)	Dominant species (*exotic)
		U1	8	16	25	Eucalyptus crebra, E. moluccana
		M1	0.5	2	5	Acacia montana, A. triptera
	D_101	M2	0.3	0.8	3	Acacia rigida
		L1	0.01	0.3	7	Gahnia aspera, Aristida vagans, Rytidosperma sp.
BOA-D		U1	5	10	7.5	Eucalyptus sideroxylon, E. fibrosa, E. dwyeri
	D_103	M1	1.5	4	30	Allocasuarina gymnanthera, Melichrus erubescens, Melaleuca uncinata
		M2	0.5	2	10	Acacia triptera, Kunzea ambigua
		L1	0.01	0.2	1	Digitaria sp., Goodenia spp.
		U1	8	15	25	Callitris endlicheri, Eucalyptus crebra, E. dealbata
	F 400	M1	0.5	1.5		Acacia triptera, A. rigida, Leucopogon muticus
	E_100	L1	0.01	0.3	4	Digitaria sp., Aristida ramosa, Microlaena stipoides
		L2	0.01	0.2	4	Goodenia hederacea, Cheilanthes sieberi, Lomandra confertifolia
BOA-E	E 405	L1	0.01	0.4	20	Bothriochloa macra, Aristida ramosa, Sporobolus creber
	E_105	L2	0.01	0.3	45	Carthamus lanatus*, Erodium botrys*, Hypericum perforatum*
		U1	8	14	2	Eucalyptus albens, E. blakelyi, Acacia implexa
		M1	0.01	0.4	1	Acacia rigida, A. doratoxylon
	E_106	L1			30	Aristida ramosa, A. vagans, Enneapogon sp.
		L2			25	Vittadinia muelleri, Calotis Iappulacea, Lomandra confertifolia
	A 100	M1	1	2	20	Cassinia arcuata
ECA-A	A_102	L1	0.1	0.3	15	Aristida spp., Sporobolus creber

Table D-1: Autumn 2018 Vegetation Structure Data

Management Domain	Site number	Stratum	Lower height (m)	Upper height (m)	Percent cover (%)	Dominant species (*exotic)
		L2	0.01	0.05	10	Bothriochloa macra, Panicum effusum, Digitaria brownii
		U1	5	8	15	Eucalyptus melliodora, E. blakelyi
	A_103	M1	0.5	1.5	10	Cassinia arcuata
		L1	0.01	0.1	5	Aristida spp., Microlaena stipoides
		U1	12	20	35	Angophora floribunda, Callitris endlicheri, Eucalyptus punctata, E. sparsifolia
		M1	3	10	3	Persoonia linearis, Acacia linearifolia
	B_103	M2	0.1	0.7	15	Goodenia ovata, Cassinia cunninghamii, Acacia rigida
ECA-B		L1	0.01	0.4	1	Rytidosperma pallidum, Microlaena stipoides, Austrostipa scabra
		L2	0.01	0.04	5	Stellaria pungens, Goodenia ovata, Lomandra confertifolia
		L1			25	Panicum effusum, Aristida ramosa, Bothriochloa macra
	B_106	L2			35	Carex appressa, Hypochaeris radicata*
		L1			0.2	Calotis lappulacea, Urtica incisa
ECA-C	C_101	L2			70	Microlaena stipoides, Erodium botrys*
	D4 400	L1	0.2	1	2	Verbena bonariensis*, Sporobolus creber, Carthamus lanatus*,
	R1_100	L2	0.05	0.2	40	Paspalum dilatatum, Paspalidium sp., Digitaria brownii
	D 0 400	L1	0.05	0.2	0.3	Marrubium vulgare*, Cheilanthes sieberi, Calotis spp.
Regeneration Area	R3_100	L2	0.01	0.05	65	Bothriochloa macra, Microlaena stipoides
	DE 400	L1			50	Aristida ramosa, Bothriochloa macra, Panicum effusum
	R5_100	L2			11	Hypericum perforatum*, Cirsium vulgare*, Hypochaeris radicata*
	R6_101	M1	0.2	0.5	0.3	Cassinia arcuata, Verbena bonariensis*

Management Domain	Site number	Stratum	Lower height (m)	Upper height (m)	Percent cover (%)	Dominant species (*exotic)
		L1			30	Chloris truncata, Panicum effusum, Sporobolus elongatus, Trifolium repens*
	D7 400	L1	0.05	0.2	0.3	Hypericum perforatum*, Aristida ramosa
	R7_100	L2	0.01	0.05	50	Microlaena stipoides, Carthamus Ianatus*, Silybum marianum*
	R8_100	L1	0.01	0.05	70	Microlaena stipoides, Carthamus Ianatus*
		M1	0.1	1	1	Cassinia arcuata
	R9_101	L1	0.01	0.4	52	Sporobolus creber, Digitaria brownii, Chloris truncata
		L2	0.01	0.4	14	Hypericum perforatum*, Conyza sp.*, Gahnia aspera
		U1	1.5	4	3	Eucalyptus blakelyi, E. albens
	R6	M1	1	3	2	Acacia linearifolia, A. ulicifolia
		L1	0.1	0.4	40	Eragrostis curvula*, Chloris gayana*, Paspalum dilatatum*
Rehabilitation Area		U1	2	4	2	Acacia implexa, Eucalyptus blakelyi
	R9	M1	1.5	3	20	Acacia verniciflua, A. implexa, Eucalyptus crebra
		L1	0.05	0.4	20	Digitaria eriantha*, Paspalum dilatatum*
		U1	6	18	20	Eucalyptus crebra, Callitris endlicheri
	Def 12h	M1	1	5	8	Cassinia arcuata, Acacia linearifolia
	Ref_13b	L1	0.01	1	20	Gahnia aspera, Lomandra filiformis subsp. coriacea, Einadia hastata
Reference Sites		L2	0.01	0.5	4	Aristida spp., Rytidosperma spp., Austrostipa scabra
		U1	6	14	25	Corymbia trachyphloia, Eucalyptus fibrosa, E. crebra
	Ref_14	M1	2	6	10	Allocasuarina gymnanthera, Hakea sp., Persoonia linearis
		M2	0.02	2	7	Leucopogon muticus

Management Domain	Site number	Stratum	Lower height (m)	Upper height (m)	Percent cover (%)	Dominant species (*exotic)
		L1	0.01	0.4	7	Pomax umbellata, Lomandra glauca, Lomandra multiflora
		U1			10	Eucalyptus melliodora
	Ref_15	L1			10	Aristida spp., Lomandra spp.
		L2				Austrostipa scabra
		U1	15	20	10	Eucalyptus melliodora, E. blakelyi
		M1			9	Allocasuarina luehmannii
	Ref_16	L1	0.01	0.4	10	Aristida ramosa, Rytidosperma sp., Austrostipa scabra, Lomandra multiflora
		U1	8	18	15	Eucalyptus blakelyi, E. melliodora, Casuarina cunninghamiana
		M1	1	1.5	0.5	Cassinia arcuata
	Ref_17	L1	0.01	0.5	20	Aristida spp., Rytidosperma sp.
		L2	0.01	0.5	30	Carex appressa, Lomandra confertifolia, Dichondra sp. A sensu
		U1	8	12	20	Angophora floribunda
		M1	0.5	3	5	Eucalyptus bridgesiana, Cassinia arcuata
	Ref_18	L1	0.01	0.4	20	Microlaena stipoides, Rytidosperma sp., Aristida spp.
		L2	0.01	0.3	3	Cheilanthes sieberi, Dichondra sp. A sensu, Carex inversa
		U1	10	15	20	Eucalyptus albens
		M1	1	3	1	Olearia elliptica
	Ref_19	L1	0.01	0.2	35	Aristida ramosa, Austrostipa scabra, Microlaena stipoides
		L2	0.01	0.3	12	Hypericum perforatum*, Dichondra repens, Mentha satureioides
		U1	12	16	15	Eucalyptus punctata, E. sparsifolia
	Ref 20	M1	2.5	6	1	Acacia linearifolia
	Ref_20 Ref_20	M2	0.5	2.5	15	Hovea lanceolata, Dodonaea triangularis, Cassinia cunninghamii
		L1	0.01	0.7	2	Digitaria sp., Cleistochloa rigida

Management Domain	Site number	Stratum	Lower height (m)	Upper height (m)	Percent cover (%)	Dominant species (*exotic)
		L2	0.01	0.5	1	Lomandra confertifolia, Lepidosperma laterale, Einadia hastata
		U1	12	18	25	Angophora floribunda, Eucalyptus blakelyi
		M1	0.3	2	1	Acacia rigida, A. linearifolia
	Ref_21	L1	0.01	0.2	20	Microlaena stipoides, Echinopogon sp., Rytidosperma sp.
		L2	0.01	1	10	Dichondra repens, Lomandra confertifolia, Desmodium varians
		U1	15	20	40	Angophora floribunda, Eucalyptus punctata, E. fibrosa
	D-6.00	M1	2	5	1	Persoonia linearis
	Ref_22	L1	0.01	1	5	Lomandra confertifolia, L. Iongifolia, Clematis aristata
		L2	0.01	0.5	15	Microlaena stipoides, Digitaria sp.
		U1	12	18	10	Eucalyptus melliodora
		U2	8	12	15	Eucalyptus melliodora, E. blakelyi
		M1	0.3	0.6	0.1	Lissanthe strigosa
	Ref_23	L1	0.01	0.4	15	Microlaena stipoides, Rytidosperma sp., Aristida ramosa
		L2	0.01	1	25	Gahnia aspera, Desmodium varians, Calotis cuneifolia
		U1	10	18	20	Eucalyptus albens, Callitris endlicheri
	Ref_24	M1	0.5	6	8	Bursaria spinosa, Acacia implexa, A. linearifolia
		L1	0.01	0.3	15	Microlaena stipoides, Aristida ramosa, Austrostipa scabra
		L2	0.01	0.3	15	Dichondra repens, Lomandra multiflora, Glycine tabacina

Table D - 2: Spring 2018 Vegetation Structure Data

Management Domain	Site number	Stratum	Lower height (m)	Upper height (m)	Percent cover (%)	Dominant species (*exotic)
	D_100	U1	6	16	6	Eucalyptus crebra Callitris endlicheri

Management Domain	Site number	Stratum	Lower height (m)	Upper height (m)	Percent cover (%)	Dominant species (*exotic)
		M1	2	6	5	Leptospermum parvifolium, Leptospermum polygalifolium Allocasuarina luehmannii
		M2	0.5	2	5	Acrotriche rigida, Leucopogon muticus,
		L1	0.01	0.5	5	Acrotriche rigida Gahnia aspera, Cheilanthes sieberi
		U1	14	14		Eucalyptus albens
	D_102	M1	7	7		Brachychiton populneus
	D_102	L1	0.01	0.2	15	Microlaena stipoides Aristida spp. Rytidosperma sp.
		L2	0.01	0.3	15.1	Gahnia aspera, dichondra repens, Desmodium sp.
		U1	10	18	2	Callitris endlicheri, Eucalyptus dealbata
		M1	0.5	5	25	Eucalyptus dealbata, Cassinia arcuata, Acacia linearifolia
	E_101	L1	0.01	0.3	30	Aristida ramosa, Microlaena stipoides Rytidosperma sp.
		L2	0. 1	0.5	8.1	Cheilanthes sieberi, Gahnia seiberiana, Astroloma humifusum
BOA-E	F 400	L1			32	Bothriochloa macra, Sporobolus creber, Erodium botrys, Oxalis sp.
	E_102	L2			10	*Hypochaeris radicata, *Hypericum perforatum, *Vulpia sp.
		U1	6	14	10	Eucalyptus albens
	E104	L1	0.01	0.3	22	Aristida ramosa, Austrostipa scabra, Rytidosperma racemosum , *
		L2	0.01	0.1	6	Dichondra repens, *Hypericum perforatum, Sida corrugata
		U1	15	18	15	Eucalyptus Albens
		U2			2	Brachychiton populneus
BOA-1	BOA1_ 100	M1			3	Bursaria spinosa
		M2			3	Cassinia quinquefaria
		L1			1	Rytidosperma sp.

Management Domain	Site number	Stratum	Lower height (m)	Upper height (m)	Percent cover (%)	Dominant species (*exotic)
		L2			1.1	Bulbine bulbosa, Dichondra repens, Opuntia sp.
		U1	15	18	15	Eucalyptus albens
BOA-2	BOA2_ 100	M1	1	2	10	Cassinia quinquefaria, Acacia ixiophylla, Bursaria spinosa
		L2	0.01	0.3	16	Aristida sp., Rytidosperma sp., Dichondra repens
		L1	0.01	0.3	20	Bothriochloa macra, *Paspalum dilatatum, Sporobolus creber
	A_100					
		L2	0.01	0.5	21	*Plantago lanceolate, *Trifolium repens, * Trifolium subterraneum
ECA-A		U1	15	15		Eucalyptus crebra
		U2	2	8		Callitris endlicheri,
	A_104	M1	01	1.5		Cassinia arcuata
		M2	0.1	0.2		, Lissanthe strigosa
		L1	0.1	0.5		Austrostipa scabra, Aristida vagans
		L2	0.01	0.1		Cheilanthes sieberi
		U1			20	Eucalyptus melliodora, Eucalyptus blakelyi
	B_100	M1			5	Cassinia arcuata
		L1			3	Aristida ramosa, aristida vagans, Microlaena stipoides
	B_101	L1			40	Lomandra multiflora, Aristida ramosa
ECA-B	B_101	L2				Cheilanthes sieberi, Hypochaeris radicata
		L1	0.1	0.5		Aristida ramose, Microlaena stipoides Bothriochloa macra, Sporobolus creber ,
	B105	L2	0.01	0.1		*Hypochaeris radicata, *Taraxacum officinale, *Trifolium sp, *Modiola caroliniana.
ECAO	0 400	U1	15	20	15	Eucalyptus albens, Callitris endlicheri Eucalyptus punctata
ECA-C	C_102	M1			3	Acacia linearifolia, Callitris endlicheri

Management Domain	Site number	Stratum	Lower height (m)	Upper height (m)	Percent cover (%)	Dominant species (*exotic)
		L1	0.8	1.5	3	Goodenia ovata, Acrotriche rigida, Cassinia cunninghamii, Lomandra confertifolia, Rytidosperma pallidum, Microlaena stipoides
		L2	0.01	0.8	2	Lomandra confertifolia, Rytidosperma pallidum, Microlaena stipoides
	D2 101	L1	N/A	N/A	25	Arisida ramose, Cheilanthes sieberi, Cynodon dactylon .,
	R2_101	L2			5	*Hypochaeris radicata, *Taraxacum officinale .
		L1				Sporobolus creber, Microlaena stipoides
Regeneration Area	R4_100	L2	0.01	0.1		*Carthamus lanatus, *Hypochaeris radicata, *Echium plantagineum
	DE 404	L1			40	Aristida ramosa
	R5_101	L2			15	*Hypochaeris radicata,
		M1	0.5	1.5	20	Cassinia arcuata
	R9_100	L1	0.1	0.5	10	Aristida app., Gahnia aspera, Lomandra sp, Lomandra multiflora
	R8	L1	N/A	N/A		Digitaria eriantha .,
Rehabilitation	R10	L1	0.01	.05	50	Erodium crinitum, *Digitaria eriantha, *Hypochaeris radicata, Cynodon dactylon
Area		M1	0.5	1.8		Cassinia acuate, Acacia decora
	R11	L1			60	, *Digitaria eriantha, Erodium crinitum, Cenchrus clandestinus
	Ref_1	L1	0.01	0.2	20	Bothriochloa macra, Aristida ramose, Aristida vagans, Microlaena stipoides
		L2	0.01	0.2	5.8	Lomandra confertifolia Vittadinia muelleri
Reference Site		U1	6	13	10	Eucalyptus crebra, Eucalyptus moluccana
	Ref_2	M1	0.5	2	15	Cassinia quinquefaria, Acacia difformis
		L1	0.01	0.3	5	Austrostipa scabra, Aristida Spp. Microlaena stipoides

Management Domain	Site number	Stratum	Lower height (m)	Upper height (m)	Percent cover (%)	Dominant species (*exotic)
		L2	0.01	0.5	3	, Gahnia aspera, Dichondra repens, Gahnia aspera
		U1	6	13	15	Eucalyptus fibrosa, Eucalyptus sparsifolia,
		M1	2	6	1	Allocasuarina gymnanthera, Cassinia quinquefaria
	Ref_3	M2	0.5	2	4	Dodonaea viscosa,., Acrotriche rigida, Cassinia quinquefaria
		L1	0.01	0.1	0.1	Aristida sp., Digitaria sp.
		L2	0.01	0.5	1	Lomandra sp, Dodonaea viscosa, Macrozamia communis
		U1	8	20	20	Eucalyptus albens
		M1	6	6	1	Brachychiton populneus
	Ref_4	L1	0.01	0.2	8	Aristisa ramose, Aristida vagans, Rytidosperma sp. Austrostipa scabra
		L2	0.01	0.2	2.2	Carex inversa, Einadia nutans, Lomandra confertifolia
		U1	8	12	15	Eucalyptus crebra, Corymbia trachyphloia, Acacia doratoxylon
		M1	1	6	5	Persoonia linearis Leucopogon muticus, Acacia doratoxylon
	Ref_5	M2	0.5	1	6	Acacia doratoxylon, Acrotriche rigida, Leucopogon muticus
		L1	0.01	0.02	1	Microlaena stipoides, Panicum effusum, Aristida ramose,
		L2	0.01	0.5	3	Cheilanthes sieberi, Lomandra multiflora, Dianella revoluta
		U1			20	Eucalyptus dwyeri, Eucalyptus fibrosa, Corymbia trachyphloia
	Dof 6	M1			1	Leptospermum trinervium, , Phebalium squamulosum, Dodonaea triangularis
	Ref_6	M2			15	Cleistochloa rigida
		L1			2	Phebalium squamulosum, Dodonaea triangularis, Lomandra filiformis subsp. filiformis

Management Domain	Site number	Stratum	Lower height (m)	Upper height (m)	Percent cover (%)	Dominant species (*exotic)	
		U1	7	13	7	Eucalyptus crebra, Eucalyptus albens, Eucalyptus punctata	
		M1	2	7	4	Allocasuarina gymnanthera, Acacia doratoxylon	
	Ref_7	M2	0.5	2	6	Dodonaea triangularis, Acacia triptera, Leucopogon muticus,	
		L1	0.01	0.1	2	Microlaena stipoides, Rytidosperma sp. Digitaria diffusa	
		L2	0.01	0.5	2	Dodonaea , Dichondra repens, Cheilanthes sieberi	
		U1	10	20	20	Eucalyptus albens, Callitris endlicheri	
		M1	4	4	1	Callitris endlicheri, spinose, acacia implexa	
	Ref_8	M2	0.5	4	4	Cassinia quiquefaria, Bursaria Spinosa	
			L1	0.01	0.1	10	Austrostipa scabra, Rytidosperma sp. Cymbopogon refractus
		L2	0.01	0.4	20.1	Gahnia aspera, Clematis glycinoides, Dichondra repens	
		U1	12	15	15	Eucalyptus punctata, Eucalyptus sparsifolia, Eucalyptus fibrosa	
		U2	6	12	10	Callitris endlicheri, Eucalyptus rossii, Eucalyptus fibrosa	
	Def 0	M1	2	6	3	Leptospermum spp. Persoonia linearis, Allocasuarina gymnanthera	
	Ref_9	M2	.05	2	5	Leucopogon muticus, Acacia uncinata , Dodonaea triangularis.,	
		L1	.0.1	0.4	15	Rytidosperma pallidum, Cleistochloa rigida	
		L2	0.01	0.5	5	Lomandra confertifolia, Acrotriche rigida, Pomax umbellata	
	Ref_10	U1	8	12	10	Eucalyptus albens, Eucalyptus crebra, Allocasuarina luehmannii	

Management Domain	Site number	Stratum	Lower height (m)	Upper height (m)	Percent cover (%)	Dominant species (*exotic)
		M1	2	8	3	Callitris endlicheri, Persoonia linearis, Acacia linearifolia
		M2	0.5	2	15	Acrotriche rigida, Leucopogon muticus, Dodonea Triangularis
		L1	0.01	0.5	10	Acrotriche rigida, Lepidosperma laterale, Cheilanthes sieberi
		U1	10	15	12	Angophora floribunda, Eucalyptus bridgesiana
		U2	2	8	3	Angophora floribunda,
	Ref_11	L1	0.01	0.2	20	Microlaena stipoides, Rytidosperma sp. Digitaria diffusa
		L2	0.01	0.3	4.01	Lomandra multiflora Dichondra repens, Cheilanthes sieberi
		U1	8	14	12	Eucalyptus albens
	Ref_12	L1	0.01	0.2	6	Austrostipa Scabra, Aristida ramose, Rytidosperma sp
		L2	0.01	0.2	2.5	Lomandra confertifolia, Carex inversa, Einadia nutans

Appendix E – Interim Performance Targets / Benchmark Values

	Site Attribute									
Vegetation Class	NSR (count)	NOC	NMS	NGCG	NGCS	NGCO	EC	NTH (count)	OR	FL (m)
Western Slopes Dry Sclerophyll Forests	≥32	15 - 40	10 - 55	3 - 10	5 - 15	5 - 25	<5%	≥3	1	≥70
Western Slopes Grassy Woodlands	<35	6 - 25	14 - 50	3 - 35	3 - 25	5 - 1 - 40	<5%	≥2	1	<66

 Table E 1 Vegetation class benchmark condition state (WCPL 2017)

Table E 2 Interim Performance Targets for Western Slopes Dry Sclerophyll Forests

	Interim Performance		Site Attributes (% cover)									
Management Period	Target (site value score)	NSR (count)	NOC	NMS	NGCG	NGCS	NGCO	EC	NTH (count)	OR	FL (m)	
Low Condition Vegetation												
Year 0 (Baseline)	6	<8	0	0	1	0	0	60	0	0	0	
Years 1-5	34	12	0	3-10	1-2	1-5	1-3	60	0	1	10	
Benchmark	>78	≥32	15-40	10-55	3-10	5-15	5-25	<5	≥3	1	≥70	
Moderate to Good	Condition Vegetation											
Year 0 (Baseline)	34	12	0	10	<3	<5	<4	60	0	1	10	
Years 1-5	45	16	0	10-55	3-10	5-15	5-25	40	0	1	10	
Benchmark	>78	≥32	15-40	10-55	3-10	5-15	5-25	<5	≥3	1	≥70	
High Condition Vegetation												
Year 0 (Baseline)	70	18-32	15-40	10-55	3 -10	5-15	5-25	≤5	0	1	≥70	

© ECO LOGICAL AUSTRALIA PTY LTD

Management	Interim Performance	Site Attributes (% cover)									
Management Period	Target (site value score)	NSR (count)	NOC	NMS	NGCG	NGCS	NGCO	EC	NTH (count)	OR	FL (m)
Years 1-20	70	18-32	15-40	10-55	3 -10	5-15	5-25	≤5	0	1	≥70
Benchmark	>78	≥32	15-40	10-55	3 -10	5-15	5-25	≤5	≥3	1	≥70

 Table E 3 Interim Performance Targets for Western Slopes Grassy Woodlands

	Interim Performance					Site Attributes	(% cover)				
Management period	Target (Site value score)	NSR (count)	NOC	NMS	NGCG	NGCS	NGCO	EC	NTH (count)	OR	FL (m)
Low Condition Vegetation											
Year 0 (Baseline)	7	<9	0	0	5	0	0	60	0	0	0
Years 1-5	34	12	0	<4	60+	<2	<2	60	0	1	10
Benchmark	>78	≥23	10-45	5-60	5-45	2-10	5-35	<5	≥2	1	≥50
Moderate to Good	Condition Vegetation										
Year 0 (Baseline)	34	12	0	≤3	60+	<2	<2	60	0	1	10
Years 1-5	45	12	0	5-60	45-60	<2	<2	40	0	1	10
Benchmark	>78	≥23	10-45	5-60	5-45	2-10	5-35	<5	≥2	1	≥50
High Condition Veg	jetation										
Year 0 (Baseline)	70	20-22	10-45	5-60	5-45	2-10	5-35	≤20	0	1	≥50
Years 1-20	70	20-23	10-45	5-60	5-45	2-10	5-35	≤20	0	1	≥50
Benchmark	>78	≥23	10-45	5-60	5-45	2-10	5-35	<5	≥2	1	≥50

Appendix F – Fauna species list

Species name	Common name	TSC Act	EPBC Act
Bird			
Acanthagenys rufogularis	Spiny-cheeked Honeyeater		
Acanthiza chrysorrhoa	Yellow-rumped Thornbill		
Acanthiza lineata	Striated Thornbill		
Acanthiza nana	Yellow Thornbill		
Acanthiza pusilla	Brown Thornbill		
Acanthiza reguloides	Buff-rumped Thornbill		
Acanthorhynchus tenuirostris	Eastern Spinebill		
Acrocephalus australis	Australian Reed Warbler		
Alisterus scapularis	Australian King-Parrot		
Anthochaera carunculata	Red Wattlebird		
Aquila audax	Wedge-tailed Eagle		
Ardea pacifica	White-necked Heron		
Artamus cyanopterus	Dusky Woodswallow	v	
Cacatua galerita	Sulphur-crested Cockatoo		
Cacomantis flabelliformis	Fan-tailed Cuckoo		
Cacomantis pallidus	Pallid Cuckoo		
Calyptorhynchus funereus	Yellow-tailed black cockatoo		
Calyptorhynchus lathami	Glossy Black-Cockatoo	v	
Chenonetta jubata	Australian Wood Duck		
Chrysococcyx basalis	Horsfield's bronze cuckoo		
Cincloramphus mathewsi	Rufous Songlark		
Climacteris picumnus victoriae	Brown Treecreeper (eastern subspecies)	v	
Colluricincla harmonica	Grey Shrike-thrush		
Coracina novaehollandiae	Black-faced Cuckoo-shrike		
Coracina tenuirostris	Cicadabird		
Corcorax melanorhamphos	White-winged Chough		
Cormobates leucophaea	White-throated Treecreeper		
Corvus coronoides	Australian Raven		
Cracticus nigrogularis	Pied Butcherbird		
Cracticus tibicen	Australian Magpie		
Cracticus torquatus	Grey Butcherbird		
Dacelo novaeguineae	Laughing Kookaburra		

Species name	Common name	TSC Act	EPBC Act
Dicaeum hirundinaceum	Mistletoebird		
Dromaius novaehollandiae	Emu		
Elseyornis melanops	Black-fronted Dottrel		
Eolophus roseicapillus	Galah		
Eopsaltria australis	Eastern Yellow Robin		
Eurostopodus mystacalis	White-throated Nightjar		
Falco berigora	Brown Falcon		
Gavicalis virescens	Singing Honeyeater		
Geopelia humeralis	Bar-shouldered dove		
Geopelia placida	Peaceful dove		
Gerygone albogularis	White-throated Gerygone		
Glossopsitta concinna	Musk lorikeet		
Glossopsitta pusilla	Little Lorikeet	v	
Grallina cyanoleuca	Magpie-lark		
Grantiella picta	Painted Honeyeater	v	
Haliastur sphenurus	Whistling kite		
Hirundapus caudacutus	White-throated Needletail		
Hirundo neoxena	Welcome Swallow		
Lalage tricolor	White-winged triller		
Leucosarcia melanoleuca	Wonga Pigeon		
Lichenostomus chrysops	Yellow-faced Honeyeater		
Lichenostomus fuscus	Fuscous honeyeater		
Lichenostomus leucotis	White-eared Honeyeater		
Lichenostomus melanops	Yellow-tufted Honeyeater		
Lichenostomus penicillatus	White-plumed Honeyeater		
Malurus cyaneus	Superb Fairy-wren		
Manorina melanocephala	Noisy Miner		
Manorina melanophrys	Bell Miner		
Melithreptus brevirostris	Brown-headed Honeyeater		
Menura novaehollandiae	Superb Lyrebird		
Merops ornatus	Rainbow Bee-eater		
Microeca fascinans	Jacky Winter		
Myiagra inquieta	Restless Flycatcher		
Myiagra rubecula	Leaden Flycatcher		
Ocyphaps lophotes	Crested Pigeon		
Oriolus sagittatus	Olive-backed Oriole		

Species name	Common name	TSC Act	EPBC Act
Pachycephala pectoralis	Golden Whistler		
Pachycephala rufiventris	Rufous Whistler		
Pardalotus punctatus	Spotted Pardalote		
Pardalotus striata	Striated Pardalote		
Petrochelidon nigricans	Tree Martin		
Petroica goodenovii	Red-capped Robin		
Phaps chalcoptera	Common Bronzewing		
Philemon corniculatus	Noisy Friarbird		
Platycercus eximius	Eastern Rosella		
Pomatostomus superciliosus	White-browed Babbler		
Psephotus haematonotus	Red-rumped Parrot		
Psophodes olivaceus	Eastern Whipbird		
Ptilonorhynchus violaceus	Satin Bowerbird		
Pyrrholaemus sagittatus	Speckled Warbler	v	
Rhipidura albiscapa	Grey Fantail		
Rhipidura leucophrys	Willy Wagtail		
Scythrops novaehollandiae	Channel-billed Cuckoo		
Sericornis frontalis	White-browed Scrubwren		
Smicrornis brevirostris	Weebill		
Strepera graculina	Pied Currawong		
Taeniopygia bichenovii	Double-barred Finch		
Todiramphus sanctus	Sacred Kingfisher		
Vanellus miles	Masked Lapwing		
Amphibian			
Crinia signifera	Common eastern froglet		
Litoria peronii	Peron's tree frog		
Lymnodynastes dumerilii	Eastern banjo frog		
Lymnodynastes tasmaniensis	Spotted marsh frog		
Mammal			
Mus musculus	House Mouse		
Reptile		i	
Amphibolurus muricatus	Jacky dragon		
Anilios nigrescens	Blackish Blindsnake		
Anomalopus leuckartii	Two-clawed worm-skink		
Carlia tetradactyla	Southern rainbow skink		
Delma plebeia	Leaden delma		

Species name	Common name	TSC Act	EPBC Act
Diplodactylus vittatus	Wood gecko		
Diporiphora nobbi	Nobby dragon		
Furina diadema	Red-naped Snake		
Liopholis whitii	White's skink		
Lygisaurus foliorum	Tree-base Litter-skink		
Morethia boulengeri	Boulenger's Snake-eyed Skink		
Parasuta dwyeri	Dwyer's snake		
Pogona barbata	Common bearded dragon		
Microbat			
Austronomus australis	White-Striped Free-tailed Bat		
Chalinolobus dwyeri	Large-eared Pied Bat	v	v
Chalinolobus gouldii	Gould's Wattled Bat		
Chalinolobus morio	Chocolate Wattled Bat		
Miniopterus orianae oceanensis	Eastern Bentwing-bat	v	
Ozimops (Mormopterus) spp.	Free-tailed Bat complex		
Rhinolophus megaphyllus	Eastern Horseshoe Bat		
Saccolaimus flaviventris	Yellow-bellied Sheathtail Bat	v	
Scotorepens balstoni	Inland Broad-nosed Bat		
Vespadelus troughtoni	Eastern Cave Bat	v	
Vespadelus vulturnus	Little Forest Bat		

V = vulnerable

Appendix G – Microbat analysis report

Wilpinjong Microbat Monitoring Ultrasonic Analysis Report – Spring 2018

Report completed 15 January 2019.

ELA was engaged by Peabody Energy. Inc to analyse ultrasonic microchiropteran bat call data collected from several survey sites associated with Wilpinjong Mine offset areas, near to Mudgee, NSW (the study area).

The data presented in this report forms part of an ongoing long-term annual biodiversity monitoring program.

This report outlines the methodology used and results of the data analysis.

Methods

A mixture of Anabat and Song Meter (SM) recorders were used to record microbat calls at 15 survey sites located within the Wilpinjong study area. The total survey effort whilst collecting this data was equivalent to 30 detector nights.

The data was collected passively at each survey site for a period ranging between one and three survey nights. These surveys were conducted between 5 and 21 November 2018. The survey site identifier, survey dates, number of survey nights, critical landforms, general vegetation communities and structure have been briefly described below.

- Site BOA 1_100: Anabat recorder #3 (SN485505) was set to record microbat calls among *Eucalyptus albens* (White Box) shrubby woodland on upper slope with a few scattered hollow bearing trees (HBT) nearby, between 5 and 6 November (two survey nights).
- Site BOA 2-101: Anabat recorder #4 (485466) was set to record microbat calls among *Angophora floribunda* (Rough-barked Apple) alluvial grassy woodland with a few scattered HBTs nearby, between 5 and 6 November (two survey nights).
- Site BOA 3_100: Anabat recorder #2 (SN82115) was set to record microbat calls between 14 and 15 November (two survey nights). This survey site is located among open woodland, is located approximately 175m away from a series of sandstone cliffs and 200 m from the Goulburn River.
- Site BOA 4_101: Anabat recorder #4 (485466) was set to record microbat calls within an Ironbark Black Cypress Pine shrubby woodland on a sandstone ridge with abundant HBTs, between 14 and 15 November (two survey nights).
- Site BOA 5_101: Song Meter (SM2-3) was set to record microbat calls in a partly cleared *A. floribunda* alluvial grassy woodland that contains a few scattered HBTs on 12 November (one survey night only). This site is located approximately 300m away from a sandstone cliff.

- Site A_104: Anabat recorder #2 (SN82115) was set to record microbat calls among a remnant Ironbark – *Callitris* spp. (Cypress Pine) open shrubby woodland with abundant hollow-bearing trees (HBTs) between 7 and 9 November and again on the 8 November 2018 for a single survey night (total effort of three survey nights).
- Site B_101: Anabat recorder #2 (SN82115) was set to record microbat calls among cleared grassland, shrubland with isolated paddock trees, some of which contain hollows. The SM was positioned approximately 100 m away from the nearest patch of remnant woodland and was set to record between 19 and 20 November 2018 (two survey nights)
- Site C_102: Canberra anabat (SN82241) was set to record calls microbat calls among remnant *E. albens* dominated shrubby woodland on a steep slope between 19 and 20 November 2018 (two survey nights). A sandstone escarpment is located approximately 50 m up slope from this survey site.
- Site D_103: Song Meter (SM2.2) was set to record microbat calls among remnant ironbark shrubby / heathy woodland between 19 and 20 November 2018 (two survey nights). Some of the trees at this site do contain hollows.
- Site E_104: Canberra anabat (SN82241) was set to record calls microbat calls between 1 and 15 November 2018 (two survey nights). This anabat was set among remnant and partly cleared *E. albens* grassy woodland. Some of the trees present nearby do contain hollows.
- Site Ref_2: A Song Meter (SM2.2) was set to record calls microbat calls among remnant Western Grey Box grassy woodland with HBTs between 14 and 15 November 2018 (two survey nights).
- Site Ref_3: Anabat Recorder #4 (485466) was set to record calls microbat calls among remnant Bloodwood / Ironbark woodland with abundant HBTs and directly adjacent to sandstone caves and escarpment between 19 and 20 November 2018 (two survey nights).
- Site Ref_8: Anabat recorder #2 (SN82115) was set to record calls microbat calls among remnant *E. albens / Callitris* spp. pine shrubby woodland with abundant HBTs. This survey site is located near to a railway easement and near to the base of sandstone escarpment between 12 and 13 November 2018 (two survey nights)
- Site Ref_10: Anabat recorder #3 (SN485505) was set to record calls microbat calls among remnant *E. albens* / Ironbark shrubby woodland with abundant HBTs between 19 and 20 November 2018 (two survey nights).
- Site Ref_14: Anabat recorder #3 (SN485505) was was set to record calls microbat calls among remnant Bloodwood / Scribbly Gum shrubby woodland with abundant between 14 and 15 November 2017 (two survey nights)

Please note, a more in-depth description of the vegetation community and structure that is present at the survey sites will be provided in the main biodiversity report that will be presented to Peabody Energy. Inc.

Data Analysis

Bat calls were analysed by Rodney Armistead from ELA using the program AnalookW (Version 4.2n 16 March 2017, written by Chris Corben, <u>www.hoarybat.com</u>). Call identifications were made using regional based guides to the echolocation calls of microbats in New South Wales (Pennay et al 2004); and south-east Queensland and north-east New South Wales (Reinhold et al 2001) and the accompanying reference library of over 200 calls from Sydney Basin, NSW (which is available at <u>http://www.forest.nsw.gov.au/research/bats/default.asp</u>). Rodney has over five years of experience in the identification of ultrasonic call recordings. This report and a sample of the calls was reviewed by Greg Ford the Principal Ecologist from Balance! Environmental, who has over 25 years of experience in the identification of ultrasonic call recordings.

Bat calls were analysed using species-specific call profile parameters including call shape, characteristic frequency, initial slope and time between pulses (Reinhold et al 2001). To ensure reliable and accurate results the following protocols (adapted from Lloyd et al 2006) were followed:

- Search phase calls were used in the analysis, rather than cruise phase calls or feeding buzzes (McKenzie et al 2002). Cruise phase or feeding calls were labelled as being unidentifiable.
- Recorded calls containing less than three pulses were not analysed and these sequences were labelled as unidentifiable as they are too short to confidently determine the identity of the species making the call (Law et al 1999).
- For those calls that were useful to identify the species making the call, two categories of confidence were used (Mills et al 1996):
 - Definitely present the quality and structure of the call profile is such that the identity of the bat species making the calls is not in doubt
 - Potentially present the quality and structure of the call profile is such that there is some / low probability of confusion with species that produce similar calls profiles
- Calls made by bats which cannot be used for identification purposes such as social calls, short and low-quality calls, cruise and approach phase calls were labelled as unidentifiable.
- Sequences of inferior quality were labelled as unidentifiable as it is not possibly to be identified to microbat species making the call. These calls were however retained in the data as they can be used as an indicator of microbat activity at the site.
- Nyctophilus spp. (Long-eared bats) are difficult to identify or separate confidently to species level based upon their recorded calls. Therefore, we have made no attempt to identify any recorded Nyctophilus spp. calls to species level (Pennay et al 2004). There are three Nyctophilus species that could occur in the study area. Two species; N. geoffroyi (Lesser Long-eared Bat) and N. gouldii (Gould's Long-eared Bat) are relatively common and widely distributed across NSW, but the third, N. corbeni (Corben's Long-eared Bat) is listed as vulnerable under the NSW Biodiversity Conservation Act 2016 (BC Act) and Commonwealth Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act). According to Churchill (2008), Penny et al. (2011) and the Department of the

Environment and Energy (DoEE) Species Profile and Threats Database Corben's Longeared Bat and potential habitat for this species is likely to occur within the locality of the study area. Whilst we cannot reliably identify which Nyctophilus species is responsible for the recorded calls in the current data set, consequently we also cannot discount the possibility that some of these recorded Nyctophilus calls are being made by Corben's Long-eared Bat. Therefore, where Nyctophilus spp. calls were recorded, we have included Corben's Long-eared Bat as potentially being present within the Wilpinjong study area. To confirm the presence / absence of this species at any of the Wilpinjong sites would require use of mist or harp traps to conduct live capture and release. These surveys would need to fulfil the survey requirements present in Commonwealth of Australia (2010) Survey Guidelines for Australia's threatened bats. For further information regarding the distribution this the of species, please refer to following link, http://www.environment.gov.au/cgi-bin/sprat/public/publicspecies.pl?taxon id=83395 to confirm.

- The Free-tailed Bats (previously referred to as the genus *Mormopterus*) have recently undergone taxonomic revision (Reardon et al 2014) and published reference calls for this group of species (Pennay et al 2004) are believed to contain errors (Greg Ford pers comm.). This report uses nomenclature for Free-tailed Bat species as referred to in Jackson and Groves (2015). The correlation between nomenclature used in this report and that used in NSW State legislation is presented in Table G 1: below. All Free-tailed Bats in the new genus *Ozimops* potentially occurring within the Wilpinjong study area will therefore be referred to as *Ozimops* species complex. This species grouping includes *Ozimops petersi* (Inland Free-tailed Bat), *O. planiceps* (Southern Free-tailed Bat) and *O. ridei* (Ride's Free-tailed Bat)
- Sequences not attributed to microbat echolocation calls (e.g. insect buzzes, wind, or any other unknown factor) were dismissed from the analysis.

Jackson and Groves 2015	Previously known as	Common Name	BC Act
Austronomus australis	Tadarida australis	White-striped Free-tailed Bat	
Micronomus norfolkensis	Mormopterus norfolkensis	Eastern Coastal Free-tailed Bat	Vulnerable
Ozimops petersi	Mormopterus species 3 (small penis)	Inland Free-tailed Bat	
Ozimops planiceps	Mormopterus species 4 (long penis eastern form)	Southern Free-tailed Bat	
Ozimops ridei	Mormopterus species 2	Ride's Free-tailed Bat	
Setirostris eleryi	Mormopterus species 6	Bristle-faced Free-tailed Bat	Endangered

Results

Data summary and species diversity

There were 6,679 call sequences recorded during this survey. Of these, 4,375 (65.50%) were deemed to be useful because the call profile was of sufficient quality or length to enable positive identification of a bat to genus or species. The remaining 2,304 (34.49%) call sequences were either too short or of low quality, thus preventing positive identification of bat species.

There were at least 13 and up to 19 species recorded in this survey (Table G 2 and Table G 3). Up to five species listed as vulnerable under the NSW BC Act were recorded (Table G 2 and Table G 3). The vulnerable species that were confidently identified as being present within the Wilpinjong study area include;

- Chalinolobus dwyeri (Large-eared Pied Bat)
- Miniopterus orianae oceanensis (Eastern Bentwing-bat)
- Saccolaimus flaviventris (Yellow-bellied Sheathtail Bat)
- Vespadelus troughtoni (Eastern Cave Bat)

One other threatened species, *Nyctophilus corbeni* (Corben's Long-eared Bats) was recorded as being potentially present.

As stated above, the calls of *Nyctophilus* spp. cannot be used to identify individual species. **Corben's Long-eared Bat** is known to occur in the area where surveys were undertaken, and it has therefore been assumed, that this threatened species may be present within Wilpinjong study area.

Large-eared Pied Bat and **Corben's Long-eared Bat** are also listed as vulnerable under the EPBC Act). The Large-eared Pied Bat is also listed as vulnerable under the EPBC Act. During the 2018 surveys, calls attributed to Large-eared Pied Bat were recorded at seven of the 15 survey sites including BOA3_100, BOA4_101, BOA5_101, B-101, E_104, Ref 3 and Ref 10 (Table G 2 Spring monitoring microbat species list derived from ultrasonic call results for the Wilpinjong Mine area. Table G 3 Spring monitoring microbat species list derived from ultrasonic call results for the Wilpinjong Mine area. Whist, calls attributes to be *Nyctophilus* spp., and therefore possibly **Corben's Long-eared Bat** were recorded at BOA1_100, Ref 14 (possibly present only) and BOA2-101, BOA3_100, BOA5_101, C_102, B-101, E_104, Ref 3 and Ref 8.

The most widespread species included *C. gouldii* (Gould's Wattled Bat), *C. morio* (Chocolate Wattled Bat), **Eastern Bentwing-bat**, *Rhinolophus megaphyllus* (Eastern Horseshoe Bat) and members of the Ozimops complex. Definite and possible calls attributed to these species were recorded at between 10 and 14 of the 15 survey sites (Table G 2 Spring monitoring microbat species list derived from ultrasonic call results for the Wilpinjong Mine area.Table G 3 Spring monitoring microbat species list derived from ultrasonic call results for the Wilpinjong Mine area. Whilst in contrast, calls that were attributed Yellow-bellied Sheathtail Bat were attributed to one definite that was recorded Ref 14, as well as one potential call from C_102.

Activity

General microbat activity was very high at BOA3-101 with at least one call being recorded every minute on average throughout the survey period. Sites BOA3_100, B-101, and E_104 recorded high levels of activity with at least one call being recorded every two minutes on average throughout the sampling period. Sites BOA4_101, BOA5_101, Reference 2 and Reference 8 recorded moderate levels of activity with calls recorded more often than every ten minutes but less often than every two minutes on average throughout the survey period. Activity levels at BOA1_100, BOA2_101, D_103, Ref 10 and Ref 14 were very low with calls recorded less often than every ten minutes, on average, throughout the survey period.

Long sequences and feeding buzzes were observed in the data set, particularly among the Gould's Wattled Bat, Chocolate Wattled Bat, **Eastern Bentwing-bat** and *Vespadelus spp*. (Forest Bat) complex species at BOA_101, BOA5_100, C-102 and Reference 8. While feeding buzzes were observed among those calls attributed to **Large-eared Pied Bat** and *Ozimops* spp. at sites BOA3_100, BOA_101, B_101, E-104, and Ref 2. Feeding buzzes indicate that bats were actively foraging at these sites. There were mixed levels of foraging activity recorded at the remaining sites within the data analysed. This may indicate that bats were predominantly commuting through these areas or that the weather conditions were not as favourable for the recording of the lower intensity feeding calls.

The calls recorded at BOA_101, BOA5_100 and C-102 were general short and difficult to interpret calls.

Survey Limitations

The calls of Gould's Wattled Bat, *Scotorepens balstoni* (Inland Broad-nosed Bat) and the *Ozimops* species complex (Free-tailed Bats) can be difficult to separate. Calls were identified as *Ozimops* species complex when the call shape was flat (slope S1 of less than 100 OPS generally) and the frequency was between 24 – 36 kHz. Gould's Wattled Bat was distinguished by a frequency of 27.5 – 32.5 kHz and alternation in call frequency between pulses. Inland Broad-nosed Bat calls have a slope of greater than 200 OPS, are non-alternating and fall between 29 and 34 kHz. When no distinguishing characteristics were present calls were assigned to multi-species groups.

Calls of *Scotorepens greyii* (Little Broad-nosed Bat) and *Vespadelus darlingtoni* (Large Forest Bat) overlap in this geographic region at frequencies of between 40 and 41 kHz. Inland Broad-nosed Bat calls can be distinguished at overlapping frequencies by the presence of an upsweeping tail. Calls of Large Forest Bat can be distinguished by the absence of a tail, and the presence of a long characteristic section.

In this geographic region, calls of Eastern Bentwing-bat overlap in frequency with those of Southern Forest Bat, Large Forest Bat and Little Forest Bat between 40 and 48.5 kHz. Eastern Bentwingbat calls were distinguished by a down-sweeping tail, drop of more than 2 kHz in the precharacteristic section, and the pulse shape and time between calls was variable (43 – 48.5 kHz). Little Forest Bat and Southern Forest Bat calls are curved, both have a regular pulse shape and up-sweeping tails. Large Forest Bat calls are curved, often have no tail but can have up-sweeping tails and commonly have a long characteristic section. Little Forest Bat (42.5 – 49 kHz) was only able to be distinguished from Southern Forest Bat (43 – 46 kHz) at frequencies between 47 – 48.5 kHz. Large Forest Bat can only be distinguished from Little and Southern Forest Bats at frequencies below 42.5 kHz (however at this frequency can be confused with Little Broad-nosed Bat, as discussed above). When no distinguishing characteristics were present calls were assigned to multi-species groups.

Calls of Eastern Cave Bat and *Chalinolobus morio* (Chocolate Wattled Bat) overlap in the range 48 – 53 kHz. Chocolate Wattled Bat calls have a down-sweeping tail whereas Eastern Cave Bat and Little Forest Bat calls have an up-sweeping tail. Calls of the Eastern Cave Bat were separated from those of Little Forest Bat at frequencies above 49 kHz. When no distinguishing characteristics were present calls were assigned to multi-species groups or characterized as unidentifiable.

The calls of *Myotis macropus* (Southern Myotis) and the *Nyctophilus* group of species are difficult to separate. There are no known records of Myotis west of the Great Dividing Range including this region. Suitable water sources required by Myotis for feeding are absent from the study area. All vertical shaped calls were therefore identified as *Nyctophilus* spp.

	Common Name	Survey sites									
Species Name	Common Name	BOA1_100	BOA2_101	BOA3_100	BOA4_101	BOA5_101	A_104	B_101	C_102	D_103	E_104
Austronomus australis	White-Striped Free-tailed Bat	Х			Х			х	Х		Х
Chalinolobus dwyeri*1	Large-eared Pied Bat			Х	Х	х		х			Х
Chalinolobus gouldii	Gould's Wattled Bat		Р	Х	Х	х		х	х	Р	Х
Chalinolobus gouldii / Ozimops complex	Gould's Wattled Bat / Free- tailed Bat complex			х	x	х		х	х		х
Chalinolobus gouldii / Scotorepens balstoni	Gould's Wattled Bat / Inland Broad-nosed Bat			х		x		х	х		х
Chalinolobus morio	Chocolate Wattled Bat	Р		Х		х		х	х	Р	Х
Chalinolobus morio / Vespadelus troughtoni*	Chocolate Wattled Bat / Eastern Cave Bat		x	х		x		х	х	x	х
Miniopterus orianae oceanensis*	Eastern Bentwing-bat	х	Р	х	х	x		x	х	x	х
Miniopterusorianaeoceanensis*and any or all ofthefollowingspecies,Vespadelusdarlingtoni/Vespadelusregulus/Vespadelusvulturnus	Eastern Bentwing-bat and any or all of the following species, Large Forest Bat / Southern Forest Bat / Little Forest Bat	x	x	х	x	x	х	x	x	x	х
<i>Nyctophilus spp.</i> In this region <i>N. geoffroyi, N. gouldii</i> and the threatened N. corbeni * ¹ are likely to be present.	In this region Lesser, Gould's and the threatened Corben's Long-eared Bat are likely to be present.	Ρ	x	х		x		x	х		х
<i>Ozimops</i> species complex. In this region the <i>O. petersi</i> , <i>O. ridei</i> and <i>O. planiceps</i> .	In this region the Inland, Ride's and South-eastern Free-tailed Bat are likely to be present.			Х	х	х		x	х		Х
Rhinolophus megaphyllus	Eastern Horseshoe Bat			Х	х	Х		Х		х	Х

Table G 2 Spring monitoring microbat species list derived from ultrasonic call results for the Wilpinjong Mine area.

On action Name	Common Nome		Survey sites								
Species Name	Common Name	BOA1_100	BOA2_101	BOA3_100	BOA4_101	BOA5_101	A_104	B_101	C_102	D_103	E_104
Saccolaimus flaviventris*	Yellow-bellied Sheathtail Bat								Р		
Scotorepens balstoni	Inland Broad-nosed Bat			Х		Х		х	Х		Х
Scotorepens greyii	Lesser Broad-nosed Bat			Р							
Vespadelus darlingtoni	Large Forest Bat	Р	Р	Р	Р	Р		Р			Р
Vespadelus regulus	Southern Forest Bat	Р	Р	Р	Р	Р		Р	Р		Р
Vespadelus troughtoni*	Eastern Cave Bat		Р	Х		Х		х	Р	Р	Х
Vespadelus vulturnus	Little Forest Bat	Р	Р	Х	Р	Х		х	Х	Р	Х

X = Definitely present, P = Possibly present, * Threatened species listed under BC Act / 1 Threatened species listed under the EPBC Act

Table G 3 Spring monitoring microbat species list derived from ultrasonic call results for the Wilpinjong Mine
area.

	Common N	Survey sites						
Species Name	Common Name	Ref 2	Ref 3	Ref 8	Ref 10	Ref 14		
Austronomus australis	White-Striped Free-tailed Bat		x		х	x		
Chalinolobus dwyeri*1	Large-eared Pied Bat		х		х			
Chalinolobus gouldii	Gould's Wattled Bat	Р	Р	х		Р		
Chalinolobus gouldii / Ozimops complex	Gould's Wattled Bat / Free-tailed Bat complex		x	х		x		
Chalinolobus gouldii / Scotorepens balstoni	Gould's Wattled Bat / Inland Broad-nosed Bat		x	х				
Chalinolobus morio	Chocolate Wattled Bat	Х	х	Х	Р	х		
Chalinolobus morio / Vespadelus troughtoni*	Chocolate Wattled Bat / Eastern Cave Bat	х	x					
Miniopterus orianae oceanensis*	Eastern Bentwing-bat	х	x	х	Ρ	Р		
Miniopterusorianaeoceanensis* and any or allof the following species,VespadelusVespadelusregulusVespadelusvespadelusvespadelusvespadelusvespadelus	Eastern Bentwing-bat and any or all of the following species, Large Forest Bat / Southern Forest Bat / Little Forest Bat	x	x	Х	x	x		
<i>Nyctophilus spp.</i> In this region <i>N. geoffroyi, N. gouldii</i> and the threatened <i>N. corbeni</i> * ¹ are likely to be present.	In this region Lesser, Gould's and the threatened Corben's Long-eared Bat are likely to be present.		x	x		Ρ		
Nyctophilus spp. In this region <i>N. geoffroyi, N. gouldii</i> and the threatened <i>N. corbeni</i> * ¹ are likely to be present.	In this region Lesser, Gould's and the threatened Corben's Long-eared Bat are likely to be present.					Ρ		
Ozimops (Mormopterus) spp.	Free-tailed Bat complex	х	x	х	x	x		
Rhinolophus megaphyllus	Eastern Horseshoe Bat		x	Х	х	х		
Saccolaimus flaviventris*	Yellow-bellied Sheathtail Bat					х		
Scotorepens balstoni	Inland Broad-nosed Bat		Р	Х	Р			
Vespadelus regulus	Southern Forest Bat	Р		Р	Р			
Vespadelus troughtoni*	Eastern Cave Bat	Р	х	Х				
Vespadelus vulturnus	Little Forest Bat	Р	Р	Х	х	Р		

X = Definitely present, P = Possibly present, * Threatened species listed under BC Act / 1 Threatened species listed under the EPBC Act

Site by site table data

The following tables provide a summary of the attributes outlined below:

- site by site variations in species richness and diversity
- definite, potential and possible calls for each species
- species by species activity levels based on the number of calls recorded across all species and by individual species
- site specific percentage / ratio of useful calls and un-interpretable calls

Species Name	Common name	Definitely present	Potentially present	Total
Austronomus australis	White-striped Free-tailed Bat	2	0	2
Chalinolobus morio	Chocolate Wattled Bat	0	6	6
Miniopterus orianae oceanensis*	Eastern Bentwing-bat	4	11	15
<i>Miniopterus orianae oceanensis* /</i> Vespadelus darlingtoni / Vespadelus regulus / Vespadelus vulturnus (defined by curved calls with Fc between 42.5 – 44 kHz)	Eastern Bentwing-bat / Large Forest Bat / Southern Forest Bat / Little Forest Bat	0	0	7
<i>Miniopterus orianae oceanensis* /</i> <i>Vespadelus regulus / Vespadelus vulturnus</i> (defined by curved calls with Fc between 44 – 46 kHz)	Eastern Bentwing-bat / Southern Forest Bat / Little Forest Bat	0	0	36
Nyctophilus spp.*1	Long-eared Bat	0	1	1
Vespadelus vulturnus	Little Forest Bat	0	2	2
Unidentifiable calls				84
Identifiable calls				69
Total Calls				153
Percentage usable calls				45.09

Table G 4: Microbat calls for Wilpinjong Mine BOA1_100 that were recorded between 5 and 6 November 2018

* Threatened species listed under BC Act / 1 Threatened species listed under the EPBC Act

Species Name	Common name	Definitely present	Potentially present	Total
Chalinolobus gouldii	Gould's Wattled Bat	0	1	1
Chalinolobus morio	Chocolate Wattled Bat	2	10	12
Chalinolobus morio / Vespadelus troughtoni*	Chocolate Wattled Bat / Eastern Cave Bat	0	0	6
Miniopterus orianae oceanensis*	Eastern Bentwing-bat	0	2	2
<i>Miniopterus orianae oceanensis* /</i> <i>Vespadelus darlingtoni / Vespadelus regulus / Vespadelus vulturnus</i> (defined by curved calls with Fc between 42.5 – 44 kHz)	Eastern Bentwing-bat / Large Forest Bat / Southern Forest Bat / Little Forest Bat	0	0	1
<i>Miniopterus orianae oceanensis* /</i> <i>Vespadelus regulus / Vespadelus</i> <i>vulturnus</i> (defined by curved calls with Fc between 44 – 46 kHz)	Eastern Bentwing-bat / Southern Forest Bat / Little Forest Bat	0	0	15
Nyctophilus spp.*1	Long-eared Bat	2	5	7
Vespadelus vulturnus	Little Forest Bat	0	3	3
Unidentifiable calls				37
Identifiable calls				47
Total Calls				84
Percentage usable calls				55.95

Table G 5: Microbat calls for Wilpinjong Mine BOA2_101 that were recorded between 5 and 6 November 2018

* Threatened species listed under BC Act / 1 Threatened species listed under the EPBC Act

Species Name	Common name	Definitely present	Potentially present	Total
Chalinolobus dwyeri*1	Large-eared Pied Bat	43	8	51
Chalinolobus gouldii	Gould's Wattled Bat	11	14	25
Chalinolobus gouldii / Ozimops (Mormopterus) complex	Gould's Wattled Bat / Free-tailed Bat complex	0	0	1
Chalinolobus gouldii / Scotorepens balstoni	Gould's Wattled Bat / Inland Broad-nosed Bat	0	0	1
Chalinolobus morio	Chocolate Wattled Bat	16	40	56
Chalinolobus morio / Vespadelus troughtoni	Chocolate Wattled Bat / Eastern Cave Bat	0	0	43
Miniopterus orianae oceanensis*	Eastern Bentwing-bat	119	101	220
<i>Miniopterus orianae oceanensis*</i> / Vespadelus darlingtoni / Vespadelus regulus / Vespadelus vulturnus (defined by curved calls with Fc between 42.5 – 44 kHz)	Eastern Bentwing-bat / Large Forest Bat / Southern Forest Bat / Little Forest Bat	0	0	3
<i>Miniopterus orianae oceanensis*</i> / Vespadelus regulus / Vespadelus vulturnus (defined by curved calls with Fc between 44 – 46 kHz)	Eastern Bentwing-bat / Southern Forest Bat / Little Forest Bat	0	0	30
<i>Miniopterus orianae oceanensis*</i> / Vespadelus vulturnus	Eastern Bentwing-bat / Little Forest Bat	0	0	606
Nyctophilus spp.*1	Long-eared Bat	9	1	10
Ozimops (Mormopterus) complex	Free-tailed Bat Complex	0	0	6
Rhinolophus megaphyllus	Eastern Horseshoe Bat	55	0	55
Scotorepens balstoni	Inland Broad-nosed Bat	1	1	2
Scotorepens greyii / Vespadelus darlingtoni	Large Forest Bat	0	0	4
Vespadelus regulus / Vespadelus vulturnus (defined by curved calls with Fc between 44 – 46 kHz)	Southern Forest Bat / Little Forest Bat	0	0	1
Vespadelus troughtoni * (defined by curved calls with Fc between 49 – 54 kHz)	Large Forest Bat	7	11	18
Vespadelus vulturnus	Little Forest Bat	16	17	32
Unidentifiable calls				258

 Table G 6: Microbat calls for Wilpinjong Mine BOA3_100 that were recorded between 14 and 15 November 2018

Species Name	Common name	Definitely present	Potentially present	Total
Identifiable calls				1164
Total Calls				1422
Percentage usable calls				81.86

* Threatened species listed under BC Act and 1 Threatened species listed under the EPBC Act

Table G 7: Microbat calls for Wilpinjong Mine BOA4_101 that were recorded between 14 and 15 November	
2018	

Species Name	Common name	Definitely present	Potentially present	Total
Austronomus australis	White-striped Free-tailed Bat	4	0	4
Chalinolobus dwyeri*1	Large-eared Pied Bat	12	1	13
Chalinolobus gouldii	Gould's Wattled Bat	2	4	6
Chalinolobus gouldii / Ozimops (Mormopterus) complex	Gould's Wattled Bat / Free-tailed Bat complex	0	0	2
Miniopterus orianae oceanensis*	Eastern Bentwing-bat	6	18	24
<i>Miniopterus orianae oceanensis* /</i> <i>Vespadelus darlingtoni / Vespadelus regulus / Vespadelus vulturnus</i> (defined by curved calls with Fc between 42.5 – 44 kHz)	Eastern Bentwing-bat / Large Forest Bat / Southern Forest Bat / Little Forest Bat	0	0	3
<i>Miniopterus orianae oceanensis* /</i> <i>Vespadelus regulus / Vespadelus vulturnus</i> (defined by curved calls with Fc between 44 – 46 kHz)	Eastern Bentwing-bat / Southern Forest Bat / Little Forest Bat	0	0	82
Ozimops (Mormopterus) complex	Free-tailed Bat Complex	0	0	1
Rhinolophus megaphyllus	Eastern Horseshoe Bat	5	0	5
Unidentifiable calls				152
Identifiable calls				140
Total Calls				292
Percentage usable calls				47.94

* Threatened species listed under BC Act / 1 Threatened species listed under the EPBC Act

Table G 8: Microbat calls for Wilpinjong Mine BOA5_101 that were recorded between 12 November 2018.

Species Name	Common name	Definitely present	Potentially present	Possible
Chalinolobus dwyeri*1	Large-eared Pied Bat	1	2	3
Chalinolobus gouldii	Gould's Wattled Bat	6	10	16

Chalinolobus gouldii / Ozimops complex	Gould's Wattled Bat / Free-tailed Bat complex	0	0	1
Chalinolobus gouldii / Scotorepens balstoni	Gould's Wattled Bat / Inland Broad- nosed Bat	0	0	3
Chalinolobus morio	Chocolate Wattled Bat	2	12	14
Chalinolobus morio / Vespadelus troughtoni	Chocolate Wattled Bat / Eastern Cave Bat	0	0	48
Miniopterus orianae oceanensis*	Eastern Bentwing-bat	15	9	24
Miniopterus orianae oceanensis* / Vespadelus darlingtoni / Vespadelus regulus / Vespadelus vulturnus (Vespadelus spp. complex is defined by curved calls with Fc between 42.5 – 44 kHz)	Eastern Bentwing-bat / Large Forest Bat / Southern Forest Bat / Little Forest Bat	0	0	2
<i>Miniopterus orianae oceanensis</i> * / <i>Vespadelus regulus / Vespadelus</i> <i>vulturnus</i> (<i>Vespadelus</i> spp. complex is defined by curved calls with Fc between 44 – 46 kHz)	Eastern Bentwing-bat / Southern Forest Bat / Little Forest Bat	0	0	44
Nyctophilus spp.*1	Long-eared Bat	2	0	2
Ozimops (Mormopterus) complex	Free-tailed Bat Complex	0	0	6
Rhinolophus megaphyllus	Eastern Horseshoe Bat	5	0	5
Scotorepens balstoni	Inland Broad-nosed Bat	1	1	2
Vespadelus troughtoni	Eastern Cave Bat	9	15	24
Vespadelus vulturnus	Little Forest Bat	2	7	9
Unidentifiable calls				294
Identifiable calls				203
Total Calls				497
Percentage usable calls				40.84

 * Threatened species listed under BC Act / 1 Threatened species listed under the EPBC Act

Table G 9: Microbat calls for Wilpinjong Mine Site A_104 that were recorded between 2 and 4 and then on the 8 November 2018.

Species Name	Common name	Definitely present	Potentially present	Total
No micro bat call data was recorded, may even remove this table.				

Species Name	Common name	Definitely present	Potentially present	Total
Austronomus australis	White-striped Free-tailed Bat	4	1	5
Chalinolobus dwyeri*1	Large-eared Pied Bat	26	2	28
Chalinolobus gouldii	Gould's Wattled Bat	31	24	55
Chalinolobus gouldii / Ozimops (Mormopterus) complex	Gould's Wattled Bat / Free-tailed Bat complex	0	0	19
Chalinolobus gouldii / Scotorepens balstoni	Gould's Wattled Bat / Inland Broad- nosed Bat	0	0	17
Chalinolobus morio	Chocolate Wattled Bat	8	17	25
Chalinolobus morio / Vespadelus troughtoni	Chocolate Wattled Bat / Eastern Cave Bat	0	0	110
Miniopterus orianae oceanensis*	Eastern Bentwing-bat	13	29	42
<i>Miniopterus orianae oceanensis* /</i> <i>Vespadelus darlingtoni / Vespadelus regulus / Vespadelus vulturnus</i> (defined by curved calls with Fc between 42.5 – 44 kHz)	Eastern Bentwing-bat / Large Forest Bat / Southern Forest Bat / Little Forest Bat	0	0	1
<i>Miniopterus orianae oceanensis* /</i> <i>Vespadelus regulus / Vespadelus vulturnus</i> (defined by curved calls with Fc between 44 – 46 kHz)	Eastern Bentwing-bat / Southern Forest Bat / Little Forest Bat	0	0	13
<i>Miniopterus orianae oceanensis* /</i> Vespadelus vulturnus	Eastern Bentwing-bat / Little Forest Bat	0	0	181
Nyctophilus spp.*1	Long-eared Bat	1	2	3
Ozimops (Mormopterus) complex	Free-tailed Bat Complex	0	0	67
Rhinolophus megaphyllus	Eastern Horseshoe Bat	1	0	1
Saccolaimus flaviventris*	Yellow-bellied Sheathtail Bat	1	0	1
Scotorepens balstoni	Inland Broad-nosed Bat	12	4	16
Vespadelus regulus / Vespadelus vulturnus (defined by curved calls with Fc between 44 – 46 kHz)	Southern Forest Bat / Little Forest Bat	0	0	1
Vespadelus troughtoni * (defined by curved calls with Fc between 49 – 54 kHz)	Large Forest Bat	38	31	69
Vespadelus vulturnus	Little Forest Bat	28	19	47
Unidentifiable calls				152

Table G 10: Microbat calls for Wilpinjong Mine Site B_101 recorded between 19 and 20 November 2018.

Species Name	Common name	Definitely present	Potentially present	Total
Identifiable calls				701
Total Calls				853
Percentage usable calls				82.18

* Threatened species listed under BC Act and ¹ Threatened species listed under the EPBC Act

Table G 11: Microbat calls for recorded at Wilpinjong Mine Site C_102 between 19 and 20 November 2018.

Species Name	Common name	Definitely present	Potentially present	Total
Austronomus australis	White-striped Free-tailed Bat	2	1	3
Chalinolobus gouldii	Gould's Wattled Bat	2	5	7
Chalinolobus gouldii / Ozimops (Mormopterus) complex	Gould's Wattled Bat / Free-tailed Bat complex	0	0	5
Chalinolobus gouldii / Scotorepens balstoni	Gould's Wattled Bat / Inland Broad- nosed Bat	0	0	1
Chalinolobus morio	Chocolate Wattled Bat	7	7	14
Chalinolobus morio / Vespadelus troughtoni	Chocolate Wattled Bat / Eastern Cave Bat	0	0	8
Miniopterus orianae oceanensis*	Eastern Bentwing-bat	10	13	23
<i>Miniopterus orianae oceanensis* /</i> <i>Vespadelus regulus / Vespadelus vulturnus</i> (defined by curved calls with Fc between 44 – 46 kHz)	Eastern Bentwing-bat / Southern Forest Bat / Little Forest Bat	0	0	11
Miniopterus orianae oceanensis* / Vespadelus vulturnus	Eastern Bentwing-bat / Little Forest Bat	0	0	90
Nyctophilus spp.*1	Long-eared Bat	1	0	1
Ozimops (Mormopterus) complex	Free-tailed Bat Complex	0	0	15
Scotorepens balstoni	Inland Broad-nosed Bat	2	0	2
Vespadelus regulus / Vespadelus vulturnus	Southern Forest Bat / Little Forest Bat	0	0	2
Vespadelus troughtoni* / Vespadelus vulturnus (defined by curved calls with Fc between 48 – 50 kHz)	Eastern Cave Bat / Little Forest Bat	0	0	1
Vespadelus vulturnus	Little Forest Bat	4	3	7
Unidentifiable calls				210
Identifiable calls				190

Species Name	Common name	Definitely present	Potentially present	Total
Total Calls				400
Percentage usable calls				47.5

* Threatened species listed under BC Act

Table G 12: Microbat calls for recorded at Wilpinjong Mine Site D_103 between 19 and 20 November 2018.

Species Name	Common name	Definitely present	Potentially present	Total
Chalinolobus gouldii	Gould's Wattled Bat	0	1	1
Chalinolobus morio	Chocolate Wattled Bat	0	3	3
Chalinolobus morio / Vespadelus troughtoni*	Chocolate Wattled Bat / Eastern Cave Bat	0	0	1
Miniopterus orianae oceanensis*	Eastern Bentwing-bat	1	4	5
<i>Miniopterus orianae oceanensis*</i> / Vespadelus vulturnus	Eastern Bentwing-bat / Little Forest Bat	0	0	16
Rhinolophus megaphyllus	Eastern Horseshoe Bat	2	0	2
Unidentifiable calls				54
Identifiable calls				28
Total Calls				82
Percentage usable calls				34.14

* Threatened species listed under BC Act

Table G 13: Microbat calls for recorded at Wilpinjong Mine Site E_104 between 19 and 20 November.

Species Name	Common name	Definitely present	Potentially present	Total
Austronomus australis	White-striped Free-tailed Bat	4	0	4
Chalinolobus dwyeri*	Large-eared Pied Bat	2	0	2
Chalinolobus gouldii	Gould's Wattled Bat	1	5	6
Chalinolobus gouldii / Scotorepens balstoni	Gould's Wattled Bat / Inland Broad- nosed Bat	0	0	10
Chalinolobus morio	Chocolate Wattled Bat	8	27	35
Chalinolobus morio / Vespadelus troughtoni	Chocolate Wattled Bat / Eastern Cave Bat	0	0	6
Miniopterus orianae oceanensis*	Eastern Bentwing-bat	120	58	178
<i>Miniopterus orianae oceanensis*</i> / Vespadelus regulus / Vespadelus	Eastern Bentwing-bat / Southern Forest Bat / Little Forest Bat	0	0	17

Species Name	Common name	Definitely present	Potentially present	Total
<i>vulturnus</i> (defined by curved calls with Fc between 44 – 46 kHz)				
<i>Miniopterus orianae oceanensis*</i> / Vespadelus vulturnus	Eastern Bentwing-bat / Little Forest Bat	0	0	449
Nyctophilus spp.*1	Long-eared Bat	1	1	2
Ozimops complex	Free-tailed Bat Complex	0	0	9
Rhinolophus megaphyllus	Eastern Horseshoe Bat			
Scotorepens balstoni	Inland Broad-nosed Bat	2	4	6
Vespadelus darlingtoni / Vespadelus regulus / Vespadelus vulturnus (defined by curved calls with Fc between 42.5 – 44 kHz)	Large Forest Bat / Southern Forest Bat / Little Forest Bat	0	0	1
Vespadelus regulus / Vespadelus vulturnus (defined by curved calls with Fc between 44 – 46 kHz)	Southern Forest Bat / Little Forest Bat	0	0	2
Vespadelus troughtoni * (defined by curved calls with Fc between 49 – 54 kHz)	Large Forest Bat	6	3	9
Vespadelus vulturnus	Little Forest Bat	9	19	28
Unidentifiable calls				233
Identifiable calls				767
Total Calls				998
Percentage usable calls				76.85

* Threatened species listed under BC Act - 1 Threatened species listed under the EPBC Act

Species Name	Common name	Definitely present	Potentially present	Total
Chalinolobus gouldii	Gould's Wattled Bat	0	2	2
Chalinolobus morio	Chocolate Wattled Bat	1	6	7
Chalinolobus morio / Vespadelus troughtoni	Chocolate Wattled Bat / Eastern Cave Bat	0	0	8
Miniopterus orianae oceanensis*	Eastern Bentwing-bat	7	13	20
Miniopterusorianaeoceanensis*/vespadelus/regulus/Vespadelusvulturnus(defined by curved calls with Fcbetween 44 – 46 kHz)	Eastern Bentwing-bat / Southern Forest Bat / Little Forest Bat	0	0	4
Miniopterusorianaeoceanensis*/vulturnus	Eastern Bentwing-bat / Little Forest Bat	0	0	121
Ozimops (Mormopterus) complex	Free-tailed Bat Complex	0	0	1
Vespadelus troughtoni*	Eastern Cave Bat	0	1	1
Unidentifiable calls				282
Identifiable calls				164
Total Calls				446
Percentage usable calls				36.77

* Threatened species listed under BC Act

Table G 15: Microbat calls for recorded at Wilpinjong Mine Ref 3 between 19 and 20 November 2018.

Species Name	Common name	Definitely present	Potentially present	Total
Austronomus australis	White-striped Free-tailed Bat	13	0	13
Chalinolobus dwyeri*1	Large-eared Pied Bat	11	1	12
Chalinolobus gouldii	Gould's Wattled Bat	0	8	8
Chalinolobus gouldii / Ozimops (Mormopterus) complex	Gould's Wattled Bat / Free-tailed Bat complex	0	0	1
Chalinolobus gouldii / Scotorepens balstoni	Gould's Wattled Bat / Inland Broad- nosed Bat	0	0	2
Chalinolobus morio	Chocolate Wattled Bat	9	44	53
Chalinolobus morio / Vespadelus troughtoni	Chocolate Wattled Bat / Eastern Cave Bat	0	0	10

Species Name	Common name	Definitely present	Potentially present	Total
Miniopterus orianae oceanensis*	Eastern Bentwing-bat	43	53	96
Miniopterusorianaeoceanensis*/vespadelus/regulus/vespadelusvulturnus(defined by curved calls with Fcbetween 44 – 46 kHz)	Eastern Bentwing-bat / Southern Forest Bat / Little Forest Bat	0	0	6
Miniopterusorianaeoceanensis*/vulturnus	Eastern Bentwing-bat / Little Forest Bat	0	0	330
Nyctophilus spp.*1	Long-eared Bat	0	2	2
Ozimops (Mormopterus) complex	Free-tailed Bat Complex	0	0	7
Rhinolophus megaphyllus	Eastern Horseshoe Bat	3	0	3
Scotorepens balstoni	Inland Broad-nosed Bat	0	1	1
Vespadelustroughtoni*(defined by curved calls with Fcbetween 49 – 54 kHz)	Large Forest Bat	1	2	3
Vespadelus vulturnus	Little Forest Bat	0	11	11
Unidentifiable calls				311
Identifiable calls				558
Total Calls				869
Percentage usable calls				64.21

* Threatened species listed under BC Act and 1 Threatened species listed under the EPBC Act

Table G 16: Microbat calls for recorded at Wilpinjong Mine Site Ref_8 recorded between 11 and 12 November2018.

Species Name	Common name	Definitely present	Potentially present	Total
Chalinolobus gouldii	Gould's Wattled Bat	52	10	62
Chalinolobus gouldii / Ozimops (Mormopterus) complex	Gould's Wattled Bat / Free-tailed Bat complex	0	0	5
Chalinolobus gouldii / Scotorepens balstoni	Gould's Wattled Bat / Inland Broad- nosed Bat	0	0	6
Chalinolobus morio	Chocolate Wattled Bat	1	2	3
Miniopterus orianae oceanensis*	Eastern Bentwing-bat	1	9	10

Species Name	Common name	Definitely present	Potentially present	Total
Miniopterusorianaeoceanensis*/Vespadelusdarlingtoni / Vespadelus regulus/ Vespadelus vulturnus (definedby curved calls with Fc between42.5 – 44 kHz)	Eastern Bentwing-bat / Large Forest Bat / Southern Forest Bat / Little Forest Bat	0	0	1
Miniopterusorianaeoceanensis*/vespadelus/regulus/vespadelusvulturnus(defined by curved calls with Fcbetween 44 – 46 kHz)	Eastern Bentwing-bat / Southern Forest Bat / Little Forest Bat	0	0	14
Miniopterusorianaeoceanensis*/vulturnus	Eastern Bentwing-bat / Little Forest Bat	0	0	35
Nyctophilus spp.*1	Long-eared Bat	2	3	5
Ozimops (Mormopterus) complex	Free-tailed Bat Complex	0	0	4
Rhinolophus megaphyllus	Eastern Horseshoe Bat	39	3	42
Scotorepens balstoni	Inland Broad-nosed Bat	3	1	4
Vespadelus regulus / Vespadelus vulturnus	Large Forest Bat / Southern Forest Bat / Little Forest Bat	0	0	2
Vespadelustroughtoni*(defined by curved calls with Fcbetween 49 – 54 kHz)	Large Forest Bat	3	0	3
Vespadelus vulturnus	Little Forest Bat	10	4	14
Unidentifiable calls				175
Identifiable calls				210
Total Calls				385
Percentage usable calls				55.05

* Threatened species listed under BC Act

Species Name	Common name	Definitely present	Potentially present	Total
Austronomus australis	White-striped Free-tailed Bat	11	2	13
Chalinolobus dwyeri*1	Large-eared Pied Bat	1	0	1
Chalinolobus morio	Chocolate Wattled Bat	0	2	2
Miniopterus orianae oceanensis*	Eastern Bentwing-bat	0	4	4
Miniopterusorianaeoceanensis*/vespadelus/regulus / Vespadelusvulturnus(defined by curved calls with Fcbetween 44 – 46 kHz)	Eastern Bentwing-bat / Southern Forest Bat / Little Forest Bat	0	0	3
Miniopterusorianaeoceanensis*/vulturnus	Eastern Bentwing-bat / Little Forest Bat	0	0	47
Ozimops (Mormopterus) complex	Free-tailed Bat Complex	0	0	1
Rhinolophus megaphyllus	Eastern Horseshoe Bat	1	0	1
Vespadelus vulturnus	Little Forest Bat	3	4	7
Unidentifiable calls				29
Identifiable calls				80
Total Calls				108
Percentage usable calls				74.07

Table G 17: Microbat calls for recorded at Wilpinjong Mine Site Ref_10 recorded between 19 and 20 November 2018.

* Threatened species listed under BC Act and 1 Threatened species listed under the EPBC Act

Table G 18: Microbat calls for recorded at Wilpinjong Mine Site Ref_14 recorded between 14 and 15 November 2018.

Species Name	Common name	Definitely present	Potentially present	Total
Austronomus australis	White-striped Free-tailed Bat	5	0	5
Chalinolobus gouldii	Gould's Wattled Bat	0	3	3
Chalinolobus gouldii / Ozimops (Mormopterus) complex	Gould's Wattled Bat / Free-tailed Bat complex	0	0	6
Chalinolobus morio	Chocolate Wattled Bat	1	2	3
Miniopterus orianae oceanensis*	Eastern Bentwing-bat	0	1	1

Species Name	Common name	Definitely present	Potentially present	Total
Miniopterusorianaeoceanensis*/vulturnus	Eastern Bentwing-bat / Little Forest Bat	0	0	15
Nyctophilus spp.*1	Long-eared Bat	0	1	1
Ozimops (Mormopterus) complex	Free-tailed Bat Complex	0	0	9
Rhinolophus megaphyllus	Eastern Horseshoe Bat	10	0	10
Saccolaimus flaviventris*	Yellow-bellied Sheathtail Bat	1	0	1
Unidentifiable calls				36
Identifiable calls				54
Total Calls				90
Percentage usable calls				60

* Threatened species listed under BC Act

Call profiles

	s\rod.armiste Edit View					ıg_Anabat d	ata\B_101 (A	32) 201811	19 Report tab	le is rea	dy\Aaust\ - [C:\Us	ers\rod.arn	nistead\Des	ktop]					-	- 6 ×
0 🗳 🛛	% 🗈	8 #	१ № ⊭	o 🚺 🛃																
	1 F1																			
Cgou Cmor	Cgoup Cmorp	Morm30 Morm25	CgouMorm Morm4p	Mocea Sbal	Moceap Sbalo	Vvult Vtrou	Vvultp Vtroup	Sgrey Nytco	SreSbal MyoNycto	Undo	Sydney_species		e Save I Save							
Cdwy	Cdwyp	Mormsp	Mridiep	CgouSbal	Vdarl	MacVvult	MocVvVr	Муо	VtVv	Clear	Western_specie	s Load	Save	Buf3-						
CmorV∨	Cmor∀t	Aaust	Aaustp	Rmeg	Vdarlp	Sflav	VdViVv	VIVv	Low	Ciear		Save	s Save	Buf4-						1
95k																			Param Mode	Value Units legacy
90k																				
85k																				
80k																				
75k																				
70k																			Fmin Fmean	
65k																				
60k																				
55k																			Fknee Tknee Ok	
50k																				
45k																			Tc Qual	
40k																				
35k																				
30k																				
25k																				
20k						-														
15k	<u> </u>	~		12/2	\mathbf{X}	1		$\langle \rangle$												
10k -		~ ~	and the second		~ `		~		~											
5k																				
secsr								· · ·											0	
0.00	0.02		0.04	0.06	0.08	0.	10 0	.12	0.14 Dati		16 0.1	3 (0.20	0.22	0.24	0.26	0.28	0.30	Scan	Choose File Save
Tape Species	NNNNNNN Aaust	Date	1	Loc			Spec SD1 1	lod1	Lat											
	V4056g	_					and look t		Lon	Alt	m									
	iletime: 2018	1121 0141	40 N poir	nts displayed	d: 490	Drawtime:	0.031 s												_	

Figure G 1: Call profile for *Austronomus australis* (White-striped Free-tailed Bat) recorded at B_101 at 0141 (1.41 am) on 21 November 2018.

🕄 C:\Users\rod.armistead\Desktop\Bat Work\Mudgee 2018\Wilpinjong_Anabat data\B_101 (AB2) 20181119 Report table is ready\Cdwyreport\ - [C:\Users\rod.armistead\De}	- 0	×
S File Edit View Filter Tools Record Window Help		- 8 ×
IIII IIII IIII IIII III III III III II		
Cgoup Morris0 CgouMorm Moceae Vvulti Vvultip Signer Signer Replace Save Bird*- Chair Crange Morrisd Morrisd Sabati Virus Virus </td <td></td> <td></td>		
Cdwy Cdwyn Morriso Minden CocyShal Vdat MocVvult MocVvV/ Myo VRV Western species Load Save Bu/3-		
CmodV CmodV Aaust Aaust Rmsg Vdarp Silav VdV/V V/V Low Clear Save As Save B Du/4		
		ue Units
95k-		
90k		21
85k	Fc 22.7 Sc 52.8	77 kHz 81 OPS
80k-	Dur 4.1	15 ms
75k		99 kHz
70k		89 kHz 31 kHz
	Nibe 2	20
	TBC 136.4	49 ms
60k	Fknee 23.9	96 kHz
55k-		87 ms 66 %
50k	s1 313.3	32 OPS
45k	- To 3.4	47 ms 60 %
40k		00 %
35k	_	
304	-	
	-	
	-	
15k	_	
108	_	
Sk-	_	
	_	
secsione 1.0.2 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30	Scan Choose File	Save
Tape NNRNBNN Date Loc Detum		
Species Cdwyreport Spec SD1 Modl Lon		
Notes V4056g Alt m		
Div: 8 Filetime: 20181121 0011 27 N points displayed: 548 Drawtime: 0.032 s		
Filter: C:\Users\\.\.\noise remover.abf	2.865 408s 99.5kHz st=	U

Figure G 2: Call profile for *Chalinolobus dwyeri* (Large-eared Pied Bat) recorded at B_101 at 0011 (12.11 am) on 21 November 2018.

	s\rod.armist Edit View					g_Anabat d	ata\B_101 (AE	2) 20181	119 Report tab	ole is rea	dy\Cgourepo	ort\ - [C:\U	sers\rod.armiste	ad\De]						- 0 ×
					🔳 🔍 E															
							≌ ← →						4							
Egou Emor	Cgoup Cmorp	Morm3D Morm25	CgouMorm Morm4p	Mocea Sbal	Moceap Sbalo	Vvult Vtrou	Vvultp Vtroup	Sgrey Nytco	SreSbal MyoNycto	Undo	Sydney_s		Replace Save Edit Save							
Cdwv	Cdwvp	Mormsp	Morm4p Mridiep	CoouSbal	Vdarl	MocVvult	MocVvVr	Myco	VEVy		Westerncro		Load Save	Buf3-						
CmorVv	CmorVt	Aaust	Aaustp	Rmeg	Vdarlp	Sflav	VdViVv	ViVv	Low	Clear			Save As Save							
																			Param Mode	Value Units
5k																			mode	
0k																			N	
5k																			Fc Sc	28.32 kHz 18.58 OPS
80k																				
5k																			Fmax Fmin	34.85 kHz 28.20 kHz
70k																			Friean	29.59 kHz
5k																				
0k																				
5k																			Fknee Tknee Ok	
0k																				
15k-																				
40k																				
15k 10k 🔨					L		~													
5k																				
0k																				
.5k																				
l0k-																				
5k																				
0.00	0.0	2 (0.04	0.06	0.08	0.	10 0	.12	0.14	0	. 16	0.18	0.20	0.22	0.24	0.26	0.28	0.30	Scan	Choose File Save
ape	NNNNNNN	Date		Loc					Dat											
pecies	Cgourepor	t					Spec SD1 M	odl	Lat Lon		—									
tes	V4056g									Alt	: m									
c 8	Filetime: 201	81119 2217	54 N poi	nts displaye	±: 819	Drawtime:	0.031 s										.\noise remove		61 403 5 80).9kHz.st= 0

Figure G 3: Call profile for *Chalinolobus gouldii* (Gould's Wattled Bat) recorded at B_101 at 2217 (10.17 pm) on 19 November 2018.

🖸 CiUsers/vod.armistead/Deaktop/Bat Work/Mudgee 2018/Wilpinjong_Anabat data/8_101 (A82) 20181119 Report table is ready/Cmorreport - [CiUsers/vod.armistead/De]	-	0 ×
N File Edit View File Tools Record Window Help □ <t< td=""><td></td><td>- 8 ×</td></t<>		- 8 ×
allas Hall hys [h] [h] [h] [z] z ho fa ho fa ho fa ho fa ho and ho fa ho		
Cmor Cmop Mom25 Mom4p Sbal Sbalp Vtrou Vtroup Nytoo MyoNycto Undertainerssove_st Edit Save Bul2+		
Cdwy Cdwy Momma Midep CgouSbal Vdal McVvult McVvVV Myo VVV Cer Section Secting Secting Section		
Cmer/V Cmer/V Aaut Aautp Rineg Vda/p Sitev Vd/V/V V/V Low Lever Save As Save But-	Param	Value Units
95k	Mode	legacy
90k-	N	29
55k	Fo	51.48 kHz
	Sc Dur	17.52 OPS 4.87 ms
80k -		
75k	Emax Emin	60.36 kHz 50.07 kHz
70k	Fmean	53.00 kHz
65k	Nibo TBC	28 126.21 ms
	_	
	Fknee Tknee	53.25 kHz 1.32 ms 5.03 %
SILE & DE SALAN STATISTICS AND A CONTRACT AND A SALAN STATISTICS AND A SALAN	Qk	5.03 %
	S1 To	341.77 OPS
45k	Qual	4.25 ms 0.40 %
40k-	-	
35k	-	
30k-	-	
25k	-	
20k-	_	
15k	_	
5k-	-	
secsi 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30	Scan Cho	ose File Save
Tape NNNNNNN Date Loc Datum		
Special Chorreport Spec [SD1 Mod1 Lat Lat		
Notes V4056g Alt m		
Div: 8 Filetime: 20181119 2203 00 N points displayed: 1900 Drawtime: 0.031 s		
Filter: C:\Users\\\.noise remover.abf	3.945 892s 99.8kHz	st= 0

Figure G 4: Call profile for *Chalinolobus morio* (Chocolate Wattled Bat) recorded at B_101 at 2203 (10.03 pm) on 19 November 2018.

				Mudgee 201 d Window		ıg_Anabat o	ata\BOA1_10	0 (AB3) 20	181105_Repor	t table\	Moceareport\ - [C:\	Jsers\rod.a	mistead\Desk	top]						- 0 ×
🗅 🗳 🖡		8 #		o 🚺 🚡																
							≌←→													
Cgou	Cgoup Cmorp	Morm30	CgouMorm	Mocea Sbal	Moceap	Vvult	Vvultp	Sgrey	SreSbal MyoNycto	Undo	Sydney_species		Save Buf1+ Save Buf2+	-						
Cmor Cdwy	Cdwyp	Morm25 Mormsp	Morm4p Mridiep	Sbal CgouSbal	Sbalp Vdari	Vtrou MocVvult	Vtroup MocVvVr	Nytco Myo	MyoNycto VtVv		Westerncrossover_	Load	Save Buf2 Save Buf3							
CmorVv	CmorVt	Aaust	Aaustp	Rmeg	Vdarlp	Sflav	VdViVv	ViVv	Low	Clear	western_species	Save As		1						
			<u> </u>		. <u>.</u>				ن <u>ــــــــــــــــــــــــــــــــــــ</u>		1		<u>ـــــا</u>	1					Param	Value Units
95k																				
90k																				
85k																				
BOk																				
75k																				
70k																			Fmin Fmean	46.86 kHz 50.32 kHz
		: :		÷ •																
65k .	· !	;		÷	•															
50k -	1																			
55k 1		-	i i																	
50k		ι.	ι i i,																	
•••	, <i>W</i> ,	کسر تعور ک	May 2 6	1 X X V	1144															
45k	•																		Tc Qual	
10k																				
35k																				
30k																				
25k																				
20k																				
15k																				
l0k																				
5k																				
ecs	0.02		.04	0.06	0.08	-		.12	0.14	-	16 0.18	. 0.		.22	0.24	0.26	0.28	0.30	Scan	Choose File Save
0.00		_	.04		0.08	0.	10 0	. 12	0.14 Dat		.16 0.18	U.	20 L	. 22	U.24	0.26	0.28	0.30	coarr	0.0000.00
-	NNNNNNN	Date		Loc					Lat											
	locearepo:	5			_		Spec SD1 M	odl	Lon											
	74062g									A1:	: m									
v:8 F	iletime: 201	1106 0052	05 N poir	nts displayed	l: 1031	Drawtime	0.046 s													SkHzet- 0

Figure G 5 Call profile for *Miniopterus orianae oceanensis* (Eastern Bentwing-bat) recorded at BOA1_100 at 0052 (12.52 am) on 06 November 2018.

🖸 C:\Users\rod.armistead\Desktop\Bat Work\Mudgee 2018\Wilpinjong_Anabat data\B_101 (AB2) 20181119 Report table is ready\Nytcoreport\ - [C:\Users\rod.armistead\D]	– ø ×
🔽 File Edit View Filter Tools Record Window Help	_ 8 ×
🗅 📾 🖬 🖄 👘 🔞 🥞 🦹 🖉 🖉 🖲 🔳 🗨 🛄 1 🔍	
IIII 腓 腓 肿 肝 F1 F2 F3 F4 F5 F6 F7 F8 F9 10 AII W 样 Q	
Cgou Cgou Mont30 CgouMom Monesa Monesa Vvulti Symply Stellar Symply Reface Symply Dir Care Care March March	
Citor Citor Molinez Molinep Stall Stalp Vilod Vilodp Mycro Mycro Ewesterincissover_st Edit Save Brize	
Cohy Cohy Mindep Cpus/Sbal Vata MocVvviii MocVVVV Myo V/V Centry Centry Centry Centry Centry Centry Centry Centry Save 8 Save 8 Save 4	
	Value Units
95k	legacy
90k	13
	39.52 kHz
Sc. Sc.	189.76 OPS
80k	2.92 ms
75k t Prove	62.20 kHz 38.12 kHz
70k 1 m mmm	47.30 kHz
65k - 1 - 1	
1 THE	142.88 ms
Flore	47.40 kHz
558/1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.28 ms 4.67 %
50k 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
45k-111111111111111111111111111111111111	256.18 OPS 2.70 ms
Quai Quai Quai Quai Quai Quai Quai Quai	0.30 %
35k	
30k	
25k	
20k	
15k	
10k	
5k	
eese 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 See	Choose File Save
	U
Tape Induction Dece Doc	
Div: 8 Filetime 20181120.2243.44 N points displayed: 464 Drawtime 0.031 s Filetime 20181120.2243.44 N points displayed: 464 Drawtime 0.031 s	98.7kHz st= 0

Figure G 6: Call profile for *Nyctophilus* spp. recorded at B_101 at 2243 (10.43 pm) on 20 November 2018.

S File	Edit View	Filter To	ols Record	Window	Help			\Example	s of calls for (GF\Morr	n25report REf_I	8\ - [C:\Us	ers\rod.armist	ead\De]					-	- 0 ×
0 🗳		6 8																		
Cgou Cmor	Cgoup Cmorp	Morm30 Morm25	CgouMorm Morm4p	Mocea Sbal	Moceap Sbalp	Vvult Vtrou	Vvultp Vtroup	Sgrey Nytco	SreSbal MyoNycto	Undo	Sydney_spe		splace Save Edit Save	Buf1+ Buf2+						
Cdwy	Cdwyp	Mormsp	Mridiep	CgouSbal	Vdarl	MocVvult	MocVvVr	Муо	VIVv	~	Western_sp		oad Save	Buf3-						
CroorVv	CrnorVt	Aaust	Aaustp	Rmeg	Vdarlp	Sflav	VdVrVv	ViVv	Low	Clear		S	ave As Save	Buf4-						
95k																			Param Mode	Value Units
90k																				18
85k																				23.93 kHz 14.53 OPS
80k																				7.38 ms
75k																			Fmax Fmin	26.17 kHz 23.68 kHz
70k																				24.63 kHz
65k																				17 241.94 ms
60k																				25.31 kHz
55k																			Fknee Tknee Qk	25.31 kHz 0.86 ms 0.84 %
50k																				-20.96 OPS
45k																			To Qual	6.26 ms 0.34 %
40k																				
35k																				
30k					1															
25k	~~~		~	~~~	\sim	and the second second	and the second second	-	•••											
20k																				
15k																				
10k																				
5k																				
secsr 0.00	0.0	2 0	.04	0.06	0.08	0.	.0 0	.12	0.14	. 0	16 0	.18	0.20	0.22	0.24	0.26	0.28	0.30	Scan	Choose File Save
	SN 82115	Date		Loc					Dat	um								E		
Species	Morm25rep	ort					Spec SD1 M	odl	Lat											
Notes	V4056g									Alt	m									
Div: 8	Filetime: 201	81114 0441 3	13 N poin	its displayed	: 837	Drawtime:	0.032 s								lene.	Colliner ())			2 200- 00 0	

Figure G 7 Call profile for Ozimops spp. complex recorded at Reference 8 at 0441 (4.41 am) on 14 November 2018.

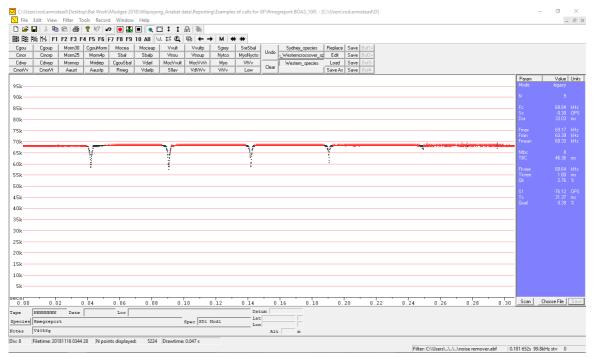


Figure G 8: Call profile for *Rhinolophus megaphyllus* (Eastern Horseshoe Bat) recorded at BOA3_100 at 0344 (3.44 am) on 16 November 2018.

				d Window		ig_Anabat d	lata\keportin	g\exampi	es of calls for	GF\Sacc	.flav_SiteB_101\Sacc.	lav_siteker	_14\ - [C:\	1						- 0	× . 8 ×
) 🗳 🕻	🏅 🛍	8 8	१ № и	o 🚺 🛃	🔳 🔍 I	3 1 1	品 🖌														
lle Alle P	4 F1	F2 F3 F	4 F5 F6 F	F7 F8 F9	10 All 🕔	1. ## 🕰	≌ ← →	- M -	* *												
Cgou	Cgoup	Morm30	CgouMorm	Mocea	Moceap	Vvult	Vvultp	Sgrey	SreSbal	Undo	Sydney_species		Save B								
Cmor	Cmorp	Morm25	Morm4p	Sbal	Sbalp	Vtrou	Vtroup	Nytco	MyoNycto	Onuo	[_westerniclossover_:			#2+							
Cdwy CmorVy	Cdwyp CmorVt	Mormsp Aaust	Mridiep Aaustp	CgouSbal Rmeg	Vdarl Vdarlo	MocVvult Sflav	MocVvVr VdVr	Nyctop V/Vv	Low	Clear	Western_species	Load Save As	Save B Save B	uf3-							
	GIRATY		riddop	Thing	Tourp							Jourona							Param	Value	Units
5k																			Mode	legacy	
0k-																					
5k																					
																				32.86 5.00	OPS
0k																					
5k																			Fmax Fmin	22.84 19.28	
0k																					
5k																					
0k -																					
5k																			Fknee Tknee		
0k																					
5k																					
0k																					
5k																					
0k																					
5k																					
0k	s l		he was a h	1 June	ir,	me have															
5k			• • •		•																
0k																					
5k																					
0.00	0.0	2 0	.04	0.06	0.08	0.	10 0	.12	0.14	. 0	.16 0.18	0.	20	0.22	0.24	0.26	0.28	0.30	Scan	Choose File	Save
		Date		Loc					Dat	um											
	Sflavrepo		,				Spec SD1 1	lod1	Lat												
tes	V4062g								Lor	Al	t m										
r: 8	iletime: 201	81115 0031	28 N noir	nts displayed	506	Drawtime	0.047 s	-		-											_

Figure G 9: Call profile for *Saccolaimus flaviventris* (Yellow-bellied Sheathtail Bat) recorded at Ref 14 at 0031 (12.31 am) on 15 November 2018.

🕄 C:\Users\rod.armistead\Desktop\Bat Work\Mudgee 2018\Wilpinjong_Anabat data\8_101 (A82) 20181119 Report table is ready\Sbalreport\ - [C:\Users\rod.armistead\Desktop\Bat Work\Mudgee 2018\Wilpinjong_Anabat data\8_101 (A82) 20181119 Report table is ready\Sbalreport\ - [C:\Users\rod.armistead\Desktop\Bat Work\Mudgee 2018\Wilpinjong_Anabat data\8_101 (A82) 20181119 Report table is ready\Sbalreport\ - [C:\Users\rod.armistead\Desktop\Bat Work\Mudgee 2018\Wilpinjong_Anabat data\8_101 (A82) 20181119 Report table is ready\Sbalreport\ - [C:\Users\rod.armistead\Desktop\Bat Work\Mudgee 2018\Wilpinjong_Anabat data\8_101 (A82) 20181119 Report table is ready\Sbalreport\ - [C:\Users\rod.armistead\Desktop\Bat Work\Mudgee 2018\Wilpinjong_Anabat data\8_101 (A82) 20181119 Report table is ready\Sbalreport\ - [C:\Users\rod.armistead\Desktop\Bat Work\Mudgee 2018\Wilpinjong_Anabat data\8_101 (A82) 20181119 Report table is ready\Sbalreport\ - [C:\Users\rod.armistead\Desktop\Bat Work\Mudgee 2018\Wilpinjong_Anabat data\8_101 (A82) 20181119 Report table is ready\Sbalreport\ - [C:\Users\rod.armistead\Desktop\Bat Work\Mudgee 2018\Wilpinjong_Anabat data\8_101 (A82) 20181119 Report table is ready\Sbalreport\ - [C:\Users\rod.armistead\Desktop\Bat Work\]	-	o ×
💟 File Edit View Filter Tools Record Window Help		- 8 ×
□ ☞ ■ ※ № 88 ● \$ 12 1 0 0 1 1 1 1 日 ● □ □ □ □ 1 1 日 ●		
IIII 腓 腓 胩 F1 F2 F3 F4 F5 F6 F7 F8 F9 10 All W ♯ Q ❷ ← → M ← →		
Copu Copup Marmão Copularem Mocese Mocese Vult Vulte Sgrey Sreibal Sold Sold Survey Serve		
Cmorp Motifizio Molimap Spail Spail Virou Viroup Nyico MyoNyico Lwesteincrossove_sp E dt Save Burz-		
Cdwp Cdwp Mmmp Midage Cgpubbal MacVvxH Mpc/VvH Mpc VfVV VfV VfV Clean Clean Clean Save AS Save B/3-4		
	Param	Value Units
95k	Mode	legacy
90k-	N	27
85k	Fo	32.57 kHz
80k	Sc Dur	23.13 OPS 5.43 ms
oux 75k	Fmax	41.26 kHz
	Fmin	31.94 kHz
70k	Friean	34.06 kHz
65k	Nibe TBC	26 122.86 ms
60k-	Fknee	34.10 kHz
55k	Tknee	1.78 ms
50k	Qk	7.47 %
	S1 To	377.99 OPS 4.91 ms
	Qual	0.40 %
	_	
35 × 2 Lol 4 × 2 + 2 Lol Lol Logo have by Lol Lol Logo + 1	_	
30k	_	
25k	_	
20k-		
15k		
10k		
5k	_	
secsi 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0	.30 Scan C	hoose File Save
0.00 0.00 0.00 0.00 0.00 0.10 0.12 0.14 0.10 0.10 0.12 0.14 0.10 0.10 0.10 0.10 0.10 0.10 0.10		
Spanial Shaltanort Sana Shilt Modil Lat		
operating interpreter and a spectrum to a sp		
Dir. 8 Filetime: 20181119 2017 15 N points displayed: 1276 [Drawtime: 0.031 s		
Filter: C\Users\\\noise remover.abf	2.949 511s 98.4k	Hz st= 0

Figure G 10: Call profile for *Scotorepens balstoni* (Inland Broad-nosed Bat) recorded at B_101 at 2017 (8.17 pm) on 19 November 2018.

D 🧀 🖥	1 2 🗈		8 18 4	Window		11	91 🐌													
							2 ← →	• M 4	* *											
Cgou	Cgoup	Morm30	CgouMorm	Mocea	Moceap	Vvult	Vvultp	Sgrey	SreSbal	Undo	Sydney_specie		Save B							
Cmor	Cmorp	Morm25	Morm4p	Sbal	Sbalp	Vtrou	Vtroup	Nytco	MyoNycto	Undu	_Westerncrossove			#2+						
Cdwy EmorVv	Cdwyp CmorVt	Mormsp Aaust	Mridiep Aaustp	CgouSbal Rmeg	Vdarl Vdarlp	MocVvult Sflav	MocVvVr VdViVv	Myo ViVv	Low	Clear	Western_specie		Save B	uf3- uf4-						
																			Param	Value Units
95k																				
90k																				
85k																				
30k																				
75k																				54.38 kHz
							. *												Fmin Fmean	
70k							111		:											
50k						: 1		•	1	1										
50k	- i-	1 1	1 1	+ +		-Li-	<u>↓ ان</u> ا	× .	A Veren	1	1									
15k	111	111	1	\uparrow					a ditta		* *									364.98 OPS 3.53 ms
10k %	a la se la	له مرح ه	u 🗸 🗸	<u> </u>	a have be				•											
35k									•											
30k																				
25k																				
20k																				
l5k																				
l0k																				
5k																				
scsr																				
0.00	0.02	2 0	.04	0.06	0.08	0.	.0 .	0.12	0.14		16 0.1	8 0	. 20	0.22	0.24	0.26	0.28	0.30	Scan	Choose File Save
- 1	OUNDONIO	Date		Loc					Dat Lat	um										
	/darlrepo:	rt,MoeVvu	lt				Spec SD1 1	fod1	Lon											
tes	74056g									Alt	m									

Figure G 11: Call profile for *Scotorepens greyii* (Little Broad-nosed Bat) / *Vespadelus darlingtoni* (Large Forest Bat) / (lower frequency call) with a *Miniopterus orianae oceanensis* (Eastern Bentwing-bat) / *Vespadelus vulturnus* (Little Forest Bat) (higher frequency call) recorded at BOA3_100 at 0326 (3.26 am) on 16 November 2018.

C:\Us	ers\rod.armist	ad\Desktop	Bat Work	Mudgee 20	18\Wilpinjoi	ng_Anabat d	ata\Reportin	g\Example:	of calls for (GF\VrVvi	report E-10	4\ - [C:\User	s\rod.armi	stead\De	sk]					-	0	×
S File	Edit View	Filter To	ols Record	d Window	Help																- 1	5 ×
🗅 😅	🖬 % 🖻	8 8	💡 M? 🖌 🖌	o 🚺 🛃		11	品 🐚															
IIII AI	F1	F2 F3 F4	I F5 F6 I	F7 F8 F9	10 All	. # Q	≌ ← -	м 4	+ +>													
Cgou	Cgoup		CgouMorm	Mocea	Moceap	Vvult	Vvultp	Sgrey	SreSbal	Hada			Replace S		f1+							
Crnor	Cmorp	Morm25	Morm4p	Sbal	Sbalp	Vtrou	Vtroup	Nytco	MyoNycto	Undo		crossover_sp		Save Bu								
Cdwy CmorVv	Cdwyp CmorVt	Mormsp Aaust	Mridiep Aaustp	CgouSbal Rmeg	Vdarl Vdarlp	MocVvult Sflav	MocVvVr VdViVv	Myo ViVv	VtVv Low	Clear	Westen	n_species	Load Save As	Save Bu Save Bu								
CIIIOITY	Cilloret	Adust	Adustp	rilleg	vuarip	Jildy	004144	*1**					Jave As	Jave DU	197					Param	Value U	nite
95k																				Mode	legacy	110
90k-																						
85k																						PS
80k-																						5
75k-																						
70k																				Fmin Fmean	44.50 k 46.33 k	
65k-																						
		. :																		TBC		s
60k																						-12
55k-	111																					8
50k		i.																				
45k	$\langle \rangle \rangle$	يد لي	Li.L.																		509.63 0 4.16 m	PS
40k-																						
35k																						
30k-																						
25k																						
20k-																						
15k-																						
10k-																						
5k																						
secsr 0.00			.04	0.06	0.08	0.					.16	0.18	0.20		0.22	0.24	0.26	0.28	0.30	Scan	Choose File	ave
Tape	0.02	Date 0	. 0 4	Loc	0.08	U.	10	0.12	0.14		. 10	0.18	0.21	,	0.22	0.24	U.26	u.28	0.30			
	VrVvrepor			100			Spec SD1 1	fodl	Lat													
Notes	V4062a						opec loor .		Lon	Alt												
	Filetime: 201	1116 0226 2	0 North	ate disate as	L 601	Drawtime	0.021 -			Alt			_	_								_
DIV. 0	prinetime: 201	1110 0520 2	o po por	its uisplayed	. 001	prawtime	0.0315									Filte	r: C:\Users\\	\noise remover	.abf 1.6	30 874s 99.8	kHz st= 0	-

Figure G 12: Call profile for *Vespadelus regulus* (Southern Forest Bat) / *Vespadelus vulturnus* (Little Forest Bat) recorded at 0326 (3.26 am) on 16 November 2018.

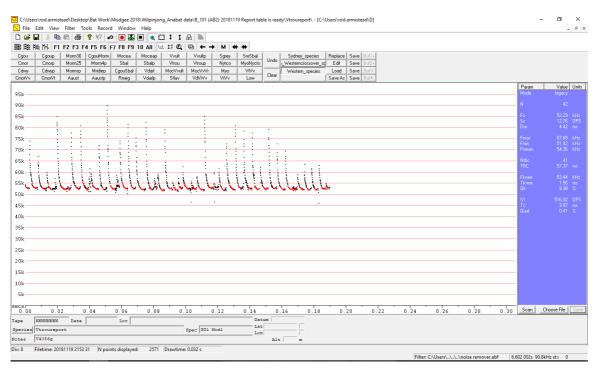


Figure G 13: Call profile for *Vespadelus troughtoni* (Eastern Cave Bat) recorded at B_101 at 2153 (9.53 pm) on 19 November 2018.

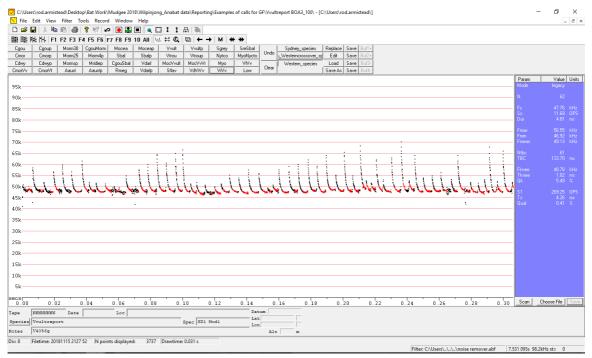


Figure G 14: Call profile for *Vespadelus vulturnus* (Little Forest Bat) recorded at BOA3_100 at 2127 (9.27 pm) on 15 November 2018.

References

Churchill, S. (2008). Australian Bats. Second Edition. Allen and Unwin. NSW.

Commonwealth of Australia (2010). Survey guidelines for Australia's threatened bats. Guidelines for detecting bats listed as threatened under the Environmental and Biodiversity Conservation Act 1999.

Law, B. S., Anderson, J., and Chidel, M. (1999). 'Bat communities in a fragmented forest landscape on the south-west slopes of New South Wales, Australia.' *Biological Conservation 88, 333-345*.

Lloyd, A.M., Law, B.S., and Goldingay, R. (2006) 'Bat activity on riparian zones and upper slopes in Australian timber production forests and the effectiveness of riparian buffers.' *Biological Conservation 129, 207-220*.

McKenzie, N. L., Start, A. N., and Bullen, R. D. (2002). 'Foraging ecology and organisation of a desert bat fauna.' *Australian Journal of Zoology 50, 529-548.*

Mills, D. J., Norton, T. W., Parnaby, H. E., Cunningham, R. B., and Nix, H. A. (1996). 'Designing surveys for microchiropteran bats in complex forest landscapes - a pilot study from south-east Australia.' Special issue: *Conservation of biological diversity in temperate and boreal forest ecosystems 85, 149-161.*

Pennay, M., Law, B., and Reinhold, L. (2004). *Bat calls of New South Wales: Region based guide to echolocation calls of Microchiropteran bats.* NSW Department of Environment and Conservation, Hurstville.

Pennay, M., Law., B., and Lunney. D. (2011). Review of the distribution and status of the bat fauna of New South Wales and the Australian Capital Territory. In *The Biology and Conservation of Australasian Bats.* Edited by Bradley Law, Peggy Eby, Daniel Lunney and Lindy Lumsden. Royal Zoological Society of NSW, Mosman NSW. Australia.

Reardon, T.B., McKenzie, N.L., Cooper, S.J.B., Appleton, B., Carthew, S. and Adams, M. (2014). *A molecular and morphological investigation of species boundaries and phylogenetic relationships in Australian Free-tailed Bats* Mormopterus (*Chiroptera: Molossidae*). Australian Journal of Zoology 62: 109 – 136.

Reinhold, L., Law, B., Ford, G., and Pennay, M. (2001). *Key to the bat calls of south-east Queensland and north-east New South Wales.* Queensland, DNR.

HEAD OFFICE

Suite 2, Level 3 668-672 Old Princes Highway Sutherland NSW 2232 T 02 8536 8600 F 02 9542 5622

CANBERRA

Level 2 11 London Circuit Canberra ACT 2601 T 02 6103 0145 F 02 9542 5622

COFFS HARBOUR

35 Orlando Street Coffs Harbour Jetty NSW 2450 T 02 6651 5484 F 02 6651 6890

PERTH

Level 1, Bishop's See 235 St Georges Terrace Perth WA 6000 T 08 6218 2200 F 02 9542 5622

MELBOURNE

Level 1, 436 Johnston St Abbotsford, VIC 3076 T 1300 646 131

SYDNEY

Level 3 101 Sussex Street Sydney NSW 2000 T 02 8536 8650 F 02 9542 5622

NEWCASTLE

Suites 28 & 29, Level 7 19 Bolton Street Newcastle NSW 2300 T 02 4910 0125 F 02 9542 5622

ARMIDALE

92 Taylor Street Armidale NSW 2350 T 02 8081 2685 F 02 9542 5622

WOLLONGONG

Suite 204, Level 2 62 Moore Street Austinmer NSW 2515 T 02 4201 2203 F 02 4268 4361

BRISBANE

Level 5 12 Creek Street Brisbane QLD 2040 T 07 3239 9600 F 07 3854 0310

HUSKISSON

Unit 1, 51 Owen Street Huskisson NSW 2540 T 02 4201 2264 F 02 9542 5622

NAROOMA

5/20 Canty Street Narooma NSW 2546 T 02 4302 1266 F 02 9542 5622

MUDGEE

Unit 1, Level 1 79 Market Street Mudgee NSW 2850 T 02 4302 1234 F 02 6372 9230

ADELAIDE

2, 70 Pirie Street Adelaide SA 5000 T 08 8470 6650 F 02 9542 5622

1300 646 131 www.ecoaus.com.au

Fly By Night Bat Surveys Pty Ltd ABN 48 068 562 005

PO Box 271 BELMONT NSW 2280 Tel: 02 4947 7794 Mobile: 0414 47794 Email: glenn@flybynightbatsurveys.com.au

18th June, 2018

Ian Flood Manager Project Development & Approvals Wilpinjong Coal Mine (Peabody Energy Pty Ltd) 1434 Ulan-Wollar Rd, WILPINJONG NSW 2850 Ph. (02) 6370 2528 Mobile: 0417 049 493 email:<u>iflood@peabodyenergy.com</u>

Results of microbat survey of disused oil shale mine adit, Slate Gully, Wilpinjong, New South Wales.

Dear Ian,

Following are the results of our latest survey of a disused oil shale mine adit at Slate Gully, Wilpinjong, New South Wales. Counts of bats exiting the adit were conducted from dusk on the evening of 6th June 2018 using hand held counters. Following the counts a harp trap was placed at the adit mouth and bats re-entering the mine were captured from 6.20pm. Individuals of two species were captured, the Eastern Bent-wing Bat (*Miniopterus orianae oceanensis*) and Eastern Horseshoe Bat (*Rhinolophus megaphyllus*). Trapping of the adit was again undertaken from 4.00am until 6.00am on the morning of the 7th June. Bats were identified to species and sex and individuals that had not been banded on previous surveys had their forearm marked with a permanent marking pen. The adit was again harp trapped on the evening of the 7th June to obtain an estimate of the number of individuals roosting within the disused workings. Weather conditions during the survey are detailed in *Table 1*.

Weather was moderate to warm with no rain during the survey. Minimum temperatures varied from 2.1 to 8.6°C while maximum temperatures varied from 16.5 to 18.8°C.

June 2018

Table 1Weather conditions during the survey

Date	Minimum Temperature (°C)	Maximum Temperature (°C)	Rainfall (mm)
5/06/2018	2.1	16.5	0
6/06/2018	8.6	17.5	0
7/06/2018	8.2	18.8	0

The two species of predominantly cave roosting microbats previously recorded from the mine workings were again recorded during the current survey, the Eastern Bent-wing Bat (*Miniopterus orianae oceanensis*) and Eastern Horseshoe Bat (*Rhinolophus megaphyllus*). As expected, neither species were breeding at the time of survey. The colony of Eastern Bent-wing Bats roosting within the workings at the time of survey consisted of a mixture of males, females that had not yet given birth to young and older females that had reared young during previous breeding events. Eastern Bent-wing bats again made up the bulk of the bats present within the workings with 505 individuals captured compared with 16 Eastern Horseshoe Bats. As with previous surveys, a small number of Eastern Horseshoe bats were present (<50 individuals). The majority of individuals captured were male, but a smaller number of females were also present. Results to date indicate that a small colony of males and non-breeding females exists in the workings throughout the year.

The tally of bats exiting the mine workings on the evening of 6th June with a hand held counter was 1029 individuals. This indicates that the number of bats utilising the workings during the June survey was just over 1000 individuals. These numbers are the highest recorded from the workings to date. Previous counts have been in the range of 600 to 800 individuals. This increase in the number of individuals counted may be due to a number of factors. Diurnal roosts of the Eastern Bent-wing Bat can exhibit wide fluctuations in the number of individuals present, particularly when dispersing individuals are passing through an area en route to another roost. They also can undergo high turnover of individuals as bats move between roosts to socialise etc. The 2018 winter survey was approximately one month earlier than the survey undertaken during the winter of 2017. Milder temperatures during the current survey may also have allowed more bats to forage.

June 2018

References

- Biodiversity Monitoring Services (BMS) (2015) *Wilpinjong Extension Project Terrestrial Fauna* Baseline Report (Development Site). A report to Wilpinjong Coal Pty Ltd. July 2015.
- Ecological Australia (2016) *Slate Gully Baseline Microbat Monitoring*. A report to Wilpinjong Coal Pty Ltd. December 2016.
- Fly By Night Bat Surveys (2017) *Results of microbat survey of disused oil shale mine adit, Slate Gully, Wilpinjong, New South Wales.* A report to Wilpinjong Coal Pty Ltd. April 2017.
- Hoye, G.A. (2000) The Discovery of Two and Distinctive Maternity Roosts of the Large Bent-wing Bat in the Hunter Valley, NSW. Spoken Presentation. 9th Australasian Bat Conference. Tocal, New South Wales. April 2000.
- Hoye, G.A. and Hall, L.S. (2008) Eastern Bent-wing Bat (*Miniopterus schreibersii oceanensis*) in Van Dyck, S. & Strahan, R. ed. *The Mammals of Australia*. Third Edition. Reed New Holland, Chatswood. p.507-508.
- Rowse, E.G., Lewanzik, D., Stone, E.L., Harris, S. and Jones, G. (2016) Dark Matters: The Effects of Artificial Lighting on Bats. In C.C. Voigt and T. Kingston (eds.), Bats in the Anthropocene: Conservation of Bats in a Changing World, DOI 10.1007/978-3-319-25220-9_7
- Speakman, J.R., Webb, P.I. and Racey, P.A. (1991) Effects of disturbance on the energy expenditure of hibernating bats. *Journal of Applied Ecology*. 28:1087-1104.
- Stone, E.L., Harris, S. and Jones, G. (2015) Impacts of artificial lighting on bats: a review of challenges and solutions. *Mammalian Biology - Zeitschrift für Säugetierkunde*. 80(3):213– 219.
- Van Harten, E., Lawrence, R., Lumsden, L., Meyers, N., Reardon, T. and Weyland, J. (2018) Winter activity patterns of the critically endangered southern bent-wing in temperate Australia. Spoken paper at the 18th Australasian Bat Conference. Richmond, NSW. 3-6 April 2018

Best wishes

Glenn Hoye

and

Andrew Lothian

June 2018

Objectives	2018	Assessment of Actions		
Identification of cultural heritage sites within the Biodiversity Offset Areas to avoid potential harm	Undertake Due Diligence cultural heritage surveys in accordance with Due Diligence Code of Practice for the Protection of Aboriginal Objects in NSW within areas of proposed disturbance of the 2 Biodiversity Offset Areas to identify cultural heritage sites	Not Triggered in 2018. No disturbance activities during the 2018 reporting period. There was a scheduled survey of the WEP Offset Areas (1-5) undertaken by South East Archaeological (SEA) and the RAPs in 2018.		
Cultural heritage items within the approved disturbance area, ECAs, Regeneration and Rehabilitation Areas are managed in accordance with the WCPL ACHMP (within DA boundaries) and Due Diligence Code of Practice for the Protection of Aboriginal Objects in NSW for areas elsewhere	Continue implementation of WCPLs ACHMP, Due Diligence Code of Practice for the Protection of Aboriginal Objects in NSW and WCPLs GDP Process			
Clearly delineate all Biodiversity Offset Areas, ECAs and Regeneration Areas	Undertake annual security inspection. Schedule and undertake necessary repairs	Inspections ongoing throughout the 2018 reporting period.		
Prevent unauthorised human access to all Management Domains		All stock excluded.		
Exclude livestock from areas of native regeneration (unless being used as within management program i.e. crash grazing)		Repair of fences and gates ongoing as required.		
Access to the Management Domains is retained for maintenance and safety purposes				
Reduce and rehabilitate unnecessary access tracks in all Biodiversity Offset Areas , ECAs and Regeneration Areas	Undertake quarterly rehabilitation inspection. Schedule and undertake necessary repairs	Inspections ongoing throughout the 2018 reporting period.		
		Repair and maintenance of access tracks ongoing as required.		
Provide safe, unimpeded access for monitoring and maintenance, bushfire management, and asset protection in all Biodiversity Offset Areas, ECAs and Regeneration Areas	Undertake annual access track inspection. Schedule and undertake necessary repairs	Bushfire management plan review completed in 2018 which included a detailed review by bushfire ecologist in November 2017.		
		Finalising of the revised BFMP is scheduled in early 2019.		
All Biodiversity Offset Areas, ECAs and Regeneration Areas are free of waste, disused buildings and redundant farm	Undertake quarterly waste inspections. Schedule and commission removal of all additional waste	Inspections ongoing throughout the 2018 reporting period.		
equipment	Include disused building sites on quarterly rehabilitation inspection. Schedule and undertake necessary repairs.	Removal of building wastes continued in 2018 and focussing on the additional Offset Areas.		
Erosion, sediment or soil (i.e. Salinity) risks are identified and mapped in all Biodiversity Offset Areas, ECAs and Regeneration Areas	Undertake quarterly erosion, sediment and soil inspections. Update GIS database with necessary changes	Inspections ongoing throughout the 2018 reporting period, which included use of LFA in accordance with the BMP.		
	Identification of cultural heritage sites within the Biodiversity Offset Areas to avoid potential harmCultural heritage items within the approved disturbance area, ECAs, Regeneration and Rehabilitation Areas are managed in accordance with the WCPL ACHMP (within DA boundaries) and Due Diligence Code of Practice for the Protection of Aboriginal Objects in NSW for areas elsewhereClearly delineate all Biodiversity Offset Areas, ECAs and Regeneration AreasPrevent unauthorised human access to all Management DomainsExclude livestock from areas of native regeneration (unless being used as within management program i.e. crash grazing)Access to the Management Domains is retained for maintenance and safety purposesReduce and rehabilitate unnecessary access tracks in all Biodiversity Offset Areas , ECAs and Regeneration AreasProvide safe, unimpeded access for monitoring and maintenance, bushfire management, and asset protection in all Biodiversity Offset Areas, ECAs and Regeneration AreasAll Biodiversity Offset Areas, ECAs and Regeneration Areas are free of waste, disused buildings and redundant farm equipmentErosion, sediment or soil (i.e. Salinity) risks are identified and mapped in all Biodiversity Offset Areas, ECAs and	Identification of cultural heritage sites within the Biodiversity Undertake Due Diligence cultural heritage surveys in accordance with Due Diligence Code of Practice for the Protection of Aboriginal Objects in NSW within areas of proposed disturbance of the 2 Biodiversity Offset Areas to identify cultural heritage sites Cultural heritage items within the approved disturbance area, ECAs, Regeneration and Rehabilitation Areas are managed in accordance with the VCPL ACHMP, Due Diligence Code of Practice for the Protection of Aboriginal Objects in NSW with areas of proposed disturbance of the 2 Biodiversity Offset Areas, ECAs and Regeneration Areas Continue implementation of WCPLs ACHMP, Due Diligence Code of Practice for the Protection of Aboriginal Objects in NSW and WCPLs GDP Process Identify cultural heritage sites Undertake annual security inspection. Schedule and undertake ancessary repairs Prevent unauthorised human access to all Management Domains Undertake quarterly rehabilitation inspection. Schedule and undertake necessary repairs Reduce and rehabilitate unnecessary access tracks in all Biodiversity Offset Areas, ECAs and Regeneration Areas Undertake quarterly rehabilitation inspection. Schedule and undertake necessary repairs Provide safe, unimpeded access for monitoring and maintenance, bushfire management, and asset protection in all Biodiversity Offset Areas, ECAs and Regeneration Areas Undertake quarterly waste inspection. Schedule and undertake necessary repairs All Biodiversity Offset Areas, ECAs and Regeneration Areas are free of waste, disused buildings and redundant farm equipment Undertake quarterly waste inspections. Schedule and cormisision removal of all ad		

Management Strategy	Objectives	2018	Assessment of Actions
	A risk based monitoring and management plan is developed for erosion, sediment and soil risks in all Biodiversity Offset Areas, ECAs and Regeneration Areas	Continue to implement WCPLs Erosion and Sediment Control Plan Undertake quarterly erosion, sediment or soil inspections. Schedule and undertake necessary repairs	
Grazing and Stock Management	Exclude livestock from areas of native regeneration in all Biodiversity Offset Areas, ECAs and Regeneration Areas (unless being used as within management program)	Undertake annual security inspection. Schedule and undertake necessary repairs	Inspections ongoing throughout the 2018 reporting period. All stock excluded. Lessee inspections of fences prior to stocking to ECAs and Regen Areas.
	Consider livestock as a rehabilitation management tool	Review rehabilitation performance towards completion criteria. If deemed appropriate, seek technical advice regarding the use of livestock as a rehabilitation management tool	Focus on the development of BVT performance and completion for 2019. Livestock unlikely to be use due to the revised requirement for native vegetation as opposed to previous agricultural land use.
Seed Collection and Propagation	All seed collectors are appropriately qualified and trained	Confirm training records for engaged seed collectors	Hunter Ecological is confirming seed species mix appropriate required BVTs (this was completed in 2018) Scope of works to be developed for seed collection subject to BVT seed mix confirmation. Tender prepared for seed collection in 2019.
	Local species are included in revegetation and rehabilitation seed mixes Locally sourced seed is available for revegetation and rehabilitation works within all Management Domains	Implement seed collection and propagation procedure opportunistically	As Above
Habitat Augmentation	Habitat augmentation opportunities are identified and assessed Habitat within poor and moderate resilience areas within Biodiversity Offset Areas, ECAs, and Regeneration and Rehabilitation Areas is enhanced	Implement recommendations from the habitat augmentation assessment	The BMP monitoring includes assessment of native vegetation and habitat complexity. The assessments are annually and reviewed accordingly. WCPL developed a <i>habitat augmentation procedure</i> to be implemented from 2019.
Revegetation and Regeneration	Increase overall native plant species richness to meet Interim Performance Targets in Biodiversity Offset Areas, ECAs and Regeneration and Rehabilitation Areas	Undertake quarterly revegetation and regeneration inspections. Schedule and undertake necessary maintenance including reapplication of seed or	The BMP monitoring includes assessment of native vegetation and habitat complexity. The assessments are annually and reviewed

Management Strategy	Objectives	2018	Assessment of Actions
		supplementary tree and shrub planting.	accordingly. No planting in ECAs and/or BOAs was undertaken due to the dry conditions and will be reassessed in 2019.
Weed Management	Noxious and environmental weeds are identified and mapped in all Biodiversity Offset Areas, ECAs and Regeneration Areas A risk based weed management program is developed for all Biodiversity Offset Areas, ECAs and Regeneration Areas Reduced presence of noxious and environmental weeds	 Undertake quarterly weed inspections. Update GIS database with necessary changes Implement weed management program Undertake quarterly weed inspections. Schedule and undertake necessary weed treatment Implement weed management program Specific Actions include: Targeted spraying of prickly pear and garden escapes around the disused dwelling in Biodiversity Offset Area-D Targeted spraying of blackberry and <i>Juncus acutus</i> (Spiny Rush) along Cumbo Creek within ECA-A and Regeneration Area 2 Targeted spraying of blackberry and <i>Juncus acutus</i> (Spiny Rush) along Wilpinjong Creek within ECA-B and Regeneration Areas 1 and 5 	 Weed spraying undertaken in portions of BOAs, ECAs and Regen Area (refer to 2018 Spray Map – Appendix 5). In 2018 target weed spraying was completed based o internal and MWRC inspections from previous seasons. Lessees across the broader company landholdings also undertake ongoing weed management.
Vertebrate Pest Management	Vertebrate pest species and their presence is known within the Biodiversity Offset Areas, ECAs and Regeneration and Rehabilitation Areas Control vertebrate pest species likely to pose a threat to the Biodiversity Offset Areas, ECAs and Regeneration and Rehabilitation Areas	Implement vertebrate pest management program	Monitoring for pests species include in annual biodiversity monitoring program. In 2018, targeted pest species management included feral pig trapping in ECA 'A' and 'D', fox and wild dog control was undertaken in Spring and Autumn in conjunction with the local wild dog group. Aerial dog bating and trapping campaign between Pit 3/7 and Slate Gully 2018. This program was undertaken in consultation with Local Land Services (LLS) as a result of know wild dog activity in the local area. Lessees across the broader company landholdings also undertake ongoing vertebrate pest management.

Management Strategy	Objectives	2018	Assessment of Actions		
Bushfire Management	Maintain the environmental and habitat features of the Biodiversity Offset Areas, ECAs and Regeneration and Rehabilitation Areas	Implement WCPL Bushfire Management Maintain APZs	Bushfire management plan review completed in 2019 which included a detailed review by bushfire ecologist in November 2017.		
Biodiversity Monitoring	Monitor biodiversity within the Biodiversity Offset Areas, ECAs and Regeneration and Rehabilitation Areas to assess progress against completion criteria	Implement Biodiversity Monitoring Program and analyse results against the completion criteria and undertake corrective actions where required.	BFMP implementation ongoing in 2019. The BMP monitoring includes assessment of native vegetation and habitat complexity. The assessments are annually and reviewed accordingly.		
Inspections and Document Control	Ensure implemented management actions are successful in progressing towards completion criteria All actions, monitoring data and performance outcomes are documented and reported	Undertake and document inspections Document all actions, monitoring data and performance outcomes	This Annual Review. BVT performance and completion criteria relevant to the rehabilitation areas are still being developed in accordance with Schedule 3, Condition 37 of the Development Consent SSD- 6764. Upon resolution of the performance and completion criteria, in accordance with Condition 65 of the Development Consent SSD- 6764, the BMP will be comprehensively updated as required to reflect the new criteria.		
Management of Biodiversity Offsets 1-5	Manage Biodiversity Offset Areas 1-5 and facilitate their transfer to the National Parks Estate.	Demolition and removal of any houses and/or buildings that are not required by the NPWS. Undertake a survey of the Biodiversity Offset Area boundaries that do not follow existing cadastral boundaries (and any necessary lot subdivision with the assistance of the Mid-Western Regional Council).	This process has commenced and WCPL are schedule to complete within the timeframes as nominated by the SSD-6764.		
Early establishment of Regent Honeyeater habitat in available areas	Establish Regent Honeyeater habitat within existing mine rehabilitation areas where rehabilitation to date has focussed on the establishment of productive pasture for grazing.	Undertake monitoring of Rehabilitation Areas and determine initial success of non-native species control and re-seeding works. Continue to implement the control of non-native species and re-seeding of select existing rehabilitation areas to a combination of suitable native plant species (e.g. key canopy species of recognised BVTs).	 In 2017, a burn and herbicide trial in August 2017 was undertake in a section of the rehabilitation area to determine if existing woodland areas could be converted to nominated BVTs. In 2018 investigations into existing rehabilitation conversion into BVT s (as soon as they are confirmed). BVT performance and completion criteria relevant to the rehabilitation areas are still being developed in accordance with Schedule 3, Condition 37 of the Development Consent SSD- 		
Rehabilitation of the Mine site to recognised habitat and ecosystem values	Establish recognised BVTs and Regent Honeyeater habitat in the Rehabilitation Areas.	Commence implementation of rehabilitation strategy to develop BVT and Regent Honeyeater habitat.			

Management Strategy	Objectives	2018	Assessment of Actions
			6764. Upon resolution of the performance and completion criteria, in accordance with Condition 65 of the Development Consent SSD- 6764, the BMP will be comprehensively updated as required to reflect the new criteria
Propagation of Ozothamnus tesselatus	Successfully propagate <i>Ozothamnus tesselatus</i> in suitable Mine site rehabilitation areas.	Undertake trial plantings of <i>Ozothamnus tesselatus</i> within potentially suitable rehabilitation areas.	Collection of seeds for <i>Ozothamnus tessalatus</i> was undertaken in 2018. The focus of 2019 will be propagation trials and viability trials and collection will continue in 2019.
Revegetation works along Cumbo and Wilpinjong Creeks	Establish revegetation on sections of Cumbo and Wilpinjong Creeks in WCPL and Peabody ownership.	Continue to implement the works program with remedial measures as required.	Weed management activities occurred in 2018 refer to Weed Spray Mat in Appendix 5. Stock was excluded from portions of the creek in 2017.
			Activities along sections of Wilpinjong Creek included weed spraying and excluding stock in 2018.