
15
Extensible Markup
Language (XML)

Objectives
• To mark up data, using XML.
• To understand the concept of an XML namespace.
• To understand the relationship between DTDs,

Schemas and XML.
• To create Schemas.
• To create and use simple XSLT documents.
• To transform XML documents into XHTML, using

class XslTransform.
• To become familiar with BizTalk™.
Knowing trees, I understand the meaning of patience.
Knowing grass, I can appreciate persistence.
Hal Borland

Like everything metaphysical, the harmony between thought
and reality is to be found in the grammar of the language.
Ludwig Wittgenstein

I played with an idea and grew willful, tossed it into the air;
transformed it; let it escape and recaptured it; made it
iridescent with fancy, and winged it with paradox.
Oscar Wilde

Prentice Hall PTR
This is a sample chapter of C#: For Experienced Programmers
ISBN: 0-13-046133-4

For the full text, visit http://www.phptr.com

©2002 Pearson Education. All Rights Reserved.

Chapter 15 Extensible Markup Language (XML) 657

15.1 Introduction
The Extensible Markup Language (XML) was developed in 1996 by the World Wide Web
Consortium’s (W3C’s) XML Working Group. XML is a portable, widely supported, open
technology (i.e., non-proprietary technology) for describing data. XML is becoming the
standard for storing data that is exchanged between applications. Using XML, document
authors can describe any type of data, including mathematical formulas, software-configu-
ration instructions, music, recipes and financial reports. XML documents are readable by
both humans and machines.

The .NET Framework uses XML extensively. The Framework Class Library (FCL)
provides an extensive set of XML-related classes. Much of Visual Studio’s internal imple-
mentation also employs XML. In this chapter, we introduce XML, XML-related technolo-
gies and key classes for creating and manipulating XML documents.

15.2 XML Documents
In this section, we present our first XML document, which describes an article (Fig. 15.1).
[Note: The line numbers shown are not part of the XML document.]

Outline

15.1 Introduction
15.2 XML Documents
15.3 XML Namespaces
15.4 Document Object Model (DOM)
15.5 Document Type Definitions (DTDs), Schemas and Validation

15.5.1 Document Type Definitions
15.5.2 Microsoft XML Schemas
15.5.3 W3C XML Schema
15.5.4 Schema Validation in C#

15.6 Extensible Stylesheet Language and XslTransform
15.7 Microsoft BizTalk™
15.8 Summary
15.9 Internet and World Wide Web Resources

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.1: article.xml -->
4 <!-- Article structured with XML -->
5
6 <article>
7
8 <title>Simple XML</title>

Fig. 15.1 XML used to mark up an article. (Part 1 of 2.)

658 Extensible Markup Language (XML) Chapter 15

This document begins with an optional XML declaration (line 1), which identifies the
document as an XML document. The version information parameter specifies the ver-
sion of XML that is used in the document. XML comments (lines 3–4), which begin with
<!-- and end with -->, can be placed almost anywhere in an XML document. As in a C#
program, comments are used in XML for documentation purposes.

Common Programming Error 15.1
The placement of any characters, including whitespace, before the XML declaration is an
error. 15.1

Portability Tip 15.1
Although the XML declaration is optional, documents should include the declaration to iden-
tify the version of XML used. Otherwise, in the future, a document that lacks an XML decla-
ration might be assumed to conform to the latest version of XML, and errors could result. 15.1

In XML, data are marked up using tags, which are names enclosed in angle brackets
(<>). Tags are used in pairs to delimit character data (e.g., Simple XML in line 8). A tag that
begins markup (i.e., XML data) is called a start tag, whereas a tag that terminates markup is
called an end tag. Examples of start tags are <article> and <title> (lines 6 and 8,
respectively). End tags differ from start tags in that they contain a forward slash (/) character
immediately after the < character. Examples of end tags are </title> and </article>
(lines 8 and 23, respectively). XML documents can contain any number of tags.

Common Programming Error 15.2
Failure to provide a corresponding end tag for a start tag is an error. 15.2

Individual units of markup (i.e., everything included between a start tag and its corre-
sponding end tag) are called elements. An XML document includes one element (called a
root element) that contains every other element. The root element must be the first element
after the XML declaration. In Fig. 15.1, article (line 6) is the root element. Elements
are nested within each other to form hierarchies—with the root element at the top of the

9
10 <date>December 6, 2001</date>
11
12 <author>
13 <firstName>John</firstName>
14 <lastName>Doe</lastName>
15 </author>
16
17 <summary>XML is pretty easy.</summary>
18
19 <content>In this chapter, we present a wide variety of examples
20 that use XML.
21 </content>
22
23 </article>

Fig. 15.1 XML used to mark up an article. (Part 2 of 2.)

Chapter 15 Extensible Markup Language (XML) 659

hierarchy. This allows document authors to create explicit relationships between data. For
example, elements title, date, author, summary and content are nested within
article. Elements firstName and lastName are nested within author.

Common Programming Error 15.3
Attempting to create more than one root element in an XML document is a syntax error. 15.3

Element title (line 8) contains the title of the article, Simple XML, as character
data. Similarly, date (line 10), summary (line 17) and content (lines 19–21) contain
as character data the date, summary and content, respectively. XML element names can be
of any length and may contain letters, digits, underscores, hyphens and periods—they must
begin with a letter or an underscore.

Common Programming Error 15.4
XML is case sensitive. The use of the wrong case for an XML element name is a syntax error.15.4

By itself, this document is simply a text file named article.xml. Although it is not
required, most XML documents end in the file extension .xml. The processing of XML
documents requires a program called an XML parser also called XML processors. Parsers
are responsible for checking an XML document’s syntax and making the XML document’s
data available to applications. Often, XML parsers are built into applications such as Visual
Studio or available for download over the Internet. Popular parsers include Microsoft’s
msxml, the Apache Software Foundation’s Xerces and IBM’s XML4J. In this chapter, we
use msxml.

When the user loads article.xml into Internet Explorer (IE),1 msxml parses the
document and passes the parsed data to IE. IE then uses a built-in style sheet to format the
data. Notice that the resulting format of the data (Fig. 15.2) is similar to the format of the
XML document shown in Fig. 15.1. As we soon demonstrate, style sheets play an impor-
tant and powerful role in the transformation of XML data into formats suitable for display.

Notice the minus (–) and plus (+) signs in Fig. 15.2. Although these are not part of the
XML document, IE places them next to all container elements (i.e., elements that contain
other elements). Container elements also are called parent elements. A minus sign indicates
that the parent element’s child elements (i.e., nested elements) are being displayed. When
clicked, a minus sign becomes a plus sign (which collapses the container element and hides
all children). Conversely, clicking a plus sign expands the container element and changes
the plus sign to a minus sign. This behavior is similar to the viewing of the directory struc-
ture on a Windows system using Windows Explorer. In fact, a directory structure often is
modeled as a series of tree structures, in which each drive letter (e.g., C:, etc.) represents
the root of a tree. Each folder is a node in the tree. Parsers often place XML data into trees
to facilitate efficient manipulation, as discussed in Section 15.4.

Common Programming Error 15.5
Nesting XML tags improperly is a syntax error. For example, <x><y>hello</x></y> is
a error, because the </y> tag must precede the </x> tag. 15.5

1. IE 5 and higher.

660 Extensible Markup Language (XML) Chapter 15

We now present a second XML document (Fig. 15.3), which marks up a business letter.
This document contains significantly more data than did the previous XML document.

Fig. 15.2 article.xml displayed by Internet Explorer.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.3: letter.xml -->
4 <!-- Business letter formatted with XML -->
5
6 <letter>
7 <contact type = "from">
8 <name>Jane Doe</name>
9 <address1>Box 12345</address1>

10 <address2>15 Any Ave.</address2>
11 <city>Othertown</city>
12 <state>Otherstate</state>

Fig. 15.3 XML to mark up a business letter. (Part 1 of 2.)

Plus sign

Minus sign

Chapter 15 Extensible Markup Language (XML) 661

Root element letter (lines 6–45) contains the child elements contact (lines 7–16
and 18–27), salutation, paragraph (lines 31–36 and 38–40), closing and sig-
nature. In addition to being placed between tags, data also can be placed in attributes,
which are name-value pairs in start tags. Elements can have any number of attributes in
their start tags. The first contact element (lines 7–16) has attribute type with attribute
value "from", which indicates that this contact element marks up information about
the letter’s sender. The second contact element (lines 18–27) has attribute type with
value "to", which indicates that this contact element marks up information about the
letter’s recipient. Like element names, attribute names are case sensitive, can be any length;
may contain letters, digits, underscores, hyphens and periods; and must begin with either a
letter or underscore character. A contact element stores a contact’s name, address and
phone number. Element salutation (line 29) marks up the letter’s salutation. Lines 31–
40 mark up the letter’s body with paragraph elements. Elements closing (line 42) and
signature (line 44) mark up the closing sentence and the signature of the letter’s author,
respectively.

13 <zip>67890</zip>
14 <phone>555-4321</phone>
15 <flag gender = "F" />
16 </contact>
17
18 <contact type = "to">
19 <name>John Doe</name>
20 <address1>123 Main St.</address1>
21 <address2></address2>
22 <city>Anytown</city>
23 <state>Anystate</state>
24 <zip>12345</zip>
25 <phone>555-1234</phone>
26 <flag gender = "M" />
27 </contact>
28
29 <salutation>Dear Sir:</salutation>
30
31 <paragraph>It is our privilege to inform you about our new
32 database managed with <technology>XML</technology>. This
33 new system allows you to reduce the load on
34 your inventory list server by having the client machine
35 perform the work of sorting and filtering the data.
36 </paragraph>
37
38 <paragraph>Please visit our Web site for availability
39 and pricing.
40 </paragraph>
41
42 <closing>Sincerely</closing>
43
44 <signature>Ms. Doe</signature>
45 </letter>

Fig. 15.3 XML to mark up a business letter. (Part 2 of 2.)

662 Extensible Markup Language (XML) Chapter 15

Common Programming Error 15.6
Failure to enclose attribute values in either double ("") or single ('') quotes is a syntax er-
ror. 15.6

Common Programming Error 15.7
Attempting to provide two attributes with the same name for an element is a syntax error. 15.7

In line 15, we introduce empty element flag, which indicates the gender of the con-
tact. Empty elements do not contain character data (i.e., they do not contain text between
the start and end tags). Such elements are closed either by placing a slash at the end of the
element (as shown in line 15) or by explicitly writing a closing tag, as in

<flag gender = "F"></flag>

15.3 XML Namespaces
Object-oriented programming languages, such as C# and Visual Basic .NET, provide mas-
sive class libraries that group their features into namespaces. These namespaces prevent
naming collisions between programmer-defined identifiers and identifiers in class libraries.
For example, we might use class Book to represent information on one of our publications;
however, a stamp collector might use class Book to represent a book of stamps. A naming
collision would occur if we use these two classes in the same assembly, without using
namespaces to differentiate them.

Like C#, XML also provides namespaces, which provide a means of uniquely identi-
fying XML elements. In addition, XML-based languages—called vocabularies, such as
XML Schema (Section 15.5), Extensible Stylesheet Language (Section 15.6) and BizTalk
(Section 15.7)—often use namespaces to identify their elements.

Elements are differentiated via namespace prefixes, which identify the namespace to
which an element belongs. For example,

<deitel:book>C# For Experienced Programmers</deitel:book>

qualifies element book with namespace prefix deitel. This indicates that element book
is part of namespace deitel. Document authors can use any name for a namespace prefix
except the reserved namespace prefix xml.

Common Programming Error 15.8
Attempting to create a namespace prefix named xml in any mixture of case is a syntax error.15.8

The mark up in Fig. 15.4 demonstrates the use of namespaces. This XML document
contains two file elements that are differentiated using namespaces.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.4: namespace.xml -->
4 <!-- Demonstrating namespaces -->

Fig. 15.4 XML namespaces demonstration. (Part 1 of 2.)

Chapter 15 Extensible Markup Language (XML) 663

Software Engineering Observation 15.1
A programmer has the option of qualifying an attribute with a namespace prefix. However,
it is not required, because attributes always are associated with elements. 15.1

Lines 6–7 use attribute xmlns to create two namespace prefixes: text and image.
Each namespace prefix is bound to a series of characters called a uniform resource identi-
fier (URI) that uniquely identifies the namespace. Document authors create their own
namespace prefixes and URIs.

To ensure that namespaces are unique, document authors must provide unique URIs.
Here, we use the text urn:deitel:textInfo and urn:deitel:imageInfo as
URIs. A common practice is to use Universal Resource Locators (URLs) for URIs, because
the domain names (such as, www.deitel.com) used in URLs are guaranteed to be
unique. For example, lines 6–7 could have been written as

<text:directory xmlns:text =
 "http://www.deitel.com/xmlns-text"
 xmlns:image = "http://www.deitel.com/xmlns-image">

5
6 <text:directory xmlns:text = "urn:deitel:textInfo"
7 xmlns:image = "urn:deitel:imageInfo">
8
9 <text:file filename = "book.xml">

10 <text:description>A book list</text:description>
11 </text:file>
12
13 <image:file filename = "funny.jpg">
14 <image:description>A funny picture</image:description>
15 <image:size width = "200" height = "100" />
16 </image:file>
17
18 </text:directory>

Fig. 15.4 XML namespaces demonstration. (Part 2 of 2.)

664 Extensible Markup Language (XML) Chapter 15

In this example, we use URLs related to the Deitel & Associates, Inc, domain name to iden-
tify namespaces. The parser never visits these URLs—they simply represent a series of
characters used to differentiate names. The URLs need not refer to actual Web pages or be
formed properly.

Lines 9–11 use the namespace prefix text to qualify elements file and descrip-
tion as belonging to the namespace "urn:deitel:textInfo". Notice that the
namespace prefix text is applied to the end tags as well. Lines 13–16 apply namespace
prefix image to elements file, description and size.

To eliminate the need to precede each element with a namespace prefix, document
authors can specify a default namespace. Figure 15.5 demonstrates the creation and use of
default namespaces.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.5: defaultnamespace.xml -->
4 <!-- Using default namespaces -->
5
6 <directory xmlns = "urn:deitel:textInfo"
7 xmlns:image = "urn:deitel:imageInfo">
8
9 <file filename = "book.xml">

10 <description>A book list</description>
11 </file>
12
13 <image:file filename = "funny.jpg">
14 <image:description>A funny picture</image:description>
15 <image:size width = "200" height = "100" />
16 </image:file>
17
18 </directory>

Fig. 15.5 Default namespace demonstration.

Chapter 15 Extensible Markup Language (XML) 665

Line 6 declares a default namespace using attribute xmlns with a URI as its value.
Once we define this default namespace, child elements belonging to the namespace need
not be qualified by a namespace prefix. Element file (line 9–11) is in the namespace
urn:deitel:textInfo. Compare this to Fig. 15.4, where we prefixed file and
description with text (lines 9–11).

The default namespace applies to the directory element and all elements that are
not qualified with a namespace prefix. However, we can use a namespace prefix to specify
a different namespace for particular elements. For example, the file element in line 13 is
prefixed with image to indicate that it is in the namespace urn:deitel:imageInfo,
rather than the default namespace.

15.4 Document Object Model (DOM)
Although XML documents are text files, retrieving data from them via sequential-file ac-
cess techniques is neither practical nor efficient, especially in situations where data must be
added or deleted dynamically.

Upon successful parsing, some XML parsers store document data as tree structures in
memory. Figure 15.6 illustrates the tree structure for the document article.xml dis-
cussed in Fig. 15.1. This hierarchical tree structure is called a Document Object Model
(DOM) tree, and an XML parser that creates this type of structure is known as a DOM parser.
The DOM tree represents each component of the XML document (e.g., article, date,
firstName, etc.) as a node in the tree. Nodes (such as, author) that contain other nodes
(called child nodes) are called parent nodes. Nodes that have the same parent (such as,
firstName and lastName) are called sibling nodes. A node’s descendant nodes include
that node’s children, its children’s children and so on. Similarly, a node’s ancestor nodes
include that node’s parent, its parent’s parent and so on. Every DOM tree has a single root
node that contains all other nodes in the document, such as comments, elements, etc.

Classes for creating, reading and manipulating XML documents are located in the C#
namespace System.Xml. This namespace also contains additional namespaces that con-
tain other XML-related operations.

Fig. 15.6 Tree structure for Fig. 15.1.

article

title

author

summary

contents

lastName

firstName

date

666 Extensible Markup Language (XML) Chapter 15

In this section, we present several examples that use DOM trees. Our first example, the
program in Fig. 15.7, loads the XML document presented in Fig. 15.1 and displays its data
in a text box. This example uses class XmlNodeReader which is derived from Xml-
Reader, which iterates through each node in the XML document. Class XmlReader is
an abstract class that defines the interface for reading XML documents.

1 // Fig. 15.7: XmlReaderTest.cs
2 // Reading an XML document.
3
4 using System;
5 using System.Windows.Forms;
6 using System.Xml;
7
8 public class XmlReaderTest : System.Windows.Forms.Form
9 {

10 private System.Windows.Forms.TextBox outputTextBox;
11 private System.ComponentModel.Container components = null;
12
13 public XmlReaderTest()
14 {
15 InitializeComponent();
16
17 // reference to "XML document"
18 XmlDocument document = new XmlDocument();
19 document.Load("..\\..\\article.xml");
20
21 // create XmlNodeReader for document
22 XmlNodeReader reader = new XmlNodeReader(document);
23
24 // show form before outputTextBox is populated
25 this.Show();
26
27 // tree depth is -1, no indentation
28 int depth = -1;
29
30 // display each node's content
31 while (reader.Read())
32 {
33 switch (reader.NodeType)
34 {
35 // if Element, display its name
36 case XmlNodeType.Element:
37
38 // increase tab depth
39 depth++;
40 TabOutput(depth);
41 outputTextBox.Text += "<" + reader.Name + ">" +
42 "\r\n";
43

Fig. 15.7 XmlNodeReader used to iterate through an XML document. (Part 1 of 3.)

Chapter 15 Extensible Markup Language (XML) 667

44 // if empty element, decrease depth
45 if (reader.IsEmptyElement)
46 depth--;
47
48 break;
49
50 // if Comment, display it
51 case XmlNodeType.Comment:
52 TabOutput(depth);
53 outputTextBox.Text +=
54 "<!--" + reader.Value + "-->\r\n";
55 break;
56
57 // if Text, display it
58 case XmlNodeType.Text:
59 TabOutput(depth);
60 outputTextBox.Text += "\t" + reader.Value +
61 "\r\n";
62 break;
63
64 // if XML declaration, display it
65 case XmlNodeType.XmlDeclaration:
66 TabOutput(depth);
67 outputTextBox.Text += "<?" + reader.Name + " "
68 + reader.Value + " ?>\r\n";
69 break;
70
71 // if EndElement, display it and decrement depth
72 case XmlNodeType.EndElement:
73 TabOutput(depth);
74 outputTextBox.Text += "</" + reader.Name
75 + ">\r\n";
76 depth--;
77 break;
78 } // end switch statement
79 } // end while loop
80 } // End XmlReaderTest constructor
81
82 // insert tabs
83 private void TabOutput(int number)
84 {
85 for (int i = 0; i < number; i++)
86 outputTextBox.Text += "\t";
87 } // end TabOutput
88
89 // Windows Form Designer generated code
90
91 [STAThread]
92 static void Main()
93 {
94 Application.Run(new XmlReaderTest());
95 } // end Main
96 } // end XmlReaderTest

Fig. 15.7 XmlNodeReader used to iterate through an XML document. (Part 2 of 3.)

668 Extensible Markup Language (XML) Chapter 15

Line 6 includes the System.Xml namespace, which contains the XML classes used
in this example. Line 18 creates a reference to an XmlDocument object that conceptually
represents an empty XML document. The XML document article.xml is parsed and
loaded into this XmlDocument object when method Load is invoked in line 19. Once an
XML document is loaded into an XmlDocument, its data can be read and manipulated
programmatically. In this example, we read each node in the XmlDocument, which is the
DOM tree. In successive examples, we demonstrate how to manipulate node values.

In line 22, we create an XmlNodeReader and assign it to reference reader, which
enables us to read one node at a time from the XmlDocument. Method Read of Xml-
Reader reads one node from the DOM tree. Placing this statement in the while loop (lines
31–78) makes reader Read all the document nodes. The switch statement (lines 33–77)
processes each node. Either the Name property (line 41), which contains the node’s name, or
the Value property (line 53), which contains the node’s data, is formatted and concatenated
to the string assigned to the text box Text property. The NodeType property contains
the node type (specifying whether the node is an element, comment, text, etc.). Notice that
each case specifies a node type, using XmlNodeType enumeration constants.

Notice that the displayed output emphasizes the structure of the XML document. Vari-
able depth (line 28) sets the number of tab characters used to indent each element. The
depth is incremented each time an Element type is encountered and is decremented each
time an EndElement or empty element is encountered. We use a similar technique in the
next example to emphasize the tree structure of the XML document in the display.

Notice that our line breaks use the character sequence "\r\n", which denotes a car-
riage return followed by a line feed. This is the standard line break for Windows-based
applications and controls.

The C# program in Fig. 15.8 demonstrates how to manipulate DOM trees programmat-
ically. This program loads letter.xml (Fig. 15.3) into the DOM tree and then creates a

Fig. 15.7 XmlNodeReader used to iterate through an XML document. (Part 3 of 3.)

Chapter 15 Extensible Markup Language (XML) 669

second DOM tree that duplicates the DOM tree containing letter.xml’s contents. The
GUI for this application contains a text box, a TreeView control and three buttons—
Build, Print and Reset. When clicked, Build copies letter.xml and displays the doc-
ument’s tree structure in the TreeView control, Print displays the XML element values
and names in a text box and Reset clears the TreeView control and text box content.

Lines 20 and 23 create references to XmlDocuments source and copy. Line 32
assigns a new XmlDocument object to reference source. Line 33 then invokes method
Load to parse and load letter.xml. We discuss reference copy shortly.

Unfortunately, XmlDocuments do not provide any features for displaying their content
graphically. In this example, we display the document’s contents via a TreeView control.
We use objects of class TreeNode to represent each node in the tree. Class TreeView and
class TreeNode are part of the System.Windows.Forms namespace. TreeNodes are
added to the TreeView to emphasize the structure of the XML document.

1 // Fig. 15.8: XmlDom.cs
2 // Demonstrates DOM tree manipulation.
3
4 using System;
5 using System.Windows.Forms;
6 using System.Xml;
7 using System.IO;
8 using System.CodeDom.Compiler; // contains TempFileCollection
9

10 // Class XmlDom demonstrates the DOM
11 public class XmlDom : System.Windows.Forms.Form
12 {
13 private System.Windows.Forms.Button buildButton;
14 private System.Windows.Forms.Button printButton;
15 private System.Windows.Forms.TreeView xmlTreeView;
16 private System.Windows.Forms.TextBox consoleTextBox;
17 private System.Windows.Forms.Button resetButton;
18 private System.ComponentModel.Container components = null;
19
20 private XmlDocument source; // reference to "XML document"
21
22 // reference copy of source's "XML document"
23 private XmlDocument copy;
24
25 private TreeNode tree; // TreeNode reference
26
27 public XmlDom()
28 {
29 InitializeComponent();
30
31 // create XmlDocument and load letter.xml
32 source = new XmlDocument();
33 source.Load("..\\..\\letter.xml");
34
35 // initialize references to null
36 copy = null;

Fig. 15.8 DOM structure of an XML document illustrated by a class. (Part 1 of 6.)

670 Extensible Markup Language (XML) Chapter 15

37 tree = null;
38 } // end XmlDom
39
40 [STAThread]
41 static void Main()
42 {
43 Application.Run(new XmlDom());
44 }
45
46 // event handler for buildButton click event
47 private void buildButton_Click(object sender,
48 System.EventArgs e)
49 {
50 // determine if copy has been built already
51 if (copy != null)
52 return; // document already exists
53
54 // instantiate XmlDocument and TreeNode
55 copy = new XmlDocument();
56 tree = new TreeNode();
57
58 // add root node name to TreeNode and add
59 // TreeNode to TreeView control
60 tree.Text = source.Name; // assigns #root
61 xmlTreeView.Nodes.Add(tree);
62
63 // build node and tree hierarchy
64 BuildTree(source, copy, tree);
65
66 printButton.Enabled = true;
67 resetButton.Enabled = true;
68 } // end buildButton_Click
69
70 // event handler for printButton click event
71 private void printButton_Click(object sender,
72 System.EventArgs e)
73 {
74 // exit if copy does not reference an XmlDocument
75 if (copy == null)
76 return;
77
78 // create temporary XML file
79 TempFileCollection file = new TempFileCollection();
80
81 // create file that is deleted at program termination
82 file.AddExtension("xml", false);
83 string[] filename = new string[1];
84 file.CopyTo(filename, 0);
85
86 // write XML data to disk
87 XmlTextWriter writer = new XmlTextWriter(filename[0],
88 System.Text.Encoding.UTF8);
89 copy.WriteTo(writer);

Fig. 15.8 DOM structure of an XML document illustrated by a class. (Part 2 of 6.)

Chapter 15 Extensible Markup Language (XML) 671

90 writer.Close();
91
92 // parse and load temporary XML document
93 XmlTextReader reader = new XmlTextReader(filename[0]);
94
95 // read, format and display data
96 while(reader.Read())
97 {
98 if (reader.NodeType == XmlNodeType.EndElement)
99 consoleTextBox.Text += "/";
100
101 if (reader.Name != String.Empty)
102 consoleTextBox.Text += reader.Name + "\r\n";
103
104 if (reader.Value != String.Empty)
105 consoleTextBox.Text += "\t" + reader.Value +
106 "\r\n";
107 } // end while
108
109 reader.Close();
110 } // end printButton_Click
111
112 // handle resetButton click event
113 private void resetButton_Click(object sender,
114 System.EventArgs e)
115 {
116 // remove TreeView nodes
117 if (tree != null)
118 xmlTreeView.Nodes.Remove(tree);
119
120 xmlTreeView.Refresh(); // force TreeView update
121
122 // delete XmlDocument and tree
123 copy = null;
124 tree = null;
125
126 consoleTextBox.Text = ""; // clear text box
127
128 printButton.Enabled = false;
129 resetButton.Enabled = false;
130
131 } // end resetButton_Click
132
133 // construct DOM tree
134 private void BuildTree(XmlNode xmlSourceNode,
135 XmlNode document, TreeNode treeNode)
136 {
137 // create XmlNodeReader to access XML document
138 XmlNodeReader nodeReader = new XmlNodeReader(
139 xmlSourceNode);
140
141 // represents current node in DOM tree
142 XmlNode currentNode = null;

Fig. 15.8 DOM structure of an XML document illustrated by a class. (Part 3 of 6.)

672 Extensible Markup Language (XML) Chapter 15

143
144 // treeNode to add to existing tree
145 TreeNode newNode = new TreeNode();
146
147 // references modified node type for CreateNode
148 XmlNodeType modifiedNodeType;
149
150 while (nodeReader.Read())
151 {
152 // get current node type
153 modifiedNodeType = nodeReader.NodeType;
154
155 // check for EndElement, store as Element
156 if (modifiedNodeType == XmlNodeType.EndElement)
157 modifiedNodeType = XmlNodeType.Element;
158
159 // create node copy
160 currentNode = copy.CreateNode(modifiedNodeType,
161 nodeReader.Name, nodeReader.NamespaceURI);
162
163 // build tree based on node type
164 switch (nodeReader.NodeType)
165 {
166 // if Text node, add its value to tree
167 case XmlNodeType.Text:
168 newNode.Text = nodeReader.Value;
169 treeNode.Nodes.Add(newNode);
170
171 // append Text node value to currentNode data
172 ((XmlText) currentNode).AppendData(
173 nodeReader.Value);
174 document.AppendChild(currentNode);
175 break;
176
177 // if EndElement, move up tree
178 case XmlNodeType.EndElement:
179 document = document.ParentNode;
180 treeNode = treeNode.Parent;
181 break;
182
183 // if new element, add name and traverse tree
184 case XmlNodeType.Element:
185
186 // determine if element contains content
187 if (!nodeReader.IsEmptyElement)
188 {
189 // assign node text, add newNode as child
190 newNode.Text = nodeReader.Name;
191 treeNode.Nodes.Add(newNode);
192
193 // set treeNode to last child
194 treeNode = newNode;
195

Fig. 15.8 DOM structure of an XML document illustrated by a class. (Part 4 of 6.)

Chapter 15 Extensible Markup Language (XML) 673

196 document.AppendChild(currentNode);
197 document = document.LastChild;
198 }
199 else // do not traverse empty elements
200 {
201 // assign NodeType string to newNode
202 newNode.Text =
203 nodeReader.NodeType.ToString();
204
205 treeNode.Nodes.Add(newNode);
206 document.AppendChild(currentNode);
207 }
208
209 break;
210
211 // all other types, display node type
212 default:
213 newNode.Text = nodeReader.NodeType.ToString();
214 treeNode.Nodes.Add(newNode);
215 document.AppendChild(currentNode);
216 break;
217 } // end switch
218
219 newNode = new TreeNode();
220 } // end while
221
222 // update the TreeView control
223 xmlTreeView.ExpandAll();
224 xmlTreeView.Refresh();
225
226 } // end BuildTree
227 } // end XmlDom

Fig. 15.8 DOM structure of an XML document illustrated by a class. (Part 5 of 6.)

674 Extensible Markup Language (XML) Chapter 15

When clicked, button Build triggers event handler buildButton_Click (lines 47–
68), which copies letter.xml dynamically. The new XmlDocument and TreeNodes
(i.e., the nodes used for graphical representation in the TreeView) are created in lines 55–
56. Line 60 retrieves the Name of the node referenced by source (i.e., #root, which rep-
resents the document root) and assigns it to tree’s Text property. This TreeNode then is
inserted into the TreeView control’s node list. Method Add is called to add each new
TreeNode to the TreeView’s Nodes collection. Line 64 calls method BuildTree to
copy the XMLDocument referenced by source and to update the TreeView.

Method BuildTree (line 134–226) receives an XmlNode representing the source
node, an empty XmlNode and a treeNode to place in the DOM tree. Parameter
treeNode references the current location in the tree (i.e., the TreeNode most recently
added to the TreeView control). Lines 138–139 instantiate a new XmlNodeReader for
iterating through the DOM tree. Lines 142–145 declare XmlNode and TreeNode refer-
ences that indicate the next nodes added to document (i.e., the DOM tree referenced by
copy) and treeNode. Lines 150–220 iterate through each node in the tree.

Lines 153–161 create a node containing a copy of the current nodeReader node.
Method CreateNode of XmlDocument takes a NodeType, a Name and a Name-
spaceURI as arguments. The NodeType cannot be an EndElement. If the NodeType
is of an EndElement type, lines 156–157 assign modifiedNodeType type Element.

The switch statement in lines 164–217 determines the node type, creates and adds
nodes to the TreeView and updates the DOM tree.When a text node is encountered, the
new TreeNode’s newNode’s Text property is assigned the current node’s value. This
TreeNode is added to the TreeView control. In lines 172–174, we downcast
currentNode to XmlText and append the node’s value. The currentNode then is
appended to the document. Lines 178–181 match an EndElement node type. This
case moves up the tree, because the end of an element has been encountered. The
ParentNode and Parent properties retrieve the document’s and treeNode’s par-
ents, respectively.

Fig. 15.8 DOM structure of an XML document illustrated by a class. (Part 6 of 6.)

Chapter 15 Extensible Markup Language (XML) 675

Line 184 matches Element node types. Each nonempty Element NodeType (line
187) increases the depth of the tree; thus, we assign the current nodeReader Name to the
newNode’s Text property and add the newNode to the treeNode node list. Lines 194–
197 reorder the nodes in the node list to ensure that newNode is the last TreeNode in the
node list. XmlNode currentNode is appended to document as the last child, and
document is set to its LastChild, which is the child we just added. If it is an empty
element (line 199), we assign to the newNode’s Text property the string representa-
tion of the NodeType. Next, the newNode is added to the treeNode node list. Line 206
appends the currentNode to the document. The default case assigns the string rep-
resentation of the node type to the NewNode Text property, adds the newNode to the
TreeNode node list and appends the currentNode to the document.

After building the DOM trees, the TreeNode node list displays in the TreeView con-
trol. Clicking the nodes (i.e., the + or - boxes) in the TreeView either expands or collapses
them. Clicking Print invokes event handler printButton_Click (line 71). Lines 79–84
create a temporary file for storing the XML. Line 87 creates an XmlTextWriter for
streaming the XML data to disk. Method WriteTo is called to write the XML representation
to the XmlTextWriter stream (line 89). Line 93 creates an XmlTextReader to read
from the file. The while loop (line 96–107) reads each node in the DOM tree and writes tag
names and character data to the text box. If it is an end element, a slash is concatenated. If the
node has a Name or Value, that name or value is concatenated to the textbox text.

The Reset button’s event handler, resetButton_Click, deletes both dynami-
cally generated trees and updates the TreeView control’s display. Reference copy is
assigned null (to allow its tree to be garbage collected in line 123), and the TreeNode
node list reference tree is assigned null.

Although XmlReader includes methods for reading and modifying node values, it is
not the most efficient means of locating data in a DOM tree. The .NET framework provides
class XPathNavigator in the System.Xml.XPath namespace for iterating through
node lists that match search criteria, which are written as an XPath expression. XPath
(XML Path Language) provides a syntax for locating specific nodes in XML documents
effectively and efficiently. XPath is a string-based language of expressions used by XML
and many of its related technologies (such as, XSLT, discussed in Section 15.6).

Figure 15.9 demonstrates how to navigate through an XML document with an
XPathNavigator. Like Fig. 15.8, this program uses a TreeView control and
TreeNode objects to display the XML document’s structure. However, instead of dis-
playing the entire DOM tree, the TreeNode node list is updated each time the XPath-
Navigator is positioned to a new node. Nodes are added to and deleted from the
TreeView to reflect the XPathNavigator’s location in the DOM tree. The XML doc-
ument sports.xml that we use in this example is presented in Figure 15.10.

This program loads XML document sports.xml into an XPathDocument object
by passing the document’s file name to the XPathDocument constructor (line 36).
Method CreateNavigator (line 39) creates and returns an XPathNavigator refer-
ence to the XPathDocument’s tree structure.

The navigation methods of XPathNavigator used in Fig. 15.9 are MoveTo-
FirstChild (line 66), MoveToParent (line 94), MoveToNext (line 122) and
MoveToPrevious (line 151). Each method performs the action that its name implies.
Method MoveToFirstChild moves to the first child of the node referenced by the

676 Extensible Markup Language (XML) Chapter 15

XPathNavigator, MoveToParent moves to the parent node of the node referenced
by the XPathNavigator, MoveToNext moves to the next sibling of the node refer-
enced by the XPathNavigator and MoveToPrevious moves to the previous sibling
of the node referenced by the XPathNavigator. Each method returns a bool indicating
whether the move was successful. In this example, we display a warning in a
MessageBox whenever a move operation fails. Furthermore, each of these methods is
called in the event handler of the button that matches its name (e.g., button First Child
triggers firstChildButton_Click, which calls MoveToFirstChild).

Whenever we move forward via the XPathNavigator, as with MoveToFirst-
Child and MoveToNext, nodes are added to the TreeNode node list. Method Deter-
mineType is a private method (defined in lines 208–229) that determines whether to
assign the Node’s Name property or Value property to the TreeNode (lines 218 and
225). Whenever MoveToParent is called, all children of the parent node are removed
from the display. Similarly, a call to MoveToPrevious removes the current sibling node.
Note that the nodes are removed only from the TreeView, not from the tree representation
of the document.

The other event handler corresponds to button Select (line 173–174). Method
Select (line 182) takes search criteria in the form of either an XPathExpression or
a string that represents an XPath expression and returns as an XPathNodeIterator
object any nodes that match the search criteria. The XPath expressions provided by this
program’s combo box are summarized in Fig. 15.11.

Method DisplayIterator (defined in lines 195–204) appends the node values
from the given XPathNodeIterator to the selectTreeViewer text box. Note that
we call the string method Trim to remove unnecessary whitespace. Method
MoveNext (line 200) advances to the next node, which can be accessed via property Cur-
rent (line 202).

1 // Fig. 15.9: PathNavigator.cs
2 // Demonstrates Class XPathNavigator.
3
4 using System;
5 using System.Windows.Forms;
6 using System.Xml.XPath; // contains XPathNavigator
7
8 public class PathNavigator : System.Windows.Forms.Form
9 {

10 private System.Windows.Forms.Button firstChildButton;
11 private System.Windows.Forms.Button parentButton;
12 private System.Windows.Forms.Button nextButton;
13 private System.Windows.Forms.Button previousButton;
14 private System.Windows.Forms.Button selectButton;
15 private System.Windows.Forms.TreeView pathTreeViewer;
16 private System.Windows.Forms.ComboBox selectComboBox;
17 private System.ComponentModel.Container components = null;
18 private System.Windows.Forms.TextBox selectTreeViewer;
19 private System.Windows.Forms.GroupBox navigateBox;
20 private System.Windows.Forms.GroupBox locateBox;
21

Fig. 15.9 XPathNavigator class used to navigate selected nodes. (Part 1 of 7.)

Chapter 15 Extensible Markup Language (XML) 677

22 // navigator to traverse document
23 private XPathNavigator xpath;
24
25 // references document for use by XPathNavigator
26 private XPathDocument document;
27
28 // references TreeNode list used by TreeView control
29 private TreeNode tree;
30
31 public PathNavigator()
32 {
33 InitializeComponent();
34
35 // load XML document
36 document = new XPathDocument("..\\..\\sports.xml");
37
38 // create navigator
39 xpath = document.CreateNavigator();
40
41 // create root node for TreeNodes
42 tree = new TreeNode();
43
44 tree.Text = xpath.NodeType.ToString(); // #root
45 pathTreeViewer.Nodes.Add(tree); // add tree
46
47 // update TreeView control
48 pathTreeViewer.ExpandAll();
49 pathTreeViewer.Refresh();
50 pathTreeViewer.SelectedNode = tree; // highlight root
51 } // end constructor
52
53 [STAThread]
54 static void Main()
55 {
56 Application.Run(new PathNavigator());
57 }
58
59 // traverse to first child
60 private void firstChildButton_Click(object sender,
61 System.EventArgs e)
62 {
63 TreeNode newTreeNode;
64
65 // move to first child
66 if (xpath.MoveToFirstChild())
67 {
68 newTreeNode = new TreeNode(); // create new node
69
70 // set node's Text property to either
71 // navigator's name or value
72 DetermineType(newTreeNode, xpath);
73

Fig. 15.9 XPathNavigator class used to navigate selected nodes. (Part 2 of 7.)

678 Extensible Markup Language (XML) Chapter 15

74 // add node to TreeNode node list
75 tree.Nodes.Add(newTreeNode);
76 tree = newTreeNode; // assign tree newTreeNode
77
78 // update TreeView control
79 pathTreeViewer.ExpandAll();
80 pathTreeViewer.Refresh();
81 pathTreeViewer.SelectedNode = tree;
82 }
83 else // node has no children
84 MessageBox.Show("Current Node has no children.",
85 "", MessageBoxButtons.OK,
86 MessageBoxIcon.Information);
87 }
88
89 // traverse to node's parent on parentButton click event
90 private void parentButton_Click(object sender,
91 System.EventArgs e)
92 {
93 // move to parent
94 if (xpath.MoveToParent())
95 {
96 tree = tree.Parent;
97
98 // get number of child nodes, not including subtrees
99 int count = tree.GetNodeCount(false);
100
101 // remove all children
102 tree.Nodes.Clear();
103
104 // update TreeView control
105 pathTreeViewer.ExpandAll();
106 pathTreeViewer.Refresh();
107 pathTreeViewer.SelectedNode = tree;
108 }
109 else // if node has no parent (root node)
110 MessageBox.Show("Current node has no parent.", "",
111 MessageBoxButtons.OK,
112 MessageBoxIcon.Information);
113 }
114
115 // find next sibling on nextButton click event
116 private void nextButton_Click(object sender,
117 System.EventArgs e)
118 {
119 TreeNode newTreeNode = null, newNode = null;
120
121 // move to next sibling
122 if (xpath.MoveToNext())
123 {
124 newTreeNode = tree.Parent; // get parent node
125
126 newNode = new TreeNode(); // create new node

Fig. 15.9 XPathNavigator class used to navigate selected nodes. (Part 3 of 7.)

Chapter 15 Extensible Markup Language (XML) 679

127 DetermineType(newNode, xpath);
128 newTreeNode.Nodes.Add(newNode);
129
130 // set current position for display
131 tree = newNode;
132
133 // update TreeView control
134 pathTreeViewer.ExpandAll();
135 pathTreeViewer.Refresh();
136 pathTreeViewer.SelectedNode = tree;
137 }
138 else // node has no additional siblings
139 MessageBox.Show("Current node is last sibling.",
140 "", MessageBoxButtons.OK,
141 MessageBoxIcon.Information);
142 } // end nextButton_Click
143
144 // get previous sibling on previousButton click
145 private void previousButton_Click(object sender,
146 System.EventArgs e)
147 {
148 TreeNode parentTreeNode = null;
149
150 // move to previous sibling
151 if (xpath.MoveToPrevious())
152 {
153 parentTreeNode = tree.Parent; // get parent node
154
155 // delete current node
156 parentTreeNode.Nodes.Remove(tree);
157
158 // move to previous node
159 tree = parentTreeNode.LastNode;
160
161 // update TreeView control
162 pathTreeViewer.ExpandAll();
163 pathTreeViewer.Refresh();
164 pathTreeViewer.SelectedNode = tree;
165 }
166 else // if current node has no previous siblings
167 MessageBox.Show("Current node is first sibling.",
168 "", MessageBoxButtons.OK,
169 MessageBoxIcon.Information);
170 } // end previousButton_Click
171
172 // process selectButton click event
173 private void selectButton_Click(object sender,
174 System.EventArgs e)
175 {
176 XPathNodeIterator iterator; // enables node iteration
177

Fig. 15.9 XPathNavigator class used to navigate selected nodes. (Part 4 of 7.)

680 Extensible Markup Language (XML) Chapter 15

178 // get specified node from ComboBox
179 try
180 {
181 iterator = xpath.Select(selectComboBox.Text);
182 DisplayIterator(iterator); // print selection
183 }
184
185 // catch invalid expressions
186 catch (System.ArgumentException argumentException)
187 {
188 MessageBox.Show(argumentException.Message,
189 "Error", MessageBoxButtons.OK,
190 MessageBoxIcon.Error);
191 }
192 } // end selectButton_Click
193
194 // print values for XPathNodeIterator
195 private void DisplayIterator(XPathNodeIterator iterator)
196 {
197 selectTreeViewer.Text = "";
198
199 // prints selected node's values
200 while (iterator.MoveNext())
201 selectTreeViewer.Text +=
202 iterator.Current.Value.Trim()
203 + "\r\n";
204 } // end DisplayIterator
205
206 // determine if TreeNode should display current node
207 // name or value
208 private void DetermineType(TreeNode node,
209 XPathNavigator xPath)
210 {
211 // determine NodeType
212 switch (xPath.NodeType)
213 {
214 // if Element, get its name
215 case XPathNodeType.Element:
216
217 // get current node name, and remove whitespace
218 node.Text = xPath.Name.Trim();
219 break;
220
221 // obtain node values
222 default:
223
224 // get current node value and remove whitespace
225 node.Text = xPath.Value.Trim();
226 break;
227
228 } // end switch
229 } // end DetermineType
230 } // end PathNavigator

Fig. 15.9 XPathNavigator class used to navigate selected nodes. (Part 5 of 7.)

Chapter 15 Extensible Markup Language (XML) 681

Fig. 15.9 XPathNavigator class used to navigate selected nodes. (Part 6 of 7.)

682 Extensible Markup Language (XML) Chapter 15

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.10: sports.xml -->
4 <!-- Sports Database -->
5
6 <sports>
7
8 <game id = "783">
9 <name>Cricket</name>

10
11 <paragraph>
12 More popular among commonwealth nations.
13 </paragraph>
14 </game>
15
16 <game id = "239">
17 <name>Baseball</name>
18
19 <paragraph>
20 More popular in America.
21 </paragraph>
22 </game>
23
24 <game id = "418">
25 <name>Soccer(Futbol)</name>
26 <paragraph>Most popular sport in the world</paragraph>
27 </game>
28 </sports>

Fig. 15.10 XML document that describes various sports.

Fig. 15.9 XPathNavigator class used to navigate selected nodes. (Part 7 of 7.)

Chapter 15 Extensible Markup Language (XML) 683

15.5 Document Type Definitions (DTDs), Schemas and
Validation
XML documents can reference optional documents that specify how the XML documents
should be structured. These optional documents are called Document Type Definitions
(DTDs) and Schemas. When a DTD or Schema document is provided, some parsers (called
validating parsers) can read the DTD or Schema and check the XML document’s structure
against it. If the XML document conforms to the DTD or Schema, then the XML document
is valid. Parsers that cannot check for document conformity against the DTD or Schema are
called non-validating parsers. If an XML parser (validating or non-validating) is able to
process an XML document (that does not reference a DTD or Schema), the XML document
is considered to be well formed (i.e., it is syntactically correct). By definition, a valid XML
document is also a well-formed XML document. If a document is not well formed, parsing
halts, and the parser issues an error.

Software Engineering Observation 15.2
DTD and Schema documents are essential components for XML documents used in business-
to-business (B2B) transactions and mission-critical systems. These documents help ensure
that XML documents are valid. 15.2

Software Engineering Observation 15.3
Because XML document content can be structured in many different ways, an application
cannot determine whether the document data it receives is complete, missing data or ordered
properly. DTDs and Schemas solve this problem by providing an extensible means of de-
scribing a document’s contents. An application can use a DTD or Schema document to per-
form a validity check on the document’s contents. 15.3

Expression Description

/sports Matches the sports node that is child node of the
document root node. This node contains the root ele-
ment.

/sports/game/name Matches all name nodes that are child nodes of game.
The game node must be a child of sports and
sports must be a root element node.

/sports/game/paragraph Matches all paragraph nodes that are child nodes
of game. The game node must be a child of sports,
and sports must be a root element node.

/sports/
game[name='Cricket']

Matches all game nodes that contain a child element
name whose value is Cricket. The game node
must be a child of sports, and sports must be a
root element node.

Fig. 15.11 XPath expressions and descriptions.

684 Extensible Markup Language (XML) Chapter 15

15.5.1 Document Type Definitions
Document type definitions (DTDs) provide a means for type checking XML documents and
thus verifying their validity (confirming that elements contain the proper attributes, elements
are in the proper sequence, etc.). DTDs use EBNF (Extended Backus-Naur Form) grammar
to describe an XML document’s content. XML parsers need additional functionality to read
EBNF grammar, because it is not XML syntax. Although DTDs are optional, they are recom-
mended to ensure document conformity. The DTD in Fig. 15.12 defines the set of rules (i.e.,
the grammar) for structuring the business letter document contained in Fig. 15.13.

Portability Tip 15.2
DTDs can ensure consistency among XML documents generated by different programs. 15.2

Line 4 uses the ELEMENT element type declaration to define rules for element
letter. In this case, letter contains one or more contact elements, one saluta-
tion element, one or more paragraph elements, one closing element and one sig-
nature element, in that sequence. The plus sign (+) occurrence indicator specifies that
an element must occur one or more times. Other indicators include the asterisk (*), which
indicates an optional element that can occur any number of times, and the question mark
(?), which indicates an optional element that can occur at most once. If an occurrence indi-
cator is omitted, exactly one occurrence is expected.

The contact element definition (line 7) specifies that it contains the name,
address1, address2, city, state, zip, phone and flag elements—in that order.
Exactly one occurrence of each is expected.

1 <!-- Fig. 15.12: letter.dtd -->
2 <!-- DTD document for letter.xml -->
3
4 <!ELEMENT letter (contact+, salutation, paragraph+,
5 closing, signature)>
6
7 <!ELEMENT contact (name, address1, address2, city, state,
8 zip, phone, flag)>
9 <!ATTLIST contact type CDATA #IMPLIED>

10
11 <!ELEMENT name (#PCDATA)>
12 <!ELEMENT address1 (#PCDATA)>
13 <!ELEMENT address2 (#PCDATA)>
14 <!ELEMENT city (#PCDATA)>
15 <!ELEMENT state (#PCDATA)>
16 <!ELEMENT zip (#PCDATA)>
17 <!ELEMENT phone (#PCDATA)>
18 <!ELEMENT flag EMPTY>
19 <!ATTLIST flag gender (M | F) "M">
20
21 <!ELEMENT salutation (#PCDATA)>
22 <!ELEMENT closing (#PCDATA)>
23 <!ELEMENT paragraph (#PCDATA)>
24 <!ELEMENT signature (#PCDATA)>

Fig. 15.12 Document Type Definition (DTD) for a business letter.

Chapter 15 Extensible Markup Language (XML) 685

Line 9 uses the ATTLIST element type declaration to define an attribute (i.e., type)
for the contact element. Keyword #IMPLIED specifies that, if the parser finds a con-
tact element without a type attribute, the application can provide a value or ignore the
missing attribute. The absence of a type attribute cannot invalidate the document. Other
types of default values include #REQUIRED and #FIXED. Keyword #REQUIRED speci-
fies that the attribute must be present in the document and the keyword #FIXED specifies
that the attribute (if present) must always be assigned a specific value. For example,

<!ATTLIST address zip #FIXED "01757">

indicates that the value 01757 must be used for attribute zip; otherwise, the document is
invalid. If the attribute is not present, then the parser, by default, uses the fixed value that is
specified in the ATTLIST declaration. Flag CDATA specifies that attribute type contains a
String that is not processed by the parser, but instead is passed to the application as is.

Software Engineering Observation 15.4
DTD syntax does not provide any mechanism for describing an element’s (or attribute’s)
data type. 15.4

Flag #PCDATA (line 11) specifies that the element can store parsed character data
(i.e., text). Parsed character data cannot contain markup. The characters less than (<) and
ampersand (&) must be replaced by their entities (i.e., < and &). However, the
ampersand character can be inserted when used with entities. See Appendix M, HTML/
XHTML Special Characters, for a list of pre-defined entities.

Line 18 defines an empty element named flag. Keyword EMPTY specifies that the ele-
ment cannot contain character data. Empty elements commonly are used for their attributes.

Common Programming Error 15.9
Any element, attribute or relationship not explicitly defined by a DTD results in an invalid
document. 15.9

Many XML documents explicitly reference a DTD. Figure 15.13 is an XML document
that conforms to letter.dtd (Fig. 15.12).

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.13: letter2.xml -->
4 <!-- Business letter formatted with XML -->
5
6 <!DOCTYPE letter SYSTEM "letter.dtd">
7
8 <letter>
9 <contact type = "from">

10 <name>Jane Doe</name>
11 <address1>Box 12345</address1>
12 <address2>15 Any Ave.</address2>
13 <city>Othertown</city>
14 <state>Otherstate</state>
15 <zip>67890</zip>
16 <phone>555-4321</phone>

Fig. 15.13 XML document referencing its associated DTD. (Part 1 of 2.)

686 Extensible Markup Language (XML) Chapter 15

This XML document is similar to that in Fig. 15.3. Line 6 references a DTD file. This
markup contains three pieces: The name of the root element (letter in line 8) to which
the DTD is applied, the keyword SYSTEM (which in this case denotes an external DTD—
a DTD defined in a separate file) and the DTD’s name and location (i.e., letter.dtd in
the current directory). Though almost any file extension can be used, DTD documents typ-
ically end with the .dtd extension.

Various tools (many of which are free) check document conformity against DTDs and
Schemas (discussed momentarily). The output in Fig. 15.14 shows the results of the vali-
dation of letter2.xml using Microsoft’s XML Validator. Visit www.w3.org/XML/
Schema.html for a list of validating tools. Microsoft XML Validator is available free for
download from

msdn.microsoft.com/downloads/samples/Internet/xml/
xml_validator/sample.asp

Microsoft XML Validator can validate XML documents against DTDs locally or by
uploading the documents to the XML Validator Web site. Here, letter2.xml and
letter.dtd are placed in folder C:\XML\. This XML document (letter2.xml) is
well formed and conforms to letter.dtd.

17 <flag gender = "F" />
18 </contact>
19
20 <contact type = "to">
21 <name>John Doe</name>
22 <address1>123 Main St.</address1>
23 <address2></address2>
24 <city>Anytown</city>
25 <state>Anystate</state>
26 <zip>12345</zip>
27 <phone>555-1234</phone>
28 <flag gender = "M" />
29 </contact>
30
31 <salutation>Dear Sir:</salutation>
32
33 <paragraph>It is our privilege to inform you about our new
34 database managed with XML. This new system
35 allows you to reduce the load on your inventory list
36 server by having the client machine perform the work of
37 sorting and filtering the data.
38 </paragraph>
39
40 <paragraph>Please visit our Web site for availability
41 and pricing.
42 </paragraph>
43 <closing>Sincerely</closing>
44 <signature>Ms. Doe</signature>
45 </letter>

Fig. 15.13 XML document referencing its associated DTD. (Part 2 of 2.)

Chapter 15 Extensible Markup Language (XML) 687

XML documents that fail validation are still well-formed documents. When a docu-
ment fails to conform to a DTD or Schema, Microsoft XML Validator displays an error
message. For example, the DTD in Fig. 15.12 indicates that the contacts element must
contain child element name. If the document omits this child element, the document is well
formed, but not valid. In such a scenario, Microsoft XML Validator displays the error mes-
sage shown in Fig. 15.15.

C# programs can use msxml to validate XML documents against DTDs. For informa-
tion on how to accomplish this, visit:

msdn.microsoft.com/library/default.asp?url=/library/en-us/
cpguidnf/html/cpconvalidationagainstdtdwithxmlvalidatin-
greader.asp

Schemas are the preferred means of defining structures for XML documents in .NET.
Although, several types of Schemas exist, the two most popular are Microsoft Schema and
W3C Schema. We begin our discussion of Schemas in the next section.

15.5.2 Microsoft XML Schemas2

In this section, we introduce an alternative to DTDs—called Schemas—for defining an
XML document’s structure. Many developers in the XML community feel that DTDs are

Fig. 15.14 XML Validator validates an XML document against a DTD.

2. W3C Schema, which we discuss in Section 15.5.3, is emerging as the industry standard for de-
scribing an XML document’s structure. Within the next two years, we expect most developers will
be using W3C Schema.

688 Extensible Markup Language (XML) Chapter 15

not flexible enough to meet today’s programming needs. For example, DTDs cannot be ma-
nipulated (e.g., searched, programmatically modified, etc.) in the same manner that XML
documents can, because DTDs are not XML documents. Furthermore, DTDs do not pro-
vide features for describing an element’s (or attribute’s) data type.

Unlike DTDs, Schemas do not use Extended Backus-Naur Form (EBNF) grammar.
Instead, Schemas are XML documents that can be manipulated (e.g., elements can be added
or removed, etc.) like any other XML document. As with DTDs, Schemas require vali-
dating parsers.

In this section, we focus on Microsoft’s XML Schema vocabulary. Figure 15.16 pre-
sents an XML document that conforms to the Microsoft Schema document shown in
Fig. 15.17. By convention, Microsoft XML Schema documents use the file extension
.xdr, which is short for XML-Data Reduced. Line 6 (Fig. 15.16) references the Schema
document book.xdr.

Fig. 15.15 XML Validator displaying an error message.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.16: bookxdr.xml -->
4 <!-- XML file that marks up book data -->
5
6 <books xmlns = "x-schema:book.xdr">
7 <book>
8 <title>C# How to Program</title>
9 </book>

10
11 <book>
12 <title>Java How to Program, 4/e</title>
13 </book>
14
15 <book>
16 <title>Visual Basic .NET How to Program</title>
17 </book>
18
19 <book>
20 <title>Advanced Java 2 Platform How to Program</title>
21 </book>

Fig. 15.16 XML document that conforms to a Microsoft Schema document. (Part 1 of 2.)

Chapter 15 Extensible Markup Language (XML) 689

Software Engineering Observation 15.5
Schemas are XML documents that conform to DTDs, which define the structure of a Schema.
These DTDs, which are bundled with the parser, are used to validate the Schemas that au-
thors create. 15.5

Software Engineering Observation 15.6
Many organizations and individuals are creating DTDs and Schemas for a broad range of
categories (e.g., financial transactions, medical prescriptions, etc.). Often, these collec-
tions—called repositories—are available free for download from the Web.3 15.6

In line 6, root element Schema begins the Schema markup. Microsoft Schemas use the
namespace URI "urn:schemas-microsoft-com:xml-data". Line 7 uses element
ElementType to define element title. Attribute content specifies that this element
contains parsed character data (i.e., text only). Element title is not permitted to contain
child elements. Setting the model attribute to "closed" specifies that a conforming XML
document can contain only elements defined in this Schema. Line 10 defines element book;
this element’s content is “elements only” (i.e., eltOnly). This means that the element
cannot contain mixed content (i.e., text and other elements). Within the ElementType ele-
ment named book, the element element indicates that title is a child element of
book. Attributes minOccurs and maxOccurs are set to "1", indicating that a book ele-

22
23 <book>
24 <title>Python How to Program</title>
25 </book>
26 </books>

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.17: book.xdr -->
4 <!-- Schema document to which book.xml conforms -->
5
6 <Schema xmlns = "urn:schemas-microsoft-com:xml-data">
7 <ElementType name = "title" content = "textOnly"
8 model = "closed" />
9

10 <ElementType name = "book" content = "eltOnly" model = "closed">
11 <element type = "title" minOccurs = "1" maxOccurs = "1" />
12 </ElementType>
13
14 <ElementType name = "books" content = "eltOnly" model = "closed">
15 <element type = "book" minOccurs = "0" maxOccurs = "*" />
16 </ElementType>
17 </Schema>

Fig. 15.17 Microsoft Schema file that contains structure to which bookxdr.xml
conforms.

Fig. 15.16 XML document that conforms to a Microsoft Schema document. (Part 2 of 2.)

3. See, for example, opengis.net/schema.htm.

690 Extensible Markup Language (XML) Chapter 15

ment must contain exactly one title element. The asterisk (*) in line 15 indicates that the
Schema permits any number of book elements in element books. We discuss how to vali-
date bookxdr.xml against book.xdr in Section 15.5.4.

15.5.3 W3C XML Schema4

In this section, we focus on W3C XML Schema5—the schema that the W3C created. XML
Schema is a Recommendation (i.e., a stable release suitable for use in industry).
Figure 15.18 shows a Schema-valid XML document named bookxsd.xml and
Fig. 15.19 shows the W3C XML Schema document (book.xsd) that defines the structure
for bookxsd.xml. Although Schema authors can use virtually any filename extension,
W3C XML Schemas typically use the .xsd extension. We discuss how to validate
bookxsd.xml against book.xsd in the next section.

4. We provide a detailed treatment of W3C Schema in XML for Experienced Programmers (2003).
5. For the latest on W3C XML Schema, visit www.w3.org/XML/Schema.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.18: bookxsd.xml -->
4 <!-- Document that conforms to W3C XML Schema -->
5
6 <deitel:books xmlns:deitel = "http://www.deitel.com/booklist">
7 <book>
8 <title>e-Business and e-Commerce How to Program</title>
9 </book>

10 <book>
11 <title>Python How to Program</title>
12 </book>
13 </deitel:books>

Fig. 15.18 XML document that conforms to W3C XML Schema.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.19: book.xsd -->
4 <!-- Simple W3C XML Schema document -->
5
6 <xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema"
7 xmlns:deitel = "http://www.deitel.com/booklist"
8 targetNamespace = "http://www.deitel.com/booklist">
9

10 <xsd:element name = "books" type = "deitel:BooksType"/>
11
12 <xsd:complexType name = "BooksType">
13 <xsd:sequence>
14 <xsd:element name = "book" type = "deitel:BookType"
15 minOccurs = "1" maxOccurs = "unbounded"/>
16 </xsd:sequence>
17 </xsd:complexType>

Fig. 15.19 XSD Schema document to which bookxsd.xml conforms. (Part 1 of 2.)

Chapter 15 Extensible Markup Language (XML) 691

W3C XML Schema use the namespace URI http://www.w3.org/2001/
XMLSchema and often use namespace prefix xsd (line 6 in Fig. 15.19). Root element
schema contains elements that define the XML document’s structure. Line 7 binds the
URI http://www.deitel.com/booklist to namespace prefix deitel. Line 8
specifies the targetNamespace, which is the namespace for elements and attributes
that this schema defines.

In W3C XML Schema, element element (line 10) defines an element. Attributes
name and type specify the element’s name and data type, respectively. In this case, the
name of the element is books and the data type is deitel:BooksType. Any element
(e.g., books) that contains attributes or child elements must define a complex type, which
defines each attribute and child element. Type deitel:BooksType (lines 12–17) is an
example of a complex type. We prefix BooksType with deitel, because this is a com-
plex type that we have created, not an existing W3C XML Schema complex type.

Lines 12–17 use element complexType to define an element type that has a child
element named book. Because book contains a child element, its type must be a complex
type (e.g., BookType). Attribute minOccurs specifies that books must contain a min-
imum of one book element. Attribute maxOccurs, with value unbounded (line 14)
specifies that books may have any number of book child elements. Element sequence
specifies the order of elements in the complex type.

Lines 19–23 define the complexType BookType. Line 21 defines element title
with type xsd:string. When an element has a simple type such as xsd:string, it
is prohibited from containing attributes and child elements. W3C XML Schema provides a
large number of data types such as xsd:date for dates, xsd:int for integers,
xsd:double for floating-point numbers and xsd:time for time.

Good Programming Practice 15.1
By convention, W3C XML Schema authors use namespace prefix xsd when referring to the
URI http://www.w3.org/2001/XMLSchema. 15.1

15.5.4 Schema Validation in C#
In this section, we present a C# application (Fig. 15.20) that uses classes from the .NET
Framework Class Library to validate the XML documents presented in the last two sections
against their respective Schemas. We use an instance of XmlValidatingReader to
perform the validation.

Line 17 creates an XmlSchemaCollection reference named schemas. Line 28
calls method Add to add an XmlSchema object to the Schema collection. Method Add is
passed a name that identifies the Schema (i.e., "book") and the name of the Schema file

18
19 <xsd:complexType name = "BookType">
20 <xsd:sequence>
21 <xsd:element name = "title" type = "xsd:string"/>
22 </xsd:sequence>
23 </xsd:complexType>
24
25 </xsd:schema>

Fig. 15.19 XSD Schema document to which bookxsd.xml conforms. (Part 2 of 2.)

692 Extensible Markup Language (XML) Chapter 15

(i.e., "book.xdr"). Line 29 calls method Add to add a W3C XML Schema. The first
argument specifies the namespace URI (i.e., line 18 in Fig. 15.19) and the second argument
identifies the schema file (i.e., "book.xsd"). This is the Schema that is used to validate
bookxsd.xml.

1 // Fig. 15.20: ValidationTest.cs
2 // Validating XML documents against Schemas.
3
4 using System;
5 using System.Windows.Forms;
6 using System.Xml;
7 using System.Xml.Schema; // contains Schema classes
8
9 // determines XML document Schema validity

10 public class ValidationTest : System.Windows.Forms.Form
11 {
12 private System.Windows.Forms.ComboBox filesComboBox;
13 private System.Windows.Forms.Button validateButton;
14 private System.Windows.Forms.Label consoleLabel;
15 private System.ComponentModel.Container components = null;
16
17 private XmlSchemaCollection schemas; // Schemas
18 private bool valid; // validation result
19
20 public ValidationTest()
21 {
22 InitializeComponent();
23
24 valid = true; // assume document is valid
25
26 // get Schema(s) for validation
27 schemas = new XmlSchemaCollection();
28 schemas.Add("book", "book.xdr");
29 schemas.Add("http://www.deitel.com/booklist", "book.xsd");
30 } // end constructor
31
32 // Visual Studio .NET generated code
33
34 [STAThread]
35 static void Main()
36 {
37 Application.Run(new ValidationTest());
38 } // end Main
39
40 // handle validateButton click event
41 private void validateButton_Click(object sender,
42 System.EventArgs e)
43 {
44 // get XML document
45 XmlTextReader reader =
46 new XmlTextReader(filesComboBox.Text);
47

Fig. 15.20 Schema-validation example. (Part 1 of 2.)

Chapter 15 Extensible Markup Language (XML) 693

Lines 45–46 create an XmlReader for the file that the user selected from file-
sComboBox. The XML document to be validated against a Schema contained in the
XmlSchemaCollection must be passed to the XmlValidatingReader con-
structor (lines 49–50).

48 // get validator
49 XmlValidatingReader validator =
50 new XmlValidatingReader(reader);
51
52 // assign Schema(s)
53 validator.Schemas.Add(schemas);
54
55 // set validation type
56 validator.ValidationType = ValidationType.Auto;
57
58 // register event handler for validation error(s)
59 validator.ValidationEventHandler +=
60 new ValidationEventHandler(ValidationError);
61
62 // validate document node-by-node
63 while (validator.Read()) ; // empty body
64
65 // check validation result
66 if (valid)
67 consoleLabel.Text = "Document is valid";
68
69 valid = true; // reset variable
70
71 // close reader stream
72 validator.Close();
73 } // end validateButton_Click
74
75 // event handler for validation error
76 private void ValidationError(object sender,
77 ValidationEventArgs arguments)
78 {
79 consoleLabel.Text = arguments.Message;
80 valid = false; // validation failed
81 } // end ValidationError
82 } // end ValidationTest

Fig. 15.20 Schema-validation example. (Part 2 of 2.)

694 Extensible Markup Language (XML) Chapter 15

 Line 53 Adds the Schema collection referenced by Schemas to the Schemas prop-
erty. This property sets the Schema used to validate the document. The ValidationType
property (line 56) is set to the ValidationType enumeration constant for Automatically
identifying the Schema’s type (i.e., XDR or XSD). Lines 59–60 register method Valida-
tionError with ValidationEventHandler. Method ValidationError (lines
76–81) is called if the document is invalid or an error occurs, such as if the document cannot
be found. Failure to register a method with ValidationEventHandler causes an
exception to be thrown when the document is missing or invalid.

Validation is performed node-by-node by calling the method Read (line 63). Each call
to Read validates the next node in the document. The loop terminates either when all nodes
have been validated successfully or a node fails validation. When validated against their
respective Schemas, the XML documents in Fig. 15.16 and Fig. 15.18 validate successfully.

Figure 15.21 and Fig. 15.22 list two XML documents that fail to conform to book.xdr
and book.xsd, respectively. In Fig. 15.21, the extra title element in book (lines 19–22)
invalidate the document. In Fig. 15.22, the extra title element in book (lines 7–10) inval-
idates the document. Although both documents are invalid, they are well formed.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.21: bookxsdfail.xml -->
4 <!-- Document that does not conforms to W3C Schema -->
5
6 <deitel:books xmlns:deitel = "http://www.deitel.com/booklist">
7 <book>
8 <title>e-Business and e-Commerce How to Program</title>
9 <title>C# How to Program</title>

10 </book>
11 <book>
12 <title>Python How to Program</title>
13 </book>
14 </deitel:books>

Fig. 15.21 XML document that does not conform to the XSD schema of Fig. 15.19.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.22: bookxdrfail.xml -->
4 <!-- XML file that does not conform to Schema book.xdr -->
5

Fig. 15.22 XML file that does not conform to the Schema in Fig. 15.17. (Part 1 of 2.)

Chapter 15 Extensible Markup Language (XML) 695

15.6 Extensible Stylesheet Language and XslTransform
Extensible Stylesheet Language (XSL) is an XML vocabulary for formatting XML data. In
this section, we discuss the portion of XSL—called XSL Transformations (XSLT)—that
creates formatted text-based documents from XML documents. This process is called a
transformation and involves two tree structures: The source tree, which is the XML docu-
ment being transformed, and the result tree, which is the result (i.e., any text-based format
such as XHTML) of the transformation.6 The source tree is not modified when a transfor-
mation occurs.

To perform transformations, an XSLT processor is required. Popular XSLT processors
include Microsoft’s msxml and the Apache Software Foundation’s Xalan. The XML doc-
ument, shown in Fig. 15.23, is transformed by msxml into an XHTML document
(Fig. 15.24).

6 <books xmlns = "x-schema:book.xdr">
7 <book>
8 <title>XML How to Program</title>
9 </book>

10
11 <book>
12 <title>Java How to Program, 4/e</title>
13 </book>
14
15 <book>
16 <title>Visual Basic .NET How to Program</title>
17 </book>
18
19 <book>
20 <title>C++ How to Program, 3/e</title>
21 <title>Python How to Program</title>
22 </book>
23
24 <book>
25 <title>C# How to Program</title>
26 </book>
27 </books>

6. Extensible Hypertext Markup Language (XHTML) is the W3C technical recommendation that replaces
HTML for marking up content for the Web. For more information on XHTML, see the XHTML Appendices
K and L and visit www.w3.org.

Fig. 15.22 XML file that does not conform to the Schema in Fig. 15.17. (Part 2 of 2.)

696 Extensible Markup Language (XML) Chapter 15

Line 6 is a processing instruction (PI), which contains application-specific informa-
tion that is embedded into the XML document. In this particular case, the processing
instruction is specific to IE and specifies the location of an XSLT document with which to
transform the XML document. The characters <? and ?> delimit a processing instruction,
which consists of a PI target (e.g., xml:stylesheet) and PI value (e.g., type =
"text/xsl" href = "sorting.xsl"). The portion of this particular PI value that
follows href specifies the name and location of the style sheet to apply—in this case,
sorting.xsl, which is located in the same directory as this XML document.

Fig. 15.24 presents the XSLT document (sorting.xsl) that transforms
sorting.xml (Fig. 15.23) to XHTML.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.23: sorting.xml -->
4 <!-- XML document containing book information -->
5
6 <?xml:stylesheet type = "text/xsl" href = "sorting.xsl"?>
7
8 <book isbn = "999-99999-9-X">
9 <title>Deitel's XML Primer</title>

10
11 <author>
12 <firstName>Paul</firstName>
13 <lastName>Deitel</lastName>
14 </author>
15
16 <chapters>
17 <frontMatter>
18 <preface pages = "2" />
19 <contents pages = "5" />
20 <illustrations pages = "4" />
21 </frontMatter>
22
23 <chapter number = "3" pages = "44">
24 Advanced XML</chapter>
25
26 <chapter number = "2" pages = "35">
27 Intermediate XML</chapter>
28
29 <appendix number = "B" pages = "26">
30 Parsers and Tools</appendix>
31
32 <appendix number = "A" pages = "7">
33 Entities</appendix>
34
35 <chapter number = "1" pages = "28">
36 XML Fundamentals</chapter>
37 </chapters>
38
39 <media type = "CD" />
40 </book>

Fig. 15.23 XML document containing book information.

Chapter 15 Extensible Markup Language (XML) 697

Performance Tip 15.1
Using Internet Explorer on the client to process XSLT documents conserves server resources
by using the client’s processing power (instead of having the server process XSLT documents
for multiple clients). 15.1

Line 1 of Fig. 15.23 contains the XML declaration. Recall that an XSL document is an
XML document. Line 6 is the xsl:stylesheet root element. Attribute version
specifies the version of XSLT to which this document conforms. Namespace prefix xsl is
defined and is bound to the XSLT URI defined by the W3C. When processed, lines 11–13
write the document type declaration to the result tree. Attribute method is assigned
"xml", which indicates that XML is being output to the result tree. Attribute omit-xml-
declaration is assigned "no", which outputs an XML declaration to the result tree.
Attribute doctype-system and doctype-public write the Doctype DTD infor-
mation to the result tree.

XSLT documents contain one or more xsl:template elements that specify which
information is output to the result tree. The template on line 16 matches the source tree’s
document root. When the document root is encountered, this template is applied, and any
text marked up by this element that is not in the namespace referenced by xsl is output to
the result tree. Line 18 calls for all the templates that match children of the document
root to be applied. Line 23 specifies a template that matches element book.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.24: sorting.xsl -->
4 <!-- Transformation of book information into XHTML -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <!-- write XML declaration and DOCTYPE DTD information -->

10 <xsl:output method = "xml" omit-xml-declaration = "no"
11 doctype-system =
12 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
13 doctype-public = "-//W3C//DTD XHTML 1.0 Strict//EN"/>
14
15 <!-- match document root -->
16 <xsl:template match = "/">
17 <html xmlns = "http://www.w3.org/1999/xhtml">
18 <xsl:apply-templates/>
19 </html>
20 </xsl:template>
21
22 <!-- match book -->
23 <xsl:template match = "book">
24 <head>
25 <title>ISBN <xsl:value-of select = "@isbn" /> -
26 <xsl:value-of select = "title" /></title>
27 </head>

Fig. 15.24 XSL document that transforms sorting.xml (Fig. 15.23) into XHTML. (Part
1 of 3.)

698 Extensible Markup Language (XML) Chapter 15

28
29 <body>
30 <h1 style = "color: blue">
31 <xsl:value-of select = "title"/></h1>
32
33 <h2 style = "color: blue">by <xsl:value-of
34 select = "author/lastName" />,
35 <xsl:value-of select = "author/firstName" /></h2>
36
37 <table style =
38 "border-style: groove; background-color: wheat">
39
40 <xsl:for-each select = "chapters/frontMatter/*">
41 <tr>
42 <td style = "text-align: right">
43 <xsl:value-of select = "name()" />
44 </td>
45
46 <td>
47 (<xsl:value-of select = "@pages" /> pages)
48 </td>
49 </tr>
50 </xsl:for-each>
51
52 <xsl:for-each select = "chapters/chapter">
53 <xsl:sort select = "@number" data-type = "number"
54 order = "ascending" />
55 <tr>
56 <td style = "text-align: right">
57 Chapter <xsl:value-of select = "@number" />
58 </td>
59
60 <td>
61 (<xsl:value-of select = "@pages" /> pages)
62 </td>
63 </tr>
64 </xsl:for-each>
65
66 <xsl:for-each select = "chapters/appendix">
67 <xsl:sort select = "@number" data-type = "text"
68 order = "ascending" />
69 <tr>
70 <td style = "text-align: right">
71 Appendix <xsl:value-of select = "@number" />
72 </td>
73
74 <td>
75 (<xsl:value-of select = "@pages" /> pages)
76 </td>
77 </tr>
78 </xsl:for-each>
79 </table>

Fig. 15.24 XSL document that transforms sorting.xml (Fig. 15.23) into XHTML. (Part
2 of 3.)

Chapter 15 Extensible Markup Language (XML) 699

Lines 25–26 create the title for the XHTML document. We use the ISBN of the book
from attribute isbn and the contents of element title to create the title string ISBN
999-99999-9-X - Deitel’s XML Primer. Element xsl:value-of selects the book
element’s isbn attribute.

Lines 33–35 create a header element that contains the book’s author. Because the con-
text node (i.e., the current node being processed) is book, the XPath expression author/
lastName selects the author’s last name, and the expression author/firstName
selects the author’s first name.

Line 40 selects each element (indicated by an asterisk) that is a child of element
frontMatter. Line 43 calls node-set function name to retrieve the current node’s ele-
ment name (e.g., preface). The current node is the context node specified in the
xsl:for-each (line 40).

Lines 53–54 sort chapters by number in ascending order. Attribute select selects
the value of context node chapter’s attribute number. Attribute data-type with

80
81
<p style = "color: blue">Pages:
82 <xsl:variable name = "pagecount"
83 select = "sum(chapters//*/@pages)" />
84 <xsl:value-of select = "$pagecount" />
85
Media Type:
86 <xsl:value-of select = "media/@type" /></p>
87 </body>
88 </xsl:template>
89
90 </xsl:stylesheet>

Fig. 15.24 XSL document that transforms sorting.xml (Fig. 15.23) into XHTML. (Part
3 of 3.)

700 Extensible Markup Language (XML) Chapter 15

value "number", specifies a numeric sort and attribute order specifies "ascending"
order. Attribute data-type also can, be assigned the value "text" (line 67) and
attribute order also may be assigned the value "descending".

Lines 82–83 use an XSL variable to store the value of the book’s page count and output
it to the result tree. Attribute name specifies the variable’s name, and attribute select
assigns it a value. Function sum totals the values for all page attribute values. The two
slashes between chapters and * indicate that all descendent nodes of chapters are
searched for elements that contain an attribute named pages.

The System.Xml.Xsl namespace provides classes for applying XSLT style sheets
to XML documents. Specifically, an object of class XslTransform performs the trans-
formation.

Figure 15.25 applies a style sheet (sports.xsl) to sports.xml (Fig. 15.10). The
transformation result is written to a text box and to a file. We also show the transformation
results rendered in IE.

Line 20 declares XslTransform reference transformer. An object of this type
is necessary to transform the XML data to another format. In line 29, the XML document
is parsed and loaded into memory with a call to method Load. Method CreateNavi-
gator is called in line 32 to create an XPathNavigator object, which is used to navi-
gate the XML document during the transformation. A call to method Load of class
XslTransform (line 36) parses and loads the style sheet that this application uses. The
argument that is passed contains the name and location of the style sheet.

Event handler transformButton_Click calls method Transform of class
XslTransform to apply the style sheet (sports.xsl) to sports.xml (line 53).
This method takes three arguments: An XPathNavigator (created from
sports.xml’s XmlDocument), an instance of class XsltArgumentList, which is
a list of string parameters that can be applied to a style sheet—null, in this case and
an instance of a derived class of TextWriter (in this example, an instance of class
StringWriter). The results of the transformation are stored in the StringWriter
object referenced by output. Lines 59–62 write the transformation results to disk. The
third screen shot depicts the created XHTML document when it is rendered in IE.

1 // Fig. 15.25: TransformTest.cs
2 // Applying a style sheet to an XML document.
3
4 using System;
5 using System.Windows.Forms;
6 using System.Xml;
7 using System.Xml.XPath; // contains XPath classes
8 using System.Xml.Xsl; // contains style sheet classes
9 using System.IO; // contains stream classes

10
11 // transforms XML document to XHTML
12 public class TransformTest : System.Windows.Forms.Form
13 {
14 private System.Windows.Forms.TextBox consoleTextBox;
15 private System.Windows.Forms.Button transformButton;
16 private System.ComponentModel.Container components = null;

Fig. 15.25 XSL style sheet applied to an XML document. (Part 1 of 3.)

Chapter 15 Extensible Markup Language (XML) 701

17
18 private XmlDocument document; // Xml document root
19 private XPathNavigator navigator; // navigate document
20 private XslTransform transformer; // transform document
21 private StringWriter output; // display document
22
23 public TransformTest()
24 {
25 InitializeComponent();
26
27 // load XML data
28 document = new XmlDocument();
29 document.Load("..\\..\\sports.xml");
30
31 // create navigator
32 navigator = document.CreateNavigator();
33
34 // load style sheet
35 transformer = new XslTransform();
36 transformer.Load("..\\..\\sports.xsl");
37 } // end constructor
38
39 // Windows Form Designer generated code
40
41 [STAThread]
42 static void Main()
43 {
44 Application.Run(new TransformTest());
45 } // end Main
46
47 // transformButton click event
48 private void transformButton_Click(object sender,
49 System.EventArgs e)
50 {
51 // transform XML data
52 output = new StringWriter();
53 transformer.Transform(navigator, null, output);
54
55 // display transformation in text box
56 consoleTextBox.Text = output.ToString();
57
58 // write transformation result to disk
59 FileStream stream = new FileStream("..\\..\\sports.html",
60 FileMode.Create);
61 StreamWriter writer = new StreamWriter(stream);
62 writer.Write(output.ToString());
63
64 // close streams
65 writer.Close();
66 output.Close();
67 } // end transformButton_Click
68 } // end TransformTest

Fig. 15.25 XSL style sheet applied to an XML document. (Part 2 of 3.)

702 Extensible Markup Language (XML) Chapter 15

15.7 Microsoft BizTalk™
Increasingly, organizations are using the Internet to exchange critical data between busi-
ness partners and their own business divisions. However, transferring data between orga-
nizations can become difficult, because companies often use different platforms,
applications and data specifications that complicate data transfer. For example, consider a
business that supplies raw materials to a variety of industries. If the supplier cannot receive
all orders electronically because their customers use different computing platforms, an em-
ployee must input order data manually. If the supplier receives hundreds of orders a day,
typing mistakes are likely, resulting in incorrect inventories or wrong order fulfillments,
thereby jeopardizing the business by losing customers.

The supplier has several options—either continue to have data entered manually, pur-
chase the same software packages as the ones their customers use or encourage customers
to adopt the applications used by the supply company. In a growing economy, a business
would have to purchase and maintain disparate software packages, spend money for more
employees to process data or force their business partners to standardize their own organi-
zational software programs. To facilitate the flow of information between businesses,
Microsoft developed BizTalk (“business talk”), an XML-based technology that helps to
manage and facilitate business transactions.

Fig. 15.25 XSL style sheet applied to an XML document. (Part 3 of 3.)

Chapter 15 Extensible Markup Language (XML) 703

BizTalk creates an environment in which data marked up as XML is used to exchange
business-specific information, regardless of platform or programming applications. This
section overviews BizTalk and presents a code example to illustrate the business-specific
information included in the markup.

BizTalk consists of three parts: The BizTalk Server, the BizTalk Framework and the Biz-
Talk Schema Library. The BizTalk Server (BTS) parses and translates all inbound and out-
bound messages (or documents) that are sent to and from a business, using Internet standards
such as HTTP. The BizTalk Framework is a Schema for structuring those messages. The
Framework offers a specific set of core tags. Businesses can download the Framework to use
in their organizations and can submit new schemas to the BizTalk organization, at
www.biztalk.org. Once the BizTalk organization verifies and validates the submis-
sions, the Schemas become BizTalk Framework Schemas. The BizTalk Schema Library is a
collection of Framework Schemas. Figure 15.26 summarizes BizTalk terminology.

Fig. 15.27 is an example BizTalk message for a product offer from a clothing com-
pany. The message Schema for this example was developed by Microsoft to facilitate
online purchases by a retailer from a wholesaler. We use this Schema for a fictitious com-
pany, named ExComp.

BizTalk Description

Framework A specification that defines a format for messages.

Schema library A repository of Framework XML Schemas.

Server An application that assists vendors in converting their messages to BizTalk for-
mat. For more information, visit www.microsoft.com/biztalkserver

JumpStart Kit A set of tools for developing BizTalk applications.

Fig. 15.26 BizTalk terminology.

1 <?xml version = "1.0"?>
2 <BizTalk xmlns =
3 "urn:schemas-biztalk-org:BizTalk/biztalk-0.81.xml">
4
5 <!-- Fig. 15.27: biztalkmarkup.xml -->
6 <!-- Example of standard BizTalk markup -->
7
8 <Route>
9 <From locationID = "8888888" locationType = "DUNS"

10 handle = "23" />
11
12 <To locationID = "454545445" locationType = "DUNS"
13 handle = "45" />
14 </Route>
15

Fig. 15.27 BizTalk markup using an offer Schema. (Part 1 of 3.)

704 Extensible Markup Language (XML) Chapter 15

16 <Body>
17 <Offers xmlns =
18 "x-schema:http://schemas.biztalk.org/eshop_msn_com/
t7ntoqnq.xml">
19 <Offer>
20 <Model>12-a-3411d</Model>
21 <Manufacturer>ExComp, Inc.</Manufacturer>
22 <ManufacturerModel>DCS-48403</ManufacturerModel>
23
24 <MerchantCategory>
25 Clothes | Sports wear
26 </MerchantCategory>
27
28 <MSNClassId></MSNClassId>
29
30 <StartDate>2001-06-05 T13:12:00</StartDate>
31 <EndDate>2001-12-05T13:12:00</EndDate>
32
33 <RegularPrice>89.99</RegularPrice>
34 <CurrentPrice>25.99</CurrentPrice>
35 <DisplayPrice value = "3" />
36 <InStock value = "15" />
37
38 <ReferenceImageURL>
39 http://www.Example.com/clothes/index.jpg
40 </ReferenceImageURL>
41
42 <OfferName>Clearance sale</OfferName>
43
44 <OfferDescription>
45 This is a clearance sale
46 </OfferDescription>
47
48 <PromotionalText>Free Shipping</PromotionalText>
49
50 <Comments>
51 Clothes that you would love to wear.
52 </Comments>
53
54 <IconType value = "BuyNow" />
55
56 <ActionURL>
57 http://www.example.com/action.htm
58 </ActionURL>
59
60 <AgeGroup1 value = "Infant" />
61 <AgeGroup2 value = "Adult" />
62
63 <Occasion1 value = "Birthday" />
64 <Occasion2 value = "Anniversary" />
65 <Occasion3 value = "Christmas" />
66
67 </Offer>

Fig. 15.27 BizTalk markup using an offer Schema. (Part 2 of 3.)

Chapter 15 Extensible Markup Language (XML) 705

All Biztalk documents have the root element BizTalk (line 2). Line 3 defines a default
namespace for the BizTalk framework elements. Element Route (lines 8–14) contains the
routing information, which is mandatory for all BizTalk documents. Element Route also
contains elements To and From (lines 9–12), which indicate the document’s destination and
source, respectively. This makes it easier for the receiving application to communicate with
the sender. Attribute locationType specifies the type of business that sends or receives
the information, and attribute locationID specifies a business identity (the unique identi-
fier for a business). These attributes facilitate source and destination organization. Attribute
handle provides information to routing applications that handle the document.

Element Body (lines 16–69) contains the actual message, whose Schema is defined by
the businesses themselves. Lines 17–18 specify the default namespace for element
Offers (lines 17–68), which is contained in element Body (note that line 18 wraps—if
we split this line, Internet Explorer cannot locate the namespace). Each offer is marked up
using an Offer element (lines 19–67) that contains elements describing the offer. Note
that the tags all are business-related elements, and easily understood. For additional infor-
mation on BizTalk, visit www.biztalk.com.

In this chapter, we studied the Extensible Markup Language and several of its related
technologies. In Chapter 16, we begin our discussion of databases, which are crucial to the
development of multi-tier Web-based applications.

15.8 Summary
XML is a widely supported, open (i.e., nonproprietary) technology for data exchange.
XML is quickly becoming the standard by which applications maintain data. XML is high-
ly portable. Any text editor that supports ASCII or Unicode characters can render or display
XML documents. Because XML elements describe the data they contain, they are readable
by both humans and machines.

XML permits document authors to create custom markup for virtually any type of
information. This extensibility enables document authors to create entirely new markup
languages that describe specific types of data—i.e., mathematical formulas, chemical
molecular structures, music and recipes.

The processing of XML documents—which programs typically store in files whose
names end with the .xml extension—requires a program called an XML parser. An XML
parser is responsible for identifying components of XML documents and for storing those
components in a data structure for manipulation.

An XML document can reference an optional document that defines the XML docu-
ment’s structure. Two types of optional structure-defining documents are Document Type
Definitions (DTDs) and Schemas.

Data are marked up with tags whose names are enclosed in angle brackets (<>). Tags
are used in pairs to delimit markup. A tag that begins markup is called a start tag, and a tag

68 </Offers>
69 </Body>
70 </BizTalk>

Fig. 15.27 BizTalk markup using an offer Schema. (Part 3 of 3.)

706 Extensible Markup Language (XML) Chapter 15

that terminates markup is called an end tag. End tags differ from start tags in that end tags
contain a forward-slash (/) character.

Individual units of markup are called elements, which are the most fundamental XML
building blocks. XML documents contain one element, called a root element, that contains
every other element in the document. Elements are embedded or nested within each other
to form hierarchies, with the root element at the top of the hierarchy.

In addition to being placed between tags, data also can be placed in attributes, which
are name–value pairs in start tags. Elements can have any number of attributes.

Because XML allows document authors to create their own tags, naming collisions
(i.e., two different elements that have the same name) can occur. As in C#, XML
namespaces provide a means for document authors to prevent collisions. Elements are qual-
ified with namespace prefixes that specify the namespace to which they belong.

Each namespace prefix is bound to a uniform resource identifier (URI) that uniquely
identifies the namespace. A URI is a series of characters that differentiates names. Docu-
ment authors create their own namespace prefixes. Virtually any name can be used as a
namespace prefix, except the reserved namespace prefix xml. To eliminate the need to
place a namespace prefix in each element, document authors can specify a default
namespace for an element and its children.

When an XML parser successfully parses a document, the parser stores a tree structure
containing the document’s data in memory. This hierarchical tree structure is called a Doc-
ument Object Model (DOM) tree. The DOM tree represents each component of the XML
document as a node in the tree. Nodes that contain other nodes (called child nodes) are
called parent nodes. Nodes that have the same parent are called sibling nodes. A node’s
descendant nodes include that node’s children, its children’s children and so on. A node’s
ancestor nodes include that node’s parent, its parent’s parent and so on. The DOM tree has
a single root node that contains all other nodes in the document.

Namespace System.Xml contains classes for creating, reading and manipulating
XML documents. XmlReader-derived class XmlNodeReader iterates through each
node in the XML document. An XmlDocument object conceptually represents an empty
XML document. XML documents are parsed and loaded into an XmlDocument object
when method Load is invoked. Once an XML document is loaded into an XmlDocu-
ment, its data can be read and manipulated programmatically. An XmlNodeReader
allows programmers to read one node at a time from an XmlDocument. An XmlText-
Writer streams XML data to disk. An XmlTextReader reads XML data from a file.

XPath (XML Path Language) provides syntax for locating specific nodes in XML doc-
uments effectively and efficiently. XPath is a string-based language of expressions used by
XML and many of its related technologies. Class XPathNavigator in the
System.Xml.XPath namespace can iterate through node lists that match search criteria,
written as an XPath expression.

XML documents contain only data; however, XSLT is capable of transforming XML
documents into any text-based format. XSLT documents typically have the extension
.xsl. When transforming an XML document via XSLT, two tree structures are
involved—the source tree, which is the XML document being transformed, and the result
tree, which is the result (e.g., XHTML) of the transformation. XML documents can be
transformed programmatically through C#. The System.Xml.Xsl namespace facilities
the application of XSLT style sheets to XML documents.

Chapter 15 Extensible Markup Language (XML) 707

15.9 Internet and World Wide Web Resources
www.w3.org/xml
The W3C (World Wide Web Consortium) facilitates the development of common protocols to ensure
interoperability on the Web. Their XML page includes information about upcoming events, publica-
tions, software and discussion groups. Visit this site to read about the latest developments in XML.

www.xml.org
xml.org is a reference for XML, DTDs, schemas and namespaces.

www.w3.org/style/XSL
This W3C page provides information on XSL, including topics such as XSL development, learning
XSL, XSL-enabled tools, XSL specification, FAQs and XSL history.

www.w3.org/TR
This is the W3C technical reports and publications page. It contains links to working drafts, proposed
recommendations and other resources.

www.xmlbooks.com
This site provides a list of XML books recommended by Charles Goldfarb, one of the original design-
ers of GML (General Markup Language), from which SGML was derived.

www.xml-zone.com
The Development Exchange XML Zone is a complete resource for XML information. This site in-
cludes a FAQ, news, articles and links to other XML sites and newsgroups.

wdvl.internet.com/Authoring/Languages/XML
Web Developer's Virtual Library XML site includes tutorials, FAQs, the latest news, and numerous
links to XML sites and software downloads.

www.xml.com
XML.com provides the latest news and information about XML, conference listings, links to XML
Web resources organized by topic, tools and other resources.

msdn.microsoft.com/xml/default.asp
The MSDN Online XML Development Center features articles on XML, “Ask the Experts” chat ses-
sions, samples and demos, newsgroups and other helpful information.

msdn.microsoft.com/downloads/samples/Internet/xml/xml_validator/
sample.asp
The microsoft XML validator, which can be downloaded from this site, can validate both online and
off-line documents.

www.oasis-open.org/cover/xml.html
The SGML/XML Web Page is an extensive resource that includes links to several FAQs, online re-
sources, industry initiatives, demos, conferences and tutorials.

www.gca.org/whats_xml/default.htm
The GCA site offers an XML glossary, list of books on XML, brief descriptions of the draft standards
for XML and links to online drafts.

www-106.ibm.com/developerworks/xml
The IBM XML Zone site is a great resource for developers. It provides news, tools, a library, case
studies, and information about events and standards.

developer.netscape.com/tech/xml/index.html
The XML and Metadata Developer Central site has demos, technical notes and news articles related
to XML.

708 Extensible Markup Language (XML) Chapter 15

www.projectcool.com/developer/xmlz
The Project Cool Developer Zone site includes several tutorials covering introductory through ad-
vanced XML topics.

www.ucc.ie/xml
This site is a detailed set of FAQs on XML. Developers can check out responses to some popular ques-
tions or submit their own questions through the site.

