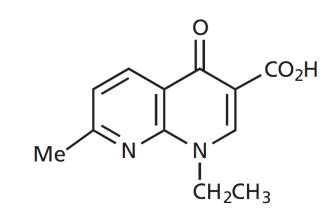
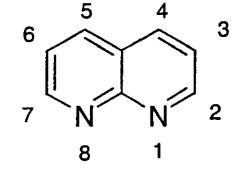
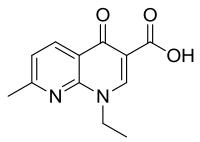
Synthetic antibacterial agents


Quinolones


Synthetic antibacterial agents

- Several synthetic antibacterial agents were synthesized based on model compounds, these include:
 - Sulfonamides
 - Quinolones
 - Nitroheterocyclic compounds (nitrofurans, metronidazole)
- Some agents can be used for systematic infections
- Others are unsuitable for treating systematic infections due to inadequate concentrations achieved in plasma and tissues following oral and parenteral administrations.
- Some agents are excreted mainly unchanged in the urine, thus can be used to treat urinary tract infections e.g. nitrofurantoin and nalidixic acid.


- The quinolones are group of synthetic antibacterial agents derived from nalidixic acd.
- Nalidixic acid is 1,8-naphthyridine derivative, synthesized in 1962 used mainly for UTI.

Nalidixic acid

• Nalidixic acid is the lead compound for this group.

• According to the heterocyclic core can be divided into:

Naphthyridines	Quinolines
nalidixic acid and enoxacin	norfloxacin, ciprofloxacin, ofloxacin, lemofloxacin

- The quinolones and fluoroquinolones inhibit the replication and transcription of bacterial DNA by stabilizing
- The synthetic fluoroquinolones mostly end in the suffix -floxacin.

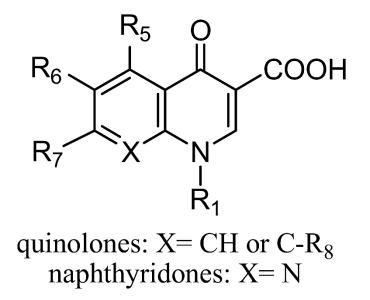
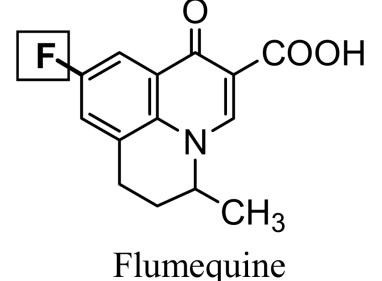



Figure 1. Common structure of 4-quinolones.

The presence of a **nitrogen** at position 8 identifies the naphthyridones, The presence of a **carbon** at position 8 identifies the quinolones

- The quinolones and napththyridones were further improved by the addition of groups to the N-1, C-5, C-6 and C-7 positions of their respective basic molecules.
- None of the introduced groups provides significant improvements over nalidixic acid until the development of Fuoroquinolones (Flumequine).

19	970 19	80 19	90 2	000 \
Nalidixic acid	Oxolinic acid Pipemidic acid Cinoxacin Flumequine	Norfloxacin Ciprofloxacin Ofloxacin	Temafloxacin Sparfloxacin Grepafloxacin Levofloxacin Trovafloxacin Gatifloxacin	Moxifloxacin Gemifloxacin Garenoxacin

Figure 2. Clinical development of quinolones

 Derivatives of nalidixic acid were developed which showed improved broad-spectrum activity such as
⁵
enoxacin which is based on:

3

2

7

8

- C6-F → ↑activity & ↑cellular uptake by bacteria
- C7-piperazine → ↑basicity → zwitterion with C3-COOH (affects pharmacokinetics)
- & ciprofloxacin which is based on:
- N1-cyclopropyl → ↑ spectrum of activity
- N8 is changed to C8 \rightarrow \downarrow adverse reactions & \uparrow activity vs S. aureus

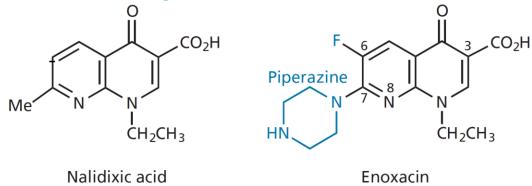
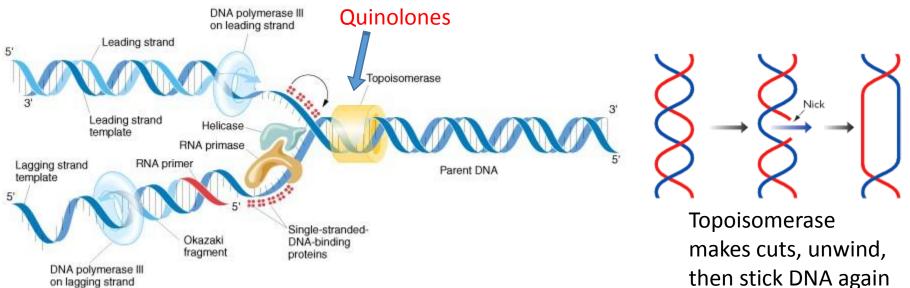
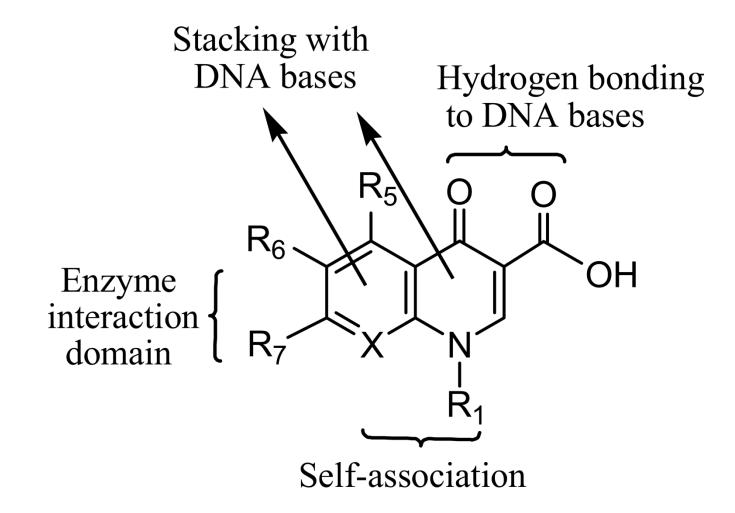
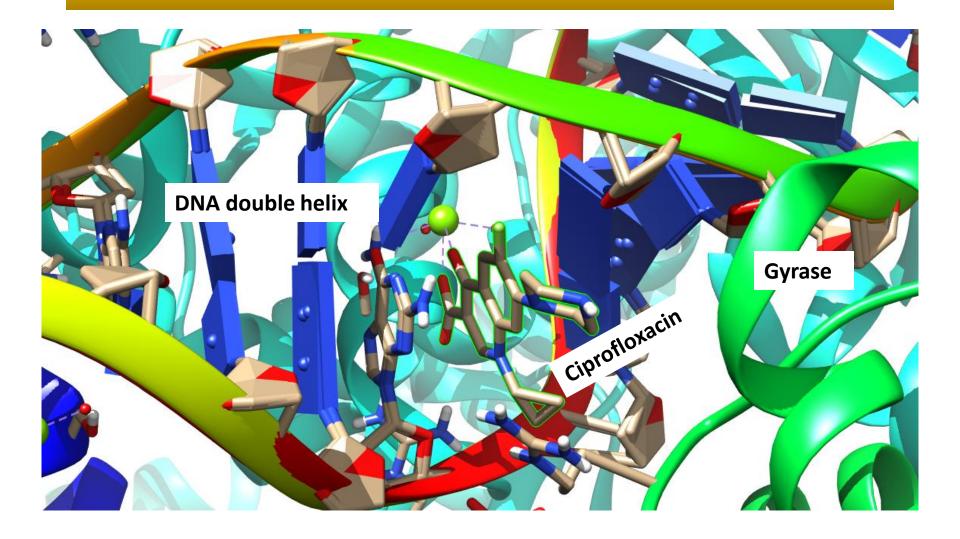
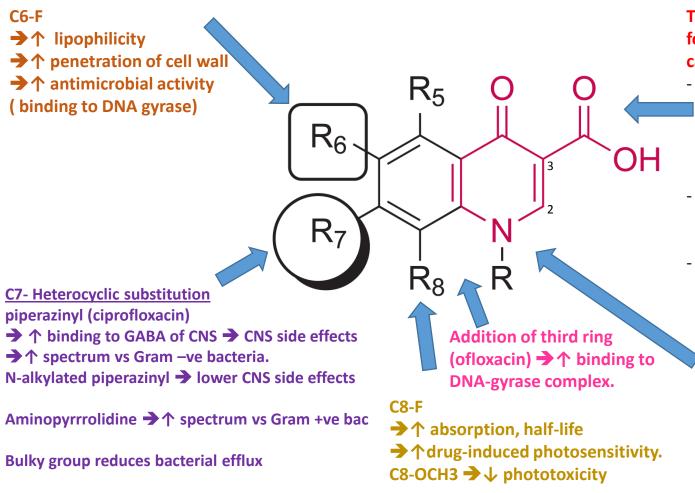




FIGURE 19.71 Quinolones and fluoroquinolones.


Mechanism of action

- DNA topoisomerase (or gyrase) alters the conformation of DNA by catalyzing transient double-strand cuts, passing the uncut portion of the molecule through the gap, and resealing the molecule back together.
- Topoisomerase IV seems more important to some Gram +ve, and DNA gyrase seems more important to some Gram –ve bacteria.
- Topoisomerase and gyrase are targets for quinolones
- Human has topoisomerase II, which has low affinity to quinolones at normal doses



Fluroquinolone-Gyrase-DNA complex

SAR for quinolones

Ring condensation at 1-8, 5-6, 6-7 and 7-8 also lead to better activity.

The essential pharmacophore for activity is the carboxy-4-pyridone nucleus

- Apparently, the carboxylic acid and the ketone are involved in binding to the DNA/ DNA-gyrase enzyme system
- Reduction of the 2,3-double bond or the 4-keto group inactivates the molecule
- substitution at C-2 interferes with enzyme– substrate complexation

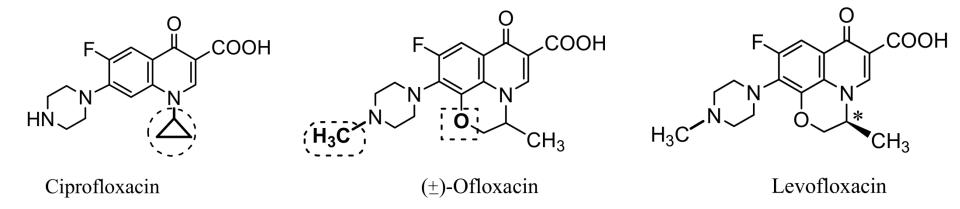
N1-cyclopropyl (or small alkyl or aryl) substitution broaden spectrum of activity

SAR for quinolones

• Position 1.

• This position is part of the enzyme-DNA binding complex, and has a hydrophobic interaction with the major grove of DNA. The optimum substituents at position 1 appear to be ethyl, butyl. The most potent is cyclopropyl (ciprofloxacin) followed by addition of a 2,4-difluorophenyl

.CO₂H


R,

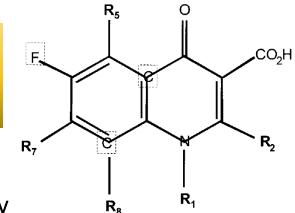
R₄

F.

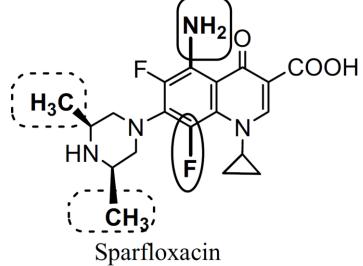
R₇

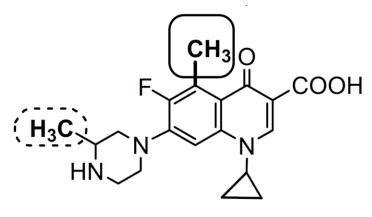
• Ofloxacin is tricyclic ring structure. It contains oxazine ring between positions 1 and 8. oxazine has asymmetric C3 position (S isomer is more active than R isomer, which affects binding to DNA hydrophobic pocket)

Peterson, Lance R. "Quinolone molecular structure-activity relationships: what we have learned about improving antimicrobial activity." Clinical Infectious Diseases 33. Supplement 3 (2001): \$180-\$186.

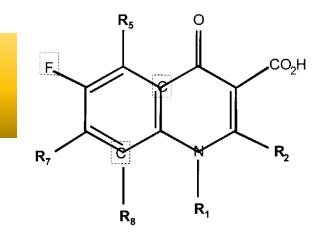

• It is close to DNA binding site of gyrase (or topoisomerase IV). Therefore, bulky substitutions inhibit binding and antimicrobial activity

• Positions 3 and 4.


- These two positions on the quinolone nucleus are considered critical for binding to cleaved or perturbed DNA, and no useful substitutions at these positions have yet been reported.
- 4-thioxo or sulphonyl group leads to a loss of activity


SAR for quinolones

- Position 5.
- Substituents at this position is beneficial for activity


- Bulk groups affects overall stearic configuration (planar structure) of the molecule which affects the activity
- NH2, OH, CH3 groups → increase activity vs Gram +ve bacteria
- OCH3 → reduces the activity
- NH2 → reduces the phototoxicity of Fluroquinolones

Grepafloxacin

- Addition of Fluorine produces the fluoroquinolone class with enhanced antibacterial activity against Gram +ve and Gram –ve bacteria (including *P. aeruginosa*)
- 6-NH2
 - with 8-CH3 quinolones → expand activity against Gram +ve cocci
 - With C7-tetrahydroisoquinoline → increase the potency up to 100 fold compared to ciiprofloxacin

Emami, Saeed, Abbas Shafiee, and Alireza Foroumadi. "Quinolones: recent structural and clinical developments." Iranian Journal of Pharmaceutical Research (2010): 123-136.

Tillotson, G. S. "Quinolones: structure-activity relationships and future predictions." Journal of medical microbiology 44.5 (1996): 320-324.

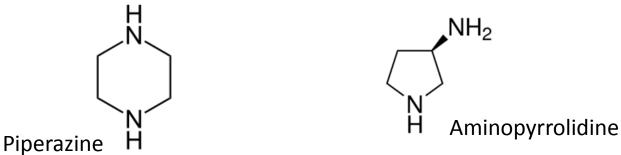
Peterson, Lance R. "Quinolone molecular structure-activity relationships: what we have learned about improving antimicrobial activity." Clinical Infectious Diseases 33. Supplement 3 (2001): S180-S186.

SAR for quinolones

• Position 7.

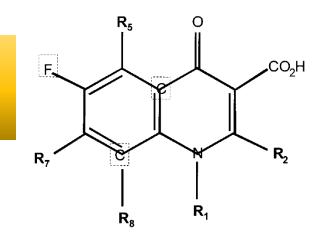
• This position is directly interacts with DNA gyrase (or topoisomerase IV)

R₅


F.

 R_7

,CO2H

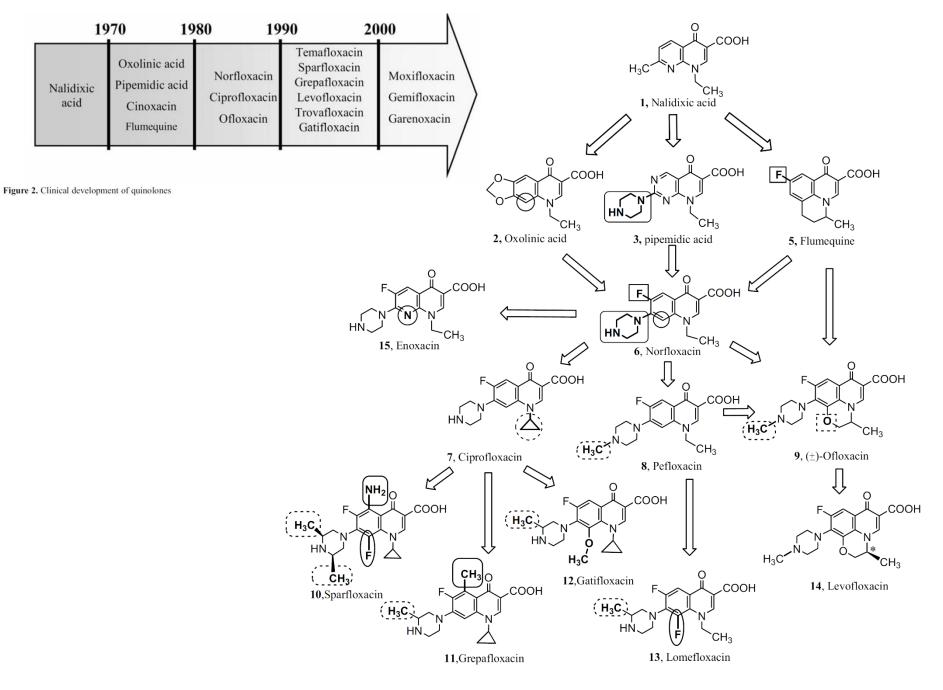
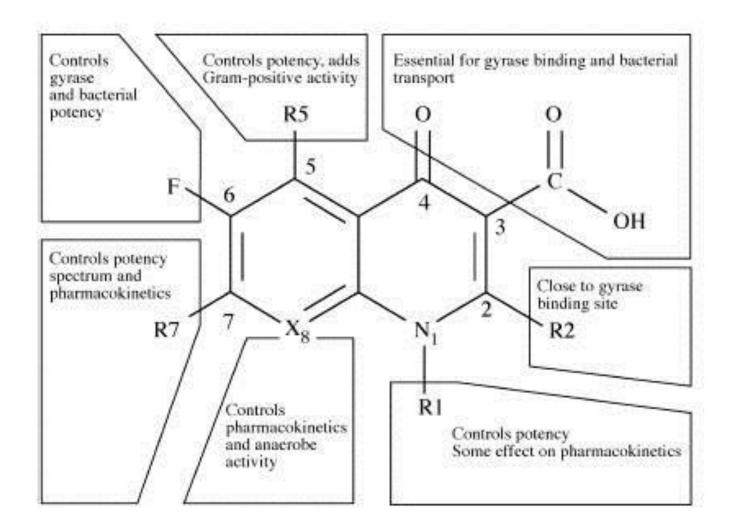

R,

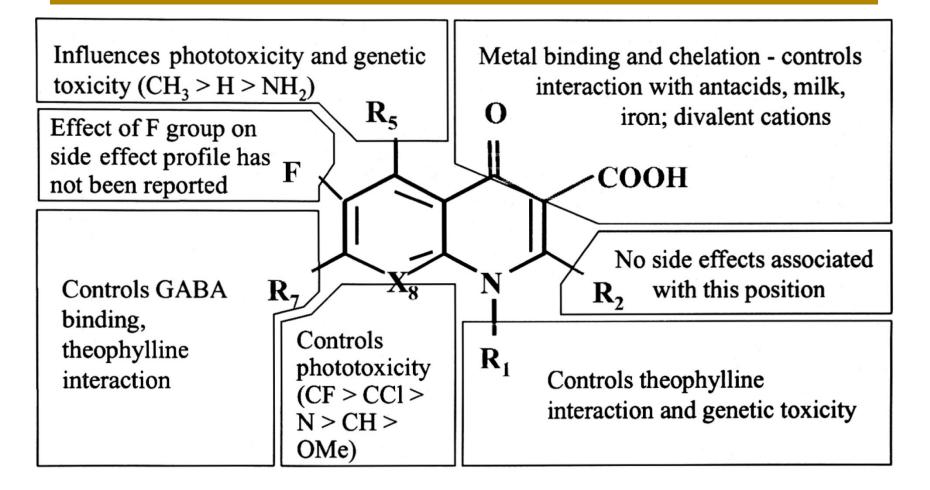
- Optimum substituents are 5- to 6-membered nitrogen heterocycles.
- Piperazine substituents → increase activity against Gram –ve bacteria (especially *P. aeruginosa*) & affinity to gamma-aminobutyric acid (GABA) receptor, which contributes to central nervous system (CNS) side effects. N-alkylated piperazine produces lower CNS side effects.
- Aminopyrrolidine or alkyl moieties substituents → increase activity against Gram +ve bacteria
- Bulkier groups at 7 position reduces the bacterial ability to efflux antibiotic, thus prevent resistance development.

SAR for quinolones

• Position 8.

- This position affects stearic configuration (similar to position 5), and thus accessibility to enzyme or DNA binding sites
- Free halogen (F or Cl) → improves activity against Gram –ve & anaerobes
- Halogen, CH3 or OCH3 → increase activity against Gram +ve cocci
- Replacement of C8 with N8 → increase antimicrobial potency
- Large substitution (e.g. ethyl derivatives) → reduces activity against gram +ve and –ve bacteria.
- Replacement of C8 to N8 as well as C8-CH3 substitutions → reduces the development of resistance especially if combined with bulky group at C7
- A halogen (F or Cl) at the C-8 position improves oral absorption.


Figure 3. Structural development of 7-piperazinylquinolones from primary quinolones

Emami, Saeed, Abbas Shafiee, and Alireza Foroumadi. "Quinolones: recent structural and clinical developments." Iranian Journal of Pharmaceutical Research (2010): 123-136.

Structure-activity relationship

Structure-adverse effect relationship

Figure 1. Quinolone structure—side effect relationships. GABA, γ -aminobutyric acid. Modified from [12].

Mandell, Lionel A., Peter Ball, and Glenn Tillotson. "Antimicrobial safety and tolerability: differences and dilemmas." Clinical infectious diseases 32. Supplement 1 (2001): S72-S79.

Chelation of quinolones wit polyvalent ions

- Chemical incompatibility common to all of the quinolones involves the ability of these drugs to chelate polyvalent metal ions (Ca2+, Mg2+, Zn2+, Fe2+, Al3+), resulting in decreased solubility and reduced drug absorption.
- Chelation occurs between the metal and the 3-carboxylic acid and 4-keto groups.
- Agents containing polyvalent metals should be administered separately from the quinolones.

Spectrum of activtiy for quinolons

- Nalidixic acid and the earliest members of the quinolone class (e.g., oxolinic acid, cinoxacin) are largely confined to
 - Effective against Gram-ve bacteria, including common urinary pathogens such as Escherichia coli, Klebsiella, Enterobacter, Citrobacter, and Proteus spp. Shigella, Salmonella, and Providencia are also susceptible.
 - Ineffective against Strains of *P. aeruginosa, Neisseria gonorrhoeae,* and *Haemophilus influenza,* Gram+Ve cocci and anaerobes.
- Newer members of the class possessing 6-fluoro and 7-piperazinyl substituents exhibit an extended spectrum of activity that includes effectiveness against
 - Gram-ve pathogens (e.g., P. aeruginosa, H. influenzae, N. gonorrhoeae),
 - Gram+ve cocci (e.g., S. aureus), and some streptococci.
- The quinolones generally exhibit poor activity against most anaerobic bacteria, including most *Bacteroides* and *Clostridium* species.
- In many cases, bacterial strains that have developed resistance to the antibacterial antibiotics, such as penicillin-resistant gonococci, methicillin-resistant *S. aureus*, and aminoglycoside resistant *P. aeruginosa* are susceptible to the quinolones.

Resistance to quinolones

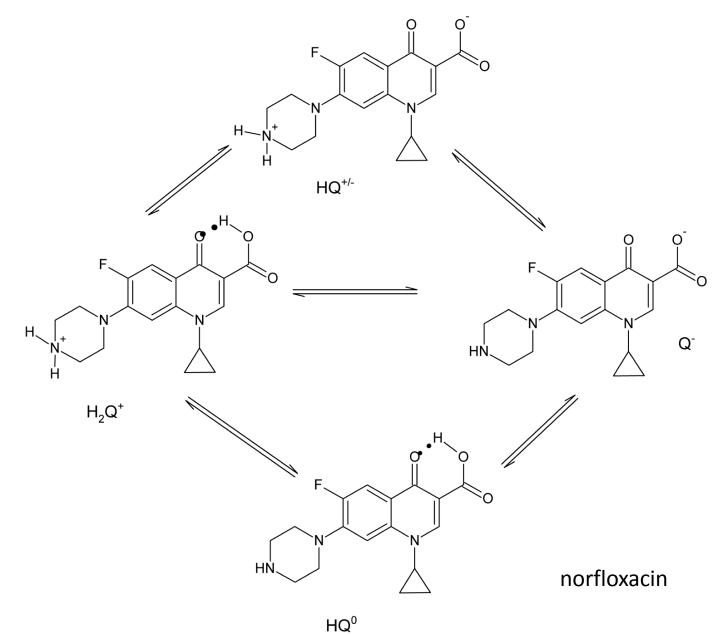
Resistance is developed through:

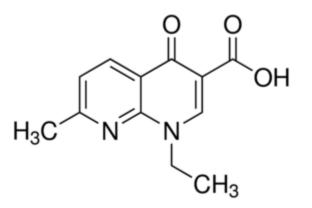
- 1. Mutation in gyrase (or topoisomerase)
- 2. Mutation in porins that mediates entrance of quinolones
- 3. Energy-dependent efflux of quinolones by some bacterial species.
- 4. QSAR showed inverse relationship between log P and uptake of quinolones by Gram –ve bacteria, and positive relationship between log P and uptake by Gram+ve bacteria

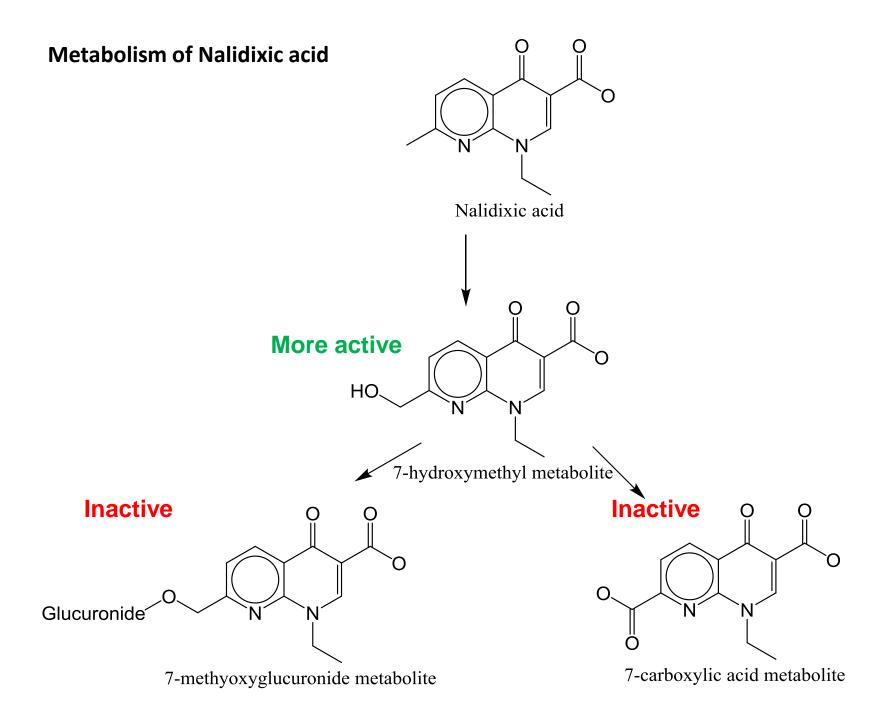
Side effects

1. CNS effects (irritability, tremor, anxiety, convulsions) due to antagonism of gamma-aminobutyric acid (GABA) receptors in brain by quinolones especially with 7-piperazine

- 2. CNS effect is present in fluoroquinolones having basic property at 7-position such as:
 - Piperazino Note: substitution of CH3 at piperazine reduces GABA binding
 - 3-amino-1-pyrrolidino 1-Piperidino
- 3. CNS effect is almost absent in quinoliones due to inability to penetrate the blood-brain barrier
- 4. Phototoxicity is associated with quinolones having C8-halogen if not accompanies with OCH₃ at C5 and C8 or NH₂ at C5
- 5. Crystalurea due to formation of insoluble zwitterions at physiological pH for quinolones having C3-COOH, C7-piperazino and C6-F (e.g. norfloxacin)

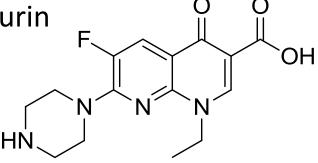



Figure 6.6 • Ionization equilibria in the quinolone antibacterial drugs.

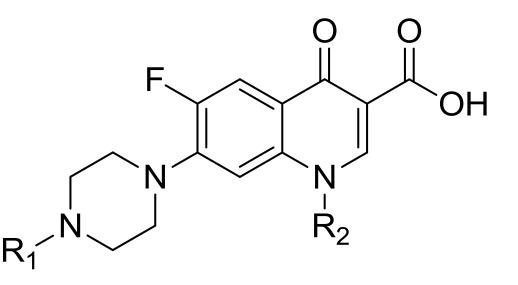

Naphthyridines

• Nalidixic Acid

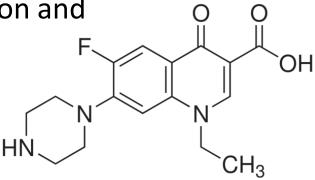
- 1-Ethyl-1,4-dihydro-7-methyl-4-oxo-1,8-naphthyridine-3carboxylic acid occurs as a pale buff crystalline powder that is sparingly soluble in water and ether but soluble in most polar organic solvents.
- Mainly used for UTI against Gram –ve bacteria.
- Rapidly absorbed, metabolized and excreted (t_{0.5}= 6 to 7 hrs)



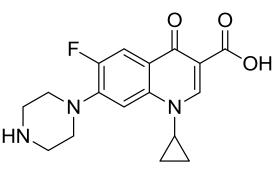
Naphthyridines (Cont.)


• Enoxacin

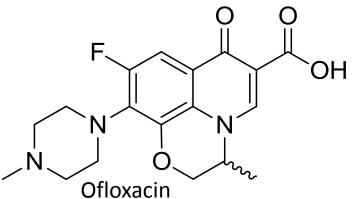
- 1-Ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-1,8naphthyridine-3-carboxylic acid
- Well absorbed following oral administration (90%).
- Well distributed through the body
- Concentrations of the drug in the kidneys, prostate, cervix, fallopian tubes, and myometrium typically exceed those in the plasma, therefore used for infections of reproductive systems
- About 50% is excreted unchanged in urin
- 15-20% is metabolized by CYP450

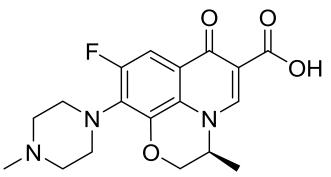

Fluroquinolones

- They are 6-fluoro-7-piperazinoquinolones derivatives.
- They exhibit extended spectrum of activity that covers most of gram +ve and gram –ve bacteria especially *P. aeruginosa.*
- C6-F → increase activity against Gram-ve
- Members:
 - Norfloxacin
 - Ciprofloxacin.
 - Ofloxacin.
 - Pefloxacin.
 - Lomefloxacin.
 - Enofloxacin.
 - Levofloxacin


• Norfloxacin

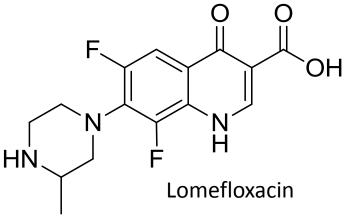
- 1-Ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3quinolinecarboxylic acid is a pale yellow crystalline powder that is sparingly soluble in water.
- Broad spectrum activity. The fluorine atom provides increased potency against Gram-positive organisms, whereas the piperazine moiety improves anti-pseudomonal activity.
- Well absorbed after oral administration and (30%) excreted in urine including 7%
 Finactive metabolites

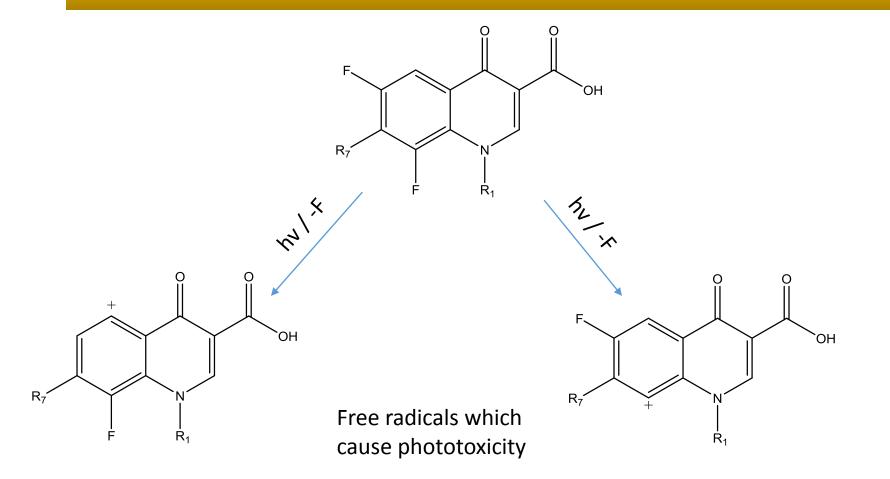

• Ciprofloxacin


- 1-CyclopropyI0-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyI)-
- 3-quinolinecarboxylicacid.
- Used orally (70% is absorbed) and parenterally
- 15% of it is metabolized to less active metabolites
- 40 to 50% exerted unchanged in urine.
- Significant amount is excreted unchanged in feces
- Highly distributed to all body fluids including CS fluid.
- Highly potent against gram -ve especially *P. aeruginosa* (why?).
- Used in gastroenteritis, skin, soft tissues (bone and joints) infections and UTI.
- Causes crystalurea if urine is alkalinized (pH >7) by some agents

• Ofloxacin and Levofloxacin

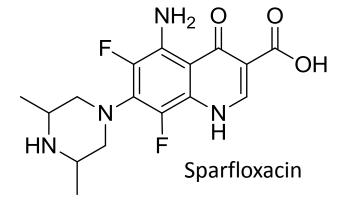
- 9-Fluoro-2,3-dihydro-3-methyl-10(4-methyl-1-piperazin-yl)-7-oxo-7*H*-pyrido[1,2,3-de]-1,4,-benzoxazine-6-carboxylic acid
- 1- and 8-positions are joined in the form of a 1,4-oxazine ring
- Has better penetration to CNS than ciprofloxacin
- The structure has asymmetric carbon atom, normally ofloxacin is given as racemate, although the 3*S*(-) isomer is 125x more active than the 3*R*(+) isomer (WHY ?).
- Recently the 3S(-) isomer was purified to be sold as Levofloxacin

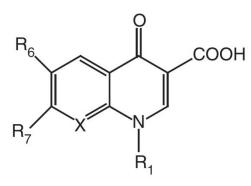



Levofloxacin

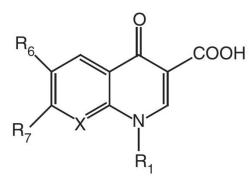
• Lomefloxacin

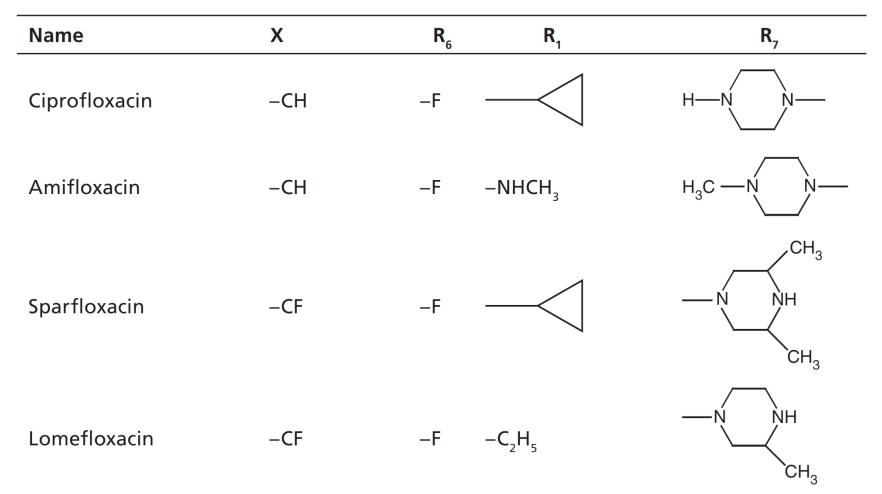
- 1-Ethyl-6,8-difluoro-1,4-dihydro-7-(3-methyl-1-piperazinyl)-4-oxo-3-quinolinecarboxylic acid
- Is a difluorinated quinolone with a longer elimination halflife (7–8 hours) than other members of its class due to
 - High tissue distribution
 - High renal reabsorption
- High incidence of phototoxicity due to the presence of two fluorine atoms.
- Phototoxicity: is the formation of highly reactive oxygen radicals due to the exposure to light.

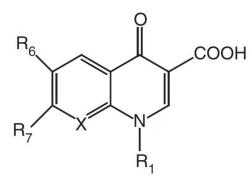

Phototoxicity of fluroquinolones



• Sparfloxacin


- (*cis*)-5-amino-1-cyclopropyl-7-(3,5-dimethyl)-1-piperazinyl)-6,8-difluoro-1,4-dihydro-4-oxo-3-quinolinecarboxylic acid, is a newer fluoroquinolone
- Highly active against Gram+ve as well as Gram-ve bacteria. It is also active against anerobes.
- It has high tissue distribution and long elimination half-life of 18 hours, which permits single daily dosing.
- The incidence of phototoxicity of sparfloxacin is the lowest of the fluoroquinolones, because of the presence of the 5-amino group, which counteracts the effect of the 8-fluoro substituent.


(5-amino or 5-OCH₃ \rightarrow reduce phototoxicity of fluroquinolones)



Name	Х	R_6	R ₁	R ₇
Nalidixic acid	-N	-H	$-CH_2CH_3$	-CH ₃
Enoxacin	-N	−F	-CH ₂ CH ₃	H—N_N
Pipemidic acid	-N	–H	$-CH_2CH_3$	H—N_N—
Norfloxacin	–CH	-F	-CH ₂ CH ₃	H—N_N—
Pefloxacin	–CH	-F	-CH ₂ CH ₃	H ₃ C-N-N-
Ciprofloxacin	–CH	-F		H—N_N—

Name	х	R_6	R ₁	R ₇
Fleroxacin	–CF	–F	–CH ₂ CH ₂ F	-NN-CH3
Tefloxacin	–CH	–F	$-\!\!\!\!\!\!\!\!\!$	-N-CH ₃
Gatifloxacin	–COCH ₃	–F	-	-N NH
Clinafloxacin	-CCI	-F		-N NH ₂