
LEARNING PHYSIOLOGY FROM INHERITED
KIDNEY DISORDERS
Jenny van der Wijst, Hendrica Belge, X René J. M. Bindels, and X Olivier Devuyst

Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center,
Nijmegen, The Netherlands; Institute of Physiology, University of Zurich, Zurich, Switzerland; and Division of
Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de
Louvain, Brussels, Belgium

L
van der Wijst J, Belge H, Bindels RJM, Devuyst O. Learning Physiology From
Inherited Kidney Disorders. Physiol Rev 99: 1575–1653, 2019. Published June 19,
2019; doi:10.1152/physrev.00008.2018.—The identification of genes causing in-
herited kidney diseases yielded crucial insights in the molecular basis of disease and
improved our understanding of physiological processes that operate in the kidney.

Monogenic kidney disorders are caused by mutations in genes coding for a large variety of proteins
including receptors, channels and transporters, enzymes, transcription factors, and structural
components, operating in specialized cell types that perform highly regulated homeostatic func-
tions. Common variants in some of these genes are also associated with complex traits, as
evidenced by genome-wide association studies in the general population. In this review, we discuss
how the molecular genetics of inherited disorders affecting different tubular segments of the
nephron improved our understanding of various transport processes and of their involvement in
homeostasis, while providing novel therapeutic targets. These include inherited disorders causing
a dysfunction of the proximal tubule (renal Fanconi syndrome), with emphasis on epithelial differ-
entiation and receptor-mediated endocytosis, or affecting the reabsorption of glucose, the handling
of uric acid, and the reabsorption of sodium, calcium, and magnesium along the kidney tubule.
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I. INTRODUCTION: GENETICS OF KIDNEY
DISORDERS

Over the past 25 yr, identification of the genetic variants
causing inherited kidney diseases has tremendously en-
hanced our understanding of the molecular basis of disease,
allowing to identify new therapeutic targets susceptible to
alleviate disease onset or progression (159, 779). At the
same time, these genetic discoveries have been a dominant
force in the field of renal physiology, providing clues for a
number of essential functions that were previously un-
known or only postulated on the basis of classical experi-
mental approaches (see BOX 1).

The clustering of kidney disease in families has long been rec-
ognized (184). From the 1980s, the technique of linkage anal-
ysis allowed to map a number of major disorders, including
autosomal dominant polycystic kidney disease (ADPKD) to
chromosome 16 in 1985 (595). This was followed by posi-
tional cloning, which allowed to identify disease-causing mu-
tations in genes involved in “monogenic” or “Mendelian”
diseases affecting various segments of the nephron, such as

Alport syndrome (32), nephrogenic diabetes insipidus (624),
ADPKD type 1 (739a), Liddle syndrome (686), Dent disease
(439), Bartter and Gitelman syndromes (691, 694), cystinosis
(748), and steroid-resistant nephrotic syndrome (72). With the
emergence of next-generation sequencing (NGS) technologies
(i.e., whole exome and whole genome sequencing), the identi-
fication of gene defects causing inherited kidney disorders is
expected to increase rapidly. To date, more than 160 rare
kidney diseases have been defined, with an overall prevalence
of �60–80 cases per 100,000 total population in Europe and
the United States (US) (159). Classically, a disease is defined as
“rare” if it affects �200,000 persons in the US, or �1 in 2,000
people in Europe (654). At least 10% of adults and nearly all
children who progress to renal replacement therapy have an
inherited kidney disease; collectively, the latter represent the
fifth most common cause of end-stage renal disease (ESRD)
after diabetes, hypertension, glomerulonephritis, and pyelone-
phritis (159).

The monogenic disorders of the kidney are caused by muta-
tions in genes coding for a large variety of proteins including
receptors, channels and transporters, enzymes, transcription
factors, and structural components. Since the kidney is a com-
plex organ involving numerous specialized cell types perform-
ing highly regulated homeostatic functions (184), these disor-
ders often affect vital processes including water and electrolyte
balance, blood pressure regulation, acid-base homeostasis, tis-
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sue oxygen supply, hormone and vitamin metabolism, growth
and puberty, innate and adaptive immunity, metabolic clear-
ance and secretion of drug metabolites, and central nervous
and cognitive functions. Thanks to the progress in renal re-
placement therapy (i.e., dialysis and transplantation), patients
with inherited kidney disorders rarely die when their disease
progresses. However, this apparent advantage is counterbal-
anced by compromised health with poor quality of life. For
instance, children born with severe congenital nephropathies,
who can be dialyzed from neonatal age onwards, face many
decades of life with ESRD and high likelihood of altered phys-
ical, cognitive, and psychosocial development. Inherited kid-
ney disorders have multi-systemic complications (27, 159).

In addition to monogenic renal diseases, there is strong evi-
dence for a genetic (heritable) component to various aspects of
renal function ranging from the glomerular filtration rate
(GFR) to the tubular handling of ions and the susceptibility to
chronic kidney disease (CKD) or hypertension. Classic twin
studies demonstrated heritabilities between 40 and 50% for
the tubular handling of major ions, and up to 63% for calcu-
lated creatinine clearance (327). A recent, population-based
approach evidenced significant heritability values for the 24-h
fractional excretions of common electrolytes, ranging from
16% for potassium (K�) to 51% for calcium (Ca2�) in the
general adult population (500). The identification of the ge-
netic component of such complex multi-factorial traits re-
quires unbiased genome-wide mapping approaches such as
genome-wide association studies (GWAS), which have
emerged since the mid 2000s (828). These studies have been
very successful at identifying genomic regions associated with
estimated GFR (eGFR) (102, 407) and albuminuria (75) as
well as CKD in the general population (553). As for other
complex diseases, the identified genetic risk variants only con-
fer relatively small increases in disease risk, with identification
requiring large study populations (163). It should be pointed
out, however, that the border between monogenic and com-
plex genetic disorders is evolving, as an increasing number of
GWAS based on defined traits and large populations is evi-
dencing loci that contain genes involved in monogenic disor-

ders (828). These findings, which are verified for traits related
to eGFR, albumin excretion, and tubular handling of electro-
lytes (74, 133, 134, 553) support the existence of a continuum
of risk variants in important genes that are associated with
physiological variation in the general population (frequent
variants, small effect size) and also involved in Mendelian dis-
orders (rare variants, large effect size) (116, 456) (FIGURE 1).

II. FOCUS OF THE REVIEW

The advent of genetic technologies and the rapid increase in
the identification of genes causing inherited kidney disorders
or associated with complex renal traits provided unprece-
dented insights into basic principles operating in different
nephron segments. In turn, these insights improved our under-
standing of important transport mechanisms, their regulation,
and their involvement in homeostatic processes, and they pro-
vided novel therapeutic targets. These discoveries were facili-
tated by large-scale international research consortia focusing
on rare genetic disorders and were amplified by large collab-
orative studies for GWAS and subsequent mechanistic inves-
tigations (159, 161, 406, 441, 553, 812).

In this review, we discuss inherited disorders affecting different
tubular segments (TABLE 1; FIGURE 2), with emphasis on those
that yielded critical insights for the understanding of epithelial
transport processes. The review focuses on inherited disorders
causing a dysfunction of the proximal tubule (renal Fanconi
syndrome) which evidenced the role of epithelial differentia-
tion and receptor-mediated endocytosis in multi-systemic
complications and progression of renal disease; affecting glu-
cose transport and uric acid handling; disturbing the renal
handling of Na�, with direct relevance for blood pressure reg-
ulation and mechanisms of action of diuretics; and affecting
the handling of Ca2� and Mg2�. Disorders affecting acid-base
balance, phosphate handling and its hormonal regulation (7,
43, 52, 321, 460, 549, 714, 783, 788, 802) and water handling
(31, 61, 126, 403, 543, 637, 807) have been discussed in
recent reviews and will not be addressed here. In each section,
we summarize the specific physiology process, discuss the clin-
ical manifestations and genetics of the associated inherited
disorders, and detail the mechanistic insights and therapeutic
perspectives provided by these studies.

III. RARE INHERITED DISORDERS
HIGHLIGHTING TUBULAR FUNCTIONS

A. Proximal Tubule Dysfunction: Renal
Fanconi Syndrome

1. Receptor-mediated endocytosis and
endolysosomal compartment

The proximal tubule (PT) plays an essential role in the re-
absorption and processing of a large amount of filtered ions

BOX 1.
• The review discusses how identification of genes causing in-

herited tubulopathies yielded crucial insights in physiological
processes that operate in the kidney tubule.

• The genes involved code for receptors, channels and trans-
porters, enzymes, transcription factors, and structural com-
ponents.

• This article specifically addresses genetic disorders causing
proximal tubule dysfunction (renal Fanconi syndrome) or af-
fecting the reabsorption of glucose, the handling of uric acid,
and the reabsorption of sodium, calcium, and magnesium.

• Each section summarizes the physiology process, the clinical
manifestations and genetics of the disease, the mechanistic
insights, and the therapeutic perspectives.
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and solutes. Approximately two-thirds of the filtered water,
NaCl, Ca2� as well as the totality of glucose, phosphate,
amino acids are reabsorbed by a whole orchestra of special-
ized transport systems that operate on the apical (brush
border) and basolateral area of the cells lining the various
segments of the PT, driven by the electrochemical gradient
generated by the basolateral Na�-K�-ATPase. These trans-
port processes impose a high energy demand, which is sus-
tained by numerous, elongated mitochondria typically
identified in PT cells (408). In addition, PT cells also reab-
sorb a significant amount of albumin (66.5 kDa) and low-
molecular-weight (LMW) plasma proteins that are filtered
through the glomerular basement membrane. These LMW
proteins include hormones [e.g., parathyroid hormone

(PTH), insulin, epidermal growth factor, leptin, thyroglob-
ulin], vitamin carrier proteins (transcobalamin-vitamin B12,
vitamin D-binding protein (DBP), retinol-binding protein,
folate-binding protein), enzymes (e.g., cathepsin B, �-amy-
lase, plasminogen, urokinase, lysozyme), lipoproteins, cell
surface antigen components (�2-microglobulin), immuno-
globulin light chains, as well as drugs and toxins (e.g., ami-
noglycosides, gentamicin). As the majority of the LMW
proteins are reabsorbed and metabolized by the PT cells, the
human urine is virtually devoid of plasma proteins under
physiological conditions (120, 194, 519).

The uptake of albumin and LMW proteins by PT cells prin-
cipally involves receptor-mediated, clathrin-dependent en-
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FIGURE 1. Genetic influence on disease. A: disorders with a genetic component are classically divided
between monogenic diseases, in which a rare variant in a single gene is the main cause of the disease (dark
blue sector), with possible additional, minor contributions of modifier genes (yellow sectors) and environment
(light blue sector); and polygenic/complex diseases, where many variants each exerting a very small effect
(yellow sectors), combined with a strong set of environmental factors (blue sector) contribute to disease.
Oligogenic disorders are caused by, or modulated by, a few genes. B: the spectrum of genetic influence on
disease can be represented by an inverse relationship between the strength of genetic effect (effect size) and
the allele frequency in the population. Rare disease-associated allelic variants (typically, �1:2,000 individuals)
are involved in Mendelian disorders, whereas common variants (typically �5% in the population) with small
effect size contribute to complex traits. Genetic variants of intermediate effect-size contribute to polygenic
disorders. Genetic technologies, including next-generation sequencing (NGS) and genome-wide association
studies (GWAS), cover the spectrum. [Adapted from Manolio et al. (455) and Manolio et al. (456).]
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docytosis (FIGURE 3), which requires two multiligand recep-
tors, megalin and cubilin, and the cooperating protein am-
nionless (AMN). These proteins are expressed at the brush
border of the PT cells, with megalin showing a maximal
expression level in the S1 versus S2 and S3 segments (194,
520). Megalin is a member of the low-density lipoprotein
receptor (LDLR) family, whereas cubilin (also known as the
intestinal intrinsic factor-vitamin B12 receptor) is a highly
conserved membrane-associated protein with little struc-
tural homology to known endocytic receptors and is char-
acterized by the absence of a transmembrane domain.
Megalin seems to be involved in the endocytosis and intra-
cellular trafficking of cubilin as suggested by the high-affin-
ity binding of purified megalin to cubilin amino (NH2)-
terminal region in vitro (120). AMN is required for the
apical sorting of cubilin and its participation in receptor-
mediated endocytosis (136). Cubilin contributes ligand-
binding regions of the receptor complex, whereas AMN
ensures the membrane anchorage, biosynthetic processing,
and recycling of the complexes at the plasma membrane
(224). In addition to the proximal tubule, cubilin and am-
nionless are both expressed in the small intestine. Ligand
binding and interactions between both receptors induce
their internalization into coated vesicles and their subse-
quent delivery to endosomes and lysosomes for ligand pro-
cessing and receptor degradation or recycling.

Through its binding capacity of hedgehog morphogens,
megalin modulates sonic hedgehog activities crucial for de-
velopmental processes in a number of tissues, including the
brain, the eye, and the heart (117). The biological impor-
tance of the apical receptor complex is evidenced by the
severe and multi-sytemic manifestations of rare disorders
targeting megalin and cubilin/amnionless (FIGURE 4). Re-

cessive mutations in the LRP2 gene that encodes megalin
cause Donnai-Barrow or facio-oculo-acoustico-renal (DB/
FOAR) syndrome (MIM no. 222448) that is characterized
by typical craniofacial anomalies (major hypertelorism
with bulging eyes), high-grade myopia, deafness and LMW
proteinuria (369, 712). Mutations in the CUBN and AMN
genes that encode cubilin and amnionless, respectively, are
associated with Imerslund-Gräsbeck syndrome (MIM no.
261100), a rare autosomal recessive disorder character-
ized by selective vitamin B12 (cobalamin) malabsorption
causing megaloblastic anemia. Increased urinary excre-
tion of cubilin ligands (e.g., transferrin, DBP, and albu-
min) is detected in patients harbouring mutations impair-
ing the plasma membrane expression of cubilin (713).
Recent studies have demonstrated that the apical expres-
sion of megalin, and thus the endocytic uptake capacity,
reflects the differentiation state of PT cells. For instance,
comparison of proliferation and differentiation markers
revealed that primary human PT cells are less prolifera-
tive and more differentiated than HK-2 cells, reflected by
a threefold increase in their endocytic uptake (578).
These results are in line with studies demonstrating that
primary cultured cells isolated from PT segments of
mouse kidney preserve their differentiation and polarized
transport processes (738). Furthermore, acquired PT
dysfunction (e.g., by exposing PT cells to low dose of
toxic �-light chains) is inducing a phenotype switch of PT
cells, with increased cell proliferation, decreased apical
expression of endocytic receptors, and defective endocy-
tosis and albumin uptake capacity (449).

The progression along the endolysosomal compartment
depends on the continuous vesicular acidification from
early endosomes to lysosomes (199). The decrease in pH

Nephron

Inner
medulla

Outer
medulla

CortexProximal tubule
Donnai-Barrow syndrome
Imerslund-Gräsbeck syndrome
Dent disease, types 1-2
Lowe oculocerebrorenal syndrome
Cystinosis
Cystic fibrosis
Maturity-onset diabetes of 
 the young (MODY3)
Hereditary renal hypouricemia, types 1-2
Familial renal glycosuria

Thick ascending limb-distal convoluted tubule
Bartter syndrome, types 1–4 
Gitelman syndrome 
Familial hyperkalemic hypertension
 (Gordon syndrome; Pseudohypo-
 aldosteronism type 2, PHA2)
Familial hypocalciuric hypercalcemia, types 1-3
Neonatal severe hyperparathyroidism
Autosomal dominant hypocalcemia, types 1-2
Hypomagnesemia, types 1-6
HELIX syndrome
SeSAME (EAST) syndrome
Renal cysts and diabetes syndrome

Collecting duct
Liddle syndrome
Pseudohypoaldosteronism type 1 (PHA1) 

FIGURE 2. Segmental distribution of rare inherited kidney disorders. See text for details on the individual
disorders.
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in the successive endocytic compartments induces recep-
tor-ligand dissociation and modulates vesicle trafficking,
endosomal fusion events, and coat formation (328). In
PT cells, endosomal acidification is driven by the electro-

genic vacuolar H�-ATPase (V-ATPase) (FIGURE 3). The
translocation of protons from the cytoplasm into the en-
dosomes generates a transmembrane electrical potential
(��) with rapid inhibition of V-ATPase activity. The

B

Megalin

Cubilin

Amnionless

A

FIGURE 3. Receptor-mediated endocytosis in the proximal tubule of the kidney. A: albumin and low-molecu-
lar-weight (LMW) proteins, in red, are continuously filtered across the glomerular filtration barrier, to be
reabsorbed and processed by the epithelial cells lining the proximal tubule (PT). The LMW ligands first interact
with the nonselective megalin/cubilin/amnionless receptor complex at the apical membrane. After internal-
ization, the receptor-ligand complexes progress along the clathrin-dependent endocytic pathway. The endo-
somes undergo a progressive acidification that results in the dissociation of the receptor-ligand complexes,
with the receptors (inset) being recycled to the apical membrane, whereas the ligand is directed to acidic
lysosomes for degradation. Other possible pathways for albumin handling by proximal tubule cells, including
fluid-phase endocytosis and transcytosis back into the circulation, are not detailed. B: vesicular acidification and
chloride concentration along the endolysosomal pathway. The endocytic pathway in PT cells involves coated pits
and coated vesicles, followed by early endosomes that form recycling endosomes or mature to late endosomes
and lysosomes. The luminal pH drops from 7.4 in the tubule lumen to 6.0 in early endosomes, 5.5 in late
endosomes, and below 5.0 in lysosomes. Such vesicular acidification is necessary for dissociation of the
ligand-receptor complex, recycling of receptors to the apical membrane, and progression of ligands into
lysosomes. In parallel, the Cl� concentrations drop from 110 mM in the extracellular space to 20–40 mM in
early endosomes, 60 mM in late endosomes, and �80 mM in lysosomes, i.e., much higher than the 10–40
mM in the cytosol. Right panel: endosomal acidification that is achieved by ATP-driven transport of cytosolic H�

through V-ATPase, also known as the proton pump. ClC-5 operates as a Cl�/H� exchanger that facilitates
acidification (countercurrent through the 2Cl�/1H� stoichiometry). The Cl� channel CFTR is also enriched in
the endosomal fraction containing ClC-5, and it participates, together with cation leakage (q�), in the electrical
shunt necessary for sustained vesicular acidification. CFTR, cystic fibrosis transmembrane conductance
regulator; ClC-5, chloride channel 5; V-ATPase, vacuolar H�-ATPase; q�, cation. [Adapted from Devuyst and
Luciani (160), with permission from John Wiley and Sons; and Jentsch (349).]
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maintenance of V-ATPase activity depends on the dissi-
pation of ��, either by cation leakage or by chloride
transport (571). Vesicular acidification requires in most
cases a chloride (Cl�) conductance. The intravesicular
Cl� concentration progressively increases from early en-
dosomes (20 – 40 mM) to lysosomes (�80 mM) (705). It
can directly affect the V-ATPase activity (497) as well as

other ionic movements and vesicle recycling indepen-
dently of its effect on pH (199, 705).

Impairment of PT transport processes leads to the loss of
LMW proteins and solutes (e.g., phosphate, glucose, amino
acids, urate) in the urine. The clinical entity of generalized
PT dysfunction is referred to as renal Fanconi syndrome (or

Clathrin-coated pit
Clathrin

Clathrin-coated
vesicle

Transcytosis

Golgi
apparatus

Recycling
endosome

Megalin/cubilin

Ligand

Donnai-Barrow (LRP2)
Imerslund-Gräsbeck (CUBN-AMN)

Lowe syndrome (OCRL) 
Dent disease 2 (OCRL)
Dent disease 1 (CLCN5)

Cystinosis (CTNS)

Cystinosis (CTNS)

Early endosomeLate endosome

Nucleus

Autophagosome

Autolysosome

Lysosome

Lysosome

A FIGURE 4. Rare disorders targeting the
endolysosomal system in the proximal tu-
bule, resulting in renal Fanconi syndrome. A:
the main endocytic receptor for the clear-
ance of filtered proteins is megalin (encoded
by the LRP2 gene), a member of the low-
density lipoprotein receptor gene family. Cu-
bilin (encoded by the CUBN gene) is another
apical cell surface receptor in proximal tu-
bule (PT) cells, associated with megalin and
the amnionless subunit (not represented,
encoded by AMN) to form a receptor com-
plex for the trafficking of cargo through the
early endosomes, late endosomes, and lyso-
somes of the cell. Endocytic activity in these
cells critically requires the actions of CLCN5
and OCRL. CLCN5 encodes ClC-5, a Cl–/H�

exchanger that facilitates acidification and
trafficking of endosomal vesicles. OCRL en-
codes inositol polyphosphate-5-phospha-
tase, which is required for proper vesicular
trafficking between intracellular compart-
ments and the plasma membrane. The lys-
osomal activity, important for cargo pro-
cessing and autophagy, requires a func-
tional cystinosin, a H�-cystine cotransporter
encoded by the CTNS gene. Several disor-
ders are caused by mutations of genes cod-
ing for components of the endo-lysosomal
system in the PT, including LRP2 (Donnai-
Barrow syndrome), CUBN and AMN
(Imerslund-Gräsbeck syndrome), CLCN5
(Dent disease 1), OCRL (Lowe syndrome and
Dent disease type 2), and CTNS (nephro-
pathic cystinosis). Typically, these disorders
cause PT dysfunction and lead to inappropri-
ate urinary loss of solutes and, often, to
renal failure. B: phenotype of PT dysfunction
in the ClC-5 knockout (KO) (Clcn5Y/�) mouse
model of Dent disease 1. i) Compared with
wild-type (Clcn5Y/�) littermates, Clcn5Y/�

mice show polyuria, with inappropriate glu-
cosuria, calciuria, phosphaturia, and pro-
teinuria. ii) Immunoblot analysis confirms the
urinary loss of low-molecular-weight proteins
in Clcn5Y/� mice, including Clara cell protein
of 16 kDa (CC16), transferrin, vitamin D-
binding protein (DBP), and cathepsin B. iii)
The molecular basis of the defective endocy-
tosis is the loss of apical receptors megalin
and cubilin in PT cells, as shown by de-
creased apical signal on immunofluores-
cence; and iv) by the redistribution of cubilin
from the brush border to intracellular com-
partments in subcellular fractions (Percoll
gradient) of the kidneys. [Modified from De
Matteis et al. (148) and Willnow (813).]
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de Toni-Debré-Fanconi syndrome) to acknowledge the first
description of such a case by Guido Fanconi at the Kinder-
spital Zurich in 1931 (197). The renal Fanconi syndrome
(RFS) is characterized by the urinary loss of the above sol-
utes and LMW proteins, causing dehydration and electro-
lyte imbalance, rickets, muscular weakness, growth retar-
dation, and progressive renal failure (77, 389). The syn-
drome can be isolated or associated with multi-systemic
disorders; it is variable in terms of severity, duration, extent
of tubular dysfunction, and progression towards CKD.
These variable clinical presentations reflect at least in part
the causal disorder. The RFS can be acquired, for instance
induced by exogenous susbstances (toxins, drugs) or asso-
ciated with autoimmune disorders, or result from inherited
disorders (TABLE 2) including endolysosomal diseases (e.g.,
Dent disease, cystinosis), metabolic disorders (e.g., Fan-
coni-Bickel syndrome, Wilson disease, tyrosinemia, galac-
tosemia, congenital fructose intolerance) (165, 389, 695),
or various types of mitochondrial dysfunctions (189, 596).
Besides generalized PT dysfunction, isolated defects of
proximal transport systems, such as disorders of glucose,
urate, or phosphate transport, may also occur and will be

discussed separately. In this section we discuss Dent disease
and cystinosis (FIGURE 4), two inherited disorders of the
endolysosomal pathway that are invariably associated with
variable forms of PT dysfunction (57, 515).

2. Dent disease

A) BRIEF CLINICAL DESCRIPTION. Dent disease (also named
X-linked hypercalciuric nephrolithiasis, X-linked recessive
hypophosphatemic rickets, X-linked recessive nephrolithi-
asis, or idiopathic LMW proteinuria) is a rare X-linked
renal tubulopathy that was first reported by Dent and Fried-
man in two unrelated English boys with rickets associated
with renal tubular damage characterized by hypercalciuria,
hyperphosphaturia, LMW proteinuria, and aminoaciduria
(156). Dent disease is characterized by LMW proteinuria
associated with hypercalciuria, which may lead to nephro-
lithiasis, nephrocalcinosis, and renal failure. The disease
may also be associated with PT dysfunction as evidenced by
aminoaciduria, phosphaturia, glycosuria, uricosuria, kali-
uresis, and impaired urinary acidification and is frequently
complicated by rickets or osteomalacia. Usually these fea-

B
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FIGURE 4. Continued
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tures are present in males only, who may develop bone pain,
rickets, failure to thrive, or even renal stones from early
childhood. LMW proteinuria is the most consistent mani-
festation of Dent disease and is identified in almost all af-
fected males and obligate female carriers (57, 165). Of note,
proteinuria worsens with age and may reach the nephrotic
range (�2 g/day), with evidence of glomerular lesions on
renal biopsy (57, 220).

Generalized PT dysfunction (complete RFS) is rare in Dent
disease (~10% of patients), whereas the presence of partial
RFS (including LMW proteinuria and hypercalciuria with
at least one manifestation of PT dysfunction) is detected in
70% of patients (57). Vitamin A deficiency and impaired
night vision may be present and are due to the urinary loss
of retinol binding protein (37). Hypercalciuria and nephro-
calcinosis are also highly prevalent, although there is inter-
and intrafamilial variability in the occurrence of nephroli-
thiasis which occurs in approximately half of the affected
males (57, 164). Pseudo-Bartter syndrome, with renal losses
of salt and K� and secondrary hyperaldosteronism, has
been reported, increasing in frequency with age (57). A
cumulative analysis of the clinical data from 377 male pa-
tients confirmed the main manifestations of the disease, and
the occurence of micro- or macrohematuria, proteinuria in
the nephrotic range, urinary concentration defect, Bartter-
like phenotype, hypomagnesemia, and defects in urinary
acidification (458).

Progression to end-stage renal failure occurs between the
third and the fifth decades of life in 30–80% of affected
males (57, 653). The link between nephrocalcinosis and
renal failure has not been established in patients. The oc-
currence of these predominantly renal manifestations and
their association with mutations in the CLCN5 gene is re-
ferred to as Dent disease 1. A minority of patients with Dent
disease present extra-renal manifestations such as mental
developmental delay, hypotonia, and cataract, in associa-
tion with mutations of the oculo-cerebrorenal syndrome of
Lowe (OCRL) gene (306). The occurrence of these extra-
renal manifestations associated with OCRL mutations is
referred to as Dent disease 2.

B) GENETICS. Dent disease 1 (MIM no. 300009) is caused by
inactivating mutations in the CLCN5 gene (Xp11.22),
which encodes the 746-amino acid electrogenic 2Cl�/H�

exchanger ClC-5 (439, 567, 652). ClC-5 is a member of the
CLC family of Cl� channels/transporters and belongs to a
cluster of three isoforms (ClC-3, ClC-4, ClC-5) that are
mainly located in intracellular vesicles. ClC-5 is character-
ized by 18 �-helices, with two phosphorylation sites and
one N-glycosylation site. Crystal structures of bacterial and
eukaryotic CLCs showed that the protein forms diamond-
shaped homodimers composed of two repeated halves that
span the membrane in opposite orientations. Each subunit

Table 2. Causes of proximal tubule dysfunction
(renal Fanconi syndrome)

Idiopathic
Autosomal recessive or dominant
X-linked
Hereditary*
Arthrogryposis, renal dysfunction and cholestasis 1; ARCS1

(VPS33B)
Arthrogryposis, renal dysfunction and cholestasis 2; ARCS2

(VIPAS39)
Cystinosis (CTNS)
Cystinuria (SLC3A1, SLC7A9)
Dent disease 1 (CLCN5)
Dent disease 2 (OCRL)
Donnai–Barrow syndrome (LRP2)
Fabry disease (GLA)
Fanconi renotubular syndrome 1; FRTS1 (-)
Fanconi renotubular syndrome 2; FRTS2 (SLC34A1)
Fanconi renotubular syndrome 3; FRTS3 (EHHADH)
Fanconi renotubular syndrome 4; FRTS4 (HNF4A)
Fanconi–Bickel syndrome (SLC2A2)
Galactosemia (GALT)
Glycogen storage disease type I (von Gierke disease) (G6PC)
Hereditary fructose intolerance (ALDOB)
Imerslund–Gräsbeck syndrome (megaloblastic anemia 1;

CUBN, AMN)
Iminoglycinuria (SLC6A20, SLC6A19, SLC36A2)
Lowe oculocerebrorenal syndrome (OCRL)
Maturity-onset diabetes of the young type 3 (HNF1A)
Renal tubular acidosis proximal, autosomal recessive

(SLC4A4)
Tyrosinemia type I (FAH)
Wilson disease (ATP7B)
Renal Fanconi syndrome, autosomal dominant, with kidney

failure (GATM)
Mitochondriopathies
Acquired
Myeloma
Sjögren syndrome
Renal transplantation
Acute tubulointersitial nephritis with uveitis (TINU) syndrome
Autoimmune interstitial nephritis and membranous

nephropathy
Primary biliary cirrhosis
Renal hemosiderosis
Exogenous substances
Drugs: aminoglycosides, salicylate, valproic acid, Chinese

herbs, ifosfamide, cisplatin, imatinib, mesylate, adefovir,
cidofovir, tenofovir, zoledronic acid, deferasirox

Chemical compounds: paraquat, bismus, methyl-3-
chromone, 6-mercaptopurine, toluene

Heavy metals: lead, cadmium, mercury, chromium,
platinum

Honeybee stings: melittin

*Causative genes are in italics.
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has its own pore responsible for the selective coupling of the
Cl� flux to H� countertransport (183, 201, 349).

The described CLCN5 mutations include large deletions
(4%) as well as nonsense (17%) and frameshift (28%) mu-
tations that produce premature stop codons, splice-site mu-
tations (11%) predicted to interfere with correct splicing,
and missense (37%) and small in-frame deletions (2.6%)
affecting conserved residues (458). The mutations are scat-
tered through the coding region, with no evidence for
mutational hot spots (458, 823). Most of the CLCN5 mu-
tations (missense and nonsense) are predicted to result in a
truncated or absent ClC-5 protein, which would lead to a
complete loss of its antiporter function. Heterologous ex-
pression in Xenopus laevis oocytes or HEK293 cells has
shown that most CLCN5 mutations lead to a loss of Cl�

conductance (439). Further detailed studies of the CLCN5
missense mutations revealed that these may lead to im-
paired processing and folding, with endoplasmic reticulum
(ER) retention and degradation by quality control mecha-
nisms (class 1); delay in processing and reduced stability
(class 2); and normal trafficking but altered electrical activ-
ity (class 3) (446). Some mutations of CLCN5 cluster at the
dimer interface, which could impair dimerization and lead
to rapid degradation of the mutant protein within the cell
(446, 458, 824). Examination of a large cohort of 109 male
patients with CLCN5 mutations (Dent disease 1) could not
establish a correlation between severe and moderate muta-
tions (classified according to the types of mutations) and the
phenotype at diagnosis, the decrease in eGFR, and tubular
manifestations (57). A considerable intra-familial variabil-
ity in disease severity has been reported, including for the
extent of PT dysfunction and urinary wasting of bicarbon-
ate and ions associated with a given CLCN5 mutation
(458).

There is genetic heterogeneity for Dent disease, with ~50–
60% of patients harboring CLCN5 mutations, ~15% with
OCRL mutations, and the remaining 25–35% of patients
having neither CLCN5 nor OCRL mutations. Dent disease
2 (MIM no. 300555) defines patients with Dent disease
who have extrarenal manifestations and share mutations in
the OCRL gene with the oculo-cerebrorenal syndrome of
Lowe (306, 688). There is a wide overlap between the man-
ifestations of PT dysfunction in patients with Dent disease
type 1 (CLCN5 mutations) and Dent disease 2 (OCRL
mutations), with all patients manifesting LMW proteinuria
and ~90% hypercalciuria (76). The mild extrarenal mani-
festations of patients with Dent disease 2 include elevated
levels of creatine phosphokinase (CPK) and/or lactate de-
hydrogenase (LDH), indicating muscle involvement, mild
intellectual disability, mild developmental delay, and cata-
ract; these manifestations are much less severe than in Lowe
syndrome. Similarly, patients with Dent disease 2 are less
likely to have nephrocalcinosis and urinary wasting of
phosphate, amino acids, bicarbonate, and K�, and a slower

decrease in eGFR compared with patients with Lowe syn-
drome (76, 148, 848).

The OCRL gene encodes the inositol polyphosphate
5-phosphatase OCRL, which preferentially hydrolyzes the
5-phosphate of phosphatidylinositol 4,5-bisphosphate
[PI(4,5)P2]. Disease-causing mutations in OCRL result in
the loss of 5-phosphatase activity and accumulation of
PI(4,5)P2 in PT cells of patients with Lowe syndrome (852).
The vast majority of OCRL mutations associated with
Lowe syndrome are located in exons 8–23, which com-
prises the inositol polyphosphate 5-phosphatase and the
ASPM, SPD-2, Hydin (ASH), and RhoGAP-like domains,
whereas the majority of mutations that cause Dent disease 2
are located in exons 1–7, which encompass the pleckstrin
homology (PH) domain (148). Of note, mutations in the
phosphatase domain of OCRL have been described both in
patients with Lowe syndrome and in patients with Dent
disease 2, but such mutations in patients with Dent disease
2 are always missense mutations (298). A number of evi-
dences suggest that OCRL plays a role in the endocytic
pathway and the coordination of membrane dynamics with
remodeling of the actin cytoskeleton (148, 193, 475).
Therefore, it is likely that OCRL mutations in Lowe syn-
drome or Dent disease 2 lead to disruptions in the endo-
somal and/or lysosomal trafficking, i.e., an abnormality
similar to that observed in Dent disease 1.

C) PROTEIN FUNCTION AND INSIGHTS FOR RENAL PHYSIOLOGY. The clini-
cal presentation Dent disease 1 reflects the predominant
expression of ClC-5 in PT cells, where it codistributes with
the V-ATPase in subapical, early endosomes (158, 271).
Studies in two independent strains of Clcn5 knockout (KO)
mice have provided important insights into the mechanisms
of PT dysfunction in Dent disease 1 (570, 794). The Clcn5
KO mouse models recapitulate the LMW proteinuria and
other manifestations of PT dysfunction associated with the
disease (FIGURE 4). In vitro experiments showed defective
acidification of vesicles isolated from Clcn5 KO mice, sup-
porting a role for ClC-5 in acidification of early endosomes
(272, 529). Although ClC-5 was initially considered as a
simple Cl� channel, later studies revealed that it is actually
an electrogenic 2Cl�/H� exchanger, exploiting the H� gra-
dient to move Cl� into endosomes (567, 652) (FIGURE 3).
To better understand the biological role of this exchange
activity and its relevance for Dent disease, Novarino et al.
(529) generated a knock-in (KI) mouse model carrying a
point mutation (E211A) affecting a glutamate residue that
is crucial for the gating of CLC exchangers. The replace-
ment of this glutamate by an alanine converts ClC-5 into a
pure, uncoupled Cl� conductor. The E211A mutant ClC-5
did not affect endosomal acidification, in contrast with
the severe defect observed in ClC-5 KO. However, de-
spite the normal endosomal acidification, the KI mice
showed the same phenotype as that of Clcn5 KO mice,
including LMW proteinuria, glycosuria, hyperphospha-
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turia, and hypercalciuria. Furthermore, a similar uncou-
pling mutation (E211Q) has been reported in a Japanese
patient with Dent disease (672) supporting that PT dys-
function in Dent disease may thus occur despite normal
endosomal acidification. Instead of the simple Cl� shunt
hypothesis, the disease may be caused by defective ex-
change activity, i.e., uncoupling of Cl� from H� gradi-
ents and defective endosomal Cl� accumulation. ClC-5
could actually mediate endosomal acidification indepen-
dently of the V-ATPase in the early endosomes, with lumi-
nal H� uptake driven by the favorable gradient for Cl�

(652) (FIGURE 3). Recent studies in conditionally immortal-
ized PT cells from patients with mutations involving differ-
ent domains of ClC-5 showed differing effects on endo-
somal acidification, uncoupled to defects in receptor-medi-
ated endocytosis (257). A potential role of vesicular Cl�

concentration or transmembrane voltage of endosomes,
which could affect other transport systems or vesicule recy-
cling, has been hypothesized (350, 705).

Studies in Clcn5 KO and KI mice have demonstrated that
inactivation of ClC-5 is associated with a severe trafficking
defect in PT cells (FIGURE 4), with loss or reduced levels of
megalin and cubilin at the brush border, impaired endocy-
tosis and lysosomal processing of endocytosed ligands, and
defective internalization of NaPi-IIa and/or Na�/H� ex-
changer 3 (NHE3) (121, 529, 570, 794). Importantly, mice
lacking ClC-5 do not show ultrastructural alterations of the
endocytic apparatus (121), a finding confirmed in kidney
biopsies from patients with Dent disease and established
mutations in CLCN5 (501). The use of differentiated pri-
mary PT cells grown on filters evidenced that the endocytic
defect observed in Clcn5 KO mice was retained in vitro
(225, 594, 738). The link between ClC-5 expression, recep-
tor-mediated endocytosis, and PT dysfunction was further
supported by a proof-of-concept study investigating the ef-
fect of bone marrow transplantation in Clcn5 KO mice
(225). Transplantation of wild-type bone marrow in Clcn5
KO mice significantly improved PT dysfunction, with bone
marrow-derived cells engrafted in the kidney, surrounding
PT cells which showed a rescue of the apical expression of
ClC-5 and megalin receptors. The improvement of PT dys-
function correlated with the rescue of Clcn5 gene expres-
sion in kidneys. Coculture of Clcn5 KO mouse PT cells
(mPTCs) with bone marrow-derived cells confirmed rescue
of ClC-5 and megalin, resulting in improved endocytosis.
Nanotubular extensions between the engrafted bone mar-
row-derived cells and PT cells were observed in vivo and in
vitro, playing a key role in the rescue mechanism (225).

Despite their vulnerability, PT cells are able to recover from
an ischemic or toxic insult, as surviving cells dedifferentiate
and proliferate to eventually restore tubular integrity (66).
A similar process occurs in Dent disease, with a fourfold
increase in the proliferative activity of PT cells [assessed by
transcription of proliferating cell nuclear antigen (PCNA),

KI-67, and cyclin E] paralleled by dedifferentiation (expres-
sion of osteopontin and the mesodermal marker carbonic
anhydrase type III, CA3). The induction of the latter was
also linked to an increased production of superoxide anion
and the induction of type I superoxide dismutase and thi-
oredoxin, pointing to increased oxidative stress and solici-
tation of cell oxidative defenses in Clcn5 KO kidneys (229).
Of note, these modifications occurred at a time when no
visible alterations in cell morphology or renal failure were
observed in Clcn5 KO mice, and neither was there any
change in the apoptotic rate. Albumin is also known to
exert a potent survival activity in mouse PT cells, most
likely through scavenging of reactive oxygen species (335),
so that a reduced capacity of albumin uptake may be
deleterious.

The potential link between the functional loss of ClC-5 and
PT dysfunction can be proposed as follows. The defective
Cl� transport in early endosomes leads to impaired traffick-
ing and recycling of apical receptors, defective receptor-
mediated endocytosis, and ensuing urinary loss of LMW
ligands (121). The functional loss of ClC-5 is also associ-
ated with impaired lysosomal function, as shown by the
defective processing of endocytosed LMW ligands (121).
The lysosome defect may at least in part be due to defective
megalin which is critical for reabsorbing (mannose 6-phos-
phate devoid) lysosomal enzymes that are continuously fil-
tered from the circulation, providing a major source of lys-
osomal enzymes in PT cells (521). In turn, the lysosomal
defect might compromise autophagy, the cytoprotective
mechanism for the degradation of damaged organelles
through lysosome-mediated self-digestion (674). The defec-
tive lysosomal-mediated clearance of autophagosomes,
containing ubiquitinated proteins and dysfunctional mito-
chondria, may lead to oxidative stress as observed in ClC-5
KO kidneys (229). It was recently shown that oxidative
stress disrupts the integrity of the junctional complex [i.e.,
zonula occludens 1 (ZO-1) protein] (845), which might
activate an abnormal signaling cascade involving the ZO-
1-associated nucleic acid binding protein (ZONAB, also
called Y-box protein 3, YBX3), a transcription factor
known to cause proliferation (increased transcription of
cyclin D1 and PCNA) and apical dedifferentiation (repres-
sion of the transcription of megalin and cubilin) in proximal
tubule cells (433). The crucial pathogenic role of oxidative
stress in mediating the epithelial dysfunction associated
with endolysosomal diseases will be elaborated in the sec-
tion dealing with nephropathic cystinosis (207, 591). Of
note, the fact that ClC-5 is also detected in cells lining the
thick ascending limb of Henle’s loop and in the �-type in-
tercalated cells of the collecting ducts (CD) (158) may ex-
plain some of the distal tubular manifestations of the dis-
ease, including defects in urinary acidification (458).

Inactivating mutations in the inositol polyphosphate 5-phos-
phatase OCRL induce defects in the endolysosomal system
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which generally mimicks the PT dysfunction encountered in
Dent disease 1. The similar phenotype is explained by the
association of OCRL with early endosomes, where it acts to
maintain low levels of PI(4,5)P2 for proper endocytic traffick-
ing (754, 774). The functional loss of OCRL induces an in-
crease in PI(4,5)P2 levels in early endosomes, which stimulates
uncontrolled actin polymerization and impairs the trafficking
of different receptors including megalin (774). These events
lead to the trapping of megalin in early endosomes, reducing
its recycling to the plasma membrane, impairing receptor-me-
diated endocytosis and causing PT dysfunction (148). The ab-
sence of OCRL is also leading to PI(4,5)P2 accumulation on
autolysosomal membranes, causing defective autophagic flux
and increased levels of autophagosomes, which could be toxic
for PT cells (146).

If the link between deficient ClC-5 or OCRL and defective
PT apical endocytosis has been established, the transition
between such PT dysfunction and progression to CKD in
Dent disease remains to be deciphered. Atypical features
(nephrocalcinosis, fibrosis) are observed in the few kidney
biopsies available (858). The classical mechanisms of albu-
min toxicity on PT cells, which are considered in case of
glomerular proteinuria, cannot be evoked here, since PT
cells in Dent disease are prevented from endocytosis-medi-
ated albumin overload. Presumably, early changes in PT
cells, including proliferation, dedifferentiation, autophagy,
and metabolic adaptation, may become maladaptive and
promote inflammation and progression of tubulointerstitial
fibrosis by various mechanisms (241, 436). The role of tu-
bular proteinuria, a universal feature of the disease, should
also be considered, as increasing evidence suggests that dis-
tal nephron segments may elicit specific stress response
when exposed to proteinuria (178, 185a).

3. Cystinosis

A) BRIEF CLINICAL DESCRIPTION. Cystinosis is a rare disease (inci-
dence: 1:100,000–1:200,000 live births) that is caused by
recessive mutations in the CTNS gene that encodes the lys-
osomal cystine-H� cotransporter cystinosin (111, 364,
748). CTNS is expressed in all tissues: mutations causing
cystinosis result in a lysosomal storage disorder character-
ized by a multi-systemic accumulation of cystine crystals.
Children with infantile cystinosis (MIM no. 219800), the
most frequent and most severe form of cystinosis, develop
RFS typically around age 6 to 12 mo, with accompanying
polyuria, polydipsia, failure to thrive, and rickets. The GFR
begins to deteriorate from 5 to 6 yr of age, leading to ERSD
by ~10 yr of age if untreated (188, 227). In addition to the
kidney manifestations, patients present early depositions of
cystine crystals in the cornea, and can develop retinopathy,
hypothyroidism, hypogonadism, diabetes, myopathy, and
deterioration of the central nervous system (227, 515). The
juvenile (MIM no. 219900) and the ocular (MIM no.
219750) forms of cystinosis are milder and rarer than the
typical, infantile cystinosis (227). There is a specific treat-

ment for cystinosis: cysteamine, an aminothiol that can de-
plete the intralysosomal cystine through the reduction of
cystine, and the formation of cysteine and a cysteamine-
cysteine mixed disulfide which exits the lysosome via the
cationic amino acid transporter PQLC2 (352, 435). Most of
these complications, with the exception of the RFS, can be
delayed or attenuated with cysteamine therapy (81, 414).

B) GENETICS. More than 100 pathogenic mutations of the
CTNS gene (17p13.2) have been reported (188). Founder
mutations, including a 57-kb deletion in CTNS which af-
fects 65% of patients of northern European descent but is
almost completely absent in patients from other origins,
have been described (110). Genotype-phenotype correla-
tion revealed that severe or truncating mutations on both
alleles are usually associated with infantile cystinosis, while
juvenile and ocular forms of cystinosis are usually associ-
ated with at least one mild mutation. However, some mis-
sense mutations in CTNS, which result in mutated forms of
cystinosin located in lysosomes but unable to carry cystine
transport, have been found in patients with juvenile cysti-
nosis, suggesting that cystinosin exerts functions beyond
cystine transport (365).

Cystinosin is a 367-amino acid protein, with seven predicted
transmembrane domains, a luminal NH2-terminal region
bearing seven N-glycosylation sites and a cystolic COOH-
terminal GYDQL lysosomal targeting signal (748). An addi-
tional lysosomal targeting motif, YFPQA, reinforces associa-
tion with lysosomes (111). A longer CTNS isoform (cystino-
sin-LKG) can be generated by alternate splicing of exon 12,
localized into lysosomes, the secretory apparatus, and the
plasma membrane (734). Cystinosin is a high-affinity cystine-
proton symporter that uses the proton gradient to export cys-
tine from the acidic lysosome to the cytosol (FIGURE 4). Since
the low abundance of cystinosin transporters in lysosomes is
the rate-limiting step for cystine transport, the disruption of
cystine transport results in intralysosomal accumulation of
cystine, reflecting the lysosomal degradation of disulfide-bear-
ing proteins, such as albumin which is internalized via recep-
tor-mediated endocytosis. In turn, cystine may organize into
crystals within the lysosomal matrix: although these crystals
are specific for cystinosis, they are probably not instrumental
for the development of PT dysfunction. They are indeed not
detected despite early manifestations of PT cell dysfunction in
patients and mouse models of cystinosis (110). This conclu-
sion is supported by the lack of effect of cysteamine, which
decreases cystine levels, on the manifestations of RFS (81).
Instead, multiple alterations in cystinosis cells are probably
involved in the functional defects that characterize the early
stage of cystinosis. These defects include impaired lysosomal
dynamics, with lysosomes engorged by undigested proteins
and clustered around the nuclei; defective clearance of endo-
cytic cargo, with also a decreased expression of apical recep-
tors; impaired proteolysis and limited amino acid and cysteine
availability in the cytosol, causing redox imbalance and oxi-
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dative stress; abnormal clearance of autophagic vesicles and
accumulation of damaged mitochondria, which further in-
creases ROS production (see below). In the long term, these
modifications may also activate the inflammasome and apo-
ptosis, leading to cell atrophy and irreversible tissue damage
(110).

C) PROTEIN FUNCTION AND INSIGHTS FOR RENAL PHYSIOLOGY. Studies
based on a Ctns KO mouse model that recapitulates multiple
features of cystinosis have demonstrated that the functional
loss of cystinosin is reflected by enlarged, perinuclear lyso-
somes, abnormal proliferation and dysfunction of PT cells,
which showed a progressive loss of the apical expression of
megalin and of the glucose (SGLT2) and phosphate (NaPi-IIa)
cotransporters (228, 591). Despite the identification of cellular
defects associated with cystinosis in different models and cell
systems (see above), a unifying mechanism linking loss of cys-
tinosin, lysosomal dysfunction, and defective transport by PT
cells had not been deciphered until recently.

An essential role of the endolysosomal system is to capture
and degrade intracellular worn-out constituents through
autophagy, particularly in PT cells, whose intense reabsorp-
tive and transport properties require the maintenance of
mitochondrial network (215). The autophagy-mediated
turnover of damaged mitochondria is required for protect-
ing PT from acute tubular injury (340). Accumulation
of distorted mitochondria and of autophagy receptor
SQSTM1/p62 in kidney biopsies and urinary cells from cys-
tinotic patients (640) suggested that autophagy could play a
role in the PT dysfunction due to cystinosis. Recent studies
confirmed that the genetic deletion of cystinosin impaired
the autophagy-mediated clearance in vitro and in vivo, due
to defective lysosomal degradation capacity (207). In turn,
the defective autophagy clearance led to the accumulation
of damaged and dysfunctional mitochondria in Ctns KO
cells, overproducing mitochondrial-derived ROS. A signal-
ing cascade bridging excessive mitochondrial ROS and
epithelial dysfunction was deciphered, involving the tight
junctions. In differentiated epithelial cells, tight junctions
repress the nuclear translocation of ZONAB/YBX3, a
transcriptional factor that promotes cell proliferation
and represses PT differentiation during kidney develop-
ment (433). The increased levels of mitochondrial ROS
enhanced GNA12/G�12-SRC-mediated phosphorylation
of the tight junction protein ZO-1 and its subsequent
misrouting to enlarged, nondegradative endolysosomes.
In turn, the disruption of tight junction integrity pro-
motes ZONAB/YBX3 signaling, with increased prolifer-
ation (e.g., Ccnd1, Pcna) and decreased differentiation
(e.g., Lrp2) targets, resulting in defective endocytosis in
Ctns KO cells. The biological relevance of the YBX3
signaling for maintaining PT cell integrity was confirmed
by gain- and loss-of-function approaches and pharmaco-
logical interventions. In particular, treatment of Ctns KO
mice and their derived PT cells with the mitochondrial-

targeted antioxidant MitoTempo, which is clinically
tested in various mitochondrial diseases, not only repairs
dysfunctional mitochondria and averts mitochondrial
oxidative stress, but also rescues the integrity of tight
junctions, cell differentiation, and endocytic uptake
(207). The identification of this signaling cascade (FIG-
URE 5) substantiates the role of lysosomes in preserving
the autophagy-mediated quality control of mitochondria
that are crucial for the high transport activities per-
formed by specialized epithelial cells.

4. Other genetic disorders associated with defective
receptor-mediated endocytosis

Recent studies have extended the role of receptor-mediated
endocytosis in association with other genetic disorders that
mimick the PT dysfunction associated with Dent disease.
Inactivation of the chloride channel cystic fibrosis trans-
membrane conductance regulator (CFTR) causes cystic fi-
brosis (CF) (MIM no. 219700), the most common auto-
somal recessive disease in Caucasian individuals (613).
CFTR is a 1,480-amino acid protein that belongs to the
ATP-binding cassette (ABC) family of integral membrane
proteins. It is located mainly in the apical membrane area of
secretory epithelia, where it functions as a cAMP-depen-
dent chloride channel and as a conductance regulator via
interactions with other ion channels (683). CFTR is signif-
icantly expressed in the kidney, located in the apical area of
PT cells, where it codistributes with ClC-5 in PT endosomes
(FIGURE 3) (357). Defective receptor-mediated endocytosis
has been demonstrated in CFTR-null mice, with impaired
LMW protein (�2-microglobulin) uptake and a waste of
cubilin and its LMW ligands into the urine. A significant
LMW proteinuria (and particularly transferrinuria) was
also documented in the Cftrdelta/delta mice and in a cohort of
patients with CF. Several reasons could explain the milder
renal phenotype that is observed in Cftr KO mice and pa-
tients with CF in comparison with Clcn5 KO mice and
patients with Dent disease. First, the difference could reflect
the more distal distribution of CFTR as compared with
ClC-5 along the PT. Indeed, although ClC-5 is distributed
evenly in the S1 to S3 parts of the PT, CFTR seems to be
most abundant in the S3 segment of the PT, which displays
lower endocytic activity (357). Second, CFTR functions as a
cAMP-regulated, ATP-dependent chloride channel,
whereas the flux of chloride through ClC-5 depends consti-
tutively on transmembrane Cl� and H� concentration gra-
dients, together with the membrane voltage. Third, the
discrete nature of renal manifestations in CF might be
due to tissue-specific protective mechanisms, such as the
occurrence of functional CFTR splice variants (493), or
alternative pathways for Cl�.

Hepatocyte nuclear factor 1� (HNF1�) is a homeodomain-
containing transcription factor expressed in the liver, pan-
creas, and proximal tubule of the kidney (749). HNF1�
binds to DNA as a homodimer or a heterodimer with the
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closely related HNF1�. HNF1� is only found in PT cells,
whereas HNF1� is expressed in most nephron segments.
Heterozygous mutations of HNF1� cause an autosomal
dominant form of diabetes mellitus (MODY-HNF1A) and
kidney tubular dysfunction (574). The Hnf1� KO mice
show LMW proteinuria and decreased uptake of �2-micro-
globulin, indicating a major endocytic defect due to de-

creased expression of megalin/cubilin receptors (739). The
promoters of the LRP2 and CUBN genes coding for mega-
lin and cubilin, respectively, contain binding sites for
HNF1�. The functional interaction of HNF1� with these
promoters was demonstrated in vitro. The expression of
Clcn5 was reduced in the proximal tubule segments of
HNF1�-null kidneys, and it was rescued, with a parallel
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increase in receptor-mediated endocytosis, upon transfec-
tion of HNF1�-null cells with wild-type but not with
mutant HNF1�. Importantly, LMW proteinuria was con-
sistently detected in individuals with HNF1A mutations
compared with healthy controls and patients with non-
MODY-HNF1A diabetes mellitus (739). Thus HNF1�
plays a key role in the constitutive expression of megalin
and cubilin, hence regulating receptor-mediated endocyto-
sis in the kidney.

B. Disorders of Uric Acid Handling

1. Uric acid regulation by the kidney

Uric acid is produced by dietary and endogenous purine
metabolism mostly in the liver, where it is generated from
xanthine by the xanthine oxidase. In most mammals, uric
acid is further metabolized by the hepatic enzyme uricase
(encoded by the Uox gene) to highly soluble allantoin,
which can be readily excreted in the urine. In humans, this
uricase is inactive as a result of mutational silencing making
uric acid the final breakdown product of purine metabolism
(826, 827). Uric acid is a weak diprotic acid which exists
predominantly as monosodium urate anion at physiological
pH of 7.4. The terms urate and uric acid are often inter-
changeably used to refer to the total pool of dissociated and
undissociated uric acid in the circulation, since the ratio of
urate to uric acid remains stable with constant pH. This
ratio is much more variable in the urine with broader range
of pH. Lower urinary pH values result in a larger propor-
tion of uric acid in the undissociated form (60). Hyperuri-
cemia has been linked to various diseases including gout,
hypertension, as well as cardiovascular and renal disease
(200, 355, 699). In particular, the issue of whether urate
contributes to kidney disease, hypertension, or diabetes re-
mains controversial (354). On the other hand, urate seems
to have a protective role as a potent antioxidant, and low
serum urate concentrations have been associated with sev-
eral neurological diseases (548). Serum urate levels depend
on both urate production and its removal by the kidney and
intestine. Although production of urate through dietary pu-
rine intake or alterations in purine metabolism affect serum
urate concentrations, changes in serum urate levels are
mostly due to impaired renal excretion (333, 669).

Approximately two-thirds of daily urate production is ex-
creted by the kidney, the remainder being eliminated by the
gastrointestinal tract. Previous physiological and pharma-
cological studies have suggested a bidirectional transport of
urate in the PT. A four-component model has been accepted
for many years, which proposed that urate handling by the
kidney consists of four steps: glomerular filtration, reab-
sorption of nearly all of the filtered urate in the early PT,
subsequent tubular secretion of up to half of this amount,
and finally postsecretory reabsorption of the majority of the
secreted urate in the late PT with only ~10% of the filtered

urate being excreted into the urine (FIGURE 6). This model
was based on an interpretation of the pharmacological in-
teractions of antiuricosuric and uricosuric agents (169, 612,
689, 706). Secreted urate was suggested to contribute mod-
erately to urate excretion, implying that the excreted urate
represents mainly the filtered urate that escapes reabsorp-
tion (60, 502, 503, 589, 617, 618). However, the recent
molecular identification of key urate transporters allowed a
better understanding of urate handling in the kidney, show-
ing the importance of urate secretion in urate homeostasis.

The exact molecular mechanisms that control urate han-
dling in the kidney are not yet completely understood, al-
though the molecular identification of the kidney-specific
urate/anion exchanger URAT1 in 2002 by Enomoto et al.
promoted the discovery of several transporters involved in
urate transport (17, 191). These transporters include NPT1
(360), ABCC4 (761), SMCT1 (253), SMCT2 (254),
OAT10 (29), GLUT9 (16, 99, 778), ABCG2/BCRP (816),
as well as urate transport-related scaffolding protein
PDZK1 (18). Their identification promoted the idea of a
urate-transporting multimolecular complex, the “urate
transportome” (17) (FIGURE 6)

In plasma, urate mostly exists as an organic anion, which is
freely filtered by the glomerulus. In the PT, a complex in-
terplay of various transport pathways is involved in the
reabsorption of filtered urate. The PT cells are primed for
apical urate transport by the Na�-dependent absorption of
lactate and other monocarboxylate anions, which increases
the intracellular concentration of anions that exchange with
luminal urate. This process is mediated by the apical Na�-
coupled monocarboxylate cotransporters 1 (SMCT1) and 2
(SMCT2), respectively, encoded by the SLC5A8 and
SLC5A12 genes, which colocalize with urate transporters
at the apical membrane of PT cells (503). Urate-anion ex-
change in turn involves the urate transporter URAT1, en-
coded by the SLC22A12 gene, and the organic anion trans-
porters OAT4 and OAT10, which are encoded respectively
by the SLC22A11 and SLC22A13 genes (29, 191, 278).
Exit of urate from the PT cell is mediated by the basolateral
voltage-dependent urate transporter GLUT9a (15, 503,
633, 778). The secretion of urate by the PT is a mirror image
of the urate uptake. It involves the basolateral urate trans-
porters OAT1 and OAT3, transporting the anion into the
cell in exchange for �-ketoglutarate, followed by secretion
via the ATP-driven efflux pumps ABCC4 (ATP-binding cas-
sette C4, encoded by the ABCC4 gene) and ABCG2/BCRP
(ATP-binding cassette subfamily G member 2 or breast can-
cer resistance protein, encoded by the ABCG2 gene) and the
electrogenic apical urate transporters NPT1 and NPT4 (en-
coded by the SLC17A1 and SLC17A3 genes) (336, 359,
360, 503, 761, 816) (FIGURE 6).

Serum urate levels display a strong genetic predisposition,
with a heritability of ~40–70% (405). Various GWAS
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pointed to several genetic loci associated with serum urate
concentration. These loci include urate transporter-coding
genes including SLC2A9 (GLUT9), ABCG2 (ABCG2/
BCRP), SLC17A1 (NPT1), SLC17A3 (NPT4), SLC22A11
(OAT4), SLC22A12 (URAT1), and PDZK1 (PDZK1/

NHE-RF3) (17, 106, 151, 179, 395, 405, 430, 542, 744,
778, 837). A very large effect was identified for the SLC2A9
and ABCG2 loci, explaining respectively 3 and 1% of the
variance in serum urate concentration (405). The important
role of GLUT9 (SLC2A9) in urate handling will be de-
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scribed below (see sect. IIIB2BII). ABCG2 was initially iden-
tified as a multidrug resistance protein (181). Dehghan et al.
(151) were the first to indicate a role for ABCG2 in urate
handling through a GWAS showing that the ABCG2 locus
is associated with serum urate level and gout. ABCG2 was
subsequently found to be a high-capacity urate transporter.
Using a Xenopus oocyte expression system, Woodward et
al. (816) demonstrated that ABCG2 mediates urate efflux.
The role of ABCG2 as a high-capacity urate transporter was
verified by Matsuo et al. (469) using membrane vesicles
from transfected HEK293 cells. Several loss-of-function
ABCG2 variants that confer a risk of hyperuricemia and
gout have been identified, including the common variant
Q141K, which reduces urate efflux by 54% (816).

Matsuo et al. (469) investigated the relationship between
ABCG2 dysfunction and renal urate excretion in hyper-
uricemia patients. Surprisingly, hyperuricemic patients
with graded levels of ABCG2 dysfunction, stratified by
genotype for dysfunctional single nucleotide polymor-
phisms (SNPs), exhibited elevated urinary urate excre-
tion and fractional excretion of urate (FEUA) levels (332,
817). Furthermore, Abcg2 KO mice showed increased
renal urate excretion and serum urate levels and reduced
intestinal excretion compared with wild-type mice. Thus
ABCG2 dysfunction appeared to cause decreased ex-
trarenal urate excretion (332, 817). It was shown subse-
quently that ABCG2 dysfunction can also impair renal
excretion of urate in patients with lesser degrees of func-
tion (468).

The neurohumoral regulation of urate homeostasis in-
volves angiotensin II, the sympathetic tone, insulin, and
PTH (503). Alterations in volume status and/or dietary
salt intake affect serum urate concentrations via modifi-
cations of its urinary excretion. Angiotensin II and epi-
nephrine are the potential mediators (496, 833). The re-
tention of urate by the kidney stimulated by insulin may
play a crucial role in the associations between metabolic
syndrome, hyperuricemia, and gout (115, 503). Elevated
PTH levels also decrease urate excretion, in primary hy-
perparathyroidism and during pharmacological therapy
for osteoporosis, which may be relevant for the associa-
tion between gout and CKD (325, 503, 510). Finally, sex

hormones appear to regulate urate transporters in mouse
(309, 730), which could possibly explain why urate levels
are higher in men compared with women (190, 633).

Here, we will address inherited disorders primarily involv-
ing renal urate transporters, resulting in hypouricemia. We
will not discuss inborn errors of purine metabolism such as
phosphoribosylpyrophosphate synthetase (PRPPS) super-
activity (MIM no. 300661) characterized by congenital hy-
peruricemia and hyperuricosuria (575); nor familial juve-
nile hyperuricemic nephropathy (HNFJ1) (MIM no.
162000), a form of tubulointerstitial kidney disease caused
by dominant mutations in the UMOD gene encoding uro-
modulin (Tamm-Horsfall protein), in which hyperuricemia
is secondary to inappropriate tubular reabsorption of urate
(low FEUA) (162).

2. Renal hypouricemia

A) BRIEF CLINICAL DESCRIPTION. Renal hypouricemia (RHUC) is an
autosomal recessive kidney disorder characterized by defec-
tive reabsorption of urate in the PT, resulting in increased
urate clearance associated with hypouricemia. The first
RHUC case was reported by Greene et al. in 1972 (261), but
the molecular mechanisms and defective genes associated
with this disorder were only identified 30 yr later. The ma-
jority of reported cases were initially reported in Japanese
patients and non-Ashkenazi Jews (171, 191, 330, 331, 342,
396, 427, 726). However, recent studies suggested that
RHUC is not restricted to East Asian populations, as the
condition has been reported in various ethnic groups (e.g.,
Arab Israelis, Iraqi Jews, Caucasians, and Roma) and in
geographically noncontiguous countries such as Macedo-
nia, the United Kingdom, the US, the Czech Republic, and
Spain (127, 226, 708).

The diagnosis of RHUC is based on hypouricemia (�119
�M or 2 mg/dl) with an increased fractional excretion of
urate (FEUA �10%) without any underlying renal or sys-
temic diseases, such as RFS, or drug-induced tubulopathy.
RHUC can be subdivided into two categories based on the
molecular abnormalities (see below): renal hypouricemia
type 1 (RHUC1) (MIM no. 220150) and renal hypourice-
mia type 2 (RHUC2) (MIM no. 612076). RHUC2 is char-

FIGURE 6. Handling of uric acid by the kidney. A: the classical four-component model of uric acid transport in the proximal tubule (PT), including
glomerular filtration of urate, reabsorption of nearly all of the filtrated urate in the early PT, subsequent tubular secretion of up to half of this
amount and final, postsecretory reabsorption of the majority of the secreted urate in the late part of PT. CD, collecting ducts; CNT, connecting
tubule; DCT, distal convoluted tubule; TAL, thick ascending limb. B: molecular mechanism of urate reabsorption and secretion in PT. The
reabsorption of urate involves the Na�-dependent monocarboxylate anion transporters SMCT1 and SMCT2, which increase the intracellular
concentration of anions and drive urate uptake via the apical exchange mediated by the urate transporter URAT1 and the organic anion
transporters OAT4 and OAT10. GLUT9a is the exit pathway for urate at the basolateral membrane. The secretion of urate involves a basolateral
entry in exchange with �-ketoglutarate (�KG), mediated by OAT1 and OAT3. The �-ketoglutarate gradient is provided by SLC13A3. On the apical
side, the secretion of urate involves the ATP-driven efflux pumps ABCC4 and ABCG2/BCRP, as well as the electrogenic urate transporters NPT1 and
NPT4. C: characteristics of renal hypouricemia (RHUC) type 1 and 2. ABCC4, ATP-binding cassette subfamily C member 4; ABCG2, ATP-binding
cassette subfamily G member 2; BCRP, breast cancer resistance protein; GLUT9a, glucose transporter 9a; OAT, ornithine aminotransferase;
SLC13A3, Na�-dependent dicarboxylate transporter; SMCT, Na�-coupled monocarboxylate transporter; NPT, Na�-dependent phosphate transport
protein; URAT1, urate transporter-1. [Adapted from Mandal and Mount (453) and Dinour and co-workers (171, 172).]
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acterized by much lower serum urate levels and a FEUA of
�150%, compatible with a total urate reabsorption defect,
compared with RHUC1 (171) (FIGURE 6C).

The majority of patients with RHUC remain clinically si-
lent, and the disorder is often recognized during screening
procedures of various unrelated diseases (700). Some pa-
tients may present nephrolithiasis, hypercalciuria, and he-
maturia. It is not completely clear why these manifestations
are associated with RHUC, but a possible explanation is
that a high rate of urate excretion results in stone formation
followed by hematuria. Therapy is based on alkalinization
of the urine and high fluid intake to prevent the precipita-
tion of urate and the formation of urate nephrolithiasis.
Indeed, elevated urinary concentration of urate, reduced
urine ouput and low urine pH are major risk factors for the
development of urolithiasis (190, 669, 700). Although not
frequent, exercise-induced acute kidney injury (AKI) is a
potential complication of RHUC (330, 396, 541, 669, 682,
700). The AKI typically develops after acute anaerobic ex-
ercise in previously healthy young adults and is associated
with severe loin pain, nausea and vomiting, but without
evidence of massive rhabdomyolysis. There is a marked
male preponderance in such exercise-induced AKI (109).
Contrast computed tomography of the kidneys demon-
strates wedge-shaped defects, suggesting patchy renal vaso-
constriction. The prognosis of exercise-induced AKI in pa-
tients with hypouricemia is good, with �80% of subjects
recovering without dialysis therapy. The mechanisms of
exercise-induced AKI associated with RHUC remain un-
clear; they could involve 1) urate nephropathy resulting
from an increase in urate production during exercise or 2)
renal reperfusion injury due to vasoconstriction caused by
an exercise-induced increase in oxygen free radicals and a
lack of urate, free radical scavengers (171, 330).

B) GENETICS, PROTEIN FUNCTION, AND INSIGHTS FOR RENAL PHYSIOL-

OGY. Hereditary renal hypouricemia is a heterogeneous, au-
tosomal recessive disease that can be caused by mutations in
the SLC22A12 gene encoding the urate transporter URAT1
(RHUC1), or by mutations in the SLC2A9 gene encoding
the voltage-driven urate transporter GLUT9 (RHUC2).

I) Renal hypouricemia type 1 (RHUC1). Enomoto et al.
(191) were the first to identify the urate transporter URAT1
and to demonstrate that mutational alterations in the gene
SLC22A12 (solute carrier gene family 22, 12th member;
located at chromosome 11q13) coding for URAT1 are as-
sociated with RHUC1. URAT1 is a urate/anion exchanger,
member of the organic anion transporter (OAT) family. It
belongs to the amphiphilic solute carrier family (SLC22A)
together with the organic cation transporters (OCT) (631,
671). The OAT family plays a crucial role in the transepi-
thelial transport of various organic anions in the kidney.
URAT1 is a membrane protein consisting of 553 amino acid
residues with 12 putative transmembrane domains (TM).

Similarly to other OAT family members, URAT1 has a large
extracellular loop between transmembrane domain TM1
and TM2, and an intracellular loop between TM6 and
TM7 (330, 396). The COOH-terminal end of URAT1 con-
tains a binding motif for PDZ domain-containing proteins
(190). The PDZ domain-containing protein PDZK1 inter-
acts with URAT1 via this motif, and coexpression experi-
ments demonstrated that URAT1 transport activity is in-
creased by PDZK1/URAT1 interactions. PDZK1 may thus
be as a scaffolding protein regulating the function of
URAT1 (190). URAT1 is expressed specifically in the kid-
ney where it is located in the apical membrane of PT cells.
URAT1 transports urate from the lumen to the cytosol of
the PT in exchange for monovalent organic anions, such as
lactate and nicotinate. Pyrazinoate and several uricosuric
agents such as probenecid and benzbromarone share the
affinity for the URAT1 transporter (700).

The importance of URAT1 for the handling of urate was
demonstrated by genetic analyses of Japanese patients with
RHUC (191). These individuals harbour homozygous,
heterozygous, or compound heterozygous loss-of-function
mutations in the SLC22A12 gene. Ichida et al. (330)
showed that the p.W258X mutation predominates in Japa-
nese patients with renal hypouricemia. This nonsense mu-
tation produces a largely truncated protein (396). Expres-
sion of the mutant cDNA in Xenopus oocytes revealed that
the truncated protein could not be targeted to the cell mem-
brane, suggesting loss of function of the mutant protein
(190). The p.W258X mutation is also predominant in Ko-
reans with hypouricemia, indicating that the mutation orig-
inated in Asia (109) and expanded in the Japanese popula-
tion either by founder effect or by genetic drift, or both
(331). Studies in which mutant URAT1 proteins were ex-
pressed in Xenopus oocytes showed various degrees of re-
sidual transport activities, probably explaining the wide
range of FEUA values observed in RHUC patients (700).
Ichida et al. (330) demonstrated a gene dosage effect of
SLC22A12 on CUA/Ccr (urate clearance/creatinine clear-
ance), correlating with the difference in serum urate levels.
Serum urate levels were significantly lower and CUA/Ccr was
significantly higher in heterozygotes compared with healthy
subjects. These changes were even more significant in ho-
mozygotes and compound heterozygotes (330)

Various types of SLC22A12 mutations have been reported,
including missense, nonsense, splice-site mutations, as well as
short deletions and one gross deletion, and they are scattered
along the 10 exons of the SLC22A12 gene (856). Zhou et al.
(856) recently summarized the clinical features and
SLC22A12 gene mutations reported up to now in RHUC
patients. They showed that the frequency of the p.W258X
mutation was very high (79.7%), as initially described by
Ichida et al. (330). Patients with at least one p.W258X muta-
tion were more likely to present urolithiasis, hematuria, or
AKI (856). This mutation was predominant in patients of Jap-
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anese and Korean origin, but was not found in patients of
Chinese origin. The second most prevalent mutation, p.R90H,
was found in patients of Japanese, Korean, and also Chinese
origin. These two mutations were not observed in patients
from other racial origins, including Czech Roma, Iraqi-Jews,
and patients of European origin (856). Recently, Stiburkova et
al. (710) suggested that not only loss-of-function mutations of
SLC22A12 but also dominant-negative effects cause RHUC1.
Indeed, by coexpression and colocalization studies, they
showed an accumulation and retention of the wild-type
URAT1 protein in the ER by the p.G366R and p.R477H
variants, which were detected in Czech family with an ex-
tremely rare coincidence of RHUC1 and autosomal dominant
polycystic kidney disease (710).

Interestingly, Urat1 KO mice exhibit a slightly higher FEUA

but do not develop significant hypouricemia (192, 310).
The differences in plasma urate levels due to the loss of
URAT1 in these mice are blunted by the degradation of
urate in the liver. Indeed, in contrast to humans, mice pos-
sess the hepatic enzyme uricase (encoded by the Uox gene)
which metabolizes urate to allantoin (311). Recently, a dou-
ble KO mouse model for Urat1 and Uox was developed,
which may represent a suitable experimental model for
RHUC type 1 (311). Administration of allopurinol was nec-
essary to obtain plasma urate and urate excretion levels
comparable to RHUC type 1 patients, since uricase defi-
ciency in mice causes extreme hyperuricosuria and urate
nephropathy (311, 825). Transgenic mice overexpressing
Urat1 showed no significant changes in plasma urate levels
or urinary urate excretion, suggesting that URAT1 plays a
less important role in the mouse kidney (383).

II) Renal hypouricemia type 2 (RHUC2). It was recently
discovered that RHUC2 is caused by mutations in the
SLC2A9 gene (mapped to chromosome 4p15.3-p16),
which encodes the urate transporter GLUT9 (172). GLUT9
is a member of the solute carrier family 2 (SLC2) of hexose
facilitative transporters and consists of 12 transmembrane
domains, a large extracellular loop between TM1 and
TM2, and both NH2- and COOH-terminal ends on the
cytoplasmic side. Initially, GLUT9 was reported to be a
glucose and/or fructose transporter (172). However,
GWAS conducted to identify new genes in urate homeosta-
sis showed significant association between variants in
SLC2A9 and serum urate levels (182, 366, 395, 405, 430,
778). Expression studies in Xenopus oocytes confirmed the
role of GLUT9 as a urate transporter, with urate uptake
significantly increased in GLUT9-expressing oocytes com-
pared with control and URAT1-expressing oocytes (778).
Increased urate uptake by overexpression of GLUT9 was
also demonstrated in transfected human and mouse cells
(99). The significance of GLUT9 function for human urate
handling was further supported by the discovery of loss-of-
function SLC2A9 mutations in patients with RHUC (172,
173, 467).

The SLC2A9 gene contains 14 exons and encodes 2 GLUT9
isoforms, a long (GLUT9a, 540 amino acids) and a short
(GLUT9b, 512 amino acids) one, generated by alternative
splicing and differing only in their NH2-terminal region (26).
The NH2-terminal amino acids seem to play a role in their
membrane trafficking and protein stability (51, 384). GLUT9a
has a broad tissue distribution including the kidneys, liver,
placenta, and leukocytes, whereas GLUT9b has been observed
only in kidney and placenta (709). In the human kidney,
GLUT9a is expressed at the basolateral membrane of PT cells
(FIGURE 6B), whereas GLUT9b was shown at the apical mem-
brane of CD cells (384).

At least 10 different mutations in SLC2A9 (including mis-
sense/nonsense mutations, 1 insertion, 1 deletion, and 1 dupli-
cation) associated with RHUC2 have been identified (172,
344, 467, 709). Most of these mutations have been function-
ally studied. However, interpretation of the pathogenicity of
the identified variants remains difficult (629). Recently, Ruiz et
al. (629) analyzed the function of known GLUT9 mutants
using using [14C]urate uptake assay and two-electrode voltage
clamp in Xenopus oocytes. They demonstrated decreased
urate transport by flux studies for most of the variants. None
of the variants was permissive for glucose transport. Further-
more, two main categories of GLUT9 mutants were oberved:
those harboring poor overall and cell-surface expression lead-
ing to low activity and those with preserved expression at the
cell surface, but exhibiting decreased activity. Both mutant
types are associated with a decreased urate transport ability,
explaining the loss-of-function phenotype in RHUC patients
(629).

Preitner et al. (579) investigated the renal phenotype of
Glut9 KO mice. Mice lacking GLUT9 are characterized by
moderate hyperuricemia, massive hyperuricosuria, and ear-
ly-onset obstructive nephropathy. However, the phenotype
of these mice is modulated by the expression of Glut9 in the
liver, where it plays a role in the uptake of urate thereby
facilitating its subsequent uricase-catalyzed degradation
into allantoin (453). The liver-specific inactivation of Glut9
led to severe hyperuricemia and hyperuricosuria, in the ab-
sence of urate nephropathy or structural changes in the
kidney (579). Furthemore, the expression of GLUT9 in
mouse kidney is different than in humans. In mouse,
GLUT9 is mostly detected in the distal convoluted tubules
(DCT) and connecting tubules, (CNT), with only limited
expression in the PT (17, 579).

C. Disorders of Glucose Transport

1. Renal glucose handling

Glucose is a major source of metabolic energy for most cells
of the body and is of critical importance in the brain. Glu-
cose homeostasis is maintained by a complex interaction
between gluconeogenesis in liver and kidney, absorption of
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glucose by the kidney and intestine, as well as tissue storage
and consumption. The kidney contributes to glucose ho-
meostasis by reabsorption of virtually all the filtrated glu-
cose at the PT level. Several transporters ensure the move-
ment of glucose across PT cells, since cell membranes are
impermeable to glucose. The rate-limiting step for PT reab-
sorption of glucose is its influx across the apical membrane
via the Na�-coupled glucose cotransporters SGLT1 and
SGLT2 (295, 820, 821) (FIGURE 7A). SGLT2 is a low-affin-
ity/high-capacity cotransporter, which controls the bulk
(90%) of glucose reabsorption and is expressed almost ex-
clusively in the kidney, more particularly in the S1 segment
of the PT (295, 820, 821). The remaining filtered glucose is
reabsorbed by SGLT1, a high-affinity/low-capacity Na�-
glucose cotransporter, which is expressed more distally in
the S2/S3 segment of the PT but is also strongly expressed in
the intestine and which transports also galactose (295,
821). After the apical uptake, the transporters GLUT2 and
GLUT1 facilitate the basolateral exit of glucose (113). The
low-affinity glucose transporter GLUT2 works in synergy
with SGLT2 in the S1 segment of the PT, whereas the high-
affinity GLUT1 cooperates with SGLT1 in the S2/S3 seg-
ment (30, 459, 592) (FIGURE 7, A AND B). This efficient and
highly adaptive transport system ensures that glucose can-
not be detected in the urine at below plasma glucose con-
centrations of 200 mg/dl. Glycosuria occurs when plasma
glucose levels exceed the maximal reabsorptive capacity of
the SGLT transport system, in the kidney PT, for known as
the transport maximum for glucose, ranging from 260 to
350 mg/min/1.73 m2 and corresponding to a plasma glu-
cose level of 200 mg/dl (459, 490) (FIGURE 7C).

Mutations in the gene encoding SGLT1 have been shown to
cause glucose-galactose malabsorption, charcaterized by
significant gastrointestinal dysfunction, but only mild renal
glycosuria (752). Mutations in the gene encoding the
GLUT2 transporter are associated with Fanconi-Bickel syn-
drome, a glycogen-storage disease with general PT dysfunc-
tion (484, 644). In this review we focus on familial renal
glycosuria, involving the SGLT2 cotransporter.

2. Familial renal glycosuria.

A) BRIEF CLINICAL DESCRIPTION. Familial renal glycosuria (FRG)
(MIM no. 233100) is an inherited disorder characterized by
persistent glycosuria in the absence of both hyperglycemia
and generalized PT dysfunction. The condition was first
described by Hjärne in 1927 (301) and was historically
classified into three different types (A, B, and O), based on
the severity of glycosuria (88, 537, 602, 641). However,
current molecular findings have enabled appropriate geno-
type-phenotype correlations in the vast majority of cases.
Accordingly, a simpler and easier classification of FRG has
been developed, based on the genetic defect (heterozygous,
homozygous, or compound heterozygous SLC5A2 muta-
tions) (641). Glycosuria in FRG patients can range from �1
to �150 g/1.73 m2 per day (855). No major clinical conse-

quences are associated with FRG, which is considered to be
a benign condition (641). However, clinical information is
mainly based on case reports as an extensive evaluation of
the phenotype associated with FRG in large cohorts is still
lacking (88). Enuresis, polyuria, and a mild growth retar-
dation and pubertal maturation delay were the only clinical
manifestations observed during a 30-yr follow-up period of
the originally described FRG patient (662). Other manifes-
tations have occasionally been reported in severe forms of
FRG (641), such as episodic dehydration and ketosis during
pregnancy and starvation (537), the presence of autoanti-
bodies without clinical evidence of autoimmune disease
(149), an increased incidence of urinary tract infections
(147, 149), as well as activation of the renin-angiotensin-
aldosterone system (RAAS) secondary to natriuresis and
possible extracellular volume depletion (87, 90). Moreover,
selective aminoaciduria and even generalized aminoacidu-
ria have been described in some cases, although it is not a
general finding (88, 258, 452, 639). Interestingly, amino-
aciduria has also been reported in patients with diabetes,
and is most likely a consequence of the impaired glucose
reabsorption in the PT rather than a primary defect (54,
641). Moreover, Sglt2 KO mice, who mimic the glycosuric
phenotype of patients with FRG, do not exhibit increased
urinary excretion of amino acids (756). Hypercalciuria has
also been reported in some patients with FRG, possibly
indicative of further PT dysfunction (659, 662). Of note, it
was recently shown that chronic loss of glucose in the urine
did not protect from deterioration of the glucose tolerance
in a large pedigree with FRG during a follow-up period of
more than 10 yr (545).

B) GENETICS. FRG is caused by mutations in the SLC5A2 gene,
which is mapped to 16p11.2 and consists of 14 exons span-
ning 7.7 kb of genomic DNA. SLC5A2 encodes the 672-
amino acid Na�-glucose cotransporter SGLT2 (642, 805,
806). SLC5A2 was proposed as a major candidate gene for
FRG in 1994 (368), and the first SLC5A2 mutation in FRG
was reported in 2000 by Santer et al. (643). Since then,
molecular evaluation of small series of FRG patients (87,
90, 418, 452, 642, 796, 842, 843, 855) as well as several
case reports supported the role of SGLT2 in this disorder
(89, 216, 380, 388, 762, 840, 841, 844). More than 70
mutations, scattered throughout the SCL5A2 gene, have
been described up to now, including missense and nonsense
mutations, small deletions (in-frame and frameshift), and
splicing mutations (88, 418, 842, 855). Most of the re-
ported mutations are missense mutations. The intron
7�5G�A (c.885�5G�A) mutation, reported in several
unrelated pedigrees of different ethnic origins, might be a
mutational hotspot (90, 642). Recently, Zhao et al. (855)
reported another high-frequency mutation, a deletion in
intron 7 resulting in abnormal splicing in SLC5A2 gene,
which might be another mutational hotspot. The mode of
inheritance has long been debated, but FRG has now been
shown to be inherited as a codominant trait with incom-
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plete penetrance (88, 641, 642, 842). Patients with mild
glycosuria (�10 g/1.73 m2 per day) are usually heterozy-
gous for SLC5A2 mutations, whereas homozygosity or
compound heterozygosity is associated with severe glycos-
uria (�10 g/1.73 m2 per day) (87, 88, 90, 642). However, a
variable expressivity of mutations in FRG have been re-
ported since patients with similar or identical mutations,
especially in the heterozygous state, do not display simi-
lar degrees of glycosuria. Modifier genes, including other
SLC5 genes known to be expressed in the kidney and the
involvement of which remains elusive, may explain this
variable expressivity (88).

C) PROTEIN FUNCTION AND INSIGHTS FOR RENAL PHYSIOLOGY. The Na�-
glucose cotransporter SGLT2 accounts for the vast majority
of glucose reabsorption in the PT. SGLT2 is a 672-amino
acid protein, which belongs to the SLC5 family, also known
as the Na� substrate symporter gene family. The SLC5
family compromises more than 230 members, including 12
members identified in humans that are expressed in tissues
such as the small intestine, kidney, brain, muscle, and thy-
roid gland (820, 822). The SGLT members of the SLC5
family transport a vast variety of solutes ranging from sug-
ars to inorganic ions. They share a common core structure
of 13 transmembrane helices, although some members have
one or two additional COOH-terminal helices. SGLT1 and
SGLT2 both have 14 transmembrane helices with extracel-
lular NH2- and COOH-terminal domains (641, 819). Only
a few studies investigated the functional consequences of
SLC5A2 variants (842, 843). All the SLC5A2 variants
tested exhibited lower transport activity upon reconstruc-
tion in cultured cells. The expression levels of the variants
were significantly decreased, and some variants showed al-
tered expression pattern with a loss of the typical punctuate
membrane pattern seen in wild-type SLC5A2 (842). These
in vitro studies matched the evidence of a markedly lowered
SGLT2 expression in PT cells in a kidney biopsy from a
FRG patient (843).

Up to now, the mechanism of action of SGLT2 remains
poorly understood. SGLT2 expresses only weakly in either
transfected mammalian cells or Xenopus oocytes, rendering
its characterization difficult. Coady et al. (128) recently
identified an accessory protein, 17-kDa membrane-associ-
ated protein (MAP17), which is required for the normal
function of SGLT2 in oocytes and mammalian cells.
MAP17 was first identified as a protein with upregulated
transcription in kidney, colon, breast, and lung cancer
(392). In the PT, MAP17 interacts with the scaffolding pro-
tein PDZK1, which is linked to other transporters such as
NHE3 and URAT1. Coady et al. (128) showed the physio-
logical relevance of this MAP17-SGLT2 interaction study-
ing a cohort of 60 patients with FRG in which they identi-
fied one patient homozygous for a splicing mutation in the
MAP17 coding gene (PDZK1IP1), pointing to a genetic
heterogeneity for FRG.

SGLT2 is localized to the brush-border membrane of the
cells lining the early PT in mouse kidney. Sglt2 KO mice
exhibit glycosuria, polyuria, and increased food and fluid
intake without differences in blood pressure, GFR, or
plasma levels of Na� and K�, and no significant increase in
urinary excretion of other PT substrates such as amino acids
(756). The genetic deletion of Sglt2 in mice reduced blood
glucose levels in streptozotocin-induced diabetes mellitus
and attenuated glomerular hyperfiltration, but it did not
prevent the increase of kidney growth or the rise of markers
of kidney injury (758).

Pharmacological inhibition of SGLT2 has recently emerged
as an innovative therapeutic strategy for the management of
type 2 diabetes by increasing renal glucose excretion (30,
107, 150, 204, 242, 334, 465, 759, 760, 853). Compounds
that enhance renal glucose excretion and promote weight
loss, such as the natural occurring phenolglycoside phlo-
rizin, have been known for a long time (105, 711). How-
ever, mechanisms of phlorizin-induced renal glycosuria
were only recognized after the characterization of SGLT2
in the early 1990s (421). To date, three highly selective
SGLT2 inhibitors, dapagliflozin, canagliflozin, and em-
pagliflozin, have been approved for patient use. SGLT2
inhibitors have been demonstrated to reduce glycated he-
moglobin (HbA1C), along with fasting and postprandial
plasma glucose, as well as body weight and blood pressure
in patient with type 2 diabetes (13). In addition to their
antihyperglycemic properties, this emerging class of drugs
shows renoprotective effects and cardiac benefits in patients
with type 2 diabetes (150, 204, 760, 853). The SGLT2
inhibitors empagliflozin and canagliflozin have been evalu-
ated in two major clinical trials, the EMPA-REG OUT-
COME trial (551, 857) and the CANVAS Program (509),
and showed clinically significant advantages over other an-
tidiabetic drugs in protecting patients with type 2 diabetes
against heart and kidney failure (760).

During the EMPA-REG OUTCOME trial and the CANVAS
Program trial, the cardioprotective effect of SGLT2 inhibi-
tors developed in the course of the treatment and can prob-
ably not be explained by the reduction of cardiovascular
risk factors. Instead, they may be due to the metabolic prop-
erties of SGLT2 inhibitors: by increasing glucose excretion
in the urine, these drugs induce a mild ketogenesis that in
turn reduces blood glucose and insulin levels. The use of
ketone bodies as an energy source might contribute to the
cardiac benefit of SGLT2 inhibitors by improving the per-
formance of cardiomyocytes (760).

A number of trials are currently ongoing to investigate
whether the SGLT2 inhibition may also provide renal and
cardiac benefits in a nondiabetic CKD setting. The renopro-
tective effects of SGLT2 inhibition are commonly explained
by several pathways, including the tubular regulation of
glomerular filtration. The SGLT2 inhibitors increase the
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delivery of NaCl and fluid to the macula densa which re-
duces the GFR through tubuloglomerular feedback (TGF),
thereby supressing the diabetes-induced hyperfiltration
known to induce renal damage (152, 760, 853). However,
the decrease of GFR induced by SGLT2 inhibitors may not
necessarily reflect activation of the TGF. Indeed, mi-
cropuncture studies in a diabetic rat model have shown that
increased reabsorption of solutes and water in the PT results
in a reduced hydrostatic pressure in Bowman’s space and in
the PT in these diabetic animals compared with the nondi-
abetic rats (757). This reduced hydrostatic pressure will in
turn increase the net filtration pressure, thereby contribut-
ing to the development of diabetic hyperfiltration. Inhibi-
tion of PT reabsorption allows the hydrostatic pressure in
Bowman’s space and in the PT to rise, thereby decreasing
net filtration pressure and GFR. Interestingly, A1 adenosine
receptor (A1AR) KO mice, which lack a functional TGF
mechanism, still display pronounced glomerular hyperfil-
tration when diabetes is induced, indicating a TGF-inde-
pendent mechanism in the development of diabetic hyper-
filtration (198, 648). Moreover, inhibition of proximal so-
dium-linked glucose reabsorption by phlorizin in diabetic
A1ar KO mice has been shown to reduce diabetes-induced
glomerular hyperfiltration (649). Mathematical modeling
proposes that effects of diabetes on GFR via TGF and hy-
drostatic pressure contribute each ~50% when both mech-
anisms are intact (280).

D. Disorders of Sodium Chloride Transport

1. Salt reabsorption processes

Salt (NaCl) is essential for life. The tight regulation of the
body’s Na� and Cl� concentrations is so important that
multiple mechanisms work in concert to control them. Na�

and Cl� are the primary ions in the extracellular fluid, in-
cluding blood plasma. As such, they are central in a number
of physiological mechanisms that regulate blood volume
and blood pressure. The kidney is the main organ respon-
sible for maintaining this vital balance. In general, active
reabsorption of Na� generates the driving force for the
passive reabsorption of water. Under physiological condi-
tions, renal tubules are capable of reabsorbing 99% of fil-
tered Na� and Cl�. This is performed by a combination of
several Na� and Cl� channels and Na�- or Cl�-coupled
transport systems along the tubular segments of the
nephron. Overall, the energy needed for the transport de-
rives from the basolateral Na�-K�-ATPase, which is ex-
pressed in all tubular segments (180, 373).

The major part of the filtered Na� (~65%) is reabsorbed in
the PT, via symporter and antiporter mechanisms. The lat-
ter is regarded as the most important Na� flux in the PT and
is mediated by NHE3 (53, 506). The other main mechanism
is the 1:1 Na�-glucose cotransport that is mediated by
SGLT2 (368, 839) (FIGURE 8). The reabsorption of Na�

and accompanying solutes creates a small transepithelial
osmotic gradient, which drives water reabsorption primar-
ily through the water channels AQP1, which are massively
expressed in the apical and basolateral membranes of PT
cells. Reabsorption of Na� together with uncharged solutes
(e.g., glucose), HCO3

� and water in the early PT establishes
an electrochemical gradient that drives diffusion of Cl� in
the (mid-to-late) PT from the lumen to the peritubular in-
terstitium, mainly via a paracellular pathway.

The TAL is responsible for reabsorbing 25–30% of the
filtered NaCl load, which results in a diluted pro-urine as
the TAL is essentially water impermeable (264). The api-
cal entry of Na� is essentially mediated via the Na�-K�-
Cl� cotransporter (NKCC2) (230, 252), with a small
contribution of NHE3 (~10% of the net Na� reabsorp-
tion in a microperfused rat study, see Ref. 687). A key
feature of NKCC2 is the sensitivity to the loop diuretic
furosemide. The net driving force for NKCC2 transport
originates from low intracellular Na� concentration
(263), which is established by the Na�-K�-ATPase activ-
ity at the basolateral membrane. Next, Cl� exits the cell
through the basolateral Cl� channels ClC-Ka and
ClC-Kb (5, 729), and via electroneutral K�-Cl� cotrans-
porters (KCCs) (262) (FIGURE 8). KCC4 has been de-
tected at the basolateral membrane of the TAL (63, 243).
The activity of NKCC2 and the apical renal outer med-
ullary K� channel (ROMK), together with Cl� efflux,
generates a lumen-positive transepithelial voltage that
drives paracellular transport of Ca2� and Mg2�.

The final 5–10% of the filtered Na� is actively reab-
sorbed by the apical Na�-Cl� cotransporter (NCC) and
the epithelial Na� channel ENaC expressed in the distal
nephron (187, 230, 771). Despite its short length (5 mm
in humans), the DCT can be further subdivided into two
distinct segments: DCT1 and DCT2 (717). NCC expres-
sion is confined to DCT1 and DCT2, while ENaC is
expressed in DCT2 and in the downstream CNT and CD
(135, 464) (FIGURE 8). At the basolateral membrane, Na�

is extruded by the Na�-K�-ATPase. Cl� transport in the
DCT1 is carried out by NCC and the Cl� channel ClC-Kb
at the apical and basolateral membranes, respectively.
Furthermore, the basolateral membrane expresses KCC,
and paracellular Cl� transport has also been reported in
the CD (318, 772). Additionaly, Cl� is counter-trans-
ported with bicarbonate by pendrin in the intercalated
cells of the CD (382, 560). Genetic or acquired defects in
any of these transport systems, which are specific for
individual nephron segments, lead to distinct salt-losing
nephropathies. Here, we will consider the different renal
genetic disorders affecting salt reabsorption.

2. Bartter syndrome

A) BRIEF CLINICAL DESCRIPTION. In 1962 Bartter et al. (36) reported
two unrelated children with a new syndrome, characterized
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by hypokalemic metabolic alkalosis, renal K� wasting, hy-
pertrophy and hyperplasia of the juxtaglomerular appara-
tus, and normotensive hyperaldosteronism. The disorder
also featured increased urinary excretion of prostaglandins
and high plasma renin activity (36). In the following de-
cades, many similar cases and phenotypic variants have

been described and included in a group of hypokalemic
salt-losing tubulopathies, referred to as Bartter-like syn-
dromes (270, 347). All these disorders are recessively inher-
ited and associated with hypokalemia and hypochloremic
metabolic alkalosis due to stimulation of the RAAS. How-
ever, they markedly differ in terms of age of onset, severity
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of symptoms, presence of urinary concentrating defect,
other electrolyte abnormalities (including hypomag-
nesemia), and magnitude of urinary Ca2� excretion. Over
the years, it became apparent that these tubular disorders
may affect salt handling in distinct nephron segments, based
on striking comparisons between the patient’s symptoms
and the effects of loop and thiazide diuretics affecting the
TAL and DCT, respectively.

Based on clinical manifestations, the Bartter-like syndromes
were grouped into two major groups: the antenatal Bartter
syndrome (aBS), which can be associated or not with sen-
sorineural deafness (SND); and the classic Bartter and Gitel-
man syndromes (cBS and GS, respectively) (TABLE 3 and
FIGURE 9).

The aBS type 1 and type 2 (MIM nos. 601678 and 241200)
are rare, life-threathening disorders characterized by mas-
sive polyuria that manifests in utero with the development
of polyhydramnios and premature delivery in almost all
cases. Affected neonates rapidly develop salt wasting, hy-
pokalemic metabolic alkalosis, and profound polyuria
(473, 583, 769). A majority of patients have hypercalci-
uria and nephrocalcinois, with increased risk for kidney
stones (583). Mg2� wasting is not a common finding in
aBS (564). Failure to thrive and growth retardation are
invariably observed (451, 583). The disorder is accom-
panied by markedly elevated urinary prostaglandin E2

(PGE2) excretion, and treatment with PG synthesis inhib-
itors effectively reduces clinical and biochemical mani-
festations (675). As patients with aBS failed to respond to
loop diuretics such as furosemide, a defective NaCl reab-
sorption in the TAL was suspected (404). The two forms
of aBS, due to mutations in the genes encoding NKCC2
or ROMK, are clinically and biochemically similar, with
the exception of transient neonatal hyperkalemia that is
only associated with mutations in KCNJ1 (encoding
ROMK) (210). Typically, hypokalemia in ROMK-defi-
cient patients is less severe than that observed in NKCC2-
deficient patients (564).

In 1995, Landau et al. (413) described a subtype of aBS
associated with SND in five affected subjects from an inbred
kindred. These patients show a severe salt wasting and fluid
loss, and they most often develop progressive renal failure
(346, 413). In 2001, Birkenhager et al. (55) detected inac-
tivating mutations in a novel gene, BSND, in affected indi-
viduals. The gene encodes barttin, a regulatory beta-subunit
of the basolateral ClC-Ka and ClC-Kb channels. This sub-
type of aBS was named aBS with SND, or type 4 BS (MIM
no. 602522).

BS type 3, also referred to as cBS (MIM no. 607364),
usually presents during infancy or early childhood, with
a phenotype similar to the original description given by
Bartter et al. (36), but without the prenatal onset and the
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nephrocalcinosis seen in the aBS variant. The electrolyte
abnormalities are usually severe at presentation, includ-
ing hypokalemic alkalosis and increased plasma renin
levels (564). Most patients with cBS show growth retar-
dation and failure to thrive (45, 621, 667). Polyuria is not
uniformly found in cBS. Lower urinary osmolality, either
iso- or hyposthenuria, was only evidenced in approxi-

mately one-third of the patients, whereas some achieved
urinary osmolality above 700 mOsm/kgH2O (347). The
persistance of such a urine concentrating ability suggests
that patients have residual TAL function. This is further
supported by the fact that only �20% of patients have
sustained hypercalciuria (564), and nephrocalcinosis was
not detected in most cases (45, 621, 667).
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FIGURE 9. Various types of Bartter syn-
drome. A: in the TAL, Na� and Cl� are
transported over the apical membrane by
NKCC2, followed by efflux of Cl� through
ClC-Kb and Na� via the Na�-K�-ATPase. Of
note, barttin is identified as an accessory
protein regulating ClC-Kb function. The K�

that enter the cell through NKCC2 are re-
cycled back into the lumen via ROMK. Mu-
tations in either of the genes expressing
these proteins result in the development of
different types of Bartter syndrome. B:
barttin is also expressed as a regulatory
subunit for ClC-Kb and ClC-Ka in the inner
ear and is thereby involved in sensory func-
tion. It is crucial for inner ear K� secretion.
Patients with mutations in BSDN, encoding
barttin, suffer from sensorineuronal deaf-
ness, as a result of barttin affecting both
Cl� channels in the inner. C: bar graphs
depict the hearing thresholds in 3- and
6-wk-old wild-type (WT) and inner-ear-spe-
cific Bsdn knockout (KO) mice measured by
auditory brainstem responses (ABR). ClC-
Kb, chloride channel Kb; NKCC1 and
NKCC2, Na�-K�-2Cl� cotransporter;
KCNE1, voltage-gated K� channel subfam-
ily E regulatory subunit 1; Kv7.1, voltage-
gated K� channel. [Adapted from Rickheit
et al. (608), with permission from John
Wiley and Sons.]
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In addition to these types of Bartter syndrome, gain-of-
function mutations in the CASR gene encoding the extra-
cellular calcium-sensing receptor (CaSR) cause autosomal
dominant hypocalcemia with Bartter syndrome (previously
named Bartter type 5) (MIM no. 601198) (294, 770, 800).
In addition to clinical manifestations of Bartter syndrome,
these patients present with hypocalcemia, reflecting the cru-
cial role of the CaSR in divalent mineral homeostasis. The
inherited disorders associated with the CaSR will be dis-
cussed in section IIIE.

B) GENETICS, PROTEIN FUNCTION, AND INSIGHTS FOR RENAL PHYSIOL-

OGY. Despite some overlapping features, the aBS group in-
cluded disorders affecting the TAL, with furosemide-like
manifestations, whereas the cBS group including GS is re-
lated to a defect in the DCT, with thiazide-like manifesta-
tions. A comprehensive classification of these salt-losing
tubulopathies, based on the genetic, physiological, and mo-
lecular insights discussed below, provides a basis to under-
stand the distinct phenotypes of these disorders (TABLE 3).

I) Antenatal Bartter syndrome: type 1 (NKCC2) and type 2
(ROMK). Simon et al. (691) discovered that aBS type 1
(MIM no. 601678) is caused by loss-of-function mutations
in the SLC12A1 gene, located on 15q15-q21.1 and encod-
ing NKCC2. This form of antenatal Bartter syndrome, also
called hyperprostaglandin E syndrome (675), is one of the
most severe forms that can be life-threatening for newborns
when associated with fetal polyuria, polyhydramnios, and
premature delivery (157, 538, 582, 676). Phenotypic vari-
ability among patients includes absence of hypokalemia
and metabolic alkalosis within the first years, as well as an
observed metabolic acidosis or hyponatremia (46). A late
onset of the disease has been reported in two patients (aged
13 and 15 yr) harboring compound heterozygous muta-
tions (580).

NKCC2 is a 121-kDa membrane protein comprising 12
putative transmembrane domains that form a transport
pathway through dimerization of two homologous do-
mains (702). It conducts the electroneutral transport of 1
Na�, 1 K�, and 2 Cl� ions across the apical membrane of
the TAL and thereby functions as the main salt reabsorption
pathway in the kidney. Loop diuretics such as furosemide
and bumetanide bind to portions of transmembrane do-
mains 11 and 12, whereas portions of transmembrane do-
mains 2, 4, and 7 are involved in ion transport (681). There
have been numerous mutations in SLC12A1 reported,
mostly missense or frameshift, and they are essentially dis-
tributed throughout the entire encoded protein (4). The
functional consequence of some of these mutations has been
investigated in Xenopus laevis oocytes, demonstrating ei-
ther impaired transporter function, reduced Na� affinity, or
defective processing and misrouting of NKCC2 (3, 491,
580, 701). Recent studies have demonstrated that the phos-
phorylation and activity of NKCC2 is regulated by uro-

modulin, the most abundant protein in normal urine. Uro-
modulin is a GPI-anchored, ZP-domain protein encoded by
the UMOD gene that is essentially expressed in the cells
lining the TAL. In the TAL cells, uromodulin is trafficked to
the apical membrane where, after proteolytic cleavage, it is
released into the lumen to form multimeric filaments in the
urine (162). Transient overexpression of uromodulin in het-
erologous cell systems increased the phosphorylation and
activation of NKCC2 (507). Umod KO mice showed a dis-
crete salt-losing phenotype with impaired response to furo-
semide and decreased levels of phosphorylated NKCC2
(507), whereas transgenic mice overexpressing Umod
showed the opposite, i.e., higher level of phospho-NKCC2
and increased response to furosemide (750). The cross-talk
between uromodulin and NKCC2 is potentially important
for blood pressure regulation, as indicated by the associa-
tion of common variants in the promoter of the UMOD
gene with blood pressure and response to furosemide (162,
547, 750).

The aBS type 2 (MIM no. 241200), which can present with
transient neonatal hyperkalemia, is caused by inactivating
mutations in KCNJ1, which codes for ROMK (339a, 692).
These mutations include missense and nonsense, as well as
frameshift and deletions (294). Functional studies of mu-
tated ROMK proteins showed that the loss-of-function
originates from either an altered channel function or im-
paired plasma membrane abundance (563, 664, 668, 703).
ROMK (also named Kir1.1) is an ATP-sensitive, inwardly
rectifying renal K� channel that is critical for K� recycling
in the TAL and K� secretion in the CNT and CD (219, 393,
420). ROMK channels are assembled from four subunits,
each consisting of two transmembrane domains flanking a
conserved loop that contributes to the pore and selectivity
filter, and cytoplasmic NH2 and COOH termini that con-
tain regulatory and oligomerization domains (516a). In the
TAL, ROMK plays a dual role as it supports NKKC2 trans-
port activity essential for salt reabsorption, and also con-
tributes to a positive transepithelial membrane potential
important for paracellular reabsorption of Ca2� and Mg2�

(264, 294, 803) (FIGURE 8). Indeed, patients with Bartter
syndrome (type 1 and type 2) often present with hypercal-
ciuria, which increases the predisposition to nephrocalcino-
sis (583). Salt wasting, volume contraction, and metabolic
alkalosis are explained by disrupted NaCl transport in the
TAL, which in turn results in distal Na� delivery that drives
ENaC function at the expense of increased K� and H�

excretion.

The importance of NaCl handling in the TAL has been
further demonstrated by screening members of the Fra-
mingham Heart Study (353). In that cohort, heterozygote
carriers of inactivating mutations in SLC12A1 and KCNJ1
had significantly lower systolic and diastolic blood pres-
sure, and a significant reduction in the risk of developing
hypertension compared with non-carriers. The effects of the
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carrier state on systolic and diastolic blood pressure at dif-
ferent age were similar to that of antihypertensive agents
(353). Furthermore, Tobin et al. (745) showed that five
polymorphisms in KCNJ1 were associated with mean 24-h
systolic or diastolic blood pressure. Two of these SNPs were
located in the 3= untranslated region and the remaining
three SNPs were intronic. The strongest association was
between the intronic variant (rs2846679) whose minor al-
lele (frequency, 16%) was associated with a significant
change in mean 24-h systolic blood pressure, after account-
ing for age, sex, and familial correlations. While the precise
nature of the mechanisms by which variants in KCNJ1 af-
fect BP remains to be elucidated, these data suggest that
these transporters involved in renal NaCl handing may ex-
ert a profound influence on blood pressure regulation in the
general population (166).

Elevated PGE2 levels are considered instrumental for most
clinical abnormalities in Bartter patients. Prostaglandins in-
crease K� secretion by activating the RAAS and are known
to decrease Na� reabsorption in TAL, likely via inhibition
of NKCC2 (379). Hence, treatment focuses on blocking the
prostaglandin production with indomethacin, as it en-
hances the urinary concentrating ability by increasing the
expression of NKCC2 in the TAL and the water channel
aquaporin-2 in CD (203, 381). This is often started in in-
fants of 4–6 wk old to reduce polyuria and hypercalciuria,
improve hypokalemia, and normalize the plasma renin lev-
els. However, care should be taken with newborns and
prenatal indomethacin treatment as it might result in gas-
trointestinal complications, renal failure, and potentially
hyperkalemia. Generally, a combination of indomethacin
and K� supplementation results in management of the dis-
ease and stimulates development of growth and intellectual
ability (583, 755).

Both Slc12a1 and Kcnj1 KO mice have comparable pheno-
typic characteristics to Bartter patients as they display hy-
pokalemia in combination with extreme polyuria, hypercal-
ciuria, and nephrocalcinosis (443, 725). Although 95% of
these mice die within 2 wk of birth, micropuncture studies
in the surviving mice demonstrated significantly impaired
NaCl transport in the TAL (443). The development of an-
other colony of Kcnj1 KO mouse with higher survival rates,
due to adaptative mechanisms and upregulation of Na�

transport in the downstream DCT segment, offers more
opportunity to study the pathophysiology of Bartter syn-
drome (448, 782).

In addition to the above-mentioned phenotype, patients
with a transient form of aBS have been described (598). A
recent study characterized this phenotype in six families and
described a novel X-linked disease of severe polyhydram-
nios with prematurity and transient renal salt wasting
(MIM no. 300971) that is caused by MAGED2 mutations
(410). The MAGED2 gene (located on Xp11.21) encodes

the melanoma-associated antigen D2 (MAGE-D2) protein
that belongs to the MAGE family and has previously been
reported in relation to cell-cycle regulation, apoptosis, and
neurogenesis (33). Laghmani et al. (410) showed expression
of MAGE-D2 in fetal and adult kidneys and found dimin-
ished expression of NKCC2 and NCC in a fetus with the
disease, which might explain the severe renal salt wasting.
Recently, Legrand et al. (422) detected mutations in MA-
GED2 in 17 patients from 16 families in France. The MA-
GED2 mutations explained 9% of cases of aBS, accounting
for 38% of patients without identified genetic cause. The
phenotype was variable and could also be observed in fe-
males (422). Further investigations are needed to under-
stand the transient nature of the phenotype.

II) Classic Bartter syndrome: type 3. The cBS type 3 (MIM
no. 607364) originates from mutations in the CLCNKB
gene (located on 1p36) coding for the ClC-Kb Cl� channel
that mediates the basolateral Cl� efflux from the cells lining
the TAL and the DCT (400, 690). Patients harboring mu-
tations in CLCNKB present a broad spectrum of clinical
features that range from the aBS phenotype with polyhy-
dramnios, isosthenuria, and hypercalciuria over to the clas-
sic BS phenotype with less impaired concentrating ability
and normal urinary Ca2� excretion, to a GS-like phenotype
with hypocalciuria and hypomagnesemia (347, 400, 564,
621).

A relatively large number of CLCNKB mutations have been
reported, which include frequent gene deletions but also
nonsense, missense, small insertions/deletions, frameshift,
and splice-site mutations (14, 80, 400, 530, 690). Interest-
ingly, no genotype-phenotype correlations have been de-
scribed yet. Similar to aBS, therapy involves a combination
of indomethacin and high doses of KCl that is sometimes
complemented with K�-sparing diuretics to correct severe
hypokalemia (45, 599). In cases with hypomagnesemia,
supplementation with Mg2� is recommended, but the cor-
rection is usually difficult (564). A followup study of pa-
tients harboring mutated CLCNKB showed persistently in-
creased plasma renin levels as well as secondary hyperaldo-
steronism, and most patients developed proteinuria despite
the control of other symptoms (45).

ClC-Kb belongs to the CLC family of chloride channels/
exchangers, which includes nine isoforms in mammals
(348). Both ClC-Kb and the closely related ClC-Ka isoform
(encoded by CLCNKA) are expressed predominantly in the
kidney, located on the basolateral membrane of the thin
ascending limb (ClC-Ka only), TAL, and DCT cells, as well
as in the intercalated cells of the collecting duct. Both
ClC-Ka and ClC-Kb require the beta-subunit barttin to
facilitate their insertion in the plasma membrane and gen-
erate Cl� currents (195). Estevez et al. (195) showed that
disease-causing missense mutations of CLCNKB resulted in
significant reductions (or the loss) of ClC-Kb/barttin chan-
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nel activity. Detailed studies of CLCNKB mutations in Xe-
nopus laevis oocytes and HEK293 cells revealed two classes
of mutants: nonconducting mutants associated with low
total protein expression and partially conducting mutants
with unaltered channel properties and ClC-Kb protein
abundance (375). Thus inactivating mutations in CLCNKB
affect the basolateral exit of Cl�, which in turn reduces the
reabsorption of NaCl in the TAL and DCT. The phenotypic
variability of type 3 BS may thus be explained by the wide
distribution of ClC-Kb (400, 564). Alternative pathways
for Cl� exit, which include ClC-Ka (348), KCC4 (772), or
the Cl�/H� exchanger ClC-5 (158) in the TAL, could par-
tially compensate for ClC-Kb inactivation in the kidney.

Mice lacking Clcnk2 (corresponding to CLCNKB in hu-
mans) have been generated that exhibited a Bartter syn-
drome phenotype, characterized by salt wasting, hypokale-
mia, and metabolic alkalosis (297). These mice did not
show a natriuretic response to furosemide and had a signif-
icantly reduced response to thiazide. On the other hand,
Clcnk1 KO mice (corresponding to CLCNKA) exhibit
polyuria but no signs of salt wasting or hypokalemic alka-
losis (466). Together, this suggests that ClC-Kb is the criti-
cal Cl� channel responsible for salt reabsorption in the TAL
and DCT.

III) Antenatal Bartter syndrome with sensorineural deaf-
ness: type 4. Type 4 aBS (MIM no. 602522) is typically the
most severe form of Bartter syndrome with early maternal
polyhydramnios, prematurity, severe neonatal episodes of
dehydration, and progressive renal failure (346, 347, 678).
Moreover, these patients are deaf and have seriously im-
paired motor development and growth defect. An addi-
tional form of type 4 Bartter with SND (also termed type
4b, MIM no. 613090) is caused by coinciding mutations in
CLCNKA and CLCNKB (532, 657).

The BSND gene (located on 1p32.3) consists of four exons.
It encodes barttin, a 320-amino acid protein that contains
two putative transmembrane domains and is expressed in
the thin limb, TAL, and DCT in the kidney and in the stria
vascularis surrounding the cochlear duct in the inner ear
(55, 195). Barttin is a beta-subunit required for the expres-
sion and function of the Cl� channels ClC-Kb and ClC-Ka
(195, 785). Functional analysis of the identified BSND mu-
tations revealed that missense mutations can either affect
the channel properties of ClC-K/barttin channels despite
normal membrane abundance or result in disturbed traf-
ficking to the cell surface (343, 603, 660, 785). Hence, the
severity of the disease is likely due to a loss of both ClC-K
channels in all nephron segments. In contrast to patients
harboring mutations in SLC12A1 and KCNJ1, barttin-de-
ficient patients exhibit only moderate and transient hyper-
calciuria and do not show nephrocalcinosis (347, 678). This
could be due to defective NaCl transport in both the TAL
and DCT, with divergent effects on urinary Ca2� excretion

that is somehow similar to a combined action of loop and
thiazide diuretics. Barttin-deficient patients may show a se-
vere Mg2� wasting, caused by a defect in both the paracel-
lular (TAL) and transcellular (DCT) pathways of Mg2�

reabsorption (347). Furthermore, a lack of diuretic re-
sponse to furosemide and to hydrochlorothiazide was evi-
denced in one barttin-deficient patient, supporting a defect
in both TAL and DCT (846).

Apart from the kidney, ClC-K channels are expressed in the
inner ear, where they play a role in the secretion of K�-rich
endolymph required for the function of the inner hair cells
(195, 608). Defective ClC-K/barttin channels will therefore
eliminate this K� recycling in the inner ear and cause the
SND (FIGURE 9). A conditional Bsnd KO mouse model with
specific deletion of barttin in the inner ear had no renal
phenotype, but displayed congenital deafness (608). Impor-
tantly, none of the type 3 BS patients with ClCKB muta-
tions is deaf because the function of ClC-Kb/barttin chan-
nels in the inner ear can be replaced by ClC-Ka/barttin.
Only the disruption of barttin (195) or the combined loss of
ClC-Ka and ClC-Kb (532, 657) results in a Cl�-recycling
defect that lowers K� secretion in the stria vascularis to a
pathogenic level.

While Bsnd KO mice die within a few days after birth (608),
the generation of a KI mouse model that carries the R8L
mutation provided in vivo evidence for the role of barttin
(528). The mutant mice display Bartter syndrome charac-
teristics like hypokalemic metabolic alkalosis and decreased
salt reabsorption under a low-salt diet (528). A significantly
reduced plasma membrane abundance of the CLC-K/mu-
tant-barttin channels was observed in the TAL and distal
nephron. The disease-causing R8L mutation was shown to
result in ER-localized barttin that cannot recruit ClC-K to
the plasma membrane in vitro (289). The KI mouse model
was recently used to test a potential new drug, 17-allyl-
amino-17-demethoxygeldanamycin (17-AAG), which is a
90-kDa heat shock protein inhibitor known to rescue ER-
trapped proteins. Nomura et al. (527) demonstrated that
treatment with 17-AAG enhanced the plasma membrane
expression of barttin R8L and improved the electrolyte dis-
turbances and hearing loss. New treatment regimes are
highly valuable for the patients with type 4 BS, as the effect
of indomethacin and K� supplementation on recovering
growth and correcting electrolyte disorders is rather poor
(346, 678).

3. Gitelman syndrome

A) BRIEF CLINICAL DESCRIPTION. Gitelman syndrome (GS) (MIM
no. 263800) was first described in 1966 by Gitelman and
co-workers as a familial disorder in which patients pre-
sented with hypokalemic alkalosis and a susceptibility to
carpopedal spasm and tetany due to hypomagnesemia
(244). The disease was long considered as a variant of Bart-
ter syndrome with hypomagnesemia and hypocalciuria
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(TABLE 3). In 1992 Bettinelli and co-workers concluded that
GS could be distinguished from BS, based on low urinary
Ca2� excretion and frequent tetanic episodes (44). The dis-
sociation of renal Ca2� and Mg2� handling in GS, together
with the subnormal response of these patients to thiazides
(720, 751), pointed to a primary defect in the DCT. GS is
arguably the most frequent inherited tubulopathy detected
in adults, with a prevalence of ~1 per 40,000 and a preva-
lence of heterozygous carriers in the Caucasian population
estimated at �1% (56).

Classically, GS has been considered as a mild variant of
Bartter-like syndromes, often detected fortuitously during
adolescence or adulthood. The GS patients are often asymp-
tomatic or present with mild symptoms such as weakness,
fatigue, salt craving, thirst, nocturia, constipation, or
cramps (56). They may also present with growth retarda-
tion and short stature (247). Typical manifestations include
low blood pressure, muscle weakness, carpopedal spasms,
or tetanic episodes that are related to profound hypomag-
nesemia (138, 390, 401). Since Mg2� ions increase the sol-
ubility of calcium pyrophosphate crystals and are impor-
tant for the activity of pyrophosphatases, hypomagnesemia
may promote the formation of calcium pyrophosphate crys-
tals in joints and sclera, leading to chondrocalcinosis (586)
and sclerochoroidal calcifications (71). Patients with GS
have higher bone mineral density, similar to chronic thia-
zide treatment, which likely arises from increased renal
Ca2� reabsorption and a decreased rate of bone remodeling
(518). K� and Mg2� depletion result in prolonged QT in-
terval in ~50% of the patients, which could lead to an
increased risk for ventricular arrythmias (47, 213). The
classical biochemical features of GS include hypokalemic
metabolic alkalosis, hypomagnesemia, and hypocalciuria.
The presence of both hypomagnesemia and hypocalciuria is
highly predictive for the diagnosis of GS (44).

The view that GS is a benign condition has been challenged
by reports emphasizing the phenotype variability and the
potential severity of the disease. GS is associated with a
significant reduction in the quality of life, similar to that
associated with congestive heart failure or diabetes (138).
Manifestations such as early onset (before age 6 yr), growth
retardation, invalidating chondrocalcinosis, tetany, rhab-
domyolysis, seizures, and ventricular arrhythmia have been
described (56). The phenotype of GS is highly heteroge-
neous in terms of age at presentation, nature/severity of
biochemical abnormalities, and nature/severity of the clini-
cal manifestations, not only between patients carrying dif-
ferent SLC12A3 mutations, but also between affected fam-
ily members (614).

Because GS is primarily caused by salt wasting, patients are
encouraged to follow their propensity for salt consumption.
Lifelong oral Mg2� and K� supplementation is the main-
stay of treatment (56, 390). In the presence of hypomag-

nesemia, Mg2� supplementation should be considered first,
because Mg2� repletion will facilitate K� repletion (808).
Many symptoms are improved by K� or Mg2� supplemen-
tation or both, but there is no evidence correlating the se-
verity of blood levels with the intensity of symptoms. In
cases of persistent, symptomatic hypokalemia when supple-
ments are not sufficient, the use of K�-sparing diuretics
(e.g., amiloride, spironolactone, potassium canrenoate, and
eplerenone) can be useful (58, 130).

B) GENETICS. GS is caused by loss-of-function mutations in the
SLC12A3 gene, which codes for the thiazide-sensitive Na�-
Cl� cotransporter NCC (424, 694). At present, over 250
disease-causing mutations have been identified in GS, of
which a large part are missense mutations. GS is recessively
inherited, and the majority of patients are compound
heterozygous for different SLC12A3 mutations. Of note,
15–20% of patients with GS are found to carry only a single
mutation in SLC12A3, instead of being compound
heterozygous or homozygous (423, 600, 614). It is likely
that the second mutation resides either in gene regulatory
fragments, 5= or 3= untranslated regions, or intronic se-
quences, or that there are large genomic rearrangements.
Few studies have provided evidence for this hypothesis
(440, 531, 768). The possibility of a heterozygous mutation
in another gene should also be considered, as the clinical
representation of the disease is highly heterogeneous. Mu-
tations in CLCNKB have, for example, been reported in
patients that have common characteristics of classic Bartter
and Gitelman syndromes (345, 849). The distribution of
ClC-Kb in both the TAL and DCT, and potential compen-
sation by other Cl� transporters, may probably explain
these overlapping syndromes (347). In addition to
CLCNKB, other genes participating in the complex han-
dling of Na�, Ca2�, and Mg2� in DCT are potential candi-
dates to account for disease-causing or disease-modifying
genes in GS (615). For instance, Belge et al. (38) showed
that mice lacking parvalbumin, a cytosolic Ca2�-binding
protein that is selectively expressed in the DCT, had a
phenotype resembling GS. These mice exhibited volume
contraction, aldosteronism, and renal K� loss at base-
line; an impaired response to hydrochlorothiazide; and
higher bone mineral density. They demonstrated that
these modifications were due to decreased expression of
NCC, secondary to modifications in intracellular Ca2�

signaling in the DCT (38).

NCC belongs to the SLC12 family of electroneutral cation-
chloride cotransporters that also contains the NKCC2 and
KCC proteins (292). The identified SLC12A3 mutations are
spread throughout the entire protein. A limited number of
mutations have been functionally analyzed for alterations
in the plasma membrane expression and transport activity
of mutant NCC. There appear to be different classes of
SLC12A3 mutations. First, they can affect the synthesis and
target NCC for degradation, resulting in ablated plasma
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membrane expression. Second, some mutants display im-
paired trafficking and membrane insertion, while they have
normal function if they do reach the plasma membrane.
Third, it is observed that NCC mutants reach the plasma
membrane but show diminished transporter activity. And
finally, there are splicing mutations that lead to truncated
transcripts which are degraded before the translation pro-
cess (144, 246, 614, 632).

C) PROTEIN FUNCTION AND INSIGHTS FOR RENAL PHYSIOLOGY. NCC in-
cludes 12 predicted transmembrane domains with intracel-
lular NH2 and COOH termini, and it likely functions as a
dimer at the plasma membrane (145, 230, 231). The Cl�

affinity of NCC resides within the transmembrane 1–7 re-
gion, and the sensitivity for thiazide is located between
transmembrane domain 8 and 12, whereas both areas ap-
pear to be involved in Na� affinity (494). The regulation of
NCC involves posttranslational modifications including
glycosylation, phosphorylation, and ubiquitination. NCC
contains a large extracellular hydrophilic loop between
transmembrane domain 7 and 8 holding two glycosylation
sites (N404 and N424) that are essential for the function
and membrane expression of the protein (307). Several

SLC12A3 mutations result in impaired glycosylation and
defective trafficking of the protein to the plasma membrane
(246, 632). The NH2 terminus contains key phosphoryla-
tion sites, including T55 and T60 and S73 and S91, that
stimulate NCC activity (546, 607). Indeed, a mutation in
T60 is commonly found in patients with GS (434). The
exact contribution of each phosphorylation site remains to
be resolved, but the intracellular signaling cascade has
largely been unraveled. Richardson et al. (607) have shown
that activation of SPAK (STE20/SPS1-related proline-ala-
nine-rich protein kinase) and OSR1 (oxidative stress re-
sponsive kinase) results in phosphorylation and activation
of NCC (FIGURE 10). This involves binding of a unique
conserved COOH-terminal (CCT) domain within SPAK
and OSR1 to the RFTI motif in the NH2 terminus of NCC
(607). The with-no-K (lysine) (WNK) family of serine-thre-
onine kinases is found to play a role upstream in this process
as they can induce phosphorylation of SPAK and OSR1
(495, 777). Here, the CCT domain is also required for bind-
ing and activation by the WNKs, which contain RFXV/I
motifs as well. More details on the current model of NCC
regulation will be discussed in section IIID4.
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FIGURE 10. NCC-mediated Na� tran-
sport. A: immunohistochemical staining for
NCC and the cytosolic protein parvalbumin
in the epithelial cells lining the DCT. B: stim-
ulation of WNK4 will phosphorylate SPAK/
OSR1, which in turn activate NCC via phos-
phorylation and increased plasma mem-
brane trafficking. On the other hand, the
KLHL3/CUL3 complex can ubiquitylate the
WNKs, thereby decreasing its expression
and hampering the pathway that leads to
NCC activity. In familial hyperkalemic hyper-
tension (FHHt, also named Gordon syn-
drome), mutations in either WNK4,
KLHL3, or CUL3 result in increased WNK
activation, which leads to enhanced NCC
phosphorylation and activity, thereby ex-
plaining the hypertensive phenotype in
FHHt patients. CUL3, cullin 3; FHHt, famil-
ial hyperkalemic hypertension; KLHL3,
kelch-like family member 3; NCC, Na�-Cl�

cotransporter; OSR1, oxidative stress re-
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lated proline-alanine-rich protein kinase;
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The regulation of NCC by ubiquitination is a growing field
of research. Ko et al. (391) were the first to suggest that
NCC is modulated by ubiquitination, via a mechanism in-
volving RasGRP1-mediated ERK1/2 activation. Further
studies identified a role for the aldosterone-SGK1-Nedd4–2
pathway, which is also described to regulate ENaC activity
(616). The E3 ubiquitin ligase Nedd4–2 (neural precursor
cell expressed developmentally downregulated protein 4)
was shown to interact with NCC and induce ubiquitination
of the protein at the plasma membrane. This ubiquitination
primes removal and degradation of NCC and thus reduces
its activity. The activation of Nedd4–2 is known to result
from phosphorylation by serum/glucocorticoid regulated
kinase 1 (SGK1), which has an enhanced expression upon
stimulation with the mineralocorticoid hormone aldoste-
rone (50, 108, 697). Recent evidence suggests that phos-
phorylation and ubiquitination could have adverse effects
on NCC: phosphorylated NCC had decreased ubiquitina-
tion (312), whereas WNK1 and WNK4 were shown to
phosphorylate Nedd4–2 that ultimately promotes ubiquiti-
nation (296).

The pathophysiology of GS can be explained by the specific
expression of NCC at the luminal membrane of the DCT,
where it mediates the reabsorption of Na� and Cl� (187)
(FIGURE 10). Loss of NCC function results in salt wasting,
volume contraction, secondary hyperaldosteronism, and
increased K� and H� secretion in the CD, resulting in
hypokalemic metabolic alkalosis. As mentioned above,
heterozygous carriers of mutations in SLC12A3 from the
Framingham Heart Study showed mean systolic blood
pressure values that were below the entire cohort, with
reduction in blood pressure being similar to values ob-
tained with chronic thiazide treatment (353).

The importance of NCC as a highly-regulated, crucial
player in NaCl handling by the DCT has been confirmed in
different mouse models (773). Mice lacking NCC resemble
a Gitelman phenotype with subtle changes in volume ho-
meostasis, but clear alterations in the Ca2� and Mg2� bal-
ance (665). A later study showed that Slc12a3 KO mice on
a pure C57BL/6 background had a mild compensated alka-
losis with increased levels of plasma aldosterone (442) and
an increased sensitivity to develop hypokalemia when ex-
posed to dietary K� reduction (499). These studies also
demonstrated that loss of NCC results in hypertrophy of the
distal tubule and that the observed hypocalciuria is caused
by increased Ca2� reabsorption in the PT (442). The latter
hypothesis is supported by a study in which mice treated
with thiazide diuretics developed hypocalciuria due to en-
hanced passive reabsorption of Ca2� but independent of the
distal expressed Ca2� channel TRPV5 (transient receptor
potential vanilloid 5) (522, 524). In addition, metabolic
alkalosis is known to decrease renal Ca2� excretion, which
could also contribute to the observed hypocalciuria in Gitel-
man patients (64, 523). In contrast, the pathogenesis of

hypomagnesemia observed in GS (and also after chronic
thiazide administration) is likely due to a direct effect on
DCT. Chronic thiazide treatment resulted in renal Mg2�

wasting and decreased expression of the epithelial Mg2�

channel TRPM6 (transient receptor potential melastatin 6)
(524). TRPM6 is specifically expressed at the apical mem-
brane of DCT1, the main site for active Mg2� reabsorption
(140, 780). Additionally, the TRPM6 mRNA levels were
severely reduced in Slc12a3 KO mice (524), which could
reflect the atrophy of the DCT observed in these mice (442).
This points towards a key role of TRPM6 in the develop-
ment of hypomagnesemia in Gitelman patients, but further
investigation is needed to unravel its exact underlying mo-
lecular mechanism.

4. Familial hyperkalemic hypertension

A) BRIEF CLINICAL DESCRIPTION. Although familial hyperkalemic
hypertension (FHHt), also known as pseudohypoldosteron-
ism type II (PHA2) (MIM no. 145260), was first described
by Paver and Pauline in 1964 (556), Gordon delineated it as
a new clinical condition, hence the term Gordon Syndrome
(255, 256). It is characterized by hypertension, hyperkale-
mia, and metabolic acidosis; most patients have an early
onset of the symptoms related to these electrolyte distur-
bances. The biochemical and clinical heterogeneity of the
disease remains unclear due to the minimal number of fam-
ilies described so far. In general, hypertension appears in
adult life and seems not prevented in patients in which the
disease was diagnosed and treated before onset of hyperten-
sion (471). Untreated hypertensive individuals are at risk of
developing complications related to the elevated blood
pressure, like cardiac disease, renal impairment, and stroke.
However, the electrolyte and blood pressure abnormalities
can be corrected by treatment with thiazide diuretics, well-
known inhibitors of NCC (419, 638, 673). This led to the
initial idea that NCC plays a role in the pathogenesis of the
disease, but no mutations in the gene encoding NCC have
been identified in FHHt patients. Subsequent linkage anal-
yses associated FHHt with several loci, and the disease was
shown to have an autosomal dominant pattern of inheri-
tance (176, 177, 457, 534).

B) GENETICS, PROTEIN FUNCTION, AND INSIGHTS FOR RENAL PHYSIOLOGY. In
2001, disease-causing mutations in the WNK1 and
WNK4 genes were identified in FHHt (814). These genes
encode members of the WNK kinase family, WNK1 and
WNK4, which are implicated in the regulation of epithe-
lial transport of Na�, K�, and Cl� in a variety of tissues
(362).

WNK1 has two isoforms, namely, the long L-WNK1 iso-
form that is expressed ubiquitously, and the so-called kid-
ney specific (KS) WNK1, whose expression is restricted to
the kidney (114, 154, 718). The L-WNK1 isoform was
shown to antagonize the inhibitory effect of WNK4 on
NCC (836), thereby indirectly stimulating Na� reabsorp-
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tion. In contrast, KS-WNK1 decreases NCC activity
through antagonizing the L-WNK1 function (438, 718).
L-WNK1 was also shown to activate ENaC via SGK1 phos-
phorylation (831), to inhibit ROMK (131, 437), and to
decrease paracellular Cl� transport via phosphorylation of
claudin-4 (540).

The disease-causing WNK1 mutations lead to large dele-
tions in the first intron that have no effect on the final
protein structure, but result in an overexpression of
L-WNK1 in DCT and increased extrarenal expression of
KS-WNK1 (153). Taken together, it is postulated that the
net increase in L-WNK1 expression in the kidney will initi-
ate FHHt pathogenesis via enhanced NCC activity (275).
Interestingly, heterozygous L-Wnk1�/� mice showed a sig-
nificantly reduced blood pressure compared with wild type
(847), whereas mice KO for Ks-wnk1 showed increased
NCC activity in the DCT, as well as altered function of
ROMK and decreased ENaC expression, in absence of hy-
perkalemic hypertension (276). Vidal-Petiot et al. (775)
generated a mouse model with a heterozygous deletion of
Wnk1 that exhibited hyperkalemia, hypertension, and met-
abolic acidosis as a result of NCC activation. These mice
had increased L-WNK1 expression and decreased ROMK
expression in combination with unaltered ENaC function.
Hence, the hypokalemia is suggested to be caused by inhi-
bition of ROMK via L-WNK1.

The onset of FHHt by WNK4 mutations was first consid-
ered to result from decreased inhibitory effect of WNK4 on
NCC, as seen in Xenopus oocyte studies (815, 836). Fur-
thermore, studies in oocytes showed that WNK4 mutations
increase the WNK4-mediated inhibition of ROMK (363),
and an increased Cl� permeability was demonstrated in
MDCK cells (361, 834). Importantly, two independent
groups generated KI mice harboring FHHt mutations that
show phenotypes resembling FHHt as they exhibited in-
creased blood pressure, hyperkalemia, and hypercalciuria
(411, 838). This phenotype could be reversed by either
treating the mice with thiazide or by backcrossing them
with Slc12a3�/� mice (411, 838), which points towards a
key role of NCC in FHHt. Interestingly, the Wnk4�/� mice
have a Gitelman-like phenotype with mild hypokalemia,
metabolic alkalosis, and hypomagnesemia but without hy-
pocalciuria and hypotension (98). The K� wasting and nor-
motension in the Wnk4�/� animals likely arise from in-
creased ROMK and ENaC activities (98). A recent study by
Takahashi et al. (723) postulates that WNK4, and not
WNK1, is the major positive regulator of NCC, as they
observed significantly decreased phosphorylated and total
NCC levels despite an increase in WNK1 expression in their
Wnk4�/� mice. Recently, it has been established that
WNK4 exerts its action on NCC through the SPAK/OSR1
signaling cascade. Several mouse models have been gener-
ated with genetic alterations in WNK or SPAK/OSR1 to
understand the role of these kinases in the regulation of

NCC activity (274). While the exact physiological role of
WNK1 and WNK4 is still a matter of debate, it is evident
that these kinases are essential regulators of ion transport in
the DCT, CNT, and CD. They were also shown to regulate
the expression and function of ROMK and ENaC (274).
Inhibition of these kinases would be a good target for reg-
ulating blood pressure (112, 590, 607).

Recent studies shed new light on the influence of dietary K�

intake on blood pressure regulation through WNK signal-
ing (736, 737, 781). They propose a link between the
plasma K� concentration and NCC activity. Low dietary
K� intake phosphorylates and activates NCC in the DCT
despite high salt intake (737). Plasma K� levels can alter the
intracellular Cl� concentration via voltage-dependent Cl�

fluxes, which in turn modifies WNK activity. Piala et al.
(566) demonstrated that Cl� is able to bind the WNK1
catalytic domain, thereby inhibiting autophosphorylation
and kinase activity. Hence, the DCT’s ability to sense
plasma K� levels is dependent on the WNK Cl� respon-
siveness (737, 781). These studies support the role of
WNKs in renal Na� and K� handling. The WNK activity
is low when plasma K� levels are high. Following sup-
pression of NCC, the Na� reabsorption occurs primarily
along the CNT, not along the DCT. Na� reabsorption
via ENaC is then exchanged for ROMK-mediated K�

secretion (FIGURE 11).

New insights into the mechanism of FHHt came from the
identification of causative mutations in KLHL3 and CUL3
(73, 444). The encoded proteins kelch-like 3 (KLHL3) and
cullin 3 (CUL3) function together in the cullin-RING E3
ligase complex that acts in the ubiquitin-mediated protein
degradation pathway. Under normal conditions, the com-
plex is able to interact and ubiquitinate the WNK kinases
(724). Mutations in either KLHL3 or CUL3 disrupt the
binding to WNKs, which subsequently leads to increased
WNK1/WNK4 levels in the kidney that thereby control the
activity of NCC and other ion transporters (539, 685, 784)
(FIGURE 10). The role of KLHL3 in the pathogenesis of
FHHt was confirmed in vivo by generating Klhl3R528H/� KI
mice that carry a mutation identified in FHHt patients.
These mice have increased WNK1 and WNK4 levels, which
indicates that both WNK1 and WNK4 are physiologically
regulated by the KLHL3-mediated ubiquitination (719).
Next, this group generated Klhl3�/� mice and demon-
strated that lack of KLHL3 leads to increased WNK1 and
WNK4 levels in the kidney, ultimately resulting in activa-
tion of the downstream OSR1/SPAK-mediated NCC phos-
phorylation (646). Of note, heterozygous Klhl3�/� mice did
not exhibit a FHHt phenotype confirming that the previ-
ously observed phenotype in Klhl3R528H/� mice was caused
by the dominant-negative effect of the KLHL3 R528H mu-
tation (646). As for CUL3, the mutations result in exon 9
skipping, which does not influence the binding of CUL3 to
KLHL3, but it is suggested to disturb E3 ligase activity and
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ubiquitination of at least a subset of KLHL3 targets (73,
784). Recently, a KI mouse model with specific targeting of
exon 9 (Cul3WT/�403–459) was generated that recapitulated
the severe FHHt phenotype exhibiting hyperkalemia, hy-
perchloremia, and metabolic acidosis (666). Moreover,
these mice showed a vascular phenotype that implies a stiff-
ening of their arterial tree and suggests a vascular compo-

nent contributing to the observed hypertension next to the
salt retention mechanism in the DCT. Altogether, the iden-
tification of these novel proteins has given more insight into
the renal regulation of salt balance and specifically the func-
tion of the distal part of the nephron, which might ulti-
mately contribute to development of new drugs targeting
high blood pressure in the general population.
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5. Liddle syndrome

A) BRIEF CLINICAL DESCRIPTION. Another disorder characterized by
early onset of hypertension is Liddle syndrome (MIM no.
177200), first described in 1963 by Liddle et al. (431). In
addition to severe hypertension, patients suffer from hy-
pokalemic metabolic alkalosis, reduced plasma renin activ-
ity, and diminished aldosterone secretion (70, 431, 799).
Patients are most often treated with amiloride or tri-
amterene, which normalizes their blood pressure and hypo-
kalemia, but has only minimal effects on plasma aldoste-
rone level or plasma renin activity (70, 351, 431). The ef-
fectiveness of this treatment had put the amiloride-sensitive
Na� channel ENaC, located in the distal nephron, as a
logical candidate gene for this disease.

B) GENETICS, PROTEIN FUNCTION, AND INSIGHTS FOR RENAL PHYSIOL-

OGY. Analyzing the original Liddle’s pedigree, Shimkets et al.
(686) showed complete linkage to the SCNN1B gene en-
coding the �-subunit of ENaC on chromosome 16p13–12.
ENaC is comprised of three homologous subunits: �, �, and
� which act together to confer its low Na� conductance and
its high selectivity for Na� and amiloride (91). In this ped-
igree and in other unrelated kindreds, a premature stop
codon, a frameshift mutation, and other deleterious muta-
tions were found, all located in the last exon of the gene
encoding for the intracellular COOH-terminal domain of
the �-subunit (351, 686). These dominantly inherited mu-
tations were shown to be gain-of-function, with an in-
creased amiloride-sensitive Na� current after transfection
of the corresponding mutant subunits together with � and �
wild-type subunits. Other point mutations affecting the
SCNN1G gene coding for same region of the �-subunit of
ENaC have also been found to cause Liddle syndrome
(285).

The ENaC channel is responsible for Na� reabsorption
across several epithelial tissues. Due to its apical localiza-
tion in the cells lining the CNT and CD of the kidney, ENaC
is regarded as a key player in the final regulation of Na�

reabsorption (91, 123, 221, 234, 281). Mice that lack
�-ENaC exhibit perinatal lethality due to impaired lung
epithelial function (326), suggesting that the �- and �-sub-
units alone are not sufficient for ENaC function. In com-
parison, the Scnn1b- and Scnn1g-null mice die within 48 h
after birth because of an early renal dysfunction (34, 474),
while low residual ENaC activity in the airway epithelia is
likely due to the �-subunit.

Comprehensive studies have shown the mechanism by
which the truncation or alteration of a conserved motif
(PPxxY) in the COOH terminus of the � and � subunits
alters the function of ENaC (655, 698). Normally, a specific
interaction between this PY motif and cytosolic proteins
(Nedd4 isoforms 1 and 2, and other related WW proteins)
leads to ubiquitination and then degradation of part of the

newly synthetized subunits (626). Thus cell surface expres-
sion of ENaC is in part controlled by ubiquitination which
is regulated by Nedd4–2 and SGK1 (FIGURE 11) (704). Both
truncation or punctual mutations of the PY motif abrogate
the Nedd4-mediated ubiquitination and increase surface
expression of the mutant ENaC proteins, thus increasing
the number of Na� channels in the apical membrane (2,
211). In turn, this promotes Na� reabsorption by the distal
nephron, expansion of plasma volume, and hypertension
which inhibits the secretion of renin and aldosterone. The
fact that only one heterozygous mutation of either
SCNN1B or SCNN1G is sufficient to lead to the pathology
is probably due in part to the multimeric arrangement of the
channel.

Shi et al. (684) generated Nedd4–2 KO mice that displayed
higher blood pressure than their wild-type littermates and
had increased renal expression of all ENaC subunits, sup-
porting the importance of Nedd4–2 in ENaC function and
blood pressure regulation. Recently, an inducible kidney-
specific Nedd4–2 KO mouse model was developed, demon-
strating the role of Nedd4–2 in the adult kidney tubules
(623). These conditional KO mice maintain a normal
Na�/K� balance but develop increased blood pressure and
hypercalciuria under high-Na� diet. They showed in-
creased protein levels of �-ENaC and �-ENaC but also of
ROMK and of total and phosphorylated NCC in the kidney
(623). The fact that Nedd4–2-dependent ubiquitination
might also regulate NCC function is highly relevant when
considering that mutations in KLHL3 and CUL3 are also
linked to hypertension (73, 444).

Further evidence derived from the generation of KI mice
carrying the Scnn1b R566stop mutation that displayed low
plasma aldosterone and a salt-induced Liddle phenotype
(576). Bertog et al. (42) found that the ENaC-mediated
Na� transport in the colon of these mice was enhanced,
together with an increased responsiveness to aldosterone. In
addition to the colonic effect, it was recently demonstrated
that DCT2/CNT is the primary nephron segment responsi-
ble for the disease-causing gain-of-function effect of the
ENaC mutation (514). It will be interesting to unravel hor-
monal and/or molecular factors that regulate ENaC in that
segment. Similarly, the recent discovery of a functional in-
teraction between ENaC and NCC in the DCT also needs
further exploration (487, 829).

6. Pseudohypoaldosteronism type 1.

A) BRIEF CLINICAL DESCRIPTION. Type 1 pseudohypoaldosteronism
(PHA1) is a rare form of mineralocorticoid resistance char-
acterized by neonatal renal salt wasting, failure to thrive,
and dehydration. It is associated with hyponatremia, hyper-
kalemia, and metabolic acidosis, despite extremely high val-
ues of plasma renin and aldosterone (8, 850). There are two
different clinical forms of PHA1: 1) an autosomal dominant
form, in which mineralocorticoid resistance is restricted to
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the kidney, and 2) an autosomal recessive form, where min-
eralocorticoid resistance is systemic and salt loss occurs in
multiple organs (288). Generally, treatment of PHA1 pa-
tients focuses on the replenishment of salt and water loss by
salt supplementation, and on correction of hyperkalemia
and acidosis. The correction of the generalized form usually
requires high doses of Na� together with ion exchange res-
ins and dietary changes to control hyperkalemia, through-
out life (40, 287).

B) GENETICS, PROTEIN FUNCTION, AND INSIGHTS FOR RENAL PHYSIOL-

OGY. I) Autosomal dominant type 1 pseudohypoaldosteron-
ism. The renal, autosomal dominant PHA1 (MIM no.
177735) is caused by mutations in the NR3C2 gene encod-
ing the mineralocorticoid receptor (MR) (236, 585, 609). It
is a mild form of the disease, and the most frequent. Treat-
ment with Na� supplementation relieves patients from
symptoms by 1–3 yr of age. Mutations are located through-
out the NR3C2 gene and result in a truncated or inactive
MR that does not bind aldosterone, thereby hampering the
aldosterone-induced transcription of hormone-responsive
genes (137, 454, 609, 645) (FIGURE 11). While haploinsuf-
ficiency is able to cause the disease, there are also reports of
dominant-negative effects on the wild-type MR since the
receptor functions as a dimer in transcription regulation
(202, 237). Recent insight into the location and functional
consequences of the NR3C2 mutations revealed individual
promoter-dependent effects on gene expression (202). This
could explain the phenotypic differences that are observed
in PHA1 patients; future studies in large patient groups
should clarify any genotype-phenotype correlations.

The role of the MR in the maintenance of the Na� balance
was demonstrated in the homozygous Nr3c2 null mice that
develop PHA1 symptoms within the first week after birth
and later die from dehydration as a result of renal Na� loss
(41). Conditional KO mice that lack expression of MR in
the CNT and CD merely develop a PHA1 phenotype upon
a low-salt diet (622). This highlights the refined mechanism
of adaptation of the kidney tubule, and also the complex
aldosterone signaling that likely regulates renal Na� trans-
port through different pathways.

II) Autosomal recessive type 1 pseudohypoaldosteronism.
The systemic, autosomal recessive variant of PHA1 (MIM
no. 264350) is associated with ENaC loss-of-function mu-
tations (103). Patients often have more severe symptoms
due to disturbed Na� transport in all organs that express
ENaC including lung, kidney, colon, and salivary glands
(69, 378, 535, 650). Hence, the PHA1 phenotype in-
cludes serious respiratory tract illnesses and inflamma-
tion of eccrine sweat glands due to the high sweat salt
concentration. Immediate diagnosis of the disease is es-
sential to prevent neonatal death. If detected, the auto-
somal recessive PHA1 is a life-long disease that needs
extensive salt supplementation in combination with K�-

lowering ion exchange resins (185, 286). Additional
symptomatic treatment is often needed to relieve respira-
tory tract disturbances and improve the skin phenotype
in these patients. In contrast to Liddle syndrome, muta-
tions are found in all three ENaC subunits encoded by
SCNN1A, SCNN1B, and SCNN1G (103). These are
mainly frameshift or nonsense mutations that lead to
truncated proteins or complete loss of ENaC expression.
Loss-of-function mutations have been found in affected
patients being either homozygous, in consanguineous
families, or composite heterozygous (103, 715). Func-
tional characterization of some identified missense muta-
tions demonstrated reduced ENaC activity due to altered
open probability or ion selectivity, highlighting a con-
served His-Gly region in the cytoplasmic NH2 terminus
that is critical for ENaC function (267, 268, 376, 377).
Recent cases have been reported that showed phenotyp-
ically distinct forms of systemic PHA1. Heterozygote car-
riers of a SCNN1A S562P missense mutation, originally
identified in homozygous patients with autosomal reces-
sive PHA1, show a subclinical salt-losing phenotype
without additional features (610). A homozygous mis-
sense mutation (S243P) in SCNN1A that was associated
with partial loss of ENaC channel activity resulted in a
transient PHA1 phenotype in the premature infant, that
could be corrected easily with salt supplementation
stopped after 6 mo (175). These cases broaden the clini-
cal spectrum of PHA1 and support further genetic screen-
ing as no clear genotype-phenotype correlation has been
established so far (611, 850).

As mentioned above, the Scnn1a, Scnn1b, and Scnn1g
KO mice all die soon after birth, and present with renal
phenotypes similar to those observed in PHA1 patients
(34, 326, 474). This did not allow detailed analysis of
ENaC deletion specifically in the kidney and/or during
adulthood. Hence, several transgenic mice with specific
deletion of �ENaC in renal tubules or only in the CNT
were generated (119, 561). While CNT-specific Scnn1a
KO mice only developed a mild PHA1 phenotype under
low-salt diet, the renal tubule-specific Scnn1a KO model
mimicked the severe PHA1. They suffered from severe
hyperkalemia and decreased K� excretion, which could
be rescued by high dietary Na� or low K� intake (561). A
similar phenomenon was observed in nephron-specific
Scnn1b KO mice (67). In contrast, the severe PHA1 phe-
notype cannot be rescued in nephron-specific Scnn1g KO
mice upon high-Na� and/or low-K� diet (68). Hyperka-
lemia could only be avoided by preventive treatment with
a K�-deficient diet that restored NCC activity in these
mice (68). This suggests that �-ENaC is required for renal
K� handling, and it supports the link between plasma K�

levels and NCC regulation. A better understanding of the
genetic background and biological outcome of PHA1 will
be valuable to address blood pressure disturbances in the
general population.
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E. Disorders of Calcium Transport

1. The integrative network of renal calcium
regulation

The Ca2� balance depends on the interplay of intestinal
absorption, renal excretion, and bone remodelling. Over
99% of the total body Ca2� content is stored in the skeleton
where it functions both as an essential element for skeletal
strength, as well as a dynamic supply for the maintenance of
circulating Ca2� levels. Part of the non-bone Ca2� is bound
to calcium-binding proteins including albumin and globulin
in plasma, and calmodulin and other calcium-binding pro-
teins in the cells. Importantly, the free ionized Ca2� needs to
be tightly maintained within physiological range (1.10 –
1.35 mM) to prevent Ca2� toxicity. This is regulated by
a hormonal negative feedback mechanism involving the
hormones PTH, fibroblast growth factor 23 (FGF23), and
1,25-dihydroxyvitamin D3 [1,25(OH)2D3] that regulate
Ca2� transport processes in the intestine, kidney, and bone
(FIGURE 12) (766). In short, a decline in plasma Ca2� levels
will stimulate the release of PTH via activation of the CaSR
in the parathyroid gland (606). Subsequently, PTH regu-
lates Ca2� transport processes in bone and kidney and stim-
ulates the production of 1,25(OH)2D3 (505). 1,25(OH)2D3

can enhance the expression of Ca2� (and phosphate) trans-
porters in kidney, bone, and intestine (118). In addition,
1,25(OH)2D3 stimulates the production of FGF23 in bone,
a key hormone in phosphate homeostasis. FGF23 also con-
trols Ca2� balance by regulating the expression of PTH in
the parathyroid gland and has a negative feedback loop to
inhibit 1,25(OH)2D3 production (59).

Within the kidney, glomerular filtration of Ca2� includes its
ionized form and Ca2� complexed to small anions. The
Ca2� ions bound to plasma proteins are not filtered. Subse-
quently, the majority of the filtered Ca2� is reabsorbed via
passive paracellular transport in the PT that is mainly dif-
fusive and in part facilitated by solvent drag. This is mainly
influenced by Na� availability and Na� backleak. In addi-
tion, the paracellular transport of Ca2� (and Mg2� in more
distal segments, see later) occurs via specialized tight junc-
tion proteins, the claudins. Claudins consist of four trans-
membrane helices, intracellular NH2- and COOH-tails,
and two extracellular loops that play a role in ion selectivity
and interaction with the claudins of adjacent cells (721).
Claudins usually associate into dimers or oligomers that
involve either homo- or heteromeric interactions (223),
which can form antiparallel double rows (722). The com-
position of tight junctions with different claudin members
determines the characteristic properties regarding the para-
cellular permeability and/or transepithelial resistance in
specific epithelia (250, 273). In the proximal tubule, the
pore-forming claudins 2, 10a, 11, and 17 have been re-
ported to be involved in paracellular Ca2� transport (385,
409; for extensive review, see Ref. 314). Furthermore, mi-
croperfusion studies have suggested the presence of active

Ca2� transport in the pars recta of the PT, but the protein(s)
responsible for this transport remain(s) to be identified
(627).

Next, Ca2� reabsorption takes place in the TAL and pro-
ceeds through the paracellular pathway driven by the posi-
tive transepithelial voltage that is established by the
NKCC2-mediated Na� reabsorption and subsequent K�

secretion via ROMK. The permeability for Ca2� (and
Mg2�) is determined by specific tight junction proteins,
claudin-16 and claudin-19. Recently, claudin-14 has been
identified as inhibitor of the claudin-16/19 complex (251).
Finally, a small portion (10–15%) of filtered Ca2� is ac-
tively reabsorbed in the DCT2 and the CNT through a
so-called three-step process. First, Ca2� enters the cell via
the epithelial Ca2� channel TRPV5. Then Ca2� is bound to
calbindin-D28K and diffuses to the basolateral side, where
the extrusion process is mediated via the Na�-Ca2�-ex-
changer (NCX1) and the plasma membrane Ca2�-ATPase
PMCA1b (303) (FIGURE 12).

An additional player is the CaSR that responds to changes
in ionized plasma Ca2�. As aforementioned, the CaSR reg-
ulates PTH release that stimulates Ca2� mobilization from
bone and leads to increased Ca2� reabsorption via
1,25(OH)2D3. Furthermore, the CaSR is expressed in the
kidney where it participates in the Ca2� homeostasis via a
PTH-independent pathway (445). The underlying mecha-
nism mainly involves an increase in Ca2� reabsorption in
the TAL, which has recently been shown to implicate regu-
lation of claudin-14 expression via the calcineurin-
NFATc1-microRNA pathway (248, 251). An additional
mechanism evoked by the CaSR in the TAL involves phos-
pholipase A2 (PLA2) activation and a subsequent increase in
cytosolic arachidonic acid, which is then metabolized to
20-hydroxyeicosatetraenoic acid (20-HETE) (795). Both
mechanisms will be discussed in more detail below, since
abnormalities of the CaSR signaling are associated with
hypercalcemic and hypocalcemic disorders.

2. Familial hypocalciuric hypercalcemia

A) BRIEF CLINICAL DESCRIPTION. Familial hypocalciuric hypercal-
cemia (FHH) (MIM no. 145980), initially referred to as
familial benign hypercalcemia, is an autosomal dominant
disorder that was first characterized in 1972 (214). Patients
usually display a mild hypercalcemia, together with inap-
propriately low urinary Ca2� excretion (214, 461, 552).
The disease is often made after fortuitous discovery of hy-
percalcemia. As a result of hypercalcemia, patients may
develop chondrocalcinosis and vascular calcification with
age (291). Further biochemical characteristics consist of
mild hypermagnesemia and normal to slightly elevated lev-
els of serum PTH (291). FHH is usually asymptomatic, but
fatigue, weakness, and excessive thirst may be experienced.
Most of the time, treatment is not necessary. Yet, the calci-
mimetic (i.e., activator of the calcium-sensing receptor, see
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below) cinacalcet appears to be an effective treatment in
symptomatic FHH patients (472). Pregnant women with
FHH must be monitored as an elevated hypercalcemia may
inhibit PTH secretion in the developing fetus, which is then
prone to developing severe hypocalcemia directly after birth
(329). Importantly, Ca2� levels should be monitored in
newborns of two FHH parents as they can present the se-
vere recessive disorder neonatal severe hyperparathyroid-
ism (see below).

B) GENETICS, PROTEIN FUNCTION, AND INSIGHTS FOR RENAL PHYSIOL-

OGY. FHH is a genetically heterogeneous disorder with three
variants: types 1, 2, and 3. FHH type 1 (MIM no. 145980)
is due to loss-of-function mutations in the CASR gene, cod-
ing for the CaSR (572). The CaSR is a guanine nucleotide-
binding protein (G protein)-coupled receptor that signals
through the G protein subunit �11 (G�11). FHH type 2
(MIM no. 145981) is due to mutations in GNA11 (512),
resulting in G�11 loss of function. Vice versa, GNA11 mu-
tations leading to G�11 gain of function, like CaSR muta-
tions affecting CaSR gain of function that cause autosomal
dominant hypocalcemia type 1, lead to hypocalcemia (282).
FHH type 3 (MIM no. 600740) is associated with AP2S1
(adaptor-related protein complex 2, sigma 1 subunit) mu-
tations that lead to altered CaSR endocytosis (283, 513).

The majority of FHH cases investigated to date are associ-
ated with loss-of-function mutations in the CASR (CaSR
Database: http://www.casrdb.mcgill.ca/). In 1993, Brown
et al. (82) cloned the CaSR from bovine parathyroid gland
and demonstrated that it belongs to the G protein-coupled
receptor family and responds to changes in extracellular
Ca2� (and Mg2�). Subsequent cloning and characterization
of the human CaSR revealed that it functions as a glycoly-
sated dimer (233, 569). The receptor consists of a large
extracellular NH2-terminal domain, seven transmembrane
spanning regions, and a long intracellular COOH terminus.
Ligand binding at the extracellular domain activates either
the Gq-, Gi-linked signaling, which in turn stimulates a va-
riety of cell signaling pathways including the mitogen-acti-

vated protein kinases (MAPKs), PLA2, phospholipase D,
phosphatidylinositol 3-kinase (PI3K, leading to activation
of the Akt pathway), and phospholipase C that increases the
inositol 1,4,5-trisphosphate (IP3)-dependent intracellular
Ca2� release (305).

Most missense mutations in CASR cluster within the extra-
cellular domain of the CaSR that has a proposed role in
Ca2� sensing and binding (284, 323). Indeed, expression
studies have demonstrated a right shift in the dose-response
curve of mutant CaSR proteins compared with the wild-
type, meaning a decrease in sensitivity towards the extracel-
lular Ca2� concentration (284, 558) (FIGURE 12). Other
mutations are localized in the transmembrane segments,
which could inhibit the transmission of activation signals to
the intracellular signaling pathways (320, 415). Additional
missense mutations lead to impaired trafficking to the
plasma membrane as a result of incorrect processing at
either the ER or Golgi apparatus (324, 809). Interestingly,
there seems to be a genotype-phenotype correlation in
which the dominant-negative effect of missense mutations
on wild-type CaSR function leads to a more severe pheno-
type than observed in patients harboring heterozygous
truncating mutations (526, 797). It should be noted that
common variants in the CASR gene have been consistently
associated with serum Ca2� levels in GWAS studies involv-
ing populations of European, Indian and Asian descent
(371, 533, 776).

The CaSR mainly exerts its function in tissues directly re-
lated to Ca2� homeostasis as it is highly expressed in the
parathyroid gland and the kidney, but it can also be found
in bone, colon, thyroid gland, brain, and pancreas (606). In
the parathyroid gland, it regulates the secretion of PTH that
can indirectly [via 1,25(OH)2D3 production in the kidney]
control intestinal Ca2� absorption, Ca2� release from bone,
and also Ca2� reabsorption in the kidney. PTH secretion is
suppressed upon stimulation of the CaSR by high extracel-
lular ionized Ca2� concentrations, while low Ca2� concen-

FIGURE 12. Calcium homeostasis. A: Ca2� homeostasis is maintained through the coordinated actions of intestinal absorption, storage in
bone, and urinary excretion by the kidney. Changes in serum Ca2� are sensed by the parathyroid gland that can release PTH. The PTH-
1,25(OH)2D3-FGF23 axis is an essential hormonal control mechanism that coordinates the Ca2� balance. In short, release of PTH can stimulate
bone resorption, renal Ca2� reabsorption, and renal production of active vitamin D [1,25(OH)2D3] to increase intestinal Ca2� absorption.
Additionally, 1,25(OH)2D3 stimulates FGF23 production in bone, which acts as a negative feedback loop to inhibit PTH and 1,25(OH)2D3

production. The arrows indicate the direction of the pathway; red denotes inhibitory actions, and black depicts stimulatory actions. B:
reabsorption of Ca2� in the kidney occurs through a paracellular pathway in the PT and TAL, the latter involving the claudins 16/19. Fine-tuning
of the final Ca2� excretion occurs in the DCT via transcellular transport. Here, Ca2� is reabsorbed at the apical membrane through TRPV5, is
subsequently bound to calbindin-D28k, and is transported to the basolateral where it is extruded via the Ca2� pump PMCA and the NCX1 Ca2�

exchanger. C: activation of the CaSR at the basolateral membrane of the TAL inhibits the process of NaCl reabsorption via blocking NKCC2 and
ROMK. This occurs via activation of HETE that is metabolized from AA, which in turn is produced by PLA2. Furthermore, activation of the CaSR
acts on the clauding16/19-mediated paracellular transport via inhibition of microRNA-claudin-14 pathway. D: functional analysis of the Ca2�

response, evoked by extracellular Ca2� changes, of wild-type and various CaSR mutants in transfected HEK293 cells. The depicted CaSR
mutants showed a leftward (activating mutant) and a rightward (inactivating mutant) shift in the concentration-response curve compared with
the wild-type (wt) CaSR. AA, arachidonic acid; CaSR, calcium sensing receptor; DCT, distal convoluted tubule; FGF23, fibroblast growth factor
23; HETE, 20-hydroxyeicosatetraeonic acid; NKCC2, Na�-K�-2Cl� cotransporter; PLA2, phospholipase A2; PMCA, plasma membrane calcium
ATPase; PT, proximal tubule; PTH, parathyroid hormone; ROMK, renal outer medullary K� channel; TAL, thick ascending limb of Henle’s loop;
TRPV5, transient receptor potential vanilloid type 5. [Adapted from Hannan et al. (284), with permission from Oxford University Press.]
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trations result in the synthesis and secretion of PTH (488,
504, 511). The expression of the CaSR in the kidney has
been widely studied, with the first studies showing a
nephron-wide distribution with distinct cellular polariza-
tion per segment, but most significant abundance at the
basolateral membrane in the TAL (445, 604, 605) (FIGURE
12). The CaSR regulates the urinary Ca2� excretion, and its
mechanisms of action will be discussed in more detail in the
forthcoming paragraphs. Overall, the inactivating CaSR
mutations in FHH “reset” the Ca2�-dependent setpoint for
PTH release to a higher than normal plasma Ca2� concen-
tration, thereby explaining the inappropriate control of
Ca2� homeostasis and resulting hypercalcemia. In addition,
defective CaSR in the kidney leads to increased tubular
Ca2� reabsorption. The renal Ca2� handling in FHH seems
independent of PTH, as parathyroidectomy did not im-
prove the hypocalciuria (141, 463). Often, patients are
treated with the loop diuretic ethacrynic acid that increases
the urinary Ca2� excretion. This occurs via inhibition of
NKCC2 in the TAL, which in turn suppresses the passive
Ca2� reabsorption, suggesting that FHH patients have an
abnormal TAL function (25).

The FHH type 2-causing mutations are located within
the GTPase domain of the G�11-subunit, which are pre-
dicted to diminish CaSR signal transduction by influenc-
ing the interaction of G�11 with downstream effectors
(282). Mutations in AP2S1, related to FHH type 3, were
shown to disrupt the AP2 complex, which is a central
component of clathrin-coated vesicles that facilitate en-
docytosis of plasma membrane proteins. The loss of in-
teraction between the AP2 complex and the COOH ter-
minus of the CaSR leads to impaired endocytosis and
thus disrupts signal transduction in a dominant-negative
manner (282).

3. Neonatal severe hyperparathyroidism

A) BRIEF CLINICAL DESCRIPTION. In contrast to FHH, the auto-
somal recessive disorder neonatal severe hyperparathyroid-
ism (NSHPT) (MIM no. 239200) is a potentially life-
threatening condition that is characterized by severe neo-
natal hypercalcemia and highly elevated serum PTH
levels. Other phenotypic features include failure to
thrive, markedly enlarged parathyroid glands, and un-
dermineralization of bone resulting in bone abnormali-
ties, multiple fractures, and ribcage deformities that may
lead to respiratory problems (235, 299). The severe hy-
percalcemia and hyperparathyroidism associated with
NSHPT are challenging and require specific measures.
The acute management of hypercalcemia classically relies
on saline perfusion and use of loop diuretics. Pamidro-
nate, a biphosphonate drug that could halt the bone re-
sorption process mediated by uncontrolled hyperpara-
thyroidism, has been successfully used in NSHPT pa-
tients to control severe hypercalcemia before
parathyroidectomy (790). Radical subtotal parathyroid-

ectomy is often the treatment of choice in NSHPT (96). In
addition, calcimimetic CaSR activators may be of interest
in NSHPT (232). The disorder was originally described
before the identification of FHH (235, 299), but later
discovered to develop in children from consanguineous
parents with FHH (462, 707). In line with this, CaSR
mutations are shown to be the causative factor.

B) GENETICS, PROTEIN FUNCTION, AND INSIGHTS FOR RENAL PHYSIOL-

OGY. Pollak et al. (572) identified several homozygous and
compound heterozygous mutations in the CASR gene in
patients with NSHPT. To study the role of CaSR, various
mouse models have been investigated over the past years.
Mice heterozygous for the Casr gene mimic the FHH phe-
notype, while Casr KO mice exhibited a phenotype resem-
bling NSHPT (302). These Casr-null mice have severe hy-
perparathyroidism and hypercalcemia, as well as bone ab-
normalities and growth retardation, and they die within a
few days after birth. This lethality can be rescued by genetic
ablation of Pth since double KO (Pth and Casr) mice have
normal development compared with control littermates
(402). Importantly, the serum Ca2� levels and renal Ca2�

excretion remained affected, indicating that the CaSR has
an additional role in renal Ca2� handling independent of
PTH (370, 402). Later studies found that targeting exon 5
of the Casr produced a truncated CaSR due to alternative
splicing; this CaSR isoform is able to partly compensate for
the loss of the CaSR in some tissues (536, 619). Additional
mouse models have been generated that allowed inducible
tissue-specific deficiency of the CaSR (104, 746). Toka et al.
(746) studied kidney-specific Casr KO mice and found that
serum levels of Ca2�, Mg2�, and PTH were unaltered com-
pared with control mice. However, these mice display sig-
nificantly diminished Ca2� excretion when fed a high-Ca2�

diet. Furthermore, a marked downregulation of claudin-14,
modest upregulation of claudin-16, and increased NKCC2
activity were observed (746). Claudin-16 can interact with
claudin-19 to form a paracellular complex that regulates
cation reabsorption in the TAL (315). Recently, claudin-14
was shown to control renal Ca2� handling via negative
regulation of the claudin-16/19 complex (249, 251). To-
gether with its expression in the basolateral membrane of
TAL cells (604, 605), it suggests that the CaSR plays a role
in regulating paracellular Ca2� transport in this segment.

The latter notion is supported by an in vitro study dem-
onstrating that CaSR activation in MDCK cells results in
deposition of tight junction components at the cell mem-
brane, influencing the transepithelial electrical resistance
(358). Another study used Cldn14-deficient mice and
transgenic animals overexpressing claudin-14 to show
that the CaSR alters the tight junction permeability via
the calcineurin-NFATc1-microRNA-claudin-14 path-
way (249) (FIGURE 12). These investigators demonstrated
that the Cldn14 gene transcription is controlled by the
microRNAs miR-9 and miR-374, which in turn are reg-
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ulated by promoter binding of nuclear factor of activated
T cell (NFAT) induced by CaSR signaling in the kidney
(249, 251). This mechanism was substantiated by Gong
et al. (248) demonstrating that the transcription of renal
miR-9 and miR-374 can be stimulated by treatment with
histone deacetylase (HDAC) inhibitors. This will down-
regulate claudin-14, thereby relieving its repression on
paracellular transport and resulting in reduced urinary
Ca2� excretion in treated mice (248). In short, the tar-
geted deletion of CaSR in mice has provided attractive
models of the human syndromes and proved to be helpful
in unraveling the role of the CaSR in the kidney. Further-
more, parathyroidectomized rats were shown to develop
hypocalciuria and hypercalcemia despite PTH supple-
mentation (445), thereby confirming a PTH-independent
role of the CaSR in the regulation of the Ca2� balance.

4. Autosomal dominant hypocalcemia

A) BRIEF CLINICAL DESCRIPTION. In contrast to the loss-of-function
mutations that lead to hypercalcemic disorders, gain-of-
function mutations in the CASR gene are associated with
hypocalcemic defects. Autosomal dominant hypocalce-
mia (ADH) (MIM no. 601198), also referred to as auto-
somal dominant hypocalcemic hypercalciuria, is gener-
ally characterized by a mild asymptomatic hypocalcemia,
together with renal Ca2� wasting (559, 573). The pheno-
type and age of onset depend on the degree of hypocal-
cemia and are particularly variable, ranging from asymp-
tomatic individuals to patients with rather mild symp-
toms (cramps, weakness, paresthesia) and patients with
severe symptoms that include recurrent seizures, nephro-
calcinosis, and impaired renal function. Neonatal sei-
zures and carpo-pedal spasm have been reported in a few
cases (559). Other biochemical features comprise hyper-
phosphatemia and hypomagnesemia, which are also ob-
served in related diseases like hypoparathyroidism and
pseudohypoparathyroidism that arise from tissue resis-
tance to PTH (35, 209, 562). Appropriate diagnosis is
important to avoid vitamin D analog treatment in ADH,
as it worsens the hypercalciuria and may lead to compli-
cations such as nephrocalcinosis, nephrolithiasis, and re-
nal failure (559). Instead, hypocalciuric compounds in-
cluding PTH and thiazides are generally used, as well as
calcilytics (CaSR antagonists) (425, 489, 647). Careful
monitoring of urinary Ca2� levels and regular kidney
ultrasound are essential for the maintenance of Ca2�

homeostasis and treating the clinical signs of
hypocalcemia.

B) GENETICS, PROTEIN FUNCTION, AND INSIGHTS FOR RENAL PHYSIOL-

OGY. Activating mutations of the CASR gene were first de-
scribed in families affected with ADH (558, 573). These are
most often missense mutations occurring in the extracellu-
lar NH2-terminal domain and in the outer loops of the
signal transduction domain of the CaSR (568). They may
alter receptor conformation and were shown to cause a

leftward shift in the dose-response curve towards the extra-
cellular Ca2� concentration (558, 573). In addition to this
increased Ca2� sensitivity, a large deletion of the intracel-
lular COOH terminus was found to increase the cell surface
expression of the CaSR (432). Gain-of-function mutations
in GNA11, which encodes G�11 that mediates the signaling
of the CaSR, were also recently reported in association with
ADH (512). The altered CaSR activity results in inappro-
priately low serum PTH and decreased reabsorption of
Ca2� in the TAL, leading to Ca2� wasting. The impaired
reabsorption of Ca2� in the TAL is thought to be due to a
reduction of the paracellular permeability and/or to a de-
creased lumen-positive transepithelial voltage as a result of
defective transcellular NaCl reabsorption (83).

Next to the typical mild form of ADH, some severe mu-
tations have been identified in patients suffering from
symptomatic hypocalcemia together with a Bartter-like
syndrome that involves hypokalemic metabolic alkalosis,
elevated plasma renin, and hyperaldosteronism (770,
800). This condition was previously known as Bartter
syndrome type 5; functional analysis of these CASR mu-
tations has demonstrated even higher affinity for extra-
cellular Ca2� than those observed for mutant receptors
associated with ADH alone (319, 770, 800). These ob-
servations suggest that the additional features that occur
in Bartter syndrome type 5 are due to severe gain of CaSR
function (557). In a physiological setting, CaSR activa-
tion in TAL stimulates intracellular Ca2� signaling that
modulates PLA2 activity, which in turn increases cytoso-
lic arachidonic acid that is rapidly metabolized to 20-
HETE or to prostaglandins (798). These signaling path-
ways have been linked to inhibition of NKCC2 and
ROMK (9, 792, 793, 795). This means that enhanced
activity of CaSR in TAL disturbs NaCl reabsorption di-
rectly mediated by NKCC2 and indirectly via ROMK
channels, as K� recycling contributes to the NKCC2
transport rate. Furthermore, inhibition of ROMK and
NKCC2 will lower the lumen-positive transepithelial
voltage, which then diminishes paracellular Ca2� and
Mg2� transport, resulting in TAL dysfunction resem-
bling Bartter syndrome (FIGURE 12).

A point of attention is that the intracellular signaling path-
ways activated by the CaSR are also stimulated by other
receptor signaling involving angiotensin II and endothelin,
which are not known to cause renal NaCl or K� wasting.
This indicates that the CaSR functions via additional mech-
anisms, which could imply regulation of transporters in
other nephron segments. There is some evidence of apical
CaSR expression in the PT regulating the PTH-mediated
phosphate excretion (28). A recent study suggested a new
role of the CaSR in modulating fluid reabsorption as well as
H� secretion in the PT, via stimulation of NHE3 (95). Ac-
tivating the CaSR increased NHE3 activity leading to en-
hanced Na� reabsorption, which drives fluid reabsorption.
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The concomitant H� secretion is thought to result in ion-
ization of Ca2�, which prevents its precipitation in the dis-
tal parts of the nephron (95). Thereby, CaSR activation
would drive both fluid reabsorption in the PT and Ca2�

reabsorption in the distal nephron. Expression of the CaSR
has also been reported on the apical and basolateral mem-
branes of the DCT and CNT (604, 747), but its physiolog-
ical role there remains to be established. Available evidence
suggests the CaSR controls apical Ca2� influx through
TRPV5 and/or basolateral exit via NCX and PMCA in the
DCT2/CNT (170, 747). An interaction of the CaSR with
the inwardly rectifying K� channel Kir4.1, expressed at the
basolateral membrane of the DCT, has also been demon-
strated (100, 322). The CaSR was shown to block Kir4.1
channel activity by reducing its expression at the plasma
membrane (100). Within the collecting duct, the CaSR is
present in both principal and intercalated cells (604), where
it is proposed to play a role in diuresis to prevent kidney
stone formation upon hypercalciuria (581, 601, 636). The
latest study suggests that activation of the CaSR leads to a
reduced vasopressin response for aquaporin2 (AQP2)
translocation, and subsequently reduces water reabsorp-
tion, functioning as a defense mechanism against kidney
stones (581). This is in agreement with an earlier finding
that mice deficient of Trpv5 do not develop kidney stones
despite the strong hypercalciuria (304). Instead, the
Trpv5�/� mice have an enhanced urinary acidification and
polyuria, likely due to the effects of the CaSR on the H�-
ATPase activity and AQP2 expression (601).

Together, these data suggest that the role of the CaSR in the
kidney is not restricted to Ca2� handling. Based on its ba-
solateral expression in TAL and DCT, it may sense plasma
Ca2� levels in these segments and function as modulator of
Ca2� reabsorption by affecting either the passive or active
transport pathways. In addition, the CaSR has antiphos-
phaturic effects in PT that might counteract possible Ca2�-
phosphate precipitation in distal tubular segments. Further-
more, it promotes acidification and polyuria through its
action in the CD. Hence, the CaSR seems to have estab-
lished an integrated system, regulating various levels of fluid
and electrolyte management, to prevent nephrocalcinosis
and kidney stone formation. Developing CaSR modulators
with some specificity for the kidney could allow modulation
of renal actions and function as therapeutics of the Ca2�-
related diseases.

F. Disorders of Magnesium Transport

1. Renal magnesium handling

Mg2� is an essential divalent cation that participates in a
wide spectrum of processes involving intracellular signal-
ing, neuromuscular excitability, bone formation, and en-
zyme activation (186, 212). The maintenance of the
Mg2� balance is crucial for many physiological func-

tions, and plasma Mg2� concentrations are kept within a
defined range (0.7–1.1 mM) via (re)absorption in the
intestine and kidney, and exchange with the bone. The
skeleton functions as a major Mg2� store, resulting in
only 1% of the total body Mg2� as the circulating plasma
Mg2� (789). Ultimately, these Mg2� levels are defined by
the final urinary Mg2� excretion, which is tightly regu-
lated by the kidney (174, 587). Here, the majority of
filtered Mg2� is reabsorbed in the PT (15–20%) and TAL
(65–70%) via passive paracellular transport. Similar to
Ca2� transport, the claudin-16/19 complex is responsible
for Mg2� reabsorption in the TAL, which is driven by the
positive transepithelial voltage. Several hormones, in-
cluding PTH, glucagon, calcitonin, and insulin, were
shown to stimulate Mg2� reabsorption in this segment,
either via influencing the transepithelial voltage by affect-
ing NKCC2 transport or ROMK activity or by modifying
the paracellular permeability through the claudins (168,
588). Similarly, activation of the CaSR in the TAL can
inhibit paracellular Mg2� transport (293). Furthermore,
a number of other electrolyte disturbances like metabolic
acidosis, K� depletion, and hypophosphatemia also af-
fect renal Mg2� transport by changing the transepithelial
voltage or the permeability of the paracellular pathway.
Final regulation of the urinary Mg2� excretion takes
place in DCT1 where the remaining 10% of filtered
Mg2� is reabsorbed by an active transcellular mechanism
(140). Here, Mg2� enters the cell via the epithelial Mg2�

channel TRPM6, dependent on the negative apical trans-
membrane potential. This is established by apical K�

secretion via the K� channels Kv1.1 and/or ROMK
(717). Furthermore, Mg2� transport via TRPM6 can be
stimulated by a number of hormones including epidermal
growth factor (EGF), insulin, and estrogen (265, 266,
508). The mechanism of Mg2� extrusion at the basolat-
eral membrane is still not understood, but likely com-
prises a Na�-dependent transporter. In addition, two
other basolateral proteins, the K� channel Kir4.1 and
�-subunit of Na�-K�-ATPase, are identified as important
factors in generating a Na� gradient that drives Mg2�

reabsorption in DCT1 (62, 477) (FIGURE 13).

Disturbances in the Mg2� balance are often secondary to
diseases like diabetes mellitus, osteoporosis, asthma, and
heart and vascular disease, or Mg2� depletion occurs upon
treatment with various drugs including loop diuretics, thia-
zides, immunosuppressants, anticancer drugs, proton pump
inhibitors. Studies of inherited forms of hypomagnesemia
and experimental findings of several animal models have
greatly increased our knowledge of renal Mg2� reabsorp-
tion mechanisms. Identification of the affected nephron seg-
ments, different modes of inheritance, and additional char-
acteristic symptoms has helped in the classification of the
Mg2� wasting disorders, which is discussed in more detail
in the forthcoming paragraphs.
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2. Familial hypomagnesemia with hypercalciuria and
nephrocalcinosis

A) BRIEF CLINICAL DESCRIPTION. In 1975, a case report described
the phenotype of a young man with hypomagnesemia and

accompanying renal Mg2� and Ca2� wasting, that also ex-
hibited progressive nephrocalcinosis and chondrocalcinosis
(630). Subsequent studies enabled full characterization of
the disorder named as familial hypomagnesemia with hy-
percalciuria and nephrocalcinosis (FHHNC, also named
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hypomagnesemia 3, HOMG3; MIM no. 248250) (517,
577, 620). The patients present in childhood with polyuria-
polydipsia, urinary tract infections, and kidney stones, and
extrarenal manifestations such as failure to thrive, tetany,
seizures, and nystagmus have also been reported (517, 620).
Additional biochemical characteristics include elevated
PTH levels, incomplete distal tubular acidosis, hypocitratu-
ria, and hyperuricemia in most patients. In addition to the
classical FHHNC phenotype, a subset of patients was iden-
tified with severe ocular abnormalities. This appeared to be
associated with a different genetic defect and was therefore
termed FHHNC with severe ocular involvement (also
named hypomagnesemia 5, HOMG5; MIM no. 248190)
(399). Due to the hypercalciuria and nephrocalcinosis, pa-
tients often progress to chronic kidney disease within the
first two decades of life, and a significant number of patients
develop end-stage renal disease later in life. Initial therapy
aims at restoring the plasma Mg2� levels and reducing the
hypercalciuria by chronic Mg2� supplementation and thia-
zide treatment, respectively. However, this treatment is in
general insufficient to prevent the progression of nephrocal-
cinosis and stone formation (577, 753, 801).

B) GENETICS, PROTEIN FUNCTION, AND INSIGHTS FOR RENAL PHYSIOL-

OGY. By using a positional cloning approach, Simon et al.
(693) found mutations in CLDN16, the gene encoding the
tight junction protein claudin-16 (initially named paracel-
lin-1) as associated with FHHNC/HOMG3. Claudin-16 is
expressed in the TAL and plays a role in paracellular cation
permeability (385, 693). Most reported CLDN16 muta-
tions are missense mutations that target either the trans-
membrane domains or the extracellular loops, with a clus-
tering in the first extracellular loop that is important for ion
selectivity. Within this domain, patients originating from
Germany or Eastern European countries exhibit a common
CLDN16 mutation (L151F) due to a founder effect (801).
As this mutation is present in ~50% of mutant alleles, mo-
lecular diagnosis is greatly facilitated in patients originating
from these countries. A few years later, mutations were also
identified in the CLDN19 gene, coding for claudin-19, as-
sociated with HOMG5 (399). Claudin-19 colocalizes with

claudin-16 in the kidney, but it is also highly expressed in
the retina explaining the severe ocular problems observed in
patients with CLDN19 mutations (399). A cohort study
presented a genotype-phenotype correlation demonstrating
that FHHNC patients with CLDN16 mutations leading to
a complete loss-of-function on both alleles display a
younger age onset as well as a more rapid decline in renal
function compared with patients with residual claudin-16
function (398). On the other hand, phenotypical variability
is even found in families with members having the same
homozygous CLDN16 or CLDN19 mutation (20, 670).

The claudin-16 and -19 isoforms are both highly enriched
in the TAL. Hou et al. (315) demonstrated that claudin-16
and claudin-19 interact to form a cation-selective pore.
Overexpression studies showed that several FHHNC mu-
tations in CLDN16 and CLDN19 disrupt this interaction
and abolish the cation selectivity of the encoded claudins
(316). However, other studies have shown conflicting re-
sults on the claudin-16/19 permeability properties, and the
direct effects on Mg2�/Ca2� permeation do not fully ex-
plain the strong hypercalciuria and hypermagnesiuria ob-
served in FHHNC patients (313, 337, 374). The idea is that
the mutant claudin proteins impair the electrical driving
force necessary for passive transport. Overexpression of
claudin-16 significantly increased the Na� permeability
(PNa), which was not observed for the FHHNC disease
mutants of claudin-16 (313). Furthermore, ex vivo perfu-
sion measurements of TAL segments from Cldn16 knock-
down (KD) mice demonstrated that the ion permeability
ratio for Na� over Cl� (PNa/PCl) was decreased (317). On
the other hand, overexpression of claudin-19 led to a de-
crease in Cl� permeability, meaning that coexpression with
claudin-16 results in a large increase in PNa/PCl that ulti-
mately generates the transepithelial voltage (316, 680).
Hence, loss-of-function mutations in CLDN16 and
CLDN19 would abrogate this electrical driving force for
paracellular Ca2� and Mg2� reabsorption in TAL.

The latter hypothesis has been supported by studies in
mouse models. Hou et al. (317) used RNA interference to

FIGURE 13. Magnesium transport in the kidney. A: the major amount of filtered Mg2� is reabsorbed through a paracellular route in the
PT and TAL. Here, claudin-16 and claudin-19 constitute the paracellular Mg2� pathway. The final reabsorption of Mg2� takes place in the
DCT via the apical Mg2� channel TRPM6. B: Mg2� reabsorption in DCT is mediated by TRPM6. Here, transport of Mg2� is primarily driven
by the electrical gradient over the apical membrane, which is established by the voltage-gated K� channels Kv1.1 and ROMK. Moreover,
the hormones EGF and insulin are involved in the membrane expression of TRPM6 through intracellular signaling involving Cdk5, PI3K, Akt,
and Rac1. Extrusion of Mg2� at the basolateral membrane occurs via a yet unknown mechanism, possibly regulated by CNNM2 functioning
as a Mg2� sensor. The Na�-K�-ATPase generates the electrochemical gradient essential for the transport processes, and its activity is
dependent on K� recycling via Kir4.1 at the basolateral membrane. Furthermore, FXYD2 is known as a regulatory subunit of the
Na�-K�-ATPase, and its transcription is regulated by HNF1� and the cofactor PCBD1. C: schematic representation of the domain
structure of TRPM6 depicting the missense mutations identified in patients suffering from hypomagnesemia with secondary hypocalcemia.
Akt, protein kinase B; Cdk5, cyclin-dependent kinase 5; ClC-Kb, chloride channel Kb; CNNM2, cyclin M2; DCT, distal convoluted tubule;
EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; FXYD2, FXYD-domain containing ion transport regulator 2;
HNF1�, hepatocyte nuclear factor-1�; IR, insulin receptor; Kir4.1, inwardly rectifying K� channel; Kv1.1, voltage-gated K� channel 1.1;
NCC, Na�-Cl� cotransporter; PCBD1, pterin-4 alpha-carbinolamine dehydratase 1; PI3K, phosphoinositide 3-kinase; PT, proximal tubule;
Rac1, Ras-related C3 botulinum toxin substrate 1; ROMK, renal outer medullary K� channel; TAL, thick ascending limb of Henle’s loop;
TRPM6, transient receptor potential melastatin type 6.
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generate Cldn16-deficient mice that had �99% knock-
down (KD) of claudin-16 expression in the kidneys. These
mice show typical FHHCN symptoms including hypomag-
nesemia, high urinary excretion of Ca2� and Mg2�, and
nephrocalcinosis (317). Similarly, Cldn19 KD mice exhibit
low serum Mg2� together with urinary Ca2� and Mg2�

wasting (315). While the KD models favor a reduction in
Na� selectivity as causative factor of renal wasting in
FHHNC, a study on Cldn16 KO mice demonstrated re-
duced Mg2� and Ca2� permeability in microperfused TAL
segments (810). A third isoform enriched in the TAL, clau-
din-14, may interact with claudin-16, causing the inhibition
of the claudin-16/19 complex. As described in section IIIE3,
the expression of claudin-14 is positively regulated by the
CaSR via a microRNA-dependent mechanism (251). Ge-
nome-wide association studies support the relevance of this
mechanism, since common variants in CLDN14 are asso-
ciated with increased risk of kidney stones and the urinary
Mg2� to Ca2� ratio in the general population (134).

The importance of claudins in electrolyte balance was fur-
ther emphasized by the recent identification of mutations in
CLDN10, encoding claudin-10, by three independent
groups (65, 277, 386). Claudin-10 has two major isoforms
that can form paracellular channels with different ion selec-
tivity (767). Mutations in either of the isoforms were asso-
ciated with an autosomal recessive disorder that is charac-
terized by hypohidrosis, electrolyte imbalance, lacrimal
gland dysfunction, ichthyosis, and xerostomia (HELIX syn-
drome; MIM no. 617671). The patients had renal salt wast-
ing, with hyperaldosteronism and hypokalemia, and mild
Ca2� and Mg2� retention. Interestingly, the biochemical
characteristics were in line with findings in the tubule-spe-
cific Cldn10 KO mice (79). Functional analysis in isolated
perfused TAL tubules of these mice demonstrated a de-
creased paracellular Na� permeability and a relatively in-
creased permeability of Ca2� and Mg2� (79). Of note, clau-
din-10 shows a higher expression in the inner stripe of the
outer medulla (ISOM), whereas claudin-16 and claudin-19
predominate in the outer stripe (OSOM) and the cortex.
Furthermore, the channels formed by claudin-10b are selec-
tively permeable for Na�, whereas claudin-16 and -19 are
permeable for Mg2� and Ca2� (485). These data, recently
supported by studies using double KO mice for Cldn16 and
Cldn10 (78), support the existence of a longitudinal special-
ization of paracellular transport within the TAL segment
(FIGURE 14). In addition to the paracellular reabsorption of
Ca2� and Mg2� (in the OSOM and cortex) via the claudin-
16/19 complex, the lumen-positive transepithelial potential
drives the paracellular reabsorption of Na� (in the ISOM)
via claudin-10b. Recently, Miltaz et al. (485) hypothesized
that the high paracellular and transcellular Na� reabsorp-
tion without water in the ISOM leads to a hyposmotic lu-
minal fluid in the cortical TAL, resulting in Na� diffusion
from interstitium to lumen (via claudin-10b) along its con-
centration gradient, via the paracellular pathway created by

clauding-10b. In turn, this Na� diffusion contributes to the
lumen-positive potential as a driving force for Ca2� and
Mg2� reabsorption (544). Together, these studies support
further understanding of tight junction formation and pro-
vide essential information on the selectivity of the pore
region.

3. Isolated dominant renal hypomagnesemia

A) BRIEF CLINICAL DESCRIPTION. Nearly three decades ago, two
initially unrelated Dutch families were reported with dom-
inant renal hypomagnesemia associated with hypocalciuria
(IDH, also named hypomagnesemia 2, HOMG2; MIM no.
154020) (239). They had increased urinary Mg2� values,
showed lowered urinary Ca2� excretion, and suffered from
generalized convulsions, cramps, and chondrocalcinosis.
The serum Mg2� levels were �0.4 mM, without other
plasma electrolyte abnormalities. A 28Mg-retention study
in one of the patients demonstrated that intestinal Mg2�

absorption was preserved, which was indicative for a renal
defect (239). Other family members had low serum Mg2�

as well, but lacked symptoms of Mg2� deficiency (239,
478). Detailed haplotype analyses identified the segregation
of an affected haplotype in the two families, which is sug-
gestive for a common ancestor (478). A recent study re-
ported on two new Belgian and Dutch families with IDH
that also shared this haplotype. Indeed, the same mutation
was identified in all families (142, 477).

B) GENETICS, PROTEIN FUNCTION, AND INSIGHTS FOR RENAL PHYSIOL-

OGY. Linkage analysis followed by genetic candidate screen-
ing led to the discovery of a mutation in the FXYD2 gene,
resulting in amino acid substitution G41R in the encoded
�-subunit of the Na�-K�-ATPase (FXYD2) in the IDH pa-
tients (477). The Na�-K�-ATPase consists of �- and �-sub-
units that form a complex for the active transport of Na�

and K� in opposite directions. The �-subunit is a small, type
I transmembrane protein of which the transmembrane do-
main binds to a groove formed by several helices of the
Na�-K�-ATPase �-subunit (426). Xenopus laevis oocyte
studies showed that this association is necessary for
transport of the �-subunit to the plasma membrane, but
not for plasma membrane expression of functional Na�-
K�-ATPase proteins (49). The �-subunit is suggested to
modulate the kinetics of Na�-K�-ATPase-mediated
transport, with changes in the affinity to ATP or depen-
dence to the membrane potential (23, 48, 49, 426, 584,
742). Expression studies in Xenopus oocytes and mam-
malian cells have shown that the G41R disease mutant is
retained in the cytoplasm as it lacks interaction with the
Na�-K�-ATPase �-� complex (86, 476). It is suggested
that the dominant-negative G41R mutant protein can
oligomerize with wild-type subunits, thereby abrogating
the binding to the Na�-K�-ATPase (476). Immunolocal-
ization studies in rat kidney showed that FXYD2 is
highly expressed at the basolateral membrane of cells
lining the TAL and DCT (23, 481, 584). It is, therefore,
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proposed that misrouting of mutant FXYD2 will dimin-
ish the functionality of the Na�-K�-ATPase in DCT.
Hence, reduced intracellular K� or increased intracellu-
lar Na� will lower the membrane potential at the apical
membrane resulting in a diminished driving force for
Mg2� uptake and subsequent Mg2� wasting.

A heterozygous mutation of the FXYD2 gene in humans
does not lead to hypomagnesemia, pointing towards a
specific dominant-negative effect of the G41R mutation
in patients with isolated hypomagnesemia (477). An-
other mechanism of action has been proposed by Sha and
co-workers (486, 677), which measured large nonselec-

FIGURE 14. Expression and role of claudins in the TAL. Representation of the transcellular and paracellular
transport pathways in the thick ascending limb (TAL) cells from the inner stripe of the outer medulla (ISOM) and
the outer stripe of the outer medulla (OSOM) and the cortex. Most of K� entering the cell via NKCC2 is recycled
through ROMK, leading to hyperpolarization of the apical membrane. Cl� exiting via ClC-Kb is depolarizing the
basolateral membrane. The difference in membrane potential constitutes a lumen-positive transepithelial
potential that drives paracellular reabsorption of Ca2�/Mg2� and of Na�. Recent studies have shown that the
TAL expresses claudins in a mosaic pattern, with claudins 16/19 predominating in the tight junctions of the
cortex and OSOM, whereas tight junctions exclusively made of claudin-10b predominate in the ISOM. This
mosaic pattern results in a spatial separation of paracellular Na� transport and reabsorption of Ca2� and
Mg2�. Tight junctions with claudin-10b favor Na� over Mg2�, whereas tight junctions with claudins 16/19
prefer Mg2� over Na�. As a result, in ISOM TAL, tight junctions with exclusive claudin-10b mediate high
paracellular Na� permeability, which adds to the transcellular uptake. Reabsorption of Na� without water in the
ISOM leads to a hyposmotic luminal fluid in the cortical TAL, which may favor Na� diffusion from the interstitium
into the lumen along its concentration gradient, through tight junctions rich in claudin-10b. Inset: general
claudin protein and membrane-folding model: 4 transmembrane helical domains (green), 2 extracellular loops
(blue), and 1 intracellular loop as well as a short NH2-terminal and a long COOH-terminal cytoplasmic domain
(red). ATPase, adenosine triphosphatase; CaSR, calcium sensing receptor; ClC-Kb, chloride channel Kb; ISOM,
inner stripe of the outer medulla; NKCC2, Na�-K�-2Cl� cotransporter; OSOM, outer stripe of the outer
medulla; ROMK, renal outer medullary K� channel. [Adapted from Milatz et al. (485) and Olinger et al. (544),
with permission from Elsevier.]
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tive ion currents in FXYD2-expressing oocytes with dif-
ferent characteristics for the G41R mutant. It is, how-
ever, not known whether the protein forms an ion chan-
nel or indirectly affects other ionic currents. Fxyd2 KO
mice display no abnormalities in urinary Mg2� excretion
or serum Mg2� levels (21, 356). Interestingly, they were
suspected to have elevated Na�-K�-ATPase activity and
showed hyperphosphorylation of NCC in kidney (22).
This was anticipated to lead to Na� retention and hyper-
tension, but the KO mice showed no abnormalities in
their Na� balance and were normotensive (22). Of note,
the mice exhibited a mild pancreatic phenotype with re-
duced blood glucose and elevated levels of circulating
insulin. They showed enhanced glucose tolerance but no
insulin resistance (21). Future investigation should unveil
the mechanism responsible for these observations and
assess these clinical parameters in patients harboring
FXYD2 mutations.

Identification of new causative genes for hypomagnesemia
has also shed light on the FXYD2 gene transcription in
DCT. Mutations in the HNF1B gene encoding the tran-
scription factor hepatocyte nuclear factor 1� (HNF1�)
have been associated with an autosomal dominant disorder
named renal cysts and diabetes syndrome (RCAD; MIM no.
137920). The disorder is characterized by maturity-onset
diabetes of the young 5 (MODY5) and severe nondiabetic
renal dysfunction (308, 525). In 2009, Adalat et al. (6)
found that nearly half of the subjects carrying a HNF1B
mutation present with hypomagnesemia due to renal Mg2�

wasting. The association of mutations in HNF1B with hy-
pomagnesemia (and other tubular abnormalities) of renal
origin has been confirmed in subsequent cohorts, which
also evidenced the marked heterogeneity of the clinical pre-
sentation (196).

HNF1� is a homeodomain-containing transcription fac-
tor expressed in developing mouse ureters and collecting
ducts, and postnatally observed in proximal and distal
tubules (129, 394). HNF1� regulates the FXYD2 gene
expression (6, 206), at least in vitro, and that may ex-
plain its role in renal Mg2� handling. In addition, it was
recently identified as transcriptional activator of
KCNJ16, which encodes the K� channel Kir5.1 (397).
Mutations in KCNJ16 are associated with SeSAME (sei-
zures, sensorineural deafness, ataxia, mental retardation,
and electrolyte imbalance) or EAST (epilepsy, ataxia,
sensorineural deafness, and tubulopathy) syndrome, an-
other Mg2� wasting tubulopathy that will be discussed
below. Kir5.1 likely plays an important role in Mg2�

transport in DCT, but the exact molecular mechanism
remains to be elucidated. The study by Kompatscher et
al. (397) implies that patients with HNF1B mutations
have reduced Kir5.1 expression, which could explain the
renal Mg2� wasting.

Another recent study reported on three patients with ho-
mozygous mutations in the PCBD1 gene, coding for pterin-
4-alpha-carbinolamine dehydratase 1 (PCBD1), suffering
from hypomagnesemia, renal Mg2� wasting, and MODY5-
like diabetes (205). Previously, recessive PCBD1 mutations
have been linked to transient neonatal hyperphenylalanine-
mia with primapterinuria and deficient tetrahydrobiopterin
(BH4) (HPABH4D) (MIM no. 264070) (124, 743). In fact,
PCBD1 acts as an enzyme to regenerate BH4, the cofactor
for aromatic amino acid hydroxylases, and also acts as a
binding partner of the HNF1 transcription factors (743).
The finding that HNF1� forms heterotetrameric complexes
with PCBD1 (208, 480) and the in vitro data demonstrated
that the HNF1�-PCBD1 complex enhances the FXYD2
promoter provide a putative link between PCBD1 and
Mg2� reabsorption in DCT (205) (FIGURE 13).

The latter findings strengthen the idea of the �-subunit of
the Na�-K�-ATPase regulating renal Mg2� transport in
DCT. They also point to a transcriptional level of regulation
in the processes affecting renal Mg2� handling, which needs
further investigation.

4. Hypomagnesemia with secondary hypocalcemia

A) BRIEF CLINICAL DESCRIPTION. Initially described in 1968, famil-
ial hypomagnesemia with secondary hypocalcemia (HSH,
also named hypomagnesemia 1, HOMG1; MIM no.
602014) is a rare recessive disorder that is characterized by
severe electrolyte abnormalities shortly after birth (555).
Patients suffer from severe hypomagnesemia (Mg2� levels
~0.2 mM) and hypocalcemia, which causes neuromuscular
symptoms including seizures and tetany, and they require
life-long Mg2� supplementation to overcome these compli-
cations. The hypomagnesemia is primarily caused by a de-
fect in Mg2� absorption in the intestine, but there is a renal
Mg2� leak as well (470, 658, 786). PTH levels were found
to be inappropriately low, which is seen more often in cases
of Mg2� deficiency and thought to be the cause of hypocal-
cemia (217, 483, 628). The Ca2� levels could be not be
restored by administration of Ca2� or vitamin D, but Mg2�

supplementation is needed (101, 679). Fast diagnosis and
immediate treatment are essential to prevent permanent
neurological damage or even cardiac arrest.

B) GENETICS. Mutations in the TRPM6 gene (located on
9q21.13) were identified as the cause of HSH through a
positional candidate gene approach (658, 786). TRPM6
encodes the TRPM6 ion channel, which is a large protein
(~2,000 amino acids) belonging to the melastatin subfamily
of the transient receptor potential (TRP) family of ion chan-
nels (125). In the past decade, mainly NH2-terminal splice
site and frame-shift mutations have been described that lead
to a truncated form of TRPM6. Additionally, several mis-
sense mutations were identified, which result in loss of
channel function (763) (FIGURE 13). Importantly, TRPM6
has a restricted expression pattern along the epithelia of the
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kidney and intestine that actively transport Mg2� (780).
Together with the finding that it functions as a Mg2�-per-
meable channel (780), it can explain the severe hypomag-
nesemia in HSH patients. Of interest, a recent meta-GWAS
performed in 7 cohorts amounting to 9,099 individuals
identified a common variant in the TRPM6 locus associated
with the urinary Mg2� levels, substantiating the role of
TRPM6 in Mg2� homeostasis and metabolism (133).

C) PROTEIN FUNCTION AND INSIGHTS FOR RENAL PHYSIOLOGY. A TRPM6
ion channel consists of four subunits, each containing six
membrane-spanning domains and large intracellular NH2

terminal and COOH termini (593, 651). In addition to its
function as ion channel, the TRPM6 C-tail comprises a
protein kinase domain, which led to the term chanzyme
(channel and enzyme) (492). The functional link between
ion channel and kinase domain is still not completely re-
solved, but the kinase domain seems to have a modulatory
role in channel activity (155, 741, 764, 854). A recent study
demonstrated one missense mutation, located in close prox-
imity to the kinase domain (S1754D), which resulted in
both loss of channel function and of kinase activity (410a,
764) (FIGURE 13). Yeast two hybrid screens resulted in the
identification of the TRPM6 kinase binding partners
RACK1 (receptor for activated C kinase 1), REA (repressor
of estrogen receptor activity), and MsrB1 (methionine sul-
foxide reductase B1) that affect channel function (92–94).
TRPM6 likely forms either homomeric complexes or het-
erotetramers with TRPM7, which influences channel char-
acteristics (429, 854). Several intracellular components like
pH, phosphatidylinositol 4,5-bisphosphate, ATP, and
Mg2� are also identified as channel regulators (428, 741,
780, 830).

Additional levels of channel regulation involve the tran-
scription and cell surface expression. First, the renal
TRPM6 mRNA level was shown to be upregulated in mice
fed a Mg2�-deficient diet to maximize renal Mg2� conser-
vation (265). Second, the magnesiotropic hormones EGF
and estrogen are involved in the regulation of TRPM6
mRNA expression (265, 266, 338, 339). Additionally, EGF
can affect channel function by increasing the expression of
TRPM6 at the plasma membrane through downstream sig-
naling of the EGF receptor, involving the MAPK/extracel-
lular signal-regulated kinase (ERK) pathway and signaling
of PI3K and Rac1 (ras-related C3 botulinum toxin substrate
1) (740). Next, insulin was recently identified as the third
hormone that plays a role in TRPM6 regulation (508). It
can stimulate channel function via the PI3K and Rac1-me-
diated pathway that enhances cell surface expression of
TRPM6 (FIGURE 13). The authors examined two genetic
variants in TRPM6 (I1393V and K1584E) that are associ-
ated with the total glycosylated hemoglobin level, a mea-
sure of insulin resistance, in pregnant women (508). Third,
there is an increasing body of evidence for regulation of
TRPM6 mRNA expression in drug-induced hypomag-

nesemia involving the immunosuppressants cyclosporine A
and tacrolimus, loop and thiazide-diuritics, proton pump
inhibitors, and the anti-cancer drug cyclosporin (412).

The role of EGF in Mg2� homeostasis has been further
substantiated by the association of hypomagnesemia with a
mutation in the EGF gene. In 1987, Geven et al. (240)
reported two sisters with an autosomal recessive form of
isolated renal Mg2� loss. Their urinary Mg2� excretion was
in the normal range despite low serum Mg2� values (0.53–
0.66 mM) and they had no other biochemical abnormali-
ties. Both sisters presented with psychomotor retardation
and suffered from epileptic seizures (240). Genetic linkage
analysis and subsequent candidate screening led to the iden-
tification of a homozygous mutation in EGF in this form of
renal hypomagnesemia (HOMG4; MIM no. 611718)
(266). EGF encodes a large membrane-anchored precursor
protein, which can be cleaved into pro-EGF that in turn
gives rise to the small peptide hormone EGF (39). Impor-
tantly, Groenestege et al. (266) demonstrated an overlap-
ping expression of EGF and TRPM6 in DCT, and earlier
studies (238, 635) have shown that the EGFR is present
along the basolateral membrane of the TAL and DCT. The
mutation identified in the two sisters with hypomagnesemia
results in a proline to leucine substitution at position 1070
(P1070L) in the cytoplasmic tail of pro-EGF. This is
thought to affect a basolateral sorting motif, thereby pre-
venting pro-EGF trafficking and cleavage at the basolateral
membrane (266, 290). Hence, the hypomagnesemia is likely
caused by failed stimulation of the EGFR at the basolateral
membrane due to insufficient secreted EGF. Together with
the finding that EGF enhances TRPM6 channel activity, this
led to the hypothesis that EGFR signaling plays a key role in
renal Mg2� reabsorption. This notion was further sup-
ported by clinical studies demonstrating that colorectal can-
cer patients develop hypomagnesemia due to anti-cancer
treatment with the monoclonal EGFR antibody cetuximab
(663, 735). Impaired EGF signaling is likely involved in
other forms of hypomagnesemia as recent studies suggest
that the chemotherapeutic drug cisplatin and the immuno-
suppressant cyclosporine inhibit renal Mg2� reabsorption
via downregulation of the TRPM6-EGF pathway (416,
417). The discovery of EGF as a magnesiotropic hormone
has improved the understanding of the molecular mecha-
nisms regulating systemic Mg2� balance.

A mouse model with homozygous deletion of Trpm6 was
found to be embryonic lethal, pointing towards a develop-
mental role of TRPM6 to maintain the Mg2� balance (787,
818). The few Trpm6 KO mice that were viable upon high-
Mg2� diet had defective brain and facial development
(787). Additionally, both groups showed that the heterozy-
gous Trpm6 mice present a mild hypomagnesemia (787,
818). Chubanov et al. (122) recently developed a condi-
tional Trpm6 KO mouse model. Postnatal inactivation of
Trpm6 led to a shorter lifespan, growth retardation, im-
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paired metabolism, and many characteristics that are gen-
erally a hallmark of “accelerated aging” (122). Impor-
tantly, the phenotype could be rescued by a high-Mg2� diet.
In addition to a global KO, Chubanov et al. (122) also
generated kidney-specific and intestinal-specific Trpm6 KO
mice. While the conditional inactivation of TRPM6 in the
kidney did not result in changes in serum Mg2� levels, dis-
ruption of TRPM6 in the intestine led to hypomagnesemia
(122). This suggest that TRPM6-mediated Mg2� absorp-
tion in the colon is essential for the body’s Mg2� balance.
Altogether, these investigations yielded crucial informa-
tions about the role of TRPM6 in Mg2� homeostasis.

5. Autosomal dominant hypomagnesemia

A) BRIEF CLINICAL DESCRIPTION. In 2009, a new type of hypomag-
nesemia was identified in a large Brazilian family, with an
autosomal dominant form of inheritance (245). The af-
fected individuals present recurrent muscle cramps, tetany,
tremor, and muscle weakness, detected from early child-
hood. Furthermore, a cerebral MRI demonstrated a slight
atrophia of the cerebral vermis in one patient, and electro-
myographs of more affected family members indicated in-
voluntary muscular movements called myokymia. Serum
Mg2� levels were low, while other electrolyte levels were in
the normal range and there was no change urinary Mg2�

excretion indicative of a renal defect. Importantly, the pro-
band also showed facial myokymia and intermittent tetanic
contraction, which improved shortly after Mg2� adminis-
tration. Electromyographs of some affected family mem-
bers showed myokymic discharge. A daily Mg2� supple-
mentation could improve the observed symptoms in the
affected family members.

B) GENETICS, PROTEIN FUNCTION, AND INSIGHTS FOR RENAL PHYSIOLOGY. A
positional cloning approach led to the identification of a
heterozygous mutation in the KCNA1 gene (12p13.32),
coding for the Shaker-related voltage-gated K� channel
Kv1.1, in the affected family members (245). Kv1.1 func-
tions as a tetrameric structure, and each subunit consists of
six transmembrane segments (S1-S6), of which S4 acts as a
voltage sensor and a pore region is formed by S5 and S6.
The mutation results in an amino acid substitution
(N255D) localized close to S3. Electrophysiological analy-
sis demonstrated a dominant-negative effect of the muta-
tion on wild-type Kv1.1 channel function (245). Recently, a
second (de novo) KCNA1 mutation was reported in a pa-
tient with tetany and hypomagnesemia. This L328V muta-
tion also led to a dominant-negative loss of function of the
encoded Kv1.1 channel (765). Immunohistochemistry
showed Kv1.1 localization at the luminal membrane of
DCT cells (97, 245), which suggests a potential link be-
tween Kv1.1-mediated K� efflux and Mg2� reabsorption.
The hypothesis arose that Kv1.1 is involved in the mainte-
nance of the membrane potential across the apical mem-
brane that functions as the driving force for Mg2� uptake
via TRPM6 (FIGURE 13). Hence, the mutation may reduce

this electrical gradient and therefore results in diminished
Mg2� transport and subsequent renal Mg2� wasting.

Mutations in KCNA1 had previously been associated with
episodic ataxia type 1 (EA1) (MIM no. 160120), a domi-
nant neurological disorder caused by defective Kv1.1 chan-
nels in the cerebellum (84, 260). Despite similar loss in
Kv1.1 function, hypomagnesemia has not been reported in
these cases, and it would, therefore, be of interest to inves-
tigate the plasma Mg2� levels in this group of patients with
KCNA1 mutations. Next to this, Kcna1 null mice (696) or
Kcna1 KI mice (85) that are currently studied to explain the
epileptic seizures could be examined for Mg2� wasting. It is
generally known that a voltage-dependent K� secretion oc-
curs along the distal tubule, which results in the lumen-
positive membrane potential favoring Mg2� uptake. How-
ever, it should be noted that other candidates than Kv1.1
have been proposed, including the ROMK and Maxi-K (or
BK) channels (717). Future studies should reveal the exact
components of K� secretion in DCT and its role in K� and
Mg2� homeostasis.

6. SeSAME/EAST syndrome

A) BRIEF CLINICAL DESCRIPTION. In 2009, two independent groups
reported a new syndrome characterized by seizures, senso-
rineural deafness, ataxia, mental retardation, and electro-
lyte imbalance (SeSAME) (62, 661). This association is also
termed EAST syndrome (epilepsy, ataxia, sensorineural
deafness, and a renal salt-losing tubulopathy) and has an
autosomal recessive pattern of inheritance (MIM no.
612780). The patients presented with neurological symp-
toms from young age, including seizures, pronounced
ataxia, and delayed psychomotor development. Some in-
fants were unable to walk until the age of 3–9 yr. These
neurological manifestations are the most invalidating as-
pect of the disease (1). Further laboratory analyses of the
renal salt-losing tubulopathy showed hypokalemic meta-
bolic alkalosis and hypomagnesemia, together with in-
creased urinary excretion of K�, Mg2�, and Na�. In addi-
tion, the levels of renin and aldosterone were increased
without signs of hypertension. These features are similar to
those associated with Gitelman syndrome. There is signifi-
cant phenotypic heterogeneity and intrafamilial variability
in the SeSAME/EAST syndrome (1). Patients receive salt,
K�, and Mg2� supplementation to control their electrolyte
levels (62, 661).

B) GENETICS, PROTEIN FUNCTION, AND INSIGHTS FOR RENAL PHYSIOL-

OGY. Whole-genome linkage analysis followed by candidate
screening and sequencing revealed several missense muta-
tions in KCNJ10 (location 1q13.2) that encodes the K�

channel Kir4.1 (62, 661). It belongs to the inward rectifier
K� channel family and is expressed in the brain, inner ear,
and kidney (12, 341, 731), which can explain the pleiotro-
pic phenotype seen in patients. Kir4.1 localizes to the baso-
lateral membranes of DCT and more distal nephron parts
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(341). Here, heterotetrameric complexes of Kir4.1 and
Kir5.1 likely represent the main K� channel functioning as
a K� recycling mechanism needed for Na�-K�-ATPase ac-
tivity (447, 851). The disease-causing mutations are shown
to affect the function of both homomeric and heteromeric
channels, either by mistrafficking or by altered channel
characteristics (218, 550, 597, 634, 733, 811).

Studies performed in Kcnj10 KO mice demonstrated an
early lethality due to neurological complications such as
seizures (516). Importantly, the renal phenotype in the ne-
onates closely resembles that seen in SeSAME/EAST pa-
tients (62). In contrast, mice with deletion of Kcnj16 (en-
coding Kir5.1) showed no difference in survival or growth
compared with wild type, and the adult mice developed
hypokalemic metabolic acidosis and hypercalciuria, con-
trasting with the SeSAME/EAST syndrome phenotype
(554). Furthermore, Paulais et al. (554) demonstrated an
increased basolateral K� conductance in DCT of Kcnj16
KO mice, which suggests that homomeric Kir4.1 channels
can maintain the transport function in DCT. In line with
earlier studies (732, 832), these channels have an increased
activity and a milder intracellular pH (pHi) sensitivity com-
pared with Kir4.1/Kir5.1 channels (554). This implies that
variations in pHi can produce significant changes in baso-
lateral K� conductance and highlights the role of Kir5.1 in
renal ion transport by Kir4.1 heteromerization. More re-
cently, Cuevas et al. (139) generated an inducible kidney-
specific Kcnj10 KO line. These mice exhibited metabolic
alkalosis and hypokalemia, combined with hypocalciuria
and hypermagnesiuria. Further evidence for the role of
Kir4.1 in sensing plasma K� levels came from the abrogated
phosphorylation of NCC upon low dietary K� in these
kidney-specific Kcjn10 KO mice (139). As noted above,
NCC expression and activity are highly sensitive to plasma
K� levels, which can even dominate the effects of aldoste-
rone or extracellular fluid volume on the DCT (736, 737).
Terker et al. (737) demonstrated that NCC is regulated by
the WNK/SPAK signaling pathway in response to changes
in plasma K�, through effects on membrane voltage in the
DCT. The latter is controlled by Kir4.1, and likely Kir5.1,
channels at the basolateral membrane, thereby demonstrat-
ing the molecular mechanism underlying the salt-wasting
phenotype of SeSAME/EAST syndrome (804) (FIGURE 11).

Yet, the exact mechanism that underlies decreased Mg2�

reabsorption (and hypermagnesiuria) in SeSAME is still not
completely understood. Loss of Kir4.1 activity impedes
Na�-K�-ATPase transport that in turn leads to depolariza-
tion of the basolateral membrane. The net effect is a dimin-
ished driving force for electrogenic transport via the puta-
tive Na�/Mg2� exchanger, thereby disturbing the Mg2�

transport gradient. However, it likely also diminishes the
Cl� efflux by Cl� channels: a recent report by Zhang et al.
postulated that subsequent activation of SPAK-dependent
pathways plays an important role in the development of

electrolyte disturbances (851). They demonstrated a re-
duced NCC expression in Kcnj10 KO mice (851), which
could lead to diminished TRPM6 expression as observed
previously in Slc12a3-null mice and thiazide-treated rats
(524, 665). Furthermore, analysis of dissected DCT tubules
showed a depolarized membrane potential in Kcnj10 KO
(global and kidney-specific) animals compared with wild
type, which would hamper TRPM6-mediated Mg2� trans-
port (139, 851). The hypokalemia and alkalosis result from
increased salt delivery to the CNT and CCD, which in-
creases Na� reabsorption by ENaC and K� and H� secre-
tion. Overall, identification of Kir4.1 as the genetic factor of
this multi-faceted syndrome has established a key role of
basolateral K� transport in regulating distal tubular elec-
trolyte transport.

7. Hypomagnesemia with seizures and mental
retardation.

A) BRIEF CLINICAL DESCRIPTION AND GENETICS. Two unrelated fami-
lies with a dominant form of renal hypomagnesemia
(HOMG6) (MIM no. 613882) were screened for the caus-
ative gene of their Mg2� wasting phenotype. Patients pre-
sented with muscle weakness, tremor, seizures, and head-
aches as a result of the low Mg2� serum concentrations
(0.3–0.5 mM), and had no other electrolyte disturbances
detected (479, 716). Heterozygous mutations were identi-
fied in the CNNM2 gene, which codes for the protein
named cyclin and CBS domain divalent metal cation trans-
port mediator 2 (CNNM2) (716). In addition to this find-
ing, a recent report described five new families in which
CNNM2 mutations were linked to a distinct phenotype of
hypomagnesemia with mental retardation and seizures
(HOMGSMR1; MIM no. 616418) (19). Patients were di-
agnosed at early childhood and had a severe degree of psy-
chomotor retardation. Mg2� supplementation only moder-
ately restored the serum Mg2� levels, and seizures were
suppressed by the use of anti-epileptic drugs. Of note, the
brain phenotype and intellectual disability were most severe
in patients carrying recessive mutations and could not be
improved by Mg2� supplementation (19).

B) PROTEIN FUNCTION AND INSIGHTS FOR RENAL PHYSIOLOGY. CNNM2
was originally characterized as a member of the ancient
conserved domain protein (ACDP) family, consisting of
four members that share structural homology to cyclin
proteins and have been listed as putative Mg2� transport-
ers (259, 791, 835). Additionally, common variants in
the CNNM2, CNNM3, and CNNM4 genes have been
associated with serum Mg2� concentrations in a GWAS
study (482). CNNM2 has a ubiquitous expression pat-
tern with highest abundance in kidney, brain, and lung
(143, 791). Within the kidney, CNNM2 is mainly local-
ized along the basolateral membrane of DCT, which
raised the notion that it could be an unidentified Mg2�

extruder (143, 716). Further evidence for a role of
CNNM2 in Mg2� handling appeared from microarray
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analysis of mouse DCT cells demonstrating Mg2�-re-
sponsive gene regulation of the CNNM2 gene (259). In-
terestingly, heterozygous and kidney-specific homozy-
gous Cnnm2 KO mice show hypomagnesemia, support-
ing a possible role of CNNM2 in renal Mg2� handling
(222).

However, the exact function of CNNM2 is still unclear.
While Mg2� currents could be evoked by overexpression in
Xenopus oocytes (259), patch clamp and Mg2� imaging
experiments in mammalian cells did not demonstrate direct
Mg2� transport. Therefore, a regulatory role for CNNM2
in Mg2� sensing was proposed (19, 716). Arjona et al. (19)
showed an increased Mg2� uptake upon overexpression of
CNNM2, which was abrogated in the CNNM2 disease
mutants. The examined mutants failed to reach the plasma
membrane (19). In addition, knock-down of cnnm2 in ze-
brafish decreased the body Mg2� content, and it could be
recovered by expressing the wild-type CNNM2, but not by
a disease mutant of CNNM2 (19).

Structurally, CNNM2 contains five putative transmem-
brane segments and an extracellular COOH terminus,
which holds two cystathionine �-synthase (CBS) domains
that can form a dimer (716). Initial homology modeling of
these CBS domains, based on the CorC protein, showed
conservation of a potential Mg2�-ATP binding site that
encloses the disease-causing T568I mutation (143). This
finding was recently confirmed by the resolved crystal struc-
ture that revealed conformational changes of the CBS dimer
upon nucleotide binding (132). The CBS domains of
CNNM2 indeed bind ATP, but not AMP, in a Mg2�-de-
pendent manner (300). Moreover, the T586I mutation was
shown to hinder nucleotide binding and lock the CBS mod-
ule, thereby rendering the protein in a nonfunctional state
(132, 300). This failure may directly impair Mg2� transport
across the basolateral membrane, or indirectly by altering
the regulation of other basolateral transporters in the DCT.
A suggested mechanism of action is an incorrect sensing of
the intracellular Mg-ATP levels.

Identification of mutations in CNNM2 associated with hy-
pomagnesemia shed light on the basolateral Mg2� extru-
sion mechanism in the DCT. The recently resolved crystal
structure will facilitate future studies to clarify the exact
function of CNNM2 in DCT-regulated Mg2� transport
(132). In addition, CNNM2 should be considered an im-
portant factor in brain development, since the neurological
phenotype observed in the patients with CNNM2 muta-
tions could not be attributed to Mg2� status. Of note, ge-
netic variants in CNNM2 have been associated with schizo-
phrenia in large population studies (269, 656).

IV. OUTLOOK AND PERSPECTIVES

Twenty-five years after the identification of the first gene
involved in an inherited kidney tubular disease, NGS, multi-

omics technologies, deep-phenotyping of model organisms
combined with clinical studies and multicentric efforts to
gather patient cohorts and to create registries and biobanks
have yielded an unprecedented amount of informations that
are directly relevant for our understanding of fundamental
processes operating in health and disease. In turn, these
insights proved valuable for refining disease ontology, im-
proving diagnosis and follow-up, and providing new ther-
apeutic targets in a number of rare kidney disorders (159).

The rare disorders discussed in this review illustrate the
path between clinical description, gene discovery, mecha-
nistic studies, and translational applications. These diseases
involve various genetic mechanisms and modes of inheri-
tance; they affect a large variety of cellular processes oper-
ating in distinct tubular segments of the kidney; most often,
they have multi-systemic complications; they involve chan-
nels, transporters, receptors, enzymes, structural proteins,
regulatory subunits, and transcription factors, all partici-
pating in transcellular and paracellular transport pathways
(TABLE 1, FIGURE 2). The genetic and mechanistic insights
contributed to better understand the action, or side effects,
of known drugs, but also to improve existing therapies or to
develop new ones. They thus proved valuable in addressing
the ultimate challenge—closing of the gap between genetic
and mechanistic understanding and drug development for
rare diseases.

These advances have left many open questions, which are
currently investigated using increasingly efficient and af-
fordable tools. The advent of NGS and multiplex testing,
allowing the simultaneous investigation of all relevant
genes for a given phenotype at reduced costs and turn-
around times (24), will increase diagnosis efficiency for in-
herited kidney disorders. In turn, the newly identified cases
will precise the genotype-phenotype correlations and the
clinical manifestations, sometimes unsuspected or surpris-
ing, associated with a given syndrome, yielding new infor-
mation about the role of the mutant protein in a given tissue
(27, 56, 159, 167). The increasing availability of affordable
whole exome or even whole genome sequencing should
have broad consequences for our understanding of the ge-
netic architecture of kidney disease. The number of unre-
solved cases should decrease, substantiating the genetic het-
erogeneity of some disorders (e.g., Dent disease) or clarify-
ing the missing allele in some recessive disorders (e.g.,
Gitelman syndrome). These new genes, associated with
multi-omics profiles (including transcriptomics, epigenom-
ics, metabolomics, proteomics) and improved model organ-
isms based on new genome editing technologies, induced
pluripotent stem (iPS) cells, and human kidney organoids
(279, 498, 565, 727, 728) or direct reprogramming (367),
will drive multilevel analysis of cellular mechanisms and
improve the ontology of disease. Another benefit of the
sequencing technologies will be the discovery of common
and rare genetic variants that could act as modifier genes,
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helping to decipher the significant intrafamilial variability
observed in many rare disorders, or explain the individual
sensitivity to some drugs. These analyses should also sub-
stantiate the continuum of genetic kidney disease risk, with
important genes involved from rare Mendelian disorders to
common variation in the general population (163, 828).
Information on the carrier state (for a recessive or X-linked
disorder) will be important, not only for genetic counseling,
but also for clinical implications and, more generally, selec-
tion mechanisms and evolutionary perspectives (159, 353,
387, 625).

Important physiological questions linked to the diseases
discussed here include mechanisms and regulators of mem-
brane trafficking, maintenance of epithelial cell differentia-
tion, biogenesis of intracellular vesicular compartments,
signaling pathways downstream of apical and basolateral
receptors and cross-talk between membrane compartments,
flow-mediated regulation of apical receptors and transport
processes, functional segmentation and capacity of adapta-
tion of specific tubular segments, and mechanisms of tran-
scriptional regulation in tubular cells (160, 194, 544).
Downstream of gene and mechanistic pathways, transla-
tional studies will have to address issues including the un-
explained differences between human and mouse pheno-
types (e.g., mouse models for Dent disease, Gitelman syn-
drome, claudin disorders), variable manifestations of
tubular dysfunction in similar disorders (e.g., PT dysfunc-
tion and RFS), and the links between tubular dysfunction
and the development of CKD.

Finally, the continuum between rare kidney diseases and
more common disorders should be substantiated. For in-
stance, some genes involved in the tubular handling of salt
(SLC12A3, KCNJ1, SLC12A1, UMOD) are also relevant
for blood pressure control as shown by analysis of the car-
rier state (353) or by GWAS for blood pressure in the pop-
ulation (547). Genes encoding the megalin (LRP2) and cu-
bilin (CUBN) receptors, and the adaptor protein Dab-2
(DAB2), that mediate endocytosis of ultrafiltered LMW
proteins in the proximal tubule and are defective in rare
disorders were shown by GWAS to affect renal function and
risk of CKD (74, 450, 553). The genes SLC2A9 (GLUT9)
and SLC22A12 (URAT1), which are associated with hered-
itary renal hypouricemia, were also pointed in GWAS on
serum urate concentration (395, 405). Genes involved in
rare disorders of Ca2� and Mg2� handling (CASR,
TRPM6, CLDN14, CNNM2) have also been associated
with Ca2� and Mg2� homeostasis and metabolic traits in
the general population (133, 134, 371, 482, 716). The char-
acterization of the biological mechanisms sustaining the
effect of rare and common variants in these genes or in
additional genes identified by GWAS will undoubtedly pro-
vide further insights into the biological mechanisms sustain-
ing kidney function.
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708. Stiburkova B, Gabrikova D, Čepek P, Šimek P, Kristian P, Cordoba-Lanus E, Claverie-
Martin F. Prevalence of URAT1 allelic variants in the Roma population. Nucleosides
Nucleotides Nucleic Acids 35: 529–535, 2016. doi:10.1080/15257770.2016.1168839.

709. Stiburkova B, Ichida K, Sebesta I. Novel homozygous insertion in SLC2A9 gene caused
renal hypouricemia. Mol Genet Metab 102: 430–435, 2011. doi:10.1016/j.ymgme.
2010.12.016.

710. Stiburkova B, Stekrova J, Nakamura M, Ichida K. Hereditary Renal Hypouricemia
Type 1 and Autosomal Dominant Polycystic Kidney Disease. Am J Med Sci 350: 268–
271, 2015. doi:10.1097/MAJ.0000000000000550.

711. Stiles PG, Lusk G. On the action of phlorhizin. Am J Physiol 10: 67–79, 1903. doi:10.
1152/ajplegacy.1903.10.1.67.

712. Storm T, Tranebjærg L, Frykholm C, Birn H, Verroust PJ, Nevéus T, Sundelin B, Hertz
JM, Holmström G, Ericson K, Christensen EI, Nielsen R. Renal phenotypic investiga-

tions of megalin-deficient patients: novel insights into tubular proteinuria and albumin
filtration. Nephrol Dial Transplant 28: 585–591, 2013. doi:10.1093/ndt/gfs462.

713. Storm T, Zeitz C, Cases O, Amsellem S, Verroust PJ, Madsen M, Benoist J-F, Passe-
mard S, Lebon S, Jønsson IM, Emma F, Koldsø H, Hertz JM, Nielsen R, Christensen EI,
Kozyraki R. Detailed investigations of proximal tubular function in Imerslund-Gräs-
beck syndrome. BMC Med Genet 14: 111, 2013. doi:10.1186/1471-2350-14-111.

714. Stransky L, Cotter K, Forgac M. The Function of V-ATPases in Cancer. Physiol Rev 96:
1071–1091, 2016. doi:10.1152/physrev.00035.2015.

715. Strautnieks SS, Thompson RJ, Gardiner RM, Chung E. A novel splice-site mutation in
the gamma subunit of the epithelial sodium channel gene in three pseudohypoaldo-
steronism type 1 families. Nat Genet 13: 248–250, 1996. doi:10.1038/ng0696-248.

716. Stuiver M, Lainez S, Will C, Terryn S, Günzel D, Debaix H, Sommer K, Kopplin K,
Thumfart J, Kampik NB, Querfeld U, Willnow TE, Nĕmec V, Wagner CA, Hoenderop
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