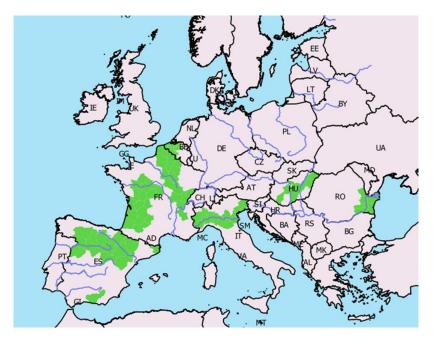
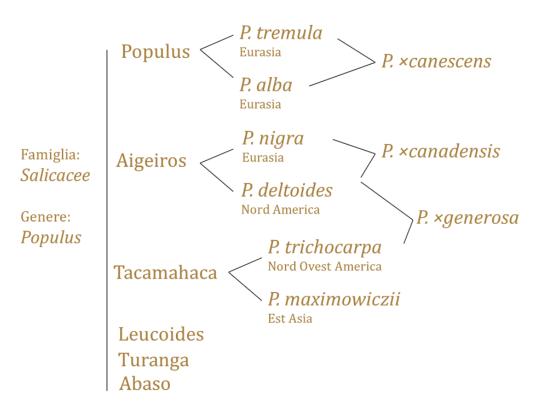


Giuseppe Nervo and Sara Bergante


Sustainable clonal forestation for the production of quality poplar wood in the Po Valley: cultivation models and future scenarios.

CREA – Research Centre for Forestry and Wood (Italy) giuseppe.nervo@crea.gov.it

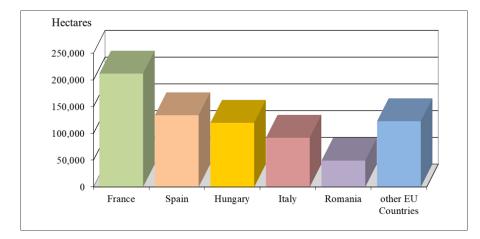


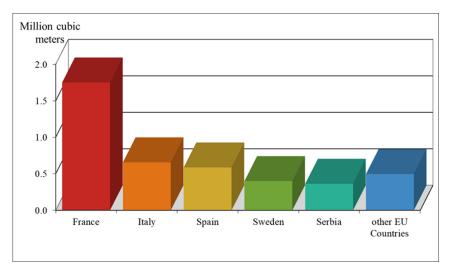

## **Forestation with poplar clones: pure species and hybrids** The plains of Spain, France, Italy, Hungary and Romany are the main poplar cultivation areas








Best



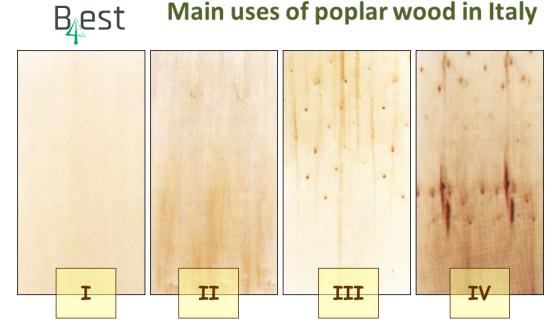


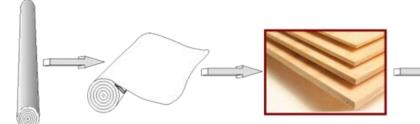


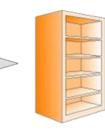

#### Poplar cultivation in the main European countries






#### Poplar wood production in the main European countries





16,9











#### The high density nursery







Density: 60.000 trees/ha Life cycle: 2-3 years Harvest: annual **Goal: production of cuttings for nurseries and vegetative material for reproduction and biomass plantation** 





## The nursery for plant production



Cutting plantation: about 7.000 tree/ha Lyfe cycle: 1-2 years Harvest: annual/biennial **Goal: production of poles for traditional stand poplar cultivation** 



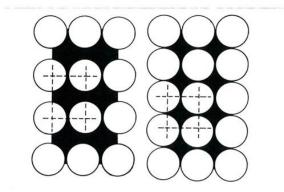


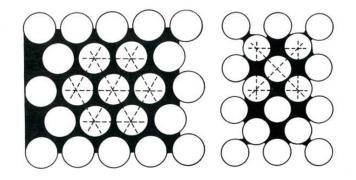
# Planting of the poplar stand



Plantation with live poles 1-2 year old Density (270 – 330 trees/ha) Lyfe cycle: 10-12 years (Italy, Spain), 12-18 (France) Harvest: at the end of cycle **Goal: production of high quality poplar wood.** 







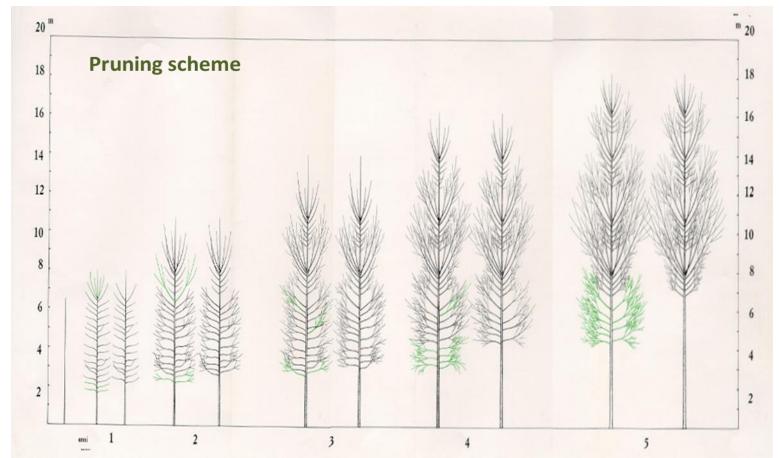

Layout e spacing

Best





Square: 6 x 6 or 7 x 7 or ... meters Rectangle: 6 x 5 or 7 x 5 or meters


Quincunx system











Best



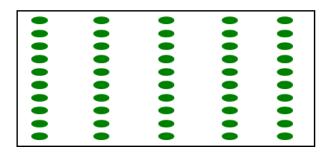
| Plant density         | = | 250-330 | trees per ha   |
|-----------------------|---|---------|----------------|
| Rotation              | = | 10      | years          |
| Timber production     | = | 200     | m³/ha          |
| Mean annual increment | = | 20      | m³/y           |
| Tree volume           | = | 0.7     | m <sup>3</sup> |
| Annual plantations    | = | 6-8,000 | ha             |

14





Products: saw, pallets, OSB panels, particle panels, pulp for paper, chips for energy purposes.




### Short rotation system

**Density::** 5<sup>.</sup>700-10<sup>.</sup>000 p/ha (0,5 x 2)

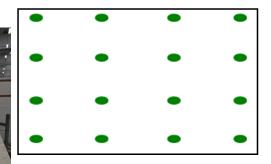
Harvest: 2 – 3 year

Productio: 12-. 15 t ss/y





Best




## Medium rotation system

**Density:** 1<sup>.</sup>100-1<sup>.</sup>600 p/ha (3x3m)

Harvest: 4 -5 -6 years

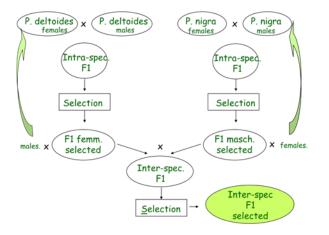
Production: 15-18 t ss/y



Best

# Selected clones for biomass production

| Clone      | Name  | Registration<br>date | Patent right | Originator | Species        | Sex |
|------------|-------|----------------------|--------------|------------|----------------|-----|
| 83.148.041 | Orion | 2011                 | granted      | CRA (PLF)  | P. ×canadensis | м   |
| 83.160.029 | Imola | 2011                 | granted      | CRA (PLF)  | P. ×canadensis | F   |




## Sustainable clonal forestry

✓ Monoclonal vs. polyclonal plantations

- ✓ Sustainable cultural practices
- ✓ Alternative / innovative plantations

## Poplar breeding and selection



- ✓ Rooting capacity
  - ✓ Growth rate
- ✓ Stem shape and branches distribution (Canopy)
  - $\checkmark\,$  Resistance to diseases and pest
    - ✓ Wood quality

|    | CLONE       | SPRING LEAF AND<br>SHOOT BLIGHT | LEAF RUSTS | MARSSONINA<br>LEAF SPOT | МООЦҮ АРНО | GENETIC ORIGIN                              |
|----|-------------|---------------------------------|------------|-------------------------|------------|---------------------------------------------|
|    | 1-214       | *****                           | ***        | **                      | **         | Populus ×canadensis                         |
|    | 1-214       |                                 |            |                         |            | Populus ×calladensis                        |
| 1  | AF8         | *****                           | ****       | *****                   | ****       | Populus ×generosa × Populus trichocarp      |
| 2  | ALERAMO     | ****                            | ****       | *****                   | ****       | Populus ×canadensis                         |
| 3  | BRENTA      | *****                           | ***        | *****                   | *****      | Populus ×canadensis                         |
| 4  | DIVA        | ****                            | ****       | ****                    | *****      | Populus ×canadensis                         |
| 5  | DVINA       | *****                           | ****       | *****                   | ****       | Populus deltoides                           |
| 6  | ERIDANO     | *****                           | ****       | *****                   | ****       | Populus deltoides × Populus<br>maximowiczii |
| 7  | HARVARD     | *****                           | ****       | *****                   | ****       | Populus deltoides                           |
| 8  | KOSTER      | ****                            | ***        | ***                     | *****      | Populus ×canadensis                         |
| 9  | LAMBRO      | *****                           | ***        | *****                   | *****      | Populus ×canadensis                         |
| 10 | LENA        | ****                            | ****       | ****                    | ****       | Populus deltoides                           |
| 11 | LUX         | *****                           | ****       | *****                   | *****      | Populus deltoides                           |
| 12 | MELLA       | ****                            | ***        | ****                    | ****       | Populus ×canadensis                         |
| 13 | MOLETO      | ****                            | *****      | *****                   | *****      | Populus ×canadensis                         |
| 14 | MOMBELLO    | ****                            | ***        | ****                    | ****       | Populus ×canadensis                         |
| 15 | MONCALVO    | ****                            | *****      | *****                   | *****      | Populus ×canadensis                         |
| 16 | OGLIO       | ****                            | ****       | ****                    | ****       | Populus deltoides                           |
| 17 | ONDA        | *****                           | ****       | *****                   | ****       | Populus deltoides                           |
| 18 | SANMARTINO  | *****                           | ****       | ****                    | ****       | Populus ×canadensis                         |
| 19 | SENNA       | ****                            | *****      | ****                    | *****      | Populus ×canadensis                         |
| 20 | SILE        | ****                            | ****       | *****                   | *****      | Populus deltoides × Populus ciliata         |
| 21 | SOLIGO      | *****                           | *****      | *****                   | ****       | Populus ×canadensis                         |
| 22 | STURA       | ****                            | ****       | *****                   | ****       | Populus ×canadensis                         |
| 23 | TARO        | *****                           | ****       | *****                   | *****      | Populus ×canadensis × Populus<br>×generosa  |
| 24 | TUCANO      | ****                            | ****       | *****                   | *****      | Populus ×canadensis                         |
| 25 | VILLAFRANCA | *****                           | *****      | *****                   | *****      | Populus alba                                |

LEGEND

Best

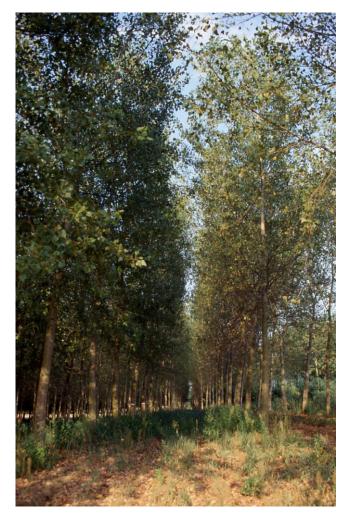


20

# Problems faced and solved Best

• Spring leaf and shoot blight (*Venturia populina*)





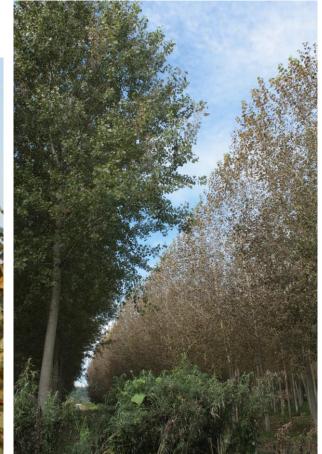



# Problems faced and solved Best

• Marssonina leaf spot (*Marssonina brunnea*)






# Problems faced and solved

# Best

#### Leaf rusts (Melampsora spp.)

Melampsorae





# Problems faced and solved $B_4$



Woolly poplar aphid (*Phloeomyzus passerinii* Sign





Byest



Basis of Standards of Forest Management adopted by Forest Certification schemes

# **FSC FSC** (Forest Stewardship Council)

**PEFC** (Programme for the Endorsement of Forest Certification schemes)



Only in Italy and in Chile exist the specific standard for poplar.

Certification of Sustainable Poplar Plantation Management (ITA 1004-1)



# Sustainable clonal forestry

- ✓ Monoclonal vs. polyclonal plantations
- ✓ Sustainable cultural practices
- ✓ Alternative / innovative plantations

Best

#### Sustainable cultural practices: integrated production regulations

**Weeds control:** chemical or mechanic, is important at least duting first 4 years!

**Fertilization:** only the start after plantation, fertilization (with NPK) could be important in poor soils, than not mandatory !!

Irrigation: very important in dry condition for high quality wood production

**Pest and diseases control:** very important using resistant clones also for progressive reduction of available chemical products





## Sustainable clonal forestry

- ✓ Monoclonal vs. polyclonal plantations
- ✓ Sustainable cultural practices
- ✓ Alternative / innovative plantations



#### Alternative and sustainable cultural models.

#### Today we try to move towards more sustainable cultivation systems, and often this involves abandoning monoculture.

Two alternative models allow to growth noble hardwood species obtaining a periodic income and with more sustainable cultivation methods.

1) Polycyclic model with other noble hardwood species;

2) Agroforestry





The evolution of models starts from a pure plantation with accessory trees (shrubs) and continued to mixed plantation (ex: walnut + cherry tree and others) with accessory trees.

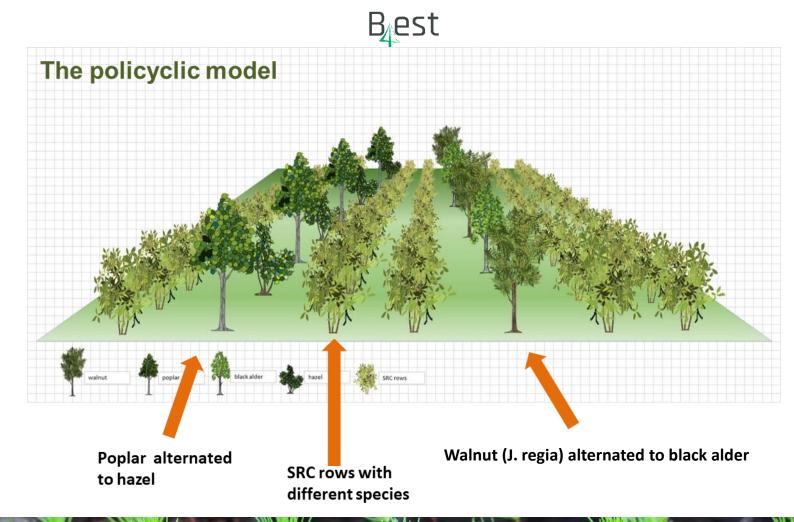
Best

The mixed plantation demonstrated to allow higher performances, compared with monospecific ones.

The researchers experimented new models, named Polyciclyc, with a consociation of different species with different cycles and products target.

With this new model, choosing the spacings carefully, it is no longer necessary to thin out the plants

The introduction of poplar in such planations allows an income during the first 6-10 years of growth, ensuring a more stable market of wood for plywood.






#### The policyclic model

Multispecific , multicycle and multiproducts plantations composed by:

- **Principal trees** for wood production with possible different cycle:
  - ♦ Brief
    ♦ Medium-long
    poplar
    noble hardwood
- Trees with double role: principal + shelter able to influnce the structure of principal tree and to produce commercial assortments (different cycles):
  Very brief
  - ✤ Brief poplar clones
- Accessory trees, able to produce at least one of the following services:
  - Growth education of principal trees;
  - ✤ N-fixing;
  - \* Weeds control.











#### • Benefits

- Resilient plantation
- Less energy inputs: (irrigation, fertilization, diseases and weed control)
- Water saving due to:
  - Reduced number of poplars;
  - Plantation of species more drough tolerant;
  - Faster soil cover (shade)
- A reduction of about 60% of cultural inputs was demonsrated!
- **Higher biodiversity,** due to different species, structures, fruits....
- Higher environmental value: similar to natural forest
- Higher CO<sub>2</sub> sink ability

## The policyclic model

#### Disadvantages

- Expensive and complex design;
- **Complex management** (different times and species needs);
- **Complex harvest organization,** needs of specialized enterprises.





## Agroforestry systems

Linear systems





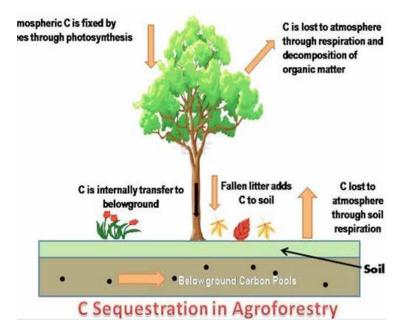
Sylvo-arable systems







#### Agroforestry systems


1 − Shading effect on other crops → small leaves, columnar shape.....

2 – Water use/competition → evaluation of different roots shape, different irrigation methods (wastewaters,...)

3 – Chemical compounds for weeds and diseases resistance  $\rightarrow$  poplar has a higher sensibility, the new clones are resistant to principal diseases.

## Agroforestry systems





#### Carbon farming:

- •GHG sink in the biomass and in the soil
- In the World the Agroforestry systems currently adsorbe about 5,6% GHG

•New systems on 10% agrarian fields (+ 7,6% GHG) (Chapman et al, 2020, Global Change Biol.)

#### • In Italy:

New systems on 10% of agrarian fields (1,6 Mil ha): 28 M t  $CO_2$  eq., the Forests (11,5 Mil ha): 43 M t  $CO_2$  eq. (*Kay...Paris et al, 2020, Land Use Policy*)

Best





# Best

# **Emerging risk**

- Biotic stress
  - Diseases
    - Brown spots (*Discosporium populeum*)
    - Poplar root-rots (Rosellinia necatrix)
  - Pest
    - Brown marmorated stink bug (Halyomorpha halys)
    - Japanese beetle ( Popillia japonica)
  - Abiotic stress (Droughts, storms ..)





# **Emerging risk**

Brown spots (*Discosporium populeum*)



# **Emerging risk**

Best

Poplar root-rots (Rosellinia necatrix)







# Emerging risk



#### Brown marmorated stink bug (Halyomorpha halys)









## Japanese beetle (*Popillia japonica*)





Best

#### Abiotic stress (Droughts..)

# Emerging risk



Predicted DBH in cm at age 10 for the two groups in 2040s under RCP8.5 using the variant21. The experimental sites used for modelling the group are shown as black dots and the statistical extrapolation outside the ecological domain is shown as shaded area.

Best



