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Abstract. For a Tychonoff space X, we denote by Cx(X) the space of all real-valued continuous functions
on X with the compact-open topology. A subset A C X is said to be sequentially dense in X if every point of
X is the limit of a convergent sequence in A. In this paper, the following properties for Ci(X) are considered.

51(S,8) = S5in(S, S) = S4in(S, D) < 5i(S, D)

[l ) ) )
51(D,S) = S5in(D,S) = Sfin(D, D) < S1(D, D)

For example, a space C(X) satisfies 51(S, D) (resp., S5in(S, D)) if whenever (S, : n € IN) is a sequence of
sequentially dense subsets of Ci(X), one can take points f, € S, (resp., finite F,, C S,) such that {f, : n € IN}
(resp., U{F, : n € IN}) is dense in Cx(X). Other properties are defined similarly.

In [22], we obtained characterizations these selection properties for C,(X). In this paper, we give
characterizations for Cy(X).

1. Introduction

For a Tychonoff space X, we denote by Ci(X) the space of all real-valued continuous functions on X
with the compact-open topology. Subbase open sets of Cx(X) are of the form [A, U] = {f € C(X) : f(A) c U]},
where A is a compact subset of X and U is a non-empty open subset of R. Since the compact-open topology
coincides with the topology of uniform convergence on compact subsets of X, we can represent a basic
neighborhood of the point f € C(X) as (f, A, €) where (f,A,e) :={g € C(X) : |[f(x) —glx)| <eVx €A}, Aisa
compact subset of X and € > 0.

Many topological properties are defined or characterized in terms of the following classical selection
principles. Let A and B be sets consisting of families of subsets of an infinite set X. Then:

51(A, B) is the selection hypothesis: for each sequence (A, : n € IN) of elements of A there is a sequence
{b,,}nen such that for each n, b,, € A,,, and {b,, : n € N} is an element of 8.

Sfin(A, B) is the selection hypothesis: for each sequence (A, : n € IN) of elements of A there is a sequence
{B,}nen of finite sets such that for each n, B, C A,;, and |, By € 8-
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Ufin(A, B) is the selection hypothesis: whenever Uy, U, ... € A and none contains a finite subcover,
there are finite sets 7, € U, n € N, such that {| JF,, : n € N} € B.

The following prototype of many classical properties is called ”A choose 8” in [29].

(‘2) : For each U € A there exists V € U such that V € 8.

Then Sy, (A, B) implies (g).

In this paper, by a cover we mean a nontrivial one, that is, ¢ is a cover of X if X = | J U and X ¢ U.

A cover U of a space X is called:

e an w-cover (a k-cover) if each finite (compact) subset C of X is contained in an element of U;

e a y-cover (a yi-cover) if U is infinite and for each finite (compact) subset C of X the set {U € U : C € U}
is finite.

Note that a y-cover is a k-cover, and a k-cover is infinite. A compact space has no k-covers.

A space X is said to be a yi-set if each open k-cover U of X contains a countable set {U, : n € IN} which
is a yx-cover of X [9].

In a series of papers it was demonstrated that y-covers and k-covers play a key role in function spaces
[8-10, 13, 16, 22-26, 28] and many others. We continue to investigate applications of k-covers in function
spaces with the compact-open topology.

2. Main Definitions and Notation

If X is a topological space and A C X, then the sequential closure of A, denoted by [A]sy,, is the set
of all limits of sequences from A. A set D C X is said to be sequentially dense if X = [D]s;. A space X
is called sequentially separable if it has a countable sequentially dense set. Call X strongly sequentially
separable, if X is separable and every countable dense subset of X is sequentially dense. Clearly, every
strongly sequentially separable space is sequentially separable, and every sequentially separable space is
separable.

For a topological space X we denote:

e O — the family of open covers of X;

e I' — the family of open y-covers of X;

o [, — the family of open yj-covers of X;

e () — the family of open w-covers of X;

e K — the family of open k-covers of X;

o K — the family of countable co-zero k-covers of X;

o ) — the family of dense subsets of Ci(X);

e ¥ — the family of countable dense subsets of Ci(X);

e S — the family of sequentially dense subsets of Ci(X);

o K(X) — the family of all non-empty compact subsets of X.

¢ A space X is R-separable, if X satisfies S1(D, D) (Def. 47, [2]).

e A space X is M-separable (selective separability), if X satisfies S;,(D, D).

e A space X is selectively sequentially separable, if X satisfies Sy, (S, S) (Def. 1.2, [3]).

For a topological space X we have the next relations of selectors for sequences of dense sets of X.

Sl(S/S) = Sfm(S/S) = Sfm(S/'Z)) — Sl(S/'Z))

m T T m
S1(D,8) = Ssin(D,S) = Ssin(D, D) & S1(D, D)

Let X be a topological space, and x € X. A subset A of X converges to x, x = lim A, if A is infinite, x ¢ A,
and for each neighborhood U of x, A \ U is finite. Consider the following collection:

¢ Q. ={ACX:xeA\A);

o[, ={ACX:x=1lmA}

Note that if A € I'y, then there exists {a,} C A converging to x. So, simply I'y may be the set of non-trivial
convergent sequences to x.
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We write I1(A,, By) without specifying x, we mean (VX)I1(Ay, B).

So, we have three types of topological properties described through the selection principles:

e local properties of the form S.(®,, \V,);

e global properties of the form S.(®, ¥);

e semi-local properties of the form S.(®, W.).

Our main goal is to describe the topological properties for sequences of dense sets of Ci(X) in terms of
selection principles of X.

3. 51(D,8)
Recall that X a y;-set if it satisfies the selection hypothesis S1(K, I'x) [9].

Theorem 3.1. ([11]) For a Tychonoff space X the following statements are equivalent:

1. Ci(X) satisfies S1(Q9, o) (i.e., Cx(X) is strongly Fréchet-Urysohn);
2. Xisay,-set.

Recall that the i-weight iw(X) of a space X is the smallest infinite cardinal number 7 such that X can be
mapped by a one-to-one continuous mapping onto a Tychonoff space of the weight not greater than 7.

Theorem 3.2. (Noble [19]) A space Ci(X) is separable if and only if iw(X) = No.

Theorem 3.3. For a Tychonoff space X with iw(X) = Ny the following statements are equivalent:

Ci(X) satisfies S1(D, S);

Every dense subset of Cr(X) is sequentially dense;
X satisfies 51(K, T) (X is a y;-set);

X is a yi-set;

Ck(X) is Fréchet-Urysohn;

Cx(X) satisfies Sfin(D, S);

X satisfies S fin (K, Tx);

Each finite power of X satisfies S i, (K, Tx);

Ci(X) satisfies 51(C, o),

Ci(X) satisfies S1(D, To).
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Proof. (1) = (6) is immediate.

(4) © (5) By Theorem 4.7.4 in [17].

(3) © (4) By Theorem 18 in [4].

(3) © (7) By Theorem 5 in [9].

(3) © (8) By Theorem 7 in [9].

(3) © (9) By Theorem 3.1.

(9) = (10) is immediate.

(6) = (2) Let D be a dense subset of Ci(X). By Sfin(D, S), for sequence (D; : D; = D and i € IN) there is a
sequence (K; : i € IN) such that for each i, K; is finite, K; C D;, and |, K; is a countable sequentially dense
subset of Ci(X). It follows that D is a sequentially dense subset of Ci(X).

(2) = (4) Let U be an open k-cover of X. Note that the set D := {f € C(X) : f | (X \ U) = 1 for some
U € U} is dense in Cr(X), hence, it is sequentially dense. Take f, € D such that f, — 0. Let f, I (X\U,) =1
for some U, € U. Then {U, : n € N} is a y,-subcover of U, because of f, — 0. Hence, X is a yi-set.

(3) = (1) Let (D; : i, j € IN) be a sequence of dense subsets of Cx(X) and let D = {f; : i € N} be a countable
dense subset of C(X).

For every i, j € N consider U; ; = {Uy,;j : Uy = (fi — h)‘l(—%, %) for h € D; j}. Note that U; ; is an k-cover
of X for every i,j € IN. Since X a y;-set, there is a sequence (Uy,j,i; : i, j € IN) such that Uy ,;; € U;;, and
{Un(j,ij ¢ i, j € N} is an element of Ty. Claim that {h(i, j) : i, j € IN} is a dense subset of Cy(X). Fix g € C(X)
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and a base neighborhood W = (g, A, €) of g, where A is a compact subset of X and € > 0. There are f; € D
and j € IN such that (f;, 4, %) C W. Since {Uy,)),; : i,j € N} is an element of Iy, there is j* > j such that
A C Uy, hence, h(i, j') € (fi, A, }—,> c(f, A, §> CW.

Since Ci(X) is Fréchet-Urysohn, every dense subset of Ci(X) is sequentially dense. It follows that
{h(i, j) : i, j € N} is sequentially dense.

(10) = (3) Let {U; : i € N} c K and let D = {d; : j € IN} be a countable dense subset of Ci(X). Consider
D;i = {fxuij € C(X) : such that fxu;; [ K =d;, fxu;; I (X\ U) =1 where K € K(X), K c U € U} for
every i € IN. Since D is a dense subset of Ci(X), then D; is a dense subset of Ci(X) for every i € IN. By
(10), there is a set {fK(i),U(i),i,j(i) : 1 € IN} such that fK(i),U(i),i,j(i) € D; and {fK(i),U(i),i,j(i) :1 € N} € Ty. Claim
that a set {U(i) : i € N} € T't. Let K € K(X) and let W = [K, (—%, %)] be a base neighborhood of 0. Since
{fxa,u,ijo 1 € N} € T, there is i’ € IN such that fx),uq,iji € W for every i > i’. It follows that K C U(i) for
every i > i’ and, hence, {U(i)) : i e N} € I}. O

Let S ¢ K(X). An open cover U of a space X is called:
e a s-cover if each C € S is contained in an element of U;
e a ys-cover if Y is infinite and for each C € S the set {U € U : C £ U} is finite.

Definition 3.4. Let S C IK(X). A space X is called a y;-set if each s-cover of X contains a sequence which is
a ys-cover of X.

Definition 3.5. A space Xiscalled a vy -set if each countable cozero k-cover U of X contains a set {U,, : n € IN}
which is a y-cover of X.

For a mapping f : X — Y we will denote by f(k) = {f(K) : K € K(X)}.

Theorem 3.6. For a Tychonoff space X with iw(X) = Ny, the following statements are equivalent:

1. Cx(X) satisfies S1(D“, S);

2. Ci(X) is strongly sequentially separable;

3. Xisayy-set;

4. X satisfies S1(K%, I'x);

5. for every a condensation (one-to-one continuous mapping) f : X — Y from the space X on a separable metric
space Y, the space Y is a y p)-set.

Proof. (3) = (5) Let f be a condensation f : X +— Y from the space X on a separable metric space Y. If
u is a f(k)-cover of Y, then there is i’ C p such that p’ is a f(k)-cover of Y and |u’| = Ng. The family
fH () ={f"'(V): V € p'} is a countable co-zero k-cover of X. By the argument that X is a y¢-set, we have
that Y'is y s -set.

The remaining implications follow from the proofs of Theorem 3.3 and Theorem 18 in [4]. O

Corollary 3.7. For a separable metrizable space X, the following statements are equivalent:

Ci(X) satisfies S1(D, S);

Every dense subset of Cx(X) is sequentially dense;
Ci(X) is strongly sequentially separable;

Ck(X) is a Fréchet-Urysohn;

Ci(X) is metrizable and separable;

X satisfies S1(K, I'x);

X satisfies S1(K, K);

X satisfies S 7in (K, K);

X is a hemicompact.

—_
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Proof. By Theorem 3.3 and Theorem 6 in [4]. O
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A space X is called a k-Lindelof space if for each open k-cover U of X there is a V C U such that V is
countable and V € K. Each k-Lindelsf space is Lindeldf, so normal, too.

Lemma 3.8. ([17]) Cx(X) has countable tightness if and only if X is k-Lindeldf.
By Theorem 3.3, Theorem 3.6 and Lemma 3.8 we have

Theorem 3.9. For a Tychonoff space X with iw(X) = 8o the following statements are equivalent:

1. Ck(X) is Fréchet-Urysohn;

2. Ci(X) is strongly sequentially separable and has countable tightness;

3. X satisfies S1(K*, I'y) and is k-Lindelof;

4. Every dense subset of Ci(X) contains a countable sequentially dense subset of Ci(X).

In Doctoral Dissertation, A.J. March considered the following problem (Problem 117 in [15]): Isit possible
to find a space X such that Ci(X) is strongly sequentially separable but C¢(X)? is not strongly sequentially
separable?

We get a negative answer to this question.

Proposition 3.10. Suppose X has the property S1(K%,Tk). Then X | | X has the property S1(KZ, T).

Proof. LetU = {U, : i € N}be a countable k-cover of X | | X by cozerosets. Let X| | X = Xj | | X, where X; = X
fori=1,2. Consider V1 = {U} = U;N X1 : Xi \U; # 0,i e N}and Vo = {U? = U; N Xz : Xp \ U; # 0,i € N}
as families of subsets of the space X. Define V := {Lli1 N l,[i2 : U,.l € V; and l,li2 € V,). Note that V is a
countable k-cover of X by cozero sets. By Theorem 18 in [4], there is {Ul.ln N Uizn :n € N} € V such that

{U} NU; :n € N}isayy-cover of X. It follows that {Uj, : n € N} is a yy-cover of X[ | X. O

Theorem 3.11. For a Tychonoff space X the following statements are equivalent:

1. Ci(X) is strongly sequentially separable;
2. (Ck(X))" is strongly sequentially separable for each n € IN.

Proof. By Theorem 3.6, Proposition 9.1 and the argument that Ci(X | | X) = C(X) X Ci(X). O

A.]. March considered the problem (Problem 116 in [15]): Is it possible to find spaces X, Y such that
Ci(X) and Ci(Y) are strongly sequentially separable but Ci(X) X Cr(Y) is not strongly sequentially separable?
A. Miller constructed the following example [18].

Example 3.12. There exist disjoint subsets of the plane X and Y such that both X and Y are yj-sets but XUY
is not. Let X be the open disk of radius one, i.e., X = {(x, y) : X2+ y2 < 1}, and Y be any singleton on the
boundary of X, e.g., Y = {(1,0)}.

Thus, we have the example of the subsets of the plane X and Y such that Ci(X) and Ci(Y) are strongly
sequentially separable, but Cx(X U Y) is not.

Note that (in contrast to the C,-theory) Ci(X U Y) # Ci(X) X Ci(Y).

In [4], the authors considered the next problem (Problem 21 in [4]) : Is the class of yj-sets closed for
finite unions ?

A particular answer to this problem and March’s problem is the following

Theorem 3.13. Suppose that X and Y are yj-sets, iw(X) = iw(Y) = N and Y is first-countable. Then X||Y isa
Vi-set.

Proof. By Theorem 3.6, Ci(X) and Ci(Y) are strongly sequentially separable. Notice that each hemicompact
space belong to the class S1(%, I'x), and the converse holds for first countable spaces [16]. It follows that Ci(Y)
is a separable metrizable (first countable) space. By Theorem 9 in [6], Cx(X) x Ci(Y) is strongly sequentially
separable. Since Ci(X) X Ci(Y) = Ce(X 1Y) and, by Theorem 3.6, we have that X | | Y is a yy-set. [

Corollary 3.14. The product Ci(X) X Ci(Y) of strongly sequentially separable space Cr(X) and strongly sequentially
separable first-countable space Cr(Y) belongs to the class of strongly sequentially separable spaces.
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4. $1(D, D)

In [10] it was shown that a Tychonoff space X belongs to the class $1(K, K) if and only if Cx(X) has
countable strong fan tightness (i.e. for each f € Ci(X), S1(Qf, Q) holds [27]).

Lj.D.R. Kocinac proved the next

Theorem 4.1. ([4, Theorem 6]) For a first countable Tychonoff space X the following statements are equivalent:

Ck(X) is first countable;

Ci(X) has countable strong fan tightness;
Ck(X) has countable fan tightness;

X is locally compact Lindelof space;

X satisfies 51(K, K);

X satisfies S fin (K, K);

AR I

We consider the generalizations (Theorem 4.2 and Theorem 5.3) of the Theorem 4.1 to the class of
Tychonoff spaces with iw(X) = No.

Theorem 4.2. For a Tychonoff space X with iw(X) = 8 the following statements are equivalent:

Ci(X) satisfies S1(D, D);

X satisfies S1(K, K);

Each finite power of X satisfies S1(K, K);

Ci(X) satisfies 51(o, (o) [countable strong fan tightness];
Ci(X) satisfies S1(D, ).

SIS

Proof. (2) & (3) By Theorem 5 in [14].

(2) © (4) By Theorem 2.2 in [10].

(1) = (2) Let K; € K for every i € IN and let D be a countable dense subset of Ci(X). Consider
D; = {fxus € C(X) : fI(X\ U) =1and fIK = d where K is a compact subset of X, U € K; such that K c U
and d € D}. Since D is a dense subset of Cx(X), we have that D; is a dense subset of Ci(X) for every i € IN.
By (1), there is a sequence { fx, 11, 4,}ien such that for each i, fx, 11,4, € D;, and {fx, 1,4, : i € N} is a dense subset
of Cr(X). Note that U; € K; for eachi € N and {U; : i € N} € K.

(2) = (1) Let(D;; : i, j € N) be a sequence of dense subsets of Cx(X) and let D = {d,, : n € N}be a countable
dense subset of Cy(X). For every couple (i, j),i,j € N and f € D;j consider K; s = {x € X : |f(x) — d;(x)| < %}
and K;; = {Kijr : f € D;j}. We claim that K;; € K for every couple (i, ), i,j € N. Let K € K(X)
and (d;, K, %) a base neighborhood of d;. Since D;; is a dense subset of Cx(X), there is f € D;; such that
f e,k %), hence, K C K;;r. Fix j € N, by (2), there is a family {K; ;¢ : i € IN} such that K; j ;) € K;;
and {K;fij : i € N} € K. So f(i,j) € D;;j for i,j € IN. Claim that {f(i, j) : i,j € IN} is dense in Ci(X).
Let p € C(X), K € K(X), € > 0 and let {p, K, €) be a base neighborhood of p. There is j/ € IN such that
di €{p,K, 5). Since {K; ¢ ) : i € N} € K, there is i’ € N such that K C Ky ; f,i) and ll, < 5. It follows that
If(@, j)x) = p)] < [f({, ) (x) = dj ()] + |dj(x) = p(x)| < § + § = € for every x € K. Hence, f(i’,]) € (p, K, €)
and {f(i, j) : i, j € N} is dense in Ci(X).

(4) = (5) is immediate.

(5) = (1) Let (D;; : i € N) be a sequence of dense subsets of C(X) for each j € Nand let D = {d; : j € N}
be a countable dense subset of Ci(X). By (5), for every j € IN there is a family {d;. : i € N} such that d; €D;;

and {d; 1€ IN} € Qy,. Note that {dé, ti,jeINteD. O
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5. Sfin(D, D)

According to [11] X belongs to Sy;,(%, K) if and only if Ci(X) has countable fan tightness (i.e., for each
f € Cu(X), Sin(Qf, Qf) holds [1]).

Theorem 5.1. For a Tychonoff space X with iw(X) = Ry the following statements are equivalent:

1. Ci(X) satisfies Sin(D, D),

X satisfies S 5in (K, K);

Each finite power of X satisfies S 7in (K, K).

Cr(X) satisfies Sfin(€0, Qo) [countable fan tightness];
Cr(X) satisfies S in(D, Qp).

Ol W N

Proof. (2) & (3) By Theorem 6 in [14].
(2) © (4) seein [11].
The remaining implications are proved similarly to the proof of Theorem 4.2. [

Remark 5.2. It is easy to see that every hemicompact space is in the class 51(K, K) and, thus, in S, (K, K).
By Proposition 5 in [4], the converse is also true in the class of first countable spaces.

Corollary 5.3. For a first countable Tychonoff space X with iw(X) = 8y the following statements are equivalent:

1. Ck(X) satisfies S1(D, D);
2. Ci(X) satisfies Sfin(D, D);
3. X satisfies S1(%, K).

6. S1(S, D)

Definition 6.1. A yi-cover U of co-zero sets of X is yx-shrinkable if there exists a yi-cover {F(U) : U € U}
of zero-sets of X with F(U) C U for every U € U.

For a topological space X we denote:
o I'" — the family of yj-shrinkable covers of X.

Theorem 6.2. For a Tychonoff space X the following statements are equivalent:

1. Ci(X) satisfies S1(To, Qo);
2. X satisfies S1(T'%", K).

Proof. (1) = (2) Let Ci(X) satisfies S1(I'g, Q) and {F; : 1 € N} C Fih.

For each i € IN we consider a set D; = {frun,ui € C(X) : fraui [ F(U) = 0and frapu: (X \U) =1 for
ueFi.

Since {F(U) : U € F;} is a yi-cover of X, we have that D; converges to f = 0 for each i € IN.

Since Ci(X) satisfies S1(I'g, (o), there is a sequence (fr,,u,, : ¢ € IN) such that for each i, fruyu,: € D,
and {frau,u,i : i € IN} is an element of ().

Consider {U; : i € IN}.

(a) U; e 7.

(b) {U; : i € N} is a k-cover of X.

Let K be a non-empty compact subset of X and U = (f, K, 1) be a base neighborhood of f, then there is
frwnu, i € U. It follows that K C Uy. We thus get X satisfies 51(1"15(’7,7( ).

(2) = (1) Let (fx,; : k € IN) be a sequence converging to f for each i € IN. Without loss of generality we
can assume that f = 0,aset W = {x € X: =1 < fii(x) < }} # Xforany i€ Nand S} = {x € X : -1 < fi;(x) <
1} # XforanyieN.
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Consider V; = {W,i :keN}and S; = {S;lc : k € IN} for each i € N. We claim that V; is a y,-cover of
X. Since {frilkenw converges to f, for each compact subset K C X there is kg € IN such that f; € (f,K, %)
for k > ky. It follows that K C W, for any k > ky. Since Vi1 is a y-cover, Si+1 is a yi-cover, too. Siiq is a
refinement of the family V;, hence, V; € I' Zh.

By X satisfies S1 (I, K), there is a sequence (W;;(i) :i € N) such that W]i(i) € V;foreachi,and {W,i(i) 1i e N}
is an element of K.

We claim that f € {fy;,:i€N}. Let U = (f,K €) be a base neighborhood of f where ¢ > 0 and
K € K(X), then there is i; € IN such that % < eand W', > K. Tt follows that frini € {f, K €) and, hence,

k(ir)
f S {fk(i),i (i€ N} [}

Lemma 6.3. Let U = {U, : n € N} be a yy-shrinkable cover of a space X. Then the set S = {f € C(X) : f |
(X \ Uy) =1 for some n € N} is sequentially dense in Ci(X).

Proof. Let h € C(X). For each n € IN, take f, € C(X) such that f, [ F(U,) =h | F(U,) and f, [ X\ U,) = 1.
Then obviously f, € S, and f, + h, because {F(U,) : n € N} is a y,-cover. [

Theorem 6.4. For a Tychonoff space X with iw(X) = 8y the following statements are equivalent:

1. Ck(X) satisfies S1(S, D);
2. Ck(X) satisfies S1(S, Qo);
3. Ci(X) satisfies S1(Io, (o);
4. X satisfies Sl(l"i”,’K).

Proof. (1) = (4) Let {;:i€ N} C I'. By Lemma 6.3, S; = {f € C(X) : f | (X \ F}) = 1 for some F}, € Fi} isa
sequentially dense subset of Ci(X) for each i € IN.

By (1), there is {f; : i € N} such that f; € S; and {f; : i € N} € D.

Consider the sequence {F;(i) :1€ N}

(a) F;(i) € FiforieN.

(b) {qu(i) :i € N} is a k-cover of X.

Let K € K(X) and let U = (0, K, %) be a base neighborhood of 0, then there is f; € {f; : i € N} such that
fir € U. It follows that K C Ff;(i,).

(4) = (3) Let X satisfies S1(I" ;h, K) and let {f; u}men converges to 0 for each i € IN.

Consider F; = {Fi, : m € N} = { fl.‘,i(—%, %) : m € IN} for each i € IN. Without loss of generality we can
assume that a set F;,, # X for any i,m € IN. Otherwise there is a sequence (f;, m, : kK € IN) such that {f;_, Jren
uniformly converges to 0 and {f;, m, : k € N} € Q.

Note that 7 is a y,-shrinkable cover of X for each i € IN.

By (4), there is a sequence (F; . : i € IN) such that for each i, F; i) € Fi, and {F; ) : i € IN} is an element
of K.

We claim that 0 € {f; . : i € N}. Let W = (0, K, €) be a base neighborhood of 0 where € > 0 and K € K(X),
then there is i; € IN such that % < € and Fj, i) O K. It follows that f; .4) € (0,K,€) and, hence, 0
€ {fimq : i € N} and Ci(X) satisfies S1(I'o, Qo).

(3) = (2) is immediate.

(2) = (1) Suppose that Ci(X) satisfies S1(S,€2). Let D = {d, : n € IN} be a dense subspace of C(X).
Given a sequence of sequentially dense subspaces of Ci(X), enumerate it as {S,, : n,m € IN}. For each
n €N, pick dym € Spm so thatd, € {d,,,, : m € N}. Then {d,,,, : m,n € N} is dense in Cx(X). O

7. Sfin(Sl D)

The following theorems are proved similarly to Theorems 6.2 and 6.4.
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Theorem 7.1. For a Tychonoff space X the following statements are equivalent:

1. Cx(X) satisfies Sfiu(To, Qp);
2. X satisfies Sfin(T3", K).

Theorem 7.2. For a Tychonoff space X with iw(X) = Ny the following statements are equivalent:

1. Ci(X) satisfies S5in(S, D);
2. Ci(X) satisfies S fin(S, Qo);
3. Ci(X) satisfies Sfin(To, o),
4. X satisfies Sf,-,,(l”ih,‘K).

8. 51(S,8)
In [22], we proved the following theorems.

Theorem 8.1. ([22, Theorem 3.3]) For a Tychonoff space X the following statements are equivalent:

1. Ck(X) satisfies S1(I'g, T'o);
2. X satisfies S1(I5", T).

Theorem 8.2. ([22, Theorem 3.5]) For a Tychonoff space X such that Cr(X) is sequentially separable the following
statements are equivalent:

Ci(X) satisfies S1(S, S);
Cr(X) satisfies S1(S,To);
Cx(X) satisfies S1(To, To);
X satisfies S1(I¥", Ty);
Ci(X) satisfies S fin(S, S);
Ci(X) satisfies S fin(S, To);
Ci(X) satisfies S fin(To, To);
X satisfies S f,-n(l"ih k).

® NS U LD

We can summarize the relationships between considered notions in next diagrams.

518, 8) © S55in(S,S) = S1(S, D) = Sin(S, D)

T T m m
51(2),8) & Sfm(D,S) = Sl(D, D) = Sf,'n(D, D)

Diagram 1. The Diagram of selectors for sequences of dense sets of C(X).

S1(TY, Tx) © Spin(T3, T) = S1(TY, K) = Spin(T3, K)
S1(K,Tk) © Sfin(K,Ti) = S1(K, K) = Ssin(K, K)

Diagram 2. The Diagram of selection principles for a space X corresponding to selectors for sequences of
dense sets of Ci(X).



A. V. Osipov / Filomat 32:15 (2018), 5403-5413 5412

9. On the Particular Solution to one Problem
Recall that Arens’ space S, is the set {(0,0), (%,0), (%, ﬁ) cn,m e N\ {0}}} c R? carrying the strongest
topology inducing the original planar topology on the convergent sequences Cy = {(0,0),(%,0) : n > 0} and
C,={ %,0), (%, #) :m > 0}, n > 0. The sequential fan is the quotient space S, = 5,/Cy obtained from the

Arens’s space by identifying the points of the sequence Cy [12].
Proposition 9.1. If Ci(X) satisfies Siu(To, Qo), then S,, cannot be embedded into Ci(X).
The following problem was posed in the paper [4].

Problem 9.2. Does a first countable (separable metrizable) space belong to the class S1(I'x, K) if and only if it is
hemicompact?

A particular answer to this problem is the following

Theorem 9.3. Suppose that X is first countable stratifiable space and iw(X) = No. Then following the statements
are equivalent:

1. X satisfies S s, (IS, K);
2. X satisfies Sin(I'x, K);
3. X satisfies S1(K, T'v);
4. X is hemicompact.

Proof. (1) = (4) Since X is first countable stratifiable space and, by Proposition 9.1, S, cannot be embedded
into Cx(X), then, by Theorem 2.2 (+ Remark) in [7], X is a locally compact. A locally compact stratifiable
space is metrizable [5]. It is well-known that a locally compact metrizable space can be represented as

X = || X, where X, is a o-compact for each o < 7. Since iw(X) = Ny, then 7 < ¢. Claim that 7 < w;.
a<t

Assume that 7 > w1. Then there is a continuous mapping f : X = D (f(X,) = d,,) from X onto a discrete
space D = {d, : @ < t}. Note that D satisfies S fin(F,s(h, K) (S5in(I',Q)) and, hence, D is Lindeldf, but [D| > Ny, a
contradiction.

It follows that X is a locally compact and Lindeldf, and, hence, X is a hemicompact.

(4) = (3) Since X is hemicompact and iw(X) = 8, then Ci(X) is a separable metrizable space [17]. Hence,
Ci(X) satisties S1(D, S), and, by Theorem 3.3, X satisfies S1(K,Iv). O

Corollary 9.4. Suppose that X is a separable metrizable space. Then X satisfies Sfiy(Ix, K) if and only if X is
hemicompact.

Remark 9.5. In the class of first countable stratifiable spaces with iw(X) = Ny (in particular, in the class of
separable metrizable spaces) all properties in Diagram 1 (and, hence, Diagram 2) coincide.
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