
Multi-Paradigm Spatial Information Processing

Dissertation

zur Erlangung des akademischen Grades des

Doktors der Naturwissenschaften

an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

von

Bernhard Lorenz

18. Oktober 2006

bxl
Typewritten Text

bxl
Typewritten Text
Erstgutachter:Prof. Dr. Hans Jürgen Ohlbach, Ludwig-Maximilians Universität, München-Zweitgutachter:Prof. Anthony G. Cohn, Ph. D., University of Leeds, Leeds, U.K.-Tag der mündlichen Prüfung:12. Dezember 2006-Die Informationen in diesem Dokument wurden mit größter Sorgfalt erarbeitet. Dennoch können Fehler nicht vollständig ausgeschlossen werden. Es wird keine juristische Verantwortung oder jedwede Haftung für eventuell verbliebene fehlerhafte Angaben oder deren Folgen übernommen. Eventuell verwendete Marken, Warenzeichen oder registrierte Warenzeichen sind Eigentum der jeweiligen Inhaber.-© 2007 – Bernhard Lorenz

bxl
Typewritten Text

bxl
Typewritten Text

bxl
Typewritten Text

bxl
Typewritten Text

Acknowledgements

The work presented in this thesis would not exist today without the support and contribu-

tion of many fellow researchers and students at the University of Munich. In particular,

my gratitude goes to the following colleagues:

• Prof. Dr. Hans Jürgen Ohlbach, University of Munich, for his continued and wise

guidance during the course of this thesis, and the many fruitful talks and discus-

sions – not only on the issues concerning this work.

• Professor Anthony G. Cohn, Ph. D., University of Leeds, for accepting the burden

of being the second reader of this thesis and for his valuable input in the final

stages of this work.

• Prof. Dr. François Bry, University of Munich, for his guidance, vision, and leader-

ship as the head of the unit and as the person who has made REWERSE a reality.

Also, I thank my former and current colleagues at the research and teaching unit PMS

and the MNM-Team. Without their continued support, their expert knowledge, and the

good spirit they created, this work would probably not exist today.

Furthermore, I thank the following students who worked on diploma theses related to

my work:

• Edgar-Philipp Stoffel, who is now a fellow researcher, developed the TransRoute

system in his diploma thesis. A short introduction to his work can be found in

section 6.3.3 of this thesis.

• Roman Flammer, who significantly contributed to the first implementation of the

MPLL prototype in course of his diploma thesis.

But above all, most gratitude goes to my family. I thank my parents and my sister for

their unconditional love and their kind care and support which I could enjoy all my life.

I especially thank my wife Stephanie for her love and patience during the course of this

thesis. And last but not least, I thank my son Eric for being the bright and happy person

that he is, and for being the sunshine of our lives.

This research has been partly funded by the European Commission and by the Swiss

Federal Office for Education and Science within the 6th Framework Programme project

REWERSE number 506779, http://rewerse.net.

Bernhard Lorenz

Munich, October 2006

http://rewerse.net

Abstract

For computer software, the semantics of spatial information is not a trivial issue. Due to

the differences between human spatial cognition, reasoning, and communication, and its

computerised counterpart, a number of difficulties persist in bringing the two paradigms

together. While the qualitative way in which humans reason about space enables them

to solve all kinds of spatial problems in their environment, the mostly quantitative mech-

anisms of computerised systems often fail to achieve the same results in a similarly

elegant manner. Computers have difficulties to “understand” spatial notions and expres-

sions such as “near the University”, “along the river”, “in the southern part of the city”,

“behind the post office”, or “on the shelf next to the sugar”. For some tasks, however,

quantitative methods implemented in software applications offer solutions far superior

to qualitative spatial reasoning conducted by humans. This applies, for example, to route

planning and navigation.

When reviewing existing work, it becomes apparent that available spatial models and

processing/reasoning techniques are mostly limited to certain application domains. A

number of systems based on quantitative paradigms offer sophisticated and effective

solutions, for example for route planning and navigation. Other work has focussed on

qualitative aspects and addresses other problems with similar success. In both cases,

there exist several very efficient and well-investigated methods to deal with certain tasks.

What is still missing is a unifying component. There is very scarce evidence of work

concentrating on making different paradigms available in a single system architecture.

The Multi-Paradigm Location Language (MPLL) presented in this work aims at bridg-

ing the gap between quantitative and qualitative spatial models, representations, and pro-

cessing techniques, in the sense of providing a means for humans to individually specify

the way they understand space, and a means for machines to apply quantitative and

qualitative methods to these specifications. It provides a framework which facilitates

implementing access to different services, which are specifically suited to perform spe-

cial tasks, such as qualitative reasoning on spatial relations between different entities, or

strictly geometrical computations. Spatial notions, however, are often highly subjective.

MPLL, therefore, offers flexible means to adapt the specifications to individual needs

and preferences, as well as the context of use.

This thesis illustrates the approach to reach the objective of providing a flexible spec-

ification language embedded into an extensible system architecture for the purpose of

providing the means to specify and process spatial information in geospatial scenarios.

These scenarios primarily pertain to tasks which concern, and are conducted by, human

beings, such as route planning in indoor and outdoor scenarios, and spatial relations

between, and interaction with, real world objects.

Zusammenfassung

Die Semantik räumlicher Information mit Computerprogrammen zu verarbeiten, ist kein

triviales Vorhaben. Aufgrund der Unterschiede zwischen der Art und Weise wie Men-

schen räumliche Problemstellungen kognitiv modellieren, diese kommunizieren und lö-

sen, und derjenigen, wie Maschinen dies bewerkstelligen, bestehen einige grundlegende

Probleme, beide Paradigmen zu vereinen. Computersysteme können die qualitativen

Techniken, die es Menschen erlauben, eine Vielzahl verschiedener Probleme in ihrer

räumlichen Umwelt zu lösen, mittels quantitativer Mechanismen oft nur unzureichend

nachbilden. Maschinen haben Schwierigkeiten, räumliche Begriffe und Ausdrücke zu

“verstehen”, wie zum Beispiel “Nahe der Universität”, “entlang dem Fluß”, “im Süden

der Stadt”, “hinter der Post”, oder “im Regal neben dem Zucker”. Quantitative Me-

thoden sind jedoch, in Form entsprechender Softwareapplikationen, in der Lage, einige

spezielle Problemstellungen weit besser zu lösen als der Mensch mit seinem räumlichen

Denken dazu in der Lage wäre.

Vorhandene Arbeiten auf diesem Gebiet legen nahe, dass verfügbare Modelle und

Techniken weitgehend auf bestimmte Anwendungsgebiete zugeschnitten sind. Zahlrei-

che Systeme basierend auf quantitativen Paradigmen offerieren ausgefeilte und effektive

Lösungen. Andere Arbeiten betrachten qualitative Aspekte und widmen sich anderen

Problemstellungen mit ähnlichem Erfolg. In beiden Fällen existieren gleichermaßen

ausgereifte und effiziente Methoden zur Lösung bestimmter Aufgaben. Was bisher fehlt

ist eine übergreifende Komponente. Es gibt nur spärliche Information über Arbeiten, die

paradigmenübergreifende Lösungen in einer einzigen Systemarchitektur vereinen.

Die Multi-Paradigm Location Language (MPLL) zielt darauf ab, die Lücke zwischen

beiden Modellen, Repräsentationen und Verarbeitungstechniken zu schließen. Sie soll

es einerseits Menschen ermöglichen, ihr individuelles räumliches Verständnis spezifi-

zieren zu können, andererseits diese Spezifikationen für quantitative und qualitative

maschinelle Verarbeitung zugänglich machen. Im vorgestellten Systemgerüst können

Zugänge zu unterschiedlichen Modulen und Diensten implementiert werden, die jeweils

einzelne Aspekte räumlicher Problemstellungen lösen können. Dazu gehören z.B. qua-

litatives räumliches Schließen, als auch strikt geometrische Berechnungen. Da räum-

liche Begriffe und Ausdrücke einen stark subjektiven Charakter haben, stellt MPLL die

notwendigen Werkzeuge bereit, um die Spezifikationen an den individuellen Fall, Kon-

text und weitere Vorgaben anzupassen.

Die vorliegende Arbeit illustriert den Ansatz, diese Ziele zu erreichen. Sie beste-

hen darin, eine Spezifikationssprache für geographische Szenarien zu schaffen, die die

angegebenen Eigenschaften erfüllt und in ein erweiterbares System eingebettet ist. Hier-

bei liegt die Betonung auf geographischen Szenarien. Die typischen Probleme betref-

fen Menschen, und werden von ihnen in entsprechendem Umfeld bearbeitet. Darunter

fallen z.B. Routenplanung innerhalb und ausserhalb von Gebäuden, räumliche Relatio-

nen, sowie die Interaktion mit realen Objekten.

Contents

1. Introduction and Motivation 1

1.1. Examples . 4

1.1.1. Data and Queries . 4

1.1.2. Sample Solutions . 7

1.2. Modelling Techniques . 11

1.2.1. Graphs, Graph Transformations 12

1.2.2. Ontologies . 16

1.2.3. Region Connection Calculus 17

1.2.4. Hard Coded Spatial Functions 18

1.2.5. Predicate Logic . 19

1.2.6. Spatial Specification Language 19

1.2.7. Conclusion . 20

1.3. The System Architecture at a Glance 21

1.3.1. A Sample Application . 22

1.3.2. Issues not Covered . 25

1.4. Outline . 25

2. Basic Concepts 27

2.1. Introductory Example . 27

2.1.1. Elements of Route Descriptions 29

2.1.2. Summary . 32

2.2. Reference Systems . 32

2.2.1. Types of Reference Systems 33

2.2.2. Anchoring . 35

2.3. Coordinate Systems . 35

2.3.1. Cartesian Coordinate Systems 35

2.3.2. Transformations . 36

2.3.3. Longitude and Latitude . 39

2.3.4. WGS-84 . 39

2.3.5. Universal Transverse Mercator Coordinate System 40

2.3.6. Gauß-Krüger Coordinate System 40

2.4. Basic Data Types . 41

2.4.1. Configurations and Configuration Space 41

2.4.2. Angular Expressions . 42

I

Contents

2.4.3. Shape and Size . 44

2.5. Basic Spatial Relations . 45

2.5.1. Direction . 45

2.5.2. Distance . 55

2.5.3. Topological Relations . 58

2.5.4. Complex relations . 60

2.6. Landmarks . 61

2.6.1. Definition . 62

2.6.2. Named Entities as Landmarks 64

2.6.3. Landmarks in Wayfinding . 65

2.6.4. Challenges . 66

2.7. Fuzziness . 67

2.7.1. Fuzzy Intervals . 68

2.7.2. 1.5-Dimensional Distributions 73

2.7.3. Directional Fuzziness . 77

2.7.4. Two-Dimensional Fuzzification 77

2.8. Context and User Modelling . 80

2.9. Summary . 81

3. System Architecture 83

3.1. Overview . 83

3.2. Modules . 84

3.2.1. Spatial Reference Module . 85

3.2.2. Graph Routing Module . 86

3.2.3. Traffic Information Module 86

3.2.4. OTN Module . 86

3.2.5. Topological Reasoning Module 86

3.3. Related Projects . 87

3.3.1. Local Data Stream Management System 87

3.3.2. Ontology of Transportation Networks 88

3.3.3. TransRoute . 88

3.3.4. Indoor Positioning and Navigation 88

3.3.5. PlanML . 89

3.4. Summary . 89

4. MPLL – Multi-Paradigm Location Language 91

4.1. From GeTS to MPLL . 91

4.1.1. Granularities . 92

4.1.2. Basic Types . 93

4.1.3. Geospatial Primitives in MPLL 94

4.1.4. Reference Systems . 95

4.2. The Language MPLL . 97

II

Contents

4.2.1. Examples . 98

4.2.2. Variable Naming Conventions 99

4.3. Language Constructs . 100

4.3.1. Arithmetic Expressions . 102

4.3.2. Boolean Expressions . 104

4.3.3. Control Constructs . 104

4.3.4. Functional Arguments . 106

4.3.5. Compound Types . 107

4.4. Basic Types . 107

4.4.1. Basic Spatial Types . 107

4.4.2. Angles . 112

4.4.3. Points . 113

4.4.4. Configurations . 114

4.4.5. Lines . 115

4.4.6. Polygons . 116

4.4.7. Lists . 118

4.4.8. Reference Systems . 120

4.4.9. Intervals . 122

4.4.10. Circular Intervals . 140

4.5. Basic Functions . 141

4.5.1. Transformations . 141

4.5.2. Bearing . 143

4.5.3. Construction of Points . 146

4.5.4. Construction of Lines . 148

4.5.5. Other Predicates . 148

4.6. The MPLL Standard Library – Types 149

4.6.1. Naming Conventions . 149

4.6.2. Predefined Constants . 149

4.6.3. Angles . 153

4.6.4. Points . 155

4.6.5. Configurations . 156

4.6.6. Lines . 158

4.6.7. Polygons . 158

4.6.8. Circular Intervals . 159

4.7. The MPLL Standard Library – Functions 160

4.7.1. Transformations . 160

4.7.2. Direction, Bearing and Orientation 165

4.7.3. Other Composite Functions 170

4.8. Summary . 170

III

Contents

5. Application 171

5.1. Properties . 171

5.2. Transformation of List Elements . 172

5.3. Angular Relation in Route Descriptions 172

5.4. Summary . 175

6. Related Work 177

6.1. Qualitative Orientation . 177

6.1.1. Egocentric Motion-based Reference System 177

6.1.2. Indoor fixed Spatial Orientation 178

6.1.3. Cardinal Reference System . 178

6.2. Qualitative Distance . 178

6.3. Related Projects . 179

6.3.1. Ontology for Transportation Networks (OTN) 179

6.3.2. Local Data Stream Management System 181

6.3.3. TransRoute . 184

6.4. Related Standards: Traffic Information via RDS/TMC 185

6.4.1. The Radio Data System (RDS) 186

6.4.2. The Traffic Message Channel (TMC) 187

6.5. Summary . 189

7. Conclusion and Future Work 191

7.1. Conclusion . 191

7.2. Perspectives for Future Research . 191

7.2.1. Ontology-based Language Constructs 192

7.2.2. Comprehensive User and Context Modelling 192

7.2.3. Individual Libraries . 193

7.2.4. Integration with GeTS . 193

A. Language Reference 195

A.1. Types . 195

A.2. Arithmetics . 195

A.3. Boolean Operators . 197

A.4. Control Constructs . 197

A.5. Points . 198

A.6. Configurations . 198

A.7. Lines . 198

A.8. Polygons . 199

A.9. Lists . 200

A.10.Reference Systems . 200

A.11.Intervals . 201

IV

Contents

B. Application Programming Interface Reference 205

C. Selected Code Samples 209
C.1. The MPLL Standard Library . 209

C.1.1. Types . 209

C.1.2. Functions . 219

C.2. Implementation . 223

C.2.1. Scanner . 223

C.2.2. Parser - Tokens . 227

C.2.3. Parser - Type Expressions . 230

C.2.4. C++ Sources . 235

List of Acronyms 241

Bibliography 245

V

Contents

VI

List of Figures

1.1. System Architecture Overview . 3

1.2. A Sample Application for Text Annotation – Web Pages 6

1.3. Web Page Annotation with EFGT-Net 10

1.4. Floor Plan with and without Network Overlay 13

1.5. Detailed Road Crossing . 15

1.6. Schematic Road Crossing . 15

1.7. Abstract Road Crossing . 15

1.8. Symbolic Data Representation . 17

2.1. Orientation, Track, and Bearing . 43

2.2. Allocentric and Egocentric Cardinal Direction 46

2.3. Allocentric Cardinal Direction . 47

2.4. Point-to-Point Directional Relation with Extrinsic Reference System . . 48

2.5. Point-to-Point Directional Relation with Intrinsic Reference System . . 49

2.6. Point-to-Point Directional Relation with Deictic Reference System . . . 50

2.7. Point-to-Line – Cardinal Direction . 51

2.8. Google Maps satellite image showing parcel shapes 51

2.9. Line-to-Point – Reference to Linear Direction 52

2.10. Line-to-Line – Direction . 53

2.11. Region-to-Point – Direction . 54

2.12. Line-to-Line – Distance . 57

2.13. RCC-8 Relations . 59

2.14. Fuzziness in Distance and Angle . 69

2.15. Representations of a Route . 69

2.16. Extended Route Features . 70

2.17. Linear Proximity with r1 = 0 . 74

2.18. Linear Proximity with r1 > 0 . 74

2.19. Logarithmic Proximity with r1 = 0 . 74

2.20. Logarithmic Proximity with r1 > 0 . 74

2.21. Exponential Proximity with r1 = 0 . 74

2.22. Exponential Proximity with r1 > 0 . 74

2.23. Fuzzy Notion of Distance . 75

2.24. Fuzzy Notion of Direction (θc = 0) . 76

2.25. Fuzzy Notion of Direction (θc > 0) . 76

VII

List of Figures

2.26. Fuzzy Representation of Cardinal Direction 76

2.27. Fuzzification of a Polygon . 78

2.28. Fuzzy Notion of an Angular Value (θc = 0) 79

2.29. Fuzzy Notion of an Angular Value (θc > 0) 79

2.30. Linear Fuzzification of a Line Segment 79

3.1. Overview of the MPLL System Architecture 84

5.1. Scenario for Angular Relation . 173

6.1. A stereo multiplex signal with RDS 186

6.2. Structure of Radio Data System (RDS) baseband coding 188

VIII

List of Tables

2.1. Elements of Directions (Example 1) 30

2.2. Elements of Directions (Example 2) 31

2.3. Directional Spatial Relations . 47

4.1. Definition of MPLL Data Structure Types 107

4.2. Definition of MPLL Enumeration Types 111

A.1. Reference: MPLL Data Structure Types 196

A.2. Reference: MPLL Enumeration Types 197

IX

List of Tables

X

1. Introduction and Motivation

1.1. Examples . 4

1.2. Modelling Techniques . 11

1.3. The System Architecture at a Glance 21

1.4. Outline . 25

In recent years, the importance of geospatial information has substantially grown in

several aspects. There has been a shift from special purpose Geographic Information

Systems (GISs) towards general purpose applications for end users. Geospatial data in

general is more readily available to a wider audience on the web. Regarding both quality

and type, a wider range of data can be accessed by a greater number of people in different

application scenarios. This development has in part been fuelled by the availability

of more affordable and more powerful stand-alone and mobile devices. Especially the

availability of the latter triggers new impulses in research, for example in the field of

navigation and way finding, location based services, and other areas which can utilise

spatio-temporal data. As the web is concurrently evolving to the Semantic Web, the

meaning of spatial information on the web is also becoming increasingly important,

because the web represents the major source of information – semantic or not.

Traditionally, GISs operate on complete and highly accurate spatial information [148], Quantitative

Datasuch as cadastral plans, data for construction and maintenance of different parts of

the infrastructure, land survey. GISs are very suitable for processing, integrating, and

analysing this kind of quantitative spatial information. Processing quantitative data in

this context refers to quantitative calculations in discrete space. By definition, quantita-

tive data can be measured by discrete scale: 15 ft., 24.37 m2, 272◦, (48◦ 08′ 58.69′′ N,

11◦ 35′ 38.33′′ E). In general, it is recognised that quantitative approaches are not good

for representing human cognition [95]. Basic Euclidean concepts are also not sufficient.

Whenever humans interact with their environment, they usually do so in a qualitative Qualitative

Datamanner. Humans are not well equipped to handle exact measurements of direction or

distance, or other quantitative expressions, such as those stated above. They tend to use

relations between spatial entities, often focussing on relations between their own position

and entities called landmarks (e.g. “the petrol station”, “the TV tower”, “the city cen-

tre”). Human cognition further involves qualitative angular and distal expressions, such

as “in the direction of ...”, “behind ...”, “along ...”, “near ...”, “until you reach ...”. The

underlying continuous numeric structures (angles, coordinate systems, metric distances)

1

1. Introduction and Motivation

are translated into small sets of symbols or labels on an ordinal and nominal scale in dis-

crete space. The area around the numeric position (48◦ 08′ 58.69′′ N,11◦ 35′ 38.33′′ E)
is represented by an expression such as “University of Munich, Institute for Informat-

ics”, “left” means something around 270◦, a kitchen of 24.37 m2 can – by the standard

of kitchens in the city of Munich – count as a “rather spacious” kitchen, and the distance

of 15 ft. between a mail box and the bakery on the corner can be regarded as “near”. The

reader will notice the vagueness, ambiguity, and imprecision in these statements. We will

duly go into detail at a later point, mainly in course of section 2.7, about the difficulties

for computation regarding these kinds of fuzziness. Furthermore, human communica-

tion about spatial issues, as well as a substantial part of resources of spatial information,

is mostly incomplete and fuzzy, and suffers from ambiguities in interpretation. This

fact can be easily confirmed by looking at basically any data source containing spatial

expressions in natural language, such as news articles, route descriptions, or sources of

similar kind. Unfortunately, incompleteness and imprecision are two properties which

GISs cannot handle very well.

In the scope of this work, the distinction between quantitative and qualitative data is cru-

cial. On the one hand, computer systems are perfectly suited for processing quantitative

data, but humans are used to and – by nature – equipped for handling qualitative data.

On the other hand, quantitative methods are well suited for certain problems, whereas

qualitative methods are well suited for other problems. The former cannot be used with

incomplete or imprecise (or purely qualitative) data, the latter are usually only useful for

certain confined domains and are not generically applicable to real world scenarios due

to the required grade of abstraction.

For computer science in general, and artificial intelligence in particular, the semantics ofSpatial

Semantics spatial information is not a trivial issue. Due to the differences between human spatial

cognition, reasoning, and communication, and the computerised counterparts, a number

of difficulties persist. While the qualitative way in which humans reason about space

enables them to solve all kinds of spatial problems in their environment, the mostly

quantitative mechanisms of computerised systems often fail to achieve the same results

in a similarly elegant manner. Computers have difficulties to “understand” spatial no-

tions and expressions such as “near the University”, “along the river”, “in the southern

part of the city”, “behind the post office”, or “on the shelf next to the sugar”.

The Multi-Paradigm Location Language (MPLL) presented in this work aims at bridg-MPLL

ing the gap between quantitative and qualitative spatial models, representations, and

information processing techniques, in the sense of providing a means for humans to

individually specify the way they understand space, and a means for machines to ap-

ply quantitative and qualitative methods to these specifications. In other words, spatial

notions specific to human cognition, which are contained, for example, in queries to a

database, can be interpreted by the computer in the intended sense. If the user wants

to find, for example, the nearest pharmacy, he/she is not looking for the shortest metric

distance, but for the shortest way regarding travel time. This particular problem amounts

2

to a route planning problem which depends on the individual user and context. The

user might, for example, sit in a car during daytime, or walk on foot along a street after

opening hours. Even particularly exotic cases can be handled by MPLL, for example if

the user prefers completely different spatial notions, such as “inland/seaward” instead

of the cardinal directions “north/south/east/west”, because he/she is influenced by the

peculiarities of oceanic languages.

Other problems require equally specific, but different, techniques. Sometimes techniques Creating

Synergyinvolving multiple spatial paradigms have to be used in connection with each other in

order to find specific solutions. One fundamental assumption of this thesis is that there

does not exist a single correct and best way to process spatial issues in their entirety. On

the contrary, solving a broad range of problems sometimes requires outright application

of a combination of complementary methods, representations, and models.

MPLL

Module 4Module 3Module 2Module 1 . . . Module n

(Web) Applications

Figure 1.1.: System Architecture Overview

A preliminary overview of the basic system components is shown in Fig. 1.1. MPLL

serves as a central component which provides a unified way to specify, process, and ex-

change spatial data. To this aim, MPLL employs the functionalities of several extendable

modules. The modules usually have access to specific (web) data sources (e.g. docu-

ments, data bases) and provide very specific services. These services include, for exam-

ple, routing and wayfinding in graph structures, processing of coordinates and access to

different geospatial reference systems, access to data streams including transformation

and filtering mechanisms. External applications can utilise the combined functionality

either through the Application Programming Interface (API) or via other (web-) inter-

faces.

3

1. Introduction and Motivation

The language GeTS, a Specification Language for Geo-Temporal Notions [126, 123],

provided a framework for the development of MPLL. Like its temporal counterpart,

MPLL is not intended as a general purpose programming language, although it has many

features of a functional programming language. However, it is a specification language

for spatial notions with a concrete operational semantics.

MPLL offers a number of basic constructs and data types which facilitate expressions

such as “location A lies between location B and C” but also “the application short-

cuts on the screen are located on the lower left, next to the Desktop Preview & Pager”.

More complex notions can be represented by the composition of basic constructs, as

for example the notion “between” can rely on the “bearing” construct providing the

bearing between points in space. However, another type of “between” pertaining to

network routing could be defined by using a shortest path algorithm and by comparing

path lengths and/or nodes traversed along the shortest path.

Since imprecision, uncertainty, ambiguity, and vagueness are a part of human spa-Fuzzy

Notions tial cognition, the possibilities of using fuzzy notions are evaluated as well, in order to

overcome the inherent difficulties quantitative models display in connection with these

issues.

The next section lists some examples which illustrate the problems encountered in this

kind of spatial information processing, followed by a compilation of possible solutions.

Subsequently, an overview of the system architecture is presented, showing the layout

of the different components and how they work together to provide solutions for the

problems stated before.

1.1. Examples

In this section, a few examples are laid out to illustrate the typical problems which are

to be faced when querying and processing spatial information. The list of problems il-

lustrated by these examples is by no means exhaustive, but it serves well to illustrate

its diversity and the problems’ specificities. In a similar manner, the solutions presented

thereafter are merely selected alternatives of several different approaches, since the prob-

lems presented allow for very different interpretations and solutions.

1.1.1. Data and Queries

Example 1.1 Suppose we have some data about cities, states and countries. EntriesFacts and

Inference could be:

(1) San Francisco is a city

(2) San Francisco is in California

(3) San Francisco has 3 million inhabitants

(4) California is in the U.S.

4

1.1. Examples

A query could be: “give me all metropolises in the U.S.”. How can the necessary infor-

mation be derived from the given facts?

Example 1.2 Suppose a database contains the yellow pages entries, i.e. businesses and Route

Planningtheir addresses. A query could be: “give me the nearest pharmacy”, with the spatial

context that the user is at a particular location X in the city. Other context informa-

tion about the user’s current situation can include, for example, mode(s) of transport

available, age and gender, preferences, abilities.

This query could be evaluated in a naive way by selecting the pharmacy with the

smallest geographic distances between it and the location X. This might be a first ap-

proximation, but it can give completely useless results. A pharmacy which is located

very close by, but is difficult to reach, may not be a good choice. The pharmacy might

be located on the other side of a river and the next bridge could be miles away. Getting

someplace might involve going uphill or entering unsafe parts of a city. Factors like

these can greatly and very individually bias the notion of distance for a person or group.

There is no trivial answer to this query, nor is there only a single “correct” one.

Example 1.3 Consider the query “give me all cities between Munich and Frankfurt”. Spatial

RelationsWhat does “between” mean here? If we take a map of Germany and draw a straight line

from Munich to Frankfurt, it does not cross many cities – if this was the means to decide

on this issue.

In fact, this is a good example of the diversity of possible solutions to a problem, since

the notion “between” is not only subjective, but in addition depends very much on the

individual context.

Example 1.4 Consider a database with, say, all cinemas in Munich. A query could be Fuzziness

“give me all cinemas in the south of Munich”. The notion of “Munich” itself has no

precise boundaries, except artificial ones. However, any artificial boundaries may yield

strange results for many users. What about cinemas which are located just beyond city

limits? Furthermore, there are manifold interpretations of the notion “in the south of”.

How can these two statements be combined in order to produce the desired result?

Example 1.5 Suppose a company looks for a building site for a new factory. The site Proximity

Relationsshould be close to the motorway. What does the notion “close to” pertain to in this

special case? Due to the semantics of the structure of a motorway it is not a simple

point-line relation.

Example 1.6 Suppose the database contains a road map, together with dynamic infor- Domain

Knowledgemation about, say, traffic jams. The information about traffic jams is usually not very

precise. It could be something like “there is a traffic jam on the M251 of 2 miles length

between junction 8 and junction 10”. How is a statement like this to be interpreted? Can

enough “hard facts” be extracted to actually put this information to use?

1The M25 is the orbital motorway around greater London.

5

1. Introduction and Motivation

Figure 1.2.: A Sample Application for Text Annotation – Web Pages

Example 1.7 Named entities (e.g. “Kofi Annan”, “Coca-Cola”, “World War II”, see

section 2.6.2) are ubiquitous in web pages and other text documents; an example is

shown in Fig. 1.2.

In the context of this work, we focus on spatial named entities, which include notText

Annotation only officially denominated states, governmental regions, cities, or rivers, but also other

places, regions, or spatial features. These spatial entities can be clearly defined (e.g. “the

West Bank”, “the Mediterranean”), or in some way imprecise or vague (e.g. “Northern

China”, “the Outback”, “Ground Zero”).

In the following excerpt of a news item, spatial named entities and expressions have

been set in boldface. This excerpt serves to illustrate the different semantics and ambi-

guities of the process.

“[...] The troops will be deployed in what U.N. peacekeeping officials

described Tuesday as a ”rolling exercise” replacing Israeli troops with

Lebanese and U.N. troops starting from the northeast [of the occupied ter-

ritory] at Marjayoun, Lebanon, and moving southwest.

Once in place, the U.N. troops will work along with Lebanese troops to

try to create a demilitarized zone between the Litani River and the ”blue

6

1.1. Examples

line” – the border between Israel and Lebanon.

Dozens of countries, including Italy, Malaysia, Indonesia and Turkey,

have expressed interest in taking part in the force and attended technical

meetings at U.N. headquarters – but no country had pledged troops as of

Tuesday. [...]”2

Difficulties arise in several aspects. Peoples’ names might be the same as those of

cities (e.g. “George Washington”), and in general, some expressions might have mul-

tiple (completely different) meaning (e.g. the word “Bank” in “West Bank” and “Bank of

America”). Some elements of composite expressions are responsible for the expression’s

overall spatial quality (e.g. “U.N. troops” vs. “U.N. headquarters”). Named entities can

represent all three generic types of spatial features, i.e. points, lines, and regions. It is

very difficult to determine the semantic sense of named entities. It is even more diffi-

cult to determine the semantic sense of spatial relations and named entities in natural

language.

Example 1.8 Route descriptions should look like the examples presented in section 2.1, Route

Descriptionspp. 27. They should contain expressions such as “turn right at the petrol station”, “con-

tinue straight until you reach the bridge”, or “the entrance to the hospital is located on

your right hand side, opposite from the church”.

How are suitable landmarks identified and what ranking mechanisms exist in order

to decide which to incorporate into a route description? What kind of spatial relations

(such as “opposite”, “near”, “behind”, or “left of”) are necessary and how can they be

processed?

1.1.2. Sample Solutions

Solutions to the given examples are themselves mostly, well, examples, since there al-

most always exist multiple ways to solve the associated tasks and subtasks.

Solution 1.1 One way to evaluate the query “give me all metropolises in the U.S.” could

be:

• Formulation of the database entries in a logic based knowledge representation

language, for example in the Web Ontology Language (OWL) [161] or its under-

lying Description Logics (DL).

• Definition of the concept “metropolis” in the same knowledge representation lan-

guage, for example

city(C)∧ (hasInhabitants(C) ≥ 1000000) 7→ metropolis(C) (1.1)

(A metropolis is a city with at least 1 million inhabitants.)

2This item was taken at random from a news article on www.cnn.com, on August 16, 2006.

7

1. Introduction and Motivation

• Executing a so-called instance test for the database entries. The instance test

would conclude from (2) and (4) that San Francisco is in the U.S., and from (1)

and (3) that San Francisco is a metropolis.

Solution 1.2 Much better answers to the query “give me the nearest pharmacy” could

be produced if we used, instead of the geographic distance, a metric which is determined

by the available forms of locomotion, for example going on foot, public transport and

so forth. Subsequently, the nearest pharmacy would be the one which can be reached

at optimal cost, which usually means “in the shortest time”. This problem amounts

to a route planning problem, which are traditionally modelled using weighted graph

structures. The system must compute the shortest route from the location X to a number

of pharmacies in the vicinity and choose the one with the shortest route. The route

planner must take into account the transport networks (road maps, tram lines, bus lines

etc.), as well as the context information about the user’s current situation.

In fact, it turns out that in many cases the formalisation of distal relations3 involves the

solution of a route planning problem. Route planning is one of the preferred means to

model distal relations, if the goal is to express qualitative distance.

Solution 1.3 The query “give me all cities between Munich and Frankfurt” can be eval-

uated in different ways. One possible formalisation of “between” (a rather simple one)

could be: in order to check whether a city B is “between” the cities A and C, compute the

shortest route R1 from A to B, the shortest route R2 from B to C and the shortest route

R3 directly from A to C. If the extra distance d = length(R1)+ length(R2)− length(R3),
I need to travel from A to C via B, compared to the direct route from A to C, is small

enough, B can be considered to be “between” A and B. Since the condition “is small

enough” is not very precise, one could use the distance d directly to order the answers

to the query.

Obviously, some problems arise from this individual definition of “between”. A city B

which is either very close to A or C could qualify as being “between” the two. Theo-

retically, B could be located anywhere around A or C, notably also on the respectively

opposite side. In these cases human cognition would not render B “between” A and C.

A possible refinement would be to restrict the lengths of R1 and R2 to be roughly equal.

Solution 1.4 This case can be modelled using fuzzy distributions instead of arbitrary

and artificial crisp boundaries. Therefore, “in the south of” is a two dimensional fuzzy

distribution over the Munich region. The fuzzy distribution could even be non-zero for

places outside, but close to the Munich border. Consider the given query “give me all

cinemas in the south of Munich”. This method assigns a fuzzy value to the location of

each cinema. The fuzzy values can then be used to order the answers to the query.

3In the literature these are also sometimes called proximity relations, although in the scope of this work we

stick with the expression distal relations. There is no semantic difference.

8

1.1. Examples

Solution 1.5 The “close to” relation in this example depends on the semantics of a mo-

torway in the sense that there are only designated spots (on-ramps and off-ramps) at

which the motorway can be entered or left. Furthermore, this query pertains to a route

planning problem, because what is needed is the time it takes for a car or for a lorry to

get to the nearest junction of the motorway. The length of the shortest path to the next

junction can be used to order the answers to the query.

Solution 1.6 Extracting usable information from the statement “there is a traffic jam on

the M25 of 2 miles length between junction 8 and junction 10” depends on the seman-

tics of the underlying domain of Traffic Information System (TIS). Therefore we need

domain knowledge about traffic jams and their specific features. A possible approach

for modelling the purely spatial aspects4 of this problem could be the following.

If the M25 is taken as a straight line then the traffic jam is a one-dimensional interval

whose location is not exactly determined. Instead, we have some constraints: length

equals 2 miles, start after coordinate of junction 8, and end before coordinate of junc-

tion 10. This particular problem is well suited to be modelled using Allen’s interval

relations [3, 64].

Queries like “is there a traffic jam on the western part of the M25” gives then rise to

a constraint solving problem (see, for example, Dechter [40]).

Solution 1.7 Named Entity Recognition (NER) (see section 2.6.2) is only a subtask in

the process of determining the semantics of natural language. Part of the research of

Weigel, Schulz, Brunner, and Torres-Schumann [17, 165, 166] deals with the annotation

of web pages. An example of their work is shown in Fig. 1.3. This figure shows an anno-

tated version of the web page from Fig. 1.2. On the left hand side there are the concepts

and instances, which are linked and highlighted within the annotated page on the right

hand side. Although this work does not focus especially on spatial issues, it illustrates

the application of ontologies and taxonomies, and their concepts and instances, in the

annotation process. A specialised spatial annotation could be done in a similar way.

This example also displays the limits of pure string matching. Although the names

of locations, denoted by green background, are correctly identified as such (there exist

cities in Germany called “Born”, “Hamburg”, “Horn”, and “Marxen”), this is not the

semantic meaning of the words within the text (which – apart from the correctly identified

meaning of “Hamburg” – pertains to the verb “born”, the music instrument “horn” and

the last name of Mr. Eduard “Marxen”). Obviously, simple string matching alone is not

sufficient for thorough annotation and capturing the semantics of natural language. The

general problems and issues discussed by Weigel et al. also pertain to the spatial subset

of named entities.

Albeit MPLL cannot solve all problems of NER, it can be used to alleviate some prob-

lems in the process by checking and verifying statements extracted from documents. This

4This solution does not pertain to any dynamic features of a traffic jam, such as whether the traffic jam is

moving forward or backward, whether it is growing or dissolving, the nature of the incident, etc.

9

1. Introduction and Motivation

Figure 1.3.: Web Page Annotation with EFGT-Net [166]

can be done, for example, by checking for conflicting statements, or by providing access

to a set of predefined and checked spatial entities, facts, and relations. Restricting the

processing to a certain domain – for example spatial semantics – could ease the disam-

biguation of expressions within the context of a document. The correct determination of

subjects and objects could be asserted with the help of predicates and vice versa (e.g. “[a

location] lies...” vs. “[a person] lies”).

In fact, there exist two connections to MPLL. First, named entities can be used as

landmarks (see sections 2.6 and 2.6.2 respectively) in the processing of spatial rela-

tions. Second, within a system providing named entities and relations, such as EFGT-

Net, MPLL could aid in identifying named entities denoting locations and verifying their

(spatial) semantics.

Solution 1.8 There is no trivial or quick solution for generating natural language route

descriptions, such as the ones given in example 1.8, or the ones in section 2.1 on page 27.

10

1.2. Modelling Techniques

This is a complex process, which involves several different techniques ranging from scene

analysis and heuristic methods to natural language generation, to name but a few.

MPLL can be integrated, for example, in the analytic phase to determine useful spatial

entities and their relations. Furthermore, it may be used to provide spatial relations

which can then be translated to natural (or controlled [62]) language. This section

briefly sketches the possibilities without getting into too much detail.

A route description traditionally consists of a series of quantitative positions (nodes in

a graph, associated with a position in space) and actions (e.g. “turn −84◦”). To trans-

late these into a human understandable language, these quantitative statements must be

assigned a respective quality. The expression “−84◦” could, for example, be translated

into “turn left”, using a template of cardinal directions (see section 2.5.1). Furthermore,

the location, where the action has to be performed, should be unambiguously identified,

usually by relating it to a landmark. A not too large set of landmarks can, for exam-

ple, be computed using a geometric k-nearest neighbour search. A pair of coordinates

denoting an intersection could then, for example, be expressed as “the intersection” (if

there is only one in the vicinity), “at the traffic lights” (if there are no other intersections

featuring traffic lights), or “the intersection with McDonald’s on the corner” (if this is

its salient feature). Note that it could be useful to check first, whether a landmark can

be found, which is located directly at the position of the action itself (i.e. “the intersec-

tion”). If this is not possible, landmarks which are “near” the action’s position need to

be related to it (i.e. “...McDonald’s on the corner”). In order to generate these relations,

certain attributes of network nodes and edges are needed, along with sets of landmarks

and/or points of interest. Deciding which relations and which landmarks are suitable is,

however, non-deterministic.

The individual issues in preparing suitable route descriptions also depend on the en-

vironment. Route descriptions in outdoor environments are different from route descrip-

tions in indoor environments. The types and forms of landmarks typically vary signifi-

cantly. Remarkably, outdoor environments usually contain more artificial than natural

landmarks (see distiction in section 2.6).

MPLL addresses the associated issues and provides means for processing spatially rel-

evant information. Spatial relations are, for example, not only hard coded, but can be

defined according to the context and according to the individual user profile. For exam-

ple, the expression “near” has a very different interpretation when the user is sitting in

a car or bus, than when the user is walking around the city on foot. Many other relations

can be – or need to be – individually defined to be usable in a certain scenario.

1.2. Modelling Techniques

In several research areas, methods have been developed which can help solving problems

in “spatial information processing”. Since spatial information processing is an extremely

11

1. Introduction and Motivation

broad notion, which has connections to many areas in computer science, we can only

mention here a few ones.

On the very concrete side there are GISs, i.e. databases and algorithms which deal with

concrete geographical data, road maps, land coverage etc. The GIS techniques depend on

the availability of concrete coordinates. If coordinates are not available, symbolic data

representation and information processing is necessary. A broadly accepted symbolic

spatial reasoning system is the Region Connection Calculus [30] (see section 2.5.3).

It conveys the ideas of Allen’s interval calculus [3] from the one-dimensional case to

topological spaces. RCC-8 provides basic relations between arbitrary regions and rules

for reasoning with the relations.

‘Shortest path’ algorithms have been developed to solve the path planning problems,

for example in transport networks. The path planning problem in a concrete two- or

three-dimensional environment is one of the robot navigation problems, and there are a

number of more or less practically useful algorithms to solve it [68].

The ‘shortest path’ algorithms do not take into account context information about the

traveller. It is a totally different situation if the traveller has a car available, or if he

depends on public transport systems. One way to use context information in a shortest

path algorithm is to construct a problem specific graph for the shortest path algorithm.

For example, if the traveller has a bicycle, the system might construct a graph consisting

of paths and roads, together with those railway and bus lines where a bicycle can be

taken into the coaches.

A very general knowledge representation and reasoning technique are the Description

Logics (DL) [8], with OWL as its semantic Web version [161]. In DL one can define

so-called ‘concepts’ which correspond to sets of objects, and one can relate individuals

to the concepts. Formula (1.1) on page 7 is an example of a concept definition in a DL.

The following sections illustrate some techniques for modelling spatial information, each

with their own inherent advantages and disadvantages.

1.2.1. Graphs, Graph Transformations

As previously stated, the solution of a number of problems involves spatial data that can

be represented as graphs. Different problems might require different kinds of graphs,

but these are often closely related to each other. Therefore, a huge amount of modelling

techniques, tools, and algorithms pertaining to graph theory, which were produced by the

research community over the past decades, can be employed to solve spatial problems.

Any spatial data that can be reduced to some form of network is predestined to be rep-

resented by one or more graphs. The applications range from purely symbolic structures

on the abstract end (jurisdictional or administrative regions of a country) to very concrete

physical networks on the other end (street networks, public transport, buildings).

The main application of graphs is finding certain paths through the graph which sat-

isfy particular constraints. Typically, these shortest paths are used to find the quickest,

12

1.2. Modelling Techniques

shortest, or least expensive path, although there are no restrictions. Optimisation es-

sentially depends on a suitable cost function and the formalisation of the desired input.

Basically any numeric values that can be stored in the graph and processed by a suitable

cost function can be used.

The following examples illustrate graph representations of concrete indoor and out-

door networks. The idea of graph transformation and different levels of detail is shown

in connection with the outdoor example. The use of graphs in modelling more ab-

stract structures is illustrated later in this chapter, in connection with Region Connection

Calculus (RCC)-8 relations (see section 1.2.3).

Example 1.9 (Floor Plans) Indoor navigation of autonomous vehicles, i.e. robots, re-

quires a detailed floor plan, as shown in Fig. 1.4 (1). For guiding human users through

buildings, for example from the entrance to a particular office, such a detailed floor plan

is not necessary. A simplified net plan, such as shown in Fig. 1.4 (2) is much more suit-

able for this purpose. The simplified plan can be generated from the detailed floor plan.

(1)

(2)

Figure 1.4.: Floor Plan without (1) and with Network Overlay (2)

In a hierarchical system of graphs, one can collapse a whole building to a single node

in a graph on an upper level, for example a graph representing a map containig several

13

1. Introduction and Motivation

buildings, subsequently parts of the city and the street network, and so on. Path planning

on one of the upper levels concerns a different scale (e.g. building to building, not room

to room). Concrete data about the internals of a building are, therefore, not needed at

upper levels. Hierarchical systems of graphs are a key feature of a holistic and multi-

modal [155] approach of path planning in multiple interconnected networks.

Another important issue is graph generation and transformation. Not only can differ-

ent graphs be connected in a major effort of path planning, but also there is a need for

accessing different levels of detail within a single graph structure. Different levels of

planning require different levels of detail in the underlying data structures.

Planning a trip by car from Munich to Hamburg, for example, requires a less detailed

representation, than, say, the generation of so-called driver-level instructions [156], on

the same route such as “take right lane”, or “take next exit to get on the highway A9”.

The necessity of graph transformation partly derives from these requirements, as

graphs of lower detail should automatically be generated from graphs of higher detail.

Due to semantic leeway, this process cannot easily be automated, at least not fully. An-

other motivation comes from the formats of available data. Data about road construction

and maintenance has been dominated by specialised GIS applications for some time now.

Therefore, data about basically the complete street network of a nation is waiting to be

put to use in applications such as path planning. Unfortunately, these data are overly

precise and held in different proprietary formats. Since extraction of abstract graph in-

formation about the underlying networks is widely considered to be rather difficult and

largely hindered by these proprietary standards, companies specialising in navigation

data [115, 153] did resort to other measures. They collect data in a huge effort by inde-

pendently charting the street networks using specially equipped vehicles. The following

example illustrates the discussed issues.

Example 1.10 (Road Crossings) Fig. 1.5 shows a detailed representation of an inter-

section of two streets, including an underpass (dashed lines) and pedestrian pathways

(shown in red). This graph is suitable for guiding an autonomous vehicle through the

intersection. Note that traffic regulations are encoded implicitly, i.e. turning left coming

from node 1 going to node 6 is not allowed, due to the missing (directed) edge between

the nodes. The same manoeuvre going from node 8 to node 2 is ok, as reflected in the

connection between node 8 and 2. Even simple routing algorithms can quickly produce

an alternative for the transition from 1 to 6: the traversal via nodes 1, 2, 3, 4, 5, and 6.

A simplified version of this crossing is shown in Fig. 1.6. It contains enough information

for a standard navigation system, i.e. basic connections between nodes, which indicate

the necessary order of traversal.

Finally, one can collapse the whole road crossing into single nodes of the road network

as shown in Fig. 1.7. This is sufficient for planning on a larger scale. In all three figures

we see the same road crossing, but at a different level of detail.

The examples illustrate several observations:

14

1.2. Modelling Techniques

N

1

2

456
7

3

8 9

10A

B

C

D

E

Figure 1.5.: Detailed Road Crossing

N

Figure 1.6.: Schematic Road Crossing

N

Figure 1.7.: Abstract Road Crossing

1. There is a hierarchy of graphs. At the lowest level there are graphs with the

concrete geographical details which are necessary for, say, guiding autonomous

vehicles. At the highest level there are graphs which represent logical relations

between entities.

2. There are correlations between the nodes and edges of the graphs at different

levels of the hierarchy. These need not be a one to one correspondence. Usually a

whole subgraph of a lower level graph corresponds to a single node or edge of the

higher level graph. A typical example is the representation of the city of Munich

in Fig. 1.8, as a polygon in the left hand graph and as a single node in the right

hand graph.

3. A transition from a lower level graph to a higher level graph can be facilitated

by identifying specific structures in the lower level graph, and transforming them

into structures of the higher level graph with the same meaning. In example 1.10

15

1. Introduction and Motivation

this structure is a road crossing. In example 1.9 these structures are floors, doors,

rooms etc. In example 1.11 these are cities, states, etc.

These structures are, in general, part of an ontology. In parallel with the devel-

opment of the graphs, we therefore need to develop the corresponding ontologies.

The elements of the ontology are the anchor points for controlling the graph trans-

formations and for choosing suitable graphs to solve a given problem.

4. It is in general not a good idea to put all information into one single graph, even

if it is information of the same level of detail. In a typical city we have, for

example, a road map as a graph, the bus lines as a graph, the underground lines

as a graph etc. We therefore need to consider collections of graphs with transition

links between the graphs. Typical transition links between a road map and an

underground map are the underground stations. The transition links, can, however,

be little graphs themselves, for example the network of corridors and stairs in an

underground station.

5. The graphs at the higher levels of the hierarchy can and should usually be extended

with additional information which is not represented in the lower level graphs. For

example, the graph in example 1.11 with the symbolic information about cities and

states can easily be extended by adding further cities and states.

1.2.2. Ontologies

In mathematical theories of space, points are traditionally considered as the basic spatial

entities [31], whereas lines and polygons are merely defined as sets of points. However,

there are fields in which regions of space are the preferred ontological primitive [160].

Furthermore, there exist several alternatives regarding the type of the embedding space.

Depending on the application, continuous, discrete [49], finite [67] or non convex space

might be best suited.

Apart from these fundamental ontological questions, a very different use of ontologies

presents itself on a higher level. Many application domains (e.g. transport, land survey,

electricity or water supply) come with their individual domain concepts, vocabulary, and

relations, which are best modelled in an ontology. The concepts found, for example, in

the Ontology of Transportation Networks (OTN) (see section 6.3.1) reflect the real world

of transport networks with the inherent properties and different modes (pedestrian, car,

bus, subway, etc.). Different processes, such as routing and navigation, visualisation, and

reasoning, can make use of the instance data according to the ontologies specifications.

This approach is very flexible, for example with respect to changes in the data structure.

Should a formerly not known type of street be added, for example one way street, the

visualisation need not be changed immediately, since the new class is a subclass of the

class street (the visualisation of which is known). The relevant visualisation rules could

16

1.2. Modelling Techniques

be altered manually to fit the new class. Likewise, a procedural definition of the rules

could automatically adapt to the new classes properties.

1.2.3. Region Connection Calculus

The fundamental approach of the Region Connection Calculus (RCC) is that, instead of

extensionless points, regions of space are used as basic entities, and that the only basic

type of relation between these regions is that of connection – and its variants [30]. The

different kinds of connection are described in more detail in section 2.5.3, on page 58,

along with a general discussion of RCC-8. The following example shows a possible

application of RCC-8 in symbolic knowledge representation.

Example 1.11 (Symbolic Data Representation) This example illustrates the transition

from GIS style data representation to a pure symbolic knowledge representation.

Fig. 1.8 shows the boundaries of two of the German states and cities on the left hand

side. Traditionally, the boundaries can be represented as polygons stored in a GIS. On

the right hand side, the polygons are collapsed into single nodes of an abstract graph.

The relation “polygon Munich is contained in polygon Bavaria” is turned into an NTTP

relation (Non Tangential Proper Part, see section 2.5.3) in the abstract graph. Likewise,

the relation “polygon Bavaria touches polygon Hesse” is turned into an EC relation

(Externally Connected).

Frankfurt

Munich

BAVARIA

HESSE

NTPP

EC

TPP

NTPP

Hesse

Frankfurt

Bavaria

Munich

Germany

NTPP

Figure 1.8.: Symbolic Data Representation

RCC-8 is a well developed and broadly accepted theory for topological modelling. Its

application in solving certain spatial issues is very sensible, albeit the complexity of

computation could become a problem in some cases. For example Jochen Renz [137]

has proved that reasoning with RCC-8 is NP-hard by showing that reasoning with a

subset of RCC-8 is already NP-hard.

17

1. Introduction and Motivation

1.2.4. Hard Coded Spatial Functions

Consider the spatial relation “between”. How many different interpretations of this

notion are there? Here are some suggestions regarding point entities:

Ordering Relation – House number schemes are usually ordering relations. If one

is looking for a particular address in a street, this order relation is very helpful,

because, say, the number 1500 usually lies between 1000 and 2000. This example

raises a question, though. While both numbers 1999 and 1001 are, mathemati-

cally, perfectly between 1000 and 2000, the houses with these numbers, would

intuitively not qualify as being located between the houses with the numbers 1000

and 2000. More likely, the ternary relation “between” would be replaced by a

binary relation like “next to”. This is because an intuitive interpretation of “be-

tween” most likely requires the referent to be located halfway between the relati5.

Network Based – Also in this case there are several possibilities of defining the notion

“between”.

In a network of street segments (edges) and junctions (nodes), a junction A is

located between two other junctions B and C, if A is part of the shortest path

between B and C.

A more exact definition (analogous to the “order relation” before) could include

the restriction that the number of nodes between A and C should be not too differ-

ent from the number of nodes between A and B.

Yet another variant would allow other nodes, which are close to the shortest path

(that is, ideally, close to A), also to qualify as being between B and C.

Geometric – Determining objects in the line of sight, for example, requires yet another

definition of the notion between. If the difference in bearing from a point A to

points B and C amounts to π (or 180◦), then the object A is geometrically between

B and C (to keep it simple, we stay in planar space and don’t regard elevation).

In all three cases, a crisp definition could possibly lead to undesired results. The use

of fuzzy logic could alleviate this issue. These matters are further complicated if other

entities besides point entities are introduced. However, some issues regarding lines and

regions can most likely be solved in a similar manner as in point-point relations.

We see from these examples that it is quite impossible to design and implement a

programming library, which holds the implementation of all possible interpretations of

the notion “between”. There will always be some issue in some scenario, which is not

covered by the library – not to mention the consequential problems with the interface,

which would certainly be very complex and heavily overloaded.

5See section 2.2 on page 32 for a definition of referent and relatum.

18

1.2. Modelling Techniques

1.2.5. Predicate Logic

Symbolic data about spatial relations can be specified as axioms in predicate logic. Such

axioms could be, for example,

(1) the vehicle “X” is located within the city of Munich,

(2) the city of Munich is part of Bavaria, and

(3) the radio station “Bayern 3” can be received throughout Bavaria.

Subsequent reasoning on sets of such axioms can, for example, prove the statements to

be consistent (or inconsistent), or produce statements such as the radio station “Bayern

3” can be received with the radio in vehicle “X”. An article [150] by Mark Stickel, for

example, provides more detail on such issues.

The problem with reasoning on a symbolic level is that real world scenarios often feature

complexity which is not fully covered by the underlying logics. Furthermore, qualitative

data, which is required for such reasoning, is much harder to come by than quantitative

data. Of course, some qualitative information can be derived from quantitative data

sources, but the resulting quality varies. In many cases qualitative data of, well, good

quality, is the result of extensive manual processing.

One possibility is to reduce the complexity of the real world data to fit the abstract

model. However, this often limits the possibilities of the subsequent reasoning on the

model, and results are often not very practical. Another possibility is to extend the model

to fit real world requirements, although this often leads to problems with complexity of

computation.

1.2.6. Spatial Specification Language

As we have seen from the examples above and from the previous sections on modelling

techniques it is not possible to provide a spatial model which satisfies all possible re-

quirements in any application scenario thinkable. On the contrary, each individual case

comes with certain requirements and many spatial issues are prone to several equally

justified interpretations.

One possibility to counter these effects is the use of a flexible specification and program-

ming language. In order to provide solutions for problems in many different applications

scenarios, the basic types and constructs of such a language should be largely sufficient.

Whatever special functions and relations are missing from the language should be pos-

sible to be expressed using available language constructs. Already defined functions

should be possible to overload or overwrite.

In the case of MPLL, which aims to be such a specification language, these require-

ments are fulfilled. A certain interpretation of, say, the notion “between” can be speci-

fied according to the individual requirements and used as any other function provided by

MPLL. In most cases, the implementation need not be changed to add new functional-

19

1. Introduction and Motivation

ity, only some additions to the standard library (or any other library for that matter) are

needed.

However, one could argue that it would be possible to extend an existing programmingExisting

Languages language with spatial types and functions, instead of designing a new language from

scratch. This way, generic functionality would not have to be implemented once more

and generic concepts of existing and proven languages could be used.

The most important reason for specifically not using an existing programming lan-

guage is that the specification language shall not be dependent on any single host lan-

guage. If the functionality of the language was implemented as a library usable with, for

example, C or C++, it would not be possible to use it with other programming languages,

such as Java, Prolog, SML, or Haskell. The library would always be tailored to the host

language.

Another important issue is the separation of specification and implementation. De-

signing the specification language from scratch ensures that it is designed as a specifica-

tion language with all inherent features of such a language. There is no need to compro-

mise between the generic programming features of the language and the specification

features and spatial types and functions of the language.

1.2.7. Conclusion

This introduction made clear that in the field of spatial information processing synergy

between multiple processing and reasoning techniques is needed. Applications in this

field have to deal with a broad range of tasks, each requiring certain distinct data models

and specifically suited processing and reasoning techniques.

Advantages of quantitative methods include the fact that they have been well researchedQuantitative

Methods and are in widespread use for several years now. The majority of available data are of

quantitative nature and there are clear formalisms available for processing.

Disadvantages include issues regarding the high number of highly different and pro-

prietary standards and data formats and the inherent difficulties of applying quantitative

methods to incomplete, vague, or imprecise data. Additionally, quantitative methods are

very different from human spatial cognition and reasoning.

The advantages of qualitative methods inversely reflect the properties of quantitativeQualitative

Methods methods. They are akin to human spatial cognition and reasoning and they are specifi-

cally well suited for tasks involving incomplete or imprecise data.

On the downside, the mediocre availability of qualitative spatial data has to be men-

tioned, as well as the issues concerning difficulties in interpretation and formalisation of

qualitative data.

Qualitative data can mainly be obtained from the following sources:

• explicit – data are (manually) generated and stored, for example in a relational

data base

20

1.3. The System Architecture at a Glance

• inferred – inference over existing data sets can be used to generate additional data

• derived – in cases where quantitative data is available, and whenever qualitative

data can be transferred to (and from) the qualitative domain, quantitative process-

ing can be used to generate new data

As a consequence, a suitable geospatial information processing system should

• facilitate the use of different processing and reasoning methods, for example in a

modular architecture

• be very flexible to accommodate different interpretations and user definable spatial

expressions, notions, and functions

• provide means to facilitate and ease the transition between qualitative and quanti-

tative information

The following section briefly sketches a possible architecture and some of the neces-

sary components which allow for an integration of a number of different processing and

reasoning techniques using a spatial specification language as a unifying component.

1.3. The System Architecture at a Glance

As shown in Fig. 1.1 on page 3, MPLL serves as a central component which provides

a unified way to specify, process, and exchange spatial data. To this aim, MPLL fulfils

several functions.

First and foremost, MPLL provides a number of basic constructs and operations, as

well as basic data structures for spatial data. It facilitates the specification of spatial

entities, such as points, lines, and polygons, and provides a basic set of spatial oper-

ations, which include different spatial relations, manipulation and transformation, and

algorithms. This way, spatial models can be constructed, which consist, for example, of

points (the user’s position, points of interest, junctions), lines (streets, rivers, borders),

and regions (natural or artificial boundaries, parcels, regions). Specific entities within

this model can then be manipulated (e.g. (continuously) changing the user’s position, as

he/she moves around) and spatial relations can be processed: Which way is the user fac-

ing? Which direction does he/she have to go? How can this direction be communicated?

With the tools provided by MPLL, a number of spatial issues can be tackled. How-

ever, a basic predefined set of operations cannot be suitable for all possible problems.

Therefore, MPLL also provides mechanisms for constructing individual functions by

combining basic functions into more complex ones (see, for example, the different defi-

nitions of “between” in section 2.5.4, pp. 60). As soon as functions other than the ones

provided are required, these can be defined accordingly.

21

1. Introduction and Motivation

Furthermore, MPLL acts as a single interface for several services which otherwise would

have to be accessed separately from the host application. With a single connection to

MPLL, therefore, an application can access not only the built-in functionality of MPLL,

but also the functionality offered by other services, which are in turn accessed by MPLL.

Some of these services are briefly described in the following paragraphs (see section 3.2

on page 84 for more details).

A number of issues in spatial information processing require the use of specific data

structures and algorithms, which cannot and should not be integrated into a general pur-

pose specification language. Examples for such issues are graph based mechanisms

(network related problems, such as path planning), stream processing systems (for data

streams, such as traffic or weather information), or special purpose database systems

(e.g. directories, web search engines). Each specific issue can be covered by one or more

(web) services, which can be accessed by MPLL via standardised interfaces. Some of

these services are specifically designed for serving MPLL, for example a service pro-

viding the data structures and algorithms necessary for processing data from different

reference systems.

1.3.1. A Sample Application

The inter workings of the different components are best explained by once again going

over one of the previous examples from section 1.1: The query “give me the nearest

pharmacy”.

Producing answers to this query requires several different steps, which partly can be

accomplished by using MPLL. The following paragraph briefly sketches a series of sub-

tasks, into which the problem can be broken down, followed by a more detailed descrip-

tion, including individual possible solutions.

1. derive the user’s current position by query or context

2. derive the context information relevant for route planning

3. match the term “pharmacy” to a category of services in a directory, e.g. the

yellow pages

4. translate addresses into geospatial coordinates

5. preliminarily order addresses (coordinates) according to their geometric distance

to the user’s position

6. perform a series of shortest-path planning processes, according to the parame-

ters collected so far, and

7. order results (pharmacies), shortest first

22

1.3. The System Architecture at a Glance

8. provide suitable routing instructions depending on the results (paths) from the

path planning process

The following enumeration gives more detail on what has to be accomplished, provides

a possible solution, and states, if applicable, the role of MPLL in providing this solution.

1. The user’s current position can either be derived from the context (i.e. it is pro-

vided implicitly by the device) or it can be queried and manually set by the user.

If it is manually set, most likely an address must be translated into numeric coor-

dinates.

Translating a postal address into geospatial coordinates is a typical example for

a (web) service, which can easily be accessed by MPLL. Although MPLL is not

directly needed for this task, it can be accomplished through MPLL. Since coor-

dinates are anyways subsequently used by MPLL, this step can well be directly

done via MPLL. Deriving numeric coordinates from a device is a simple case of

exchanging data and does not include MPLL.

Usually, the actual task involves a database which provides symbolic (street names,

house numbers, zip codes) as well as geospatial (coordinates of junctions) data.

If the coordinates of both ends of a street segment are available, along with the

street’s name and the distribution of house numbers, the approximate position of

an individual address can be calculated.

2. A huge amount of information can be relevant for the planning process later on,

much of which can be collected from the context and user information. Primarily,

this includes the user’s position and time and date of the query. Other information

can include, for example, mode(s) of transport available, age and gender, prefer-

ences, abilities.

For this example we can assume that the user’s position has been determined by

GPS and that the user is male, has a monthly ticket for the public transport system,

and is capable of traversing stairways (i.e. he is not in a wheelchair, nor has a

trolley or pram).

Like before, determining information of this kind has no real connection to MPLL,

as long as the necessary input is given to MPLL.

3. For this subtask, at least two kinds of data are required. First, the term “pharmacy”

must be related to some form of categorisation. Ideally, a huge number of concepts

is stored in an ontology, so that, for example, different kinds of names (e.g. “the

chemist’s”, “drug store”, “pharmacy”, “apothecary”) for more or less identical

concepts can be handled. If this categorisation is problematic, or disambiguation

is needed, the user might be able to give a more concrete parameter, possibly with

support from the ontologies’ concepts.

23

1. Introduction and Motivation

The second type of database required for this subtask must provide instances that

match the concept from above. A directory, such as the yellow pages, holds entries

of all kinds of shops, restaurants, hotels, etc. All the entries that fit the category

in question are then put into a result set, along with supplementary information

(e.g. name, address, phone). If the database also holds geospatial coordinates, the

next step is obsolete.

4. If the result set from the previous step contains only addresses, a translation into

geospatial coordinates (analogous to 1.) is necessary.

5. If the result set contains a huge number of possible destinations, preliminary sort-

ing by geometric distance might become necessary. This also depends on the time

needed for the subsequent path planning. Suppose the result set holds some one

hundred destinations, it sounds reasonable, to take a look at the nearest (geomet-

rically) 25 destinations first. Computation of geometric distance is quite inexpen-

sive an can be done quickly.

At the end of this step, the result set holds all destinations matching the search

criteria, sorted by geometric distance, nearest first.

6. The path planning algorithm can now start to process the list of destinations. Or-

dered by increasing Euclidean distance, several routes from the position given at

step 1. to the respective destination from the result set is computed. This, in turn,

produces a new result set containing the individual routes.

In this step, the user and context information is crucial. The path planning process

operates on a graph which is constructed from several independent and/or overlap-

ping real world networks: streets, pedestrian pathways, public transport systems

(e.g. busses, trams, subways), and so forth. Following the example given in step

2., this means in particular the possibility to use public transport at no additional

cost, and the possibility to use stairways. If the user were to use a bicycle, certain

types of streets cannot be used and therefore cannot be included in the planning

process. Likewise, if the user is equipped with a pram, some kinds of pathways

(primarily stairways) cannot be used and must be excluded from planning.

In this example the overall process shall not be complicated by an overly complex

cost function. Therefore we assume that the user does not care about cost or other

factors, such as finding very simple routes, or very convenient or scenic ones. The

goal is to reach the destination in the shortest time possible.

In order to conduct this processing, MPLL makes use of a suitable path planning

service, such as TransRoute, described in more detail in section 3.2.2 on page 86.

7. In this trivial step, the resulting routes are sorted according to the cost criteria, in

this example the travel time. The shortest routes and some additional key infor-

mation is presented to the user for selection.

24

1.4. Outline

MPLL mediates between whatever services had been accessed in the process and

the client (application).

8. To derive usable route descriptions from a shortest path within a graph structure

requires additional processing. Once the user has chosen a route to his/her satis-

faction, the desired output is a human readable route description. It contains not

only the bare route, but also trigger cues, reassuring cues, additional landmarks,

and some more information.

MPLL provides the means necessary for producing such route descriptions. Suit-

able landmarks have to be found and integrated into the route. A directory of

landmarks can, for example, be queried and results can be selected by their prox-

imity to decision points contained in the route. Spatial relations between these

points along the route and the respective landmarks can be used to generate spa-

tial expressions which the user can understand and relate to (e.g. ”turn left at the

gas station” or “leave the bus at the second stop after you cross the river”).

1.3.2. Issues not Covered

Some aspects of spatial information processing could not be addressed within the scope

of this work, due to their complementary nature and the enormous added complexity.

First and foremost, this concerns comprehensive context and user modelling. Both con-

text modelling and user modelling constitute an important but also very broad and com-

plex field in the research community [5, 2, 74, 75, 73, 9, 1]. Regardless of its importance,

it was clear from the very beginning of this work that there were only limited possibil-

ities to conduct research in this field, and to present a suitable model which could be

integrated into the MPLL architecture. Therefore, it was decided to reduce the effort

directed into this field, and to provide the necessary minimum of functionality to deal

with issues regarding context and user preferences. This is discussed in more detail in

section 2.8, some suggestions pertaining to future work are laid out in chapter 7.

Other fields, such as routing and navigation, qualitative spatial reasoning, or ontology

reasoning, had been under extensive research in the past. Therefore, proven mechanisms

and techniques, if not already available, are at least on their way. Concentrating on any

of these issues would violate the third rule of successful scientific research, according

to Edsger W. Dijkstra [44]. The modular architecture of MPLL allows for integration of

available mechanisms, albeit each new module requires a suitable interface and protocol.

1.4. Outline

This thesis consists of seven chapters and three appendices. Whenever necessary, cross-

references between chapters and sections are made explicit. Generally, the chapters are

built upon each other. The outline of the thesis is as follows.

25

1. Introduction and Motivation

Chapter 1 is this introduction. By illustrating practical problems in spatial informationIntroduction

processing, showing their broad range and the variety of possible approaches for their

solution, the purpose of this thesis is made clear. It contains a non-exhaustive overview

of modelling techniques, and briefly sketches some aspects of their application. Here,

also a short overview of the system architecture is given, and some issues which could

not be covered within the scope of this work are listed.

The basic concepts of the underlying domain of geospatial information processing,Basic

Concepts which are reflected by the basic types and functions of MPLL, are laid out in chap-

ter 2. Here, an introductory example establishes the most important concepts. Basic data

types and spatial relations are discussed at length. The key concept of landmarks is laid

out in detail, along with other concepts, such as reference systems and fuzziness.

Chapter 3 contains an overview of the system architecture and describes a numberSystem

Architecture of modules which provide functionality around the central component MPLL. It illus-

trates the framework in which the individual modules and components reside. A short

overview of related projects, which are potential candidates for modules or services, can

also be found here.

Chapter 4 introduces fundamental design aspects of MPLL and shows the relation toMPLL

its temporal counterpart, the Specification Language for Geo-Temporal Notions (GeTS).

This chapter further contains the complete MPLL specification, including basic types

and functions, and the complete MPLL Standard Library.

A short evaluation of the application of MPLL by means of a detailed discussion of suit-Application

able and practical examples is the content of chapter 5. Here, typical MPLL constructs

and the underlying processing is shown.

Related work, primarily pertaining to qualitative direction and distance, is described inRelated

Work chapter 6, along with a summary of related projects, diploma theses, and project theses,

which have been carried out in connection with this thesis. A short introduction to related

standards can also be found here.

A subsumption of results and a discussion of future work, along with concluding re-Conclusion

marks, is contained in chapter 7.

The appendix, consisting of three chapters, contains a complete language reference (A),

an Application Programming Interface (API) reference (B), and some selected source

code samples (C). The appendix is further followed by a list of acronyms, the bibliogra-

phy, and a keyword index.

26

2. Basic Concepts

2.1. Introductory Example . 27

2.2. Reference Systems . 32

2.3. Coordinate Systems . 35

2.4. Basic Data Types . 41

2.5. Basic Spatial Relations . 45

2.6. Landmarks . 61

2.7. Fuzziness . 67

2.8. Context and User Modelling . 80

2.9. Summary . 81

This chapter introduces common basic concepts of spatial cognition and information pro-

cessing, which are used in the description of the system architecture and, subsequently,

in the language reference.

The necessary basic and compound spatial types, notions, and concepts are tied together

in the first section by the example of a key application for MPLL, the generation of

route descriptions. This section illustrates the interworkings of the concepts and shows

their respective use, connection and relevance. The second section further introduces the

concepts, which represent the counterparts of MPLL to the essentials of human spatial

reasoning, for example the notions of configuration and direction. Subsequently, some

qualitative geospatial relations are discussed, which occur in natural language (see exam-

ples in section 2.1) and have to be handled by MPLL. Furthermore, a detailed definition

and discussion of the term landmark is given, for this notion is a fundamental concept

in MPLL. Then, the possible occurrences of fuzziness and its variants are laid out, along

with practical illustrations and scenarios. Finally, the relevance of user and context mod-

elling is introduced, albeit that a comprehensive discussion of this broad field is out of

the scope of this work.

2.1. Introductory Example

Generating route descriptions is, in general, not a trivial issue. Common car naviga- Car

Navigationtion systems rely on the underlying domain of car travel with the implicit rules and

regulations to provide a very restricted environment regarding vocabulary and action

alternatives.

27

2. Basic Concepts

The domain of car travel is rather confined, for example by traffic rules and regula-

tions, driving physics, and modes of transport. Car drivers cannot just turn anywhere or

reverse the direction of their vehicle, they are restricted to certain paths. In contrast to

this, the technology can be deployed in a rather unrestricted manner. Components do

not have to be particularly small or very efficient regarding power consumption. Using a

car’s available instrumentation can counteract for bad reception or even signal loss (dead

reckoning). Additionally, a large data set of maps of transport networks can be used to

find the most probable positional fix, if positioning is ambiguous.

Providing route descriptions under these circumstances is comparably straightforward

and unambiguous.

The navigation of human users in indoor and outdoor environments is much more com-Pedestrian

Navigation plex due to the lack of rules and regulations, and, subsequently, too many and very

diverse action alternatives.

Pedestrian locomotion can be comparably erratic, and there are no means for coping

with unreliable positioning – there is no way to do dead reckoning in a pedestrian sce-

nario. However, considering the smaller scale of locomotion – pedestrians travel much

slower and less far than cars – there is a specific need for reliable and precise positioning.

Furthermore, mobile devices must be smaller, lighter, consume less power, offer similar

capabilities regarding computation power and storage space, and be equally reliable as

their in-car counterparts.

Also, pedestrian locomotion suffers from the complexity of multimodality and the

inherently frequent context switches. The just mentioned example of car navigation

would constitute only one of several modes of transport, each mode individually adding

their own specificities and complexity to the overall navigation task.

Especially in the domain of pedestrian navigation, route descriptions have to be ad-

justed to the individual user profile and context, because pedestrians do not have such

a strong common code (traffic laws) as is required for car traffic. Furthermore, due to

the lack of network-specific landmarks (such as changes in road structure and so-called

road furniture, e.g. traffic lights and signs), external landmarks are much more important.

However, integrating external landmarks into a route is very complex (see section 2.6.3),

and the definition of landmarks itself is a nondeterministic and highly subjective process

(see section 2.6.4).

Producing route descriptions such as those presented later in this section (see exam-

ples 1 and 2) is very different from, and much more complex than, displaying routes

within street networks containing simple messages such as “turn right” or “go straight”.

In pedestrian navigation action alternatives are much more diverse and there exists no

predefined and strictly regulated set of artificial1 landmarks – car traffic would not be

possible without such a set.

1These are, for example, traffic lights, signs, or markings on the road. See introduction to landmarks in

section 2.6 on page 61.

28

2.1. Introductory Example

MPLL provides means for identifying and integrating landmarks into route descrip-

tions, for example by examining the spatial relations between the user’s position and

the landmarks. Furthermore, MPLL aides in expressing spatial relation between differ-

ent features in order to specify locations which in the final route descriptions constitute

so-called trigger cues and reassuring cues (see section 2.6.3, p. 65).

2.1.1. Elements of Route Descriptions

The following examples of route descriptions have been gathered from some German

web sites in January 2006 by searching Google for the word “Wegbeschreibung” (Engl.

directions). For reasons of authenticity and since the actual wording is not relevant here,

we have abstained from complete translations. The essential information is conveyed

using the categorisation of geospatially relevant phrases and expressions. These have

been translated, whenever necessary.

Landmarks are an essential part of natural language directions. As described in sec-

tion 2.6, they serve to provide trigger cues and reassuring cues. Since almost

every action in a list of instructions for following directions is in some way asso-

ciated with at least one landmark, directions usually contain a significant number

of landmarks.

Angular Expressions are the second essential factor commonly found in directions.

Spatial relations between two or more positions (e.g. the positions of the user,

one or more landmarks, and the destination) are based on expressions of direction

and distance. While the latter are more prone to fuzziness and less important for

the semantics of a route, the former are more important and therefore exhibit a

stronger presence.

Distal Expressions are used for expressing quantifiable information, such as “100 m”

or “at the third station”. They can be used in a fuzzy or non fuzzy sense. While

“100 m” can mean “around 100 m” and therefore should be interpreted as “100 m

± ε”2, the instruction “leave the subway at the third station” is unambiguous.

Example 1

The following description contains the directions from the airport Berlin-Schönefeld to

the Verbraucherzentrale Bundesverband, located in the city of Berlin, Kochstraße 22,

using different means of transport, such as the Airport Express regional train and subway.

“Anreise vom Flughafen Schönefeld – Fahren Sie ab dem Bahnhof

Berlin-Schönefeld mit dem Airport Express (Regionalbahn) bis zum Bahn-

hof Friedrichstraße, von dort weiter mit der U-Bahn Linie U 6 in Richtung

Alt-Mariendorf bis zum Bahnhof Kochstraße (3 Stationen).

2The choice of a suitable value for ε depends on the context. Here, it could amount to, for example, 10 m.

29

2. Basic Concepts

Benutzen Sie den U-Bahn-Ausgang in Richtung Kochstraße und biegen

Sie nach rechts in die Kochstraße ein. Nach ca. 100 m erreichen Sie die

Hausnummer 22.”3

This example shows how different elements can have multiple, but definite, meaning.

For example the item Hausnummer 22 (Engl. house number 22) conveys all three cate-

gories of meaning: (1) due to its singularity (there is only one house with the number 22

in this street) it can be seen as a landmark, (2) because of the numbering scheme it can

be used to determine direction, both longitudinal and lateral4, and (3) the order of the

house numbers provides a suitable means to express distance (e.g. “continue along the

street until you reach house number 22” instead of “continue for approximately 180 m”).

Landmarks Bahnhof Berlin-Schönefeld, translation n.a.

Airport Express (Regionalbahn),

Bahnhof Friedrichstraße,

U-Bahn Linie U 6,

Alt-Mariendorf,

Bahnhof Kochstraße,

Kochstraße,

Hausnummer 22

Angular Expr. in Richtung Alt-Mariendorf, in direction Alt-Mariendorf,

in Richtung Kochstraße, in direction Kochstraße,

biegen Sie nach rechts, turn right,

Hausnummer 22 (house) number 22

Distal Expr. 3 Stationen, (at the) 3rd stop,

nach ca. 100 m, after approx. 100 m,

Hausnummer 22. (house) number 22

Table 2.1.: Elements of Directions (Example 1)

Example 2

The following description contains the directions for pedestrians from the central train

station Freiburg to the computing centre of the University of Freiburg.

“Ankunft mit der Bahn – Wenn Sie den Hauptbahnhof Richtung Stadt-

mitte verlassen, befinden Sie sich auf der Bismarckallee. Sie müssen sich

3http://www.vzbv.de/start/index.php?page=kontakt&pagelink=wegbeschreibung
4All even numbers are located on one side, all odd numbers on the other, and numbers are ordered. Therefore,

if the house number 4 is on the left, then house 22 must also be on the left. Likewise, if houses 4 and 6 are located

in this order on the left hand side, it can easily be deduced that house 22 must be located further along the street

– exceptions notwithstanding.

30

http://www.vzbv.de/start/index.php?page=kontakt&pagelink=wegbeschreibung

2.1. Introductory Example

nach links wenden und immer geradeaus gehen. Sie überqueren die Fried-

richstraße; die Bismarckallee geht hier in die Stefan-Meier-Straße über. Die

dritte Querstraße rechts ist dann die Hermann-Herder-Straße. Das Eckhaus

auf der linken Straßenseite ist das Rechenzentrum (Nr.10).” 5

Yet again, these directions contain several expressions (as listed in table 2.2) which have

multiple meaning. Some landmarks fulfil the purpose of positioning and reassuring the

user, and, at the same time, providing directional cues. This is the case, for example, with

the expressions [if you leave the train station in direction of the city centre, then] you are

on Bismarkallee, or [if you continue straight on, then] you will cross Friedrichstraße [and

Bismarkallee will be renamed Stefan-Meier-Straße]. Note that the double occurrence of

the landmark “Friedrichstraße” in this and the previous example is purely coincidental.

Landmarks Hauptbahnhof, translation n.a.

Stadtmitte,

Bismarckallee,

Friedrichstraße,

Stefan-Meier-Straße,

Querstraße,

Hermann-Herder-Straße,

Eckhaus auf der linken

Straßenseite,

Rechenzentrum

Angular Expr. Richtung Stadtmitte, in direction of the city centre,

nach links wenden, turn to the left,

immer geradeaus gehen, continue straight,

überqueren, cross [sth.] (implicates

sth. in lateral position),

auf der linken Straßenseite on the left hand side

[of the street]

Distal Expr. überqueren die Friedrich- [until] you cross Friedrich-

straße, straße,

dritte Querstraße rechts, third crossroad to the right,

(Nr. 10) (house) number 10

Table 2.2.: Elements of Directions (Example 2)

5http://portal.uni-freiburg.de/rz/organisation/wegbeschreibung/

31

http://portal.uni-freiburg.de/rz/organisation/wegbeschreibung/

2. Basic Concepts

2.1.2. Summary

These concise examples represent only a fraction of the broad spectrum of concepts in

human communication of spatial issues. However, the most important elements can im-

mediately be found: landmarks, angular expressions, and distal expressions. To express

direction or distance, humans almost always use spatial relation to one or more land-

marks. Therefore, the basic types and many constructs in MPLL, as they are laid out in

the next section, contain these basic elements and reflect the underlying principles.

2.2. Reference Systems

The notion of a Reference System (RS) is central to the study of spatial cognition across

all levels of cognition (sensory and motor systems, conceptual thinking, language) and

all the disciplines that study them (psychology of perception and attention, develop-

mental psychology, neuropsychology, neuroscience, computational modeling, robotics,

linguistics, psycholinguistics, philosophy, aesthetics, architecture).

As sketched in this section, a number of distinctions have been proposed between

frames of references and each of these distinctions has been variously construed both

within and across disciplines. There has been considerable discussion in the literature

concerning the merits of various competing taxonomies of frames of reference. See for

example the work of Roberta Klatzky [90], Barbara Tversky and Paul Lee [158, 159],

and Steffen Werner et al. [168] for more details on these issues.

There has also been extensive discussion concerning whether different representa-

tional systems natively and necessarily employ proprietary frames of reference and the

degree to which frames of reference are compatible across representational systems.

Within the scope of this work we need to briefly clarify the differences and commonali-

ties between these distinctions. However, we must also clarify necessary nomenclature.

When nonpropositional, especially spatial, information is to be expressed, entities

need to be included which are of relevance to the communicative task at hand. In this

step of abstraction, which is referred to as thinking for speaking by Dan I. Slobin [149]

or microplanning by Willem J. M. Levelt [98], we need to generate predications that

accurately capture the entities’ spatial relations within the scene. This process typically

involves three components:

1. Referent: The object or portion of the scene, whose spatial disposition (i.e. posi-

tion, orientation, path, etc.) is to be expressed [152], is called referent.

2. Relatum: The referent’s spatial disposition is expressed using an the reference to

an object or portion of the scene. This object or portion is called relatum.

3. Perspective System: The frame of reference in terms of which the referent is

related to the relatum, or in which the referent’s orientation or path is expressed,

is called prespective system.

32

2.2. Reference Systems

2.2.1. Types of Reference Systems

Depending on the way in which the above given components work together, a number

of different types of spatial reference can be distinguished:

Allocentric

Allocentric6 Reference Systems (RSs) (also called exocentric or geocentric [90]) assume

a fixed coordinate system, whose direction and origin are defined by external factors such

as geographic directions (e.g. north, south, etc.), and are independent of the observer’s

current position and/or orientation [158, 159]. Allocentric RSs facilitate expressions

such as north of the church or in the southern part of the city. This kind of spatial

reference also exists in smaller scale scenarios, when spatial disposition is described

in, for example, oceanic languages by using expressions such as inland and seaward.

Allocentric reference is very much depending on locality in scenarios such as these,

described in more detail in section 2.5.1.

Egocentric

In an egocentric RS, the origin of the coordinate system is defined by the location and

orientation of some object, mostly a human person. The orientation is defined with

respect to the intrinsic body axes [90].

Object-Centred

According to an object-centred RS, the axes are oriented with respect to the intrinsic

sides of the reference object, i.e. along its intrinsic longitudinal axis. Sometimes the

determination can be subjective or difficult. Buildings, for example, do not always have

a clear layout and/or orientation (e.g. TV tower vs. church). They might for instance

have multiple “main” entries, (axis-) symmetrical layout and/or irregular shapes which

do not serve well for determining an intrinsic front or back.

World-Centred

Here, the axes are oriented with respect to salient aspects of the world, such as gravity

or cardinal directions. World-centred RSs are also called environment-centred.

Viewer-Centred

According to a viewer-centred RS the axes are oriented with respect to the head/feet,

front/back and left/right sides of the viewer. In contrast to object-centred RSs, it is in

this case rarely difficult to determine orientation.

6The origins of this expression are the Greek syllables “allo-” or “all-”: different, other, another; divergence.

33

2. Basic Concepts

Absolute

If an RS does not depend on the bearing or orientation of an object, then it is absolute.

World-centred and allocentric RSs are absolute. Orientation-free RSs that depend on

the bearing between objects are absolute only if the objects are static, e.g. buildings, etc.

Relative

By contrast, if an RS depends on the bearing or orientation of an object, then it is

relative. Egocentric, object- or viewer-centred, and orientation-bound RS are relative.

Intrinsic

The orientation of an involved object determines the frame of reference, e.g. the intrinsic

front of a building, which facilitates statements such as “in front of the church” or “be-

hind the supermarket”. An intrinsic RS is always orientation-bound and object-centred.

Extrinsic

The frame of reference used is external to (all of) the involved objects, such as the car-

dinal directions. Hence, orientation is global.

Deictic

The bearing of an external observer to an involved object, defines the frame of refer-

ence7. Statements such as “left of the TV tower” (concerning objects which may have

no intrinsic front) or “across the pond” fall into this category. A deictic RS is always

orientation-free because the orientation of the RS is based on a bearing and it is viewer-

centred (viewer meaning the same as observer, speaker, listener, etc.).

Orientation-Free

The orientation of the frame of reference is either global or it depends on the bearing

between two involved objects.

Orientation-Bound

The orientation of an involved object determines the frame of reference, e.g. the intrin-

sic front of a building, which facilitates statements such as “in front of the church” or

“behind of the supermarket”. An orientation-bound RS is always intrinsic to a certain

involved object.

7The origin of this expression is the Greek word “deixis”: display, demonstration, reference.

34

2.3. Coordinate Systems

2.2.2. Anchoring

The question of anchoring arises as soon as more than one reference system occurs in

the same context. Anchoring means putting one reference system in relation to another

by defining parameters which spatially fix its position in terms of the other reference

system. Usually, this involves origin and orientation, as well as scale of a reference

system.

This process is necessary, for example, if data from two different sources are used,

which (at least partly) pertain to the same area, each providing different features, e.g. one

source holds residential zones, the other industrial zones. If objects from these two

sources do not adhere to the same reference system, objects from one source cannot be

related to objects from the other source – unless there is a possibility to translate the

coordinates from one reference system to the other. Even in cases where the underlying

coordinate systems are identical, if the reference system uses for example a different

prime meridian, then the coordinates are not compatible and have to be converted.

First, the orientation and origin of one reference system has to be anchored in terms

of another reference system by giving the necessary translation and rotation matrices.

This way, the origins of both reference systems are identical. Second, the scale of the

reference systems must be equalised by providing a scale factor (or several, one for

each axis, in case of anamorph scale) for the conversion of coordinates. Hence, moving

in a certain direction for a certain distance renders the same position in both reference

systems

2.3. Coordinate Systems

This section also covers some aspects of three dimensional computer graphics. For more

details on these issues and some introductory tutorials see, for example, the Microsoft

DirectX SDK [45]. Julier and Uhlmann [87] focus on the conversion between polar and

cartesian coordinates.

2.3.1. Cartesian Coordinate Systems

Typically, three dimensional graphics applications use two types of Cartesian coordinate Left-handed

and Right-

handed

Coordinate

Systems

systems: left-handed and right-handed. In both coordinate systems, the positive x-axis

points to the right, and the positive y-axis points up. An easy way to picture the axes is to

point the fingers of either one’s left or right hand in the positive x-direction and curling

them into the positive y-direction. The direction one’s thumb points, either toward or

away from one’s body, is the direction of the positive z-axis.

To translate data from a right-handed coordinate system to a left-handed one is not

trivial. Two changes are required:

• The order of triangle vertices must be flipped so that the system traverses them

35

2. Basic Concepts

clockwise from the front. For vertices v0, v1, and v2 have to be reordered as v0,

v2, and v1.

• Additionally, world space must be scaled by -1 in the z-direction in order to get

the correct coordinates.

Although left-handed and right-handed coordinates are the most common systems in

three dimensional graphics, a number of other coordinate systems exist. It is not unusual

for 3D modelling applications to use a coordinate system in which the y-axis points

toward or away from the viewer, and the z-axis points up.

Formally, the orientation of a set of basis vectors (i.e. a coordinate system) can be

found by computing the determinant of the matrix defined by the particular set of basis

vectors. If the determinant is positive, the basis is said to be “positively” oriented (or

right-handed). If the determinant is negative, the basis is said to be “negatively” oriented

(or left-handed).

The essential operations performed on objects defined in a 3D coordinate system are

translation, rotation, and scaling. You can combine these basic transformations to create

a transform matrix. These operations are not commutative, the order in which matrices

are multiplied is important.

2.3.2. Transformations

Transformations are used to convert object geometry from one coordinate space to an-

other. This is done using several kinds of transformation matrices which are described

in the following sections.

Matrix Transformations

Geometrical transformation using matrices can be used, among others, for the following

purposes:

• expressing the location of an object relative to another object

• translation, rotation and scaling of objects

• changing viewing parameters, i.e. panning, zooming, tilting, etc.

The transformation of a point (x,y,z) into another point (x′,y′,z′) is done using a 4 by 4

matrix:

[x′,y′,z′,1] = [x,y,z,1]

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

36

2.3. Coordinate Systems

This results in the following operations on x, y, and z to produce x′, y′, and z′:

x′ = (x∗M11)+(y∗M21)+(z∗M31)+(1∗M41)
y′ = (x∗M12)+(y∗M22)+(z∗M32)+(1∗M42)
z′ = (x∗M13)+(y∗M23)+(z∗M33)+(1∗M43)

The most common transformations are translation, rotation, and scaling. Matrices can

be combined into a single matrix to calculate several transformations at once. For ex-

ample, a single matrix can be used to translate and rotate a series of points in one step.

Matrices are written in row-column order.

Translation

The following matrix translates a point (x,y,z) into another point (x′,y′,z′):

[x′,y′,z′,1] = [x,y,z,1]

1 0 0 0

0 1 0 0

0 0 1 0

Tx Ty Tz 1

Scaling

The following matrix scales a point (x,y,z) by arbitrary values in the x, y, and z directions

to a new point (x′,y′,z′):

[x′,y′,z′,1] = [x,y,z,1]

sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

Rotation

The following8 matrix rotates the point (x,y,z) around the x axis, producing a new point

(x′,y′,z′):

[x′,y′,z′,1] = [x,y,z,1]

1 0 0 0

0 cos(θ) sin(θ) 0

0 −sin(θ) cos(θ) 0

0 0 0 1

The following matrix rotates the point around the y axis:

8These transformations are specific for left-handed coordinate systems.

37

2. Basic Concepts

[x′,y′,z′,1] = [x,y,z,1]

cos(θ) 0 −sin(θ) 0

0 1 0 0

sin(θ) 0 cos(θ) 0

0 0 0 1

The following matrix rotates the point around the z axis:

[x′,y′,z′,1] = [x,y,z,1]

cos(θ) sin(θ) 0 0

−sin(θ) cos(θ) 0 0

0 0 1 0

0 0 0 1

In these example matrices, θ stands for the angle of rotation, in radians. Angles are

measured clockwise when looking along the rotation axis toward the origin.

Matrix Concatenation

The effects of two or more matrices can be combined by multiplying the individual

matrices. In order to rotate and scale an object’s vertices it is not necessary to apply

two matrices consecutively. Instead, rotation and scaling matrices are multiplied and the

resulting composite matrix is used to produce both effects.

C = M1 ·M2 · . . . ·Mn−1 ·Mn

Here, C is the composite matrix to be created, and M1 through Mn are the individual

matrices. Usually only a small number of matrices is concatenated, although there is no

technical limit.

The order of matrix multiplication is crucial. The preceding formula reflects the left-

to-right rule of matrix concatenation. That is, the visible effects of the matrices that are

useed to create a composite matrix occur in left-to-right order.

A typical matrix is shown in the following example. Imagine that you are creating

the matrix for a flying saucer. Usually the flying saucer would spin around its centre

- the y-axis of its model space - and then translated to some location in (world) space.

This effect is done by creating a rotation matrix, and then multiplying it by a translation

matrix:

C = Ry ·Tw

Here, Ry is the rotation matrix (around the y axis), and Tw is the translation matrix which

produces translation to some position in world coordinates.

Unlike multiplying scalar values, matrix multiplication is not commutative. Therefore

the order of multiplication is important. Multiplying the matrices in the opposite order

would result in translation of the saucer to its destination and rotation along the y axis

around the world origin. Needless to say that this is a completely different effect.

38

2.3. Coordinate Systems

2.3.3. Longitude and Latitude

Longitude (λ) denotes the location of a position on Earth east or west of a prime merid- Longitude

ian. Longitude is given as an angular measurement ranging from 0◦ at the prime meridian

to +180◦ eastward and −180◦ westward. Unlike latitude, which has the equator as an

origin, there exists no natural origin for longitude. In order to anchor longitude on the

planet, a reference meridian is needed. British cartographers have long used the Green-

wich Prime Meridian in London. Other references used elsewhere include: El Hierro,

Rome, Copenhagen, Jerusalem, Saint Petersburg, Pisa, Paris, Philadelphia and Washing-

ton. In 1884, the International Meridian Conference adopted the Greenwich meridian as

the universal prime meridian or zero point of longitude. If not stated otherwise, we use

the Greenwich Prime Meridian by default.

Latitude (ϕ) is used to express the location of a position on Earth north or south of the Latitude

Equator. Latitude is given as an angular measurement ranging from 0◦ at the Equator

to 90◦ at the poles (90◦ N or 90◦ S). Certain lines of latitude are important such as the

Equator, Arctic Circle, Tropic of Cancer, Tropic of Capricorn or Antarctic circle.

Each degree of latitude is sub-divided into 60 minutes, whereas one minute of latitude

amounts to one nautical mile (1852 metres) at sea level. This varies slightly with latitude

because of the Earth’s non-spherical shape. Each minute further divides into 60 seconds

(one second equals about 31 metres), which can be given with a decimal fraction for

higher accuracy. Sometimes, the south suffix S is instead indicated by a negative sign.

Like latitude, each degree of longitude is sub-divided into minutes and seconds. How-

ever, one minute of longitude amounts to cos(latitude)∗1852m (a value within the in-

terval [0,1852m]), depending on the latitude, since all longitudes are joined together at

the poles. Sometimes, the west suffix W is instead indicated by a negative sign.

2.3.4. WGS-84

The World Geodetic System (WGS) defines a fixed global reference frame for the Earth,

for use in geodesy and navigation [172]. The latest revision is WGS-84 dating from

1984, which will be valid up to about 2010.

In the early 1980s, the need for a new world geodetic system was generally recognised

by the geodetic community, also within the Department of Defense. WGS-72 no longer

provided sufficient data, information, geographic coverage, or product accuracy for all

then current and anticipated applications. The means for producing a new WGS were

available in the form of improved data, increased data coverage, new data types and

improved techniques. Geodetic Reference System (GRS) (currently GRS-80) param-

eters together with available Doppler, satellite laser ranging and Very Long Baseline

Interferometry (VLBI) observations constituted significant new information. Also, an

outstanding new source of data had become available from satellite radar altimetry. Also

available was an advanced least squares method called collocation which allowed for a

39

2. Basic Concepts

consistent combination solution from different types of measurements all relative to the

Earth’s gravity field, i.e. geoid, gravity anomalies, deflections, dynamic Doppler, etc.

The new World Geodetic System was called WGS-84. It is currently the reference sys-

tem being used by the Global Positioning System (GPS). It is geocentric and glob-

ally consistent within ±1 m. Current geodetic realisations of the geocentric reference

system family International Terrestrial Reference System (ITRS) maintained by the In-

ternational Earth Rotation and Reference Systems Service (IERS) are geocentric, and

internally consistent, at the few-cm level, while still being metre-level consistent with

WGS-84.

The longitude zero is located approximately 100 metres east of the traditional prime

meridian in Greenwich, U.K.

2.3.5. Universal Transverse Mercator Coordinate System

The Universal Transverse Mercator coordinate system (UTM) [171] is a grid-based

method for specifying locations on the surface of the Earth. It is different from the tradi-

tional method of latitude and longitude (see WGS-84 above) in several aspects. UTM is

not a map projection, but rather consists of a series of zones based on specifically defined

Transverse Mercator projections. Originally developed by the U.S. Army in 1947, UTM

now relys on the WGS-84 ellipsoid as the underlying model of the Earth.

The UTM system divides the surface of the Earth between 80◦ S latitude and 84◦ N

latitude into 60 zones, each 6◦ of longitude in width and centred over a meridian of

longitude. Zones are numbered from 1 to 60. Zone 1 is bounded by longitude 180◦ to

174◦ W and is centred on the 177th West meridian. Zone numbering increases towards

the east.

Each of the 60 longitude zones in the UTM system are the basis of a Transverse

Mercator projection, which is capable of mapping a region of large north-south extent

with a low amount of distortion. By using narrow zones of 6◦ in width, and reducing the

scale factor along the central meridian to 0.9996, (a reduction of 1:2500) the amount of

distortion is held below 1 part in 1,000 inside each zone. Distortion of scale increases to

1.0010 at the outer zone boundaries along the equator.

The reduction in the scale factor along the central meridian creates two lines of true

scale located approximately 180 km on either side of, and approximately parallel to, the

central meridian. The scale factor is too small inside these lines and too large outside of

these lines, but the overall distortion scale inside the entire zone is minimized.

2.3.6. Gauß-Krüger Coordinate System

Like UTM, the Gauß-Krüger coordinate system is a grid-based method for specifying lo-

cations. It uses the same algorithms as UTM for the projection of the respective ellipsoid

40

2.4. Basic Data Types

onto the plane. The main difference is that Gauß-Krüger coordinates correspond to the

Bessel- or Krassowskie ellipsoid in zones of 3◦ in width, while UTM coordinates corre-

spond to the WGS-84 ellipsoid in zones of 6◦ in width. Austria uses the Datum Austria

with a slightly shifted ellipsoid and reference meridian. If Austria were to use the same

datum and reference as Germany, the country would be divided into four instead of three

zones. The Gauß-Krüger coordinate system is also used in Russia in connection with

the Krassowskie ellipsoid. This was also the case in former Eastern Germany, where it

is still used in some areas today.

The system has been developed by Johann Heinrich Louis Krüger9 based on previous

work by the German mathematician Carl Friedrich Gauß10 and is in use in German-

speaking Central Europe since 1923. Many official topographic maps, especially large

and medium scale, make use of the Gauß-Krüger coordinate system.

2.4. Basic Data Types

MPLL uses classic numeric data types to represent quantitative data, such as binary,

integer, and floating point values. The implementation details (e.g. size of data types)

depend on the respective platform where MPLL is used. The basic concepts of MPLL

consist of these basic types. Points in (planar) space, for example, are defined by a pair

of coordinates, which are integer or floating point values. Likewise, lines are defined by

a pair of points, and polylines and polygons by three or more points. A formal definition

of these basic types can be found in section 4.4.1.

In the application domain of MPLL, an essential component in modelling the real world

are point entities, for example representing users, points of interest, or landmarks. Data

structures for these point entities need to hold more information than just a position

in space. The next section introduces the concept of configurations and configuration

space, which, in MPLL, is used to model point entities. In the subsequent sections, the

mechanisms for representing direction are laid out, which constitute an equally important

component in the underlying model.

2.4.1. Configurations and Configuration Space

In the field of classical mechanics, the space of all possible positions that a physical Configuration

Spacesystem may attain is called configuration space, or C-Space. The number of possible

positions is also subject to external or internal constraints. The C-Space of a typical sys-

tem has the structure of a manifold, therefore it is also called the configuration manifold.

The C-Space of a single point in Euclidean 3-space is R
3. For N points the C-Space is

R
3N , i.e. the subspace where no two points are equal. More generally, the configuration

space of N points moving in a manifold M can be regarded as the function space MN .

9Johannes Heinrich Louis Krüger (∗ 21. September 1857, Elze, – † 1. June 1923)
10Johann Carl Friedrich Gauß (∗ 30. April 1777, Braunschweig, – † 23. February 1855, Göttingen)

41

2. Basic Concepts

A concrete example is a mechanical robot arm with one joint. Suppose the joint could

do a full 360◦ turn, the configuration space would be [0,360◦[. In case the robot arm had

two joints of this kind, the configuration space would be [0,360◦[×[0,360◦[.

If both position and momenta need to be taken into account, one moves to the cotangentConfiguration

Manifold bundle of the configuration manifold (see e.g. Ritter [140] or Tilbury et al. [154] for

examples), which is called the phase space of the system.

Within the scope of this work, we do not focus on momenta or any implied dynamic

changes, since we concentrate on spatial relations and their composition, description

and communication. Nevertheless, we use the term configuration in the original sense,

i.e. in describing an object’s physical state. For point entities, this state contains two

properties: position and orientation. If the object represented by the configuration has

no intrinsic front, then the orientation is not used.

2.4.2. Angular Expressions

There are several parameters of a configuration which can be expressed using angular

values. Regarding computation, these can be treated in much the same way, while their

semantics partly differ considerably.

Direction

Direction is denoted by the angles which a vector (defined by two positions a and b)

spans to the axes of a reference coordinate system. Usually, the base of such a vector

(the user’s position) is located at the origin of the coordinate system, while the tip of

the vector is located somewhere in the plane or space spanned by the coordinate sys-

tem’s axes. This way, a planar (2D) direction can be expressed by an angular value

α = [0◦,360◦[between the vector and the x-axis, and a spatial (3D) direction can be

expressed by a pair of angular values α = [0◦,360◦[and β = [0◦,360◦[between the

vector and the x-z-plane and the x-y-plane respectively. The horizontal component of a

direction is called azimuth, the vertical component is called elevation. The true direction

of travel, which is not necessarily identical to the heading (see below) is referred to as

track, θt . When a direction denotes movement, it is also called heading, when it is used

in a static context, i.e. without movement, it is called orientation (see Fig. 2.1) to denote

the intrinsic front of an object.

Direction is the information contained in the relative position of one point to anotherFormal

Definition point, without distance information. Direction can be specified by a unit vector whose

components are direction cosines. Together with magnitude, direction can be specified

by a vector in general. A unit vector in a normed vector space is a vector whose length

is 1. In Euclidean space, the dot product of two unit vectors is the cosine of the angle

between them. This follows from the formula for the dot product, since the lengths are

42

2.4. Basic Data Types

x0

y

θb

θt

θo

Figure 2.1.: Orientation, Track, and Bearing

both 1. The normalized vector û of a non-zero vector u is the unit vector codirectional

with u, i.e.,

û =
u

‖u‖ (2.1)

where ‖u‖ is the norm (or length) of u. As opposed to a general vector, which represents

direction and magnitude, a unit vector just represents direction. The components are

called direction cosines, because each is the cosine of the angle between the vector and

one coordinate axis. The elements of a basis are often chosen to be unit vectors. In the

three-Dimensional Cartesian coordinate system, these are usually i, j, and k–unit vectors

along the x, y, and z axes, respectively:

î =

1

0

0

 , ĵ =

0

1

0

 , k̂ =

0

0

1

 . (2.2)

Orientation / Heading

Orientation, θo, defined in the same way as direction, denotes the alignment or arrange-

ment of an object to face into a certain direction. The base of the vector is in this case

situated at the origin (or central reference point) of the object itself. For example the

orientation and the direction of movement of a non-holonomic vehicle, such as a con-

ventional automobile, while going forward are – due to the way that it is constructed

43

2. Basic Concepts

– identical11. In the case of a holonomic vehicle, orientation and direction of move-

ment are not necessarily identical. An orientation always relates some object to a certain

Reference System (RS).

In certain domains, for example navigation or aviation, the true direction of travel (θt)

is often different from the heading of the craft. Due to currents and/or cross winds one

must almost always consider a certain deviation between the direction of travel and the

orientation of the craft. In order to reach a particular location, such as a waypoint, the

heading of the craft must be adjusted so that the bearing to the waypoint and the true

course match. Then, the heading and the bearing often do not match.

In three-dimensional models, orientation, i.e. rotation around the vertical axis, is called

yaw. Rotation around the longitudinal axis is called roll or bank. This is the movement,

for example, a plane undertakes, when turning to a new course. Rotation around the

lateral axis is called pitch, which is, for example, performed by a plane at takeoff.

Bearing

Bearing (θb, see Fig. 2.1), in contrast to orientation, relates an object to another object. It

is defined by the angle between the direction to an object and a reference direction. This

reference direction is usually magnetic north 12, in which case also the term compass

bearing is used. Bearing is the only property which necessarily relates two objects to

each other, and it is also referred to as course.

If △x = xB −xA and △y = yB −yA with A = (xA,yA) and B = (xB,yB), then

θb(A,B) =

cos−1(△y√
△x2+△y2

) if △x ≥ 0

cos−1(△y√
△x2+△y2

)+π otherwise

2.4.3. Shape and Size

The shape and size of spatial entities is a very interesting part of spatial information

processing. Especially in the field of qualitative reasoning techniques, there still exist a

number of unsolved issues, mainly because of the difficulties in finding a suitable vo-

cabulary and set of spatial relations, as well as a common understanding of the issues

involved with irregular shapes. The notion of size and scale is also of great importance.

A typical statement would be, for example, “the bicycle is in front of the church”. The

reason for this statement not to be formulated in reverse (“...church behind bicycle...” is

11Arguably, this is not entirely true in some driving situations, for example when there exists moving friction

between the tyres and the road surface (i.e. the vehicle is sliding). However, under normal conditions the above

mentioned statement is sufficiently correct for the purpose of illustration.
12When a gyrocompass is used, the reference direction is true north. In stellar navigation, the reference

direction is that of the North Star, Polaris.

44

2.5. Basic Spatial Relations

primarily due to the comparison of the sizes of the two spatial entities. However, more

complicated factors influence these issues, such as whether entities are mobile or immo-

bile, the symbolic significance of entities, or issues pertaining to different languages and

cultures.

Within the scope of this work, however, shape and size are not of primary importance.

As already laid out, human spatial reasoning deals primarily with entities that can easily

be modelled as points (e.g. the user’s position, other entities’ positions). Furthermore,

most occurences of linear features or regions more often involve topological relations

(e.g. whether something is inside or outside of a region, or on which side of a river

something is located), rather than pertaining to the exact shape or size of an entity.

In any case, suitable expressions dealing with shape and size can, and will, be added

to the language MPLL at a later point in time. However, these issues are not covered in

the first version of the language specification.

2.5. Basic Spatial Relations

Relations involving at least one point entity are generally of more interest within the

scope of this work due to the underlying problem domain of navigation and wayfinding.

In this domain, users (or mobile entities in general) are preferably modelled as entities

which are located at a single point in (Euclidean) space. Moving through their model

space, these point entities can have a number of properties, such as a position (geometric

or symbolic), orientation, and others. A collection of these properties is referred to as

configuration, as already discussed in section 2.4.1.

2.5.1. Direction

The two classic examples for cardinal direction in user modelling are the cardinal points Cardinal

Direction(i.e. cardinal compass points) and the generic egocentric cardinal directions. The former

consist of the terms north, south, east, and west, and combinations thereof, for example

southeast, as shown in Fig. 2.2 a. The latter are composed from the terms front, back, left,

and right, including combinations such as left front (see Fig. 2.2 c and d). Due to usabil-

ity reasons, the number of directions is usually limited to four or eight, albeit in certain

domains smaller partitionings might be used for the purpose of increased accuracy. This

is, for example, the case in navigation, where there exists a third level (north-northeast)

of cardinal directions combining the first (north) and second level (northeast), resulting

in a 16-fold partitioning shown in Fig. 2.2 b.

In addition to regular partitionings, there exist irregular partitionings (see Fig. 2.2 d),

which originate from cognitive research. The reason for irregular partitionings is, for

example, the uneven perception of lateral forward and backward space, which occurs

with human spatial cognition [141, 167].

45

2. Basic Concepts

SW SE

NW

S

EW

NE

N

Back

RightLeft

Front

SSW SSE
SW

WSW

SE

ESE

ENE

NNENNW
NW

WNW

S

EW

N

NE

Left Front

Back

Front

Right Front

Left Back Right Back

RightLeft

a) b)

d)c)

Figure 2.2.: Allocentric and Egocentric Cardinal Direction

A special case of allocentric cardinal direction manifests itself in spatial expressions

found in oceanic languages. Like with generic allocentric direction, the cardinal direc-

tions depend on an allocentric reference system. In this special case, however, there is

a small scale dependence between the reference direction and the orientation of cardi-

nal directions (see Fig. 2.3). The cardinal directions follow a small scale dependence

between the location of the referent and the locations of the centre of the island and the

nearest shore. The same effect occurs close to the north or south pole with the cardi-

nal direction shown in Fig. 2.2 a. However, this effect is usually negligible due to the

distance of the application scenarios to the polar regions. On a technical level, scale

notwithstanding, the effect is identical.

Point-to-Point Direction

Geospatial relation is almost always expressed in two different ways: (1) in relation to

the observer’s position, the current viewpoint, or (2) in relation to a tertiary object which

serves as a reference point. The former we refer to as absolute or egocentric direction (as

already discussed in section 2.2), since it relates directly to the observer’s position, the

latter we call relative or global direction because the target object relates to the observer

via a tertiary object, which is part of the environment.

46

2.5. Basic Spatial Relations

S
ea

w
ar

d

In
la

nd

Inland

Seaward

Inland

Seaward
A

Centre

B

C

Figure 2.3.: Allocentric Cardinal Direction

reference

system

relation example figure

extrinsic allocentric absolute “X is located in south-

west direction of A”

2.4

intrinsic egocentric

(orientation)

absolute “X is located left of A” 2.5

deictic allocentric

(bearing)

relative “X is located left of A (as

seen from B)”

2.6

Table 2.3.: Directional Spatial Relations

This section deals with directional spatial relations between two or more points. Di-

rectional spatial relations, such as “left of”, “east”, or “behind” require a frame of

reference. Depending on the specific application, the frame of reference may be either

extrinsic, intrinsic, or deictic [99, 41]. An overview over the different categories and

properties is shown in table 2.3.

Extrinsic: The frame of reference used is external to the involved objects, and employs

cardinal directions such as north, west, or southeast.

Fig. 2.4 shows the relation between objects A and X . The global (i.e. extrinsic to A

and X) reference system renders “X in southwest direction from A”. The hatched

area in this figure denotes the locations which lie “west and east of A”.

In this case, as well as the two subsequent cases, the MPLL function

bearing(Dir,C,D)

is used to determine spatial relation, i.e. it tests for the object denoted by C,

whether D is located in the direction denoted by Dir. This function is overloaded

47

2. Basic Concepts

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

X

N

A

θb

Figure 2.4.: Point-to-Point Directional Relation with Extrinsic Refer-

ence System; the hatched triangles denote the area east and west of A,

X is located south east of A.

to handle the different cases depending on the type of Dir. See Def. 4.94 on

page 166 in the MPLL Standard Library for more details. The composite function

bearing() is an overloaded version of the basic MPLL function bearing()

(see Def. 4.66 on page 143).

Intrinsic: The orientation of an involved object determines the frame of reference, for

example the intrinsic front of a building, which facilitates statements such as “in

front of the church” or “behind the supermarket”.

In Fig. 2.5 on page 49, which depicts the same setup as Fig. 2.4, “X is located left

of A” due to the use of the orientation of object A as the reference system. The

hatched area in this figure denotes the locations which lie “left and right of A”.

See Def. 4.95 on page 167 in the MPLL Standard Library for more details on the

MPLL constructs dealing with this particular setup.

Deictic: In this case the bearing between an external observer, for example a speaker or

listener, and the relatum13 defines the frame of reference. Statements such as “left

of the TV tower” (which may have no intrinsic front) or “across the pond” fall into

this category. The role of the observer has also been referred to as Relative [148],

since it is used to express relations between two independent objects via another

object that relates to both.

A setup which incorporates an observer as object B is shown in Fig. 2.6 on page 50.

The relation between the relatum A and the referent X as seen from B can be de-

13See section 2.2 on page 32 for a definition of referent and relatum.

48

2.5. Basic Spatial Relations

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

A

X

θb

Figure 2.5.: Point-to-Point Directional Relation with Intrinsic Refer-

ence System; the hatched triangles denote the area left and right of A,

X is located left of A.

scribed as “X is located left of A”. It must be noted that the orientation of the ob-

jects A, B, and X have no impact whatsoever on the spatial relation. Furthermore,

for this (static) situation this statement is only true for an observer at position B. If

the position of B changes (even while A and X remain static), this statement could

cease to be true.

See Def. 4.96 on page 167 in the MPLL Standard Library for more details on the

MPLL constructs dealing with this particular setup.

In general, qualitative direction can be expressed by using the models described in sec-

tions 6.1.1, 6.1.2, and 6.1.3. Escrig and Toledo [51] offer a more detailed discussion of

these issues.

Whenever an extrinsic or intrinsic reference system is used, directional spatial relations Absolute

Directionhave an absolute character, since directional expression does not depend on a tertiary

relation with, for example, an observer. Therefore, statements such as “the shopping

mall is located east of the Olympic stadium” (extrinsic RS) or “the post office is in front

of the church” (intrinsic RS) are valid independently from the place of utterance or the

location of an observer, speaker, or listener.

The use of a deictic reference system always indicates relative directional spatial rela- Relative

Directiontion, for example when the observer holds a specified position or spatial expressions

include a relative object: “the news stand is located left of the main ticket booth, which

you see over there”.

49

2. Basic Concepts

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

X

A

B

θb

Figure 2.6.: Point-to-Point Directional Relation with Deictic Refer-

ence System; the hatched triangles denote the area in front of and be-

hind A, X is located left of A.

Point-to-Line Direction

Qualitative direction between points and linear structures cannot be handled in the same

straightforward way as between points. This applies also to point-to-region relations (see

section 2.5.1) and is due to the fact that lines, polylines, and regions have, in contrast to

points, a spatial extent. There are several simple and intuitive examples for point to line

relations: “the river runs in north/south direction east of the city centre”, “the border is

located south of the airport”.

The MPLL function

bearing(C,L)

of type Configuration∗Line 7→ CircularInterval is used to determine the

spatial relation between a point and a line entity. This function returns a crisp interval

holding the bearings from C towards all line segments (i.e. all points and all segments

between points) of L (see Def. 4.66 on page 143).

Alternatively, the line L can be reduced to one of its segments, namely the one closest

to configuration C. This interpretation could be more suitable in some scenarios. The

MPLL function

closestSegment(L,C)

of type Line ∗Configuration 7→ Line can be used to define a suitable function

(see Def. 4.71 on page 148). Note that the bearing function above also accepts lines

which consist of only one segment. Therefore, the same function can be called with the

respective parameter.

50

2.5. Basic Spatial Relations

N

A

S

EW

SW SE

NENW

Figure 2.7.

Fig. 2.7 shows a setup in which the river is located Cardinal

Point-to-Line

Direction

south as well as north as seen from location A. In fact

the only direction as seen from A which is not (at least

partly) occupied by the river is northwest. Even in

cases where the linear feature shows less distinct me-

andering (e.g. railway lines, highways, borders, etc.)

this problem with the applicability of cardinal direc-

tion persists. One solution, which can also be found

in natural language description, is to use cardinal di-

rection only in unambiguous situations, for example

when the linear structure is sufficiently straight, at

least regarding a certain segment, and its orientation

favours cardinal direction (i.e. it matches a distinct

cardinal value, such as east–west).

Artificial reduction of meandering by interpolation of linear structures can reduce am-

biguities with cardinal direction. However, this technique can also lead to errors. If the

river in Fig. 2.7 were to be reduced to a simplified structure represented by the straight

dashed line, while for location A the ambiguity in cardinal direction would be reduced,

it would not anymore be situated on the correct side of the river.

Point-to-Region Direction

Figure 2.8.

Directional ambiguities in point to region relations are

very similar to those described in the previous para-

graph dealing with point to line relations. Relations

of this kind show analogous phenomena as those de-

picted in the scenario in Fig. 2.7. However, the like-

lihood of such problems to arise is smaller, since re-

gions, if not defined by natural occurrences (shore-

lines, rivers, etc.), are often defined by cadastral par-

titioning which is usually done in a deliberately cat-

egorical manner. This results in clear and mostly

straight lot borders which are often convex and there-

fore are not prone to the problems described above.

The satellite image taken from an area near the Mu-

nich airport shows the different parcels alloted to different purposes (agricultural, infras-

tructure, residential) and samples some common shapes (see Fig. 2.8).

The MPLL function

bearing(C,R)

of type Configuration*Polygon 7→ CircularInterval is used to determine

the spatial relation between a point and a region entity. This function returns a crisp

51

2. Basic Concepts

interval holding the bearings from C towards all polygon (region boundary) segments

(i.e. all points and all segments between points) of R (see Def. 4.66 on page 143).

Line-to-Point Direction

In contrast to point-to-line direction, line-to-point direction can be handled in a muchIntrinsic

Cardinal

Direction

more straightforward and unambiguous way by incorporating the direction of the linear

structure, such as the flow of a river or the driving direction on a highway. However,

the value of this kind of information is somewhat limited. In theory, the information

“the hospital is located on the right hand side of the river”14 leaves an almost infinitely

large area in which the hospital is located and lacks any further means of specifying the

exact location. Nonetheless, in practical situations which cover a limited area such as a

portion of a map or the vicinity around a moving car, this type of information can be very

important. The point of linear intersection, e.g. the crossing of a river, is ideally suited

to represent a landmark. Sophisticated routing instructions would make use of such a

landmark, either as a trigger cue or a reassuring cue. See section 2.6.3 on page 65 for a

discussion of these terms.

The MPLL function

side(L,C)

of type Line ∗ Configuration 7→ Side is used to determine the spatial relation

between a line and a point entity (see Def. 4.66 on page 143). This function returns

the side as the enumeration type Side (see Def. 4.17 on page 110 for the definition of

enumeration types).

rightA

left

Figure 2.9.

Additionally, in many cases this type of information

can be very valuable in directing the user’s attention

to more important tasks. This is a crucial issue, for ex-

ample, for car navigation systems, since devices need

to adhere to special guidelines which make sure that

the driver’s attention is diverted from the ongoing traf-

fic situation only to the least possible extent.

As shown in Fig. 2.9, where the area located on the

right hand side of the river is marked by the hatched

area, expressions such as “the hospital is located on

the right hand side of the river” can be determined

unambiguously and expressed by quantitative means

as well as be used in the qualitative sense. The refer-

ence to the river’s intrinsic linear direction eliminates

possible problems with cardinal directions as discussed in the next paragraph.

14Looking downstream determines the orientation and defines what is left and right.

52

2.5. Basic Spatial Relations

Specifying extrinsic cardinal direction, such as “north of” in line to point relations is

less straightforward than the previous case of intrinsic cardinal direction. Essentially,

this is the inverted case of the setup depicted in Fig. 2.7, resulting in similar problems.

MPLL provides the means to specify a function expressing the spatial relation according

to the user’s individual interpretation.

One interpretation, for example, could be to determine the nearest line segment of L Extrinsic

Cardinal

Direction

to C and to construct a circular interval with the bearings of the two endpoints of the seg-

ment. However, to determine the closest segment could be ambiguous (if there are two

segments which have the same distance measure from C) and the range of interpretations

of cardinal direction from a line segment to a point is very broad.

Line-to-Line Direction

left

right

Figure 2.10.

The seemingly trivial directional relation between

linear features serves a specific purpose, which has

no immediate connection with the term “direction”.

With respect to a linear feature A, another linear fea-

ture B can be located either on the left side of A or on

the right side of A, as depicted in Fig. 2.10. Whenever

this relation changes, that is whenever both feature

cross each other, a possibility for a landmark presents

itself. Such a landmark can be, for example, a bridge

or an underpass or tunnel. Features such as these

serve perfectly well as landmarks as they can be de-

termined rather easily.

Line-to-Region Direction

Often, the boundary of a region feature is perceived as a linear feature, which creates a

similar scenario to the one described in the previous section. Therefore, this case can be

treated in essentially the same way.

The broad range of possible interpretations leads to a number of different possibili-

ties to model this relation. MPLL provides the necessary means to specify a suitable

definition depending on the respective preferences of the user or the application.

Region-to-Point Direction

Cardinal direction between a region and a point has several interpretations. The query

“Is the Munich Olympic Tower located in the northern part of the city?”, reflects one

possible interpretation. Note that the use of the expression “located in the north of”

implicates that the tower is located within city limits. If the expression “located north

of” had been used, the implication would be that the tower is located outside city limits.

53

2. Basic Concepts

R

N

C

θc
θmin

RC

θmax

Figure 2.11.

The query given above could be solved by the construction

of a polygon representing the north of the city of Munich

(i.e. a part of the original polygon), which could then be

used for a test for inclusion of the point entity representing

the tower.

Determining whether the tower is located “north of” the

city of Munich would require a different approach. One

possibility would be to construct a polygon representing the

area located north of the city and to conduct yet again a test

for inclusion. Note that for each individual interpretation

of such a spatial relation, suitable processing mechanisms

must be combined.

Fig. 2.11 illustrates yet another interpretation of this re-

lation. The bearing from the region R to a point C located

outside of R can be defined, for example, in the following two ways. Either, the bearing

should be returned as an interval, or it should be a single numeric value. The former

version could be computed by an iteration over the polygon’s points, the bearing of each

point to A contributing to the construction of the interval (see Def. 4.61 for details). The

latter version would be defined by the bearing from the centre of mass RC of R to the

point C.

The MPLL function

bearing(R,C)

of type Polygon∗Configuration 7→ CircularInterval returns the bearing

in form of a crisp interval holding the bearings from all polygon (region boundary) seg-

ments (i.e. all points of R) of R towards a configuration C (see Def. 4.66 on page 143).

Effectively, this produces a range of bearings, constructed of all possible bearings from

a point in R to C. Analogous, the overloaded version

bearing(centerOfMass(R),C)

of type (Polygon 7→ Point) ∗Configuration 7→ Angle returns the bearing in

form of an angle value.

Region-to-Line Direction

Following the examples above, there are several different interpretations for this type

of relation. The result of these variants is either an interval, or a single numeric value.

Polylines can be reduced to a single segment (or a single point) by the MPLL function

closestSegment(L,C)

54

2.5. Basic Spatial Relations

of type Line∗Configuration 7→ Line, see Def. 4.71. Similarly, polygons can be

reduced to a single point (or a single segment) by the MPLL function

closestPoint(R,C)

of type Polygon∗Configuration 7→ Point, see Def. 4.69.

The broad range of possible interpretations leads to a number of different possibili-

ties to model this relation. MPLL provides the necessary means to specify a suitable

definition depending on the respective preferences of the user or the application.

Region-to-Region Direction

Analogous to the previous relation, there are also several different interpretations for

region to region direction. The result of these variants is, once again, either an interval,

or a single numeric value. Polygons can be reduced to a single point by the MPLL

function closestPoint(R,C) of type Polygon∗Configuration 7→Point (see

Def. 4.69), or to a single segment by the MPLL function closestSegment(R,C) of

type Polygon∗Configuration 7→ Line (see Def. 4.71)

Also in this case, the broad range of possible interpretations leads to a number of

different possibilities for modelling. MPLL provides the necessary means to specify a

suitable definition depending on the respective preferences of the user or the application.

2.5.2. Distance

Distance is, unlike topology and direction, a scalar entity [137]. When humans com-

municate distance, they do so using qualitative categories (“close to”, “far away”),

qualitative comparatives (“closer”, “farther away”), or metric distances (“100 metres

from here”). Generally, there are two categories of distance relations: absolute (the dis-

tance between two entities) and relative (the distance between two entities compared to

the distance to a third entity). While the former can be represented either qualitatively

or quantitatively, the latter is purely qualitative.

In contrast to qualitative direction, where an inherent zero-point (intrinsic front, north) Qualitative

Distanceand cardinal systems (e.g. “left”, “right”, “east”, “west”) exist, qualitative distances

depend on a context made up of complex and subjective factors, such as scale (Mon-

tello [113] proposes four different kinds of scale of space), order of magnitude, and

foundational modelling assumptions. To model qualitative distance one can, for exam-

ple, take into account the mobility of the navigation entity (microbes, humans, birds)

which in turn depends on the modes of transport available. Other factors could be time,

nutrition, environment, weather, and many more.

In general, Euclidean distance can be defined in MPLL in the same way as cardinal

direction. The standard library, therefore, contains a sample definition of distances (see

55

2. Basic Concepts

Def. 4.78). However, since the actual scale for any task will certainly vary, the predefined

set has to be carefully adjusted to reflect the user preferences and context.

Section 6.2 provides an overview of related work on qualitative distance. For more

details on this issue see the work of Mukerjee and Joe [114], Jungert [89], Zimmer-

mann [173, 174, 175], Frank [57], and Clementini, Di Felice, and Hernández [77, 26].

As became clear during the course of this work, representing qualitative distance is more

complex than representing qualitative direction. However, in the domain of navigation

and wayfinding – one of the primary fields for the application of MPLL – (multimodal)

route planning techniques provide a suitable means of representing distance. Usable

distance measures can be obtained in connection with a specific cost function, which

very much depends on the user and context. The next section further discusses this

approach.

Point-to-Point Distance

Due to the fact that humans often measure distances using temporal means (5-minuteRoute

Planning walk, 1 hour by car, 4 hours by plane, etc.) one possibility of modelling qualitative

distances would be to use available and proven routing algorithms in connection with

context and user modelling to produce means of determining the correct frame of ref-

erence for a certain domain, query, etc. In this approach, one could make use of the

possibility to compare different frames of reference, since people would normally not

drastically distinguish between a two hour ferry ride or a two hour train ride – albeit

the distances would greatly differ. In other aspects, one could incorporate the difference

between a two hour train ride and a two hour walk, because of the inherent implications.

To some extent, a scale-less qualitative template of discrete distance labels (e.g. close,

near, far, very far, unreachable) could be applied to different scales in order to provide

generic means of reasoning for a diverse number of domains and scales.

The outcome should be an extensible table of frames of reference and their adjacency

in order to answer the following questions: What modes/distances translate well into

others at what scale? What scale underlies certain modes? What limits exist for different

modes in what respect (e.g. cost, exhaustion)?

We believe that routing algorithms combined with adequate cost functions provide a

powerful means of answering these kinds of questions under the aspect of working on

a temporally oriented model of qualitative distance. This model could also be used to

facilitate processing and communication of (natural language) distal expression.

In some cases, however, there is no need for sophisticated modelling of distances. InEuclidean

Distance preprocessing spatial information, for example, many operations only pertain to entities

in the vicinity of the user. The generation of routing instructions at a certain point along

the route does not involve each and every landmark in all available databases at hand.

To the contrary, processing becomes cumbersome if there is no quick way to determine

the k-nearest landmarks which are relevant for the individual task. In these cases, well

56

2.5. Basic Spatial Relations

established algorithms, e.g. geometric k-nearest neighbour search, are used to filter out

likely candidates for the current processing task. The k-nearest neighbour search is a

prominent example, because in generating routing instructions one of the key issues is

to determine suitable landmarks and to test the spatial relations between landmarks and

the user’s position for clear and unambiguous constellations.

Point-to-Line Distance

This setup also allows for a number of different interpretations. We only briefly sketch

some ideas here, to exemplify the main issues. As mentioned before, MPLL offers a

function to derive the closest segment of a linear feature: closestSegment(L,C) of

type Line∗Configuration 7→ Line (see Def. 4.71). This function can be used in

order to examine the shortest Euclidean distance to a possibly very large linear feature.

In other cases, the semantics of the spatial entities involved could necessitate different

interpretations. From the point of noise emissions, for example generated by a highway,

the spatial semantics are relatively simple: notwithstanding the influence of building

development and vegetation, the noise emissions primarily depend on the geometric

distance to the highway. From the point of transport networks, however, the semantics

are different. A highway cannot be entered anywhere, but only at designated points,

namely on- and off-ramps. The distance from any location to the highway can now be

transformed into a proximity relation between points, whereas these points represent

nodes in transport networks. Yet again, this particular problem involves route planning.

Line-to-Line Distance

Figure 2.12.

Determining the distance between two linear features

(see Fig. 2.12) is not a trivial issue, since there ex-

ist different notions of distance. The statement “the

river runs along the road”, for example, is vague in

the sense that it completely lacks any quantitative cri-

teria. Once again, the context determines what along

means, in the form of an upper bound of an interval

(e.g. [0,200 m]). A suitable distance metric would be

the shortest geometric distance between a point on the

first linear feature to any point on the other linear fea-

ture.

Region-to-Region Distance

Topological distance can be represented by an order of topological relations, for exam- Topological

Distanceple, the RCC-8 relations. The order of the relations determines a qualitative distance in

the sense that transitions between relations always imply a movement closer to (or farther

57

2. Basic Concepts

away from) a region. In this concrete example, the relations are ordered as follows, from

near to far: EQ ↔ (T PP/NT PP) ↔ PO ↔ EC ↔ DC. Transitions between these rela-

tions are unambiguous. For the relations T PP and NT PP, however, distal order cannot

be clearly determined, since there exist equally qualified examples for both alternatives.

Here, the inverse cases T PP−1 and NT PP−1 need not be handled separately.

2.5.3. Topological Relations

Topological relations between spatial entities play a fundamental role in spatial knowl-

edge. Due to the inherently qualitative nature of these relations, a strong connection to

human spatial reasoning seems not far fetched. However, publications about research

backing up this statement are very sparse, although topological relations undoubtedly

represent an important aspect of qualitative spatial reasoning.

Topological approaches to qualitative spatial reasoning usually deal with regions (rather

than points) which are subsets of topological space. Most formalisations are based

on work from Whitehead [169] and Clarke [24, 25] who axiomatised mereotopologies

using a single relation, the binary connectedness relation. For a general overview of

mereotopology, see, for example, Cohn and Varzi [34, 32, 33].

One of the most well known approaches in this field is the Region Connection Calculus

(RCC) by Randell, Cui, and Cohn [134] which defines eight relations known as the RCC-

8 relations. Renz [137,138] provides a comprehensive discussion of RCC-8 and topolog-

ical reasoning. Further reading includes, for example, Asher and Vieu [7], Cohn [28,27],

and Cohn et al. [29].

A different approach was proposed by Egenhofer [48], some discussion of his work

and a comparison to RCC can also be found in the work of Renz [137].

Topological reasoning is not within the primary scope of this work. However, the neces-

sary infrastructure to include a topological reasoning mechanism into the MPLL system

architecture as an external module or service is available. The use of such a reason-

ing mechanism is applicable to a variety of spatial tasks, especially complementing the

available quantitative methods.

Region Connection Calculus

As shown in Fig. 2.13, there exist eight RCC-8 relations [134] based on the notion of

connection. Two regions are either disconnected (DC), externally connected (EC), over-

lap partially (PO), overlap fully (TPP, NTPP), or are equal (EQ). Each case of full overlap

allows for the inverted relation (i.e. contains vs. contained by), This relation is further

distinguished by whether the borders of the two regions share a common point. Fig. 2.13

also shows the possible transitions between the different states.

58

2.5. Basic Spatial Relations

A
B

B
A

DC
A

A

A

BA BA

A

B

B

B

EC

PO

EQ

TPP

NTPP

B

TPP−1

NTPP−1

Figure 2.13.: RCC-8 Relations

9-Intersection Model

A different model of topological spatial relationship was developed by Egenhofer [48]

independently from the Region Connection Calculus (RCC). The relations between spa-

tial entities are, according to Egenhofer, defined by the possible intersections of the enti-

ties’ exterior, boundary, and interior. The model is, therefore, called the 9-intersection-

model. Here, in contrast to RCC, the domain of spatial entities is restricted to simply

connected planar regions, which cannot have holes, i.e. two-dimensional regions whose

boundary is a closed Jordan curve.

The RCC and the 9-intersection-model result in the same set of topological relations,

apart from the different restrictions on spatial entities. This fact substantiates that these

two approaches define a reasonable level of granularity of topological relations. As

already mentioned, Renz [137] gives a fine introduction to the 9-intersection-model,

along with a detailed description of RCC-8 and a comparison of the two approaches.

59

2. Basic Concepts

2.5.4. Complex relations

There exist many spatial relations which are very specific to a certain scenario or a certain

problem domain. Mostly, these relations are specifically designed to be applicable to a

small number, and not a broad variety, of tasks. Some examples for such relations are

listed in this section under the common notion of complex relations. This is done not

because these are so much harder to compute or to define, but because there very often

exist several specific preconditions and requirements for their application.

Generally, these relations do not only rely on angular and/or proximity relations, but

on other properties, such as shape, size, or combinations thereof. The representation of

the regions of acceptability associated with a given relation is also called spatial tem-

plate [102]. A function definition should, therefore, define the spatial templates in light

of the intended interpretation.

One good example are order relations of different kinds, such as “the n-th”, “before/Order

Relations after”, or “next to”. These rely on structures, which facilitate ordering of some sort,

such as house numbers, room numbers, or the numbered streets in Manhattan. However,

explicit numbering is not a requirement. The implicit order of stations along a railway

line, albeit not numbered, serves the same purpose. This also applies to other, purely

structurally ordered entities, for example a sequence of traffic lights along a road, blocks

on a city grid, or side streets branching off a main road. Yet again, the interpretation

of such notions is not unambiguous and should, therefore, be reflected by the individual

definition.

Peculiarities of natural language also influence these notions. The notion “next to”, for

example, has shown to be strictly interpreted as horizontal proximity (see Logan and

Sadler [102]), while a number of other notions exhibit ambiguities. As an example, the

notion “between” (as sketched in example 1.3 on page 5) serves to illustrate the variety

of interpretation. The individual modelling of other notions, albeit highly specific, can

be achieved in essentially similar manner.

Between

The notion of between can be defined in multiple ways. In a network based environment,

it makes sense to define the notion of between based on distances within the network,

since free traversal of space is usually not possible. Note the distinct difference of this

approach to the following angular definition. It is also important to point out that the

following definitions do not represent actual MPLL definitions, but mere pseudo-code

formalisations in order to make the intended functionality clear.

Let route(B,C) denote the shortest route from B to C, and let route(B,C)−1 denoteDistal

Definition its inverse, i.e. the reverse route route(C,B). Furthermore, length(route(B,C))
shall yield the length of this route. Thus, between(A,B,C) shall render a value between

60

2.6. Landmarks

0 and 1. The result is 1 if A is exactly on the route between B and C. The longer the

detour through A is, the smaller is the value of between(A,B,C).

between(A,B,C) =
length(route(B,C))

length(route(B,A))+length(route(A,C))
(2.3)

However, there are special cases in which this approach yields unintuitive results. If A

is for example not at all located (in the classical, common sense) between B and C, but

instead very close to B (C) on the opposite side of C (B), then the given definition would

still render results close to 1, although this is against common sense.

Furthermore, this definition is not necessarily symmetric. This is the case, for exam-

ple, when route(X ,Y) operates on a directed graph data structure, i.e. that pairs of X ,Y
exist, with route(X ,Y) 6= route(X ,Y)−1. A street network consisting partly of one-

way streets is a good example for an environment, where such routes can occur. The dis-

tal (route-based) definition of between is therefore not symmetric; between(A,B,C) 6=
between(A,C,B).

The angular way to define between checks whether there can be a straight line drawn Angular

Definitionthrough the locations B, A, and C. The greater the deviation from the target value 180◦

is, the less A lies between B and C. The following definition is crisp. However, for

practical purposes a definition involving fuzzy values would be preferable, returning

values between 0 and 1 depending on the deviation of the target value. Here, we need to

use the bearing (see section 2.4.2) between locations, since the orientation of A, B, or C

is not relevant.

between(A,B,C) == (180◦ = |(θb(A,C)+θb(B,A))|) (2.4)

2.6. Landmarks

Because of their fundamental role in human spatial cognition and wayfinding, landmarks

are of key importance also within MPLL. Intuitively, a landmark is any spatial entity

which the user can relate to, in order to solve a given spatial task. The locations where

the user is supposed to conduct an action or where the user is supposed to verify his or

her position, can be marked by their spatial relation to, or the presence of, one or more

landmarks. This spatial relation can, for example, be distal (the landmark denotes a

certain distance, e.g. “go straight until you reach the bridge”) or angular (the landmark

provides a direction, e.g. “go towards the church”).

As MPLL already provides the necessary data types to model landmarks, there exists no Landmarks

in MPLLspecial “landmark” data type. Landmarks are often modelled as point entities which

optionally feature an orientation. Therefore, they can be represented as points (see

Def. 4.21, pp. 4.21) or configurations (see Def. 4.23, pp. 4.23). Landmarks without

61

2. Basic Concepts

an intrinsic front can be represented without an orientation property. They can be repre-

sented either by a point entity or by a configuration, whereas the orientation property of

the latter is not used. For example a tree, a TV tower, or a smokestack fall into this cat-

egory. Those entities with an intrinsic front can only be represented by a configuration.

This concept applies, for example, to buildings with a clearly perceivable main entrance

(e.g. a church).

Furthermore, landmarks can also occur as linear features (e.g. rivers, railway lines)

or as regions (e.g. parks, lakes, parcels). MPLL also provides suitable data types to

represent such landmarks, along with the necessary spatial relations. These relations

have been introduced in section 2.4.2, the equivalent MPLL functions can be found in

sections 4.5.2 and 4.7.2.

In this section, we give a definition of the term landmark and the closely related notion

of named entities, followed by a discussion of the purpose of landmarks in wayfinding

and other possible applications. A short discussion of remaining challenges, especially

regarding landmark acquisition, concludes this section.

2.6.1. Definition

One of the most broadly accepted definitions of landmarks has been provided by Kevin

Lynch [107] (pp. 78). This definition is also very suitable in the scope of this work,

given the geospatial nature of the underlying domain:

“Landmarks, the point references considered to be external to the ob-

server, are simple physical elements, which may vary widely in scale. [...]

Since the use of landmarks involves the singling out of one element from a

host of possibilities, the key physical characteristic of this class is singular-

ity, some aspect that is unique or memorable in the context. [...]”

Furthermore, other definitions confirm this statement or are merely of supplemental char-

acter: “[A landmark is a] monument or material mark or fixed object used to designate

a land boundary on the ground: any prominent object on land that may be used to deter-

mine a location or a direction in navigation or surveying” [50], “[landmarks are] point

references considered external to the user” [107]. Even in rather complementary fields

(e.g. real estate, law, military), landmarks are used in a similar manner, for example

by Axel Pinz [133]. Several Web resources, for example answers.com [4], point to a

number of different uses and definitions of the term “landmark” in different domains.

As an extension to these definitions, one might add that landmarks can also be non-

physical – at least in the sense of human perception. For a blind person, who cannot see

a landmark, certain other features, such as aural or olfactory, might serve the purpose.

Whereas a landmark’s aural (and other) properties mostly depend on its physical features

(e.g. the sound of cars crossing an intersection which features rails of a tramway, or the

62

2.6. Landmarks

acoustically shielding effect of a big building), olfactory properties pertain more to the

use of a landmark itself (e.g. the smell of a brewery or a bakery), and not its physical

features. Exceptions notwithstanding, the above given definition is sufficiently correct

for the given problem domain.

Incorporating landmarks into route data structures poses an interesting problem, as they Landmark

Integrationare only very rarely part of the route itself.

While landmarks are used for a variety of purposes, in light of this work, they pri-

marily serve as navigation and routing aids. They can denote a location where a certain

action is to be performed: “Turn right at the supermarket.” They also serve as direc-

tional aids: “Go into the direction of the cathedral.”, “Follow the river on your right

hand side.” Used as reassuring cues they denote a route simply by their presence.

The key properties which characterise a landmark are the following (These attributes, Key

Propertieshowever, are not all mandatory, since in some cases just one of these properties is suffi-

cient for the object to be treated as a landmark.):

Contrast to Environment – One of the principal factors is the contrast to its envi-

ronment which an object can generate. This contrast can manifest itself through

a number of features, most importantly through form, colour, size and other pri-

mary features (see below), but also through several secondary features. Clean

buildings in otherwise unclean surroundings (or vice versa) can perfectly serve as

landmarks. The same applies to objects which only stand out by their orientation,

their architecture (modern vs. antique), or similarly composite features.

Contrast to the environment is not confined to the immediate surroundings. Some

objects have features which stand out in the wider area of a city or region, such as

TV towers, waterfalls, or mountains.

Clear Form – This feature is often connected to size, although the two are not de-

pendent. Clarity of form is stronger with objects which offer clear clues as to

their form, size and the angle of the current view. This can be the result of cer-

tain (a)symmetrical shapes. Sometimes, the clarity comes from the fact that the

object has the same shape, independent from the angle of the view. This is the

case, for example, with axis-symmetrical buildings such as domes, TV towers,

smokestacks, etc.

Spatial Prominence – Taller objects tend to be visible in farther distances and, there-

fore, they usually represent good candidates for landmarks. In addition to size,

the location of an object can add to that effect. Churches and castles, for example,

have often been built on hilltops or other prominent locations.

However, the more suitable an object is as a ’long-distance’ landmark, sometimes

its usability in smaller scale environments is decreased. The John Hancock Build-

ing or the Prudential Tower in Boston, for example, are huge structures also at

63

2. Basic Concepts

their base. They are too big to be in contrast with the surroundings since they are

the surroundings. Therefore, depending on the scale, they can be very useful, or

less so, to serve as landmarks.

Symbolic Significance – In some cases, contrast with the background is achieved

by precisely not being significant. Some objects stand out by their special quality

of being rather inconspicuous or unobtrusive. This can also occur in connection

with the abstract importance of a structure, for example when there is a huge

discrepancy between the importance of an institution and its premises.

Artificial vs. Natural Landmarks – Landmarks can be natural or artificial [15]. Nat-

ural landmarks are a normal part of the environment, while artificial ones have

been specifically placed for some perceptual activity. Street signs or room num-

bers are artificial, while buildings and doors are natural.

This distinction is more important for other domains, such as robotics, for exam-

ple. It is presented here purely for the sake of completeness since humans do not

tend to treat artificial and natural landmarks very differently. Robots, however,

due to their sensory limitations, might have to rely on a specific type of landmark

and cannot utilise a broad variety of types.

2.6.2. Named Entities as Landmarks

Named entities are expressions which occur in natural language text and which denote,

by name, certain spatial (e.g. “Beacon Hill”, “Boston Common”), temporal (e.g. “the

nineties”, “prehistoric”), or spatio-temporal (e.g. “post-war Europe”, “14th century

France”) entities. These entities can be, for example, persons, organisations, locations,

epochs or eras. Although named entities are also called Proxy Place Names [6], we stick

with the more general term as used in the section header.

Within the scope of this work, we want to focus on named entities denoting locations,

which, due to common knowledge about them and their often unambiguously clear form,

can almost always serve as landmarks with their inherent properties and features. For

completeness, however, we give a generic definition of named entities in this section.

Named entities are expressions, i.e. natural language words or phrases that contain theDefinition

names of entities, for example persons, organisations, locations, times, quantities, etc.

The following example features three named entities which are marked by a type:

value pair within square brackets15:

Chancellor [PER: Merkel] meets

[ORG: U.N.] representative in [LOC: New York].

15Types in this example are: PER (persons), ORG (organisations), and LOC (locations).

64

2.6. Landmarks

Named Entity Recognition (NER) is a subtask of Information Extraction which is highly

language-specific. Due to this fact, different systems employing language-specific re-

sources to accomplish the task show varying performance, and it is unknown how they

perform on text from languages other than the specific target language [131].

Since 1995, NER systems have been developed for some European languages and few History

Asian languages. Palmer and Day [131] used statistical methods for finding named en-

tities in news articles in Chinese, English, French, Japanese, Portuguese and Spanish.

They found that the difficulty of the NER task was different for the six languages, but

that a large part of the task could be performed with simple methods. Cucerzan and

Yarowsky [37] used both morphological and contextual clues for identifying named en-

tities in English, Greek, Hindi, Romanian and Turkish. We do not go into detail because

further reading regarding individual techniques is readily available [11, 38, 54, 91, 109,

157, 170] and it is not of extraordinary relevance within the scope of this work.

The subset of named entities which occur in MPLL, namely those denoting locations, Named

Entities in

MPLL

are treated no different from landmarks. Therefore, there exist no special data types for

their representation. Instead, they are modelled using standard data types, such as points,

configurations, polylines, or polygons.

2.6.3. Landmarks in Wayfinding

The role of landmarks in wayfinding are manifold, although their primary function tends

to be associated with providing cues to the user. As “...trigger cues [...] and reassuring

cues...” [107] they provide two very important services.

Trigger cues are needed at every decision point along a route. Any decision regarding Trigger Cues

route traversal is usually bound to a location, and since landmarks are the preferred

means of identifying locations, they are very often used in this respect.

In a similar way, even when there is currently no decision point along the route segment, Reassuring

Cuesthe user periodically needs to be reassured that he or she is still on the right track. In this

context, we have to distinguish between real and optional decision points. The former

are a necessary and substantial part of the route description, while the latter are optional.

Optional decision points are, for example, go straight at the traffic lights or continue

along the main road. Leaving out instructions like these still renders a traversable route,

because the omission of the (optional) action at these points (i.e. doing nothing) leads

to the same result. However, when real decision points are too far apart, exactly these

optional actions serve well as reassuring cues: they tell the user that he or she is still on

the right track. Reassuring cues can even be artificially inserted along the route when

there is no decision point at all (not even an optional one). If the next intersection is still

quite far away, the statement “continue along the main road”, while not bound to an

immediate location, will still serve its purpose.

65

2. Basic Concepts

Situations in which spatial relations to single landmarks are relevant, are discussed atSingle

Landmarks length in section 2.5. Such relations to landmarks are best usable, if they are clear

and unambiguous, i.e. they locate the user with the highest possible accuracy. This can

be achieved equally by using angular and distal relations. A landmark located at an

intersection (distal relation), for example, makes the intersection unique in the vicinity,

simply by its presence. A visible (angular relation) landmark unambiguously defines the

cardinal directions “towards” and “away from”, even though, depending on the user’s

position, the absolute direction can vary.

More complex relations include, for example, “alongside”, “into/out of”, “next to”,

“around”, “on the outskirts”, and so on. The formal definition of these and many more

relations depends on the individual interpretation and semantics and, therefore, must be

defined in a domain dependent manner.

In case of the presence of multiple landmarks, the theory of the so-called Landmark PairLandmark

Pair

Boundaries

Boundary (LPB) facilitates reasoning [97, 12, 16]. On a planar map containing several

(visible) landmarks, the Delaunay Triangulation produces a number of triangles which

represent orientation regions. Within each of these orientation regions, any arbitrary

position features a unique order of visible landmarks. This information can be used for

the purpose of positioning, if the position of landmarks is available. In fact, for any two

landmarks li, l j , i 6= j, i.e. any landmark pair, the position p can be determined regarding

the side of the line (li, l j). The individual distances, e.g. d(p, li), need not be used, but

only the bearings from p to the ln.

2.6.4. Challenges

There remain several issues which complicate the use of landmarks in spatial information

processing, and which require further extensive research.

Landmarks are difficult to define due to a number of reasons, the first and foremost be-Landmark

Definition ing that the perception of landmarks is highly subjective. Depending on the individual

application and scale of spatial relations, the properties of an ideal landmark will dif-

fer substantially. Even within a certain domain, subjectivity prevails to a certain extent,

mostly due to issues in connection with personal preferences, perception, and context

of use. A suitable example are route descriptions for pedestrians. The ideal description

for a person to traverse a certain route will be different, depending on the time of day of

the travel. The applicability of landmarks varies greatly between daytime and nighttime.

Also, for two individual persons (and their subjective perception of landmarks), the de-

scription of the same route will have to be adapted to their individual preferences and

context. Therefore, a single route can be described by several different route descriptions

– neither one of them being the only and ideal one.

As a consequence, there currently exists no universal automated process for landmarkLandmark

Generation generation within a certain application domain, problem domain, or map. For some do-

mains, a number of feature properties (location, size, shape, other geometric features)

66

2.7. Fuzziness

are sufficient to determine the overall quality as a landmark. In other domains, spe-

cialised processes must further determine complex relations, such as visibility within a

3D model of a city. Certainly, the instruction “go towards the TV tower” is valuable only

if the tower is visible from the user’s current position. Similar aspects pertain to other

senses, such as audiovisual, aural, olfactory, or tactile. The latter three are especially

important, for example, for blind people.

The process of landmark generation, identification, ranking, etc. is not a part of the

MPLL functionality. Therefore, MPLL relies on the services of another application (in

form of an MPLL module or a (web) service) to provide these functionalities. Within

the scope of this work, we presuppose the availability of suitable landmarks, whenever

the individual task includes spatial relations to landmarks.

2.7. Fuzziness

The ability to process fuzzy information is eminently important in geospatial reasoning

because of the way humans express their perception of space around them and because of

their way to communicate this perception. They use mostly qualitative terms [13,18,56],

such as “in direction of the city centre”, “south of the park” or “close to the train sta-

tion”. While quantitative notions are also used, they often lack the necessary precision

in order to be processed with purely quantitative methods: “the pharmacy is located

300 m from the subway station”. Of course, unambiguous quantitative expressions are

also used: “take the westbound train at North Greenwich and leave at the fourth stop”,

or “turn left at the third traffic lights.”

Several issues must be addressed in connection with fuzziness. The underlying geospa- Specification

Mechanismstial model must accommodate fuzzy data, and basic operations to manipulate it. Specifi-

cation mechanisms must be provided in order to facilitate the declaration of fuzzy terms

and notions for use in certain applications. This includes means for end users to spec-

ify their interpretation of “close to” or “south of”. In the same way as fuzziness can

occur in a one-dimensional environment, such as a time line [122, 119], it can occur in

multidimensional environments. Three or more dimensions are not discussed here, since

we concentrate on one–, two– and 2.5–dimensional data. Compared to one-dimensional

data, fuzzifying multidimensional data requires essentially similar, but refined, methods.

There exist several different flavours of fuzziness [86], which are briefly outlined be-

fore we go into detail about the consequences of fuzziness for the underlying problem

domain.

Vagueness pertains to the lack of definite criteria about the applicability of a concept.

For example the statement “The chair is in the corner of the room” is not uncertain

(the chair is definitely there) but vague as to the exact position of the chair.

67

2. Basic Concepts

Imprecision is an inherent feature of every GIS. Not a single data set can be defined

in an infinitely accurate manner, and, therefore, every data set is inherently im-

precise. Whether within the respective problem domain this means deviations of

centimetres, millimetres, or nanometres does not change this fact, but only the

order of magnitude of imprecision.

In the sense of imprecise geospatial features, sometimes the notion diffuseness is

used, which in the context of fuzziness also means imprecision.

Uncertainty means the lack of exact knowledge about an object. A precise statement

can be uncertain in the way “if it is correct, then it is precise”, meaning there is a

chance that the statement is not true altogether – regardless of its precision. If the

person making the above mentioned statement about the chair is not sure whether

the chair is there at all, the statement altogether is uncertain.

Ambiguity pertains to several contradictory conclusions which could be drawn from a

statement. If within a route description an instruction says to go “into the direction

of the church”, this instruction might be ambiguous if there are two churches

visible. Certainly one of the alternatives is the correct one, although it cannot be

determined which one.

Generality is also a form of fuzziness as it describes statements of coarser quality.

A statement such as “Let’s meet at Piazza Castello.” specifies a clearly defined

region (the Piazza). Whether this region is sufficiently precise depends on the

respective context. Generality is closely related to imprecision in the sense that

both types depend on a context to define their fuzzy quality.

One-dimensional data are discussed in the next paragraph. Examples for two-dimensio-

nal data are basically all elements which are found on a standard map: streets, railway

lines, rivers, lakes, districts, cities, and so on. Their geometric counterparts are points,

lines, and polygons. The following sections deal with different aspects of modelling and

using fuzzy logic with respect to geospatial reasoning tasks.

2.7.1. Fuzzy Intervals

Common fuzzy intervals, such as the ones for modelling fuzzy time intervals [125], can

also be used in spatial information processing. Fuzzy intervals can be used in connection

with one-dimensional spatial data. As laid out in this section, many cases of fuzziness

– pertaining to one-, two- or n-dimensional data – can be modelled using fuzzy inter-

vals. In two-dimensional space, for example, distance and direction can be treated as

one-dimensional structures. The fuzzification of regions, however, produces a three-

dimensional structure, which cannot simply be modelled using intervals. In this section,

several forms of fuzziness are discussed, beginning with one-dimensional data.

68

2.7. Fuzziness

0

y

x

θr

θc

θl

dm

d f

dc

Figure 2.14.: Fuzziness in Distance and Angle

What is meant by one-dimensional spatial data? From the viewpoint of routing and

wayfinding, the goal is a route, i.e. a linear structure which connects the start (S) with

the destination (D) via a number of intermediate segments and junctions (1-5) as shown

in figure 2.15 a).

S

2

4

5
D

1 3

b)a)

S 1 2 3 4 5 D

Figure 2.15.: Representations of a Route

This route – albeit a fully two-dimensional (or three-dimensional) entity – can be handled

as a flat structure in order to reduce complexity in processing. This means that not the

coordinates of the start or destination or intermediate nodes need to be regarded, but only

the distance of a certain point along the route to the start (or destination). If there is an

intersection at a certain point, its location is marked only as the distance to the start. If

all intermediate nodes are marked this way, the result is a one-dimensional structure in

which the origin denotes the start and the destination the highest value on the axis, as

shown in Fig. 2.15 b).

69

2. Basic Concepts

The motivation for this type of modelling approach is that the resulting one-dimensional

structure is the ideal basis for classic fuzzy calculations. Many fuzzy aspects which are

relevant for routing can be incorporated this way. In a region with poor Global System

for Mobile Communications (GSM) coverage, for example, the fuzzy value along the

route could indicate the reception quality for mobile phones, ranging from 0 (none) to 1

(excellent). Converting distances to GSM base stations along the route into fuzzy values

provides a simple way to ascertain GSM reception for any point along the route. Many

other route characteristics can be modelled this way: inclines, friction coefficients, curve

radii, terrain attributes such as flora or housing density, and more.

S

2

4

5
D

1 3

Figure 2.16.: Extended Route Features

Fig. 2.16 shows an enriched version of Fig. 2.15. The dotted circles denote the maximum

range of GMS base stations, the grey polygon marks an urban area. The GSM signal

strength for any location along the route can now be deduced by calculating the distances

to the nearest GSM transmitter in the vicinity. Reception quality (i.e. signal strength,

degradation, and attenuation) is, technically, not linear over distance and depends on

several more complicated factors, but for demonstration purposes this approximation

will suffice. The result is a fuzzy interval like the following:

-

6

R
0

1

GSM Reception

S 1 2 3 4 5 D

An interval marking urban areas can be applied in a similar way. The following diagram

shows the urban boundaries as a crisp interval along the route from S to D:

70

2.7. Fuzziness

-

6

R
0

1

Affiliation to urban areas

S 1 2 3 4 5 D

Nonlinear functions can also be used to compute fuzzy intervals. If the coverage of

GSM base stations degrades in a nonlinear way, the interval can be adapted to reflect

this effect. Other, more complicated cases can be computed as long as a suitable formula

is given.

-

6

R
0

1

Gaussian Shape

x0

A clear advantage of handling spatial fuzzy intervals this way is the availability of stan-

dard fuzzy operations. If several different fuzzy (and/or crisp) intervals are to be com-

bined, many standard operations can be used, such as the Hamacher Family (see, for

example, Ohlbach [122, 119, 118] for a comprehensive overview):

-

6

R
0

1

Hamacher Intersection and Union with β = γ = 0.5

Using these methods, it is very easy to compute different fuzzy intervals or the union of

different intervals for a given route. This way, different queries pertaining to fuzzy infor-

mation can easily be answered: “At what approximate time will we cross the border to

France on the journey from Munich to Paris?”, “During this journey, are there any por-

tions where a mobile phone cannot be used or incoming calls might not get through?”,

“Does the journey lead through mostly rural or urban areas?”, etc.

Fuzzy intervals such as the above can also be used to integrate landmarks into a route. Landmark

IntegrationFuzzy representations are sometimes particularly well suited to handle references to

landmarks.

71

2. Basic Concepts

Directions, for example, are rarely crisp. Therefore, a fuzzy interval which denotes the

fulfilment of a typical spatial relation such as “go uphill” or “go towards the church”

could be computed by crisp means only with difficulties, while fuzzy representations are

quite elegant. The reason for this is that slight deviations are problematic. Certainly,

there exists a metrically correct translation of “south of”, for example 180◦ . Further-

more, regardless if either the crisp interval [179◦,181◦] or [135◦,225◦] should qualify in

the same manner as “south of”, there always remains the problem of the interval’s crisp

definition. A bearing just 1◦ outside the respective interval would not qualify as “south

of”, while another bearing just inside the interval would fully qualify. Considering the

vague way of humans to deal with direction and distance, this representation is not sat-

isfactory. Fuzzy representation can offer a much more suitable model, as is shown in the

following example.

We assume that on a smaller scale copy of the scenario described in Fig. 2.16 a church

is located at junction 4, and we regard the spatial relation between the user’s current

position and the one of the church. The fuzzy values for the different route segments

regarding the relation “towards the church” could look like this:

-

6

R
0

1

A fuzzy spatial relation: “towards the church”

S 1 2 3 4 5 D

In general, a computation by crisp methods needs to substitute for these mechanisms

and therefore somehow include special treatment of “near misses”. If the instruction is

“go towards the church”, would a segment which deviates from the absolute direction

to the church by only a few degrees be disregarded? What happens if there are no other

alternatives, in particular not a single one satisfying the instruction (i.e. if we do not

deal with navigation in free space, but with planning on a network of predefined routes)?

What happens if there are several equally suitable alternatives? These questions also

arise when using fuzzy logic, but solving them is much easier.

Directional conditions can also be time-dependent. Two different routes are, for exam-Other

Applications ple, rather equal regarding length and travel time. One starts off to the south and then

turns to the east while the other starts off to the east and then turns south. If a constraint

is defined as “not driving towards sunshine” (it might be winter time and visibility is

affected due to the low position of the sun16) there is a significant difference between

the first and the second route depending on time. If the journey starts in the morning and

ends around noon, the second route would violate the constraint most of the time, while

16Also, for this example to make sense, the journey must take place on the northern hemisphere.

72

2.7. Fuzziness

the first would not. At other times during the day, both routes could still be quite equal

or the situation could be reverse. There certainly are many other examples which could

make use of one-dimensional fuzzy intervals in this way.

2.7.2. 1.5-Dimensional Distributions

Different notions of fuzziness lead to two-dimensional fuzzy distributions which are

axially symmetric to the z-axis. These distributions can be grouped in a class which

is neither one-dimensional anymore, nor fully two-dimensional, and that we refer to as

1.5-dimensional distributions.

The reason for distributions in this class being axially symmetric is that they repre-

sent omnidirectional fuzziness which occurs in reference to a single location in space (a

point) and does not take additional parameters, for example direction, into account. The

same applies to directional fuzziness which does not take distance into account. The

latter form, inherently, leads to distributions of similar shape with different orientation

regarding the reference system. More detail on this issue can be found in section 2.4.2.

For the subsequent examples, the point of reference p is located at the origin of the

coordinate plane, defined at (0,0,0). The fuzzy value of any point p′ with the planar

coordinates (x,y) in relation to p is given as the value of z in p′(x,y,z).

Linear proximity results in a linear decrease of the fuzzy value denoted by z with in- Linear

Proximitycreasing horizontal distance to the point of reference p:

z =

{

1 if d ≤ r1

max(0,min(1,1− ((d − r1)∗ l))) otherwise

with 0 ≤ l ≤ 1 being the factor of linear decrease. See Fig. 2.17 and Fig. 2.18 for

illustration.

In case of logarithmic proximity, with increasing horizontal distance to the point of ref- Logarithmic

Proximityerence p, there is a logarithmic decrease of the fuzzy value denoted by z:

z =

{

1 if d ≤ r1

max(0,min(1,1− ((ln(d)− r1 +c)∗ l))) otherwise

with c as a constant shift of ln(d) and 0 ≤ l ≤ 1 being an additional linear factor. See

Fig. 2.19 and Fig. 2.20 for illustration.

In case of exponential proximity, increasing horizontal distance to the point of reference Exponential

Proximityp results in an exponential decrease of the fuzzy value denoted by z:

z =

{

1 if d ≤ r1

max(0,min(1,1− ((ed−c − r1)∗ l))) otherwise

73

2. Basic Concepts

x

y

z

b
1.0

0.0

Figure 2.17.: Lin. Proximity (r1 = 0)

x

y

z

1.0

0.0

Figure 2.18.: Lin. Proximity (r1 > 0)

x

y

z

b
1.0

0.0

Figure 2.19.: Log. Proximity (r1 = 0)

x

y

z

1.0

0.0

Figure 2.20.: Log. Proximity (r1 > 0)

x

y

z

b
1.0

0.0

Figure 2.21.: Exp. Proximity (r1 = 0)

x

y

z

1.0

0.0

Figure 2.22.: Exp. Proximity (r1 > 0)

74

2.7. Fuzziness

with c as a constant shift of ed and 0 ≤ l ≤ 1 being an additional linear factor. See

Fig. 2.21 and Fig. 2.22 for illustration.

Axially symmetric fuzzy distributions can easily be modelled using fuzzy intervals, be-

cause the fuzzy value is solely depending on the distance to the reference point p. The

MPLL type Interval, along with the functions provided, is well suited to cover 1.5

dimensional fuzziness.

The previously presented modelling of fuzziness required the fuzzy value at the origin Proximity

and Distanceto be always 1, hence we call these cases proximity fuzziness. However, some scenarios

might require a different notion of distance, as, for example, depicted in Fig. 2.23.

x

y

z

1.0

0.0

Figure 2.23.: Fuzzy Notion of Distance

This case, as well as many other scenarios, can also be modelled using regular fuzzy

intervals. As long as the calculation of a position’s fuzzy value depends only on the

distance (independent of the distance metric used) to a single reference location, regular

fuzzy intervals are sufficient. More complex scenarios might, however, require a dif-

ferent modelling, for example if many factors are used in the process of determining a

two dimensional fuzzy distribution in which each position’s fuzzy value depends on a

number of factors and spatial functions.

The key issue in this discussion is that, within a reasonable range of likely spatial sce-

narios, 1.5-dimensional fuzziness can be modelled, processed, and generally treated as

regular fuzzy intervals. There is usually no need to employ special techniques and mech-

anisms. All the different variants of fuzziness presented above can be solved with the

regular set of tools which are provided for fuzzy intervals.

75

2. Basic Concepts

0

1

360◦0◦
θ f

θ

Figure 2.24.: Fuzzy Notion of Direction (θc = 0)

0

1

360◦0◦

θs

θc

θ

support

core

θ f

Figure 2.25.: Fuzzy Notion of Direction (θc > 0)

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������1

0

SW WSW W WNW NW NNW NNE NE ENE E ESE SE

θs

θc

θ

support

core

θ f

45◦ 90◦ 135◦225◦ 270◦ 315◦ 0◦

Figure 2.26.: Fuzzy Representation of Cardinal Direction

76

2.7. Fuzziness

2.7.3. Directional Fuzziness

If quantitative means are employed to perform spatial information processing of quali- Direction

tative data, suitable models are needed to cater for the inherently different properties of

the two domains.

Qualitative notions are not precise numeric values, but more often a range of values,

which fulfil a certain quality. Fuzzy intervals constitute an accepted means for modelling

such data. This also applies to angular expressions.

Fig. 2.24 and Fig. 2.25 illustrate intuitive forms of modelling direction as a fuzzy

interval. Provided that an angular value θ determines an absolute angle, any other angle

can be related to θ by the fuzzy value it marks in the interval. Angles equal to θ result

in a fuzzy value of 1. Angles within the interval of ±θ f around θ result in a fuzzy value

in the interval [0,1]. All other angles result in the fuzzy value 0.

If necessary, a core interval ±θc, θc > 0 can be defined to create an interval resulting

in a fuzzy value of 1 (see Fig. 2.25). Parameters θ f and θc can be modified to reflect the

semantics of the angular expression.

A three-dimensional illustration of the directional fuzzy notions depicted in Fig. 2.24

and Fig. 2.25 is shown in Fig. 2.28 and Fig. 2.29 (see page 79) respectively.

Fig. 2.26 shows a possible fuzzy representation of equally distributed cardinal direc- Cardinal

Directiontions. Eight partitions denote the fuzzy value of a certain direction with a core of 45◦

(π
4) and a support of 90◦ (π

2). Illustrated by the hatched area, the extent of the direc-

tional notion east (E) spans 45◦ (from 67.5◦ to 112.5◦) at the core value of 1. Outside

of this interval, it spans 90◦ (from 45◦ to 135◦) at values between 0 and 1. This ensures

that values close to 90◦ fully qualify as “east” and values close to (but outside) the core

interval qualify to a certain extent as “east”. This distribution shows no overlapping be-

tween contradictory assignments; i.e. no angle can both qualify, for example, as “north”

and “east”, whereas there is intentional overlap between, for example, ”northeast” and

“east”.

2.7.4. Two-Dimensional Fuzzification

In the same way a one-dimensional structure can be fuzzified by transforming it into a

two-dimensional structure, a fuzzified two-dimensional structure can be represented by a

three-dimensional structure. Two-dimensional shapes represent many different elements

commonly found in a map. A series of line segments can represent a highway, railway

line or a river, but also abstract elements like border lines or flight connections. Polygons

denote all elements which occupy an area of some sort, either real or abstract: cities,

lakes, woods, farm land, districts, and so on.

Fuzzification of these shapes is especially significant because of their importance for

navigation and their common use in interpreting and communicating geospatial data.

Real-life expressions like “near the river” or “in the south of Munich” can only be pro-

cessed correctly, if there exists an equivalent counterpart in the model representation.

77

2. Basic Concepts

The first expression means that a linear shape (the river) has to be expanded by fuzzyfi-

cation into a polygon which encompasses the area denoted by the term “near” in a fuzzy

way. To be more exact, the two-dimensional shape becomes a three-dimensional shape

which looks like a ridge (see Fig. 2.30). The second expression implicates the transfor-

mation of a polygon (the city of Munich, simplified in Fig. 2.27 a) into a trapezoid-like

shape. In two separate steps, the polygon has to be clipped (2.27 b, c) to satisfy the no-

tion of “the south of...” and the resulting polygon must be fuzzified in order to represent

the notion of “within” (2.27 d).

�����
�����
�����
�����

�����
�����
�����
�����

b)a)

�����
�����
�����
�����

�����
�����
�����
�����

c)

�����
�����
�����
�����

�����
�����
�����
�����

d)

Figure 2.27.: Fuzzification of a Polygon

Lines and Polylines

The fuzzy expression “near the river” can be modelled as a fuzzy region around a linear

shape as shown in Fig. 2.30. The closer a point is to the polyline object represent-

ing the river, the higher its fuzzy value according to this constraint. The previously

two-dimensional shape, a series of line segments, has become a three-dimensional ridge

following the former line segments. The lateral shape in this example is also linear –

hence the conical profile – but can also be of a different type, for example logarithmic or

exponential (see figures 2.17 through 2.22 on page 74).

A more complex fuzzy variant of linear features could modulate the fuzzy value of

the linear feature itself. In the previous example, a point with no distance to the line

scored a fuzzy value of 1. This value could be influenced by other factors as well, which

would lead to a three-dimensional fuzzy distribution. In this distribution, the z-value

would indicate the fuzzy value at the respective position in planar space. Hence, two-

dimensional features can be represented by three-dimensional fuzzy distributions.

Polygons

Essentially similar to line features, the fuzzification of polygons necessitates the same

means. A two-dimensional feature in planar space leads to a three-dimensional fuzzy

distribution. The only difference between lines and polygons is that a polygon has an

interior and an exterior. However, this is only another factor of many, which, in the end,

determine the fuzzy value for an arbitrary location (regarding the polygon) in planar

space. For example, if the polygon were shaped like a circle (e.g. by adding a huge

78

2.7. Fuzziness

x

y

z

1.0

0.0

Figure 2.28.: Fuzzy Notion of an Angular Value (θc = 0)

x

y

z

1.0

0.0

Figure 2.29.: Fuzzy Notion of an Angular Value (θc > 0)

x

y

z

1.0

0.0

Figure 2.30.: Linear Fuzzification of a Line Segment

79

2. Basic Concepts

number of points as an approximation), then a fuzzy distribution expressing geometric

distance from the “ring” would look similar to the distribution shown in Fig. 2.23 (see

page 75).

2.8. Context and User Modelling

To facilitate the specification of individual operations and metrics means to provide a

basic set of functions which can be used to generate composite functions. As laid out in

detail in the previous sections of this chapter, desirable individual functions pertain, for

example, to proximity or direction, such as “close to” or “south of”. Because almost

always there exist multiple interpretations of these notions, there must be a way of using

unambiguous basic notions to define them.

Most spatial relations depend on the context, the user preferences, and the user profile.Common

Definitions Generally, all factors that influence these relations can be summed up in the category

context. In the literature, we do not find clear evidence of consensus in the definition

of the notion of context. There are several approaches on how to encode and represent

context.

Context is, for example, defined as “location and the identity of nearby people andRepresen-

tational

Approach

objects” by Schilit and Theimer [144]. Ryan, Pascoe, and Morse [142] give a simi-

lar definition: “location, identity, environment, and time”. In their investigations of

context-based computing, Dey, Abowd, and Salber [43] give a broader definition. They

define context as “any information that can be used to characterize the situation of enti-

ties” and elaborate further: “typically the location, identity, and state of people, groups,

and computational and physical objects”. The broadest definition, though, is given by

Schilit, Adams, and Want [143]: “Context encompasses more than just the user’s loca-

tion, because other things of interest are also mobile and changing. Context includes

lighting, noise level, network connectivity, communication costs, communication band-

width, and even the social situation; e.g., whether you are with your manager or with a

co-worker.”.

In more recent work, Dourish [46] comes to the conclusion that a representationalInteractional

Approach approach might not be satisfactory in all cases. He proposes to treat context as an inter-

actional problem: “context isn’t something that describes a setting; it’s something that

people do”. He further makes four assumptions:

• contextuality is a property of information; information may or may not be relevant

to some particular activity

• contextual features are not defined a priori, their scope is dynamically defined

• contextual features are not stable, they change over time

• context arises from activity, it is actively produced

80

2.9. Summary

Without favouring any approach in particular, we also propose a rather broad definition Definition

of context. Within the scope of this work, context is any kind of information, data,

or property pertaining to spatial entities, devices, systems, the environment, culture,

space, or time, exerting any influence on the semantics of the processing, reasoning, or

execution of spatial relations, routing and navigation, or related tasks.

The solution to a certain problem, for example route planning, changes considerably

depending on such factors: It is important whether it is daytime or nighttime, whether it

is raining or not, whether today is a holiday or not, whether the user is able to speak the

language spoken at the current location, of what composition the group is, what devices

are used, what the current location is, and many more.

An apt examination of context and user modelling is not within the scope of this work.

Many researchers are working in this broad and complex field. To name but a few

different issues, for example Aroyo, Denaux, Dimitrova, and Pye [5] are working on

ontology-based user knowledge acquisition. Agarwal, Huang, and Dimitrova [2] deal

with individual ontologies for personalisation. There are also several publications avail-

able within the REWERSE Network of Excellence, e.g. by Henze [74, 75, 73], by Bal-

doni, Baroglio, Martelli, Patti, and Torasso [9], and by Abela and Montebello [1].

2.9. Summary

This chapter introduced the basic concepts of the underlying domain of geospatial infor-

mation processing. As laid out in the next two chapters, these are reflected by the basic

types and functions of MPLL. In this chapter, an introductory example established the

most important concepts, namely landmarks and qualitative representations of direction

and distance. Especially the concept of landmarks was discussed in detail, as one of the

key concepts, along with others, such as reference systems and fuzziness. Suitable ba-

sic data types and basic spatial relations have shown the fundamental motivation for the

design of MPLL. The next chapter contains an overview of the system architecture and

describes a number of modules which provide functionality around its central component

MPLL.

81

2. Basic Concepts

82

3. System Architecture

3.1. Overview . 83

3.2. Modules . 84

3.3. Related Projects . 87

3.4. Summary . 89

This chapter provides a comprehensive description of the underlying system architec-

ture constituting the environment in which MPLL is meant to be used. An overview in

the next section is followed by detailed descriptions of the different modules and their

application.

3.1. Overview

Spatial notions are so diverse that it is impossible to hard-code even the most important

ones in a knowledge representation system. An alternative, therefore, is to develop a

spatial specification language. MPLL is designed for this purpose. It facilitates the

definition of application specific spatial notions in a symbolic way, based on a number

of predefined basic types, algorithms and functions.

MPLL is a specification language for spatial notions with a concrete operational seman-

tics. It is not, however, a general purpose programming language. The parser, compiler,

and the abstract machine are not standalone systems. They must be embedded into a

host system which provides the data structures and algorithms (e.g. for configurations,

coordinate systems, graphs), and which serves as the interface to an application.

As shown in Fig. 3.1, MPLL is a central component in the overall system architecture,

which serves several purposes. It provides a specification language for spatial notions,

along with a number of basic functions and operations. Applications can connect to

MPLL in order to make use of the language and processing services. In order to fulfil the

processing tasks, MPLL employs internally implemented methods, as well as external

services, which are linked to MPLL as independent modules (denoted by the square

boxes above MPLL in Fig. 3.1). The TransRoute Service, for example, provides routing

services to MPLL, but can also access MPLL for processing of spatial information as

it can be accessed also directly by (web) applications. MPLL makes use of the routing

service in the module, TransRoute can use the processing capabilities of MPLL in order

to annotate route descriptions. Similarly, other modules provide a range of services to the

83

3. System Architecture

MPLL

L−DSMS
XML . . .

. . .

(Web) Applications

Trans−

Route
OTN

TIS

TTI /

Net

EFGTReference

Systems
.

. . .

Figure 3.1.: Overview of the MPLL System Architecture

central component. A number of data sources (e.g. data bases, data streams, documents),

provide information to the processing components.

Once connected to MPLL, task specific libraries can be loaded by an application.

Certain spatial relations allow for a broad range of interpretation. To ensure that the

appropriate interpretation is used (depending, for example, on the task, the context, en-

vironmental factors, or specific user preferences), different libraries can be accessed and

functions can be (re)defined. First and foremost, the MPLL Standard Library (see sec-

tion 4.6) should be loaded, since it contains a huge number of type constructors, function

definitions, and constants. Additional libraries offer different functionality, or simply

serve to redefine some functions. Furthermore, the data sources required for the task can

be accessed and spatial entities can be introduced to start processing.

3.2. Modules

A broad and complex field such as geospatial information processing calls for modu-

larisation of specific mechanisms and data structures. A monolithic approach would

integrate too many heterogeneous elements and therefore interfere with a clean system

architecture. Depending on the specific application, the combination of different mod-

ules, i.e. algorithms and data structures, must be possible.

The subtasks in one application, for example, could require route planning, as well as ac-Specific Re-

quirements cess to an ontology pertaining to the application’s specific requirements. The respective

modules should provide services for the different subtasks.

Another application might involve transformation of data of different coordinate sys-

tems. Some aspects could be depending on free space navigation (as opposed to network

84

3.2. Modules

routing) and spatial relations. Generally, a huge number of different combinations could

make sense.

The specific requirements of these individual modules is so high, that there is no

possibility to specify constructs and mechanisms within MPLL which provide the exact

same service, at least not in an equally efficient manner. Examples for this issue are

provided in the following descriptions.

This section describes some basic modules, which are most likely applicable to a wide

range of tasks in spatial information processing.

3.2.1. Spatial Reference Module

This Module deals with the spatial reference systems and their inherent specificities.

Much like a calendar system anchors temporal constructs in time, a spatial reference

system provides a frame of reference for spatial entities in which spatial processing can

be conducted.

A simple reference system could be the graphics subsystem of a computer: a desktop, Computer

Screendisplayed on a screen. A desktop like this has a coordinate system with, say, about

a million (1280 * 1024) basic elements called pixels, which are numbered from left to

right and top to bottom. Managing elements on the screen (e.g. windows, buttons, mouse

pointer) usually involves using screen coordinates, i.e. a tuple of horizontal and vertical

coordinates, for example (517,753). Additionally, there exist some semantics which are

specific to such a screen, or, to be more exact, specific to a desktop. One thing specific

to a desktop and the mouse pointer is, for example, that it is not possible for the mouse

pointer to leave the screen on the left hand side and reappear on the right hand side.

There is no wraparound, neither horizontal, nor vertical. Of course, there are exceptions.

Technically, facilitating such a wraparound would be a trivial issue. However, a need for

this did obviously never arise. Also, nowadays, a system can, for example, include two

screens which are combined to display a large desktop. The single desktop is split into

two sections and, of course, in such a setup it is desirable (and possible) to move the

mouse pointer off one screen, onto the other screen.

Geospatial reference systems are organised in a similar way. Obviously, the earth has The Globe

to be modelled as a sphere and a different coordinate system must be used. However,

locations on a globe can also be identified using a tuple of coordinates. Due to the

spherical shape, it is possible for an entity to move in one direction and never actually

reach an “end” of the reference frame. A mouse pointer on the earth’s surface – for lack

of a better connection to the previous example – could be moved indefinitely into any

direction. There is no concrete boundary to the reference system, as long only movement

on the sphere’s surface is modeled.

Highly specific elements, such as wraparound, are a substantial part of a reference sys-

tem’s logics and are, therefore, usually hard coded within the respective module. From

85

3. System Architecture

MPLL, this module can be accessed via predefined keywords, which select the respective

reference system to be used within a certain application.

3.2.2. Graph Routing Module

Graph data structures and graph processing build an essential foundation of MPLL, es-

pecially for the processing of distal relations using route planning. Incorporating both

the necessary data structures and algorithms into the functional frame of MPLL would

be cumbersome at best, and certainly not very elegant. By providing an interface to the

TransRoute [151] system, which has been developed parallel to MPLL, the necessary

functionality can be integrated into MPLL.

TransRoute offers standard graph modelling mechanisms and a number of different

routing algorithms for modelling transport network based problems. A short introduction

to TransRoute can be found in in this chapter in section 3.3.3, a more detailed description

is available in section 6.3.3, pp. 184.

3.2.3. Traffic Information Module

This module facilitates access to the Local Data Stream Management System (L-DSMS)

which delivers traffic information based on the Traffic Message Channel (TMC), broad-

cast via the Radio Data System (RDS). Further information about RDS and TMC can

be found in section 6.4. A short introduction to L-DSMS can be found in in this chapter

in section 3.3.1, a more detailed description is available in section 6.3.2, pp. 181.

Traffic information plays a significant role in the routing and navigation subtasks

which are used by MPLL (or which make use of MPLL respectively).

3.2.4. OTN Module

This module provides an interface to the Ontology of Transportation Networks (OTN).

OTN [78] provides a comprehensive modelling of transport networks in urban areas.

The ontology includes typical classes, such as different kinds of paths, designated points

of interest, and designated areas, but also public transport, such as busses, trams, or

subways. The purpose of OTN is to provide a usable model of transport networks.

Access to such a model is especially important for routing and navigation tasks, which

are, in turn, used to provide a practical and highly flexible distance metric.

A short introduction to OTN can be found in in this chapter in section 3.3.2, a more

detailed description is available in section 6.3.1, pp. 179.

3.2.5. Topological Reasoning Module

Unfortunately, this module is not available yet. It should be integrated to extend the

reasoning capabilities of MPLL to include topological reasoning, since topological rea-

86

3.3. Related Projects

soning represents an important aspect of qualitative spatial reasoning. Due to the fact

that extensive research has been done in this field, and is still going strong today, suit-

able implementations should be readily available.

3.3. Related Projects

During the course of this work several related projects have been realised under the au-

thor’s supervision. These projects are more or less closely related to the work presented

in this thesis as they can either function as modules which can be integrated into the

MPLL system architecture (e.g. TransRoute) or they aid in processing and/or providing

data to be processed with MPLL. This section gives a short overview of the individ-

ual projects for introductory purposes. A more in-depth description about each of these

projects can be found in section 6.3, pp. 179.

3.3.1. Local Data Stream Management System

In order to have access to real time traffic information, a modular system for receiving,

processing, and filtering data streams has been developed: the Local Data Stream Man-

agement System (L-DSMS) [105]. This system transforms traffic messages received via

FM radio signals into an XML stream for the purpose of annotation1 and subsequent

filtering, as well as for the use in routing algorithms which need to take congestion in-

formation into account while producing travel routes within road networks.

In supplemental project work Michael Buschmann and Markus Krieser [20] focussed on Statistical

Evaluationpersistent storage and statistical evaluation of RDS/TMC data. Storing TMC messages

in a database system facilitates the statistical evaluation, and, subsequently, calculation

of the likelihood of incidents on certain road segments at certain times. On weekdays,

late afternoons, it is, for example, very likely that there is a traffic jam on the northbound

highway A9 near Munich. Information like this is very valuable if the planning phase of

routing and navigation is conducted well in advance of the execution phase.

In another related project work [71], Christian Hänsel developed an interface for the Data

PresentationTMC data provided by L-DSMS to be displayed in the popular Google Earth Client [66].

This work demonstrates the possibilities of integrating highly dynamic geospatial data

with the static data provided by Google Earth, using the Keyhole Mark-Up Language

(KML) [93].

Each of these projects is discussed in more detail in section 6.3.2, pp. 181.

1The binary data stream contains only codes about locations and events, which have to be transformed into

(among other information) human readable real names of locations and descriptions of events.

87

3. System Architecture

3.3.2. Ontology of Transportation Networks

Another project involved the development of the Ontology of Transportation Networks

(OTN). OTN [106] aims at providing yet another source of specially tailored data for

routing applications. By providing the data in form of instances of an ontology, the data

can be handled in a more intuitive way and the semantic information can be used by

the routing applications in order to produce more suitable routes. Closely related work

in progress concerns a comprehensive user and context model which is needed for the

routing applications in order to produce personalised and optimised results.

As a means of producing maps that can easily be displayed in Web browsers and to

facilitate interactive features, an ontology based system for map generation has been

developed [104] in close relation to OTN. The system offers not only static map dis-

play, but also means of displaying dynamic map elements, such as weather or traffic

information, or information about public transport.

For a more detailed description of OTN see section 6.3.1, pp. 179.

3.3.3. TransRoute

TransRoute is an object-oriented framework for routing applications which is used to

model various real-world transport networks (e.g. street networks, public transport, build-

ings) as hierarchical graph structures. Its basic functionality is to compute shortest paths,

conduct nearest neighbour searches, and provide other, primarily graph-related, services.

Hierarchical graph structures are a key element in providing a data model which al-

lows for true multimodal planning. TransRoute provides the mechanisms required for

basically any human locomotion related processing, from single buildings and com-

plexes consisting of multiple buildings to regional and international networks of trains

or airlines.

Section 6.3.3, pp. 184, contains a more comprehensive discussion of the basic features

of TransRoute.

3.3.4. Indoor Positioning and Navigation

In a collaborative effort, Andreas Heindel [72] and Thomas Rickinger [139] each devel-

oped part of a prototypical system for indoor positioning and navigation.

Rickinger worked on an indoor positioning system using client based Wireless LocalFinger-

printing Area Network (WLAN)2 fingerprinting. Such a system determines a position in space

by comparing the radio signals received from a number of WLAN access points with

a previously recorded signal pattern of a number of positions within a building. This

technique does not operate continuously, but in a discrete manner, so that the current

2IEEE 802.11(a/b/g), the Wi-Fi standard, denotes a set of Wireless LAN/WLAN standards developed by

working group 11 of the Institute of Electrical and Electronics Engineers (IEEE) LAN/MAN Standards Commit-

tee (IEEE 802).

88

3.4. Summary

position is always one of several predefined positions. This, however, can also be an

advantage, since indoor scenarios can operate much better on symbolic positions (i.e. “in

the entrance hall” or “in room Z 1.03”) than on numeric coordinates. Providing an

interface using the NMEA protocol, which is widely used by GPS equipment, the system

can be seamlessly integrated with outdoor positioning systems.

The system developed by Heindel (based on previous work by Doreen Mizzi [111]) uses Indoor

NavigationRickinger’s positioning system for indoor navigation. Once the starting position has been

determined and the destination has been specified, a path planner provides a path through

the network of corridors, rooms, stairways, lifts, etc. The output of the route is twofold.

While Mizzi provided a natural language text output, Heindel worked on an additional

graphical display of the navigation instructions. Combining these two techniques, a

very detailed and unambiguous route description can be achieved. Furthermore, Heindel

extended the system to operate on several floors. The prototype developed by Mizzi was

limited to a single floor.

3.3.5. PlanML

A generic language for path or plan descriptions is the focus of the work of Matthias

Schmeisser [145]. The language PlanML, a markup language for expressing planning

results, is currently under development.

Generally, a plan consists of a number of actions, which have to be performed in a

certain sequence at certain locations. PlanML aims for providing a generic means for

expressing such planning results. One main feature of PlanML is a hierarchical structure,

which facilitates flexible and transparent handling of very detailed descriptions. This

means, a plan can provide a very detailed description, but this fact does not have to

be revealed if the user does not request it. A typical plan might lead the user through

familiar as well as unfamiliar territory. Albeit the complete plan is available in a certain

(high) level of detail, the user might want to skip the details in familiar surroundings

(e.g. the way from his/her home to the airport – which has been travelled many times),

but rely on, and request, higher levels of detail in unfamiliar ones (e.g. the way from a

foreign airport to a hotel in a city he/she has never been to).

3.4. Summary

MPLL aims for providing several services in order to facilitate spatial information pro-

cessing for a number of applications and scenarios. Basic features, i.e. types, functions

and constants, are included in MPLL. The MPLL Standard Library contains many com-

posite functions defined in MPLL syntax, for example overloaded versions of existing

functions and constructors, as well as predefined constants. Additional functionality is

separated into different modules, which can be accessed locally or as external (web) ser-

89

3. System Architecture

vices. Depending on the specific task, only the required functionality and modules are

accessed. Error management must be handled by the host application.

This architecture facilitates the use of different processing and reasoning techniques.

Because MPLL offers means to specify qualitative as well as quantitative data, the lan-

guage serves to bridge the gap between the two heterogeneous concepts. Subsequently,

the concepts and methods best suited to handle a specific task are made available using

standardised language constructs and interfaces.

If some aspect of spatial information processing is not covered by the system – which

is very likely – the modular architecture facilitates easy extension, either in form of

MPLL constructs, or in form of additional modules providing specific services. Ex-

tending and/or modifying the hard coded parts of the implementation of MPLL is also

possible.

90

4. MPLL – Multi-Paradigm Location Language

4.1. From GeTS to MPLL . 91

4.2. The Language MPLL . 97

4.3. Language Constructs . 100

4.4. Basic Types . 107

4.5. Basic Functions . 141

4.6. The MPLL Standard Library – Types 149

4.7. The MPLL Standard Library – Functions 160

4.8. Summary . 170

A spatial specification language should facilitate the definition of application specific

spatial notions in a symbolic way. It should also allow to compile these specifications

into executable code. Furthermore, it needs to be expressive enough to define spatial

notions in an easy and intuitive way, and it needs to have the relevant data structures and

algorithms built in.

The language MPLL uses the time-independent parts of the GeTS [124] as a kernel. The Kernel

MPLL extends the kernel of GeTS with location specific concepts. The built-in data

structures of GeTS are various numeric types, one-dimensional fuzzy intervals over real

numbers, labelled partitionings for modelling periodic temporal notions, calendar sys-

tems and durations. The numeric types and the one-dimensional fuzzy intervals are also

relevant for MPLL. All other data types are not needed. MPLL is a typed functional

language with the usual control constructs, local variable bindings, but also assignments

and a few other imperative constructs.

The following section deals with the transition from GeTS to MPLL and the inherent

commonalities and differences. Then, the language is introduced and design decisions

are discussed, followed by an in-depth look at the generic language constructs. The

subsequent four sections (sections 4.4 through 4.7) contain the complete MPLL speci-

fication, including basic types and functions, as well as the MPLL standard library. A

short summary concludes this chapter.

4.1. From GeTS to MPLL

From a modelling perspective, the domains of time and space show a number of analo-

gies as well as differences. These have to be taken into account since this work presents

91

4. MPLL – Multi-Paradigm Location Language

the spatial specification language MPLL which in its foundation is based on parts of the

temporal specification language GeTS. The implementation frame has basically beenTime and

Space stripped from any structures which are only relevant for the temporal domain. However,

some structures, for example fuzzy intervals and some basic types, are relevant for both

domains and therefore remain.

Building MPLL on the fundamentals of GeTS shows some distinct advantages:

• Reusing generic components of GeTS saves time by reducing redundant work

which is not domain specific.

• Generic components are not duplicated, resulting in less code to be maintained

and a decreased possibility for errors.

• Common subsets of the two languages and identical development environments

help in a possible merge of the two languages at a later time to possibly produce a

spatio-temporal language.

• A common and compatible syntax facilitates easy use of both systems.

4.1.1. Granularities

In GeTS [124], the modelling of time is partly based on the assumption that the sys-Time

Intervals tem should not primarily handle time points, but time intervals of different granular-

ity. Therefore, time is discretised in different types of granules, for example seconds,

days, weeks or months. The granularities can be flexibly defined (e.g. ”my work week”)

and can be used in various relations (e.g. ”the first holiday during my work week after

Easter”). The main reason for not using time points explicitly is the fact that humans

tend to define points in time using a granule that is sufficiently exact for the specific pur-

pose (days, minutes, seconds). An inifinitely small granule is generally of very limited

use, i.e. there exists no such thing as a single point in time which has no extent.

Being as continuous in nature as time, space can also be discretised quantitatively, forPoints in

Space example by means of a coordinate system. In technical terms, it is very easy to specify

space by quantitative means like coordinates. Like with time, humans do not really use

points in space which have no extent. They tend to use objects which have a certain

extent (regions, volumes). However, point entities, i.e. infinitely small points in space

which mark a specififed position, are used to determine the position of said objects.

This is usually done by specifying an object-specific reference point and its position in

space [132, 112, 108]. All these entities are then represented by points, lines, polygons,

and/or volumes. Therefore, the two languages will show some similarities regarding

their basic constructs.

92

4.1. From GeTS to MPLL

4.1.2. Basic Types

Two groups of basic types are specified in GeTS: data structure types and enumeration GeTS

Basic Typestypes. The former represent built-in data structures, the latter are used to operate specific

functionality of some algorithms.

Table 4.2 on page 111 shows the predefined enumeration types which are provided by

MPLL. These types are used to operate some of the algorithms because their individual

meaning depends on the meaning of the built-in function where they occur as parameters.

Basic types in MPLL include some of the types provided by GeTS. Obviously for exam- Commo-

nalitiesple integers, floats, and strings can be used for a variety of purposes and are not bound

to any application domain – spatial, temporal or any other. Apart from these types there

are some which are only time-specific (e.g. Partitioning or DateFormat). The

type (fuzzy) Interval is somewhat significant because of its high specificity on one

hand and its relevance for both domains on the other. In addition to their application in

the temporal domain, fuzzy intervals can be used, for example, in connection with distal

information (sometimes even expressed by temporal means, i.e. travel times, but also in

a purely metrical sense) or with angular expressions such as “in front of”.

The spatial domain requires a number of distinct basic types. The classic basic entities MPLL

Basic Typesfor spatial abstraction, which are also used in MPLL, are points, lines and polygons.

Spatial abstraction begins with positions of entities, for example positions of the user,

points of interest, landmarks and many other objects which require to be put in spatial

relation. Points in space are the classic measure to mark these positions. The position

(and orientation) of more complex objects can be achieved by specifying a reference

point and an orientation.

Orientation, usually a single angular value, is what completes a point to become a confi-

guration. Configuration space is three- or four-dimensional space, in which one dimen-

sion is specified by an object’s orientation. This is a common model, for example, for

robot navigation [96] with (non-) holonomic robots and vehicles [103].

Linear features have a number of real life counterparts: streets, railway lines, borders,

rivers, etc. Linear abstractions are built using lists of points, possibly supported by

interpolation points to more closely model the shape of linear features in contrast to

plain topology.

Finally, regions are an essential form of spatial features, also having many real life coun-

terparts ranging from small scale (rooms, buildings, cadastral data, etc.) to large scale

(districts, regions, states, countries, and so forth) including many things in-between.

Regions are represented by polygons which are modelled similar to lines. In addition,

polygons have to be normalised, i.e. always define a region in counter-clockwise manner

(without intersections), and have to be closed.

A more detailed discussion of these types can be found in the following section.

93

4. MPLL – Multi-Paradigm Location Language

4.1.3. Geospatial Primitives in MPLL

The most basic way humans reason about space is two-dimensional [36]. Maps, by

their very existence, are two-dimensional representations of space and have been used

effectively for centuries. In the cases where two dimensions were not sufficient, two-

dimensional maps could be annotated using different techniques to incorporate a third

dimension, although this was only necessary in special cases. For most cases, annotation

was a sufficient means to model a third dimension (e.g. depth of the water, elevation of

the ground). The idea of 2.5-dimensional representations is mostly found in the domain

of architecture. Some applications do not require full 3D modelling, but can operate on

several overlapping layers of 2D data, such as floor plans. The discretisation of the third

dimension into separate floors provides the underlying cognitive model.

Each of the three axes of space corresponds to an axis isomorphic to the real numbersDiscrete

Model of

Space

R, therefore we define space as R
3. Although space is continuous, coordinate systems

measure space in discrete units, for example in degrees, minutes, and seconds, or as

(finite) decimal fractions. Scale notwithstanding, a discrete model of space is sufficient

for most applications of spatial information, especially in the geospatial domain. In

this context we mean by “geospatial” that we handle the same information as humans

do in their everyday dealings, which is anchored in a geographical frame of reference.

This domain is neither extremely precise, due to the qualitative nature of human spatial

reasoning, nor do we operate on an extremely broad scale (we deal with kilometres,

metres or millimetres, not nanometres or parsecs). In any case, we deal with discrete

models of space which can easily be represented as generic numerical values. The type

of the respective coordinate system is not of great relevance for the underlying structures,

since most coordinate systems can be translated into others by simple transformation.

Due to the geospatial frame, we default to WGS84 coordinates, if not explicitely stated

otherwise.

Angles are used primarily to model two important factors of spatial cognition: orienta-Angles

tion and bearing. As laid out in section 2.4.2, angular expressions can be used for various

purposes and play asubstantial role in human spatial cognition. The technical realisation

of angular expressions is described in Def. 4.19.

Points are locations in space which have no spatial extent. Although in the real worldPoints

there exist no objects without spatial extent, the use of points in space is an accepted

abstraction for the position of reference points which are in turn associated with a certain

object. The user of a mobile GPS receiver will for example always obtain the discrete

position of the device (i.e. of him-/herself) as a single point in space, which is the very

purchase of application.

Although points are primarily two-dimensional, the point data structure in MPLL can

store a vertical component as the z-axis. For the rare occasions where three-dimensional

information is needed, this component can be used. In general, it can be neglected.

94

4.1. From GeTS to MPLL

Configurations combine a position in space, i.e. a point entity, and an orientation. These Configura-

tionstwo properties are usually sufficient to model mobile entities moving around in a model

of the real world. Optionally, further information can be included, such as shape and

other properties.

Lines and polylines are structures comprised of one or more linear segments, which are Lines and

Polylinesrepresented by pairs of points in space. These segments are always straight lines with

no possibility of interpolation or support for rounded instances. A line is therefore a

single straight connection between two points in space, and a polyline with n segments

is an object consisting of n straight (and not necessarily co-directional) lines, whereas it

consists of n + 1 coordinate points – one initial pair of coordinates and one additional

point for each segment after the first one. If a curved structure is to be represented, the

number of segments can be increased to simulate more complex forms. However, this

approximation is sufficient most of the time.

Polygons are very similar to polylines. The only difference is that they are not open, Polygons

i.e. the last and first point is identical, no two line segments do intersect, and they are

always normalised in the sense of computational geometry [110, 92, 14, 39].

Circular Intervals are a special form of intervals, which only cover a certain closed in- Circular

Intervalsterval. An example for such an interval is an orientation-dependent fuzzy value, which

is defined in a specific interval, e.g. [0,2π[. Cardinal directions are preferably mod-

elled using circular intervals in order to be able to represent qualitative notions such as

“approximately north”.

4.1.4. Reference Systems

A reference system in the temporal domain is usually called calendar. In the CTTN sys- Calendars

tem [121], of which GeTS is a part, a calendar is a set of partitionings, such as minutes,

seconds, months and years. These partitionings, some extra data and algorithms, and

calendric calculations [42] are used to model a calendar, including some “inconvenient”

features, such as leap seconds or daylight saving time schemes. Due to the complexity,

calendars and their specification are not included in GeTS, but instead as one of sev-

eral modules within the CTTN system. These issues have been discussed in more detail

by Hans Jürgen Ohlbach [116, 117, 120, 121, 125] and Hans Jürgen Ohlbach and Dov

Gabbay [127] respectively.

Spatial reference systems are also commonly referred to as coordinate systems since Coordinate

Systemsfor example the position of a point P in Euclidean space R
n is given using an n-tuple

P = (r1, . . . ,rn) of real numbers, the coordinates of P. In Euclidean geometry, these

coordinates are also called cartesian coordinates, in respect to the French mathematician

and philosopher René Descartes, who, among other things, worked to merge algebra and

Euclidean geometry.

95

4. MPLL – Multi-Paradigm Location Language

A Cartesian coordinate system is used to uniquely determine each point within a plane

by two numbers, called the x-coordinate and the y-coordinate of the point. To define the

coordinates, two perpendicular directed lines (the x-axis or abscissa and the y-axis or

ordinate), are specified, as well as the unit length, which is marked off on the two axes.

Cartesian coordinate systems are also used in space (where three coordinates are used)

and in higher dimensions.

In the scope of this work, there are several factors pertaining to the use of coordi-

nate systems which have to be handled within the module providing the reference sys-

tems logics (as opposed to handling these within the language MPLL). An introductory

description is given in the following paragraphs, technical details can be found in sec-

tion 4.4.8.

The phenomenon of wraparound exists in several variants and perfectly serves to illus-

trate the complexity of reference system features. A planar projection of the globe in its

common form shows two very different kinds of wraparound which have to be handled

accordingly.

If an aeroplane were to move parallel to the equator, it would sooner or later reach “theHorizontal

Wraparound end” of the map and “reappear” on the other side, since the vertical edges of the map

designate identical locations in reality. There exists a horizontal wraparound in the

direction of the x-axis of the map, which is only influenced by its arbitrarily defined

anchor on the x-axis. Therefore, the map can be panned along the x-axis to horizontally

centre it on some specific part of the globe. This does not resolve the wraparound,

although it shifts its position.

Likewise, there exists a vertical wraparound, which has completely different character-Vertical

Wraparound istics. In fact, the horizontal edges of the planar map represent not linear structures, but

two points on the globe, which are not identical, as in the case of horizontal wraparound:

these are the north and south poles of the globe. Thus, an aeroplane moving along per-

pendicularly to the equator will, at some point along the journey, end up at one of the

poles and will not reappear on the opposite edge of the map, but on the same edge at a

different longitude.

These forms of wraparound are just two examples pertaining to geospatial scenarios.

Other scenarios might feature other types of wraparound, or no wraparound at all (for

example desktops, i.e. single screen computer systems).

Should the aforementioned aeroplane move over the globe at an angle not perpendicularProjection

and

Geometry

or parallel to the equator, it would not be able to ever reach either pole. It might not even

come close to the polar regions due to the geometry of the globe, i.e. its spherical shape.

A straight journey – from the point of view of the aircraft – would show up on the planar

projection as a curved line, much like the ones commonly seen on the charts of airlines

representing their networks, connections, and airports they service.

96

4.2. The Language MPLL

4.2. The Language MPLL

The design of the language MPLL is largely based on its temporal counterpart GeTS.

The following considerations pertaining to MPLL adhere closely to those of Hans Jürgen

Ohlbach regarding GeTS [124]. There are several publications [118,119,122] available,

which give a good general overview of his work on temporal reasoning.

1. The language MPLL is not intended as a general purpose programming language,

although it has many features of a functional programming language. However, it

is a specification language for spatial notions with a concrete operational seman-

tics.

2. The parser, compiler, and, in particular, the underlying MPLL abstract machine

are not standalone systems. They must be embedded into a host system which

provides the data structures and algorithms for configurations, coordinate systems,

graphs, etc., and which serves as the interface to the application. MPLL provides

a corresponding application programming interface (API).

3. The language should be simple, intuitive, and easy to use. It should not be clut-

tered with too many features which are mainly necessary for general purpose pro-

gramming languages.

4. The two previous properties are primary reasons against a solution where MPLL

is only a particular module in a functional language like SML or Haskell. The

host system was developed in C++. Linking a C++ host system to an SML or

Haskell interpreter for MPLL would be more complicated than developing MPLL

in C++ directly. The drawback is that features like sophisticated type inferencing

or general purpose data structures, such as lists or vectors, are not available in the

current version of MPLL. If it turns out that they are useful for some applications,

however, they can still be integrated into MPLL at a later time.

5. Developing MPLL from scratch instead of using an existing functional language

has another advantage. The design of the syntax of the language can be done in a

way which better reflects the semantics of the language constructs. This makes it

easier to understand and use. As an example, the syntax for a configuration con-

structor is just Configuration(expression1, . . . ,expressionn). The freedom

in designing a syntax is, however, limited by the available parser technology, in

this case, flex [162] and bison [55]. Therefore, regarding some of the language

features, a compromise between intuitiveness and technical constraints had to be

accepted.

97

4. MPLL – Multi-Paradigm Location Language

4.2.1. Examples

MPLL is a strongly typed functional language with a few imperative constructs. The

following examples should give a general idea of its structure, which is laid out in detail

in the subsequent sections.

Example 4.1 (Configuration)

The definition

Configuration(ADir,Ax,Ay,true)

specifiex a configuration as follows: a new configuration of type Configuration

is constructed, with the standard properties. ADir is of type Angle and specifies the

orientation of the spatial entity denoted by the configuration. Ax and Ay, both of type

Angle, specify the position of the configuration in planar space.

Example 4.2 (Filter)

The expression

Let C = Configuration(bearing(P3,P4),P4) in

2 Let threshold = 0.8 in

filter(lambda(Point P)(

4 (lambda(Point Q)(

maxDistance(C, Q, close)(Q)) &&

6 (bearing(C, P, front, threshold) ||

bearing(C, P, left, threshold) ||

8 bearing(C, P, back, threshold) ||

bearing(C, P, right, threshold))

10 (P)), landmarks))

filters a list of landmarks (point entities) as follows:

The current reference position, i.e. the position of the user, is set to a particular po-

sition and orientation in planar space (line 1). This particular position is the current

location on a route, which has been given by a routing application. In order to find

suitable landmarks for the annotation of the route (i.e. generating a suitable route de-

scription), the surrounding landmarks are filtered by two properties. First, landmarks

which are not located “close” to the user are discarded (line 5). Then, landmarks which

are not located in one of the given cardinal directions (“front”, “left”, “back”, “right”)

are also discarded (lines 6–9). The threshold value defined in line 2 pertains to the mini-

mum fuzzy equality of the bearings. This function returns a list of landmarks which fulfil

the given requirements.

Example 4.3 (Reference System)

The definition

98

4.2. The Language MPLL

ReferenceSystem(geospherical,−π,
π

4
,π,−π

4
,true,true)

specifies a reference system as follows: A new reference system of type geospherical

is constructed, which has upper left coordinates (−π, π
4) and lower right coordinates

π,− π
4 and vertical and horizontal wraparound.

This means in particular that no x coordinates outside of the interval]−π,π], and

no y coordinates outside of the interval [− π
4 , π

4] are allowed. Furthermore the internal

(hard coded) mechanisms of the reference system type geospherical have to handle

horizontal and vertical wraparound.

The orientation of the reference system defaults to the direction of the positive y axis.

4.2.2. Variable Naming Conventions

The default naming conventions for variables are as follows:

Bools: Denoted by the single capital letter B or a variable name beginning with a cap-

ital B. If a function features more than one Bool, the subsequent capital letters

C, D, etc. can be used in addition – provided there is no conflict with other types’

variable names.

Integers: Denoted by the single capital letter N or a variable name beginning with a

capital N. If a function features more than one Integer, the subsequent capital

letters O, P, etc. can be used in addition – provided there is no conflict with other

types’ variable names.

Floats: Denoted by the single capital letter F or a variable name beginning with a

capital F . If a function features more than one Float, the subsequent capital

letters G, H, etc. can be used in addition – provided there is no conflict with other

types’ variable names.

Angles: Denoted by the single capital letter A or a variable name beginning with a

capital A. If a function features more than one Angle, the subsequent capital

letters B, C, etc. can be used in addition – provided there is no conflict with other

types’ variable names.

Points: Denoted by the single capital letter P or a variable name beginning with a

capital P. If a function features more than one Point, the subsequent capital

letters Q, R, etc. can be used in addition – provided there is no conflict with other

types’ variable names.

Configurations: Denoted by the single capital letter C or a variable name beginning

with a capital C. If a function features more than one Configuration, the

99

4. MPLL – Multi-Paradigm Location Language

subsequent capital letters D, E, etc. can be used in addition – provided there is no

conflict with other types’ variable names.

In deictic settings, the order of variables is always (1) the user’s position (C), (2)

the referent (D), and (3) the relatum (E). In all other settings, the function of

the relatum is fulfilled by (1), there exists no variable (3) and and (2) remains

unchanged.

Lines: Denoted by the single capital letter L or a variable name beginning with a capital

L. If a function features more than one Line, the subsequent capital letters M,

N, etc. can be used in addition – provided there is no conflict with other types’

variable names.

Polygons: Denoted by the single capital letter R (region) or a variable name beginning

with a capital R. If a function features more than one Polygon, the subsequent

capital letters S, T , etc. can be used in addition – provided there is no conflict with

other types’ variable names.

Lists: Denoted by the single capital letter L or a variable name beginning with a capital

L. If a function features more than one List, the subsequent capital letters M,

N, etc. can be used in addition – provided there is no conflict with other types’

variable names. Note that a possible conflict with lines’ variable names must be

avoided.

Intervals: Denoted by the single capital letter I or a variable name beginning with a

capital I. If a function features more than one Interval, the subsequent capital

letters J, K, etc. can be used in addition – provided there is no conflict with other

types’ variable names.

Direction: (Enumeration type) – Denoted by the variable name Dir. If a function fea-

tures more than one direcional expression, then variable names can be varied but

must feature a heading or trailing “Dir”.

4.3. Language Constructs

MPLL has a number of general purpose functional and imperative language components.

Additionally, a number of language constructs are geared to manipulating points, lines,

polygons, etc. As mentioned above, the language is strongly typed, i.e. the type of each

expression is determined by the top level function name together with the types of its

arguments.

MPLL tries to minimise the required number of parentheses in the expressions. Nev-

ertheless, it is usually clearer and easier to understand when additional parentheses are

used. The language has an operational semantics. It is described more or less formally

when the language constructs are introduced.

100

4.3. Language Constructs

Some aspects of the language depend on the context where it is used. For example,

MPLL itself has no exception handling mechanisms. However, exceptions are thrown

and have to be caught by the host programming system.

Definition 4.1 (Function Definitions)

An MPLL function definition has one of the forms

(1) name = expression

(2) name() = expression

(3) name(type1 var1, . . . ,typen varn) = expression

(4) type : name(type1 var1, . . . ,typen varn) = expression

(5) type : name(type1 var1, . . . ,typen varn)

The five versions of function definitions can have a trailer: ‘explanation: any

string’. The explanation is attached to the newly defined function. It can be accessed by

the host system.

Version (1) and (2) are for constant expressions, i.e. the name on the left hand side is

essentially an abbreviation for the expression on the right hand side. Version (3) is the

standard function definition. The type of the function is type1 ∗ . . .∗ typen 7→ T where

T is the type of the expression. Version (4) declares the range type of the function

explicitly. It can be used for recursive function definitions, where the name of the newly

defined function occurs already in the body. In this case, it is necessary to know the range

type of the function before the expression can be fully parsed. The factorial function,

for example, must be defined in this way:

Integer: fac(Integer n) = if (n == 0) then 1else n∗fac(n−1) (4.1)

Finally, version (5) is a forward declaration. It must be used for mutually recursive

functions.

Remark 4.3.1 (Overloading)

Function definitions can be overloaded . They are distinguished by their argument types,

not by the result type. This means, two function definitions

f(Integer n) = ... and

f(Float m) = ...

yield different functions, whereas the second definition in

Integer:f(Integer n) = ... and

Float:f(Integer n) = ...

overwrites the first one, or is rejected. This depends on the global control parameter

MPLL::overwrite.

Definition 4.2 (Literals)

Literals are strings which can be interpreted as constants of a certain type. See Re-

mark 4.4.1 on page 109 for the string representation of literals.

101

4. MPLL – Multi-Paradigm Location Language

4.3.1. Arithmetic Expressions

MPLL supports the same kind of arithmetic expressions as many other programming

languages.

Definition 4.3 (Binary Arithmetic Expressions)

Let N be a number type (i.e. N = Integer or N = Float).

If n and m are valid arithmetic expressions, then the following binary operations are

allowed:
n+m addition

n−m subtraction

n∗m multiplication

n/m division

n % m modulo

max(n,m) maximum

min(n,m) minimum

pow(n,e) exponentiation (ne)

The types are determined according to the following rules:

for the operators ‘+’, ‘-’, ‘*’, ‘/’, max and min:

Integer ∗ Integer 7→ Integer

Float ∗ Integer 7→ Float

Integer ∗ Float 7→ Float

Float ∗ Float 7→ Float

Float values are not allowed for the modulo operator %. Therefore the remaining type

patterns for % are:

Integer ∗ Integer 7→ Integer

The exponentiation operator pow(a,n) is only allowed for Integer exponents n and

for Float or Integer bases a.

Integer ∗ Integer 7→ Integer

Float ∗ Integer 7→ Float.

Flat expressions like a+b+c+d without parentheses are allowed. The operator prece-

dence is −, +, /, ∗, i.e. ∗ binds most. The functions min and max accept more than one

argument.

Definition 4.4 (Unary Arithmetic Expressions)

There are four unary arithmetic operators in MPLL:

−n [N 7→ N] N is any number type

float(b) [Bool 7→ Float]
round(a) [Float 7→ Integer]
round(a,up/down) [Float∗UpDown 7→ Integer]

102

4.3. Language Constructs

For a definition of enumeration types, e.g. UpDown, see section 4.17 or table 4.2 respec-

tively.

−n negates the number n.

n can be an expression of type N = Integer or N = Float.

float(b) turns a boolean value b into a floating point number:

float(false) = 0.0 and float(true) = 1.0.

round(a) rounds a Float value a to the nearest integer. 1.5 is rounded to 1, 1.51 is

rounded to 2. -1.5 is rounded to -1, -1.51 is rounded to -2.

round(a,up) rounds the Float value a up, and

round(a,down) rounds the Float value a down.

Definition 4.5 (Trigonometry)

Let N be a number type (i.e. N = Integer or N = Float).

If n and m are valid arithmetic expressions and 0 ≤ m ≤ 1, then the following trigono-

metric operations are allowed:

operator argument result

sin(n) sine radian [−1,1]
cos(n) cosine radian [−1,1]

asin(m) inverse sine [−1,1] [− π
2 , π

2]
acos(m) inverse cosine [−1,1] [0,π]
sind(n) sine degree [−1,1]
cosd(n) cosine degree [−1,1]

asind(m) inverse sine [−1,1] [−180◦,180◦]
acosd(m) inverse cosine [−1,1] [0◦,360◦]

The types for these operators are determined according to the following rules (with the

restriction of the ranges above):

Integer 7→ Float

Float 7→ Float

Definition 4.6 (Arithmetic Comparisons)

If n and m are arithmetic expressions of type Integer or Float then

(n < m)
(n <= m)
(n > m)
(n >= m)

are the usual arithmetic comparison operators. The result is one of the boolean values

true or false. These operators compare different types, i.e. (3.9 <= 4) yields true,

as expected.

The equality and inequality predicates compare numbers in the expected way, but also

every other data type.

103

4. MPLL – Multi-Paradigm Location Language

Definition 4.7 (Equality and Inequality)

If n is an expression of type T and m is an expression of type Q then

n == m and n ! = m

are expressions of type Bool.

n == m yields true iff

1. T and Q are one of the number types Integer or Float, and the numbers are

equal, i.e. 4.0 == 4 yields true.

2. T = Q, both are enumeration types, and n and m are the same strings. This means

in particular: if T = Hull, Q = Region, n =core and m =core then n == m

yields false (because T 6= Q).

3. T = Q = Interval and n and m are the same intervals (i.e. the same polygons).

4. T = Q = Partitioning and n and m are pointer-equal partitionings

5. T = Q = Duration and n and m are the same durations.

n ! = m yields true iff n == m yields false.

4.3.2. Boolean Expressions

MPLL has the standard Boolean connectives: negation (-), and (‘and’ or ‘&&’), or (‘or’

or ‘||’) and exclusive or (‘xor’ or ‘ˆ’).

Definition 4.8 (Boolean Expressions)

If a and b are Boolean expressions then

−a [Bool 7→ Bool]
a and b [Bool∗Bool 7→ Bool]
a or b [Bool∗Bool 7→ Bool]
a xor b [Bool∗Bool 7→ Bool]

are Boolean expressions with the corresponding meaning.

Flat Boolean expressions without parentheses are also allowed. The operator precedence

is xor, or, and, i.e. and binds most.

4.3.3. Control Constructs

MPLL features the common ‘if-then-else’ construct. In addition, there is a case con-

struct to avoid the need for a nested application of if-then-else. A ‘while’ loop is also

available. Since MPLL is a functional language, the while construct needs a return

value. Therefore, in addition to the while loop body, it has a separate return expres-

sion. In the body, however, only imperative constructs (with return type Void) are

allowed.

104

4.3. Language Constructs

Definition 4.9 (if-then-else)

If c is an expression of type Bool and a and b are expressions of the same type T then

if c then a else b

is an expression of type T .

Therefore, the type of the if construct is in general Bool∗T ∗T 7→ T .

There is one exception: If a is of type Float, and b of type Integer, or vice versa,

then the integer is cast to Float. The type of if is in this case:

Bool∗Float∗Integer 7→ Float or Bool∗Integer∗Float 7→ Float.

Example: ‘if true then 3 else 4.0’ yields 3.0 as a Float number.

The definition of the factorial function (4.1) is a typical example for the use of if-then-

else.

Definition 4.10 (case)

If C1, . . . ,Cn are Boolean expressions and E1, . . .En and D are expressions of the same

type T then

caseC1 : E1, ...,Cn : En else D

is an expression of type T .

The operational semantics of this case construct is: the conditions C1, . . . ,Cn are evalu-

ated in this sequence. If Ci is the first condition which yields true, then Ei is evaluated

and its result is returned as the result of case. If all Ci evaluate to false, then the

result of D is returned.

Exceptions for the requirement that E1, . . .En,D are expressions of the same type T

are: if T = Float then some of the E1, . . .En and D may have type Integer. These

integers are then automatically cast to Float.

Definition 4.11 (while)

Let C be an expression of type Bool, E1, . . . ,En expressions of type Void and ‘result’

an expression of type T then

whileC {E1, ...,En} result

is an expression of type T .

The operational semantics of this while construct is: as long as the evaluation of C

yields true, evaluate the expressions E1, . . . ,En in this sequence. As soon as C yields

false, evaluate result and return this as value of while.

An iterative definition of the factorial function is a typical example where the while

construct is used.
factorial(Integer n) =

Let f = 1 in while(n > 0){ f := f ∗n,n := n−1} f

This example also illustrates the binding construct Let and the assignment operation.

105

4. MPLL – Multi-Paradigm Location Language

Definition 4.12 (Let)

The construct
Let variable = expression1 in expression2

of type T

evaluates the expression1, binds the result to the variable and then evaluates expression2

under this binding.

T is the type of expression2.

Definition 4.13 (Assignment)

If x is a variable of type T and E is an expression of type T , then x := E is an expression

of type Void.

This is the usual assignment operation: the result of the evaluation of E is assigned to x.

Exceptions for the requirement that x and E have the same type are: if x has type Float

then E may have type Integer. The value is automatically cast to Float.

Note that the assignment operation returns no value. It can only occur in the body of the

while statement.

4.3.4. Functional Arguments

A function call in MPLL is an expression of the form name(argument1, . . . ,argumentn)
where ‘name’ is either the name of a built-in function, or the name of a previously defined

function (or a function with forward declaration), or a variable with suitable functional

type.

Since variables can have functional types, and MPLL allows overloading of function

definitions, it needs a notation for functional arguments. A functional argument can

either be just a variable with appropriate functional type, or a function name with argu-

ment type specifications, or a lambda expression. A function name with argument type

specifications is necessary to choose among different overloaded functions.

Definition 4.14 (Functional Arguments)

A functional argument in MPLL is either

1. a variable with the appropriate functional type,

2. an expression name[type1 ∗ . . .∗ typen] of a previously defined function with that

name and with argument types type1 ∗ . . .∗ typen, or

3. a lambda expression:

lambda(type1 variable1, . . . ,typen variablen) expression.

If T is the type of ‘expression’ then type1 ∗ . . . ∗ typen 7→ T is the type of the

lambda-expression.

‘expression’ can contain variables which are lexically bound outside the param-

eter list of lambda.

106

4.4. Basic Types

4.3.5. Compound Types

Definition 4.15 (Compound Type)

A compound type in MPLL is an expression T1 ∗ . . . ∗ Tn 7→ T where T and the Ti are

either basic types or compound types.

A type expression is either a basic type or a compound type expression.

4.4. Basic Types

MPLL includes a number of generic basic types, which can also be found in other lan-

guages. These generic types are extended by basic spatial types, which are specially

tailored for the spatial purpose of MPLL. All basic types can be combined to functional

types T1 ∗ . . .∗Tn 7→ T . They are represented by certain data structures and keywords.

4.4.1. Basic Spatial Types

There are two groups of basic types, the data structure types and the enumeration types.

The data structure types represent built-in data structures.

Definition 4.16 (Data Structure Types)

A list of data structure types is given in table 4.1.

type description

Integer standard integers

Float standard floating point numbers

String strings

Angle floating point numbers representing angles

Point points (two-dimensional)

Configuration configurations in space (Point, Angle)

Line lines and polylines

Polygon polygons

List lists

Interval fuzzy intervals

CircularInterval fuzzy intervals

ReferenceSystem reference system

Route route (from graph/network routing)

Table 4.1.: Definition of Data Structure Types

Integers and Floats – The data structure types abstract away from the concrete im-

plementation. The Integer type, for example, corresponds to a 32 bit ’signed

integer’ data, the Float type corresponds to a 32 bit ‘float’ data type.

107

4. MPLL – Multi-Paradigm Location Language

Strings are sequences of 8-bit characters1 .

Angles (Def. 4.19) are internally stored as a Float containing a grad value. Addi-

tionally, the Angle data type holds some properties which define the range of

possible angular values.

Points (Def. 4.21) consist of integer coordinates (x,y). The coordinates x and y are

Integer values which can be adapted to the respective coordinate system by

a multiplier to accomodate for decimal fractions. For example for the WGS84

coordinate system this means that all coordinates are multiplied by the factor 106

in order to express, for example, the coordinate value 11.73452◦ as the integer

11734520. This multiplication is not mandatory though.

Configurations (Def. 4.23) serve the purpose of defining the position of an object

and its orientation in (planar) space. This is achieved by combining a Point

and an Angle data type in the Configuration data type. Configurations can

optionally hold additional properties, although this would require changing the

implementation.

Lines (Def. 4.25) are realised as (open) polygons with integer coordinates. A line is

a sequence of pairs L = (x0,y0), . . . ,(xn,yn), with n > 0 (there has to be at least

one segment). The xi and yi are Integer coordinates with the same properties

as for point and polygon coordinates.

Polygons (Def. 4.27) are realised as closed normalised polygons with integer coordi-

nates. A polygon is a sequence of pairs P = (x0,y0), . . . ,(xn,yn), with n > 1 and

the final line segment between xn,yn and x0,y0 (there have to be at least three

segments, counter clockwise, no intersections). The xi and yi are Integer coor-

dinates with the same properties as for point and line coordinates.

Lists (Def. 4.30) serve to handle ordered lists of MPLL entities, such as points, con-

figurations, or any other type. They are used, for example, in the representation

of multilines or polygons. Apart from points and configurations, as well as floats

and integers, (which are automatically cast whenever necessary), the list elements

have to be of the same type.

Intervals (Def. 4.35) are realised as polygons with integer coordinates. An interval is

therefore a sequence of pairs I = (x0,y0), . . . ,(xn,yn). The xi are Angle values

and the yi are fuzzy values. Internally, the yi are realised as short integers between

0 and 1000. From the MPLL point of view, however, the yi are Float numbers

between 0 and 1. The interval I is negative infinite if y0 6= 0. I is positive infinite

if yn 6= 0. The internal representation of Interval data, however, is completely

1This may change in future releases to support Unicode.

108

4.4. Basic Types

invisible to the MPLL user. Details about the internal representation and the

algorithms can be found in the REWERSE [164] deliverable A1-D1 [128].

The data structure types are used as types for variables, but they can also be used explic-

itly as constants, so-called literals. To this end, there is a string representation of the data

structure types. These strings are parsed by the MPLL parser and mapped to the internal

representation.

Remark 4.4.1 (String Representation of Data Structure Types)

The data structure types have the following string representation:

Integer: Sequences of digits, optionally preceded by ‘+’ or ‘-’. Examples are 123,

+4, -345. The maximum length of these sequences depends on the internal repre-

sentation of Integer values.

Float: Standard representation of Float or Double values. Examples are -1.5,

3.4e-2, -77e+5. The length of base and exponent depends on the internal repre-

sentation of Float values.

String: Arbitrary sequences of characters enclosed in quotes: ”characters”. The

two characters “\n” are interpreted as the newline command. A quote (”) within

the string must be escaped with a \ character. Therefore, the character sequence

“ab\"cd\"ef” is parsed as the string “ab"cd"ef”.

Angle: Standard representation of angular values, optionally preceded by ‘+’ or ‘-’

and followed by ‘D’, ’G’, or ‘R’, denoting degree, grad2, and radian. Examples:

-1.5D, +45.654D, 3.141528R. The length of these representations depend on the

internal representation of Float or Double values.

If an angular value is not preceded by ‘+’ or ‘-’ and not followed by ‘D’, ’G’,

or ‘R’, the sign can be given alternatively by a trailing ‘N’ or ‘E’ (meaning ‘+’)

or a trailing ‘S’ or ‘W’ (meaning ‘-’). This format pertains to geospatial coordi-

nates which adhere to this convention. Also, if coordinates are specified this way,

longitude (direction E–W) is restricted to]− 180◦,180◦] and latitude (direction

N–S) is restricted to [−90◦,90◦]. The input/output of coordinates specified in this

way is always done as degree, i.e. as if the value was specified with a trailing ’D’.

Internally, however, angles are always stored and processed as radian.

Point: Points are pairs of Float or Integer values which are enclosed by the stan-

dard brackets “(” and “)” and separated by a space “ ” character, for example

(45.24 11.37) or (2433 3732).

2The internationally standardised denomination gon has not yet replaced the English grad. However, the unit

identifier g is unambiguous.

109

4. MPLL – Multi-Paradigm Location Language

Configuration: A configuration is a compound of an angle and a point. There-

fore, the standard representation is a collection of the two in the following form:

(Angle, Point), for example (45.24D, (57.23 42.37)). An angle

specified this way is always restricted to the respective interval [−2π,2π[(ra-

dian) or [−360◦,360◦[(degree), or [−400g,400g[(grad).

Line: A line consists of two or more point coordinates which are comma separated,

without additional brackets. Examples are:

(45.23 11.67, 52.32 14.53, 77.23 10.28) or

(2423 3632, 3732 1521, 5323 1521)

Commas may be followed by an additional space “ ” character.

Polygon: A polygon is almost identically defined as a line with the exception that curly

braces are used instead of standard brackets. In addition, polygons are always

closed, i.e. the last coordinate tuple is connected to the first one. Examples are:

{45.43 11.37, 52.42 14.56, 77.23 10.27} or

{4323 6732 1521, 4723 3732 1521, 2523 3732 1821}.

Commas may be followed by an additional space “ ” character.

List: The string representation of a list is a comma separated concatenation of list

elements. The string representation of the elements depends on the type of the

elements.

Interval: Intervals cannot be explicitly referenced within an MPLL function defini-

tion. The only exception is the empty interval, which is represented by []. The

MPLL module, however, provides an interface function which allows one to call

MPLL functions with a string representation of the arguments. This function ac-

cepts non-negative integers as identifiers for the intervals, together with a vector

of pointers to the actual intervals. The integer identifiers are used as indices to

this vector.

A number of enumeration types is predefined in MPLL. They are used to control some of

the algorithms. Their meaning therefore depends on the meaning of the built-in function

where they occur as parameters.

Definition 4.17 (Enumeration Types)

A list of enumeration types is given in table 4.2.

Notice the multiple use of some keywords in table 4.2. For example, the keyword core

occurs in the enumeration types Region and Hull. To determine which type has to be

used, the context has to be evaluated. If the keyword core for example occurs in the

during construct, then it can only be of type Region.

110

4.4. Basic Types

type possible values

Bool true, false

Side left, right

PosNeg positive, negative

UpDown up, down

ForwardBackward forward, backward

InsideOutside inside, outside

CarDir north, northeast, east, southeast,

south, southwest, west, northwest, N,

NNE, NE, ENE, E, ESE, SE, SSE, S, SSW, SW,

WSW, W, WNW, NW, NNW

EgoDir front, left front, left, left back,

back, right back, right, right front

EgoDirD in front of, left of, behind,

right of

Distance very close, close, commensurate,

far, very far

RSType cartesian, geospherical

Region core, kernel, support, maximum

Hull core, kernel, support, maximum,

crisp, monotone, convex

Fuzzify linear, gaussian

SDVersion Kleene, Lukasiewicz, Goedel

Table 4.2.: Definition of Enumeration Types

However, if the context cannot be determined implicitly, for example in comparisons

‘expression == keyword’, one can use the explicit versions Rcore (of type Region) or

Hcore (of type Hull). The same holds for other keywords which are used more than

once.

An unknown string is parsed in the following order:

1. is it an Integer value?

2. is it a Float value?

3. is it an Angle value?

4. is it an (empty) Interval?

5. is it a keyword of one of the enumeration types?

111

4. MPLL – Multi-Paradigm Location Language

If none of these types can be detected, a parse error is generated.

Definition 4.18 (Basic Types)

A Basic Type in MPLL is either a data structure type (Def. 4.16, table 4.1), an enumer-

ation type (Def. 4.17, table 4.2), or the special type Void for expressions which do not

return any values.

Automatic Type Conversion:

Automatic type conversion is done from the type Integer to the type Float. That

means, the type Integer is also acceptable whenever a type Float is required.

4.4.2. Angles

Angles are an important basic data structure for MPLL since they represent an essential

building block for human spatial reasoning, as has been illustrated in sections 2.4.2 and

2.5.

Internally, angles are represented by Double variables containing grad values. If

degree or radian are to be used for input/output, this must specifically be requested.

Negative angles represent left turns, positive angles represent right turns.

Angles are used for different purposes. Geospatial coordinates are usually specified as

angles in the interval]−π,π] (respectively]−180◦,180◦]) for lateral coordinates, and in

the interval [− π
2 , π

2] (respectively [−90◦,90◦]) for longitudinal values (see section 2.3.4).

Here, negative values represent southern or western locations, positive values represent

northern or eastern locations.

In other cases, for example orientation, angles denote the geometric orientation of

an object in the interval [0,2π[(respectively [0◦,360◦[). Note the different sizes and

positions of the intervals.

All these and future applications of angles should, and can, be represented by a single

Angle data type, which includes the necessary mechanisms to deal with the specific

aspects in a transparent way.

Definition 4.19 (Construction)

The default method to construct an angle is to provide a grad value and the respective

minimum and maximum values as Float data types.

Alternative constructors are part of the standard library (see Def. 4.79, pp. 153, in

section 4.6).

(1) Angle(Fangle,Fmin,Fmax) Float∗Float∗Float 7→ Angle

The constructor (1) accepts a negative or positive grad value as a Float or an Integer

value (Fangle) and the minimum and maximum values as Float or Integer values

(Fmin, Fmax). If the angle is manipulated and its value leaves the range]Fmin,Fmax],
it is treated as Fangle%(Fmax−Fmin), i.e. mod(Fangle,(Fmax−Fmin)).

112

4.4. Basic Types

Definition 4.20 (Predicates)

MPLL provides the following predicates to ascertain the properties of an angle A.

(1) inverse(A) Angle 7→ Angle

(2) isNegative(A) Angle 7→ Bool

(3) radian(A) Angle 7→ Float

(4) degree(A) Angle 7→ Float

(5) grad(A) Angle 7→ Float

(6) min(A) Angle 7→ Float

(7) max(A) Angle 7→ Float

(8) modulus(A) Angle 7→ Float

(9) abs(A) Angle 7→ Angle

(1) returns an angle representing the inverse of the angle A. Note that the inverse of

an angle holding a real value is its negative, but the inverse of an angle holding a grad,

degree or radian value is the angle poiting in the opposite direction.

(2) returns true if the angle A contains a negative value.

(3) returns the value of the angle A in radian as a Float.

(4) returns the value of the angle A in degree as a Float.

(5) returns the value of the angle A in grad as a Float.

(6) returns the minimum value of the angle A in radian as a Float. Minimum pertains

to the valid minimum, i.e. the lowest value allowed for this type of angle. This value is

the lower bound for the interval returned by function (5).

(7) returns the maximum value of the angle A in radian as a Float. Maximum pertains

to the valid maximum, i.e. the highest value allowed for this type of angle. This value is

the upper bound for the interval returned by function (5).

(8) returns the modulus of the interval for valid angles of this type as a Float.

(9) returns the absolute value of A as an Angle.

4.4.3. Points

This basic type is an essential part of the Configuration data type. Since some

situations require only this part of configurations, we provide the individual data type

Point.

It is important to clarify why the coordinates are held in the Angle data type, rather

than a regular numerical type, such as Integer or Float. Primarily, this is done this

way, because the processing of spatial information in the application domain of MPLL,

i.e. geospatial scenarios, mostly operates on angular coordinates, such as WGS-84 (as

provided, for example, by GPS receivers; see also section 2.3.4). This is, however, not

113

4. MPLL – Multi-Paradigm Location Language

a restriction, since the Angle data type can also hold real values (see Def. 4.19), and

could easily be extended to hold integer values as well, should the need arise.

Definition 4.21 (Construction)

The default method to construct a Point is to provide two coordinate values as Angle

data types.

Alternative constructors are part of the standard library (see Def. 4.81, pp. 156, in

section 4.6).

(1) Point(Ax,Ay) Angle∗Angle 7→ Point

(1) accepts a tuple of coordinates specified as Angle values.

Definition 4.22 (Predicates)

MPLL provides the following predicates to ascertain the properties of a point P:

(1) xCoordinate(P) Point 7→ Angle

(2) yCoordinate(P) Point 7→ Angle

(1) returns the x coordinate of a point as an Angle.

(2) returns the y coordinate of a point as an Angle.

4.4.4. Configurations

Configurations (see section 2.4.1) in MPLL provide the necessary data structures to hold

point entities and an orientation value in planar space.

Definition 4.23 (Construction)

Configurations are constructed by explicitly specifying the orientation and the x and

y coordinates as Angle values, and by specifying the validity of the orientation as a

Bool value.

Alternative constructors are part of the standard library (see Def. 4.82, pp. 156, in

section 4.6).

(1) Configuration(A,Ax,Ay,Bo)
Angle∗Angle∗Angle∗Bool 7→ Configuration

(1) accepts an orientation and a pair of coordinates specified as Angle values. Addi-

tionally, hasOrientation must be specified as a Bool value. Setting Bo to false

only makes sense if A is not relevant and is not set or set to 0 (which is equivalent).

Definition 4.24 (Predicates)

MPLL provides the following predicates to ascertain the properties of a configuration

C:

114

4.4. Basic Types

(1) hasOrientation(C) Configuration 7→ Bool

(2) orientation(C) Configuration 7→ Angle

(3) point(C) Configuration 7→ Point

(4) xCoordinate(C) Configuration 7→ Float

(5) yCoordinate(C) Configuration 7→ Float

(1) returns whether the configuration C features an orientation. This cannot simply be

represented by a value of 0, since this would render a valid angle. Internally, this is

represented by an additional binary member variable.

(2) returns the orientation of a configuration, i.e. the direction of its intrinsic front (or

zero-point), as an Angle.

(3) returns the x and y coordinate of a configuration in form of a Point.

(4) returns the x coordinate of a configuration as an Integer.

(5) returns the y coordinate of a configuration as an Integer.

4.4.5. Lines

Lines in MPLL hold the necessary data to handle linear entities in planar space.

Definition 4.25 (Construction)

Lines are constructed by specifying a sequence of points, whereas the number of points

must be at least 2. Lines are always stored in normalised form, i.e. all line segments

are specified by a sequence of points. Therefore, all segments are defined in the same

“direction”.

Alternative constructors are part of the standard library (see Def. 4.83, pp. 158, in

section 4.6).

(1) Line(P1,P2, . . . ,Pn)
Point∗Point∗ . . .∗Point 7→ Line

(1) accepts a sequence of n points with n ≥ 2.

Definition 4.26 (Predicates)

MPLL provides the following predicates to ascertain the properties of a line L:

(1) xMin(L) Line 7→ Angle

(2) yMin(L) Line 7→ Angle

(3) xMax(L) Line 7→ Angle

(4) yMax(L) Line 7→ Angle

(5) pointList(L) Line 7→ List

115

4. MPLL – Multi-Paradigm Location Language

(1) returns the minimum value of x coordinates of all points which make up the line.

This is the lower horizontal bound (leftmost point), i.e. the lowest x coordinate of the

bounding box.

(2) returns the minimum value of y coordinates of all points which make up the line. This

is the lower vertical bound (lowest point), i.e. the lowest y coordinate of the bounding

box.

(3) returns the maximum value of x coordinates of all points which make up the line.

This is the upper horizontal bound (rightmost point), i.e. the highest x coordinate of the

bounding box.

(4) returns the maximum value of y coordinates of all points which make up the line. This

is the upper vertical bound (highest point), i.e. the highest y coordinate of the bounding

box.

(5) returns the ordered list of points which make up the line.

4.4.6. Polygons

Polygons in MPLL hold the necessary data to handle region entities in planar space.

Definition 4.27 (Construction)

Polygons are constructed by specifying a sequence of points, whereas the number of

points must be at least 3, and the polygon is, by default, closed (i.e. there exists an

implicit connection between the last and first point in the sequence).

Alternative constructors are part of the standard library (see Def. 4.85, pp. 158, in

section 4.6).

(1) Polygon(P1,P2, . . . ,Pn)
Point∗Point∗ . . .∗Point 7→ Polygon

(1) accepts a sequence of n points with n ≥ 3.

Definition 4.28 (Predicates)

MPLL provides the following predicates to ascertain the properties of a polygon R:

(1) xMin(R) Polygon 7→ Angle

(2) yMin(R) Polygon 7→ Angle

(3) xMax(R) Polygon 7→ Angle

(4) yMax(R) Polygon 7→ Angle

(5) pointList(R) Polygon 7→ List

(1) returns the minimum value of x coordinates of all points which make up the polygon.

This is the lower horizontal bound (leftmost point), i.e. the lowest x coordinate of the

bounding box.

116

4.4. Basic Types

(2) returns the minimum value of y coordinates of all points which make up the poly-

gon. This is the lower vertical bound (lowest point), i.e. the lowest y coordinate of the

bounding box.

(3) returns the maximum value of x coordinates of all points which make up the polygon.

This is the upper horizontal bound (rightmost point), i.e. the highest x coordinate of the

bounding box.

(4) returns the maximum value of y coordinates of all points which make up the poly-

gon. This is the upper vertical bound (highest point), i.e. the highest y coordinate of the

bounding box.

(5) returns the ordered list of points which make up the polygon. The last point in the list

is not identical to the first. Although polygons are always closed, the final connection is

handled implicitely, no redundant data is stored.

Definition 4.29 (Topological Predicates of Polygons)

MPLL provides the following predicates to ascertain topological relations between poly-

gons R and S. These predicates are derived from the Region Connection Calculus (RCC),

respectively the RCC-8 relations.

(1) DC(R,S)
of type

Polygon∗Polygon 7→ Bool

(2) EC(R,S)
of type

Polygon∗Polygon 7→ Bool

(3) PO(R,S)
of type

Polygon∗Polygon 7→ Bool

(4) TPP(R,S)
of type

Polygon∗Polygon 7→ Bool

(5) NTPP(R,S)
of type

Polygon∗Polygon 7→ Bool

(6) TPPinverse(R,S)
of type

Polygon∗Polygon 7→ Bool

(7) NTPPinverse(R,S)
of type

Polygon∗Polygon 7→ Bool

(8) EQ(R,S)
of type

Polygon∗Polygon 7→ Bool

117

4. MPLL – Multi-Paradigm Location Language

The Region Connection Calculus (RCC) and the RCC-8 relations are described in sec-

tion 1.2.3, pp. 17. Currently, MPLL does not feature qualitative reasoning based on the

RCC. However, an interface to an external service or module could facilitate this in the

future.

(1) checks whether the two polygons R and S are disconnected (DC).

(2) checks whether the two polygons R and S are externally connected (EC).

(3) checks whether the two polygons R and S overlap partially (PO).

(4) checks whether the polygon R is a tangential proper part of the polygon S (TPP).

(5) checks whether the polygon R is a non-tangential proper part of the polygon S

(NTPP).

(6) checks whether the polygon S is a tangential proper part of the polygon R (TPP−1).

This is the inverse of predicate (4).

(7) checks whether the polygon S is a non-tangential proper part of the polygon R

(NTPP−1). This is the inverse of predicate (5).

(8) checks whether the two polygons R and S are equal (EQ).

4.4.7. Lists

Lists in MPLL provide the necessary structures to handle lists of types and spatial enti-

ties.

Definition 4.30 (Construction)

Lists can be constructed in two ways. An empty list can be constructed using a valid type

as the single parameter. Lists can also be explicitly constructed, by specifying a number

of (same type) parameters in a comma separated sequence, enclosed in curly braces ({
and }).

(1) emptyList(T)
T 7→ List

(2) {T1, . . . ,Tn}
T∗ . . .∗T 7→ List

(1) constructs an empty list for objects of type T .

(2) constructs a list containing objects T1, . . . ,Tn of type T .

Definition 4.31 (Predicates)

MPLL provides the following predicates to ascertain the properties of a list L:

118

4.4. Basic Types

(1) head(L)
of type

List<T> 7→ T

(2) tail(L)
of type

List<T> 7→ List<T>

(3) length(L)
of type

List<T> 7→ Integer

(4) sublist(L,N,M)
of type

List<T>∗Integer∗Integer 7→ List<T>

(5) prefix(L,N)
of type

List<T>∗Integer 7→ List<T>

(6) suffix(L,N)
of type

List<T>∗Integer 7→ List<T>

(7) append(T,L)
of type

T∗List<T> 7→ List<T>

(8) append(L,L)
of type

List<T>∗List<T> 7→ List<T>

(9) split(L,N)
of type

List<T>∗Integer 7→ List<List<T>>

(10) filter(Condition,L)
of type

(T 7→ Bool)∗List<T> 7→ List<T>

(11) map(Function,L)
of type

(T 7→ S)∗List<T> 7→ List<S>

(1) returns the first element of the list L, it is of type T .

(2) return the list L without the first element, i.e. without the head.

(3) returns the number of elements of the list as an integer.

(4) returns the sublist from at a specific index N to a specific index M.

(5) returns the sublist from the first element of the list L to a specific index N.

119

4. MPLL – Multi-Paradigm Location Language

(6) returns the sublist from a specific index N to the end of the list L.

(7) appends an element of type T as the first element of the list L.

(8) concatenates two lists L and M.

(9) splits a list L at a given position into two lists returning a list containing both lists.

(10) returns a list of all elements of type T in L for which condition(T) holds true.

(11) returns a list {Function(T1), . . . ,Function(Tn)} of type S.

4.4.8. Reference Systems

Reference Systems in MPLL provide the necessary data structures which represent the

frame for spatial modelling. Currently, there are two different types of reference systems

available: cartesian (planar) and geospherical.

Reference systems need to be constructed with several parameters. The origin is al-

ways located implicitly at (0,0), or (0,0,0) respectively. This is important for coordinate

transformation from one reference system to another. Maxima and Minima for x, y, and

optionally z axes, have to be specified. Coordinates outside of these limits are invalid.

The type of the reference system has to be specified as the enumeration type RSType.

This has great influence on all computations, as well as on wraparound. Therefore, all

specific properties of the reference system type have to be backed by the reference sys-

tem module of the implementation. The underlying mechanisms cannot be coded in

MPLL, they have to be hard-coded in the implementation. In addition, the optional ver-

tical and/or horizontal wraparound has to be specified using binary values. Wraparound

is also specific for the reference system type. Its internal mechanisms are also found in

the implementation.

Definition 4.32 (Construction)

There exist two different constructors for reference systems:

(1) ReferenceSystem(cartesian/geospherical,N,N,N,N,B,B)
RSType∗Integer∗Integer∗Integer∗Integer∗Bool∗Bool
7→ ReferenceSystem

(2) ReferenceSystem(cartesian/geospherical,P,P,B,B)
RSType∗Point∗Point∗Bool∗Bool
7→ ReferenceSystem

Note that the RSType defines, for example, how the upper and lower bounds for x and

y coordinates have to be interpreted. In case the reference system is of type geosphe-

rical, this results in the half-open interval]−π,π] for x values and the closed interval

[− π
4 , π

4] for y values. For a cartesian reference system, these intervals are both

closed.

120

4.4. Basic Types

(1) accepts a reference system type RSType, four Float or Integer coordinates

which define minimum x, maximum y, maximum x and minimum y coordinates3 , and

two Bool values which mark vertical and horizontal wraparound.

(2) accepts a reference system type RSType, two Point variables defining upper left

and lower right coordinates, and two Bool values which mark vertical and horizontal

wraparound.

Definition 4.33 (Predicates)

MPLL provides the following predicates to ascertain the properties of a reference system

RS:

(1) isCartesian(RS) ReferenceSystem 7→ Bool

(2) isGeospherical(RS) ReferenceSystem 7→ Bool

(3) isOfType(cartesian/geospherical,RS)
RSType∗ReferenceSystem 7→ Bool

(4) hasVerticalWrap(RS) ReferenceSystem 7→ Bool

(5) hasHorizontalWrap(RS) ReferenceSystem 7→ Bool

(1) returns whether the reference system is of RSType cartesian.

(2) returns whether the reference system is of RSType geospherical.

(3) returns whether the reference system is of the given RSType (cartesian or

geospherical).

(4) returns whether the reference system features vertical wraparound.

(5) returns whether the reference system features horizontal wraparound.

Definition 4.34 (Property Access)

MPLL provides the following functions to access the properties of reference systems C:

(1) xMin(RS) ReferenceSystem 7→ Bool

(2) yMin(RS) ReferenceSystem 7→ Bool

(3) xMax(RS) ReferenceSystem 7→ Bool

(4) yMax(RS) ReferenceSystem 7→ Bool

(5) upperLeft(RS) ReferenceSystem 7→ Point

(6) lowerRight(RS) ReferenceSystem 7→ Point

(1) returns the minimum value of x coordinates which are allowed within the reference

system.

(2) returns the minimum value of y coordinates which are allowed within the reference

system.

3This order is derived from the convention to specify minima and maxima using upper left and lower right

coordinate pairs.

121

4. MPLL – Multi-Paradigm Location Language

(3) returns the maximum value of x coordinates which are allowed within the reference

system.

(4) returns the maximum value of y coordinates which are allowed within the reference

system.

(5) returns the topmost leftmost point of the reference system in form of a Point.

(6) returns the lowest rightmost point of the reference system in form of a Point.

4.4.9. Intervals

There are different types of intervals, for example the ones handling angles (wraparound,

deg or rad) or distances (no wraparound, different distance metrics).

Explicit Construction of Intervals

Fuzzy intervals (type Interval) are one of the built-in data structures in MPLL. It is

possible to create new empty intervals and fill them up with coordinate points. There are

three ways to create new intervals in MPLL:

Definition 4.35 (New Intervals)

1. The expression [] stands for the empty interval.

2. The expression [x1,x2] of type Float∗Float 7→ Interval constructs a new

crisp interval with boundaries x1 and x2.

3. The expression [(x1,y1),(x2,y2)] of type Float ∗Float ∗Float ∗Float 7→
Interval constructs a new fuzzy interval with the given two points.

Definition 4.36 (Extending Intervals)

The function

pushBack(I,value, f uzzyvalue)
of type

Interval∗Float∗Float 7→ Void

adds the point (value, f uzzyvalue) to the end of the interval I. I must be an interval

which was constructed with newInterval() (see Def. 4.35). value must be greater

than the last xi in the interval. value must be a Float value between 0 and 1.

The pushBack(I,value, f uzzyvalue) function can only fill up the interval I from smaller

values to larger values. It throws an error if value is smaller than the highest value in I.

122

4.4. Basic Types

Set Operations on Intervals

For crisp intervals, the standard set operators exist: complement, intersection,

union etc. These are uniquely defined. There is no choice. Unfortunately (or for-

tunately, because it gives you more flexibility), there are no such uniquely defined set

operators for fuzzy intervals. Set operators are essentially transformations of the mem-

bership functions, and there exist a number of different ones.

Like GeTS, MPLL offers the same standard versions of the set operators, param-

eterised set operators of the Hamacher family, and set operators with transformation

functions for the membership function as parameter. These allow one to customise the

set operators in an arbitrary way.

Definition 4.37 (Complement of Intervals)

Let I be an expression of type Interval. The complement operation for intervals

comes in three versions:

(1) complement(I) Interval 7→ Interval

(2) complement(I,λ) Interval∗Float 7→ Interval

(3) complement(I,negation f unction)
Interval∗ (Float 7→ Float) 7→ Interval

Version (1) is the standard complement. Each point (x,y) of the membership function of

I is turned into (x,1−y).

-

6

R
0

1

Standard Complement for a Fuzzy Interval

Version (2) is the lambda-complement. For λ > −1, each point (x,y) of the membership

function of I is turned into (x, 1−y
1+λy

). The ordinary complement is computed for λ ≤−1.

-

6

R
0

1

λ -Complement for λ = 2

6 8

123

4. MPLL – Multi-Paradigm Location Language

Finally, with version (3) it is possible to submit a user defined negation function. For

example, with

lambda complement(Interval I, Float lam)

= complement(I,lambda(Float y) (1-y)/(1+lam*y))

one can define the same lambda-complement with a user defined negation function.

Definition 4.38 (Union of Intervals)

Let I and J be expressions of type Interval. The union operation for intervals comes

in three versions:

(1) union(I,J) Interval∗Interval 7→ Interval

(2) union(I,J,β) Interval∗Interval∗Float 7→ Interval

(3) union(I,J,co norm)
Interval∗Interval∗ (Float∗Float 7→ Float) 7→ Interval

Version (1) is the standard union. Each pair (x,y1) and (x,y2) of points of the member-

ship function of I and J is turned into (x,max(y1 −y2)).

-

6

R
0

1

Standard Union of Fuzzy Sets

I J

I ∪ J

Version (2) is the so-called Hamacher–Union. For β ≥−1, each pair (x,y1) and (x,y2)

of points of the membership function of I and J is turned into (x,
y1+y2+(β−1)y1y2

1+βy1y2
). The

ordinary union is computed for β < −1.

-

6

R
0

1

Hamacher–Union with β = 0.5

124

4.4. Basic Types

Version (3) of the union function facilitates the submission of a user defined co-norm4 .

For example, with

Hamacher Union(Interval I, Interval J, Float beta)

= union(I, J, lambda(Float y1, Float y2)

(y1+y2+((beta - 1)*y1*y2))/(1+beta*y1*y2))

one can define the same Hamacher union with a user defined co-norm.

Definition 4.39 (Intersection of Intervals)

Let I and J be expressions of type Interval, The intersection operation for intervals

comes also in three versions:

(1) intersection(I,J) Interval∗Interval 7→ Interval

(2) intersection(I,J,γ)
Interval∗Interval∗Float 7→ Interval

(3) intersection(I,J,norm))
Interval∗Interval∗ (Float∗Float 7→ Float) 7→ Interval

Version (1) is the standard intersection. Each pair (x,y1) and (x,y2) of points of the

membership function of I and J is turned into (x,min(y1 −y2)).

-

6

R
0

1

Standard Intersection of Fuzzy Sets

i
j

Version (2) is the Hamacher–Intersection. For γ ≥ 0, each pair (x,y1) and (x,y2) of

points of the membership function of I and J is turned into (x, y1y2

γ+(1−γ)(y1+y2−y1y2)
). The

ordinary intersection is computed for γ < 0.

-

6

R
0

1

Hamacher–Intersection γ = 0.5

4Norms and co-norms are binary functions on membership values of fuzzy sets. They satisfy conditions

which make sure that the corresponding set operations can be considered as union and intersection [47].

125

4. MPLL – Multi-Paradigm Location Language

Version (3) provides the possibility for specifying a user defined norm. For example,

with

Hamacher_Intersection(Interval I, Interval J, Float gamma)

= intersection(I, J, lambda(Float y1, Float y2)

(y1*y2)/(gamma + (1-gamma)*(y1 + y2 -y1*y_2))

one can define the same Hamacher-Intersection with a user defined norm.

Definition 4.40 (Set Difference between Intervals)

Let I and J be expressions of type Interval. The set difference operation for intervals

comes also in three versions:

(1) setdifference(I,J)
Interval∗Interval 7→ Interval

(2) setdifference(I,J,version)
Interval∗Interval∗SDVersion 7→ Interval

(3) setdifference(I,J, intersection,complement)
Interval∗Interval∗ (Interval∗Interval 7→ Interval) ∗

(Interval 7→ Interval) 7→ Interval

(1) extends the crisp correspondence: I\J = I∩J′ where J′ is the complement of J,set-

difference(I,J) is therefore an abbreviation for intersection(I,comple-

ment(J)) with standard intersection and complement functions.

(2) computes the set difference operator by means of a binary function on the member-

ship functions. The following versions are possible:

SDVersion Function

Kleene (I \J)(x) =

def
min(I(x),1−J(x))

Lukasiewicz (I \J)(x) =

def
max(0, I(x)−J(x))

Goedel (I \J)(x) =

def
0 if I(x) ≤ J(x) and 1−J(x) otherwise

-

6

R
0

1

Set Difference

Kleene

Lukasiewicz

GoedelI J

(3) is a generalisation of the first version:

setdifference(I,J, intersection,complement) =

def
intersection(I,complement(J))

126

4.4. Basic Types

intersection is a user defined binary function on intervals, and complement is a user

defined unary function on intervals.

Predicates of Intervals

Fuzzy intervals have many properties. They can be checked with suitable MPLL predi-

cates.

Definition 4.41 (Predicates)

MPLL provides the following predicates to check the structure of an interval I:

(1) isCrisp(I) Interval 7→ Bool

(2) isCrisp(I,left/right) Interval∗Side 7→ Bool

(3) isEmpty(I) Interval 7→ Bool

(4) isConvex(I) Interval 7→ Bool

(5) isMonotone(I) Interval 7→ Bool

(6) isInfinite(I) Interval 7→ Bool

(7) isInfinite(I,left/right) Interval∗Side 7→ Bool

isCrisp(I) checks whether the interval I is a, possibly non-convex, crisp interval.

isCrisp(I,left) checks whether the interval I is crisp at its left end. I may be infinite

at this side, but the fuzzy value must be 1 in this case. Similar for isCrisp(I,right).

isEmpty(I) checks whether the interval I is empty.

isConvex(I) checks whether the interval I is convex. I can be non-convex even if I is

crisp because it may consist of several different components.

isMonotone(I) checks whether the membership function of the interval I is monoton-

ically rising to a maximal value, and then monotonically falling again.

isInfinite(I) checks whether the interval I is infinite.

isInfinite(I,left) checks whether the interval I is infinite on the left hand side.

isInfinite(I,right) checks whether the interval I is infinite on the right hand side.

The boundaries of infinite intervals are of course the infinity. Infinity has a special

representation in the Angle datatype. This can be checked with the isInfinity

predicate:

Definition 4.42 (Infinity)

isInfinity(A) Angle 7→ Bool

isInfinity(A,positive/negative) Angle∗PosNeg 7→ Bool

127

4. MPLL – Multi-Paradigm Location Language

isInfinity(A) checks whether A represents an infinity.

isInfinity(A,positive) checks whether the A represents the positive infinity.

isInfinity(A,negative) checks whether the A represents the negative infinity.

The next three predicates allow one to check basic relations between angle values and

intervals, or between intervals and intervals.

Definition 4.43 (during, isSubset, doesOverlap)

(1) during(A, I,core/kernel/support)
Angle∗Interval∗Region 7→ Bool

(2) isSubset(I,J,core/kernel/support)
Interval∗Interval∗Region 7→ Bool

(3) doesOverlap(I,J,core/kernel/support)
Interval∗Interval∗Region 7→ Bool

(1) during(A, I,region) checks whether A is inside the given region of the interval I.

(2) isSubset(I,J,region) checks whether the corresponding region of the interval I is

a subset of the corresponding region of the interval J.

(3) doesOverlap(I,J,region) checks whether the corresponding region of the interval

I overlaps the corresponding region of the interval J.

The point-interval during relation is one of the five point–interval relations ‘before’,

‘starts’, ‘during’, ‘finishes’ and ‘after’ for crisp intervals. Only during is built-in be-

cause it is one of the most frequently used relations. The other relations can easily be

defined in MPLL.

Other Features of Intervals

With the first function in this paragraph one can access the fuzzy membership value of

an angle within a given fuzzy interval.

Definition 4.44 (member) The function

member(A, I)
of type

Angle∗Interval 7→ Float

returns the value of the membership function of the interval I at angle value A. The value

is a Float number between 0 and 1.

Definition 4.45 (Components)

1. The function components(I) of type Interval 7→ Integer yields the num-

ber of components in the interval I.

128

4.4. Basic Types

2. The function component(I,k) of type Interval ∗ Integer 7→ Interval

extracts the kth component from the interval I.

The function size below measures an interval I or parts of it by integrating over its

membership function.

Definition 4.46 (size) The function size comes in three versions.

(1) size(I) =
size(I,support)
of type

Interval 7→ Angle

(2) size(I,core/support/kernel)
Interval∗IntvRegion 7→ Angle

(3) size(I,A1,A2)
Interval∗Angle∗Angle 7→ Angle

(1) measures the size of the support of I.

(2) measures the size of the corresponding region of I.

(3) measures the area of I between A1 and A2.

The function ‘point’ below can be used to access the boundaries of the three different

regions of an interval: support, core and kernel, and the first and last maximal points.

Definition 4.47 (point) The function

point(I,left/right,core/support/kernel/maximum)
of type

Interval∗Side∗PointRegion 7→ Angle

returns the position of the boundaries of I’s regions:

point(I,left,support) yields the position of the left support boundary

point(I,right,support) yields the position of the right support boundary

point(I,left,core) yields the position of the left core boundary

point(I,right,core) yields the position of the right core boundary

point(I,left,kernel) yields the position of the left kernel boundary

point(I,right,kernel) yields the position of the right kernel boundary.
point(I,left,maximum) yields the leftmost pos. of the max. fuzzy value.
point(I,right,maximum) yields the rightmost pos. of the max. fuzzy value.

If I is just a convex crisp interval [t1,t2[then

point(I,left,support) = t1 and point(I,right,support) = t2.

129

4. MPLL – Multi-Paradigm Location Language

Centre Points

The n,m-centre points are used to express temporal notions like ‘the first half of the year’,

or ‘the second quarter of the year’, or more exotic expressions like ‘the 25th 49th of the

weekend’ etc. The notion of n,m-centre points makes only sense for finite intervals.

Example 4.4 (Centre Points) The 1,2-centre point I1,2 of I splits I in two halfs of the

same size (integrated over the membership function). The 1,3-centre point indicates a

split of I into three parts of the same size. centerPoint(I,1,3) is the boundary of

the first third, centerPoint(I,2,3) is the boundary of the second third.

-

6

R
0

1

n,3-Centre Points

I0,3 I1,3 I2,3 I3,3

-

6

R
0

1

n,2-Centre Points

I0,2 I1,2 I2,2

Definition 4.48 (Centre Points) The function

centerPoint(I,n,m)
of type

Interval∗Integer∗Integer 7→ Angle

yields the (earliest) position of the n,m-centre point.

The centre points are computed such that for n < m:

∫ centerPoint(n+1,m)

centerPoint(n,m)
I(x) dx = (

∫

I(x) dx)/m

Basic Manipulations of Intervals

In this paragraph we introduce some elementary transformation functions for fuzzy in-

tervals.

130

4.4. Basic Types

Definition 4.49 (Shift of Intervals) The function

shift(I,A)
of type

Interval∗Angle 7→ Interval

shifts the interval by the given angle value, i.e. shift(I,A)(x) = I(x− t)

Definition 4.50 (cut)

The function

cut(I,A1,A2)
of type

Interval∗Angle∗Angle 7→ Interval

cuts the part of the interval I between the angles A1 and A2 out of I and returns it as a

new interval.

The hull function below is able to compute different hulls of a fuzzy intervals.

Definition 4.51 (Hull Calculations)

The function

hull(I,core/support/kernel/crisp/monotone/convex)
of type

Interval∗Hull 7→ Interval

computes a hull of the interval I. The second parameter determines which hull is to be

computed.

The core, support and kernel hull compute the corresponding interval regions

as crisp intervals. The core and support hull may therefore consist of different

components, whereas the kernel hull consists of at most one single component.

There is a small problem with the support hull. Consider the following example:

-

6

R
0

1

support hull problem

I

0 20 40 60

Since I(0) = 0, the support of I is the open interval]0,60[. The function hull(I,sup-

port), however, calculates the interval boundaries 0 and 60, which are interpreted as

the half open interval [0,60[. Strictly mathematical, this is not correct. In a correct

implementation, however, we would have to distinguish open and half open intervals.

Since the overhead for this is enormous, the current version of MPLL has to live with

this error.

131

4. MPLL – Multi-Paradigm Location Language

The crisp hull for crisp intervals is the usual convex hull of crisp intervals. It con-

sists of the smallest crisp interval which contains all the components of the interval. The

crisp hull for non-crisp intervals is the convex hull of the support of the interval. If

the non-convex interval consists of one single component only, there is no difference

between the crisp and support hull. In general we have

hull(I,crisp) = hull(hull(I,support),crisp).

The monotone hull of an interval I is the smallest monotone interval which con-

tains I. An interval is monotone iff its membership function rises monotonically up to a

maximal point, and then falls monotonically again.

-

6

R
0

1

Monotone Hull of a Fuzzy Interval

The convex hull of an interval I is the smallest convex interval which contains I. The

notion ‘convex’, which is appropriate here, is the notion of a convex polygon. That

means, if we follow the membership function from left to right there are only right

curves. The next figure illustrates this.

-

6

R
0

1

Convex Hull of a Fuzzy Interval

If the interval I is crisp then the crisp, monotone and convex hull are the same.

The next function can be used to extract the gaps between components of an inter-

val. The invert function inverts the membership function, but only between the last

maximal point of the first component and the first maximal point of the last component.

invert(I) is zero outside these points.

Definition 4.52 (invert)

The function invert(I) of type Interval 7→ Interval inverts the membership

function of the interval I:

invert(I)(x) =

def

{

1− I(x) if a ≤ x < b

0 otherwise.

132

4.4. Basic Types

where a is the last maximal point of the first component of I, and b is the first maximal

point of the last component of I.

Example:

-

6

R
0

1

Invert

components(invert(I)) yields the number of gaps in the interval I.

The scaleup function below multiplies the membership function of an interval I with

a factor f , such that the maximal value of I(x)∗ f is 1.

Definition 4.53 (scaleup)

The function scaleup(I) of type Interval 7→ Interval scales the membership

function of I such that its maximum is 1.

More general scaling functions are times and exp.

Definition 4.54 (times and exp)

times(I, f) Interval∗Float 7→ Interval

exp(I,e) Interval∗Float 7→ Interval

times(I, f)(x) = min(I(x) · f ,1).
exp(I,e) computes an interval such that exp(I,e)(x) = I(x)e.

The dashed line in the next figure indicates times(I,2) and the dotted line indicates

exp(I,2).

-

6

R
0

1

times(I,2) and exp(I,2)

The rising part of a fuzzy interval is crucial for a fuzzy point-interval before relation.

The falling part, on the other hand, is crucial for a point-interval after relation. The

rising part of an interval I can be computed by following its monotone hull up to the first

maximal point, and then extending it to the infinity. Similar with the falling part.

133

4. MPLL – Multi-Paradigm Location Language

Definition 4.55 (Extend to Infinity)

The function

extend(I,positive/negative)
of type

Interval∗PosNeg 7→ Interval

extends the interval to the infinity. extend(I,positive) raises the membership func-

tion of the monotone hull of I to 1 after the first maximum I f m. extend(I,negative)
raises the membership function of the monotone hull of I to 1 before the right maximum

Ilm.

Example:

-

6

R
0

1

extend(I,positive) and extend(I,negative)

I f m Ilm

I I

An example where the extend function is useful is the definition of the binary ‘until’

relation between two intervals.

until(Interval I, Interval J)

= intersection(extend(I,positive),extend(J,negative))
(4.2)

computes until(I,J) as the interval which lasts from the beginning of interval I until

the end of interval J.

-

6

R
0

1

until

I J

There is a further extend function in MPLL. It lengthens or shortens an interval by a

certain amount.

Definition 4.56 (Extend by a Certain Value)

The function

134

4.4. Basic Types

extend(I, length,side)
of type

Interval∗Angle∗Side 7→ Interval

extends the interval I by the given length.

The side parameter determines at which side the interval is extended. side = left

extends it on the left side, side = right extends it on the right side. A positive length

value causes the interval to be extended, whereas a negative length value causes the

interval to be shrunken.

The algorithm for extending or shrinking a fuzzy interval works as follows: In a first

step the interval I is split into the left/right part I1 of the interval up to the first maximal

point, and the rest I2. I1 is extended to the infinity. This part is shifted. If the interval

is to be extended, then the union of the shifted I1 with I2 is computed. If the interval is

to be shrunk then the intersection of the shifted I1 with I2 is computed. The next figure

illustrates this. The dotted line shows the shifted front part of the interval. The dashed

line is the result of the union/intersection.

Example:

-

6

R
0

1

extending and shrinking an interval

by a certain duration

The extend function together with shiftLength can be used to extend an interval

by a certain duration. For example,

extend (I,−shiftLength(point(I,left,support),
−1 month,false,true),left)

extends the left side of the interval I by 1 month. The month length is determined by a

backwards shift of the left boundary of I’s support.

Definition 4.57 (integrate)

The function

integrate(I,positive/negative)
of type

Interval∗PosNeg 7→ Interval

integrates the membership function of I and normalises its value to 1. If the control

parameter is positive then I is integrated from left to right. If it is negative then

I is integrated from right to left.

Fuzzification

Fuzzy intervals could be defined by specifying the shape of the membership function in

135

4. MPLL – Multi-Paradigm Location Language

some way. This is in general very inconvenient. Therefore MPLL provides an alterna-

tive. The idea is to take a crisp interval and to ‘fuzzify’ the front and back end in a certain

way. For example, one may specify ‘early afternoon’ by taking the interval between 1

and 6 pm and imposing, for example, a linear or a Gaussian shape increase from 1 to 2

pm, and a linear or a Gaussian shape decrease from 4 to 6 pm. Technically this means

multiplying a linear or Gaussian function with the membership values.

Definition 4.58 (Fuzzification)

There are two different versions of the fuzzify function in MPLL. The first version

allows one to specify the part of the interval I which is to be fuzzified in terms of percents

of the interval length. The second version needs absolute coordinates.

fuzzify(I,linear/gaussian,left/right, increase,offset)
of type

Interval,Fuzzify,Side,Float,Float 7→ Interval

fuzzify(I,linear/gaussian,left/right,x1,x2,offset)
of type

Interval,Fuzzify,Side,Angle,Angle,Angle 7→ Interval

The second parameter determines whether a linear or gaussian increase is to be imposed

on the interval. The third parameter determines whether the increase is from left to right

or from right to left. increase is a Float number in percent. increase = 10 means that the

region to be modified consists of the first/last 10% of the kernel of the interval. offset

is also a float number in percent. offset = 20 means that the interval is to be widened

by 20% of the kernel of the interval. To this end the fuzzified part of the interval is

shifted back (second parameter = left) or forth (second parameter = right) 20% of

the kernel size.

x1 and x2 in the second version of the fuzzify function allows one to determine the

part of the interval to be fuzzified in absolute coordinates.

fuzzify([0,100],linear,left,20,70,0),

for example, yields a polygon [(20,0) (70,1) (100,1) (100,0)].

fuzzify([0,100],linear,right,20,70,0),

on the other hand, yields a polygon [(0,0) (0,1) (20,1) (70,0)].

The offset widens the polygon:

fuzzify([0,100],linear,right,20,70,20),

yields [(0,0) (0,1) (60,1) (90,0)].

A function which fuzzifies both ends of an interval in the same way could be

136

4.4. Basic Types

f(Interval I,Float increase,Float offset)=intersection(

extend(fuzzify(I,gaussian,left,increase,offset),

positive),

extend(fuzzify(I,gaussian,right,increase,offset),

negative))

f (I,20,0) produces the following fuzzified interval.

-

6

R
0

1

Relative Gaussian Fuzzification

Notice that the obvious ‘solution’

f(Interval I, Float increase, Float offset)

= fuzzify(fuzzify(I,gaussian,right,inc,off),

left,increae,offset)

yields no symmetric structure, because the inner fuzzify operation changes the kernel

of the interval, such that the absolute increase and offset of the outer fuzzify operation

are different to the absolute increase and offset of the inner fuzzify operation

Integration over Pairs of Intervals

One possibility to define an interval–interval relation like ‘be f ore(I,J)’ is, to take a

point–interval relation ‘PIRbe f ore(t,J)’ and average PIRbe f ore(t,J) over the interval I.

Averaging over an interval means integrating over its membership function. For purposes

like this MPLL provides two integration operations.

Definition 4.59 (Integration)

MPLL has the two integration functions:

integrateSymmetric(I,J,simple)
Interval∗Interval∗Bool 7→ Float and

integrateAsymmetric(I,J)
Interval∗Interval 7→ Float

integrateAsymmetric(I,J) computes (
∫

I(x) · J(x) dx)/|I|.
integrateSymmetric(I,J,simple) computes (

∫

I(x) · J(x) dx)/N(I,J)

where N(I,J) =

def

{

min(|I|, |J|) if simple = true

maxa(
∫

I(x−a) · J(x) dx) otherwise.

137

4. MPLL – Multi-Paradigm Location Language

The next example shows an application of the symmetric integrate function. A fuzzy

interval–interval relation IIRMeets is defined: Besides the two intervals, it takes the

transformation functions F and S and integrates the interval F(I) over S(J). F(I) should

map the interval I to a finishing section of I and S(J) should map the interval J to a

starting section of J. The integration of F(I) to S(J) yields the final result.

Example 4.5 (Fuzzy Interval–Interval ‘Meets’ Relation) A possible definition for a

fuzzy interval–interval meets relation is

IIRMeets(Interval I, Interval J,

Interval->Interval F, Interval->Interval S) =

if isEmpty(I)

or isEmpty(J)

or isInfinite(I,right)

or isInfinite(J,left)

then 0

else integrateSymmetric(F(I),S(J),false)

The figure below shows the effect of the IIRMeets relation for suitable F and S oper-

ations. The dashed figure shows the result of IIRMeets(I,J, . . .) when the interval I is

moved along the horizontal axis. The dotted figure shows the position of the interval I

where IIRMeets(I,J, . . .) is maximal.

-

6

R
0

1

IIRMeets for Fuzzy Intervals

I J

MPLL contains the very special purpose function MaximizeOverlapwhich is, so far,

only needed for implementing the fuzzy interval–interval overlaps relation. The classical

relation I overlaps J has two requirements:

1. a non-empty part I1 of I must lie before J, and

2. another non-empty part I2 of I must lie inside J.

Generalisation to fuzzy intervals encodes the first condition in the factor 1−D(I,E+(J)),
where D is a during operator. E+(J) extends the rising part of J to the infinity. There-

fore D(I,E+(J)) measures the part of I which is after the front part of J. 1−D(I,E+(J))
then measures the part of I which is before the front part of J. This factor is multi-

plied with D(I,J) which corresponds to the second condition. It measures to which

138

4.4. Basic Types

degree I is contained in J. The product is normalised with maxa((1−D(Ia,E
+(J))) ·

D(Ia,J)), where Ia(x) =

def
I(x− a). This corresponds to the maximal possible overlap

when I is shifted along the horizontal axis. This guarantees that there is a position

for I where I overlaps J = 1. The normalization factor is computed with the function

MaximizeOverlap

Definition 4.60 (MaximizeOverlap)

The function

MaximizeOverlap(I,J,EJ,D)
of type

Interval∗Interval∗Interval∗
(Interval∗Interval 7→ Float) 7→ Float

computes

max
a

((1−D(shift(I,a),EJ)) ·D(shift(I,a),J))

Notice that EJ can in principle be an arbitrary interval. For the encoding of the fuzzy

overlaps relation, it should, however, be the extension of J to the infinity.

Example 4.6 IIROverlaps

IIROverlaps(Interval I, Interval J, Interval->Interval E,

(Interval*Interval)->Float D) =

case

isEmpty(I) or isEmpty(J) or isInfinite(J,left) : 0,

isInfinite(I,right) :

float(point(I,left,support)<point(J,left,support)),

isInfinite(J,right) :

float(point(I,right,support)<point(J,left,support))

else

Let EJ = E(J) in

(1 - D(I,EJ))*D(I,J) / MaximizeOverlap(I,J,EJ,D)

Example 4.7 (IIROverlaps for Fuzzy Intervals)

This example shows the result of the IIROverlaps relation where the standard IIRDuring

operator is used (with the identity function as point–interval during operator).

139

4. MPLL – Multi-Paradigm Location Language

-

6

R
0

1

Example: Overlaps Relation

I J

The dashed line represents the result of the overlaps relation for an angle value A where

the positive end of the interval I is moved to A. The dotted figure indicates the interval I

moved to the position where IIRoverlaps(I,J) becomes maximal.

4.4.10. Circular Intervals

This type of interval is needed for fuzzy interval which pertain to finite circular intervals,

such as those needed for representing fuzzy distributions over angular expressions.

Definition 4.61 (Construction)

The default method to construct a circular interval is to provide two coordinate values

as Angle data types, which represent the lower and upper limit of the interval.

Alternative constructors are part of the standard library (see Def. 4.87, pp. 159, in

section 4.6).

(1) CircularInterval(Amin,Amax)
Angle∗Angle 7→ CircularInterval

(2) CircularInterval(Amin,Amax,Acore,Asupport,Acentre)
Angle∗Angle∗Angle∗Angle∗Angle 7→ CircularInterval

(3) CircularInterval(Amin,Amax,Fvalue)
Angle∗Angle∗Float 7→ CircularInterval

(1) accepts minimum and maximum of the interval specified as Angle values.

(2) accepts minimum and maximum of the interval specified as Angle values and the

width of core and support, as well as the centre of the fuzzy distribution as Angle

values. This results in a fuzzy distribution within the interval Amin and Amax, which

starts with the fuzzy value 0 at Acentre− (Asupport/2) and increases in a linear way to

the fuzzy value 1 at Acentre− (Acore/2). At Acentre +(Acore/2) it starts to decrease

in a linear way until it reaches the fuzzy value 0 again at Acentre+(Asupport/2). This

constructor is needed for generating the default intervals of cardinal directions, such as

“north”, “southeast”, or “left of”.

(3) operates analogous to (1) except that the interval has a constant value of Fvalue over

the entire range between Amin and Amax.

140

4.5. Basic Functions

4.5. Basic Functions

MPLL includes a number of generic basic functions which are hard coded, either due

to the complexity of computation, or because of performance issues. Currently, due to

the lack of extensive testing of the prototype implementation in different scenarios, we

cannot provide examples of functions which require hard-coding due to performance

issues. Intuitively, however, such functions exist. The List data type, for example,

cannot be coded in MPLL and, therefore, has to be hard-coded in its entirety since it

involves polymorphism.

4.5.1. Transformations

The generic transformations, i.e. translation, rotation, and scaling, are part of the basic

functions of MPLL. The mathematical formalisations of these functions have already

been discussed in section 2.3.2.

Definition 4.62 (Translation)

MPLL provides the following function for linear translation in planar space.

(1) translateCartesian(C,Ax,Ay)
of type

Configuration∗Angle∗Angle 7→ Configuration

(2) translateCartesian(L,Ax,Ay)
of type

Line∗Angle∗Angle 7→ Line

(3) translateCartesian(R,Ax,Ay)
of type

Polygon∗Angle∗Angle 7→ Polygon

(1) modifies the position of the configuration C by a linear translation of the amount Ax

into the direction of the x-axis and of the amount Ay into the direction of the y-axis.

If either Ax or Ay contains 0 (or NULL), then a linear translation along the axis which

contains a non-zero value is computed.

The following matrix translates the configuration C with coordinates (C.x,C.y) to a new

position (C.x′,C.y′):

[C.x′,C.y′,1] = [C.x,C.y,1]

1 0 0

0 1 0

Ax Ay 1

(2) modifies the position of all points in L by a linear translation of the amount Ax into

the direction of the x-axis and of the amount Ay into the direction of the y-axis. If either

141

4. MPLL – Multi-Paradigm Location Language

Ax or Ay contains 0 (or NULL), then a linear translation along the axis which contains a

non-zero value is computed.

(3) modifies the position of all points in R by a linear translation of the amount Ax into

the direction of the x-axis and of the amount Ay into the direction of the y-axis. If either

Ax or Ay contains 0 (or NULL), then a linear translation along the axis which contains a

non-zero value is computed.

Definition 4.63 (Rotation)

MPLL provides the following function for rotation of spatial entities in planar space

(i.e. rotation around the z-axis). Note that a positive angle A denotes clockwise rotation,

whereas a negative angle denotes counter-clockwise rotation.

(1) rotate(C,A)
of type

Configuration∗Angle 7→ Configuration

(2) rotate(L,A)
of type

Line∗Angle 7→ Line

(3) rotate(R,A)
of type

Polygon∗Angle 7→ Line

(1) rotates the position of C by the amount of the angle A, in the direction determined

by the sign of A, around the origin of the reference system. Note that this function also

modifies the orientation of C by the same amount.

The following matrix rotates a point P = (P.x,P.y) around the z axis:

[P.x′,P.y′,1] = [P.x,P.y,1]

cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0

0 0 1

Note that in two-dimensional scenes, only rotation around the z axis is possible. Other-

wise, objects would leave the x−y plane.

(2) rotates the positions of all points in L by the amount of the angle A, in the direction

determined by the sign of A, around the origin of the reference system.

(3) rotates the positions of all points in R by the amount of the angle A, in the direction

determined by the sign of A, around the origin of the reference system.

Definition 4.64 (Scaling)

MPLL provides the following functions to change the scale of spatial entities. Note that

configurations, given that they have no spatial extent, cannot be scaled.

142

4.5. Basic Functions

(1) scale(L,F)
of type

Line∗Float 7→ Line

(2) scale(R,F)
of type

Polygon∗Float 7→ Polygon

(1) modifies L by scaling it by the factor F from the origin of the current reference

system.

The following matrix scales the line L consisting of the points P1, . . . ,Pn ∈ L with coor-

dinates (P1.x,P1.y), . . ., (Pn.x,Pn.y) by the factor F :

[Pi.x
′,Pi.y

′,1] = [Pi.x,Pi.y,1]

F 0 0

0 F 0

0 0 1

(2) modifies R by scaling it by the factor F from the origin of the current reference

system. The same matrix as in version (1) applies, except that points P1, . . . ,Pn ∈ R are

modified.

Definition 4.65 (Turning)

Turning pertains to the rotation of the orientation of a configuration, not to a rotation

of its position. MPLL provides the following function for changing the orientation of a

configuration C.

(1) turn(C,A)
of type

Configuration∗Angle 7→ Configuration

(1) rotates the orientation of C by the amount of the angle A, in the direction determined

by the sign of A. A positive angle denotes clockwise rotation, whereas a negative angle

denotes counter-clockwise rotation. Note that this function is different from the rotate

function (see Def.4.63).

4.5.2. Bearing

The bearing between spatial entities is one of the most important spatial relations in

MPLL. Therefore, a number of different forms of this function are part of the MPLL

basic functions, as well as the MPLL standard library.

Definition 4.66 (bearing)

MPLL provides the function bearing in several versions, with configurations C, D,

lines L, M, and polygons R, S.

143

4. MPLL – Multi-Paradigm Location Language

(1) bearing(C,D)
of type

Configuration∗Configuration 7→ Angle

(2) bearing(C,L)
of type

Configuration∗Line 7→ CircularInterval

(3) bearing(C,R)
of type

Configuration∗Polygon 7→ CircularInterval

(4) bearing(L,C)
of type

Line∗Configuration 7→ Side

(5) bearing(L,M)
of type

Line∗Line 7→ Side

(6) bearing(L,R)
of type

Line∗Polygon 7→ CircularInterval

(7) bearing(R,C)
of type

Polygon∗Configuration 7→ CircularInterval

(8) bearing(R,L)
of type

Polygon∗Line 7→ CircularInterval

(9) bearing(R,S)
of type

Polygon∗Polygon 7→ CircularInterval

(1) returns the bearing from configuration C to configuration D (in radian) as follows: If

△x = D.x−C.x and △y = D.y−C.y with C = (C.x,C.y) and D = (D.y,D.y), then

θb(C,D) =

cos−1(△y√
△x2+△y2

) if △x ≥ 0

cos−1(△y√
△x2+△y2

)+π otherwise

(2) returns the bearing from configuration C to line L as an interval of type Circular-

Interval. The evaluation of this function includes the calculation of the bearings of

all points of L and the subsequent construction of a crisp interval, where the fuzzy value

is set to 1 for the bearing from C to the first point and all subsequent points of L and

also between these bearings. This produces a fuzzy interval which consists of exactly

one crisp interval of arbitrary extent. Note that this crisp interval might fully cover the

144

4.5. Basic Functions

complete circular interval, but does not necessarily need to do so. An example of a

circular interval computed for a line L = (P1, . . . ,P9) is shown in the following diagram.

-

6

400g0g
0

1

Fuzzy Point-to-Line Bearing as a Crisp Circular Interval

P1 P2P3 P4P5 P6 P7P8P9

(3) returns the bearing from configuration C to region R as an interval of type Cir-

cularInterval. The evaluation of this function is done in two steps. First, a test

for inclusion of C in R is conducted. If this test is successful, an interval consisting

of a constant value of 1 is returned. If the test is not successful, the bearings of C to

all points and segments of R are computed, in the same way as in version (2). This

produces a fuzzy interval which consists of exactly one crisp interval of arbitrary extent.

Note that this crisp interval might fully cover the complete circular interval, but does not

necessarily need to do so.

(4) returns the bearing from a line L to a configuration C as a binary value of type Side

(i.e. left or right). To this aim, the nearest line segment is determined by calculating

the two nearest points of L. This line segment and the configuration C are then tested

for either being a left turn or a right turn, which is returned as the result. Note that

this requires the line L to be available in normalised form (which is the default, see

Def. 4.25).

(5) returns the bearing from a line L to a line M as a binary value of type Side (i.e. left

or right). If the two lines intersect, then this relation cannot be computed and returns an

error.

(6) returns the bearing from a line L to a polygon R as a binary value of type Side

(i.e. left or right). If the line and the polygon intersect, then this relation cannot be

computed and returns an error.

(7) returns the bearing from a region R to a configuration C as an interval of type Cir-

cularInterval. Similar to version (3), the evaluation of this function is done in

two steps. First, a test for inclusion of C in R is conducted. If this test is successful,

an interval consisting of a constant value of 1 is returned. If the test is not successful,

the bearings of C to all points and segments of R are computed, in the same way as in

version (2). This produces a fuzzy interval which consists of exactly one crisp interval

of arbitrary extent. Note that this crisp interval might fully cover the complete circular

interval, but does not necessarily need to do so.

(8) this version operates analogous to (7) with the exception, that no test for inclusion

is conducted, but a test for intersection with the line L. If the two features intersect, an

145

4. MPLL – Multi-Paradigm Location Language

interval consisting of a constant value of 1 is returned. If not, a computation similar to

(2) is conducted.

(9) this version operates analogous to (7) with the exception, that no test for inclusion

is conducted, but a test for overlap with the polygon S. If the two polygons overlap, an

interval consisting of a constant value of 1 is returned. If not, a computation similar to

(3) is conducted.

Definition 4.67 (side)

The side function is a special form of bearing from line entities, based on the fact

that lines in MPLL are always defined with an inherent linear direction, which in turn

determines the sides of the line entity.

(1) side(L,C)
of type

Line∗Configuration 7→ Side

(2) side(L,R)
of type

Line∗Polygon 7→ Side

(1) returns the side of L on which C is located as enumeration type Side. Note that this

depends on the order of points in L.

(2) returns the side of L on which R is located as enumeration type Side, provided, that

6 ∃p : p ∈ L∧ p ∈ R. Note that this depends on the order of points in L.

4.5.3. Construction of Points

Several spatial scenarios require the construction of point entities by means of processing

other spatial entities and/or relations. This section contains some important examples. In

course of the use of MPLL this part of the implementation will be expanded as necessary

constructs are added.

Definition 4.68 (centerOfMass)

MPLL provides the function centerOfMass in several versions, with configurations

C, D.

(1) centerOfMass(R)
of type

Polygon 7→ Point

(1) computes the centre of mass of the polygon R. The centre of the mass (centroid) of

a polygon is the arithmetical mean of the sum of the centres of masses of all triangles

obtained by a triangulation. The latter can be computed fairly easy. It is the intersection

of its medians which are the line segments of a vertex to the centroid of the opposite face.

146

4.5. Basic Functions

Let the triangle T be given by three vertices ~a := (xa,ya),~b := (xb,yb), and~c := (xc,yc).
As the centroid of a d-simplex divides each median in a d : 1 ratio (as seen from the

vertex) and thus in a 2 : 1 ratio for a triangle. The function µ∇ that determines the

centroid of a d-simplex S can be defined:

µ∇(S) :=
1

d +1
· ∑
~x∈S

~x

Thus for the 2-dimensional case of a triangle T:

µ∇(T) =
1

3
·
(

~a+~b+~c
)

Now Let ∆ be the set of triangles of an arbitrary triangulation of polygon R. As men-

tioned above the arithmetic mean of its triangles define the centre of mass:

µ(R) :=
1

|∆| · ∑
δ∈∆

µ∇(δ)

Note that the same function can be applied to the arbitrary decomposition of a polytope

into tetrahedra.

Definition 4.69 (closestPoint)

MPLL provides the function closestPoint in several versions, with configurations

C, D.

(1) closestPoint(L,C)
of type

Line∗Configuration 7→ Point

(2) closestPoint(R,C)
of type

Polygon∗Configuration 7→ Point

(1) returns a single point P ∈ L, whose geometrical distance to C is minimal.

(2) returns a single point P ∈ R, whose geometrical distance to C is minimal.

Definition 4.70 (intersectionPoint)

MPLL provides the function intersectionPoint, with lines L, M.

(1) intersectionPoint(L,M)
of type

Line∗Line 7→ Point

(1) returns the coordinates of a point p in form of a Point, if

∃p ∈ L : p ∈ M

Otherwise, an exception is thrown.

147

4. MPLL – Multi-Paradigm Location Language

4.5.4. Construction of Lines

The construction of line entities (lines and line segments) by means of processing other

spatial entities and/or relations is also required in some situations. This section contains

some examples. In course of the use of MPLL this part of the implementation will be

expanded as necessary constructs are added.

Definition 4.71 (closestSegment)

MPLL provides the function closestSegment in several versions, with configura-

tions C, D.

(1) closestSegment(L,C)
of type

Line∗Configuration 7→ Line

(2) closestSegment(R,C)
of type

Polygon∗Configuration 7→ Line

(1) returns a line consisting of one segment, i.e. consisting of two points P1 and P2, with

P1,P2 ∈ L and P1,P2 belonging to the same segment, and with the distance from P1

and P2 to C being minimal.

Let L be a sequence of line segments and p a point. There is a function that obtains the

distance between a point and a line segment. It can be used to collect all closest segments

of a line sequence. Note that there are several segments that may have the property to be

nearest neighbour to a given point. The candidates can be defined as followes:

closestSegment (p,S) := {s ∈ S|dist(p,s) ≤ dist(p,x)}
Note that it does not suffice to consider the distances between p and the two defining

point of a line segment.

(2) returns a line consisting of one segment, i.e. consisting of two points P1 and P2, with

P1,P2 ∈ R and P1,P2 belonging to the same segment, and with the distance from P1

and P2 to C being minimal. The formal definition is analogous to (1).

4.5.5. Other Predicates

This section includes some predicates which have not been included in section 4.4 for

clarity. In the future, entries in this section might be moved to other parts in the docu-

mentation as necessary. In course of the use of MPLL this part of the implementation

will also be expanded as necessary constructs are added.

Definition 4.72 (intersection)

MPLL provides the function intersection, with lines L, M.

148

4.6. The MPLL Standard Library – Types

(1) intersection(L,M)
of type

Line∗Line 7→ Bool

(1) returns true if

∃p ∈ L : p ∈ M

Otherwise, it returns false.

4.6. The MPLL Standard Library – Types

The MPLL Standard Library contains a number of constructors and other type related

functions which did not need to be included in the hard-coded MPLL kernel. These

functions are defined as MPLL constructs and can, therefore, be easily extended and/or

modified to suit specific purposes.

4.6.1. Naming Conventions

The definitions in the standard library adhere to the default naming conventions laid out

in section 4.2.2.

4.6.2. Predefined Constants

Much like C++ macro definitions, MPLL uses some constants and internal defaults.

However, unlike macro definitions, these MPLL constants can be overwritten, depeding

on the global control parameter MPLL::overwrite.

This section lists the constants which are used subsequently in the standard library.

Note that while, technically, any constant can be modified easily, modifying some con-

stants which control internal processes could lead to malfunction. In the following list,

these critical constants have an index below (50) and should only be modified with care.

Definition 4.73 (Predefined Constants)

(1) Real= 0 7→ Integer

(2) Grd= 1 7→ Integer

(3) Deg= 2 7→ Integer

(4) Rad= 3 7→ Integer

(50) Pi= 3.141592653 7→ Float

(51) defCore= 25 7→ Integer

(52) defSupport= 50 7→ Integer

149

4. MPLL – Multi-Paradigm Location Language

(1) is the constant identifier for real values. It is assigned the Integer value 0.

(2) is the constant identifier for grad values. It is assigned the Integer value 1.

(3) is the constant identifier for degree values. It is assigned the Integer value 2.

(4) is the constant identifier for radian values. It is assigned the Integer value 3.

(50) is the constant π . It is assigned the Float value 3.141592653. If, for some reason,

this constant needs to be defined using higher precision, the constant can be overwritten

– provided that the global control parameter MPLL::overwrite is set accordingly.

(51) and (52) are the default values for core and support angles used in defining fuzzy

cardinal direction intervals. See Fig. 2.26 on page 76 for an illustration of how to use

these values.

Definition 4.74 (Default Moduli) (Constant)

The default moduli for real, grad, degree, and radian angles are defined as follows.

defMod(type) =
(100) case (type == Real) : 0,
(101) (type == Grd) : 400,
(102) (type == Deg) : 360,
(103) (type == Rad) : (2∗Pi),

else 0

of type

Integer 7→ Float

Default moduli are necessary for Angle types, in order to define the range of possible

values. This property is also used to distinguish state from action. There exists, for

example, no orientation of 480◦ (this value would be treated modulo 360◦ , i.e. 120◦),

but a valid action would be to “turn 480◦ left” (resulting in more than a full turn).

(100) The default modulus for angles holding real values is 0. There exists no default

minimum or maximum, except those imposed by the implementation restrictions of the

data types (float or double) holding the real value.

(101) The default modulus for angles holding grad values is 400g. The default minimum

is therefore −400g, and the default maximum is 400g .

(102) The default modulus for angles holding degree values is 360◦. The default mini-

mum is therefore −360◦, and the default maximum is 360◦.

(103) The default modulus for angles holding radian values is 2π . The default minimum

is therefore −2π , and the default maximum is 2π .

Definition 4.75 (Allocentric Cardinal Direction) (Constant)

The variable Dir must be one of the valid enumeration types of type CarDir (see

150

4.6. The MPLL Standard Library – Types

Def. 4.17) on page 110). The allocentric cardinal directions are defined as follows,

all values are given in grad.

carDir(Dir) =
(200) case (Dir == north) : 0,
(201) (Dir == northeast) : 50,
(202) (Dir == east) : 100,
(203) (Dir == southeast) : 150,
(204) (Dir == south) : 200,
(205) (Dir == southwest) : 250,
(206) (Dir == west) : 300,
(207) (Dir == northwest) : 350,

else 0

of type

CarDir 7→ Float

carDir(Dir) =
(208) case (Dir == N) : 0,
(209) (Dir == NE) : 50,
(210) (Dir == E) : 100,
(211) (Dir == SE) : 150,
(212) (Dir == S) : 200,
(213) (Dir == SW) : 250,
(214) (Dir == W) : 300,
(215) (Dir == NW) : 350,

else 0

of type

CarDir 7→ Float

(200) to (215) contain the cardinal direction constants in grad. These can be overwritten,

depending on the global control parameter MPLL::overwrite.

Definition 4.76 (Egocentric Cardinal Direction) (Constant)

The variable Dir must be one of the valid enumeration types of type EgoDir, or EgoDirD

(see Def. 4.17) on page 110).

151

4. MPLL – Multi-Paradigm Location Language

carDir(Dir) =
(300) case (Dir == front) : 0,
(301) (Dir == right front) : 50,
(302) (Dir == right) : 100,
(303) (Dir == right back) : 150,
(304) (Dir == back) : 200,
(305) (Dir == left back) : 250,
(306) (Dir == left) : 300,
(307) (Dir == left front) : 350,

else 0

of type

EgoDir 7→ Float

carDir(Dir) =
(400) case (Dir == behind) : 0,
(401) (Dir == right of) : 100,
(402) (Dir == in front of) : 200,
(403) (Dir == left of) : 300,

else 0

of type

EgoDirD 7→ Float

The egocentric cardinal directions are defined here. All values are given in grad. They

can be overwritten, depending on the global control parameter MPLL::overwrite.

(300) to (307) contain the egocentric cardinal direction constants in grad.

(400) to (403) contain the egocentric cardinal direction constants for deictic settings in

grad.

Definition 4.77 (Fuzzy Allocentric Cardinal Direction) (Constant)

The intervals are defined using the default values for core and support (see Def. 4.73)

and they are based on the direction constants listed in Def. 4.75.

(500) carDirF(Dir) =
CircularInterval(carDir(Dir),defCore,defSupport)
of type

CarDir 7→ CircularInterval

These are not constants per se, but predefined intervals representing fuzzy allocentric

cardinal direction. Nonetheless, they best fit into the category of predefined constants.

(500) returns a fuzzy circular interval which represents the direction Dir, using the de-

fault constants for core and support. For an illustration of such an interval see Fig. 2.26

152

4.6. The MPLL Standard Library – Types

on page 76. See also Def. 4.87 on page 159 for the definition of the circular interval

constructor.

Definition 4.78 (Euclidean Distance) (Constant)

This categorisation of qualitative distances was inspired by the proposal by Clementini,

Di Felice, and Hernández [77]. The actual numeric values serve only to illustrate the

use of distances within MPLL. Most likely, for individual applications, this set has to be

carefully adjusted to reflect the user preferences and context.

distance(Dist) =
(600) case (Dist == very close) : 10,
(601) (Dist == close) : 30,
(602) (Dist == commensurate) : 60,
(603) (Dist == far) : 100,
(604) (Dist == very far) : 150,

else 0

of type

Distance 7→ Float

The numeric values adhere to the convention that subsequent intervals (distances farther

away) must be larger than the previous intervals, i.e. given distances di, i = (1, . . . ,n),
then ∀d j, j = (1, . . . ,n−1) : |d j| ≤ |d j+1|.

Other conventions might be different. It is, for example, also possible to require all

subsequent intervals to be larger than the sum of the previous intervals: given distances

di, i = (1, . . . ,n), then ∀di, i = (1, . . . ,n) : ∑i−1
j=1 |d j| ≤ |di|.

(600 – 604) The table above has to be read like this: distances are given as the length of

the intervals for each quality, i.e. very close pertains to the interval [0,10], close

pertains to the interval [10,30], commensurate pertains to the interval [30,60], and

so on.

4.6.3. Angles

An angle can be constructed in different ways. In addition to the only hard-coded variant

(see Def. 4.19), there are a number of alternatives available. The differences exist mainly

because of different angular values (grad, degree, and radian) and because of the optional

specification of minimum and maximum values.

Definition 4.79 (Construction)

The MPLL Standard Library provides the following alternative constructors for angles:

(1) Angle() =
Angle(0,−defMod(Grd),defMod(Grd))
of type

7→ Angle

153

4. MPLL – Multi-Paradigm Location Language

(2) AngleReal(Fangle) =
Angle(Fangle,−defMod(Real),defMod(Real))
of type

Float 7→ Angle

(3) AngleGrd(Fangle) =
Angle(Fangle,−defMod(Grd),defMod(Grd))
of type

Float 7→ Angle

(4) AngleDeg(Fangle) =
Angle(degToGrd(Fangle),−defMod(Grd),defMod(Grd))
of type

Float 7→ Angle

(5) AngleRad(Fangle) =
Angle(radToGrd(Fangle),−defMod(Grd),defMod(Grd))
of type

Float 7→ Angle

(6) AngleReal(Fangle,Fmod) =
Angle(Fangle,−Fmod,Fmod)
of type

Float∗Float 7→ Angle

(7) AngleGrd(Fangle,Fmod) =
Angle(Fangle,−Fmod,Fmod)
of type

Float∗Float 7→ Angle

(8) AngleDeg(Fangle,Fmod) =
Angle(degToGrd(Fangle),−degToGrd(Fmod),degToGrd(Fmod))
of type

Float∗Float 7→ Angle

(9) AngleRad(Fangle,Fmod) =
Angle(radToGrd(Fangle),−radToGrd(Fmod),radToGrd(Fmod))
of type

Float∗Float 7→ Angle

(10) Angle(C,D,E) =
Angle(bearing(D,E)−bearing(D,C))
of type

Configuration∗Configuration∗Configuration 7→ Angle

Version (1) is the default constructor. By default, the value of the angle is 0 and it is

treated modulo 400g. Therefore, it can hold values in the interval]−400g,400g[.

154

4.6. The MPLL Standard Library – Types

Version (2) accepts a negative or positive real value as a Float or an Integer value.

By default, the angle is not treated modulo a certain factor. Therefore, it can hold any

real values. This version is intended for use with special kinds of coordinates, such as

screen coordinates.

Version (3) accepts a negative or positive grad value as a Float or an Integer value.

By default, the angle is treated modulo 400g. Therefore, it can hold values in the interval

]−400g,400g[.

The constructors (4) and (5) operate analogous to (2) with the exception that values

are explicitly given as degree (4) and radian (5), and the respective modulus is added.

The modulus is always given as grad, but results in the intervals]−360◦,360◦[(3) and

]−2π,2π[(4).

Version (6) accepts a negative or positive real value as a Float or an Integer value.

The modulus is explicitly given by Fmod. Therefore, it can hold any real values in the

Interval [−Fmod,Fmod[.

The constructors (7) to (9) operate analogous to (2) with the exception that both values

are explicitly given as grad (7), degree (8), and radian (9). The modulus is explicitly

given by Fmod and contains a grad (7), degree (8), or radian (9) value. The latter two

are converted to grad before calling Angle.

The constructor (10) accepts three configurations C, D, and E as parameters and con-

structs an angle which is defined by the difference between the bearing between D and

E and the bearing between D and C.

Definition 4.80 (Predicates)

MPLL provides the following predicates to ascertain the properties of an angle A.

(1) isPositive(A) = not(isNegative(A)) Angle 7→ Bool

(2) isRightTurn(A) = not(isNegative(A)) Angle 7→ Bool

(3) isLeftTurn(A) = isNegative(A) Angle 7→ Bool

(4) minMax(A) = Interval(min(A),max(A)) Angle 7→ Interval

Predicate (1) is defined using the basic predicate isNegative. It returns true if

isNegative returns false.

Predicates (2) and (3) are defined using the basic predicate isNegative, whereas

positive angles represent right turns and negative angles represent left turns.

(4) returns the interval for valid angles of this type, specified by the interval between

min(A) and max(A).

4.6.4. Points

Apart from the default constructor, which can be called without any parameters, there

exist three alternative constructors.

155

4. MPLL – Multi-Paradigm Location Language

Definition 4.81 (Construction)

The MPLL Standard Library provides the following alternative constructors for points:

(1) Point() = Point(Angle(),Angle())
of type

7→ Point

(2) Point(Ax,Ay) = Point(Ax,Ay)
of type

Angle∗Angle 7→ Point

(3) Point(Fx,Fy) = Point(Angle(Fx),Angle(Fy))
of type

Float∗Float 7→ Point

(1) is the default constructor which creates a new Point positioned at the origin (0,0).

(2) accepts a pair of coordinates specified as Angle values.

(3) accepts a pair of coordinates specified as Float or Integer values. These are

subsequently used to initialise the Angle values of the newly created Point.

4.6.5. Configurations

A number of constructors can be derived from the different possible combinations of

specifying either the orientation or the position. Additionally, there exist variations from

the individual form of the parameters (Angle, Float, or Point).

Definition 4.82 (Construction)

The MPLL Standard Library provides the following alternative constructors for config-

urations:

(1) Configuration() =
Configuration(Angle(),Angle(),Angle(), f alse)
of type

7→ Configuration

(2) Configuration(A,Fx,Fy) =
Configuration(A,Angle(Fx),Angle(Fy),true)
of type

Angle∗Float∗Float 7→ Configuration

(3) Configuration(A,Ax,Ay) =
Configuration(A,Ax,Ay,true)
of type

Angle∗Angle∗Angle 7→ Configuration

156

4.6. The MPLL Standard Library – Types

(4) Configuration(A) =
Configuration(A,Angle(),Angle(),true)
of type

Angle 7→ Configuration

(5) Configuration(A,P) =
Configuration(A,getX(P),getY(P),true)
of type

Angle∗Point 7→ Configuration

(6) Configuration(P) =
Configuration(Angle(),getX(P),getY(P),true)
of type

Point 7→ Configuration

(7) Configuration(Ax,Ay) =
Configuration(Angle(),Ax,Ay, f alse)
of type

Angle∗Angle 7→ Configuration

(8) Configuration(Fx,Fy) =
Configuration(Angle(),Fx,Fy, f alse)
of type

Float∗Float 7→ Configuration

(1) is the default constructor. The position is set to default (the origin at (0,0)), the

orientation defaults to 0. hasOrientation is set to false.

(2) accepts an orientation given as an Angle value and a pair of coordinates (two di-

mensions) specified as two Float or Integer values. hasOrientation is set to

true.

(3) accepts an orientation given as an Angle value and a pair of coordinates (two di-

mensions) also specified as Angle values. hasOrientation is set to true.

(4) accepts an orientation given as an Angle value. The position is set to default (the

origin at (0,0)). hasOrientation is set to true.

(5) accepts an orientation given as an Angle value and a pair of coordinates (two di-

mensions) specified as a Point value. hasOrientation is set to true.

(6) accepts a pair of coordinates (two dimensions) specified as a Point value. The

orientation defaults to 0. hasOrientation is set to false.

(7) accepts a pair of coordinates (two dimensions) specified as two Angle values. The

orientation defaults to 0. hasOrientation is set to false.

(8) accepts a pair of coordinates (two dimensions) specified as two Float or Integer

values. The orientation defaults to 0. hasOrientation is set to false.

157

4. MPLL – Multi-Paradigm Location Language

4.6.6. Lines

An alternative constructor accepts a sequence of points in form of pairs of individual

coordinates (of type Angle).

Definition 4.83 (Construction)

The MPLL Standard Library provides the following alternative constructor for lines:

(1) Line(Ax1,Ay1,Ax2,Ay2, . . . ,Axn,Ayn) =
Line(Point(Ax1,Ay1),Point(Ax2,Ay2), . . . ,Point(Axn,Ayn))
of type

Angle∗Angle∗ . . .∗Angle 7→ Line

(1) accepts a sequence of n points in form of n pairs of coordinates of type Angle.

Definition 4.84 (Predicates)

MPLL provides the following predicates to ascertain the properties of lines L:

(1) upperLeftBB(L) =
Point(Angle(xMin(P)),Angle(yMin(P)))
of type

Line 7→ Point

(2) lowerRightBB(L) =
Point(Angle(xMax(P)),Angle(yMax(P)))
of type

Line 7→ Point

(1) returns the upper left point of the minimum bounding box of the line in form of a

Point.

(2) returns the lower right point of the minimum bounding box of the line in form of a

Point.

4.6.7. Polygons

An alternative constructor accepts a sequence of points in form of pairs of individual

coordinates (of type Angle).

Definition 4.85 (Construction)

The MPLL Standard Library provides the following alternative constructor for polygons:

(1) Polygon(Ax1,Ay1,Ax2,Ay2, . . . ,Axn,Ayn) =
Polygon(Point(Ax1,Ay1),Point(Ax2,Ay2), . . . ,Point(Axn,Ayn))
of type

Angle∗Angle∗ . . .∗Angle 7→ Polygon

158

4.6. The MPLL Standard Library – Types

(1) accepts a sequence of n points in form of n pairs of coordinates of type Angle.

Definition 4.86 (Predicates)

MPLL provides the following predicates to ascertain the properties of polygons P:

(1) upperLeftBB(P) =
Point(Angle(xMin(P)),Angle(yMin(P)))
of type

Polygon 7→ Point

(2) lowerRightBB(P) =
Point(Angle(xMax(P)),Angle(yMax(P)))
of type

Polygon 7→ Point

(1) returns the upper left point of the minimum bounding box of the polygon in form of

a Point.

(2) returns the lower right point of the minimum bounding box of the polygon in form

of a Point.

4.6.8. Circular Intervals

Definition 4.87 (Construction)

The standard library features a default constructor and some alternatives.

(1) CircularInterval()
CircularInterval(Angle(0),defMod(Grd))
of type

7→ CircularInterval

(2) CircularInterval(Fvalue)
CircularInterval(Angle(0),defMod(Grd),Fvalue)
of type

Float 7→ CircularInterval

(3) CircularInterval(A)
CircularInterval(Angle(0),defMod(Grd),de fCore,de f Support,A)
of type

Angle 7→ CircularInterval

(1) creates a default (empty) circular interval with a default minimum of 0 and a default

maximum of defMod(Grd) as specified by the standard library (400g) or overridden

by the user.

(2) creates an interval which consists of only one fuzzy value specified by Fvalue for the

entire interval, which has the same extensions as the default interval described in (1).

159

4. MPLL – Multi-Paradigm Location Language

(3) creates an interval using the default values for Amax, de fCore, and de f Support in

order to construct a default circular interval for the angle A.

4.7. The MPLL Standard Library – Functions

The standard library contains a number of composite spatial functions which did not

need to be included in the hard-coded MPLL kernel. These functions are defined as

MPLL constructs and can therefore be easily extended and/or modified to suit specific

purposes.

4.7.1. Transformations

This section provides a range of overloaded versions of generic transformations, i.e. trans-

lation, rotation, and scaling.

Definition 4.88 (Translation)

MPLL provides the following functions for linear translation in planar space.

(1) translatePolar(C,Adir,Adist) =
translateCartesian(C,sin(Adir)∗Adist,cos(Adir)∗Adist)
of type

Configuration∗Angle∗Angle 7→ Configuration

(2) moveX(C,Adist) =
translateCartesian(C,Adist,Angle(0))
of type

Configuration∗Angle 7→ Configuration

(3) moveY(C,Adist) =
translateCartesian(C,Angle(0),Adist)
of type

Configuration∗Angle 7→ Configuration

(4) move(C,Ax,Ay) =
translateCartesian(C,Ax,Ay)
of type

Configuration∗Angle∗Angle 7→ Configuration

(5) move(C,D,Adist) =
translatePolar(C,bearing(C,D),Adist)
of type

Configuration∗Configuration∗Angle 7→ Configuration

(6) move(C,Dir,Adist) =
translatePolar(C,carDir(Dir),Adist)
of type

Configuration∗CarDir∗Angle 7→ Configuration

160

4.7. The MPLL Standard Library – Functions

(7) moveTo(C,D) =
Configuration(orientation(C),point(D))
of type

Configuration∗Configuration 7→ Configuration

(8) moveTo(C,P) =
Configuration(orientation(C),P)
of type

Configuration∗Point 7→ Configuration

(9) move(C,Dir,Adist) =
translatePolar(C,carDir(Dir),Adist)
of type

Configuration∗EgoDir∗Angle 7→ Configuration

(1) modifies the position of the configuration C by a linear translation of the amount

Adist into the direction of the angle Adir. This function uses the basic function trans-

lateCartesian and the respective trigonometric functions of sine and cosine.

(2) modifies the position of the configuration C by a linear translation of the amount

Adist into the direction of the x-axis.

(3) modifies the position of the configuration C by a linear translation of the amount

Adist into the direction of the y-axis.

(4) modifies the position of the configuration C by a linear translation of the amount Ax

into the direction of the x-axis and the amount Ay into the direction of the y-axis.

(5) modifies the position of the configuration C by a linear translation of the amount

Adist into the direction of the bearing from C to D.

(6) modifies the position of the configuration C by a linear translation of the amount Adist

into the direction given by the enumeration type Dir. Dir must be a valid enumeration

type of type CarDir.

(7) modifies the position of the configuration C by a linear translation to the position of

the configuration D.

(8) modifies the position of the configuration C by a linear translation to the position of

the point P.

(9) modifies the position of the configuration C by a linear translation of the amount

Adist into the direction given by the enumeration type Dir. Note that Dir must be a

valid enumeration type of type EgoDir. This operation is only possible if C features an

orientation.

Definition 4.89 (Rotation)

MPLL provides the following function for rotation of spatial entities in planar space,

161

4. MPLL – Multi-Paradigm Location Language

i.e. rotation around the z-axis (see section 2.3.2 for details). Note that a positive an-

gle A denotes clockwise rotation, whereas a negative angle denotes counter-clockwise

rotation.

(1) rotateLeft(C,A)
rotate(C,−abs(A))
of type

Configuration∗Angle 7→ Configuration

(2) rotateCCW(C,A)
rotate(C,−abs(A))
of type

Configuration∗Angle 7→ Configuration

(3) rotateRight(C,A)
rotate(C,abs(A))
of type

Configuration∗Angle 7→ Configuration

(4) rotateCW(C,A)
rotate(C,abs(A))
of type

Configuration∗Angle 7→ Configuration

(5) rotateLeft(L,A)
rotate(L,−abs(A))
of type

Line∗Angle 7→ Line

(6) rotateCCW(L,A)
rotate(L,−abs(A))
of type

Line∗Angle 7→ Line

(7) rotateRight(L,A)
rotate(L,abs(A))
of type

Line∗Angle 7→ Line

(8) rotateCW(L,A)
rotate(L,abs(A))
of type

Line∗Angle 7→ Line

(9) rotateLeft(R,A)
rotate(R,−abs(A))
of type

Polygon∗Angle 7→ Polygon

162

4.7. The MPLL Standard Library – Functions

(10) rotateCCW(R,A)
rotate(R,−abs(A))
of type

Polygon∗Angle 7→ Polygon

(11) rotateRight(R,A)
rotate(R,abs(A))
of type

Polygon∗Angle 7→ Polygon

(12) rotateCW(R,A)
rotate(R,abs(A))
of type

Polygon∗Angle 7→ Polygon

(1), (2) rotate the orientation of C by the amount of the angle A to the left (or counter-

clockwise).

(3), (4) rotate the orientation of C by the amount of the angle A to the right (or clockwise).

(5), (6) rotate the the points of the line L by the amount of the angle A to the left (or

counter-clockwise) around the origin of the reference system. Note that for rotation

around any other point translation before and after rotation is necessary.

(7), (8) rotate the the points of the line L by the amount of the angle A to the right (or

clockwise) around the origin of the reference system. Note that for rotation around any

other point translation before and after rotation is necessary.

(9), (10) rotate the the points of the polygon R by the amount of the angle A to the left

(or counter-clockwise) around the origin of the reference system. Note that for rotation

around any other point translation before and after rotation is necessary.

(11), (12) rotate the the points of the polygon R by the amount of the angle A to the right

(or clockwise) around the origin of the reference system. Note that for rotation around

any other point translation before and after rotation is necessary.

Definition 4.90 (Scaling)

MPLL provides the following functions to change the scale of spatial entities:

(1) scale(L,F)
of type

Line∗Float 7→ Line

(2) scale(R,F)
of type

Polygon∗Float 7→ Polygon

(1) modifies L by scaling it by the factor F from the origin of the current reference

system.

163

4. MPLL – Multi-Paradigm Location Language

(2) modifies R by scaling it by the factor F from the origin of the current reference

system.

Definition 4.91 (Turning)

MPLL provides the following function for changing the orientation of a configuration C.

(1) turnLeft(C,A) =
turn(C,−abs(A))
of type

Configuration∗Angle 7→ Configuration

(2) turnCCW(C,A) =
turn(C,−abs(A))
of type

Configuration∗Angle 7→ Configuration

(3) turnRight(C,A) =
turn(C,abs(A))
of type

Configuration∗Angle 7→ Configuration

(4) turnCW(C,A) =
turn(C,abs(A))
of type

Configuration∗Angle 7→ Configuration

(5) turnTo(C,A) =
Configuration(A,point(C))
of type

Configuration∗Angle 7→ Configuration

(6) turnTo(C,D) =
Configuration(orientation(D),point(C))
of type

Configuration∗Configuration 7→ Configuration

(7) turnAround(C) =
if(hasOrientation(C))
then

Configuration(inverse(orientation(C)),point(C),true)
elseC

of type

Configuration 7→ Configuration

(1) rotates the orientation of C by the amount of the angle A to the left.

(2) rotates the orientation of C by the amount of the angle A, in counterclockwise direc-

tion.

164

4.7. The MPLL Standard Library – Functions

(3) rotates the orientation of C by the amount of the angle A to the right.

(4) rotates the orientation of C by the amount of the angle A, in clockwise direction.

(5) returns a configuration located at the position defined by the coordinates of C with

the orientation of the value of the angle A.

(6) returns a configuration located at the position defined by the coordinates of the con-

figuration C with the orientation of the configuration D.

(7) returns a configuration at the same position, but with an inverted orientation. If the

configuration features no orientation, it remains unchanged.

Definition 4.92 (Inverse)

This function computes the inverse of spatial entities:

(1) inverse(P) =
Point(−xCoordinate(P),−yCoordinate(P))
of type

Point 7→ Point

(2) inverse(C) =
if(hasOrientation(C))then

Configuration(inverse(orientation(C)),
inverse(point(C)),true)else

Configuration(0,inverse(point(C)), f alse)
of type

Configuration 7→ Configuration

(1) returns a point located at the position point symmetric to the point P.

(2) returns a configuration located at the position point symmetric to the configuration

C. If the configuration has an orientation, then the orientation angle is inverted, too.

4.7.2. Direction, Bearing and Orientation

MPLL provides the following predicates to ascertain the spatial relation of configura-

tions C, D and E. Note the different configurations denoting the referent, the relatum,

and, in deictic settings, the point of view or utterance.

Definition 4.93 (direction)

The direction function returns a newly constructed Angle using the values from the

predefined constants as listed in Def. 4.73 on page 149.

(1) direction(Dir) = Angle(carDir(Dir)) CarDir 7→ Angle

(2) direction(Dir) = Angle(carDir(Dir)) EgoDir 7→ Angle

(3) direction(Dir) = Angle(carDir(Dir)) EgoDirD 7→ Angle

165

4. MPLL – Multi-Paradigm Location Language

(1) returns the angle value associated with the cardinal direction Dir as an Angle(see

Def. 4.73 on page 149 for the default mapping).

(2) returns the angle value associated with the egocentric cardinal direction Dir as an

Angle.

(3) returns the angle value associated with the deictic cardinal direction Dir as an Angle.

Definition 4.94 (Absolute Cardinal Direction)

Absolute cardinal direction includes, for example, expressions like “east” or “south-

west”. Because they are defined by an extrinsic RS, they do not depend on the orientation

of the referent.

(1) bearing(Dir,C,D) =
(bearing(C,D) == direction(Dir))
of type

CarDir∗Configuration∗Configuration 7→ Bool

(2) bearingF(Dir,C,D) =
member(bearing(C,D),directionF(Dir))
of type

CarDir∗Configuration∗Configuration 7→ Float

(3) bearingF(Dir,C,D,Fth) =
member(bearing(C,D),directionF(Dir),Fth)
of type

CarDir∗Configuration∗Configuration∗Float 7→ Bool

(4) bearing(Dir,C,L) =
(bearing(C,L) == direction(Dir))
of type

CarDir∗Configuration∗Configuration 7→ Bool

(5) bearingF(Dir,C,L) =
member(bearing(C,L),directionF(Dir))
of type

CarDir∗Configuration∗Configuration 7→ Float

(6) bearingF(Dir,C,L,Fth) =
member(bearing(C,L),directionF(Dir),Fth)
of type

CarDir∗Configuration∗Configuration∗Float 7→ Bool

Predicate (1) tests whether configuration D is located in direction Dir from configuration

C, whereas Dir is of type CarDir (e.g. “east” or “southwest”). The mapping from

cardinal direction identifiers to numeric values can be modified to suit the application

requirements. Note that this function is neither crisp nor fuzzy, but requires equal values

to return true. See other variants for fuzzy treatment of values.

166

4.7. The MPLL Standard Library – Functions

Predicate (2) tests whether configuration D is located in direction Dir from configuration

C, whereas Dir is of type CarDir (e.g. “east” or “southwest”). The mapping from

cardinal direction identifiers to numeric values can be modified to suit the application

requirements. Note that this version is fuzzy, and the return value, therefore, is a Float

within the interval [0,1].

Predicate (3) operates analogous to (2), with the exception, that a threshold value Fth

must also be specified, so that the function returns true, if the return value is ≥ Fth,

and false, otherwise.

Definition 4.95 (Relative Cardinal Direction)

Relative cardinal direction includes, for example, expressions like “left” or “front”. Be-

cause they are defined by an intrinsic RS, they depend on the orientation of the referent.

(1) bearing(Dir,C,D) =
(bearing(C,D) == direction(Dir,C))
of type

EgoDir∗Configuration∗Configuration 7→ Bool

(2) bearingF(Dir,C,D) =
member(bearing(C,D),directionF(Dir,C))
of type

EgoDir∗Configuration∗Configuration 7→ Float

(3) bearingF(Dir,C,D,Fth) =
member(bearing(C,D),directionF(Dir,C),Fth)
of type

EgoDir∗Configuration∗Configuration∗Float 7→ Bool

Predicate (1) tests whether configuration D is located in direction Dir from configuration

C, whereas Dir is of type EgoDir (e.g. “left” or “front right”), and the processing

depends on the orientation of C. The mapping from cardinal direction identifiers to

numeric values can be modified to suit the application requirements. Note that this

function is neither crisp nor fuzzy, but requires equal values to return true. See other

variants for fuzzy treatment of values.

Predicate (2) tests whether configuration D is located in direction Dir from configuration

C, whereas Dir is of type EgoDir (e.g. “east” or “southwest”), and the processing

depends on the orientation of C. The mapping from cardinal direction identifiers to

numeric values can be modified to suit the application requirements. Note that this

version is fuzzy, and the return value, therefore, is a Float within the interval [0,1].

Predicate (3) operates analogous to (2), with the exception that a threshold value Fth

must also be specified, so that the function returns true, if the return value is ≥ Fth,

and false, otherwise.

167

4. MPLL – Multi-Paradigm Location Language

Definition 4.96 (Deictic Cardinal Direction)

Relative cardinal direction in a deictic setting includes, for example, expressions like

“left of” or “in front of” with respect to a certain point of view (configuration D). Be-

cause they are defined by an intrinsic RS, they depend on the orientation of the referent.

The following definitions adhere to the default naming scheme, i.e. C denotes the user’s

position, D denotes the referent and E denotes the relatum.

(1) bearing(Dir,C,D,E) =
(bearing(C,D) == direction(Dir,bearing(E,C)))
of type

EgoDirD∗Configuration∗Configuration∗
Configuration 7→ Bool

(2) bearingF(Dir,C,D,E) =
member(bearing(C,D),directionF(Dir,bearing(E,C)))
of type

EgoDirD∗Configuration∗Configuration∗
Configuration 7→ Float

(3) bearingF(Dir,C,D,E,Fth) =
member(bearing(C,D),directionF(Dir,bearing(E,C)),Fth)
of type

EgoDirD∗Configuration∗Configuration∗
Configuration∗Float 7→ Bool

Predicate (1) tests whether configuration D is located in direction Dir from configuration

C as seen from configuration E, whereas Dir is of type EgoDirD (e.g. “left of” or

“behind”), and the processing depends on the bearing from C to E. The mapping from

cardinal direction identifiers to numeric values can be modified to suit the application

requirements. Note that this function is neither crisp nor fuzzy, but requires equal values

to return true. See other variants for fuzzy treatment of values.

Predicate (2) tests whether configuration D is located in direction Dir from configuration

C as seen from configuration E, whereas Dir is of type EgoDirD (e.g. “left of” or

“behind”), and the processing depends on the bearing from C to E. The mapping from

cardinal direction identifiers to numeric values can be modified to suit the application

requirements. Note that this version is fuzzy, and the return value, therefore, is a Float

within the interval [0,1].

Predicate (3) operates analogous to (2), with the exception, that a threshold value Fth

must also be specified, so that the function returns true, if the return value is ≥ Fth,

and false, otherwise.

Definition 4.97 (bearingPoint)

MPLL provides the following composite functions, with configuration C and direction

Dir:

168

4.7. The MPLL Standard Library – Functions

(1) bearingPoint(Dir,C)
of type

CarDir∗Configuration 7→ Point

(2) bearingPoint(Dir,C)
of type

EgoDir∗Configuration 7→ Point

(3) bearingPoint(Dir,C)
of type

EgoDirD∗Configuration 7→ Point

(1) returns a point which lies on the linear extension of the bearing parallel to an extrinsic

reference system, for example north/east/south/west. The position of the point

does not depend on the orientation of the configuration. It is defined as follows:

move(C,bearing(C,bearing(north/east/south/west,C)),
unitlength(RS))

(2)–(3) returns a point which lies on the linear extension of the bearing of the con-

figuration, indicated by the enumeration type given in the function call, for example

in front/behind. The position of the point depends on the orientation of the con-

figuration. It is defined as follows:

if hasOrientation(C)
then move(C,bearing(C,bearing(in front/behind,C)),

unitlength(RS))
else ERROR

Definition 4.98 (bearingRegion)

MPLL provides the following composite functions, with configuration C, direction Dir,

and distance Adist:

(1) bearingRegion(Dir,C,Adist,Abeam)
of type

CarDir∗Configuration∗Angle 7→ Polygon

(2) bearingRegion(Dir,C,Adist,Abeam)
of type

EgoDir∗Configuration∗Angle∗Angle 7→ Polygon

(3) bearingRegion(Dir,C,Adist,Abeam)
of type

EgoDirD∗Configuration∗Angle∗Angle 7→ Polygon

(1)–(3) returns a (virtual) point which lies on the linear extension of the bearing of the

configuration, indicated by the enumeration type given in the function call, for exam-

ple in front/behind. The position of the point depends on the orientation of the

configuration. It is defined as follows:

169

4. MPLL – Multi-Paradigm Location Language

if hasOrientation(C)
then move(C,bearing(C,bearing(in front/behind,C)),

unitlength(RS))
else ERROR

4.7.3. Other Composite Functions

A number of other functions in MPLL can be defined as composite MPLL constructs

which do not directly rely on any hard coded internals. In course of the use of MPLL

this part of the library will be expanded as necessary constructs are added. In this initial

version there are currently no functions in this section.

4.8. Summary

This chapter introduced the fundamental design aspects of MPLL and showed the rela-

tion to its temporal counterpart, the Specification Language for Geo-Temporal Notions

(GeTS). The complete MPLL specification has been laid out, including basic types and

functions, as well as the complete MPLL Standard Library.

170

5. Application

5.1. Properties . 171

5.2. Transformation of List Elements 172

5.3. Angular Relation in Route Descriptions 172

5.4. Summary . 175

This chapter shows the application of MPLL by illustrating several tasks and subtasks

in spatial information processing, as well as possible solutions to the problems encoun-

tered.

In order to illustrate the use of MPLL, and for introductory purposes, the examples

in the next section are restricted to selected subtasks of more complex processing se-

quences.

5.1. Properties

In this section we take a look at some examples regarding the properties of basic types.

Then, we go through some subtasks of generating route descriptions which involve the

classic spatial relations pertaining to direction and distance.

Some fundamental functions of MPLL concern the modification of the properties of

spatial entities. First and foremost, this applies to the representation of mobile entities:

the configuration data type. This type is used, for example, to model a user moving

through planar space.

The position of a configuration C can be modified by several functions:

(1) moveX(C,Distance)
(2) move(C,XDistance,Y Distance)
(3) move(C,D,distance)
(4) moveTo(C,D)

These functions realise movement along a single axis (1), along both axes (2), in direc-

tion of an entity D (3), or directly to the position of an entity D (4). Functions like these

are needed for spatial translation, i.e. moving entities to certain locations in space.

(1) turnTo(C,D)
(2) turnCW(C,A)
(3) turnAround(C)

171

5. Application

The orientation of C can be directed to face another entity (1), it can be modified in

either direction (2), or it can be inverted (3). Since the orientation, or intrinsic front, of

an entity greatly influences some spatial relations, it can be adjusted in these and various

other ways.

5.2. Transformation of List Elements

In some cases, suitable MPLL functions may not be available and will have to be indi-

vidually defined. For this example, we assume that the function scale does not exist.

Furthermore, we want to find an expression, which not only substitutes this function, but

also allows us to use it on a list of points. Let pointList be a list of points (P1, . . . ,Pn).
The expression

map(lambda(Point P)

2 (Point(xCoordinate(P)*3.0 , yCoordinate(P)*3.0)), pointList)

will scale the coordinates of all points in pointList by the factor 3.0 from the origin

of the reference system.

5.3. Angular Relation in Route Descriptions

A typical example for the application of MPLL is the subtask of generating route de-

scriptions, presented in this section. We assume that a route planner has produced a

route from a starting location P0 to a destination position Pn via n−1 intermediate loca-

tions Pi, with i = (1, . . . ,n−1). The route segments L j = (Pj−1,Pj), with j = (1, . . . ,n)
are also part of the route data structure. The user’s position is represented by the config-

uration U . A number of landmarks Mk are also available, which are stored in a database

and can be selected, for example, by their type, their properties, or by geometric distance

to a reference location.

The concrete scenario is illustrated in Fig. 5.1. The locations Pi designate the locations

along the route. Landmarks are denoted by the green and red dots, partly marked Mk. For

clarity, the landmarks denoted by red dots and the route segments have not been marked

individually in the figure. The dotted circle denotes the geometric distance which is

defined by the enumeration type close.

We further assume that in the sequential processing of the intermediate locations we are

at the junction P4 and that the list landmarks contains all landmarks Mk.

Now, the subtask involving MPLL is establishing significant spatial relations between

the intermediate locations Pi and the landmarks Mk. By significant, we mean those rela-

tions, which are clear in the sense of human perception. In this case, we want landmarks,

172

5.3. Angular Relation in Route Descriptions

P0

P1

P2

P3

P4

P5

P6

M1

M2

M3

M4

Figure 5.1.: Scenario for Angular Relation

which are located in either one of the four primary egocentric cardinal directions: front,

back, left, or right.

First, the user’s position and orientation must be updated to the current location, P4, in

the sequence of route locations. We accomplish this using the transformation functions

move and rotate:

moveTo(turnTo(U,bearing(P3,P4)),P4)

It is important to note that this is not the only way to modify the properties of U , i.e. the

position and the orientation. The modification of both values is relevant for the compu-

tation of the egocentric bearing. An alternative way, among others, is the configuration

constructor:

Configuration(bearing(P3,P4),P4)

Whatever functions suit best depends on individual factors and has no technical con-

sequences. Basically, readability is of prime importance. The latter example is used

subsequently.

The next step towards generating route descriptions can be taken by evaluating the fol-

lowing expression. It is a filter expression with nested lambda expressions. The first

expression filters out the landmarks which are not within close distance. The second

one is a concatenated boolean expression which tests for the bearing to match either one

of the four egocentric cardinal directions. This function is parameterised by the numeric

value 0.8. This value means that only those bearings qualify, which score at least a

173

5. Application

fuzzy value of 0.8 in comparison with the circular interval defining a cardinal direction

(see Fig. 2.26 on page 76 and the discussion in section 2.7.3 for more details on fuzzy

representation of direction).

Let C = Configuration(bearing(P3,P4),P4) in

2 Let threshold = 0.8 in

filter(lambda(Point P)(

4 (lambda(Point Q)(

maxDistance(C, Q, close)(Q)) &&

6 (bearing(C, P, front, threshold) ||

bearing(C, P, left, threshold) ||

8 bearing(C, P, back, threshold) ||

bearing(C, P, right, threshold))

10 (P)), landmarks))

Alternatively, we need not nest the lambda expressions, but can instead nest the filter

expressions. While producing the same result, the expression would look like this:

Let C = Configuration(bearing(P3,P4),P4) in

2 Let threshold = 0.8 in

filter((lambda(Point Q)(

4 bearing(C, Q,front, threshold) ||

bearing(C, Q,left, threshold) ||

6 bearing(C, Q,back, threshold) ||

bearing(C, Q,right, threshold))(P)),

8 filter(lambda(Point P)

(maxDistance(C,P,close)(P)),landmarks))

The result is a list of landmarks which qualify with respect to two properties:

1. the Euclidean (L2) distance to the user’s position

2. the bearing from the user’s position to the landmark

The first property satisfies the requirement that only those landmarks are to be taken

into account which are “close” enough to the user’s position. The evaluation of the

vague notion of closeness is achieved by the definition of the fuzzy distance denoted by

the keyword “close”, which can be modified to reflect the context of use and the user

preferences.

The second property serves to discard those landmarks that are not in a clear cardinal

direction from the user’s position and orientation. Since human spatial cognition features

very clear expressions for the definition of the primary egocentric cardinal directions (“in

front”, “behind”, “left”, and “right”), landmarks located in one of these directions are

primarily important for the orientation and navigation of the user. Unclear expressions,

174

5.4. Summary

such as “sharp left” or “right front”, serve well neither as trigger cues nor as reassuring

cues.

In a similar manner, direction can be expressed using surrounding landmarks. While

in the previous step the task was to find suitable landmarks in order to facilitate user

positioning (“...after crossing the River (M1) you come to a junction where you can

see a big fountain (M3) straight ahead and a church (M2) to your left...”, i.e. providing

a reassuring cue, the process of generating a trigger cue might require a different set

of landmarks. Non-cardinal directions can easily be expressed using landmarks, for

example by directing users towards or away from them. The following expression serves

to filter out all landmarks which are close enough to the user’s position and are located

in the direction the user has to proceed from there:

Let C = Configuration(P4) in

2 Let Dir = CircularInterval(bearing(P4,P5)) in

Let threshold = 0.8 in

4 filter((lambda(Point Q)

(member(bearing(C,Q),Dir)>threshold)(Q)),

6 filter(lambda(Point P)

(maxDistance(C,P,close)(P)),landmarks))

This expression returns a list of landmarks that are located in the same direction as the

bearing from P4 to P5, i.e. in the direction the user has to move towards. Note that the

(implicit) default parameters of the CircularInterval constructor (see Def. 4.87)

can be modified so as to reflect the preferred definition of fuzzy direction (again, see

Fig. 2.26 on page 76 and the discussion in section 2.7.3 for more details).

Landmarks in the opposite direction, i.e. the landmarks that the user has to move away

from, can be produced by the following expression:

Let C = Configuration(P4) in

2 Let IDir = CircularInterval(inverse(bearing(P4,P5))) in

Let threshold = 0.8 in

4 filter((lambda(Point Q)

(member(bearing(C,Q),IDir)>threshold)(Q)),

6 filter(lambda(Point P)

(maxDistance(C,Q,close)(P)),landmarks))

5.4. Summary

The examples in this chapter can illustrate only a fraction of the possible applications of

MPLL. The language was intended as a very flexible means for processing and reasoning

in spatial scenarios and can, therefore, be applied to a huge number of very different and

very specific tasks. As development progresses and more applications are found, this

175

5. Application

section of the documentation will be populated with additional examples illustrating

complementary scenarios and tasks.

176

6. Related Work

6.1. Qualitative Orientation . 177

6.2. Qualitative Distance . 178

6.3. Related Projects . 179

6.4. Related Standards: Traffic Information via RDS/TMC 185

6.5. Summary . 189

The following two sections introduce important work regarding qualitative orientation

and distance, and indicate further reading. An overview of techniques and models devel-

oped in these two fields has been compiled, for example, by Escrig and Toledo [51] and

Escrig [52]. Section 6.3 discusses related projects which have been developed concur-

rently to the work presented in this thesis and which have been supervised by the author.

Then follows a detailed description of related standards. This concerns in particular the

RDS/TMC system, which has been of major importance for some of the project work.

A short summary concludes this chapter.

6.1. Qualitative Orientation

There mainly exist [52] three models for qualitative orientation that are not based on

projection into external reference systems: Frank [57], Freksa [59, 60] (see also Freksa

and Zimmermann [58]), and Hernández [76]. All these models divide space into qualita-

tive regions using references systems that are centred on the reference objects, i.e. using

local and egocentric RSs. The representational primitives for spatial objects are points.

The following sections further introduce the three models.

6.1.1. Egocentric Motion-based Reference System (Freksa &
Zimmermann)

The model proposed by Freksa [59, 60], and Freksa and Zimmermann [58] respectively,

introduced the so-called double-cross calculus. Direction from a reference point to a

located point is defined with respect to a perspective point. The approach uses three

axes: one is specified by the reference point and the perspective point, the other two axes

are perpendicular to the first one and go through the reference point and the perspective

point respectively. As a result, 15 base relations are defined. The inference mechanism

177

6. Related Work

allows for [51] the following reasoning1: ‘“given two relationships ‘c wrt ab’ and ‘d wrt

bc’, what is the relationship ‘d wrt ab’?”

Scivos and Nebel [146] recently studied the computational properties of this calculus.

They proved reasoning with the 15 base relations to be NP-hard.

6.1.2. Indoor fixed Spatial Orientation (Hernàndez)

Hernández [76] combines a cardinal reference system for orientation (such as shown

in Fig. 2.2 c and d), on page 46) with a topological domain not unlike RCC-8, into a

structure called Relative Topological Orientation Node (rton). Each node in this rton

denotes combinations of topology and orientation, while the edges denote neighbouring

pairs.

The intrinsic front pertains to the main entrance of a room – the model is specifically

designed for indoor spatial orientation – which could be prone to ambiguity in cases,

where a room has multiple entrances or exits, or in cases of very large and/or irregularly

shaped rooms. Escrig [51] provides a short introduction to this model, including an

illustration of an rton.

6.1.3. Cardinal Reference System (Frank)

Frank [57] proposed two different models for describing cardinal directions of different

granularity (e.g. north, southeast, left of, or in front) between point entities: a cone-based

method and a projection-based method. The latter method facilitates the representation

of nine different relations in terms of a point algebra (see Renz [137], section 2.5, pp.

27) by separately specifying a relation for each of the two axes. Ligozat [100] studied

the computational properties and found, in particular, that reasoning with the projection-

based approach is NP-complete. The cone-based approach is essentially similar [51] to

the approach by Hernàndez described in section 6.1.2.

6.2. Qualitative Distance

Some early approaches dealing with qualitative distance were introduced by Mukerjee

and Joe [114] and Zimmermann [173]. Chang and Jungert [22] presented a qualitative

orientation model based on projection, which was extended in order to include named

distances by Jungert [89]. Other qualitative orientation models have been extended with

the concept of named distances by Zimmermann [174,175], Frank [57], and Clementini,

Di Felice, and Hernández [77, 26].

1The expression wrt is to be read “with respect to”.

178

6.3. Related Projects

6.3. Related Projects

Under the author’s supervision, several related projects have been developed concur-

rently to this work. Each of these projects can either function as a module which can

be integrated into the MPLL system architecture (e.g. TransRoute), or it can aid in the

processing of data and/or in providing data to be processed with MPLL.

6.3.1. Ontology for Transportation Networks (OTN)

An essential foundation for interoperable applications is a holistic concept of the un-

derlying structures of the data to be processed, i.e. an ontology. The purpose of the

Ontology of Transportation Networks (OTN) [106] is to provide such a foundation for

applications which deal with locations, locational relationships, and mostly with the as-

pects of locomotion and transport.

The Origins of OTN

Different parties have worked on standards and interfaces in geographic data interchange

since the late eighties. In 1993, the technical commission TC204 of the International Or-

ganisation for Standardisation (ISO) [79] began work on Intelligent Transport Systems

(ITS) [82]. The aim of their working group 3 was to review existing regional standards,

which revealed to be highly heterogeneous. While the Japan Digital Road Map As-

sociation (JDRMA) [85] mainly worked on standards catering for navigation systems

and the necessary optimisations therefore, the American Spatial Data Transfer Standard

(SDTS) [147] was designed to facilitate the description of records, but not the standard-

isation of content. In Europe, the Geographic Data Format (GDF) [63] was developed

as an extensible and application-independent data model for transport systems. Subse-

quently, seven countries2 continuously revised and extended the GDF, which led to the

release of GDF 4.0 on 21. March 2002 as the official ISO standard ISO-14825 [84] for

geographic data interchange in transport applications.

While the underlying model of GDF mainly includes a thorough representation of car

traffic and road networks, other modes of transport have received less attention. Ad-

ditional elements, such as services or public transport, are not included in GDF. OTN

incorporates the comprehensive model of road networks underlying GDF, and extends

the ontology to compensate for the neglected fields. Further extension is not only possi-

ble, but also desirable, since there cannot be a complete ex-ante model of all traffic and

transport related affairs – nor for any other domain for that matter. To be usable with

today’s web infrastructures, OTN is specified in the Web Ontology Language (OWL).

OTN contains some extensions which are not present in GDF: schedules, services and

meteorology.

2Australia, Canada, Germany, Japan, Korea, the Netherlands and the U.S.

179

6. Related Work

Schedules

OTN was developed as an integrated approach to modelling private and public transport.

Therefore, one of the most important features is the specification of schedules. In GDF,

the specification of schedules is limited to providing a time frame (start and end time) and

a network segment (road or ferry segment) to convey that, for example, the ferry from

Staten Island to Manhattan operates from 04:30 am to 11:30 pm. Further specification

of travel times, intervals and such is not possible.

Because of the importance for (multi-modal) routing, OTN facilitates the definition of

departure times, travel times and time frames. A typical segment or connection in public

transport has an attribute “timetable”, which holds a series of schedules. Each schedule

is valid during “validity Period”, i.e. the time frame in which the respective means

of transport operates, while “loop Time” defines the interval. “starts at” contains the

starting node (which can be located at either end of an edge), and “travel Time” contains

the regular or individual duration of travel. Optionally, a “waiting Time” indicates an

idle time before departure. A ferry, which commutes hourly between 06:30 am and

06:30 pm from node A to node B, has a travel time of 30 minutes, and can be loaded 20

minutes prior to departure, could have a schedule like the following:

<Timetable rdf:ID="Timetable_A-B">

2 <starts_at rdf:resource="#A"/>

<waiting_Time>m20</waiting_Time>

4 <loop_Time>h1</loop_Time>

<travel_Time>m30</travel_Time>

6 <validity_Period>

<Validity_Period rdf:ID=’validity_Timetable_A-B’>

8 <time_duration>h12</time_duration>

<starting_Date>h6m30</starting_Date>

10 </Validity_Period>

</validity_Period>

12 </Timetable>

Services

OTN caters for different aspects beyond those pertaining to routing and navigation. Ser-

vices represent one of these aspects.

GDF generally introduces the notion of services, although – among a series of pro-

posed services – only one is implemented: the service “Entry Point” defines the access

to a service.

OTN includes most of the GDF proposed services and provides further extensions.

The attribute “is Accessible at” renders the GDF-service “Entry Point” useless3, there-

fore it has not been taken up in OTN. One service, which is very important for the pur-

pose of OTN, is called “Transfer Service”. It describes means to change the transport

3“Entry Point” only represents another service and it’s accessibility.

180

6.3. Related Projects

vehicles, for example, from car to train. Parking places, for example, are modelled as

part of transfer services.

Meteorology

New in OTN is the possibility to store weather information. There is the topic ‘Me-

teorology’, which is subdivided into the classes ‘Temperature’ and ‘Weather’. These

are subclasses of ‘Face’ and define an area with the actual temperature and the kind of

weather, which can be any one of the following: snow, sleet, hail, dew, rain, shiver and

storm.

6.3.2. Local Data Stream Management System

Many practical applications of geospatial information processing systems benefit im-

mensely from up-to-date dynamic information. Navigation systems are a prominent ex-

ample where dynamic information is most useful. ‘Static’ queries to (XML-) databases

can, however, also benefit from dynamic information. A straightforward answer to a

query like “where is the nearest pharmacy” can be useless when the road to the clos-

est pharmacy is currently blocked. As previously mentioned, there exist in fact many

geospatial relations whose evaluation amounts to a path planning problem. Solving these

problems essentially depends on the state of the underlying infrastructure and therefore

requires up-to-date dynamic data about it.

Dynamic information usually comes in form of streams of data, and these data streams

must be processed, usually in several steps, until they can be fed into the final application

system.

In the REWERSE deliverable A1-D6 [105], we presented two developments. The first

one is the Local Data Stream Management System (L-DSMS). Data stream management

systems are, for example, used in grids to control the flux of large amounts of data from

the data sources, telescopes, for example, to world wide distributed computer centres.

This is not an application for L-DSMS. L-DSMS is local in the sense that it facilitates

the specification and construction of a single Java program which consists of a network

of nodes for processing streams of data. Each such node receives data from one or

several data sources, processes them in a certain way, and delivers the processed data to

one or more data drains. A data drain can be the data source for the next processing node

in the network, or it can be the end application in the whole processing chain. One of

the components of L-DSMS is the SPEX XML–filtering system [129, 130]. It processes

XPath [23] queries on a stream of XML data and can be used to extract interesting

information from XML streams.

The L-DSMS network is configured by XML–files. They contain the list of nodes,

and for each node its sources and drains. Each node corresponds to a Java class whose

methods do the actual processing. The L-DSMS reads the configuration files, loads the

corresponding Java classes and arranges them into the required network.

181

6. Related Work

The second development is an application of the L-DSMS for processing dynamic traffic

information. The traffic information comes from RDS-TMC receivers and is processed

in several steps before it is delivered to several application systems.

The availability of Traffic and Travel Information (TTI) for any device or application

is depending on the accessibility of some source for this type of information. Car nav-

igation systems can, for example, be connected to an RDS-compatible radio receiver.

As sales have risen and RDS radios have become quite common, marginal costs for the

necessary hardware components have been declining, which further opens the market to

other devices and fields. GPS receivers for mobile solutions sometimes also contain an

RDS-compatible FM receiver, although this is not as common.

However, in cases where there is no FM receiver at hand, an alternative source for

TTI must be found. Routing applications running on standard PCs (which usually don’t

have built in FM receivers), for example, belong to this category. One possible solution

is to substitute radio transmission and receiver hardware with an internet connection and

a web service, which has been the objective of this project. The main goal of the project

was to provide the following functionality:

• FM Receiver

This is the first of only two hardware components of the system. In our testbed,

there are currently two RDS-capable FM receivers attached via serial ports to a

server. They can be tuned to different radio stations and can be set to provide a

raw binary RDS data stream at the serial port. By design, the FM receiver shall

neither block the frequencies from 15 to 23kHz nor above 53kHz, since this is

where RDS data is transmitted (see Fig. 6.1).

• RDS Decoder

This second hardware component produces the raw RDS bit stream by isolating

and decoding the signals around 57kHz at a rate of 1187.5 bits per second. This

stream is directly delivered to the receiver’s serial port, which is connected to the

server machine.

• TMC Decoder

The first task entirely realised in software is the decoding of RDS groups from the

raw data stream. RDS groups consist of 4 data blocks which contain 26 bits each.

Of these 104 bits (4∗26), 40 bits (10 in each block) are used for error correction,

which leaves a net payload of 16 bits per block or 64 bits per group (see Fig. 6.2).

TMC messages contain the group id ‘8A’.

• XML Stream Generator

At this stage, the raw TMC data are transformed to XML corresponding to a

customised schema. Furthermore, the data are enriched with the contents of the

182

6.3. Related Projects

Event Code List (ECL) and Location Code List (LCL). This enables devices which

cannot access these code lists to nevertheless display the textual contents of TMC

messages, instead of rather cryptic raw binary data.

• SPEX Filter Mechanisms

In contrast to classic querying of relational data, which produces a result set de-

signed to meet the users demands, the processing of data streams requires other

mechanisms to query or filter the incoming data. L-DSMS makes use of a system

called SPEX [129, 130], which has been developed by a former member of the

Munich team, Dan Olteanu. It is a powerful filtering mechanism for our system.

This way, the stream optionally passes one or more nodes which filter according

to certain criteria to produce a suitable output stream.

• Configuration Component

In order to facilitate easy (re-)configuration of the different components, the net-

works of nodes which the stream passes through is configured entirely via a single

XML file. In this file, the respective sources and drains, as well as (filter-) nodes

and the necessary parameters are specified.

• Visualisation Component

Apart from the textual output of TMC messages, which strongly resemble the

usual spoken announcements on the radio, graphical output in form of symbols

on a map display is also provided. Easily implemented on different digital map

systems, we show the basic procedure of how to integrate these graphical mes-

sages with an SVG-based map system rendered in a conventional internet browser

window. Strictly speaking, this component is not part of the TMC to XML trans-

formation prototype. Nevertheless, output mechanisms similar to the one provided

here would logically be the consumers of the provided data stream.

In supplemental project work, Michael Buschmann and Markus Krieser [20] focussed on

persistent storage and statistical evaluation of RDS/TMC data. Storing TMC messages

in a database system facilitates the statistical evaluation, and, subsequently, calculating

the likelihood of incidents on certain road segments at certain times. On weekdays, in the

late afternoon, it is, for example, very likely that there is a traffic jam on the northbound

highway A9 near Munich. Information like this is very valuable if the planning phase of

in routing application is conducted well in advance of the execution phase.

In another related project [71], Christian Hänsel developed an interface for the TMC

data provided by L-DSMS to be displayed in the popular Google Earth Client [66].

This work demonstrates the possibilities of integrating highly dynamic geospatial data

with the static data provided by Google Earth, using the Keyhole Mark-Up Language

(KML) [93].

183

6. Related Work

6.3.3. TransRoute

This project started out as a diploma thesis [151] under the author’s supervision and is

now work in progress for a Ph. D. thesis, both by Edgar-Philipp Stoffel. TransRoute

is an object-oriented framework for routing applications which is capable of not only

representing various real-world transport networks (highways, public transport, etc.),

but also of computing shortest path and nearest neighbour queries.

Basically, TransRoute distinguishes three different levels of abstraction by separating

between ontology concepts describing real-world entities in the domain of transport net-

works, together with their attributes and relations, and a graph structure, which can be

instantiated with the respective concepts from the ontology.

The core functionalities of the framework include the following aspects:

Ontologies – Functionality for loading OWL ontologies [161, 163] and for checking

the domain types of graph elements against those is provided.

Graph Structure – An object oriented in-memory representation of a graph structure,

mainly from the Java Universal Network/Graph Framework (JUNG) [88], is used.

Graphs in TransRoute can contain vertices and both directed and undirected edges.

The generic graph structure can be seen as a hull for the domain concepts defined

in the ontology, which can be filled into the according graph element. The graph

structure is reusable for different, for example hierarchical, concepts. For exam-

ple, a vertex on a high abstraction level represents an entire transport network.

Therefore, its incident edges represent connections to other transport networks.

In contrast, another vertex may represent a concrete bus station whose adjacent

edges are physical connections. Yet another application for a generic vertex is

the modelling of a country, its incoming and outgoing edges representing adja-

cency, containment and part-of relations between other countries, continents and

cities. Not only are all graph elements attributed, i.e. attributes can be attached to

them arbitrarily, but also they comprise a built-in hierarchic structure which can

be navigated and entails interesting semantic concepts ensuring its integrity. Es-

pecially for edges, numeric attributes can be considered to be edge weights. Some

predefined attributes exist concerning location, geometry and the ontology class

represented.

Persistence – In contrast to the transient in-memory structure mentioned above, the

persistent representation of graphs is responsible for storing graphs to files ad-

hering to the Graph Exchange Language (GXL) [69], a specialised Extensible

Mark-Up Language (XML) derivate. By using the GXL API for Java [70], Tran-

sRoute offers functionality for both reading from and writing to GXL files. One

of the primary benefits of GXL is that it facilitates representation of nested graphs

within edges and vertices. Furthermore, the framework can be extended by addi-

tional plug-ins for different data formats (e.g. the Geography Mark-Up Language

184

6.4. Related Standards: Traffic Information via RDS/TMC

(GML) [65] or the Geographic Data Format (GDF) [84]).

Entities of the underlying infrastructures are embedded in the ontology modelling, along

with their attributes, which may either be fixed or dynamic. The corresponding graph

elements take over all these properties.

Having decided to use directed and weighted graphs as mathematical formalism, rout-

ing is equivalent to searching shortest paths fulfilling special constraints in graphs by

standard algorithms or some of their derivatives. Employing a shortest path algorithm,

one can profit from an important principle of dynamic programming, stating that such

an algorithm being too complex can be subdivided into smaller problems, as Cormen et

al. have proved [35].

Mostly, these efficient derivates of standard algorithms in form of heuristics compris-

ing techniques of reasoning are of practical value for large-scale computer models since

they yield faster results at the trade-off of less accuracy. Some of them are showing

proximity to human cognition and, therefore, can be considered to be a natural way of

finding a solution [21].

A further improvement manifests itself in the hierarchic graph structure [19] mak-

ing the framework applicable beyond real life transport networks: Buildings as well as

cities including their interiors can, among other hierarchic entities, be represented by the

generic graph structure. Integrity is maintained by strict restrictions for adding vertices

and edges at the right place of the hierarchy.

Furthermore, multi-modal transport including transfers can be regarded more for-

mally [10] in terms of combinations of transport modes forming certain patterns. Trans-

port networks can be seen as generic vertices in an abstract graph, for which routing

essentially decides the combination of transfers. All these aspects influence reasoning

techniques for a more complex shortest path algorithm in transport networks. Altogether,

the results presented by Stoffel [151] comprise a suitable module to be integrated into

the MPLL system architecture.

6.4. Related Standards: Traffic Information via RDS/TMC

Apart from standards and technologies already mentioned in this chapter, such as the Ge-

ographic Data Format (GDF) [63, 84], the Geography Mark-Up Language (GML) [65],

or the Web Ontology Language (OWL) [161, 163], mainly the set of standards regard-

ing RDS/TMC [94, 80, 81, 83] has been used by related projects. In this section, we

take a closer look at one of the Radio Data System (RDS) services, the Traffic Message

Channel (TMC). TMC data was used as an example for a stream of traffic information

to be incorporated into dynamic routing applications.

185

6. Related Work

6.4.1. The Radio Data System (RDS)

The Radio Data System (RDS) [94] is a narrow-bandwidth data transmission channel

for VHF/FM broadcasting. RDS supports data transmission alongside (see Fig. 6.1)

sound broadcasts, and facilitates services which are based on sending a small amount of

digital data to a great number of users. It was developed in the 1970s and early 1980s

and is now implemented all over Western Europe, several Central and East European

countries, in parts of Asia Pacific, South Africa and (using the slightly different [136]

Radio Broadcast Data System (RBDS) [135] standard) the United States. Rather recent

additions to RDS are TMC (see next section) and Open Data Applications (ODA) (not

discussed here, see Kopitz and Marks [94], chapter 9, instead).

Figure 6.1.: Spectrum of a pilot-tone stereo multiplex signal with RDS [94]

Basic features of RDS include, among others, the following information features,

tuning aids, and programme-related features. Because this list only serves to illustrate

the basic ideas and functionalities of RDS, it is not exhaustive.

Information Features

• Clock Time (CT): The current time and date can be transmitted in type ‘4A’

groups by the radio stations to keep the internal clocks of the receivers within

an accuracy of ±0.1 seconds of a certain reference time (e.g. DCF774 (77.5

4DCF77 is not an abbreviation. It is the call-sign for the transmitter and stands for: “D” = Deutschland

(Germany), “C” = long wave signal, “F” = Frankfurt, “77” = frequency: 77.5 kHz. It is transmitted three times

per hour in Morse code.

186

6.4. Related Standards: Traffic Information via RDS/TMC

kHz) in Germany or MSF5 (60 kHz) in England).

• Enhanced Other Networks (EON) : Especially valuable for larger broad-

cast networks, EON information, which is transmitted in type ‘14’ groups,

allows the update of a number of features for programme services other than

the currently tuned service. This includes for example AF, PIN, PS, PTY,

TA (described below).

Tuning Aids (all of type ‘0A’ group)

• Programme Identification (PI): This identifier is not intended for display,

but for identifying identical broadcasts on different frequencies. If reception

quality is decreasing, and if they are equipped with a secondary FM tuner,

RDS receivers can search for broadcasts on other frequencies with identical

PI code which offer better reception quality (of the very same programme).

• Programme Service Name (PS): This contains the static 8 character iden-

tifier to be displayed to the user.

• Traffic Programme and Traffic Announcement (TP/TA): These flags in-

dicate the availability of spoken traffic announcements on the currently tuned

station (when used with EON also other stations). This enables the receiver

to increase the volume and to stop CD or cassette playback whenever spoken

announcements are transmitted.

• Alternative Frequencies (AF): This feature provides alternative frequen-

cies for the currently tuned station in order to optimise reception quality.

Programme-Related Features

• Programme Type (PTY): A list of 29 standardised choices describing the

broadcast programme enable the user to set the receiver to a certain pro-

gramme type (e.g. news), and therefore not to choose a specific radio station,

but a certain type of broadcast instead.

• Radio Text (RT): Text messages of up to 64 characters can be coded and

broadcast by the radio text feature, although many receivers, especially mo-

bile ones, feature only displays with less than 64 characters.

6.4.2. The Traffic Message Channel (TMC)

TMC [80, 81, 83] was mainly developed in the years from 1984 to 1997 by a number of

European companies and institutions, under the leadership of the European Broadcast

Union (EBU), in order to broadcast TTI messages on VHF/FM broadcast transmissions

5MSF is also a call-sign (see previous footnote). “M” is the code for the United Kingdom, the letters “SF”

were apparently randomly assigned. The call-sign does not feature the frequency.

187

6. Related Work

using RDS [94]. TMC is one of several RDS features and services, although compared

to some rather simple features such as tuning aids (PI, PS, TP) or programme-related

features (PTY, RT, PIN), it is one of the most complex standards within RDS.

Figure 6.2.: Structure of RDS baseband coding [94]

The main advantages of digitally broadcast TMC messages over spoken traffic an-

nouncements are:

Asynchronous reception: Users need not be listening at the correct time to the cor-

rect radio station in order to receive information. This is especially important

for individual traffic, since on-board systems must not interfere with the drivers’

ability to concentrate on the traffic.

Caching mechanisms: Messages are stored in a client device and can be queried

any time. Life cycle management ensures that outdated messages are erased from

the memory.

Filtering mechanisms: Several mechanisms exist for filtering out unwanted content,

for example by event type, current location, or projected path. Furthermore, short

repetition cycles combined with duplicate elimination facilitate timely broadcast

of information6.

Language independence: The binary coded messages rely on the ability of the

client devices to generate human understandable messages. This may require in-

creased device intelligence, but also facilitates the use of different languages.

6A rather optimistic refresh cycle of 15 minutes would lead to an average latency of 7.5 minutes, whereas

the typical TMC cycles of 120 seconds result in only 60 seconds of latency.

188

6.5. Summary

Message density: With 1187.5 bps the RDS bandwidth is comparably narrow from

a current viewpoint. Although only some 300 messages can be transmitted per

hour [94], this displays significant advantages over spoken messages. If the infor-

mation of each message could be conveyed by an average of 15 seconds of spoken

text, the same number of messages would still produce the unrealistic amount of

about 75 minutes of announcement time.

Navigation assistance: By incorporating digital traffic announcements into car nav-

igation systems, the task of navigation and route planning could be substantially

improved.

Especially the last point is of great importance for intelligent transport systems, which

need to take into account current traffic situations, as well as statistical data and data

from simulations, in order to refine and further optimise the movement of goods and

passengers in more and more complex scenarios.

In October 2004, the two major providers of digital map data, Tele Atlas [153] and

NAVTEQ [115] announced future collaboration [101] on the standardisation of traffic

codes for digital maps for the United States, which will be based on the European TMC

Alert-C [80, 83] specifications.

6.5. Summary

This chapter described related work, primarily pertaining to qualitative direction and

distance, along with a summary of related projects, diploma theses, and project theses,

which have been carried out in connection with this thesis. The short introduction to the

RDS/TMC standard in the previous section is primarily important in connection with the

L-DSMS prototype.

189

6. Related Work

190

7. Conclusion and Future Work

7.1. Conclusion . 191

7.2. Perspectives for Future Research 191

This section contains a discussion of the results presented in this thesis. Possible per-

spectives for extending this work are also laid out.

7.1. Conclusion

The previous chapters illustrated how the language MPLL facilitates bridging the gap be-

tween quantitative and qualitative spatial models, representations, and processing tech-

niques.

MPLL enables users to individually specify the way they understand space by pro-

viding flexible and extendable language constructs which reflect the qualitative aspects

of human spatial reasoning. It offers the means to adapt quantitative representations

to these aspects, and it allows for the definition of individual functionality. As spatial

notions are highly subjective, MPLL offers flexible means to adapt the specifications

to individual needs and preferences, as well as the context of use in an implicit way.

Comprehensive context and user modelling, however, was out of the scope of this work.

The overall architecture provides the framework in which different modules and ser-

vices can be accessed by, or access, MPLL. This way, interfaces to different services,

each specifically suited to perform special tasks, can be implemented. These services in-

clude, for example, qualitative reasoning on spatial relations between different entities,

various geometrical computations, route planning, and more.

The fact that the MPLL specification in its current form is not final – probably any

reader of the specification will find possible additions or might wish to make adjust-

ments – only illustrates the flexibility of this approach and leads to the conclusion that

a language like MPLL or GeTS will not be static, but a highly dynamic and evolving

component.

7.2. Perspectives for Future Research

The work on MPLL is far from finished. Several possibilities for extending the lan-

guage and the individual components present themselves. This section sketches some

directions and the underlying ideas.

191

7. Conclusion and Future Work

7.2.1. Ontology-based Language Constructs

In theory, a language like GeTS or MPLL could be modelled by using concepts which

are defined in an ontology. Instead of generating different language constructs by hand

(and extending the language as necessary over time), these could then be generated au-

tomatically through the ontology and using ontology reasoning. This idea would apply

the basics of Model Driven Architecture (MDA) in software development to language

design. It will be a great challenge to examine this issue and to specify the necessary

mechanisms which are needed to reach this goal.

7.2.2. Comprehensive User and Context Modelling

As already indicated in section 2.8, the integration of a suitable context and user model

is of key importance for the application of MPLL. While the language offers great flexi-

bility to adapt spatial notions to individual tasks and domains, this is also necessary for

the different modules and services which use, or are used by, MPLL.

A prominent example for this is route planning and navigation. The list of factors which

influence the routing process is virtually endless. What is briefly summed up under the

notion of context, is a very complex network of interdependent factors. The following

examples are all but exhaustive and have to be adapted to individual cases.

Route planning for cars has been developed to marketability years ago. It is an avail-

able and proven technology which is, in addition, confined to a rather restricted envi-

ronment (see section 2.1). However, already in this restricted domain the influence of

context on the processing is very strong. Results depend primarily on the network struc-

ture, which is rather static. Still, the user can chose between the shortest and quickest

route, which are usually very different. The user might prefer a different route at differ-

ent times during the day, and another completely different one at nighttime. If we take

traffic information into account, this opens up another dimension of context. Traffic is

highly depending on the time of day, the date, cultural events (e.g. holidays, big events),

the weather, the season, and many other factors which cannot be mentioned here. All

these factors are part of the context.

Pedestrian navigation is yet more complex. Generally, if fewer restrictions and regu-

lations exist, modelling becomes more complex. The individual user profile, also part of

the context, becomes more important in pedestrian navigation. Some factors include age,

gender, group composition, individual preferences, abilities, authorisation and licences,

and many more.

Comprehensive user and context modelling is the key to flexible and adaptable systems

and services, especially regarding spatial information processing. As considerable re-

sources are already focussed on research in this field [5, 2, 74, 75, 73, 9, 1], there will

be suitable models available for integration into MPLL and its components. However,

192

7.2. Perspectives for Future Research

the individual requirements of the spatial domain must be considered, and they must be

formally described.

7.2.3. Individual Libraries

If MPLL is used on a larger scale, its flexibility will, most likely, lead to a huge number of

function definitions and extensions of the language in order to adapt to specific domains.

As these individual libraries are developed, extended, and refined, some issues have to

be considered.

Ideally, different libraries would cover clearly defined domains. They would not over-

lap in functionality and whatever generic functionality is missing would be added to

the MPLL Standard Library. Although MPLL offers the basis for easy integration of

different libraries (e.g. by namespaces), this has not been done on a larger scale.

7.2.4. Integration with GeTS

From the very beginning of the development of MPLL, the main reason for the close re-

lation to the language GeTS was the possibility of later integrating the two languages, in

order to get a spatio-temporal specification language. However, this integration process

is far from being trivial. It will not consist of just merging the two implementations, but

will involve a very complex adjustment of several factors. The construction of new data

types, for example, will be necessary. These new types will have properties pertaining to

both domains and the necessary functionality must be developed individually. This tran-

sition will not just add another dimension to space, but will raise some more complicated

questions.

193

7. Conclusion and Future Work

194

A. Language Reference

A.1. Types . 195

A.2. Arithmetics . 195

A.3. Boolean Operators . 197

A.4. Control Constructs . 197

A.5. Points . 198

A.6. Configurations . 198

A.7. Lines . 198

A.8. Polygons . 199

A.9. Lists . 200

A.10.Reference Systems . 200

A.11.Intervals . 201

The language constructs are summarized and briefly explained.

A.1. Types

Data Structure Types

Data structure types are listed in table A.1.

Enumeration Types

Enumeration types are listed in in table A.2.

A.2. Arithmetics

Binary Arithmetic Operators (Def. 4.3)

operator

addition +

subtraction -

multiplication *

division ÷
modulo %

maximum max

minimum min

exponentiation pow

195

A. Language Reference

type description

Integer standard integers

Float standard floating point numbers

String strings

Angle floating point numbers representing angles

Point points (two-dimensional)

Configuration configurations in space (Point, Angle)

Line lines and polylines

Polygon polygons

List lists

Interval fuzzy intervals

CircularInterval fuzzy intervals

ReferenceSystem reference system

Route route (from graph/network routing)

Table A.1.: Data Structure Types

Unary Arithmetic Operators (Def. 4.4)

operator

negation -

casting (Bool 7→ Float) float(b)

rounding round(a)

rounding round(a,up/down)

Trigonometry (Def. 4.5)

function result/argument

sine sin(angle) radian Float 7→ Float

cosine cos(angle) radian Float 7→ Float

inverse sine asin(angle) radian Float 7→ Float

inverse cosine acos(angle) radian Float 7→ Float

sine sind(angle) degree Float 7→ Float

cosine cosd(angle) degree Float 7→ Float

inverse sine asind(angle) degree Float 7→ Float

inverse cosine acosd(angle) degree Float 7→ Float

Comparisons

<, <=, >, >= (Def. 4.6).

==, != (Def. 4.7).

196

A.3. Boolean Operators

type possible values

Bool true, false

Side left, right

PosNeg positive, negative

UpDown up, down

ForwardBackward forward, backward

InsideOutside inside, outside

CarDir north, northeast, east, southeast,

south, southwest, west, northwest, N,

NNE, NE, ENE, E, ESE, SE, SSE, S, SSW, SW,

WSW, W, WNW, NW, NNW

EgoDir front, left front, left, left back,

back, right back, right, right front

EgoDirD in front of, left of, behind,

right of

Distance very close, close, commensurate,

far, very far

RSType cartesian, geospherical

Region core, kernel, support, maximum

Hull core, kernel, support, maximum,

crisp, monotone, convex

Fuzzify linear, gaussian

SDVersion Kleene, Lukasiewicz, Goedel

Table A.2.: Reference: Enumeration Types

A.3. Boolean Operators

- (complement), and or ‘&&’ (conjunction), or or ‘||’ (disjunction), xor or ‘ ’̂ (exclu-

sive or) (Def. 4.8).

A.4. Control Constructs

if c then a else b (Def. 4.9).

caseC1 : E1, . . . ,Cn : En else D (Def. 4.10).

while c {E1, . . . ,En} D (Def. 4.11).

Let variable = expression1 in expression2 (local binding) (Def. 4.12).

x := E (assignment) (Def. 4.13).

197

A. Language Reference

A.5. Points

Point(Ax,Ay) of type Integer∗Integer 7→ Point accepts a tuple of coordinates

specified as Angle values.

Predicates on Points

xCoordinate(P) of type Point 7→ Angle returns the x coordinate of a point as an

Angle.

yCoordinate(P) of type Point 7→ Angle returns the y coordinate of a point as an

Angle.

A.6. Configurations

Configuration(A,Ax,Ay,Bo) of type Angle* Angle* Angle* Bool 7→ Con-

figuration accepts an orientation and a pair of coordinates specified as Angle val-

ues. Additionally, hasOrientation must be specified as a Bool value. Setting

Bo to false only makes sense if A is not relevant and is not set or set to 0 (which is

equivalent).

Predicates on Configurations

hasOrientation(C) of type Configuration 7→ Bool returns whether the con-

figuration C features an orientation.

orientation(C) of type Configuration 7→ Angle returns the orientation of a

configuration.

point(C) of type Configuration 7→ Point returns the x and y coordinate of a

configuration form of a Point.

xCoordinate(C) of type Configuration 7→ Float returns the x coordinate of a

configuration as an Integer.

yCoordinate(C) of type Configuration 7→ Float returns the y coordinate of a

configuration as an Integer.

A.7. Lines

Line(P1,P2, . . . ,Pn) of type Point∗Point∗ . . .∗Point 7→ Line accepts a list of

n points with n ≥ 2.

Predicates on Lines

xMin(L) of type Line 7→ Angle returns the minimum value of x coordinates of all

points which make up the line.

198

A.8. Polygons

yMin(L) of type Line 7→ Angle returns the minimum value of y coordinates of all

points which make up the line.

xMax(L) of type Line 7→ Angle returns the maximum value of x coordinates of all

points which make up the line.

yMax(L) of type Line 7→ Angle returns the maximum value of y coordinates of all

points which make up the line.

A.8. Polygons

Polygon(P1,P2, . . . ,Pn) of type Point∗Point∗ . . .∗Point 7→ Polygon accepts

a sequence of n points with n ≥ 3.

Predicates on Polygons

xMin(R) of type Polygon 7→ Angle returns the minimum value of x coordinates of

all points which make up the polygon.

yMin(R) of type Polygon 7→ Angle returns the minimum value of y coordinates of

all points which make up the polygon.

xMax(R) of type Polygon 7→ Angle returns the maximum value of x coordinates of

all points which make up the polygon.

yMax(R) of type Polygon 7→ Angle returns the maximum value of y coordinates of

all points which make up the polygon.

points(R) of type Polygon 7→ List returns the ordered list of points which make

up the polygon.

Topological Predicates on Polygons

DC(R,S) of type Polygon∗Polygon 7→ Bool checks whether the two polygons R

and S are disconnected.

EC(R,S) of type Polygon∗Polygon 7→ Bool checks whether the two polygons R

and S are externally onnected.

PO(R,S) of type Polygon∗Polygon 7→ Bool checks whether the two polygons R

and S overlap partially.

TPP(R,S) of type Polygon∗Polygon 7→ Bool checks whether the polygon R is a

tangential proper part of the polygon S.

NTPP(R,S) of type Polygon∗Polygon 7→ Bool checks whether the polygon R is a

non-tangential proper part of the polygon S.

TPPinverse(R,S) of type Polygon∗Polygon 7→ Bool checks whether the poly-

gon S is a tangential proper part of the polygon R.

199

A. Language Reference

NTPPinverse(R,S) of type Polygon∗Polygon 7→ Bool checks whether the poly-

gon S is a non-tangential proper part of the polygon R.

EQ(R,S) of type Polygon ∗Polygon 7→ Bool checks whether the two polygons R

and S are equal.

A.9. Lists

emptyList(T) of type T 7→ List constructs an empty list for objects of type T .

{T1, . . . ,Tn} of type T∗ . . .∗T 7→ List constructs a list containing objects T1, . . . ,Tn of

type T .

Predicates on Lists

head(L) of type List<T> 7→ T returns the first element of the list L, it is of type T .

tail(L) of type List<T> 7→ List<T> return the list L without the first element,

i.e. without the head.

length(L) of type List<T> 7→ Integer returns the number of elements of the list

as an integer.

sublist(L,N,M) of type List<T>∗Integer∗Integer 7→ List<T> returns the

sublist from at a specific index N to a specific index M.

prefix(L,N) of type List<T>∗Integer 7→ List<T> returns the sublist from the

first element of the list L to a specific index N.

suffix(L,N) of type List<T>∗Integer 7→ List<T> returns the sublist from a

specific index N to the end of the list L.

append(T,L) of type T∗List<T> 7→ List<T> appends an element of type T as the

first element of the list L.

append(L,L) of type List<T>∗List<T> 7→ List<T> concatenates two lists L and

M.

split(L,N) of type List<T>∗Integer 7→ List<List<T>> splits a list L at a

given position into two lists returning a list containing both lists.

filter(Condition,L) of type (T 7→ Bool)∗List<T> 7→ List<T> returns a list of

all elements of type T in L for which condition(T) holds true.

map(Function,L) of type (T 7→ S)∗List<T> 7→ List<S> returns a list

{Function(T1), . . . ,Function(Tn)} of type S.

A.10. Reference Systems

ReferenceSystemcartesian/geospherical,N,N,N,N,B,B) of type RSType*In-

teger*Integer*Integer*Integer* Bool* Bool 7→ ReferenceSystem

200

A.11. Intervals

accepts a reference system type RSType, four Float or Integer coordinates which

define minimum x, maximum y, maximum x and minimum y coordinates and two Bool

values which mark vertical and horizontal wraparound.

ReferenceSystem(cartesian/geospherical,P,P,B,B) of type RSType ∗ Point ∗
Point∗Bool∗Bool 7→ ReferenceSystem accepts a reference system type RS-

Type, two Point variables defining upper left and lower right coordinates, and two

Bool values which mark vertical and horizontal wraparound.

Predicates on Reference Systems

isCartesian(RS) of type ReferenceSystem 7→ Bool returns whether the refer-

ence system is of RSType cartesian.

isGeospherical(RS) of type ReferenceSystem 7→ Bool returns whether the

reference system is of RSType geospherical.

isOfType(cartesian/geospherical,RS) of type RSType ∗ ReferenceSystem 7→
Bool returns whether the reference system is of the given RSType (cartesian or

geospherical).

hasVerticalWrap(RS) of type ReferenceSystem 7→ Bool returns whether the

reference system features vertical wraparound.

hasHorizontalWrap(RS) of type ReferenceSystem 7→ Bool returns whether

the reference system features horizontal wraparound.

xMin(RS) of type ReferenceSystem 7→ Bool returns the minimum value of x co-

ordinates which are allowed within the reference system.

yMin(RS) of type ReferenceSystem 7→ Bool returns the minimum value of y co-

ordinates which are allowed within the reference system.

xMax(RS) of type ReferenceSystem 7→ Bool returns the maximum value of x co-

ordinates which are allowed within the reference system.

yMax(RS) of type ReferenceSystem 7→ Bool returns the maximum value of y co-

ordinates which are allowed within the reference system.

upperLeft(RS) of type ReferenceSystem 7→Point returns the topmost leftmost

point of the reference system in form of a Point.

lowerRight(RS) of type ReferenceSystem 7→ Point returns the lowest right-

most point of the reference system in form of a Point.

A.11. Intervals

[] of type Interval (empty interval)

[t1,t2] of type Interval (new crisp interval from t1 to t2)

201

A. Language Reference

pushback(I,time,value) of type Interval ∗Time ∗ Float 7→ Void adds (time,

value) to the membership function of the interval (Def. 4.36).

Set Operations on Intervals

complement(I)
of type Interval 7→ Interval

complement(I,λ)
of type Interval∗Float 7→ Interval

complement(I,negation f unction)
of type Interval∗ (Float 7→ Float) 7→ Interval

(see Def. 4.37)

union(I,J)
of type Interval∗Interval 7→ Interval

union(I,J,β)
of type Interval∗Interval∗Float 7→ Interval

union(I,J,co norm)
of type Interval ∗Interval∗ (Float∗Float 7→ Float) 7→ Interval

(see Def. 4.38)

intersection(I,J)
of type Interval∗Interval 7→ Interval

intersection(I,J,γ)
of type Interval∗Interval∗Float 7→ Interval

intersection(I,J,norm))
of type Interval∗Interval∗ (Float∗Float 7→ Float) 7→ Interval

(see Def. 4.39)

setdifference(I,J)
of type Interval∗Interval 7→ Interval

setdifference(I,J,version)
of type Interval∗Interval∗SDVersion 7→ Interval

setdifference(I,J, intersection,complement)
of type Interval∗Interval∗ (Interval∗Interval 7→ Interval)∗

(Interval 7→ Interval) 7→ Interval

(see Def. 4.40)

Predicates on Intervals
isCrisp(I) Interval 7→ Bool

isCrisp(I,left/right) Interval∗Side 7→ Bool

isEmpty(I) Interval 7→ Bool

isConvex(I) Interval 7→ Bool

isMonotone(I) Interval 7→ Bool

isInfinite(I) Interval 7→ Bool

isInfinite(I,left/right) Interval∗Side 7→ Bool

202

A.11. Intervals

(see Def. 4.41)

during(time, I,core/kernel/support) of type Time*Interval*IntvRe-

gion 7→ Bool checks whether time is in the corresponding region of the interval I

(Def. 4.43).

isSubset(I,J,core/kernel/support) of type Interval*Interval*Int-

vRegion 7→ Bool checks whether the corresponding region of I is a subset of the

corresponding region of J (Def. 4.43).

doesOverlap(I,J,core/kernel/support) of type Interval∗ Interval∗
IntvRegion 7→ Bool checks whether the corresponding region of I overlaps with the

corresponding region of J (Def. 4.43).

member(time, I) of type Time ∗Interval 7→ Float (membership function) (Def.

4.44).

size(I) of type Interval 7→ Time (size of the interval) (Def. 4.46)

size(I,region) of type Interval∗IntvRegion 7→ Time (size of the correspond-

ing region of the interval) (Def. 4.46)

size(I,t1,t2) of type Interval∗Time∗Time 7→Time (size of the interval between

t1 and t2) (Def. 4.46)

point(I,side,region) of type Interval∗Side∗PointRegion 7→ Time (position

of the corresponding end of the region) (Def. 4.47).

centerPoint(I,n,m) of type Interval∗Integer∗Integer 7→Time (n-m cen-

tre point) (Def. 4.48).

Manipulation of Intervals

shift(I,t) of type Interval∗Time 7→ Interval shifts the interval by the given

time (Def. 4.49).

cut(I,t1,t2) of type Interval∗Time∗Time 7→ Interval (extracts the part of

I between t1 and t2) (Def. 4.50).

hull(I,core/support/kernel/crisp/monotone/convex) of type Inter-

val* Hull 7→ Interval (construction of the corresponding hull) (Def. 4.51).

invert(I) of type Interval 7→ Interval inverts the membership function (Def.

4.52).

scaleup(I) of type Interval 7→ Interval scales the membership function up to

maximal value 1 (Def. 4.53).

times(I, f) of type Interval ∗ Float 7→ Interval multiplies the membership

function of I with f (Def. 4.54).

exp(I,e) of type Interval∗ Float 7→ Interval exponentiates the membership

function of I with e (Def. 4.54).

203

A. Language Reference

extend(I,positive/negative) of type Interval∗PosNeg 7→Interval ex-

tends I to the infinity (Def. 4.55).

extend(I, length,side) of type Interval∗Time∗Side 7→ Interval extends or

shrinks I (Def. 4.56).

integrate(I,positive/negative) of type Interval*PosNeg 7→ Inter-

val integrates the membership function (Def. 4.57).

fuzzify(I,linear/gaussian,left/right, increase,offset)
of type Interval,Fuzzify,Side,Float,Float 7→ Interval

fuzzify(I,linear/gaussian,left/right,x1,x2,offset)
of type Interval,Fuzzify,Side,Time,Time,Time 7→ Interval (Def. 4.58)

fuzzifies the interval at the given side with the given fuzzification function.

integrateSymmetric(I,J,simple)
of typeInterval∗Interval∗Bool 7→ Float and

integrateAsymmetric(I,J)
of type Interval∗Interval 7→ Float

symmetric or asymmetric integration of the membership function of I over the member-

ship function of J (Def. 4.59).

MaximizeOverlap(I,J,EJ,D) of type Interval*Interval*Interval*(In-

terval*Interval 7→ Float) 7→ Float (Def. 4.60)

204

B. Application Programming Interface

Reference

The C++ API of the MPLL language is as follows:

MPLL functions are realised as a class Function in a namespace MPLL. They can

be defined, they can be applied to arguments, and some information about them can be

retrieved.

Definition:

A new MPLL function can be created with an ordinary constructor:

fct = new Function(definition).

The definition is a string representation of the definition, optionally followed by

the keyword explanation and some text. The explanation can be retrieved just by

fct->explanation.

The definition is parsed and compiled. Parsing or compilation errors can be obtained

by fct->getError(). The function fct->noError() checks whether there was

a parsing or compilation error.

Information about Functions:

The function definitions can be obtained in different versions:

fct->callString() returns the function call as string

fct->typeString() returns the function type as string

fct->definitionString() returns the function definition with line numbering as

string.

fct->codeString() returns the abstract machine code as string.

The following example illustrates the use of the function codeString() and shows

the output that is generated. This example pertains to the MPLL function isPolygon.

Example B.1 (for codeString()) The code string for the function

isPolygon(Multiline(newList(Configuration(1,1),

Point(2,1), Point(2,2),

Point(1,2), Point(1,1))))

is shown in the following listing:

205

B. Application Programming Interface Reference

0: 1[-1,1,Integer]

1: 1[-1,1,Integer]

2: Configuration(Integer*Integer->Configuration)

3: 2[-1,2,Integer]

4: 1[-1,1,Integer]

5: Point(Integer*Integer->Point)

6: 2[-1,2,Integer]

7: 2[-1,2,Integer]

8: Point(Integer*Integer->Point)

9: 1[-1,1,Integer]

10: 2[-1,2,Integer]

11: Point(Integer*Integer->Point)

12: 1[-1,1,Integer]

13: 1[-1,1,Integer]

14: Point(Integer*Integer->Point)

15: List(Configuration*Point*Point*Point*Point->

List<Point>)

16: Multiline(List<Point>->Multiline)

17: isPolygon(Multiline->Bool)

It should be fairly obvious what this means. For example, line 0, 1[-1,1,Integer]

means that the parameter I at parameter position 1 of type Integer is pushed onto

the stack. Line 2: Configuration(Integer*Integer->Configuration)

means that the Configuration constructor pops its (two) arguments from the stack

and pushes the result onto the stack again. Lines 3 to 14 are treated analoguously. Line

15: pops the arguments from the stack and constructs a list (performing an implicit cast

from Configuration to Point in the process. The list ist then pushed back onto

the stack. Multiline then pops the list, constructs a polygon from it, and pushes the

polygon back onto the stack. Finally, isPolygon performs the check, whether the

argument on top of the stack is a valid polygon in MPLL terms, i.e. it must consist of

more than 3 points, the first and the last of which have to have identical coordinates.

Note that the actual computations, are done with compiled machine code. The com-

mands of the MPLL abstract machine are only used to control the invocation of this

machine code.

Auxiliary Classes and Types

The data types of MPLL are represented as a class Type in the namespace MPLL. They

can be basic data types or compound types. The most important API method for types is

toString. Most other methods are for internal use.

The data which are manipulated by a MPLL function are comprised into a union type.

Without further explanation we just list the definition.

206

union MPLLValue {

Function* lFunction;

int Integer;

float Float;

bool Bool;

string* String;

MPLL::Interval* Interval;

MPLL::Angle* Angle;

MPLL::Point* Point;

MPLL::Configuration* Configuration;

MPLL::Line* Line;

MPLL::List* List;

MPLL::Polygon* Polygon;

};

Application:

There are two application functions:

pair<Type*, MPLLValue>

apply(vector<pair<Type*, MPLLValue> >\& values)

can be used to apply the function to a vector of parameters. The result is a pair consisting

of the result type and the result value.

The other method:

pair<Type*, MPLLValue>

apply(const string& arguments,

const vector<FuTIRe::Interval*>& intervals)

can be used to apply the function to a string representation of the parameters. Intervals

are represented as non-negative integers. The integers are used as indices in the given

vector of interval pointers. The result is again a type-value pair.

207

B. Application Programming Interface Reference

208

C. Selected Code Samples

C.1. The MPLL Standard Library . 209

C.2. Implementation . 223

The first section of this chapter contains a listing of all constructs in the complete MPLL

Standard Library. In order to improve readability and to provide a concise overview of

the Standard Library, the author refrained in most cases from giving full flexed function

explanations which are primarily important for the practical application of MPLL.

The second section shows some selected code samples of the MPLL implementation

to provide an exemplary understanding of the implementation of the scanner and parser

of the language and of different data types and functions.

C.1. The MPLL Standard Library

This section contains the complete sources of the MPLL Standard Library, as they are

loaded at start time.

C.1.1. Types

MPLL Standard Library - Types;

2

Constants

4 **
’Real = 0

6 explanation:

(put explanation here);’

8

’Grd = 1

10 explanation:

(put explanation here);’

12

’Deg = 2

14 explanation:

(put explanation here);’

16

’Rad = 3

18 explanation:

(put explanation here);’

20

’Pi = 3.141592653

209

C. Selected Code Samples

22 explanation:

(put explanation here);’

24

’defCore = 25

26 explanation:

(put explanation here);’

28

’defSupport = 50

30 explanation:

(put explanation here);’

32

’defMod(type) = case (type==Real): 0,

34 (type==Grd): 400,

(type==Deg): 360,

36 (type==Grd): (2*Pi),

else 0

38 explanation:

(put explanation here);’

40

’carDir(Dir) = case (Dir==north): 0,

42 (Dir==northeast): 50,

(Dir==east): 100,

44 (Dir==southeast): 150,

(Dir==south): 200,

46 (Dir==southwest): 250,

(Dir==west): 300,

48 (Dir==northwest): 350,

else 0

50 explanation:

(put explanation here);’

52

’carDir(Dir) = case (Dir==N): 0,

54 (Dir==NE): 50,

(Dir==E): 100,

56 (Dir==SE): 150,

(Dir==S): 200,

58 (Dir==SW): 250,

(Dir==W): 300,

60 (Dir==NW): 350,

else 0

62 explanation:

(put explanation here);’

64

’carDir(Dir) = case (Dir==front): 0,

66 (Dir==right_front): 50,

(Dir==right): 100,

68 (Dir==right_back): 150,

(Dir==back): 200,

70 (Dir==left_back): 250,

(Dir==left): 300,

72 (Dir==left_front): 350,

else 0

74 explanation:

(put explanation here);’

76

’carDir(Dir) = case (Dir==behind): 0,

78 (Dir==right_of): 100,

210

C.1. The MPLL Standard Library

(Dir==in_front_of): 200,

80 (Dir==left_of): 300,

else 0

82 explanation:

(put explanation here);’

84

’distance(Dist) = case (Dist==): 10,

86 (Dist==): 30,

(Dist==): 60,

88 (Dist==): 100,

(Dist==): 150,

90 else 0

explanation:

92 (put explanation here);’

94 Math

**
96 ’root(Float b, Float e) =

pow(b, 1.0/e)

98 explanation:

(put explanation here);’

100

’sqr(Float f) =

102 pow(f, 2.0)

explanation:

104 (put explanation here);’

106 ’sqrt(Float f) =

root(f,2.0)

108 explanation:

(put explanation here);’

110

Angles (Constructors)

112 **
’Angle(Float v, Float a, Float b) =

114 newAngle(v,a,b)

explanation:

116 (put explanation here);’

118 ’Angle(Float f, Integer type) =

newAngle(f,-defMod(type),defMod(type))

120 explanation:

(put explanation here);’

122

’Angle() = Angle(0.0,Grd())’

124 ’AngleReal(Float f) = Angle(f,Real())

explanation:

126 (put explanation here);’

128 ’AngleReal(Float angle, Float mod) =

Angle(angle, -mod, -mod)

130 explanation:

(put explanation here);’

132

’AngleGrd(Float f) = Angle(f,Grd())

134 explanation:

(put explanation here);’

211

C. Selected Code Samples

136

’AngleGrd(Float angle, Float mod) =

138 AngleReal(angle, mod)

explanation:

140 (put explanation here);’

142 ’AngleDeg(Float f) = Angle(f,Deg())

explanation:

144 (put explanation here);’

146 ’AngleDeg(Float angle, Float mod) =

AngleGrd(degToGrd(angle), degToGrd(mod))

148 explanation:

(put explanation here);’

150

’AngleRad(Float f) = Angle(f,Rad())

152 explanation:

(put explanation here);’

154

’AngleRad(Float angle, Float mod) =

156 AngleGrd(radToGrd(angle), radToGrd(mod))

explanation:

158 (put explanation here);’

160 ’Angle(Configuration C, Configuration D, Configuration E) =

Angle(bearing(D,E)-bearing(D,C))

162 explanation:

(put explanation here);’

164

Angles (Predicates)

166 **
’isPositive(Angle A) =

168 not(isNegative(A))

explanation:

170 (put explanation here);’

172 ’isRightTurn(Angle A) =

not(isNegative(A))

174 explanation:

(put explanation here);’

176

’isLeftTurn(Angle A) =

178 isNegative(A)

explanation:

180 (put explanation here);’

182 ’minMax(Angle A) =

Interval(min(A),max(A))

184 explanation:

(put explanation here);’

186

’isNegative(Angle a) = (grad(a) < 0)

188 explanation:

(put explanation here);’

190

’degToGrd(Float i) = i*10/9

192 explanation:

212

C.1. The MPLL Standard Library

(put explanation here);’

194

’degToRad(Float i) = i*PI()/180

196 explanation:

(put explanation here);’

198

’grdToDeg(Float i) = i*9/10

200 explanation:

(put explanation here);’

202

’grdToRad(Float i) = i*PI()/200

204 explanation:

(put explanation here);’

206

’radToGrd(Float i) = i*200/PI()

208 explanation:

(put explanation here);’

210

’radToDeg(Float i) = i*180/PI()

212 explanation:

(put explanation here);’

214

’degree(Angle a) = grdToDeg(grad(a))

216 explanation:

(put explanation here);’

218

’radian(Angle a) = grdToRad(grad(a))

220 explanation:

(put explanation here);’

222

’modulus(Angle a) = max(a)-min(a)

224 explanation:

(put explanation here);’

226

’equals(Angle a, Angle b) =

228 (grad(a)==grad(b)) and (min(a)==min(b)) and (max(a)==max(b))

explanation:

230 (put explanation here);’

232 Points (Constructors)

**
234 ’Point() =

Point(Angle(),Angle())

236 explanation:

(put explanation here);’

238

’Point(Angle x, Angle y) =

240 newPoint(x,y)

explanation:

242 (put explanation here);’

244 ’Point() =

Point(Angle(),Angle())

246 explanation:

(put explanation here);’

248

’Point(Float x, Float y) =

213

C. Selected Code Samples

250 Point(AngleGrd(x),AngleGrd(y))

explanation:

252 (put explanation here);’

254 Points (Predicates)

**
256 ’distance(Point p1, Point p2) =

let deltaX = grad(getX(p2)) - grad(getX(p1)) in

258 let deltaY = grad(getY(p2)) - grad(getY(p1)) in

sqrt(deltaX + deltaY)’

260 ’vpl(Point p1, Point p2, Point p3) = (p2-p1)*(p3-p1)

explanation:

262 (put explanation here);’

264 ’isLeft (Point p1, Point p2, Point p3) = (vpl(p1,p2,p3) > 0)

explanation:

266 (put explanation here);’

268 ’isRight (Point p1, Point p2, Point p3) = (vpl(p1,p2,p3) < 0)

explanation:

270 (put explanation here);’

272 ’isColinear(Point p1, Point p2, Point p3) = (vpl(p1,p2,p3) == 0)

explanation:

274 (put explanation here);’

276 ’equals(Point a, Point b) =

equals(getX(a),getX(b)) and equals(getY(a),getY(b))

278 explanation:

(put explanation here);’

280

Configurations (Constructors)

282 **
’Configuration() =

284 Configuration(Angle(),Angle(),Angle(),false)

explanation:

286 (put explanation here);’

288 ’Configuration(Angle a, Angle b, Angle c, Bool d) =

newConfiguration(a,b,c,d)

290 explanation:

(put explanation here);’

292

’Configuration(Angle b, Angle x, Angle y) =

294 Configuration(b,x,y,true)

explanation:

296 (put explanation here);’

298 ’Configuration(Angle x, Angle y) =

Configuration(Angle(),x,y,false)

300 explanation:

(put explanation here);’

302

’Configuration(Angle b, Point p, Bool t) =

304 Configuration(b,getX(p),getY(p),t)

explanation:

306 (put explanation here);’

214

C.1. The MPLL Standard Library

308 ’Configuration(Angle b, Point p) =

Configuration(b,p,true)

310 explanation:

(put explanation here);’

312

’Configuration(Angle b) =

314 Configuration(b,Point(),true)

explanation:

316 (put explanation here);’

318 ’Configuration() =

Configuration(Angle(),Point())

320 explanation:

(put explanation here);’

322

’Configuration(Point p) =

324 Configuration(getX(p),getY(p))

explanation:

326 (put explanation here);’

328 ’Configuration(Float x, Float y) =

Configuration(Point(x,y))

330 explanation:

(put explanation here);’

332

Configurations (Predicates)

334 **

336 Lines (Constructors)

**
338 ’elem(List<T> list, Integer i) = element(list, i)

explanation:

340 (put explanation here);’

342 ’Multiline(List<Point> list) = newMultiline(list)

explanation:

344 (put explanation here);’

346 ’isPolygon(Multiline ml) =

(size(ml) > 3) and equals(head(ml),elem(ml,size(ml)-1))

348 explanation:

(put explanation here);’

350

Lines (Predicates)

352 **
’upperLeftBB(Line L) =

354 Point(Angle(xMin(P)),Angle(yMin(P)))

explanation:

356 (put explanation here);’

358 ’lowerRightBB(Line L) =

Point(Angle(xMax(P)),Angle(yMax(P)))

360 explanation:

(put explanation here);’

362

Polygons (Constructors)

215

C. Selected Code Samples

364 **
’Polygon(List<Point> list) = newPolygon(list)

366 explanation:

(put explanation here);’

368

Polygons (Predicates)

370 **
’upperLeftBB(Point P) =

372 Point(Angle(xMin(P)),Angle(yMin(P)))

explanation:

374 (put explanation here);’

376 ’lowerRightBB(Point P) =

Point(Angle(xMax(P)),Angle(yMax(P)))

378 explanation:

(put explanation here);’

380

’isTriangle(Polygon p) = (size(p)==4)’

382

’Float:area2(List<Polygon> lp)

384 explanation:

(put explanation here);’

386

’area(Polygon p) =

388 if (isTriangle(p))

then vpl(head(p), element(p,1), element(p,2))/2.0

390 else let tri=triangulate(p) in area2(tri)

explanation:

392 (put explanation here);’

394 ’area2(List<Polygon> lp) =

if empty(lp)

396 then 0.0

else area(head(lp)) + area2(tail(lp))

398 explanation:

(put explanation here);’

400

’Point:com2(List<Polygon> lp)

402 explanation:

(put explanation here);’

404

’Point:com3(List<Polygon> lp)

406 explanation:

(put explanation here);’

408

’com(Polygon p) =

410 if (isTriangle(p))

then (head(p) + element(p,1) + element(p,2))*(1.0/3.0)

412 else let tri=triangulate(p) in com2(tri)

explanation:

414 (put explanation here);’

416 ’com2(List<Polygon> lp) = com3(lp)*(1.0/size(lp))

explanation:

418 (put explanation here);’

420 ’com3(List<Polygon> lp) =

216

C.1. The MPLL Standard Library

if empty(lp)

422 then Point()

else com(head(lp)) + com3(tail(lp))

424 explanation:

(put explanation here);’

426

Circular Intervals (Constructors)

428 **
’CircularInterval() =

430 CircularInterval(Angle(0),defMod(Grd))

explanation:

432 (put explanation here);’

434 ’CircularInterval(Float Fvalue) =

CircularInterval(Angle(0),defMod(Grd),Fvalue)

436 explanation:

(put explanation here);’

438

Circular Intervals (Predicates)

440 **

442 Lists (Constructors)

**
444 ’List<T>:prefix(List<T> list, Integer index) =

if (index == 0)

446 then newList(head(list))

else append2(head(list), prefix(tail(list),index-1))

448 explanation:

(put explanation here);’

450

’List<T>:suffix(List<T> list, Integer index) =

452 if (index == 0)

then list

454 else suffix(tail(list), index-1)

explanation:

456 (put explanation here);’

458 ’List<T>:reverse(List list) =

append(reverse(tail(list)),newList(head(list)))

460 explanation:

(put explanation here);’

462

Lists (Predicates)

464 **
’head(List<T> x) =

466 element(x,0)

explanation:

468 (put explanation here);’

470 ’empty(List l) =

(size(l) == 0)

472 explanation:

(put explanation here);’

474

’append2(T h, List<T> t) =

476 append(newList(h),t)

explanation:

217

C. Selected Code Samples

478 (put explanation here);’

480 ’subList(List list, Integer from, Integer to) =

suffix(prefix(list,to),from)

482 explanation:

(put explanation here);’

484

’remove(List list, Integer index) =

486 if (index==0)

then tail(list)

488 else

if (index==(size(index)-1))

490 then prefix(list, (size(list)-2))

else append(prefix(list,(index-1)) , suffix(list,(index+1)))

492 explanation:

(put explanation here);’

494

’length(List list) =

496 if empty(list) then 0 else 1 + length(tail(list))

explanation:

498 (put explanation here);’

500 ’begin(List list, Integer b) =

sublist(list, 0, b)

502 explanation:

(put explanation here);’

504

’end(List list, Integer a) =

506 sublist(list, a, 0)

explanation:

508 (put explanation here);’

510 ’append(List a, List b) =

if empty(a) then b else append(head(a), append(tail(a), b))

512 explanation:

(put explanation here);’

514

’filter(Point->Bool cond, List list) =

516 if empty(list) then

list

518 else

if cond(head(list)) then

520 append(head(list), filter(cond, tail(list)))

else

522 filter(cond, tail(list))

explanation:

524 (put explanation here);’

526 ’map(Point->Point trans, List list) =

if empty(list) then

528 list

else

530 append(trans(head(list)), map(trans, tail(list)))

explanation:

532 (put explanation here);’

218

C.1. The MPLL Standard Library

C.1.2. Functions

MPLL Standard Library - Functions;

2

Translation

4 **
’translatePolar(Configuration C, Angle Adir, Angle Adist) =

6 translateCartesian(C,sin(Adir)*Adist,cos(Adir)*Adist)

explanation:

8 Moves the configuration C by the amount Adist into the direction Adir;’

10 ’movePolar(Configuration C, Angle Adir, Angle Adist) =

translatePolar(C,Adir,Adist)

12 explanation:

Moves the configuration C by the amount Adist into the direction

14 Adir;’

16 ’moveX(Configuration C, Angle Adist) =

translateCartesian(C,Adist,Angle(0))

18 explanation:

Moves the configuration C by the amount A along the x-axis;’

20

’moveY(Configuration C, Angle Adist) =

22 translateCartesian(C,Angle(0),Adist)

explanation:

24 Moves the configuration C by the amount A along the y-axis;’

26 ’move(Configuration C, Angle Ax, Angle Ay) =

translateCartesian(C,Ax,Ay)

28 explanation:

Moves the configuration C by the amount Ax along the x-axis and by the

30 amount Ay along the y-axis;’

32 ’move(Configuration C, Configuration D, Angle Adist) =

translatePolar(C,bearing(C,D),Adist)

34 explanation:

Moves the configuration C by the amount A into the direction of the

36 bearing from C to D;’

38 ’move(Configuration C, CarDir Dir, Angle Adist) =

translatePolar(C,carDir(Dir),Adist)

40 explanation:

Moves the configuration C by the amount A into the direction

42 denoted by the enumeration type Dir;’

44 ’moveTo(Configuration C, Configuration D) =

Configuration(orientation(C),point(D))

46 explanation:

Moves the configuration C to the position denoted by the

48 coordinates of point P;’

50 ’moveTo(Configuration C, Point P) =

Configuration(orientation(C),P)

52 explanation:

Moves the configuration C to the position denoted by the

54 coordinates of point P;’

219

C. Selected Code Samples

56 Rotation

**
58 ’rotateLeft(Configuration C, Angle A) = rotate(C,-abs(A))

explanation:

60 Rotates the orientation of the configuration C to the left by

the amount A;’

62

’rotateCCW(Configuration C, Angle A) = rotate(C,-abs(A))

64 explanation:

Rotates the orientation of the configuration C counterclockwise

66 by the amount A;’

68 ’rotateRight(Configuration C, Angle A) = rotate(C,abs(A))

explanation:

70 Rotates the orientation of the configuration C to the right by

the amount A;’

72

’rotateCW(Configuration C, Angle A) = rotate(C,abs(A))

74 explanation:

Rotates the orientation of the configuration C clockwise by

76 the amount A;’

78 ’rotateLeft(Line L, Angle A) = rotate(L,-abs(A))

explanation:

80 Rotates the all points of the line L around the origin of the

reference system to the left by the amount A;’

82

’rotateCCW(Line L, Angle A) = rotate(L,-abs(A))

84 explanation:

Rotates the all points of the line L around the origin of the

86 reference system counterclockwise by the amount A;’

88 ’rotateRight(Line L, Angle A) = rotate(L,abs(A))

explanation:

90 Rotates the all points of the line L around the origin of the

reference system to the right by the amount A;’

92

’rotateCW(Line L, Angle A) = rotate(L,abs(A))

94 explanation:

Rotates the all points of the line L around the origin of the

96 reference system clockwise by the amount A;’

98 ’rotateLeft(Polygon R, Angle A) = rotate(R,-abs(A))

explanation:

100 Rotates the all points of the polygon R around the origin of the

reference system to the left by the amount A;’

102

’rotateCCW(Polygon R, Angle A) = rotate(R,-abs(A))

104 explanation:

Rotates the all points of the polygon R around the origin of the

106 reference system counterclockwise by the amount A;’

108 ’rotateRight(Polygon R, Angle A) = rotate(R,abs(A))

explanation:

110 Rotates the all points of the polygon R around the origin of the

reference system to the right by the amount A;’

220

C.1. The MPLL Standard Library

112

’rotateCW(Polygon R, Angle A) = rotate(R,abs(A))

114 explanation:

Rotates the all points of the polygon R around the origin of the

116 reference system clockwise by the amount A;’

118 Turning (rotation of orientation)

**
120 ’turnLeft(Configuration C, Angle A) = turn(C,-abs(A))

explanation:

122 (put explanation here);’

124 ’turnCCW(Configuration C, Angle A) = turn(C,-abs(A))

explanation:

126 (put explanation here);’

128 ’turnRight(Configuration C, Angle A) = turn(C,abs(A))

explanation:

130 (put explanation here);’

132 ’turnCW(Configuration C, Angle A) = turn(C,abs(A))

explanation:

134 (put explanation here);’

136 ’turnTo(Configuration C, Angle A) =

Configuration(A,point(C))

138 explanation:

(put explanation here);’

140

’turnTo(Configuration C, Configuration D) =

142 Configuration(orientation(D),point(C))

explanation:

144 (put explanation here);’

146 ’turnAround(Configuration C) = if(hasOrientation(C))

then Configuration(inverse(orientation(C)),point(C),true)

148 else C

explanation:

150 (put explanation here);’

152 Bearing with allocentric cardinal direction (Dir is of type CarDir)

**
154 ’bearing(CarDir Dir, Configuration C, Configuration D) =

(bearing(C,D) == direction(Dir))

156 explanation:

(put explanation here);’

158

’bearingF(CarDir Dir, Configuration C, Configuration D) =

160 member(bearing(C,D),directionF(Dir))

explanation:

162 (put explanation here);’

164 ’bearingF(CarDir Dir, Configuration C,

Configuration D, Float Fth) =

166 member(bearing(C,D),directionF(Dir),Fth)

explanation:

168 (put explanation here);’

221

C. Selected Code Samples

170 ’bearing(CarDir Dir, Configuration C, Line L) =

(bearing(C,L) == direction(Dir))

172 explanation:

(put explanation here);’

174

’bearingF(CarDir Dir, Configuration C, Line L) =

176 member(bearing(C,L),directionF(Dir))

explanation:

178 (put explanation here);’

180 ’bearingF(CarDir Dir, Configuration C, Line L, Float Fth) =

member(bearing(C,L),directionF(Dir),Fth)

182 explanation:

(put explanation here);’

184

Bearing with egocentric cardinal direction (Dir is of type EgoDir)

186 **
’bearing(EgoDir Dir, Configuration C, Configuration D) =

188 (bearing(C,D) == direction(Dir,C))

explanation:

190 (put explanation here);’

192 ’bearingF(EgoDir Dir, Configuration C, Configuration D) =

member(bearing(C,D),directionF(Dir,C))

194 explanation:

(put explanation here);’

196

’bearingF(EgoDir Dir, Configuration C,

198 Configuration D, Float Fth) =

member(bearing(C,D),directionF(Dir,C),Fth)

200 explanation:

(put explanation here);’

202

Bearing with egocentric cardinal direction - deictic setting

204 (Dir is of type EgoDirD)

**
206 ’bearing(EgoDirD Dir, Configuration C,

Configuration D, Configuration E) =

208 (bearing(C,D) == direction(Dir,bearing(E,C)))

explanation:

210 (put explanation here);’

212 ’bearingF(EgoDirD Dir, Configuration C,

Configuration D, Configuration E) =

214 member(bearing(C,D),directionF(Dir,bearing(E,C)))

explanation:

216 (put explanation here);’

218 ’bearingF(EgoDirD Dir, Configuration C,

Configuration D, Configuration E, Float Fth) =

220 member(bearing(C,D),directionF(Dir,bearing(E,C)),Fth)

explanation:

222 (put explanation here);’

224 Bearing Region

**

222

C.2. Implementation

226 ’bearingRegion(CarDir Dir, Configuration C, Angle Adist) =

if (hasOrientation(C))

228 then

move(C,bearing(C,bearing(in_front/behind,C)),unitlength(RS))

230 else

throwExcepton("bearingRegion: noOrientation")

232 explanation:

(put explanation here);’

234

Inverse

236 **
’inverse(Point P) =

238 Point(-xCoordinate(P),-yCoordinate(P))

explanation:

240 (put explanation here);’

242 ’inverse(Configuration C) = if(hasOrientation(C))

then Configuration(inverse(orientation(C)),

244 inverse(point(C)),true)

else Configuration(0,inverse(point(C)),false)

246 explanation:

(put explanation here);’

C.2. Implementation

This section show some excerpts of the MPLL implementation. The complete source

code cannot, and need not, be listed here. The following excerpts sufficiently illustrate

the essential interworkings of the different components.

C.2.1. Scanner

%{

2 #include <iostream>

4 #include <string>

#include "MPLL.h"

6 #include "Parser.hh"

8 using namespace std;

10 YY_BUFFER_STATE MPLL_BUFFER;

12 int* Special_Flag;

int* MPLLRow;

14 int* MPLLColumn;

%}

16

%option noyywrap

18

%%

20

"," {++*MPLLColumn; return ’,’;}

223

C. Selected Code Samples

22 "(" {++*MPLLColumn; return ’(’;}

")" {++*MPLLColumn; return ’)’;}

24 "{" {++*MPLLColumn; return ’{’;}

"}" {++*MPLLColumn; return ’}’;}

26 "[" {++*MPLLColumn; return ’[’;}

"]" {++*MPLLColumn; return ’]’;}

28 "|" {++*MPLLColumn; return ’|’;}

"[]" {*MPLLColumn += 2; return EMPTYINTERVAL;}

30

"=" {++*MPLLColumn; return ’=’;}

32

"+" {++*MPLLColumn; return ’+’;}

34 "-" {++*MPLLColumn; return ’-’;}

"/" {++*MPLLColumn; return ’/’;}

36 "*" {++*MPLLColumn; return ’*’;}

"<" {++*MPLLColumn; return ’<’;}

38 ">" {++*MPLLColumn; return ’>’;}

"<=" {*MPLLColumn += 2; return SMALLEREQUAL;}

40 ">=" {*MPLLColumn += 2; return LARGEREQUAL;}

"==" {*MPLLColumn += 2; return EQUALS;}

42 "!=" {*MPLLColumn += 2; return NOTEQUALS;}

"min" {*MPLLColumn += 3; return MIN;}

44 "max" {*MPLLColumn += 3; return MAX;}

"%" {++*MPLLColumn; return ’%’;}

46 ":" {++*MPLLColumn; return ’:’;}

"pow" {*MPLLColumn += 3; return POW;}

48 "sin" {*MPLLColumn += 3; return SIN;}

"cos" {*MPLLColumn += 3; return COS;}

50 "tan" {*MPLLColumn += 3; return TAN;}

"sind" {*MPLLColumn += 4; return SIND;}

52 "cosd" {*MPLLColumn += 4; return COSD;}

"asin" {*MPLLColumn += 4; return ASIN;}

54 ":=" {*MPLLColumn += 2; return ASSIGN;}

56 "->" {*MPLLColumn += 2; return MAPSTO;}

58 "if" {*MPLLColumn += 2; return IF;}

"fi" {*MPLLColumn += 2; return FI;}

60 "then" {*MPLLColumn += 4; return THEN;}

"else" {*MPLLColumn += 4; return ELSE;}

62 "case" {*MPLLColumn += 4; return CASE;}

64 "or" {*MPLLColumn += 2; return OR;}

"||" {*MPLLColumn += 2; return OR;}

66 "and" {*MPLLColumn += 3; return AND;}

"&&" {*MPLLColumn += 2; return AND;}

68 "xor" {*MPLLColumn += 3; return XOR;}

"ˆ" {*MPLLColumn += 1; return XOR;}

70 "not" {*MPLLColumn += 3; return NOT;}

72 "lambda" {*MPLLColumn += 6; return LAMBDA;}

"Let" {*MPLLColumn += 3; return LET;}

74 "let" {*MPLLColumn += 3; return LET;}

"in" {*MPLLColumn += 2; return IN;}

76 "while" {*MPLLColumn += 5; return WHILE;}

78 "complement" {*MPLLColumn += 10; return COMPLEMENT;}

224

C.2. Implementation

"union" {*MPLLColumn += 5;

80 MPLL_lval.value = new string(yytext); return BIO;}

"intersection" {*MPLLColumn += 12;

82 MPLL_lval.value = new string(yytext); return BIO;}

"setdifference" {*MPLLColumn += 13;

84 return SETDIFFERENCE;}

"cut" {*MPLLColumn += 3; return CUT;}

86

"isEmpty" {*MPLLColumn += 7;

88 MPLL_lval.value = new string(yytext); return PREDICATE;}

"isConvex" {*MPLLColumn += 8;

90 MPLL_lval.value = new string(yytext); return PREDICATE;}

"isMonotone" {*MPLLColumn += 10;

92 MPLL_lval.value = new string(yytext); return PREDICATE;}

"isInfinite" {*MPLLColumn += 10;

94 MPLL_lval.value = new string(yytext); return PREDICATE;}

96 "size" {*MPLLColumn += 4; return SIZE;}

"isInfinity" {*MPLLColumn += 10; return isINFINITY;}

98

"components" {*MPLLColumn += 10; return COMPONENTS;}

100 "component" {*MPLLColumn += 9; return COMPONENT;}

"point" {*MPLLColumn += 5; return POINT;}

102

"times" {*MPLLColumn += 5;

104 MPLL_lval.value = new string(yytext); return TIMESEXP;}

"exp" {*MPLLColumn += 3;

106 MPLL_lval.value = new string(yytext); return TIMESEXP;}

108 "extend" {*MPLLColumn += 6;

MPLL_lval.value = new string(yytext); return EXTINT;}

110 "integrate" {*MPLLColumn += 9;

MPLL_lval.value = new string(yytext); return EXTINT;}

112

"core" {*MPLLColumn += 4;

114 switch (*Special_Flag) {

case 0: MPLL_lval.value = new string("Icore"); return TOKEN;

116 case 1: MPLL_lval.value = new string("Hcore"); return TOKEN;

default: MPLL_lval.value = new string("Pcore"); return TOKEN;}}

118

(I|H|P)core {*MPLLColumn += 5;

120 MPLL_lval.value = new string(yytext); return TOKEN;}

122 "kernel" {*MPLLColumn += 6;

switch (*Special_Flag) {

124 case 0: MPLL_lval.value = new string("Ikernel"); return TOKEN;

case 1: MPLL_lval.value = new string("Hkernel"); return TOKEN;

126 default: MPLL_lval.value = new string("Pkernel"); return TOKEN;}}

128 (I|H|P)kernel {*MPLLColumn += 6;

MPLL_lval.value = new string(yytext); return TOKEN;}

130

"support" {*MPLLColumn += 7;

132 switch (*Special_Flag) {

case 0: MPLL_lval.value = new string("Isupport"); return TOKEN;

134 case 1: MPLL_lval.value = new string("Hsupport"); return TOKEN;

default: MPLL_lval.value = new string("Psupport"); return TOKEN;}}

225

C. Selected Code Samples

136

(I|H|P)support {*MPLLColumn += 8;

138 MPLL_lval.value = new string(yytext); return TOKEN;}

140 "maximum" {*MPLLColumn += 7;

MPLL_lval.value = new string(yytext); return TOKEN;}

142

144

"hull" {*MPLLColumn += 4; return HULL;}

146 "scaleup" {*MPLLColumn += 7;

MPLL_lval.value = new string(yytext); return SCINV;}

148 "invert" {*MPLLColumn += 6;

MPLL_lval.value = new string(yytext); return SCINV;}

150

"fuzzify" {*MPLLColumn += 7; return FUZZIFY;}

152 "shift" {*MPLLColumn += 5; return SHIFT;}

"member" {*MPLLColumn += 6; return MEMBER;}

154 "integrateAsymmetric" {*MPLLColumn += 19; return INTEGRATEASYMMETRIC;}

"integrateSymmetric" {*MPLLColumn += 18; return INTEGRATESYMMETRIC;}

156 "centerPoint" {*MPLLColumn += 11; return CENTERPOINT;}

158 "componentwise" {*MPLLColumn += 13; return COMPONENTWISE;}

160 "newInterval" {*MPLLColumn += 11; return NEWINTERVAL;}

"pushBack" {*MPLLColumn += 8; return PUSHBACK;}

162 "closed" {*MPLLColumn += 6; return CLOSED;}

"print" {*MPLLColumn += 5; return PRINT;}

164 "round" {*MPLLColumn += 5; return ROUND;}

166 "during" {*MPLLColumn += 6; return DURING;}

"float" {*MPLLColumn += 5; return FLOAT;}

168 "NormalizeOverlaps" {*MPLLColumn += 17; return NORMALIZEOVERLAPS;}

"isSubset" {*MPLLColumn += 8; return isSUBSET;}

170 "doesOverlap" {*MPLLColumn += 11; return doesOVERLAP;}

"aILet" {*MPLLColumn += 5; return AILET;}

172 "aFLet" {*MPLLColumn += 5; return AFLET;}

174

"newAngle" {*MPLLColumn += 8; return MPLL_ANGLE;}

176 "grad" {*MPLLColumn += 4; return MPLL_ANGLE_GRAD;}

178 "newList" {*MPLLColumn += 7; return MPLL_LIST;}

"newPolygon" {*MPLLColumn += 7; return MPLL_POLYGON;}

180 "triangulate" {*MPLLColumn += 8; return MPLL_POLYGON_TRIANGULATE;}

"newMultiline" {*MPLLColumn += 9; return MPLL_MULTILINE;}

182

"newPoint" {*MPLLColumn += 8; return MPLL_POINT;}

184 "getX" {*MPLLColumn += 4; return MPLL_POINT_GETX;}

"getY" {*MPLLColumn += 4; return MPLL_POINT_GETY;}

186 "newConfiguration" {*MPLLColumn += 16; return MPLL_CONFIGURATION;}

"theAnswerToLifeTheUniverseAndEverything" {*MPLLColumn += 39;

188 return ULTIMATE_ANSWER;}

"element" {*MPLLColumn += 7; return MPLL_LIST_ELEMENT;}

190 "tail" {*MPLLColumn += 4; return MPLL_LIST_TAIL;}

"append" {*MPLLColumn += 6; return MPLL_LIST_APPEND;}

192

226

C.2. Implementation

"cast" {*MPLLColumn += 4; return MPLL_CAST;}

194

[\+\-]?[0-9\.]+(e[\+\-])?[0-9]* {

196 MPLL_lval.value = new string(yytext);

*MPLLColumn += MPLL_lval.value->size(); return NUMBER;}

198

(::)?[a-zA-Z]((::)?[0-9a-zA-Z_\.](::)?)*
200 {MPLL_lval.value = new string(yytext);

*MPLLColumn += MPLL_lval.value->size(); return TOKEN;}

202

\"[ˆ\"]*\" {string s(yytext); string s1 = s.substr(1,s.size()-2);

204 unsigned int p = s1.find("\\n");

while(p != string::npos)

206 {s1 = s1.replace(p,2,"\n"); p = s1.find("\\n");}

MPLL_lval.value = new string(s1);

208 *MPLLColumn += MPLL_lval.value->size();

return STRING;}

210

\"([ˆ\"]*\\\"[ˆ\"]*)+\" {string s(yytext);

212 string s1 = s.substr(1,s.size()-2);

unsigned int p = s1.find("\\n");

214 while(p != string::npos)

{s1 = s1.replace(p,2,"\n"); p = s1.find("\\n");}

216 p = s1.find("\\\"");

while(p != string::npos)

218 {s1 = s1.replace(p,2,"\""); p = s1.find("\\\"");}

MPLL_lval.value = new string(s1);

220 *MPLLColumn += MPLL_lval.value->size();

return STRING;}

222

224 "\n" {++*MPLLRow; *MPLLColumn = 1;}

"\t" {*MPLLColumn += 8;}

226 [\r]+ {*MPLLColumn += string(yytext).size();} /* eat up whitespaces */

228 %%

230 void MPLL_Scan(const char* st, int* SpecialFlag) {

Special_Flag = SpecialFlag;

232 MPLLRow = &MPLL::Function::row;

MPLLColumn = &MPLL::Function::column;

234 MPLL::Function::ScannedText = &yytext;

MPLL_BUFFER = yy_scan_string(st);}

236

void MPLL_ClearBuffer() {yy_delete_buffer(MPLL_BUFFER);}

C.2.2. Parser - Tokens

%union {

2 string* value;

MPLL::Type* type;

4 int fct;

}

6

227

C. Selected Code Samples

%token <value> TOKEN

8 %token <value> NUMBER

%token <value> ULTIMATE_ANSWER

10

%token <value> MPLL_CAST

12

%token <value> MPLL_LIST

14 %token <value> MPLL_LIST_ELEMENT

%token <value> MPLL_LIST_SIZE

16 %token <value> MPLL_LIST_TAIL

%token <value> MPLL_LIST_APPEND

18

%token <value> MPLL_POLYGON

20 %token <value> MPLL_POLYGON_TRIANGULATE

22 %token <value> MPLL_MULTILINE

24 %token <value> MPLL_ANGLE

%token <value> MPLL_ANGLE_PREDICATE

26 %token <value> MPLL_ANGLE_MIN

%token <value> MPLL_ANGLE_MAX

28 %token <value> MPLL_ANGLE_GRAD

30 %token <value> MPLL_POINT

%token <value> MPLL_POINT_GETX

32 %token <value> MPLL_POINT_GETY

34 %token <value> MPLL_CONFIGURATION

36 %token <value> STRING

38 %token <value> EQUALS

%token <value> NOTEQUALS

40 %token <value> SMALLEREQUAL

%token <value> LARGEREQUAL

42 %token <value> MIN

%token <value> MAX

44 %token <value> POW

%token <value> SIN

46 %token <value> COS

%token <value> TAN

48 %token <value> SIND

%token <value> COSD

50 %token <value> ASIN

%token <value> FLOAT

52

%token <value> MAPSTO

54

%token <value> IF

56 %token <value> FI

%token <value> THEN

58 %token <value> ELSE

60 %token <value> SWITCH

%token <value> CASE

62 %token <value> ASSIGN

228

C.2. Implementation

64 %token <value> AND

%token <value> OR

66 %token <value> XOR

%token <value> NOT

68

%token <value> LAMBDA

70 %token <value> LET

%token <value> dLET

72 %token <value> IN

%token <value> WHILE

74 %token <value> COMPLEMENT

76 %token <value> BIO

%token <value> UNION

78 %token <value> INTERSECTION

80 %token <value> SETDIFFERENCE

%token <value> CUT

82

%token <value> PREDICATE

84 %token <value> isEMPTY

%token <value> isCONVEX

86 %token <value> isMONOTONE

%token <value> isINFINITE

88 %token <value> isSUBSET

%token <value> doesOVERLAP

90

%token <value> SIZE

92

%token <value> isINFINITY

94 %token <value> COMPONENTS

%token <value> COMPONENT

96 %token <value> POINT

%token <value> EXTINT

98 %token <value> EXTEND

%token <value> INTEGRATE

100 %token <value> TIMESEXP

%token <value> TIMES

102 %token <value> TIME

%token <value> EXP

104 %token <value> HULL

%token <value> SCINV

106 %token <value> SCALEUP

%token <value> INVERT

108 %token <value> FUZZIFY

%token <value> SHIFT

110 %token <value> MEMBER

%token <value> INTEGRATESYMMETRIC

112 %token <value> INTEGRATEASYMMETRIC

%token <value> CENTERPOINT

114 %token <value> EMPTYINTERVAL

%token <value> NORMALIZEOVERLAPS

116 %token <value> COMPONENTWISE

%token <value> NEWINTERVAL

118 %token <value> PUSHBACK

%token <value> CLOSED

120 %token <value> PRINT

229

C. Selected Code Samples

%token <value> ROUND

122 %token <value> DURING

%token <value> DEGREE

124 %token <value> AILET

%token <value> AFLET

126

%left MAPSTO

128 %left ’-’

%left ’+’

130 %left ’/’

%left ’*’

132 %left ’%’

134 %left XOR

%left OR

136 %left AND

138 %type <value> definition

%type <value> parameters

140 %type <type> expression

%type <type> arithExpression

142 %type <type> boolExpression

%type <type> typeExpression

144 %type <type> genericExpression

%type <type> typeExpressions

146 %type <fct> binaryCmpOperator

%type <type> caseExpressions

148 %type <type> SetDiffRest

%type <type> printExpression

150 %type <type> printExpressions

%type <type> listExpression

152 %type <type> listExpressions

%type <fct> vars

C.2.3. Parser - Type Expressions

parameters:

2 typeExpression TOKEN {

if($<type>1 != NULL) MPLL_function->addParameter($<type>1,$<value>2);}

4 | parameters ’,’ typeExpression TOKEN {

if($<type>3 != NULL) MPLL_function->addParameter($<type>3,$<value>4);}

6 ;

8 genericExpression:

’<’ typeExpression ’>’ {$<type>$ = $<type>2;}

10 | {$<type>$ = NULL;}

;

12

typeExpression:

14 TOKEN genericExpression {

$<type>$ = MPLL::BasicType::getType(*$<value>1);

16 if ($<type>2 != NULL) {

if ($<type>$->hasGenericType()) {

18 MPLL::Type* testType = MPLL::BasicType::copyBasicType(

230

C.2. Implementation

static_cast<MPLL::BasicType*>($<type>$));

20 testType->setGenericType($<type>2);

cout << testType->toString()<< "\n";

22 $<type>$ = testType;

} else {

24 yyerror($<type>$->toString() + " is not a generic type. ");

}

26 }

if($<type>$ == NULL) {

28 $<type>$ = new MPLL::PolyType(*$<value>1);

}

30 }

32

| typeExpression MAPSTO typeExpression {

34 if($<type>1 && $<type>3) $<type>$ = new MPLL::CompoundType($<type>1,

$<type>3);

36 else $<type>$ = NULL;}

38 | ’(’ typeExpressions ’)’ MAPSTO typeExpression {

vector<MPLL::Type*> types = MPLL_TypeVector.back();

40 MPLL_TypeVector.pop_back();

if($<type>5 == NULL) $<type>$ = NULL;

42 else {

$<type>$ = $<type>5;

44 int tEnd = types.size();

for(int i = 0; i < tEnd; ++i) if(types[i] == NULL)

46 {$<type>$ = NULL; break;}

if($<type>$) $<type>$ = new MPLL::CompoundType(types, $<type>5);}}

48

| ’(’ typeExpression ’)’{$<type>$ = $<type>2;}

50

| error MAPSTO typeExpression {

52 $<type>$ = NULL;}

54 | ’(’ error ’)’ MAPSTO typeExpression {

$<type>$ = NULL;}

56

| typeExpression MAPSTO error {

58 $<type>$ = NULL;}

60 | ’(’ typeExpressions ’)’ MAPSTO error {

$<type>$ = NULL;}

62 ;

64 typeExpressions:

typeExpression {

66 MPLL_TypeVector.push_back(vector<MPLL::Type*>());

MPLL_TypeVector.back().push_back($<type>1);}

68 | typeExpressions ’*’ typeExpression {

MPLL_TypeVector.back().push_back($<type>3);};

70

72 expression:

TOKEN {

74 $<type>$ = NULL;

MPLL::Token* Token = new MPLL::Token($<value>1,MPLL_function);

231

C. Selected Code Samples

76 if(MPLL_function->noError()) {

MPLL_function->push_back(Token);

78 $<type>$ = Token->resultType;

} else {

80 delete Token;

}

82 }

84 | MPLL_CAST ’(’ typeExpression ’,’ expression ’)’ {

MPLL::Cast* Op = new MPLL::Cast($<type>3, $<type>5, MPLL_function);

86 if(MPLL_function->noError()) {

MPLL_function->push_back(Op);

88 $<type>$ = Op->resultType;

} else delete Op;

90 }

92 | ULTIMATE_ANSWER {

$<type>$ = NULL;

94 MPLL::Token* Token = new MPLL::Token(new string("42"),

MPLL_function);

96 if(MPLL_function->noError()) {

MPLL_function->push_back(Token);

98 $<type>$ = Token->resultType;}

else delete Token;

100 }

102 | MPLL_MULTILINE ’(’ expression ’)’ {

MPLL::Multiline* Op = new MPLL::Multiline($<type>3, MPLL_function);

104 if(MPLL_function->noError()) {

MPLL_function->push_back(Op);

106 $<type>$ = Op->resultType;

} else delete Op;

108 }

110 | MPLL_POLYGON ’(’ expression ’)’ {

MPLL::Polygon* Op = new MPLL::Polygon($<type>3, MPLL_function);

112 if(MPLL_function->noError()) {

MPLL_function->push_back(Op);

114 $<type>$ = Op->resultType;

} else delete Op;

116 }

118 | MPLL_LIST ’(’ {MPLL_ListVector.push_back(vector<pair<MPLL::MPLLValue*,

MPLL::Type*> >());} listExpressions ’)’ {

120 MPLL::List* Op = new MPLL::List(MPLL_ListVector.back(),MPLL_function);

MPLL_ListVector.pop_back();

122 MPLL_function->push_back(Op);

$<type>$ = Op->resultType;}

124

| MPLL_POLYGON_TRIANGULATE ’(’ expression ’)’ {

126 MPLL::PolygonPredicate* Op = new MPLL::PolygonPredicate(1,

MPLL_POLYGON_TRIANGULATE, $<type>3, MPLL_function);

128 if(MPLL_function->noError()) {

MPLL_function->push_back(Op);

130 $<type>$ = Op->resultType;

} else delete Op;

132 }

232

C.2. Implementation

134 | MPLL_LIST_ELEMENT ’(’ expression ’,’ expression ’)’ {

MPLL::ListPredicate* Op = new MPLL::ListPredicate(2,

136 MPLL_LIST_ELEMENT, $<type>3, $<type>5, MPLL_function);

if(MPLL_function->noError()) {

138 MPLL_function->push_back(Op);

$<type>$ = Op->resultType;

140 } else delete Op;

}

142

| MPLL_LIST_APPEND ’(’ expression ’,’ expression ’)’ {

144 MPLL::ListPredicate* Op = new MPLL::ListPredicate(2,

MPLL_LIST_APPEND, $<type>3, $<type>5, MPLL_function);

146 if(MPLL_function->noError()) {

MPLL_function->push_back(Op);

148 $<type>$ = Op->resultType;

} else delete Op;

150 }

152 | MPLL_LIST_TAIL ’(’ expression ’)’ {

MPLL::ListPredicate* Op = new MPLL::ListPredicate(1,

154 MPLL_LIST_TAIL, $<type>3, NULL, MPLL_function);

if(MPLL_function->noError()) {

156 MPLL_function->push_back(Op);

$<type>$ = Op->resultType;

158 } else delete Op;

}

160

| MPLL_LIST ’(’ error ’)’ {$<type>$ = NULL; yyerror("list statement");}

162

| NUMBER {

164 $<type>$ = NULL;

MPLL::Token* Token = new MPLL::Token($<value>1,MPLL_function);

166 if(MPLL_function->noError()) {

MPLL_function->push_back(Token);

168 $<type>$ = Token->resultType;}

else delete Token;}

170

| MPLL_ANGLE ’(’ expression ’,’ expression ’,’ expression ’)’ {

172 $<type>$ = NULL;

MPLL::Angle* Op = new MPLL::Angle($<type>3, $<type>5,

174 $<type>7, MPLL_function);

if(MPLL_function->noError()) {

176 MPLL_function->push_back(Op);

$<type>$ = Op->resultType;

178 }

else delete Op;

180 }

182 | MPLL_ANGLE_GRAD ’(’ expression ’)’ {

MPLL::AnglePredicate* Op = new MPLL::AnglePredicate(MPLL_ANGLE_GRAD,

184 $<type>3, MPLL_function);

if(MPLL_function->noError()) {

186 MPLL_function->push_back(Op);

$<type>$ = Op->resultType;

188 } else delete Op;

}

233

C. Selected Code Samples

190

| MPLL_POINT ’(’ expression ’,’ expression ’)’ {

192 $<type>$ = NULL;

MPLL::Point* Op = new MPLL::Point($<type>3, $<type>5, MPLL_function);

194 if(MPLL_function->noError()) {

MPLL_function->push_back(Op);

196 $<type>$ = Op->resultType;

}

198 else delete Op;

}

200

| MPLL_POINT_GETX ’(’ expression ’)’ {

202 MPLL::PointPredicate* Op = new MPLL::PointPredicate(MPLL_POINT_GETX,

$<type>3, MPLL_function);

204 if(MPLL_function->noError()) {

MPLL_function->push_back(Op);

206 $<type>$ = Op->resultType;

} else delete Op;

208 }

210 | MPLL_POINT_GETY ’(’ expression ’)’ {

MPLL::PointPredicate* Op = new MPLL::PointPredicate(MPLL_POINT_GETY,

212 $<type>3, MPLL_function);

if(MPLL_function->noError()) {

214 MPLL_function->push_back(Op);

$<type>$ = Op->resultType;

216 } else delete Op;

}

218

| MPLL_CONFIGURATION ’(’ expression ’,’ expression ’,’ expression ’,’

220 expression ’)’ {

$<type>$ = NULL;

222 MPLL::Configuration* Op = new MPLL::Configuration($<type>3,

$<type>5, $<type>7, $<type>9, MPLL_function);

224 if(MPLL_function->noError()) {

MPLL_function->push_back(Op);

226 $<type>$ = Op->resultType;

}

228 else delete Op;

}

230

| PRINT ’(’ {MPLL_PrintVector.push_back(vector<pair<string*,MPLL::Type*>

232 >());} printExpressions ’)’ {

MPLL::Print* Op = new MPLL::Print(MPLL_PrintVector.back(),MPLL_function);

234 MPLL_PrintVector.pop_back();

MPLL_function->push_back(Op);

236 $<type>$ = Op->resultType;}

238 | PRINT ’(’ error ’)’ {$<type>$ = NULL; yyerror("print statement");}

240 | EMPTYINTERVAL {

MPLL::emptyInterval* Op = new MPLL::emptyInterval();

242 MPLL_function->push_back(Op);

$<type>$ = Op->resultType;}

234

C.2. Implementation

C.2.4. C++ Sources

Angle.h

#include <iostream>

2 #include <sstream>

4 #ifndef ANGLE

#define ANGLE

6

using namespace std;

8

namespace DataType {

10 class Angle;

12 class Angle {

private:

14 long int angle;

long int min;

16 long int max;

static const long int ANGLE_MULTIPLIER = 1000000;

18 void init(const long int, const long int, const long int);

static double convert(long int);

20

public:

22 Angle (const Angle&);

Angle (long int a = 0, long int b = 0, long int c = 0);

24 string toString() const;

long int getAngle() const;

26 void setAngle(const long int);

long int getMin() const;

28 void setMin(const long int);

long int getMax() const;

30 void setMax(const long int);

Angle* getNegative() const;

32 Angle* addAngle(const Angle a);

Angle* subtractAngle(const Angle a);

34 Angle* multiply(const float f);

bool equals(const Angle a) const;

36 friend ostream& operator<<(ostream& s, const Angle& r);

friend ostringstream& operator<<(ostringstream& s, Angle& r);

38 friend istream& operator>>(istream& s, Angle& r);

Angle& operator=(const Angle&);

40 };

}

42 #endif

Angle.cpp

#include"Angle.h"

2 #include <math.h>

235

C. Selected Code Samples

4 #define PI 3.14159265

6 using namespace DataType;

8 namespace DataType {

class Angle;

10

const long int Angle::ANGLE_MULTIPLIER;

12

void Angle::init(const long int angle2, const long int min2,

14 const long int max2) {

setMin(min2);

16 setMax(max2);

setAngle(angle2);

18 }

20 double Angle::convert(long int i) {

return ((double)i)/(double)(Angle::ANGLE_MULTIPLIER);

22 }

24 Angle::Angle(long int value, long int min, long int max) {

init (value, min, max);

26 }

28 Angle::Angle(const Angle& a) {

init (a.getAngle(), a.getMin(), a.getMax());

30 }

32 long int Angle::getAngle() const {

return angle;

34 }

36 void Angle::setAngle(const long int a) {

double helperA = (double)a;

38 double helperMin = (double)min;

double helperMax = (double)max;

40 helperA = fmod((helperA - helperMin),

(helperMax-helperMin)) + helperMin;

42 helperA = -(fmod((-helperA -(-helperMax)),

(helperMax-helperMin)) + (-helperMax));

44 angle = (long int) helperA;

}

46

long int Angle::getMin() const {

48 return min;

}

50

void Angle::setMin(const long int min) {

52 this->min = min;

}

54

long int Angle::getMax() const {

56 return max;

}

58

void Angle::setMax(const long int max) {

236

C.2. Implementation

60 (*this).max = max;

}

62

ostream& operator<<(ostream& s, const Angle& a) {

64 s << "Angle(" << Angle::convert(a.getAngle())

<< ’,’ << Angle::convert(a.getMin())

66 << ’,’ << Angle::convert(a.getMax()) << ’)’;

return s;

68 }

70 ostringstream& operator<<(ostringstream& s, Angle& a) {

s << "Angle(" << Angle::convert(a.getAngle())

72 << ’,’ << Angle::convert(a.getMin()) << ’,’

<< Angle::convert(a.getMax()) << ’)’;

74 return s;

}

76

istream& operator>>(istream& i, Angle& a) {

78 float value = 0;

char c = 0;

80

i >> value >> c;

82

if (c == ’R’) {

84 int v = (int)

(value*Angle::ANGLE_MULTIPLIER*200/PI);

86 int max = (Angle::ANGLE_MULTIPLIER*400);

int min = -max;

88 a.init(v,min,max);

} else if (c== ’D’) {

90 int v = (int)

(value*Angle::ANGLE_MULTIPLIER*10/9);

92 int max = (Angle::ANGLE_MULTIPLIER*400);

int min = -max;

94 a.init(v,min,max);

} else if (c==’G’) {

96 int v = (int)

(value*Angle::ANGLE_MULTIPLIER);

98 int max = (Angle::ANGLE_MULTIPLIER*400);

int min = -max;

100 a.init(v,min,max);

} else {

102 i.clear(ios_base::badbit);

}

104

return i;

106 }

108 Angle* Angle::addAngle(const Angle a) {

Angle* ang = new Angle(*this);

110 ang->setAngle(this->getAngle() + a.getAngle());

return ang;

112 }

114 Angle* Angle::subtractAngle(const Angle a) {

Angle* temp = a.getNegative();

116 return addAngle(*temp);

237

C. Selected Code Samples

}

118

Angle* Angle::multiply(const float scalar) {

120 Angle* a = new Angle(*this);

a->setAngle((long int)

122 ((double)getAngle()*((double)scalar)));

return a;

124 }

126 Angle* Angle::getNegative() const {

Angle* result = new Angle(*this);

128 result->setAngle(-getAngle());

return result;

130 }

132 Angle& Angle::operator= (const Angle& a) {

if (this != &a) {

134 init(a.getAngle(), a.getMin(), a.getMax());

}

136 return *this;

}

138

bool Angle::equals(const Angle a) const {

140 return (getAngle() == a.getAngle() &&

getMin() == a.getMin() &&

142 getMax() == a.getMax());

}

144 }

Configuration.h

2 #include <iostream>

#include <sstream>

4 #include <vector>

6 #include "Angle.h"

#include "Point.h"

8

#ifndef CONFIGURATION

10 #define CONFIGURATION

12 using namespace std;

using namespace DataType;

14

namespace DataType {

16 class Angle;

class Point;

18

class Configuration : public Point {

20 private:

bool isOrientated;

238

C.2. Implementation

22 Angle orientation;

24 public:

Configuration (Angle&, Angle&, Angle&, bool);

26

bool hasOrientation() const;

28 double convert(int) const;

30 Angle getOrientation() const;

32 friend ostream& operator<<(ostream& s,

const Configuration& p);

34 friend ostringstream& operator<<(ostringstream& s,

Configuration& p);

36 friend istream& operator>>(istream& s,

Configuration& p);

38 };

}

40 #endif

Configuration.cpp

#include "Configuration.h"

2 #include "Angle.h"

#include "Point.h"

4

using namespace DataType;

6

namespace DataType {

8 class Configuration;

class Angle;

10 class Point;

12 Configuration::Configuration(Angle& angle1, Angle& angle2,

Angle& angle3, bool isOrientated

14) : Point(angle2, angle3) {

orientation = angle1;

16 Configuration::isOrientated = isOrientated;

}

18

bool Configuration::hasOrientation() const {

20 return isOrientated;

}

22

Angle Configuration::getOrientation() const {

24 return orientation;

}

26

ostream& operator<< (ostream& o, const Configuration& c) {

28 o << "Configuration(";

if (c.hasOrientation()) {

239

C. Selected Code Samples

30 o << c.getOrientation() << ", ";

}

32 o << ((Point)c) << ’)’;

return o;

34 }

36 ostringstream& operator<< (ostringstream& o, Configuration& c) {

o << "Configuration(";

38 o << "Configuration(";

if (c.hasOrientation()) {

40 o << c.getOrientation() << ", ";

}

42 o << ((Point)c) << ’)’;

return o;

44 }

46 istream& operator>> (istream& i, Configuration& config) {

return i;

48 }

}

240

List of Acronyms

AF Alternative Frequencies (term from RDS/TMC)

API Application Programming Interface

BFS Breadth-First Search

CT Clock Time (term from RDS/TMC)

DFS Depth-First Search

DL Description Logics

EBU European Broadcast Union

ECL Event Code List (term from RDS/TMC)

EON Enhanced Other Networks (term from RDS/TMC)

FM Frequency Modulation

GDF Geographic Data Format

GIS Geographic Information System

GML Geography Mark-Up Language

GPS Global Positioning System

GRS Geodetic Reference System

GSM Global System for Mobile Communications

GXL Graph Exchange Language

GeTS Specification Language for Geo-Temporal Notions

IEEE Institute of Electrical and Electronics Engineers

IERS International Earth Rotation and Reference Systems Service

ISO International Organization for Standardization

241

List of Acronyms

ITRS International Terrestrial Reference System

ITS Intelligent Transport Systems

JDRMA Japan Digital Roadmap Association

JUNG Java Universal Network/Graph Framework

KML Keyhole Mark-Up Language

L-DSMS Local Data Stream Management System

LCL Location Code List (term from RDS/TMC)

LPB Landmark Pair Boundary

MDA Model Driven Architecture

MPLL Multi-Paradigm Location Language

NER Named Entity Recognition

ODA Open Data Applications

OTN Ontology of Transportation Networks

OWL Web Ontology Language

PDA Personal Digital Assistent

PIN Programme Item Number (term from RDS/TMC)

PI Programme Identification (term from RDS/TMC)

PS Programme Service Name (term from RDS/TMC)

PTY Programme Type (term from RDS/TMC)

RBDS Radio Broadcast Data System

RCC Region Connection Calculus

RDF Resource Description Framework

RDS Radio Data System

RS Reference System

RT Radio Text (term from RDS/TMC)

242

SDTS Spatial Data Transfer Standard

SVG Scalable Vector Graphics

TIS Traffic Information System

TMC Traffic Message Channel

TP/TA Traffic Programme and Traffic Announcement (term from RDS/TMC)

TSP Travelling salesman problem

TTI Traffic and Travel Information

UTM Universal Transverse Mercator coordinate system

VHF Very High Frequency

VLBI Very Long Baseline Interferometry

VLSI Very Large Scale Integration

WGS World Geodetic System

WLAN Wireless Local Area Network

XLink XML Linking Language

XML Extensible Mark-Up Language

rton Relative Topological Orientation Node

243

List of Acronyms

244

Bibliography

[1] Charlie Abela and Matthew Montebello. PreDiCtS: A Personalised Service Dis-

covery and Composition Framework. In Proceedings of Semantic Web Personal-

ization Workshop, Budva, Montenegro (12th June 2006), pages 1–10, 2006.

[2] Pragya Agarwal, Yongjian Huang, and Vania Dimitrova. Formal Approach to

Reconciliation of Individual Ontologies for Personalisation of Geospatial Seman-

tic Web. In M. Andrea Rodrı́guez, Isabel F. Cruz, Max J. Egenhofer, and Sergei

Levashkin, editors, GeoS, volume 3799 of Lecture Notes in Computer Science,

pages 195–210. Springer, 2005.

[3] James F. Allen. Maintaining Knowledge about Temporal Intervals. Communica-

tions of the ACM (CACM), 26(11):832–843, 1983.

[4] www.answers.com: Landmark Definition. http://www.answers.com, ac-

cessed August 2006.

[5] Lora Aroyo, Ronald Denaux, Vania Dimitrova, and Michael Pye. Interactive

Ontology-Based User Knowledge Acquisition: A Case Study. In York Sure and

John Domingue, editors, ESWC, volume 4011 of Lecture Notes in Computer Sci-

ence, pages 560–574. Springer, 2006.

[6] I. Budak Arpinar, Amit Sheth, Cartic Ramakrishnan, E. Lynn Usery, Molly

Azami, and Mei-Po Kwan. Geospatial Ontology Development and Semantic An-

alytics. Transactions in GIS, 10(4):551–575, July 2006.

[7] Nicholas Asher and Laure Vieu. Toward a geometry for common sense: A seman-

tics and a complete axiomatization for mereotopology. In Chris Mellish, editor,

Proceedings of the Fourteenth International Joint Conference on Artificial Intel-

ligence (IJCAI), pages 846–852, San Francisco, 1995. Morgan Kaufmann.

[8] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Pe-

ter Patel Schneider, editors. The Description Logic Handbook: Theory, Imple-

mentation and Applications. Cambridge University Press, 2003.

[9] Matteo Baldoni, Cristina Baroglio, Alberto Martelli, Viviana Patti, and Laura

Torasso. Verifying the compliance of personalized curricula to curricula models

in the semantic web. In Proceedings of Semantic Web Personalization Workshop,

Budva, Montenegro (12th June 2006), pages 53–62, 2006.

245

http://www.answers.com

Bibliography

[10] Chris Barrett, Riko Jacob, and Madhav V. Marathe. Formal language constrained

path problems. In Scandinavian Workshop on Algorithm Theory, pages 234–245,

1998.

[11] Oliver Bender, Franz Josef Och, and Hermann Ney. Maximum entropy models

for named entity recognition. In Walter Daelemans and Miles Osborne, editors,

Proceedings of CoNLL-2003, pages 148–151. Edmonton, Canada, 2003.

[12] M. Betke. Learning and Vision Algorithms for Robot Navigation. Technical

Report MIT/LCS/TR-671, Massachusetts Institute of Technology, 1995.

[13] P. Bloom, M. A. Peterson, L. Nadel, and M. F. Garrett, editors. Language and

Space. MIT Press, Cambridge, MA, 1996.

[14] Jean Daniel Boissonnat and Mariette Yvinec. Algorithmique Geometry. Cam-

bridge University Press, 1998. BOI j 98:1 1.Ex.

[15] Johann Borenstein, H. R. Everett, and Liqiang Feng. Navigating Mobile Robots:

Systems and Techniques. A. K. Peters, Ltd., Natick, MA, USA, 1996.

[16] Amy Briggs, Daniel Scharstein, Darius Braziunas, Cristian Dima, and Peter Wall.

Mobile Robot Navigation Using Self-Similar Landmarks. In IEEE International

Conference on Robotics and Automation, pages 1428–1434, San Francisco, April

2000.

[17] Levin Brunner, Klaus U. Schulz, and Felix Weigel. Organizing Thematic, Geo-

graphic and Temporal Knowledge in a Well-founded Navigation Space: Logical

and Algorithmic Foundations for EFGT Nets. Journal of Web Services Research,

Special Issue “Bridging Communities: Semantically Augmented Metadata for

Services, Grids, and Software Engineering”, 2006.

[18] David J. Bryant. Human spatial concepts reflect regularities of the physical world

and human body. In Patrick Olivier and Klaus-Peter Gapp, editors, Represen-

tation and processing of spatial expressions, pages 215–230. Lawrence Erlbaum

Associates, Mahwah, New Jersey, 1998.

[19] Giorgio Busatto. An Abstract Model of Hierarchical Graphs and Hierarchical

Graph Transformation. PhD thesis, University of Paderborn, 2002.

[20] Michael Buschmann and Markus Krieser. Protokollierung und statistische

Auswertung von RDS/TMC Datenströmen. Projektarbeit/project thesis, Institute

for Informatics, University of Munich, 2006.

[21] Adrijana Car, Henny Mehner, and George Taylor. Experimenting with hierarchi-

cal wayfinding, 1999.

246

Bibliography

[22] S. Chang and E. Jungert. Pictorial data management based upon the theory of

symbolic projections. Journal of Visual Languages and Computations, 2(3):195–

215, 1991.

[23] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. Recommen-

dation, W3C – World Wide Web Consortium, 1999. http://www.w3.org/

TR/xpath.

[24] Bowman L. Clarke. A calculus of individuals based on ‘connection’. Notre Dame

Journal of Formal Logic, 22(3):204–218, 1981.

[25] Bowman L. Clarke. Individuals and points. Notre Dame Journal of Formal Logic,

26(1):61–67, 1985.

[26] Eliseo Clementini, Paolino Di Felice, and Daniel Hernández. Qualitative repre-

sentation of positional information. Artificial Intelligence, 95(2):317–356, 1997.

[27] Anthony G. Cohn. The challenge of qualitative spatial reasoning. ACM Comput-

ing Surveys, 27(3):323–325, 1995.

[28] Anthony G. Cohn. Calculi for qualitative spatial reasoning. In Jacques Calmet,

J. Campbell, and J. Pfalzgraf, editors, Artificial Intelligence and Symbolic Math-

ematical Computation, pages 124–143. Springer-Verlag, Berlin, 1996.

[29] Anthony G. Cohn, Brandon Bennett, John Gooday, and Nicholas M. Gotts. Repre-

senting and reasoning with qualitative spatial relations. In Oliviero Stock, editor,

Spatial and Temporal Reasoning, pages 97–134. Kluwer Academic Publishers,

Dordrecht, 1997.

[30] Anthony G. Cohn, Brandon Bennett, John Gooday, and Nicholas Mark Gotts.

Qualitative spatial representation and reasoning with the region connection calcu-

lus. GeoInformatica, 1(3):275–316, 1997.

[31] Anthony G. Cohn and S. M. Hazarika. Qualitative spatial representation and

reasoning: An overview. Fundamenta Informaticae, 46(1-2):1–29, 2001.

[32] Anthony G. Cohn and Achille C. Varzi. Connection relations in mereotopology.

In ECAI, pages 150–154, 1998.

[33] Anthony G. Cohn and Achille C. Varzi. Modes of connection. In Freksa and

Mark [61], pages 299–314.

[34] Anthony G. Cohn and Achille C. Varzi. Mereotopological connection. Journal of

Philosophical Logic, 32:357–390, 2003.

247

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

Bibliography

[35] Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein. Introduc-

tion to Algorithms. MIT Press, ISBN 0-262-03293-7, 2001. 525 pp.

[36] Matteo Cristani. The complexity of reasoning about spatial congruence. Journal

of Artificial Intelligence Research, 11:361–390, 1999.

[37] S. Cucerzan and D. Yarowsky. Language independent named entity recognition

combining morphological and contextual evidence, 1999.

[38] James R. Curran and Stephen Clark. Language independent ner using a maximum

entropy tagger. In Walter Daelemans and Miles Osborne, editors, Proceedings of

CoNLL-2003, pages 164–167. Edmonton, Canada, 2003.

[39] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwartzkopf.

Computational Geometry: Algorithms and Applications. Springer, 2000. BER

m2 00:1 1.Ex.

[40] Rina Dechter. Constraint Processing. The Morgan Kaufmann Series in Artificial

Intelligence. Morgan Kaufmann, 2003.

[41] J. Peter Denny. Locating the universals in lexical systems for spatial deixis. In:

Papers from the Parasession on the Lexicon [53], 1978.

[42] Nachum Dershowitz and Edward Reingold. Calendrical calculations: The mil-

lennium edition. Cambridge University Press, 2001.

[43] A. Dey, D. Salber, and G. Abowd. A conceptual framework and a toolkit for

supporting the rapid prototyping of context-aware applications, 2001.

[44] Edsger W. Dijkstra. The Three Golden Rules for Successful Scientific Research.

In Selected Writings on Computing: A Personal Perspective, pages 329–330.

Springer-Verlag, 1982.

[45] Microsoft Developer Network (MSDN): DirectX SDK Documentation. http://

msdn.microsoft.com/library, June 2006.

[46] Paul Dourish. What We Talk About When We Talk About Context. Personal and

Ubiquitous Computing, 8(1):19–30, February 2004.

[47] Didier Dubois and Henri Prade, editors. Fundamentals of Fuzzy Sets. Kluwer

Academic Publisher, 2000.

[48] Max J. Egenhofer. Reasoning about Binary Topological Relations. In O. Günther

and H.-J. Schek, editors, Proceedings of the Second International Symposium

on Advances in Spatial Databases (SSD ’91), pages 143–160, Heidelberg, 1991.

Springer-Verlag.

248

http://msdn.microsoft.com/library
http://msdn.microsoft.com/library

Bibliography

[49] Max J. Egenhofer and Jayant Sharma. Topological Relations Between Regions

in R
2 and Z

2. In Proceedings of the Third International Symposium on Advances

in Spatial Databases (SSD ’93), pages 316–336, London, UK, 1993. Springer-

Verlag.

[50] EPA - U.S. Environmental Protection Agency – Glossary of mapping terms.

http://www.epa.gov/ceisweb1/ceishome/atlas/learngeog/

glossaryofmappingterms.html, accessed June 2005.

[51] M. Teresa Escrig and Francisco Toledo. Qualitative Spatial Reasoning: Theory

and Practice - Application to Robot Navigation, volume 47 of Frontiers in Artifi-

cial Intelligence and Applications. IOS Press, ISBN: 90-5199-412-5, 1998.

[52] M. Theresa Escrig, Francisco Toledo, and Angel P. del Pobil. An overview to

qualitative spatial reasoning. In Current Trends in Qualitative Reasoning and

Applications, pages 43–60. International Center for Numerical Methods in Engi-

neering, Barcelona, 1995.

[53] Donka Farkas, Wesley M. Jacobsen, and Karol W. Todrys, editors. Papers from

the Parasession on the Lexicon. Chicago Linguistics Society, Chicago, 1978.

[54] Radu Florian, Abe Ittycheriah, Hongyan Jing, and Tong Zhang. Named entity

recognition through classifier combination. In Walter Daelemans and Miles Os-

borne, editors, Proceedings of CoNLL-2003, pages 168–171. Edmonton, Canada,

2003.

[55] The Free Software Foundation. bison: A General-purpose Parser Generator.

http://www.gnu.org/software/bison, accessed August 2006.

[56] Lidia Fraczak. Generating ”mental maps” from route descriptions. In Patrick

Olivier and Klaus-Peter Gapp, editors, Representation and processing of spatial

expressions, pages 185–200. Lawrence Erlbaum Associates, Mahwah, New Jer-

sey, 1998.

[57] Andrew Frank. Qualitative Spatial Reasoning about Distance and Directions in

Geographic Space. Journal of Visual Languages and Computations, 3(2):343–

373, 1992.

[58] C. Freksa and K. Zimmermann. On the utilization of spatial structures for

cognitively plausible and efficient reasoning. In FD. Anger HW. Güsgen and

J. v.Benthem, editors, Proc. of the Workshop on Spatial and temporal reasoning,

pages 61–66. Chambery, 1993.

[59] Christian Freksa. Temporal Reasoning Based on Semi-Intervals. Applied Intelli-

gence, 54:199–227, 1992.

249

http://www.epa.gov/ceisweb1/ceishome/atlas/learngeog/glossaryofmappingterms.html
http://www.epa.gov/ceisweb1/ceishome/atlas/learngeog/glossaryofmappingterms.html
http://www.gnu.org/software/bison

Bibliography

[60] Christian Freksa. Using orientation information for qualitative spatial reasoning,

1992.

[61] Christian Freksa and David M. Mark, editors. Spatial Information Theory: Cogni-

tive and Computational Foundations of Geographic Information Science, Interna-

tional Conference COSIT ’99, Stade, Germany, August 25-29, 1999, Proceedings,

volume 1661 of Lecture Notes in Computer Science. Springer, 1999.

[62] Norbert E. Fuchs and Uta Schwertel. Reasoning in Attempto Controlled English.

In Workshop on Principles and Practice of Semantic Web Reasoning (PPSWR

2003), Lecture Notes in Computer Science, Mumbai, India, 2003. Springer.

[63] Geographic Data Files 3.0 (GDF) Documentation. http://www.ertico.

com, 1995.

[64] Alfonso Gerevini and Bernhard Nebel. Qualitative spatio-temporal resoning with

rcc-8 and allen’s interval calculus: Computational complexity. In In Proccedings

of the 15th European Conference on Artificial Intelligence (ECAI’02), June 2002.

[65] GML - A Markup Language for Geography. http://opengis.net/gml,

accessed August 2006.

[66] Google Earth. http://earth.google.com, accessed August 2006.

[67] Nicholas Mark Gotts. Using the RCC Formalism to Describe the Topology of

Spherical Regions. Technical report, University of Leeds, 1996.

[68] Kamal Gupta and Angel P. del Pobil, editors. Practical Motion Planning in

Robotics. Wiley, 1998. ISBN: 0-471-98163-X.

[69] Graph eXchange Language. http://www.gupro.de/GXL, accessed August

2006.

[70] Graph eXchange Language Project. http://gxl.sourceforge.net/

index.html, accessed August 2006.

[71] Christian Hänsel. TMC-KML Verkehrsdatenservice für den Google Earth Client.

Projektarbeit/project thesis, Institute for Informatics, University of Munich, 2006.

[72] Andreas Heindel. Nutzung von Indoor-Positionierungsdaten zur mobilen Wege-

planung. Diplomarbeit/diploma thesis, Institute for Informatics, LMU, Munich,

March 2006.

[73] Nicola Henze. Personalisierbare Informationssysteme im Semantic Web. In Tas-

silo Pellegrini and Andreas Blumauer, editors, Semantic Web. Wege zur vernetzten

Wissensgesellschaft. Springer, Berlin, 2006.

250

http://www.ertico.com
http://www.ertico.com
http://opengis.net/gml
http://earth.google.com
http://www.gupro.de/GXL
http://gxl.sourceforge.net/index.html
http://gxl.sourceforge.net/index.html

Bibliography

[74] Nicola Henze. Personalized e-Learning in the Semantic Web. International Jour-

nal of Emerging Technologies in Learning (iJET), 1(1), 2006.

[75] Nicola Henze. Personalized e-Learning in the Semantic Web. In Proceedings of

First International Conference on Interactive Mobile and Computer Aided Learn-

ing, Amman, Jordan (19th–21st April 2006), 2006.

[76] Daniel Hernández. Qualitative Representation of Spatial Knowledge. Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 1994.

[77] Daniel Hernández, Eliseo Clementini, and Paolino Di Felice. Qualitative dis-

tances. In Andrew U. Frank and Werner Kuhn, editors, Spatial Information The-

ory: A Theoretical Basis for GIS, International Conference COSIT ’95, Semmer-

ing, Austria, September 21-23, 1995, Proceedings, pages 45–57, 1995.

[78] Frank Ipfelkofer. Basisontologie und Anwendungs-Framework für Visualisierung

und Geospatial Reasoning. Diplomarbeit/diploma thesis, Institute for Informatics,

LMU, Munich, 2004.

[79] International Organization for Standardization (ISO). http://www.iso.

org, accessed August 2006.

[80] ISO Standard 14819-1: Traffic and Traveller Information (TTI) – TTI messages

via traffic message coding – Part 1: Coding protocol for Radio Data System –

Traffic Message Channel (RDS-TMC) using ALERT-C. http://www.iso.

org, May 2003.

[81] ISO Standard 14819-2: Traffic and Traveller Information (TTI) – TTI messages

via traffic message coding – Part 2: Event and information codes for Radio Data

System – Traffic Message Channel (RDS-TMC). http://www.iso.org,

May 2003.

[82] Intelligent Transport Systems (ITS). http://www.iso.org, accessed August

2006.

[83] ISO/TS Standard 14819-3: Traffic and Traveller Information (TTI) – TTI mes-

sages via traffic message coding – Part 3: Location referencing for ALERT-C.

http://www.iso.org, June 2000.

[84] ISO/TS Standard 14825: Intelligent transport systems – Geographic Data Files

(GDF) – Overall data specification. http://www.iso.org, February 2004.

[85] Japan Digital Roadmap Association (JDRMA). http://www.drm.jp/drm/

e_index.htm, accessed August 2006.

251

http://www.iso.org
http://www.iso.org
http://www.iso.org
http://www.iso.org
http://www.iso.org
http://www.iso.org
http://www.iso.org
http://www.iso.org
http://www.drm.jp/drm/e_index.htm
http://www.drm.jp/drm/e_index.htm

Bibliography

[86] Ian Johnson. Mapping the Fourth Dimension: The TimeMap Project. In L. Ding-

wall, S. Exon, V. Gaffney, S. Laflin, and M. Van Leusen, editors, Proceedings

of the 25th Computer Applications in Archaeology Conference (CAA), Birming-

ham, April 1997, BAR International Series 750, page 21 pp., Oxford, UK, 1999.

Archaeopress.

[87] Simon J. Julier and Jeffrey K. Uhlmann. Consistent debiased method for convert-

ing between polar and cartesian coordinate systems. Acquisition, Tracking, and

Pointing XI, 3086(1):110–121, 1997.

[88] Java Universal Network/Graph Framework. http://jung.sourceforge.

net, accessed August 2006.

[89] Erland Jungert. The observer’s point of view: An extension of symbolic pro-

jections. In Andrew U. Frank, Irene Campari, and Ubaldo Formentini, editors,

Spatio-Temporal Reasoning, volume 639 of Lecture Notes in Computer Science,

pages 179–195. Springer, 1992.

[90] Roberta L. Klatzky. Allocentric and egocentric spatial representations: Defini-

tions, distinctions, and interconnections. In C. Freksa, C. Habel, and K. F. Wen-

der, editors, Spatial cognition - An interdisciplinary approach to representation

and processing of spatial knowledge, volume 1404, pages 1–17, Berlin, 1998.

Springer-Verlag.

[91] Dan Klein, Joseph Smarr, Huy Nguyen, and Christopher D. Manning. Named en-

tity recognition with character-level models. In Walter Daelemans and Miles Os-

borne, editors, Proceedings of CoNLL-2003, pages 180–183. Edmonton, Canada,

2003.

[92] Rolf Klein. Algorithmische Geometrie. Addison-Wesley, 1997. KLE r 97:1 1.Ex.

[93] The Keyhole Markup Language (KML). http://earth.google.com/

kml/, accessed August 2006.

[94] Dietmar Kopitz and Bev Marks. RDS: The Radio Data System. Artech House

Publishers, 1998.

[95] Benjamin Kuipers. Modeling spatial knowledge. In Proceedings of the Interna-

tional Joint Conference on Artificial Intelligence (IJCAI), pages 292–298, 1977.

[96] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers,

Boston, MA, USA, 1991.

[97] A. Lazanas and J.-C. Latombe. Landmark-based Robot Navigation. In Proceed-

ings of the Tenth National Conference on Artificial Intelligence (AAAI-92), pages

816–822, San Jose, California, 1992. AAAI Press.

252

http://jung.sourceforge.net
http://jung.sourceforge.net
http://earth.google.com/kml/
http://earth.google.com/kml/

Bibliography

[98] Willem J. M. Levelt. Perspective taking and ellipsis in spatial descriptions. In

P. Bloom, M.A. Peterson, M.F. Garrett, and L. Nadel, editors, Language and

space, pages 77–107, Cambridge, MA, 1996. MIT Press.

[99] Stephen C. Levinson. Pragmatics. Cambridge University, Cambridge, England,

1983.

[100] Gérard Ligozat. Reasoning about Cardinal Directions. Journal of Visual Lan-

guages and Computing, 9:23–44, 1998.

[101] Real-Time Travel Information – More Services ... with the Right Equip-

ment. http://www.locationintelligence.net/articles/559.

html, accessed April 2004.

[102] G. D. Logan and D. D. Sadler. A Computational Analysis of the Apprehension

of Spatial Relations. In P. Bloom, M.A. Peterson, M.F. Garrett, and L. Nadel,

editors, Language and space, pages 493–529, Cambridge, MA, 1996. MIT Press.

[103] Bernhard Lorenz. Bewegungsplanung für nicht-holonome Vehikel. Diplomar-

beit/diploma thesis, Institute for Informatics, LMU, Munich, 2002.

[104] Bernhard Lorenz and Hans Jürgen Ohlbach. Ontology Driven Visualisation

of Maps with SVG. Deliverable A1-D5, Institute for Informatics, Ludwig-

Maximilians-Universität München, 2005.

[105] Bernhard Lorenz and Hans Jürgen Ohlbach. Dynamic Data for Geospatial Rea-

soning - A Local Data Stream Management System (L-DSMS) and a Case

Study with RDS-TMC. Deliverable A1-D6, Institute for Informatics, Ludwig-

Maximilians-Universität München, 2006.

[106] Bernhard Lorenz, Hans Jürgen Ohlbach, and Laibing Yang. Ontology of Trans-

portation Networks. Deliverable A1-D4, Institute for Informatics, Ludwig-

Maximilians-Universität München, 2005.

[107] Kevin Lynch. The Image of the City. MIT Press, June 15, 1960.

[108] M. Fischer Manfred and Yee Leung. Geocomputational Modelling: Techniques

and Applications (Advances in Spatial Science). Springer, 2006.

[109] James Mayfield, Paul McNamee, and Christine Piatko. Named entity recognition

using hundreds of thousands of features. In Walter Daelemans and Miles Osborne,

editors, Proceedings of CoNLL-2003, pages 184–187. Edmonton, Canada, 2003.

[110] Kurt Mehlhorn. Data Structures and Algorithms 3: Multi-dimensional Searching

and Computational Geometry. EATCS Monographs on Theoretical Computer

Science. Springer, 1984. MEH k 84:3 2.P-Ex.

253

http://www.locationintelligence.net/articles/559.html
http://www.locationintelligence.net/articles/559.html

Bibliography

[111] Doreen Mizzi. A Mobile Navigational Assistance System Using Natural Lan-

guage Generation. BSc FYP, Department of Computer Science & A.I., University

of Malta, Malta, 2004.

[112] Martien Molenaar. An Introduction to the Theory of Spatial Object Modelling for

GIS. CRC Press, 1998.

[113] Daniel R. Montello. Scale and multiple psychologies of space. In Andrew U.

Frank and Irene Campari, editors, Spatial Information Theory: A Theoretical Ba-

sis for GIS, International Conference COSIT ’93, Marciana Marina, Elba Island,

Italy, September 19-22, 1993, Proceedings, volume 716 of Lecture Notes in Com-

puter Science, pages 312–321. Springer, Heidelberg, 1993.

[114] Amitabha Mukerjee and Gene Joe. A qualitative model for space. In AAAI, pages

721–727, 1990.

[115] NAVTEQ, http://www.navteq.com. Provider of digital map data, ac-

cessed August 2006.

[116] Hans Jürgen Ohlbach. Calendar logic. In D.M. Gabbay, I. Hodkinson, and

M. Reynolds, editors, Temporal Logic: Mathematical Foundations and Computa-

tional Aspects, pages 489–586. Oxford University Press, 2000.

[117] Hans Jürgen Ohlbach. Calendrical calculations with time partitionings and fuzzy

time intervals. In H. J. Ohlbach and S. Schaffert, editors, Proc. of PPSWR04,

number 3208 in LNCS. Springer Verlag, 2004.

[118] Hans Jürgen Ohlbach. Fuzzy Time Intervals and Relations – The FuTIRe Li-

brary. Forschungsbericht/research report PMS-FB-2004-4, Institute for Informat-

ics, University of Munich, 2004.

[119] Hans Jürgen Ohlbach. Relations between fuzzy time intervals. In C. Combi and

G. Ligozat, editors, Proc. of the 11th International Symposium on Temporal Rep-

resentation and Reasoning, pages 44–51, Los Alamitos, California, 2004. IEEE.

[120] Hans Jürgen Ohlbach. The role of labelled partitionings for modelling periodic

temporal notions. In C. Combi and G. Ligozat, editors, Proc. of the 11th Interna-

tional Symposium on Temporal Representation and Reasoning, pages 60–63, Los

Alamitos, California, 2004. IEEE.

[121] Hans Jürgen Ohlbach. Computational Treatment of Temporal Notions – The

CTTN-System. In Proceedings of the Third Workshop on Principles and Practice

of Semantic Web Reasoning, Dagstuhl, Germany (11th–16th September 2005).

INRIA, 2005.

254

http://www.navteq.com

Bibliography

[122] Hans Jürgen Ohlbach. Fuzzy Time Intervals – The FuTI-Library. Forschungs-

bericht/research report PMS-FB-2005-26, Institute for Informatics, University of

Munich, 2005.

[123] Hans Jürgen Ohlbach. GeTS - A Specification Language for Geo-Temporal No-

tions. Forschungsbericht/research report PMS-FB-2005-28, Institute for Infor-

matics, University of Munich, 2005.

[124] Hans Jürgen Ohlbach. Implementation: GeTS - A Specification Language for

Geo-Temporal Notions. Deliverable A1-D10-1, Institute for Informatics, Ludwig-

Maximilians-Universität München, 2005.

[125] Hans Jürgen Ohlbach. Fuzzy Time Intervals – System Description of the FuTI-

Library. In Proceedings of the 4th Workshop on Principles and Practice of Se-

mantic Web Reasoning , Budva, Montenegro (10th–11th June 2006), 2006.

[126] Hans Jürgen Ohlbach. GeTS - A Specification Language for Geo-Temporal No-

tions. In Proceedings of 29th Annual German Conference on Artificial Intelli-

gence, Bremen, Germany (14th–19th June 2006), 2006.

[127] Hans Jürgen Ohlbach and Dov Gabbay. Calendar logic. Journal of Applied Non-

classical Logics, 8(4):291–324, 1998.

[128] Hans Jürgen Ohlbach, Klaus Schulz, and Felix Weigel. Geotemporal Rea-

soning: Basic Theory. Deliverable A1-D1, Institute for Informatics, Ludwig-

Maximilians-Universität München, 2004.

[129] Dan Olteanu. Evaluation of XPath Queries against XML Streams. Disserta-

tion/Ph.D. thesis, Institute of Computer Science, LMU, Munich, 2005. PhD The-

sis, Institute for Informatics, University of Munich, 2005.

[130] Dan Olteanu, Tim Furche, and François Bry. An efficient single-pass query eval-

uator for XML data streams. In SAC, pages 627–631, 2004.

[131] David D. Palmer and David S. Day. A statistical profile of the named entity task.

In ANLP, pages 190–193, 1997.

[132] Louis F. Pau. Mapping and Spatial Modelling for Navigation. Springer, Berlin,

1990.

[133] Axel Pinz. Consistent Visual Information Processing Applied to Object Recogni-

tion. In The 6th International Fall Workshop on Vision, Modeling, and Visualiza-

tion (VMV), Stuttgart, Germany, 2001.

255

Bibliography

[134] David A. Randell, Zhan Cui, and Anthony Cohn. A spatial logic based on regions

and connection. In Bernhard Nebel, Charles Rich, and William Swartout, editors,

KR’92. Principles of Knowledge Representation and Reasoning: Proceedings of

the Third International Conference, pages 165–176. Morgan Kaufmann, San Ma-

teo, California, 1992.

[135] Specification of the radio broadcast data system.

ftp://ftp.rds.org.uk/pub/acrobat/rbds1998.pdf, April 1998.

[136] RBDS versus RDS – What are the differences and how can receivers cope

with both systems? ftp://ftp.rds.org.uk/pub/acrobat/rbds_

vs_rds.pdf, April 1998.

[137] Jochen Renz. Qualitative Spatial Reasoning with Topological Information.

Springer, ISBN 3-540-43346-5, 2002. 13-15, 20p., 32-40.

[138] Jochen Renz and Bernhard Nebel. On the complexity of qualitative spatial reason-

ing: A maximal tractable fragment of the region connection calculus. Technical

Report report00087, University of Freiburg, Germany, 23, 1997.

[139] Thomas Rickinger. Eine Client/Server-Architektur zur endgerätebasierten Ortung

auf Basis von WLAN Scene Analysis. Diplomarbeit/diploma thesis, Institute for

Informatics, LMU, Munich, March 2006.

[140] H. Ritter. Self-Organizing Maps on non-euclidean Spaces. In S. Oja, E. & Kaski,

editor, Kohonen Maps, pages 97–110. Elsevier, Amsterdam, 1999.

[141] Ralf Röhrig. Representation and Processing of Qualitative Orientation Knowl-

edge. In Proceedings of the 21st Annual German Conference on Artificial Intelli-

gence (KI’97), pages 219–230, London, UK, 1997. Springer-Verlag.

[142] N. S. Ryan, J. Pascoe, and D. R. Morse. Enhanced reality fieldwork: the context-

aware archaeological assistant. In V. Gaffney, M. van Leusen, and S. Exxon,

editors, Computer Applications in Archaeology 1997, British Archaeological Re-

ports, Oxford, October 1998. Tempus Reparatum.

[143] Bill Schilit, Norman Adams, and Roy Want. Context-Aware Computing Applica-

tions. In IEEE Workshop on Mobile Computing Systems and Applications, Santa

Cruz, CA, US, 1994.

[144] Bill Schilit and Marvin Theimer. Disseminating Active Map Information to Mo-

bile Hosts. IEEE Network, 8(5):22–32, 1994.

[145] Matthias Schmeisser. PlanML - A Markup Language for expressing Planning

Results. Diplomarbeit/diploma thesis, Institute for Informatics, LMU, Munich,

December 2006.

256

ftp://ftp.rds.org.uk/pub/acrobat/rbds1998.pdf
ftp://ftp.rds.org.uk/pub/acrobat/rbds_vs_rds.pdf
ftp://ftp.rds.org.uk/pub/acrobat/rbds_vs_rds.pdf

Bibliography

[146] Alexander Scivos and Bernhard Nebel. Double-crossing: Decidability and com-

putational complexity of a qualitative calculus for navigation. In Daniel R. Mon-

tello, editor, COSIT, volume 2205 of Lecture Notes in Computer Science, pages

431–446. Springer, 2001.

[147] Spatial Data Transfer Standard (SDTS). http://data.geocomm.com/

sdts/, accessed August 2006.

[148] J. Sharma, D. Flewelling, and M. Egenhofer. A qualitative spatial reasoner. In

The Proceedings of the 6th International Symposium on Spatial Data Handling,

1994.

[149] Dan I. Slobin. From ”thought and language” to ”thinking for speaking”. In J. J.

Gumperz and S. C. Levinson, editors, Rethinking linguistic relativity, pages 70–

96, Cambridge, MA, 1996. Cambridge University Press.

[150] Mark E. Stickel. Automated Deduction by Theory Resolution. Journal of Auto-

mated Reasoning, 1(4):333–356, 1985.

[151] Edgar-Philipp Stoffel. A Research Framework for Graph Theory in Routing Ap-

plications. Diplomarbeit/diploma thesis, Institute for Informatics, LMU, Munich,

2005.

[152] Leonard Talmy. Lexicalization patterns: Semantic structure in lexical forms. In

Timothy Shopen, editor, Language typology and syntactic description, vol. 3,

pages 57–149, Cambridge, 1985. Cambridge University Press.

[153] Tele Atlas, http://www.teleatlas.com. Provider of digital map data,

accessed August 2006.

[154] D. Tilbury, R. Murray, and S. Sastry. Trajectory Generation for the N-Trailer

Problem Using Goursat Normal Form. Technical Report ERL-93-12, University

of California, Berkeley, 1993.

[155] Sabine Timpf and Corinna Heye. Complexity of routes in multi-modal wayfind-

ing. Technical report, University of Zurich, Department of Geography, 2002.

[156] Sabine Timpf and Werner Kuhn. Granularity transformations in wayfinding. In

Spatial Cognition, pages 77–88, 2003.

[157] Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the conll-2003

shared task: Language-independent named entity recognition. In Walter Daele-

mans and Miles Osborne, editors, Proceedings of CoNLL-2003, pages 142–147.

Edmonton, Canada, 2003.

257

http://data.geocomm.com/sdts/
http://data.geocomm.com/sdts/
http://www.teleatlas.com

Bibliography

[158] Barbara Tversky and Paul U. Lee. How space structures language. In Christian

Freksa, Christopher Habel, and Karl Friedrich Wender, editors, Spatial Cognition,

volume 1404 of Lecture Notes in Computer Science, pages 157–176. Springer,

1998.

[159] Barbara Tversky and Paul U. Lee. Pictorial and verbal tools for conveying routes.

In Freksa and Mark [61], pages 51–64.

[160] Laure Vieu. Spatial Representation and Reasoning in AI. In O. Stock, editor,

Spatial and Temporal Reasoning, pages 3–40, Boston, MA, USA, 1997. Kluwer

Academic Publishers.

[161] W3C, http://www.w3.org/TR/owl-guide. OWL – The Web Ontology

Language, accessed August 2006.

[162] flex: The Fast Lexical Analyzer. http://flex.sourceforge.net, ac-

cessed August 2006.

[163] OWLAPI – The OWL API Project. http://sourceforge.net/

projects/owlapi, accessed August 2006.

[164] REWERSE - Reasoning on the Web with Rules and Semantics. http://

rewerse.net, accessed August 2006. Funded within the 6th Framework Pro-

gramme project REWERSE number 506779.

[165] Felix Weigel. Enhancing User Interaction and Efficiency with Structural Sum-

maries for Fast and Intuitive Access to XML Databases. In Proceedings of the

3rd Ph. D. Workshop at the 10th International Conference on Extending Database

Technology (EDBT), 2006.

[166] Felix Weigel, Klaus U. Schulz, Levin Brunner, and Eduardo Torres-Schumann.

Integrated Document Browsing and Data Acquisition for Building Large Ontolo-

gies. In Proceedings of the 10th International Conference on Knowledge-Based

& Intelligent Information & Engineering Systems (KES), Invited Session ”Engi-

neered Applications of Semantic Web” (SWEA), 2006.

[167] Steffen Werner and Christopher Habel. Spatial Reference Systems. Spatial Cog-

nition and Computation, 1(4):3–7, 1999.

[168] Steffen Werner, Bernd Krieg-Brückner, Hanspeter A. Mallot, Karin Schweizer,

and Christian Freksa. Spatial cognition: The role of landmark, route, and survey

knowledge in human and robot navigation. In GI Jahrestagung, pages 41–50,

1997.

258

http://www.w3.org/TR/owl-guide
http://flex.sourceforge.net
http://sourceforge.net/projects/owlapi
http://sourceforge.net/projects/owlapi
http://rewerse.net
http://rewerse.net

Bibliography

[169] Alfred North Whitehead. Process and Reality. Macmillan, London, 1929. Cor-

rected edition ed. by David Griffin and Donald Sherburne, New York: Free Press,

1978.

[170] Casey Whitelaw and Jon Patrick. Named entity recognition using a character-

based probabilistic approach. In Walter Daelemans and Miles Osborne, editors,

Proceedings of CoNLL-2003, pages 196–199. Edmonton, Canada, 2003.

[171] Universal Transverse Mercator coordinate system. http://en.wikipedia.

org/wiki/UTM, accessed August 2006.

[172] World Geodetic System, WGS-84. http://en.wikipedia.org/wiki/

World_Geodetic_System, accessed August 2006.

[173] Kai Zimmermann. A Proposal for Representing Objects Sizes. In Pribbenow and

Schlider, editors, Proceedings of the Workshop on Spatial and Temporal Reason-

ing at the European Conference on Artificial Intelligence, 1992.

[174] Kai Zimmermann. Enhancing Qualitative Spatial Reasoning Combining Orien-

tation and Distance. In Andrew U. Frank and Irene Campari, editors, Spatial In-

formation Theory: A Theoretical Basis for GIS, International Conference COSIT

’93, Marciana Marina, Elba Island, Italy, September 19-22, 1993, Proceedings,

volume 716 of Lecture Notes in Computer Science, pages 69–76. Springer, Hei-

delberg, 1993.

[175] Kai Zimmermann and Christian Freksa. Qualitative Spatial Reasoning Using Ori-

entation. Applied Intelligence, 6(32):49–58, 1996.

259

http://en.wikipedia.org/wiki/UTM
http://en.wikipedia.org/wiki/UTM
http://en.wikipedia.org/wiki/World_Geodetic_System
http://en.wikipedia.org/wiki/World_Geodetic_System

Bibliography

260

Index

2.5-dimensional representation, 94

9 Intersection Model, 59

AF, see Alternative Frequencies

Alert-C, 189

Alternative Frequencies, 187

Angle, 94

∼s in MPLL, 108

definition, 112

string representation in MPLL, 109

variable naming conventions, 99

Axis-symmetry, 73

Azimuth, 42

Bank, 44

Bearing, 44

∼ in basic functions, 143

compass ∼, 44

Binary arithmetic operators, 195

Bool

boolean operators reference, 197

variable naming conventions, 99

Boolean operators, 197

Calendar, 95

Cartesian coordinate system, 35–36, 96

Centre of mass

∼ in basic functions, 146

Circular Interval, 95

Clock Time, 186

Closest point

∼ in basic functions, 147

Closest segment

∼ in basic functions, 148

Comparisons, 196

Computational Treatment of Temporal

Notions, 95

Configuration, 41–42, 95

∼s in MPLL, 108

definition, 114

predicates on ∼s, 198

reference, 198

string representation in MPLL, 110

variable naming conventions, 99

Configuration space, 41–42, 93

Context

common definitions, 80

definition within the scope of this

work, 81

Context modelling, 80–81

interactional approach, 80

representational approach, 80

Contextual clues in NER, 65

Control constructs, 197

Coordinate system, 95

Cartesian ∼, 35

left-handed ∼, 35

right-handed ∼, 35

transformation, 36

Course, see bearing

CT, see Clock Time

CTTN, see Computational Treatment of

Temporal Notions

Cues, 65

Data structure types

definition, 107

reference, 195

261

Index

Daylight saving time, 95

Dead reckoning, 28

Decision point, 65

optional, 65

real, 65

Description logics, 12

Direction, 42–43

azimuth, 42

elevation, 42

heading, 42

line-to-line, 53

line-to-point, 52

line-to-region, 53

orientation, 43

point-to-line, 50

point-to-point, 46

point-to-region, 51

region-to-line, 54

region-to-point, 53

region-to-region, 55

track, 42

variable naming conventions, 100

Distal relations, 8

Distance

line-to-line, 57

point-to-line, 57

point-to-point, 56

region-to-region, 57

Elevation, 42

Enhanced Other Networks, 187

Enumeration types

context for evaluation, 110

definition, 110

reference, 195

EON, see Enhanced Other Networks

Example

“floor plans” ∼, 13

“in the south of . . .” ∼, 5

“nearest pharmacy” ∼, 5

“route description” ∼, 7

“symbolic data representation” ∼,

17

“text annotation” ∼, 6

“traffic jam” ∼, 5

Float

∼s in MPLL, 107

string representation in MPLL, 109

variable naming conventions, 99

Function

bearing, 143

centre of mass, 146

closest point, 147

closest segment, 148

intersection, 148

intersection point, 147

rotation, 142

scaling, 142

side, 146

transformation, 141

translation, 141

turning, 143

Fuzziness

1-dimensional, 68–73

1.5-dimensional, 73–75

2-dimensional, 77–80

ambiguity, 68

generality, 68

imprecision, 67

uncertainty, 68

Gauß, Carl Friedrich, 41

Gauß-Krüger coordinate system, 40

GDF, see Geographic Data Format

Geo-Temporal Specification Language,

91

basic types in the ∼, 93

granularities in the ∼, 92

Geodetic Reference System, 39

Geographic Data Format, 185

Geography Mark-Up Language, 185

Geometry, 96

262

Index

Geospatial domain, 94

GeTS, see Geo-Temporal Specification

Language

GML, see Geography Mark-Up Language

Granularities, 92

Graph Exchange Language, 184

GRS, see Geodetic Reference System

GXL, see Graph Exchange Language

Hamacher

co-norm, 125

norm, 126

set operators of the ∼ family, 123

Heading, 42–44

Holonomic vehicle, 44

Instance test, 8

Integer

∼s in MPLL, 107

string representation in MPLL, 109

variable naming conventions, 99

International Terrestrial Reference Sys-

tem, 40

Intersection

∼ in basic functions, 148

Intersection point

∼ in basic functions, 147

Interval

∼s in MPLL, 108

manipulation of ∼s, 203

predicates on ∼s, 202

reference, 201

set operations on ∼s, 202

string representation in MPLL, 110

types of ∼s, 122

variable naming conventions, 100

ITRS, see International Terrestrial Ref-

erence System

Keyword

context for evaluation, 110

Krüger, Johann Heinrich Louis, 41

L-DSMS, see Local Data Stream Man-

agement System

Landmark, 61–67, 93

∼ pair boundaries, 66

artificial vs. natural ∼s, 64

clear form, 63

contrast to environment, 63

cues, 65

fuzziness, 71

reassuring cues, 65

spatial prominence, 63

symbolic significance, 64

trigger cues, 65

Latitude, 39

Leap second, 95

Line, 95

∼s in MPLL, 108

definition, 115

predicates on ∼s, 198

reference, 198

string representation in MPLL, 110

variable naming conventions, 100

Line-to-line direction, 53

Line-to-line distance, 57

Line-to-point direction, 52

Line-to-region direction, 53

Linear features, 93

List

∼s in MPLL, 108

definition, 118

predicates on ∼s, 200

reference, 200

string representation in MPLL, 110

variable naming conventions, 100

Local Data Stream Management Sys-

tem, 87, 181

Longitude, 39

Magnetic north, 44

Matrix concatenation, 38

Matrix transformations, 36

Morphological clues in NER, 65

263

Index

MPLL, see Multi-Paradigm Location Lan-

guage

Multi-Paradigm Location Language, 97

geospatial primitives in ∼, 94

sample expressions, 98

Named entities, 64

definition, 64

in MPLL, 65

Named Entity Recognition, 65

NER, see Named Entity Recognition

Non-holonomic vehicle, 43

North

magnetic ∼, 44

true ∼, 44

NP hard

RCC-8, 17

Ontology for Transportation Networks,

88, 179

Operator

∼ overloading, 101

binary arithmetic ∼s, 195

boolean ∼s, 197

unary arithmetic ∼s, 196

Orientation, 43–44, 93

Orientation region, 66

OTN, see Ontology for Transportation

Networks

Outline, 25

Overloading, 101

Overview

system architecture, 83

Perspective system, 32

PI, see Programme Identification

Pitch, 44

Point, 94

∼s in MPLL, 108

definition, 113

predicates on ∼s, 198

reference, 198

string representation in MPLL, 109

variable naming conventions, 99

Point-to-line direction, 50

Point-to-line distance, 57

Point-to-point direction, 46

Point-to-point distance, 56

Point-to-region direction, 51

Polygon, 95

∼s in MPLL, 108

definition, 116

predicates on ∼s, 199

reference, 199

string representation in MPLL, 110

topological predicates on ∼s, 199

variable naming conventions, 100

Polyline, 95

Preliminary overview

system architecture, 3

Prime meridian, 39

Programme Identification, 187

Programme Type, 187

Programme Service Name, 187

Projection, 96

Proximity relations, 5, 8

Proxy place names, 64

PS, see Programme Service Name

PT, see Programme Type

Qualitative

geospatial relations, 45

shape, 44

size, 44

Radio Data System, 87, 183, 185

Radio Text, 187

RCC, see Region Connection Calculus

RCC-8, see Region Connection Calcu-

lus

NP hard, 17

RDS, see Radio Data System

Reassuring cues, 65

Reference system, 32, 95

264

Index

absolute ∼s, 34

allocentric ∼s, 33

anchoring ∼s, 35

definition, 120

deictic ∼s, 34

egocentric ∼s, 33

environment-centred, 33

exocentric ∼s, 33

extrinsic ∼s, 34

geocentric ∼s, 33

intrinsic ∼s, 34

object-centred ∼s, 33

orientation-bound ∼s, 34

orientation-free ∼s, 34

perspective system, 32

predicates on ∼s, 201

reference, 200

referent, 32

relative ∼s, 34

relatum, 32

viewer-centred ∼s, 33

world-centred ∼s, 33

Referent, 32

Region Connection Calculus, 58

Region-to-line direction, 54

Region-to-point direction, 53

Region-to-region direction, 55

Region-to-region distance, 57

Relations

9 Intersection ∼, 59

direction, 46, 50–55

distal ∼, 8

distance, 55–57

proximity ∼, 5, 8

qualitative geospatial ∼, 45–59

qualitative shape, 44

qualitative size, 44

RCC-8 ∼, 58

topological ∼, 58

Relatum, 32

Road furniture, 28

Roll, 44

Rotation, 37

∼ in basic functions, 142

Route descriptions, 27

RT, see Radio Text

Scaling, 37

∼ in basic functions, 142

Side

∼ in basic functions, 146

Spatial abstraction, 93

String

∼s in MPLL, 108

parsing order, 111

string representation in MPLL, 109

System architecture

overview, 83

preliminary overview, 3

TA, see Traffic Announcement

Thesis outline, 25

TMC, see Traffic Message Channel

Topological relations, 58

TP, see Traffic Programme

Track, 42

Traffic Announcement, 187

Traffic Message Channel, 87, 183, 185

Traffic Programme, 187

Transformation, 36–38

∼s in basic functions, 141

matrix ∼, 36

matrix concatenation, 38

rotation, 37

scaling, 37

translation, 37

Translation, 37

∼ in basic functions, 141

TransRoute, 88, 184

Trigger cues, 65

Trigonometry, 196

True north, 44

Turning

∼ in basic functions, 143

265

Index

Unary arithmetic operators, 196

Universal transverse mercator coordi-

nate system, 40

User modelling, 80–81

User preferences, 80–81

cardinal direction, 45

UTM, see Universal transverse merca-

tor coordinate system

Vehicle

holonomic, 44

non-holonomic, 43

WGS, see World Geodetic System

WGS-84, 39, 113

World Geodetic System, 39

Wraparound, 96

horizontal ∼, 96

vertical ∼, 96

Yaw, 44

266

	Introduction and Motivation
	Examples
	Data and Queries
	Sample Solutions

	Modelling Techniques
	Graphs, Graph Transformations
	Ontologies
	Region Connection Calculus
	Hard Coded Spatial Functions
	Predicate Logic
	Spatial Specification Language
	Conclusion

	The System Architecture at a Glance
	A Sample Application
	Issues not Covered

	Outline

	Basic Concepts
	Introductory Example
	Elements of Route Descriptions
	Summary

	Reference Systems
	Types of Reference Systems
	Anchoring

	Coordinate Systems
	Cartesian Coordinate Systems
	Transformations
	Longitude and Latitude
	WGS-84
	Universal Transverse Mercator Coordinate System
	Gauß-Krüger Coordinate System

	Basic Data Types
	Configurations and Configuration Space
	Angular Expressions
	Shape and Size

	Basic Spatial Relations
	Direction
	Distance
	Topological Relations
	Complex relations

	Landmarks
	Definition
	Named Entities as Landmarks
	Landmarks in Wayfinding
	Challenges

	Fuzziness
	Fuzzy Intervals
	1.5-Dimensional Distributions
	Directional Fuzziness
	Two-Dimensional Fuzzification

	Context and User Modelling
	Summary

	System Architecture
	Overview
	Modules
	Spatial Reference Module
	Graph Routing Module
	Traffic Information Module
	OTN Module
	Topological Reasoning Module

	Related Projects
	Local Data Stream Management System
	Ontology of Transportation Networks
	TransRoute
	Indoor Positioning and Navigation
	PlanML

	Summary

	MPLL -- Multi-Paradigm Location Language
	From GeTS to MPLL
	Granularities
	Basic Types
	Geospatial Primitives in MPLL
	Reference Systems

	The Language MPLL
	Examples
	Variable Naming Conventions

	Language Constructs
	Arithmetic Expressions
	Boolean Expressions
	Control Constructs
	Functional Arguments
	Compound Types

	Basic Types
	Basic Spatial Types
	Angles
	Points
	Configurations
	Lines
	Polygons
	Lists
	Reference Systems
	Intervals
	Circular Intervals

	Basic Functions
	Transformations
	Bearing
	Construction of Points
	Construction of Lines
	Other Predicates

	The MPLL Standard Library -- Types
	Naming Conventions
	Predefined Constants
	Angles
	Points
	Configurations
	Lines
	Polygons
	Circular Intervals

	The MPLL Standard Library -- Functions
	Transformations
	Direction, Bearing and Orientation
	Other Composite Functions

	Summary

	Application
	Properties
	Transformation of List Elements
	Angular Relation in Route Descriptions
	Summary

	Related Work
	Qualitative Orientation
	Egocentric Motion-based Reference System
	Indoor fixed Spatial Orientation
	Cardinal Reference System

	Qualitative Distance
	Related Projects
	Ontology for Transportation Networks (OTN)
	Local Data Stream Management System
	TransRoute

	Related Standards: Traffic Information via RDS/TMC
	The Radio Data System (RDS)
	The Traffic Message Channel (TMC)

	Summary

	Conclusion and Future Work
	Conclusion
	Perspectives for Future Research
	Ontology-based Language Constructs
	Comprehensive User and Context Modelling
	Individual Libraries
	Integration with GeTS

	Language Reference
	Types
	Arithmetics
	Boolean Operators
	Control Constructs
	Points
	Configurations
	Lines
	Polygons
	Lists
	Reference Systems
	Intervals

	Application Programming Interface Reference
	Selected Code Samples
	The MPLL Standard Library
	Types
	Functions

	Implementation
	Scanner
	Parser - Tokens
	Parser - Type Expressions
	C++ Sources

	List of Acronyms
	Bibliography

