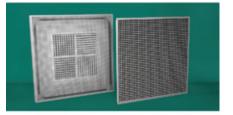
SECTION C



Ceiling Diffusers

Product Overview Ceiling Diffusers

Square Ceiling Diffusers SCD/ASCD, SCDA/ASCDA, SPD/ASPD, SPD HI, SPD LT

Price offers a complete range of square cone ceiling diffusers in steel or aluminum construction. Available with fixed or adjustable air patterns, square cone diffusers are the most popular and efficient ceiling diffusers for true 360° degree radial diffusion. Standard ceiling modules, numerous mounting

borders, and a wide range of inlet sizes are available. C7

Perforated Ceiling Diffusers PDN/PDNE, PDSP, PDF/APDF, PDC/ APDC, PDMC/APDMC, PDDR/PDDRE, PFRF/PFRFE/APFRF/APFRFE, PDS, PDR

Price offers a full line of perforated supply and matching return diffusers that provide a smooth, even appearance that blends into the ceiling. Perforated supply diffusers are available with adjustable louvered pattern controllers on either the face or neck, curved blades, or modular cores, which provide an excellent horizontal air pattern with strong Coanda effect. A complete range of accessories are available..... C31

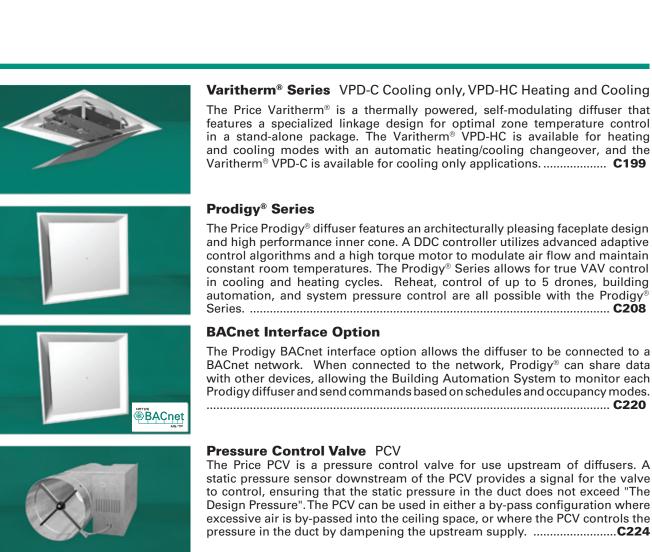
Square and Rectangular Directional Diffusers SMD/AMD, SMDA/ AMDA, CSRD, SMX/AMX, SMCD/AMCD, CVD/SCVD/ACVD/LCMD/SMDP

The Price line of square and rectangular directional diffusers allows for versatility of application. These louvered, curved blade and modular core diffusers are available in a wide range of air pattern core styles, with square or rectangular inlets. They can supply large volumes of air at low sound levels and pressure

Round Cone Diffusers RCD/RCDE/ARCD/RPD/RID Series

Price offers a complete line of round cone ceiling diffusers that combine the classic beauty of round cone styling with maximum air diffusion efficiency.

..... C140


Twist Diffusers RTD/RVD

Price offers a selection of twist diffuser outlets that are suitable for a wide range of applications. They can supply large volumes of air at low sound levels and pressure drops, and are suitable for installation in higher ceiling applications.

Accessories for Ceiling Diffusers VCR8/VCR8E/VCR7/VCR6/VCS3/VCR9

Price offers a complete line of surface mounting accessories and air volume dampers for round and square neck applications and duct mounted applications.

Product Overview Ceiling Diffusers

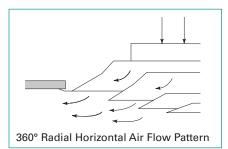
© Copyright Price Industries Limited 2014.

Accessories for VAV Diffusers PRC, PPM

Price offers additional accessories for both the Prodigy® and Varitherm® diffusers. The PRC is a mechanical pressure relief collar suited for Price VAV diffusers, which bleeds air into the ceiling space when the inlet static pressure exceeds .25 in. w.g. The PPM is a power module designed to allow for up to 30 Prodigy[®] diffusers to be connected in series with minimal electrical wiring.

..... C229

Ceiling Diffusers Application Guidelines



Overview

This section presents a full range of ceiling air diffusers. The performance objective of a ceiling air diffuser is to deliver conditioned air into an occupied space in a quiet draft-free manner. The performance efficiency of a particular diffuser design is usually judged by the diffuser's ability to rapidly dissipate the air velocities and temperature differential of the supply air before it enters the occupied space. Many models have been developed in response to specific air distribution requirements. Others have been developed or modified to meet architectural requirements of appearance, module size or other aesthetic considerations.

Square Cone Diffusers

The most popular, and one of the most efficient in the market today, is the family of square multiple cone ceiling diffusers. The cones are one-piece die-formed with smooth aerodynamically designed surfaces and no corner joints. With a round inlet, they combine the performance of a round diffuser with a square modular appearance. The square cone diffuser provides a true 360° radial horizontal air flow pattern, ideal for VAV applications. The 360° radial horizontal air flow promotes rapid mixing, temperature equalization and velocity reduction. A consistent, stable air pattern is maintained as the air volume is reduced. For ceiling applications, neck velocities as low as 75 fpm on reduced air volumes result in stable, horizontal air distribution without dumping. On exposed duct VAV applications, stable horizontal air distribution is maintained without dumping down to 20% of the maximum air volume.

Ceiling smudging has long been a concern, and it has been recognized that airborne dirt deposited on ceilings adjacent to air outlets comes from one or both of two sources.

- 1. The primary air stream may carry dirt through the duct system and deposit it adjacent to the outlets.
- 2. The secondary or entrained room air can carry dirt from the occupied space and deposit it adjacent to the outlets.

Model SCD - 3 Cone

Model SCD - 4 Cone

Model SPD

Since the square cone diffusers have been designed to discharge the primary supply air in a 360° radial horizontal air flow pattern, voids and low pressure areas adjacent to the diffuser are either nonexistent or minimized. This provides an effective barrier between the ceiling surface and the secondary air movement that may carry entrained room dirt, the prime cause of smudging and streaking.

Field experience has confirmed that square cone diffusers produce less smudging and streaking than most other similar types of diffusers.

The Price SCD family of square diffusers offers a wide range of options to suit most applications. 3 cone and 4 cone models are available to coordinate with most modular ceilings. A wide range of inlet sizes, border styles and modular panel sizes are available. The model SCDA includes adjustable pattern controllers to provide either a horizontal or vertical air pattern.

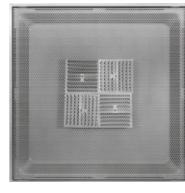
Square Plaque Diffusers

The SPD square plaque diffuser is based on the same aerodynamic outer cone of the SCD, however instead of multiple cones, the SPD features a flat face panel. This plaque design delivers both architectural appeal and engineering performance criteria. The simple, clean and unobtrusive face design is intended to blend with most ceiling systems. The face panel appears flush with the ceiling and has smooth edges and rounded corners to blend with the back cone. The SPD exhibits the same 360° radial horizontal air pattern as the SCD, resulting in all the performance benefits. Rapid mixing, ideal VAV operation and reduced smudging are all achieved with the SPD.

C-4

Ceiling Diffusers Application Guidelines

Radial/Twist diffusers consist of a circular or square face with multiple air vanes, either fixed or adjustable, and a round neck. Diffusers produce a horizontal or vertical twisting pattern for rapid mixing of the room air in heating or cooling modes. A distribution plenum or the outer cone can be connected directly to a round duct. Diffusers can be mounted in aT-bar ceiling or can be mounted to the exposed duct work. The Price RTD is a commercial diffuser with fixed vanes that provides a high induction horizontal air pattern. This high performing twist outlet features extremely low noise levels and short throws, making it ideal for applications with high air change rates.


Perforated Diffusers

Due to popular demand, Price offers a wide range of perforated face air diffusers. One of the most popular is the PDN model, which has been designed to provide superior performance while retaining application flexibility. The PDN model provides a superior horizontal air pattern with a strong Coanda effect against the ceiling. Louvered air pattern controllers, located at the inlet neck of the diffuser, provide positive air flow control and have fixed curved vanes. The radiused shape and blade angle, established by extensive testing of prototype samples, provides positive air flow control. The pattern controllers simply direct the air flow without restricting or dampering the air volume. Since field adjustment of the air pattern does not change the free area, the pressure drop and sound levels remain unchanged from the published performance data. The air pattern is easily adjusted in the field. Available in steel construction or steel construction with aluminum face, and in a wide range of inlet sizes, border styles and module sizes.

Model RVD

Model PDN

Model PDF

blics,

Ceiling Diffusers Application Guidelines

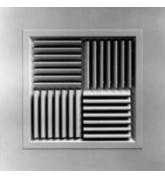
Also popular is the PDF series, which offers many of the same performance features as the PDN. The major difference is that the air pattern deflectors of the PDF series are located behind the perforated faceplate.

The PDDR series of perforated return air units match the appearance and module size of the supply air units.

Modular Directional Diffusers

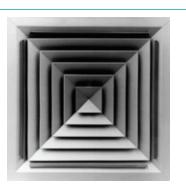
Price offers a complete line of square and rectangular directional ceiling diffusers for versatility of application. This series of directional diffusers is available in either steel construction (SMD) or in aluminum construction (AMD). They are available in a wide variety of 1 way, 2 way, 3 way, or 4 way core styles. With square or rectangular inlet necks, they can supply large volumes of air at low sound levels and at low pressure drops. A wide selection of frame styles and accessories are available to satisfy most application requirements.

The SMDA/AMDA models include individually adjustable vanes to permit field adjustment from a horizontal air pattern to a vertical air pattern on each directional segment of the diffuser. It is recommended that selections of SMDA/AMDA adjustable pattern diffusers be limited to square inlet necks (24 in. x 24 in. maximum size) and to a 4 way core style (core 4A).


SMD/AMD directional diffusers are not recommended for applications without ceilings, such as exposed duct mounting. Tabulated performance data is based on a ceiling mounted SMD/AMD so that the directional air pattern can benefit from the ceiling Coanda effect. When the diffuser is mounted remote from the ceiling, the horizontal throw will be reduced substantially and the resultant air patterns will spill downward.

Modular Core Diffusers

The SMCD/AMCD series of high capacity modular core directional diffusers is designed to supply large volumes of air at relatively low sound levels and pressure drops. They are available in either steel construction (SMCD) or in aluminum construction (AMCD). Field adjustment of the air pattern from 1 way or 2 way to 3 way or 4 way is easily accomplished by repositioning the louvered modular pattern core sections to suit the required arrangement. The SMCD/AMCD diffusers maintain an excellent horizontal air pattern, even at low air volumes, making them an ideal selection for VAV applications. They are offered in a wide range of sizes and a variety of frame styles to suit most application requirements.


Model SMCD

Model RCD

Curved Vane Diffusers

The CVD series of curved vane supply air diffusers are available in a wide range of sizes with 1 way to 4 way directional air patterns. Featuring individually adjustable curved vanes, the supply air can be directed to suit the application. A clean, functional appearance with excellent performance characteristics, the CVD can be installed in ceiling or sidewall locations to provide a wide range of application versatility. The curved vanes require careful field adjustment in order to obtain stable horizontal air patterns from ceiling mounted units. A variety of frame styles are available to suit most application requirements.

Model AMDA

Model CVD

Round Cone Diffusers

Price offers a complete line of round cone ceiling diffusers that combine the classic beauty of round cone design with maximum air diffusion efficiency. Round ceiling diffusers are also available in field-adjustable air pattern models to provide either a horizontal or a vertical air pattern. At the horizontal air pattern setting they deliver supply air in a 360° radial horizontal air pattern - ideal for VAV applications. Model RID is classified as an industrial diffuser and is well suited to factories, warehouses, shopping malls and other applications where ceilings are high and conditions are variable. At the full vertical setting, it provides an unusually long downward projection.

Square Cone and Plaque Diffusers

Product Overview

Price offers a complete range of square cone ceiling diffusers in steel or aluminum construction. Available with fixed or adjustable air patterns, square cone diffusers are the most popular and efficient ceiling diffusers for true 360° radial diffusion.

Models SCD / ASCD

SCD (steel construction) and ASCD (aluminum construction) are the most efficient ceiling diffusers for true 360° radial horizontal air pattern applications, even at low air volumes, making them ideal for VAV applications.

Available in 12 in. x 12 in. / 300×300 , 20 in. x 20 in. / 500×500 and 24 in. x 24 in. / 600×600 face sizes for integration with most standard ceiling modules.

Note: Additional (optional) fourth cone available only with 24 in. x 24 in. / 600 x 600 units.

Models SCDA / ASCDA

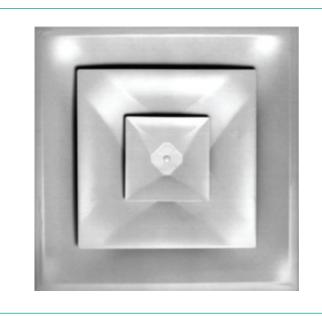
Adjustable models SCDA (steel construction) and ASCDA (aluminum construction) square cone diffusers are styled to match the SCD/ASCD series and are furnished for field adjustment to desired horizontal or vertical air pattern.

Available in 12 in. x 12 in. / 300×300 , 20 in. x 20 in. / 500×500 and 24 in. x 24 in. / 600×600 face sizes for integration with most standard ceiling modules.

Note: Additional (optional) fourth cone available only with 24 in. x 24 in. / 600×600 units.

Models SPD / ASPD

Price SPD (steel construction) and ASPD (aluminum construction) square plaque diffusers satisfy both architectural appeal and engineering performance criteria. The simple, clean and unobtrusive face design is intended to blend with most ceiling systems.


Available in 12 in. x 12 in. / 300×300 , 20 in. x 20 in. / 500×500 and 24 in. x 24 in. / 600×600 face sizes for integration with most standard ceiling modules.

Models SCD AS / SPD AS

Price Square Cone and Square Plaque Diffuser models SCD AS and SPD AS are constructed from aluminum-silicon coated steel which offers superior resistance to atmospheric conditions, salt spray and condensate corrosion. Aluminized Steel diffusers are an excellent choice for cost sensitive applications where the strength of steel and the corrosion resistance of aluminum are required. Available in 12 in. x 12 in. (300 x 300) and 24 in. x 24 in. (600 x 600) sizes.

re Models

SCD
SCDA
SCD AS
ASCD
ASCDA
SPD
SPD AS
ASPD

price

Square Cone and Plaque Diffusers

Types

SCD (Steel) SCD AS (Aluminized Steel) ASCD (Aluminum) Fixed Pattern SCDA (Steel) ASCDA (Aluminum) Fully Adjustable Pattern

Pages C9 - C13

Quick Selection Guide

Pages C14 - C18

SPD (Steel) SPD AS (Aluminized Steel) ASPD (Aluminum) SPD HI (High Induction) Fixed Pattern, Plaque SPDLT (Low Temperature)

Pages C19 - C23 Pages C24 - C26 Pages C27 - C30

Diffuser Type	Ceiling Type	Recommended	I Frame / Panel*
SCD / ASCD / SCD AS			
Square Cone - Fixed Pattern	Lay-in		
	InvertedT 1 in. [25]	31	3P
	Narrow Member ⁹ /16 in. [14]	17	17P
	Concealed Spline	4	4P
	Surface Mount	31	
SCDA / ASCDA			
Square Cone - Adjustable Pattern	Lay-in		
	Inverted T 1 in.[25]	3	3P
	Narrow Member ⁹ /16 in. [14]	17	17P
	Concealed Spline	4	4P
	Surface Mount	1	
SPD / ASPD / SPD AS			
Square Plaque - Fixed Pattern	Lay-in		
	Inverted T 1 in. [25]	31	3P
	Narrow Member ⁹ /16 in. [14]	17	17P
	Concealed Spline	4	4P
	Surface Mount	31	

*For Panel Type (Lay-in models only), add "P" suffix to Frame Type (i.e. 3P, 17P,4P).

*Not all models available with all frame styles and sizes, see submittal drawings for complete details.

Square Cone Diffusers SCD / SCD AS / ASCD Series

Models

Fixed Air Pattern

SCD Steel Construction Aluminized Steel Construction SCD AS Aluminum Construction ASCD

Price SCD / ASCD Series square cone diffusers are the most efficient for any ceiling application. The diffuser delivers supply air in a true 360° radial horizontal air pattern, making it ideal for VAV applications. The special contour design of the diffuser cones protects the ceiling and prevents smudging and streaking associated with many other types of ceiling diffusers.

Features

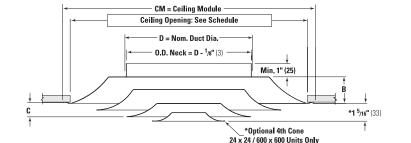
- Choice of steel (SCD), aluminized steel (SCD AS) or aluminum (ASCD) construction.
- · Cones are one-piece die-formed with smooth, aerodynamically designed surfaces and no corner joints.
- All sizes are available with 3 concentric cones (3C).
- Optional 4 cone model available in 24 in. x 24 in. / 600 x 600 face size for aesthetic considerations (4C).
- All sizes available with removable inner cone sub-assembly, featuring a special lock arrangement for fast, easy installation and removal without special tools.
- performance Excellent VAV for applications.
- · Complete range of available accessory dampers, equalizing grids, etc.
- Optional insulated backpan (Style 31 T-bar and 4TS only).
- Optional steel panels available with steel models (SCD/SCDA).
- Optional beaded extended neck (2.5 in. tall) for easy flex duct connection BN.

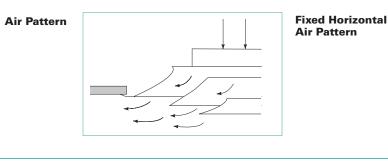
Finish

White Powder Coat	B12
-------------------	-----

For optional and special finishes see color matrix.

Available Module Sizes


Imperial	Metric
24 in. x 24 in.	600 x 600
20 in. x 20 in.	500 x 500
12 in. x 12 in.	300 x 300



Model SCD / SCD AS / ASCD - 3 Cone

Model SCD / SCD AS / ASCD - 4 Cone (24 in. x 24 in. / 600 x 600 face size only)

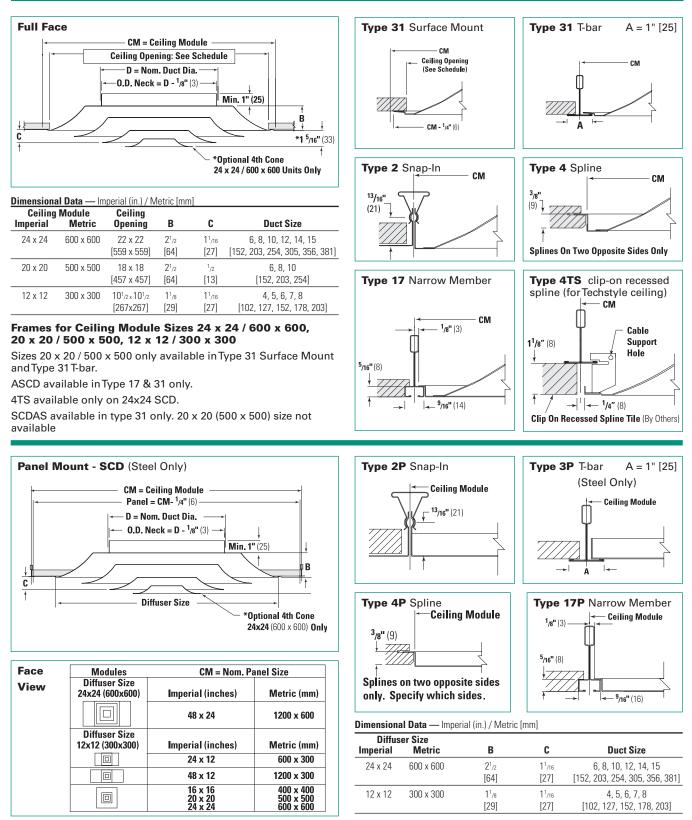
Product Selection Checklist

- Select Inlet Diameter based on desired performance characteristics. 11
- Select Face Size based on ceiling module. 21
- 31 Select Diffuser Type by model number (material).
- Select Border/Panel Style according to installation requirements (page C10). 41 51
 - Select Volume Control Accessories, if desired (page C181-C186).
- 61 Select Number of Cones desired (3C is standard).
- 7] Select Finish.

Example: 8 in. / 24 in. x 24 in. / SCD / 31 / 3C / B12

Application Recommendations:

For Border and Panel recommendations, see page C8.


CEILING DIFFUSERS

Imperial dimensions are converted to metric and rounded to the nearest millimete

Square Cone Diffusers SCD / SCD AS / ASCD Series

Frame Selection

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter © Copyright Price Industries Limited 2014

Fire-Rated Square Cone Diffusers SCD-FR Series

Product Information - Fixed Air Pattern

Price SCD-FR square cone diffusers are Fire-Rated Assemblies which are UL Listed (Underwriters Laboratories Fire Resistance Directory) and ULC Listed (Underwriters Laboratories of Canada Equipment and Materials Directory).This design meets time versus temperature test criteria and NFPA 90A requirements.

SCD-FR square cone diffusers are the most efficient diffuser for any ceiling application. It delivers supply air in a true 360° radial horizontal air pattern onto the ceiling, making it ideal for VAV applications. The special contour design of the diffuser cones prevents smudging and streaking associated with many other types of ceiling diffusers.

Features

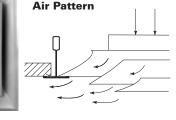
- Available in both imperial and hard metric module sizes.
- Non-adjustable, butterfly-type ceiling radiation damper.
- Designed for use in an exposed grid suspension ceiling (T-bar Lay-in) with a three hour or less restrained or unrestrained assembly rating. Units must be installed in accordance with the instructions that accompany each unit.
- Thermal blanket is non-asbestos.
- Standard 165 °F [74 °C] fusible link, optional 212 °F [100 °C] fusible link.
- Cones are one-piece die-formed with smooth, aerodynamically designed surfaces and no corner joints.
- All sizes are standard with 3 concentric cones (3C). Optional 4 cone model available in 24" x 24" and 600 x 600 face size for aesthetic considerations (4C).
- Inner cone sub-assembly features a special lock arrangement for fast, easy installation and removal without special tools. Provides access to optional volume controller.
- Optional adjustable volume controller (Allen key adjustable).
- Optional 20 x 20, 24 x 12, and 24 x 24 T-bar Lay-in Panel.

Available Module Sizes

Imperial	Metric
24 in. x 24 in.	600 x 600
20 in. x 20 in.	500 x 500
12 in. x 12 in.	300 x 300

Finish

White Powder Coat


For optional and special finishes see color matrix.

Model SCD-FR - 3 Cone

Model SCD-FR - 4 Cone (available in 24" x 24" and 600 x 600 face size only)

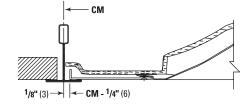
Fixed Horizontal

CM = CEILING MODULE D = NOMINAL DUCT U = 1/8"(3) FUSELINK (NON-ADJUSTABLE) C FUSIBLE LINKS WITH OPTIONAL 47H CONE 24 X 24 UNITS ONLY MAX. OPEN POSITION DAMPER BLADES WITH OPTIONAL VOLUME CONTROLLER

Panel Mount - SCD-FR (Steel Only)

Dimensional Data - Imperial Units / Metric Units

В


21/2" 1

[64] [

21/2'

[64]

1¹/8" [29]

Plan View

		Modules	CM = Nom. P	anel Size
C	Duct Size	Diffuser Size		
1 ¹ /16"	6" ,8" ,10" ,12" ,14" ,15"		Imperial (inches)	
[27]	[152, 203, 254, 305, 356, 381]		24 x 12	600 x 300
			20 x 20	500 x 500
1⁄2"	6" ,8" ,10"		24 x 24	600 x 600
[13]	[152, 203, 254]			,
1 ¹ /16"	5" ,6" ,7" ,8"			
[27]	[127, 152, 178, 203]			

*Panel option diffuser sizes 12 x 12 [300 x 300] & 20 x 20 [500 x 500] only.

Product Selection Checklist

- 1] Select Inlet Diameter.
- 2] Select Face Size based on ceiling module.
- 3] Select Diffuser Style by model number.
- 4] Select Panel Option according to installation requirements.
- 5] Select Number of Cones desired (3C is standard).
- 6] Select Finish.

Ceiling Module

Metric

[mm]

600 x 600

500 x 500

300 x 300

Imperial

(in.)

24 x 24

20 x 20

12 x 12

B12

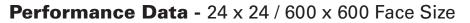
Example: 8" / 24" x 24" / SCD-FR / 3C / B12

Square Cone Diffusers SCD / SCD AS / ASCD Series

Performance Data - 12 x 12 / 300 x 300 Face Size

Listed	Neck Velocity, fpm	400	500	600	700	800	900	1000	1200	1400	1600
Size	Velocity Pressure, in. w.g.	.010	.016	.022	.031	.040	.050	.062	.090	.122	.160
	Total Pressure	.013	.021	.030	.041	.054	.068	.084	.121	.165	.215
4	Flow Rate, cfm	35	44	52	61	70	78	87	104	122	139
4	NC		_	_	_	_	_	_	20	25	29
	Throw 150, 100, 50	1-2-4	1-2-4	2-3-5	2-3-6	2-4-6	3-4-7	3-4-7	4-5-8	4-6-9	5-6-9
	Total Pressure	.015	.024	.035	.047	.062	.078	.097	.139	.189	.247
5	Flow Rate, cfm	54	68	82	95	109	122	136	163	190	218
5	NC		_	_	_	_	16	19	25	30	34
	Throw 150, 100, 50	2-2-5	2-3-6	2-4-7	3-4-8	3-5-8	4-5-9	4-6-9	5-7-10	5-8-11	6-8-11
	Total Pressure	.018	.028	.040	.055	.072	.091	.112	.162	.220	.287
6	Flow Rate, cfm	78	98	118	137	157	176	196	235	274	314
0	NC		_	_	_	16	20	23	29	34	38
	Throw 150, 100, 50	2-3-6	2-4-7	3-4-8	3-5-9	4-6-10	4-7-10	5-7-11	6-8-12	7-9-13	8-10-14
	Total Pressure	.022	.035	.050	.069	.090	.114	.140	.202	.275	.359
7	Flow Rate, cfm	107	134	160	187	214	240	267	320	374	427
'	NC			_	15	19	23	26	32	37	41
	Throw 150, 100, 50	2-4-7	3-4-9	4-5-10	4-6-11	5-7-11	5-8-12	6-9-13	7-10-14	8-11-15	9-11-16
	Total Pressure	.029	.045	.065	.089	.116	.146	.181	.260	.354	.463
8	Flow Rate, cfm	140	175	209	244	279	314	349	419	489	558
0	NC	—			18	22	26	29	35	40	44
	Throw 150, 100, 50	3-4-8	3-5-10	4-6-11	5-7-12	6-8-13	6-9-14	7-10-15	8-11-16	10-12-17	11-13-18

Performance Data - 20 x 20 / 500 x 500 Face Size


Listed	Neck Velocity, fpm	400	500	600	700	800	900	1000	1200	1400	1600
Size	Velocity Pressure, in. w.g.	.010	.016	.022	.031	.040	.050	.062	.090	.122	.160
	Total Pressure	.013	.020	.029	.040	.052	.066	.081	.117	.159	.207
	Flow Rate, cfm	78	98	118	137	157	176	196	235	274	314
6	NC	—	_	_	16	19	23	26	31	35	39
	Throw 150, 100, 50	0-1-3	1-2-4	1-2-4	1-3-5	2-3-6	2-3-6	2-4-6	3-4-7	3-5-7	4-6-8
	Total Pressure	.017	.026	.038	.052	.068	.086	.106	.153	.208	.271
	Flow Rate, cfm	140	175	209	244	279	314	349	419	489	558
8	NC	—	_	_	18	22	25	28	33	37	41
	Throw 150, 100, 50	1-2-5	2-3-6	2-4-6	3-4-7	3-5-7	4-5-8	4-6-8	5-6-9	6-7-10	6-7-11
	Total Pressure	.022	.034	.049	.067	.088	.111	.137	.198	.269	.351
	Flow Rate, cfm	218	273	327	382	436	491	545	654	763	872
10	NC	—	_	15	20	23	27	30	35	39	43
	Throw 150, 100, 50	2-3-6	3-4-7	3-5-8	4-6-9	4-6-9	5-7-10	5-7-10	6-8-11	7-9-12	8-9-13

Performance Notes:

- 1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- 2. Air flow is in cfm.
- 3. All pressures are in in. w.g.

- Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- 5. Throw data is based on supply air and room air being at isothermal conditions.
- NC values are based on room absorption of 10 dB re 10⁻¹² Watts and one diffuser.
- 7. Blanks (—) indicate an NC below 15.
- 8. If the diffuser is mounted on an exposed duct, multiply the throw distance in the table by 0.70.
- Does not include effects of ceiling radiation damper (SCD-FR)

Square Cone Diffusers SCD / SCD AS / ASCD Series

Listed	Neck Velocity, fpm	400	500	600	700	800	900	1000	1200	1400	1600
Size	Velocity Pressure, in. w.g.	.010	.016	.022	.031	.040	.050	.062	.090	.122	.160
	Total Pressure	.015	.023	.034	.046	.060	.076	.094	.135	.183	.239
	Flow Rate, cfm	78	98	118	137	157	176	196	235	274	314
6	NC	—	—	—	—	15	19	22	28	33	37
	Throw 150, 100, 50	1-2-4	1-2-4	2-3-5	2-3-6	2-4-7	3-4-7	3-4-7	4-5-8	4-6-9	5-7-9
	Total Pressure, in. w.g.	.016	.025	.037	.050	.065	.082	.102	.146	.199	.260
	Flow Rate, cfm	140	175	209	244	279	314	349	419	489	558
8	NC	_	_	_	_	19	22	26	31	36	40
	Throw 150, 100, 50	2-2-5	2-3-6	2-4-7	3-4-8	3-5-9	4-6-9	4-6-10	5-7-11	6-8-12	7-9-12
	Total Pressure, in. w.g.	.019	.030	.044	.060	.078	.098	.122	.175	.238	.311
	Flow Rate, cfm	218	273	327	382	436	491	545	654	763	872
10	NC	_	_	_	17	21	25	28	34	39	43
	Throw 150, 100, 50	2-3-6	3-4-8	3-5-9	4-6-10	4-6-11	5-7-12	5-8-12	6-9-13	8-10-14	9-11-15
	Total Pressure, in. w.g.	.023	.036	.051	.070	.091	.115	.142	.205	.279	.364
	Flow Rate, cfm	314	393	471	550	628	707	785	942	1099	1256
12	NC	_	_	_	19	24	27	30	36	41	45
	Throw 150, 100, 50	3-4-8	3-5-10	4-6-11	5-7-12	5-8-13	6-9-14	7-10-15	8-11-16	9-12-17	11-13-19
	Total Pressure, in. w.g.	.026	.041	.058	.079	.104	.131	.162	.233	.318	.415
	Flow Rate, cfm	428	535	641	748	855	962	1069	1283	1497	1710
14	NC	—	_	16	21	25	29	32	38	43	47
	Throw 150, 100, 50	3-5-10	4-6-12	5-7-13	6-9-14	6-10-15	7-11-16	8-12-17	10-13-19	11-14-20	12-15-22
	Total Pressure, in. w.g.	.028	.044	.064	.087	.114	.144	.178	.256	.348	.455
	Flow Rate, cfm	491	614	736	859	982	1104	1227	1472	1718	1963
15	NC	—	_	17	22	26	30	33	39	43	47
	Throw 150, 100, 50	4-5-11	4-7-13	5-8-14	6-9-15	7-11-16	8-12-17	9-13-18	11-14-20	12-15-22	13-16-23

Performance Notes:

- 1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- 2. Air flow is in cfm.
- 3. All pressures are in in. w.g.

- Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- 5. Throw data is based on supply air and room air being at isothermal conditions.
- 6. NC values are based on room absorption of 10 dB re $10^{\text{-}12}$ Watts and one diffuser.
- 7. Blanks (-----) indicate an NC below 15.
- 8. If the diffuser is mounted on an exposed duct, multiply the throw distance in the table by 0.70.
- 9. Does not include effects of ceiling radiation damper (SCD-FR)

Square Cone Diffusers SCDA / ASCDA Series

Product Information - Adjustable Air Pattern

SCDA

ASCDA

Models

Fully Adjustable Air Pattern

Steel Construction Aluminum Construction

Price SCDA / ASCDA Series square cone ceiling diffusers include adjustable pattern controllers to provide either a horizontal or vertical air pattern for heating and cooling applications. The diffuser delivers supply air in a true 360° radial horizontal air pattern. The special contour design of the diffuser cones prevent smudging and streaking.

Features

- Choice of steel (SCDA), or aluminum (ASCDA) construction.
- Cones are one-piece die-formed with smooth, aerodynamically designed surfaces and no corner joints.
- All sizes are available with 3 concentric cones (3C).
- Optional 4 cone model available in 24" x 24" / 600 x 600 face size for aesthetic considerations (**4C**).
- All sizes available with removable inner cone sub-assembly, featuring a special lock arrangement for fast, easy installation and removal without special tools.
- Complete range of available accessory dampers, equalizing grids, etc.
- Optional beaded extended neck (2.5" tall) for easy flex duct connection (BN SCDA only).

Finish

CEILING DIFFUSERS

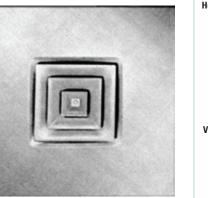
B12

For optional and special finishes see color matrix.

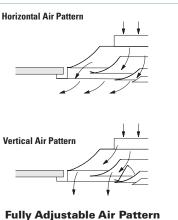
Available Module Sizes

White Powder Coat

Imperial	Metric
24" x 24"	600 x 600
20" x 20"	500 x 500
12" x 12"	300 x 300



Model SCDA (steel) / ASCDA (aluminum) - 3 Cone



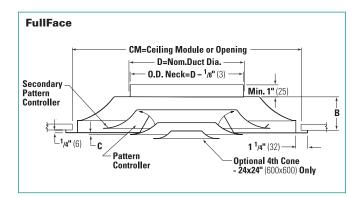
Model SCDA (steel) / ASCDA (aluminum) - 4 Cone (24" x 24" / 600 x 600 face size only)

Air Pattern

Model SCDA / P Panel Mounted (Steel Only)

Individually adjustable vanes are located on all four sides of the diffuser and can be adjusted from the face of the diffuser to provide either horizontal or vertical air pattern, as shown.

✓ Product Selection Checklist

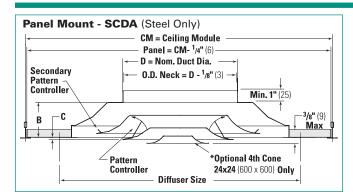

- 1] Select Inlet Diameter based on desired performance characteristics.
- 2] Select Face Size based on ceiling module.
- 3] Select DiffuserType by model number (material).
- 4] Select Border/Panel Style according to installation requirements (page C10).
- 5] Select Volume Control Accessories, if desired (page C181-C186).
- 6] Select Number of Cones desired (3C is standard).
- 7) Select Finish.
- Example: 8" / 24" x 24" / SCDA / 3 / 3C / B12
- **Application Recommendations:**

For Border and Panel recommendations, see page C8.

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter © Copyright Price Industries Limited 2014.

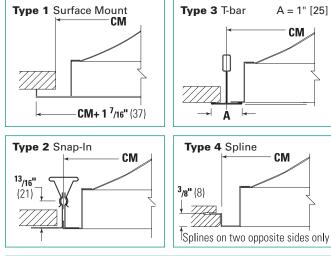
Square Cone Diffusers SCDA / ASCDA Series

Dimensional Data — Imperial (in.) / Metric [mm]

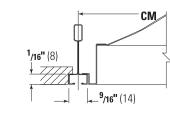

Ceiling	Module			
Imperial	Metric	B (max.)	C (max.)	Duct Size
24 x 24	600 x 600	33/4	1/8	6, 8, 10, 12, 14, 15*
		[95]	[3]	[152, 203, 254, 305, 356, 381*]
20 x 20	500 x 500	27/8	_	6*, 8*, 10*
		[73]		[152*, 203*, 254*]
12 x 12	300 x 300	13/4	5/8	4, 5, 6, 7, 8*
		[44]	[16]	[102, 127, 152, 178, 203*]
			. ,	

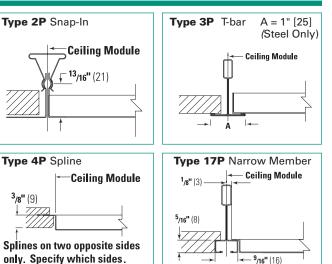
Note: Secondary Pattern Controllers will be supplied on units indicated with (*) B & C Dimensions vary depending on neck size.

Frames for Ceiling Module Sizes 24 x 24 / 600 x 600, 20 x 20 / 500 x 500, 12 x 12 / 300 x 300


Sizes 20 x 20 / 500 x 500 only available in Type 1 Surface Mount and Type 3T-bar.

ASCDA available in style 1 and style 3 only.




Face	Modules	CM = Nom. P	anel Size
View	Diffuser Size 24x24 (600x600)	Imperial (inches)	Metric (mm)
		48 x 24	1200 x 600
	Diffuser Size		
	12x12 (300x300)	Imperial (inches)	Metric (mm)
		24 x 12	600 x 300
		48 x 12	1200 x 300
		20 x 20	500 x 500
		24 x 24	600 x 600

Secondary Pattern Controllers will be supplied on units indicated with (*) Note: B & C Dimensions vary depending on neck size (steel only).

Type 17 Narrow Member

Dimensional Data — Imperial (in.) / Metric [mm]

Diffus	er Size			
Imperial	Metric	B (max.)	C (max.)	Duct Size
24 x 24	600 x 600	4	1 ¹ /8	6, 8, 10, 12, 14, 15*
		[102]	[3]	[152, 203, 254, 305, 356, 381*]
12 x 12	300 x 300	2	5/8	4, 5, 6, 7, 8
		[51]	[16]	[102, 127, 152, 178, 203*]

CEILING DIFFUSERS

© Copyright Price Industries Limited 2014.

All Metric dimensions () are soft conversion

Imperial dimensions are converted to metric and rounded to the nearest millimeter.

C-15

Fire-Rated Square Cone Diffusers **SCDA-FR** Series

Product Information - Adjustable Air Pattern

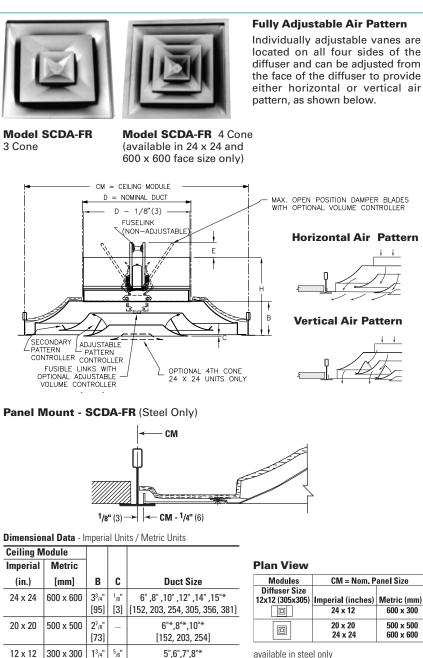
Price SCDA-FR square cone diffusers are Fire-Rated Assemblies which are UL Listed (Underwriters Laboratories Fire Resistance Directory) and ULC Listed (Underwriters Laboratories of Canada Equipment and Materials Directory). This design meets time versus temperature test criteria and NFPA 90A requirements.

SCDA-FR square cone ceiling diffusers include adjustable pattern controllers to provide either a horizontal or vertical air pattern for heating and cooling applications. The diffuser delivers supply air in a true 360° radial horizontal air pattern. The special contour design of the diffuser cones prevent smudging and streaking.

Features

- · Available in both imperial and hard metric module sizes.
- Non-adjustable, butterfly-type ceiling radiation damper.
- Designed for use in an exposed grid suspension ceiling (T-bar Lay-in) with a three hour or less restrained or unrestrained assembly rating. Units must be installed in accordance with the instructions that accompany each unit.
- Thermal blanket is non-asbestos.
- Standard 165 °F [74 °C] fusible link, optional 212 °F [100 °C] fusible link.
- Cones are one-piece die-formed with smooth, aerodynamically designed surfaces and no corner joints.
- All sizes are standard with 3 concentric cones (3C), Optional 4 cone model available in 24 in. x 24 in. and 600 x 600 face size for aesthetic considerations (4C).
- Inner cone sub-assembly features a special lock arrangement for fast, easy installation and removal without special tools. Provides access to optional volume controller.
- Optional adjustable volume controller (Allen key adjustable).
- Optional 20 in. x 20 in., 24 in. x 12 in., and 24 in. x 24 in. T-bar Lay-in Panel.

Available Module Sizes


Imperial	Metric
24 in. x 24 in.	600 x 600
20 in. x 20 in.	500 x 500
12 in. x 12 in.	300 x 300

Finish

C-16

White Powder Coat	
-------------------	--

For optional and special finishes see color matrix.

available in steel only

* secondary pattern controllers will be supplied on units indicated with (*)

Panel option diffuser sizes 12 x 12 [300 x 300] & 20 x 20 [500 x 500] only

[127, 152, 178, 203]

Product Selection Checklist 1

[44] [16]

Select Inlet Diameter. 11

- Select Face Size based on ceiling module. 21
- 31 Select Diffuser Style by model number.
- Select Panel Option according to installation requirements. 41
- 51 Select Number of Cones desired (3C is standard).
- 61 Select Finish Example: 8" / 24" x 24" / SCDA-FR / 3C / B12

B12

CEILING DIFFUSERS

Adjustable Square Cone Diffusers SCDA / ASCDA Series

Performance Data - 12 x 12 / 300 x 300 Face Size

.isted	Neck Velocity, fpm		400	500	600	700	800	900	1000	1200	1400	1600
Size	Velocity Pressure, in. w	/.g.	.010	.016	.022	.031	.040	.050	.062	.090	.122	.160
	Total Pressure	Н	.016	.026	.037	.050	.066	.083	.103	.148	.202	.263
		v	.019	.030	.043	.058	.076	.096	.118	.171	.232	.303
	Flow Rate, cfm		35	44	52	61	70	78	87	104	122	139
4	NC	н	_	_	_	_	_	16	19	24	29	33
		v	_	_	_	_	_	_	17	23	29	33
	Radius of Diffusion	н	1-2-3	1-2-4	2-3-5	2-3-6	2-3-6	3-4-7	3-4-7	3-5-8	4-6-9	5-6-9
	Vertical Throw	V	3	4	5	5	6	6	6	7	7	8
	Total Pressure	Н	.021	.034	.048	.066	.086	.109	.134	.193	.263	.343
		V	.031	.048	.070	.095	.124	.157	.193	.278	.379	.495
	Flow Rate, cfm		54	68	82	95	109	122	136	163	190	218
5	NC	Н	—	_	_	_	17	21	24	29	34	38
		v	—	_	_	_	18	23	26	32	38	42
	Radius of Diffusion	н	2-2-5	2-3-6	2-4-7	3-4-8	3-5-8	4-6-9	4-6-9	5-7-10	6-8-11	7-8-11
	Vertical Throw	v	4	5	6	6	7	7	8	9	9	10
	Total Pressure	Н	.027	.042	.061	.082	.108	.136	.168	.242	.330	.431
		v	.047	.074	.107	.145	.190	.240	.296	.426	.580	.758
	Flow Rate, cfm		78	98	118	137	157	176	196	235	274	314
6	NC	н	—	—	—	18	22	25	28	33	38	42
		v	—	_	16	21	26	30	33	40	45	50
	Radius of Diffusion	н	2-3-7	3-4-8	3-5-8	4-6-9	4-7-10	5-7-10	5-8-11	7-8-12	7-9-13	8-10-14
	Vertical Throw	v	6	7	7	8	8	9	9	10	11	12
	Total Pressure	н	.032	.050	.073	.099	.129	.164	.202	.291	.396	.517
		v	.066	.104	.149	.203	.265	.336	.415	.597	.813	1.061
	Flow Rate, cfm		107	134	160	187	214	241	267	321	374	428
7	NC	н	—		17	21	25	28	32	37	42	45
		V	—	16	22	27	32	36	40	46	51	56
	Radius of Diffusion	н	2-4-7	3-5-9	4-6-10	4-7-11	5-7-11	6-8-12	6-9-13	7-10-14	9-11-15	9-11-16
	Vertical Throw	v	7	8	8	9	10	10	11	12	13	14
	Total Pressure	Н	.038	.059	.085	.116	.152	.192	.237	.341	.464	.606
		v	.090	.140	.202	.275	.359	.454	.561	.808	1.100	1.436
	Flow Rate, cfm		140	175	209	244	279	314	349	419	489	558
8	NC	н	—		20	24	28	32	35	40	45	48
		v	—	21	27	33	37	41	45	51	57	61
	Radius of Diffusion	н	3-5-9	4-6-10	5-7-11	6-9-12	6-9-13	7-10-14	8-10-15	9-11-16	10-12-17	11-13-18
	Vertical Throw	V	8	9	9	10	11	12	12	13	14	15

Performance Data - 20 x 20 / 500 x 500 Face Size

Listed	Neck Velocity, fpm		400	500	600	700	800	900	1000	1200	1400	1600
Size	Velocity Pressure, in. w	/.g.	.010	.016	.022	.031	.040	.050	.062	.090	.122	.160
	Total Pressure	Н	.015	.024	.035	.047	.062	.078	.097	.139	.189	.247
		v	.018	.028	.040	.055	.072	.091	.112	.162	.220	.287
	Flow Rate, cfm		78	98	118	137	157	176	196	235	274	314
6	NC	н	_	—	_	_	_	18	22	27	32	36
		v	_	_	_	_	_	_	28	33	37	40
	Radius of Diffusion	н	1-2-4	2-2-5	2-3-6	2-3-6	3-4-7	3-4-7	3-5-7	4-6-8	4-6-9	5-7-9
	Vertical Throw	V	4	6	7	8	8	9	9	10	11	11
	Total Pressure	Н	.019	.030	.043	.058	.076	.096	.118	.171	.232	.303
		v	.027	.042	.061	.082	.108	.136	.168	.242	.330	.431
	Flow Rate, cfm		140	175	209	244	279	314	349	419	489	558
8	NC	н	_	_	_	_	18	21	25	30	35	39
		v	_	_	19	23	26	29	32	37	41	45
	Radius of Diffusion	н	2-3-5	2-3-7	3-4-8	3-5-8	3-5-9	4-6-9	4-7-10	5-8-11	6-8-12	7-9-12
	Vertical Throw	V	6	7	9	9	10	11	11	12	13	14
	Total Pressure	Н	.022	.035	.050	.069	.090	.114	.140	.202	.275	.359
		v	.038	.059	.085	.116	.152	.192	.237	.341	.464	.606
	Flow Rate, cfm		218	273	327	382	436	491	545	654	763	872
10	NC	н	—	_	_	16	20	24	27	33	37	42
		v	_	17	22	26	30	33	36	41	45	48
	Radius of Diffusion	н	2-3-7	3-4-8	3-5-9	4-6-10	4-7-11	5-8-12	6-8-12	7-9-13	8-10-14	9-11-15
	Vertical Throw	V	7	9	10	11	12	12	13	14	15	16

For Performance Notes, see page C18.

Adjustable Square Cone Diffusers SCDA / ASCDA Series

Performance Data - 24 x 24 / 600 x 600 Face Size

.isted Size	Neck Velocity, fpm Velocity Pressure, in. w	.g.	400 .010	500 .016	600 .022	700 .031	800 .040	900 .050	1000 .062	1200 .090	1400 .122	1600 .160
	Total Pressure	H	.016	.026	.037	.050	.066	.083	.103	.148	.202	.263
		v	.027	.043	.062	.084	.110	.139	.171	.247	.336	.439
	Flow Rate, cfm	-	78	98	118	137	157	176	196	235	274	314
6	NC	н	_	_	_	_	19	23	27	33	38	43
		v	_	16	21	25	28	31	34	39	43	46
	Radius of Diffusion	н	1-2-4	2-2-5	2-3-6	2-3-6	3-4-7	3-4-7	3-5-7	4-6-8	4-6-9	5-7-9
	Vertical Throw	v	4	6	7	8	8	9	9	10	11	11
	Total Pressure	Н	.020	.032	.046	.063	.082	.104	.128	.184	.250	.327
	10(0111635016	v	.020	.052	.040	.104	.136	.172	.212	.305	.415	.527
	Flow Rate, cfm	•	140	175	209	244	279	314	349	419	489	558
8	NC	н				17	22	26	30	36	41	46
U U	110	v		18	23	27	31	34	36	41	45	49
	Radius of Diffusion	Ĥ	2-3-5	2-3-7	3-4-8	3-5-8	3-5-9	4-6-9	4-7-10	5-8-11	6-8-12	7-9-12
	Vertical Throw	v	6	7	9	9	10	11	11	12	13	14
	Total Pressure	H	.024	.038	.055	.075	.098	.124	.153	.220	.299	.391
	Iotal Pressure	V	.024 .040	.038	.055	.075	.098	.124	.155	.220	.299	.638
	Flow Rate, cfm	v	218	273	.090	382	436	.202	.249 545	.359 654	.469 763	.030 872
10	NC	н	210	2/3	327	302 20	430 24	28	545 32	38	43	48
10	NC	V	_	20	25	20 29	24 33	20 36	32 38	30 43	43 47	40 51
	Radius of Diffusion	V H	2-3-7	20 3-4-8	25 3-5-9	29 4-6-10	33 4-7-11	5-8-12	30 6-8-12	43 7-9-13	47 8-10-14	9-11-15
	Vertical Throw	V	2-3-7 7	3-4-0 9	3-5-9 10	4-0-10 11	4-7-11	12	13	14	0-10-14 15	9-11-15 16
			-	-								
	Total Pressure	H	.028	.044	.063	.086	.112	.141	.175	.251	.342	.447
		V	.046	.072	.103	.141	.184	.232	.287	.413	.562	.734
	Flow Rate, cfm		314	393	471	550	628	707	785	942	1099	1256
12	NC	H			16	22	26	30	34	40	45	50
		V	16	22	27	31	34	37	40	45	49	52
	Radius of Diffusion	H	3-4-8	3-5-10	4-6-11	5-7-12	5-8-13	6-9-14	7-10-15	8-11-16	10-12-17	11-13-19
	Vertical Throw	V	9	10	11	12	12	13	14	15	16	17
	Total Pressure	н	.032	.050	.072	.098	.128	.162	.200	.287	.391	.511
		v	.052	.082	.118	.160	.209	.265	.327	.471	.642	.838
	Flow Rate, cfm		428	535	641	748	855	962	1069	1283	1497	1710
14	NC	н		—	18	23	28	32	35	42	47	51
		V	17	23	28	32	35	39	41	46	50	54
	Radius of Diffusion	H	3-5-10	4-6-12	5-7-13	6-9-14	6-10-15	7-11-16	8-12-17	10-13-19	11-14-20	12-15-22
	Vertical Throw	V	9	10	11	12	12	13	14	15	16	17
	Total Pressure	Н	.034	.053	.076	.104	.136	.172	.212	.305	.415	.543
		V	.069	.108	.155	.211	.275	.348	.430	.619	.843	1.101
	Flow Rate, cfm		491	614	736	859	982	1104	1227	1472	1718	1963
15	NC	н		_	19	24	28	32	36	42	48	52
		v	18	24	29	33	36	39	42	47	51	54
	Radius of Diffusion	н	4-5-11	4-7-13	5-8-14	6-9-15	7-11-16	8-12-17	9-13-18	11-14-20	12-15-22	13-16-23
	Vertical Throw	v	8	9	10	11	12	13	13	14	16	17

Performance Notes:

- 1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- 2. Air flow is in cfm.
- 3. All pressures are in in. w.g.
- Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- 5. Horizontal throw data is based on supply air and room air being at isothermal conditions.
- 6. Vertical throws are based on 20 °F heating differential and 50 fpm terminal velocity.
- 7. If the diffuser is mounted on an exposed duct, multiply the throw value in the table by 0.70.
- 8. NC values are based on room absorption of 10 dB re 10⁻¹² Watts and one diffuser.
- 9. Blanks (----) indicate an NC level below 15.
- 10. Does not include effects of ceiling radiation damper (SCDA-FR)

Ceiling	Listed	Cooling ΔT		Heati	ng ∆T
Module	Size	-10 °F	0 °F	20 °F	40 °F
12x12 / 300 x 300	4	1.6	1.3	1.0	0.7
	5	1.6	1.3	1.0	0.7
	6	1.6	1.3	1.0	0.7
	7	1.6	1.3	1.0	0.7
	8	1.6	1.3	1.0	0.7
20x20 / 500 x 500	6	1.7	1.3	1.0	0.7
	8	1.7	1.3	1.0	0.7
	10	1.7	1.3	1.0	0.6
24x24 / 600 x 600	6	1.7	1.3	1.0	0.7
	8	1.7	1.3	1.0	0.7
	10	1.7	1.4	1.0	0.6
	12	1.8	1.4	1.0	0.6
	14	2.0	1.5	1.0	0.5
	15	2.1	1.5	1.0	0.5

tables for temperature differentials other than 20 °F heating differential.

Product Information

Models

Radial Horizontal Air Pattern SPD Steel Construction Aluminized Steel Aluminum Construction

SPD AS ASPD

Price SPD Series square plaque diffuser satisfies both architectural appeal and engineering performance criteria. The simple, clean and unobtrusive face design is intended to blend with most ceiling systems.

Features

- Choice of steel (SPD) or aluminum (ASPD) construction, or aluminized steel (SPDAS).
- Face panel has smooth edges and rounded corners to blend with back cone.
- Back cone is one-piece die-formed with smooth, aerodynamically designed surfaces and no corner joints. Helps prevent ceiling smudging.
- The back cone shape combines with the face panel to deliver a tight 360° radial horizontal air pattern.
- Face panel is easily installed and removed without special tools.
- Maintains true 360° horizontal air pattern even at low air volumes, making it a good choice for VAV applications.
- Complete range of available accessory dampers, equalizing grids, etc.
- Optional insulated backpan (Style 31 T-bar and 4TS only).
- Optional beaded extended neck (2.5 in. (64mm) tall) for easy flex duct connection BN.

Finish

White Powder Coat

For optional and special finishes see color matrix.

B12

Available Module Sizes

Imperial	Metric
24 in. x 24 in.	600mm x 600mm
20 in. x 20 in.	500mm x 500mm
12 in. x 12 in.	300mm x 300mm

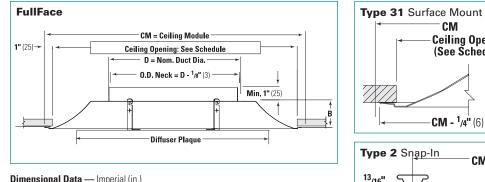
Model SPD / ASPD / SPDAS

Model SPD / 3P

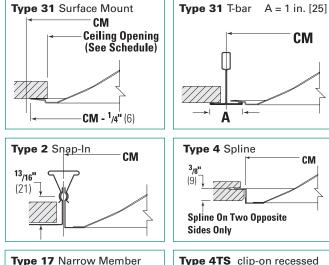
Product Selection Checklist

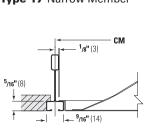
- Select Inlet Diameter based on desired performance characteristics.
- Select Face Size based on ceiling module. 31
- Select Diffuser Type by model number (Material). 41
- Select Border/Panel Style according to installation requirements (page C10). Select Volume Control Accessories, if desired (page C181-C186).
- 51 6) Select Finish.

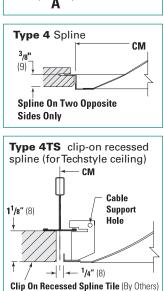
Example: 8 in. / 24 in. x 24 in. / SPD / 31 / B12


- **Application Recommendations:**
- For Border and Panel recommendations, see page C8.

СМ

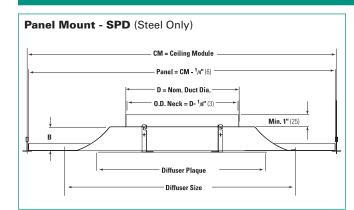

Frame Selection



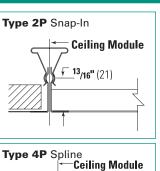

Ceiling Module	Ceiling Opening	В	Duct Size
24 x 24	22 x 22	2 ¹ /2	6, 8, 10, 12, 14, 15
20 x 20	18 x 18	2 ¹ / ₂	6, 8, 10
12 x 12	$10^{1}/_{2} \times 10^{1}/_{2}$	1 ¹ /8	4, 5, 6, 7, 8

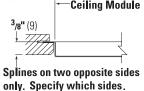
Dimensional Data — Metric [mm]

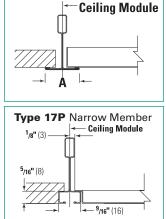
Ceiling Module	Ceiling Opening	В	Duct Size
600 x 600	559 x 559	64	152, 203, 254, 305, 356, 381
500 x 500	457 x 457	64	152, 203, 254
300 x 300	267 x 267	29	102, 127, 152, 178, 203



Frames for Ceiling Module Sizes 24 x 24 / 600 x 600, 20 x 20 / 500 x 500, 12 x 12 / 300 x 300


Sizes 20 x 20 / 500 x 500 only available in Type 31 Surface Mount and Type 31 T-bar.


SPDAS available in type 31 only. 20 x 20 (500 x 500) size not available.


4TS available only on 24x24 SPD.

Face	Modules	CM = Nom. Panel Size				
_	Diffuser Size 24x24 (600x600)	Imperial (inches)	Metric (mm)			
		48 x 24	1200 x 600			
	Diffuser Size 12x12 (300x300)	Imperial (inches)	Metric (mm)			
		24 x 12	600 x 300			
		48 x 12	1200 x 300			
		20 x 20 24 x 24	500 x 500 600 x 600			

Type 3P T-bar A = 1 in. [25]

Dimensional Data — Imperial (i	in.)	
Diffuser Size	В	Duct Size
24 x 24	2 ¹ / ₂	6, 8, 10, 12, 14, 15
12 x 12	1 ¹ /8	4, 5, 6, 7, 8
Dimensional Data — Metric [m	וm]	
Diffuser Size	В	Duct Size
600 x 600	64	152, 203, 254, 305, 356, 381
300 x 300	29	102, 127, 152, 178, 203

C-20

All Metric dimensions () are soft conversion Imperial dimensions are converted to metric and rounded to the nearest millimeter. © Copyright Price Industries Limited 2014.

Fire-Rated Square Plaque Diffusers SPD-FR Series

Product Information

Three Hour Rating - Lay-in

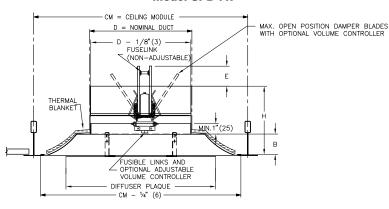
Price SPD-FR square plaque diffusers are Fire-Rated Assemblies which are UL Listed (Underwriters Laboratories Fire Resistance Directory) and ULC Listed (Underwriters Laboratories of Canada Equipment and Materials Directory).This design meets time versus temperature test criteria and NFPA 90A requirements.

SPD-FR square plaque diffusers satisfy both architectural appeal and engineering performance criteria. Simple, clean and unobtrusive face design is intended to blend with most ceiling systems.

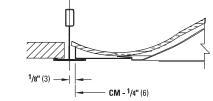
Features

- Available in both imperial and hard metric module sizes.
- Non-adjustable, butterfly-type ceiling radiation damper.
- Designed for use in an exposed grid suspension ceiling (T-bar Lay-in) with a three hour or less restrained or unrestrained assembly rating. Units must be installed in accordance with the instructions that accompany each unit.
- Thermal blanket is non-asbestos.
- Standard 165 °F [74 °C] fusible link, optional 212 °F [100 °C] fusible link.
- Face panel has smooth edges and rounded corners to blend with back cone.
- Back cone is one-piece die-formed with smooth, aerodynamically designed surfaces and no corner joints. Helps prevent ceiling smudging.
- The back cone shape combines with the face panel to deliver a tight 360° radial horizontal air pattern.
- Face panel is easily installed and removed without special tools. Provides access to optional volume controller.
- Maintains true 360° horizontal air pattern even at low air volumes making it a good choice for VAV applications.
- Optional adjustable volume controller (Allen key adjustable).
- Optional 20 in. x 20 in. (500mm x 500mm), 24 in. x 12 in. (600mm x 300mm), and 24 in. x 24 in. (600mm x 600mm)T-bar Lay-in Panel.

Available Module Sizes


Imperial	Metric
24 in. x 24 in.	600mm x 600mm
20 in. x 20 in.	500mm x 500mm
12 in. x 12 in.	300mm x 300mm

Finish


White Powder Coat

For optional and special finishes see color matrix.

Model SPD-FR

Panel Mount - SPD-FR (Steel Only)

Dimensional Data — Imperial (in.)

Ceiling Module	В	Duct Size
24 x 24	2 ¹ / ₂	6, 8, 10, 12, 14, 15
20 x 20	2 ¹ /2	6, 8, 10
12 x 12	1 ¹ /8	5, 6, 7, 8

Plan View

Modules	CM = Nom. P	anel Size
Diffuser Size		
12x12 (305x305	Imperial (inches)	Metric (mm)
	24 x 12	600 x 300
	20 x 20	500 x 500
	24 x 24	600 x 600

*Panel diffuser sizes available 12 x 12 & 20 x 20 only.

Dimensional Data — Wietric (mmj										
Ceiling Module	В	Duct Size								
600 x 600	64	152, 203, 254, 305, 356, 381								
500 x 500	64	152, 203, 254								
300 x 300	29	127, 152, 178, 203								
*Panel diffuser sizes a	vailable	300 x 300 & 500 x 500 only.								

Product Selection Checklist

- 1] Select Inlet Diameter.
- 2] Select Face Size based on ceiling module.
- 3] Select Diffuser Style by model number.
- 4] Select Panel Option according to installation requirements.
- 5] Select Finish.

All Metric dimensions () are soft conversion.

B12

Example: 8 in. / 24 in. x 24 in. / SPD-FR / B12

Imperial dimensions are converted to metric and rounded to the nearest millimeter

Performance Data - Imperial Units - 12 x 12 Face Size

Listed Size	Neck Velocity, fpm Velocity Pressure, in. w.g.	400 .010	500 .016	600 .022	700 .031	800 .040	900 .050	1000 .062	1200 .090	1400 .122	1600 .160
	Total Pressure	.017	.026	.038	.052	.068	.086	.106	.153	.208	.271
	Flow Rate, cfm	35	44	52	61	70	78	87	104	122	139
4	NC	_	_	_	_	_	15	19	25	30	34
	Throw 150, 100, 50	1-2-4	1-2-4	2-3-5	2-3-6	2-4-6	3-4-7	3-4-7	4-5-8	4-6-9	5-6-9
	Total Pressure, in. w.g.	.027	.042	.061	.082	.108	.136	.168	.242	.330	.431
	Flow Rate, cfm	54	68	82	95	109	122	136	163	190	218
5	NC	_	_	_	_	16	20	24	30	35	39
	Throw 150, 100, 50	2-2-5	2-3-6	2-4-7	3-4-8	3-5-8	4-5-9	4-6-9	5-7-10	5-8-11	6-8-11
	Total Pressure, in. w.g.	.038	.059	.085	.116	.152	.192	.237	.341	.464	.606
	Flow Rate, cfm	78	98	118	137	157	176	196	235	274	314
6	NC	_	_	_	16	20	24	27	33	38	43
	Throw 150, 100, 50	2-3-6	2-4-7	3-4-8	3-5-9	4-6-10	4-7-10	5-7-11	6-8-12	7-9-13	8-10-14
	Total Pressure, in. w.g.	.052	.081	.117	.159	.207	.263	.324	.467	.635	.830
	Flow Rate, cfm	107	134	160	187	214	240	267	320	374	427
7	NC	_	_	—	19	24	27	31	37	42	46
	Throw 150, 100, 50	2-4-7	3-4-9	4-5-10	4-6-11	5-7-11	5-8-12	6-9-13	7-10-14	8-11-15	9-11-16
	Total Pressure, in. w.g.	.068	.106	.153	.208	.271	.343	.424	.610	.831	1.085
	Flow Rate, cfm	140	175	209	244	279	314	349	419	489	558
8	NC	_	_	17	22	26	30	34	39	44	49
	Throw 150, 100, 50	3-4-8	3-5-10	4-6-11	5-7-12	6-8-13	6-9-14	7-10-15	8-11-16	10-12-17	11-13-18

Performance Data - Imperial Units - 20 x 20 Face Size

Listed Size	Neck Velocity, fpm Velocity Pressure, in. w.g.	400 .010	500 .016	600 .022	700 .031	800 .040	900 .050	1000 .062	1200 .090	1400 .122	1600 .160
	Total Pressure	.014	.022	.031	.043	.056	.071	.087	.126	.171	.223
	Flow Rate, cfm	78	98	118	137	157	176	196	235	274	314
6	NC		_	_	_	_	18	21	27	32	36
	Throw 150, 100, 50	0-1-3	1-2-4	1-2-4	1-3-5	2-3-6	2-3-6	2-4-6	3-4-7	3-5-7	4-6-8
	Total Pressure, in. w.g.	.022	.035	.050	.069	.090	.114	.140	.202	.275	.359
	Flow Rate, cfm	140	175	209	244	279	314	349	419	489	558
8	NC		_	_	16	20	24	27	33	38	42
	Throw 150, 100, 50	1-2-5	2-3-6	2-4-6	3-4-7	3-5-7	4-5-8	4-6-8	5-6-9	6-7-10	6-7-11
	Total Pressure, in. w.g.	.032	.051	.073	.099	.130	.164	.203	.292	.397	.519
	Flow Rate, cfm	218	273	327	382	436	491	545	654	763	872
10	NC		_	_	20	24	28	31	37	42	46
	Throw 150, 100, 50	2-3-6	3-4-7	3-5-8	4-6-9	4-6-9	5-7-10	5-7-10	6-8-11	7-9-12	8-9-13

For Performance Notes, see page C23.

Performance Data - Imperial Units - 24 x 24 Face Size

Listed Size	Neck Velocity, fpm Velocity Pressure, in. w.g.	400 .010	500 .016	600 .022	700 .031	800 .040	900 .050	1000 .062	1200 .090	1400 .122	1600 .160
	Total Pressure, in. w.g.	.010	.016	.023	.032	.041	.053	.065	.093	.127	.166
	Flow Rate, cfm	78	98	118	137	157	176	196	235	274	314
6	NC	—	_	_	_	_	19	22	29	34	38
	Throw 150, 100, 50	1-2-4	1-2-4	2-3-5	2-3-6	2-4-6	3-4-7	3-4-7	4-5-8	4-6-9	5-7-9
	Total Pressure, in. w.g.	.018	.029	.042.	.057	.074	.093	.115	.166	.226	.295
	Flow Rate, cfm	140	175	209	244	279	314	349	419	489	558
8	NC	—	_	_	_	19	23	27	33	38	43
	Throw 150, 100, 50	2-2-5	2-3-6	2-4-7	3-4-8	3-5-9	4-6-9	4-6-10	5-7-11	6-8-12	7-9-12
	Total Pressure, in. w.g.	.029	.045	.065	.088	.115	.146	.180	.259	.353	.461
	Flow Rate, cfm	218	273	327	382	436	491	545	654	763	872
10	NC	—	_	_	18	22	26	30	36	41	46
	Throw 150, 100, 50	2-3-6	3-4-8	3-5-9	4-6-10	4-6-11	5-7-12	5-8-12	6-9-13	8-10-14	9-11-15
	Total Pressure, in. w.g.	.041	.065	.093	.127	.166	.210	.259	.373	.508	.664
	Flow Rate, cfm	314	393	471	550	628	707	785	942	1099	1256
12	NC	_	_	15	21	25	29	33	39	44	49
	Throw 150, 100, 50	3-4-8	3-5-10	4-6-11	5-7-12	5-8-13	6-9-14	7-10-15	8-11-16	9-12-17	11-13-19
	Total Pressure, in. w.g.	.057	.088	.127	.173	.226	.286	.353	.509	.693	.905
	Flow Rate, cfm	428	535	641	748	855	962	1069	1283	1497	1710
14	NC	—	_	18	23	27	31	35	41	46	51
	Throw 150, 100, 50	3-5-10	4-6-12	5-7-13	6-9-14	6-10-15	7-11-16	8-12-17	10-13-19	11-14-20	12-15-22
	Total Pressure, in. w.g.	.065	.101	.146	.199	.259	.328	.405	.584	.794	1.037
	Flow Rate, cfm	491	614	736	859	982	1104	1227	1472	1718	1963
15	NC	_	—	19	24	28	32	36	42	47	52
	Throw 150, 100, 50	4-5-11	4-7-13	5-8-14	6-9-15	7-11-16	8-12-17	9-13-18	11-14-20	12-15-22	13-16-23

Performance Notes:

2. Air flow is in cfm.

3. All pressures are in in. w.g.

- Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- Throw data is based on supply air and room air being atisothermal conditions.
- 6. If the diffuser is mounted on an exposed duct, multiply the radii of diffusion in the table by 0.70.
- 7 NC values are based on room absorption of 10 dB re $10^{\cdot 12}$ Watts and one diffuser.
- 8. Blanks (-----) indicate an NC level below 15.
- 9. Does not include effects of ceiling radiation damper (SPD-FR)

^{1.} Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."

Performance Data - Metric Units - 300 mm x 300 mm Face Size

Listed	Neck Velocity (m/s)	2.0	2.5	3.0	3.5	4.0	4.5	5.0	6.0	7.0	8.0
Size	Velocity Pressure (Pa)	2	4	5	8	10	12	15	22	30	40
	Total Pressure (Pa)	4	7	9	13	17	21	26	38	52	68
100	L/s	16	21	25	29	33	37	41	49	58	66
100 mm	NC						16	19	25	30	35
	Throw (m)	0.4-0.6-1.2	0.5-0.7-1.5	0.6-0.9-1.7	0.7-1.0-1.9	0.8-1.2-2.0	0.9-1.3-2.1	1.0-1.5-2.2	1.2-1.7-2.4	1.4-1.9-2.6	1.6-2.0-2.8
	Total Pressure (Pa)	7	11	14	20	26	33	41	60	81	106
125 mm	L/s	26	32	39	45	51	58	64	77	90	103
125 11111	NC					17	21	24	30	35	39
	Throw (m)	0.6-0.8-1.7	0.7-1.0-2.0	0.8-1.2-2.1	1.0-1.4-2.3	1.1-1.7-2.5	1.2-1.9-2.6	1.4-2.0-2.8	1.7-2.1-3.0	1.9-2.3-3.3	2.0-2.5-3.5
	Total Pressure (Pa)	9	15	21	30	38	48	59	86	116	153
150	L/s	37	46	56	65	74	83	93	111	130	148
150 mm	NC				16	21	24	28	34	39	43
	Throw (m)	0.7-1.1-2.1	0.9-1.4-2.3	1.1-1.6-2.6	1.3-1.9-2.8	1.4-2.1-3.0	1.6-2.2-3.2	1.8-2.3-3.3	2.1-2.6-3.6	2.3-2.8-3.9	2.4-3.0-4.2
	Total Pressure (Pa)	13	21	29	40	52	65	80	117	158	208
180 mm	L/s	50	63	76	88	101	114	126	151	177	202
100 11111	NC				20	24	28	31	37	42	46
	Throw (m)	0.9-1.4-2.5	1.1-1.7-2.7	1.4-2.1-3.0	1.6-2.3-3.2	1.8-2.5-3.5	2.1-2.6-3.7	2.2-2.7-3.9	2.5-3.0-4.2	2.6-3.2-4.6	2.8-3.5-4.9
	Total Pressure (Pa)	17	27	37	53	68	85	105	153	207	271
205 mm	L/s	66	82	99	115	132	148	165	198	231	264
ZUO MM	NC			17	22	27	31	34	40	45	49
	Throw (m)	1.1-1.7-2.8	1.4-2.1-3.1	1.7-2.4-3.4	2.0-2.6-3.7	2.2-2.8-4.0	2.4-3.0-4.2	2.6-3.1-4.4	2.8-3.4-4.9	3.0-3.7-5.2	3.2-4.0-5.6

For Performance Notes, see page C25

Performance Data - Metric Units - 500 mm x 500 mm Face Size

Listed	Neck Velocity (m/s)	2.0	2.5	3.0	3.5	4.0	4.5	5.0	6.0	7.0	8.0
Size	Velocity Pressure (Pa)	2	4	5	8	10	12	15	22	30	40
	Total Pressure (Pa)	3	5	8	11	14	17	22	31	43	56
150 mm	L/s	37	46	56	65	74	83	93	111	130	148
130 11111	NC						18	21	27	32	36
	Throw (m)	0.3-0.5-0.9	0.4-0.6-1.1	0.5-0.7-1.4	0.5-0.8-1.6	0.6-0.9-1.7	0.7-1.0-1.9	0.8-1.1-2.0	0.9-1.4-2.1	1.1-1.6-2.3	1.2-1.7-2.5
	Total Pressure (Pa)	6	9	12	17	22	28	35	51	68	90
205 mm	L/s	66	82	99	115	132	148	165	198	231	264
203 11111	NC				16	20	24	27	33	38	42
	Throw (m)	0.5-0.8-1.5	0.6-1.0-1.8	0.8-1.2-2.0	0.9-1.3-2.1	1.0-1.5-2.3	1.2-1.7-2.4	1.3-1.8-2.5	1.5-2.0-2.8	1.7-2.1-3.0	1.9-2.3-3.2
	Total Pressure (Pa)	8	13	18	25	32	41	50	73	99	129
255 mm	L/s	103	129	154	180	206	232	257	309	360	412
200 11111	NC				20	24	28	31	37	42	46
	Throw (m)	0.8-1.1-2.0	1.0-1.4-2.2	1.1-1.7-2.4	1.3-1.9-2.6	1.5-2.0-2.8	1.7-2.1-3.0	1.8-2.2-3.1	2.0-2.4-3.4	2.1-2.6-3.7	2.3-2.8-4.0

For Performance Notes, see page C25

Performance Data - Metric Units - 600 mm x 600 mm Face Size

Listed	Neck Velocity (m/s)	2.0	2.5	3.0	3.5	4.0	4.5	5.0	6.0	7.0	8.0
Size	Velocity Pressure (Pa)	2	4	5	8	10	12	15	22	30	40
	Total Pressure (Pa)	2	4	6	8	10	13	16	23	32	41
150 mm	L/s	37	46	56	65	74	83	93	111	130	148
	NC						19	22	29	34	38
	Throw (m)	0.4-0.5-1.1	0.4-0.7-1.3	0.5-0.8-1.6	0.6-0.9-1.9	0.7-1.1-2.0	0.8-1.2-2.1	0.9-1.3-2.2	1.1-1.6-2.4	1.2-1.9-2.6	1.4-2.0-2.8
	Total Pressure (Pa)	4	7	10	14	18	23	29	41	56	74
205 mm	L/s	66	82	99	115	132	148	165	198	231	264
203 11111	NC					19	23	27	33	38	43
	Throw (m)	0.6-0.8-1.7	0.7-1.0-2.1	0.8-1.2-2.3	1.0-1.4-2.5	1.1-1.7-2.7	1.2-1.9-2.8	1.4-2.1-3.0	1.7-2.3-3.3	1.9-2.5-3.5	2.2-2.7-3.8
	Total Pressure (Pa)	7	11	16	22	29	36	45	64	88	115
255 mm	L/s	103	129	154	180	206	232	257	309	360	412
200 11111	NC				18	22	26	30	36	41	46
	Throw (m)	0.8-1.2-2.3	1.0-1.5-2.6	1.2-1.7-2.9	1.4-2.0-3.1	1.5-2.3-3.3	1.7-2.5-3.5	1.9-2.6-3.7	2.3-2.9-4.1	2.5-3.1-4.4	2.7-3.3-4.7
	Total Pressure (Pa)	10	16	23	32	41	52	64	93	126	165
305 mm	L/s	148	185	222	259	297	334	371	445	519	593
303 11111	NC			15	21	25	29	33	39	44	49
	Throw (m)	1.0-1.5-2.8	1.3-1.9-3.2	1.5-2.3-3.5	1.8-2.6-3.7	2.0-2.8-4.0	2.3-3.0-4.2	2.6-3.2-4.5	2.8-3.5-4.9	3.1-3.7-5.3	3.3-4.0-5.7
	Total Pressure (Pa)	14	22	31	44	56	70	87	126	172	225
355 mm	L/s	202	252	303	353	404	454	505	605	706	807
JJJ IIIII	NC			18	23	27	31	35	41	46	51
	Throw	1.3-1.9-3.3	1.6-2.4-3.7	1.9-2.9-4.0	2.3-3.1-4.4	2.6-3.3-4.7	2.9-3.5-4.9	3.0-3.7-5.2	3.3-4.0-5.7	3.6-4.4-6.2	3.8-4.7-6.6
	Total Pressure (Pa)	16	26	35	50	64	81	100	145	197	258
380 mm	L/s	232	290	348	405	463	521	579	695	811	927
500 11111	NC			19	24	28	32	36	42	47	52
	Throw (m)	1.4-2.2-3.5	1.8-2.7-4.0	2.2-3.1-4.3	2.5-3.3-4.7	2.9-3.5-5.0	3.1-3.7-5.3	3.2-4.0-5.6	3.5-4.3-6.1	3.8-4.7-6.6	4.1-5.0-7.1

Performance Notes:

1. All pressures are in Pascals (Pa).

2. The NC values and sound pressure level are based on a room absorption of 10dB re $10^{\cdot 12}$ watts and one diffuser.

4. Blanks (--) indicate an NC level below 15.

 Radii of diffusion are given in meters to terminal velocities of 0.75 m/s (minimum), 0.5 m/s (middle) and 0.25 m/s (maximum). If the diffuser is mounted on an exposed duct, multiply the radii of diffusion in the table by 0.70.

- Tested in accordance with ASHRAE Standard 70-2006, "Method of Testing for Rating the Performance of Air Outlets and Inlets".
- (maximum).6. Throw data is based on supply air and room air being at isothermal conditions.

Product Information

Models

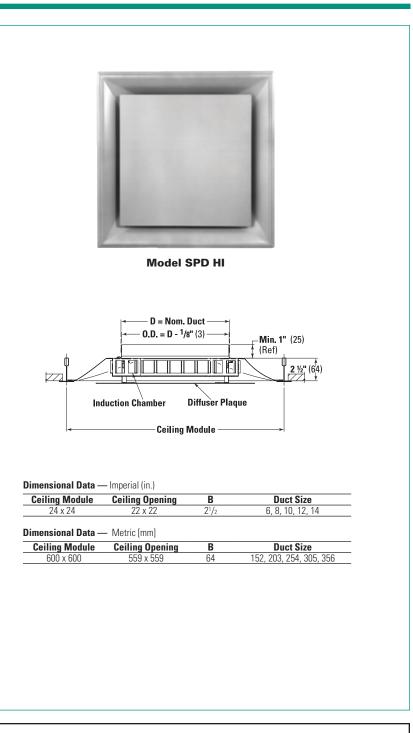
Radial Horizontal Air PatternSteel ConstructionSPD HI

Price SPD HI Series High Induction Square Plaque Diffuser is designed to provide large volumes of air to spaces that need to satisfy both architectural appeal and air distribution performance criteria. A high induction chamber hidden behind the simple, clean and unobtrusive plaque is the key to the great performance that this diffuser has to offer.

High velocity air discharged through the openings in the induction chamber travels in a tight radial pattern along the ceiling while efficiently inducing and mixing with room air. The exceptional horizontal air pattern and rapid mixing of the Price Series SPD HI ensure comfort is maintained in the occupied space in heating as well as in cooling applications. Carefully engineered openings in the chamber provide low noise levels across the diffuser's air flow range without sacrificing its superior air mixing properties.

Features

- Steel construction.
- High aspiration rates with low sound levels throughout the air flow range.
- Face panel has smooth edges and rounded off corners to blend with back cone.
- Back cone is one-piece die-formed with smooth, aerodynamically designed surfaces without corner joints. Helps prevent ceiling smudging.
- The back cone shape combines with the face panel to deliver a tight 360° radial horizontal air pattern.
- Face panel is easily installed and removed without special tools.
- Maintains true 360° horizontal air pattern, even at low air volumes, making it a good choice for VAV applications.


Finish

Whit	te Pov	vder	· Coat	B12
-				

For optional and special finishes see color matrix.

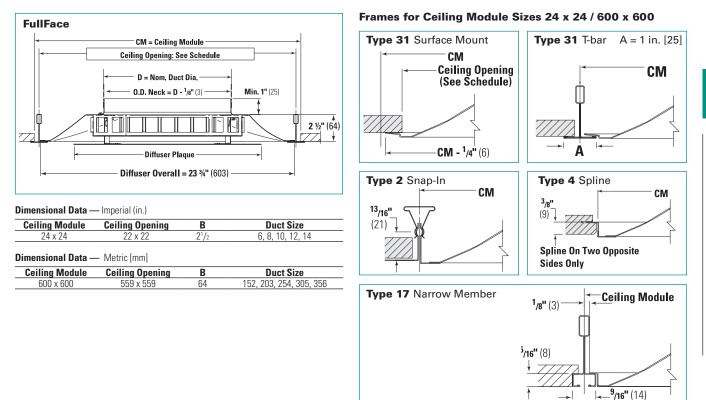
Available Module Sizes

Imperial	Metric
24 in. x 24 in.	600 x 600

Product Selection Checklist

1] Select Inlet Diameter based on desired performance characteristics.

2] Select Finish.


Example: 8 in. / 24 in. x 24 in. / SPD HI / 31 / B12 Application Recommendations:

For Border and Panel recommendations, see page C8.

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter

Frame Selection

Performance Data - Imperial Units - 24 x 24 Face Size

Listed	Nach Valacity from	200	200	400	500	C00	700	000	000	1000	1200
Listed Size	Neck Velocity, fpm Velocity Pressure, in. w.g.	200 0.002	300 0.006	400 0.010	500 0.016	600 0.022	700 0.031	800 0.040	900 0.050	1000 0.062	1200 0.090
	Total Pressure, in. w.g.	0.004	0.009	0.015	0.024	0.034	0.047	0.061	0.078	0.096	0.138
	Flow Rate, cfm	39	59	79	98	118	137	157	177	196	236
6	NC	-	-	-	-	-	-	17	20	24	29
	Throw 150, 100, 50	1-1-2	1-1-2	1-2-3	1-2-4	2-2-5	2-3-5	2-3-6	2-3-7	3-4-8	3-5-9
	Total Pressure, in. w.g.	0.008	0.019	0.034	0.052	0.075	0.103	0.134	0.170	0.210	0.302
	Flow Rate, cfm	70	105	140	174	209	244	279	314	349	419
8	NC	-	-	-	-	20	25	29	32	36	41
	Throw 150, 100, 50	1-2-4	2-3-5	2-4-7	3-5-9	4-5-11	4-6-12	5-7-13	5-8-14	6-9-15	7-11-16
	Total Pressure, in. w.g.	0.015	0.035	0.062	0.096	0.138	0.188	0.246	0.311	0.385	0.554
	Flow Rate, cfm	109	164	218	273	327	382	436	491	545	654
10	NC	-	-	17	24	29	34	38	42	45	51
	Throw 150, 100, 50	2-3-6	3-4-8	4-6-11	5-7-13	6-8-14	7-10-15	8-11-16	8-12-17	9-13-18	11-14-20
	Total Pressure, in. w.g.	0.025	0.057	0.101	0.158	0.227	0.309	0.404	0.511	0.631	0.909
	Flow Rate, cfm	157	236	314	393	471	550	628	707	785	942
12	NC	-	15	24	31	37	42	46	50	59	59
	Throw 150, 100, 50	3-4-8	4-6-12	5-8-14	7-10-15	8-12-17	9-13-18	11-14-19	12-15-21	13-15-22	14-17-24
	Total Pressure, in. w.g.	0.038	0.086	0.154	0.240	0.346	0.471	0.615	0.778	0.960	1.383
	Flow Rate, cfm	214	321	427	534	641	748	855	962	1068	1282
14	NC	-	22	31	38	43	48	52	56	59	65
	Throw 150, 100, 50	4-6-11	6-8-14	7-11-16	9-13-18	11-14-20	12-15-21	13-16-23	14-17-24	15-18-25	16-20-28

Performance Notes:

 Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."

2. Air flow is in cfm.

3. All pressures are in in. w.g.

- Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- 5. Throw data is based on supply air and room air being atisothermal conditions.
- 6. If the diffuser is mounted on an exposed duct, multiply the radii of diffusion in the table by 0.70.
- 7 NC values are based on room absorption of 10 dB re $10^{\cdot 12}$. Watts and one diffuser.
- 8. Blanks (----) indicate an NC level below 15.

Performance Data - Metric Units - 600 mm x 600 mm Face Size

Listed	Neck Velocity (m/s)	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	6.0
Size	Velocity Pressure (Pa)	1	1	2	4	6	8	10	13	16	22
	Total Pressure (Pa)	1	2	4	6	9	12	15	19	24	34
150	L/s	19	28	37	46	56	65	74	83	93	111
150 mm	NC	-	-	-	-	-	-	17	20	24	29
	Throw (m)	0.2-0.3-0.6	0.3-0.5-0.9	0.4-0.6-1.2	0.5-0.8-1.6	0.6-0.9-1.9	0.7-1.1-2.2	0.8-1.2-2.5	0.9-1.4-2.8	1.0-1.6-3.1	1.2-1.9-3.6
	Total Pressure (Pa)	2	5	8	13	19	26	33	42	52	75
205	L/s	33	49	66	82	99	115	132	148	165	198
205 mm	NC	-	-	-	-	20	25	29	32	36	41
	Throw (m)	0.4-0.6-1.1	0.6-0.8-1.7	0.7-1.1-2.2	0.9-1.4-2.8	1.1-1.7-3.3	1.3-1.9-3.7	1.5-2.2-4.0	1.7-2.5-4.2	1.8-2.8-4.4	2.2-3.3-4.9
	Total Pressure (Pa)	4	9	15	24	34	47	61	78	96	138
255 mm	L/s	51	77	103	129	154	180	206	232	257	309
255 11111	NC	-	-	17	24	29	34	38	42	45	51
	Throw (m)	0.6-0.9-1.7	0.9-1.3-2.6	1.2-1.7-3.5	1.4-2.2-3.9	1.7-2.6-4.3	2.0-3.0-4.6	2.3-3.5-5.0	2.6-3.7-5.3	2.9-3.9-5.5	3.5-4.3-6.1
	Total Pressure (Pa)	6	14	25	39	57	77	101	127	157	227
305 mm	L/s	74	111	148	185	222	259	297	334	371	445
202 11111	NC	-	15	24	31	37	42	46	50	53	59
	Throw (m)	0.8-1.2-2.5	1.2-1.9-3.6	1.7-2.5-4.2	2.1-3.1-4.7	2.5-3.6-5.1	2.9-3.9-5.6	3.3-4.2-5.9	3.6-4.5-6.3	3.8-4.7-6.6	4.2-5.1-7.3
	Total Pressure (Pa)	10	22	38	60	86	117	153	194	239	345
2EE	L/s	101	151	202	252	303	353	404	454	505	605
355 mm	NC	-	22	31	38	43	48	52	56	59	65
	Throw (m)	1.1-1.7-3.4	1.7-2.5-4.2	2.3-3.4-4.9	2.8-3.9-5.5	3.4-4.2-6.0	3.7-4.6-6.5	4.0-4.9-6.9	4.2-5.2-7.4	4.5-5.5-7.8	4.9-6.0-8.5

Performance Notes:

1. All pressures are in Pascals (Pa).

2. The NC values and sound pressure level are based on a room absorption of 10dB re $10^{\cdot 12}$ watts and one diffuser.

 Tested in accordance with ASHRAE Standard 70-2006, "Method of Testing for Rating the Performance of Air Outlets and Inlets". 4. Blanks (--) indicate an NC level below 15.

 Radii of diffusion are given in meters to terminal velocities of 0.75 m/s (minimum), 0.5 m/s (middle) and 0.25 m/s (maximum).

6. Throw data is based on supply air and room air being at isothermal conditions.

7. If the diffuser is mounted on an exposed duct, multiply the radii of diffusion in the table by 0.70.

Product Features

Model SPDLT

Steel Construction	
4 Way Air Pattern	SPDLT
Aluminum Construction	
4 Way Pattern	ASPDLT

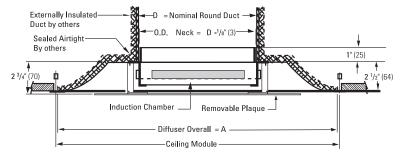
Price SPDLT Series low temperature square plaque diffuser is designed to distribute low temperature supply air to spaces that need to satisfy both architectural appeal and air distribution performance criteria. The simple, clean and unobstructive face design is intended to blend in with most ceiling systems.

The SPDLT Series provides a 4 way projection, with a tight horizontal ceiling pattern. The SPDLT Series incorporates an Induction Chamber (IC), which is designed to deliver high velocity thin air jets through tapered metal discharge slots. The tapered slots efficiently convert static pressure to velocity pressure, causing a high rate of induction of room air and rapid mixing of the low temperature air. The thin air jets wash across the aerodynamically shaped face of the diffuser backpan in concert with the plaque face, resulting in a tight horizontal air pattern even at reduced flow conditions. The 4 way directional air pattern combined with the high velocity from the discharge slots also ensures sufficient throw is maintained at low flow conditions.

The good horizontal air pattern and rapid mixing of the Price Series SPDLT ensure comfort is maintained in the occupied space with low temperature supply air.

In addition to providing superb air distribution, the tapered air nozzles of the IC are configured to optimize acoustical performance and low pressure drop. The unit features all-metal construction without the use of plastic components. The plaque face is sturdily suspended by four heavy gauge metal legs that lock into the diffuser backpan.

Construction features incorporated into the SPDLT diffuser that are designed to reduce risk of condensation include:


- Diffuser backpan is thermally protected and sealed with ³/₄ in. (19mm) dual density insulation with foil facing to prevent condensation in the unconditioned plenum space.
- The IC is thermally lined with 1/2 in. (13mm) foil face insulation.
- The upstream side of the square plaque is thermally lined to prevent condensation forming on the face of the plaque.

Finish

CEILING DIFFUSERS

Standard White Powder Coat	B12
Special Finishes - Available upon request	PL

Dimensional Data — Imperial (in.)

	-	
Ceiling Module	Α	Duct Size
24 x 24	23 ³ /4	4, 6, 8, 10
20 x 20	19 ³ /4	4, 6, 8

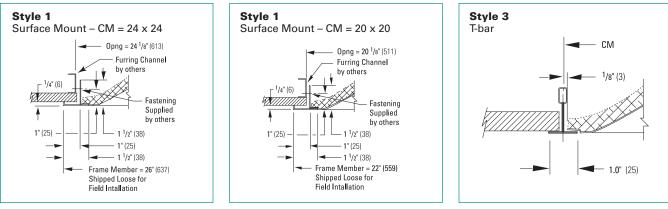
Dimensional Data — Metric [mm]

Ceiling Module	Α	Duct Size
610 x 610	603	102, 152, 203, 254
508 x 508	502	102, 152, 203

Imperial Modules Only Available.

_

✓ Product Selection Checklist


- 1] Select Inlet Diameter based on desired performance characteristics.
- 2] Select Face Size based on ceiling module.
- 3] Select Diffuser Type by model number (material).
- 4] Select Border Style according to installation requirements (page C28).
- 5] Select Finish.

Example: 10ft / 24"x24" / SPDLT / 1 / B12

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter © Copyright Price Industries Limited 2014.

Frame Selection

Installation Guidelines

Low Temperature Diffusers

Diffusers designed for low temperature air distribution must be installed using recommended industry practice to ensure that condensation does not form. Because installationiscriticaltosuccessfulperformance, the following additional recommendations are brought to the attention of the installer:

- Provide externally insulated duct, complete with vapor barrier and a suggested minimum resistivity of R3. Field install duct and duct insulation so as to tightly compress foil face insulation on the diffuser backpan.
- Seal airtight the field joint at the diffuser with industry approved duct sealer.
- In the event that the foil face lining of the insulation is punctured, repair with foil tape.

Frame Styles

Style 1 Surface Mount is offered for plastered ceiling mounting where a surface mount condition exists. Flexible, insulated and jacketed duct is required for installation of the diffuser. The surface mount frame is fastened into the frame opening (fasteners supplied by others). Allow sufficient flexduct length to make connection to diffuser neck below ceiling line. After flexduct connection is made, gently lift diffuser through opening and position on frame. Allow sufficient ceiling space clearance above diffuser to insert the unit through the opening.

The surface mount frame ensures a smooth, clean fit between the frame and the drywall ceiling. This mounting arrangement also allows the diffuser to be lifted out to provide access to the ceiling plenum for service and adjustment. Style 3 T-bar Mount is offered for mounting into T-bar ceilings.

Dampers

Since access to the inlet through the diffuser face is not available, inlet dampers are not offered as an option. Air volume control is recommended by field installation of dampers at the branch take-off, upstream of the diffuser. The further the damper can be mounted remote from the diffuser, the less likely damper generated noise will enter the occupied space. It is recommended to insulate and seal the damper quadrant to prevent air leakage.

Air Pattern – SPDLT Series

Typical 4 Way Air Pattern (Plan View) The SPDLT Series low temperature square plaque diffuser produces a 4 way horizontal air pattern. Air is projected in four high induction, non-spreading jets. The discharge slots of the induction chamber promote long throw and maintain the air stream on the ceiling, even at low flow conditions. The aerodynamic shape of the diffuser backpan prevents dumping at low volume, making this diffuser an excellent choice for VAV applications.

© Copyright Price Industries Limited 2014.

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter

Performance Data - 20 x 20 [508 x 508] Module

Inlet Size 4"ø

				Isot	thermal Conditi	ons	Cooling Conditions					
					Throw (ft)		Drop	Drop Throw (ft)				
cfm	TP	SP	NC	150 fpm	100 fpm	50 fpm	in.	150 fpm	100 fpm	50 fpm	in.	
50	0.05	0.03	—	2	4	8	6	2	4	7	11	
75	0.11	0.06	25	4	6	12	8	4	5	9	14	
100	0.20	0.12	33	5	8	14	10	5	7	10	15	
125	0.31	0.18	39	7	10	16	11	6	8	11	17	
150	0.44	0.26	44	8	12	18	13	7	9	12	19	
175	0.60	0.35	48	9	13	19	13	8	9	13	20	
200	0.79	0.46	52	11	14	20	14	8	10	14	22	

Inlet Size 6″ø

				Isot	Isothermal Conditions				Cooling Conditions				
					Throw (ft)		Drop	Drop Throw (ft)					
cfm	TP	SP	NC	150 fpm	100 fpm	50 fpm	in.	150 fpm	100 fpm	50 fpm	in.		
50	0.04	0.04	—	2	4	8	6	2	4	7	11		
75	0.09	0.08	18	4	6	12	8	4	5	9	14		
100	0.15	0.13	26	5	8	14	10	5	7	10	15		
125	0.24	0.21	32	7	10	16	11	6	8	11	17		
150	0.34	0.30	38	8	12	18	13	7	9	12	19		
175	0.47	0.42	42	9	13	19	13	8	9	13	20		
200	0.61	0.55	46	11	14	20	14	8	10	14	22		

Inlet Size 8″ø

				Isot	Cooling Conditions						
					Throw (ft)		Drop		Drop		
cfm	TP	SP	NC	150 fpm	100 fpm	50 fpm	in.	150 fpm	100 fpm	50 fpm	in.
50	0.04	0.04	_	2	4	8	6	2	4	7	11
75	0.09	0.09	_	4	6	12	8	4	5	9	14
100	0.17	0.16	21	5	8	14	10	5	7	10	15
125	0.26	0.25	27	7	10	16	11	6	8	11	17
150	0.37	0.36	33	8	12	18	13	7	9	12	19
175	0.51	0.49	37	9	13	19	13	8	9	13	20
200	0.66	0.64	41	11	14	20	14	8	10	14	22

Performance Notes:

- 1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- 2. Air flow is in cfm.

 All pressures are in in. w.g. TP = total pressure SP = static pressure

- Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- 5. Isothermal conditions indicate supply air temperature is equal to room air temperature.
- 6. Cooling conditions are based on a supply air temperature of 40 °F and a room temperature of 75 °F.
- 7. NC values are based on room absorption of 10 dB re $10^{\cdot 12}\,$ Watts and one diffuser.
- 8. Blanks (----) indicate a NC level below 15.
- 9. Drop is in inches at a terminal velocity of 50 fpm.

Performance Data – 24 x 24 [610 x 610] Module

Inlet Size 4"ø

				Isothermal Conditions			C	Cooling Conditions				
				Throw (ft)			Drop		Throw (ft)			
cfm	ТР	SP	NC	150 fpm	100 fpm	50 fpm	in.	150 fpm	100 fpm	50 fpm	in.	
50	0.05	0.03	_	2	4	7	4	2	4	7	10	
75	0.11	0.06	25	3	5	11	6	3	5	10	14	
100	0.19	0.11	33	5	7	14	8	5	7	11	16	
125	0.29	0.16	39	6	9	16	9	6	9	13	19	
150	0.42	0.24	43	7	11	18	10	7	10	14	20	
175	0.58	0.33	47	8	12	19	11	8	10	15	21	
200	0.75	0.42	51	9	14	20	12	9	11	16	23	

Inlet Size 6"ø

				Isot	hermal Conditi	ons	Cooling Conditions					
				Throw (ft) Drop				Throw (ft)				
cfm	TP	SP	NC	150 fpm	100 fpm	50 fpm	in.	150 fpm	100 fpm	50 fpm	in.	
50	0.03	0.03		2	4	7	4	2	4	7	10	
75	0.06	0.05	18	3	5	11	6	3	5	10	14	
100	0.11	0.09	25	5	7	14	8	5	7	11	16	
125	0.17	0.14	31	6	9	16	9	6	9	13	19	
150	0.24	0.20	36	7	11	18	10	7	10	14	20	
175	0.33	0.28	40	8	12	19	11	8	10	15	21	
200	0.43	0.37	43	9	14	20	12	9	11	16	23	
Inlet Size 8″ø	ſ						•				•	

				Isothermal Conditions			Cooling Conditions				
					Throw (ft)		Drop		Throw (ft)		Drop
cfm	ТР	SP	NC	150 fpm	100 fpm	50 fpm	in.	150 fpm	100 fpm	50 fpm	in.
50	0.02	0.02	_	2	4	7	4	2	4	7	10
75	0.05	0.05	_	3	5	11	6	3	5	10	14
100	0.09	0.08	21	5	7	14	8	5	7	11	16
125	0.14	0.13	27	6	9	16	9	6	9	13	19
150	0.21	0.20	32	7	11	18	10	7	10	14	20
175	0.28	0.26	36	8	12	19	11	8	10	15	21
200	0.37	0.35	39	9	14	20	12	9	11	16	23

Inlet Size 10"ø

cfm TP				Isothermal Conditions				Cooling Conditions			
			NC		Throw (ft)		Drop in.		Throw (ft)		Drop in.
	ТР	SP		150 fpm	100 fpm	50 fpm		150 fpm	100 fpm	50 fpm	
50	0.02	0.02	_	2	4	7	4	2	4	7	10
75	0.05	0.05	_	3	5	11	6	3	5	10	14
100	0.10	0.10	18	5	7	14	8	5	7	11	16
125	0.15	0.15	24	6	9	16	9	6	9	13	19
150	0.22	0.22	29	7	11	18	10	7	10	14	20
175	0.30	0.29	33	8	12	19	11	8	10	15	21
200	0.39	0.38	36	9	14	20	12	9	11	16	23

Performance Notes:

- 1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- 2. Air flow is in cfm.

3. All pressures are in in. w.g.

- TP = total pressure
- SP = static pressure

- Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- 5. Isothermal conditions indicate supply air temperature is equal to room air temperature.
- Cooling conditions are based on a supply air temperature of 40 °F and a room temperature of 75 °F.
- 7. NC values are based on room absorption of 10 dB re $10^{\text{-}12}$ Watts and one diffuser.
- 8. Blanks (-----) indicate a NC level below 15.
- 9. Drop is in inches at a terminal velocity of 50 fpm.

CEILING DIFFUSERS

ment of the pattern controllers. It is available

in five frame styles and three module sizes.

A drop (extended) face version is available

for use in tegular tile ceiling systems with

a 3/8 in. [10] drop.

Product Overview

Price offers a full line of perforated supply and matching return ceiling diffusers that provide superior performance characteristics while retaining application flexibility. The perforated face presents a smooth, even appearance that blends into the ceiling. Perforated supply diffusers are available with adjustable louvered pattern controllers on either the face or the neck, providing an excellent horizontal air pattern with a strong Coanda effect against the ceiling.

Model PDN

The PDN series of steel perforated face supply diffusers, with neck mounted pattern controllers, is available in a wide range of sizes and air patterns to suit most applications. The face screen is hinged to allow for access for field adjustment of the pattern controllers. It is available in five frame styles and six module sizes. A drop (extended) face version (PDNE) is available for use in tegular tile ceiling systems with a $^{3}/_{8}$ in. [10] drop.

Model PDSP

The PDSP Series of steel and aluminum perforated face ceiling diffusers feature a ceiling-hugging, horizontal air pattern that is field adjustable between a standard 4 way side throw to a star pattern 4 way diagonal throw. Curved blade deflectors mounted at the diffuser neck maintain a consistent horizontal pattern, even at low flow rates, making the PDSP Series an ideal choice for VAV applications. Quick-release latches on the hinged perforated face screen allow easy access for field adjustment of the blades. The drop (extended) face model PDSPE is available to complement tegular tile ceilings.

Model PDC

The PDC series of steel perforated face supply diffusers with adjustable curved vane pattern controllers mounted to the backpan is available in a wide range of sizes and air patterns to suit most applications. The face screen is hinged to allow for access for field adjustment of the pattern controllers. It is available in five frame styles and six module sizes. A drop (extended) face version (PDCE) is available for use in tegular tile ceiling systems with a ³/₈ in. [10] drop.

Model PDDR

C-34

Matching perforated returns are available to complement the PDN, PDC and PDF series of supply diffusers. The face screen is hinged to allow for access for field adjustment of dampers, etc. It is available in five frame styles and six module sizes. A drop (extended) face version (PDDRE) is available for use in tegular tile ceiling systems with a $\frac{3}{8}$ in. [10] drop.

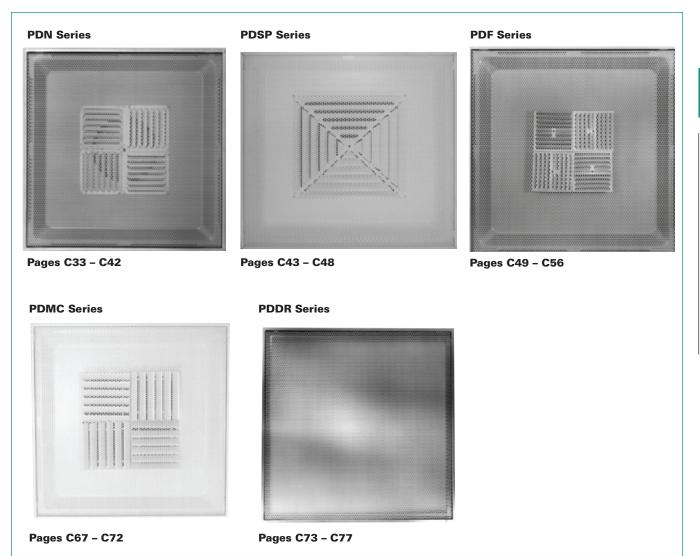
Model PDF

The PDF series of steel perforated face supply diffusers with face mounted pattern controllers is available in a wide range of sizes and air patterns to suit most applications. The face screen is hinged to allow for access for field adjustment of the pattern controllers. It is available in five frame styles and six module sizes. A drop (extended) face version (PDFE) is available for use in tegular tile ceiling systems with a ³/₈ in. [10] drop.

Model PDMC

The PDMC series of steel perforated face supply diffusers with neck mounted louvered air pattern modules is available in a wide range of sizes and air patterns to suit most applications. The face screen is hinged to allow for access for field adjust-

Models


models	
Supply, Deflectors in Neck	
Flush Face	
Steel Construction	PDN, PDSP, PDC, PDMC
w/ Aluminum Face Screen	APDN, APDSP, APDC, APDMC
Drop (Extended) Face	
Steel Construction	PDNE, PDCE
w/ Aluminum Face Screen	APDNE, APDCE
Supply, Deflectors On Face	
Flush Face	
Steel Construction	PDF
w/ Aluminum Face Screen	APDF
Drop (Extended) Face	
Steel Construction	PDFE
w/ Aluminum Face Screen	APDFE
Matching Returns	
Flush Face	
Steel Construction	PDDR
w/ Aluminum Face Screen	APDDR
Drop (Extended) Face	
Steel Construction	PDDRE
w/ Aluminum Face Screen	APDDRE
Non-ducted Returns	PFRF / PFRFE / APFRF / APFRFE
	· · · · · / · · · · · · · / AFFNE

	10	

Perforated Diffusers

Types

Quick Selection Guide

Diffuser Type	Ceiling Type	Recommended Frame / Panel	
Supply / Return	Lay-in		
Flush Face	Inverted T 1 in. [25]	3	
PDN / PDSP / PDF / PDC / PDMC - Supply	Narrow Member ⁹ /16 in. [14]	17	
PDDR - Return	Concealed Spline	4	
	Surface Mount	1	
Supply / Return			
Drop (Extended) Face	Lay-in		
PDNE / PDFE / PDCE - Supply	Inverted T 1 in. [25]	3	
PDDRE - Return			

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter.

Perforated Diffusers – Supply **PDN Series**

B12

Product Information

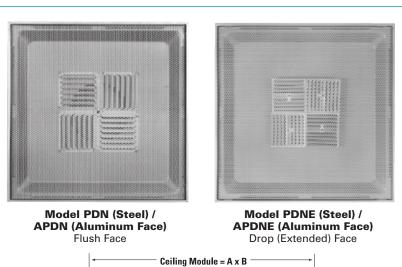
Models

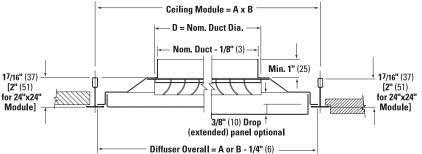
Deflectors in Neck	
Flush Face	
Steel Construction	PDN
w/ Aluminum Face	APDN
Drop (Extended) Face	
Steel Construction	PDNE
w/ Aluminum Face	APDNE

Price PDN / PDNE Series perforated face ceiling diffusers provide a horizontal air pattern with a strong Coanda effect against the ceiling. Adjustable pattern controllers in the inlet neck (round or square) are easily field adjusted to suit the desired air pattern. The drop (extended) face model PDNE is available to complement tegular tile ceilings.

Features

- Choice of cold rolled steel (PDN / PDNE) or aluminum face screen (APDN / APDNE) construction. (Steel backpan and pattern controllers in both cases.)
- Hinged, removable perforated face screen with guick-release spring latches.
- Louvered air pattern controllers are located at the inlet neck and are field adjustable to the desired air pattern.
- Choice of five frame styles (frames 1, 2, 3, 4, 17).
- Complete range of available accessory dampers, equalizing grids etc.
- Optional beaded extended neck (2¹/₂ in. tall) for easy flex duct connection (BN).


Finish


White Powder Coat

For optional and special finishes see color matrix.

Available Module Sizes

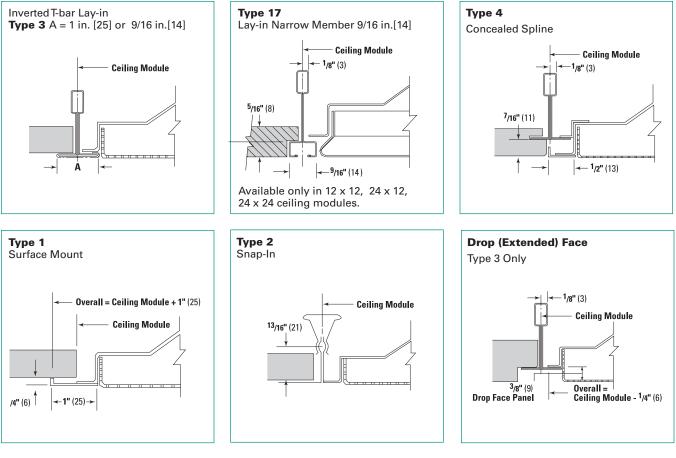
Imperial	Metric
12 in. x 12 in.	300 x 300
24 in. x 12 in.	600 x 300
16 in. x 16 in.	400 x 400
20 in. x 20 in.	500 x 500
24 in. x 24 in.	600 x 600
48 in. x 24 in.	1200 x 600

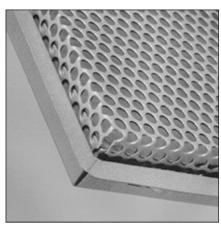
		Α	x B Face or C	eiling Modul	e Size, Nomir	al
Neck Size Nominal	12 x 12 300 x 300	24x12 600 x 300	16x16 400 x 400	20x20 500 x 500	24x24 600 x 600	48x24 1200 x 600
6 x 6 [152 x 152]	▼	▼	▼	▼	▼	▼
8 x 8 [203 x 203]			▼	▼	▼	•
10 x 10 [254 x 254]			▼	▼	•	▼
12 x 12 [305 x 305]					•	▼
14 x 14 [356 x 356]					•	▼
15 x 15 [381 x 381]					•	▼
6 x 18 [152 x 457]		▼				
6 in. [152] Dia.	•	▼	▼	▼	▼	▼
8 in. [203] Dia.			•	•	•	▼
10 in. [254] Dia.			•	•	•	▼
12 in. [305] Dia.					•	▼
14 in. [356] Dia.					•	▼
15 in. [381] Dia.					•	▼

Product Selection Checklist

- Select Inlet Diameter or Neck Size L x W based on desired performance characteristics. 11
- 21 Select Face Size based on ceiling module.
- Select OutletType by model number (material, flush or drop face). 31
- 41 Select Border Style according to installation requirements (page C34). 5]
 - Select Volume Control Accessories, if desired (page C181-C186).
- 61 Select Finish.

Example: 8 in. / 24 in. x 24 in. / PDN / 3 / B12


Application Recommendations:


For Border recommendations, see page C32.

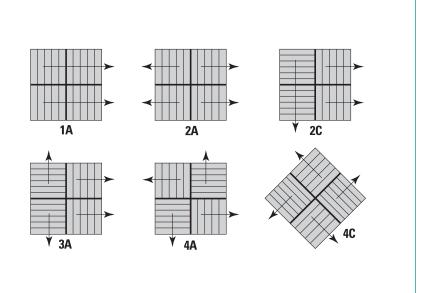
All Metric dimensions () are soft conversion Imperial dimensions are converted to metric and rounded to the nearest millimeter

Frame Selection

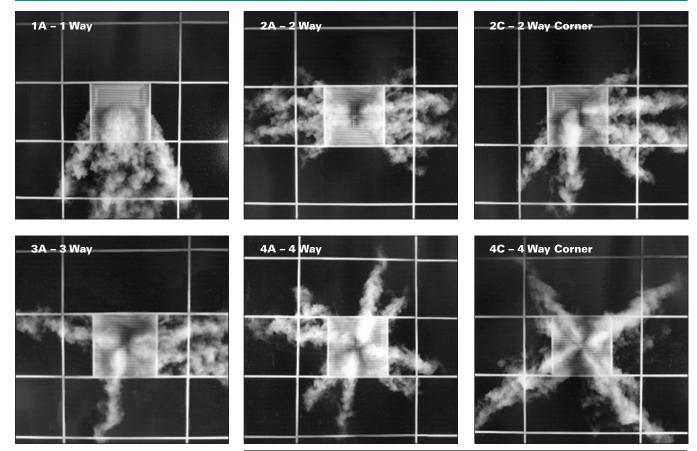
Drop (Extended) Face Panel Detail

All Metric dimensions () are soft conversion

Perforated Diffusers PDN Series


Pattern Adjustment

Modular directional cores on PDN allow field pattern adjustment without affecting performance.


The formed louver air pattern controllers provide positive air flow control without restricting or dampering air volume. Since field adjustment of the air pattern does not change the free area, the pressure drop and sound level remains unchanged. Air pattern adjustments do not change the published performance data for pressure drop and sound level.

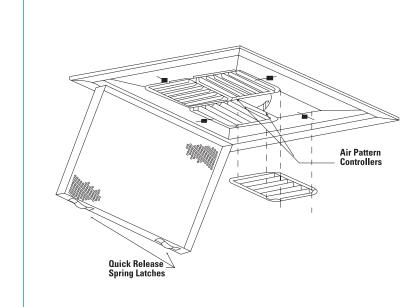
The formed louver air pattern controller has fixed, curved vanes. The radius shape and blade angle have been established by extensive testing in our Air Distribution Laboratory.

The photographs below are of a Model PDN, 24 in. x 24 in. module with an 8 in. round inlet neck.

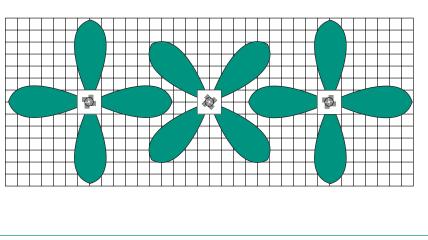
Available Air Patterns

© Copyright Price Industries Limited 2014.

C-38


Compressed Pattern Diffusion

The PDN's positive air pattern control, combined with its simple field adjustable air pattern controllers, allows the owner to put diffusers in closer proximity to each other than can be done with most other diffuser types.


By using an alternating 4 way and 4 way corner pattern arrangement, diffuser discharges can be "inter-woven" such that outlets may be tightly spaced without supply air dumping on the room occupants due to colliding air patterns (see illustration).

The compressed air pattern allows the designer the freedom to handle larger air volumes in confined spaces, such as computer rooms, with an unobtrusive and economical perforated diffuser. It should be noted that, in this application, the appearance of the diffuser to the occupant does not change, even though the air pattern setting does - a result not possible with other diffusers.

Pattern Controller Adjustment

Compressed Pattern Arrangement

Field Adjustment Procedure

- Release spring latches of perforated screen and hinge down as shown. (Use flat object to slide along the seam between the perforated screen and backpan towards corners).
- Remove outer screw of louvered deflector module, dislodge from corner tab, loosen interlock at center, remove and rotate louvered deflector module to desired position and reinstall. Interlock at center, position at corner tab and secure with outer screw. Note: No corner tabs on diffuser back pans with 6" nominal inlets.
- 3. Repeat step 2 as necessary for other louvered deflector modules.
- 4. To close, lift perforated screen, depress spring latches with fingers and snap shut.

Fire-Rated Perforated Diffusers – Supply PDN-FR / PDNE-FR Series

Product Information

Three Hour Rating - Lay-in Models

Deflectors in Neck	
Flush Face	PDN-FR
Drop (Extended) Face	PDNE-FR

Price PDN-FR / PDNE-FR perforated face ceiling diffusers are Fire-Rated Assemblies listed in the UL Listed (Underwriters Laboratories Fire Resistance Directory) and ULC Listed (Underwriters Laboratories of Canada Equipment and Materials Directory). This design meets time versus temperature test criteria and NFPA 90A requirements.

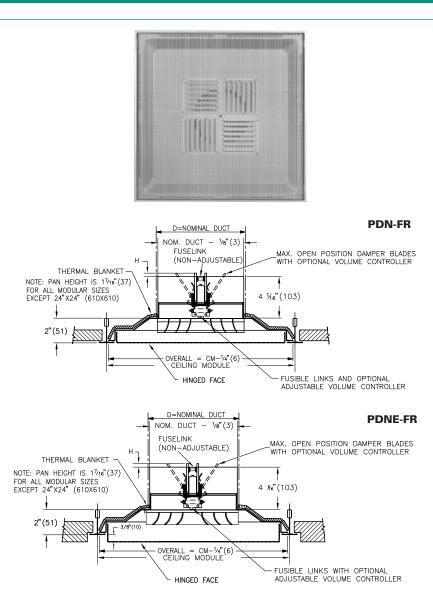
PDN-FR / PDNE-FR perforated face ceiling diffusers provide a horizontal air pattern with a strong Coanda effect against the ceiling. Adjustable pattern controllers in the inlet neck (round or square) are easily field adjusted to suit the desired air pattern. The drop (extended) face Model PDNE-FR is available to complement rectangular tile ceilings.

Features

- Available in both imperial and hard metric module sizes.
- Non-adjustable, butterfly-type ceiling radiation damper.
- Designed for use in an exposed grid suspension ceiling (T-bar Lay-in) with a three hour or less restrained or unrestrained assembly rating. Units must be installed in accordance with the instructions that accompany each unit.
- Thermal blanket is non-asbestos.
- Standard 165 °F [74 °C] fusible link, optional 212 °F [100 °C] fusible link.
- Hinged, removable perforated face screen with quick-release spring latches provides easy access to optional adjustable volume controller (Allen key adjustable). See page C35 for procedure.

Available Module Sizes

Imperial	Metric
24" x 24"	600 x 600
20" x 20"	500 x 500
12" x 12"	300 x 300


Finish

White Powder Coat

For optional and special finishes see color matrix.

B12

\checkmark Product Selection Checklist
1] Select Inlet Diameter or Neck Size L x W.
2] Select Face Size based on ceiling module.
3] Select Diffuser Style by model number.
4] Select Finish.
Example: 8" / 24" x 24" / PDN-FR / B12

Dimensional Data - Imperial (in.) / Metric [mm]

Duct Size	Nominal		Ceiling Module Size, Nominal											
			Imperial (in.)			Metric [mm]								
		12 x 12	20 x 20	24 x 24	300 x 300	500 x 500	600 x 600							
6" x 6"	[152 x 152]	▼	▼	▼	▼	▼	▼							
8" x 8"	[203 x 203]		•	•	▼	•								
10" x 10"	[254 x 254]		▼	•		▼ 1								
12" x 12"	[305 x 305]			•			•							
14" x 14"	[356 x 356]			•			V							
15" x 15"	[381 x 381]			▼			•							
6" Dia.	[152 Dia.]	•	▼	▼	▼	▼	•							
8" Dia.	[203 Dia.]		▼	•		•	•							
10" Dia.	[254 Dia.]		•	•		▼	•							
12" Dia.	[305 Dia.]			•			V							
14" Dia.	[356 Dia.]			•										
15" Dia.	[381 Dia.]			•										

C-40

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter © Copyright Price Industries Limited 2014.

Inlet Size	Neck Velocity, fpm Velocity Pressure, in. w.g	J.	300 .006	400 .010	500 .016	600 .022	700 .031	800 .040	1000 .062	1200 .090
	Total Pressure, in. w.g. Flow Rate, cfm NC		.013 59 —	.022 78 16	.035 98 22	.050 118 27	.069 137 31	.090 157 34	.140 196 40	.202 235 45
6Ø		4 Way	1-1-4	1-2-5	2-3-7	2-4-8	3-5-9	4-5-11	4-7-13	5-8-16
	Throw	3 Way	1-2-5	1-3-6	2-4-8	3-5-10	4-6-11	4-6-13	5-8-16	6-10-19
	ft	2 Way	1-2-6	2-4-9	3-5-11	4-6-13	5-7-15	6-9-17	7-11-21	9-13-26
		1 Way	1-3-8	2-5-11	3-7-13	5-8-16	6-9-19	7-11-21	9-13-27	11-16-32
	Total Pressure, in. w.g. Flow Rate, cfm		.016 75	.029 100	.045 125	.065 150	.089 175	.116 200	.181 250	.260 300
	NC		_	_	19	24	28	32	38	42
6 x 6		4 Way	1-1-5	1-3-6	2-4-8	3-5-9	4-5-11	4-6-12	5-8-15	6-9-18
	Throw	3 Way	1-2-5	1-3-7	2-5-9	3-5-11	4-6-13	5-7-14	6-9-18	7-11-22
	ft	2 Way	1-2-7	2-4-10	3-6-12	4-7-14	6-8-17	6-10-19	8-12-24	10-14-29
		1 Way	1-3-9	2-5-12	4-8-15	5-9-18	7-11-21	8-12-24	10-15-30	12-18-36

Performance Data - 12 in. x 12 in. / 300 x 300 Module

Performance Data - 12 in. x 24 in. / 300 x 600 Module

Inlet Size	Neck Velocity, fpm Velocity Pressure, in. w.ç	ŀ.	300 .006	400 .010	500 .016	600 .022	700 .031	800 .040	900 .050	1000 .062	1200 .090	1400 .122
	Total Pressure, in. w.g. Flow Rate, cfm NC		.012 59 —	.022 78 16	.034 98 22	.049 118 27	.067 137 31	.088 157 34	.111 176 37	.137 196 40	.198 235 45	.269 274 49
6 Ø	Throw ft	4 Way 3 Way 2 Way 1 Way	2-3-6 2-4-7 3-5-9 3-6-11	3-4-7 3-5-8 5-7-11 6-9-13	4-5-7 4-6-9 6-8-12 7-10-15	4-6-8 5-7-10 7-9-13 9-11-16	5-6-9 6-7-10 8-10-14 10-12-17	5-7-9 6-8-11 9-11-15 11-13-19	6-7-10 7-8-12 9-11-16 11-14-20	6-7-10 7-9-12 10-12-17 12-15-21	7-8-11 8-10-14 11-13-18 13-16-23	7-9-12 9-10-15 11-14-20 14-17-25
	Total Pressure, in. w.g. Flow Rate, cfm NC		.017 75 —	.029 100 —	.046 125 19	.066 150 24	.090 175 28	.118 200 32	.149 225 35	.184 250 38	.265 300 42	.360 350 46
6 x 6	Throw ft	4 Way 3 Way 2 Way 1 Way	2-4-6 2-4-8 3-6-10 4-7-13	3-5-7 4-6-9 5-8-12 6-10-15	4-6-8 5-7-10 6-9-13 8-12-17	5-6-9 6-8-12 8-10-15 10-13-18	6-7-10 7-8-12 9-11-16 11-14-20	6-7-11 7-9-13 10-12-17 12-15-21	6-8-11 8-9-13 10-13-18 13-16-22	7-8-12 8-10-14 11-13-19 14-17-23	7-9-13 9-11-15 12-15-21 15-18-26	8-10-14 10-12-17 13-16-22 16-20-28
	Total Pressure, in. w.g. Flow Rate, cfm NC		.019 225 —	.034 300 20	.053 375 26	.076 450 31	.104 525 35	.136 600 38	.172 675 41	.212 750 44	.305 900 49	.415 1050 53
6 x 18	Throw ft	4 Way 3 Way 2 Way 1 Way	3-6-11 4-8-13 5-10-18 7-13-22	6-8-13 7-10-15 9-14-21 11-17-26	7-10-14 8-12-17 11-16-23 14-20-29	8-11-16 10-13-19 14-18-25 17-22-32	10-12-17 12-14-20 16-19-27 20-24-34	11-13-18 13-15-22 17-21-29 21-26-36	11-14-19 13-16-23 18-22-31 22-27-39	12-14-20 14-17-24 19-23-33 23-29-41	13-16-22 15-19-27 21-25-36 26-32-45	14-17-24 17-20-29 22-27-38 28-34-48

Performance Notes:

- 1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- $\ \ 2. \ \ Air flow is in cfm.$
- 3. All pressures are in in. w.g.
- 4. Throw values are measured in feet for terminal velocities
- of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- 5. Throw data is based on supply air and room air being at isothermal conditions.
- 6. NC values are based on room absorption of 10 dB re $10^{\text{-}12}$ Watts and one diffuser.
- 7. Blanks (----) indicate an NC level below 15.
- 8. Data does not include effects of ceiling radiation damper (PDN-FR, PDNE-FR)

Performance Data - 16 in. x 16 in. / 400 x 400 Module

Inlet	Neck Velocity, fpm		300	400	500	600	700	800	900	1000	1200	1400
Size	Velocity Pressure, in. w.g	J.	.006	.010	.016	.022	.031	.040	.050	.062	.090	.122
	Total Pressure, in. w.g.		.012	.022	.034	.049	.067	.088	.111	.137	.198	.269
	Flow Rate, cfm		59	78	98	118	137	157	176	196	235	274
	NC			16	22	27	31	34	37	40	45	49
6 Ø		4 Way	2-3-6	3-4-7	4-5-7	4-6-8	5-6-9	5-7-9	6-7-10	6-7-10	7-8-11	7-9-12
	Throw	3 Way	2-4-7	3-5-8	4-6-9	5-7-10	6-7-10	6-8-11	7-8-12	7-9-12	8-10-14	9-10-15
	ft	2 Way	3-5-9	5-7-11	6-8-12	7-9-13	8-10-14	9-11-15	9-11-16	10-12-17	11-13-18	11-14-20
		1 Way	3-6-11	6-9-13	7-10-15	9-11-16	10-12-17	11-13-19	11-14-20	12-15-21	13-16-23	14-17-25
	Total Pressure, in. w.g.		.017	.029	.046	.066	.090	.118	.149	.184	.265	.360
	Flow Rate, cfm		75	100	125	150	175	200	225	250	300	350
6 x 6	NC		—	—	19	24	28	32	35	38	42	46
		4 Way	2-4-6	3-5-7	4-6-8	5-6-9	6-7-10	6-7-11	6-8-11	7-8-12	7-9-13	8-10-14
	Throw	3 Way	2-4-8	4-6-9	5-7-10	6-8-11	7-8-12	7-9-13	8-9-13	8-10-14	9-11-15	10-12-17
	ft	2 Way	3-6-10	5-8-12	6-9-13	8-10-15	9-11-16	10-12-17	10-13-18	11-13-19	12-15-21	13-16-22
		1 Way	4-7-13	6-10-15	8-12-17	10-13-18	11-14-20	12-15-21	13-16-22	14-17-23	15-18-26	16-20-28
	Total Pressure, in. w.g.		.015	.027	.042	.061	.082	.108	.136	.168	.242	.330
	Flow Rate, cfm		105	140	175	209	244	279	314	349	419	489
	NC		—	19	25	30	34	38	41	44	48	53
8 Ø		4 Way	2-4-8	4-6-9	5-7-10	6-8-11	7-8-12	7-9-12	8-9-13	8-10-14	9-11-15	9-12-16
	Throw	3 Way	3-5-9	5-7-11	6-8-12	7-9-13	8-10-14	9-11-15	9-11-16	10-12-17	11-13-18	11-14-20
	ft	2 Way	4-7-12	6-9-14	8-11-16	9-12-17	11-13-19	11-14-20	12-15-21	13-16-22	14-17-24	15-19-26
		1 Way	5-9-15	8-12-18	10-14-20	12-15-21	13-16-23	14-18-25	15-19-26	16-20-28	18-21-30	19-23-33
	Total Pressure, in. w.g.		.018	.031	.049	.071	.096	.126	.159	.196	.283	.385
	Flow Rate, cfm		133	178	222	266	311	355	400	444	533	622
	NC		—	17	23	28	32	35	38	41	46	50
8 x 8		4 Way	3-5-9	4-6-10	5-8-11	6-9-12	8-9-13	8-10-14	9-10-15	9-11-16	10-12-17	11-13-19
	Throw	3 Way	3-6-10	5-8-12	6-9-13	8-10-15	9-11-16	10-12-17	10-13-18	11-13-19	12-15-21	13-16-22
	ft	2 Way	4-8-14	7-10-16	9-13-18	10-14-19	12-15-21	13-16-22	14-17-24	14-18-25	16-19-27	17-21-30
		1 Way	5-10-17	9-13-20	11-16-22	13-17-24	15-19-26	16-20-28	17-21-30	18-22-31	20-24-34	21-26-37
	Total Pressure, in. w.g.		.018	.032	.050	.072	.098	.128	.162	.200	.287	.391
	Flow Rate, cfm		164	218	273	327	382	436	491	545	654	763
	NC		_	22	28	33	37	40	44	46	51	55
10 Ø		4 Way	3-5-9	5-7-11	6-9-12	7-9-13	8-10-15	9-11-16	9-12-16	10-12-17	11-13-19	12-15-21
	Throw	3 Way	3-6-11	6-9-13	7-10-15	9-11-16	10-12-17	11-13-19	11-14-20	12-15-21	13-16-23	14-17-25
	ft	2 Way	4-9-15	8-11-18	9-14-20	11-15-21	13-16-23	14-18-25	15-19-26	16-20-28	18-21-30	19-23-33
		1 Way	6-11-19	9-14-22	12-17-25	14-19-27	17-21-29	18-22-31	19-23-33	20-25-35	22-27-38	24-29-41
	Total Pressure, in. w.g.	-	.019	.033	.051	.074	.101	.132	.167	.206	.296	.403
	Flow Rate, cfm		208	278	347	416	486	555	625	694	833	972
	NC		_	20	25	30	34	38	41	44	49	53
0 x 10		4 Way	3-6-11	5-8-12	7-10-14	8-11-15	9-12-16	10-12-17	11-13-19	11-14-20	12-15-21	13-16-23
	Throw	3 Way	4-7-13	7-10-15	8-12-17	10-13-18	11-14-20	12-15-21	13-16-22	14-17-23	15-18-26	16-20-28
												=•
	ft	2 Way	5-10-17	9-13-20	11-16-22	13-17-24	15-19-26	16-20-28	17-21-30	18-22-31	20-24-34	21-26-37

Performance Notes:

- 1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- 2. Air flow is in cfm.
- 3. All pressures are in in. w.g.
- Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- 5. Throw data is based on supply air and room air being at isothermal conditions.
- 6. NC values are based on room absorption of 10 dB re $10^{\cdot 12}\,$ Watts and one diffuser.
- 7. Blanks (-----) indicate an NC level below 15.
- Data does not include effects of ceiling radiation damper (PDN-FR, PDNE-FR)

Performance Data – 20 in. x 20 in. / 500 x 500 Module

Inlet Size	Neck Velocity, fpm Velocity Pressure, in. w.g	1.	300 .006	400 .010	500 .016	600 .022	700 .031	800 .040	900 .050	1000 .062	1200 .090	1400 .122
	Total Pressure, in. w.g.	,	.012	.022	.034	.049	.067	.088	.111	.137	.198	.269
	Flow Rate, cfm		59	78	98	118	137	157	176	196	235	274
	NC		_	16	22	27	31	34	37	40	45	49
6 Ø		4 Way	2-3-6	3-4-7	4-5-7	4-6-8	5-6-9	5-7-9	6-7-10	6-7-10	7-8-11	7-9-12
	Throw	3 Way	2-4-7	3-5-8	4-6-9	5-7-10	6-7-10	6-8-11	7-8-12	7-9-12	8-10-14	9-10-15
	ft	2 Way	3-5-9	5-7-11	6-8-12	7-9-13	8-10-14	9-11-15	9-11-16	10-12-17	11-13-18	11-14-20
		1 Way	3-6-11	6-9-13	7-10-15	9-11-16	10-12-17	11-13-19	11-14-20	12-15-21	13-16-23	14-17-25
	Total Pressure, in. w.g.	-	.017	.029	.046	.066	.090	.118	.149	.184	.265	.360
	Flow Rate, cfm		75	100	125	150	175	200	225	250	300	350
	NC		_	_	19	24	28	32	35	38	42	46
6 x 6		4 Way	2-4-6	3-5-7	4-6-8	5-6-9	6-7-10	6-7-11	6-8-11	7-8-12	7-9-13	8-10-14
	Throw	3 Way	2-4-8	4-6-9	5-7-10	6-8-11	7-8-12	7-9-13	8-9-13	8-10-14	9-11-15	10-12-17
	ft	2 Way	3-6-10	5-8-12	6-9-13	8-10-15	9-11-16	10-12-17	10-13-18	11-13-19	12-15-21	13-16-22
		1 Way	4-7-13	6-10-15	8-12-17	10-13-18	11-14-20	12-15-21	13-16-22	14-17-23	15-18-26	16-20-28
	Total Pressure, in. w.g.		.015	.027	.042	.061	.082	.108	.136	.168	.242	.330
	Flow Rate, cfm		105	140	175	209	244	279	314	349	419	489
	NC		_	19	25	30	34	38	41	44	48	53
8 Ø		4 Way	2-4-8	4-6-9	5-7-10	6-8-11	7-8-12	7-9-12	8-9-13	8-10-14	9-11-15	9-12-16
	Throw	3 Way	3-5-9	5-7-11	6-8-12	7-9-13	8-10-14	9-11-15	9-11-16	10-12-17	11-13-18	11-14-20
	ft	2 Way	4-7-12	6-9-14	8-11-16	9-12-17	11-13-19	11-14-20	12-15-21	13-16-22	14-17-24	15-19-26
		1 Way	5-9-15	8-12-18	10-14-20	12-15-21	13-16-23	14-18-25	15-19-26	16-20-28	18-21-30	19-23-33
	Total Pressure, in. w.g.		.018	.031	.049	.071	.096	.126	.159	.196	.283	.385
	Flow Rate, cfm		133	178	222	266	311	355	400	444	533	622
	NC			17	23	28	32	35	38	41	46	50
8 x 8		4 Way	3-5-9	4-6-10	5-8-11	6-9-12	8-9-13	8-10-14	9-10-15	9-11-16	10-12-17	11-13-19
	Throw	3 Way	3-6-10	5-8-12	6-9-13	8-10-15	9-11-16	10-12-17	10-13-18	11-13-19	12-15-21	13-16-22
	ft	2 Way	4-8-14	7-10-16	9-13-18	10-14-19	12-15-21	13-16-22	14-17-24	14-18-25	16-19-27	17-21-30
		1 Way	5-10-17	9-13-20	11-16-22	13-17-24	15-19-26	16-20-28	17-21-30	18-22-31	20-24-34	21-26-37
	Total Pressure, in. w.g.		.018	.032	.050	.072	.098	.128	.162	.200	.287	.391
	Flow Rate, cfm		164	218	273	327	382	436	491	545	654	763
	NC		—	22	28	33	37	40	44	46	51	55
10 Ø		4 Way	3-5-9	5-7-11	6-9-12	7-9-13	8-10-15	9-11-16	9-12-16	10-12-17	11-13-19	12-15-21
	Throw	3 Way	3-6-11	6-9-13	7-10-15	9-11-16	10-12-17	11-13-19	11-14-20	12-15-21	13-16-23	14-17-25
	ft	2 Way	4-9-15	8-11-18	9-14-20	11-15-21	13-16-23	14-18-25	15-19-26	16-20-28	18-21-30	19-23-33
		1 Way	6-11-19	9-14-22	12-17-25	14-19-27	17-21-29	18-22-31	19-23-33	20-25-35	22-27-38	24-29-41
	Total Pressure, in. w.g.		.019	.033	.051	.074	.101	.132	.167	.206	.296	.403
	Flow Rate, cfm		208	278	347	416	486	555	625	694	833	972
	NC		—	20	25	30	34	38	41	44	49	53
0 x 10		4 Way	3-6-11	5-8-12	7-10-14	8-11-15	9-12-16	10-12-17	11-13-19	11-14-20	12-15-21	13-16-23
	Throw	3 Way	4-7-13	7-10-15	8-12-17	10-13-18	11-14-20	12-15-21	13-16-22	14-17-23	15-18-26	16-20-28
	ft	2 Way	5-10-17	9-13-20	11-16-22	13-17-24	15-19-26	16-20-28	17-21-30	18-22-31	20-24-34	21-26-37
		1 Way	7-12-21	11-16-25	14-20-28	16-21-30	19-23-33	20-25-35	21-26-37	23-28-39	25-30-43	27-33-46

Performance Notes:

- 1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- 2. Air flow is in cfm.
- 3. All pressures are in in. w.g.

 Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).

- 5. Throw data is based on supply air and room air being at isothermal conditions.
- 6. NC values are based on room absorption of 10 dB re $10^{\text{-}12}$ Watts and one diffuser.
- 7. Blanks (—) indicate an NC level below 15.
- 8. Data does not include effects of ceiling radiation damper (PDN-FR, PDNE-FR)

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter.

CEILING DIFFUSERS

Performance Data - 24 in. x 24 in. / 600 x 600 Module

Inlet	Neck Velocity, fpm		300	400	500	600	700	800	900	1000	1200	1400
Size	Velocity Pressure, in. w.g		.006	.010	.016	.022	.031	.040	.050	.062	.090	.122
	Total Pressure, in. w.g.		.013	.023	.036	.052	.071	.092	.116	.143	.206	.281
	Flow Rate, cfm		59	78	98	118	137	157	176	196	235	274
	NC		—	16	22	27	31	34	37	40	45	49
6 Ø		4 Way	2-3-6	3-4-7	4-5-7	4-6-8	5-6-9	5-7-9	6-7-10	6-7-10	7-8-11	7-9-12
	Throw	3 Way	2-4-7	3-5-8	4-6-9	5-7-10	6-7-10	6-8-11	7-8-12	7-9-12	8-10-14	9-10-15
	ft	2 Way	3-5-9	5-7-11	6-8-12	7-9-13	8-10-14	9-11-15	9-11-16	10-12-17	11-13-18	11-14-20
		1 Way	3-6-11	6-9-13	7-10-15	9-11-16	10-12-17	11-13-19	11-14-20	12-15-21	13-16-23	14-17-25
	Total Pressure, in. w.g.		.016	.029	.045	.065	.089	.116	.146	.181	.260	.354
	Flow Rate, cfm		75	100	125	150	175	200	225	250	300	350
	NC		—	—	19	24	28	32	35	38	42	46
6 x 6		4 Way	2-4-6	3-5-7	4-6-8	5-6-9	6-7-10	6-7-11	6-8-11	7-8-12	7-9-13	8-10-14
	Throw	3 Way	2-4-8	4-6-9	5-7-10	6-8-11	7-8-12	7-9-13	8-9-13	8-10-14	9-11-15	10-12-17
	ft	2 Way	3-6-10	5-8-12	6-9-13	8-10-15	9-11-16	10-12-17	10-13-18	11-13-19	12-15-21	13-16-22
		1 Way	4-7-13	6-10-15	8-12-17	10-13-18	11-14-20	12-15-21	13-16-22	14-17-23	15-18-26	16-20-28
	Total Pressure, in. w.g.		.015	.027	.042	.061	.084	.108	.136	.168	.242	.330
	Flow Rate, cfm		105	140	175	209	244	279	314	349	419	489
	NC		_	19	25	30	34	38	41	44	48	53
8 Ø		4 Way	2-4-8	4-6-9	5-7-10	6-8-11	7-8-12	7-9-12	8-9-13	8-10-14	9-11-15	9-12-16
	Throw	3 Way	3-5-9	5-7-11	6-8-12	7-9-13	8-10-14	9-11-15	9-11-16	10-12-17	11-13-18	11-14-20
	ft	2 Way	4-7-12	6-9-14	8-11-16	9-12-17	11-13-19	11-14-20	12-15-21	13-16-22	14-17-24	15-19-26
		1 Way	5-9-15	8-12-18	10-14-20	12-15-21	13-16-23	14-18-25	15-19-26	16-20-28	18-21-30	19-23-33
	Total Pressure, in. w.g.		.018	.031	.049	.071	.096	.126	.159	.196	.283	.385
	Flow Rate, cfm		133	178	222	266	311	355	400	444	533	622
	NC		_	17	23	28	32	35	38	41	46	50
8 x 8		4 Way	3-5-9	4-6-10	5-8-11	6-9-12	8-9-13	8-10-14	9-10-15	9-11-16	10-12-17	11-13-19
	Throw	3 Way	3-6-10	5-8-12	6-9-13	8-10-15	9-11-16	10-12-17	10-13-18	11-13-19	12-15-21	13-16-22
	ft	2 Way	4-8-14	7-10-16	9-13-18	10-14-19	12-15-21	13-16-22	14-17-24	14-18-25	16-19-27	17-21-30
		1 Way	5-10-17	9-13-20	11-16-22	13-17-24	15-19-26	16-20-28	17-21-30	18-22-31	20-24-34	21-26-37
	Total Pressure, in. w.g.		.017	.031	.048	.070	.097	.124	.157	.193	.278	.379
	Flow Rate, cfm		164	218	273	327	382	436	491	545	654	763
	NC		_	22	28	33	37	40	44	46	51	55
10 Ø		4 Way	3-5-9	5-7-11	6-9-12	7-9-13	8-10-15	9-11-16	9-12-16	10-12-17	11-13-19	12-15-21
	Throw	3 Way	3-6-11	6-9-13	7-10-15	9-11-16	10-12-17	11-13-19	11-14-20	12-15-21	13-16-23	14-17-25
	ft	2 Way	4-9-15	8-11-18	9-14-20	11-15-21	13-16-23	14-18-25	15-19-26	16-20-28	18-21-30	19-23-33
		1 Way	6-11-19	9-14-22	12-17-25	14-19-27	17-21-29	18-22-31	19-23-33	20-25-35	22-27-38	24-29-41
	Total Pressure, in. w.g.		.019	.033	.051	.074	.101	.132	.167	.206	.296	.403
	Flow Rate, cfm		208	278	347	416	486	555	625	694	833	972
	NC			20	25	30	34	38	41	44	49	53
IO x 10		4 Way	3-6-11	5-8-12	7-10-14	8-11-15	9-12-16	10-12-17	11-13-19	11-14-20	12-15-21	13-16-23
	Throw	3 Way	4-7-13	7-10-15	8-12-17	10-13-18	11-14-20	12-15-21	13-16-22	14-17-23	15-18-26	16-20-28
				9-13-20	11-16-22	13-17-24	15-19-26	16-20-28	17-21-30	18-22-31	20-24-34	21-26-37
	ft	2 Way	5-10-17	9-13-70								

Performance Notes:

- 1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- 2. Air flow is in cfm.
- 3. All pressures are in in. w.g.
- Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- 5. Throw data is based on supply air and room air being at isothermal conditions.
- 6. NC values are based on room absorption of 10 dB re $10^{\cdot 12}\,$ Watts and one diffuser.
- 7. Blanks (-----) indicate an NC level below 15.
- Data does not include effects of ceiling radiation damper (PDN-FR, PDNE-FR)

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter. © Copyright Price Industries Limited 2014.

Performance Data - 24 in. x 24 in. /600 x 600 Module (continued)

Inlet Size	Neck Velocity, fpm Velocity Pressure, in. w.g	j .	300 .006	400 .010	500 .016	600 .022	700 .031	800 .040	900 .050	1000 .062	1200 .090	1400 .122
	Total Pressure, in. w.g.	-	.020	.035	.055	.079	.107	.140	.177	.218	.314	.428
	Flow Rate, cfm		236	314	393	471	550	628	707	785	942	1099
	NC		17	24	30	35	39	43	46	49	53	57
12 Ø		4 Way	4-6-11	6-9-13	7-10-15	9-11-16	10-12-17	11-13-19	11-14-20	12-15-21	13-16-23	14-17-25
	Throw	3 Way	4-8-14	7-10-16	9-12-18	10-14-19	12-15-21	13-16-22	14-17-24	14-18-25	16-19-27	17-21-30
	ft	2 Way	6-10-18	9-14-21	12-17-24	14-18-26	16-20-28	17-21-30	18-22-32	19-24-33	21-26-36	23-28-39
		1 Way	7-13-23	12-17-26	14-21-29	17-23-32	20-25-35	21-26-37	23-28-39	24-29-42	26-32-46	28-35-49
	Total Pressure, in. w.g.		.020	.035	.055	.079	.107	.140	.177	.218	.314	.428
	Flow Rate, cfm		300	400	500	600	700	800	900	1000	1200	1400
	NC		_	22	28	32	37	40	43	46	51	55
12 x 12		4 Way	4-7-13	7-10-15	8-12-17	10-13-18	11-14-20	14-15-21	13-16-22	14-17-23	15-18-26	16-20-28
	Throw	3 Way	5-9-15	8-12-18	10-14-20	12-15-22	14-17-24	15-18-25	15-19-27	16-20-28	18-22-31	19-24-33
	ft	2 Way	6-12-21	10-16-24	13-19-27	16-21-29	18-22-31	19-24-34	21-25-36	22-27-38	24-29-41	26-31-44
		1 Way	8-15-26	13-20-30	16-23-33	20-26-36	23-28-39	24-30-42	26-32-45	27-33-47	30-36-51	32-39-56
	Total Pressure, in. w.g.		.022	.039	.061	.088	.119	.156	.197	.243	.350	.477
	Flow Rate, cfm		321	428	535	641	748	855	962	1069	1283	1497
	NC		19	26	32	37	41	44	48	50	55	59
14 Ø		4 Way	4-8-13	7-10-15	8-12-17	10-13-19	12-14-20	13-15-22	13-16-23	14-17-24	15-19-27	17-20-29
	Throw	3 Way	5-9-16	8-12-18	10-15-21	12-16-23	14-17-24	15-18-26	16-20-28	17-21-29	18-23-32	20-24-34
	ft	2 Way	7-12-21	11-16-25	13-19-27	16-21-30	19-23-32	20-25-35	21-26-37	22-27-39	25-30-43	27-32-46
		1 Way	8-15-27	13-20-31	17-24-34	20-27-38	23-29-41	25-31-43	27-33-46	28-34-49	31-38-53	33-41-57
	Total Pressure, in. w.g.		.020	.036	.056	.081	.110	.144	.182	.224	.323	.440
	Flow Rate, cfm		408	544	681	817	953	1089	1225	1361	1633	1905
	NC		16	24	30	34	38	42	45	48	53	57
14 x 14		4 Way	5-9-15	8-12-17	10-14-19	12-15-21	13-16-23	14-17-24	15-18-26	16-19-27	17-21-30	19-23-32
	Throw	3 Way	6-10-18	9-14-21	12-16-23	14-18-25	16-19-28	17-21-29	18-22-31	19-23-33	21-25-36	22-28-39
	ft	2 Way	8-14-24	12-18-28	15-22-31	18-24-34	21-26-37	23-28-39	24-29-42	25-31-44	28-34-48	30-37-52
		1 Way	10-17-30	15-23-35	19-27-39	23-30-42	26-32-46	28-35-49	30-37-52	32-39-55	35-42-60	37-46-65
	Total Pressure, in. w.g.		.023	.041	.064	.092	.125	.164	.207	.256	.368	.501
	Flow Rate, cfm		368	491	614	736	859	982	1104	1227	1472	1718
	NC		19	27	33	38	42	45	48	51	56	60
15 Ø		4 Way	4-8-14	7-11-16	9-13-18	11-14-20	13-15-22	13-16-23	14-17-25	15-18-26	16-20-28	18-22-31
	Throw	3 Way	5-10-17	9-13-20	11-16-22	13-17-24	15-18-26	16-20-28	17-21-30	18-22-31	20-24-34	21-26-37
	ft	2 Way	7-13-23	11-17-26	14-21-29	17-23-32	20-25-35	21-26-37	23-28-39	24-29-42	26-32-46	28-35-49
		1 Way	9-16-28	14-21-33	18-26-37	21-28-40	25-31-44	27-33-47	28-35-49	30-37-52	33-40-57	36-44-62
	Total Pressure, in. w.g.		.021	.037	.058	.083	.113	.148	.187	.231	.332	.452
	Flow Rate, cfm		469	625	782	938	1094	1250	1407	1563	1876	2188
	NC		17	24	30	35	39	43	46	49	54	58
15 x 15		4 Way	5-9-16	8-12-19	10-15-21	12-16-23	14-17-25	15-19-26	16-20-28	17-21-29	19-23-32	20-25-35
	Throw	3 Way	6-11-19	10-15-22	12-18-25	15-19-27	17-21-29	18-22-32	19-24-33	20-25-35	22-27-39	24-29-42
	ft	2 Way	8-15-26	13-20-30	17-23-33	20-26-36	23-28-39	24-30-42	26-32-45	27-33-47	30-36-51	32-39-56
		1 Way	10-19-32	17-25-37	21-29-42	25-32-45	28-35-49	30-37-53	32-39-56	34-42-59	37-45-64	40-49-69

Performance Notes:

- 1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- 2. Air flow is in cfm.
- 3. All pressures are in in. w.g.

- Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- 5. Throw data is based on supply air and room air being at isothermal conditions.
- 6. NC values are based on room absorption of 10 dB re $10^{\text{-}12}$ Watts and one diffuser.
- 7. Blanks (—) indicate an NC level below 15.
- Data does not include effects of ceiling radiation damper (PDN-FR, PDNE-FR)

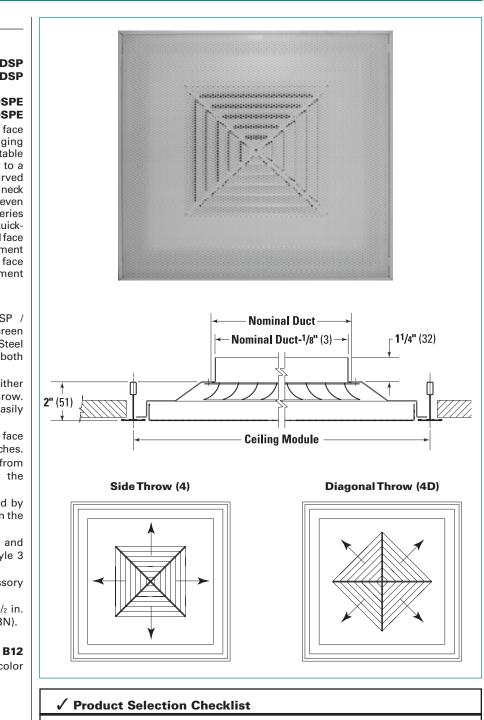
All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter.

Product Information - Star Pattern

Models

Star Pattern	
Flush Face	
Steel Construction	PDS
w/ Aluminum Face	APDS
Drop (Extended) Face	
Steel Construction	PDSI
w/ Aluminum Face	APDSI
The Price PDSP Series	perforated fa

The Price PDSP Series perforated face ceiling diffuser features a ceiling-hugging horizontal air pattern that is field adjustable between a standard 4 way side throw to a star pattern 4 way diagonal throw. Curved blade deflectors mounted at the diffuser neck maintain a consistent horizontal pattern, even at low flow rates, making the PDSP Series an ideal choice for VAV applications. Quickrelease latches on the hinged perforated face screen allow easy access for field adjustment of the blades. The drop (extended) face Model PDSPE is available to complement tegular tile ceilings.


Features

- Choice of cold rolled steel (PDSP / PDSPE) or aluminum face screen (APDSP / APDSPE) construction. Steel backpan and pattern controllers in both cases.
- 4 way pattern available with either factory set side throw or diagonal throw. Side or diagonal throw can be easily changed in the field.
- Hinged, removable perforated face screen with quick-release spring latches.
- Pattern can be field adjusted from horizontal to vertical by turning the blades.
- 3 way horizontal pattern is achieved by redirecting one segment of blades in the opposite direction.
- Choice of five frame styles (PDSPE and APDSPE are available in Frame Style 3 only).
- Complete range of available accessory dampers, equalizing grids etc.
- Optional beaded extended neck (21/2 in. tall) for easy flex duct connection (BN).

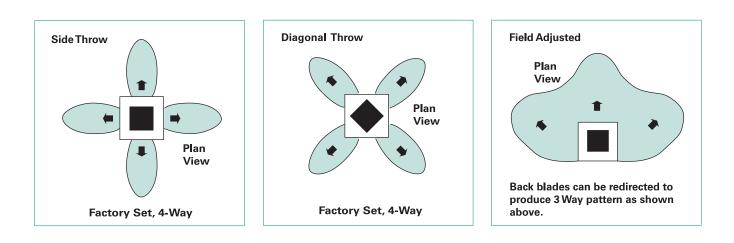
Finish

White Powder Coat

For optional and special finishes see color matrix.

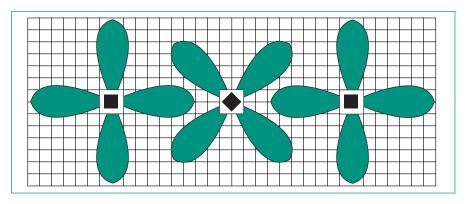


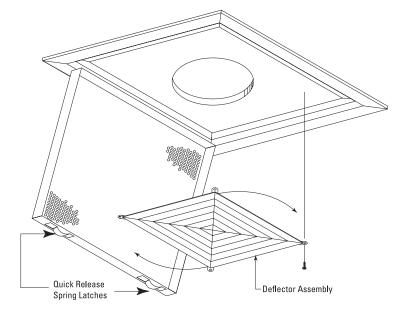
- Select Inlet Diameter or Neck Size L x W based on desired performance characteristics. 11 Select Face Size based on ceiling module.
- 21 31
- Select Outlet Type by model number (material, flush or drop face). Select Border Style according to installation requirements.
- 41 Select Air Pattern Option (4, 4D). 51
- Select Volume Control Accessories, if desired. 61
- 71 Select Finish.


Example: 8 in. / 24 in. x 24 in. / PDSP / 3 / 4 / B12

Frame Selection

Pattern Options




Compressed Pattern Arrangement

The PDSP's positive air pattern control, combined with its simple field adjustable air pattern controllers, allows the owner to put diffusers in closer proximity to each other than can be done with most other diffuser types.

By using an alternating 4 way and 4 way diagonal pattern arrangement, diffuser discharges can be "inter-woven" such that outlets may be tightly spaced without supply air dumping on the room occupants due to colliding air patterns (see illustration).

Pattern Controller Adjustment

Field Adjustment Procedure

- Release spring latches of perforated screen and hinge down as shown. (Use flat object to slide along the seam between the perforated screen and backpan towards corners.)
- Remove outer screw of louvered deflector module, dislodge from corner tab, loosen interlock at center, remove and rotate louvered deflector module to desired position and reinstall. Interlock at center, position at corner tab and secure with outer screw. Note: No corner tabs on diffuser back pans with 6 in. nominal inlets.
- 3. Repeat step 2 as necessary for other louvered deflector modules.
- 4. To close, lift perforated screen, depress spring latches with fingers and snap shut.

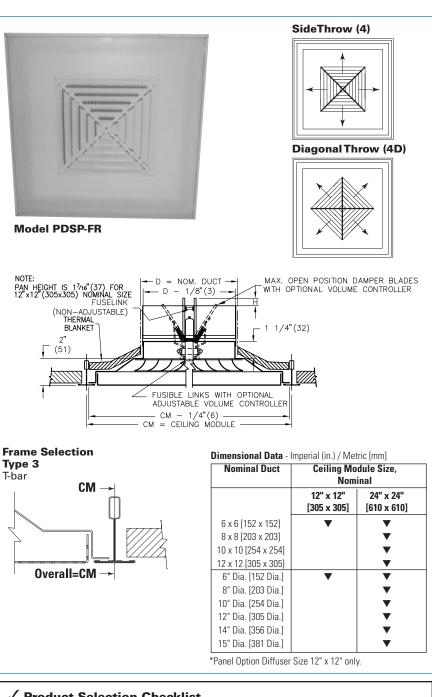
Fire-Rated Perforated Diffusers **PDSP-FR Series**

Product Information - Star Pattern

Three Hour Rating - Lay-in

Price PDSP-FR perforated face high capacity modular core directional diffusers are Fire-Rated Assemblies listed in the UL Listed (Underwriters Laboratories Fire Resistance Directory) and ULC Listed (Underwriters Laboratories of Canada Equipment and Materials Directory). This design meets time versus temperature test criteria and NFPA 90A requirements.

The Price PDSP-FR Series perforated face ceiling diffuser features a ceiling-hugging horizontal air pattern that is field adjustable between a standard 4 way side throw to a star pattern 4 way diagonal throw. Curved blade deflectors mounted at the diffuser neck maintain a consistent horizontal pattern, even at low flow rates, making the PDSP-FR Series an ideal choice for VAV applications. Quick-release latches on the hinged perforated face screen allow easy access for field adjustment of the blades. The drop (extended) face Model PDSPE-FR is available to complement tegular tile ceilings.


Features

- Cold rolled steel (PDSP-FR/PDSPE-FR) steel backpan and pattern controllers.
- 4 way pattern available with either factory set side throw or diagonal throw. Side or diagonal throw can be easily changed in the field.
- Hinged, removable perforated face screen with quick-release spring latches.
- Pattern can be field adjusted from horizontal to vertical by turning the blades.
- 3 way horizontal pattern is achieved by redirecting one segment of blades in the opposite direction.
- Non-adjustable, butterfly-type ceilina radiation damper.
- Designed for use in an exposed grid suspension ceiling (T-bar Lay-in) with a three hour or less restrained or unrestrained assembly rating. Units must be installed in accordance with the instructions that accompany each unit.
- Thermal blanket is non-asbestos.
- Standard 165 °F [74°C] fusible link, optional 212 °F [100 °C] fusible link.
- · Optional adjustable volume controller (Allen key adjustable).

Finish

White Powder Coat

For optional and special finishes see color matrix.

- Select Inlet Diameter or Neck Size L x W based on desired performance 11 characteristics.
 - Select Face Size based on ceiling module. 21
- 31
- Select OutletType by model number (material, flush or drop face). 41 Select Border Style according to installation requirements.
 - Select Air Pattern Option (4, 4D).
- 6] Select Volume Control Accessories, if desired.
- 71 Select Finish.

51

R12

Example: 8" / 24" x 24" / PDSP-FR / 3 / 4 / B12

C-49

Performance Data - 12 in. x 12 in. [305 x 305] Module

Inlet Size	Neck Velocity, fpm Velocity Pressure, in.wg.	300 0.006	400 0.010	500 0.016	600 0.022	700 0.031	800 0.040	900 0.050	1000 0.062	1200 0.090
6 ø	Total Pressure, in.wg.	0.020	0.033	0.052	0.072	0.102	0.131	0.164	0.203	0.295
	Flow Rate, cfm	59	79	98	118	137	157	177	196	236
	NC				20	26	30	34	37	43
	Throw, ft	1-3-7	2-4-9	4-6-10	4-7-10	5-8-11	6-9-12	7-9-13	7-10-14	9-10-15
6 x 6	Total Pressure, in.wg.	0.021	0.034	0.055	0.075	0.106	0.137	0.171	0.212	0.308
	Flow Rate, cfm	75	100	125	150	175	200	225	250	300
	NC			16	22	27	32	36	39	45
	Throw, ft	1-3-7	2-5-9	4-6-10	5-7-11	5-8-12	6-9-13	7-10-14	8-10-15	9-11-16

Performance Data - 24 in. x 24 in. [610 x 610] Module

Inlet	Neck Velocity, fpm	300	400	500	600	700	800	900	1000	1200	1400
Size	Velocity Pressure, in.wg.	0.006	0.01	0.016	0.022	0.031	0.04	0.05	0.062	0.09	0.122
6x6	Total Pressure, in.wg.	0.021	0.034	0.055	0.075	0.106	0.137	0.171	0.212	0.308	0.417
	Flow Rate, cfm	75	100	125	150	175	200	225	250	300	350
	NC			16	22	27	32	36	39	45	50
	Throw, ft	1-3-7	2-5-9	4-6-10	5-7-11	5-8-12	6-9-13	7-10-14	8-10-15	9-11-16	10-12-17
8x8	Total Pressure, in.wg.	0.023	0.038	0.061	0.083	0.118	0.152	0.190	0.235	0.341	0.463
	Flow Rate, cfm	133	178	222	267	311	356	400	444	533	622
	NC			20	26	32	36	40	43	49	55
	Throw, ft	2-4-8	3-5-10	4-7-12	5-8-13	6-9-14	7-10-15	8-12-16	9-12-17	10-13-19	12-14-20
10x10	Total Pressure, in.wg.	0.025	0.041	0.066	0.090	0.127	0.164	0.206	0.255	0.37	0.502
	Flow Rate, cfm	208	278	347	417	486	556	625	694	833	972
	NC		16	24	30	35	39	43	47	53	58
	Throw, ft	2-4-9	3-6-12	5-7-14	6-9-15	7-10-16	8-12-18	9-13-19	10-14-20	12-15-21	13-16-23
12x12	Total Pressure, in.wg.	0.026	0.044	0.070	0.097	0.136	0.176	0.220	0.272	0.395	0.536
	Flow Rate, cfm	300	400	500	600	700	800	900	1000	1200	1400
	NC		19	26	32	38	42	46	49	55	61
	Throw, ft	2-5-10	4-6-13	5-8-15	6-10-17	7-11-18	9-13-20	10-14-21	11-15-22	13-17-24	15-18-26

Performance Notes:

 Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."

2. Air flow is in cfm.

3. All pressures are in in. w.g.

- Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- 5. Throw data is based on supply air and room air at isothermal conditions.
- 6. NC values are based on room absorption of 10 dB re $10^{\cdot 12}\,$ Watts and one diffuser.

7. Blanks (-----) indicate an NC level below 15.

8. Data does not include effects of ceiling radiation damper (PDSP-FR, PDSPE-FR)

Inlet	Neck Velocity, fpm	300	400	500	600	700	800	900	1000	1200	1400
Size	Velocity Pressure, in.wg.	0.006	0.01	0.016	0.022	0.031	0.04	0.05	0.062	0.09	0.122
6	Total Pressure, in.wg.	0.020	0.033	0.052	0.072	0.102	0.131	0.164	0.203	0.295	0.400
	Flow Rate, cfm	59	79	98	118	137	157	177	196	236	275
	NC				20	26	30	34	37	43	49
	Throw, ft	1-3-7	2-4-9	4-6-10	4-7-10	5-8-11	6-9-12	7-9-13	7-10-14	9-10-15	9-11-16
8	Total Pressure, in.wg.	0.022	0.036	0.058	0.080	0.113	0.145	0.182	0.225	0.327	0.443
	Flow Rate, cfm	105	140	175	209	244	279	314	349	419	489
	NC			19	25	30	34	38	42	48	53
	Throw, ft	1-3-7	3-5-10	4-6-11	5-7-12	6-9-13	7-10-14	7-11-15	8-11-16	10-12-18	11-13-19
10	Total Pressure, in.wg.	0.024	0.039	0.063	0.087	0.122	0.157	0.197	0.244	0.354	0.480
	Flow Rate, cfm	164	218	273	327	382	436	491	545	654	764
	NC			22	28	33	38	41	45	51	56
	Throw, ft	2-4-8	3-5-11	5-7-13	5-8-14	6-10-15	7-11-16	8-12-17	9-13-18	11-14-20	12-15-22
12	Total Pressure, in.wg.	0.025	0.042	0.067	0.092	0.130	0.168	0.210	0.261	0.378	0.513
	Flow Rate, cfm	236	314	393	471	550	628	707	785	942	1100
	NC		17	25	31	36	40	44	48	54	59
	Throw, ft	2-4-9	3-6-12	5-8-14	6-9-16	7-11-17	8-12-18	9-14-19	10-14-20	12-16-22	14-17-24
14	Total Pressure, in.wg.	0.027	0.044	0.071	0.098	0.138	0.178	0.222	0.275	0.400	0.542
	Flow Rate, cfm	321	428	535	641	748	855	962	1069	1283	1497
	NC		19	27	33	38	42	46	50	56	61
	Throw, ft	2-5-10	4-7-13	5-8-16	7-10-17	8-11-19	9-13-20	10-15-21	11-16-22	13-17-24	15-19-26
15	Total Pressure, in.wg.	0.027	0.046	0.073	0.100	0.141	0.182	0.228	0.282	0.410	0.556
	Flow Rate, cfm	368	491	614	736	859	982	1104	1227	1473	1718
	NC		21	28	34	39	44	47	51	57	62
	Throw, ft	2-5-10	4-7-14	6-8-16	7-10-18	8-12-19	9-14-21	10-15-22	11-16-23	14-18-25	16-19-27
16	Total Pressure, in.wg.	0.028	0.047	0.075	0.103	0.145	0.186	0.233	0.289	0.420	0.569
	Flow Rate, cfm	419	559	698	838	977	1117	1257	1396	1676	1955
	NC		21	29	35	40	44	48	52	58	63
	Throw, ft	3-5-10	5-7-14	6-9-17	7-10-19	8-12-20	9-14-22	10-16-23	12-17-24	14-19-26	16-20-29

Performance Data - 24 in. x 24 in. [610 x 610] Module (continued)

Performance Notes:

1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."

2. Air flow is in cfm.

3. All pressures are in in. w.g.

- Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- 5. Throw data is based on supply air and room air at isothermal conditions.
- 6. NC values are based on room absorption of 10 dB re $10^{\text{-}12}$ Watts and one diffuser.
- 7. Blanks (-----) indicate an NC level below 15.
- 8. Data does not include effects of ceiling radiation damper (PDSP-FR, PDSPE-FR)

Product Information

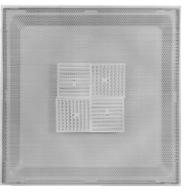
Models

Deflectors on Face	
Flush Face	
Steel Construction	PDF
w/ Aluminum Face	APDF
Drop (Extended) Face	
Steel Construction	PDFE
w/ Aluminum Face	APDFE

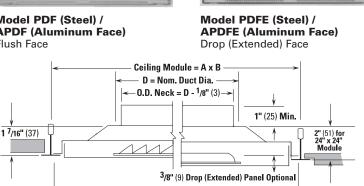
Price PDF / PDFE Series perforated face ceiling diffusers provide a superior horizontal air pattern with a strong Coanda effect against the ceiling. Adjustable pattern controllers in diffuser face are easily field adjusted to suit the desired air pattern. The drop (extended) face Model PDFE is available to complement tegular tile ceilings.

Features

- Choice of cold rolled steel (PDF / PDFE) or aluminum face screen (APDF / APDFE) construction. Steel backpan and pattern controllers in both cases.
- Hinged, removable perforated faceplate with quick-release spring latches.
 - Louvered air pattern controllers are located on the diffuser face and are field adjustable to the desired air pattern.
 - Choice of five frame styles (Frames 1, 2, 3, 4, 17).
 - Complete range of available accessory dampers, equalizing grids etc.
 - Optional beaded extended neck (2¹/₂ in. tall) for easy flex duct connection (BN).


Available Module Sizes

Imperial	Metric
12 in. x 12 in.	300 x 300
24 in. x 12 in.	600 x 300
16 in. x 16 in.	400 x 400
20 in. x 20 in.	500 x 500
24 in. x 24 in.	600 x 600


Finish

color matrix.

White Powder Coat **B12** For optional and special finishes see

Model PDF (Steel) / **APDF (Aluminum Face)** Flush Face

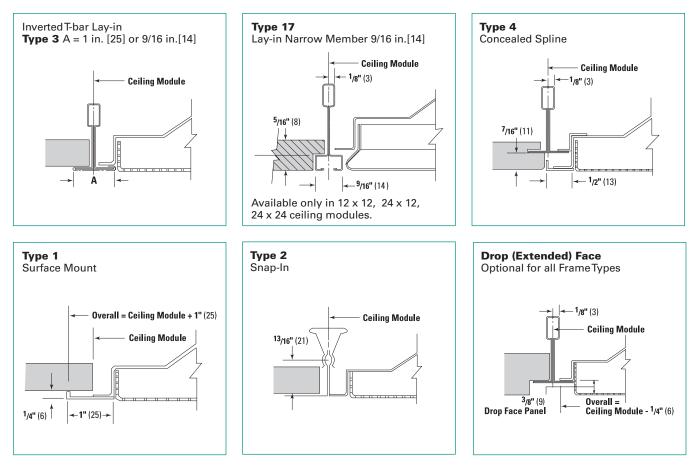
Diffuser Overall = A or B - 1/4" (6) -

Dimensional Data — Imperial (in.) / Metric [mm]

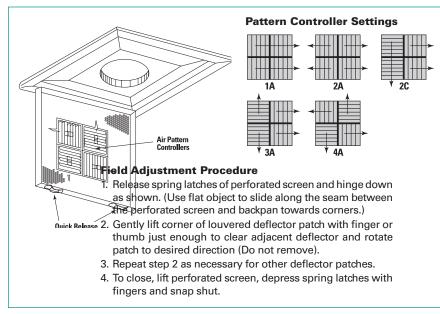
Neck Size		Α	x B Face or C	eiling Modul	e Size, Nomir	nal
Nominal	12 x 12 300 x 300	24x12 600 x 300	16x16 400 x 400	20x20 500 x 500	24x24 600 x 600	48x24 1200 x 600
6 x 6 [152 x 152]	•	▼	▼	▼	▼	▼
8 x 8 [203 x 203]			▼	▼	•	▼
10 x 10 [254 x 254]				▼	•	▼
12 x 12 [305 x 305]					•	▼
14 x 14 [356 x 356]					•	▼
16 x 16 [406 x 406]						
18 x 18 [457 x 457]						
6 x 18 [152 x 457]		•				
6 in. [152] Dia.	▼	•	•	•	•	▼
8 in. [203] Dia.			•	•	▼	▼
10 in. [254] Dia.			•	•	•	▼
12 in. [305] Dia.				•	•	▼
14 in. [356] Dia.				•	•	▼
15 in. [381] Dia.					•	▼
16 in. [406] Dia.						
18 in. [457] Dia.						

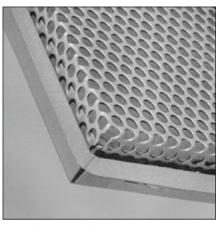
/ **Product Selection Checklist**

- Select Inlet Diameter or Neck Size L x W based on desired performance characteristics. 11
- 21 Select Face Size based on ceiling module.
- Select Outlet Type by model number (material, flush or drop face). 3]
- Select Border Style according to installation requirements (page C50). 41
- 51 Select Volume Control accessories, if desired (page C181-C186).
- 6] Select Finish.


Example: 8 in. / 24 in. x 24 in. / PDF / 3 / B12

Application Recommendations:


For Border recommendations, see page C32



Frame Selection

Air Pattern Adjustment

Drop (Extended) Face Panel Detail

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter.

Fire-Rated Perforated Diffusers – Supply PDF-FR / PDFE-FR Series

Product Information

c UL US

Three Hour Rating - Lay-in Models

Drop (Extended) Face	PDFE-FR
Flush Face	PDF-FR
Deflectors on Face	

Price PDF-FR / PDFE-FR perforated face ceiling diffusers are Fire-Rated Assemblies listed in the UL Listed (Underwriters Laboratories Fire Resistance Directory) and ULC Listed (Underwriters Laboratories of Canada Equipment and Materials Directory). This design meets time versus temperature test criteria and NFPA 90A requirements.

PDF-FR / PDFE-FR perforated face ceiling diffusers provide a superior horizontal air pattern with a strong Coanda effect against the ceiling. Adjustable pattern controllers in diffuser face are easily field adjusted to suit the desired air pattern. The drop (extended) face Model PDFE-FR is available to complement tegular tile ceilings.

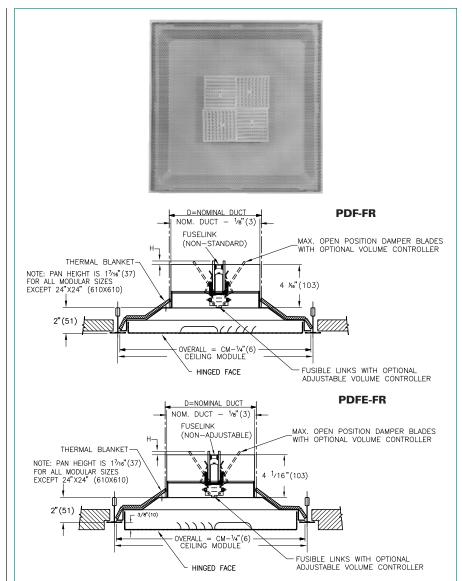
Features

- Available in both imperial and hard metric module sizes.
- Non-adjustable, butterfly-type ceiling radiation damper.
- Designed for use in an exposed grid suspensionceiling(T-barLay-in)withathree hour or less restrained or unrestrained assembly rating. Units must be installed in accordance with the instructions that accompany each unit.
- Thermal blanket is non-asbestos.
- Standard 165 °F [74 °C] fusible link, optional 212 °F [100 °C] fusible link.
- Hinged, removable perforated faceplate with quick-release spring latches provides easy access to optional adjustable volume controller (Allen key adjustable). See page C50 for procedure.

Available Module Sizes

Imperial	Metric
24 in. x 24 in.	600 x 600
20 in. x 20 in.	500 x 500
12 in. x 12 in.	300 x 300

Finish


Whi	te Powder	Coat			B12
For	ontional	and	special	finishes	See

color matrix.

1	Product Selection Checklist
1]	Select Inlet Diameter or Neck Size L x W.

- Select frace Size based on ceiling module.
- 3] Select Diffuser Style by model number.
- Select Finish.

Example: 8 in./24 in. x 24 in./PDF-FR/B12

Dimensional Data - Imperial (in.) / Metric [mm]

Duct Size	Nominal	Ceiling Module Size, Nominal								
			Imperial (in.)	1	Metric [mm]					
		12 x 12	20 x 20	24 x 24	300 x 300	500 x 500	600 x 600			
6 in. x 6 in.	[152 x 152]	▼	▼	•	•	▼	•			
8 in. x 8 in.	[203 x 203]		•	•		•	▼			
10 in. x 10 in.	[254 x 254]		•	•		•	▼			
12 in. x 12 in.	[305 x 305]			•			▼			
14 in. x 14 in.	[356 x 356]			•			▼			
15 in. x 15 in.	[381 x 381]			•			▼			
6 in. Dia.	[152 Dia.]	▼	•	•	•	•	•			
8 in. Dia.	[203 Dia.]		•	•		•	▼			
10 in. Dia.	[254 Dia.]		•	•		▼	▼			
12 in. Dia.	[305 Dia.]			•			▼			
14 in. Dia.	[356 Dia.]						▼			
15 in. Dia.	[381 Dia.]			•			•			

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter © Copyright Price Industries Limited 2014.

Ρ	C	
_		

Inlet	Neck Velocity, fpm		300	400	500	600	700	800	900	1000	1200	1400
Size	Velocity Pressure, in. w.	g.	.006	.010	.016	.022	.031	.040	.050	.062	.090	.122
	Total Pressure, in. w.g.		.012	.021	.033	.047	.064	.084	.106	.131	.189	.257
	Flow Rate, cfm		59	78	98	118	137	157	176	196	235	274
	NC		_	_	_	19	24	28	32	35	41	46
6 Ø		4 Way	0-1-4	1-2-6	1-3-7	2-4-8	3-5-9	4-6-10	4-7-10	5-7-11	6-8-12	7-9-13
	Throw	3 Way	1-1-5	1-2-7	2-4-9	2-5-10	3-6-11	4-7-11	5-8-12	6-9-13	7-10-14	8-11-15
	ft	2 Way	1-2-7	1-3-10	2-5-12	3-7-13	4-8-14	6-10-15	7-11-16	8-12-17	10-13-19	11-14-20
		1 Way	1-2-9	2-4-12	3-6-15	4-9-17	5-10-18	7-12-19	9-13-20	10-15-21	12-17-23	14-18-25
	Total Pressure, in. w.g.		.013	.024	.037	.054	.073	.096	.121	.150	.215	.293
	Flow Rate, cfm		75	100	125	150	175	200	225	250	300	350
	NC		_	_	17	22	27	31	35	38	44	48
6 x 6		4 Way	1-1-5	1-2-7	2-4-9	2-5-9	3-6-10	4-7-11	5-8-11	6-9-12	7-9-13	8-10-14
	Throw	3 Way	1-2-6	1-3-8	2-5-10	3-6-11	4-7-12	5-8-13	6-9-14	7-10-14	8-11-16	10-12-17
	ft	2 Way	1-2-8	2-4-11	3-6-14	4-8-15	5-10-16	7-11-17	8-13-18	9-14-19	11-15-21	13-16-23
		1 Way	1-3-11	2-5-14	3-8-17	5-11-19	7-12-20	9-14-22	11-16-23	12-17-24	14-19-26	16-20-29

Performance Data – 12 in. x 12 in. / 300 x 300 Module

Performance Data - 12 in. x 24 in. / 300 x 600 Module

Inlet	Neck Velocity, fpm		300	400	500	600	700	800	900	1000	1200	1400
Size	Velocity Pressure, in. w.g	.	.006	.010	.016	.022	.031	.040	.050	.062	.090	.122
	Total Pressure, in. w.g.	·	.012	.021	.033	.047	.064	.084	.106	.131	.189	.257
	Flow Rate, cfm		59	78	98	118	137	157	176	196	235	274
	NC		_	_	_	19	24	28	32	35	41	46
6 Ø		4 Way	0-1-4	1-2-6	1-3-7	2-4-8	3-5-9	4-6-10	4-7-10	5-7-11	6-8-12	7-9-13
	Throw	3 Way	1-1-5	1-2-7	2-4-9	2-5-10	3-6-11	4-7-11	5-8-12	6-9-13	7-10-14	8-11-15
	ft	2 Way	1-2-7	1-3-10	2-5-12	3-7-13	4-8-14	6-10-15	7-11-16	8-12-17	10-13-19	11-14-20
		1 Way	1-2-9	2-4-12	3-6-15	4-9-17	5-10-18	7-12-19	9-13-20	10-15-21	12-17-23	14-18-25
	Total Pressure, in. w.g.		.013	.024	.037	.054	.073	.096	.121	.150	.215	.293
	Flow Rate, cfm		75	100	125	150	175	200	225	250	300	350
	NC		—	—	17	22	27	31	35	38	44	48
6 x 6		4 Way	1-1-5	1-2-7	2-4-9	2-5-9	3-6-10	4-7-11	5-8-11	6-9-12	7-9-13	8-10-14
	Throw	3 Way	1-2-6	1-3-8	2-5-10	3-6-11	4-7-12	5-8-13	6-9-14	7-10-14	8-11-16	10-12-17
	ft	2 Way	1-2-8	2-4-11	3-6-14	4-8-15	5-10-16	7-11-17	8-13-18	9-14-19	11-15-21	13-16-23
		1 Way	1-3-11	2-5-14	3-8-17	5-11-19	7-12-20	9-14-22	11-16-23	12-17-24	14-19-26	16-20-29
	Total Pressure, in. w.g.		.026	.047	.073	.105	.144	.188	.237	.293	.422	.574
	Flow Rate, cfm		225	300	375	450	525	600	675	750	900	1050
	NC		—	22	29	35	40	44	47	51	56	61
6 x 18		4 Way	2-5-11	4-8-13	6-9-15	8-11-16	9-12-17	10-13-19	11-14-20	12-15-21	13-16-23	14-17-25
	Throw	3 Way	2-6-14	4-9-16	7-11-18	9-14-19	11-15-21	12-16-22	14-17-24	14-18-25	16-19-27	17-21-30
	ft	2 Way	3-7-18	6-12-21	9-15-24	12-18-26	14-20-28	16-21-30	18-22-32	19-24-33	21-26-37	23-28-40
		1 Way	4-9-23	7-15-26	11-19-30	15-23-32	18-25-35	20-26-37	23-28-40	24-30-42	26-32-46	29-35-49

Performance Notes:

- 1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- 2. Air flow is in cfm.
- 3. All pressures are in in. w.g.

 Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).

- 5. Throw data is based on supply air and room air at isothermal conditions.
- 6. NC values are based on room absorption of 10 dB re $10^{\text{-}12}$ Watts and one diffuser.
- 7. Blanks (—) indicate an NC level below 15.
- 8. Data does not include effects of ceiling radiation damper (PDF-FR, PDFE-FR)

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter.

Performance Data - 16 in. x 16 in. / 400 x 400 Module

Inlet	Neck Velocity, fpm		300	400	500	600	700	800	900	1000	1200	1400
Size	Velocity Pressure, in. w.g	J.	.006	.010	.016	.022	.031	.040	.050	.062	.090	.122
	Total Pressure, in. w.g.		.012	.021	.033	.047	.064	.084	.106	.131	.189	.257
	Flow Rate, cfm		59	78	98	118	137	157	176	196	235	274
	NC		—	—	_	19	24	28	32	35	41	46
6 Ø		4 Way	0-1-4	1-2-6	1-3-7	2-4-8	3-5-9	4-6-10	4-7-10	5-7-11	6-8-12	7-9-13
	Throw	3 Way	1-1-5	1-2-7	2-4-9	2-5-10	3-6-11	4-7-11	5-8-12	6-9-13	7-10-14	8-11-15
	ft	2 Way	1-2-7	1-3-10	2-5-12	3-7-13	4-8-14	6-10-15	7-11-16	8-12-17	10-13-19	11-14-20
		1 Way	1-2-9	2-4-12	3-6-15	4-9-17	5-10-18	7-12-19	9-13-20	10-15-21	12-17-23	14-18-25
	Total Pressure, in. w.g.		.013	.024	.037	.054	.073	.096	.121	.150	.215	.293
	Flow Rate, cfm		75	100	125	150	175	200	225	250	300	350
	NC		—	—	17	22	27	31	35	38	44	48
6 x 6		4 Way	1-1-5	1-2-7	2-4-9	2-5-9	3-6-10	4-7-11	5-8-11	6-9-12	7-9-13	8-10-14
	Throw	3 Way	1-2-6	1-3-8	2-5-10	3-6-11	4-7-12	5-8-13	6-9-14	7-10-14	8-11-16	10-12-17
	ft	2 Way	1-2-8	2-4-11	3-6-14	4-8-15	5-10-16	7-11-17	8-13-18	9-14-19	11-15-21	13-16-23
		1 Way	1-3-11	2-5-14	3-8-17	5-11-19	7-12-20	9-14-22	11-16-23	12-17-24	14-19-26	16-20-29
	Total Pressure, in. w.g.		.017	.029	.046	.066	.090	.118	.149	.184	.265	.360
	Flow Rate, cfm		105	140	175	209	244	279	314	349	419	489
	NC		—	—	21	26	31	35	39	42	48	52
8 Ø		4 Way	1-2-7	2-3-9	2-5-10	3-7-11	5-8-12	6-9-13	7-10-14	7-10-14	9-11-16	10-12-17
	Throw	3 Way	1-2-8	2-4-11	3-7-12	4-8-13	6-9-14	7-11-15	8-11-16	9-12-17	11-13-19	12-14-20
	ft	2 Way	1-3-11	2-6-14	4-9-16	6-11-18	8-12-19	9-14-20	11-15-22	12-16-23	14-18-25	16-19-27
		1 Way	2-4-13	3-7-18	5-11-20	7-13-22	10-15-24	12-18-26	13-19-27	15-20-29	18-22-31	19-24-34
	Total Pressure, in. w.g.		.019	.034	.053	.076	.104	.136	.172	.212	.305	.415
	Flow Rate, cfm		133	178	222	266	311	355	400	444	533	622
	NC		_	16	23	29	34	38	41	45	50	55
8 x 8		4 Way	1-3-8	2-5-10	3-6-11	5-8-12	6-9-13	7-10-14	8-11-15	9-11-16	10-12-18	11-13-19
	Throw	3 Way	1-3-9	2-5-12	4-8-14	5-9-15	7-11-16	8-12-17	9-13-18	10-14-19	12-15-21	13-16-23
	ft	2 Way	2-4-12	3-7-16	5-10-18	7-12-20	10-15-22	11-16-23	12-17-24	14-18-26	16-20-28	18-22-30
		1 Way	2-5-16	4-9-20	6-13-23	9-16-25	12-18-27	14-20-29	16-22-31	17-23-32	20-25-35	22-27-38
	Total Pressure, in. w.g.		.022	.039	.061	.088	.119	.156	.197	.243	.350	.477
	Flow Rate In cfm		164	218	273	327	382	436	491	545	654	763
	NC		—	19	26	31	36	40	44	47	53	57
10Ø		4 Way	1-3-10	3-6-11	4-7-13	6-9-14	7-10-15	8-11-16	9-12-17	10-13-18	11-14-20	12-15-21
	Throw	3 Way	2-4-11	3-7-14	5-9-15	7-11-17	8-13-18	10-14-19	11-14-20	12-15-21	14-17-23	15-18-25
	ft	2 Way	2-5-15	4-9-18	6-12-20	9-14-22	11-17-24	13-18-26	14-19-27	16-20-29	18-22-31	19-24-34
		1 Way	3-6-19	5-11-23	8-15-25	11-18-28	14-21-30	16-23-32	18-24-34	20-25-36	23-28-39	24-30-42

Performance Notes:

1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."

2. Air flow is in cfm.

3. All pressures are in in. w.g.

 Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).

5. Throw data is based on supply air and room air at isothermal conditions.

6. NC values are based on room absorption of 10 dB re $10^{\text{-}12}$ Watts and one diffuser.

7. Blanks (-----) indicate an NC level below 15.

8. Data does not include effects of ceiling radiation damper (PDF-FR, PDFE-FR)

Performance Data – 20 in. x 20 in. / 500 x 500 Module

Inlet	Neck Velocity, fpm		300	400	500	600	700	800	900	1000	1200	1400
Size	Velocity Pressure, in. w.g	J.	.006	.010	.016	.022	.031	.040	.050	.062	.090	.122
	Total Pressure, in. w.g.		.012	.021	.033	.047	.064	.084	.106	.131	.189	.257
6	Flow Rate, cfm		59	78	98	118	137	157	176	196	235	274
	NC					19	24	28	32	35	41	46
6	-	4 Way	0-1-4	1-2-6	1-3-7	2-4-8	3-5-9	4-6-10	4-7-10	5-7-11	6-8-12	7-9-13
	Throw	3 Way	1-1-5	1-2-7	2-4-9	2-5-10	3-6-11	4-7-11	5-8-12	6-9-13	7-10-14	8-11-15
		2 Way	1-2-7	1-3-10	2-5-12	3-7-13	4-8-14	6-10-15	7-11-16	8-12-17	10-13-19	11-14-20
	Total Dessaura in	1 Way	1-2-9	2-4-12	3-6-15	4-9-17	5-10-18	7-12-19	9-13-20	10-15-21	12-17-23	14-18-25
	Total Pressure, in. w.g.		.013	.024	.037	.054	.073	.096	.121	.150	.215	.293
	Flow Rate, cfm		75	100	125	150	175	200 31	225 35	250 38	300	350
6 x 6	NC	4 Way	1-1-5	1-2-7	17 2-4-9	22 2-5-9	27 3-6-10	4-7-11	5-8-11	6-9-12	44 7-9-13	48 8-10-14
0 X 0	Throw	4 Way 3 Way	1-1-5	1-2-7	2-4-9	2-5-9 3-6-11	4-7-12	4-7-11 5-8-13	6-9-14	7-10-14	8-11-16	10-12-17
	THIOW	2 Way	1-2-0	2-4-11	2-5-10 3-6-14	4-8-15	5-10-16	7-11-17	8-13-18	9-14-19	11-15-21	13-16-23
		2 Way 1 Way	1-2-0	2-4-11 2-5-14	3-8-17	4-0-15 5-11-19	7-12-20	9-14-22	11-16-23	12-17-24	14-19-26	16-20-29
	Total Pressure, in. w.g.	i wway	.017	.029	.046	.066	.090	.118	.149	.184	.265	.360
	Flow Rate, cfm		105	140	175	209	244	279	314	349	419	489
	NC				21	26	31	35	39	42	48	52
8	<u></u>	4 Way	1-2-7	2-3-9	2-5-10	3-7-11	5-8-12	6-9-13	7-10-14	7-10-14	9-11-16	10-12-17
-	Throw	3 Way	1-2-8	2-4-11	3-7-12	4-8-13	6-9-14	7-11-15	8-11-16	9-12-17	11-13-19	12-14-20
		2 Way	1-3-11	2-6-14	4-9-16	6-11-18	8-12-19	9-14-20	11-15-22	12-16-23	14-18-25	16-19-27
		1 Way	2-4-13	3-7-18	5-11-20	7-13-22	10-15-24	12-18-26	13-19-27	15-20-29	18-22-31	19-24-34
	Total Pressure, in. w.g.		.019	.034	.053	.076	.104	.136	.172	.212	.305	.415
	Flow Rate, cfm		133	178	222	266	311	355	400	444	533	622
	NC		_	16	23	29	34	38	41	45	50	55
8 x 8		4 Way	1-3-8	2-5-10	3-6-11	5-8-12	6-9-13	7-10-14	8-11-15	9-11-16	10-12-18	11-13-19
	Throw	3 Way	1-3-9	2-5-12	4-8-14	5-9-15	7-11-16	8-12-17	9-13-18	10-14-19	12-15-21	13-16-23
		2 Way	2-4-12	3-7-16	5-10-18	7-12-20	10-15-22	11-16-23	12-17-24	14-18-26	16-20-28	18-22-30
		1 Way	2-5-16	4-9-20	6-13-23	9-16-25	12-18-27	14-20-29	16-22-31	17-23-32	20-25-35	22-27-38
	Total Pressure, in. w.g.		.022	.039	.061	.088	.119	.156	.197	.243	.350	.477
	Flow Rate In cfm		164	218	273	327	382	436	491	545	654	763
	NC			19	26	31	36	40	44	47	53	57
10Ø		4 Way	1-3-9	3-6-11	4-7-13	6-9-14	7-10-15	8-11-16	9-12-17	10-13-18	11-14-20	12-15-21
	Throw	3 Way	2-4-11	3-7-14	5-9-15	7-11-17	8-13-18	10-14-19	11-14-20	12-15-21	14-17-23	15-18-25
		2 Way	2-5-14	4-9-18	6-12-20	9-14-22	11-17-24	13-18-26	14-19-27	16-20-29	18-22-31	19-24-34
		1 Way	3-6-18	5-11-23	8-15-25	11-18-28	14-21-30	16-23-32	18-24-34	20-25-36	23-28-39	24-30-42
	Total Pressure		.025	.044	.069	.099	.134	.176	.222	.274	.395	.538
	Flow Rate		208	278	347	416	486	555	625	694	833	972
	NC			22	28	34	39	43	47 11-13-19	50 12-14-20	55 13-16-22	60 14-17-24
10 x 10	10	1 10/00	2/11				0 1 1 1 7	0 12 10				14-1/-/4
		4 Way 3 Way	2-4-11	3-7-13	5-9-14	7-11-16	8-12-17	9-13-18				
10 x 10	Throw	3 Way	2-5-13	3-7-13 4-9-15	5-9-14 6-11-17	7-11-16 9-13-19	10-14-20	11-15-22	13-16-23	14-17-24	15-19-26	16-20-29
10 x 10		3 Way 2 Way	2-5-13 3-7-17	3-7-13 4-9-15 5-11-20	5-9-14 6-11-17 8-14-23	7-11-16 9-13-19 11-17-25	10-14-20 13-19-27	11-15-22 15-20-29	13-16-23 17-22-31	14-17-24 19-23-32	15-19-26 20-25-35	16-20-29 22-27-38
10 x 10	Throw	3 Way	2-5-13 3-7-17 4-8-21	3-7-13 4-9-15 5-11-20 7-14-25	5-9-14 6-11-17 8-14-23 10-18-28	7-11-16 9-13-19 11-17-25 14-21-31	10-14-20 13-19-27 17-24-34	11-15-22 15-20-29 19-25-36	13-16-23 17-22-31 21-27-38	14-17-24 19-23-32 23-28-40	15-19-26 20-25-35 25-31-44	16-20-29 22-27-38 27-34-48
10 x 10	Throw Total Pressure	3 Way 2 Way	2-5-13 3-7-17 <u>4-8-21</u> . 027	3-7-13 4-9-15 5-11-20 7-14-25 .048	5-9-14 6-11-17 8-14-23 10-18-28 .075	7-11-16 9-13-19 11-17-25 14-21-31 .108	10-14-20 13-19-27 17-24-34 . 147	11-15-22 15-20-29 19-25-36 .192	13-16-23 17-22-31 21-27-38 .242	14-17-24 19-23-32 23-28-40 .299	15-19-26 20-25-35 25-31-44 .431	16-20-29 22-27-38 27-34-48 .587
10 x 10	Throw Total Pressure Flow Rate	3 Way 2 Way	2-5-13 3-7-17 4-8-21	3-7-13 4-9-15 5-11-20 7-14-25 .048 314	5-9-14 6-11-17 8-14-23 10-18-28 .075 393	7-11-16 9-13-19 11-17-25 14-21-31 .108 471	10-14-20 13-19-27 17-24-34 .147 550	11-15-22 15-20-29 19-25-36 .192 628	13-16-23 17-22-31 21-27-38 .242 707	14-17-24 19-23-32 23-28-40 .299 785	15-19-26 20-25-35 25-31-44 .431 942	16-20-29 22-27-38 27-34-48 .587 1099
10 x 10	Throw Total Pressure	3 Way 2 Way 1 Way	2-5-13 3-7-17 <u>4-8-21</u> .027 236	3-7-13 4-9-15 5-11-20 7-14-25 .048	5-9-14 6-11-17 8-14-23 10-18-28 .075 393 30	7-11-16 9-13-19 11-17-25 14-21-31 .108 471 35	10-14-20 13-19-27 17-24-34 .147 550 40	11-15-22 15-20-29 19-25-36 .192 628 44	13-16-23 17-22-31 21-27-38 .242 707 48	14-17-24 19-23-32 23-28-40 .299 785 51	15-19-26 20-25-35 25-31-44 .431 942 57	16-20-29 22-27-38 27-34-48 .587 1099 62
	Throw Total Pressure Flow Rate NC	3 Way 2 Way 1 Way 4 Way	2-5-13 3-7-17 4-8-21 .027 236 2-5-12	3-7-13 4-9-15 5-11-20 7-14-25 .048 314 23 4-8-14	5-9-14 6-11-17 8-14-23 10-18-28 .075 393 30 6-10-15	7-11-16 9-13-19 11-17-25 14-21-31 .108 471 35 8-12-17	10-14-20 13-19-27 17-24-34 .147 550 40 9-13-18	11-15-22 15-20-29 19-25-36 .192 628 44 10-14-19	13-16-23 17-22-31 21-27-38 .242 707 48 12-14-20	14-17-24 19-23-32 23-28-40 .299 785 51 12-15-21	15-19-26 20-25-35 25-31-44 .431 942 57 14-17-23	16-20-29 22-27-38 27-34-48 .587 1099 62 15-18-25
	Throw Total Pressure Flow Rate	3 Way 2 Way 1 Way 4 Way 3 Way	2-5-13 3-7-17 4-8-21 .027 236 2-5-12 3-6-14	3-7-13 4-9-15 5-11-20 7-14-25 .048 314 23 4-8-14 5-9-16	5-9-14 6-11-17 8-14-23 10-18-28 .075 393 30 6-10-15 7-12-18	7-11-16 9-13-19 11-17-25 14-21-31 .108 471 35 8-12-17 9-14-20	10-14-20 13-19-27 17-24-34 .147 550 40 9-13-18 11-15-21	11-15-22 15-20-29 19-25-36 .192 628 44 10-14-19 12-16-23	13-16-23 17-22-31 21-27-38 .242 707 48 12-14-20 14-17-24	14-17-24 19-23-32 23-28-40 .299 785 51	15-19-26 20-25-35 25-31-44 .431 942 57 14-17-23 16-20-28	16-20-29 22-27-38 27-34-48 .587 1099 62 15-18-25 18-21-30
	Throw Total Pressure Flow Rate NC	3 Way 2 Way 1 Way 4 Way	2-5-13 3-7-17 4-8-21 .027 236 2-5-12	3-7-13 4-9-15 5-11-20 7-14-25 .048 314 23 4-8-14	5-9-14 6-11-17 8-14-23 10-18-28 .075 393 30 6-10-15 7-12-18	7-11-16 9-13-19 11-17-25 14-21-31 .108 471 35 8-12-17	10-14-20 13-19-27 17-24-34 .147 550 40 9-13-18 11-15-21	11-15-22 15-20-29 19-25-36 .192 628 44 10-14-19 12-16-23	13-16-23 17-22-31 21-27-38 .242 707 48 12-14-20	14-17-24 19-23-32 23-28-40 .299 785 51 12-15-21 15-18-26	15-19-26 20-25-35 25-31-44 .431 942 57 14-17-23 16-20-28	16-20-29 22-27-38 27-34-48 .587 1099 62 15-18-25 18-21-30
	Throw Total Pressure Flow Rate NC	3 Way 2 Way 1 Way 4 Way 3 Way 2 Way	2-5-13 3-7-17 4-8-21 .027 236 2-5-12 3-6-14 3-8-19	3-7-13 4-9-15 5-11-20 7-14-25 .048 314 23 4-8-14 5-9-16 6-12-22	5-9-14 6-11-17 8-14-23 10-18-28 .075 393 30 6-10-15 7-12-18 10-16-24	7-11-16 9-13-19 11-17-25 14-21-31 .108 471 35 8-12-17 9-14-20 12-19-27	10-14-20 13-19-27 17-24-34 .147 550 40 9-13-18 11-15-21 15-20-29	11-15-22 15-20-29 19-25-36 .192 628 44 10-14-19 12-16-23 17-22-31	13-16-23 17-22-31 21-27-38 .242 707 48 12-14-20 14-17-24 19-23-32	14-17-24 19-23-32 23-28-40 .299 785 51 12-15-21 15-18-26 20-24-34	15-19-26 20-25-35 25-31-44 .431 942 57 14-17-23 16-20-28 22-27-38	16-20-29 22-27-38 27-34-48 .587 1099 62 15-18-25 18-21-30 23-29-41
	Throw Total Pressure Flow Rate NC Throw	3 Way 2 Way 1 Way 4 Way 3 Way 2 Way	2-5-13 3-7-17 4-8-21 .027 236 2-5-12 3-6-14 3-8-19 4-10-23	3-7-13 4-9-15 5-11-20 7-14-25 .048 314 23 4-8-14 5-9-16 6-12-22 8-16-27	5-9-14 6-11-17 8-14-23 10-18-28 .075 393 30 6-10-15 7-12-18 10-16-24 12-19-30	7-11-16 9-13-19 11-17-25 14-21-31 .108 471 35 8-12-17 9-14-20 12-19-27 16-23-33	10-14-20 13-19-27 17-24-34 .147 550 40 9-13-18 11-15-21 15-20-29 18-25-36	11-15-22 15-20-29 19-25-36 .192 628 44 10-14-19 12-16-23 17-22-31 21-27-38	13-16-23 17-22-31 21-27-38 .242 707 48 12-14-20 14-17-24 19-23-32 23-29-41	14-17-24 19-23-32 23-28-40 .299 785 51 12-15-21 15-18-26 20-24-34 25-30-43	15-19-26 20-25-35 25-31-44 .431 942 57 14-17-23 16-20-28 22-27-38 27-33-47	16-20-29 22-27-38 27-34-48 .587 1099 62 15-18-25 18-21-30 23-29-41 29-36-51
	Throw Total Pressure Flow Rate NC Throw Total Pressure	3 Way 2 Way 1 Way 4 Way 3 Way 2 Way	2-5-13 3-7-17 4-8-21 .027 236 2-5-12 3-6-14 3-8-19 4-10-23 .032	3-7-13 4-9-15 5-11-20 7-14-25 .048 314 23 4-8-14 5-9-16 6-12-22 8-16-27 .057	5-9-14 6-11-17 8-14-23 10-18-28 .075 393 30 6-10-15 7-12-18 10-16-24 12-19-30 .089	7-11-16 9-13-19 11-17-25 14-21-31 .108 471 35 8-12-17 9-14-20 12-19-27 16-23-33 .128	10-14-20 13-19-27 17-24-34 .147 550 40 9-13-18 11-15-21 15-20-29 18-25-36 .174	11-15-22 15-20-29 19-25-36 628 44 10-14-19 12-16-23 17-22-31 21-27-38 .227	13-16-23 17-22-31 21-27-38 .242 707 48 12-14-20 14-17-24 19-23-32 23-29-41 .288	14-17-24 19-23-32 23-28-40 .299 785 51 12-15-21 15-18-26 20-24-34 25-30-43 .355	15-19-26 20-25-35 25-31-44 942 57 14-17-23 16-20-28 22-27-38 27-33-47 .512	16-20-29 22-27-38 27-34-48 .587 1099 62 15-18-25 18-21-30 23-29-41 29-36-51 .697
12	Throw Total Pressure Flow Rate NC Throw Total Pressure Flow Rate	3 Way 2 Way 1 Way 4 Way 3 Way 2 Way 1 Way	2-5-13 3-7-17 4-8-21 .027 236 2-5-12 3-6-14 3-8-19 4-10-23 .032 321	3-7-13 4-9-15 5-11-20 7-14-25 .048 314 23 4-8-14 5-9-16 6-12-22 8-16-27 .057 428	5-9-14 6-11-17 8-14-23 10-18-28 .075 393 30 6-10-15 7-12-18 10-16-24 12-19-30 .089 535	7-11-16 9-13-19 11-17-25 14-21-31 .108 471 35 8-12-17 9-14-20 12-19-27 16-23-33 .128 641	10-14-20 13-19-27 17-24-34 .147 550 40 9-13-18 11-15-21 15-20-29 18-25-36 .174 748	11-15-22 15-20-29 19-25-36 628 44 10-14-19 12-16-23 17-22-31 21-27-38 .227 855	13-16-23 17-22-31 21-27-38 .242 707 48 12-14-20 14-17-24 19-23-32 23-29-41 .288 962	14-17-24 19-23-32 23-28-40 .299 785 51 12-15-21 15-18-26 20-24-34 25-30-43 .355 1069	15-19-26 20-25-35 25-31-44 942 57 14-17-23 16-20-28 22-27-38 27-33-47 .512 1283	16-20-29 22-27-38 27-34-48 .587 1099 62 15-18-25 18-21-30 23-29-41 29-36-51 .697 1497
	Throw Total Pressure Flow Rate NC Throw Total Pressure Flow Rate	3 Way 2 Way 1 Way 4 Way 3 Way 2 Way	2-5-13 3-7-17 4-8-21 .027 236 	3-7-13 4-9-15 5-11-20 7-14-25 .048 314 23 4-8-14 5-9-16 6-12-22 8-16-27 .057 428 27	5-9-14 6-11-17 8-14-23 10-18-28 .075 393 30 6-10-15 7-12-18 10-16-24 12-19-30 .089 535 33	7-11-16 9-13-19 11-17-25 14-21-31 .108 471 35 8-12-17 9-14-20 12-19-27 16-23-33 .128 641 39	10-14-20 13-19-27 17-24-34 .147 550 40 9-13-18 11-15-21 15-20-29 18-25-36 .174 748 44 11-15-21	11-15-22 15-20-29 19-25-36 .192 628 44 10-14-19 12-16-23 17-22-31 21-27-38 .227 855 48	13-16-23 17-22-31 21-27-38 .242 707 48 12-14-20 14-17-24 19-23-32 23-29-41 .288 962 52	14-17-24 19-23-32 23-28-40 .299 785 51 12-15-21 15-18-26 20-24-34 25-30-43 .355 1069 55	15-19-26 20-25-35 25-31-44 942 57 14-17-23 16-20-28 22-27-38 27-33-47 .512 1283 60	16-20-29 22-27-38 27-34-48 .587 1099 62 15-18-25 18-21-30 23-29-41 29-36-51 .697 1497 65
12	Throw Total Pressure Flow Rate NC Throw Total Pressure Flow Rate NC	3 Way 2 Way 1 Way 4 Way 3 Way 2 Way 1 Way 4 Way	2-5-13 3-7-17 4-8-21 .027 236 	3-7-13 4-9-15 5-11-20 7-14-25 .048 314 23 4-8-14 5-9-16 6-12-22 8-16-27 .057 428 27 5-10-16	5-9-14 6-11-17 8-14-23 10-18-28 .075 393 30 6-10-15 7-12-18 10-16-24 12-19-30 .089 535 33 8-12-18	7-11-16 9-13-19 11-17-25 14-21-31 .108 471 35 8-12-17 9-14-20 12-19-27 16-23-33 .128 641 39 10-14-19	10-14-20 13-19-27 17-24-34 .147 550 40 9-13-18 11-15-21 15-20-29 18-25-36 .174 748 44	11-15-22 15-20-29 19-25-36 .192 628 44 10-14-19 12-16-23 17-22-31 21-27-38 .227 855 48 13-16-22	13-16-23 17-22-31 21-27-38 .242 707 48 12-14-20 14-17-24 19-23-32 23-29-41 .288 962 52 14-17-24	14-17-24 19-23-32 23-28-40 .299 785 51 12-15-21 15-18-26 20-24-34 25-30-43 .355 1069 55 14-18-25	15-19-26 20-25-35 25-31-44 942 57 14-17-23 16-20-28 22-27-38 27-33-47 512 1283 60 16-19-27	16-20-29 22-27-38 27-34-48 .587 1099 62 15-18-25 18-21-30 23-29-41 29-36-51 .697 1497 65 17-21-30

Performance Notes:

- 1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- 2. Air flow is in cfm.
- 3. All pressures are in in. w.g.

- Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- 5. Throw data is based on supply air and room air at isothermal conditions.
- 6. NC values are based on room absorption of 10 dB re $10^{\text{-}12}$ Watts and one diffuser.
- 7. Blanks (-----) indicate an NC level below 15.
- 8. Data does not include effects of ceiling radiation damper (PDF-FR, PDFE-FR)

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter.

Performance Data - 24 in. x 24 in. / 600 x 600 Module

Inlet	Neck Velocity, fpm		300	400	500	600	700	800	900	1000	1200	1400
Size	Velocity Pressure, in. w.g	J.	.006	.010	.016	.022	.031	.040	.050	.062	.090	.122
	Total Pressure, in. w.g.		.009	.016	.026	.037	.050	.066	.083	.103	.148	.202
	Flow Rate, cfm		59	78	98	118	137	157	176	196	235	274
	NC		—	—	—	16	21	25	29	32	38	43
6 Ø		4 Way	0-0-2	0-1-3	0-1-4	1-2-6	1-2-7	1-3-8	2-3-9	2-4-10	3-6-12	4-7-13
	Throw	3 Way	0-0-2	0-1-3	1-1-5	1-2-7	1-2-9	1-3-10	2-4-11	2-5-13	3-7-14	4-9-15
	ft	2 Way	0-1-2	0-1-4	1-2-7	1-2-10	1-3-12	2-4-13	2-5-15	3-7-17	4-10-19	6-12-20
		1 Way	0-1-3	1-1-5	1-2-8	1-3-12	2-4-15	2-5-17	3-7-19	4-8-21	5-12-23	7-15-25
	Total Pressure, in. w.g.		.010	.018	.029	.042	.057	.074	.093	.115	.166	.226
	Flow Rate, cfm		75	100	125	150	175	200	225	250	300	350
	NC		_	_	_	19	24	28	32	35	41	46
6 x 6		4 Way	0-1-4	1-2-6	1-3-8	2-4-9	2-5-10	3-6-11	4-7-11	5-8-12	6-9-13	7-10-14
	Throw	3 Way	0-1-4	1-2-7	1-3-9	2-4-11	3-6-12	3-7-13	4-8-14	5-9-14	7-11-16	9-12-17
	ft	2 Way	1-1-6	1-3-10	2-4-12	3-6-15	4-8-16	5-10-17	6-11-18	7-12-19	10-15-21	11-16-23
		1 Way	1-2-7	1-3-12	2-5-15	3-7-18	4-10-20	6-12-22	7-14-23	9-15-24	12-18-26	14-20-29
	Total Pressure, in. w.g.		.013	.023	.036	.052	.070	.092	.116	.143	.206	.281
8 Ø	Flow Rate, cfm		105	140	175	209	244	279	314	349	419	489
	NC		_	_	18	23	28	32	36	39	45	49
		4 Way	0-1-4	1-2-7	1-3-9	2-4-10	2-5-12	3-7-13	4-8-14	5-9-14	7-10-16	8-12-17
	Throw	3 Way	1-1-5	1-2-8	1-3-10	2-5-12	3-6-14	4-8-15	5-9-16	6-10-17	8-12-19	10-14-20
	ft	2 Way	1-2-6	1-3-11	2-4-14	3-6-17	4-8-19	5-11-20	6-12-22	8-14-23	11-17-25	13-19-27
		1 Way	1-2-8	2-3-14	2-5-17	3-8-21	5-11-24	6-14-26	8-16-27	10-17-29	14-21-31	16-24-34
	Total Pressure, in. w.g.		.015	.026	.041	.059	.081	.106	.134	.165	.238	.324
	Flow Rate, cfm		133	178	222	266	311	355	400	444	533	622
	NC		_	_	20	26	31	35	38	42	47	52
8 x 8		4 Way	1-2-7	2-4-10	3-6-11	4-7-12	5-8-13	6-10-14	7-11-15	8-11-16	10-12-18	11-13-19
	Throw	3 Way	1-2-9	2-4-12	3-7-14	4-9-15	6-10-16	8-12-17	9-13-18	10-14-19	12-15-21	13-16-23
	ft	2 Way	1-3-12	3-6-15	4-9-18	6-12-20	8-13-22	10-15-23	12-17-24	13-18-26	15-20-28	18-22-30
		1 Way	2-4-14	3-7-19	5-11-23	7-14-25	10-17-27	13-19-29	14-22-31	16-23-32	19-25-35	22-27-38
	Total Pressure, in. w.g.		.017	.030	.047	.067	.092	.120	.151	.187	.269	.367
	Flow Rate, cfm		164	218	273	327	382	436	491	545	654	763
	NC		_	16	23	28	33	37	41	44	50	54
10 Ø		4 Way	1-2-8	2-4-11	2-6-13	4-8-14	5-9-15	6-10-16	8-12-17	9-13-18	10-14-20	12-15-21
	Throw	3 Way	1-2-10	2-4-14	3-7-15	4-9-17	6-11-18	8-12-19	9-14-20	10-15-21	12-17-23	14-18-25
	ft	2 Way	1-3-13	3-6-18	4-9-20	6-12-22	8-14-24	10-16-26	12-18-27	14-20-29	16-22-31	19-24-34
		1 Way	2-4-16	3-7-23	5-11-25	7-15-28	10-18-30	13-21-32	15-23-34	17-25-36	21-28-39	24-30-42
	Total Pressure, in. w.g.	-	.019	.034	.054	.077	.105	.138	.174	.215	.310	.422
	Flow Rate, cfm		208	278	347	416	486	555	625	694	833	972
	NC		_	19	25	31	36	40	44	47	52	57
10 x 10		4 Way	2-4-10	3-7-13	5-9-14	7-10-16	8-12-17	9-13-18	10-13-19	11-14-20	13-16-22	14-17-24
	Throw	3 Way	2-5-12	4-8-15	6-10-17	8-12-19	10-14-20	11-15-22	12-16-23	14-17-24	15-19-26	16-20-29
	ft	2 Way	3-6-16	5-11-20	8-14-23	11-16-25	13-19-27	15-20-29	16-22-31	18-23-32	20-25-35	22-27-38
		1 Way	3-8-21	6-14-25	9-17-28	14-21-31	16-24-34	18-25-36	21-27-38	23-28-40	25-31-44	27-34-48

Performance Notes:

- 1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- 2. Air flow is in cfm.
- 3. All pressures are in in. w.g.
- Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
 Throw data is based on supply air and room air at isothermal

conditions.

- NC values are based on room absorption of 10 dB re 10⁻¹² Watts and one diffuser.
- 7. Blanks (----) indicate an NC level below 15.
- 8. Data does not include effects of ceiling radiation damper (PDF-FR, PDFE-FR)

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter.

Performance Data - 24 in. x 24 in. / 600 x 600 Module (continued)

Inlet	Neck Velocity, fpm		300	400	500	600	700	800	900	1000	1200	1400
Size	Velocity Pressure, in. w.g		.006	.010	.016	.022	.031	.040	.050	.062	.090	.122
	Total Pressure, in. w.g.		.021	.037	.058	.083	.113	.148	.187	.231	.332	.452
	Flow Rate, cfm		236	314	393	471	550	628	707	785	942	1099
	NC		—	20	27	32	37	41	45	48	54	59
12 Ø		4 Way	2-4-11	3-6-14	4-9-15	6-11-17	8-12-18	9-14-19	11-14-20	12-15-21	14-17-23	15-18-25
	Throw	3 Way	2-4-13	3-8-16	5-11-18	8-13-20	10-15-21	11-16-23	13-17-24	14-18-26	16-20-28	18-21-30
	ft	2 Way	3-6-17	5-10-22	7-14-24	10-17-27	13- 20-29	15-22-31	17-23-32	19-24-34	22-27-38	23-29-41
		1 Way	3-7-21	6-13-27	9-18-30	13-21-33	16-25-36	19-27-38	21-29-41	23-30-43	27-33-47	29-36-51
	Total Pressure, in. w.g.		.024	.043	.067	.097	.131	.172	.217	.268	.386	.525
	Flow Rate, cfm		300	400	500	600	700	800	900	1000	1200	1400
	NC		_	23	30	35	40	44	48	51	57	61
12 x 12		4 Way	3-6-13	5-9-15	8-11-17	9-13-19	11-14-20	12-15-22	13-16-23	14-17-24	15-19-26	16-20-29
	Throw	3 Way	3-8-16	6-11-18	9-14-20	11-16-22	13-17-24	15-18-26	16-19-27	17-20-29	18-22-32	20-24-34
	ft	2 Way	4-10-21	8-15-24	12-18-27	15-21-30	17-23-32	20-24-35	21-26-37	22-27-39	24-30-42	26-32-46
		1 Way	6-13-26	10-18-31	15-23-34	18-26-37	21-29-40	24-31-43	26-32-46	28-34-48	31-37-53	33-40-57
	Total Pressure, in. w.g.		.025	.045	.070	.101	.137	.180	.227	.281	.404	.550
	Flow Rate, cfm		321	428	535	641	748	855	962	1069	1283	1497
	NC		-	24	30	36	41	45	49	52	57	62
14 Ø		4 Way	3-6-14	5-9-16	7-12-18	9-14-19	11-15-21	12-16-22	14-17-24	14-18-25	16-19-27	17-21-30
	Throw	3 Way	3-7-16	6-11-19	9-14-21	11-16-23	13-18-25	15-19-27	16-20-28	17-21-30	19-23-33	20-25-35
	ft	2 Way	4-10-22	8-15-25	12-18-28	15-22-31	17-24-33	20-25-36	22-27-38	23-28-40	25-31-44	27-33-47
		1 Way	5-12-27	10-18-32	15-23-35	18-27-39	22-30-42	25-32-45	27-33-47	29-35-50	32-39-55	34-42-59
	Total Pressure, in. w.g.		.029	.052	.081	.117	.159	.207	.263	.324	.467	.635
	Flow Rate, cfm		408	544	681	817	953	1089	1225	1361	1633	1905
	NC		17	26	33	39	44	48	51	55	60	65
14 x 14		4 Way	4-9-15	8-12-18	10-14-20	12-15-22	14-17-24	15-18-25	15-19-27	16-20-28	18-22-31	19-24-33
	Throw	3 Way	5-11-19	9-14-21	12-17-24	14-19-26	16-20-28	17-21-30	19-23-32	20-24-34	21-26-37	23-28-40
	ft	2 Way	7-14-25	12-19-29	16-23-32	19-25-35	22-27-38	23-29-40	25-30-43	26-32-45	29-35-49	31-38-53
		1 Way	9-18-31	15-24-36	20-28-40	24-31-44	27-33-47	29-36-50	31-38-53	33-40-56	36-44-62	38-47-67
	Total Pressure, in. w.g.	-	.028	.050	.078	.112	.153	.200	.252	.312	.449	.611
	Flow Rate, cfm		368	491	614	736	859	982	1104	1227	1472	1718
	NC		16	25	32	38	42	46	50	53	59	64
15 Ø		4 Way	3-7-15	6-10-17	9-13-19	10-15-21	12-16-22	14-17-24	15-18-25	15-19-27	17-21-29	18-22-32
	Throw	3 Way	4-8-18	7-12-20	10-15-23	12-18-25	14-19-27	16-20-29	18-22-30	19-23-32	20-25-35	22-27-38
	ft	2 Way	5-11-23	9-16-27	14-20-30	16-23-33	19-25-36	22-27-38	23-29-41	25-30-43	27-33-47	29-36-51
		1 Way	6-14-29	11-20-34	17-26-38	20-29-41	24-32-45	27-34-48	29-36-51	31-38-54	34-41-59	37-45-63

Performance Notes:

1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."

2. Air flow is in cfm.

3. All pressures are in in. w.g.

 Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).

5. Throw data is based on supply air and room air at isothermal conditions.

6. NC values are based on room absorption of 10 dB re $10^{\text{-}12}$ Watts and one diffuser.

7. Blanks (-----) indicate an NC level below 15.

8. Data does not include effects of ceiling radiation damper (PDF-FR, PDFE-FR)

c/w Individually Adjustable Curved Blades

Product Information

Models

Adjustable Curved Blades	
Flush Face	
Steel Construction	PDC
w/ Aluminum Face	APDC
Drop (Extended) Face	
Steel Construction	PDCE
w/ Aluminum Face	APDCE
Price PDC / PDCE Series	norforated

Price PDC / PDCE Series perforated face ceiling diffusers feature individually adjustable curved blades at the diffuser inlet, available in fixed 1, 2, 2 way corner, 3 and 4 way air patterns. The adjustable curved blades provide total flexibility in pattern adjustment from horizontal to vertical, as well as low pressure loss and noise levels. Quick-release latches on the hinged perforated face screen allow easy access for field adjustment of the blades. The drop (extended) face Model PDCE is available to complement tegular tile ceilings.

Features

CEILING DIFFUSERS

- Choice of cold rolled steel (PDC / PDCE) or aluminum face screen (APDC / APDCE) construction. Steel backpan and pattern controllers in both cases.
- Five air pattern options are available from 1 to 4 way.
- Hinged, removable perforated face screen with quick-release spring latches.
- Individually pivoting curved blades are located at the inlet neck and are field adjustable from horizontal to vertical air pattern.
- Choice of five frame styles (PDCE and APDCE are available in Frame Style 3 only).
- Complete range of available accessory dampers, equalizing grids etc.
- Optional beaded extended neck (2¹/₂ in. tall) for easy flex duct connection (BN).

Application

 PDC diffusers are designed for spaces requiring low noise and air pattern adjustment from horizontal to vertical.

Finish

White Powder Coat

For optional and special finishes see color matrix.

B12

PD(C - Frame Style 3
	─── Nominal Duct ───→
	$ \text{Nom. Duct} - \frac{1}{8"} (3) \longrightarrow \frac{1}{4"} (32)$
	· _ · _ · _ · _ · _ · _ · _ · _ ·
	── Ceiling Module ───
Dimensional Data —	- Imperial (in.) / Metric [mm]
Neck Size	Ceiling Module Size, Nominal
Nominal	12 x 12 16x16 24x24
	[305 x 305] [406 x 406] [610 x 610]
6 x 6 [152 x 152] 8 x 8 [203 x 203]	
0 x 0 [203 x 203] 10 x 10 [254 x 254]	\mathbf{v} \mathbf{v}
12 x 12 [305 x 305]	▼
14 x 14 [356 x 356]	▼
15 x 15 [381 x 381]	
16 x 16 [406 x 406] 18 x 18 [457 x 457]	V
	· · · ·
6 in. [152] Dia. 8 in. [203] Dia.	
10 in. [254] Dia.	
12 in. [305] Dia.	▼ ▼

✓ Product Selection Checklist

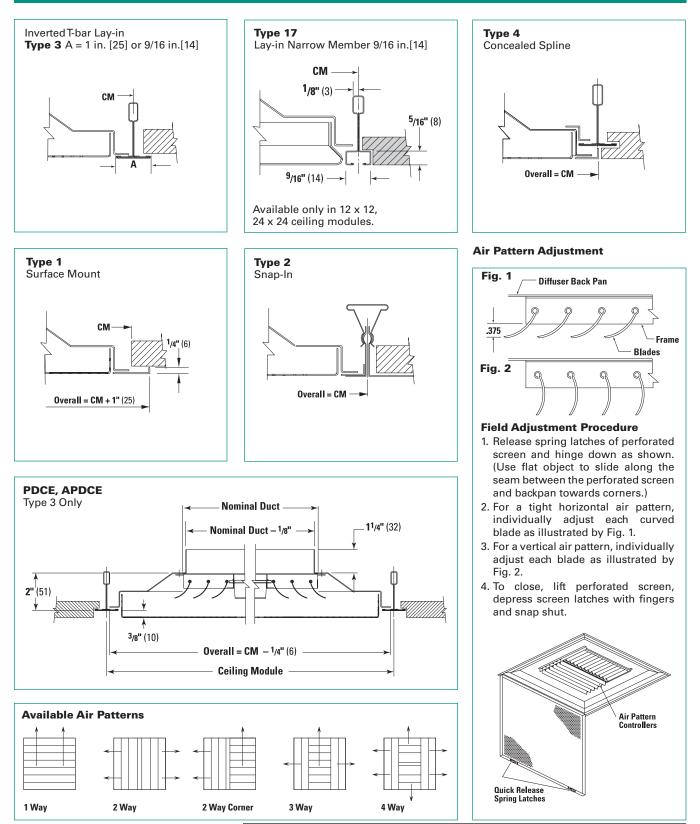
- 1] Select Inlet Diameter or Neck Size L x W based on desired performance characteristics.
- 2] Select Face Size based on ceiling module.
- 3] Select OutletType by model number (material, flush or drop face).
- 4] Select Border Style according to installation requirements.

15 in. [381] Dia.

16 in. [406] Dia.

18 in. [457] Dia.

- 5] Select Air Pattern Option (1, 2, 2C, 3 or 4 way).
- 6] Select Volume Control Accessories, if desired.
- 7] Select Finish.


Example: 8 in. / 24 in. x 24 in. / PDC / 3 / 4 / B12

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter © Copyright Price Industries Limited 2014.

c/w Individually Adjustable Curved Blades

Frame Selection

© Copyright Price Industries Limited 2014

C-61

All Metric dimensions () are soft conversion Imperial dimensions are converted to metric and rounded to the nearest millimeter.

Fire-Rated Perforated Diffusers – Supply **PDC-FR / PDCE-FR Series**

c/w Individually Adjustable Curved Blades

Product Information

Three Hour Rating - Lay-in Models

Adjustable Curved Blades	
Flush Face	PDC-FR
Drop (Extended) Face	PDCE-FR

Price PDC-FR / PDCE-FR perforated face ceiling diffusers are Fire-Rated Assemblies listed in the UL Listed (Underwriters Laboratories Fire Resistance Directory) and ULC Listed (Underwriters Laboratories of Canada Equipment and Materials Directory). This design meets time versus temperature test criteria and NFPA 90A requirements.

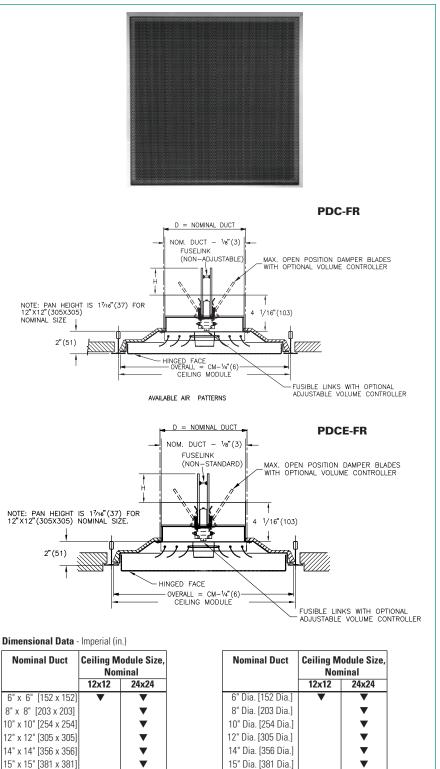
PDC-FR / PDCE-FR perforated face ceiling diffusers feature individually adjustable curved blades at the diffuser inlet, available in fixed 1, 2, 2 way corner, 3 and 4 way air patterns. The adjustable curved blades provide total flexibility in pattern adjustment from horizontal to vertical, as well as low pressure loss and noise levels. The drop . (extended) face Model PDCE-FR is available to complement tegular tile ceilings.

Features

- Non-adjustable, butterfly-type ceiling radiation damper.
- Designed for use in an exposed grid suspension ceiling (T-bar Lay-in) with a three hour or less restrained or unrestrained assembly rating. Units must be installed in accordance with the instructions that accompany each unit.
- Thermal blanket is non-asbestos.
- Standard 165 °F [74 °C] fusible link, optional 212 °F [100 °C] fusible link.
- · Hinged, removable perforated faceplate with quick-release spring latches provides easy access to optional adjustable volume controller (Allen key adjustable).

Available Module Sizes

Imperial							
	12 in. x 12 in.						
	24 in. x 24 in.						


Finish

White Powder Coat

For optional and special finishes see color matrix.

B12

 Select Inlet Diameter or Neck Size L x W. Select Face Size based on ceiling module.
Select Face Size based on ceiling module.
3] Select Diffuser Style by model number.
Select Pattern.
5] Select Finish.
Example: 8 in./24 in. x 24 in./PDC-FR/4/B12

All Metric dimensions () are soft conversion Imperial dimensions are converted to metric and rounded to the nearest millimeter

V

V

16" x 16" [406 x 406]

18" x 18" [457 x 457]

© Copyright Price Industries Limited 2014

Performance Data – 12 in. x 12 in. [305 x 305] Module

Inlet Size	Neck Velocity, fpm Velocity Pressure, in. w.g.		300 0.006	400 0.010	500 0.016	600 0.022	700 0.031	800 0.040	1000 0.062	1200 0.090
	Total Pressure, in. w.g. Flow Rate, cfm NC		0.015 59 -	0.027 78 -	0.042 98 -	0.061 118 18	0.083 137 23	0.108 157 28	0.169 196 35	0.243 235 42
6 in.	Throw ft	4 Way 3 Way 2 Way 1 Way	3-4-7 3-4-8 3-4-9 4-5-11	3-5-8 4-5-10 4-6-10 5-7-14	4-6-8 4-7-11 5-7-11 6-9-18	5-7-9 5-8-12 6-9-12 7-11-21	6-7-10 6-9-13 7-9-13 8-12-23	6-8-11 7-10-14 8-10-14 9-14-25	7-8-12 9-11-16 9-11-16 12-18-28	8-9-13 10-12-17 10-12-17 14-21-30
	Total Pressure, in. w.g. Flow Rate, cfm NC		0.016 75 -	0.028 100 -	0.044 125 -	0.063 150 19	0.086 175 24	0.112 200 29	0.175 250 37	0.252 300 43
6 in. x 6 in.	Throw ft	4 Way 3 Way 2 Way 1 Way	3-5-7 3-5-10 4-6-10 4-7-13	4-6-8 4-7-11 5-7-11 6-9-18	5-7-9 5-8-13 6-9-13 7-11-22	6-7-10 7-10-14 7-10-14 9-13-24	6-8-11 8-11-15 9-11-15 10-15-26	7-8-12 9-11-16 9-11-16 12-18-28	8-9-13 10-13-18 10-13-18 15-22-31	8-10-15 11-14-20 11-14-20 18-24-34

Performance Data - 16 in. x 16 in. [406 x 406] Module

Inlet Size	Neck Velocity fpm Velocity Pressure, in. w.g.		300 0.006	400 0.010	500 0.016	600 0.022	700 0.031	800 0.040	900 0.050	1000 0.062	1200 0.090	1400 0.122
	Total Pressure, in. w.g. Flow Rate, cfm NC		0.015 59 -	0.027 78 -	0.042 98 -	0.061 118 18	0.083 137 23	0.108 157 28	0.137 176 32	0.169 196 35	0.243 235 42	0.330 274 47
6 in.	Throw ft	4 Way 3 Way 2 Way 1 Way	2-3-5 2-3-7 2-4-7 2-4-9	3-4-6 3-4-9 3-5-9 4-6-12	3-5-7 4-5-10 4-6-10 5-7-15	4-5-8 4-7-11 5-7-11 6-9-18	5-6-8 5-8-12 6-8-12 7-10-20	5-6-9 6-9-12 7-9-12 8-12-21	5-7-9 7-9-13 7-9-13 9-13-23	6-7-10 7-10-14 8-10-14 10-15-24	6-8-11 9-11-15 9-11-15 12-18-26	7-8-12 9-12-16 9-12-16 14-20-28
	Total Pressure, in. w.g. Flow Rate, cfm NC		0.016 75 -	0.028 100 -	0.044 125 -	0.063 150 19	0.086 175 24	0.112 200 29	0.142 225 33	0.175 250 37	0.252 300 43	0.343 350 48
6 in. x 6 in.	Throw ft	4 Way 3 Way 2 Way 1 Way	3-4-6 3-4-8 3-5-9 3-6-11	3-5-7 4-5-10 4-6-10 5-7-15	4-6-8 5-7-11 5-8-11 6-9-18	5-6-9 5-8-12 6-9-12 7-11-21	5-7-9 6-9-13 7-9-13 9-13-22	6-7-10 7-10-14 8-10-14 10-15-24	6-8-11 8-11-15 9-11-15 11-17-25	6-8-11 9-11-16 9-11-16 12-18-27	7-9-12 10-12-17 10-12-17 15-21-29	8-9-13 11-13-19 11-13-19 17-22-32
	Total Pressure, in. w.g. Flow Rate, cfm NC		0.017 105 -	0.029 140 -	0.046 175 -	0.066 209 21	0.090 244 26	0.118 279 31	0.149 314 35	0.184 349 38	0.265 419 44	0.361 489 50
8 in.	Throw ft	4 Way 3 Way 2 Way 1 Way	4-5-7 4-6-10 4-6-10 5-7-15	5-6-8 5-7-12 6-8-12 7-10-20	5-7-9 6-9-13 7-9-13 8-12-22	6-7-10 7-10-14 8-10-14 10-15-25	6-8-11 9-11-15 9-11-15 12-17-27	7-8-12 10-12-17 10-12-17 13-20-28	7-9-13 10-12-18 10-12-18 15-21-30	8-9-13 11-13-18 11-13-18 17-22-32	8-10-14 12-14-20 12-14-20 20-25-35	9-11-16 13-15-22 13-15-22 22-27-38
	Total Pressure, in. w.g. Flow Rate cfm NC		0.017 133 -	0.031 178 -	0.048 222 16	0.069 266 22	0.094 311 27	0.122 355 32	0.155 400 36	0.191 444 39	0.275 533 46	0.374 622 51
8 in. x 8 in.	Throw ft	4 Way 3 Way 2 Way 1 Way	4-6-8 5-7-11 5-8-11 6-9-18	5-7-9 6-9-13 7-9-13 8-12-23	6-7-11 8-10-15 9-10-15 10-15-25	7-8-12 9-11-16 9-11-16 12-18-28	7-9-12 10-12-17 10-12-17 14-21-30	8-9-13 11-13-19 11-13-19 16-23-32	8-10-14 11-14-20 11-14-20 18-24-34	9-11-15 12-15-21 12-15-21 20-25-36	9-12-16 13-16-23 13-16-23 23-28-39	10-12-18 14-17-25 14-17-25 24-30-42
	Total Pressure, in. w.g. Flow Rate, cfm NC		0.018 164 -	0.032 218 -	0.049 273 17	0.071 327 23	0.097 382 28	0.126 436 33	0.160 491 37	0.197 545 40	0.284 654 47	0.386 763 52
10 in.	Throw ft	4 Way 3 Way 2 Way 1 Way	5-6-9 5-8-13 6-9-13 7-11-22	6-7-10 7-10-15 8-10-15 10-15-25	7-8-12 9-12-16 9-12-16 12-18-28	7-9-13 10-13-18 10-13-18 15-22-31	8-10-14 11-14-19 11-14-19 17-23-33	9-10-15 12-15-21 12-15-21 20-25-35	9-11-16 13-16-22 13-16-22 22-27-38	10-12-17 13-16-23 13-16-23 23-28-40	10-13-18 15-18-25 15-18-25 25-31-43	11-14-20 16-19-27 16-19-27 27-33-47
	Total Pressure, in. w.g. Flow Rate, cfm NC		0.018 208 -	0.033 278 -	0.051 347 18	0.074 416 24	0.100 486 30	0.131 555 34	0.166 625 38	0.205 694 42	0.295 833 48	0.401 972 53
10 in. x 10 in.	Throw ft	4 Way 3 Way 2 Way 1 Way	6-7-10 7-10-14 8-10-14 9-13-24	7-8-12 9-12-16 10-12-16 12-18-28	8-9-13 11-13-18 11-13-18 15-22-32	8-10-14 12-14-20 12-14-20 18-24-35	9-11-16 13-15-22 13-15-22 21-26-37	10-12-17 13-16-23 13-16-23 23-28-40	10-12-18 14-17-25 14-17-25 24-30-42	11-13-19 15-18-26 15-18-26 26-32-45	12-14-20 16-20-29 16-20-29 28-35-49	13-16-22 18-22-31 18-22-31 31-37-53

See Performance Notes Page C62.

Performance Data - 24 in. x 24 in. [610 x 610] Module

Inlet Size	Neck Velocity, fpm Velocity Pressure, in. w.g.		300 0.006	400 0.010	500 0.016	600 0.022	700 0.031	800 0.040	900 0.050	1000 0.062	1200 0.090	1400 0.122
	Total Pressure, in. w.g. Flow Rate, cfm		0.015 59	0.027 78	0.042 98	0.061 118	0.083 137 22	0.108 157 29	0.137 176 22	0.169 196	0.243 235	0.330 274
C 1.	NC	4.14/	-	-	-	18	23	28	32	35	42	47
6 in.	Throw	4 Way 3 Way	2-3-5 2-3-6	3-4-6 3-4-8	3-5-7 3-5-10	4-5-8 4-6-11	4-6-8 5-7-12	5-6-9 5-8-12	5-7-9 6-9-13	6-7-10 7-10-14	6-8-11 8-11-15	7-8-12 9-12-16
	ft	2 Way	2-3-7	3-5-9	4-6-10	5-7-11	5-8-12	6-9-12	7-9-13	8-10-14	9-11-15	9-12-16
		1 Way	2-4-8	3-5-11	4-7-13	5-8-16	6-9-19	7-11-21	8-12-23	9-13-24	11-16-26	13-19-28
	Total Pressure, in. w.g.		0.016	0.028	0.044	0.063	0.086	0.112	0.142	0.175	0.252	0.343
	Flow Rate, cfm NC		75 -	100 -	125 -	150 19	175 24	200 29	225 33	250 37	300 43	350 48
6 in. x 6 in.		4 Way	2-4-6	3-5-7	4-6-8	5-6-9	5-7-9	6-7-10	6-8-11	6-8-11	7-9-12	8-9-13
	Throw	3 Way	3-4-8	3-5-10	4-6-11	5-8-12	6-9-13	7-10-14	8-11-15	8-11-16	10-12-17	11-13-19
	ft	2 Way 1 Way	3-4-9 2-5-10	4-6-10 4-7-14	5-7-11 6-8-17	6-9-12 7-10-20	7-9-13 8-12-22	8-10-14 9-14-24	9-11-15 10-15-25	9-11-16 11-17-27	10-12-17 14-20-29	11-13-19 16-22-32
	Total Pressure, in. w.g. Flow Rate, cfm	1 Way	0.017	0.029 140	0.046	0.066 209	0.090	0.118	0.149 314	0.184	0.265	0.361
	NC		-	-	-	21	26	31	35	38	44	50
8 in.		4 Way	3-5-7	4-6-8	5-7-9	6-7-10	6-8-11	7-8-12	7-9-13	8-9-13	8-10-14	9-11-16
	Throw	3 Way	3-5-10	5-7-12	6-9-13	7-10-14	8-11-15	9-12-17	10-12-18	11-13-18	12-14-20	13-15-22
	ft	2 Way	4-6-10	5-8-12	6-9-13	8-10-14	9-11-15	10-12-17	10-12-18	11-13-18	12-14-20	13-15-22
	Tatal Decourse in some	1 Way	4-7-14	6-9-18	8-11-22	9-14-25	11-16-27	12-18-28	14-21-30	15-22-32	18-25-35	21-27-38
	Total Pressure, in. w.g. Flow Rate, cfm		0.017 133	0.031 178	0.048 222	0.069 266	0.094 311	0.122 355	0.155 400	0.191 444	0.275 533	0.374 622
	NC		-	-	16	200	27	32	36	39	46	51
8 in. x 8 in.		4 Way	4-6-8	5-7-9	6-7-11	7-8-12	7-9-12	8-9-13	8-10-14	9-11-15	9-12-16	10-12-18
	Throw	3 Way	4-6-11	6-8-13	7-10-15	8-11-16	10-12-17	11-13-19	11-14-20	12-15-21	13-16-23	14-17-25
	ft	2 Way	5-7-11	6-9-13	8-10-15	9-11-16	10-12-17	11-13-19	11-14-20	12-15-21	13-16-23	14-17-25
	T (10)	1 Way	6-9-17	8-11-23	9-14-25	11-17-28	13-20-30	15-23-32	17-24-34	19-25-36	23-28-39	24-30-42
	Total Pressure, in. w.g. Flow Rate, cfm		0.018 164	0.032 218	0.049 273	0.071 327	0.097 382	0.126 436	0.160 491	0.197 545	0.284 654	0.386 763
	NC		-	-	17	23	28	33	37	40	47	52
10 in.		4 Way	5-6-9	6-7-10	7-8-12	7-9-13	8-10-14	9-10-15	9-11-16	10-12-17	10-13-18	11-14-20
	Throw	3 Way	5-8-13	7-10-15	8-12-16	10-13-18	11-14-19	12-15-21	13-16-22	13-16-23	15-18-25	16-19-27
	ft	2 Way	6-9-13	8-10-15	9-12-16	10-13-18	11-14-19	12-15-21	13-16-22	13-16-23	15-18-25	16-19-27
		1 Way	7-10-20	9-14-25	11-17-28	14-20-31	16-23-33	18-25-35	20-27-38	23-28-40	25-31-43	27-33-47
	Total Pressure, in. w.g. Flow Rate, cfm		0.018 208	0.033 278	0.051 347	0.074 416	0.100 486	0.131 555	0.166 625	0.205 694	0.295 833	0.401 972
	NC		-	- 270	18	24	30	34	38	42	48	53
0 in. x 10 in.		4 Way	6-7-10	7-8-12	8-9-13	8-10-14	9-11-16	10-12-17	10-12-18	11-13-19	12-14-20	13-16-22
	Throw	3 Way	6-9-14	8-12-16	10-13-18	12-14-20	13-15-22	13-16-23	14-17-25	15-18-26	16-20-29	18-22-31
	ft	2 Way	7-10-14	9-12-16	11-13-18	12-14-20	13-15-22	13-16-23	14-17-25	15-18-26	16-20-29	18-22-31
		1 Way	8-13-24	11-17-28	14-21-32	17-24-35	20-26-37	22-28-40	24-30-42	26-32-45	28-35-49	31-37-53
	Total Pressure, in. w.g.		0.019	0.033 314	0.052 393	0.075	0.102	0.133	0.169	0.208 785	0.300 942	0.409
	Flow Rate, cfm NC		236	- 314	393 19	471 25	550 30	628 35	707 39	42	94Z 48	1099 54
12 in.	-	4 Way	6-8-11	7-9-13	8-10-14	9-11-15	10-12-17	10-13-18	11-13-19	11-14-20	13-15-22	14-17-23
	Throw		7-10-15	9-12-18	11-14-20	12-15-21	13-16-23	14-18-25	15-19-26	16-20-28	18-21-30	19-23-33
	ft	2 Way	8-11-15	10-12-18	11-14-20	12-15-21	13-16-23	14-18-25	15-19-26	16-20-28	18-21-30	19-23-33
		1 Way	9-14-26	12-19-30	15-23-34	19-26-37	22-28-40	25-30-43	26-32-45	27-34-48	30-37-52	32-40-56
	Total Pressure, in. w.g.		0.019	0.035	0.054	0.078	0.106	0.138	0.175	0.216	0.312	0.424
	Flow Rate, cfm		300	400 -	500 20	600 26	700 31	800	900	1000	1200	1400
	NIC-			-	20	26	31	36	40	44	50	55
7 in v 12 in	NC	/ Morr				10 12 17	11 12 10	12 14 20	12 15 21	12 16 22	1/1 17 2/	15 10 20
2 in. x 12 in.		4 Way 3 Way	7-9-12	8-10-14	9-11-16	10-12-17 14-17-24	11-13-19 15-19-26	12-14-20	12-15-21 17-21-30	13-16-22 18-22-31	14-17-24 20-24-34	15-19-26
2 in. x 12 in.	NC Throw ft	3 Way				10-12-17 14-17-24 14-17-24	11-13-19 15-19-26 15-19-26	12-14-20 16-20-28 16-20-28	12-15-21 17-21-30 17-21-30	13-16-22 18-22-31 18-22-31	14-17-24 20-24-34 20-24-34	15-19-26 21-26-37 21-26-37

See Performance Notes Page C62.

Performance Data - 24 in. x 24 in. [610 x 610] Module (continued)

Inlet Size	Neck Velocity, fpm Velocity Pressure, in. w.g.		300 0.006	400 0.010	500 0.016	600 0.022	700 0.031	800 0.040	900 0.050	1000 0.062	1200 0.090	1400 0.122
	Total Pressure, in. w.g. Flow Rate, cfm NC		0.020 321 -	0.035 428 -	0.055 535 20	0.079 641 27	0.107 748 32	0.140 855 36	0.177 962 40	0.219 1069 44	0.315 1283 50	0.428 1497 55
14 in.	Throw ft	4 Way 3 Way 2 Way	7-9-13 9-13-18	8-10-15 12-14-20	9-12-16 13-16-23 13-16-23	10-13-18 14-18-25	11-14-19 16-19-27	12-15-21 17-20-29	13-16-22 18-22-31	13-16-23 19-23-32 19-23-32	15-18-25 20-25-35	16-19-27 22-27-38
	IL		10-13-18 12-18-30	12-14-20 16-24-35	20-28-39	14-18-25 24-30-43	16-19-27 27-33-46	17-20-29 29-35-50	18-22-31 30-37-53	32-39-55	20-25-35 35-43-61	22-27-38 38-46-66
	Total Pressure, in. w.g. Flow Rate, cfm NC		0.020 408 -	0.036 544 -	0.057 681 22	0.082 817 28	0.111 953 33	0.145 1089 37	0.184 1225 41	0.227 1361 45	0.327 1633 51	0.444 1905 56
4 in. x 14 in.	Throw ft		8-10-14 11-14-20 12-14-20	10-12-16 13-16-23 13-16-23	11-13-18 15-18-26 15-18-26	12-14-20 16-20-28 16-20-28	13-15-22 18-22-31 18-22-31	13-16-23 19-23-33 19-23-33	14-17-25 20-24-35 20-24-35	15-18-26 21-26-37 21-26-37	16-20-29 23-28-40 23-28-40	18-22-31 25-31-43 25-31-43
			14-22-34	19-28-40	24-31-44	28-34-48	30-37-52	32-40-56	34-42-59	36-44-63	40-48-69	43-52-74
	Total Pressure, in. w.g. Flow Rate, cfm NC		0.020 368 -	0.036 491 -	0.056 614 21	0.080 736 27	0.109 859 32	0.143 982 37	0.181 1104 41	0.223 1227 45	0.321 1472 51	0.437 1718 56
15 in.	Throw ft		8-10-14 10-13-19 11-13-19	9-11-16 13-16-22 13-16-22	10-12-18 14-17-25 14-17-25	11-14-19 16-19-27 16-19-27	12-15-21 17-21-29 17-21-29	13-16-22 18-22-31 18-22-31	14-17-23 19-23-33 19-23-33	14-18-25 20-25-35 20-25-35	16-19-27 22-27-38 22-27-38	17-21-29 24-29-41 24-29-41
			13-20-33	18-27-38	22-30-42	27-33-46	29-35-50	31-38-53	33-40-56	34-42-59	38-46-65	41-50-70
	Total Pressure, in. w.g. Flow Rate, cfm NC		0.021 469 -	0.037 625 -	0.058 782 22	0.083 938 28	0.114 1094 34	0.148 1250 38	0.188 1407 42	0.232 1563 46	0.334 1876 52	0.454 2188 57
15 in. x 15 in.	Throw ft		9-11-15 12-15-21 12-15-21	10-13-18 14-18-25 14-18-25	11-14-20 16-20-28 16-20-28	13-15-22 18-21-30 18-21-30	14-17-23 19-23-33 19-23-33	14-18-25 20-25-35 20-25-35	15-19-27 21-26-37 21-26-37	16-20-28 23-28-39 23-28-39	18-22-31 25-30-43 25-30-43	19-23-33 27-33-46 27-33-46
	it.		16-24-37	21-30-42	27-34-47	30-37-52	32-40-56	35-42-60	37-45-64	39-47-67	42-52-73	46-56-79
	Total Pressure, in. w.g. Flow Rate, cfm NC		0.020 419 -	0.036 558 -	0.057 698 22	0.082 838 28	0.112 977 33	0.146 1117 38	0.184 1256 42	0.228 1396 45	0.328 1675 51	0.446 1954 57
16 in.	Throw ft		8-10-14 11-14-20 12-14-20	10-12-17 14-17-23 14-17-23	11-13-19 15-18-26 15-18-26	12-14-20 17-20-29 17-20-29	13-16-22 18-22-31 18-22-31	14-17-24 19-23-33 19-23-33	14-18-25 20-25-35 20-25-35	15-19-26 21-26-37 21-26-37	17-20-29 23-29-41 23-29-41	18-22-31 25-31-44 25-31-44
	Total Pressure, in. w.g. Flow Rate, cfm	1 Way	15-22-35 0.021 533	20-28-40 0.038 711	24-32-45 0.059 889	28-35-49 0.085 1067	31-38-53 0.116 1245	33-40-57 0.151 1422	35-43-60 0.191 1600	37-45-63 0.236 1778	40-49-69 0.340 2134	43-53-75 0.463 2489
	NC		-	15	23	29	34	39	43	46	53	58
16 in. x 16 in.	Throw ft	2 Way	9-12-16 13-16-23 13-16-23 18-26-39	11-13-19 15-19-26 15-19-26 23-32-45	12-15-21 17-21-30 17-21-30 29-36-51	13-16-23 19-23-32 19-23-32 32-39-55	14-18-25 20-25-35 20-25-35 35-42-60	15-19-27 22-26-37 22-26-37 37-45-64	16-20-28 23-28-40 23-28-40 39-48-68	17-21-30 24-30-42 24-30-42 41-51-72	19-23-33 26-32-46 26-32-46 45-55-78	20-25-35 29-35-49 29-35-49 49-60-85
	Total Pressure, in. w.g. Flow Rate, cfm NC		0.021 530 -	0.038 707 20	0.059 884 27	0.085 1060 34	0.116 1237 39	0.151 1414 43	0.191 1590 47	0.236 1767 51	0.340 2120 57	0.463 2474 62
18 in.	Throw ft	2 Way	13-16-23 13-16-23	11-13-19 15-19-26 15-19-26	12-15-21 17-21-29 17-21-29	13-16-23 19-23-32 19-23-32	14-18-25 20-25-35 20-25-35	15-19-27 21-26-37 21-26-37	16-20-28 23-28-39 23-28-39	17-21-30 24-29-42 24-29-42	19-23-33 26-32-46 26-32-46	20-25-35 28-35-49 28-35-49
	Total Pressure, in. w.g. Flow Rate, cfm	1 Way	17-26-39 0.022 675	23-32-45 0.039 900 31	29-36-50 0.061 1125 20	32-39-55 0.088 1350 25	34-42-60 0.120 1575	37-45-64 0.157 1800	39-48-68 0.198 2025	41-50-71 0.245 2250	45-55-78 0.353 2700	49-60-84 0.480 3150
18 in. x 18 in.	NC	4 Wav	- 11-13-18	21 12-15-21	29 14-17-24	35 15-18-26	40 16-20-28	44 17-21-30	48 18-23-32	52 19-24-34	58 21-26-37	63 23-28-40
	Throw ft	3 Way 2 Way	15-18-26 15-18-26 21-31-44	17-21-30 17-21-30 28-36-51	19-23-33 19-23-33 33-40-57	21-26-36 21-26-36 36-44-62	23-28-39 23-28-39 39-48-67	24-30-42 24-30-42 42-51-72	26-32-45 26-32-45 44-54-76	27-33-47 27-33-47 46-57-80	30-36-51 30-36-51 51-62-88	32-39-56 32-39-56 55-67-95

Performance Notes:

- 1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets.'
- 2. Air flow is in cfm.
- 3. All pressures are in in. w.g. © Copyright Price Industries Limited 2014
- 4. Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- 5. Throw data is based on supply air and room air at isothermal conditions.
- 6. NC values are based on room absorption of 10 dB re 10^{-12} Watts and one diffuser.
- 7. Blanks (-----) indicate an NC level below 15.
- 8. Data does not include effects of ceiling radiation damper (PDC-FR, PDCE-FR)

All Metric dimensions () are soft conversion Imperial dimensions are converted to metric and rounded to the nearest millimeter.

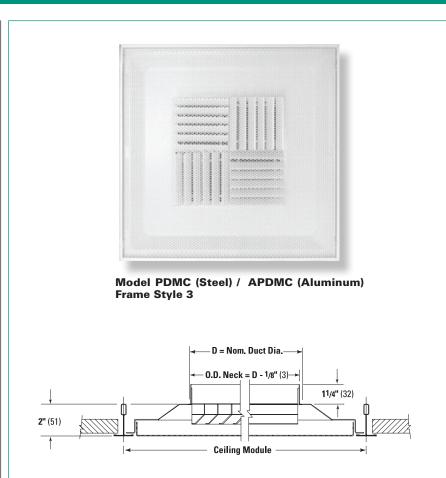
Product Information

Models

Steel Construction	PDMC
Aluminum Face and Core	APDMC
	<i>c</i> , , ,

Price PDMC / APDMC Series perforated face high capacity modular core directional diffusers match in detail the SMCD / AMCD series and offer a perforated face for smooth integration with the ceiling system. Field adjustment of the air pattern is easily accomplished by opening the perforated faceplate and repositioning the modular pattern controllers. The core design provides an excellent horizontal pattern, suitable for VAV applications.

Features


- Steel perforated face, backpan, and core construction (PDMC).
- Steel backpan and core with aluminum perforated faceplate (APDMC).
- Perforated face panel has ${}^{3}/_{16}$ in. [5] diameter holes staggered ${}^{1}/_{4}$ in. [6] on center.
- Four louvered air pattern modules are located at the neck and can be easily repositioned in the field without tools.
- Adjustable 1, 2, 3 or 4 way patterns, in a wide selection of sizes.
- Optional opposed blade damper available.
- Optional beaded extended neck (2¹/₂ in. tall) for easy flex duct connection (BN).

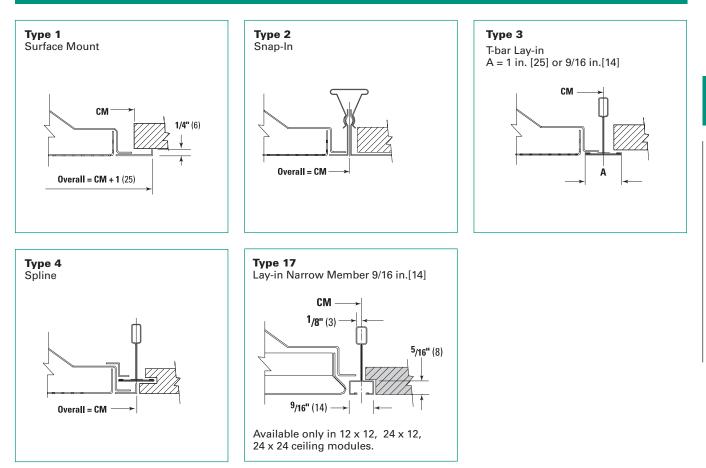
Finish White

CEILING DIFFUSERS

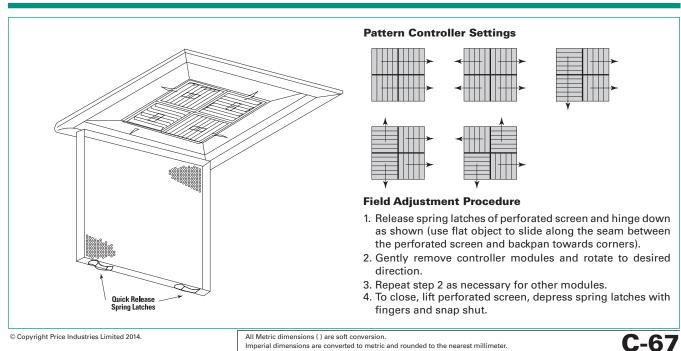
B12

For optional and special finishes see color matrix.

Dimensional Data — Imperial (in.) / Metric [mm]


		Ceili	ng Module Size, No	minal
Nominal Duct Square	Nominal Duct Round	12x12 [305 x 305]	16x16 [406 x 406]	24x24 [610 x 610]
6 x 6 [152 x 152]	6 [152]	•	•	•
8 x 8 [203 x 203]	8 [203]		▼	•
10 x 10 [254 x 254]	10 [254]		▼	•
12 x 12 [305 x 305]	12 [305]			•
14 x 14 [356 x 356]	14 [356]			•
15 x 15 [381 x 381]	15 [381]			•
16 x 16 [406 x 406]	16 [406]			•
18 x 18 [457 x 457]	18 [457]			•

✓ Product Selection Checklist


- 1] Select Inlet Size (square or round) based on desired performance characteristics.
- 2] Select Face Size based on ceiling module (24 x 24 standard).
- 3] Select Model Number (material).
- 4] Select Border/Panel Style according to installation requirements
- 5] Select Volume Control Accessories, if desired.
- 6] Select Finish.
- Example: 8 in. x 8 in. / 24 in. x 24 in. / PDMC / 3 / B12

Frame Selection

Air Pattern Adjustment

Fire-Rated Modular Core Perforated Diffusers PDMC-FR Series

Product Information

Three Hour Rating - Lay-in

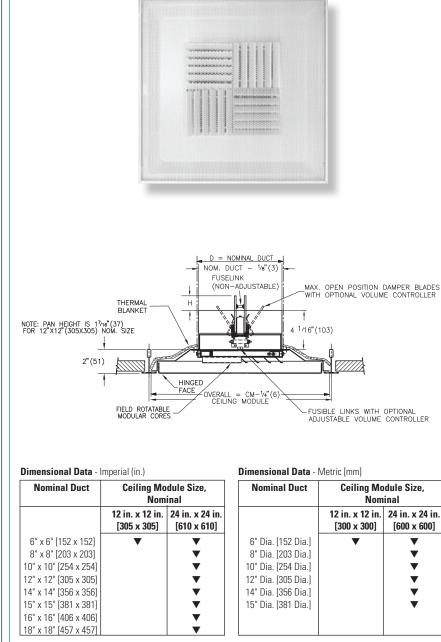
Price PDMC-FR perforated face high capacity modular core directional diffusers are Fire-Rated Assemblies listed in the UL Listed (Underwriters Laboratories Fire Resistance Directory) and ULC Listed (Underwriters Laboratories of Canada Equipment and Materials Directory). This design meets time versus temperature test criteria and NFPA 90A requirements.

PDMC-FR perforated face high capacity modular core directional diffusers offer a perforated face for smooth integration with the ceiling systems. Field adjustment of the air pattern is easily accomplished by opening the perforated faceplate and repositioning the modular pattern controllers. The core design provides an excellent horizontal pattern suitable for VAV applications.

Features

- Non-adjustable, butterfly-type ceiling radiation damper.
- Designed for use in an exposed grid suspension ceiling (T-bar Lay-in) with a three hour or less restrained or unrestrained assembly rating. Units must be installed in accordance with the instructions that accompany each unit.
- Thermal blanket is non-asbestos.
- Standard 165 °F [74 °C] fusible link, optional 212 °F [100 °C] fusible link.
- Perforated face panel has 3/16 in. [5] diameter holes staggered 1/4 in. [6] on center.
- Individual louvered air pattern modules are located at the neck and can be easily repositioned in the field without tools.
- Hinged, removable perforated faceplate with quick-release spring latches provides easy access to optional adjustable volume controller (Allen key adjustable). See page C68 for procedure.
- Adjustable 1, 2, 3 or 4 way patterns, in a wide selection of sizes.

Available Module Sizes


Imperial	Metric
24 in. x 24 in.	[610 x 610]
12 in. x 12 in.	[305 x 305]

Finish

White Powder Coat

B12

For optional and special finishes see color matrix.

✓ Product Selection Checklist

- 1] Select Inlet Size L x W.
- 2] Select Face Size based on ceiling module (24 x 24 standard).
- 3] Select Diffuser Style by model number.
- 4] Select Pattern.
- 5] Select Finish.
- Example: 8 in. x 8 in. / 24 in. x 24 in. / PDMC-FR / 3 / B12

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter

Performance Data – 12 in. x 12 in. [305 x 305] Module

Inlet Size	Neck Velocity, fpm Velocity Pressure, in.w.g. Total Pressure, in.wg.		300 0.006 0.036	400 0.010 0.060	500 0.016 0.096	600 0.022 0.132	700 0.031 0.186	800 0.040 0.240	900 0.050 0.300	1000 0.062 0.372	1200 0.090 0.540
6	Flow Rate, cfm NC		59 	79 	98 19	118 25	137 31	157 35	177 40	196 44	236 50
	Throw	4 Way 3 Way	2-3-7 3-4-8	3-4-9 4-5-11	4-5-10 4-7-12	4-7-11 5-8-14	5-8-12 6-9-15	6-9-13 7-10-16	7-10-14 8-12-17	7-10-15 9-12-18	9-11-16 11-14-19
	ft	2 Way 1 Way	4-5-11 4-7-13	5-7-14 6-9-18	6-9-17 7-11-21	7-11-18 9-13-23	8-12-20 10-15-24	9-14-21 12-17-26	11-16-22 13-20-28	12-17-23 15-21-29	14-18-26 18-23-32
6x6	Flow Rate, cfm NC		75 	100 	125 20	150 26	175 32	200 37	225 41	250 45	300 51
	Throw ft	4 Way 3 Way 2 Way	3-4-8 3-5-10 4-7-13	4-6-10 4-7-13 6-9-17	5-7-12 6-8-14 7-11-19	6-8-13 7-10-15 9-13-21	7-10-14 8-12-17 10-16-22	7-10-15 9-13-18 12-17-24	8-11-16 10-13-19 13-18-25	9-12-17 11-14-20 15-19-26	10-13-18 13-15-22 17-21-29
		1 Way	6-8-17	7-11-21	9-14-23	11-17-26	13-20-28	15-21-30	17-22-31	19-23-33	21-26-36

Performance Data - 16 in. x 16 in. [406 x 406] Module

Inlet Size	Neck Velocity, fpm Velocity Pressure, in.w.g. Total Pressure, in.wg.		300 0.006 0.036	400 0.010 0.060	500 0.016 0.096	600 0.022 0.132	700 0.031 0.186	800 0.040 0.240	900 0.050 0.300	1000 0.062 0.372	1200 0.090 0.540
6	Flow Rate, cfm NC		59 	79 	98 19	118 25	137 31	157 35	177 40	196 44	236 50
		4 Way	2-3-7	3-4-8	4-5-9	4-7-10	5-7-10	6-8-11	7-8-12	7-9-12	8-10-14
	Throw	3 Way	3-4-8	4-5-10	4-7-11	5-8-12	6-9-13	7-9-13	8-10-14	9-11-15	9-12-16
	ft	2 Way	4-5-11	5-7-13	6-9-14	7-11-15	8-12-17	9-13-18	11-13-19	12-14-20	13-15-22
		1 Way	4-7-13	6-9-16	7-11-18	9-13-19	10-15-21	12-16-22	13-17-24	14-18-25	16-19-27
6x6	Flow Rate, cfm		75	100	125	150	175	200	225	250	300
	NC				20	26	32	37	41	45	51
		4 Way	3-4-8	4-6-9	5-7-10	6-8-11	7-8-12	7-9-13	8-9-13	8-10-14	9-11-15
	Throw	3 Way	3-5-9	4-7-11	6-8-12	7-9-13	8-10-14	9-11-15	9-11-16	10-12-17	11-13-19
	ft	2 Way	4-7-12	6-9-14	7-11-16	9-12-17	10-13-19	12-14-20	12-15-21	13-16-23	14-17-25
		1 Way	6-8-15	7-11-18	9-14-20	11-15-22	13-17-24	15-18-25	15-19-27	16-20-28	18-22-31
8	Flow Rate, cfm		105	140	175	209	244	279	314	349	419
	NC				22	28	34	38	43	47	53
		4 Way	2-4-8	3-5-10	4-6-12	5-8-13	6-9-14	7-10-15	8-11-16	8-12-17	10-13-18
	Throw	3 Way	2-5-9	4-6-12	5-8-14	6-9-15	7-11-17	8-12-18	9-13-19	10-14-20	12-15-22
	ft	2 Way	3-6-12	5-8-16	7-10-19	8-12-21	9-14-22	11-16-24	12-18-25	14-19-27	16-21-29
		1 Way	4-8-15	7-10-20	8-13-24	10-15-26	12-18-28	14-20-30	15-22-32	17-24-33	20-26-36
8x8	Flow Rate, cfm NC		133 	178 	222 23	267 29	311 35	356 40	400 44	444 48	533 54
		4 Way	3-5-10	4-6-12	5-8-13	6-10-15	8-11-16	9-12-17	10-13-18	11-13-19	12-15-21
	Throw	3 Way	4-6-12	5-8-14	6-10-16	8-12-17	9-13-19	10-14-20	12-15-21	13-16-23	14-17-25
	ft	2 Way	5-8-15	7-10-19	9-13-21	10-16-23	12-18-25	14-19-27	16-20-29	17-21-30	19-23-33
		1 Way	6-10-19	9-13-24	11-16-27	13-19-29	15-22-31	17-24-34	19-25-36	22-27-38	24-29-41
10	Flow Rate, cfm NC		164 	218 16	273 24	327 30	382 36	436 41	491 45	545 49	654 55
		4 Way	2-5-9	4-6-12	5-8-15	6-9-16	7-11-17	8-12-19	9-14-20	10-15-21	12-16-23
	Throw	3 Way	3-5-11	5-7-14	6-9-18	7-11-19	8-13-21	10-14-22	11-16-24	12-18-25	14-19-27
	ft	2 Way	3-7-14	6-10-19	8-12-24	10-14-26	11-17-28	13-19-30	14-22-32	16-24-33	19-26-36
		1 Way	4-9-18	8-12-24	10-15-29	12-18-32	14-21-35	16-24-37	18-27-39	20-29-42	24-32-46
10x10	Flow Rate, cfm NC		208	278 17	347 25	417 32	486 37	556 42	625 46	694 50	833 57
		4 Way	4-6-11	5-8-15	6-10-17	8-12-18	9-13-20	10-15-21	11-16-22	13-17-23	15-18-26
	Throw	3 Way	4-7-14	6-9-18	8-11-20	9-14-22	11-16-24	12-18-25	14-19-27	15-20-28	18-22-31
	ft	2 Way	6-9-18	8-12-24	10-15-27	12-18-29	14-21-31	16-24-34	18-25-36	20-27-38	24-29-41
		1 Way	7-11-23	10-15-30	13-19-33	15-23-36	18-27-39	20-30-42	23-32-45	26-33-47	30-36-51

See Performance Notes Page C69.

© Copyright Price Industries Limited 2014.

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter.

Performance Data - 24 in. x 24 in. [610 x 610] Module

Inlet Size	Neck Velocity, fpm Velocity Pressure, in.w.g. Total Pressure, in.wg.		300 0.006 0.028	400 0.010 0.047	500 0.016 0.075	600 0.022 0.103	700 0.031 0.146	800 0.040 0.188	900 0.050 0.235	1000 0.062 0.291	1200 0.090 0.423
6	Flow Rate, cfm NC		59 	79 	98 19	118 25	137 31	157 35	177 40	196 44	236 50
		4 Way	2-3-7	3-4-8	4-5-8	4-7-9	5-7-10	6-8-11	7-8-11	7-8-12	8-9-13
	Throw	3 Way	3-4-8	4-5-9	4-7-10	5-8-11	6-8-12	7-9-13	8-10-14	8-10-14	9-11-16
	ft	2 Way	4-5-10	5-7-12	6-9-13	7-10-15	8-11-16	9-12-17	10-13-18	11-13-19	12-15-21
		1 Way	4-7-13	6-9-15	7-11-17	9-13-18	10-14-20	12-15-21	13-16-23	14-17-24	15-18-26
6x6	Flow Rate, cfm		75	100	125	150	175	200	225	250	300
	NC				20	26	32	37	41	45	51
		4 Way	3-4-7	4-6-8	5-7-9	6-7-10	6-8-11	7-8-12	7-9-13	8-9-13	8-10-15
	Throw	3 Way	3-5-9	4-7-10	6-8-11	7-9-12	8-10-13	8-10-14	9-11-15	9-11-16	10-12-18
	ft	2 Way	4-7-12	6-9-14	7-11-15	9-12-17	10-13-18	11-14-19	12-14-20	12-15-21	14-17-24
		1 Way	6-8-15	7-11-17	9-13-19	11-15-21	13-16-22	14-17-24	15-18-25	15-19-27	17-21-29
8	Flow Rate, cfm NC		105 	140 	175 22	209 28	244 34	279 38	314 43	349 47	419 53
		4 Way	2-4-8	3-5-10	4-6-11	5-8-12	6-9-13	7-10-14	8-11-15	8-11-16	10-12-17
	Throw	3 Way	2-5-9	4-6-12	5-8-13	6-9-15	7-11-16	8-12-17	9-13-18	10-13-19	12-15-21
	ft	2 Way	3-6-12	5-8-16	7-10-18	8-12-20	9-14-21	11-16-23	12-17-24	14-18-25	16-20-28
		1 Way	4-8-15	7-10-20	8-13-22	10-15-25	12-18-27	14-20-28	15-21-30	17-22-32	20-25-35
8x8	Flow Rate, cfm NC		133 	178 	222 23	267 29	311 35	356 40	400 44	444 48	533 54
		4 Way	3-5-10	4-6-11	5-8-13	6-10-14	8-11-15	9-11-16	10-12-17	10-13-18	11-14-20
	Throw	3 Way	4-6-12	5-8-14	6-10-15	8-12-17	9-13-18	10-14-19	12-14-20	12-15-21	14-17-24
	ft	2 Way	5-8-15	7-10-18	9-13-20	10-16-22	12-17-24	14-18-26	16-19-27	17-20-29	18-22-31
		1 Way	6-10-19	9-13-23	11-16-25	13-19-28	15-21-30	17-23-32	19-24-34	21-25-36	23-28-39
10	Flow Rate, cfm NC		164 	218 16	273 24	327 30	382 36	436 41	491 45	545 49	654 55
		4 Way	2-5-9	4-6-12	5-8-14	6-9-15	7-11-17	8-12-18	9-13-19	10-14-20	12-15-22
	Throw	3 Way	3-5-11	4-0-12 5-7-14	6-9-17	7-11-18	8-13-20	10-14-21	11-16-23	12-17-24	14-18-26
	ft	2 Way	3-7-14	6-10-19	8-12-22	10-14-25	11-17-27	13-19-28	14-21-30	16-22-32	19-25-35
	ĸ	1 Way	4-9-18	8-12-24	10-15-28	12-18-31	14-21-33	16-24-35	18-27-38	20-28-40	24-31-43
0x10	Flow Rate, cfm NC		208	278	347 25	417 32	486 37	556 42	625 46	694 50	833 57
	NC			17					-		
	Throw	4 Way	4-6-11	5-8-14	6-10-16	8-12-17	9-13-19	10-14-20	11-15-21	13-16-22	14-17-24
	Throw ft	3 Way 2 Way	4-7-14 6-9-18	6-9-17 8-12-23	8-11-19 10-15-25	9-14-21 12-18-28	11-16-22 14-21-30	12-17-24 16-23-32	14-18-25 18-24-34	15-19-27 20-25-36	17-21-29 23-28-39
	n	2 Way 1 Way	7-11-23	10-15-28	13-19-32	15-23-35	18-26-37	20-28-40	23-30-42	26-32-45	28-35-49
12	Flow Rate, cfm	. may	236	314	393	471	550	628	707	785	942
12	NC			18	26	32	38	43	47	51	57
		4 Way	2-5-11	4-7-14	6-9-17	7-11-18	8-12-20	9-14-21	11-16-23	12-17-24	14-18-26
	Throw	3 Way	3-6-13	5-8-17	7-11-20	8-13-22	10-15-24	11-17-26	13-19-27	14-20-29	17-22-31
	ft	2 Way	4-8-17	7-11-22	9-14-27	11-17-29	13-20-32	15-22-34	17-25-36	19-27-38	22-29-42
		1 Way	5-11-21	9-14-28	12-18-34	14-21-37	16-25-40	19-28-43	21-32-45	23-34-48	28-37-52
2x12	Flow Rate, cfm NC		300 	400 19	500 27	600 34	700 39	800 44	900 48	1000 52	1200 59
		4 Way	4-7-13	6-9-17	7-11-19	9-13-21	10-16-22	12-17-24	13-18-25	15-19-27	17-21-29
	Throw	3 Way	5-8-16	7-11-20	9-13-23	11-16-25	13-19-27	14-20-29	16-22-31	18-23-32	20-25-35
	ft	2 Way	6-11-21	10-14-27	12-18-30	14-21-33	17-25-36	19-27-38	21-29-41	24-30-43	27-33-47
		1 Way	8-13-27	12-18-34	15-22-38	18-27-42	21-31-45	24-34-48	27-36-51	30-38-54	34-42-59

Performance Notes:

1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."

2. Air flow is in cfm.

3. All pressures are in in. w.g.

- Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- 5. Throw data is based on supply air and room air at isothermal conditions.
- 6. NC values are based on room absorption of 10 dB re $10^{\text{-}12}$ Watts and one diffuser.
- 7. Blanks (—) indicate an NC level below 15.
- 8. Data does not include effects of ceiling radiation damper (PDMC-FR)

price

Performance Data – 24 in. x 24 in. [610 x 610] Module (continued)

Inlet Size	Neck Velocity, fpm Velocity Pressure, in.w.g. Total Pressure, in.wg.		300 0.006 0.028	400 0.010 0.047	500 0.016 0.075	600 0.022 0.103	700 0.031 0.146	800 0.040 0.188	900 0.050 0.235	1000 0.062 0.291	1200 0.090 0.423
14	Flow Rate, cfm NC		321 	428 19	535 27	641 34	748 39	855 44	962 49	1069 52	1283 59
	Throw	4 Way 3 Way	3-6-12 3-7-15	5-8-16 6-10-19	7-10-20 8-12-24	8-12-21 10-15-26	9-14-23 11-17-28	11-16-25 13-19-30	12-18-26 15-22-32	13-20-28 16-24-33	16-21-30 19-26-36
	ft	2 Way 1 Way	4-10-19 5-12-24	8-13-26 10-16-32	11-16-31 13-20-39	13-19-34 16-24-43	15-23-37 19-28-46	17-26-40 22-32-50	19-29-42 24-36-53	22-31-44 27-39-55	26-34-49 32-43-61
14x14	Flow Rate, cfm NC		408	544 21	681 29	817 35	953 41	1089 46	1225 50	1361 54	1633 60
		4 Way	4-8-15	7-10-20	9-13-22	10-15-24	12-18-26	14-20-28	15-21-30	17-22-31	20-24-34
	Throw ft	3 Way 2 Way 1 Way	5-9-18 7-12-25 9-15-31	8-12-24 11-16-32 14-21-40	10-15-27 14-21-35 17-26-44	12-19-29 16-25-39 21-31-49	14-22-31 19-29-42 24-36-52	16-24-34 22-32-45 27-40-56	19-25-36 25-34-48 31-42-59	21-27-38 27-35-50	24-29-41 32-39-55 40-48-69
15	Flow Rate, cfm NC	I vvay	368 	491 20	614 28	736 35	859 40	982 45	1104 49	34-44-63 1227 53	1473 60
		4 Way	3-6-13	5-9-17	7-11-21	9-13-23	10-15-25	11-17-27	13-19-28	14-21-30	17-23-33
	Throw	3 Way	3-8-15	6-10-21	9-13-25	10-15-28	12-18-30	14-21-32	15-23-34	17-25-36	21-28-39
	ft	2 Way 1 Way	5-10-21 6-13-26	8-14-28 10-17-34	11-17-34 14-22-42	14-21-37 17-26-46	16-24-40 20-30-50	18-28-43 23-34-53	21-31-45 26-39-56	23-34-48 29-42-59	28-37-52 34-46-65
15x15	Flow Rate, cfm		469	625	781	938	1094	1250	1406	1563	1875
	NC			21	29	36	41	46	51	54	61
	Throw	4 Way 3 Way	5-8-16 5-10-20	7-11-21 9-13-25	9-14-24 11-16-28	11-16-26 13-20-31	13-19-28 15-23-34	15-21-30 18-25-36	16-22-32 20-27-38	18-24-34 22-28-40	21-26-3 25-31-4
	ft	2 Way	7-13-26	12-18-34	15-22-38	18-26-42	20-31-45	23-34-48	26-36-51	29-38-54	34-42-59
		1 Way	9-16-33	15-22-42	18-27-47	22-33-52	26-38-56	29-42-60	33-45-64	37-47-67	42-52-73
16	Flow Rate, cfm NC		419 	559 21	698 29	838 35	977 41	1117 46	1257 50	1396 54	1676 60
		4 Way	3-7-14	5-9-18	8-11-22	9-14-25	11-16-27	12-18-28	14-21-30	15-22-32	18-25-35
	Throw ft	3 Way 2 Way	4-8-16	6-11-22	9-14-27	11-16-29	13-19-32	15-22-34	16-25-36	18-27-38	22-29-42
	n	2 way 1 Way	5-11-22 6-13-27	8-15-29 11-18-37	12-18-36 15-23-45	15-22-39 18-27-49	17-26-42 21-32-53	20-29-45 24-37-57	22-33-48 27-41-60	24-36-51 30-45-63	29-39-56 37-49-69
16x16	Flow Rate, cfm NC		533 	711 22	889 30	1067 37	1244 42	1422 47	1600 51	1778 55	2133 62
		4 Way	5-9-17	8-12-23	10-15-25	12-17-28	14-20-30	16-23-32	17-24-34	19-25-36	23-28-39
	Throw	3 Way	6-10-21	9-14-27	12-17-30	14-21-33	16-24-36	19-27-38	21-29-41	23-30-43	27-33-47
	ft	2 Way	8-14-28	12-19-36	16-23-40	19-28-44	22-33-48	25-36-51	28-38-54	31-40-57	36-44-63
18	Flow Rate, cfm	1 Way	10-17-35	16-23-45 707	19-29-51	23-35-55	27-41-60	31-45-64	35-48-68	39-51-72	45-55-78
10	NC		530 	22	884 30	1060 37	1237 42	1414 47	1590 51	1767 55	2121 62
	Throw	4 Way	3-7-15	6-10-20	9-13-25	10-15-28	12-18-30	14-20-32	15-23-34	17-25-36	20-28-39
	Throw ft	3 Way 2 Way	4-9-18 5-12-25	7-12-25 9-16-33	10-15-30 14-20-40	12-18-33 16-25-44	14-21-36 19-29-48	16-25-38 22-33-51	18-28-41 25-37-54	20-30-43 27-40-57	25-33-47 33-44-63
	ii.	1 Way	7-15-31	12-20-41	17-26-50	20-31-55	24-36-60	27-41-64	31-46-68	34-50-71	41-55-78
18x18	Flow Rate, cfm NC		675 	900 23	1125 31	1350 38	1575 43	1800 48	2025 52	2250 56	2700 63
		4 Way	5-10-20	9-13-25	11-16-28	13-20-31	15-23-34	17-25-36	20-27-38	22-28-40	25-31-44
	Throw	3 Way	6-12-23 8-16-31	10-16-31	13-20-34	16-23-37	18-27-40	21-31-43	23-32-46	26-34-48	31-37-53
	ft	2 Way		14-21-41	17-26-46	21-31-50	24-36-54	28-41-58	31-43-61	35-46-64	41-50-71

Performance Notes:

- 1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- 2. Air flow is in cfm.
- 3. All pressures are in in. w.g.

- Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- 5. Throw data is based on supply air and room air at isothermal conditions.
- 6. NC values are based on room absorption of 10 dB re $10^{\text{-}12}$ Watts and one diffuser.
- 7. Blanks (-----) indicate an NC level below 15.
- 8. Data does not include effects of ceiling radiation damper (PDMC-FR)

Perforated Diffusers – Return **PDDR / PDDRE Series**

Product Information

Models

Matching Return for Models PDN
and PDFFlush FaceSteel ConstructionPDDR
MV/ Aluminum Face ScreenDrop (Extended) FaceSteel ConstructionPDDRE
MV/ Aluminum Face ScreenW/ Aluminum Face ScreenAPDDRE

Price PDDR / PDDRE Series perforated face return air ceiling diffusers are designed to match supply air models PDN and PDF in appearance and detail, except that air pattern controllers are not required. The PDDR series is offered in two versions - one for ducted return and one for plenum return applications. For ducted return air applications, PDDR features the same backpan as the supply air models, providing a connection to a flexible or rigid round duct, or to a square or rectangular duct. For plenum return (non-ducted) applications, a special frame assembly results in an inlet 2 in. [51] under module size for maximum free area. The drop (extended) face Model PDDRE is available to complement the supply air models PDNE, PDCE and PDFE for tegular tile ceilings.

Features

- Choice of cold rolled steel (PDDR / PDDRE) or aluminum face screen (APDDR / APDDRE) construction, both with steel backpan or frame.
- Hinged, removable perforated faceplate with quick-release spring latches.
- Choice of five frame styles.
- Complete range of available accessory dampers, equalizing grids etc.
- Light shield option (LS) available on plenum return units (PDDR/APPDR).
- Optional beaded extended neck (2¹/₂ in. tall) for easy flex duct connection (BN).

Available Module Sizes

Imperial	Metric
12 in. x 12 in.	300 x 300
24 in. x 12 in.	600 x 300
16 in. x 16 in.	400 x 400
20 in. x 20 in.	500 x 500
24 in. x 24 in.	600 x 600
48 in. x 24 in.	1200 x 600

Finish

White Powder Coat

B12

For optional and special finishes see color matrix.

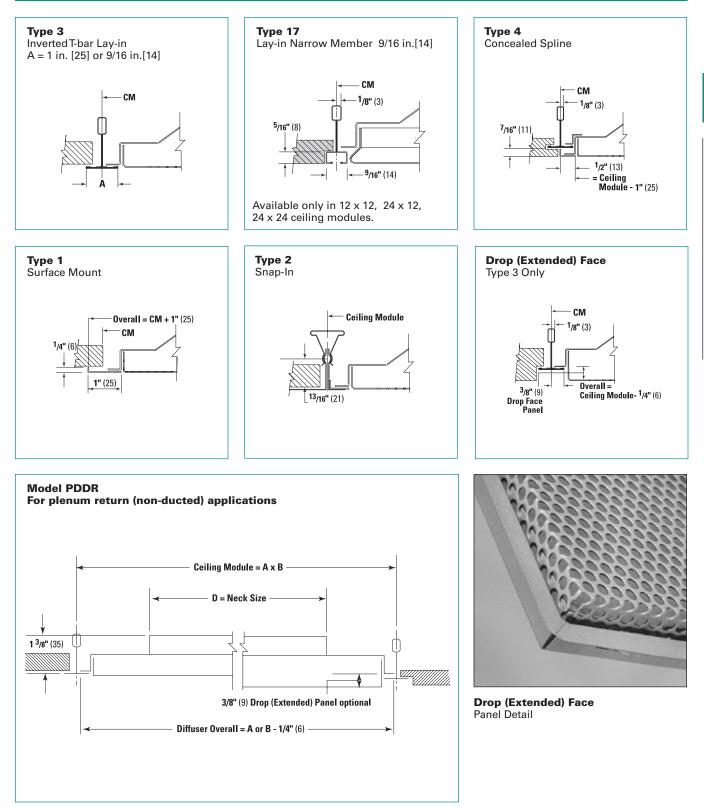
F					-						
Model PDDR -			Mod	lel PDDR -	Maximum	Square					
Round Duct Con	nection			for plenum	n return						
	Pan height is 1 ⁷ /16" (37) for all module sizes except 24" x 24" D - 1/8" (3) D - 1/8" (25) D - 1/8" (25)										
			= Ceiling Modu	le							
Dimensional Data —											
	Ceiling Mod 12 x 12 300 x 300	ule 24x12 600 x 300	16x16 400 x 400	20x20 500 x 500	24x24 600 x 600	48x24 1200 x 600					
D Square Duct											
6 x 6 [152 x 152] 8 x 8 [203 x 203] 10 x 10 [254 x 254] 12 x 12 [305 x 305] 14 x 14 [356 x 356] 15 x 15 [381 x 381] 6 x 18 [152 x 457] 16 x 16 [400 x 400]	•	•	*	* * * *	* * *	* * * *					
18 x 18 [457 x 457] D Round Duct					•						
6 in. [152] 8 in. [203] 10 in. [254] 12 in. [305] 14 in. [356] 15 in. [381] 16 in. [406] 18 in. [457]	•	•	* *	* * *	* * * *	* * * *					

▼* Indicates units for plenum return (non-ducted) application.

✓ Product Selection Checklist

- 1] Select Inlet Diameter or Neck Size L x W based on desired performance characteristics.
- 2] Select Face Size based on ceiling module.
- 3] Select Outlet Type by model number (material, flush or drop face).
- 4] Select Border Style according to installation requirements (page C74).
 - Select Volume Control Accessories, if desired (page C181-C186).
- 6] Select Finish.

51


Example: 8 in. / 24 in. x 24 in. / PDDR / 3 / B12

Application Recommendations: For Border recommendations, see page C32.

Perforated Diffusers – Return PDDR / PDDRE Series

Frame Selection

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter.

Fire-Rated Perforated Diffusers – Return PDDR-FR / PDDRE-FR

 Intree Hour Rating - Lay-in Models

 Matching Returns for

 PDN-FR, PDF-FR, PDC-FR

 Flush Face

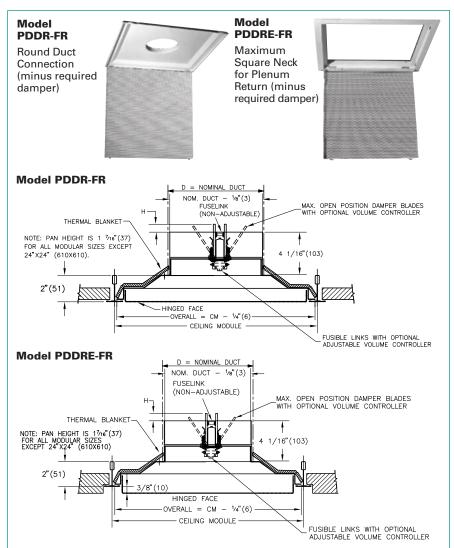
PDDR-FR

Matching Returns for PDNE-FR, PDFE-FR, PDCE-FR Drop (Extended) Face

Drop (Extended) Face **PDDRE-FR Price PDDR-FR /PDDRE-FR** perforated face return air ceiling diffusers are Fire-Rated Assemblies listed in the UL Listed (Underwriters Laboratories Fire Resistance Directory) and ULC Listed (Underwriters Laboratories of Canada Equipment and Materials Directory).This design meets time versus temperature test criteria and NFPA 90A requirements.

Features

- Available in both imperial and hard metric module sizes.
- Non-adjustable, butterfly-type ceiling radiation damper.
- Designed for use in an exposed grid suspension ceiling (T-bar Lay-in) with a three hour or less restrained or unrestrained assembly rating. Units must be installed in accordance with the instructions that accompany each unit.
- Thermal blanket is non-asbestos.
- Standard 165 °F [74 °C] fusible link, optional 212 °F [100 °C] fusible link.
- Hinged, removable perforated faceplate with quick-release spring latches provides access to optional adjustable volume controller (Allen key adjustable). See page C45 for procedure.


Available Module Sizes

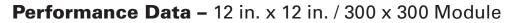
Imperial	Metric
12 in. x 12 in.	300 x 300
20 in. x 20 in.	500 x 500
24 in. x 24 in.	600 x 600

Finish

White Powder Coat B	12
For optional and special finishes see co	lor
matrix.	

- 1] Select Inlet diameter or Neck Size L x W.
- 2] Select Face Size based on ceiling module.
- 3] Select Diffuser style by model number.4] Select Finish.
- 4] Select Finish. Example: 8 in. / 24 in. x 24 in. / PDDR-FR / B12

Dimensional Data - Imperial (in.) / Metric [mm]


	Ce	eiling Mod	ule Size, N	ominal				
		Imperia	l (in.)				Metric [m	n]
	12 x 12	16 x 16	20 x 20	24 x 24	24 x 12	300 x 300	500 x 500	600 x 600
6 in. x 6 in. [152 x 152]	▼		▼	▼			▼	▼
8 in. x 8 in. [203 x 203]			▼	▼			▼	▼
10 in. x 10 in.[254 x 254]	*		▼	▼			▼	▼
12 in. x 12 in.[305 x 305]				▼				▼
14 in. x 14 in.[356 x 356]				▼				▼
15 in. x 15 in.[381 x 381]				▼				•
22 in. x 10 in.[559 x 254]					*			
18 in. x 18 in.[547 x 547]			*					
6 in. Dia. [152 Dia.]	▼		•	▼		•	▼	•
8 in. Dia. [203 Dia.]			▼	▼			▼	▼
10 in. Dia. [254 Dia.]			▼	▼			▼	▼
12 in. Dia. [305 Dia.]				▼				▼
14 in. Dia. [356 Dia.]				▼				▼
15 in. Dia. [381 Dia.]				▼				▼

Available only on maximum square neck for pienum ren

C-74

Perforated Diffusers PDDR / PDDRE Series

Neck Size	Face Module	Neck Velocity, fpm Neg. Static Pressure Velocity Pressure	200 .007 .002	300 .015 .006	400 .027 .010	500 .042 .016	600 .061 .022	700 .083 .031	800 .108 .040	900 .137 .050	1000 .169 .062
6 Ø	12 x 12	Air Flow, cfm NC	39	59	78	98	118	137	157	176	196 15
6 x 6	12 x 12	Air Flow, cfm NC	50	75	100	125	150	175	200	225	250 16

Performance Data – 16 in. x 16 in. / 400 x 400 Module

Neck Size	Face Module	Neck Velocity, fpm Neg. Static Pressure Velocity Pressure	200 .007 .002	300 .015 .006	400 .027 .010	500 .042 .016	600 .061 .022	700 .083 .031	800 .108 .040	900 .137 .050	1000 .169 .062
6 Ø	16 x 16	Air Flow, cfm NC	39	59	78	98	118	137	157	176	196 15
6 x 6	16 x 16	Air Flow, cfm NC	50	75	100	125	150 —	175	200	225	250 16
8 Ø	16 x 16	Air Flow, cfm NC	70	105	140	175	209	244	279	314	349 17
8 x 8	16 x 16	Air Flow, cfm NC	89	133	178	222	266	311	355	400	444 18
10 Ø	16 x 16	Air Flow, cfm NC	109	164	218	273	327	382	436	491 15	545 18
10 x 10	16 x 16	Air Flow, cfm NC	139	208	278	347	416	486	555	625 16	694 19

Performance Data - 20 in. x 20 in. / 500 x 500 Module

Neck Size	Face Module	Neck Velocity, fpm Neg. Static Pressure Velocity Pressure	200 .007 .002	300 .015 .006	400 .027 .010	500 .042 .016	600 .061 .022	700 .083 .031	800 .108 .040	900 .137 .050	1000 .169 .062
6 Ø	20 x 20	Air Flow, cfm NC	39	59	78	98	118	137	157	176	196
6 x 6	20 x 20	Air Flow, cfm NC	50	75	100	125	150 —	175	200	225	250 16
8 Ø	20 x 20	Air Flow, cfm NC	70	105	140	175	209	244	279 —	314	349
8 x 8	20 x 20	Air Flow, cfm NC	89	133	178	222	266	311	355	400	444 18
10 Ø	20 x 20	Air Flow, cfm NC	109	164	218	273	327	382	436	491	545 16
10 x 10	20 x 20	Air Flow, cfm NC	139	208	278	347	416	486	555	625 16	694 19
12 Ø	20 x 20	Air Flow, cfm NC	157	236	314	393	471	550 —	628	707 16	785 19
12 x 12	20 x 20	Air Flow, cfm NC	200	300	400	500 —	600	700	800	900 17	1000 20
14 Ø	20 x 20	Air Flow, cfm NC	207	311	414	518	622	725	829	932 18	1036 21

Performance Notes:

1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."

2. Air flow is in cfm.

4. NC values are based on room absorption of 10 dB re $10^{\cdot 12}\,$ Watts and one diffuser.

5. Blanks (-----) indicate an NC level below 15.

6. Data does not include effects of ceiling radiation damper (PDDR-FR, PDDRE-FR)

^{3.} All pressures are in in. w.g.

Perforated Diffusers **PDDR / PDDRE Series**

Performance Data - 24 in. x 12 in. / 600 x 300 Module

Neck Size	Face Module	Neck Velocity, fpm Neg. Static Pressure Velocity Pressure	200 .007 .002	300 .015 .006	400 .027 .010	500 .042 .016	600 .061 .022	700 .083 .031	800 .108 .040	900 .137 .050	1000 .169 .062
6 Ø	24 x 12	Air Flow, cfm NC	39	59	78	98	118	137	157	176	196 15
6 x 6	24 x 12	Air Flow, cfm NC	50	75	100	125	150	175	200	225	250 16
18 x 6	24 x 12	Air Flow, cfm NC	150 —	225	300	375	450	525	600	675 16	750 19

Performance Data - 24 in. x 24 in. / 600 x 600 Module

Neck Size	Face Module	Neck Velocity, fpm Neg. Static Pressure Velocity Pressure	200 .007 .002	300 .015 .006	400 .027 .010	500 .042 .016	600 .061 .022	700 .083 .031	800 .108 .040	900 .137 .050	1000 .169 .062
6 Ø	24 x 24	Air Flow, cfm NC	39	59	78	98	118	137	157	176	196 —
6 x 6	24 x 24	Air Flow, cfm NC	50	75	100	125	150	175	200	225	250 16
8 Ø	24 x 24	Air Flow, cfm NC	70	105	140	175	209	244	279	314	349
8 x 8	24 x 24	Air Flow, cfm NC	89	133	178	222	266	311	355	400	444 18
10 Ø	24 x 24	Air Flow, cfm NC	109	164	218	273 —	327	382	436	491	545 16
10 x 10	24 x 24	Air Flow, cfm NC	139	208	278	347	416	486	555	625 16	694 19
12 Ø	24 x 24	Air Flow, cfm NC	157	236	314	393	471	550 —	628	707 16	785 19
12 x 12	24 x 24	Air Flow, cfm NC	200	300	400	500	600	700	800	900 17	1000 20
14 Ø	24 x 24	Air Flow, cfm NC	207	311	414	518 —	622	725	829	932 18	1036 21
14 x 14	24 x 24	Air Flow, cfm NC	272	408	544	681	817	953 —	1089	1225 18	1361 21
15 Ø	24 x 24	Air Flow, cfm NC	245	368	491	614	736	859	982 16	1104 19	1227 22
15 x 15	24 x 24	Air Flow, cfm NC	313	469	625	782	938	1094	1250	1407 18	1563 21

Performance Data – Plenum Return

Neck Size	Face Module	Neck Velocity, fpm Neg. Static Pressure Velocity Pressure	200 .008 .002	300 .019 .006	400 .033 .010	500 .051 .016	600 .074 .022	700 .101 .031	800 .132 .040	900 .167 .050	1000 .206 .062
10 x 10	12 x 12	Air Flow, cfm NC	139	208	278	347	416 18	486 22	555 26	625 29	694 31
14 x 14	16 x 16	Air Flow, cfm NC	272	408	554	681 15	817 20	953 24	1089 27	1225 30	1361 33
18 x 18	20 x 20	Air Flow, cfm NC	450 —	675	900	1125 16	1350 21	1575 25	1800 28	2025 31	2250 34
22 x 10	24 x 12	Air Flow, cfm NC	306	458	611	764 15	917 20	1069 24	1222 27	1375 30	1528 33
22 x 22	24 x 24	Air Flow, cfm NC	672	1008	1344	1681 17	2017 22	2353 26	2689 29	3025 32	3361 35
46 x 22	48 x 24	Air Flow, cfm NC	1406	2018	2811	3514 19	4217 24	4919 28	5622 31	6325 34	7028 37

Performance Notes:

1. Tested in accordance with ASHRAE Standard 70-2006 2. Air flow is in cfm. "Method of Testing for Rating the Performance of Air 3. All pressures are in in. w.g. Outlets and Inlets."

- 5. Blanks (-----) indicate an NC level below 15.
- 6. Data does not include effects of ceiling radiation damper (PDDR-FR, PDDRE-FR)
- 4. NC values are based on room absorption of 10 dB re $10^{\text{-}12}$ Watts and one diffuser.

All Metric dimensions () are soft conversion.

Imperial dimensions are converted to metric and rounded to the nearest millimeter.

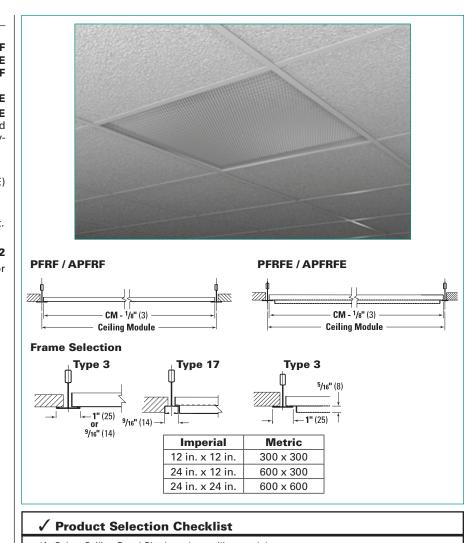
Perforated Diffusers - Return **PFRF / PFRFE / APFRF / APFRFE Series**

Product Information

Models

Perforated Face Ceiling Panel

Steel Construction PFRF Steel Construction, extended face **PFRFE** Aluminum Construction APFRF Aluminum Construction, extended face APFRFE


Price PFRF / PFRFE / APFRF / APFRFE Series perforated ceiling panels are used as non-ducted return outlets for T-bar Layin ceilings.

Features

- Choice of cold rolled steel (PFRF/PFRFE) or aluminum panel (APFRF/APFRFE).
- Choice of flat or drop face design.
- Economical, high capacity return outlet. Finish

White Powder Coat **B12**

For optional and special finishes see color matrix.

- 11 Select Ceiling Panel Size based on ceiling module.
- Select Outlet Type by model number. 2]
- 3] Select Finish.

Example: 24 in. x 24 in. / PFRF / B12

Performance Data – Plenum Return

Module Size	Neck Velocity, fpm Neg. Static Pressure Velocity Pressure	200 .008 .002	300 .019 .006	400 .033 .010	500 .051 .016	600 .074 .022	700 .101 .031	800 .132 .040	900 .167 .050	1000 .206 .062
12 x 12	Air Flow, cfm NC	168 —	252	336	420	504 19	588 23	672 26	756 29	840 32
24 x 12	Air Flow, cfm NC	351	527	703	878 16	1054 20	1230 24	1406 28	1581 31	1757 33
24 x 24	Air Flow, cfm NC	735	1102	1469	1837 17	2204 22	2572 26	2939 29	3306 33	3674 35

Performance Notes:

1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."

- 2. Air flow is in cfm.
- 3. All pressures are in in. w.g.

- 4. NC values are based on room absorption of 10 dB re 10⁻¹² Watts and one diffuser.
- 5. Blanks (-----) indicate and NC level below 15.

CEILING DIFFUSERS

All Metric dimensions () are soft conversion Imperial dimensions are converted to metric and rounded to the nearest millimeter. **C-77**

Perforated Diffusers Architectural Quality / High Performance

PDS

PDR

Product Overview

Models

Premium Architectural

Supply, Deflectors on Face Matching Return

Price offers a premium line of perforated supply and matching return ceiling diffusers that combine the exceptional performance and desirable architectural appeal of extruded aluminum construction.

Model PDS

Adjustable air pattern deflectors are located on the perforated face, allowing field adjustment to suit desired conditions. The pattern controllers and backpan are finished in black to make them virtually invisible.

Models PDR

Matching returns are available to complement the PDS series.

Pages C80 - C86

PDR Series

Pages C87 - C88

Quick Selection Guide

Diffuser Type	Ceiling Type	Recommended Frame
Premium Architectural		
Supply / Return	Lay-in	
PDS / PDR	InvertedT 1 in. [25]	3
	Surface Mount	1

Perforated Diffusers PDS Series Architectural Quality – Supply

Product Information

Models

Architectural Perforated Face

Extruded Aluminum Construction

Extruded Aluminum Construction for MRI applications **PDS MRI**

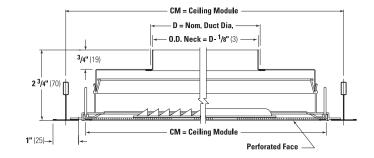
PDS

Price PDS Series premium perforated supply ceiling diffusers combine exceptional performance and the desirable architectural appeal of extruded aluminum construction for highly efficient heating, cooling and air ventilation applications. Adjustable air pattern deflectors are located on the perforated face, allowing for field adjustment to suit desired conditions. The pattern deflectors and backpan are finished in black to make them virtually invisible.

Features

- Efficient, draftless air distribution for most ceiling types.
- Hinged, removable perforated faceplate with quick-release spring latches.
- Louvered air pattern deflectors are located on the perforated face and are field adjustable to the desired air pattern.
- Extruded aluminum border and mounting frame match seamlessly for a flush mount that blends with most ceiling tiles.
- Requires minimum ceiling plenum height. Overall diffuser height only 3 in. [76] for all available sizes.
- Complete range of available accessory dampers, equalizing grids etc.
- All aluminum construction (nonmagnetic) for MRI applications (PDS-MRI).

Available Module Sizes


Imperial	Metric
12 in. x 12 in.	300 x 300
16 in. x 16 in.	400 x 400
20 in. x 20 in.	500 x 500
24 in. x 24 in.	600 x 600
12 in. x 24 in.	300 x 600
12 in. x 36 in.	300 x 900
12 in. x 48 in.	300 x 1200
24 in. x 36 in.	600 x 900
24 in. x 48 in.	600 x 1200

Finish

White Powder Coat

For optional and special finishes see color matrix.

PDS - Type 3

Dimensional Data — Imperial (in.) / Metric [mm]

			D·	Squar	e Duct								
		x 6 x 152]	x 8 x 203]	x 10 x 254]	x 12 x 305]	(18 x 457]	D - Round Duct Diameters						
H - Ceili	ng Module	22 °	ŝŝ	54.0	12,005,005	6 x 52 x	5	6	7	8	10	12	14
Imperial	Metric	11	[20	[26	<u>1</u> <u>1</u> <u>1</u>	[]	[127]	[152]	[178]	[203]	[254]	[305]	[356]
12 x 12	300 x 300	▼	▼	N/A	N/A	N/A	▼	▼	▼	▼	N/A	N/A	N/A
12 x 24	300 x 600	▼	\bullet	N/A	N/A	▼	▼	\mathbf{V}	▼	▼	N/A	N/A	N/A
12 x 36	300 x 900	▼	\bullet	N/A	N/A	N/A	▼	\mathbf{V}	▼	▼	N/A	N/A	N/A
12 x 48	300 x 1200	▼	\bullet	N/A	N/A	N/A	▼	\mathbf{V}	▼	▼	N/A	N/A	N/A
16 x 16	400 x 400	▼	\bullet	\bullet	\bullet	N/A	▼	\mathbf{V}	▼	▼	\bullet	▼	N/A
20 x 20	500 x 500	▼	\bullet	\bullet	\bullet	N/A	▼	\mathbf{V}	▼	▼	\bullet	▼	
24 x 24	600 x 600	▼	\bullet	\bullet	\bullet	N/A	▼	\mathbf{V}	▼	▼	\bullet	▼	
24 x 36	600 x 900		▼	\bullet	▼	N/A	▼	▼	▼	▼	▼	\bullet	▼
24 x 48	600 x 1200	▼	▼	▼	▼	N/A	▼	▼	▼	▼	▼	▼	

Standard inlet neck sizes (▼).

Inlet neck sizes marked N/A are not available for the listed ceiling opening.

✓ Product Selection Checklist

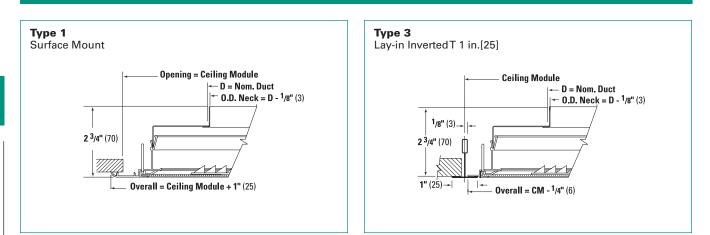
- 1] Select Inlet Diameter or Neck Size L x W based on desired performance characteristics.
- 2] Select Face Size based on ceiling module.
- 3] Select Outlet Type by model number.
- 4] Select Border Style according to installation requirements (page C81).
- 5] Select Volume Control Accessories, if desired (page C181-C186).
- 6] Select Finish.

B12

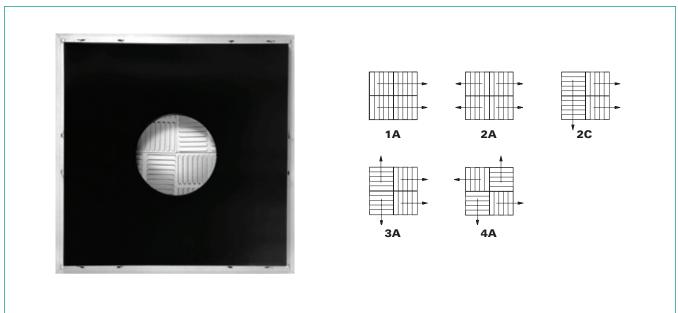
Example: 8 in. / 24 in. x 24 in. / PDS / 3 / B12

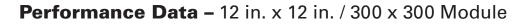
Application Recommendations:

For Border recommendations, see page C79.


C-79

Perforated Diffusers PDS Series Architectural Quality – Supply




Frame Selection

Air Pattern Adjustment

C-80

	Total Pressure, in. w.g. Flow Rate, cfm NC		.030 75 —	.050 100 25	.078 125 30	.112 150 35	.152 175 39	.196 200 43	.310 250 49	.440 300 54	.600 350 58
5 Ø	Throw ft	4 Way 3 Way 2 Way 1 Way	2-2-5 2-4-5 2-4-6 4-5-7	2-4-6 2-5-7 4-5-8 4-6-10	4-5-8 4-5-8 4-6-10 5-7-12	4-6-10 5-6-10 5- 7-12 6-10-14	5-7-12 5-7-12 6-8-14 7-11-17	5-8-13 6-8-14 6-10-16 8-12-19	6-10-16 7-11-17 8-12-19 10-16-24	7-12-19 8-13-19 10-14-23 12-18-29	10-14-23 10-14-24 11-17-28 13-20-34
	Total Pressure, in. w.g. Flow Rate, cfm NC		.018 75 —	.031 100 18	.048 125 23	.069 150 28	.094 175 32	.121 200 36	.192 250 42	.272 300 47	.372 350 51
6 Ø	Throw ft	4 Way 3 Way 2 Way 1 Way	2-2-4 2-3-4 2-3-6 3-4-7	2-3-6 2-4-7 3-4-8 3-6-9	3-4-8 3-4-8 3-6-9 4-7-11	3-6-9 4-6-9 4-7-11 6-9-13	4-7-11 4-7-11 6-8-13 7-10-15	4-8-12 6-8-13 6-9-14 8-11-18	6-9-14 7-10-15 8-11-18 9-14-22	7-11-18 8-12-18 9-13-21 11-17-26	9-13-21 9-13-22 10-15-25 12-19-31
	Total Pressure, in. w.g. Flow Rate, cfm NC		.015 75 —	.025 100 —	.039 125 19	.056 150 24	.076 175 28	.098 200 32	.155 250 38	.220 300 43	.300 350 47
6 x 6	Throw ft	4 Way 3 Way 2 Way 1 Way	2-2-4 2-3-4 2-3-5 3-4-6	2-3-5 2-4-6 3-4-7 3-5-8	3-4-7 3-4-7 3-5-8 4-6-10	3-5-8 4-5-8 4-6-10 5-8-12	4-6-10 4-6-10 5-7-12 6-9-14	4-7-11 5-7-12 5-8-13 7-10-16	5-8-13 6-9-14 7-10-16 8-13-20	6-10-16 7-11-16 8-12-19 10-15-24	8-12-19 8-12-20 9-14-23 11-17-28
	Total Pressure, in. w.g. Flow Rate, cfm NC		.014 75 —	.024 100 —	.037 125 17	.053 150 22	.073 175 26	.094 200 30	.149 250 36	.211 300 41	.288 350 45
7Ø	Throw	4 Way 3 Way	2-2-4 2-3-4	2-3-5 2-4-6	3-4-7 3-4-7	3-5-8 4-5-8	4-6-10 4-6-10	4-7-11 5-7-12	5-8-13 6-9-14	6-10-16 7-11-16	8-12-19 8-12-20
	ft	2 Way 1 Way	2-3-5 3-4-6	3-4-7 3-5-8	3-5-8 4-6-10	4-6-10 5-8-12	5-7-12 6-9-14	5-8-13 7-10-16	7-10-16 8-13-20	8-12-19 10-15-24	9-14-23 11-17-28

Performance Data - 12" x 24", 36", 48" / 300 x 600, 900, 1200 Module

	Total Pressure, in. w.g. Flow Rate, cfm NC		.027 75 —	.045 100 25	.071 125 30	.102 150 35	.139 175 39	.179 200 43	.283 250 49	.402 300 54	.549 350 58
5 Ø	Throw ft	4 Way 3 Way 2 Way 1 Way	2-2-5 2-4-5 2-4-6 4-5-7	2-2-6 2-5-7 4-5-8 4-6-10	4-5-8 4-5-8 4-6-10 5-7-12	4-6-10 5-6-10 5-7-12 6-10-14	5-7-12 5-7-12 6-8-14 7-11-17	5-8-13 6-8-14 6-10-16 8-12-19	6-10-16 7-11-17 8-12-19 10-16-24	7-12-19 8-13-19 10-14-23 12-18-29	10-14-23 10-14-24 11-17-28 13-20-34
	Total Pressure, in. w.g. Flow Rate, cfm NC		.014 75 —	.024 100 18	.037 125 23	.054 150 28	.073 175 32	.095 200 36	.150 250 42	.213 300 47	.291 350 51
6 Ø	Throw ft	4 Way 3 Way 2 Way 1 Way	2-2-4 2-3-4 2-3-6 3-4-7	2-3-6 2-4-7 3-4-8 3-6-9	3-4-8 3-4-8 3-6-9 4-7-11	3-6-9 4-6-9 4-7-11 6-9-13	4-7-11 4-7-11 6-8-13 7-10-15	4-8-12 6-8-13 6-9-14 8-11-18	6-9-14 7-10-15 8-11-18 9-14-22	7-11-18 8-12-18 9-13-21 11-17-26	9-13-21 9-13-22 10-15-25 12-19-31
	Total Pressure, in. w.g. Flow Rate, cfm NC		.010 75 —	.016 100	.025 125 19	.036 150 24	.049 175 28	.064 200 32	.101 250 38	.143 300 43	.195 350 47
6 x 6	Throw ft	4 Way 3 Way 2 Way 1 Way	2-2-4 2-3-4 2-3-5 3-4-6	2-3-5 2-4-6 3-4-7 3-5-8	3-4-7 3-4-7 3-5-8 4-6-10	3-5-8 4-5-8 4-6-10 5-8-12	4-6-10 4-6-10 5-7-12 6-9-14	4-7-11 5-7-12 5-8-13 7-10-16	5-8-13 6-9-14 7-10-16 8-13-20	6-10-16 7-11-16 8-12-19 10-15-24	8-12-19 8-12-20 9-14-23 11-17-28
	Total Pressure, in. w.g. Flow Rate, cfm NC		.035 225 17	.059 300 25	.095 375 31	.135 450 36	.185 525 40	.240 600 44	.370 750 50	.530 900 55	.730 1050 60
18 x 6	Throw ft	4 Way 3 Way 2 Way 1 Way	4-7-9 5-8-12 5-8-13 8-12-19	6-10-16 7-10-16 7-11-18 11-16-26	8-12-20 8-13-20 9-13-22 13-19-33	10-15-24 10-15-24 11-16-27 16-23-39	11-17-28 12-18-28 13-19-32 19-27-46	13-19-32 13-20-32 15-22-35 21-31-51	16-24-39 17-25-41 19-29-44 26-39-62	19-29-46 20-30-49 21-32-51 31-47-74	22-34-53 23-35-56 25-37-60 37-55-89
	Total Pressure, in. w.g. Flow Rate, cfm NC		.009 75 —	.015 100 —	.023 125 17	.034 150 22	.046 175 28	.059 200 30	.094 250 36	.134 300 41	.183 350 45
7 Ø	Throw ft	4 Way 3 Way 2 Way 1 Way	2-2-4 2-3-4 2-3-5 3-4-6	2-3-5 2-4-6 3-4-7 3-5-8	3-4-7 3-4-7 3-5-8 4-6-10	3-5-8 4-5-8 4-6-10 5-8-12	4-6-10 4-6-10 5-7-12 6-9-14	4-7-11 5-7-12 5-8-13 7-10-16	5-8-13 6-9-14 7-10-16 8-13-20	6-10-16 7-11-16 8-12-19 10-15-24	8-12-19 8-12-20 9-14-23 11-17-28

See performance notes Page C80.

© Copyright Price Industries Limited 2014.

Performance Data - 16 in. x 16 in. / 400 x 400 Module

	Total Pressure, in. w.g. Flow Rate, cfm NC		.028 75 —	.048 100 25	.075 125 30	.107 150 35	.146 175 39	.188 200 43	.297 250 49	.422 300 54	.576 350 58
5 Ø	Throw ft	4 Way 3 Way 2 Way 1 Way	2-2-4 2-3-4 2-3-5 3-4-6	2-3-5 2-4-6 3-4-7 3-5-8	3-4-7 3-4-7 3-5-8 4-6-10	3-5-8 4-5-8 4-6-10 5-8-12	4-6-10 4-6-10 5-7-12 6-9-14	4-7-11 5-7-12 5-8-13 7-10-16	5-8-13 6-9-14 7-10-16 8-13-20	6-10-16 7-11-16 8-12-19 10-15-24	8-12-19 8-12-20 9-14-20 11-17-2
	Total Pressure, in. w.g. Flow Rate, cfm NC	i vvay	.016 75 —	.026 100 18	.041 125 23	.059 150 28	.079 175 32	.103 200 36	.163 250 42	.231 300 47	.315 350 51
6 Ø	Throw ft	4 Way 3 Way 2 Way 1 Way	2-2-4 2-3-4 2-3-5 3-4-6	2-3-5 2-4-6 3-4-7 3-5-7	3-4-7 3-4-7 3-5-7 4-6-9	3-5-7 4-5-7 4-6-9 5-7-11	4-6-9 4-6-9 5-7-11 6-8-13	4-7-10 5-7-11 5-7-12 7-9-15	5-7-12 6-8-13 7-9-15 7-12-19	6-9-15 7-10-15 7-11-18 9-14-22	7-11-1 7-11-1 8-13-2 10-16-2
	Total Pressure, in. w.g. Flow Rate, cfm NC		.011 75 —	.019 100 	.029 125 19	.042 150 24	.057 175 28	.073 200 32	.116 250 38	.165 300 43	.225 350 47
6 x 6	Throw ft	4 Way 3 Way 2 Way 1 Way	2-2-3 2-3-3 2-3-4 3-3-5	2-3-4 2-3-5 3-3-5 3-4-7	3-3-6 3-3-6 3-4-7 3-5-8	3-4-7 3-4-7 3-5-9 4-7-10	3-5-9 3-5-9 4-6-10 5-8-12	3-6-10 4-6-10 4-7-11 6-9-14	4-7-11 5-8-12 6-9-14 7-11-17	5-9-14 6-10-14 7-10-17 9-13-21	7-10-1 7-10-1 8-12-2 10-15-2
	Total Pressure, in. w.g. Flow Rate, cfm NC	i vvay	.010 75 —	.017 100 —	.026 125 17	.038 150 22	.051 175 26	.066 200 30	.105 250 36	.149 300 41	.204 350 45
7Ø	Throw ft	4 Way 3 Way 2 Way 1 Way	2-2-3 2-3-3 2-3-4 3-3-5	2-3-4 2-3-5 3-3-6 3-4-7	3-3-6 3-3-6 3-4-7 3-5-9	3-4-7 3-4-7 3-5-9 4-7-10	3-5-9 3-5-9 4-6-10 5-8-12	3-6-9 4-6-10 4-7-11 6-9-14	4-7-11 5-8-12 6-9-14 7-11-17	5-9-14 6-9-14 7-10-16 9-13-20	7-10-1 7-10-1 8-12-2 9-14-2
	Total Pressure, in. w.g. Flow Rate, cfm NC		.023 135 —	.038 180 22	.059 220 28	.085 265 34	.115 310 38	.149 355 41	.235 445 47	.337 535 53	.462 620 57
8 Ø	Throw ft	4 Way 3 Way 2 Way 1 Way	2-3-6 2-3-7 2-4-7 3-6-9	3-4-8 3-6-8 4-6-10 4-8-12	4-7-10 4-7-11 4-8-12 7-9-15	4-8-12 6-8-13 6-9-14 8-10-18	6-9-14 7-9-15 7-10-17 9-13-21	7-10-15 7-10-17 8-12-19 10-14-23	8-12-20 9-13-21 10-14-23 12-19-30	10-14-23 10-15-25 12-18-29 14-22-35	11-17-1 11-18-1 13-21-1 17-25-1
	Total Pressure, in. w.g. Flow Rate, cfm NC		.017 135 —	.028 180 17	.044 220 23	.063 265 29	.085 310 33	.110 355 36	.173 445 42	.248 535 48	.340 620 52
8 x 8	Throw ft	4 Way 3 Way 2 Way 1 Way	2-3-5 2-3-6 3-4-6 3-5-8	3-4-7 3-5-7 4-5-9 4-7-11	4-6-9 4-6-10 4-7-11 6-8-14	4-7-11 5-7-12 5-8-13 7-10-16	5-8-13 6-8-14 6-9-15 8-12-19	6-9-14 6-9-15 7-11-17 9-13-21	7-11-18 8-12-19 9-13-21 11-17-27	9-13-21 9-14-23 11-16-26 13-20-32	10-15-2 10-16-2 12-19-2 15-23-2
	Total Pressure, in. w.g. Flow Rate, cfm NC		.031 210 17	.052 280 25	.083 345 31	.119 415 36	.161 485 40	.207 555 44	.328 695 50	.467 825 55	.640 975 60
10 Ø	Throw ft	4 Way 3 Way 2 Way 1 Way	4-5-8 4-5-8 4-6-10 5-7-12	5-6-11 5-7-12 5-8-13 7-10-17	6-8-13 6-8-14 6-10-16 8-12-20	7-10-16 7-11-17 8-12-19 10-14-24	7-12-18 8-12-16 10-14-23 12-18-29	8-13-22 10-14-18 11-16-25 13-20-32	11-17-26 12-18-29 13-20-32 17-25-41	13-19-31 14-22-34 16-24-45 20-30-48	16-23-3 17-24-4 18-28-4 23-35-4

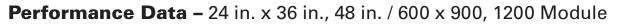
Performance Notes:

- 1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- 2. Air flow is in cfm.
- 3. All pressures are in in. w.g.

- Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- 5. Throw data is based on supply air and room air being at isothermal conditions.
- The throw determined by these factors is the throw from long side of the diffuser. The throw from short sides will be approximately 0.7 times the throw from long sides.
- NC values are based on room absorption of 10 dB re 10⁻¹² Watts and one diffuser.
- 8. Blanks (----) indicate NC levels below 15.

	Total Pressure, in. w.g. Flow Rate, cfm NC		.028 75 —	.047 100 25	.073 125 30	.105 150 35	.142 175 39	.184 200 43	.291 250 49	.414 300 54	.564 350 58
5Ø	-	4 Way	2-2-4	2-3-5	3-4-6	3-5-7	4-5-9	4-6-10	5-7-12	5-9-15	7-11-17
	Throw	3 Way	2-3-4	2-4-5	3-4-6	4-5-7	4-5-9	5-6-11	5-8-13	6-10-15	7-11-18
	ft	2 Way 1 Way	2-3-5 3-4-5	3-4-6 3-5-7	3-5-7 4-5-9	4-5-9 5-7-11	5-6-11 5-8-13	5-7-12 6-9-15	6-9-15 7-12-18	7-11-17 9-14-22	8-13-21 10-15-2
	Total Pressure, in. w.g.	i way	.015	.025	.039	.057	.077	.099	.157	.222	.303
	Flow Rate, cfm		.015	1025	125	150	175	200	250	300	350
	NC		—	18	23	28	32	36	42	47	51
6Ø		4 Way	2-2-3	2-3-4	3-3-6	3-4-7	3-5-8	3-6-9	4-7-11	5-8-13	7-10-16
	Throw ft	3 Way 2 Way	2-3-3 2-3-4	2-3-5 3-3-6	3-3-6 3-4-7	3-4-7 3-5-8	3-5-8 4-6-10	4-6-10 4-7-11	5-7-11 6-8-13	6-9-13 7-10-16	7-10-16 7-11-19
	n	1 Way	3-3-5	3-4-7	3-5-8	4-7-9	5-7-11	6-8-13	7-11-16	8-12-20	9-14-23
	Total Pressure, in. w.g.		.010	.017	.027	.039	.053	.086	.108	.154	.210
	Flow Rate, cfm		75	100	125	150	175	200	250	300	350
	NC		_	17	23	29	33	36	42	48	52
6 x 6	Throw	4 Way 3 Way	2-2-3 2-2-3	2-2-4 2-3-5	2-3-5 2-3-5	2-4-6 3-4-6	3-5-8 3-5-8	3-5-8 4-5-9	4-6-10 4-7-11	4-8-12 5-8-12	6-9-14 6-9-15
	ft	2 Way	2-2-3	2-3-5	2-3-5	3-4-0	4-5-9	4-6-10	5-8-12	6-9-14	7-11-17
		1 Way	2-3-5	2-4-6	3-5-8	4-6-9	5-7-11	5-8-12	6-10-15	8-11-18	8-13-21
	Total Pressure, in. w.g.		.009	.015	.024	.035	.047	.062	.097	.138	.189
	Flow Rate, cfm NC		75	100	125 17	150 22	175 26	200 30	250 36	300 41	350 45
7Ø	110	4 Way	2-2-3	2-2-4	2-3-5	2-4-6	3-4-8	3-5-8	4-6-10	5-8-12	6-9-14
	Throw	3 Way	2-2-3	2-3-5	2-3-5	3-4-6	3-4-8	4-5-9	5-7-11	5-8-12	8-9-15
	ft	2 Way	2-2-4	2-3-5	2-4-6	3-4-8	4-5-9	4-6-10	5-8-12	6-9-14	7-11-17
	Total Dessaura in	1 Way	2-3-5	2-4-6	3-4-8	4-6-9	5-7-11	5-8-12	6-10-15	8-11-18	8-13-21
	Total Pressure, in. w.g. Flow Rate, cfm		.020 135	.033 180	.052 220	.075 265	.102 310	.132 355	.207 445	.297 535	.408 620
	NC		_	22	28	34	38	41	47	53	57
8Ø		4 Way	2-3-5	3-4-7	4-6-9	4-7-10	5-8-12	6-9-13	7-10-17	9-12-20	10-14-2
	Throw	3 Way	2-3-6	3-5-7	4-6-10	5-7-11	6-8-13	6-9-14	8-11-18	9-13-22	10-15-2
	ft	2 Way 1 Way	3-4-6 3-5-8	4-5-9 4-7-10	4-7-10 6-8-13	5-8-12 7-10-15	6-9-14 8-11-18	7-10-16 9-12-20	9-12-20 10-16-26	10-15-25 12-19-30	11-18-2 14-22-3
	Total Pressure, in. w.g.		.014	.024	.037	.053	.072	.093	.147	.210	.289
	Flow Rate, cfm		135	180	220	265	310	355	445	535	620
8 x 8	NC	4 Way	2-3-5	17 3-4-6	23	29	33 5-7-12	36 5-8-13	42	48 8-12-19	52 9-14-23
0 X 0								0-0-10	6-10-16	0-12-19	9-14-Z3
	Throw				4-5-8 4-5-9	4-6-10 5-6-11		5-8-14	7-11-17	8-13-21	9-14-23
	Throw ft	3 Way 2 Way	2-3-5 3-4-5	3-4-6 3-5-6 4-5-8	4-5-8 4-5-9 4-6-10	4-6-10 5-6-11 5-7-12	5-7-13 5-8-14	5-8-14 6-10-15	7-11-17 8-12-19	8-13-21 10-14-23	
	ft	3 Way	2-3-5 3-4-5 3-5-7	3-5-6	4-5-9 4-6-10 5-7-13	5-6-11	5-7-13				11-17-2 14-21-3
	ft Total Pressure, in. w.g.	3 Way 2 Way	2-3-5 3-4-5 3-5-7 .025	3-5-6 4-5-8 4-6-10 .042	4-5-9 4-6-10 5-7-13 .067	5-6-11 5-7-12 6-9-14 .097	5-7-13 5-8-14 7-11-17 .131	6-10-15 8-12-19 .169	8-12-19 10-15-26 .267	10-14-23 12-18-29 . 380	11-17-2 14-21-3 .520
	ft Total Pressure, in. w.g. Flow Rate, cfm	3 Way 2 Way	2-3-5 3-4-5 3-5-7 .025 210	3-5-6 4-5-8 4-6-10 .042 280	4-5-9 4-6-10 5-7-13 .067 345	5-6-11 5-7-12 6-9-14 .097 415	5-7-13 5-8-14 7-11-17 .131 485	6-10-15 8-12-19 .169 555	8-12-19 10-15-26 .267 695	10-14-23 12-18-29 .380 825	11-17-2 14-21-3 .520 975
10 Ø	ft Total Pressure, in. w.g.	3 Way 2 Way 1 Way	2-3-5 3-4-5 3-5-7 .025	3-5-6 4-5-8 4-6-10 .042	4-5-9 4-6-10 5-7-13 .067	5-6-11 5-7-12 6-9-14 .097	5-7-13 5-8-14 7-11-17 .131	6-10-15 8-12-19 .169	8-12-19 10-15-26 .267	10-14-23 12-18-29 . 380	11-17-2 14-21-3 .520 975 60
10 Ø	ft Total Pressure, in. w.g. Flow Rate, cfm NC Throw	3 Way 2 Way 1 Way 4 Way 3 Way	2-3-5 3-4-5 3-5-7 .025 210 17 3-4-8 3-4-8	3-5-6 4-5-8 4-6-10 .042 280 25 4-6-10 4-7-11	4-5-9 4-6-10 5-7-13 .067 345 31 6-8-12 6-8-13	5-6-11 5-7-12 6-9-14 .097 415 36 7-9-14 7-9-14 7-10-15	5-7-13 5-8-14 7-11-17 .131 485 40 7-11-17 8-11-19	6-10-15 8-12-19 .169 555 44 8-13-20 9-13-21	8-12-19 10-15-26 .267 695 50 10-15-24 11-17-26	10-14-23 12-18-29 .380 825 55 12-18-29 13-20-31	11-17-2 14-21-3 .520 975 60 14-21-3 15-22-3
10 Ø	ft Total Pressure, in. w.g. Flow Rate, cfm NC	3 Way 2 Way 1 Way 4 Way 3 Way 2 Way	2-3-5 3-4-5 3-5-7 .025 210 17 3-4-8 3-4-8 3-4-8 3-6-9	3-5-6 4-5-8 4-6-10 .042 280 25 4-6-10 4-7-11 4-8-12	4-5-9 4-6-10 5-7-13 .067 345 31 6-8-12 6-8-12 6-8-13 6-9-14	5-6-11 5-7-12 6-9-14 .097 415 36 7-9-14 7-9-14 7-10-15 8-11-18	5-7-13 5-8-14 7-11-17 .131 485 40 7-11-17 8-11-19 9-13-21	6-10-15 8-12-19 .169 555 44 8-13-20 9-13-21 10-14-23	8-12-19 10-15-26 .267 695 50 10-15-24 11-17-26 12-19-30	10-14-23 12-18-29 .380 825 55 12-18-29 13-20-31 14-22-35	11-17-2 14-21-3 .520 975 60 14-21-3 15-22-3 17-25-4
10 Ø	ft Total Pressure, in. w.g. Flow Rate, cfm NC Throw ft	3 Way 2 Way 1 Way 4 Way 3 Way	2-3-5 3-4-5 3-5-7 .025 210 17 3-4-8 3-4-8 3-4-8 3-4-8 3-4-9 4-7-11	3-5-6 4-5-8 4-6-10 .042 280 25 4-6-10 4-7-11 4-8-12 7-9-15	4-5-9 4-6-10 5-7-13 .067 345 31 6-8-12 6-8-12 6-8-13 6-9-14 8-11-19	5-6-11 5-7-12 6-9-14 .097 415 36 7-9-14 7-10-15 8-11-18 9-13-22	5-7-13 5-8-14 7-11-17 .131 485 40 7-11-17 8-11-19 9-13-21 11-17-26	6-10-15 8-12-19 .169 555 44 8-13-20 9-13-21 10-14-23 12-19-30	8-12-19 10-15-26 .267 695 50 10-15-24 11-17-26 12-19-30 15-23-37	10-14-23 12-18-29 .380 825 55 12-18-29 13-20-31 14-22-35 19-18-44	975 60 14-21-3 15-22-3 17-25-4 21-32-5
10 Ø	ft Total Pressure, in. w.g. Flow Rate, cfm NC Throw ft Total Pressure, in. w.g. Flow Rate, cfm	3 Way 2 Way 1 Way 4 Way 3 Way 2 Way	2-3-5 3-4-5 3-5-7 .025 210 17 3-4-8 3-4-8 3-4-8 3-6-9	3-5-6 4-5-8 4-6-10 .042 280 25 4-6-10 4-7-11 4-8-12 7-9-15 .030 280	4-5-9 4-6-10 5-7-13 .067 345 31 6-8-12 6-8-13 6-9-14 8-9-14 8-9-14 8-9-14 8-9-14 8-9-14 8-9-14 8-9-14 8-9-14 8-9-10 8-9-1	5-6-11 5-7-12 6-9-14 .097 415 36 7-9-14 7-10-15 8-11-18 9-13-22 .069 415	5-7-13 5-8-14 7-11-17 .131 485 40 7-11-17 8-11-19 9-13-21	6-10-15 8-12-19 .169 555 44 8-13-20 9-13-21 10-14-23	8-12-19 10-15-26 .267 695 50 10-15-24 11-17-26 12-19-30	10-14-23 12-18-29 .380 825 55 12-18-29 13-20-31 14-22-35	11-17-2 14-21-3 .520 975 60 14-21-3 15-22-3 17-25-4 21-32-5 .370 975
	ft Total Pressure, in. w.g. Flow Rate, cfm NC Throw ft Total Pressure, in. w.g.	3 Way 2 Way 1 Way 4 Way 3 Way 2 Way 1 Way	2-3-5 3-4-5 3-5-7 210 17 3-4-8 3-4-8 3-4-8 3-4-8 3-4-8 3-6-9 4-7-11 .018 210 	3-5-6 4-5-8 4-6-10 280 25 4-6-10 4-7-11 4-8-12 7-9-15 .030 280 21	4-5-9 4-6-10 5-7-13 .067 345 31 6-8-12 6-8-13 6-9-14 8-11-19 .048 345 27	5-6-11 5-7-12 6-9-14 .097 415 36 7-9-14 7-10-15 8-11-18 9-13-22 .069 415 32	5-7-13 5-8-14 7-11-17 .131 485 40 7-11-17 8-11-19 9-13-21 11-17-26 .093 485 36	6-10-15 8-12-19 .169 555 44 8-13-20 9-13-21 10-14-23 12-19-30 .120 555 40	8-12-19 10-15-26 267 695 50 10-15-24 11-17-26 12-19-30 15-23-37 .190 695 46	10-14-23 12-18-29 .380 825 55 12-18-29 13-20-31 14-22-35 19-18-44 270 825 51	11-17-2 14-21-3 .520 975 60 14-21-3 15-22-3 17-25-4 21-32-5 .370 975 56
10 Ø 10 x 10	ft Total Pressure, in. w.g. Flow Rate, cfm NC Throw ft Total Pressure, in. w.g. Flow Rate, cfm NC	3 Way 2 Way 1 Way 4 Way 3 Way 2 Way 1 Way 4 Way	2-3-5 3-4-5 3-5-7 .025 210 17 3-4-8 3-4-8 3-4-8 3-4-8 3-4-8 3-6-9 4-7-11 .018 210 3-4-7	3-5-6 4-5-8 4-6-10 .042 280 25 4-6-10 4-7-11 4-8-12 7-9-15 .030 280 21 4-5-9	4-5-9 4-6-10 5-7-13 .067 345 31 6-8-12 6-8-13 6-9-14 8-11-19 .048 345 27 5-7-11	5-6-11 5-7-12 6-9-14 .097 415 36 7-9-14 7-10-15 8-11-18 9-13-22 .069 415 32 6-8-13	5-7-13 5-8-14 7-11-17 .131 485 40 7-11-17 8-11-19 9-13-21 11-17-26 .093 485 36 6-10-15	6-10-15 8-12-19 .169 555 44 8-13-20 9-13-21 10-14-23 12-19-30 .120 555 40 7-11-18	8-12-19 10-15-26 267 695 50 10-15-24 11-17-26 12-19-30 15-23-37 .190 695 46 9-14-22	10-14-23 12-18-29 .380 825 55 12-18-29 13-20-31 14-22-35 19-18-44 .270 825 51 11-16-26	11-17-2 14-21-3 520 975 60 14-21-3 15-22-3 17-25-4 21-32-5 370 975 56 13-19-3
	ft Total Pressure, in. w.g. Flow Rate, cfm NC Throw ft Total Pressure, in. w.g. Flow Rate, cfm NC Throw	3 Way 2 Way 1 Way 4 Way 3 Way 2 Way 1 Way 4 Way 3 Way	2-3-5 3-4-5 3-5-7 .025 210 17 3-4-8 3-4-8 3-4-8 3-4-8 3-4-9 4-7-11 .018 210 3-4-7 3-4-7	3-5-6 4-5-8 4-6-10 .042 280 25 4-6-10 4-7-11 4-8-12 7-9-15 .030 280 21 4-5-9 4-6-10	4-5-9 4-6-10 5-7-13 .067 345 31 6-8-12 6-8-13 6-9-14 8-11-19 .048 345 27 5-7-11 5-7-12	5-6-11 5-7-12 6-9-14 .097 415 36 7-9-14 7-10-15 8-11-18 9-13-22 .069 415 32 6-8-13 6-9-14	5-7-13 5-8-14 7-11-17 .131 485 40 7-11-17 8-11-19 9-13-21 11-17-26 .093 485 36 6-10-15 7-10-17	6-10-15 8-12-19 .169 555 44 8-13-20 9-13-21 10-14-23 12-19-30 .120 555 40 7-11-18 8-12-19	8-12-19 10-15-26 267 695 50 10-15-24 11-17-26 12-19-30 15-23-37 .190 695 46 9-14-22 10-15-24	10-14-23 12-18-29 .380 825 55 12-18-29 13-20-31 14-22-35 19-18-44 270 825 51 11-16-26 12-18-28	11-17-2 14-21-3 520 975 60 14-21-3 15-22-3 17-25-4 21-25-4 21-25-4 21-25-4 21-25-4 21-370 975 56 13-19-3 14-20-3
	ft Total Pressure, in. w.g. Flow Rate, cfm NC Throw ft Total Pressure, in. w.g. Flow Rate, cfm NC	3 Way 2 Way 1 Way 4 Way 3 Way 2 Way 1 Way 4 Way	2-3-5 3-4-5 3-5-7 .025 210 17 3-4-8 3-4-8 3-4-8 3-4-8 3-4-8 3-6-9 4-7-11 .018 210 3-4-7	3-5-6 4-5-8 4-6-10 .042 280 25 4-6-10 4-7-11 4-8-12 7-9-15 .030 280 21 4-5-9	4-5-9 4-6-10 5-7-13 .067 345 31 6-8-12 6-8-13 6-9-14 8-11-19 .048 345 27 5-7-11	5-6-11 5-7-12 6-9-14 .097 415 36 7-9-14 7-10-15 8-11-18 9-13-22 .069 415 32 6-8-13	5-7-13 5-8-14 7-11-17 .131 485 40 7-11-17 8-11-19 9-13-21 11-17-26 .093 485 36 6-10-15	6-10-15 8-12-19 .169 555 44 8-13-20 9-13-21 10-14-23 12-19-30 .120 555 40 7-11-18	8-12-19 10-15-26 267 695 50 10-15-24 11-17-26 12-19-30 15-23-37 .190 695 46 9-14-22	10-14-23 12-18-29 .380 825 55 12-18-29 13-20-31 14-22-35 19-18-44 .270 825 51 11-16-26	11-17-2 14-21-3 .520 975 60 14-21-3 15-22-3 17-25-4 21-32-5 .370 975 56 13-19-3 14-20-3 15-23-3
	ft Total Pressure, in. w.g. Flow Rate, cfm NC Throw ft Total Pressure, in. w.g. Flow Rate, cfm NC Throw	3 Way 2 Way 1 Way 4 Way 3 Way 2 Way 1 Way 4 Way 3 Way 2 Way	2-3-5 3-4-5 3-5-7 .025 210 17 3-4-8 3-4-8 3-4-8 3-4-8 3-4-9 4-7-11 .018 210 3-4-7 3-4-7 3-4-7 3-5-8	3-5-6 4-5-8 4-6-10 .042 280 25 4-6-10 4-7-11 4-8-12 7-9-15 .030 280 21 4-5-9 4-6-10 4-7-11	4-5-9 4-6-10 5-7-13 .067 345 31 6-8-12 6-8-13 6-9-14 8-11-19 .048 345 27 5-7-11 5-7-12 5-8-13	5-6-11 5-7-12 6-9-14 .097 415 36 7-9-14 7-10-15 8-11-18 9-13-22 .069 415 32 6-8-13 6-9-14 7-10-16	5-7-13 5-8-14 7-11-17 .131 485 40 7-11-17 8-11-19 9-13-21 11-17-26 .093 485 36 6-10-15 7-10-17 8-12-19	6-10-15 8-12-19 .169 555 44 8-13-20 9-13-21 10-14-23 12-19-30 .120 555 40 7-11-18 8-12-19 9-13-21	8-12-19 10-15-26 .267 695 50 10-15-24 11-17-26 12-19-30 15-23-37 .190 695 46 9-14-22 10-15-24 11-17-27	10-14-23 12-18-29 .380 825 55 12-18-29 13-20-31 14-22-35 19-18-44 .270 825 51 11-16-26 12-18-28 13-20-32	11-17-2 14-21-3 .520 975 60 14-21-3 15-22-3 17-25-4 21-32-5 .370 975 56 13-19-3 14-20-3 15-23-3
	ft Total Pressure, in. w.g. Flow Rate, cfm NC Throw ft Total Pressure, in. w.g. Flow Rate, cfm NC Throw ft Total Pressure, in. w.g. Flow Rate, cfm	3 Way 2 Way 1 Way 4 Way 3 Way 2 Way 1 Way 4 Way 3 Way 2 Way	2-3-5 3-4-5 3-5-7 210 17 3-4-8 3-4-8 3-4-8 3-4-8 3-4-8 3-4-9 4-7-11 .018 210 3-4-7 3-4-7 3-4-7 3-4-7 3-5-8 4-6-10 .015 210	3-5-6 4-5-8 4-6-10 280 25 4-6-10 4-7-11 4-8-12 7-9-15 .030 280 21 4-5-9 4-6-10 4-7-11 6-8-14 .025 280	4-5-9 4-6-10 5-7-13 .067 345 31 6-8-12 6-8-13 6-9-14 8-11-19 .048 345 27 5-7-11 5-7-12 5-8-13 7-10-17 .040 345	5-6-11 5-7-12 6-9-14 .097 415 36 7-9-14 7-10-15 8-11-18 9-13-22 .069 415 32 6-8-13 6-9-14 7-10-16 8-12-20 .057 415	5-7-13 5-8-14 7-11-17 .131 485 40 7-11-17 8-11-19 9-13-21 11-17-26 .093 485 36 6-10-15 7-10-17 8-12-19 10-15-24 .078 485	6-10-15 8-12-19 .169 555 44 8-13-20 9-13-21 10-14-23 12-19-30 .120 555 40 7-11-18 8-12-19 9-13-21 11-17-27 .101 555 37	8-12-19 10-15-26 267 695 50 10-15-24 11-17-26 12-19-30 15-23-37 .190 695 46 9-14-22 10-15-24 11-17-27 14-21-34 .159 695	10-14-23 12-18-29 .380 825 55 12-18-29 13-20-31 14-22-35 19-18-44 .270 825 51 11-16-26 12-18-28 13-20-32 17-25-40 825	11-17-2 14-21-3 520 975 60 14-21-3 15-22-3 17-25-4 21-32-5 56 13-19-3 14-20-3 15-23-3 14-20-3 15-23-3 19-29-4 .310 975 53
10 x 10	ft Total Pressure, in. w.g. Flow Rate, cfm NC Throw ft Total Pressure, in. w.g. Flow Rate, cfm NC Throw ft Total Pressure, in. w.g. Flow Rate, cfm	3 Way 2 Way 1 Way 4 Way 3 Way 2 Way 1 Way 4 Way 3 Way 2 Way 1 Way	2-3-5 3-4-5 3-5-7 .025 210 17 3-4-8 3-4-8 3-4-8 3-4-8 3-4-8 3-4-7 3-4-7 3-4-7 3-4-7 3-4-7 3-5-8 4-6-10 .015 210 	3-5-6 4-5-8 4-6-10 .042 280 25 4-6-10 4-7-11 4-8-12 7-9-15 .030 280 21 4-5-9 4-6-10 4-7-11 6-8-14 .025 280 18	4-5-9 4-6-10 5-7-13 .067 345 31 6-8-12 6-8-13 6-9-14 8-11-19 .048 345 27 5-7-11 5-7-12 5-8-13 7-10-17 .040 345 24	5-6-11 5-7-12 6-9-14 .097 415 36 7-9-14 7-10-15 8-11-18 9-13-22 .069 415 32 6-8-13 6-9-14 7-10-16 8-12-20 .057 415 29	5-7-13 5-8-14 7-11-17 .131 485 40 7-11-17 8-11-19 9-13-21 11-17-26 .093 485 36 6-10-15 7-10-17 8-12-19 10-15-24 .078 485 33	6-10-15 8-12-19 .169 555 44 8-13-20 9-13-21 10-14-23 12-19-30 .120 555 40 7-11-18 8-12-19 9-13-21 11-17-27 .101 555	8-12-19 10-15-26 267 695 50 10-15-24 11-17-26 12-19-30 15-23-37 .190 695 46 9-14-22 10-15-24 11-17-27 14-21-34 .159 695 43	10-14-23 12-18-29 .380 825 55 12-18-29 13-20-31 14-22-35 19-18-44 .270 825 51 11-16-26 12-18-28 13-20-32 17-25-40 .226 825 48	11-17-2 14-21-3 .520 975 60 14-21-3 15-22-3 17-25-4 21-32-5 .370 975 56 13-19-3 14-20-3 15-23-3 15-23-3 19-29-4 .310 975

See Performance Notes Page C81.



Performance Data - 24 in. x 24 in. / 600 x 600 Module

	Total Pressure, in. w.g.		.027	.045	.071	.102	.138	.178	.282	.400	.546
	Flow Rate, cfm		75	100 25	125 30	150 35	175 39	200 43	250 49	300 54	350 58
5 Ø	Throw	4 Way 3 Way	2-2-3 2-3-3	2-3-4 2-3-5	3-3-6 3-3-6	3-4-7 3-4-7	3-5-8 3-5-8	3-6-9 4-6-10	4-7-11 5-8-12	5-8-13 6-9-13	7-10-16 7-10-17
	ft	2 Way 1 Way	2-3-3 2-3-4 3-3-5	3-3-6 3-4-7	3-5-0 3-4-7 3-5-8	3-5-8 4-7-10	4-6-10 5-8-12	4-7-11 6-8-13	6-8-13 7-11-17	7-10-16 8-13-20	8-12-19 9-14-24
	Total Pressure, in. w.g.	i way	.014	.024	.037	.053	.073	.094	.148	.211	.288
	Flow Rate, cfm NC		75	100 18	125 23	150 28	175 32	200 36	250 42	300 47	350 51
6 Ø	Throw	4 Way 3 Way	1-1-3 1-2-3	1-2-4 1-3-4	2-3-5 2-3-5	2-4-6 3-4-6	3-4-7 3-4-7	3-5-8 4-5-9	4-6-9 4-7-10	4-7-12 5-8-12	6-9-14 6-9-15
	ft	2 Way 1 Way	1-2-4 2-3-4	2-3-5 2-4-6	2-4-6 3-4-7	3-4-7 4-6-9	4-5-9 4-7-10	4-6-9 5-7-12	5-7-12 6-9-15	6-9-14 7-11-18	7-10-17 8-12-20
	Total Pressure, in. w.g. Flow Rate, cfm		.009 75	.016 100	.025 125	.036 150	.049 175	.063 200	.101 250	.143 300	.195 350
6 6	NC	4 14/	1-1-3	_	19 2-3-5	24	28 3-4-7	32 3-5-8	38	43	47
6 x 6	Throw	4 Way 3 Way	1-2-3	1-2-4 1-3-4	2-3-5	2-4-6 3-4-6	3-4-7	4-5-8	4-6-9 4-6-10	4-7-11 5-8-11	6-8-13 6-8-14
	ft	2 Way 1 Way	1-2-4 2-3-4	2-3-5 2-4-6	2-4-6 3-4-7	3-4-7 4-6-8	4-5-8 4-6-10	4-6-9 5-7-11	5-7-11 6-9-14	6-8-13 7-11-17	6-10-16 8-12-20
	Total Pressure, in. w.g. Flow Rate, cfm		.009 75	.015 100	.023 125	.033 150	.045 175	.058 200	.091 250	.130 300	.177 350
7Ø	NC	4 Way	1-1-3	1-2-3	17 2-3-5	22 2-3-6	26 3-4-7	30 3-5-8	36 3-6-9	41 4-7-11	45 6-8-13
7.0	Throw ft	3 Way 2 Way	1-2-3 1-2-3	1-3-4 2-3-5	2-3-5 2-3-6	3-3-6 3-4-7	3-4-7 3-5-8	3-5-8 3-6-9	4-6-10 5-7-11	5-8-11 6-8-13	6-8-14 6-10-16
		1 Way	2-3-4	2-3-6	3-4-7	3-6-8	4-6-10	5-7-11	6-9-14	7-10-17	8-12-19
	Total Pressure, in. w.g. Flow Rate, cfm		.018 135	.031 180	.048 220	.069 265	.094 310	.122 355	.192 445	.275 535	.377 620
8 Ø	NC	4 Way	2-2-4	22 3-3-6	28 3-5-8	34 3-6-9	38 4-7-11	41 5-8-12	47 6-9-15	53 8-11-18	57 9-13-21
	Throw ft	3 Way 2 Way	2-3-5 3-3-5	3-4-6 3-4-8	3-5-9 3-6-9	4-6-10 4-7-11	5-7-12 5-8-13	5-8-15 6-9-15	7-10-16 8-11-18	8-12-20 9-14-22	9-14-22 10-16-26
	Total Pressure, in. w.g.	1 Way	3-4-7 .013	3-6-9 .022	5-7-12 .034	6-9-14 .049	7-10-16 .067	8-11-18 .087	9-15-23 . 137	10-17-28 . 196	13-20-32 .268
	Flow Rate, cfm		135	180	220 23	265 29	310 33	355	445	535 48	620 52
8 x 8		4 Way	2-2-4	2-3-6	3-5-7	3-6-9	4-7-11	5-7-11	6-9-15	7-11-17	8-12-20
	Throw ft	3 Way 2 Way	2-2-5 2-3-5	2-4-6 3-4-7	3-5-8 3-6-9	4-6-10 4-7-11	5-7-11 5-7-12	5-7-12 6-9-14	7-10-16 7-11-17	7-11-19 9-13-21	8-13-21 10-16-25
	Total Pressure, in. w.g.	1 Way	2-4-7 .023	3-6-9 .038	5-7-11 .061	6-8-13 .087	7-9-16 . 118	7-11-17 .152	9-14-22 . 241	11-16-26 . 342	12-19-30 . 470
	Flow Rate, cfm NC		210 17	280 25	345 31	415 36	485 40	555 44	695 50	825 55	975 60
10 Ø	Throw	4 Way 3 Way	3-4-7 3-4-7	4-5-9 4-6-10	5-7-11 5-7-12	6-8-13 6-9-14	6-10-15 7-10-16	7-11-17 8-12-18	9-14-21 10-15-23	11-16-25 12-17-27	13-18-29 14-19-32
	ft	2 Way 1 Way	3-5-8 4-6-10	4-7-11 6-8-14	5-8-13 7-10-16	7-10-16 8-12-19	8-12-18 10-15-23	9-13-20 11-16-26	11-16-26 14-20-33	13-19-31 16-24-39	15-22-36 18-28-46
	Total Pressure, in. w.g		.016 210	.026 280	.042 345	.061 415	.082 485	.106	.169 695	.240 825	.329 975
	Flow Rate, cfm NC			21	27	32	36	40	46	51	56
10 x 10	Throw	4 Way 3 Way	3-4-6 3-4-6	4-5-8 4-5-9	5-6-10 5-6-11	5-7-12 5-8-13	5-9-14 6-9-15	6-10-16 7-10-17	8-13-20 9-14-22	10-15-24 11-16-25	12-17-27 13-18-30
	ft	2 Way 1 Way	3-5-7 4-5-9	4-6-9 5-7-13	5-7-12 6-9-15	6-9-15 7-11-18	7-11-17 9-13-22	8-12-19 10-15-25	10-15-25 13-19-31	12-18-29 15-23-36	14-21-34 17-26-43
	Total Pressure, in. w.g. Flow Rate, cfm		.013 210	.021 280	.035 345	.051 415	.069 485	.089 555	.141 695	.200 825	.274 975
12Ø	NC	4 Way	3-4-6	18 4-4-8	24 4-6-10	29 5-7-11	33 5-9-13	37 6-10-16	43 8-12-19	48 10-14-23	53 11-17-26
12.0	Throw ft	3 Way 2 Way	3-4-0 3-4-6 3-4-7	4-5-9	4-0-10 4-7-11 4-7-11	5-8-12 6-9-14	6-9-15 7-11-17	7-11-17 8-11-18	9-13-21 10-15-24	11-16-25	12-18-29
		2 way 1 Way	4-5-9	4-6-10 5-7-12	6-9-15	7-11-18	9-13-21	10-15-24	12-18-30	11-18-28 15-22-35	17-26-41
	Total Pressure, in. w.g. Flow Rate, cfm		.019 300	.032 400	.051 500	.074 600	.099 700	.128 800	.200 1000	.290 1200	.390 1400
12 x 12	NC	4 Way	16 3-5-8	24 4-7-11	30 6-8-14	35 7-10-16	39 8-12-19	43 9-13-22	49 11-17-27	54 13-20-32	58 15-23-38
	Throw ft	3 Way 2 Way	4-5-8 4-6-10	5-7-12 5-8-13	6-9-15 7-10-16	7-11-17 8-12-19	8-12-19 8-12-20 9-14-23	9-14-23 10-16-26	12-18-28 13-20-32	14-21-34 16-24-38	15-23-38 16-25-39 18-28-45
		1 Way	5-8-12	7-10-16	8-13-20	10-15-25	12-18-29	13-20-32	17-25-40	20-30-49	23-35-57
	Total Pressure, in. w.g. Flow Rate, cfm		.017 300	.029 400	.047 500	.068 600	.091 700	.118 800	.184 1000	.267 1200	.359 1400
14 Ø	NC	4 Way	16 3-5-8	22 4-7-11	28 6-8-14	33 7-10-16	37 8-12-19	41 9-13-22	47 11-17-27	52 13-20-32	56 15-23-28
	Throw ft	3 Way 2 Way	4-5-8 4-6-10	5-7-12 5-8-13	6-9-15 7-10-16	7-11-17 8-12-19	8-12-20 9-14-23 12-18-29	9-14-23	12-18-28	14-21-34 16-24-38 20-30-49	16-25-39 18-28-45
	-	1 Way	5-8-12	7-10-16	8-13-20	10-15-25	12-18-29	10-16-26 13-20-32	13-20-32 17-25-40	20-30-49	23-35-57

See Performance Notes Page C81.

CEILING DIFFUSERS

for tal Pressure, in. w.g. Flow Rate, cfm .026 .75 .004 100 .025 150 .035 150 .133 175 .175 200 5 Ø 175 200 .35 .39 .43 5 Ø 1100 125 150 .175 200 7 MC 2-2:3 2:3:4 .3:3:6 .3:4:7 .3:5:8 .4:6:10 7 Mo 3 Way 2:3:4 .3:3:6 .3:4:7 .3:5:8 .4:6:10 7 for tal Pressure, in. w.g. Flow Rate, cfm .013 .022 .035 .050 .068 .088 6 Ø 1100 125 150 .175 .200 .050 .068 .088 6 Ø 111 1:1:4 1:3:5 .3:4:6 .3:5:7 .4:5:9 .5:6:11 .5:7:12 7 for tal Pressure, in. w.g. ft 11:3:4 1:3:4 1:3:4 .3:5:7 .4:5:9 .5:6:11 .5:7:12 .0:5:8 6 Ø NC - - .0:3 .0:4:5 .0:5:8 .0:5:8 .0:5:8 <t< th=""><th>.271 250 49 4.7-11 5-8-12 6-8-13 7-11-17 .139 250 42 5-7-12 5-8-13 6-9-14 7-12-18 .091 250 38 4-6-9 4-6-10 5-7-11 6-9-14 .089 250 36 3-6-9 4-6-10 5-7-11 6-9-14 .180 445 47 6-9-15</th><th></th><th>.525 350 58 7-10-16 7-10-17 8-12-19 9-14-24 .270 350 51 7-11-17 7-11-18 8-13-21 10-15-25 .177 350 47 6-8-13 6-8-13 6-8-13 6-8-13 6-8-13 6-8-13 6-8-14 6-10-16 8-12-19</th></t<>	.271 250 49 4.7-11 5-8-12 6-8-13 7-11-17 .139 250 42 5-7-12 5-8-13 6-9-14 7-12-18 .091 250 38 4-6-9 4-6-10 5-7-11 6-9-14 .089 250 36 3-6-9 4-6-10 5-7-11 6-9-14 .180 445 47 6-9-15		.525 350 58 7-10-16 7-10-17 8-12-19 9-14-24 .270 350 51 7-11-17 7-11-18 8-13-21 10-15-25 .177 350 47 6-8-13 6-8-13 6-8-13 6-8-13 6-8-13 6-8-13 6-8-14 6-10-16 8-12-19
5 Ø	4-7-11 5-8-12 6-8-13 7-11-17 .139 250 42 5-7-12 5-8-13 6-9-14 5-9-14 5-7-12 250 38 4-6-9 4-6-10 5-7-11 6-9-14 .089 250 36 3-6-9 4-6-10 5-7-11 6-9-14 .180 445 47	5-8-13 6-9-13 7-10-16 8-13-20 .198 300 47 5-9-14 6-10-14 7-11-17 9-14-22 .129 300 43 4-7-11 5-8-11 6-10-13 7-11-17 .127 300 41 4-7-11 5-8-13 7-10-17 .258	7-10-16 7-10-17 8-12-19 9-14-24 .270 350 51 7-11-17 7-11-18 8-13-21 10-15-25 .177 350 47 6-8-13 6-8-13 6-8-14 6-10-16 8-8-14 6-8-13 6-8-14 6-8-14 6-10-16
ft 2 Way 2-3-4 3-3-6 3-4-7 3-5-8 4-6-10 4-7-11 1 Way 3-3-5 3-4-7 3-5-8 4-7-10 5-8-12 6-8-13 6 Ø Total Pressure, in. w.g. Flow Rate, cfm .015 100 125 150 175 200 NC - 18 23 28 32 36 6 Ø 4 Way 1-1-4 1-3-5 3-4-6 3-5-7 4-5-9 4-6-10 Throw 3 Way 1-3-4 1-4-5 3-4-6 3-5-7 4-5-9 5-6-11 f Throw 3 Way 1-3-4 1-4-5 3-4-6 3-5-7 4-5-9 5-6-11 7 Ø Total Pressure, in. w.g. .009 .015 .023 .033 .045 .058 6 x 6 Throw Rate, cfm 75 100 125 150 175 .200 n/2 Total Pressure, in. w.g. .009 .015 .023 .033 .044 .5-8 <	6-8-13 7-11-17 .139 250 42 5-7-12 5-8-13 6-9-14 7-12-18 .091 250 38 4-6-9 4-6-10 5-7-11 6-9-14 .089 250 36 3-6-9 4-6-10 5-7-11 6-9-14 .180 445 47	7-10-16 8-13-20 .198 300 47 5-9-14 6-10-14 7-11-17 9-14-22 .129 300 43 4-7-11 5-8-11 6-10-13 7-11-17 .127 300 41 4-7-11 5-8-13 6-8-13 7-10-17 .258	8-12-19 9-14-24 .270 350 51 7-11-17 7-11-18 10-15-25 .177 350 47 6-8-13 6-8-13 6-8-14 6-10-16 8-12-20 .174 350 45 6-8-13 6-8-14 6-8-14 6-10-16
6 Ø Total Pressure, in. w.g. Flow Rate, cfm .013 75 .022 100 .035 125 .050 150 .068 175 .088 200 6 Ø MC 18 23 28 32 36 75 100 125 150 175 200 MC 18 23 28 32 36 76 100 125 3.4-6 3.5-7 4.5-9 5.6-11 5.7-12 100 1.3-5 3.4-6 3.5-7 4.5-9 5.6-11 5.7-12 100 1.25 150 175 200 5.7 4.5-9 5.6-11 5.7-12 100 125 150 175 200 5.7 100 125 150 175 200 NC -0 19 24 28 32 32 6 x 6 Mate, cfm 75 100 125 150 175 200 NC - 1-2.4 2.3-5 <td>.139 250 42 5-7-12 5-8-13 6-9-14 7-12-18 .091 250 38 4-6-9 4-6-10 5-7-11 6-9-14 .089 250 36 3-6-9 4-6-10 5-7-11 6-9-14 .180 445 47</td> <td>.198 300 47 5-9-14 6-10-14 7-11-17 9-14-22 .129 300 43 4-7-11 5-8-11 6-10-13 7-11-17 .127 300 41 4-7-11 5-8-13 7-10-17 258</td> <td>.270 350 51 7-11-17 7-11-18 8-13-21 10-15-25 .177 350 47 6-8-13 6-8-14 6-10-16 8-12-20 .174 .350 45 6-8-13 6-8-13 6-8-14 6-10-16</td>	.139 250 42 5-7-12 5-8-13 6-9-14 7-12-18 .091 250 38 4-6-9 4-6-10 5-7-11 6-9-14 .089 250 36 3-6-9 4-6-10 5-7-11 6-9-14 .180 445 47	.198 300 47 5-9-14 6-10-14 7-11-17 9-14-22 .129 300 43 4-7-11 5-8-11 6-10-13 7-11-17 .127 300 41 4-7-11 5-8-13 7-10-17 258	.270 350 51 7-11-17 7-11-18 8-13-21 10-15-25 .177 350 47 6-8-13 6-8-14 6-10-16 8-12-20 .174 .350 45 6-8-13 6-8-13 6-8-14 6-10-16
NC — 18 23 28 32 36 Throw ft 4 Way 1 - 1-4 1-1-4 1-3-5 3-4-6 3-5-7 4-5-9 4-6-10 May ft 3 Way 1 - 3-4 1-3-4 1-4-5 3-4-6 3-5-7 4-5-9 5-6-11 May ft 1 Way 3-4-5 3-4-6 3-5-7 4-5-9 5-6-11 5-7-12 May 1-3-4 1-4-5 3-4-6 3-5-7 4-5-9 5-6-11 5-7-12 May 3-4-5 3-5-7 4-5-9 5-7-11 5-8-13 6-9-14 May 1-0 125 150 175 200 00 00 015 023 033 045 058 May 1-1-3 1-2-4 2-3-5 2-4-6 3-4-7 3-5-8 3-6-9 NC — 1 12-3 1-3-4 2-3-5 3-4-6 3-4-7 4-5-8 Way 1-2-3 1-2-3 2-3-5 3-4-6 3-4-7 3-5-8<	42 5-7-12 5-8-13 6-9-14 7-12-18 .091 250 38 4-6-9 4-6-10 5-7-11 6-9-14 .089 250 36 3-6-9 3-6-9 4-6-10 5-7-11 6-9-14 .180 445 47	47 5-9-14 6-10-14 7-11-17 9-14-22 .129 300 43 4-7-11 5-8-11 6-10-13 7-11-17 .127 300 41 4-7-11 5-8-13 6-8-13 7-10-17 .258	51 7-11-17 7-11-18 8-13-21 10-15-25 .177 350 47 6-8-13 6-8-14 6-10-16 8-12-20 .174 350 45 6-8-13 6-8-13 6-8-14 6-10-16
Throw ft 3 Way 2 Way 1 - 3 - 5 1 Way 1 - 3 - 4 - 3 - 5 - 3 - 5 - 3 - 5 - 3 - 5 - 4 - 59 3 - 6 - 7 - 4 - 5 - 9 - 5 - 7 - 11 4 - 5 - 9 - 5 - 7 - 12 - 5 - 7 - 12 5 - 6 - 1 1 - 5 - 7 - 12 6 x 6 Total Pressure, in. w.g. Flow Rate, cfm NC 009 0.015 0.023 0.033 - 150 0.45 - 5 - 7 - 12 0.58 - 5 - 7 - 12 6 x 6 Throw NC 4 Way 1 - 1 - 3 1 - 2 - 4 2 - 3 - 5 - 3 - 4 - 6 3 - 0 - 4 3 - 0 - 4 3 - 0 - 4 3 - 2 - 4 3 - 4 - 7 3 - 5 - 8 - 3 - 4 - 7 3 - 6 - 3 3 - 2 - 4 3 - 4 - 7 3 - 5 - 8 - 3 - 4 - 7 3 - 6 - 3 3 - 4 - 7 3 - 5 - 8 - 3 - 4 - 7 3 - 6 - 3 3 - 4 - 7 3 - 6 - 3 3 - 4 - 7 3 - 6 - 3 3 - 7 - 1 3 - 7 3 - 3 - 4 3 - 4 - 7 3 - 6 - 3 3 - 4 - 7 3 - 6 - 3 3 - 4 - 7 3 - 6 - 3 3 - 3 - 7 3 - 5 - 8 3 - 7 3 - 3 - 7 3 - 3 - 7 	5-8-13 6-9-14 7-12-18 .091 250 38 4-6-9 4-6-10 5-7-11 6-9-14 .089 250 36 3-6-9 4-6-10 5-7-11 6-9-14 .089 250 36 3-6-9 4-6-10 5-7-11 6-9-14 .089 250 36 4-6-10 5-7-11 6-9-14 .089 250 36 4-6-10 5-7-11 6-9-14 .089 250 36 4-6-10 5-7-11 6-9-14 .089 250 36 4-6-10 5-7-11 6-9-14 .089 250 36 4-6-10 5-7-11 6-9-14 .089 250 36 3-6-9 4-6-10 5-7-11 6-9-14 .089 250 36 3-6-9 4-6-10 5-7-11 6-9-14 .089 250 36 3-6-9 4-6-10 5-7-11 6-9-14 .089 250 36 3-6-9 4-6-10 5-7-11 6-9-14 .089 250 3-6-9 4-6-10 5-7-11 6-9-14 .089 250 3-6-9 4-6-10 5-7-11 6-9-14 .089 250 3-6-9 4-6-10 5-7-11 6-9-14 .089 250 3-6-9 4-6-10 5-7-11 6-9-14 .089 250 3-6-9 4-6-10 5-7-11 6-9-14 .089 250 3-6-9 4-6-10 5-7-11 6-9-14 .089 250 3-6-9 4-6-10 5-7-11 6-9-14 .089 4-6-9 .089 250 3-6-9 4-7 .089 250 3-7-11 6-9-14 .089 245 475 475 475 475 475 475 475 4	6-10-14 7-11-17 9-14-22 .129 300 43 4-7-11 5-8-11 6-10-13 7-11-17 .127 300 41 4-7-11 5-8-11 6-8-13 7-10-17 .258	7-11-18 8-13-21 10-15-25 .177 350 47 6-8-13 6-8-14 6-10-16 8-12-20 .174 .350 45 6-8-13 6-8-14 6-8-14 6-10-16
1 Way 3:4-5 3:5-7 4:5-9 5-7-11 5-8-13 6:9-14 Flow Rate, cfm NC 75 100 125 150 175 200 6 x 6 4 Way 1:1-3 1:2-4 2:3-5 2:4-6 3:4-7 3:5-8 7 Ø 4 Way 1:1-3 1:2-4 2:3-5 2:4-6 3:4-7 4:5-8 7 Ø 1 Way 2:3-4 2:3-5 2:4-6 3:4-7 4:5-8 7 Ø 1 Way 2:3-4 2:3-5 2:4-6 3:4-7 4:5-8 7 Ø 1 Way 2:3-4 2:3-5 2:4-6 3:4-7 4:5-8 7 Ø 1 Way 2:3-4 2:4-6 3:4-7 4:5-8 4:6-9 7 Ø 1 Way 2:3-4 2:4-6 3:4-7 4:5-8 4:6-9 7 Ø 100 125 1:50 175 200 7 75 100 125 1:50 175 200 70 1:1:3 1:2:3	6-9-14 7-12-18 .091 250 38 4-6-9 4-6-10 5-7-11 6-9-14 .089 250 36 3-6-9 4-6-10 5-7-11 6-9-14 .180 445 47	7-11-17 9-14-22 .129 300 43 4-7-11 5-8-11 6-10-13 7-11-17 .127 300 41 4-7-11 5-8-13 7-10-17 258	8-13-21 10-15-25 .177 350 47 6-8-13 6-8-14 6-10-16 8-12-20 .174 350 45 6-8-13 6-8-14 6-8-13 6-8-14 6-10-16
5 x 6 Total Pressure, in. w.g. Flow Rate, cfm NC .009 75 .015 100 .023 125 .033 150 .045 175 .058 200 6 x 6 4 Way 1-1-3 1-2-4 2-3-5 2-4-6 3-4-7 3-5-8 7 Ø 100 125 150 175 200 7 Ø 100 125 24 28 32 Throw a Way 1-1-3 1-2-4 2-3-5 2-4-6 3-4-7 3-5-8 7 Ø 100 125 23-6 3-4-7 4-5-8 4-6-9 Total Pressure, in. w.g. .009 .015 .023 .033 .044 .057 Flow Rate, cfm 75 100 125 150 175 200 NC - 12 17 22 26 30 Throw Rate, cfm 3 Way 1-1-3 1-2-3 2-3-5 2-3-6 3-4-7 3-5-8 NC - 12 17 22 26 <t< td=""><td>.091 250 38 4-6-9 4-6-10 5-7-11 6-9-14 .089 250 36 3-6-9 4-6-10 5-7-11 6-9-14 .180 445 47</td><td>.129 300 43 4-7-11 5-8-11 6-10-13 7-11-17 .127 300 41 4-7-11 5-8-11 6-8-13 7-10-17 .258</td><td>.177 350 47 6.8-13 6-8-14 6-10-16 8-12-20 .174 350 45 6-8-13 6-8-13 6-8-14 6-10-16</td></t<>	.091 250 38 4-6-9 4-6-10 5-7-11 6-9-14 .089 250 36 3-6-9 4-6-10 5-7-11 6-9-14 .180 445 47	.129 300 43 4-7-11 5-8-11 6-10-13 7-11-17 .127 300 41 4-7-11 5-8-11 6-8-13 7-10-17 .258	.177 350 47 6.8-13 6-8-14 6-10-16 8-12-20 .174 350 45 6-8-13 6-8-13 6-8-14 6-10-16
NC 19 24 28 32 6 x 6 Throw ft 4 Way 3 Way ft 1.1-3 1.2-3 1.2-4 1.3-4 2.3-5 2.3-6 3.4-6 3.4-7 3.4-7 4.5-8 3.4-7 4.5-8 4.5-8 4.6-9 7 Ø Total Pressure, in. w.g. Flow Rate, cfm NC .009 75 .015 .023 1.3-4 .033 2.3-5 .044 4.6-10 .057 5.7-11 7 Ø Total Pressure, in. w.g. Flow Rate, cfm NC .009 75 .015 100 .023 1.25 .033 1.044 .057 2.00 7 M 22 26 .009 .015 .023 1.3-4 .033 2.3-5 .044 .057 2.00 7 M 20 .017 .023 .033 1.3-4 .044 .057 2.3-6 .047 .35-8 7 Ø .017 .023 .033 .044 .057 2.00 .017 .023 .033 .044 .057 2.00 .017 .023 .033 .044 .057 2.06 .057 .017 .023 .033 .044 .057 .058 .058 .058 .057 .058 .057 .	38 4-6-9 5-7-11 6-9-14 .089 250 36 3-6-9 4-6-10 5-7-11 6-9-14 .180 445 47	43 4-7-11 5-8-11 6-10-13 7-11-17 .127 300 41 4-7-11 5-8-11 6-8-13 7-10-17 .258	47 6-8-13 6-8-14 6-10-16 8-12-20 .174 350 45 6-8-13 6-8-13 6-8-14 6-10-16
Throw ft 3 Way 2 Way 1-2-3 1-2-4 1-3-4 2-3-5 2-3-5 2-3-6 3-4-6 3-4-7 3-4-7 4-5-8 4-5-8 4-6-10 1 Way 1-2-4 2-3-5 2-3-6 3-4-7 4-5-8 4-6-9 1 Way 2-3-4 2-4-6 3-4-7 4-6-8 4-6-10 5-7-11 Total Pressure, in. w.g. Flow Rate, cfm .009 .015 .023 .033 .044 .057 NC - 12 17 22 26 30 30 7 Ø MC - 12-3 1-2-3 2-3-5 3-3-6 3-4-7 3-5-8 ft 3 Way 1-2-3 1-3-4 2-3-5 3-3-6 3-4-7 3-5-8 ft 2 Way 1-2-3 2-3-5 2-3-6 3-4-7 3-5-8 3-6-9 ft 2 Way 1-2-3 2-3-5 2-3-6 3-4-7 3-5-8 3-6-9 ft 2 Way 1-2-3 2-3-5 3-4-7 3-5-8 3-6-9 ft 2 Way	4-6-10 5-7-11 6-9-14 .089 250 3-6-9 4-6-10 5-7-11 6-9-14 .180 445 47	5-8-11 6-10-13 7-11-17 .127 300 41 4-7-11 5-8-11 6-8-13 7-10-17 .258	6-8-14 6-10-16 8-12-20 .174 350 45 6-8-13 6-8-14 6-10-16
1 Way 2-3-4 2-4-6 3-4-7 4-6-8 4-6-10 5-7-11 Total Pressure, in. w.g. Flow Rate, cfm .009 .015 .023 .033 .044 .057 70 100 125 150 175 200 7 4 Way 1-1-3 1-2-3 2-3-5 2-3-6 3-4-7 3-5-8 7 b 100 125 150 175 200 .017 .023 .033 .044 .057 70 - 12 17 22 26 30 .017 .023 .033 .044 .057 NC - 12 17 22 26 30 .017 .023 .03-6 .04-7 .05-8 .05-8 .05-8 .05-8 .05-8 .05-9 .04-9 .04-9 .045 .065 .088 .115	6-9-14 .089 250 36 3-6-9 4-6-10 5-7-11 6-9-14 .180 445 47	7-11-17 .127 300 41 4-7-11 5-8-11 6-8-13 7-10-17 .258	8-12-20 .174 350 45 6-8-13 6-8-14 6-10-16
Flow Rate, cfm 75 100 125 150 175 200 7 Ø 12 17 22 26 30 Throw ft 4 Way 1-1-3 1-2-3 2-3-5 2-3-6 3-4-7 3-5-8 100 12 17 22 26 30 30 7 Ø Throw ft 3 Way 1-2-3 1-3-4 2-3-5 2-3-6 3-4-7 3-5-8 1 Way 1-2-3 2-3-5 2-3-6 3-4-7 3-5-8 3-6-9 1 Way 2-3-4 2-3-6 3-4-7 3-5-8 3-6-9 1 Way 2-3-4 2-3-6 3-4-7 3-5-8 3-6-9 1 Way 2-3-4 2-3-6 3-4-7 3-6-8 4-6-10 5-7-11	250 36 3-6-9 4-6-10 5-7-11 6-9-14 .180 445 47	300 41 4-7-11 5-8-11 6-8-13 7-10-17 .258	350 45 6-8-13 6-8-14 6-10-16
NC 12 17 22 26 30 7 Ø 4 Way 1-1-3 1-2-3 2-3-5 2-3-6 34-7 3-5-8 Throw ft 3 Way 1-2-3 1-3-4 2-3-5 3-3-6 3-4-7 3-5-8 Way 1-2-3 1-3-4 2-3-5 3-3-6 3-4-7 3-5-8 1 Way 2-3-4 2-3-6 3-4-7 3-5-8 3-6-9 3-6-9 1 Way 2-3-4 2-3-6 3-4-7 3-6-8 4-6-10 5-7-11 Total Pressure, in. w.g. .017 .029 .045 .065 .088 .115	3-6-9 4-6-10 5-7-11 6-9-14 .180 445 47	4-7-11 5-8-11 6-8-13 7-10-17 .258	6-8-13 6-8-14 6-10-16
Throw 3 Way 1-2-3 1-3-4 2-3-5 3-3-6 3-4-7 3-5-8 ft 2 Way 1-2-3 2-3-5 2-3-6 3-4-7 3-5-8 3-6-9 tway 2-3-4 2-3-6 3-4-7 3-6-8 4-6-10 5-7-11 Total Pressure, in. w.g. .017 .029 .045 .065 .088 .115	4-6-10 5-7-11 6-9-14 .180 445 47	5-8-11 6-8-13 7-10-17 .258	6-8-14 6-10-16
<u>1 Way</u> 2-3-4 2-3-6 3-4-7 3-6-8 4-6-10 5-7-11 Total Pressure, in. w.g	6-9-14 .180 445 47	7-10-17 .258	8_17_10
	445 47		
		535	.354 620
8 Ø <u>- 22 28 34 38 41</u> 8 J <u>4 Way</u> 2-3-4 3-3-6 3-5-8 3-6-9 4-7-11 5-8-12	h-9-15	53 8-11-18	57 9-13-22
Throw 3 Way 2-3-5 3-4-6 3-5-9 4-6-10 5-7-12 5-8-13 ft 2 Way 3-3-5 3-4-8 3-6-9 4-7-11 5-8-13 6-9-15	7-10-16 8-11-18	8-12-20 9-14-22	9-14-22 10-16-26
1 Way 3-4-7 3-6-9 5-7-12 6-9-14 7-10-16 8-11-18	9-15-23 .123	11-17-2 .176	13-20-32 .241
Total Pressure, in. w.g012 .019 .031 .045 .060 .078 Flow Rate, cfm 135 180 220 265 310 355 NC — 17 23 29 33 36	.125 445 42	535 48	.241 620 52
8x8 4Way 2-2-4 2-3-6 3-5-7 3-6-9 4-7-11 5-7-11	6-9-15	7-11-17	8-12-20
Throw 3 Way 2-2-5 2-4-6 3-5-8 4-6-9 5-7-11 5-7-12 ft 2 Way 2-3-5 3-4-7 3-6-9 4-7-11 5-7-12 6-9-14	7-10-16 7-11-17	7-11-19 9-13-21	8-13-21 10-16-25
1 Way 2-4-7 3-6-9 5-7-11 6-8-13 7-10-16 7-11-17 Total Pressure, in. w.g. .021 .034 .055 .078 .106 .137	9-14-22 .216	11-16-26 .308	12-19-30 .422
Flow Rate, cfm 210 280 345 415 485 555 NC 17 25 31 36 40 44	695 50	825 55	975 60
10 Ø 4 Way 3-4-7 4-5-9 5-7-11 6-8-13 6-10-15 7-11-17	9-14-21	11-16-25	13-18-29 14-19-32
ft 2 Waý 3-5-8 4-7-11 5-8-13 7-10-16 8-12-18 9-13-20	10-15-23 11-16-26 14-20-33	12-17-27 13-19-31	14-19-32 14-19-3 18-28-46
Total Pressure, in. w.g014 .024 .038 .055 .073 .095	.150	16-24-39 . 213	.292
Flow Rate, cfm 210 280 345 415 485 555 NC - 21 27 32 36 40	695 46	825 51	975 56
10 x 10 4 Way 3-4-6 4-5-8 5-6-10 5-7-12 5-9-14 6-10-16 Throw 3 Way 3-4-6 4-5-9 5-6-11 5-8-13 6-9-15 7-11-17	8-13-20 9-13-22	10-15-24 11-16-25	12-17-27 13-18-30
ft 2 Way 3-5-7 4-6-9 5-7-12 6-9-15 7-11-17 8-12-19 1 Way 4-5-9 5-7-13 6-9-15 7-11-18 9-14-22 10-15-25	9-13-22 10-15-25 13-19-31	12-18-29 15-23-36	14-21-34 17-26-43
Total Pressure, in. w.g. .012 .019 .030 .043 .058 .075 Flow Rate, cfm 210 280 345 415 485 555	.119 695	.170 825	.233 975
<u>NC — 18 24 29 33 37</u>	43	48	53
120 4 Way 3-4-6 4-4-8 4-6-10 5-7-11 5-9-13 6-10-16 Throw 3 Way 3-4-6 4-5-9 4-6-11 5-8-12 6-9-15 7-11-17 ft 2 Way 3-4-7 4-6-10 4-7-11 6-9-14 7-11-17 8-11-18	8-12-19 9-13-21 10-15-24	10-14-23 11-16-25 11-18-28	11-17-26 12-18-29
ft 2 Way 3-4-7 4-6-10 4-7-11 6-9-14 7-11-17 8-11-18 1 Way 4-5-9 5-7-12 6-9-15 7-11-18 9-13-21 10-15-24	10-15-24 12-18-30	11-18-28 15-22-35	12-18-29 13-20-33 17-26-41
Total Pressure, in. w.g016 .027 .049 .062 .083 .107 Flow Rate, cfm	.168 1000	.243 1200	.327 1400
NC 16 24 30 35 39 43	49 11-17-27	54 13-20-32	58
Throw 3 Way 4-5-8 5-7-12 6-9-15 7-11-17 8-12-20 9-14-23	12-18-28 13-20-32	13-20-32 14-21-34 16-24-38	15-23-38 16-25-39 18-28-45
1 Way 5-8-12 7-10-16 8-13-20 10-15-25 12-18-29 13-20-32	17-25-40	20-30-49	23-35-57
Total Pressure, in. w.g014 .024 .038 .055 .073 .095 Flow Rate, cfm	.150 1000	.213 1200	.292 1400
NC — 22 28 33 37 41	47 11-17-27	52 13-20-32	56
14Ø 4 Way 3-5-8 4-7-11 6-8-14 7-10-16 8-12-19 9-13-22 Throw 3 Way 4-5-8 5-7-12 6-9-15 7-11-17 8-12-20 9-14-23 ft 2 Way 4-6-10 5-8-13 7-10-16 8-12-19 9-14-23 10-16-26 Way 5-9-10 7-10-10 8-12-19 9-14-23 10-16-26	12-18-28 13-20-32	14-21-34 16-24-38	15-23-38 16-25-39 18-28-45
1 Way 5-8-12 7-10-16 8-13-20 10-15-25 12-18-29 13-20-32	17-25-40	20-30-49	23-35-57

See Performance Notes Page C81.

Perforated Diffusers PDR Series

Architectural Quality - Return

Product Information

Models

Architectural Perforated Face Matching Return

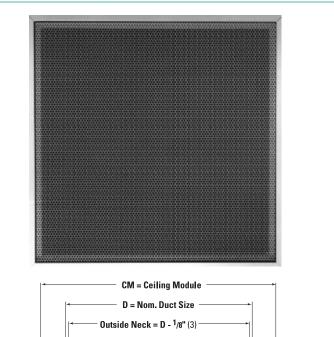
Extruded Aluminum Construction PDR **Extruded Aluminum Construction** PDR MRI for MRI applications

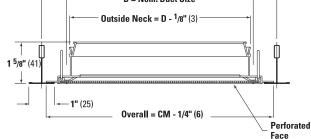
Price PDR Series matching returns for the premium perforated supply ceiling diffusers PDS, offer the same construction features and are designed for ducted or plenum return applications.

Features

- Removable perforated faceplate with quick-release spring latches.
- Extruded aluminum border and mounting frame match seamlessly for a flush mount that blends with most ceiling tiles.
- Complete range of available accessory dampers, equalizing grids etc.
- All aluminum construction (non-magnetic) for MRI applications (PDR-MRI).

CEILING DIFFUSERS


Finish	
White Po	owder Coat


B12

For optional and special finishes see color matrix.

Available Module Sizes

Imperial	Metric
12 in. x 12 in.	300 x 300
16 in. x 16 in.	400 x 400
20 in. x 20 in.	500 x 500
24 in. x 24 in.	600 x 600
12 in. x 24 in.	300 x 600
12 in. x 36 in.	300 x 900
12 in. x 48 in.	300 x 1200
24 in. x 36 in.	600 x 900
24 in. x 48 in.	600 x 1200

Dimensional Data — Imperial (in.) / Metric [mm]

D Square Duct	Ceiling Open	H ing or Module
	Imperial	Metric
10 x 10 [249 x 249]	12 x 12	300 x 300
14 x 14 [349 x 349]	16 x 16	400 x 400
18 x 18 [449 x 449]	20 x 20	500 x 500
22 x 22 [549 x 549]	24 x 24	600 x 600
22 x 10 [549 x 249]	24 x 12	600 x 300
34 x 10 [849 x 249]	36 x 12	900 x 300
46 x 10 [1149 x 249]	48 x 12	1200 x 300
34 x 22 [849 x 549]	36 x 24	900 x 600
46 x 22 [1149 x 549]	48 x 24	1200 x 600

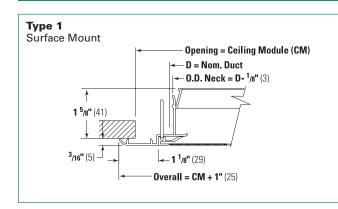
Product Selection Checklist

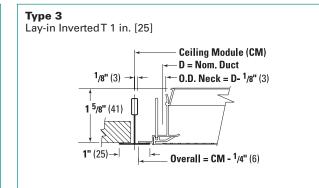
- Select Inlet Diameter or Neck Size L x W based on desired performance characteristics. 1]
- Select Face Size based on ceiling module. 21
- 3] Select Outlet Type by model number.
- 4] Select Border Style according to installation requirements (page C88).
- Select Volume Control Accessories, if desired (page C181-C186). 5]
- Select Finish. 61

Example: 22 in. x 22 in. / 24 in. x 24 in. / PDR / 3 / B12

Application Recommendations:

For Border recommendations, see page C79.





Perforated Diffusers PDR Series Architectural Quality – Return

Frame Selection

Performance Data - PDR Series

Neck Size	Face Module	Neck Velocity, fpm Neg. Static Pressure Velocity Pressure	200 .008 .002	300 .019 .006	400 .033 .010	500 .051 .016	600 .074 .022	700 .101 .031	800 .132 .040	900 .167 .050	1000 .206 .062
10 X 10	12 X 12 / 300 x 300	Air Flow, cfm NC	139	208	278	347	416 18	486 22	555 26	625 29	694 31
14 X 14	16 X 16 / 400 x 400	Air Flow, cfm NC	272	408	554	681 15	817 20	953 24	1089 27	1225 30	1361 33
18 X 18	20 X 20 / 500 x 500	Air Flow, cfm NC	450	675	900	1125 16	1350 21	1575 25	1800 28	2025 31	2250 34
22 X 10	24 X 12 / 600 x 300	Air Flow, cfm NC	306	458	611	764 15	917 20	1069 24	1222 27	1375 30	1528 33
22 X 22	24 X 24 / 600 x 600	Air Flow, cfm NC	672	1008	1344	1681 17	2017 22	2353 26	2689 29	3025 32	3361 35
34 X 10	36 X 12 / 900 x 300	Air Flow, cfm NC	472	708	944	1181 16	1417 21	1653 25	1889 28	2125 31	2361 34
34 X 22	36 X 24 / 900 x 600	Air Flow, cfm NC	1039	1558	2078	2597 18	3117 23	3636 27	4156 30	4675 33	5194 36
46 X 10	48 X 12 / 1200 x 300	Air Flow, cfm NC	639	958 —	1278	1597 17	1917 22	2236 26	2556 29	2875 32	3194 35
46 X 22	48 X 24 / 1200 x 600	Air Flow, cfm NC	1406	2108	2811	3514 19	4217 24	4919 28	5622 31	6325 34	7028 37

Performance Notes:

 1. Tested in accordance with ASHRAE Standard 70-2006
 2. //

 "Method of Testing for Rating the Performance of Air Outlets and Inlets."
 3. //

4. NC values are based on room absorption of 10 dB re $10^{\text{-}12}$ Watts and one diffuser.

5. Blanks (----) indicate an NC level below 15.

^{2.} Air flow is in cfm.

^{3.} All pressures are in in. w.g.

Square and Rectangular Directional Diffusers

Product Overview

Price offers a complete line of square and rectangular directional diffusers for a variety of applications.

Models SMD / AMD

This series of louvered face directional diffusers is available in steel (SMD) and aluminum (AMD) construction with a wide variety of air pattern core styles in square and rectangular neck styles. They can supply large volumes of air at low sound levels and pressure drops. Complete with a wide selection of frames for flush, T-bar and drop mounting, the SMD / AMD is the diffuser of choice for most architectural applications.

Models SMDA / AMDA

Matching the styling of the SMD / AMD line of diffusers, these are designed for field adjustment from horizontal to vertical air pattern and are available in steel (SMDA) or aluminum (AMDA) construction.

Models SMX / AMX

Matching the styling of the SMD / AMD line of diffusers, these are designed for high induction and rapid mixing with the addition of internally mounted discharge vanes.

Model SMDP

The SMDP design is intended to blend harmoniously with most ceiling systems, while the louvered slots supply large volumes of air at relatively low sound levels and pressure drops.

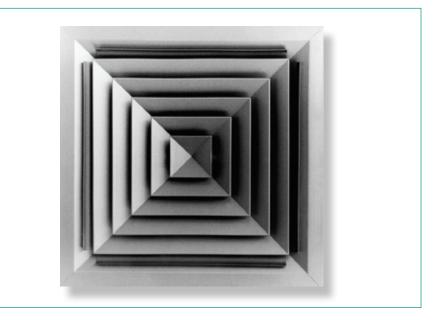
Models CSRD

These combination supply/return directional diffusers are available in louvered face extruded aluminum construction eggcrate core (CSRD) return air sections.

Models SMCD / AMCD

Designed for air pattern adjustment through field modification of louvered modular pattern controllers, Price modular core directional diffusers are available in steel (SMCD) and aluminum (AMCD) construction.

Model CVD / SCVD / ACVD


Individually adjustable curved vanes direct supply air precisely to suit the desired application in Price model CVD/ SCVD/ACVD directional diffusers. A clean, functional appearance with excellent performance characteristics, the CVD/SCVD/ ACVD provides a wide range of application versatility.

Model LCMD

C-88

Light Commercial Modular Diffuser series feature aluminum construction, 1 in. louver spacing and removable core for concealed mounting. LCMD is available in five different core styles and three frame types.

Types	
Louvered Face Directional	
Fixed Pattern	
Steel Construction	SMD
Aluminum Construction	AMD
Aluminum Construction	LCMD
Adjustable Pattern	
Steel Construction	SMDA
Aluminum Construction	AMDA
Combination Supply / Return	CSBD
Aluminum Construction, Eggcrate Core	CSND
High Induction Fixed Pattern Steel Frame	SMX
Aluminum Construction	
	AWA
Plaque Face Directional	
Fixed Pattern	
Steel Construction	SMDP
Modular Core	
Steel Construction	SMCD
Aluminum Construction	AMCD
Curved Vane	
Extruded Aluminum Construction	CVD
Formed Steel Construction	SCVD ACVD
Formed Aluminum Construction	ACVD

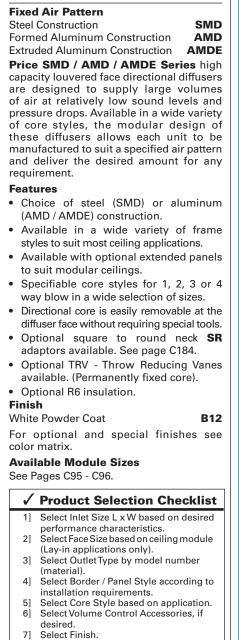
Square and Rectangular Directional Diffusers

Types

Pages C109 - C111

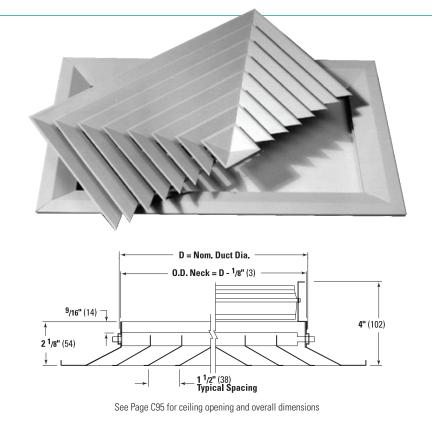
Pages C114 - C116

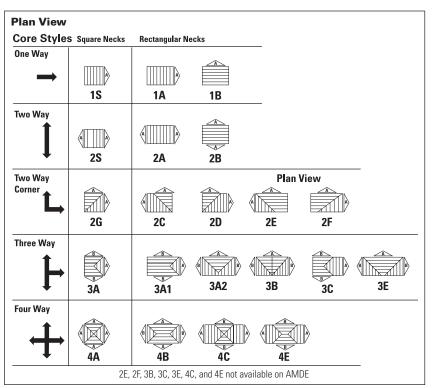
Quick Selection Guide


Diffuser Type	Ceiling Type	Recommended	l Border / Panel
Louvered Face	Lay-in (All diffuser types)		
SMD / AMD	Inverted T 1 in. [25]	3	3P
Modular Core	Narrow T-bar ⁹ /16 in. [14]	17	17P
SMCD / AMCD	Concealed Spline	4	4P
Curved Vane	Surface Mount		
CVD / SCVD / ACVD	Flush Frame	1	

Product Information - Fixed Air Pattern

Models


CEILING DIFFUSERS



Example: 12 in. x 12 in. / 24 in. x 24 in. / AMD / 3P / 4A / B12

Application Recommendations:

For Border and Panel recommendations, see page C90.

© Copyright Price Industries Limited 2014.

Fire-Rated Louvered Face Directional Diffusers SMD-FR Series

Product Information - Fixed Air Pattern

Three Hour Rating - Lay-in

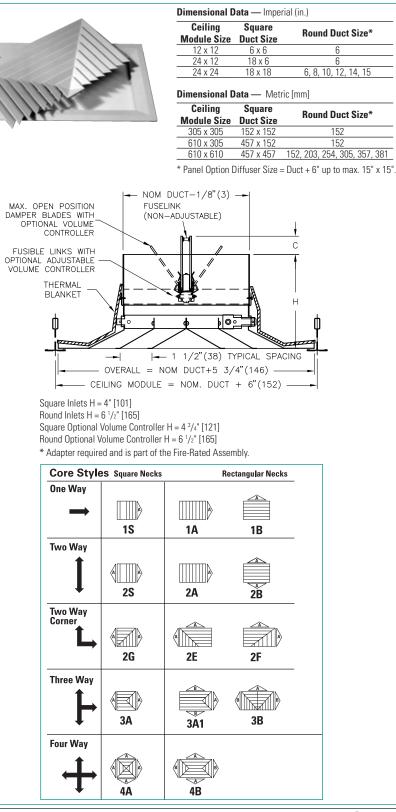
Price SMD-FR high capacity louvered face directional diffusers are Fire-Rated Assemblies listed in the UL Listed (Underwriters Laboratories Fire Resistance Directory) and ULC Listed (Underwriters Laboratories of Canada Equipment and Materials Directory).This design meets time versus temperature test criteria and NFPA 90A requirements.

SMD-FR high capacity louvered face directional diffusers are designed to supply large volumes of air at relatively low sound levels and pressure drops. Available in a wide variety of core styles, the modular design of these diffusers allows each unit to be manufactured to suit a specified air pattern and deliver the desired amount of air for any requirement.

Features

- Non-adjustable, butterfly-type ceiling radiation damper.
- Designed for use in an exposed grid suspension ceiling (T-bar Lay-in) with a three hour or less restrained or unrestrained assembly rating. Units must be installed in accordance with the instructions that accompany each unit.
- Thermal blanket is non-asbestos.
- Standard 165 °F [74 °C] fusible link, optional 212 °F [100 °C] fusible link.
- Specifiable core styles for 1, 2, 3 or 4 way blow in a wide selection of sizes.
- Directional core is easily removable at the diffuser face without requiring special tools. Provides access to optional volume controller.
- Optional adjustable volume controller (Allen key adjustable).
- Optional 24" x 24" (600mm x 600mm) T-bar Lay-in Panel.

Finish White Po


B12

For optional and special finishes see color matrix.

✓ Product Selection Checklist

- 1] Select Inlet Size L x W.
- 2] Select Face Size based on ceiling module
- 3] Select Diffuser Style by model number.4] Select Panel Option according to
- installation requirements.
- 5] Select Core Style based on application.6] Select Volume Control Accessories.
- if desired.
- 7] Select Finish.
- Example:

12"x12" / 24"x24" / SMD-FR / 4A / B12

Product Information - Adjustable Air Pattern

SMDA

B12

Models

Adjustable Air Pattern Steel Construction

Formed Aluminum Construction AMDA Extruded Aluminum Construction AMDEA Price SMDA / AMDA / AMDEA Series adjustable high capacity louvered face directional diffusers include factory installed, individually adjustable vanes for field adjustment from horizontal to vertical on each directional pattern segment of the diffuser. This series matches in detail, and construction the SMD / AMD series.

Features

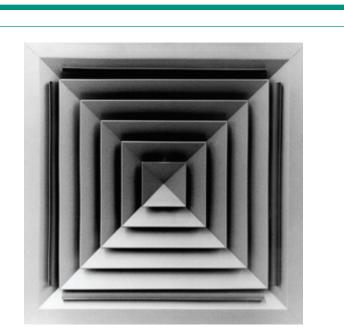
- Choice of steel (SMDA) or aluminum (AMDA / AMDEA) construction.
- Available in a wide variety of frame styles to suit most ceiling applications.
- Available with optional extended panels to suit modular ceilings.
- Specifiable core styles for 4 way blow in a wide selection of sizes.
- Recommend 4 way only with adjustable vanes.
- Directional core is easily removable at the diffuser face without requiring special tools.
- Optional square to round neck adaptors available. See page C184.

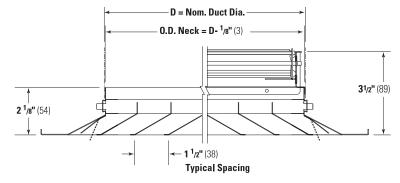
Finish

CEILING DIFFUSERS

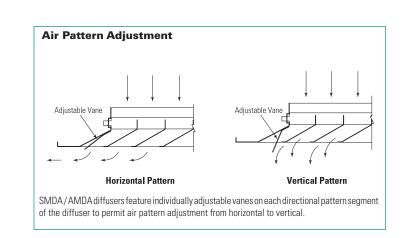
White Powder Coat

For optional and special finishes see color matrix.


Available Module Sizes


• Square duct sizes up to 24 in. x 24 in. recommended.

✓ Product Selection Checklist


- 1] Select Inlet Size L x W based on desired performance characteristics.
- Select Face Size based on ceiling module.
 Select Outlet Type by model number
- (material).4] Select Border / Panel Style according to installation requirements.
- 5] Select Core Style based on application.6] Select Volume Control Accessories, if
- desired (page C181-C186). 7] Select Finish.

Example: 12 in. x 12 in. / 24 in. x 24 in. / SMDA / 3P / 4A / B12

See Page C95 for ceiling opening and overall dimensions

C-92

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter © Copyright Price Industries Limited 2014.

Fire-Rated Louvered Face Directional Diffusers SMDA-FR Series

Round Duct

Size *

6

[152]

6"

[152]

6, 8, 10, 12, 14, 15

[152, 203, 254, 305,

Product Information - Adjustable Air Pattern

Three Hour Rating - Lay-in

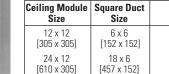
Fire-Rated Assemblies listed in the UL Listed (Underwriters Laboratories Fire Resistance Directory) and ULC Listed (Underwriters Laboratories of Canada Equipment and Materials Directory).This design meets time versus temperature test criteria and NFPA 90A requirements.

SMDA-FR adjustable high capacity louvered face directional diffusers include factory installed, individually adjustable vanes for field adjustment from horizontal to vertical on each directional pattern segment of the diffuser. This series matches in detail, availability and construction the SMD-FR series.

Features

- Non-adjustable, butterfly-type ceiling radiation damper.
- Designed for use in an exposed grid suspension ceiling (T-bar Lay-in) with a three hour or less restrained or unrestrained assembly rating. Units must be installed in accordance with the instructions that accompany each unit.
- Thermal blanket is non-asbestos.
- Standard 165 °F [74 °C] fusible link, optional 212 °F [100 °C] fusible link.
- Specifiable core styles for 4 way blow in a wide selection of sizes.
- Recommend 4 way only with adjustable blades.
- Directional core is easily removable at the diffuser face without requiring special tools.
- Adjustable volume controller (Allen key adjustable).
- Optional 24" x 24" T-bar Lay-in Panel.

Finish


White Powder Coat

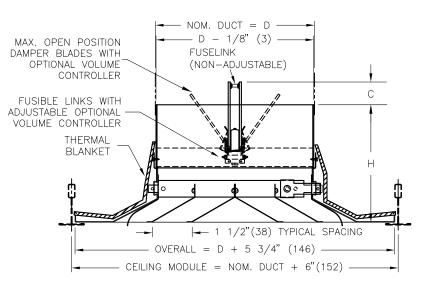
For optional and special finishes see color matrix.

•	
1]	Select Inlet Size L x W.
2]	Select Face Size based on ceiling module.
3]	Select Diffuser Style by model number.
4]	Select Panel Option according to
	installation requirements.
5]	Select Core Style based on application.
6]	Select Finish.
	mple: x12" / 24"x24" / SMDA-FR / 4A / B12

Product Selection Checklist

Dimensional Data -

24 x 24

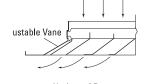

[610 x 610]

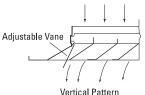
Imperial (in.) / Metric [mm]

Panel Option Diffuser Size = Duct + 6" up to max. 15" x 15".

18 x 18

[457 x 457]


Square Inlets H = 4"

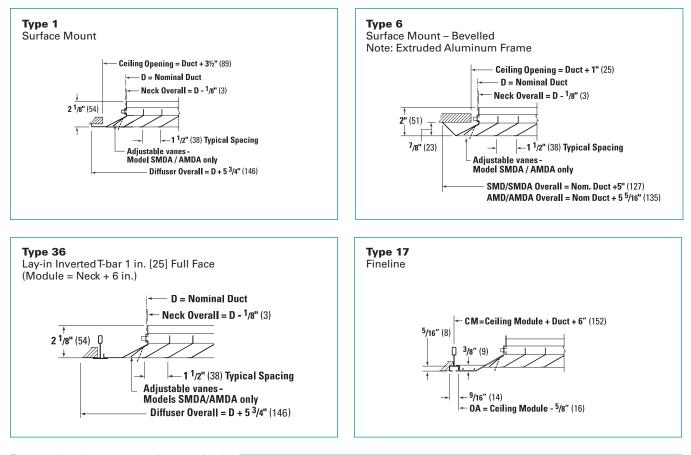

B12

Round Inlets H = 6 1/2"

- Square Optional Volume Controller H = 4 3/4"
- Round Optional Volume Controller H = 6 1/2"
- * Adapter required and is part of the Fire-Rated Assembly.

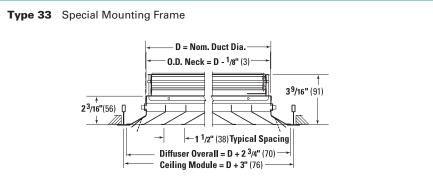
Air Pattern Adjustment

Horizontal Pattern


SMDA-FR diffusers feature individually adjustable vanes on each directional pattern segment of the diffuser to permit air pattern adjustment from horizontal to vertical.

C-93

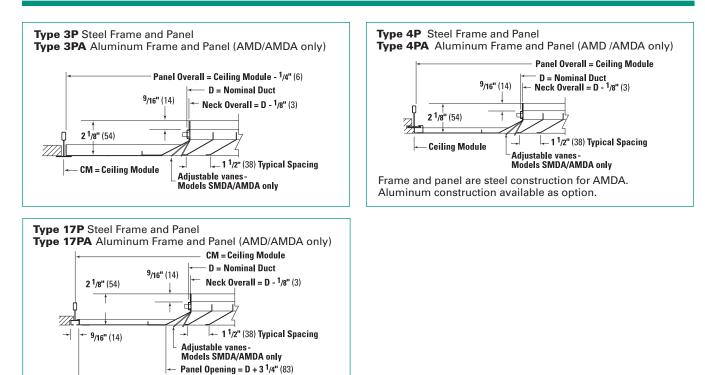
Louvered Face Directional Diffusers SMD / AMD / SMDA / AMDA Series



Frame and Panel Selection

For applications where the nominal ceiling module exceeds the listed duct size by exactly 3 in. [76] in both module directions. Sized to fit common Lay-in ceiling modules.

Note: Available in square 4A core only. Extruded aluminum frame.


Recommended diffuser sizes for common T-bar Lay-in ceiling modules

Imperial			Metric						
T-bar Lay-in Ceiling Module Size	Duct	Size	T-bar Lay-in Ceiling Module Size	Duct Size					
12 x 12	6 x 6 - style 36	9 x 9 - style 33	305 x 305	152 x 152 - style 36	229 x 229 - style 33				
12 x 24	6 x 18 - style 36	21 x 9 - style 33	305 x 610	152 x 457 - style 36	533 x 229 - style 33				
24 x 24	18 x 18 - style 36	21 x 21 - style 33	610 x 610	457 x 457 - style 36	533 x 533 - style 33				
30 x 30	24 x 24 - style 36		762 x 762	610 x 610 - style 36					

Lay-in Panel Note: When ceilng module size exceeds neck size by more than 6 in. [152], a Lay-in face panel is provided.

Frame and Panel Selection

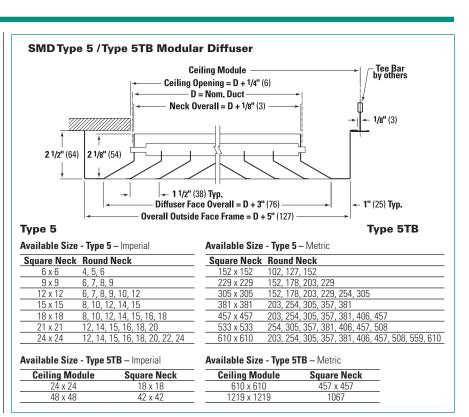
Drop Face Frame

The SMD is available with two drop face frame styles - Type 5 Drop Face Surface Mount and Type 5TB Drop FaceT-bar Mount.

Panel Overall = Ceiling Module - 5/8" (16)

Both frame styles have a 2 $^{1/2}$ in. (63.5mm) drop face as standard or a 4 in. drop face as an option.

The drop face feature reduces ceiling smudging, making it ideal for high traffic commercial buildings such as big box retail outlets.


Note:

Type 5 - available in square and rectangular core styles.

Type 5TB,

18 in.x18 in. neck - available in square core styles 1S, 2S, 2G, 3A and 4A only.

42 in.x42 in. neck - available in square 4A core only.

CEILING DIFFUSERS

Performance Data – SMDA / AMDA

SMDA / AMDA Performance Factors

Duct Size		nd NC Add) V	Pressı (Mult H			row. Vertica j ∆T °F [°C] 0	l (Multiply) Heating ∆T °F [°C] 20 [11] 40 [22]		
6 x 6 [152 x 152]	3	7	1.3	1.6	1.3	1.1	0.8	0.6	
9 x 9 [229 x 229]	3	7	1.5	2.3	1.5	1.2	0.9	0.6	
12 x 12 [305 x 305]	3	7	1.5	2.3	1.6	1.3	1.0	0.6	
15 x 15 [381 x 381]	3	7	1.5	2.3	1.7	1.3	1.0	0.6	
18 x 18 [457 x 457]	3	7	1.5	2.3	1.7	1.3	0.9	0.6	
21 x 21 [533 x 533]	3	7	1.5	2.3	1.7	1.3	0.8	0.5	
24 x 24 [610 x 610]	3	7	1.5	2.3	1.5	1.1	0.7	0.5	

CEILING DIFFUSERS

Performance Correction Factors for SR Adaptors

AMD SMD Size	Round Neck	TP Correction (Multiply)	NC Correction (Add)	Th VT 150	row Correcti (Multiply) VT 100	on VT 50
6 x 6	5	1.65	7	1.10	1.10	1.15
9 x 9	6	3.5	17	1.15	1.15	1.20
9 x 9	8	1.4	4	1.10	1.10	1.10
12 x 12	8	3.5	17	1.15	1.15	1.20
12 x 12	10	1.65	7	1.10	1.10	1.15
15 x 15	10	3.5	17	1.15	1.15	1.20
15 x 15	12	1.9	9	1.10	1.10	1.15
15 x 15	14	1.25	3	1.05	1.05	1.10
18 x 18	12	3.5	17	1.15	1.15	1.20
18 x 18	14	2.0	10	1.10	1.10	1.15
18 x 18	16	1.45	5	1.10	1.10	1.10
21 x 21	14	3.7	17	1.15	1.15	1.20
21 x 21	16	2.25	11	1.10	1.10	1.15
21 x 21	18	1.6	6	1.10	1.10	1.10
21 x 21	20	1.2	3	1.05	1.05	1.10
24 x 24	16	3.5	17	1.15	1.15	1.20
24 x 24	18	2.35	12	1.10	1.10	1.15
24 x 24	20	1.65	7	1.10	1.10	1.15
24 x 24	22	1.33	4	1.05	1.05	1.10

Performance Notes:

To obtain performance data for the SMDA / AMDA adjustable diffuser, apply the correction factors listed opposite to the data listed for square SMD / AMD, core style 4A.

- Correction factors apply as follows:
- 1. Sound: NC = listed + correction factor.
- 2. Pressure drop: TP = listed x correction factor.

3. Does not include effects of ceiling radiation damper (SMDA-FR) Note: The throw factor is applied only to the listed throw at 50 fpm terminal velocity (Vr).

Example, Imperial Units:

AMDA, 12 in. x 12 in. [305 x 305], 600 cfm, heating application, 40 °F $\Delta T,$ vertical projection.

NC= 30+7 = 37

TP = 0.144 x 2.3 - 0.33

Throw = $27 \times 0.6 = 16$ ft V_T 50 fpm.

Note: Total pressure and throw obtained from performance data on page C-98.

Example, Metric Units:

AMDA, 305mm x 305mm, 283 cfm, heating application, 22 °C $\Delta T,$ vertical projection.

NC = 30+7 = 37 NC

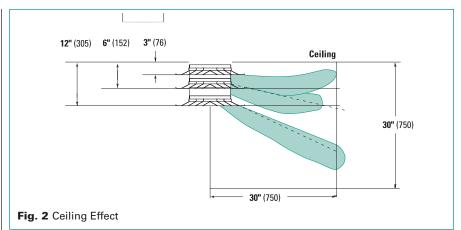
TP = 36 x 2.3 =82.8 Pa

Throw = 8.1 x 0.6 = 4.86m VT 0.25 m/s.

Note: Total pressure and throw obtained from performance data on page C-106.

price

Application Notes


Square or Rectangular Necks

Model SMD / AMD ceiling diffusers can supply large volumes of conditioned air at acceptable pressure drops and sound levels when overall dimensions of the diffuser are limited by a modular ceiling system, or architectural considerations prevail. The excellent performance of these diffusers is complemented by a pleasing appearance that blends harmoniously with various architectural details, especially modular ceiling systems.

SMD / AMD directional diffusers are a popular, versatile choice for many heating, ventilating and cooling applications. There is a style, size and pattern to suit most conceivable installations and applications. The directional pattern can be selected to deliver the appropriate amount of conditioned air into areas where it is needed.

Ceiling Effect

The directional diffusers are not recommended for applications without ceilings, such as exposed duct mounting. Performance data published in this catalog

is based on the SMD / AMD being mounted in a ceiling. The published performance data for the directional air pattern benefits from the ceiling Coanda effect. When the diffuser is mounted remote from the ceiling the resultant air patterns to be anticipated are illustrated in Fig. 2.

Performance Data - Imperial Units

	Neck Velocity Velocity Pressure <u>Total Pressure</u> Duct Total cfm			30 0.0 0.0	06 36	0.0 0.0	400 0.01 0.065		500 0.016 0.099		600 0.022 0.144		700 0.031 0.196		800 0.040 0.256 200		000 050 324
Duct Size			lotal cfm NC	75		100		125 17		150 23		175 27			00 1		25 36
6 in. x 6 in.			NC	A	В	Α	В	Α	B	A	В	A 27	В	A	В	A	30 B
•	4 A		cfm/Side	19		25	5	31		38		44		50		56	
			Throw,ft	4-6-12		5-8-15		7-10-16		8-12-18		9-14-19		11-15-21		12-16-22	
Duct	ct 3A		cfm/Side	19	28	25	38	31	47	38	56	44	66	50	75	56	84
Area		B A	Throw,ft	4-6-12	5-7-14	5-8-15	6-10-16	7-10-16	8-12-18	8-12-18	10-14-20	9-14-19	11-15-22	11-15-21	13-16-23	12-16-22	14-17-25
	2S,	^{₄2G} Â) [▲]	cfm/Side	38		50		63		75		88		100		113	
0.25			Throw,ft	6-8-15		7-11-18		9-14-20		11-15-22		13-17-24		15-18-25		15-19-27	
ft²	1S ()A		cfm/Side	75		100		125		150		175		200		225	
		······	Throw,ft	8-12-19		11-15-22		13-17-24		15-19-27		17-20-29		18-22-31		19-23-33	
Duct			Total cfm	16	9	2	25	282		338		394		450		507	
Size			NC				-		1	-	27	31		35		39	
9 in. x 9 in.	4 A	_		A	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В
	44	(X) A	cfm/Side	42		56		71		85		99		113		127	
	24	• •	Throw,ft	6-9-16	00	8-12-18	0.4	10-15-21	400	12-16-23	407	14-17-24	4.40	15-18-26	400	16-20-28	
Duct	3 A	B A	cfm/Side	42	63	56	84	71	106	85	127	99	148	113	169	127	190
Area		-	Throw,ft	6-9-16	7-11-18	8-12-18	10-15-21		12-16-23		15-18-25	14-17-24	16-19-27	15-18-26	17-21-29	16-20-28	18-22-31
0.56 ft ²	2S	2G	cfm/Side	85		113		141		169		197		225		254	
п.	-			.8-13-19 169		11-16-22 225		14-18-25 16-19-28			17-21-30 394		18-22-32		19-24-34 507		
	1S	∏])A	cfm/Side Throw,ft	12-17-24		225		282 18-22-31		338 19-24-34		394 21-26-36		450 22-27-39		21-29-41	

For Performance Notes, see page C105.

For SMD / AMD Return Factors, see page C98.

Performance Data - Imperial Units - Square Neck

	Neck V	elocity			00		00		00		600		00		00	-	00
		y Pressu	re		006 036		.01 065)16		022		031	-	040 256	1	050 324
Duct	Total P	ressure	Total cfm		036		00)99 D0		144 600		196 00		200		<u>324</u> 00
Size			NC	· ·	-		17		4		30		34		38	1	12
12 in. x 12 in	ı.			Α	В	А	В	A	В	A	В	A	В	A	В	Α	B
	4A		cfm/Side	75		100		125		150		175		200		225	
		÷	Throw,ft	8-12-19		11-15-22		13-17-24		15-19-27		17-20-29		18-22-31		19-23-33	
Duct	3A		cfm/Side	75	113	100	150	125	188	150	225	175	263	200	300	225	338
Area			Throw,ft	8-12-19	10-15-21	11-15-22	13-17-24		16-19-27		17-21-30		19-23-32		20-24-35		21-26-3
1.00	2S	^{₄2G} ͡͡͡) [▲]	cfm/Side	150		200		250		300		350		400		450	
ft²			Throw,ft cfm/Side	11-16-23 300		15-19-26 400		17-21-30 500		19-23-32 600		20-25-35 700		22-26-37 800		23-28-40 900	
	1S	() (A	Throw,ft	16-20-28		19-23-32		21-26-36		23-28-40		25-30-43		26-32-46		28-34-48	
Duct			Total cfm	468		625		781		938		1094		1250		1406	
Size			NC	-		19		26		32		35		40		44	
15 in. x 15 in	I.			Α	В	A	В	A	В	A	В	Α	В	A	В	A	В
	4 A	(Â) A	cfm/Side	117		156		195		234		273		313		352	
		$\mathbf{-}$	Throw,ft	10-15-21		13-17-25		16-20-28		17-21-30		19-23-33		20-25-35		21-26-37	
Duct	3A		cfm/Side	117	176	156	234	195	293	234	352	273	410	313	469	352	527
Area		-	THIOW,IL	10-15-21 234	12-17-24	13-17-25 313	16-20-28	16-20-28 391	18-22-31	469	20-24-34	19-23-33 547	21-26-37	20-25-35 625	23-28-39	21-26-37 703	24-29-42
1.56 ft ²	2S	^A ^{2G}	cfm/Side Throw.ft	234		17-21-30		391 19-24-34		469 21-26-37		547 23-28-40		25-30-43		26-32-45	
п			cfm/Side	468		625		781		938		1094		1250		1406	
	1S) A	Throw.ft	18-22-32		21-26-37		24-29-41		26-32-45		28-34-48		30-37-52		32-39-55	
Duct			Total cfm	675		900		1125		1350		1575		1800		2025	
Size			NC	-		21		28		34		38		42		46	
18 in. x 18 in		•		Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	A	В
	4A	(Ā) A	cfm/Side	169		225		281		338		394		450		506	
Durat	24	• •	Throw,ft cfm/Side	12-17-24	253	16-19-27 225	338	18-22-31	422	19-24-34 338	506	21-26-36 394	591	22-27-39 450	675	24-29-41 506	759
Duct Area	3A	B A	Throw,ft	12-17-24	253 15-19-27		338 18-22-31	281 18-22-31			22-27-38				075 25-31-43		759 27-33-46
	2S		cfm/Side	338	13-13-27	450	10-22-31	563	20-24-34	675	22-27-30	788	23-23-41	900	20-01-40	1013	27-33-40
ft ²		2G	Throw,ft	17-20-29		19-24-33		22-26-37		24-29-41		25-31-44		27-33-47		29-35-50	
	1 S	())) A	cfm/Side	675		900		1125		1350		1575		1800		2025	
	10	шш/^	Throw,ft	20-25-35		23-29-41		26-32-45		29-35-50		31-38-54		33-41-58		35-43-61	
Duct			Total cfm	919		1225		1531		1838		2144		2450		2756	
Size			NC	-		23		30		36		40		44		48	
21 in. x 21 in	ι. 4Α		cfm/Side	A 230	В	A 306	В	A 383	В	A 459	В	A 536	В	A 613	В	A 689	В
		A	Throw,ft	14-18-26		17-21-30		19-24-33		21-26-37		23-28-40		24-30-42		26-32-45	
Duct	3A	B A		230	345	306	459	383	574	459	689	536	804	613	919	689	1034
Area		≣) ^	Throw,ft	14-18-26	17-21-29	17-21-30	19-24-34	19-24-33	22-27-38		24-29-41	23-28-40	26-31-44	24-30-42	27-34-47	26-32-45	29-36-50
3.06	2S,	^{2G}	cfm/Side	459		613		766		919		1072		1225		1378	
ft ²		all.	Throw,ft	18-22-32		21-26-36		24-29-41		26-32-45		28-34-48		30-36-52		32-39-55	
	1S		cfm/Side	918		1225		1531		1837		2143		2450		2756	
Duct			Throw,ft Total cfm	22-27-38 1200		26-31-44 1600		29-35-50 2000		31-38-54 2400		34-42-59 2800		36-44-63 3200		38-47-67 3600	
Size			NC	1200		24		31		37		41		45		49	
24 in. x 24 in	1.			A	В	A	В	A	В	A	В	A	В	A	В	A	В
	4 A		cfm/Side	300		400		500		600		700		800		900	
		÷.	Throw,ft	16-20-28		19-23-32		21-26-36		23-28-40		25-30-43		26-32-46		28-34-48	
	3A		cfm/Side	300	450	400	600	500	750	600	900	700	1050	800	1200	900	1350
Area		<u> </u>	Throw,ft		18-22-31		21-26-36		23-29-41	23-28-40	26-31-44		28-34-48		30-36-51	28-34-48	31-38-5
	2S	^{2G}	cfm/Side	600		800		1000 25.21.44		1200		1400		1600		1800	
ft²			Throw,ft cfm/Side	20-24-34		23-28-39 1600		25-31-44 2000		28-34-48 2400		30-37-52 2800		32-39-56 3200		34-42-59 3600	
	1S)⊧A	Throw,ft	24-29-41		28-34-48		2000 31-38-54		2400 34-41-59		2800 37-45-63		3200		41-51-72	
			1110/07,10	124-23-41		20-34-40		01-00-04		04-41-08		01-40-00		00-04-050		1 +1-J1-/Z	

For Performance Notes, see page C105.

SMD / AMD Return Factors

Duct Size	(-) SP	NC
6 x 6	0.73 x Listed TP	Listed NC
9 x 9	0.87 x Listed TP	Listed NC + 2
12 x 12 15 x 15	0.93 x Listed TP 1.27 x Listed TP	Listed NC + 4
18 x 18	1.47 x Listed TP	Listed NC + 6
21 x 21	1.80 x Listed TP	Listed NC + 8
24 x 24	1.89 x Listed TP	Listed NC + 8

© Copyright Price Industries Limited 2014.

Performance Data - Imperial Units - Rectangular Neck

	Neck Velocity Total Pr	, Pressu	re	0.0	00)06)36	0.	00 01 065	0.0	00 016 099	0.0	00 022 144	0.0	00 031 196	0.0	00 040 256	90 0.0 0.3	50
Duct			Total cfm	1	12	1	50		87		25		63		00	33	
Size 9 in. x 6 in.			NC	A	- В	A	- В		20 B	A	26 B	A	80 B	A	84 B	3 A	8 B
J III. X U III.	4B	A	cfm/Side	37	18	50	25	62	31	75	37	87	44	100	50	112	56
	10	(©)₿	Throw,ft	6-8-15	4-6-12	7-11-18	5-8-15	9-14-20		11-15-22	8-12-18	13-17-24	9-14-20	15-18-25	11-15-21	15-19-27	12-16-22
0.38	3A2	, € , B	cfm/Side	35	42	47	55	58	70	70	84	82	98	94	112	105	126
ft²			<u>Throw,ft</u> cfm/Side	5-8-15 56	6-9-16	7-11-18	8-12-18	9-13-20	10-15-21	<u>11-15-21</u> 112	12-16-22	13-16-23	14-17-24	14-18-25 150	15-18-26	168	16-19-28
	2A, 2B/	A ([[[]]]) A	Throw,ft	7-10-17		9-14-20		11-16-22		14-17-24		15-19-26		16-20-28		17-21-30	
	2E, 2F	A A	cfm/Side	75	37	100	50	125	62	150	75	175	87	200	100	225	112
		B	Throw,ft	8-12-19	6-8-15	11-15-22	7-11-18		9-14-20	1	11-15-22		13-17-24		15-18-25		15-19-27
	1A, 1B) A	cfm/Side Throw,ft	112 10-14-21		150 13-17-24		187 16-19-27		225 17-21-30		263 19-23-32		300 20-24-35		337 21-26-37	
Duct		Total cfm			50		00		50		00		50	1	00	4	50
Size			NC		-	-	-		21	1	27	1	81		85	3	
12 in. x 6 in				A	В	A	В	Α	В	A	В	A	В	Α	В	Α	В
	4B	() ■ B	cfm/Side	56	18	75	25	94	31	113	37	131	44	150	50	169	56
Duct		¢.	<u>Throw,ft</u> cfm/Side	7-10-17 66	<u>4-6-12</u> 18	9-14-20 87	<u>5-8-15</u> 25	<u>12-16-22</u> 109	<u>7-10-16</u> 31	131	<u>8-12-18</u> 37	<u>15-19-27</u> 153	<u>9-14-20</u> 44	16-20-28	<u>11-15-21</u> 50	17-21-30	<u>12-16-22</u> 56
Area	3A1	Ê) ^A	Throw,ft	7-11-18	4-6-12	10-15-21	5-8-15			15-18-26		16-20-28			11-15-21		12-16-22
0.50	3B	Å	cfm/Side	75	37	100	50	126	62	150	75	176	67	200	100	226	112
ft²	00	(F)B		8-12-19	6-8-15	11-15-22	7-11-18		9-14-20	15-19-27	11-15-22		10-15-21		15-18-25		15-19-27
	2A, 2B /	A (((())) A	cfm/Side Throw,ft	75 8-12-19		100		125 13-17-24		150 15-19-27		175 17-20-29		200 18-22-31		225 19-23-33	
	25.25	A	cfm/Side	112	37	160	50	188	62	225	75	263	87	300	100	338	112
	2E, 2F	B(\ \\	Throw,ft	10-14-21	6-8-15	14-18-25			9-14-20		11-15-22			20-24-35	15-18-25	21-26-37	15-19-27
	1A, 1B) A (cfm/Side	150		200		250		300		350		400		450	
Duct			Throw,ft Total cfm	11-16-23	88	15-19-26	50	17-21-30	12	19-23-32	75	20-25-35	29	22-26-37	00	23-28-40	
Size			NC		-	250 15		312 22		375 28		438		500 36		563 40	
15 in. x 6 in				Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В
	4B	() B B	cfm/Side	75	18	100	25	125	31	150	37	175	44	200	50	225	56
Duct			<u>Throw,ft</u> cfm/Side	8-12-19 84	<u>4-6-11</u> 18	<u>11-15-22</u> 112	<u>5-8-15</u> 25	13-17-24	<u>7-10-16</u> 31	15-19-27 169	<u>8-12-18</u> 37	17-20-29	<u>9-14-19</u> 44	18-22-31 225	<u>11-15-21</u> 50	253	<u>12-15-22</u> 56
Area	3A1	<u>م</u>	Throw,ft	8-13-19	4-6-11	11-16-22	25 5-8-15			16-19-28		17-21-30			11-15-21		
0.63	2A, 2B /	A (((())) A	cfm/Side	94		125		156		187		219		250		281	
ft²			Throw,ft	9-13-20		12-16-23		15-18-26		16-20-28		18-22-31		19-23-33		20-25-35	
	2E, 2F	B(R	cfm/Side Throw.ft	150 11-16-23	37 6-8-15	200 15-19-26	50 7-11-18	250	62 9-14-20	300	75	350	87 13-17-24	400 22-26-37	100	450	112 15-19-27
	1A, 1B	() () () () () () () () () () () () () (cfm/Side	188	0010	250	7 11 10	312	5 14 20	375	11 10 22	438	10 17 24	500	10 10 20	563	10 10 27
		uuuuu,	Throw,ft	13-17-24		16-20-28		18-22-32		20-24-35		22-26-37		23-28-40		24-30-42	
Duct			Total cfm		25		00		75		50		25		00	67	
Size 18 in. x 6 in			NC	A	- В	A 1	6 B	A 2	23 B	A	29 B	A 3	13 B	A 3	87 B	4 A	1 B
10 III. X U III		^	cfm/Side	94	18	125	25	156	31	188	37	218	44	250	50	281	56
	4B	(Ô)B	Throw,ft	9-13-20	4-6-12	12-16-23	5-8-15			16-20-28		18-22-31		19-23-331		20-25-351	
Duct	3A1	Ē, A	cfm/Side	103	18	137	25	172	31	206	37	240	44	275	50	309	56
Area		Ē, ₽	Throw,ft	9-14-21	4-6-12	12-17-24	5-8-15		7-10-16		8-12-18		9-14-20		11-15-21	21-25-36	12-16-22
0.75 ft ²	2A, 2B /	A (((())) A	cfm/Side Throw,ft	112 10-14-21		150 13-17-24		187 16-19-27		225 17-21-30		262 19-23-32		300 20-24-35		337 21-26-37	
	2E, 2F	A	cfm/Side	187	37	250	50	313	62	375	75	438	87	500	100	563	112
	2E, 2F		Throw,ft	12-17-24		16-20-28		18-22-32			11-16-22		13-17-24	23-28-40	15-18-25		16-19-27
	1A, 1B	() A		225		300		375		450		525		600		675	
			Throw,ft	14-18-26		17-21-30		19-24-33		21-26-36		23-28-39		24-30-42		26-32-45	

For Performance Notes, see page C105. For SMD / AMD Return Factors, see page C100.

Performance Data - Imperial Units - Rectangular Neck

					••				~~								~~
	Neck V				00	40			00		500 022		00	-	800		00
		y Pressu	re	1	006	0.0			D16 D99		.022		031		040 256		050
Durat	Total P	ressure	Tetal of		036	0.0					.144		196	-			324
Duct			Total cfm	<u> </u>	62	1	50		37		525		12		/00		87
Size			NC		-	1	6		23		29		3		37		41
21 in. x 6 in.			- (c: d -	A 112	B 18	A 150	B 25	A 187	B	A 225	B	A 262	B 44	A 300	B 50	A 337	B 56
	4B	(B	cfm/Side Throw.ft	10-14-21	4-6-11	150	25 5-8-15	16-19-27	31 7-10-16		37 8-12-18	262 19-23-32			50 11-15-21		50 12-16-22
Durat		~~~·	cfm/Side	122	4-6-11	13-17-24	25	203		244	37	284	<u>9-14-20</u> 44	325	50	365	56
Duct Area	3A1	- Ê (B)	Throw.ft	10-15-22		13-18-25		16-20-28	31		37 8-12-18	284 19-23-33					50 12-16-22
0.88			cfm/Side	131	4-0-11	13-18-25	5-8-15	218	/-10-10	262	8-12-18	306	9-14-20	350	11-15-21	393	12-10-22
0.88 ft ²	2A, 2B /	A (∭∭) A	Throw.ft	10-16-22		14-18-25		16-20-28		18-22-31		306 19-24-34		21-25-36		393 22-27-38	
π			cfm/Side	225	37	300	50	375	62	450	75	525	87	600	100	675	112
	2E, 2F	B4 n a A	Throw.ft	14-18-26	37 6-8-15	17-21-30			9-14-20		75 11-16-22	23-28-39			15-18-25		15-19-27
			a fan /Ciala	262	0-0-10	350	0-11-10	437	9-14-20	525	11-10-22	612	13-17-24	700	10-10-20	787	10-19-27
	1A, 1B	A (Throw,ft	15-19-27		18-22-31		20-25-35		22-27-38	1	24-29-41		25-31-44		27-33-47	
Duct			Total cfm	30	0	40	n	50	0		, DO	70	0	80		<u>27-33-47</u> 90	0
Size			NC			17		24			0	34		3	-	42	
24 in. x 6 in.			110	A	В	A	В	A	B	A	В	A	B	A	В	A	В
21111.7011	4B	A A	cfm/Side	131	18	175	25	219	31	263	37	306	44	350	50	394	56
	40	(D)B	Throw.ft	10-16-22	4-6-12	14-18-25	5-8-15	16-20-28	7-10-16	18-22-31	-	19-24-34	9-14-20		11-15-21		12-16-22
Duct	3A1	A	cfm/Side	141	18	187	25	234	31	281	37	328	44	375	50	422	56
Area	0/11	_ €) B	Throw.ft	11-16-23	4-6-12	14-18-26	5-8-15	17-21-29			8-12-18	20-24-34			11-15-21		12-16-22
1.00	24 2B	A () A	cfm/Side	150	-	200		250		300		350		400	-	450	
ft²	211, 20,		Throw,ft	11-16-23		15-19-26		17-21-30		19-23-32		20-25-35		22-26-37		23-28-40	
	2E, 2F	A A	cfm/Side	260	37	350	50	438	62	525	75	613	87	700	100	788	112
		в (🖳	Throw,ft	15-19-27	6-8-15	18-22-31	8-11-18	20-25-35	9-14-20	22-27-38	11-16-22	24-29-41	13-17-24	25-31-44	15-18-25	27-33-47	16-19-27
	1A, 1B	A (cfm/Side	300		400		500		600		700		800		900	
	17, 10	шш / ^	Throw,ft	16-20-28		19-23-32		21-26-36		23-28-40	1	25-30-43		26-32-46		28-34-48	
Duct			Total cfm	2	25	3	DO	3	75	4	150	5	25	60)0	67	5
Size			NC		-	1	6	2	23		29	3	33	3	7	41	1
12 in. x 9 in.				Α	В	Α	В	A	В	A	В	Α	В	Α	В	Α	В
	4B		cfm/Side	70	42	94	56	117	70	141	84	164	98	188	112	211	126
_		₩ ₽ ″-	Throw,ft	8-11-18	6-9-16	10-15-21	8-12-18	13-17-24			12-16-22	16-20-28			15-18-26		16-19-28
Duct	3A1		cfm/Side	91	42	121	56	152	70	183	84	213	98	244	112	274	126
Area		<u> </u>	Throw,ft	9-13-20	6-9-16	12-16-23	8-12-18	15-18-26			12-16-22	18-22-31			15-18-26		16-19-28
0.75	3A2	, B	cfm/Side	75	75	100	100	125	125	150	150	175	175	200	200	225	225
ft²			Throw,ft	8-12-19	8-12-19	11-15-22	11-15-22		13-17-24		15-19-27	17-20-29	17-20-29		18-22-31		19-23-33
	2A. 2B	A ([[]]]) A	cfm/Side	112		150		187		225		262		300		337	
			1111000,10	10-14-21	0.4	13-17-24	440	16-19-27		17-21-30		19-23-32	107	20-24-35		21-26-37	050
	2E, 2F	в	cfm/Side	141	84	188	112	234	141	281	169	328	197	375	225	422	253
			Throw,ft	11-16-23	8-13-19	14-18-26	11-16-22		14-18-25		16-20-28	20-24-34	17-21-30		18-23-32		20-24-34
	1A, 1B	((())) A	cfm/Side	225		300		375		450		525		600		675	
	• -	······································	Throw,ft	14-18-26		17-21-30		19-24-33		21-26-36		23-28-39		24-30-42		26-32-45	

For Performance Notes, see page C105.

SMD / AMD Retur	n Factors	
Duct Size	(-) SP	NC
9 x 6	0.87 x Listed TP	Listed NC – 1
12 x 6	1.13 x Listed TP	Listed NC + 1
15 x 6	1.33 x Listed TP	Listed NC + 1
18 x 6	1.87 x Listed TP	Listed NC + 2
21 x 6	2.27 x Listed TP	Listed NC + 3
24 x 6	2.73 x Listed TP	Listed NC + 4
12 x 9	2.73 x Listed TP	Listed NC + 4

Performance Data - Imperial Units - Rectangular Neck

		/elocity ty Pressu	re	30 0.0)0 106	40			00)16		00 022		00 D31	80		90 0.0	
	Total P	ressure		0.0		0.0)99		144		196	0.2		0.3	
Duct			Total cfm	28	81	1	75		70		63		56	75		84	
Size 15 in. x 9 in.			NC	A .	B	A 1	7 B	A	24 B	A	80 B		84 B	3 A	8 B	4 A	Z B
	4B	, <u> </u>	cfm/Side	98	42	131	56	A 165	70	A 198	84	A 230	98	263	112	296	126
	10	(Q)B	Throw,ft	9-14-20	6-9-16	12-17-23	8-12-18	15-19-26			12-16-23		14-17-24			20-25-35	
Duct	3A1	A 🛋	cfm/Side	120	42	159	56	200	70	240	84	279	98	319	112	359	126
Area	JAI	<u>ه</u> ره	Throw,ft	10-15-21	6-9-16	13-17-25	8-12-18	16-20-28	10-15-21	18-21-30	12-16-23	19-23-33	14-17-24	20-25-35	15-18-26	21-26-37	
0.94	3A2	,B	cfm/Side	82	117	110	155	137	196	165	233	192	272	219	312	247	351
ft²		(M)A	Throw,ft		10-15-21	-	13-17-25		16-20-28	16-19-27	17-21-30		19-23-33		20-25-35		21-26-37
	2A, 2B	A ([[]]]) A	cfm/Side	140		187		235		281		328		375		422	
			Throw,ft	11-16-22		14-18-26		17-21-29		18-23-32		20-24-34		21-26-37		23-28-39	
	2E, 2F	B(cfm/Side	197	84	263	112	329	141	394	169	459	197	525	225	592	253
			Throw,ft cfm/Side	13-18-25 281	8-13-19	375	11-16-22	470	14-18-25	20-25-35	16-19-28	656	17-21-30	23-29-40 750	18-22-32	25-30-43 845	19-24-34
	1A, 1B) A	Throw,ft	15-19-27		18-22-32		20-25-35		22-27-39		24-30-42		26-32-45		045 27-34-48	
Duct			Total cfm	3	37	45		56		67			87	90		101	
Size 18 in. x 9 in.			NC		- В	1 A	B	2	b B	3	1 B		35 B	39) B	43	в
10 III. X 9 III.	4B	A	cfm/Side	A 126	42	169	56	A 211	70	A 254	84	A 296	98	A 338	112	A 380	126
	TU	(Ô)°	Throw,ft	10-15-22	6-9-16	1	8-12-19		10-15-21		12-16-23		14-17-25		15-19-26		
Duct	3A1	A	cfm/Side	147	42	197	56	246	70	295	84	345	98	394	112	443	126
Area	JAI		Throw,ft	11-16-23	6-9-16	1	8-12-19		10-15-21		12-16-23					23-28-40	
1.13	3B	A	cfm/Side	168	84	225	112	281	141	337	169	394	197	450	225	506	253
ft²		(M)E	1111000,10	12-17-24	8-13-19		11-16-22		14-18-25		16-19-28		17-21-30		18-22-32		19-24-34
	2A 2B	A ()) A	cfm/Side	168		225		281		337		394		450		506	
		· ^ \/`^		12-17-24	0.4	16-19-27	110	18-22-31		19-24-34	4.00	21-26-36		22-27-39	005	24-29-41	
	2E, 2F	в	cfm/Side Throw,ft	253 15-19-27	84	338	112 11-16-22	421 20-24-34	141	506	169 16-19-28	591	197 17-21-30	675	225	759 27-33-46	253
			ofm/Sido	337	0-13-13	450	11-10-22	562	14-10-20	675	10-19-20	787	17-21-30	900	10-22-32	1012	19-24-34
	1A, 1B	6 ()) A	Throw,ft	17-20-29		19-24-33		22-26-37		24-29-41		25-31-44		27-33-47		29-35-50	
Duct			Total cfm		93	52	4	65	i5	78	36	91	7	105	50		80
Size			NC		-	1	B	2	5	3	1	3	5	39)	4	3
21 in. x 9 in.				Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В
	4B	(B	cfm/Side	154	42	206	56	258	70	309	84	360	98	413	112	464	126
			Throw,ft	11-16-23	6-9-16	15-19-27	8-12-18		10-14-20		12-16-22		14-17-24				
Duct	3A1	A	cfm/Side Throw,ft	175 12-17-24	42 6-9-16	234	56 8-12-18	292	70 10-14-20	351	84 12-16-22	410	98 14-17-24	468	112	527 24-29-41	126
Area 1.31	24.20			12-17-24	0-9-10	262	0-12-10	327	10-14-20	393	12-10-22	458	14-17-24	525	10-10-20	590	10-19-27
ft ²	ZA, ZD	A ([]]]) A	Throw,ft	13-17-25		17-20-29		18-23-32		20-25-35		22-27-38		23-29-40		25-30-43	
	2E, 2F	A A	cfm/Side	308	84	412	112	514	141	617	169	720	197	825	225	927	253
		B	Throw,ft	16-20-28	8-13-20	19-23-33	11-16-23	21-26-36	14-18-25	23-28-40	16-20-28	25-30-43	17-21-30	27-33-46		28-35-49	
	1A, 1B		cfm/Side	393		524		655		786		917		1050		1180	
			Throw,ft	17-21-30		20-25-35	-	22-28-39		25-30-43		27-33-46		28-35-49		30-37-52	
Duct			Total cfm	45	0	60		75		90		10		120			50
Size			NC	-	р	1	_	2	-	3	_	3	_	40	-	-	4 B
24 in. x 9 in.		. A	cfm/Side	A 183	B 42	A 244	B 56	A 305	B 70	A 366	B 84	427	B 98	A 488	B 112	A 549	B 126
	4B	(©) ^B	Throw.ft	12-17-24		1	8-12-19			1				23-28-40			
Duct	3A1	A	cfm/Side	204	42	272	56	340	70	408	84	476	98	544	112	612	126
Area		В) в	Throw,ft	13-18-25		1	8-12-19			1				24-29-41			
	2A, 2B	A () A	cfm/Side	225		300		375		450		525		600		675	
ft²		ייששיי, יי	Throw,ft	14-18-26		17-21-30		19-24-33		21-26-36		23-28-39		24-30-42		26-32-45	
	2E, 2F	A	cfm/Side	365	84	488	112	609	141	731	169	853	197	975	225	1097	253
		B	Throw,ft		8-12-19		11-16-22		14-18-25		16-19-27		17-21-30	28-34-48	18-22-32		19-24-34
	1A, 1B) A	cfm/Side Throw,ft	450		600		750		900		1050		1200		1350	
			i lirow,it	18-22-31		21-26-36		23-29-41		26-31-44		28-34-48		30-36-51		31-38-54	

For Performance Notes, see page C105.

For SMD / AMD Return Factors, see page C102.

Performance Data - Imperial Units - Rectangular Neck

				_			-					_		-			
		/elocity		1	300	40		1	00		00		/00		00	-	00
		ty Pressu	re	1	006	0.0		1	D16		022	-	031		040)50
Duct	lotal P	ressure	Total cfm		.036 375	0.0			099 F		144	-	196		256)00		324
Size			NC	3	5/5	50		62		75		87			100 10	112	
312e 15 in. x 12	:		NC	A	- В	A	в	A 2	B	A	2 B	A	o B	A	B	A 44	В
13 III. X 12		A A	cfm/Side	A 112	75	A 150	100	A 187	125	225	150	262	175	300	200	337	225
	4B	(D)B	Throw.ft	10-14-21	75 8-12-19	13-17-24		16-19-27	13-17-24	17-21-30		19-23-32			18-22-31		225 19-23-33
Duct		—	ofm/Cido	150	75	200	100	250	125	300	150	350	17-20-23	400	200	450	225
Area	3A1	¶∯®	Throw.ft	11-16-23		15-19-26		17-21-30	13-17-24		15-19-27		17-20-29			23-28-40	
1.25			cfm/Side	129	117	172	156	215	195	258	234	301	273	344	312	387	351
ft ²	3A2				10-15-21		13-17-25	-	16-20-28		17-21-30		19-23-33		-		
п			cfm/Side	187	10-13-21	250	10-17-20	312	10-20-20	375	17-21-30	437	13-23-33	500	20-23-33	562	21-20-37
	2A, 2B	A ([[]]]) A	Throw,ft	12-17-24		16-20-28		18-22-32		20-24-35		22-26-37		23-28-40		24-30-42	
	05.05	A A	cfm/Side	225	150	300	200	375	250	450	300	525	350	600	400	675	450
	2E, 2F	в	Throw,ft		11-16-23		15-19-26	1			19-23-32		20-25-35			26-32-45	
			cfm/Side	375		500	10 10 20	625		750	10 20 02	875	20 20 00	1000	22 20 07	1125	20 20 10
	1A, 1B	A (Throw,ft	17-21-30		20-24-34		22-27-38		24-30-42		26-32-45		28-34-49		30-36-52	
Duct			Total cfm		150		600		50	90	0		050	11	200	135	:0
Size			NC	1			20		27	30			37		11	45	
312e 18 in. x 12	in		NG	A	- В	A	20 B	A	B	A	B	Α	з/ В	A .	B	A 45	B
10 111. X 12	4B	A A	cfm/Side	150	75	200	100	250	125	300	150	350	175	400	200	450	225
	4B	(DB) B	Throw,ft	11-16-23		15-19-27			13-17-24		15-19-27		17-20-29			23-28-40	
Duct		-	cfm/Side	187	75	250	100 10 22	312	125	375	150	437	175	500	200	562	225
Area	3A1		Throw,ft		8-12-19		10-15-22	18-22-31					17-20-29			24-30-42	
1.50			cfm/Side	141	168	187	225	234	281	281	337	328	394	375	450	422	506
ft ²	3A2			1	12-17-24		16-19-27	17-21-29			19-24-34		21-26-36				
			cfm/Side	225		300		375		450		525		600		675	
	2A, 2B	A ([[]]]) A	Throw,ft	14-18-26		17-21-30		19-24-33		21-26-36		23-28-39		24-30-42		26-32-45	
	25.25	A	cfm/Side	300	150	400	200	500	250	600	300	700	350	800	400	900	450
	2E, 2F	B	Throw,ft	16-20-28	11-16-23		15-19-27	21-25-36	17-21-30		19-23-33	25-30-43	20-25-35		22-27-38	28-34-48	23-28-40
	1A, 1B		cfm/Side	450		600		750		900		1050		1200		1350	
	IA, ID	,A	Throw,ft	18-22-31		21-26-36		23-29-41		26-31-44		28-34-48		30-36-51		31-38-54	
Duct			Total cfm	5	525	70		87			050	12		140		-	75
Size			NC		-	2		2			33	3		41			5
21 in. x 12		-	((0:1	A	B	A	B	A	B	A	B	A	B	A	B	A	B
	4B	(B)B	cfm/Side	187	75	250	100	312	125	375	150	437	175	500	200	562	225
Duct		Ţ	Throw,ft	12-17-24 225	<u>8-12-19</u> 75	16-20-28 300		18-22-31 375	<u>13-17-24</u> 125	450	<u>15-19-27</u> 150	22-26-37 525		23-28-40 600	18-22-31 200	24-30-42 675	
Duct Area	3A1	B	cfm/Side Throw,ft	1	75 8-12-19		100 11-15-22	1		450			175	24-30-42			225
Area 1.75		<u> </u>	cfm/Side	14-16-20	230	197	306	246	382	21-20-30	460	345	535	394	612	443	688
1.75 ft ²	3A2		Throw,ft		14-18-26		17-21-30	1			21-26-37		23-28-39			23-28-40	
п		unnin	cfm/Side	262	14-10-20	350	17-21-30	437	13-74-99	525	21-20-3/	612	20-20-09	700	24-00-42	787	20-02-40
	2A, 2B 🖉	A ([[]]]) A	Throw,ft	15-19-27		18-22-31		20-25-35		22-27-38		24-29-41		25-31-44		27-33-47	
			cfm/Side	375	150	500	200	625	250	750	300	875	350	1000	400	1125	450
	2E, 2F	B	Throw,ft		11-16-23								20-25-35			30-37-52	
			cfm/Side	525		700	.5 .0 20	875	., 21 00	1050	.0 20 02	1225	_0 _0 00	1400	0	1575	
	1A, 1B) A	Throw,ft	19-23-33		22-27-38		24-30-42		27-33-46		29-35-50		31-38-54		33-40-57	
								2.00 12				0		, 5, 50 04		. 55 .0 07	

For Performance Notes, see page C105.

SMD / AMD Return Factors

18 x 9 1.47 x Listed TP Listed NC + 5 21 x 9 1.73 x Listed TP Listed NC + 4 24 x 9 2.00 x Listed TP Listed NC + 4 15 x 12 1.13 x Listed TP Listed NC + 4 18 x 12 1.33 x Listed TP Listed NC + 4	Duct Size	(-) SP	NC
21 x 9 1.73 x Listed TP Listed NC + 4 24 x 9 2.00 x Listed TP Listed NC + 4 15 x 12 1.13 x Listed TP Listed NC + 4 18 x 12 1.33 x Listed TP Listed NC + 4	15 x 9	1.20 x Listed TP	Listed NC + 3
24 x 9 2.00 x Listed TP Listed NC + 4 15 x 12 1.13 x Listed TP Listed NC + 4 18 x 12 1.33 x Listed TP Listed NC + 4	18 x 9	1.47 x Listed TP	Listed NC + 3
15 x 12 1.13 x Listed TP Listed NC + 2 18 x 12 1.33 x Listed TP Listed NC + 3	21 x 9	1.73 x Listed TP	Listed NC + 4
18 x 12 1.33 x Listed TP Listed NC + 3	24 x 9	2.00 x Listed TP	Listed NC + 4
	15 x 12	1.13 x Listed TP	Listed NC + 2
21 x 12 1 53 x Listed TP Listed NC + 5	18 x 12	1.33 x Listed TP	Listed NC + 3
	21 x 12	1.53 x Listed TP	Listed NC + 5

Performance Data - Imperial Units - Rectangular Neck

	Neck V			1	300	40		1	00	1	00		/00	1	00		00
		y Pressu	ire	1	.006	0.0		1	016	1	022		031	-	040)50
Duct	Iotal P	ressure	Total afm		.036	0.0			099		144		196		256		324
Duct Size			Total cfm NC	60		80		10		12		14		16		180 46	
24 in. x 12 ii	n		NG	A	В	A	В	A 20	B	A	+ В	A	B	A	B	A 40	, В
24 111. A 12 11	4B	A A	cfm/Side	225	75	300	100	375	125	450	150	525	175	600	200	675	225
	40	(Q)B	Throw,ft	14-18-26		17-21-30		19-23-33	13-17-24	1		23-28-39		1			19-23-32
Duct	244	A	cfm/Side	262	75	350	100 22	437	175	525	150	612	175	700	200	787	225
Area	3A1	- -	³ Throw,ft	15-19-27		18-22-31		20-25-35		1	15-19-26	24-29-41		1	18-22-30		
2.00	20	- A	a fee /C:da	300	150	400	200	500	250	600	300	700	350	800	400	900	450
ft ²	3B		^B Throw,ft	16-20-28	11-16-23		15-19-26			1	19-23-32		20-25-35	26-32-46	22-26-37	28-34-48	23-28-40
			cfm/Side	300		400		500		600		700		800		900	
	2A, 2B	A ([[]]]) A	Throw,ft	16-20-28		19-23-32		21-26-36		23-28-40		25-30-43		26-32-46		28-34-48	
	2E 2E	A	cfm/Side	450	150	600	200	750	250	900	300	1050	350	1200	400	1350	450
	2E, 2F	в	Throw,ft	18-22-31	11-16-23	21-26-36	15-19-26	23-29-41	17-21-30	26-31-44	19-23-32	28-34-48	20-25-35	30-36-51	22-26-37	31-38-54	23-28-40
	1A, 1B		cfm/Side	600		800		1000		1200		1400		1600		1800	
	17, 10		THIOW,IL	20-24-34		23-28-39		25-31-44		28-34-48		30-37-52		32-39-56		34-42-59	
Duct			Total cfm	56	52		/50		37	1	125	13		1	500		87
Size			NC	· ·			21		28	1	34	3		1	42		6
18 in. x 15 i		٩	· (/0: 1	A 164	B	A 219	B	A 273	B 195	A 328	B	A 383	B 273	A 100	B 312	A 492	B
	4B	(D B	cfm/Side Throw.ft	-	117 10-15-21	-	156 13-17-25	-	16-19-28		234 17-21-30			438	20-25-35		351
Duct			cfm/Side	222	117	297	156	371	195	445	234	519	273	594	312	668	351
Area	3A1		Throw,ft	1	10-15-21	-	13-17-25		16-19-28		17-21-30		19-23-33		20-25-35	26-31-44	
1.88				197	168	262	225	328	281	394	337	459	394	525	450	590	506
ft ²	3A2		A Throw,ft	-	12-17-24		16-19-27							1		25-30-43	
			- free / C : al a	281		375	10 10 27	468	10 22 01	562	10 2 1 0 1	656	21 20 00	750	22 27 00	843	
	2A, 2B	A ([[]]]) A	Throw,ft	15-19-27		18-22-32		20-25-35		22-27-39		24-30-42		26-32-45		27-34-48	
	2E, 2F	A	cfm/Side	329	234	438	312	547	390	657	468	766	546	876	624	985	702
	22, 21	B	Throw,ft	16-20-29	14-18-26	19-23-33	17-21-30	21-26-37	19-24-34		21-26-37		23-28-40		24-30-42	29-35-50	26-32-45
	1A, 1B	((())) A	cfm/Side	562		750		937		1125		1312		1500		1687	
	17, 10		Throw,ft	19-24-33		22-27-39		25-31-43		27-33-47		29-36-51		32-39-55		33-41-58	
Duct			Total cfm	6	55	6	375	10	92	13	12	15	32	17	50	19	970
Size			NC		-	:	21	2	B	3	4	3	8	4	2	4	16
21 in. x 15 i	n.			Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В
	4B		cfm/Side	210	117	281	156	351	195	422	234	493	273	563	312	634	351
		¢.	Throw,ft	13-18-25		17-21-29			16-19-28		17-21-30				20-25-35		
Duct	3A1	Ê) ^A B	cfm/Side	269	117	359	156	448	195	539	234	629	273	719	312	809	351
Area		₿″°	11110000,10	15-19-27			13-17-25									27-33-47	
2.19	3A2	, ™ B	cfm/Side	213	230	284	306	355	382	426	460	498	535	569	612	641	688
ft²			· (/0:1.		14-18-26		17-21-30		19-24-33		21-26-37	22-27-39 766	23-28-40	-	24-30-42		20-32-45
	2A, 2B	A ([[]]]) A	cfm/Side	327		437		596		656				875		985 20.25 50	
			Throw,ft cfm/Side	16-20-29 422	234	19-23-33 563	312	22-27-39 702	390	23-29-41 844	468	25-31-44 986	546	27-33-47 1126	624	29-35-50 1268	702
	2E, 2F	B	Throw.ft		234 14-18-26						400 21-26-37		23-28-40		024 24-30-42		
			ofm/Cido	655	1-10-20	875	17-21-30	1092	10-24-04	1312	21-20-37	1532	20-20-40	1750	27-30-42	1970	20-02 - 40
	1A, 1B	A ([[[]]]	Throw.ft	20-25-35	i	23-29-40		26-32-45		29-35-49		31-38-53		33-40-57		35-43-61	
			7111049,10	120 20-00		20 20-40		1 20 JZ-4J		20 00-40		01 00-00		JJ -10-J/		00-01-01	

For Performance Notes, see page C105.

SMD / AMD Return Factors

Duct Size	(-) SP	NC
24 x 12	1.80 x Listed TP	Listed NC + 5
18 x 15	1.40 x Listed TP	Listed NC + 4
21 x 15	1.47 x Listed TP	Listed NC + 5
24 x 15	1.80 x Listed TP	Listed NC + 6
21 x 18	1.53 x Listed TP	Listed NC + 5
24 x 18	1.73 x Listed TP	Listed NC + 6
24 x 21	1.47 x Listed TP	Listed NC + 7

Performance Data - Imperial Units - Rectangular Neck

	Neck V	/elocity		300	40	0	5	00	6	00	7	00	8	300	9	00
		y Pressu	ire	0.006	0.0		1	016		022	1	031		.040		050
_	Total P	ressure		0.036	0.0			099		144		196		.256		324
Duct			Total cfm	750	100		12		15		17			00	22!	
Size 24 in. x 15 i	n		NC	- А В	A 22	2 B	2 A	9 B	3 A	B	3 A	9 B	A 4	3 B	47 A	/ В
24 III. A 13 I	4B	A	cfm/Side	258 117	344	156	430	195	516	234	602	273	688	312	774	351
	40	(Q)B	Throw,ft	15-19-27 10-15-21			20-25-35			17-21-30						21-26-37
Duct	3A1	A l	cfm/Side	316 117	422	156	527	195	633	234	738	273	844	312	949	351
Area	541		Throw,ft	16-20-28 10-15-21			21-26-37			17-21-30						21-26-37
2.50	3A2	B	cfm/Side	225 300	300	400	375	500	450	600	525	700	600	800	675	900
ft²		(M)A	Throw,ft cfm/Side	14-18-26 16-20-28 375	500	19-23-32	625	21-26-36	750	23-28-40	875	25-30-43	1000	26-32-46	1125	28-34-48
	2A, 2B /	A ([[]]]) A	Throw,ft	17-21-30	20-24-34		22-27-38		24-30-42		26-32-45		28-34-49		30-36-52	
	2E, 2F	A	cfm/Side	516 234	688	312	860	390	1032	468	1204	546	1376	624	1548	702
	22, 21	B	Throw,ft	19-23-33 14-18-26		17-21-30		19-24-34		21-26-37		23-28-40		25-30-43		26-32-45
	1A, 1B		cfm/Side	750	1000		1250		1500		1750		2000		2250	
Duct	-	uuuu,	Throw,ft Total cfm	21-26-36 787	24-30-42)50	27-33-47	310	30-36-51	575	32-39-55	840	34-42-59	100	36-44-63	360
Size			NC	- 107		22		29		36	1	39		43		47
21 in. x 18 i	n.		110	A B	A	В	A	В	A	В	A	В	A	В	Α	В
	4B	(B)B	cfm/Side	225 169	300	225	374	281	450	337	526	394	600	450	674	506
_		ų da la	Throw,ft	14-18-26 12-17-24		16-19-28								22-28-39		
Duct	3A1	Ê B	cfm/Side	309 169	412	225	514	281	619	337	723	394	825	450	927	506
Area 2.63		<u> </u>	Throw,ft cfm/Side	16-20-28 12-17-24 279 230	372	<u>16-19-28</u> 306	464	382	557	<u>19-24-34</u> 460	652	21-26-36 535	744	22-28-39 612	836	688
ft ²	3A2		Throw,ft	15-19-27 14-18-26		17-21-30							1	24-30-42		
	2A 2D	A () A	cfm/Side	393	525		655		787		920		1050		1180	
			Throw,ft	17-21-30	20-25-35		22-28-39		25-30-43		27-33-46		28-35-49		30-37-52	
	2E, 2F	в	cfm/Side	450 338	600	450	750	560	900	675	1060	790	1200	900	1350	1010
			Throw,ft cfm/Side	18-22-31 17-20-29		19-24-33	23-29-41	21-26-37	26-31-44	24-29-41	28-34-48	26-31-44	30-36-51	27-33-47	31-38-54	29-35-50
							1 1210		1575		19/0		2100		2360	
	1A, 1B	A (787 21-26-37	1050 25-30-42		1310 27-34-47		1575 30-37-52		1840 32-40-56		2100 35-42-60		2360 37-45-64	
Duct	1A, 1B		Throw,ft Total cfm	21-26-37 900	1050 25-30-42 12 0	DO	1310 27-34-47 15	00	1575 30-37-52 18	00	1840 <u>32-40-56</u> 21	00	35-42-60	00	2360 37-45-64 27(00
Size			Throw,ft	21-26-37 900 -	25-30-42 120 23	3	27-34-47 15 3	D	30-37-52 18 3	6	32-40-56 21 4	D	35-42-60 24 4	00 4	37-45-64 27(48	B
	n.	A (<u>Throw,ft</u> Total cfm NC	21-26-37 900 - A B	25-30-42 120 23 A	3 B	27-34-47 15 3 A	0 B	30-37-52 18 3 A	6 B	32-40-56 21 4 A	0 B	35-42-60 24 4 A	00 4 B	37-45-64 27(48 A	B B
Size		A A	Throw,ft Total cfm NC cfm/Side	21-26-37 900 - A B 281 169	25-30-42 120 23 A 375	B 225	27-34-47 15 3 A 469	D B 281	30-37-52 18 3 A 563	6 B 337	32-40-56 21 4 A 656	D B 394	35-42-60 24 4 A 750	00 4 B 450	37-45-64 27(48 <u>A</u> 844	B 506
Size 24 in. x 18 i	n. 4B		Throw,ft Total cfm NC cfm/Side Throw,ft	21-26-37 900 - A B 281 169 15-19-27 12-17-24	25-30-42 120 23 A 375 18-22-32	B 225 16-19-27	27-34-47 15 3 A 469 20-25-35	B 281 18-22-31	30-37-52 18 3 A 563 22-27-39	B 337 19-24-33	32-40-56 21 4 656 24-30-42	B 394 21-26-36	35-42-60 24 4 750 26-32-45	00 4 8 450 22-27-39	37-45-64 27(48 844 27-34-48	B 506 24-29-41
Size	n.	A	Throw,ft Total cfm NC cfm/Side	21-26-37 900 - A B 281 169	25-30-42 120 23 A 375 18-22-32 487	B 225 16-19-27 225	27-34-47 15 3 A 469	B 281 18-22-31 281	30-37-52 18 3 A 563 22-27-39 731	6 B 337	32-40-56 21 4 656 24-30-42 853	B 394 21-26-36 394	35-42-60 24 4 750 26-32-45 975	00 4 B 450	37-45-64 27(48 844 27-34-48 1098	B 506 24-29-41 506
Size 24 in. x 18 in Duct Area 3.00	n. 4B 3A1		Throw,ft Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side	21-26-37 900 - 8 281 169 15-19-27 12-17-24 366 169 17-21-30 12-17-24 300 300	25-30-42 120 23 A 375 18-22-32 487 20-24-34 400	B 225 16-19-27 225 16-19-27 400	27-34-47 15 3 469 20-25-35 609 22-27-38 500	B 281 18-22-31 281 18-22-31 500	30-37-52 18 3 4 563 22-27-39 731 24-30-42 600	B 337 19-24-33 337 19-24-33 600	32-40-56 211 4 656 24-30-42 853 26-32-45 700	B 394 21-26-36 394 21-26-36 700	35-42-60 24 4 750 26-32-45 975 28-34-48 800	00 4 8 450 22-27-39 450 22-27-39 800	37-45-64 27(48 844 27-34-48 1098 30-36-51 900	B 506 24-29-41 506 24-29-41 900
Size 24 in. x 18 in Duct Area	n. 4B		Throw,ft Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft	21-26-37 900 - 8 281 169 15-19-27 12-17-24 366 169 17-21-30 12-17-24 300 300 16-20-28 16-20-28	25-30-42 12(2: A 375 18-22-32 487 20-24-34 400 19-23-32	B 225 16-19-27 225 16-19-27 400	27-34-47 15 3 4 69 20-25-35 609 22-27-38 500 21-26-36	B 281 18-22-31 281 18-22-31	30-37-52 18 3 563 22-27-39 731 24-30-42 600 23-28-40	B 337 19-24-33 337 19-24-33 600	32-40-56 211 4 656 24-30-42 853 26-32-45 700 25-30-43	B 394 21-26-36 394 21-26-36 700	35-42-60 24 4 750 26-32-45 975 28-34-48 800 26-32-46	00 4 8 450 22-27-39 450 22-27-39	37-45-64 27(48 844 27-34-48 1098 30-36-51 900 28-34-49	B 506 24-29-41 506 24-29-41 900
Size 24 in. x 18 in Duct Area 3.00	n. 4B 3A1 3A2		Throw,ft Total cfm NC Cfm/Side Throw,ft Cfm/Side Throw,ft Cfm/Side Throw,ft cfm/Side	21-26-37 900 - 8 281 169 15-19-27 12-17-24 366 169 17-21-30 12-17-24 300 300 16-20-28 16-20-28 450	25-30-42 12(2: A 375 18-22-32 487 20-24-34 400 19-23-32 600	B 225 16-19-27 225 16-19-27 400	27-34-47 15 A 469 20-25-35 609 22-27-38 500 21-26-36 750	B 281 18-22-31 281 18-22-31 500	30-37-52 18 3 4 563 22-27-39 731 24-30-42 600 23-28-40 900	B 337 19-24-33 337 19-24-33 600	32-40-56 21 4 656 24-30-42 853 26-32-45 700 25-30-43 1050	B 394 21-26-36 394 21-26-36 700	35-42-60 24 4 750 26-32-45 975 28-34-48 800 26-32-46 1200	00 4 450 22-27-39 450 22-27-39 800 26-32-46	37-45-64 27(48 844 27-34-48 1098 30-36-51 900 28-34-49 1350	B 506 24-29-41 506 24-29-41 900
Size 24 in. x 18 in Duct Area 3.00	n. 4B 3A1 3A2 2A, 2B		Throw,ft Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft	21-26-37 900 - 8 281 169 15-19-27 12-17-24 366 169 17-21-30 12-17-24 300 300 16-20-28 16-20-28 450 18-22-31	25-30-42 A 375 18-22-32 487 20-24-34 400 19-23-32 600 21-26-36	B 225 16-19-27 225 16-19-27 400 19-23-32	27-34-47 15 3 4 69 20-25-35 609 22-27-38 500 21-26-36 750 23-29-41	0 8 281 18-22-31 281 18-22-31 500 21-26-36	30-37-52 18 31 563 22-27-39 731 24-30-42 600 23-28-40 900 26-31-44	B 337 19-24-33 337 19-24-33 600 23-28-40	32-40-56 21 44 656 24-30-42 853 26-32-45 700 25-30-43 1050 28-34-48	0 8 394 21-26-36 394 21-26-36 700 25-30-43	35-42-60 24 4 750 26-32-45 975 28-34-48 800 26-32-46 1200 30-36-51	00 4 <u>B</u> 450 22-27-39 450 22-27-39 800 26-32-46	37-45-64 27(48 844 27-34-48 1098 30-36-51 900 28-34-49 1350 31-38-54	B 506 24-29-41 506 24-29-41 900 28-34-49
Size 24 in. x 18 in Duct Area 3.00	n. 4B 3A1 3A2		Throw,ft Total cfm NC Cfm/Side Throw,ft Cfm/Side Throw,ft Cfm/Side Throw,ft cfm/Side	21-26-37 900 - 8 281 169 15-19-27 12-17-24 366 169 17-21-30 12-17-24 300 300 16-20-28 16-20-28 450	25-30-42 A 375 18-22-32 487 20-24-34 400 19-23-32 600 21-26-36 750	B 225 16-19-27 225 16-19-27 400	27-34-47 15 3 4 469 20-25-35 609 22-27-38 500 21-26-36 750 23-29-41 938	0 <u>B</u> 281 18-22-31 281 18-22-31 500 21-26-36 562	30-37-52 18 3 4 563 22-27-39 731 24-30-42 600 23-28-40 900 26-31-44 1125	B 337 19-24-33 337 19-24-33 600	32-40-56 211 4 656 24-30-42 853 26-32-45 700 25-30-43 1050 28-34-48 1313	B 394 21-26-36 394 21-26-36 700	35-42-60 24 4 750 26-32-45 975 28-34-48 800 26-32-46 1200 30-36-51 1500	00 4 450 22-27-39 450 22-27-39 800 26-32-46	37-45-64 270 48 844 27-34-48 1098 30-36-51 900 28-34-49 1350 31-38-54 1688	B 506 24-29-41 506 24-29-41 900 28-34-49 1012
Size 24 in. x 18 in Duct Area 3.00	n. 4B 3A1 3A2 2A, 2B 2E, 2F		Throw,ft Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side	21-26-37 900 - 8 281 169 15-19-27 12-17-24 366 169 17-21-30 12-17-24 300 300 16-20-28 16-20-28 450 18-22-31 562 338 19-24-33 17-20-29 900	25-30-42 12 (2 : A 375 18-22-32 487 20-24-34 400 19-23-32 600 21-26-36 750 22-27-39 1200	B 225 16-19-27 225 16-19-27 400 19-23-32 450	27-34-47 15 3 4 469 20-25-35 609 22-27-38 500 21-26-36 750 23-29-41 938 25-31-43 1500	0 <u>B</u> 281 18-22-31 281 18-22-31 500 21-26-36 562	30-37-52 18 ⁱ 3 4 563 22-27-39 731 24-30-42 600 23-28-40 900 26-31-44 1125 27-33-47 1800	6 8 337 19-24-33 337 19-24-33 600 23-28-40 675	32-40-56 211 44 656 24-30-42 853 26-32-45 700 25-30-43 1050 28-34-48 1313 30-36-51 2100	0 8 394 21-26-36 394 21-26-36 700 25-30-43 787	35-42-60 24 4 750 26-32-45 975 28-34-48 800 26-32-46 1200 30-36-51 1500 32-39-55 2400	00 4 	37-45-64 27(48 844 27-34-48 1098 30-36-51 900 28-34-49 1350 31-38-54 1688 33-41-58 2700	B 506 24-29-41 506 24-29-41 900 28-34-49 1012
Size 24 in. x 18 in Duct Area 3.00 ft ²	n. 4B 3A1 3A2 2A, 2B		Throw,ft Total cfm NC Cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft	21-26-37 900 - 8 281 169 15-19-27 12-17-24 366 169 17-21-30 12-17-24 300 300 16-20-28 16-20-28 450 18-22-31 562 338 19-24-33 17-20-29 900 22-27-38	25-30-42 12 (2 : A 375 18-22-32 487 20-24-34 400 19-23-32 600 21-26-36 750 22-27-39 1200 25-31-44	B 225 16-19-27 225 16-19-27 400 19-23-32 450 19-24-33	27-34-47 15 3 4 469 20-25-35 609 22-27-38 500 21-26-36 750 23-29-41 938 25-31-43 1500 28-35-49	B 281 18-22-31 281 18-22-31 500 21-26-36 562 21-26-37	30-37-52 18 ⁱ 3 4 563 22-27-39 731 24-30-42 600 23-28-40 900 26-31-44 1125 27-33-47 1800 31-38-54	B 337 19-24-33 337 19-24-33 600 23-28-40 675 24-29-41	32-40-56 211 4 656 24-30-42 853 26-32-45 700 25-30-43 1050 28-34-48 1313 30-36-51 2100 34-41-58	D B 394 21-26-36 394 21-26-36 700 25-30-43 787 25-31-44	35-42-60 24 4 750 26-32-45 975 28-34-48 800 26-32-46 1200 30-36-51 1500 32-39-55 2400 36-44-62	00 4 	37-45-64 27(48 844 27-34-48 1098 30-36-51 900 28-34-49 1350 1350 13-38-54 1688 33-41-58 2700 38-47-66	B 506 24-29-41 506 24-29-41 900 28-34-49 1012 29-35-50
Size 24 in. x 18 in Duct Area 3.00 ft ² Duct	n. 4B 3A1 3A2 2A, 2B 2E, 2F		Throw,ft Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft Cfm/Side Throw,ft Throw,ft Throw,ft Throw,ft	21-26-37 900 - 8 281 169 15-19-27 12-17-24 366 169 17-21-30 12-17-24 300 300 16-20-28 16-20-28 450 18-22-31 562 338 19-24-33 17-20-29 900 22-27-38 1050	25-30-42 12(2: A 375 18-22-32 487 20-24-34 400 19-23-32 600 21-26-36 750 22-27-39 1200 25-31-44 14	3 <u>8</u> 225 16-19-27 225 16-19-27 400 19-23-32 450 19-24-33 100	27-34-47 15/ 3/ 469 20-25-35 609 22-27-38 500 21-26-36 750 23-29-41 938 25-31-43 1500 28-35-49 1	0 8 281 18-22-31 281 18-22-31 500 21-26-36 562 21-26-37 750	30-37-52 18/ 3/ 563 22-27-39 731 24-30-42 600 23-28-40 900 26-31-44 1125 27-33-47 1800 31-38-54 2	6 8 337 19-24-33 337 19-24-33 600 23-28-40 675 24-29-41 100	32-40-56 21 4 656 24-30-42 853 26-32-45 700 25-30-43 1050 28-34-48 1313 30-36-51 2100 34-41-58 24 24 24 24 24 24 24 24 24 24	0 8 394 21-26-36 394 21-26-36 700 25-30-43 787 25-31-44 450	35-42-60 24 4 750 26-32-45 975 28-34-48 800 26-32-46 1200 30-36-51 1500 32-39-55 2400 36-44-62 2	00 4 8 22-27-39 450 22-27-39 800 22-27-39 800 26-32-46 900 27-33-47 800	37-45-64 270 48 844 27-34-48 1098 30-36-51 900 28-34-49 1350 31-38-54 1688 33-41-58 2700 38-47-66 31	B 506 24-29-41 506 24-29-41 900 28-34-49 1012 29-35-50
Size 24 in. x 18 in Duct Area 3.00 ft ² Duct Size	n. 4B 3A1 3A2 2A, 2B 2E, 2F 1A, 1B		Throw,ft Total cfm NC Cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft	21-26-37 900 - 8 281 169 15-19-27 12-17-24 366 169 17-21-30 12-17-24 300 300 16-20-28 16-20-28 450 18-22-31 562 338 19-24-33 17-20-29 900 22-27-38 1050 15	25-30-42 12(2: A 375 18-22-32 487 20-24-34 400 19-23-32 600 21-26-36 750 22-27-39 1200 25-31-44 14	3 B 225 16-19-27 225 16-19-27 400 19-23-32 450 19-24-33 400 24	27-34-47 15/ 3/ 469 20-25-35 609 22-27-38 500 21-26-36 750 23-29-41 938 25-31-43 1500 28-35-49 1	0 8 281 18-22-31 281 18-22-31 500 21-26-36 562 21-26-37 750 81	30-37-52 18/ 3/ 563 22-27-39 731 24-30-42 600 23-28-40 900 26-31-44 1125 27-33-47 1800 31-38-54 2	6 8 337 19-24-33 337 19-24-33 600 23-28-40 675 24-29-41 100 87	32-40-56 211 4 656 24-30-42 853 26-32-45 700 25-30-43 1050 28-34-48 1313 30-36-51 2100 34-41-58 24 24 24 24 24 24 24 24 24 24	0 8 394 21-26-36 394 21-26-36 700 25-30-43 787 25-31-44 450 41	35-42-60 24 4 750 26-32-45 975 28-34-48 800 26-32-46 1200 30-36-51 1500 32-39-55 2400 36-44-62 2	00 4 	37-45-64 270 48 844 27-34-48 1098 30-36-51 900 28-34-49 1350 31-38-54 1688 33-41-58 2700 38-47-66 31	B 506 24-29-41 506 24-29-41 900 28-34-49 1012 29-35-50
Size 24 in. x 18 in Duct Area 3.00 ft ² Duct	n. 4B 3A1 3A2 2A, 2B 2E, 2F 1A, 1B		Throw,ft Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft Cfm/Side Throw,ft Throw,ft Throw,ft Throw,ft	21-26-37 900 - 8 281 169 15-19-27 12-17-24 366 169 17-21-30 12-17-24 300 300 16-20-28 16-20-28 450 18-22-31 562 338 19-24-33 17-20-29 900 22-27-38 1050 15	25-30-42 12(2: A 375 18-22-32 487 20-24-34 400 19-23-32 600 21-26-36 750 22-27-39 1200 25-31-44 14 22 25-31-44 14 22 25-31-44 14 22 25-31-44 14 25 25 25 25 25 25 25 25 25 25	3 <u>8</u> 225 16-19-27 225 16-19-27 400 19-23-32 450 19-24-33 100	27-34-47 15/ 3/ 469 20-25-35 609 22-27-38 500 21-26-36 750 23-29-41 938 25-31-43 1500 28-35-49 1	0 8 281 18-22-31 281 18-22-31 500 21-26-36 562 21-26-37 750	30-37-52 18/ 3/ 563 22-27-39 731 24-30-42 600 23-28-40 900 26-31-44 1125 27-33-47 1800 31-38-54 2	6 8 337 19-24-33 337 19-24-33 600 23-28-40 675 24-29-41 100	32-40-56 21 4 656 24-30-42 853 26-32-45 700 25-30-43 1050 28-34-48 1313 30-36-51 2100 34-41-58 24 24 24 24 24 24 24 24 24 24	0 8 394 21-26-36 394 21-26-36 700 25-30-43 787 25-31-44 450	35-42-60 24 4 750 26-32-45 975 28-34-48 800 26-32-46 1200 30-36-51 1500 32-39-55 2400 36-44-62 2	00 4 8 450 22-27-39 450 22-27-39 800 26-32-46 900 27-33-47 800 45	37-45-64 270 48 844 27-34-48 1098 30-36-51 900 28-34-49 1350 31-38-54 1688 33-41-58 2700 38-47-66 31	B 506 24-29-41 506 24-29-41 900 28-34-49 1012 29-35-50 150 49
Size 24 in. x 18 in Duct Area 3.00 ft ² Duct Size 24 in. x 21 in	n. 4B 3A1 3A2 2A, 2B 2E, 2F 1A, 1B		Throw,ft Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft Total cfm NC	21-26-37 900 - 8 281 169 15-19-27 12-17-24 366 169 17-21-30 12-17-24 300 300 16-20-28 16-20-28 450 18-22-31 562 338 19-24-33 17-20-29 900 22-27-38 1050 15 A B 295 230 16-20-28 14-18-26	25-30-42 12(2: A 375 18-22-32 487 20-24-34 400 19-23-32 600 21-26-36 750 22-27-39 1200 25-31-44 14 2 A 394 19-23-32	3 B 225 16-19-27 225 16-19-27 400 19-23-32 400 19-24-33 100 24 B 306 17-21-30	27-34-47 15/ 3/ 469 20-25-35 609 22-27-38 500 21-26-36 750 23-29-41 938 25-31-43 1500 28-35-49 1: 493 21-25-36	0 8 281 18-22-31 281 18-22-31 502 21-26-36 562 21-26-37 750 381 8 382 19-24-33	30-37-52 18/ 3/ 563 22-27-39 731 24-30-42 600 23-28-40 900 23-28-40 900 26-31-44 1125 27-33-47 1800 31-38-54 22 590 23-28-39	6 8 337 19-24-33 337 19-24-33 600 23-28-40 675 24-29-41 675 24-29-41 100 87 8 460 21-26-37	32-40-56 211 44 656 24-30-42 853 26-32-45 700 25-30-43 1050 28-34-48 1313 30-36-51 2100 34-41-58 24-41-58 690 25-30-43	D B 394 21-26-36 394 21-26-36 700 25-30-43 707 25-31-44 787 25-31-44 450 41 8 535 23-28-39	35-42-60 24 4 750 26-32-45 975 28-34-48 800 26-32-46 1200 30-36-51 1500 32-39-55 2400 36-44-62 2 4 788 26-32-45	00 4 8 450 22-27-39 450 22-27-39 800 26-32-46 900 27-33-47 800 45 80 612 24-30-42	37-45-64 270 48 844 27-34-48 1098 30-36-51 900 28-34-49 1350 31-38-54 1688 33-41-58 2700 38-47-66 31 4 887 28-34-48	B 506 24-29-41 506 24-29-41 900 28-34-49 28-34-49 1012 29-35-50 150 49 B 688 26-32-45
Size 24 in. x 18 in Duct Area 3.00 ft ² Duct Size 24 in. x 21 in Duct	n. 4B 3A1 3A2 2A, 2B 2E, 2F 1A, 1B		Throw,ft Total cfm NC Cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft Total cfm NC Cfm/Side Throw,ft Total cfm	21-26-37 900 - 8 281 169 15-19-27 12-17-24 366 169 17-21-30 12-17-24 300 300 16-20-28 16-20-28 450 18-22-31 562 338 19-24-33 17-20-29 900 22-27-38 1050 15 A B 295 230 16-20-28 14-18-26 410 230	25-30-42 25-30-42 22 A 375 18-22-32 487 20-24-34 400 19-23-32 600 21-26-36 750 22-27-39 1200 25-31-44 14 2 A 394 19-23-32 547	3 B 225 16-19-27 225 16-19-27 400 19-23-32 450 19-24-33 450 19-24-33 450 19-24-33 450 19-24-33 306 17-21-30 306	27-34-47 15/ 3/ 469 20-25-35 609 22-27-38 500 21-26-36 750 23-29-41 938 25-31-43 1500 28-35-49 17 493 21-25-36 684	D B 281 18-22-31 281 18-22-31 502 21-26-36 562 21-26-37 750 381 B 382 19-24-33 382	30-37-52 18/ 3/ 563 22-27-39 731 24-30-42 600 23-28-40 900 23-28-40 900 23-28-40 900 23-28-40 900 23-28-40 900 23-28-40 900 23-28-39 820	6 8 337 19-24-33 337 19-24-33 600 23-28-40 23-28-40 607 24-29-41 100 37 8 460 21-26-37 460	32-40-56 211 4 666 24-30-42 853 26-32-45 700 25-30-43 1050 28-34-48 1313 30-36-51 2100 34-41-58 20 4 690 25-30-43 957	B 394 21-26-36 394 21-26-36 700 25-30-43 787 25-31-44 450 41 535 23-28-39 535	35-42-60 24 4 750 26-32-45 975 28-34-48 800 26-32-46 1200 30-36-51 1500 32-39-55 2400 36-44-62 2 2 8 788 26-32-45 1094	00 4 8 450 22-27-39 450 22-27-39 800 26-32-46 900 27-33-47 800 45 80 612 24-30-42 612	37-45-64 270 48 844 27-34-48 1098 30-36-51 900 28-34-49 1350 31-38-54 1688 33-41-58 2700 38-47-66 31 4 887 28-34-48 1231	B 506 24-29-41 506 24-29-41 900 28-34-49 1012 29-35-50 150 49 B 688 26-32-45 688
Size 24 in. x 18 in Duct Area 3.00 ft ² Duct Size 24 in. x 21 in Duct Area	n. 4B 3A1 2A, 2B 2E, 2F 1A, 1B n. 4B 3A1		Throw,ft Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft Total cfm NC cfm/Side Throw,ft	21-26-37 900 - 8 281 169 15-19-27 12-17-24 366 169 17-21-30 12-17-24 300 300 16-20-28 16-20-28 450 18-22-31 562 338 19-24-33 17-20-29 900 22-27-38 1050 15 A B 295 230 16-20-28 14-18-26 410 230 18-22-31 14-18-26	25-30-42 25-30-42 12(2: A 375 18-22-32 487 20-24-34 400 19-23-32 600 21-26-36 750 22-27-39 1200 25-31-44 14 2 A 394 19-23-32 547 20-25-35	3 B 225 16-19-27 225 16-19-27 400 19-23-32 400 19-24-33 450 19-24-33 450 19-24-33 450 19-24-30 306 17-21-30 306 17-21-30	27-34-47 15/ 3/ 469 20-25-35 609 22-27-38 500 23-29-41 938 25-31-43 1500 28-35-49 1: 493 21-25-36 684 23-28-39	D B 281 18-22-31 281 18-22-31 500 21-26-36 562 21-26-37 750 81 B 382 19-24-33 382 19-24-33	30-37-52 18/ 3/ 5/ 22-27-39 731 24-30-42 600 23-28-40 900 26-31-44 1125 27-33-47 1800 31-38-54 27 3 2-32-8-39 820 25-31-43	6 8 337 19-24-33 337 19-24-33 600 23-28-40 607 24-29-41 675 24-29-41 100 87 8 460 21-26-37 460 21-26-37	32-40-56 211 4 656 24-30-42 853 26-32-45 700 25-30-43 1050 28-34-48 1313 30-36-51 2100 34-41-58 24 690 25-30-43 957 27-33-47	D B 394 21-26-36 394 21-26-36 700 25-30-43 700 25-30-43 700 25-31-44 450 450 41 535 23-28-39 535 23-28-39	35-42-60 24 4 750 26-32-45 975 28-34-48 800 26-32-46 1200 30-36-51 1500 32-39-55 2400 36-44-62 2 788 26-32-45 1094 29-35-50	00 4 B 450 22-27-39 450 22-27-39 800 27-33-47 900 27-33-47 800 45 B 612 24-30-42 612 24-30-42	37-45-64 27- 48 27-34-48 1098 30-36-51 900 28-34-49 1350 31-38-54 1688 2700 38-47-66 31 2 887 28-34-48 1231 31-37-53	B 506 24-29-41 506 24-29-41 900 28-34-49 1012 29-35-50 150 49 B 688 26-32-45 688 26-32-45
Size 24 in. x 18 in Duct Area 3.00 ft ² Duct Size 24 in. x 21 in Duct	n. 4B 3A1 3A2 2A, 2B 2E, 2F 1A, 1B n. 4B		Throw,ft Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft Total cfm NC cfm/Side Throw,ft	21-26-37 900 - 8 281 169 15-19-27 12-17-24 366 169 17-21-30 12-17-24 300 300 16-20-28 16-20-28 450 18-22-31 562 338 19-24-33 17-20-29 900 22-27-38 1050 15 A B 295 230 16-20-28 14-18-26 410 230 18-22-31 14-18-26 375 300	25-30-42 25-30-42 12(2: A 375 18-22-32 487 20-24-34 400 19-23-32 600 21-26-36 750 22-27-39 1200 25-31-44 14 2 A 394 19-23-32 547 20-25-35 500	3 B 225 16-19-27 225 16-19-27 400 19-23-32 400 19-24-33 00 19-24-33 450 19-24-33 00 19-24-33 00 19-24-33 00 19-24-33 00 19-24-33 00 19-24-33 00 19-24-33 00 19-24-33 19-24 19-24 19-25 19-25 19-27 19-27 19-23 19-24 19-23 19-24	27-34-47 15/ 3/ 469 20-25-35 609 22-27-38 500 21-26-36 750 23-29-41 938 25-31-43 1500 28-35-49 17 493 21-25-36 684 23-28-39 625	0 8 281 18-22-31 281 18-22-31 500 21-26-36 562 21-26-37 750 381 8 382 19-24-33 382 19-24-33 382 19-24-33 382	30-37-52 18/ 3/ 563 22-27-39 731 24-30-42 600 23-28-40 900 26-31-44 1125 27-33-47 1800 31-38-54 2 3 2 3 3 4 1 1 5 5 6 1 1 1 1 1 1 1 1	6 8 337 19-24-33 337 19-24-33 600 23-28-40 607 24-29-41 100 87 8 460 21-26-37 460 21-26-37 600	32-40-56 211 4 656 24-30-42 853 26-32-45 700 25-30-43 1050 28-34-48 1313 30-36-51 2100 34-41-58 20 4 690 690 25-30-43 957 27-33-47 875	B 394 21-26-36 394 21-26-36 700 25-30-43 787 25-31-44 450 535 23-28-39 535 23-28-39 700	35-42-60 24 4 750 26-32-45 975 28-34-48 800 26-32-46 1200 30-36-51 1500 32-39-55 2400 36-44-62 2 4 7 8 26-32-45 1094 29-35-50 1000	00 4 B 22-27-39 450 22-27-39 800 22-27-39 800 26-32-46 900 27-33-47 800 45 B 612 24-30-42 612 24-30-42 800	37-45-64 27- 48 844 27-34-48 1098 30-36-51 900 28-34-49 1350 31-38-54 1688 33-41-58 2700 38-47-66 31 28-34-48 1231 31-37-53 1125	B 506 24-29-41 506 24-29-41 900 28-34-49 1012 29-35-50 150 B 688 26-32-45 688 26-32-45 900
Size 24 in. x 18 if Duct Area 3.00 ft ² Duct Size 24 in. x 21 if Duct Area 3.50	n. 4B 3A1 3A2 2A, 2B 2E, 2F 1A, 1B n. 4B 3A1 3A2	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	Throw,ft Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft Total cfm NC cfm/Side Throw,ft	21-26-37 900 - 8 281 169 15-19-27 12-17-24 366 169 17-21-30 12-17-24 300 300 16-20-28 16-20-28 450 18-22-31 562 338 19-24-33 17-20-29 900 22-27-38 1050 15 A B 295 230 16-20-28 14-18-26 410 230 18-22-31 14-18-26	25-30-42 25-30-42 12(2: A 375 18-22-32 487 20-24-34 400 19-23-32 600 21-26-36 750 22-27-39 1200 25-31-44 14 2 A 394 19-23-32 547 20-25-35 500	3 B 225 16-19-27 225 16-19-27 400 19-23-32 400 19-24-33 00 19-24-33 450 19-24-33 00 19-24-33 00 19-24-33 00 19-24-33 00 19-24-33 00 19-24-33 00 19-24-33 00 19-24-33 19-24 19-24 19-25 19-25 19-27 19-27 19-23 19-24 19-23 19-24	27-34-47 15/ 3/ 469 20-25-35 609 22-27-38 500 21-26-36 750 23-29-41 938 25-31-43 1500 28-35-49 17 493 21-25-36 684 23-28-39 625	0 8 281 18-22-31 281 18-22-31 500 21-26-36 562 21-26-37 750 381 8 382 19-24-33 382 19-24-33 382 19-24-33 382	30-37-52 18/ 3/ 563 22-27-39 731 24-30-42 600 23-28-40 900 26-31-44 1125 27-33-47 1800 31-38-54 2 3 2 3 3 4 1 1 5 5 6 1 1 1 1 1 1 1 1	6 8 337 19-24-33 337 19-24-33 600 23-28-40 607 24-29-41 100 87 8 460 21-26-37 460 21-26-37 600	32-40-56 211 4 656 24-30-42 853 26-32-45 700 25-30-43 1050 28-34-48 1313 30-36-51 2100 34-41-58 20 4 690 690 25-30-43 957 27-33-47 875	B 394 21-26-36 394 21-26-36 700 25-30-43 787 25-31-44 450 535 23-28-39 535 23-28-39 700	35-42-60 24 4 750 26-32-45 975 28-34-48 800 26-32-46 1200 30-36-51 1500 32-39-55 2400 36-44-62 2 4 7 8 26-32-45 1094 29-35-50 1000	00 4 B 450 22-27-39 450 22-27-39 800 27-33-47 900 27-33-47 800 45 B 612 24-30-42 612 24-30-42	37-45-64 27- 48 844 27-34-48 1098 30-36-51 900 28-34-49 1350 31-38-54 1688 33-41-58 2700 38-47-66 31 28-34-48 1231 31-37-53 1125	B 506 24-29-41 506 24-29-41 900 28-34-49 1012 29-35-50 150 B 688 26-32-45 688 26-32-45 900
Size 24 in. x 18 if Duct Area 3.00 ft ² Duct Size 24 in. x 21 if Duct Area 3.50	n. 4B 3A1 3A2 2A, 2B 2E, 2F 1A, 1B n. 4B 3A1 3A2 2A, 2B		Throw,ft Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft Throw,ft Throw,ft Cfm/Side Throw,ft Throw,ft Cfm/Side Throw,ft Cfm/Side Throw,ft Cfm/Side Throw,ft Cfm/Side Throw,ft Cfm/Side Throw,ft	21-26-37 900 - 8 281 169 15-19-27 12-17-24 366 169 17-21-30 12-17-24 300 300 16-20-28 16-20-28 450 18-22-31 562 338 19-24-33 17-20-29 900 22-27-38 1050 15 A B 295 230 16-20-28 14-18-26 410 230 18-22-31 14-18-26 410 230 18-22-31 14-18-26 375 300 17-21-30 16-20-28 525 19-23-33	25-30-42 25-30-42 12(2: A 375 18-22-32 487 4400 19-23-32 600 21-26-36 750 22-27-39 1200 25-31-44 19-23-32 547 20-25-35 500 20-24-34 700 22-27-38	3 B 225 16-19-27 225 16-19-27 400 19-23-32 400 19-23-32 400 19-24-33 306 17-21-30 306 17-21-30 400 19-23-32	27-34-47 15 3 469 20-25-35 609 22-27-38 500 21-26-36 750 23-29-41 938 25-31-43 1500 28-35-49 1: 493 21-25-36 684 23-28-39 625 22-27-38 875 24-30-42	0 8 281 18-22-31 201 18-22-31 500 21-26-36 21-26-37 750 31 8 382 19-24-33 382 19-24-33 400 19-23-32	30-37-52 18/ 3/ 563 22-27-39 731 24-30-42 600 23-28-40 900 23-28-40 900 23-28-40 900 23-28-40 900 23-28-39 820 23-28-39 820 25-31-43 750 24-30-42 1050 27-33-46	6 8 337 19-24-33 337 19-24-33 675 23-28-40 23-28-40 675 24-29-41 707 80 707 707 707 707 707 707	32-40-56 211 4 656 24-30-42 853 26-32-45 700 25-30-43 1050 28-34-48 1313 30-36-51 2100 34-41-58 2 4 690 25-30-43 957 27-33-47 875 26-32-45 1225 29-35-50	B 394 21-26-36 394 21-26-36 700 25-30-43 787 25-31-44 450 11 8 535 23-28-39 700 25-30-43	35-42-60 24 4 750 26-32-45 975 28-34-48 800 26-32-46 1200 30-36-51 1500 32-39-55 2400 36-44-62 2 4 788 26-32-45 1094 29-35-50 1094 29-35-50 1094 29-35-50 1009 28-34-49 1400 31-38-54	00 4 B 450 22-27-39 450 22-27-39 800 26-32-46 900 27-33-47 800 45 B 612 24-30-42 612 24-30-42 800 26-32-45 	37-45-64 270 48 844 27-34-48 1098 30-36-51 900 28-34-49 1350 31-38-54 1688 33-41-58 2700 38-47-68 2700 38-47-68 2700 38-47-68 2700 38-47-68 2700 31-37-55 33-40-57 33-40-57	B 506 24-29-41 506 24-29-41 900 28-34-49 1012 29-35-50 150 49 B 688 26-32-45 688 26-32-45 688 26-32-45 900 28-34-48
Size 24 in. x 18 if Duct Area 3.00 ft ² Duct Size 24 in. x 21 if Duct Area 3.50	n. 4B 3A1 3A2 2A, 2B 2E, 2F 1A, 1B n. 4B 3A1 3A2 2A, 2B		Throw,ft Total cfm NC Cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft Total cfm NC Cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft	A B 281 169 15-19-27 12-17-24 366 169 17-21-30 12-17-24 300 300 16-20-28 16-20-28 450 18-22-31 562 338 19-24-33 17-20-29 900 22-27-38 1050 15 A B 295 230 16-20-28 14-18-26 410 230 18-22-31 14-18-26 375 300 17-21-30 16-20-28 525 19-23-33 591 459	25-30-42 25-30-42 375 18-22-32 487 20-24-34 400 19-23-32 600 21-26-36 750 22-27-39 1200 25-31-44 14 20 25-31-44 19-23-32 547 20-25-35 500 20-24-34 700 22-27-38 788	3 B 225 16-19-27 225 16-19-27 400 19-23-32 400 19-23-32 400 19-24-33 7 400 17-21-30 306 17-21-30 400 19-23-32 400 19-23-32 612	27-34-47 15/ 3/ 469 20-25-35 609 22-27-38 500 21-26-36 750 23-29-41 938 25-31-43 1500 28-35-49 1500 28-35-49 493 21-25-36 684 23-28-39 625 22-27-38 875 24-30-42 986	B 281 18-22-31 281 18-22-31 21-26-36 21-26-36 562 21-26-37 750 31 B 382 19-24-33 400 19-23-32 764	30-37-52 18/ 3/ 563 22-27-39 731 24-30-42 600 23-28-40 900 23-28-40 22 23-28-40 22 23-28-40 23-28-30 820 24-30-42 1050 27-33-46 1050 27-33-46 1050 27-33-46 1050 27-33-46 1050 27-33-46 1050 27-33-46 1050 27-33-46 1180	6 8 337 19-24-33 337 19-24-33 675 23-28-40 675 24-29-41 675 24-29-41 675 24-29-41 600 21-26-37 460 21-26-37 600 23-28-39 920	32-40-56 211 4 656 24-30-42 853 26-32-45 700 25-30-43 1050 28-34-48 1313 30-36-51 2100 34-41-58 24-30 4 690 25-30-43 957 27-33-47 875 26-32-45 1225 29-35-50 1380	B 394 21-26-36 394 21-26-36 394 21-26-36 394 25-30-43 787 25-30-43 450 411 8 535 23-28-39 535 23-28-39 700 25-30-43 1070	35-42-60 24 4 750 26-32-45 975 28-34-48 800 26-32-46 1200 30-36-51 1500 32-39-55 2400 36-44-62 2 400 36-32-45 1094 29-35-50 1094 29-35-50 1000 28-34-49 1400 31-38-54 1576	00 4 B 450 22-27-39 450 22-27-39 800 26-32-46 900 27-33-47 800 45 B 612 24-30-42 612 24-30-42 800 26-32-45 24-30-42 800 26-32-45	37-45-64 270 48 844 27-34-48 1098 30-36-51 900 28-34-49 1350 31-38-54 1688 33-41-58 2700 38-47-66 33-41-58 2700 38-47-66 38-7 125 30-36-52 1575 33-40-57 1774	B B 506 24-29-41 506 24-29-41 900 28-34-49 1012 29-35-50 150 19 688 26-32-45 688 26-32-45 688 26-32-45 900 28-34-48
Size 24 in. x 18 if Duct Area 3.00 ft ² Duct Size 24 in. x 21 if Duct Area 3.50	n. 4B 3A1 3A2 2A, 2B 2E, 2F 1A, 1B 4B 3A1 3A2 2A, 2B 2E, 2F	$ \begin{array}{c} & & \\ & & $	Throw,ft Total cfm NC Cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft Cfm/Side Throw,ft Throw,ft Cfm/Side Throw,ft Cfm/Side Throw,ft Cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft Cfm/Side Throw,ft Cfm/Side Throw,ft Cfm/Side Throw,ft	21-26-37 900 - 8 281 169 15-19-27 12-17-24 366 169 17-21-30 12-17-24 300 300 16-20-28 16-20-28 450 18-22-31 562 338 19-24-33 17-20-29 900 22-27-38 1050 15 A B 295 230 16-20-28 14-18-26 410 230 18-22-31 14-18-26 375 300 17-21-30 16-20-28 525 19-23-33 591 459 20-24-34 18-22-32	25-30-42 25-30-42 375 18-22-32 487 20-24-34 400 19-23-32 600 21-26-36 750 22-27-39 1200 25-31-44 12 2 4 394 19-23-32 547 20-25-35 500 20-25-35 500 20-22-38 788 23-28-39	3 B 225 16-19-27 225 16-19-27 400 19-23-32 400 19-23-32 400 19-24-33 7 400 17-21-30 306 17-21-30 400 19-23-32 400 19-23-32 612	27-34-47 15/ 3/ 469 20-25-35 609 22-27-38 500 21-26-36 750 23-29-41 938 25-31-43 1500 28-35-49 12 493 21-25-36 684 23-28-39 625 24-30-42 986 25-31-44	B 281 18-22-31 281 18-22-31 21-26-36 21-26-36 562 21-26-37 750 31 B 382 19-24-33 400 19-23-32 764	30-37-52 18/ 3/ 563 22-27-39 731 24-30-42 600 23-28-40 900 23-28-40 900 23-28-40 900 23-28-40 900 23-28-40 900 23-28-39 820 25-31-43 750 24-30-42 1050 27-33-46 1180 28-34-48	6 8 337 19-24-33 337 19-24-33 675 23-28-40 675 24-29-41 675 24-29-41 675 24-29-41 600 21-26-37 460 21-26-37 600 23-28-39 920	32-40-56 211 44 656 24-30-42 853 26-32-45 700 25-30-43 1050 28-34-48 1313 30-36-51 2100 34-41-58 24-30 441-58 26-32-45 1225 26-32-45 1225 29-35-50 1380 30-37-52	B 394 21-26-36 394 21-26-36 394 21-26-36 394 25-30-43 787 25-30-43 450 411 8 535 23-28-39 535 23-28-39 700 25-30-43 1070	35-42-60 24 4 750 26-32-45 975 28-34-48 800 26-32-46 1200 30-36-51 1500 32-39-55 2400 36-44-62 2 400 36-32-45 1094 29-35-50 1000 28-34-49 1400 31-38-54 1576 32-39-55	00 4 B 450 22-27-39 450 22-27-39 800 26-32-46 900 27-33-47 800 45 B 612 24-30-42 612 24-30-42 800 26-32-45 	37-45-64 270 48 844 27-34-48 1098 30-36-51 900 28-34-49 1350 31-38-54 1688 33-41-58 2700 38-47-66 33-41-58 2700 38-47-66 38-7 125 30-36-52 1575 33-40-57 1774 34-42-59	B B 506 24-29-41 506 24-29-41 900 28-34-49 1012 29-35-50 150 19 688 26-32-45 688 26-32-45 688 26-32-45 900 28-34-48
Size 24 in. x 18 if Duct Area 3.00 ft ² Duct Size 24 in. x 21 if Duct Area 3.50	n. 4B 3A1 3A2 2A, 2B 2E, 2F 1A, 1B 4B 3A1 3A2 2A, 2B 2E, 2F		Throw,ft Total cfm NC Cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft Cfm/Side Throw,ft Throw,ft Cfm/Side Throw,ft Cfm/Side Throw,ft Cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft Cfm/Side Throw,ft Cfm/Side Throw,ft Cfm/Side Throw,ft	A B 281 169 15-19-27 12-17-24 366 169 17-21-30 12-17-24 300 300 16-20-28 16-20-28 450 18-22-31 562 338 19-24-33 17-20-29 900 22-27-38 1050 15 A B 295 230 16-20-28 14-18-26 410 230 18-22-31 14-18-26 375 300 17-21-30 16-20-28 525 19-23-33 591 459	25-30-42 25-30-42 375 18-22-32 487 20-24-34 400 19-23-32 600 21-26-36 750 22-27-39 1200 25-31-44 14 20 25-31-44 19-23-32 547 20-25-35 500 20-24-34 700 22-27-38 788	3 B 225 16-19-27 225 16-19-27 400 19-23-32 450 19-23-32 450 19-24-33 450 19-24-33 450 19-24-33 306 17-21-30 306 17-21-30 306 17-21-30 400 19-23-32 612 21-26-36	27-34-47 15/ 3/ 469 20-25-35 609 22-27-38 500 21-26-36 750 23-29-41 938 25-31-43 1500 28-35-49 1500 28-35-49 493 21-25-36 684 23-28-39 625 22-27-38 875 24-30-42 986	0 8 281 18-22-31 281 18-22-31 500 21-26-36 562 21-26-37 750 31 8 382 19-24-33 382 19-24-33 382 19-24-33 400 19-23-32 764 23-29-41	30-37-52 18/ 3/ 563 22-27-39 731 24-30-42 600 23-28-40 900 23-28-40 22 23-28-40 22 23-28-40 22 23-28-40 23-28-40 23-28-40 23-28-40 23-28-40 23-28-40 23-28-40 23-28-40 23-28-40 23-28-40 23-28-40 23-28-40 23-28-40 23-28-40 23-28-40 23-28-40 23-28-30 820 24-30-42 24-30-42 24-30-42 24-30-42 24-30-42 1050 27-33-46 1050 27-33-46 1050 27-33-46 1050 27-33-46 1050 27-33-46 1050 27-33-46 1050 27-33-46 1180	6 8 337 19-24-33 337 19-24-33 600 23-28-40 675 24-29-41 675 24-29-41 100 87 8 460 21-26-37 460 21-26-37 600 23-28-39 920 26-32-45	32-40-56 211 4 656 24-30-42 853 26-32-45 700 25-30-43 1050 28-34-48 1313 30-36-51 2100 34-41-58 24-30 4 690 25-30-43 957 27-33-47 875 26-32-45 1225 29-35-50 1380	B 394 21-26-36 394 21-26-36 394 21-26-36 394 25-30-43 787 25-30-43 450 411 8 535 23-28-39 535 23-28-39 700 25-30-43 1070	35-42-60 24 4 750 26-32-45 975 28-34-48 800 26-32-46 1200 30-36-51 1500 32-39-55 2400 36-44-62 2 400 36-32-45 1094 29-35-50 1094 29-35-50 1000 28-34-49 1400 31-38-54 1576	00 4 B 450 22-27-39 450 22-27-39 800 26-32-46 900 27-33-47 800 27-33-47 800 45 B 612 24-30-42 612 24-30-42 800 26-32-45 1224 30-36-51	37-45-64 270 48 844 27-34-48 1098 30-36-51 900 28-34-49 1350 31-38-54 1688 33-41-58 2700 38-47-66 33-41-58 2700 38-47-66 38-7 125 30-36-52 1575 33-40-57 1774	B B 506 24-29-41 506 24-29-41 900 28-34-49 1012 29-35-50 150 19 688 26-32-45 688 26-32-45 688 26-32-45 900 28-34-48

For Performance Notes, see page C105. For SMD / AMD Return Factors, see page C103.

Performance Data

Performance Notes:

- All units are tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- 2. Air flow is in cfm.
- 3. All pressures are in in. w.g. TP = Total Pressure.
 - (-) SP = Negative Static Pressure.
- 4. Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- 5. Throw data is based on supply air and room air being at isothermal conditions.
- 6. NC values are based on room absorption of 10 dB re $10^{\cdot 12}\,Watts$ and one diffuser.
- 7. Blanks (-----) indicate an NC level below 15.
- 8. Performance Data is tabulated for supply air applications.
- Performance Data assumes the SMD / AMD is ceiling mounted for maximum ceiling effect. When no ceiling is present, the horizontal flow will be reduced by approximately 25%, producing a downward projection.
- 10. Does not include effects of ceiling radiation damper (SMD-FR)

		_														
Neck Veloc				.5		.0		.5		3.0		.5		l.O		.5
Velocity Pro				1	1	2		4		6	1	8		10		3
Total Press	ire (Pa			9		6		5		36		18		<u>i3</u>		0
Duct		L/s NC		15		17		9		71		33		94		06
Size 150 x 150		NC	A -	 В	A	 В	A	7 B	A	22 B	A	27 B	A	31 B	A	15 B
1JU X 1JU		L/s/side	9	В	12	В	15	В	18	Б	21	В	24	В	26	D
	4 A	Throw (m)	1.2-1.8-3.6		1.9-2.9-4.5		2.8-3.5-5.0		3.2-3.9-5.5		3.4-4.2-5.9		3.6-4.5-6.3		3.9-4.7-6.7	
_		L/s/side	9	13	1.3-2.3-4.3	17	15	22	18	26	21	31	24	35	26	40
Duct	3A	Throw (m)	1.2-1.8-3.6	1.5-2.2-4.3	1.6-2.4-4.5	2.0-2.9-5.0	2.0-3.0-5.0	2.5-3.7-5.6	2.4-3.6-5.5	2.9-4.3-6.1	2.8-4.2-5.9	3.5-4.7-6.6	3.2-4.5-6.3	3.9-5.0-7.1	3.6-4.7-6.7	4.3-5.3-7.5
Area		L/s/side	18		24		30		35		42		47		53	
0.023 m ²	28,26	L/s/side Throw (m)	1.7-2.6-4.7		2.7-3.8-5.4		3.5-4.3-6.1		3.8-4.7-6.7		4.2-5.1-7.2		4.4-5.4-7.7		4.7-5.8-8.2	
	1S	L/s/side	35		47		59		71		83		94		106	
	13	Throw (m)	2.4-3.6-5.7		3.8-4.7-6.6		4.3-5.2-7.4		4.7-5.7-8.1		5.1-6.2-8.8		5.4-6.6-9.4		5.7-7.0-9.9	
Duct		L/s	8	80	1	06		33		59		86		12		39
Size		NC						1	1	26		31		35		9
230 x 230			A	В	A	В	A	В	A	В	A	В	A	В	A	В
	4A	L/s/side Throw (m)	20		26		33		40		46		53		60	
		L/s/side	1.8-2.7-4.9 20	30	2.9-4.0-5.6 26	40	3.6-4.4-6.3 33	50	4.0-4.9-6.9 40	60	4.3-5.3-7.4	70	4.6-5.6-8.0 53	80	4.9-6.0-8.4 60	90
Duct	3A	L/s/side	1.8-2.7-4.9	30 2.2-3.3-5.5	20	40 2.9-4.4-6.3	3.0-4.4-6.3	50 3.7-5.0-7.0	40 3.6-4.9-6.9	60 4.4-5.5-7.7	40	70 4.8-5.9-8.4	4.6-5.6-8.0	80 5.2-6.3-8.9	4.9-6.0-8.4	90 5.5-6.7-9.5
Area			40	2.2-3.3-3.3	53	2.3*4.4*0.3	67	3.7-3.0-7.0	80	4.4"J.J"/./	93	4.0-0.0-0.4	106	J.2=0.3=0.3	119	3.3-0.7-3.3
0.052 m ²	2S, 2G	L/s/side Throw (m)	2.6-3.8-5.9		4.0-4.9-6.9		4.4-5.4-7.7		4.8-5.9-8.4		5.2-6.4-9.1		5.6-6.9-9.7		5.9-7.3-10.3	
		L/s/side	80		106		133		159		186		212		239	
	1S	Throw (m)	3.6-5.1-7.2		4.8-5.9-8.3		5.4-6.6-9.3		5.9-7.2-10.2		6.4-7.8-11.0		6.8-8.3-11.8		7.2-8.9-12.5	
Duct		L/s	14	42	1	89	2	36	2	83	3	30	3	78	4	25
Size		NC	- 1	-	1	17	2	4	2	29	3	34	:	38	4	2
305 x 305			A	В	A	В	A	В	A	В	A	В	A	В	A	В
	4 A	L/s/side	35		47		59		71		83		94		106	
		Throw (m)	2.4-3.6-5.7		3.8-4.7-6.6		4.3-5.2-7.4		4.7-5.7-8.1		5.1-6.2-8.8		5.4-6.6-9.4		5.7-7.0-9.9	
Duct	3A	L/s/side Throw (m)	35 2.4-3.6-5.7	53 2.9-4.4-6.4	47 3.2-4.7-6.6	71	59 4.0-5.2-7.4	88 4.8-5.9-8.3	71	106 5.3-6.4-9.1	83 5.1-6.2-8.8	124 5.7-7.0-9.8	94 5.4-6.6-9.4	142 6.1-7.4-10.5	106 5.7-7.0-9.9	159
Area		1/a/aida	2.4-3.0-5.7	2.9-4.4-0.4	<u>3.2-4.7-0.0</u> 94	3.9-5.3-7.4	4.0-5.2-7.4	4.8-3.9-8.3	4.7-5.7-8.1	0.3-0.4-9.1	165	5./-/.0-9.8	189	0.1-7.4-10.5	212	6.4-7.9-11.2
0.093 m ²	2S, 2G	Throw (m)	3.4-4.9-7.0		4.7-5.7-8.1		5.2-6.4-9.0		5.7-7.0-9.9		6.2-7.6-10.7		6.6-8.1-11.4		7.0-8.6-12.1	
		L/s/side	142		189		236		283		330		378		425	
	1S	Throw (m)	4.8-6.0-8.5		5.7-7.0-9.8		6.3-7.8-11.0		7.0-8.5-12.0		7.5-9.2-13.0		8.0-9.8-13.9		8.5-10.4-14.8	
Duct		L/s	2	21	2	95		69	4	43		16		90		64
Size		NC		-	1	9	2	6		32	3	36		11	4	4
380 x 380			A	В	A	В	A	В	A	В	A	В	A	В	A	В
	4A	L/s/side	55		74		92		110		129		148		166	
		Throw (m)	3.0-4.5-6.5		4.3-5.3-7.5		4.9-5.9-8.4		5.3-6.5-9.2		5.7-7.0-10.0		6.1-7.5-10.6		6.5-8.0-11.3	
Duct	3A	L/s/side	55	83	74	110	92	138	110	166	129	194	148	221	166	249
Area		Throw (m)	3.0-4.5-6.5	3.7-5.2-7.3	4.0-5.3-7.5	4.9-6.0-8.4	4.9-5.9-8.4	5.5-6.7-9.4	5.3-6.5-9.2	6.0-7.3-10.3		6.5-7.9-11.2		6.9-8.4-11.9		7.3-9.0-12.7
	2S, 2G	L/s/side	110		148		185		221		258		295		332	
		Inrow (m)	4.3-5.6-7.9		5.3-6.5-9.2		5.9-7.3-10.3		6.5-7.9-11.2		7.0-8.6-12.1		7.5-9.2-13.0		7.9-9.7-13.8	
	1S	L/s/side Throw (m)	221 5.6-6.8-9.7		295 6.4-7.9-11.2		369 7.2-8.8-12.5		443 7.9-9.7-13.7		516 8.5-10.4-14.8		590 9.1-11.2-15.8		664 9.7-11.8-16.8	
		THOW (III)	ບ.ບ-ບ.ບ-ປ./		U.4-7.3-11.2		1.2-0.0-12.5		/.৬-୬./-۱3./		0.0-10.4-14.8		J 3. I-I I.Z-15.8		3./- .Ծ- Ծ.Ծ	

Performance Data - Metric Units - Square Neck

For Performance Notes and Return Factors, see page C120.

Core Style Legend

1A, 1B	1S)A	2A, 2B A (2E, 2F _B	2S	3A 🗊 A	3A1	3A2 👘 A	3B (, , , , , , , , , , , , , , , , , ,	4A 🝙 🗚	4B ()B
--------	------	------------	---------------------	----	--------	-----	---------	--	--------	--------

Neck Veloc			1		2.			2.5		8.0	3.		4.0			.5
Velocity Pre			1		2			4		6	8		10			3
Total Press	ıre (Pa		9	·	10			25		36	48		63			0
Duct		L/s	31	19	42			31	6		74		85		9	
Size		NC	-		2		1	28	-	34	38		42		1	6
455 x 455			A	В	A	В	A	В	A	В	A	В	A	В	A	В
	4 A	L/s/side	80		106		133		160		186		212		239	
		Throw (m)	3.6-5.1-7.2		4.8-5.9-8.3		5.4-6.6-9.3		5.9-7.2-10.2		6.4-7.8-11.0		6.8-8.3-11.8		7.2-8.9-12.5	
Duct	3A	L/s/side	80	119	106	159	133	199	160	239	186	279	212	319	239	358
Area		Throw (m)	3.6-5.1-7.2	4.4-5.7-8.1	4.8-5.9-8.3	5.4-6.6-9.4	5.4-6.6-9.3	6.1-7.4-10.5	5.9-7.2-10.2	6.6-8.1-11.5		7.2-8.8-12.4		7.7-9.4-13.3	7.2-8.9-12.5	8.1-9.9-14.1
	2S. 2G	L/s/side	160		212		266		319		372		425		478	
0.200	20,20	Throw (m)	5.1-6.2-8.8		5.9-7.2-10.2		6.6-8.0-11.4		7.2-8.8-12.5		7.8-9.5-13.5		8.3-10.2-14.4		8.8-10.8-15.3	
	1S	L/s/side	319		425		531		637		743		850		956	
		Throw (m)	6.2-7.6-10.7		7.2-8.8-12.4		8.0-9.8-13.9		8.8-10.7-15.2		9.5-11.6-16.4		10.1-12.4-17.5		10.7-13.1-18.6	
Duct		L/s	43	34	57			23		67	101		115		13	
Size		NC			2			30		35	40		44		1	8
535 x 535			A	В	A	В	A	В	A	В	A	В	A	В	A	В
	4A	L/s/side	109		144		181		217		253		289		325	
		Throw (m)	4.2-5.6-7.9		5.3-6.4-9.1		5.9-7.2-10.2		6.4-7.9-11.2		7.0-8.5-12.1		7.4-9.1-12.9		7.9-9.7-13.7	
Duct	3A	L/s/side	109	163	144	217	181	271	217	325	253	379	289	434	325	488
Area		Throw (m)	4.2-5.6-7.9	5.1-6.3-8.9	5.3-6.4-9.1	5.9-7.2-10.2	5.9-7.2-10.2	6.6-8.1-11.4	6.4-7.9-11.2	7.2-8.9-12.5		7.8-9.6-13.5	7.4-9.1-12.9	8.4-10.2-14.5		8.9-10.9-15.4
	2S. 2G	L/s/side	217		289		362		434		506		578		650	
		Throw (m)	5.6-6.8-9.6		6.4-7.9-11.1		7.2-8.8-12.4		7.9-9.6-13.6		8.5-10.4-14.7		9.1-11.1-15.7		9.6-11.8-16.7	
	1S	L/s/side	434		578		723		867		1012		1156		1301	
		Throw (m)	6.8-8.3-11.7		7.8-9.6-13.5	_	8.7-10.7-15.1		9.6-11.7-16.6		10.3-12.7-17.9		11.0-13.5-19.1		11.7-14.4-20.3	
Duct Size		L/s NC	56		75			44 31		133 37	132		151			99
512e 610 x 610		NC	1	6 B	24	В		SI B	-	57 B	1	В	45	В		9 B
010 X 010		L/s/side	A 142	D	A 189	D	236	В	A 283	В	A 330	D	A 378	В	A 425	B
	4A	L/s/side	4.8-6.0-8.5		5.7-7.0-9.8		6.3-7.8-11.0		7.0-8.5-12.0		7.5-9.2-13.0		8.0-9.8-13.9		425 8.5-10.4-14.8	
		L/s/side	4.8-0.0-8.5	212	189	283	236	354	283	425	330	496	378	566	425	637
Duct	3A	L/s/side	4.8-6.0-8.5	212 5.5-6.8-9.6	5.7-7.0-9.8	6.4-7.8-11.0		304 7.1-8.7-12.3	7.0-8.5-12.0		7.5-9.2-13.0				425	
Area		1/a/aida	283	3.3-0.0-3.0	378	U.T ⁻⁷ .U ⁻ 11.U	472	1.1-0.1-12.3	566	7.0-3.0-13.3	661	0.+*10.3*14.0	755	3.011.013.0	850	3.0-11.7-10.0
0.372 m ²	2S, 2G	Throw (m)	6.0-7.3-10.4		6.9-8.5-12.0		7.7-9.5-13.4		8.5-10.4-14.7		9.2-11.2-15.9		9.8-12.0-16.9		10.4-12.7-18.0	
	-	L/s/side	566		755		944		1133		1322		1510		1699	
	1S	Throw (m)	7.3-8.9-12.6		8.4-10.3-14.6		9.4-11.5-16.3		10.3-12.6-17.9	1	11.2-13.7-19.3		11.9-14.6-20.7		12.6-15.5-21.9	
		1111044 (111)	1.0-0.0-12.0		0.7-10.3-14.0		J.T. I.J. 10.J		10.0-12.0-17.0	,	11.2-13.7-13.3		111.3-14.0*20.7		112.0-13.3-21.3	

Performance Data - Metric Units - Square Neck

For Performance Notes and Return Factors, see page C120.

Core Style Legend

					-			_		-				_		
Neck Veloc				.5		.0		2.5		1.0 C	3			.0		.5
Velocity Pr Total Press				1 9		2 6		4 25		6 35	4			0 3		13 30
Duct		L/s		3 i3		1		39		06		24		42		59
Size		NC		-	-	-		19		24		9		3		37
230 x 150			Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В
		L/s/side	18	9	24	12	30	15	35	18	42	21	47	24	53	26
	4B	Throw (m)	1.7-2.6-4.7	1.2-1.8-3.7	2.3-3.4-5.4	1.5-2.4-4.6	2.9-4.3-6.1	2.1-3.0-4.9	3.4-4.7-6.7	2.4-3.7-5.5	4.0-5.1-7.2	2.7-4.3-6.1	4.4-5.4-7.7	3.4-4.6-6.4	4.7-5.8-8.2	3.7-4.9-6.7
		L/s/side	22 1.9-2.9-5.0	9 0.8-1.2-2.3	30 2.6-3.8-5.8	12 1.0-1.5-3.0	37 3.2-4.6-6.5	15	44 3.8-5.0-7.1	18 1.5-2.3-4.5	51 4.4-5.4-7.7	21 1.8-2.7-4.9	59	24 2.0-3.0-5.2	67 5.0-6.2-8.7	26 2.3-3.4-5.5
		Throw (m) L/s/side	1.9-2.9-5.0	20	2.0-3.8-5.8	26	28	1.3-1.9-3.8 33	3.8-5.0-7.1	40	4.4-5.4-7.7	46	4.7-5.8-8.2	53	5.0-6.2-8.7	2.3-3.4-3.5
Duct	3A2	Throw (m)	1.6-2.5-4.6	1.8-2.7-4.9	2.2-3.3-5.3	2.4-3.7-5.5	2.8-4.1-6.0	3.0-4.6-6.4	3.3-4.6-6.5	3.7-4.9-6.7	3.8-5.0-7.1	4.3-5.2-7.3	4.4-5.3-7.6	4.6-5.5-7.9	4.6-5.7-8.0	4.9-5.8-8.5
Area		l/e/sido	26	1.0 2.7 4.0	35	2.4 0.7 0.0	44	0.0 4.0 0.4	53	0.7 4.0 0.7	62	4.0 0.2 7.0	71	4.0 0.0 7.0	80	4.0 0.0 0.0
0.035 m ²	2A, 2B	Throw (m)	2.1-3.1-5.3		2.8-4.2-6.1		3.5-4.8-6.8		4.2-5.3-7.5		4.7-5.7-8.1		5.0-6.1-8.6		5.3-6.5-9.2	
	2E, 2F	L/s/side	35	17	48	24	59	29	71	35	83	41	95	47	107	52
	ZE, ZF	Throw (m)	2.4-3.6-5.7	1.8-2.4-4.6	3.2-4.7-6.6	2.1-3.4-5.5	4.0-5.3-7.4	2.7-4.3-6.1	4.7-5.7-8.1	3.4-4.6-6.7	5.1-6.2-8.8	4.0-5.2-7.3	5.4-6.6-9.4	4.6-5.5-7.6	5.7-7.0-10.0	4.6-5.8-8.2
	14 45	L/s/side	53		71		89		106		124		142		160	
	1A, 1B	Throw (m)	3.0-4.4-6.4		3.9-5.3-7.4		4.8-5.9-8.3		5.3-6.4-9.1		5.7-7.0-9.8		6.1-7.4-10.5		6.4-7.9-11.2	
Duct		L/s	7	11	9	4	1	18	1	42	1	55	1	89	2	12
Size		NC	.	-	.	-	2	20	2	26	3	1	3	5	3	38
305 x 150			Α	В	Α	В	Α	В	A	В	Α	В	A	В	A	В
	4B	L/s/side	24	12	32	16	39	20	47	24	55	27	63	32	71	35
	40	Throw (m)	2.0-3.0-5.1	1.2-1.8-3.7	2.6-3.9-5.9	1.5-2.4-4.6	3.3-4.7-6.6	2.1-3.0-4.9	3.9-5.1-7.2	2.4-3.7-5.5	4.5-5.5-7.8	2.7-4.3-6.1	4.8-5.9-8.3	3.4-4.6-6.4	5.1-6.3-8.9	3.7-4.9-6.7
	3A1	L/s/side	30	12	39	16	49	20	59	24	69	27	79	32	89	35
	541	Throw (m)	2.2-3.3-5.5	1.2-1.8-3.7	2.9-4.4-6.3	1.5-2.4-4.6	3.7-5.0-7.0	2.1-3.0-4.9	4.4-5.4-7.7	2.4-3.7-5.5	4.8-5.9-8.3	2.7-4.3-6.1	5.1-6.3-8.9	3.4-4.6-6.4	5.5-6.7-9.4	3.7-4.9-6.7
Duct	3B	L/s/side	35	18	47	24	59	30	71	35	83	42	94	47	106	53
Area		Throw (m)	2.4-3.6-5.7	1.8-2.4-4.6	3.2-4.7-6.6	2.1-3.4-5.5	4.0-5.2-7.4	2.7-4.3-6.1	4.7-5.7-8.1	3.4-4.6-6.7	5.1-6.2-8.8	3.0-4.6-6.4	5.4-6.6-9.4	4.6-5.5-7.6	5.7-7.0-9.9	4.6-5.8-8.2
0.046 m ²	2A, 2B	L/s/side	35		47		59		71		83		94		106	
		Throw (m)	2.4-3.6-5.7		3.2-4.7-6.6		4.0-5.2-7.4		4.7-5.7-8.1		5.1-6.2-8.8		5.4-6.6-9.4		5.7-7.0-9.9	
	2E, 2F	L/s/side	48	24	63	31	79	39	95	47	111	55	126	62	143	70
		Throw (m)	2.8-4.2-6.2	1.8-2.4-4.6	3.7-5.1-7.2	2.1-3.4-5.5	4.7-5.7-8.1	2.7-4.3-6.1	5.1-6.2-8.8	3.4-4.6-6.7	5.5-6.7-9.5	4.0-5.2-7.3	5.9-7.2-10.2	4.6-5.5-7.6	6.2-7.6-10.8	4.6-5.8-8.2
	1A, 1B	L/s/side Throw (m)	71		94		118		142		165		189		212	
_		Throw (m)	3.4-4.9-7.0		4.5-5.7-8.1		5.2-6.4-9.0	40	5.7-7.0-9.9		6.2-7.6-10.7		6.6-8.1-11.4		7.0-8.6-12.1	
Duct		L/s NC		19		18		48 21		77 27)7 2	2	30 16	1	66 39
Size 380 x 150		NC	A	 В	A .	- В		B	A	B	A	Z B	A	B	A	B
000 X 100		L/s/side	30	15	39	20	49	25	59	30	69 69	34	79	39	89	44
	4B	Throw (m)	2.2-3.3-5.5	1.1-1.6-3.3	2.9-4.4-6.3	1.5-2.2-4.4	3.7-5.0-7.0	1.8-2.7-5.0	4.4-5.4-7.7	2.2-3.3-5.5	4.8-5.9-8.3	2.6-3.9-5.9	5.1-6.3-8.9	2.9-4.4-6.3	5.5-6.7-9.4	3.3-4.7-6.7
		L/s/side	37	15	49	20	61	25	74	30	86	34	98	39	110	44
	3A1	Throw (m)	2.5-3.7-5.8	1.2-1.8-3.4	3.3-4.7-6.7	1.5-2.4-4.6	4.1-5.3-7.5	2.1-3.0-4.9	4.7-5.8-8.2	2.4-3.7-5.5	5.1-6.3-8.9	2.7-4.3-5.8	5.5-6.7-9.5	3.4-4.6-6.4	5.8-7.1-10.1	3.7-4.6-6.7
Duct		l/s/sido	44	1.2-1.0-0.4	59	1.0-2.4-4.0	74	2.1-0.0-4.0	89	2.4-0.1-0.J	103	2.1-4.0-0.0	118	0.4 4.0 0.4	133	0.7-4.0-0.7
Area	2A, 2B	Throw (m)	2.7-4.0-6.1		3.6-5.0-7.1		4.5-5.6-7.9		5.0-6.1-8.7		5.4-6.6-9.3		5.8-7.1-10.0		6.1-7.5-10.6	
0.059 m ²		1/s/side	59	29	79	39	99	49	118	59	138	68	158	78	178	88
	2E, 2F	Throw (m)	3.4-4.9-7.0	1.8-2.4-4.6	4.6-5.8-7.9	2.1-3.4-5.5	5.2-6.4-9.1	2.7-4.3-6.1	5.8-7.0-9.8	3.4-4.6-6.7	6.1-7.6-10.7	4.0-5.2-7.3	6.7-7.9-11.3	4.6-5.5-7.6	7.0-8.5-12.2	4.6-5.8-8.2
			89		118		148		177	2.1 1.0 0.7	207		236		266	
	1A, 1B	L/s/side Throw (m)	3.8-5.3-7.5		5.0-6.1-8.6		5.6-6.8-9.6		6.1-7.5-10.5		6.6-8.1-11.4		7.0-8.6-12.2		7.5-9.1-12.9	
			0.0-0.0-7.0		0.0-0.1-0.0		0.0-0.0-0.0		0.1-7.0-10.0		0.0-0.1-11.4		7.0-0.0-1Z.Z		7.0-0.1-12.0	

Performance Data - Metric Units - Rectangular Neck

For Performance Notes and Return Factors, see page C120.

Core Style Legend

						-				
1A. 1B	1S	2A, 2B A (2E.2E . 🚔	2S 👝 2G 🚖 🗛	3A 🊔 B .	3A1 🚔 🔥	3A2 🚔	3B A	4A 🙈 .	4B 🚔 🖁
					A (E	₽ ″°		И В		vev"
				· cittino · · · · · · · · · · · · ·	-					-

Neck Veloc			.5	2		2			.0	3		4.		4.	
Velocity Pr			1		2		4	6		8		1		1:	
Total Press			9		6		5		5	4		6		8	
Duct	L/s		06	14		1		21		24		28		31	
Size	NC			1		2		2		-	3	3		4	
455 x 150		A	В	A	В	A	В	A	В	A	В	A	В	A	В
	4B L/s/side	35	18	47	24	59	30	71	35	83	42	94	47	106	53
	Throw (m)	2.7-4.0-6.1	1.2-1.8-3.7	3.7-4.9-7.0	1.6-2.4-4.7	4.6-5.5-7.9	2.0-3.0-5.3	4.9-6.1-8.5	2.4-3.6-5.7	5.5-6.7-9.4	2.8-4.2-6.2	5.8-7.0-10.1	3.2-4.7-6.6	6.1-7.6-10.7	3.6-5.0-7.0
	3A1 L/s/side	44	18	59	24	74	30	89	35	103	42	118	47	133	53
Duct	3AT Throw (m)	2.7-4.0-6.1	1.2-1.8-3.7	3.6-5.0-7.1	1.5-2.4-4.6	4.5-5.6-7.9	2.1-3.0-4.9	5.0-6.1-8.7	2.4-3.7-5.5	5.4-6.6-9.3	2.7-4.3-6.1	5.8-7.1-10.0	3.4-4.6-6.4	6.1-7.5-10.6	3.7-4.9-6.7
Area	2A, 2B	53		71		89		106		124		142		160	
0.070 m ²	Throw (m)	3.0-4.4-6.4	35	3.9-5.3-7.4	47	4.8-5.9-8.3 118	59	5.3-6.4-9.1 143	70	5.7-7.0-9.8 166	82	6.1-7.4-10.5 190	00	6.4-7.9-11.2 213	105
	2E, 2F	71		95	47				70				93		
	Throw (m)	3.7-5.2-7.3	1.8-2.4-4.6	4.9-6.1-8.5	2.4-3.4-5.5	5.5-6.7-9.8	2.7-4.3-6.1	6.1-7.3-10.7	3.4-4.9-6.7	6.7-7.9-11.3	4.0-5.2-7.3	7.0-8.5-12.2	4.6-5.5-7.6	7.3-9.1-12.8	4.9-5.8-8.2
	1A, 1B	106		142		177		212		248		283		319	
	1A, 1B ^{L/s/side} Throw (m)	4.2-5.5-7.8		5.2-6.4-9.1		5.8-7.2-10.1		6.4-7.8-11.1		6.9-8.5-12.0		7.4-9.1-12.8		7.8-9.6-13.6	
Duct	L/s	1	24	10			07	24		21		33		37	
Size	NC			1	6	2	3	2	9	3	3	3	8	4	1
535 x 150		A	В	A	В	A	В	A	В	Α	В	A	В	A	В
	4B L/s/side	42	21	55	27	69	34	83	42	96	48	110	55	124	62
	4D Throw (m)	3.0-4.3-6.4	1.2-1.8-3.4	4.0-5.2-7.3	1.5-2.4-4.6	4.9-5.8-8.2	2.1-3.0-4.9	5.2-6.4-9.1	2.4-3.7-5.5	5.8-7.0-9.8	2.7-4.3-6.1	6.1-7.3-10.4	3.4-4.6-6.4	6.4-7.9-11.3	3.7-4.9-6.7
	L/s/side	51	21	69	27	86	34	103	42	120	48	138	55	155	62
_	3A1 Throw (m)	3.0-4.6-6.7	1.2-1.8-3.4	4.0-5.5-7.6	1.5-2.4-4.6	4.9-6.1-8.5	2.1-3.0-4.9	5.5-6.7-9.4	2.4-3.7-5.5	5.8-7.0-10.1	2.7-4.3-6.1	6.1-7.6-10.7	3.4-4.6-6.4	6.7-7.9-11.3	3.7-4.9-6.7
Duct	L/s/side	62		83		103		124		144		165		186	
Area 0.082 m ²	2A, 2B Throw (m)	3.2-4.8-6.7		4.3-5.5-7.8		5.0-6.1-8.7		5.5-6.7-9.5		5.9-7.3-10.3		6.3-7.8-11.0		6.7-8.2-11.7	
0.082 M²	er er L/s/side	83	41	111	55	138	68	166	82	194	95	221	109	249	123
	2E, 2F Throw (m)	4.3-5.5-7.9	1.8-2.4-4.6	5.2-6.4-9.1	2.4-3.4-5.5	5.8-7.0-10.1	2.7-4.3-6.1	6.4-7.9-11.0	3.4-4.9-6.7	7.0-8.5-11.9	4.0-5.2-7.3	7.3-9.1-12.8	4.6-5.5-7.6	7.9-9.8-13.7	4.6-5.8-8.2
	l/e/eido	124	1.0 2.1 1.0	165	2.1 0.1 0.0	207	2.7 1.0 0.1	248	0.1 1.0 0.7	289	1.0 0.2 7.0	330	1.0 0.0 7.0	372	1.0 0.0 0.2
	1A, 1B Throw (m)	4.5-5.8-8.2		5.5-6.7-9.5		6.1-7.5-10.6		6.7-8.2-11.6		7.2-8.9-12.5		7.7-9.5-13.4		8.2-10.0-14.2	
Duct	L/s		42	1	90		36	2	22	3	20	37	70	42	6
Size	NC			1		2		2		3		3		4	
610 x 150	NO	Α	В	A .	В	A	В	A	В	A	в	A	в	A	В
010 / 100	L/s/side	47	24	63	32	79	39	94	47	110	55	126	63	142	71
	4B Throw (m)	3.0-4.9-6.7	24 1.2-1.8-3.7	4.3-5.5-7.6	32 1.5-2.4-4.6	4.9-6.1-8.5	2.1-3.0-4.9	5.5-6.7-9.4	47 2.4-3.7-5.5	5.8-7.3-10.4	2.7-4.3-6.1	6.4-7.6-11.0	3.4-4.6-6.4	6.7-8.2-11.6	3.7-4.9-6.7
		3.0-4.9-6.7	24	4.3-5.5-7.0	32	4.9-0.1-8.5 98	2.1-3.0-4.9	118	<u>2.4-3.7-5.5</u> 47	138	2.7-4.3-0.1	157	<u>3.4-4.0-0.4</u> 63	177	
	3A1 L/s/side														71
Duct	Throw (m)	3.4-4.9-7.0	1.2-1.8-3.7	4.3-5.5-7.9	1.5-2.4-4.6	5.2-6.4-8.8	2.1-3.0-4.9	5.5-6.7-9.8	2.4-3.7-5.5	6.1-7.3-10.4	2.7-4.3-6.1	6.4-7.9-11.3	3.4-4.6-6.4	7.0-8.5-11.9	3.7-4.9-6.7
Area	2A, 2B	71		94		118		142		165		189		212	
0.000	· Throw (m)	3.4-4.9-7.0		4.5-5.7-8.1		5.2-6.4-9.0		5.7-7.0-9.9		6.2-7.6-10.7		6.6-8.1-11.4		7.0-8.6-12.1	
	2E, 2F L/s/side	95	47	126	62	158	78	190	93	221	109	253	125	285	140
	Throw (m)	4.6-5.8-8.2	1.8-2.4-4.6	5.5-6.7-9.4	2.4-3.4-5.5	6.1-7.6-10.7	2.7-4.3-6.1	6.7-8.2-11.6	3.4-4.9-6.7	7.3-8.8-12.5	4.0-5.2-7.3	7.6-9.4-13.4	4.6-5.5-7.6	8.2-10.1-14.3	4.9-5.8-8.2
	1A, 1B	142		189		236		283		330		378		425	
	Throw (m)	4.8-6.0-8.5		5.7-7.0-9.8		6.3-7.8-11.0		7.0-8.5-12.0		7.5-9.2-13.0		8.0-9.8-13.9		8.5-10.4-14.8	

For Performance Notes and Return Factors, see page C120.

Core Style Legend

					•		-				-				
Neck Veloc Velocity Pr			.5 1		.0 2	2			1.0 6	3		4			.5 3
Total Press			9		6		+ !5		6 35		8	6			13 10
Duct	L/s		06		42	1			12		48	21			19
Size	NC		-		6		2		28	3		3			10
305 x 230		Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В
	4B L/s/side	35	18	47	24	59	30	71	35	83	42	94	47	106	53
	Throw (m)	2.4-3.6-5.7	1.8-2.7-4.9	3.2-4.7-6.6	2.4-3.7-5.5	4.0-5.2-7.4	3.0-4.6-6.4	4.7-5.7-8.1	3.7-4.9-6.7	5.1-6.2-8.8	4.3-5.2-7.3	5.4-6.6-9.4	4.6-5.5-7.9	5.7-7.0-9.9	4.9-5.8-8.5
	3A1 L/s/side	44	18	59	24	74	30	89	35	103	42	118	47	133	53
	Throw (m)	2.7-4.0-6.1	1.8-4.9-2.7	3.6-5.0-7.1	2.4-3.7-5.5	4.5-5.6-7.9	3.0-4.6-6.4	5.0-6.1-8.7	3.7-4.9-6.7	5.4-6.6-9.3	4.3-5.2-7.3	5.8-7.1-10.0	4.6-5.5-7.9	6.1-7.5-10.6	4.9-5.8-8.5
Durat	3A2 L/s/side	33	40	44	53	55	67	67	80	77	93	89	106	100	119
Duct Area	Throw (m)	2.3-3.5-5.6	2.3-3.5-5.6	3.1-4.6-6.5	3.1-4.6-6.5	3.9-5.1-7.3	3.9-5.1-7.3	4.6-5.6-8.0	4.6-5.6-8.0	5.0-6.1-8.6	5.0-6.1-8.6	5.3-6.5-9.2	5.3-6.5-9.2	5.6-6.9-9.8	5.6-6.9-9.8
	2A, 2B L/s/side	53		71		89		106		124		142		160	
0.070 111	Inrow (m)	3.0-4.4-6.4		3.9-5.3-7.4		4.8-5.9-8.3		5.3-6.4-9.1		5.7-7.0-9.8		6.1-7.4-10.5		6.4-7.9-11.2	
	2E, 2F	71	35	95	47	118	59	143	70	166	82	190	93	213	105
	Throw (m)	3.4-5.0-7.0	2.4-4.0-5.8	4.6-5.7-8.1	3.4-4.9-6.7	5.2-6.4-9.0	4.3-5.5-7.6	5.7-7.0-9.9	4.9-6.1-8.5	6.2-7.6-10.7	5.2-6.4-9.1	6.6-8.1-11.4	5.5-7.0-9.8	7.0-8.6-12.1	6.1-7.3-10.4
	1A 1B L/s/side	106		142		177		212		248		283		319	
	1A, 1B L/s/side Throw (m)	4.2-5.5-7.8		5.2-6.4-9.1		5.8-7.2-10.1		6.4-7.8-11.1		6.9-8.5-12.0		7.4-9.1-12.8		7.8-9.6-13.6	
Duct	L/s	1	33	17	77	2	21	2	66	31	10	3	54	3	98
Size	NC	.	-	1	7	2	24	2	29	3	4	3	8	4	11
380 x 230		A	В	A	В	A	В	A	В	A	В	A	В	A	В
	4B L/s/side	44	22	59	30	74	37	89	44	103	51	118	59	133	67
	4B Throw (m)	2.7-4.0-6.1	1.8-2.7-4.9	3.6-5.0-7.1	2.4-3.7-5.5	4.5-5.6-7.9	3.0-4.6-6.4	5.0-6.1-8.7	3.7-4.9-7.0	5.4-6.6-9.3	4.3-5.2-7.3	5.8-7.1-10.0	4.6-5.5-7.9	6.1-7.5-10.6	4.9-6.1-8.5
	L/s/side	55	22	74	30	92	37	110	44	129	51	148	59	166	67
	3A1 Throw (m)	3.0-4.5-6.5	1.8-2.7-4.9	4.0-5.3-7.5	2.4-3.7-5.5	4.9-5.9-8.4	3.0-4.6-6.4	5.3-6.5-9.2	3.7-4.9-7.0	5.7-7.0-10.0	4.3-5.2-7.3	6.1-7.5-10.6	4.6-5.5-7.9	6.5-8.0-11.3	4.9-6.1-8.5
	L/s/side	42	50	55	67	69	83	83	100	97	116	110	133	125	149
Duct	3A2 Throw (m)	2.6-3.9-6.0	3.1-4.6-6.6	3.5-4.9-6.9	4.2-5.4-7.6	4.3-5.5-7.7	4.9-6.0-8.5	4.9-6.0-8.5	5.4-6.6-9.3	5.3-6.5-9.2	5.8-7.1-10.0	5.7-6.9-9.8	6.2-7.6-10.7	6.0-7.4-10.4	6.6-8.0-11.4
Area	L/s/side	67		89		110		133		155		177		199	
0.087 m ²	2A, 2B Throw (m)	3.3-4.9-6.9		4.4-5.6-7.9		5.1-6.3-8.9		5.6-6.9-9.7		6.1-7.4-10.5		6.5-7.9-11.2		6.9-8.4-11.9	
	l/s/sida	89	44	118	59	148	73	178	88	208	102	237	117	267	131
	2E, 2F Throw (m)	3.8-5.3-7.5	2.4-4.0-5.8	5.0-6.1-8.6	3.4-4.9-6.7	5.6-6.8-9.6	4.3-5.5-7.6	6.1-7.5-10.6	4.9-5.8-8.5	6.6-8.1-11.4	5.2-6.4-9.1	7.0-8.6-12.2	5.5-6.7-9.8		5.8-7.3-10.4
	l/s/sida	133	2.4 4.0 0.0	177	0.4 4.0 0.7	221	4.0 0.0 7.0	266	4.0 0.0 0.0	310	0.2 0.4 0.1	354	0.0 0.7 0.0	398	0.07.010.4
	1A, 1B Throw (m)	4.7-5.9-8.4		5.6-6.8-9.7		6.2-7.6-10.8		6.8-8.4-11.8		7.4-9.0-12.8		7.9-9.7-13.7		8.4-10.2-14.5	
Duct	L/s		59		12		66		19		72	4	25		78
Size	NC		-		8	2			30	3		3		1	12
455 x 230	110	A	В	A .	В	A	В	A	В	A	В	A	В	A	B
	L/s/side	53	26	71	35	89	44	106	53	124	62	142	71	160	80
	4B Throw (m)	3.0-4.4-6.4	1.8-2.7-4.9	3.9-5.3-7.4	2.4-3.7-5.8	4.8-5.9-8.3	3.0-4.6-6.4	5.3-6.4-9.1	3.7-4.9-7.0	5.7-7.0-9.8	4.3-5.2-7.6	6.1-7.4-10.5	4.6-5.8-7.9	6.4-7.9-11.2	4.9-6.1-8.5
	L/s/side	67	26	89	35	110	44	133	53	155	62	177	71	199	80
	3A1 Throw (m)			4.4-5.6-7.9				1							
		3.3-4.9-6.9 80	<u>1.8-2.7-4.9</u> 40		2.4-3.7-5.8 53	5.1-6.3-8.9 133	3.0-4.6-6.4	5.6-6.9-9.7	<u>3.7-4.9-7.0</u> 80	6.1-7.4-10.5 186	4.3-5.2-7.6 93	6.5-7.9-11.2	4.6-5.8-7.9	6.9-8.4-11.9	4.9-6.1-8.5 119
Duct	3B L/s/side			106				160				212		239	
Area	Throw (m)	3.6-5.1-7.2	2.4-4.0-5.8	4.8-5.9-8.3	3.4-4.9-6.7	5.4-6.6-9.3	4.3-5.5-7.6	5.9-7.2-10.2	4.9-5.8-8.5	6.4-7.8-11.0	5.2-6.4-9.1	6.8-8.3-11.8	5.5-6.7-9.8		5.8-7.3-10.4
0.105 m ²	2A, 2B	80		106		133		160		186		212		239	
	' Throw (m)	3.6-5.1-7.2		4.8-5.9-8.3		5.4-6.6-9.3		5.9-7.2-10.2		6.4-7.8-11.0		6.8-8.3-11.8		7.2-8.9-12.5	
	2E, 2F L/s/side	107	52	143	70	178	88	213	105	249	123	285	140	320	158
	Throw (iii)	4.2-5.6-7.9	2.4-4.0-5.8	5.2-6.4-9.1	3.4-4.9-6.7	5.9-7.2-10.1	4.3-5.5-7.6	6.4-7.9-11.1	4.9-5.8-8.5	6.9-8.5-12.0	5.2-6.4-9.1	7.4-9.1-12.8	5.5-6.7-9.8	7.9-9.6-13.6	5.8-7.3-10.4
	1A 1B L/s/side	160		212		266		319		372		425		478	
	1A, 1B ^{L/s/side} Throw (m)	5.1-6.2-8.8		5.9-7.2-10.2		6.6-8.0-11.4		7.2-8.8-12.5		7.8-9.5-13.5		8.3-10.2-14.4		8.8-10.8-15.3	

Performance Data - Metric Units - Rectangular Neck

For Performance Notes and Return Factors, see page C120.

1A, 1B	1S []]]) A	2A, 2B A (2E, 2F _B	2S			3A2 👘 A	3B () B	4A 💿 A	4B 🗊 B
--------	------------	------------	---------------------	----	--	--	---------	----------	--------	--------

Performance Data - Metric Units - Rectangular Neck

Neck Veloc		1	.5		.0	2		3		3		4		4	
Velocity Pr			1		2				6		8		0	1	
Total Press			9		6	2			15		18	6		8	
Duct Size	L/s NC		86		48 9	3 2			72 81		34 86	49	96 0	4	58 2
535 x 230	INC	A	 В	A	B	A	В	A	В	A	В	A 4	В	A	B
000 A 200	L/s/side	62	31	83	42	103	51	124	62	144	72	165	83	186	93
	4B Throw (m)	3.2-4.8-6.7	1.8-2.7-4.9	4.3-5.5-7.8	2.4-3.7-5.5	5.0-6.1-8.7	3.0-4.3-6.1	5.5-6.7-9.5	3.7-4.9-6.7	5.9-7.3-10.3	4.3-5.2-7.3	6.3-7.8-11.0	4.6-5.5-7.9	6.7-8.2-11.7	4.9-5.8-8.2
	3A1 L/s/side	77	31	103	42	129	51	155	62	181	72	207	83	232	93
	Throw (m)	3.6-5.1-7.2	1.8-2.7-4.9	4.8-5.9-8.3	2.4-3.7-5.5	5.3-6.5-9.3	3.0-4.3-6.1	5.9-7.2-10.1	3.7-4.9-6.7	6.3-7.7-11.0	4.3-5.2-7.3	6.8-8.3-11.7	4.6-5.5-7.9	7.2-8.8-12.4	4.9-5.8-8.2
Duct Area	2A, 2B	93		124		155		186		217		248		279	
0.122 m ²	Throw (m)	3.9-5.3-7.6		5.0-6.2-8.7		5.6-6.9-9.8		6.2-7.6-10.7		6.7-8.2-11.5		7.1-8.7-12.3		7.6-9.3-13.1	
0.122.111	2E. 2F	125	61	166	82	208	102	249	123	291	143	332	164	373	184
	Throw (m)	4.5-5.8-8.2	2.4-4.0-6.1	5.5-6.7-9.5	3.4-4.9-7.0	6.1-7.5-10.6	4.3-5.5-7.6	6.7-8.2-11.6	4.9-6.1-8.5	7.2-8.9-12.5	5.2-6.4-9.1	7.7-9.5-13.4	5.5-7.0-9.8	8.2-10.1-14.2	6.1-7.3-10.4
	1A, 1B	186		248		310		372		434		496		557	
_	Throw (m)	5.3-6.5-9.2		6.1-7.5-10.6		6.9-8.4-11.9		7.5-9.2-13.0		8.1-9.9-14.1		8.7-10.6-15.0		9.2-11.3-15.9	
Duct	L/s		12		83	3			25		96	56		63	
Size 610 x 230	NC				9	2			2		16 D	4		4	
010 X 230	164.11	A 71	B	A	<u>B</u>	A 110	B	A 140	<u>B</u>	A 105	B	A 100	B	A	B 100
	4B L/s/side Throw (m)		35 1.8-2.7-4.0	94	47	118	59 3.0-4.6-6.4	142	71	165	83 4.3-5.2-7.6	189	94 4.6-5.8-7.9	212	106
	L/s/side	3.4-4.9-7.0	35	4.5-5.7-8.1 118	2.4-3.7-5.8	5.2-6.4-9.0 148	<u>3.0-4.6-6.4</u> 59	5.7-7.0-9.9 177	<u>3.7-4.9-7.0</u> 71	6.2-7.6-10.7 207	4.3-5.2-7.0	6.6-8.1-11.4 236	4.0-5.8-7.9	7.0-8.6-12.1	4.9-6.1-8.5
	3A1 Throw (m)	3.8-5.3-7.5	35 1.8-2.7-4.0	5.0-6.1-8.6	47 2.4-3.7-5.8	5.6-6.8-9.6	3.0-4.6-6.4	6.1-7.5-10.5	3.7-4.9-7.0	6.6-8.1-11.4	83 4.3-5.2-7.6	7.0-8.6-12.2	94 4.6-5.8-7.9	7.5-9.1-12.9	4.9-6.1-8.5
Duct	L/s/side	106	1.0-2.7-4.0	142	2.4-3.7-3.0	177	3.0-4.0-0.4	212	3.7-4.9-7.0	248	4.3-3.2-7.0	283	4.0-0.0-7.9	319	4.9-0.1-0.0
Area	2A, 2B Throw (m)	4.2-5.5-7.8		5.2-6.4-9.1		5.8-7.2-10.1		6.4-7.8-11.1		6.9-8.5-12.0		7.4-9.1-12.8		7.8-9.6-13.6	
0.139 m ²	L/s/side	143	70	190	93	237	117	285	140	332	164	379	187	427	211
	2E, 2F Throw (m)	4.8-6.0-8.5	2.4-3.7-5.8	5.7-7.0-9.9	3.4-4.9-6.7	6.4-7.8-11.0	4.3-5.5-7.6	7.0-8.5-12.1	4.9-5.8-8.2	7.5-9.2-13.0	5.2-6.4-9.1	8.0-9.9-13.9	5.5-6.7-9.8	8.5-10.5-14.8	
	L/s/side	212	2.4 0.7 0.0	283	0.4 4.0 0.7	354	4.0 0.0 7.0	425	4.0 0.0 0.2	496	0.2 0.4 0.1	566	0.0 0.7 0.0	637	0.07.010.4
	1A, 1B Throw (m)	5.5-6.8-9.6		6.4-7.8-11.0		7.1-8.7-12.3		7.8-9.6-13.5		8.4-10.3-14.6		9.0-11.0-15.6		9.6-11.7-16.6	
Duct	L/s		77		36	2	95		54		13	47	12	53	31
Size	NC				8	2			31		15	3		4	
380 x 305		A	В	A	В	Α	В	Α	В	Α	В	Α	В	Α	В
	L/s/side	59	30	79	39	98	49	118	59	138	69	157	79	177	89
	4B Throw (m)	3.1-4.7-6.6	2.4-3.7-5.8	4.2-5.4-7.7	3.4-4.6-6.7	4.9-6.1-8.6	4.0-5.2-7.3	5.4-6.6-9.4	4.6-5.8-8.2	5.9-7.2-10.1	5.2-6.1-8.8	6.3-7.7-10.8	5.5-6.7-9.4	6.6-8.1-11.5	5.8-7.0-10.1
	L/s/side	74	30	98	39	123	49	148	59	172	69	197	79	221	89
	3A1 Throw (m)	3.5-5.0-7.1	2.4-3.7-5.8	4.6-5.8-8.2	3.4-4.6-6.7	5.3-6.5-9.1	4.0-5.2-7.3	5.8-7.1-10.0	4.6-5.8-8.2	6.2-7.6-10.8	5.2-6.1-8.8	6.7-8.2-11.6	5.5-6.7-9.4	7.1-8.7-12.3	5.8-7.0-10.1
	3A2 L/s/side	55	67	74	89	92	110	110	133	129	155	148	177	166	199
Duct Area	3AZ Throw (m)	3.0-4.5-6.5	3.0-4.6-6.4	4.0-5.3-7.5	4.0-5.2-7.6	4.9-5.9-8.4	4.9-6.1-8.5	5.3-6.5-9.2	5.2-6.4-9.1		5.8-7.0-10.1	6.1-7.5-10.6	6.1-7.6-10.7	6.5-8.0-11.3	6.4-7.9-11.3
0.116 m ²	2A, 2B	89		118		148		177		207		236		266	
0.110 111	Throw (m)	3.8-5.3-7.5		5.0-6.1-8.6		5.6-6.8-9.6		6.1-7.5-10.5		6.6-8.1-11.4		7.0-8.6-12.2		7.5-9.1-12.9	
	2E, 2F	118	59	158	78	198	97	237	117	277	136	316	156	356	175
	Throw (m)	4.4-5.7-8.1	3.4-4.9-7.0	5.4-6.6-9.4	4.6-5.8-7.0	6.0-7.4-10.5	5.2-6.4-9.1	6.6-8.1-11.5	5.8-7.0-9.8		6.1-7.6-10.7		6.7-7.9-11.3		7.0-8.5-12.2
	1A, 1B	177		236		295		354		413		472		531	
	Throw (m)	5.2-6.4-9.1		6.1-7.4-10.5		6.8-8.3-11.7		7.4-9.1-12.8		8.0-9.8-13.9		8.6-10.5-14.8		9.1-11.1-15.7	

For Performance Notes and Return Factors, see page C120.

1A, 1B	1S ()) A	2A, 2B A (2E, 2F _B	2S	3A 🗊 A	3A1	3A2 🚔 A	3B (4A 🝙 🗚	4B ()B
--------	----------	------------	---------------------	----	--------	-----	---------	------	--------	--------

						-	-			-			-	-		
Neck Veloc				.5	2		2			1.0		.5	4		4	
Velocity Pr					1	2		4		6		-	1	0	1	3
Total Press				9		6		5		35		8		3	8	
Duct Size		L/s NC	2			83 9	3	54 16		25 32		96 16	50	0 0	6	
512e 455 x 305		NC	A .	 В	A	в	A	B	A	B	A	B		B	A	4 B
400 X 300		L/s/side	71	35	94	47	118	59	142	71	165	83	A 189	94	212	106
	4 R	Throw (m)	3.4-4.9-7.0	2.4-3.7-5.8	4.5-5.7-8.1	3.0-4.6-6.7	5.2-6.4-9.0	4.0-5.2-7.3	5.7-7.0-9.9	4.6-5.8-8.2	6.2-7.6-10.7	5.2-6.1-8.8	6.6-8.1-11.4	5.5-6.7-9.4	7.0-8.6-12.1	5.8-7.0-9.8
		L/s/side	89	35	118	47	148	59	177	71	207	83	236	94	266	106
		Throw (m)	3.8-5.3-7.5	2.4-3.7-5.8	5.0-6.1-8.6	3.0-4.6-6.7	5.6-6.8-9.6	4.0-5.2-7.3	6.1-7.5-10.5	4.6-5.8-8.2	6.6-8.1-11.4	5.2-6.1-8.8	7.0-8.6-12.2	5.5-6.7-9.4	7.5-9.1-12.9	5.8-7.0-9.8
	342	L/s/side	67	80	89	106	110	133	133	160	155	186	177	212	199	239
Duct	JAZ .	Throw (m)	3.3-4.9-6.9	3.7-5.2-7.3	4.4-5.6-7.9	4.9-5.8-8.2	5.1-6.3-8.9	5.5-6.7-9.4	5.6-6.9-9.7	5.8-7.3-10.4	6.1-7.4-10.5	6.4-7.9-11.0	6.5-7.9-11.2	6.7-8.2-11.9	6.9-8.4-11.9	7.3-8.8-12.5
Area	2A. 2B	L/s/side	106		142		177		212		248		283		319	
0.139 m ²	ZA, 2D.	Throw (m)	4.2-5.5-7.8		5.2-6.4-9.1		5.8-7.2-10.1		6.4-7.8-11.1		6.9-8.5-12.0		7.4-9.1-12.8		7.8-9.6-13.6	
	2E. 2F	L/s/side	143	70	190	93	237	117	285	140	332	164	379	187	427	211
	20, 26	Throw (m)	4.8-6.0-8.5	3.4-4.9-7.0	5.7-7.0-9.9	4.6-5.8-8.2	6.4-7.8-11.0	5.2-6.4-9.1	7.0-8.5-12.1	5.8-7.0-10.1	7.5-9.2-13.0	6.1-7.6-10.7	8.0-9.9-13.9	6.7-8.2-11.6	8.5-10.5-14.8	7.0-8.5-12.2
	44.45	L/s/side	212		283		354		425		496		566		637	
	1A, 1B	Throw (m)	5.5-6.8-9.6		6.4-7.8-11.0		7.1-8.7-12.3		7.8-9.6-13.5		8.4-10.3-14.6		9.0-11.0-15.6		9.6-11.7-16.6	
Duct		L/s	2	48	3	30	4	13	4	96	5	78	6	61	7	13
Size	1	NC	-	-	2	20	2	7	3	32	3	7	4	1	4	5
535 x 305			A	В	A	В	A	В	A	В	A	В	A	В	A	В
	4B	L/s/side	83	42	110	55	138	69	165	83	193	96	220	110	248	124
	4B -	Throw (m)	3.7-5.2-7.3	2.4-3.7-5.8	4.9-6.0-8.4	3.4-4.6-6.7	5.4-6.7-9.4	4.0-5.2-7.3	6.0-7.3-10.3	4.6-5.8-8.2	6.4-7.9-11.2	5.2-6.1-8.8	6.9-8.4-11.9	5.5-6.7-9.4	7.3-8.9-12.7	5.8-7.0-10.1
	3A1	L/s/side	103	42	138	55	172	69	207	83	241	96	275	110	310	124
	JAT .	Throw (m)	4.1-5.5-7.8	2.4-3.7-5.8	5.2-6.4-9.0	3.4-4.6-6.7	5.8-7.1-10.1	4.0-5.2-7.3	6.4-7.8-11.0	4.6-5.8-8.2	6.9-8.4-11.9	5.2-6.1-8.8	7.3-9.0-12.7	5.5-6.7-9.4	7.8-9.5-13.5	5.8-7.0-10.1
_	3A2	L/s/side	77	93	103	124	129	155	155	186	181	217	207	248	232	279
Duct	JAZ .	Throw (m)	3.6-5.1-7.2	4.3-5.5-7.9	4.8-5.9-8.3	5.2-6.4-9.1	5.3-6.5-9.3	5.8-7.3-10.1	5.9-7.2-10.1	6.4-7.9-11.3	6.3-7.7-11.0	7.0-8.5-11.9	6.8-8.3-11.7	7.3-9.1-12.8	7.2-8.8-12.4	7.9-9.8-13.7
Area 0.163 m ²		L/s/side	124		165		207		248		289		330		372	
	2A, 2B	Throw (m)	4.5-5.8-8.2		5.5-6.7-9.5		6.1-7.5-10.6		6.7-8.2-11.6		7.2-8.9-12.5		7.7-9.5-13.4		8.2-10.0-14.2	
	05 05	L/s/side	166	82	221	109	277	136	332	164	388	191	443	218	498	245
	2E, 2F .	Throw (m)	5.1-6.3-8.9	3.4-4.9-7.0	5.9-7.3-10.3	4.6-5.8-7.9	6.6-8.1-11.5	5.2-6.4-9.1	7.3-8.9-12.6	5.8-7.0-9.8	7.9-9.6-13.6	6.1-7.6-10.7	8.4-10.3-14.6	6.7-7.9-11.3	8.9-10.9-15.4	7.0-8.5-12.2
		L/s/side	248		330		413		496		578		661		743	
	1A, 1B	Throw (m)	5.8-7.1-10.0		6.7-8.2-11.5		7.4-9.1-12.9		8.2-10.0-14.1		8.8-10.8-15.3		9.4-11.5-16.3		10.0-12.2-17.3	

Performance Data - Metric Units - Rectangular Neck

For Performance Notes and Return Factors, see page C120.

1A, 1B	1S []]) A	2A, 2B A (2E, 2F _B	2S	3A 🔒 A	3A1	3A2 👘 A	3B (4A 🝙 🗚	4B 🔊 A
--------	-----------	------------	---------------------	----	--------	-----	---------	------	--------	--------

Neck Veloci		-1	1	F	2	0	2	-	2	.0	2	-		.0	4	
Velocity Pres						.u 2				.u 6	3			0	4	
Total Pressu				-	1			+ 5		5	4	-		3	8	
Duct		L/s		83	37		4			66	6		7		8	
Size		NC		-	2			8		3	3			2	4	
610 x 305		110	Α	В	A	В	A -	В	A	В	A	в	A	В	A	в
		L/s/side	94	47	126	63	157	79	189	94	220	110	252	126	283	142
	4B	Throw (m)	3.9-5.4-7.6	2.4-3.7-5.8	5.1-6.2-8.8	3.0-4.6-6.7	5.7-6.9-9.8	4.0-5.2-7.3	6.2-7.6-10.7	4.6-5.8-7.9	6.7-8.2-11.6	4.9-6.1-8.8	7.2-8.8-12.4	5.5-6.7-9.1	7.6-9.3-13.1	5.8-7.0-9.8
-	0.8.4	L/s/side	118	47	157	63	197	79	236	94	275	110	315	126	354	142
	3A1	Throw (m)	4.4-5.7-8.1	2.4-3.7-5.8	5.4-6.6-9.3	3.0-4.6-6.7	6.0-7.4-10.4	4.0-5.2-7.3	6.6-8.1-11.4	4.6-5.8-7.9	7.1-8.7-12.4	4.9-6.1-8.8	7.6-9.3-13.2	5.5-6.7-9.1	8.1-9.9-14.0	5.8-7.0-9.8
_	3B	L/s/side	142	71	189	94	236	118	283	142	330	165	378	189	425	212
Duct	JD	Throw (m)	4.8-6.0-8.5	3.4-4.9-7.0	5.7-7.0-9.8	4.6-5.8-7.9	6.3-7.8-11.0	5.2-6.4-9.1	7.0-8.5-12.0	5.8-7.0-9.8	7.5-9.2-13.0	6.1-7.6-10.7	8.0-9.8-13.9	6.7-7.9-11.3	8.5-10.4-14.8	7.0-8.5-12.2
Area	2A. 2B	L/s/side	142		189		236		283		330		378		425	
01100 111		Throw (m)	4.8-6.0-8.5		5.7-7.0-9.8		6.3-7.8-11.0		7.0-8.5-12.0		7.5-9.2-13.0		8.0-9.8-13.9		8.5-10.4-14.8	
-		L/s/side	190	93	253	125	316	156	379	187	443	218	506	249	569	280
	ZE, ZF	Throw (m)	5.3-6.5-9.3	3.4-4.9-7.0	6.2-7.6-10.7	4.6-5.8-7.9	6.9-8.5-12.0	5.2-6.4-9.1	7.6-9.3-13.1	5.8-7.0-9.8	8.2-10.0-14.1	6.1-7.6-10.7	8.7-10.7-15.1	6.7-7.9-11.3	9.3-11.3-16.0	7.0-8.5-12.2
-		L/s/side	283		378		472		566		661		755		850	
1	1A, 1B	Throw (m)	6.0-7.3-10.4		6.9-8.5-12.0		7.7-9.5-13.4		8.5-10.4-14.7		9.2-11.2-15.9		9.8-12.0-16.9		10.4-12.7-18.0	
Duct		L/s	20	66	35	54	4	13	5	31	6	20	70	08	79	97
Size		NC	-	-	2	0	2	7	3	13	3	7	4	1	4	5
455 x 380			A	В	A	В	A	В	A	В	A	В	A	В	A	В
-		L/s/side	89	44	118	59	148	74	177	89	207	103	236	118	266	133
	4B	Throw (m)	3.8-5.3-7.5	3.0-4.6-6.4	5.0-6.1-8.6	4.0-5.2-7.6	5.6-6.8-9.6	4.9-5.8-8.5	6.1-7.5-10.5	5.2-6.4-9.1	6.6-8.1-11.4	5.8-7.0-10.1	7.0-8.6-12.2	6.1-7.6-10.7	7.5-9.1-12.9	6.4-7.9-11.3
-		L/s/side	110	44	148	59	185	74	221	89	258	103	295	118	332	133
	3A1	Throw (m)	4.3-5.6-7.9	3.0-4.6-6.4	5.3-6.5-9.2	4.0-5.2-7.6	5.9-7.3-10.3	4.9-5.8-8.5	6.5-7.9-11.2	5.2-6.4-9.1	7.0-8.6-12.1	5.8-7.0-10.1	7.5-9.2-13.0	6.1-7.6-10.7	7.9-9.7-13.8	6.4-7.9-11.3
		L/s/side	83	100	110	133	138	166	166	199	194	232	221	266	249	299
Duot	3A2	Throw (m)	3.7-5.2-7.3	3.7-5.2-7.3	4.9-6.0-8.4	4.9-5.8-8.2	5.5-6.7-9.4	5.5-6.7-9.4	6.0-7.3-10.3	5.8-7.3-10.4	6.5-7.9-11.2	6.4-7.9-11.0	6.9-8.4-11.9	6.7-8.2-11.9	7.3-9.0-12.7	7.3-8.8-12.5
Area - 0.175 m ² 2		L/s/side	133		177		221		266		310		354		398	
	2A, 2B	Throw (m)	4.7-5.9-8.4		5.6-6.8-9.7		6.2-7.6-10.8		6.8-8.4-11.8		7.4-9.0-12.8		7.9-9.7-13.7		8.4-10.2-14.5	
-		L/s/side	178	88	237	117	296	146	356	175	415	204	474	234	534	263
			5.2-6.4-9.1	4.3-5.5-7.9	6.1-7.4-10.5	5.2-6.4-9.1	6.8-8.3-11.7	5.8-7.3-10.4	7.4-9.1-12.9	6.4-7.9-11.3	8.0-9.8-13.9	7.0-8.5-12.2	8.6-10.5-14.8	7.3-9.1-12.8	9.1-11.1-15.7	7.9-9.8-13.7
-		L/s/side	266		354		443		531		620	-	708		797	
	1A, 1B								331		020		/00			

Performance Data - Metric Units - Rectangular Neck

For Performance Notes and Return Factors, see page C120.

1A, 1B) A	1S []]]) A	2A, 2B A (2E, 2F _B	2S	3A	3A1	3A2 🚔 A	3B (, , , , , , , , , , , , , , , , , ,	4A 💿 A	4B ()B
-----------	------------	------------	---------------------	----	----	-----	---------	--	--------	--------

					-	-								-		
Neck Veloc				.5	2			.5	3			.5		.0	4	
Velocity Pr				-	1	2	1	4				-	1	0	1	3
Total Press	ure (Pa		· · · · · · · · · · · · · · · · · · ·	9 10		6 13	5	5	6	5		8		3	8	
Duct Size		L/s NC		10 		13 1		8	3			23 8		26 12	9.	
535 x 380		NG	A	 В	A	В	A	B	A	а В	A	B	A	B	A	o B
JJJ X J00		L/s/side	103	51	138	69	172	86	207	103	241	120	275	138	310	155
	4B	Throw (m)	4.1-5.5-7.8	3.0-4.6-6.4	5.2-6.4-9.0	4.0-5.2-7.6	5.8-7.1-10.1	4.9-5.8-8.5	6.4-7.8-11.0	5.2-6.4-9.1	6.9-8.4-11.9	5.8-7.0-10.1	7.3-9.0-12.7	6.1-7.6-10.7	7.8-9.5-13.5	6.4-7.9-11.3
		L/s/side	129	51	172	69	215	86	258	103	301	120	344	138	387	155
	3A1	Throw (m)	4.6-5.9-8.3	3.0-4.6-6.4	5.5-6.8-9.6	4.0-5.2-7.6	6.2-7.6-10.7	4.9-5.8-8.5	6.8-8.3-11.7	5.2-6.4-9.1	7.3-9.0-12.7	5.8-7.0-10.1	7.8-9.6-13.5	6.1-7.6-10.7	8.3-10.2-14.4	
	3A2	L/s/side	97	116	129	155	161	194	194	232	226	271	258	310	290	348
Duct	JAZ	Throw (m)	4.0-5.4-7.6	4.3-5.5-7.9	5.1-6.2-8.8	5.2-6.4-9.1	5.7-7.0-9.9	5.8-7.3-10.1	6.2-7.6-10.8	6.4-7.9-11.3	6.7-8.3-11.7	7.0-8.5-12.2	7.2-8.8-12.5	7.3-9.1-12.8	7.6-9.4-13.2	7.9-9.8-13.7
Area	2A. 2E	, L/s/side	155		207		258		310		362		413		464	
0.203 m ²	2A, 20	² Throw (m)	5.0-6.2-8.7		5.8-7.1-10.1		6.5-8.0-11.3		7.1-8.7-12.4		7.7-9.4-13.4		8.2-10.1-14.3		8.7-10.7-15.1	
	2E. 2F	. L/s/side	208	102	277	136	346	170	415	204	484	238	554	273	623	307
	2E, 2f	Throw (m)	5.5-6.7-9.5	4.3-5.5-7.9	6.3-7.8-11.0	5.2-6.4-9.1	7.1-8.7-12.3	5.8-7.3-10.1	7.8-9.5-13.4	6.4-7.9-11.3	8.4-10.3-14.5	7.0-8.5-12.2	9.0-11.0-15.5	7.3-9.1-12.8	9.5-11.6-16.5	7.9-9.8-13.7
	4.8.45	L/s/side	310		413		516		620		723		826		929	
	1A, 1E	⁵ Throw (m)	6.1-7.5-10.6		7.1-8.7-12.3		7.9-9.7-13.7		8.7-10.6-15.1		9.4-11.5-16.3		10.0-12.3-17.4		10.6-13.0-18.4	
Duct		L/s	3	54	4	12	5	90	7	08	8	26	9	44	10	62
Size		NC	-		2	2	2	9	3	4	3	9	4	3	4	7
610 x 380			A	В	A	В	A	В	A	В	A	В	A	В	A	В
	40	L/s/side	118	59	157	79	197	98	236	118	275	138	315	157	354	177
	4B	Throw (m)	4.4-5.7-8.1	3.0-4.6-6.4	5.4-6.6-9.3	4.0-5.2-7.6	6.0-7.4-10.4	4.9-5.8-8.2	6.6-8.1-11.4	5.2-6.4-9.1	7.1-8.7-12.4	5.8-7.0-9.8	7.6-9.3-13.2	6.1-7.6-10.7	8.1-9.9-14.0	6.4-7.9-11.3
	3A1	L/s/side	148	59	197	79	246	98	295	118	344	138	393	157	443	177
	3A1	Throw (m)	4.9-6.1-8.6	3.0-4.6-6.4	5.7-7.0-10.0	4.0-5.2-7.6	6.4-7.9-11.1	4.9-5.8-8.2	7.0-8.6-12.2	5.2-6.4-9.1	7.6-9.3-13.2	5.8-7.0-9.8	8.1-10.0-14.1	6.1-7.6-10.7	8.6-10.6-14.9	6.4-7.9-11.3
_	3A2	L/s/side	110	133	148	177	185	221	221	266	258	310	295	354	332	398
Duct	3AZ	Throw (m)	4.3-5.6-7.9	4.9-6.1-8.5	5.3-6.5-9.2	5.8-7.0-9.8	5.9-7.3-10.3	6.4-7.9-11.0	6.5-7.9-11.2	7.0-8.5-12.2	7.0-8.6-12.1	7.6-9.1-13.1	7.5-9.2-13.0	7.9-9.8-14.0	7.9-9.7-13.8	8.5-10.4-14.6
Area 0.232 m ²		L/s/side	177		236		295		354		413		472		531	
0.232 M²	2A, 2E	Throw (m)	5.2-6.4-9.1		6.1-7.4-10.5		6.8-8.3-11.7		7.4-9.1-12.8		8.0-9.8-13.9		8.6-10.5-14.8		9.1-11.1-15.7	
		. L/s/side	237	117	316	156	396	195	474	234	554	273	632	312	712	351
	2E, 2F	Throw (m)	5.7-7.0-9.9	4.3-5.5-7.9	6.6-8.1-11.4	5.2-6.4-9.1	7.4-9.0-12.7	5.8-7.3-10.4	8.1-9.9-14.0	6.4-7.9-11.3	8.7-10.7-15.1	7.0-8.5-12.2	9.3-11.4-16.1	7.6-9.1-13.1	9.9-12.1-17.1	7.9-9.8-13.7
		L/s/side	354		472		590		708		826		944		1062	
	1A, 1E	Throw (m)	6.4-7.8-11.1		7.4-9.0-12.8		8.2-10.1-14.3		9.0-11.1-15.6		9.8-11.9-16.9		10.4-12.8-18.1		11.1-13.5-19.2	

Performance Data - Metric Units - Rectangular Neck

For Performance Notes and Return Factors, see page C120.

1A, 1B	1S []]) A	2A, 2B A (2E, 2F _B	2S	3A 🔒 A	3A1 AB	3A2 🚔 A	3B (4A 🝙 🗚	4B 🔊 A
--------	-----------	------------	---------------------	----	--------	--------	---------	------	--------	--------

Performance Data	- Metric Units -	Rectangular Neck
-------------------------	------------------	------------------

Neck Veloc			1	.5	2		1	.5		.0		.5		.0	4.	
Velocity Pr				1		2		-		6		3		0	1	
Total Press	ure (Pa	<u> </u>	3	9	1			5 20		15 43	4	8		i3 91	8	
Duct Size		L/s NC		-		2		20 19		43 5		9		3	4	
535 x 455		NG	A	В	A	B	A	В	A	В	A	В	A	В	A	, В
333 X 433		L/s/side	124	62	165	83	207	103	248	124	289	144	330	165	372	186
	4B	Throw (m)	4.5-5.8-8.2	3.7-5.2-7.3	5.5-6.7-9.5	4.9-5.8-8.5	6.1-7.5-10.6	5.5-6.7-9.4	6.7-8.2-11.6	5.8-7.3-10.4	7.2-8.9-12.5	6.4-7.9-11.0	7.7-9.5-13.4	6.7-8.5-11.9	8.2-10.0-14.2	
	0.8.4	L/s/side	155	62	207	83	258	103	310	124	362	144	413	165	464	186
	3A1	Throw (m)	5.0-6.2-8.7	3.7-5.2-7.3	5.8-7.1-10.1	4.9-5.8-8.5	6.5-8.0-11.3	5.5-6.7-9.4	7.1-8.7-12.4	5.8-7.3-10.4	7.7-9.4-13.4	6.4-7.9-11.0	8.2-10.1-14.3	6.7-8.5-11.9	8.7-10.7-15.1	7.3-8.8-12.5
	3A2	L/s/side	116	139	155	186	194	232	232	279	271	325	310	372	348	418
Duct	JAZ	Throw (m)	4.4-5.7-8.1	4.3-5.5-7.9	5.4-6.6-9.3	5.2-6.4-9.1	6.0-7.3-10.4	5.8-7.3-10.1	6.6-8.1-11.4	6.4-7.9-11.3	7.1-8.7-12.3	7.0-8.5-12.2	7.6-9.3-13.1	7.3-9.1-12.8	8.1-9.9-13.9	7.9-9.8-13.7
Area 0.244 m ²	2A. 2E	L/s/side	186		248		310		372		434		496		557	
0.244 111	20, 20	Throw (m)	5.3-6.5-9.2		6.1-7.5-10.6		6.9-8.4-11.9		7.5-9.2-13.0		8.1-9.9-14.1		8.7-10.6-15.0		9.2-11.3-15.9	
	2E. 2F	L/s/side	249	123	332	164	415	204	498	245	581	286	664	327	747	368
	,	Throw (m)	5.8-7.1-10.0	5.2-6.1-8.8	6.7-8.2-11.6	5.8-7.3-10.1	7.5-9.1-12.9	6.4-7.9-11.3	8.2-10.0-14.1	7.3-8.8-12.5	8.8-10.8-15.3	7.9-9.4-13.4		8.2-10.1-14.3	10.0-12.3-17.3	8.8-10.7-15.2
	1.0 10	L/s/side	372		496		620		743		868		991		1115	
	17, 15	Throw (m)	6.5-7.9-11.2		7.5-9.2-13.0		8.4-10.2-14.5		9.2-11.2-15.9		9.9-12.1-17.1		10.6-13.0-18.3		11.2-13.7-19.4	
Duct		L/s	42	25	56	66	7	08	8	50	9	91	11	33	12	74
Size		NC	-		2		3	0	3	15	4	0	4	4	4	
610 x 455			A	В	A	В	A	В	A	В	A	В	A	В	A	В
	4B	L/s/side	142	71	189	94	236	118	283	142	330	165	378	189	425	212
		Throw (m)	4.8-6.0-8.5	3.7-5.2-7.3	5.7-7.0-9.8	4.9-5.8-8.2	6.3-7.8-11.0	5.5-6.7-9.4	7.0-8.5-12.0	5.8-7.3-10.1	7.5-9.2-13.0	6.4-7.9-11.0	8.0-9.8-13.9			
	3A1	L/s/side	177	71	236	94	295	118	354	142	413	165	472	189	531	212
		Throw (m)	5.2-6.4-9.1	3.7-5.2-7.3	6.1-7.4-10.5	4.9-5.8-8.2	6.8-8.3-11.7	5.5-6.7-9.4	7.4-9.1-12.8	5.8-7.3-10.1	8.0-9.8-13.9	6.4-7.9-11.0	8.6-10.5-14.8	6.7-8.2-11.9	9.1-11.1-15.7	7.3-8.8-12.5
Duct	3A2	L/s/side	133	160	177	212	221	266	266	319	310	372	354	425	398	478
		Throw (m)	4.7-5.9-8.4	4.7-5.9-8.4	5.6-6.8-9.7	5.6-6.8-9.7	6.2-7.6-10.8	6.2-7.6-10.8	6.8-8.4-11.8	6.8-8.4-11.8	7.4-9.0-12.8	7.4-9.0-12.8	7.9-9.7-13.7	7.9-9.7-13.7	8.4-10.2-14.5	8.4-10.2-14.5
0.279 m ²	2A 2E	L/s/side	212		283		354		425		496		566		637	
	20, 20	Throw (m)	5.5-6.8-9.6		6.4-7.8-11.0		7.1-8.7-12.3		7.8-9.6-13.5		8.4-10.3-14.6		9.0-11.0-15.6		9.6-11.7-16.6	
	2E. 2F	L/s/side	285	140	379	187	474	234	569	280	664	327	759	374	854	421
	,	Throw (m)	6.0-7.3-10.4	5.2-6.1-8.8	6.9-8.5-12.0	5.8-7.3-10.1	7.7-9.5-13.4	6.4-7.9-11.3	8.5-10.4-14.7	7.3-8.8-12.5	9.2-11.2-15.9	7.6-9.4-13.4		8.2-10.1-14.3	10.4-12.7-18.0	8.8-10.7-15.2
	14 15	L/s/side	425		566		708		850		991		1133		1274	
		Throw (m)	6.7-8.2-11.7		7.8-9.5-13.5		8.7-10.6-15.0		9.5-11.7-16.5		10.3-12.6-17.8		11.0-13.5-19.0		11.7-14.3-20.2	

For Performance Notes and Return Factors, see page C120.

1A, 1B () A	1S []]]) A	2A, 2B A (2E, 2F _B	2S	3A 🗃 🖁	3A1	3A2 🚔 A	3B (, , , , , , , , , , , , , , , , , ,	4A 💿 A	4B ()B
-------------	------------	------------	---------------------	----	--------	-----	---------	--	--------	--------

eck Veloc elocity Pre otal Pressu	essure (Pa)	· ·	.5 1 9	2	2		.5 4 5	3		3. 8 4	3	4. 1 6	0	4. 1 8	3
Duct	L/s NC	4	96 	60	51	8	26 10	9		11	56	13	22	14	87
610 x 535		A	В	Α	В	A	В	A	В	A	В	Α	В	A	В
	4B L/s/side	165	83	220	110	275	138	330	165	386	193	440	220	496	248
	4D Throw (m)	5.1-6.3-8.9	4.3-5.5-7.9	5.9-7.3-10.3	5.2-6.4-9.1	6.6-8.1-11.5	5.8-7.3-10.1	7.3-8.9-12.6	6.4-7.9-11.3	7.9-9.6-13.6		8.4-10.3-14.5			7.9-9.8-13.7
	3A1 L/s/side	207	83	275	110	344	138	413	165	482	193	551	220	620	248
	Throw (m)	5.5-6.7-9.5	4.3-5.5-7.9	6.3-7.7-11.0	5.2-6.4-9.1	7.1-8.7-12.2	5.8-7.3-10.1	7.7-9.5-13.4		8.4-10.2-14.5		8.9-11.0-15.5		9.5-11.6-16.4	
	3A2 L/s/side	155	186	207	248	258	310	310	372	362	434	413	496	464	557
Duct	Throw (m)	5.0-6.2-8.7	4.9-6.1-8.5	5.8-7.1-10.1	5.8-7.0-9.8	6.5-8.0-11.3	5.8-7.0-9.8	7.1-8.7-12.4	7.0-8.5-11.9		7.6-9.1-13.1		7.9-9.8-13.7	8.7-10.7-15.1	8.5-10.4-14.6
). 325 m ²	2A, 2B	248		330		413		496		578		661		743	
	· Throw (m)	5.8-7.1-10.0		6.7-8.2-11.5		7.4-9.1-12.9		8.2-10.0-14.1		8.8-10.8-15.3		9.4-11.5-16.3		10.0-12.2-17.3	
	2E, 2F	332	164	443	218	554	273	664	327	775	382	885	436	996	491
	Throw (m)	6.1-7.3-10.4	5.5-6.7-9.8	7.0-8.5-11.9	6.4-7.9-11.0	7.6-9.4-13.4	7.0-8.8-12.5	8.5-10.4-14.6	7.9-9.8-13.7	9.1-11.3-15.8	8.5-10.4-14.6	9.8-11.9-16.8	9.1-11.0-15.5	10.4-12.8-18.0	9.4-11.9-16.8
	1A, 1B	496		661		826		991		1156		1322		1487	
	Throw (m)	7.0-8.6-12.2		8.1-9.9-14.1		9.1-11.1-15.7		9.9-12.2-17.2		10.7-13.1-18.6		11.5-14.1-19.9		12.2-14.9-21.1	
D	L/s	1	77	2	36	2	95	3	54	41	13	47	12	53	31
Duct 60 x 150	NC		-	1	8	2	5	3	1	3	5	3	9	4	3
DU X 150		A	В	Α	В	A	В	A	В	A	В	Α	В	A	В
	L/s/side	59	30	79	39	98	49	118	59	138	69	157	79	177	89
	4B Throw (m)	3.7-5.2-7.3	1.2-1.8-3.4	4.9-5.8-8.2	1.5-2.4-4.6	5.5-6.7-9.4	2.1-3.0-4.9	5.8-7.3-10.4	2.4-3.7-5.5	6.4-7.9-11.0	2.7-4.3-5.8	6.7-8.2-11.9	3.4-4.6-6.4	7.3-8.8-12.5	3.7-4.6-6.7
	L/s/side	74	30	98	39	123	49	148	59	172	69	197	79	221	89
	3A1 Throw (m)	3.7-5.2-7.3	1.2-1.8-3.4	4.9-6.1-8.5	1.5-2.4-4.6	5.5-6.7-9.4	2.1-3.0-4.9	6.1-7.3-10.4	2.4-3.7-5.5	6.4-7.9-11.3	2.7-4.3-5.8	7.0-8.5-11.9	3.4-4.6-6.4	7.3-9.1-12.8	3.7-4.6-6.7
Duct	L/s/side	89		118		148		177		207		236		266	
.116 m ²	2A, 2B Throw (m)	3.8-5.3-7.5		5.0-6.1-8.6		5.6-6.8-9.6		6.1-7.5-10.5		6.6-8.1-11.4		7.0-8.6-12.2		7.5-9.1-12.9	
	L/e/eido	118	59	158	78	198	97	237	117	277	136	316	156	356	175
	2E, 2F Throw (m)	5.2-6.1-8.8	1.8-2.4-4.6	5.8-7.3-10.1	2.1-3.4-5.5	6.7-7.9-11.3	2.7-4.3-6.1	7.3-8.8-12.5	3.4-4.6-6.7	7.6-9.4-13.4	4.0-5.2-7.3	8.2-10.1-14.3		8.8-10.7-15.2	
		177	1.0-2.4-4.0	236	2.1-0.4-0.0	295	2.7-4.3-0.1	354	3.4 4.0 0.7	413	4.0-3.2-7.3	472	4.0-3.3-7.0	531	4.0-0.0-0.2
	1A, 1B L/s/side Throw (m)	5.2-6.4-9.1		6.1-7.4-10.5		6.8-8.3-11.7		7.4-9.1-12.8		8.0-9.8-13.9		472 8.6-10.5-14.8		9.1-11.1-15.7	
	1 III OVV (III)	J.Z-0.4-9.1		1 0.1-7.4-10.3		1 0.0-0.3-11./		1 /.4-3.1-12.0		1 0.0-3.8-13.9		0.0-10.0-14.0		3.1-11.1-13./	

Performance Data - Metric Units - Rectangular Neck

1A, 1B	1S []]]) A	2A, 2B A (2E, 2F _B	2S		3A1	3A2 ()A	3B	4A 😰 A	4B ()B
--------	------------	------------	---------------------	----	--	-----	---------	----	--------	--------

Neck Veloc			1	.5	2		2.	5	3.		3.	5	4.		4.	
Velocity Pr			· ·	1	2	2	4		6		8		1		1:	3
Total Press	ure (Pa	<u> </u>		9		6	2		3		4		6		8	
Duct		L/s NC		66	35		44		53		62 31		70		79	
760 x 230		NC	A .	- В	A	0 B	A 2	/ В	A 3	з В	A 3.	В	4 A	В	4 A	B
		L/s/side	89	44	118	59	148	74	177	89	207	103	236	118	266	133
	4B	Throw (m)	4.3-5.8-7.9	1.8-2.7-4.9	5.5-6.4-9.1	2.4-3.7-5.8	6.1-7.3-10.4	3.0-4.6-6.4	6.4-7.9-11.3	3.7-4.9-7.0	7.0-8.5-12.2	4.3-5.2-7.6	7.6-9.4-13.4	4.6-5.8-7.9	7.9-9.8-13.7	4.9-6.1-8.5
		L/s/side	110	44	148	59	185	74	221	89	258	103	295	118	332	133
	3A1	Throw (m)	4.3-5.6-7.9	1.7-2.6-5.0	5.3-6.5-9.2	2.3-3.4-5.8	5.9-7.3-10.3	2.8-4.3-6.5	6.5-7.9-11.2	3.4-5.0-7.1	7.0-8.6-12.1	4.0-5.4-7.7	7.5-9.2-13.0	4.5-5.8-8.2	7.9-9.7-13.8	5.0-6.1-8.7
Duct	2A. 2E	L/s/side	133		177		221		266		310		354		398	
0.175 m ²	2A, 20	Throw (m)	4.7-5.9-8.4		5.6-6.8-9.7		6.2-7.6-10.8		6.8-8.4-11.8		7.4-9.0-12.8		7.9-9.7-13.7		8.4-10.2-14.5	
	2E, 2F	L/s/side	178	88	237	117	296	146	356	175	415	204	474	234	534	263
	ZE, Zr	Throw (m)	5.5-7.0-9.8	2.4-4.0-5.8	6.4-7.9-11.3	3.4-4.9-6.7	7.3-8.8-12.5	4.3-5.5-7.6	7.9-9.8-13.7	4.9-5.8-8.5	8.5-10.4-14.9	5.2-6.4-9.1	9.1-11.3-15.8	5.5-6.7-9.8	9.8-11.9-16.8	5.8-7.3-10.4
	10.10	L/s/side	266		354		443		531		620		708		797	
	1A, 16	L/s/side Throw (m)	5.9-7.2-10.2		6.8-8.3-11.8		7.6-9.3-13.2		8.3-10.2-14.4		9.0-11.0-15.6		9.6-11.8-16.6		10.2-12.5-17.7	
Duct		L/s	3	54	47	12	59	0	70	8	82	6	94	14	10	62
760 x 305		NC		-	2	2	2	9	3	4	3)	4	3	4	7
700 X 303			Α	В	Α	В	A	В	A	В	A	В	A	В	A	В
	4B	L/s/side	118	59	157	79	197	98	236	118	275	138	315	157	354	177
	40	Throw (m)	4.9-6.1-8.5	2.4-3.7-5.8	5.8-7.0-9.8	3.4-4.6-6.7	6.4-7.9-11.0	4.0-5.2-7.3	7.0-8.5-12.2	4.6-5.8-8.2	7.6-9.1-13.1	5.2-6.1-8.8	7.9-9.8-14.0	5.5-6.7-9.4	8.5-10.4-14.6	5.8-7.0-10.1
	3A1	L/s/side	148	59	197	79	246	98	295	118	344	138	393	157	443	177
	381	Throw (m)	4.9-6.1-8.6	2.4-3.7-5.8	5.7-7.0-10.0	3.4-4.6-6.7	6.4-7.9-11.1	4.0-5.2-7.3	7.0-8.6-12.2	4.6-5.8-8.2	7.6-9.3-13.2	5.2-6.1-8.8	8.1-10.0-14.1	5.5-6.7-9.4	8.6-10.6-14.9	5.8-7.0-10.1
													470		531	
Duct	24.25	L/s/side	177		236		295		354		413		472		001	
0.232 m ²	2A, 2E	Throw (m)			236 6.1-7.4-10.5		295 6.8-8.3-11.7		354 7.4-9.1-12.8		413 8.0-9.8-13.9		472 8.6-10.5-14.8		9.1-11.1-15.7	
0.232 m ²		Throw (m)	177	117		156		195		234		273		312		351
0.232 m ²		(· ·	177 5.2-6.4-9.1	117 3.4-4.9-7.0	6.1-7.4-10.5	156 4.6-5.8-7.9	6.8-8.3-11.7	195 5.2-6.4-9.1	7.4-9.1-12.8	234 5.8-7.0-9.8	8.0-9.8-13.9		8.6-10.5-14.8		9.1-11.1-15.7	
0.232 m ²	2E, 2F	Throw (m) L/s/side Throw (m)	177 5.2-6.4-9.1 237		6.1-7.4-10.5 316		6.8-8.3-11.7 396		7.4-9.1-12.8 474		8.0-9.8-13.9 554		8.6-10.5-14.8 632		9.1-11.1-15.7 712	
0.232 m ²	2E, 2F	Throw (m) L/s/side Throw (m)	177 5.2-6.4-9.1 237 6.1-7.3-10.4		6.1-7.4-10.5 316 7.0-8.5-11.9		6.8-8.3-11.7 396 7.6-9.4-13.4		7.4-9.1-12.8 474 8.5-10.4-14.6		8.0-9.8-13.9 554 9.1-11.3-15.8		8.6-10.5-14.8 632 9.8-11.9-17.1	6.7-7.9-11.3	9.1-11.1-15.7 712 10.4-12.8-18.0	
0.232 m ²	2E, 2F 1A, 1E	Throw (m) L/s/side Throw (m)	177 5.2-6.4-9.1 237 6.1-7.3-10.4 354 6.4-7.8-11.1	3.4-4.9-7.0	6.1-7.4-10.5 316 7.0-8.5-11.9 472 7.4-9.0-12.8		6.8-8.3-11.7 396 7.6-9.4-13.4 590		7.4-9.1-12.8 474 8.5-10.4-14.6 708		8.0-9.8-13.9 554 9.1-11.3-15.8 826		8.6-10.5-14.8 632 9.8-11.9-17.1 944	6.7-7.9-11.3	9.1-11.1-15.7 712 10.4-12.8-18.0 1062	

Performance Data - Metric Units - Rectangular Neck

For Performance Notes and Return Factors, see page C120.	
--	--

1A, 1B	1S) A	2A, 2B A (2E, 2F _B	2S		3A1	3A2 ()A	3B (, , , , , , , , , , , , , , , , , ,	4A 💿 A	4B 📵 A
--------	-------	------------	---------------------	----	--	-----	---------	--	--------	--------

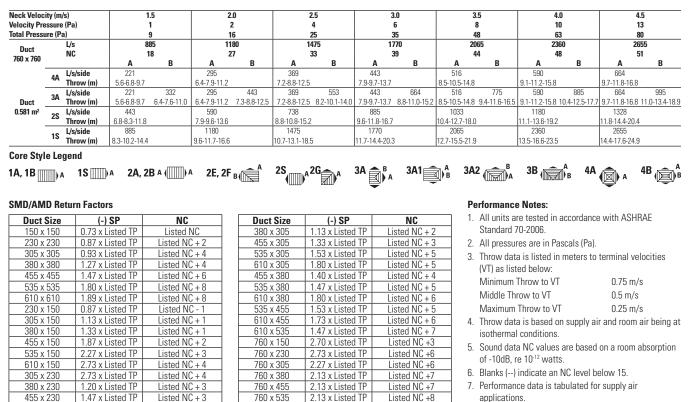
N I. W. I		(-)		-		0		-		0		-		•		-
Neck Veloc				.5	2		2		3			.5	4		4.	
Velocity Pro Total Press				1 9				-		6		B		0	1	
	ure (Pa			9 43	1		2			5 85		8 33	11	3	8	
Duct		L/s NC		43	2		3		3			0		80 4	4	
760 x 380		NG	A -	- В	A	B	A	В	A	B	A	В	A	B	A 4	B
		L/s/side	148	74	197	98	246	123	295	148	344	172	393	197	443	221
	4B	Throw (m)	5.2-6.4-8.8	3.0-4.6-6.7	5.8-7.3-10.4	4.0-5.5-7.6	6.7-8.2-11.6	4.9-6.1-8.5	7.3-8.8-12.5	5.5-6.7-9.1	7.9-9.8-13.7	5.8-7.0-10.1	8.2-10.4-14.6		8.8-11.0-15.2	
		L/s/side	185	74	246	98	307	123	369	148	430	172	492	197	553	221
	3A1	Throw (m)	5.5-6.7-9.4	3.0-4.6-6.7	6.1-7.6-10.7	4.0-5.5-7.6	7.0-8.5-11.9	4.9-6.1-8.5	7.6-9.4-13.1	5.5-6.7-9.1	8.2-10.1-14.3	5.8-7.0-10.1	8.8-10.7-15.2	6.1-7.6-10.7	9.1-11.3-16.2	6.7-7.9-11.3
	3B	L/s/side	221	110	295	148	369	185	443	221	516	258	590	295	664	332
Duct	- 30	Throw (m)	5.6-6.8-9.7	4.3-5.5-7.9	6.4-7.9-11.2	5.2-6.4-9.1	7.2-8.8-12.5	5.8-7.3-10.4	7.9-9.7-13.7	6.4-7.9-11.3	8.5-10.5-14.8	7.0-8.5-12.2	9.1-11.2-15.8	7.6-9.1-13.1	9.7-11.8-16.8	7.9-9.8-13.7
0.291 m ²	2A. 2E	L/s/side	221		295		369		443		516		590		664	
	20,20	Throw (m)	5.5-6.7-9.8		6.4-7.9-11.3		7.3-8.8-12.5		7.9-9.8-13.7		8.5-10.4-14.9		9.1-11.3-15.8		9.8-11.9-16.8	
	2E. 2F	L/s/side	296	146	396	195	494	244	593	292	692	341	791	389	889	438
	22, 21	Throw (m)	6.4-7.6-11.0	4.3-5.5-7.9	7.3-8.8-12.5	5.2-6.4-9.1	8.2-10.1-14.0	5.8-7.3-10.4	8.8-11.0-15.2	6.4-7.9-11.3	9.4-11.9-16.5	7.0-8.5-12.2	10.4-12.5-17.7	7.6-9.1-13.1	11.0-13.4-18.9	7.9-9.8-13.7
	1A. 1E	L/s/side	443		590		738		885		1033		1180		1328	
	1A, 10	Throw (m)	6.7-8.2-11.9		7.9-9.8-13.7		8.8-10.7-15.2		9.8-11.9-16.8		10.4-12.8-18.0		11.0-13.7-19.2		11.9-14.3-20.4	
Duct		L/s	53	31	70)8	88	15	10	62	12	39	14	16	15	93
		NC	1	5	2	4	3	1	3	6	4	1	4	5	4	9
760 x 455			A	В	A	В	A	В	A	В	A	В	A	В	A	В
	4B	L/s/side	177	89	236	118	295	148	354	177	413	207	472	236	531	266
	4D	Throw (m)	5.2-6.4-9.1	3.7-5.2-7.3	6.1-7.4-10.5	4.9-5.8-8.2	6.8-8.3-11.7	5.5-6.7-9.4	7.4-9.1-12.8	5.8-7.3-10.4	8.0-9.8-13.9	6.4-7.9-11.0	8.6-10.5-14.8	6.7-8.2-11.9	9.1-11.1-15.7	7.3-8.8-12.5
	3A1	L/s/side	221	89	295	118	369	148	443	177	516	207	590	236	664	266
	JAI	Throw (m)	5.6-6.8-9.7	3.7-5.2-7.3	6.4-7.9-11.2	4.9-5.8-8.2	7.2-8.8-12.5	5.5-6.7-9.4	7.9-9.7-13.7	5.8-7.3-10.4	8.5-10.5-14.8	6.4-7.9-11.0	9.1-11.2-15.8	6.7-8.2-11.9	9.7-11.8-16.8	7.3-8.8-12.5
	3A2	L/s/side	166	199	221	266	277	332	332	398	387	464	443	531	498	598
Duct	JAZ	Throw (m)	5.1-6.3-8.9	5.5-6.7-9.8	5.9-7.3-10.3	6.4-7.9-11.3	6.6-8.1-11.5	7.3-8.8-12.5	7.3-8.9-12.6	7.9-9.8-13.7	7.9-9.6-13.6	8.5-10.4-14.6	8.4-10.3-14.6	9.1-11.3-15.8	8.9-10.9-15.4	9.8-11.9-16.8
0.348 m ²		L/s/side	266		354		443		531		620		708		797	
	2A, 2E	Throw (m)	5.9-7.2-10.2		6.8-8.3-11.8		7.6-9.3-13.2		8.3-10.2-14.4		9.0-11.0-15.6		9.6-11.8-16.6		10.2-12.5-17.7	
		. L/s/side	356	175	474	234	593	292	712	351	830	409	949	467	1067	526
	2E, 2F	Throw (m)	6.4-7.8-11.1	5.2-6.1-8.8	7.4-9.0-12.8	5.8-7.3-10.1	8.3-10.1-14.3	6.7-7.9-11.3	9.0-11.1-15.7	7.3-8.8-12.5	9.8-12.0-16.9	7.6-9.4-13.4	10.4-12.8-18.1	8.2-10.1-14.3	11.1-13.6-19.2	8.8-10.7-15.2
		L/s/side	531		708		885		1062		1239		1416		1593	
	1A, 1E	Throw (m)	7.2-8.8-12.4		8.3-10.1-14.3		9.3-11.3-16.0		10.1-12.4-17.6		10.9-13.4-19.0		11.7-14.3-20.3		12.4-15.2-21.5	

Performance Data - Metric Units - Rectangular Neck

For Performance Notes and Return Factors, see page C120.

1A, 1B	1S []]]) A	2A, 2B A (2E, 2F _B	2S		3A1	3A2 ()A	3B (B	4A 💿 A	4B ()B
--------	------------	------------	---------------------	----	--	-----	---------	--------	--------	---------

Performance [Data - Metric	Units - Rectangular I	Neck
---------------	---------------	-----------------------	------


													·			
Neck Veloc			1.	.5	2		2	5		.0	3			.0	4	
Velocity Pr			1			2	4			6		-		0	1	
Total Press	ire (Pa	<u>.</u>			1		2			15		8		3	8	
Duct		L/s	62		82		10			39	14			52	18	
760 x 535		NC	1	-	2	-	3	-	-	17 D		2		6	4	-
		14.4.1.	A 207	B 100	A 275	138	A 344	B	A	207	A 482	B	A	B	A 620	<u>B</u>
	4B	L/s/side	207 5.5-6.7-9.5	103 4.3-5.5-7.9	6.3-7.7-11.0	138 5.2-6.4-9.1	344 7.1-8.7-12.2	172 5.8-7.0-10.1	413 7.7-9.5-13.4	207 6.4-7.9-11.0	482	241 7.0-8.5-11.9	551 8.9-11.0-15.5	275 7.3-9.1-12.8	9.5-11.6-16.4	310
		Throw (m) L/s/side	258	4.3-5.5-7.9	344	138	430	172	516	207	602	241	688	275	775	310
	3A1	L/S/Side Throw (m)	230 5.8-7.1-10.1	4.3-5.5-7.9	6.7-8.3-11.7	5.2-6.4-9.1	7.5-9.2-13.0	5.8-7.0-10.1	8.3-10.1-14.3		8.9-10.9-15.4		9.5-11.7-16.5		10.1-12.4-17.5	
		L/s/side	194	232	258	310	323	387	387	464	452	542	516	620	581	697
	3A2	Throw (m)	5.4-6.6-9.3	232 5.5-6.7-9.8	6.2-7.6-10.8	6.4-7.9-11.3	6.9-8.5-12.0	7.3-8.8-12.5	7.6-9.3-13.2	404 7.9-9.8-13.7					9.3-11.4-16.1	
Duct		L/s/side	310	0.0-0.7-9.0	413	0.4-7.9-11.3	516	7.3-0.0-12.3	620	7.9-9.0-13.7	723	0.3-10.4-14.0	826	9.1-11.3-13.0	929	9.0-11.9-10.0
0.407 m ²	2A, 2E															
		Throw (m)	6.1-7.5-10.6		7.1-8.7-12.3		7.9-9.7-13.7		8.7-10.6-15.1		9.4-11.5-16.3		10.0-12.3-17.4		10.6-13.0-18.4	
	2E. 2F	L/s/side	415	204	554	273	692	341	830	409	969	477	1107	545	1245	613
		Throw (m)	6.7-8.2-11.6	5.5-6.7-9.4	7.7-9.5-13.4	6.4-7.9-11.0	8.6-10.6-14.9	7.0-8.8-12.5		7.9-9.8-13.7		8.5-10.4-14.6		9.1-11.0-15.8	11.6-14.2-20.0	9.8-11.9-16.8
	1A. 1E	L/s/side	620		826		1033		1239		1446		1652		1859	
	1A, 1L	Throw (m)	7.5-9.2-13.0		8.6-10.6-15.0		9.7-11.8-16.8		10.6-13.0-18.3		11.4-14.0-19.8		12.2-15.0-21.2		13.0-15.9-22.5	
Duct		L/s	70	38	94	14	11	80	14	16	16	52	18	88	21	24
		NC	1	7	2	6	3	2	3	8	4	3	4	7	5	0
760 x 610			Α	В	A	В	A	В	A	В	A	В	A	В	A	В
		L/s/side	236	118	315	157	393	197	472	236	551	275	629	315	708	354
	4B	Throw (m)	57-70-99	4.9-6.1-8.5	6.6-8.0-11.4	5.8-7.0-9.8	7.3-9.0-12.7	6.4-7.9-11.0	8.0-9.9-13.9	7.0-8.5-12.2	8.7-10.6-15.1	7.6-9.1-13.1	9.3-11.4-16.1	7.9-9.8-14.0	9.9-12.1-17.1	8.5-10.4-14.6
		L/s/side	295	118	393	157	492	197	590	236	688	275	787	315	885	354
	3A1	Throw (m)	6.1-7.4-10.5	4.9-6.1-8.5	7.0-8.6-12.1	5.8-7.0-9.8	7.8-9.6-13.6	6.4-7.9-11.0	8.6-10.5-14.9	7.0-8.5-12.2	9.3-11.3-16.0	7 6-9 1-13 1	9.9-12.1-17.1	7 9-9 8-14 0	10.5-12.9-18.2	8 5-10 4-14 6
		L/s/side	221	266	295	354	369	443	443	531	516	620	590	708	664	797
Duct	3A2	Throw (m)	5.8-7.0-10.1	5.5-7.0-9.8		6.4-7.9-11.3	7.3-9.1-12.8		8.2-10.1-14.0						10.1-12.2-17.4	
		L/s/side	354	3.3-7.0-3.0	472	0.4-7.3-11.3	590	7.5-0.0-12.5	708	7.3-3.0-13.7	826	0.3-10.4-14.3	944	3.1-11.3-13.0	10.1-12.2-17.4	3.0-11.3-10.0
0.465 m ²	2A, 2E		304 6.4-7.8-11.1		4/2								944 10.4-12.8-18.1			
		Throw (m)		00.4		010	8.2-10.1-14.3	000	9.0-11.1-15.6	407	9.8-11.9-16.9	E 4 E		000	11.1-13.5-19.2	
	2E, 2F	L/s/side	474	234	632	312	791	389	949	467	1107	545	1265	623	1423	701
	, =-	Throw (m)		6.1-7.3-10.4	7.6-9.4-13.4	7.0-8.5-11.9	8.5-10.7-14.9	7.6-9.4-13.4		8.5-10.4-14.6	· · ·	9.1-11.3-15.8		9.8-11.9-17.1		10.4-12.8-18.0
	1A. 1E	L/s/side	708		944		1180		1416		1652		1888		2124	
	, 16	Throw (m)	7.8-9.5-13.5		9.0-11.0-15.6		10.0-12.3-17.4		11.0-13.5-19.1		11.9-14.6-20.6		12.7-15.6-22.0		13.5-16.5-23.3	

For Performance Notes and Return Factors, see page C120.

1A, 1B	1S)A	2A, 2B A (2E, 2F _B	2S		3A1 AB	3A2 👘 A	3B (B	4A 💿 A	4B () B
--------	------	------------	---------------------	----	--	--------	---------	--------	--------	----------

Performance Data - Metric Units - Rectangular Neck

2.12 x Listed TP

2.20 x Listed TP

Listed NC +8

Listed NC +8

760 x 610

760 x 760

8 Performance data assumes the diffuser is ceiling mounted for maximum ceiling effect.

When no ceiling is present, the horizontal flow will be reduced by approximately 25%, producing a downward projection.

1.73 x Listed TP

2.00 x Listed TP

Listed NC + 4

Listed NC + 4

535 x 230

610 x 230

Plaque Face Ceiling Diffusers **SMDP Series**

SMDP

Models

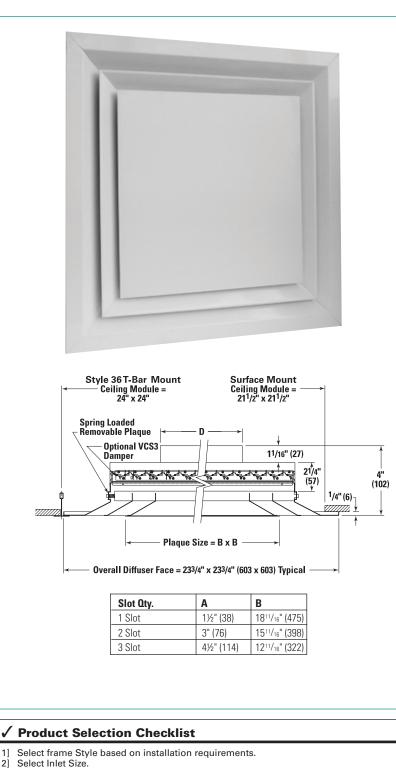
Fixed Air Pattern Steel Construction

Price SMDP Series louvered plaque ceiling diffusers are designed to satisfy both architectural appeal and engineering performance criteria. The simple and unobtrusive plaque design is intended to blend harmoniously with most ceiling systems, while the louvered slots supply large volumes of air at relatively low sound levels and pressure drops.

The louvered plaque ceiling diffuser is offered in 1, 2 or 3 slot models in order to meet a wide range of performance requirements.

Features

- All steel construction.
- Available in 24x24 nominal size only.
- Fits 24x24 inch ceiling grid or surface mount.
- Available in 1, 2, and 3 slot models.
- The core is easily removable at the diffuser face without requiring special tools.


Options

- Optional square to round neck adaptors available in 6 in., 8 in., 9 in., 10 in., 12 in., 14 in. and 15 in. inlet sizes.
- · Round (VCR8E and VCR9) and square (VCS3) dampers available.

Finish

White Powder Coat **B12**

For optional and special finishes see color matrix.

Select Inlet Size. 21

11

- Select Number of Slots required. 31
- Select Volume Control Accessories, if desired. 41 51 Select Finish.
- Example: 24 in. x 24 in. / SMDP / 3P / 4A / B12

All Metric dimensions () are soft conversion Imperial dimensions are converted to metric and rounded to the nearest millimeter.

Plaque Face Ceiling Diffusers SMDP Series

Performance Data – 24 x 24 / 600 x 600 Face Size, 1 Slot

	Air Flow, cfm	39	59	79	98	118	137	157	196	236
	Neck Velocity	200	300	400	500	600	700	800	1000	1200
6	Total Pressure, in. w.g.	0.006	0.014	0.025	0.039	0.056	0.077	0.100	0.156	0.225
U	Velocity Pressure, in. w.g.	0.002	0.006	0.010	0.016	0.022	0.031	0.040	0.062	0.090
	NC						18	22	28	33
	Throw 150, 100, 50	0-1-2	1-1-4	1-2-5	2-3-7	2-4-8	3-5-9	4-5-10	4-7-11	5-8-13
	Air Flow, cfm	70	105	140	174	209	244	279	349	419
	Neck Velocity	200	300	400	500	600	700	800	1000	1200
8	Total Pressure, in. w.g.	0.014	0.032	0.058	0.090	0.130	0.176	0.230	0.360	0.518
0	Velocity Pressure, in. w.g.	0.002	0.006	0.010	0.016	0.022	0.031	0.040	0.062	0.090
	NC				21	26	30	33	40	45
	Throw 150, 100, 50	1-2-5	2-4-7	3-5-9	4-6-11	5-7-12	5-8-13	6-9-14	8-11-15	9-12-17
	Air Flow, cfm	109	164	218	273	327	382	436	545	654
	Neck Velocity	200	300	400	500	600	700	800	1000	1200
10	Total Pressure, in. w.g.	0.027	0.062	0.110	0.172	0.247	0.337	0.440	0.687	0.990
10	Velocity Pressure, in. w.g.	0.002	0.006	0.010	0.016	0.022	0.031	0.040	0.062	0.090
	NC		16	24	30	35	39	43	49	54
	Throw 150, 100, 50	2-4-7	4-5-10	5-7-12	6-9-14	7-10-15	9-11-16	10-12-17	11-14-19	12-15-21

Performance Data - 24 x 24 / 600 x 600 Face Size, 2 Slot

	Air Flow, cfm	39	59	79	98	118	137	157	196	236
	Neck Velocity	200	300	400	500	600	700	800	1000	1200
6	Total Pressure, in. w.g.	0.004	0.009	0.016	0.025	0.036	0.049	0.064	0.100	0.144
0	Velocity Pressure, in. w.g.	0.002	0.006	0.010	0.016	0.022	0.031	0.040	0.062	0.090
	NC							16	22	27
	Throw 150, 100, 50	0-0-1	0-0-2	0-1-3	0-1-4	1-2-5	1-2-6	1-3-7	2-4-9	3-5-11
	Air Flow, cfm	70	105	140	174	209	244	279	349	419
	Neck Velocity	200	300	400	500	600	700	800	1000	1200
8	Total Pressure, in. w.g.	0.007	0.016	0.028	0.044	0.063	0.086	0.112	0.175	0.252
0	Velocity Pressure, in. w.g.	0.002	0.006	0.010	0.016	0.022	0.031	0.040	0.062	0.090
	NC					18	22	26	32	37
	Throw 150, 100, 50	0-1-2	1-1-5	1-2-6	2-3-8	2-5-10	3-6-11	4-6-13	5-8-15	6-10-17
	Air Flow, cfm	109	164	218	273	327	382	436	545	654
	Neck Velocity	200	300	400	500	600	700	800	1000	1200
10	Total Pressure, in. w.g.	0.011	0.024	0.043	0.067	0.097	0.132	0.172	0.269	0.387
10	Velocity Pressure, in. w.g.	0.002	0.006	0.010	0.016	0.022	0.031	0.040	0.062	0.090
	NC			15	21	26	30	34	39	44
	Throw 150, 100, 50	1-1-5	1-3-7	2-5-10	4-6-12	5-7-15	6-9-16	7-10-17	8-12-19	10-15-21
	Air Flow, cfm	157	236	314	393	471	550	628	785	942
	Neck Velocity	200	300	400	500	600	700	800	1000	1200
12	Total Pressure, in. w.g.	0.015	0.034	0.061	0.096	0.138	0.187	0.245	0.382	0.550
12	Velocity Pressure, in. w.g.	0.002	0.006	0.010	0.016	0.022	0.031	0.040	0.062	0.090
	NC			21	27	32	36	40	46	51
	Throw 150, 100, 50	1-3-7	3-5-11	5-7-14	6-9-16	7-11-18	8-13-19	10-14-21	12-16-23	14-18-25

Performance Notes:

- All units are tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- 2. Air flow is in cfm.
- 3. All pressures are in inches of water in in. w.g.
- Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- 5. Throw data is based on supply air and room air being at isothermal conditions.
- 6. NC values are based on room absorption of 10 dB re $10^{\text{-}12}$ Watts and one diffuser.

Plaque Face Ceiling Diffusers SMDP Series

Performance Data - 24 x 24 / 600 x 600 Face Size, 3 Slot

	Air Flow, cfm	70	105	140	174	209	244	279	349	419
	Neck Velocity	200	300	400	500	600	700	800	1000	1200
8	Total Pressure, in. w.g.	0.006	0.013	0.023	0.035	0.051	0.069	0.090	0.141	0.203
0	Velocity Pressure, in. w.g.	0.002	0.006	0.010	0.016	0.022	0.031	0.040	0.062	0.090
	NC				16	21	25	29	35	40
	Throw 150, 100, 50	0-0-2	0-1-4	1-2-6	1-3-7	2-4-9	2-5-10	3-6-12	5-7-15	6-9-17
	Air Flow, cfm	109	164	218	273	327	382	436	545	654
	Neck Velocity	200	300	400	500	600	700	800	1000	1200
10	Total Pressure, in. w.g.	0.007	0.017	0.030	0.046	0.067	0.091	0.119	0.186	0.268
10	Velocity Pressure, in. w.g.	0.002	0.006	0.010	0.016	0.022	0.031	0.040	0.062	0.090
	NC				19	24	28	32	37	42
	Throw 150, 100, 50	0-1-4	1-2-7	2-4-9	3-6-12	4-7-14	5-8-16	6-9-17	8-12-19	9-14-21
	Air Flow, cfm	157	236	314	393	471	550	628	785	942
	Neck Velocity	200	300	400	500	600	700	800	1000	1200
12	Total Pressure, in. w.g.	0.009	0.021	0.037	0.058	0.084	0.114	0.149	0.233	0.335
12	Velocity Pressure, in. w.g.	0.002	0.006	0.010	0.016	0.022	0.031	0.040	0.062	0.090
	NC			16	21	26	30	34	40	45
	Throw 150, 100, 50	1-2-7	2-5-10	4-7-13	6-8-16	7-10-18	8-12-19	9-13-21	11-16-23	13-18-25
	Air Flow, cfm	214	321	427	534	641	748	855	1068	1282
	Neck Velocity	200	300	400	500	600	700	800	1000	1200
14	Total Pressure, in. w.g.	0.011	0.025	0.045	0.070	0.101	0.138	0.180	0.281	0.405
14	Velocity Pressure, in. w.g.	0.002	0.006	0.010	0.016	0.022	0.031	0.040	0.062	0.090
	NC			17	23	28	32	36	42	47
	Throw 150, 100, 50	2-4-9	4-7-14	6-9-17	8-11-19	9-14-21	11-16-22	12-17-24	15-19-27	17-21-29

Performance Notes:

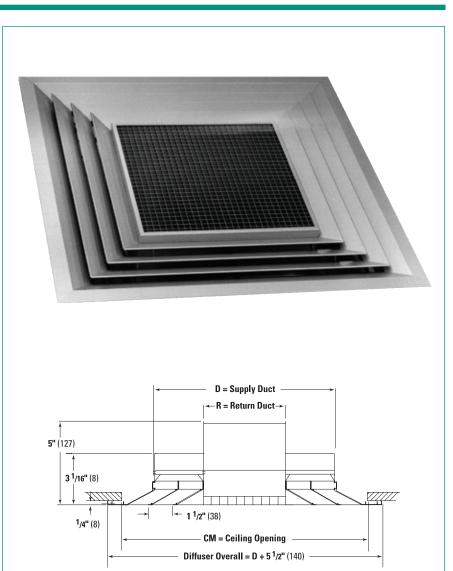
- 1. All units are tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- 4. Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- 6. NC values are based on room absorption of 10 dB re 10⁻¹² Watts and one diffuser.

- 2. Air flow is in cfm.
- 3. All pressures are in inches of water in in. w.g.
- 5. Throw data is based on supply air and room air being at isothermal conditions.
- 7. Blanks (-----) indicate an NC level below 15.

Product Information - Combination Supply / Return

Price CSRD Series combination supply / return directional diffusers are available with extruded aluminum louvered blades for supply air and an eggcrate core for return air. Extruded aluminum construction matches the AMD series in detail and styling. The performance characteristics are excellent; the diffuser handles a large amount of air for a given set of outside dimensions with low pressure drops and noise levels. The CSRD is sized to match rooftop air conditioners in the most popular capacities.

Features


- Extruded aluminum construction.
- Return air core is aluminum eggcrate, minimizing see-through and maximizing free area.
- Surface mounting flange is applicable to most ceiling types.

Finish

White Powder Coat

B12

For optional and special finishes see color matrix.

CSRD Selection Criteria — Imperial (in.) / Metric [mm]

CSRD	D Supply Duct Size	R Return Duct Opening	CM Ceiling Opening
20	21 x 21 [533 x 533]	12 x 12 [301 x 301]	24 ¹ / ₂ x 24 ¹ / ₂ [622 x 622]
30	24 x 24 [610 x 610]	15 x 15 [381 x 381]	27 ¹ / ₂ x 27 ¹ / ₂ [699 x 699]
40	30 x 30 [762 x 762]	18 x 18 [457 x 457]	33 ¹ / ₂ x 33 ¹ / ₂ [851 x 851]
50	33 x 33 [838 x 838]	18 x 18 [457 x 457]	36 ¹ / ₂ x 36 ¹ / ₂ [927 x 927]
75	36 x 36 [914 x 914]	21 x 21 [533 x 533]	39 ¹ / ₂ x 39 ¹ / ₂ [1003 x 1003]
100	48 x 48 [1219 x 1219]	27 x 27 [686 x 686]	51 ¹ / ₂ x 51 ¹ / ₂ [1308 x 1308]

Product Selection Checklist

- 1] Select Supply Inlet Size L x W based on
- desired performance characteristics.2] Select Outlet Type by model number.
- 3] Select Finish.

C-124

Example:12 in. x 12 in. / CSRD 30 / B12

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter.

Performance Data

	cfm / ton		300	350	400	450	500	550	600
	cfm		600	700	800	900	1000	1100	1200
CSRD 20	Throw, ft		7-8-12	7-9-13	8-10-14	9-11-15	9-11-16	9-12-16	10-12-1
	T.P.	Supply	.036	.049	.064	.081	.099	.124	.148
2 TONS	(-S.P.)	Return	.056	.075	.099	.123	.150	.190	.230
	NC		20	25	30	34	37	40	43
	cfm		900	1050	1200	1350	1500	1650	1800
CSRD 30	Throw, ft		8-10-14	9-11-15	10-12-17	10-13-18	11-13-19	11-14-19	12-14-
	T.P.	Supply	.055	.076	.100	.126	.154	.184	.220
3 TONS	(-S.P.)	Return	.050	.069	.091	.113	.140	.167	.200
	NC		23	28	33	37	40	43	46
	cfm		1200	1400	1600	1800	2000	2200	2400
CSRD 40	Throw, ft		9-11-15	10-12-17	10-13-18	11-13-19	12-14-20	12-15-21	13-16-
	T.P.	Supply	.042	.057	.073	.090	.111	.136	.162
4 TONS	(-S.P.)	Return	.062	.084	.108	.135	.165	.205	.245
	NC		26	31	36	40	43	46	49
	cfm		1500	1750	2000	2250	2500	2750	3000
CSRD 50	Throw, ft		9-11-16	10-12-17	11-13-18	12-14-20	12-15-21	13-16-22	13-16-
	T.P.	Supply	.031	.043	.057	.072	.090	.109	.131
5 TONS	(-S.P.)	Return	.067	.091	.116	.150	.190	.230	.265
	NC		28	33	38	42	45	48	51
	cfm		2250	2675	3000	3375	3750	4125	4500
CSRD 75	Throw, ft		11-13-19	12-15-21	13-16-22	13-17-23	14-18-25	15-18-26	16-19-
	T.P.	Supply	.056	.077	.100	.126	.154	.184	.220
7.5 TONS	(-S.P.)	Return	.079	.110	.140	.175	.215	.260	.305
	NC		34	39	44	48	51	54	57
	cfm		3000	3500	4000	4500	5000	5500	6000
CSRD 100	Throw, ft		11-14-20	12-15-21	13-16-23	14-17-24	15-18-26	16-19-27	16-20-
	T.P.	Supply	.031	.044	.057	.072	.090	.109	.131
10 TONS	(-S.P.)	Return	.053	.071	.092	.115	.145	.175	.215
	NC		32	37	42	45	49	52	59

Performance Notes:

 All units are tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."

2. Air flow is in cfm.

3. All pressures are in inches of water in in. w.g. TP = Total Pressure.

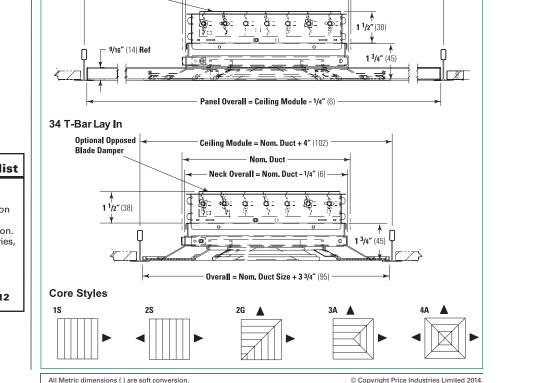
(-) SP = Negative Static Pressure.

- Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- 5. Throw data is based on supply air and room air being at isothermal conditions.
- 6. NC values are based on room absorption of 10 dB re $10^{\text{-}12}$ Watts and one diffuser.
- 7. Blanks (-----) indicate an NC level below 15.

Light Commercial Directional Diffuser LCMD Series

Product Information

Price LCMD Light Commercial Directional Diffuser features rugged extruded aluminum construction and 1" blade spacing. The diffuser is available in five different core styles, giving you the opportunity to choose between 1, 2, 2 way corner, 3 and 4 way air discharge patterns to best suit space requirements and occupants' comfort. The spring loaded core is easily removable from the face of the diffuser without use of any tools. The LCMD is available with optional face adjustable opposed blade damper.


Features

- Rugged all-extruded aluminum construction.
- Removable face for concealed mounting application.
- 1" blade spacing.
- Optional face adjustable damper.
- Five air discharge patterns.

Finish

White Powder Coat

For optional and special finishes see color matrix.

Ceiling Opening = Nom. Duct

Neck Overall = Nom. Duct - 1/4" (6)

Overall = Nom. Duct Size + 3 1/8" (79)

Ceiling Module = 24" x 24" (610 x 610) Nom, Duct

Neck Overall = Nom. Duct - 1/4" (6)

← 1"(25) Typ.

1 1/2" (38)

Ceiling (Ref)

Product Selection Checklist

- Select Inlet Size based on desired 1]
- performance characteristics. 21 Select Border according to installation
- requirements. 31 Select Core Style based on application.
- Select Damper Options and Accessories, 4] if desired.
- Select Fastening Option. 51
- Select Finish. 6]

Example:

LCMD / I / 12 x 12 / 1 / 4A / / / 3 / / / B12

CEILING DIFFUSERS

C-126

Imperial dimensions are converted to metric and rounded to the nearest millimeter

A Mounting (Optional)

Optional Opposed

Blade Dampe

1 ¹⁹/32″

(15)

f II

Optional Opposed Blade Damper

1 Surface Mount

1 ³/4

3P Steel T-Bar Panel 3PA Alum. T-Bar Panel

B12

© Copyright Price Industries Limited 2014

Light Commercial Directional Diffuser LCMD Series

Performance Data

	Neck Ve	looity	300	400	500	600	700	800	900
	Velocity		0.006	0.01	0.016	0.022	0.031	0.040	0.050
Duct	Total Pre	ssure Total cfm	0.049	0.086	0.135	0.195 150	0.265 175	0.346 200	0.438
Size		NC		18	23	26	30	33	35
512e 6" x 6"		NC	А В	A B	A B	A B	A B	A B	A B
0 . 0	4A	cfm/Side	19	25	31	38	44	50	56
		Throw,ft	3-4-9	4-6-12	5-7-15	6-9-17	7-10-20	8-12-21	9-13-23
Duct	3A	cfm/Side	19 28	25 38	31 47	38 56	44 66	50 75	56 84
Area		Throw,ft	3-4-9 4-5-11	4-6-12 5-7-14	5-7-15 6-9-18	6-9-17 7-11-21	7-10-20 8-12-23	8-12-21 10-14-24	9-13-23 11-16-26
0.25	2S, 2G	cfm/Side	38	50	63	75	88	100	113
ft²		Throw,ft	4-6-12	5-8-16	7-10-21	8-12-23	10-14-24	11-16-26	12-19-28
	1S	cfm/Side	75	100	125	150	175	200	225
		Throw,ft	6-9-17	8-12-23	10-15-25	12-17-28	14-20-30	16-23-32	17-24-34
Duct		Total cfm	133	178	222	266	311	355	400
Size		NC		21	26	30	33	36	38
8" x 8"	4 A	cfm/Side	A B 33	A B 45	A B 56	A B 67	A B 78	A B 89	A B 100
	4A	Throw,ft	4-6-12	5-8-16	6-10-19	8-12-22	9-14-24	10-16-25	12-17-27
Duct	3A	cfm/Side	33 50	45 67	56 83	67 100	78 117	89 133	100 150
Area		Throw,ft	4-6-12 5-7-14	5-8-16 6-10-19	6-10-19 8-12-22	8-12-22 9-14-25	9-14-24 11-17-27	10-16-25 13-19-28	
0.444	2S 2G	cfm/Side	67	89	111	133	156	178	200
ft ²		Throw,ft	5-8-16	7-11-22	9-14-24	11-16-27	13-19-29	15-22-31	16-23-33
	1S	cfm/Side	133	178	222	266	311	355	400
		Throw,ft	8-12-23	10-16-27	13-19-30	16-23-32	18-25-35	21-27-37	23-28-40
Duct		Total cfm	208	278	347	416	486	555	625
Size		NC	17	23	28	32	35	38	41
10" x 10"			A B	A B	A B	A B	A B	A B	A B
	4 A	cfm/Side	52	70	87	104	122	139	156
Durat	3A	Throw,ft	5-7-15 52 78	6-10-19 70 104	8-12-23 87 130	10-15-25 104 156	11-17-27 122 182	13-19-29 139 208	15-22-30 156 234
Duct Area	3A	cfm/Side Throw,ft	52 78 5-7-15 6-9-18	6-10-19 8-12-23		10-15-25 12-18-28			
0.694	2S 2G	cfm/Side	104	139	174	208	243	278	313
ft ²	20 20	Throw,ft	7-10-21	9-14-25	11-17-28	14-21-30	16-23-33	18-25-35	21-26-37
	1S	cfm/Side	208	278	347	416	486	555	625
		Throw,ft	10-15-26	13-19-30	16-24-34	19-26-37	23-28-40	25-30-43	26-32-45
Duct		Total cfm	300	400	500	600	700	800	900
Size		NC	19	25	30	34	37	40	43
12" x 12"			A B	A B	A B	A B	A B	A B	A B
	4 A	cfm/Side	75	100	125	150	175	200	225
Duct	3A	Throw,ft	6-9-17	8-12-23	10-15-25 125 188	12-17-28 150 225	14-20-30 175 263	16-23-32	17-24-34 225 338
Duct Area	3A	cfm/Side Throw,ft	75 113 6-9-17 7-11-21	100 150	125 188 10-15-25 12-18-28			200 300	
1	2S 2G	cfm/Side	150	200	250	300	350	400	450
ft²	20 20	Throw,ft	8-12-24	11-16-27	14-21-31	16-24-34	19-26-36	22-27-39	24-29-41
	1S	cfm/Side	300	400	500	600	700	800	900
		T1	12-17-29	16-23-33	19-26-37	22 20 41		27-33-47	29-35-50
Duct		Throw,ft	12-17-23	10-23-33	13-20-37	23-29-41	26-31-44		29-35-50
DUCL		Total cfm	408	544	680	816	952	1088	129-35-50 1224
Size			408 21	544 27	680 32	816 36	952 39	1088 42	1224 44
		Total cfm NC	408 21 A B	544 27 A B	680 32 A B	816 36 A B	952 39 A B	1088 42 A B	1224 44 A B
Size	4A	Total cfm NC cfm/Side	408 21 A B 102	544 27 A B 136	680 32 A B 170	816 36 A B 204	952 39 A B 238	1088 42 A B 272	1224 44 A B 306
Size 14" x 14"		Total cfm NC cfm/Side Throw,ft	408 21 A B 102 7-10-20	544 27 A B 136 9-14-25	680 32 A B 170 11-17-27	816 36 A B 204 14-20-30	952 39 A B 238 16-23-33	1088 42 A B 272 18-25-35	1224 44 306 20-26-37
Size 14" x 14" Duct	4A 3A	Total cfm NC cfm/Side Throw,ft cfm/Side	408 21 A B 102 7-10-20 102 153	544 27 A B 136 9-14-25 136 204	680 32 A B 170 11-17-27 170 255	816 36 A B 204 14-20-30 204 306	952 39 A B 238 16-23-33 238 357	1088 42 A B 272 18-25-35 272 408	1224 44 A B 306 20-26-37 306 459
Size 14" x 14" Duct Area	3A	Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft	408 21 A B 102 7-10-20 102 153 7-10-20 8-12-24	544 27 A B 136 9-14-25 136 204 9-14-25 11-17-28	680 32 A B 170 11-17-27 170 255 11-17-27 14-21-31	816 36 A B 204 14-20-30 204 306 14-20-30 17-24-34	952 39 A B 238 16-23-33 238 357 16-23-33 19-26-36	1088 42 A B 272 18-25-35 272 408 18-25-35 22-28-39	1224 44 A B 306 20-26-37 306 459 20-26-37 24-29-41
Size 14" x 14" Duct Area 1.36		Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side	408 21 A B 102 7-10-20 102 153 7-10-20 8-12-24 204	544 27 A B 136 9-14-25 136 204 9-14-25 11-17-28 272	680 32 A B 170 11-17-27 170 255 11-17-27 14-21-31 340	816 36 A B 204 14-20-30 204 306 14-20-30 17-24-34 408	952 39 A B 238 16-23-33 238 357 16-23-33 19-26-36 476	1088 42 A B 272 18-25-35 272 408 18-25-35 22-28-39 544	1224 44 A B 306 20-26-37 306 459 20-26-37 24-29-41 612
Size 14" x 14" Duct Area	3A 2S 2G	Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft	408 21 A B 102 7-10-20 102 153 7-10-20 8-12-24 204 10-14-26	544 27 A B 136 9-14-25 136 204 9-14-25 11-17-28 272 13-19-30	680 32 A B 170 11-17-27 170 255 11-17-27 14-21-31 340 16-24-33	816 36 A B 204 14-20-30 204 306 14-20-30 17-24-34 408 19-26-37	952 39 A B 238 16-23-33 238 357 16-23-33 19-26-36 476 22-28-40	1088 42 A B 272 18-25-35 272 408 18-25-35 22-28-39 544 24-30-42	1224 44 A B 306 20-26-37 306 459 20-26-37 24-29-41 612 26-32-45
Size 14" x 14" Duct Area 1.36	3A	Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side	408 21 A B 102 7-10-20 102 153 7-10-20 8-12-24 204 10-14-26 408	544 27 A 136 9-14-25 136 204 9-14-25 11-17-28 272 13-19-30 544	680 32 A B 170 11-17-27 170 255 11-17-27 14-21-31 340	816 36 A B 204 14-20-30 204 306 14-20-30 17-24-34 408 19-26-37 816	952 39 A B 238 16-23-33 238 357 16-23-33 19-26-36 476 22-28-40 952	1088 42 A B 272 18-25-35 272 408 18-25-35 22-28-39 544 24-30-42 1088	1224 44 A B 306 20-26-37 306 459 20-26-37 24-29-41 612
Size 14" x 14" Duct Area 1.36	3A 2S 2G	Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side	408 21 A B 102 7-10-20 102 153 7-10-20 8-12-24 204 10-14-26	544 27 A B 136 9-14-25 136 204 9-14-25 11-17-28 272 13-19-30	680 32 A B 170 11-17-27 170 255 11-17-27 14-21-31 340 16-24-33 680	816 36 A B 204 14-20-30 204 306 14-20-30 17-24-34 408 19-26-37	952 39 A B 238 16-23-33 238 357 16-23-33 19-26-36 476 22-28-40	1088 42 A B 272 18-25-35 272 408 18-25-35 22-28-39 544 24-30-42	1224 44 A B 306 20-26-37 306 459 20-26-37 24-29-41 612 26-32-45 1224
Size 14" x 14" Duct Area 1.36 ft ² Duct Size	3A 2S 2G	Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft	408 21 A B 102 7-10-20 102 153 7-10-20 8-12-24 204 10-14-26 408 14-20-32	544 27 A B 136 9-14-25 136 204 9-14-25 11-17-28 272 13-19-30 544 18-26-36	680 32 A B 170 11-17-27 170 255 11-17-27 14-21-31 340 16-24-33 680 23-29-41	816 36 A B 204 14-20-30 204 306 14-20-30 17-24-34 408 19-26-37 816 26-32-45	952 39 A B 238 16-23-33 238 357 16-23-33 19-26-36 476 22-28-40 952 28-34-48	1088 42 A B 272 18-25-35 272 408 18-25-35 22-28-39 544 24-30-42 1088 30-36-52	1224 44 A B 306 20-26-37 306 459 20-26-37 24-29-41 612 26-32-45 1224 32-39-55
Size 14" x 14" Duct Area 1.36 ft ² Duct	3A 2S 2G 1S	Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft Total cfm NC	408 21 A B 102 7-10-20 102 153 7-10-20 8-12-24 204 10-14-26 408 14-20-32 531 22 A B	544 27 A B 136 9-14-25 136 204 9-14-25 11-17-28 272 13-19-30 544 18-26-36 544 18-26-36 708 29 A B	680 32 A B 170 11-17-27 170 255 11-17-27 14-21-31 340 16-24-33 680 23-29-41 885 33 A B	816 36 A B 204 14-20-30 204 306 14-20-30 17-24-34 408 19-26-37 816 26-32-45 1062 37 A B	952 39 A B 238 16-23-33 238 357 16-23-33 19-26-36 476 22-28-40 952 28-34-48 1239 40 A B	1088 42 A B 272 18-25-35 272 408 18-25-35 22-28-39 544 24-30-42 1088 30-36-52 1416 43 A B	1224 44 A B 306 20-26-37 306 459 20-26-37 24-29-41 612 26-32-45 1224 32-39-55 1593 46 A B
Size 14" x 14" Duct Area 1.36 ft ² Duct Size	3A 2S 2G	Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft Throw,ft Total cfm NC cfm/Side	408 21 B 102 7.10-20 102 153 7-10-20 8-12-24 204 10-14-26 408 14-20-32 531 22 A B 133 133	544 27 A B 136 9-14-25 136 204 9-14-25 11-17-28 272 13-19-30 544 18-26-36 544 18-26-36 708 29 A B 177 177 177 177	680 32 A B 170 11-17-27 170 255 11-17-27 14-21-31 340 16-24-33 680 23-29-41 885 33 A B 221	816 36 A B 204 306 14-20-30 204 306 14-20-30 17-24-34 408 19-26-37 816 26-32-45 1062 37 87 402 37 4 8 266 37	952 39 A B 238 16-23-33 238 357 16-23-33 19-26-36 476 22-28-40 952 28-34-48 1239 40 A B 310	1088 42 A B 272 18-25-35 272 408 18-25-35 22-28-39 544 24-30-42 1088 30-36-52 1416 43 A B 354 354	1224 44 A B 306 20-26-37 306 459 20-26-37 24-29-41 612 26-32-45 1224 32-39-55 1593 46 A B 398 398
Size 14" x 14" Duct Area 1.36 ft ² Duct Size 16" x 16"	3A 2S 2G 1S 4A	Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft Total cfm NC cfm/Side Throw,ft	408 21 A B 102 7-10-20 102 153 7-10-20 8-12-24 204 10-14-26 408 14-20-32 531 22 A B 133 8-12-23	544 27 A B 136 9-14-25 136 204 9-14-25 11-17-28 272 13-19-30 544 18-26-36 708 29 A B 177 10-15-26 10-15-26	680 32 A B 170 11-17-27 170 255 11-17-27 14-21-31 340 16-24-33 680 23-29-41 885 33 A B 221 13-19-30	816 36 A B 204 306 14-20-30 204 306 14-20-30 17-24-34 408 19-26-37 816 26-32-45 1062 37 A B 266 15-23-32 15-23-32 160 15-23-32 100 10-20 </td <td>952 39 A B 238 16-23-33 238 357 16-23-33 19-26-36 476 22-28-40 952 28-34-48 1239 40 A B 310 18-25-35</td> <td>1088 42 A B 272 18-25-35 272 408 18-25-35 22-28-39 544 24-30-42 1088 30-36-52 1416 43 A B 354 21-26-37</td> <td>1224 44 A B 306 20-26-37 306 459 20-26-37 24-29-41 612 26-32-45 1224 32-39-55 1593 46 A B 398 23-28-40 298 23-28-40</td>	952 39 A B 238 16-23-33 238 357 16-23-33 19-26-36 476 22-28-40 952 28-34-48 1239 40 A B 310 18-25-35	1088 42 A B 272 18-25-35 272 408 18-25-35 22-28-39 544 24-30-42 1088 30-36-52 1416 43 A B 354 21-26-37	1224 44 A B 306 20-26-37 306 459 20-26-37 24-29-41 612 26-32-45 1224 32-39-55 1593 46 A B 398 23-28-40 298 23-28-40
Size 14" x 14" Duct Area 1.36 ft ² Duct Size 16" x 16" Duct	3A 2S 2G 1S	Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft Total cfm NC cfm/Side Throw,ft	408 21 A B 102 153 7-10-20 8-12-24 204 204 10-14-26 408 14-20-32 531 22 A B 133 133 199	544 27 A B 136 9-14-25 136 204 9-14-25 11-17-28 272 13-19-30 544 18-26-36 708 29 A B 177 10-15-26 177 266	680 32 A B 170 11-17-27 170 255 11-17-27 14-21-31 340 16-24-33 680 23-29-41 885 33 A B 221 13-19-30 221 332	816 36 A B 204 306 14-20-30 204 306 14-20-30 17-24-34 408 19-26-37 816 26-32-45 1062 37 A B 266 15-23-32 266 398 308 308 308	952 39 A B 238 357 16-23-33 238 357 16-23-33 19-26-36 476 22-28-40 952 28-34-48 952 28-34-48 1239 40 A B 310 18-25-35 310 465	1088 42 A B 272 18-25-35 272 408 18-25-35 22-28-39 544 24-30-42 1088 30-36-52 1416 43 A B 354 21-26-37 354 531	1224 44 B 306 20-26-37 306 459 20-26-37 24-29-41 612 26-32-45 1224 32-39-55 1593 46 A B 398 23-28-40 398 597
Size 14" x 14" Duct Area 1.36 ft ² Duct Size 16" x 16" Duct Area	3A 2S 2G 1S 4A 3A	Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft	408 21 A B 102 153 7-10-20 8-12-24 204 204 10-14-26 408 14-20-32 531 22 A B 133 8-12-23 133 199 8-12-23 9-14-26	544 27 A B 136 9-14-25 136 204 9-14-25 11-17-28 272 13-19-30 544 18-26-36 708 29 A B 177 10-15-26 177 266 10-15-26 13-19-30 13-19-30 13-19-30 13-19-30	680 32 A B 170 11-17-27 170 255 11-17-27 14-21-31 340 16-24-33 680 23-29-41 885 33 A B 221 13-19-30 221 332 13-19-30 16-23-33	816 36 A B 204	952 39 A B 238 16-23-33 238 357 16-23-33 19-26-36 476 22-28-40 952 28-34-48 1239 40 A B 310 18-25-35 310 465 18-25-35 22-28-39	1088 42 A B 272 18-25-35 272 408 18-25-35 22-28-39 544 24-30-42 1088 30-36-52 1416 43 A B 354 21-26-37 354 531 21-26-37 24-30-42	1224 44 A B 306 20-26-37 306 459 20-26-37 24-29-41 612 26-32-45 1224 32-39-55 1593 46 A B 398 23-28-40 398 597 23-28-40 26-32-45 26-32-45 32-84-40 26-32-45
Size 14" x 14" Duct Area 1.36 ft ² Duct Size 16" x 16" Duct Area 1.77	3A 2S 2G 1S 4A	Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft	408 21 A B 102 7-10-20 102 153 7-10-20 8-12-24 204 10-14-26 408 14-20-32 531 22 A B 133 8-12-23 133 199 8-12-23 9-14-26 266	544 27 A B 136 9-14-25 136 204 9-14-25 11-17-28 272 13-19-30 344 18-26-36 708 29 A B 177 10-15-26 13-19-30 10-15-26 13-19-30 354 354	680 32 A B 170 11-17-27 170 255 11-17-27 14-21-31 340 16-24-33 680 23-29-41 885 33 A B 221 13-19-30 221 332 13-19-30 16-23-33 443	816 36 A B 204 306 14-20-30 204 306 14-20-30 17-24-34 408 19-26-37 816 26-32-45 1062 37 A B 266 15-23-32 266 398 15-23-32 19-26-36 531 5	952 39 A B 238 16-23-33 238 357 16-23-33 19-26-36 476 22-28-40 952 28-34-48 1239 40 A B 310 18-25-35 310 465 18-25-35 22-28-39 620	1088 42 A B 272 18-25-35 272 408 18-25-35 22-28-39 544 24-30-42 1088 30-36-52 1416 43 A B 354 21-26-37 254-537 24-30-42 708 531	1224 44 A B 306 20-26-37 306 459 20-26-37 24-29-41 612 612 26-32-45 1224 32-39-55 1593 46 A B 398 398 23-28-40 398 597 23-28-40 26-32-45 797
Size 14" x 14" Duct Area 1.36 ft ² Duct Size 16" x 16" Duct Area	3A 2S 2G 1S 4A 3A 2S 2G	Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft	408 21 A B 102 7-10-20 102 153 7-10-20 8-12-24 204 10-14-26 408 14-20-32 531 22 A B 133 8-12-23 133 199 8-12-23 9-14-26 266 11-16-28	544 27 A B 136 9-14-25 136 204 9-14-25 11-17-28 272 13-19-30 544 18-26-36 708 29 A B 177 10-15-26 177 266 10-15-26 13-19-30 354 15-22-32 15-22-32	680 32 A B 170 11-17-27 170 255 11-17-27 14-21-31 340 16-24-33 680 23-29-41 885 33 A B 221 13-19-30 221 332 13-19-30 16-23-33 443 18-25-36	816 36 A B 204 306 14-20-30 204 306 14-20-30 17-24-34 408 19-26-37 816 26-32-45 1062 37 A B 266 15-23-32 266 398 15-23-32 19-26-36 531 22-28-39 531 22-28-39 200 100	952 39 A B 238 16-23-33 238 357 16-23-33 19-26-36 476 22-28-40 952 28-34-48 1239 40 A B 310 18-25-35 310 465 18-25-35 22-28-39 620 25-30-43	1088 42 A B 272 18-25-35 272 408 18-25-35 22-28-39 544 24-30-42 1088 30-36-52 1416 43 A B 354 21-26-37 21-26-37 24-30-42 708 26-32-46	1224 44 B 306 20:26:37 306 459 20:26:37 24:29:41 612 26:32:45 1224 32:39:55 1593 46 8 398 398 23:28:40 398 597 23:28:40 597 23:28:40 26:32:45 797 28:34:48 597 23:28:44 34:48 597 36:32:45 36:32:45 37:32:45 397 398:34:48 398 3
Size 14" x 14" Duct Area 1.36 ft ² Duct Size 16" x 16" Duct Area 1.77	3A 2S 2G 1S 4A 3A	Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft cfm/Side Throw,ft Total cfm NC cfm/Side Throw,ft cfm/Side Throw,ft	408 21 A B 102 7-10-20 102 153 7-10-20 8-12-24 204 10-14-26 408 14-20-32 531 22 A B 133 8-12-23 133 199 8-12-23 9-14-26 266	544 27 A B 136 9-14-25 136 204 9-14-25 11-17-28 272 13-19-30 344 18-26-36 708 29 A B 177 10-15-26 13-19-30 10-15-26 13-19-30 354 354	680 32 A B 170 11-17-27 170 255 11-17-27 14-21-31 340 16-24-33 680 23-29-41 885 33 A B 221 13-19-30 221 332 13-19-30 16-23-33 443	816 36 A B 204 306 14-20-30 204 306 14-20-30 17-24-34 408 19-26-37 816 26-32-45 1062 37 A B 266 15-23-32 266 398 15-23-32 19-26-36 531 5	952 39 A B 238 16-23-33 238 357 16-23-33 19-26-36 476 22-28-40 952 28-34-48 1239 40 A B 310 18-25-35 310 465 18-25-35 22-28-39 620	1088 42 A B 272 18-25-35 272 408 18-25-35 22-28-39 544 24-30-42 1088 30-36-52 1416 43 A B 354 21-26-37 254-53 531 21-26-37 24-30-42 708 708	1224 44 A B 306 20-26-37 306 455 20-26-37 24-29 612 26-32-45 1224 32-39-55 1593 46 A B 398 23-28-40 398 597 23-28-40 26-32 797 797

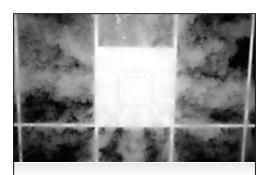
Performance Data

	Neck Velo	city	300	40	0	50	00	6	00	7	00	8	00	9	00
	Velocity P		0.006	0.0		-) 16		022		031		00)50
	Total Pres		0.000	0.0			135		195		265		346 346		138
Duct	101011103	Total cfm	675	90			25		155 150		575		00		25
Size		NC	24	30			25 15		88		2		5		7
18" x 18"		NC	A B	A	В	A	B	A	В	Α.	B	A	В	A	В
10 × 10	4A	cfm/Side	169	225		281		338		394		450		506	D
		Throw.ft	9-13-25	12-17-28		15-22-32		17-25-35		20-27-38		23-28-40		25-30-43	
Duct	3A	cfm/Side	169 253	225	338	281	422	338	506	394	591	450	675	506	759
Area	••••	Throw.ft	9-13-25 11-16-28						21-28-39						
2.25	2S 2G	cfm/Side	338	450		563		675		788		900		1013	
ft ²		Throw,ft	12-19-30	16-24-35		21-27-39		24-30-42		26-32-46		28-35-49		30-37-52	
	1S	cfm/Side	675	900		1125		1350		1575		1800		2025	
		Throw,ft	17-26-36	23-30-42		27-33-47		30-36-52		32-39-56		34-42-60		36-45-63	
Duct		Total cfm	831	11	08	13	85	16	62	19	39	22	16	24	93
Size		NC	25	3	1	3	6	4	10	1	3	4	6	4	8
20" x 20"			A B	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В
	4A	cfm/Side	208	277		346		416		485		554		623	
		Throw,ft	10-15-26	13-19-30		16-24-34		19-26-37		23-28-40		25-30-43		26-32-45	
Duct	3A	cfm/Side	208 312	277	416	346	519	416	623	485	727	554	831	623	935
Area		Throw,ft	10-15-26 12-18-29		16-24-34		20-27-38		24-29-41		26-32-45		28-34-48		29-36-51
2.77	2S 2G	cfm/Side	416	554		693		831		970		1108		1247	
ft²		Throw,ft	14-21-32	18-26-37		23-29-41		26-32-45		28-34-48		30-37-52		32-39-55	
	1S	cfm/Side	831	1108		1385		1662		1939		2216		2493	
		Throw,ft	19-27-39	26-32-45		29-35-50		32-39-55		34-42-59		36-45-63		39-47-67	~
Duct		Total cfm	1008	134			80)16		852		88		24
Size		NC	26	32			57 	1	11		14		7		9
22" x 22"		cfm/Side	A B 252	A 336	В	A 420	В	A 504	В	A 588	В	A 672	В	A 756	В
	4 A		11-16-28	14-21-32		420		21-28-39		24-30-42		26-32-45		28-34-48	
Duct	3A	Throw,ft cfm/Side	252 378	336	504	420	630	504	756	588	882	672	1008	756	1134
Area	JA	Throw,ft	11-16-28 13-20-31						25-31-44				29-36-50		
3.36	2S 2G	cfm/Side	504	672	17-20-00	840	22-20-40	1008	20-01-44	1176	27-33-47	1344	23-30-30	1512	J1-JU-J4
ft ²	20 20	Throw.ft	15-23-34	20-27-39		25-31-43		27-34-47		30-36-51		32-39-55		34-41-58	
i.	1S	cfm/Side	1008	1344		1680		2016		2352		2688		3024	
		Throw,ft	21-29-41	27-33-47		30-37-53		33-41-58		36-44-62		39-47-67		41-50-71	
Duct		Total cfm	1200	16	00		00		00		800		00		00
Size		NC	27	3	3	3	8	4	2		5	4	8	5	0
24" x 24"			A B	Α	В	A	В	Α	В	Α	В	A	В	A	В
	4A	cfm/Side	300	400		500		600		700		800		900	
		Throw,ft	12-17-29	16-23-33		19-26-37		23-29-41		26-31-44		27-33-47		29-35-50	
Duct	3A	cfm/Side	300 450	400	600	500	750	600	900	700	1050	800	1200	900	1350
Area		Throw,ft	12-17-29 14-21-32		19-27-38		24-30-42		27-32-46		29-35-50		31-38-53		32-40-56
4	2S 2G	cfm/Side	600	800		1000		1200		1400		1600		1800	
ft²		Throw,ft	16-25-35	22-29-41		26-32-46		29-35-50		31-38-54		33-41-58		35-43-61	
	1\$	cfm/Side	1200	1600		2000		2400		2800		3200		3600	
	10	Throw,ft	23-30-43	29-35-50		32-39-55		35-43-61		38-46-66		41-50-70		43-53-74	

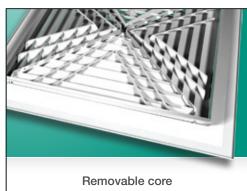
Performance Notes:

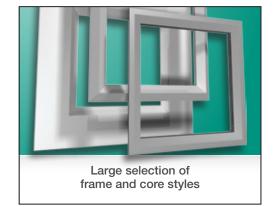
1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."

2. Air flow is in cfm.


3. All pressures are in in. w.g.

- 4. Throw values are given in feet to terminal velocities of 150-100-50 fpm.
- 5. Throw data is based on supply air and room air at isothermal conditions.
- NC values are based on room absorption of 10 dB re 10⁻¹² Watts and one diffuser.
- 7. Blanks "--" indicate an NC level below 15.


JLICG


SMX / AMX Series HIGH INDUCTION MODULAR CORE DIFFUSER

Specifically designed to provide rapid mixing of supply and room air without generating drafts or excessive noise, the Price SMX / AMX series is ideally suited to high cooling load commercial applications such as perimeter zone office spaces, auditoriums and health care facilities. Provides solutions for the most difficult high cooling load problems

Efficient air distribution

www.priceindustries.com for additional product information, including product videos and brochures.

SMX AMX

Product Information

Models

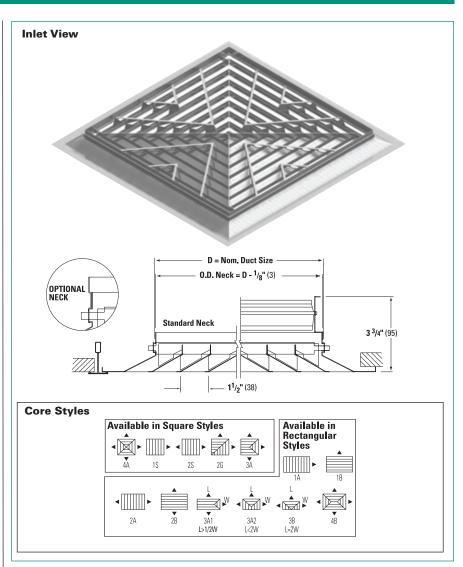
Fixed Air Pattern	
Steel Construction	
Aluminum Construction	

The Price SMX / AMX Series of louvered high induction directional diffusers are specifically designed to solve difficult high cooling load problems. Internally mounted discharge vanes are engineered to create a high rate of induction that will rapidly mix warm room air with cool supply air. This rapid mixing guickly equalizes the temperature differential between the two air masses, thus minimizing the chance of uncomfortable drafts.

One, 2, 3 and 4 way blows are available in a variety of sizes to ensure the right amount of air is delivered where it is needed, with comfort.

Application

• This diffuser is ideally suited to any high cooling load commercial application, such as perimeter zone office spaces, auditoriums, convention centers, meeting rooms, restaurants, health care facilities etc.


Construction

- SMX Steel construction (except style 6, **33** frames - extruded aluminum frame).
- AMX Extruded aluminum construction. For styles 3P, 4P, 17P steel frame and panel standard. Optional aluminum frame and panel in style 3PAL, 4PAL, 17PAL.
- Steel (SMX) and aluminum (AMX) mixing vanes are fixed to the back of louvers.
- Optional opposed blade damper in steel (3) or aluminum (3AL - AMX only) construction.
- Optional rounded core corners eliminate sharp corners on diffuser face.
- Optional offset neck (steel SMX, aluminum - **AMX**) fits outside duct.
- Optional SR / SR3 square to round adaptor, coated steel.

Finish

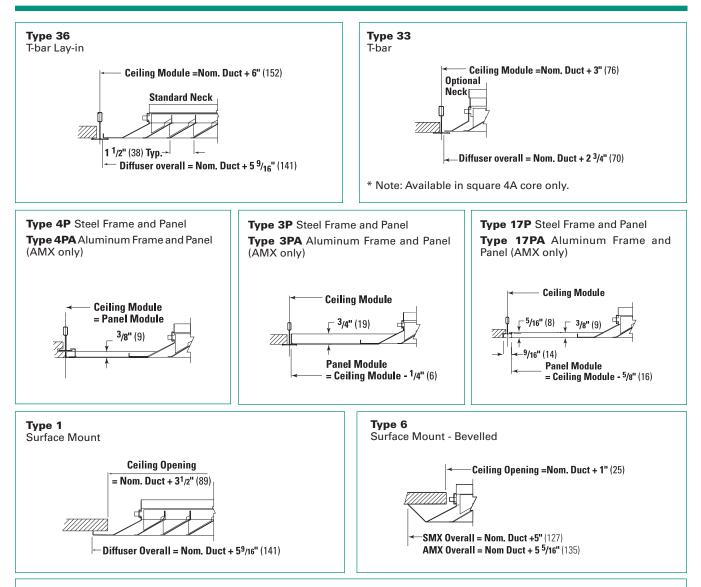
White Powder Coat	B12
Optional Damper - steel	B17

For optional and special finishes see color matrix.

Available Duct Sizes

Price SMX / AMX louvered high induction directional diffusers are available in duct sizes from 6 in. x 6 in. to 24 in. x 24 in. in 3 in. increments. Round inlet sizes are available by utilizing the square to round neck adaptor type SR and SR3 (see page C184). Diffuser size recommendations for T-bar Lay-in applications are listed on page C120.

Product Selection Checklist


- Select Duct Size based on desired performance characteristics. 11
- Select Face Size based on ceiling module (Lay-in applications only). 21
- Select Diffuser Type by model number (SMX Steel, AMX Aluminum). 3] Select Frame / Panel Style according to installation requirements.
- 41 Select Core Style based on application. 51
- 61
 - Select Opposed Blade Damper (3 Steel, 3AL Aluminum, AMX only), Square to Round adaptor (SR) or both (SR3 - Steel damper, 3AL -
 - aluminum damper, AMX only).
- Select Inlet Diameter for square to round adaptor.
- Select Rounded Core Corners (RCC), Offset Neck (ON) or oth (RCCON). 81
- 91 Select Finish.

Example: 12 in. x 12 in. / SMX / 1 / 4A / B12

All Metric dimensions () are soft conversion Imperial dimensions are converted to metric and rounded to the nearest millimeter © Copyright Price Industries Limited 2014

Frame / Panel Selection

Recommended Diffuser Sizes for T-bar Lay-in Applications

Imperial (in.)		Metric [mm]		Cores only available in increments of 3 in. [76] in both directions.
T-bar Lay-in ceiling module size:	Diffuser Size:	T-bar Lay-in ceiling module size:	Diffuser Size:	For all styles: minimum nominal duct size 6 x 6 [152 x 152], maximum nominal duct
12 x 12	6 x 6 - Style 36, 9 x9 - Style 33	305 x 305	152 x 152 - Style 36, 229 x 229 - Style 33	size 24 x 24 [610 x 610]. Neck overall sizes:
12 x 24	6 x 18 - Style 36	305 x 610	152 x 457 - Style 36	Standard: Nominal Duct - 1/8 [2]
24 x 24	18 x 18 - Style 36, 21 x 21 - Style 33	610 x 610	457 x 457 - Style 36, 533 x 533 - Style 33	Optional: Nominal Duct + 1/16 [1]
30 x 30	24 x 24 - Style 36	762 x 762	610 x 610 - Style 36	

When ceiling module exceeds neck size by more than 6 in. [152] a Lay-in panel is provided.

Options:

Rounded Core Corners - A radius is provided on diffuser core corners to eliminate sharp edges on the diffuser face.

Suitable in applications where cleanability and wipe down of the diffuser face is important. This reduces the risk of cleaning materials catching and tearing on corners. Offset Neck - This optional diffuser neck opening is sized to fit nominal duct + 1/16 in. instead of the standard neck opening, nominal - 1/8 in.. This can reduce the risk of excessive air leakage by fastening the duct inside the diffuser neck.

Notes:

Fire-Rated Louvered High Induction **Directional Diffusers SMX-FR Series**

Product Information

Three Hour Rating - Lay-in

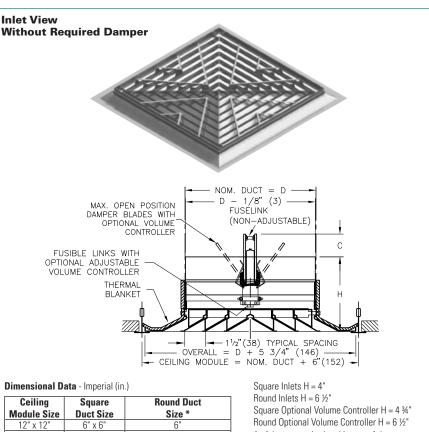
Price SMX-FR Series of louvered high induction directional diffusers are Fire-Rated Assemblies listed in the UL Listed (Underwriters Laboratories Fire Resistance Directory) and ULC Listed (Underwriters Laboratories of Canada Equipment and Materials Directory). This design meets time versus temperature test criteria and NFPA 90A requirements.

The SMX-FR Series of louvered high induction directional diffusers are specifically designed to solve difficult high cooling load problems in places such as perimeter zone office spaces, auditoriums, convention centers, meeting rooms, restaurants, health care facilities, etc.

Internally mounted discharge vanes are engineered to create a high rate of induction that will rapidly mix warm room air with the cool, conditioned supply air. This rapid mixing (induction) quickly equalizes the temperature differential between the two air masses, thus minimizing the chances of uncomfortable drafts when dealing with large air volumes.

Features

- Non-adjustable, butterfly-type ceiling radiation damper.
- Designed for use in an exposed grid suspension ceiling (T-bar Lay-in) with a three hour or less restrained or unrestrained assembly rating. Units must be installed in accordance with the instructions that accompany each unit.
- Thermal blanket is non-asbestos.
- Standard 165 °F [74 °C] fusible link, optional 212 °F [100 °C] fusible link.
- One, 2, 3 and 4 way blows available in a variety of sizes.
- Optional adjustable volume controller (Allen key adjustable).
- Optional rounded core corners eliminate sharp corners on diffuser face.
- Optional T-bar Lay-in Panel 24" x 24" (610mm x 610mm) only.

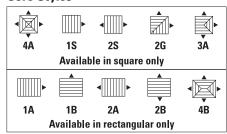

Construction

- Steel construction.
- Steel mixing vanes fixed to the back of louvers.

Finish

White Powder Coat **B12**

For optional and special finishes see color matrix.



Module Size	Duct Size	Size *
12" x 12"	6" x 6"	6"
24" x 12"	18" x 6"	6"
24" x 24"	18" x 18"	6, 8, 10, 12, 14, 15

Dimensional Data - Metric [mm]

Ceiling	Square	Round
Module Size	Duct Size	Duct Size *
305 x 305	152 x 152	152
610 x 305	457 x 152	152
610 x 610	457 x 457	152, 203, 254, 305, 357, 381

Core Styles

Product Selection Checklist

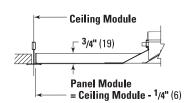
Select Duct Size. 11

6]

7]

- Select Face Size based on ceiling module. 21
- 31 Select Diffuser Style by model number.
- 41 Select Panel Option according to installation requirements. 51
 - Select Core Style based on application.
 - Select Inlet Diameter for square to round adaptor.
- Select Rounded Core Corners (RCC). 81 Select Finish.

All Metric dimensions () are soft conversion


Example: 6" x 6" / SMX-FR / 4A / B12

CEILING DIFFUSERS

- Adapter required and is part of the
- Fire-Rated Assembly.
- Panel option diffuser inlet sizes 6 x 6 [152 x 152], 9 x 9 [229 x 229], 12 x 12 [305 x 305], 15 x 15 [381 x 381] available.

Type 3P

Lay-in Inverted T-bar 1" [25]

Imperial dimensions are converted to metric and rounded to the nearest millimeter

Performance Data - Imperial Units - Square Neck

	Neck Velocity Velocity Pressu Total Pressure	ıre	0.	00 006 038	40 0.0 0.0)1	0.0	00 116 106	0.0	00 022 153	0.0	00 031 208	0.0	00)40 272	90 0.0 0.3	50
Duct Size 6 in. x 6 in.		Total cfm	A 7	5 B	10 A)0 B	12 A	5 B	15 A	50 B	17 A	/5 B	20 A	0 B	22! A	5 B
		cfm/Side	19		25		31		38		44		50		56	
	4A	NC Throw,ft	- 3-4-8		- 3-5-10		- 4-6-13		20 5-8-14		25 6-9-15		30 7-10-16		33 8-11-17	
_		cfm/Side	19	28	25	38	31	47	38	56	44	66	50	75	56	84
Duct Area	JA P	NC Throw,ft	- 3-4-8	3-5-9	- 3-5-10	4-6-12	- 4-6-13	5-8-14	20 5-8-14	6-9-16	25 6-9-15	7-11-17	30 7-10-16	8-12-18	33 8-11-17	9-14-19
0.25 ft ²	A A	cfm/Side NC	38		50 -		63 20		75 26		88 30		100 35		113 38	
	2\$2G	Throw,ft	4-5-11		5-7-14		6-9-16		7-11-17		8-13-19		10-14-20		11-15-21	
	►	cfm/Side NC	75		100		125 21		150 27		175 32		200 36		225 40	
	1\$	Throw,ft	5-8-15		7-10-17		8-13-19		10-15-21		12-16-23		14-17-24		15-18-26	
Duct Size 9 in. x 9 in.		Total cfm	10 A	69 B	22 A	25 B	28 A	1 B	33 A	38 B	39 A	94 B	45 A	0 B	50 A	6 B
5 111. X 5 111.		cfm/Side	42		56		70		84		98		113		127	
		NC Throw,ft	- 4-6-11		- 5-8-15		21 6-10-16		27 8-11-18		32 9-13-19		37 10-15-21		41 11-15-22	
		cfm/Side	42	63	56	84	70	105	84	127	98	148	113	169	127	190
Duct Area	× 1	NC Throw,ft	- 4-6-11	5-7-14	- 5-8-15	6-9-16	21 6-10-16	8-12-18	27 8-11-18	9-14-20	32 9-13-19	11-15-22	37 10-15-21	12-16-23	41 11-15-22	14-17-25
0.56		cfm/Side	84		113		141		169		197		225		253	
ft²		NC Throw,ft	- 5-8-15		19 7-11-18		26 9-13-20		32 11-15-22		37 13-17-24		41 14-18-25		45 15-19-27	
		cfm/Side	169		225		281		338		394		450		506	
	1S	NC Throw,ft	- 8-11-19		20 10-15-22		27 13-17-25		33 15-19-27		38 17-21-29		42 18-22-31		45 19-23-33	
Duct Size	10	Total cfm		D0		00	50	0		00	70)0	80	0	90	D
12 in. x 12 i	n.		Α	В	Α	В	Α	В	Α	В	Α	В	A	В	Α	В
		cfm/Side NC	75		100 19		125 26		150 32		175 37		200 42		225 46	
	4Å.	Throw,ft	5-8-15		7-10-17		8-13-19		10-15-21		12-16-23		14-17-24		15-18-26	
Duct	<u>م</u>	cfm/Side NC	75	113	100 19	150	125 26	188	150 32	225	175 37	263	200 42	300	225 46	338
Area	3Å	Throw,ft	5-8-15	6-9-17	7-10-17	8-12-19	8-13-19	10-15-22		12-17-24	12-16-23	14-18-26	14-17-24	16-19-28	15-18-26	17-21-29
1.00 ft ²	• • • • • • • • • • • • • • • • • • •	cfm/Side NC	150		200 23		250 30		300 36		350 41		400 45		450 49	
	2S 2G	Throw,ft	7-11-18		10-14-21		12-17-24		14-18-26		16-20-28		17-21-30		18-23-32	
	► International	cfm/Side NC	300 15		400 24		500 31		600 36		700 41		800 46		900 49	
	1\$	Throw,ft	10-15-23		14-18-26		17-21-29		18-23-32		20-24-35		21-26-37		23-28-39	
Duct Size 15 in. x 15 i	n.	Total cfm	4(A	69 B	62 A	25 B	78 A	1 B	93 A	38 B	10 A	94 B	12 A	50 B	140 A	6 B
	 	cfm/Side NC	117		156 23		195 30		234 36		273 41		313 46		352 50	
	44	Throw,ft	6-10-17		8-13-20		11-16-22		13-17-24		15-18-26		16-20-28		17-21-30	
Duct	<u>م</u>	cfm/Side NC	117	176	156 23	234	195 30	293	234 36	352	273 41	410	313 46	469	352 50	527
Area	3Ă	Throw,ft	6-10-17	8-12-19		10-16-22	11-16-22	13-18-25		16-19-27	15-18-26	17-21-29		18-22-31	17-21-30	19-24-33
1.56 ft²	• • • • • • • • • • • • • • • • • • •	cfm/Side NC	234 18		313 27		391 34		469 39		547 44		625 49		703 52	
n	2S2G	Throw,ft	9-13-21		12-17-24		15-19-27		17-21-30		44 19-23-32		20-24-34		21-26-36	
	► International	cfm/Side NC	469 18		625 27		781 34		938 39		1094 44		1250 49		1406 52	
	1\$	Throw,ft	13-18-26		27 17-21-30		34 19-24-33		39 21-26-37		44 23-28-40		49 24-30-42		52 26-32-45	

Performance Data - Imperial Units - Square Neck	

	Neck Velocity Velocity Press Total Pressure	ire	0.	00 006 038	40 0.0 0.0)1	0.	00 D16 106	0.	00 022 153	70 0.0 0.2	31	0.	00 040 272	90 0.0 0.3	50
Duct Size		Total cfm	6	75	90	00	11		13	50	157		18		202	
18 in. x 18 in			Α	В	Α	В	Α	В	Α	В	A	В	Α	В	Α	В
		cfm/Side	169		225		281		338		394		450		506	
		NC	17		26		34		40		45		49		53	
	4A	Throw,ft	8-11-19		10-15-22		13-17-25		15-19-27		17-21-29		18-22-31		19-23-33	
Duct		cfm/Side NC	169 17	253	225 26	338	281 34	422	338 40	506	394 45	591	450 49	675	506 53	759
Area	3Å	Throw,ft	8-11-19	9-14-22	-	12-18-25		16-20-28	15-19-27	18-22-30	17-21-29	19-23-33	-	20-25-35		22-26-3 ⁻
2.25		cfm/Side	338		450		563		675		788		900		1013	
ft ²	۱ ۲۰	NC	20		29		36		42		47		51		55	
	2S 2G	Throw,ft	11-16-23		14-19-27		17-21-30		19-23-33		21-25-36		22-27-38		23-29-41	
	► International	cfm/Side	675		900		1125		1350		1575		1800		2025	
		NC	20		29		36		42		47		51		55	
	1\$	Throw,ft	15-20-29		19-24-33		22-26-37		24-29-41		25-31-44		27-33-47		29-35-50	
Duct Size		Total cfm	9' A	19 B		25 B	15 A	32 B	18 A	38 B	214	14 B	24 A	50 B	275 A	57 B
21 in. x 21 in	l. ▲			В	A	В		В		В	A	В		В		Б
	4 🖉 Þ	cfm/Side NC	230 19		306 29		383 36		459 42		536 48		613 52		689 56	
	44	Throw.ft	9-13-21		12-17-24		15-19-27		17-21-30		18-23-32		20-24-34		21-26-36	
		cfm/Side	230	345	306	459	383	574	459	689	536	804	613	919	689	1034
Duct	Ē.	NC	19		29		36		42		48		52		56	
Area	3Å	Throw,ft	9-13-21	11-16-24	12-17-24	14-19-27	15-19-27	18-22-30	17-21-30	19-24-33	18-23-32	21-25-36	20-24-34	22-27-39	21-26-36	24-29-4
3.06		cfm/Side	459		613		766		919		1072		1225		1378	
ft²		NC	23		32		39		45		49		54		57	
	2S 2G	Throw,ft	13-18-26		17-21-30		19-23-33		21-26-36		23-28-39		24-30-42		26-32-45	
	IIII ►	cfm/Side NC	919 23		1225 32		1532 39		1838 45		2144 49		2450 54		2757 57	
	15	Throw,ft	18-22-32		21-26-37		24-29-41		26-32-45		28-34-48		30-37-52		32-39-55	
Duct Size		Total cfm		00	16		20	00		00	280	00	32	00	360	00
24 in. x 24 in			Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В
		cfm/Side	300		400		500		600		700		800		900	
		NC	22		31		39		45		50		54		58	
	4A	Throw,ft	10-15-23		14-18-26		17-21-29		18-23-32		20-24-35		21-26-37		23-28-39	
	<u>م</u>	cfm/Side	300	450	400	600	500	750	600	900	700	1050	800	1200	900	1350
Duct Area		NC Throw ft	22	12-18-26	31 14-18-26	17-21-30	39 17 21 20	19-23-33	45	21-26-36	50 20-24-35	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	54 21-26-37	2/1 20 /12	58 23-28-39	26 21 4
		Throw,ft		12-10-20		1/-21-30		13-72-23		21-20-30		23-20-39		24-3U-4Z		20-31-44
4.00 ft ²	• • ••	cfm/Side NC	600 25		800 34		1000 41		1200 47		1400 51		1600 56		1800 59	
п	2S 2G	Throw,ft	14-20-28		19-23-32		21-25-36		23-28-39		25-30-43		26-32-46		28-34-48	
	mm	cfm/Side	1200		1600		2000		2400		2800		3200		3600	
	I	NC	25		34		41		47		51		56		59	
	1S	Throw,ft	20-24-34		23-28-40		26-31-44		28-34-49		30-37-52		32-40-56		34-42-59	

Performance Notes:

1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."

2. Air flow is in cfm.

3. All pressures are in in. w.g.

- Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- 5. Throw data is based on supply air and room air at isothermal conditions.
- 6. NC values are based on room absorption of 10 dB re $10^{\cdot 12}$ Watts and one diffuser.
- 7. Blanks "--" indicate an NC level below 15.
- 8. Additional performance data for other patterns and rectangular sizes available upon request.
- 9. Does not include effects of ceiling radiation damper (SMX-FR)

Performance Data - Imperial Units - Rectangular Neck

	Neck Velocity		3	00	40	0	5	00	6	00	7	00	8	00	90	00
	Velocity Pressu Total Pressure	ire		006 038	0.0 0.0		-)16 106		022 153		031 208		040 272	0.0 0.3	
Duct Size		Total cfm	11	13	1!	50	18	8	22	25	26	53	3(00	33	8
9 in. x 6 in.			Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В
		cfm/Side NC	37	18	50	24	62 18	30	74 24	36	87 29	42	99 33	48	111 37	54
	4B	Throw,ft	4-5-11	2-4-7	5-7-14	3-5-10	6-9-16	4-6-12	7-11-17	5-7-14	8-12-18	6-9-15	10-14-20	7-10-16	-	7-11-17
		cfm/Side NC	35 -	43	47 -	57	58 18	71	70 24	86	81 29	100	93 33	114	105 37	128
	3A2	Throw,ft	3-5-10	4-6-11	5-7-14	5-8-15	6-9-15	6-10-16	7-10-17	8-11-18	8-12-18	9-13-19	9-14-19	10-15-21	10-15-21	11-15-22
Duct Area		cfm/Side NC Throw,ft	56 - 4-7-13		75 16 6-9-16		94 23 7-11-18		113 29 9-13-19		131 34 10-15-21		150 38 12-16-22		169 41 13-17-24	
0.38		cfm/Side	113		150		188		225		263		300		338	
ft ²		NC	-		17		24		30		35		39		43	
	1A 1B	Throw,ft	6-9-17		8-12-19		10-15-22		12-17-24		14-18-26		16-19-28		17-21-29	
Duct Size 12 in. x 6 in.		Total cfm	1! A	50 B	20 A)0 B	25 A	i0 B	30 A)0 B	35 A	50 B	40 A)0 B	45 A	0 B
		cfm/Side NC Throw ft	56 - 4-7-13	18 2-4-7	74 - 6-9-16	24 3-5-10	93 20 7-11-18	30 4-6-12	111 26 9-13-19	36 5-7-14	130 31	42 6-9-15	148 36 12-16-22	48 7-10-16	167 40 13-17-24	54 7-11-17
		Throw,ft cfm/Side	75			50	125		150	75	10-15-21 175	88	200	100	225	113
		NC NC	- 5-8-15	38 4-5-11	100 - 7-10-17	50 5-7-14	20 20 8-13-19	63 6-9-16	26	75	31 12-16-23		36	10-14-20	40	
		cfm/Side	75		100	0,11	125	0010	150		175	0 10 10	200	10 11 20	225	
Duct		NC	-		18		25		31		36		40		44	
Area	2A 2B	Throw,ft	5-8-15		7-10-17		8-13-19		10-15-21		12-16-23		14-17-24		15-18-26	
0.50 ft ²		cfm/Side NC	150		200 19		250 26		300 32		350 37		400		450 45	
11-	1A 1B	Throw.ft	7-11-18		10-14-21		12-17-24		14-18-26		16-20-28		17-21-30		40 18-23-32	
Duct Size		Total cfm	18	88	2!	50	31	3	37	75	43	38	50)0	56	3
15 in. x 6 in.			A	В	A	В	A	В	A	В	A	В	A	В	Α	В
		cfm/Side NC	75 -	19	100 15	25	125 22	31	150 28	38	175 33	44	200 38	50	225 42	56
	4B	Throw,ft	5-8-15	3-4-8	7-10-17	3-5-10	8-13-19	4-6-13	10-15-21	5-8-14	12-16-23	6-9-15	14-17-24	7-10-16	15-18-26	8-11-17
		cfm/Side NC	84 -	19	113 15	25	141 22	31	169 28	38	197 33	44	225 38	50	253 42	56
	3A1	Throw,ft	5-8-15	3-4-8	7-11-18	3-5-10	9-13-20	4-6-13	11-15-22	5-8-14	13-17-24	6-9-15	14-18-25	7-10-16	15-19-27	8-11-17
		cfm/Side	94		125		156		188		219		250		281	
Duct Area	2A 2B	NC Throw,ft	- 6-9-16		20 8-11-18		27 9-14-21		32 11-16-23		37 13-17-24		42 15-18-26		45 16-20-28	
0.63		cfm/Side	188		250		313		375		438		500		563	
ft ²	1A 1B	NC Throw.ft	- 8-12-20		21		28 13-18-25		33 16-20-28		38 17-21-30		42 19-23-32		46 20-24-34	

Performance Notes:

1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."

2. Air flow is in cfm.

3. All pressures are in in. w.g.

- Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- 5. Throw data is based on supply air and room air at isothermal conditions.
- 6. NC values are based on room absorption of 10 dB re $10^{\text{-}12}$ Watts and one diffuser.
- 7. Blanks "--" indicate an NC level below 15.
- 8. Additional performance data for other patterns and rectangular sizes available upon request.
- 9. Does not include effects of ceiling radiation damper (SMX-FR)

	Neck Velocity Velocity Pressu Total Pressure	ire	0.0	DO 106 138	40 0.0 0.0)1	0.0	00 D16 106	0.	00 022 153	0.0	00)31 208	0.0	00)40 272	0.0	00)50 344
Duct Size 18 in. x 6 in.		Total cfm	22 A	5 B	30 A	00 B	37 A	75 B	4! A	50 B	52 A	25 B	60 A	ю В	67 A	'5 B
, , , , , , , , , , , , , , , , , , ,	▲ ▲ ↓ 4B	cfm/Side NC Throw,ft	95 - 6-9-16	18 2-4-7	126 16 8-11-18	24 3-5-10	158 24 9-14-21	30 4-6-12	189 30 11-16-23	36 5-7-14	221 35 13-17-24	42 6-9-15	252 39 15-18-26	48 7-10-16	284 43 16-20-28	54 7-11-17
-		cfm/Side NC Throw,ft	104 - 6-9-16	18 2-4-7	138 16 8-12-19	24 3-5-10	173 24 10-15-21	30 4-6-12	207 30 12-16-23	36 5-7-14	242 35 14-18-25	42 6-9-15	276 39 16-19-27	48 7-10-16	311 43 16-20-28	54 7-11-17
Duct Area	▲ ■ ▲ ■ ▲ ▲ ■ ▲ ■ ▲ ■ ■ ▲ ■ ▲ ■ ▲ ■ = ■ = ■ = = = = = = = = = = =	cfm/Side NC Throw,ft	113 - 6-9-17		150 21 8-12-19		188 28 10-15-22		225 34 12-17-24		263 39 14-18-26		300 43 16-19-28		338 47 17-21-29	
0.75 ft ²	1A 1B	cfm/Side NC Throw,ft	225 - 9-13-21		300 22 12-17-24		375 29 15-19-27		450 35 17-21-29		525 39 18-22-32		600 44 20-24-34		675 47 21-25-36	
Duct Size		Total cfm	22	-	30		37	-		50	52		60		675	
12 in. x 9 in.			A	В	A	В	A	В	A	В	A	В	A	В	Α	В
	• 	cfm/Side NC Throw ft	70	43	93 16	57	116 24	71 6-10-16	140 30	86 8-11-18	163 35	100	186 39	114	209 43 15-18-25	128
	48 ◀ ☆ ♥ 3A2	Throw,ft cfm/Side NC Throw.ft	5-7-15 74 - 5-8-15	<u>4-6-11</u> 74 5-8-15	7-10-17 99 16 7-10-17	5-8-15 99 7-10-17	8-12-19 124 24 8-13-19	124	10-15-21 149 30 10-15-21	149 10-15-21	11-16-22 173 35 12-16-23	<u>9-13-19</u> 173 12-16-23	198 39	<u>10-15-21</u> 198 13-17-24	223 43	<u>11-15-22</u> 223 15-18-26
Duct Area		cfm/Side NC Throw,ft	113 - 6-9-17		150 21 8-12-19		188 28 10-15-22		225 34 12-17-24		263 39 14-18-26		300 43 16-19-28		338 47 17-21-29	
0.75 ft ²	1A 1B	cfm/Side NC Throw,ft	225 - 9-13-21		300 22 12-17-24		375 29 15-19-27		450 35 17-21-29		525 39 18-22-32		600 44 20-24-34		675 47 21-25-36	

Performance Data - Imperial Units - Rectangular Neck

Performance Notes:

- 1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- 2. Air flow is in cfm.
- 3. All pressures are in in. w.g.

- Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- 5. Throw data is based on supply air and room air at isothermal conditions.
- 6. NC values are based on room absorption of 10 dB re $10^{\mbox{-}12}$ Watts and one diffuser.
- 7. Blanks "--" indicate an NC level below 15.
- 8. Additional performance data for other patterns and rectangular sizes available upon request.
- 9. Does not include effects of ceiling radiation damper (SMX-FR)

٦P	
----	--

Performance Data - Metric Units - Square Neck

Neck Velo	ressure (Pa)		1.5 1		2.0 2		2.5 4		3.0 6		3.5 8		4.0 10		4.5 13	
Total Pres			9		17		26		38		52		68		86	
Duct Size		tal L/s	35		47		59		71		83		94		106	
150 x 150			A	В	A	В	Α	В	A	В	A	В	A	В	Α	В
		s/side	9		12		15		18		21		24		26	
	•₫• N	-							20		25		30		33	
			0.8-1.2-2.3		1.0-1.5-3.1		1.3-1.9-3.8		1.6-2.3-4.3		1.8-2.7-4.6		2.1-3.1-4.9		2.3-3.5-5.2	
		s/side	9	13	12	17	15	22	18	26	21	31	24	35	26	40
Duct	. • m N								20		25		30		33	
Area				.6-2.4-3.4		3-2.8-3.9	2.2-2.7-3.9 2.5	5-3.1-4.4		8-3.4-4.8		0-3.7-5.2		2-3.9-5.5		1-4.1-5.9
0.023 m ²		s/side	18		24		30		35		42		47		53	
		-	1.1-1.7-3.3		1.9-2.9-4.3		21 2.8-3.4-4.8		27 3.0-3.7-5.2		32 3.3-4.0-5.7		36 3.5-4.3-6.0		40 3.7-4.5-6.4	
		row (m) s/side	35		47		2.8-3.4-4.8		3.0-3.7-5.2 71		<u>3.3-4.0-5.7</u> 83		94		106	
1			30		47		20		26		30		35		38	
I			1.5-2.3-4.6		9-12-17		11-14-19		12-15-21		13-16-23		14-17-24		15-18-26	
Duct Size		tal L/s	80		106		133		159		186		212		239	
230 x 230		ui 2/0	A	В	A	В	A	в	A	В	A	В	A	В	A	в
		s/side	20		26		33		40		46		53		60	
	_1⊠^ N(C					21		27		32		37		41	
	48 Th	row (m)	1.2-1.7-3.5		1.5-2.3-4.4		1.9-2.9-4.9		2.3-3.5-5.4		2.7-4.0-5.8		3.1-4.4-6.3		3.5-4.7-6.6	
		s/side	20	30	26	40	33	50	40	60	46	70	53	80	60	90
Duct	۹∰ M	-					21		27		32		37		41	
Area		row (m)	1.2-1.7-3.5 2	.4-3.1-4.3		9-3.5-5.0	2.9-3.5-4.9 3.2	2-3.9-5.6		5-4.3-6.1	3.4-4.1-5.8 3.	8-4.7-6.6		1-5.0-7.1	3.8-4.7-6.6 4.3	3-5.3-7.5
0.052 m ²		s/side	40		53		67		80		93		106		119	
		-	1.6-2.5-4.7		20 2.9-3.9-5.5		27 3.5-4.3-6.1		33 3.9-4.7-6.7		38 4.2-5.1-7.2		42 4.4-5.4-7.7		45 4.7-5.8-8.2	
		s/side	80		106		133		159		186		212		239	
1			00		19		26		32		37		41		45	
			2.3-3.5-5.8		13-16-22		14-17-25		16-19-27		17-21-29		18-22-31		19-23-33	
Duct Size		tal L/s	2.0 0.0 0.0 142		189		236		283		330		378		425	
305 x 305	10		A	В	A	В	A	В	Α	В	A	В	A	В	A	В
		s/side	35		47		59		71		83		94		106	
	-1⊠• N(19		26		32		37		42		46	
			1.5-2.3-4.6		2.1-3.1-5.3		2.6-3.9-5.9		3.1-4.6-6.4		3.6-4.9-7.0		4.1-5.3-7.4		4.6-5.6-7.9	
		s/side	35	53	47	71	59	88	71	106	83	124	94	142	106	159
Duct	- ™ N(-			19		26		32		37		42		46	
Area		row (m)		.0-3.6-5.1		4-4.2-5.9	3.4-4.2-5.9 3.8	3-4.7-6.6		2-5.1-7.3		5-5.5-7.8		8-5.9-8.4		1-6.3-8.9
0.093 m ²		s/side	71		94		118		142		165		189		212	
		-			24		31		36		41		46		49	
	· · · · · · · · · · · · · · · · · · ·		2.2-3.3-5.6		3.7-4.6-6.5		4.2-5.1-7.2		4.6-5.6-7.9		4.9-6.1-8.6		5.3-6.5-9.2		5.6-6.9-9.7	
		s/side	142		189		236 30		283 36		330		378 45		425	
l		-			23 15-18-26		30 17-21-29		36 18-23-32		41 20-24-35		45		49 23-28-39	
	in in	row (m)	3.1-4.6-6.9		10-18-26		17-21-29		10-23-32		20-24-35		21-26-37		23-28-39	

For Performance Notes, see page C140.

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter.

Performance Data - Metric Units - Square Neck

Neck Velo	ocity (m/s)	1.5	2.0	2.5	3.0	3.5	4.0	4.5
	Pressure (Pa)	1.5	2.0	2.5	6	3.5	4.0	4.5
Total Pres		9	17	26	38	52	68	86
Duct Size		221	295	369	443	516	590	664
380x380		A B	A B	A B	A B	A B	A B	A B
	L/s/side	55	74	92	110	129	148	166
			23	30	36	41	46	50
-	48 Throw (m)	1.9-2.9-5.2	2.6-3.9-6.0	3.2-4.7-6.7	3.9-5.2-7.4	4.5-5.6-7.9	4.9-6.0-8.5	5.2-6.4-9.0
	L/s/side ▲ L/s/side ■ MC	55 83	74 110	92 138	110 166	129 194	148 221	166 249
Duct	 M ►^V NC 3A2 Throw (m) 		23 3.5-4.2-6.0 3.9-4.8-6.8	30	36 4.2-5.2-7.4 4.8-5.9-8.3	41 4.6-5.6-7.9 5.2-6.3-9.0	46 4.9-6.0-8.5 5.5-6.8-9.6	50
Area -		110	148	185	221	258	295	332
0.145 m² 🗸		17	27	34	39	44	49	52
	²⁴ ²⁸ Throw (m)	2.7-4.1-6.4	4.3-5.2-7.4	4.8-5.8-8.3	5.2-6.4-9.1	5.7-6.9-9.8	6.0-7.4-10.5	6.4-7.8-11.1
-	L/s/side	221	295	369	443	516	590	664
[18	27	34	39	44	49	52
	Throw (m)	3.9-5.6-7.9	17-21-30	19-24-33	21-26-37	23-28-40	24-30-42	26-32-45
Duct Size		319	425	531	637	743	850	956
455x455		A B	A B	A B	A B	A B	A B	A B
	L/s/side	80	106	133	160	186	212	239
		17	26	34	40	45	49	53
-	L/s/side	2.3-3.5-5.8 80 119	3.1-4.6-6.7 106 159	3.9-5.3-7.5 133 199	4.6-5.8-8.2 160 239	5.1-6.3-8.9 186 279	5.5-6.7-9.5 212 319	5.8-7.1-10.1 239 358
	<pre>▲ L/s/side</pre>	17	26	34	40	45	49	53
Duct	^{3A2} Throw (m)		3.9-4.7-6.7 4.4-5.4-7.6				45 5.5-6.7-9.5 6.2-7.6-10.7	
Area -	obie/s/l	160	212	266	319	372	425	478
0.209 m ²		20	29	36	42	47	51	55
	² Throw (m)	3.3-4.9-7.1	4.8-5.8-8.3	5.3-6.5-9.2	5.8-7.1-10.1	6.3-7.7-10.9	6.7-8.3-11.7	7.1-8.8-12.4
-	L/s/side	319	425	531	637	743	850	956
		20	29	36	42	47	51	55
		4.6-6.2-8.8	19-24-33	22-26-37	24-29-41	25-31-44	27-33-47	29-35-50
Duct Size		434	578					
535x535				723	867	1012	1156	1301
		A B	A B	A B	A B	A B	A B	A B
	L/s/side	A B 109	A B	A B 181	A B 217	A B 253	A B 289	A B 325
	 ↓ L/s/side ▲ NC 	A B 109 19	A B 144 29	A B 181 36	A B 217 42	A B 253 48	A B 289 52	A B 325 56
-	L/s/side	A B 109	A B 144 29 3.6-5.2-7.4	A B 181 36 4.5-5.8-8.2	A B 217 42 5.2-6.4-9.0	A B 253	A B 289	A B 325
-	L/s/side NC 48 Throw (m)	A B 109 19 2.7-4.1-6.4	A B 144 29 3.6-5.2-7.4	A B 181 36 4.5-5.8-8.2	A B 217 42 5.2-6.4-9.0	A B 253 48 5.6-6.9-9.7	A B 289 52 6.0-7.4-10.4	A B 325 56 6.4-7.8-11.0
- Duct	▲ ↓ L/s/side ▲ NC ▲ Throw (m) ↓ L/s/side	A B 109 19 2.7-4.1-6.4 109 163	A B 144 29 3.6-5.2-7.4 217 144 217 29 217	A B 181 36 4.5-5.8-8.2 181 181 271 36 36	A B 217 42 5.2-6.4-9.0 217 217 325 42 5.2-6.4-9.0 5.2-6.4-9.0 5.9-7.2-10.2	A B 253 48 5.6-6.9-9.7 379	A B 289 52 6.0-7.4-10.4 289 289 434 52 52	A B 325 56 6.4-7.8-11.0 325 325 488 56 56
- Duct Area -		A B 109 19 2.7-4.1-6.4 109 109 163 19 2.7-4.1-6.4 2.7-4.1-6.4 4.2-5.1-7.2 217 217	A B 144 29 3.6-5-2-7.4 144 217 29 4.2-5.2-7.4 4.8-5.9-8.3 289	A B 181 36 4.5-5.8-8.2 181 181 271 36 4.7-5.8-8.2 4.7-5.8-8.2 5.4-6.6-9.3 362 362	A B 217 42 5.2-6.4-9.0 217 325 42 5.2-6.4-9.0 5.9-7.2-10.2 434	A B 253 48 5.6-6.9-9.7 253 253 379 48 5.6-6.9-9.7 5.6-6.9-9.7 6.3-7.8-11.0 506 506	A B 289 52 6.0-7.4-10.4 289 52 434 52 52 6.0-7.4-10.46.8-8.3-11.7 578	A B 325 56 6.4-7.8-11.0 325 56 6.4-7.8-11.07.2-8.8-12. 650
- Duct	L/s/side NC Throw (m) ↓/s/side NC 3A2 Throw (m) ↓/s/side NC	A B 109 19 2.7-4.1-6.4 109 109 163 19 2.7-4.1-6.4 2.7-4.1-6.4 4.2-5.1-7.2 217 22	A B 144 29 3.6-5-2-7.4 144 217 29 <u>4.2-5.2-7.4</u> 4.8-5.9-8.3 289 31	A B 181 36 4.5-5.8-8.2 181 181 271 36 4.7-5.8-8.2 4.7-5.8-8.2 5.4-6.6-9.3 362 38	A B 217 42 5.2-6.4-9.0 217 325 42 5.2-6.4-9.0 5.9-7.2-10.2 434 44 44	A B 253 48 5.6-6.9-9.7 253 253 379 48 5.6-6.9-9.7 6.3-7.8-11.0 506 49	A B 289 52 6.0-7.4-10.4 289 289 434 52 52 6.0-7.4-10.46.8-8.3-11.7 578 578 53	A B 325 56 6.4-7.8-11.0 325 488 325 488 56 6.4-7.8-11.07.2-8.8-12. 650 57
- Duct Area -	L/s/side NC Throw (m) ↓/s/side NC 3A2 ↓/s/side NC NC NC NC Throw (m)	A B 109 19 2.7-4.1-6.4 163 109 163 19 2.7-4.1-6.4 2.7-4.1-6.4 4.2-5.1-7.2 217 22 3.8-5.5-7.8 2	A B 144 29 3.6-5.2-7.4 217 144 217 29 29 4.2-5.2-7.4 4.8-5.9-8.3 289 31 5.2-6.4-9.1 5.2-6.4-9.1	A B 181 36 4.5-5.8-8.2 181 271 36 4.7-5.8-8.2 5.4-6.6-9.3 362 362 38 5.8-7.2-10.1 28	A B 217 42 5.2-6.4-9.0 217 217 325 42 5.2-6.4-9.0 5.9-7.2-10.2 434 44 6.4-7.8-11.1 44	A B 253 48 5.6-6.9-9.7 253 379 48 5.6-6.9-9.7 6.3-7.8-11.0 506 49 6.9-8.5-12.0	A B 289 52 6.0-7.4-10.4 289 434 52 6.0-7.4-10.46.8-8.3-11.7 578 53 7.4-9.1-12.8 53	A B 325 56 6.4-7.8-11.0 325 488 56 6.4-7.8-11.07.2-8.8-12. 650 57 7.8-9.6-13.6 57
Duct Area - 0.284 m² .	L/s/side NC 4 Throw (m) ↓/s/side NC 302 Throw (m) ↓/s/side ↓/s/side ↓/s/side ↓/s/side	A B 109 19 2.7-4.1-6.4 163 109 163 19 2.7-4.1-6.4 2.7-4.1-6.4 4.2-5.1-7.2 217 22 3.8-5.5-7.8 434	A B 144 29 3.6-5.2-7.4 144 217 29 4.2-5.2-7.4 4.8-5.9-8.3 289 31 5.2-6.4-9.1 578	A B 181 36 4.5-5.8-8.2 271 36 271 36 362 38 58-7.2-10.1 723 723	A B 217 42 5.2-6.4-9.0 325 42 5.2-6.4-9.0 5.9-7.2-10.2 434 44 6.4-7.8-11.1 867	A B 253 48 5.6-6.9-9.7 379 253 379 48 5.6-6.9-9.7 5.0-6.9-9.7 6.3-7.8-11.0 506 49 6.9-8.5-12.0 1012	A B 289 52 6.0-7.4-10.4 34 289 434 52 6.0-7.4-10.46.8-8.3-11.7 578 53 7.4-9.1-12.8 1156	A B 325 56 6.4-7.8-11.0 325 488 56 6.4-7.8-11.07.2-8.8-12. 650 57 7.8-9.6-13.6 1301
Duct Area - 0.284 m² .	L/s/side NC Throw (m) ↓/s/side ↓/s/side ↓/s/side NC ↓/s/side NC ↓/s/side NC ↓/s/side NC	A B 109 19 2.7-4.1-6.4 163 109 163 19 2.7-4.1-6.4 217 217 218-5.5-7.8 434 23 23	A B 144 29 3.6-5.2-7.4 217 29 29 4.2-5.2-7.4 4.8-5.9-8.3 289 31 5.2-6.4-9.1 578 32 32	A B 181 36 4.5-5.8-8.2 181 181 271 36 362 38 38 5.8-7.2-10.1 723 39 39	A B 217 42 5.2-6.4-9.0 325 42 5.2-6.4-9.0 5.9-7.2-10.2 434 44 6.4-7.8-11.1 867 45 45	A B 253 48 5.6-6.9-9.7 379 48 5.6-6.9-9.7 6.3-7.8-11.0 506 49 6.9-8.5-12.0 1012 49 49	A B 289 52 6.0-7.4-10.4 34 289 434 52 6.0-7.4-10.46.8-8.3-11.7 578 53 7.4-9.1-12.8 1156 54 54	A B 325 56 6.4-7.8-11.0 325 325 488 56 56 6.4-7.8-11.07.2-8.8-12. 650 57 57 7.8-9.6-13.6 1301 57 57
Duct Area - 0.284 m² .	L/s/side NC 302 NC 302 NC 304 NC NC NC NC NC NC NC NC NC NC NC NC NC	A B 109 19 2.7-4.1-6.4 109 109 163 19 2.7-4.1-6.4 2.7-4.1-6.4 4.2-5.1-7.2 217 22 3.8-5.5-7.8 4.34 4.34 23 5.4-6.8-9.7 5.4-6.8-9.7	A B 144 29 3.6-5.2-7.4 29 144 217 29 29 4.2-5.2-7.4 4.8-5.9-8.3 289 31 5.2-6.4-9.1 578 32 21-26-37	A B 181 36 4.5-5.8-8.2 36 181 271 36 362 38 5.8-7.2-10.1 723 39 24-29-41 27.41	A B 217 42 5.2-6.4-9.0 217 217 325 42 5.2-6.4-9.0 5.9-7.2-10.2 434 44 6.4-7.8-11.1 867 45 26-32-45	A B 253 48 5.6-6.9-9.7 379 253 379 48 5.6-6.9-9.7 506 49 6.9-8.5-12.0 1012 49 28-34-48	A B 289 52 6.0-7.4-10.4 34 52 52 6.0-7.4-10.46.8-8.3-11.7 578 578 53 7.4-9.1-12.8 1156 54 30-37-52	A B 325 56 6.4-7.8-11.0 325 325 488 56 56 6.4-7.8-11.07.2-8.8-12. 650 57 7.8-9.6-13.6 1301 57 32-39-55 55
Duct Area - 0.284 m ² . Duct Size	▲ L/s/side NC Throw (m) ↓ /s/side NC 342 Throw (m) ↓ /s/side NC 342 Throw (m) ↓ /s/side NC ↓ /s/side NC ↓ /s/side NC ↓ /s/side NC ↓ /s/side NC ↓ /s/side ↓ /s/side	A B 109 19 2.7-4.1-6.4 109 109 163 19 2.7-4.1-6.4 2.7-4.1-6.4 4.2-5.1-7.2 217 22 3.8-5.5-7.8 434 23 5.4-6.8-9.7 566 566	A B 144 29 3.6-5.2-7.4 217 144 217 29 21 4.2-5.2-7.4 4.8-5.9-8.3 289 31 5.2-6.4-9.1 578 532 21-26-37 755 755	A B 181 36 4.5-5.8-8.2 36 181 271 36 36 4.7-5.8-8.2 5.4-6.6-9.3 362 38 5.8-7.2-10.1 723 39 24-29-41 944 944	A B 217 42 5.2-6.4-9.0 217 217 325 42 5.2-6.4-9.0 5.9-7.2-10.2 434 44 6.4-7.8-11.1 867 45 26-32-45 1133 1133	A B 253 48 5.6-6.9-9.7 379 253 379 48 5.0-6.9-9.7 5.06 49 5.06 49 6.9-8.5-12.0 1012 49 28-34-48 1322 122	A B 289 52 6.0-7.4-10.4 52 52 53 578 53 7.4-9.1-12.8 1156 54 30-37-52 1510 1510	A B 325 56 6.4-7.8-11.0 56 56 56 6.4-7.8-11.07.2-8.8-12. 650 57 7.8-9.6-13.6 1301 57 57 32-39-55 1699 1699
Duct Area - 0.284 m² .		A B 109 19 2.7-4.1-6.4 109 109 163 19 2.7-4.1-6.4 2.7-4.1-6.4 4.2-5.1-7.2 217 22 3.8-5.5-7.8 4.34 4.34 23 5.4-6.8-9.7 5.4-6.8-9.7	A B 144 29 3.6-5.2-7.4 29 144 217 29 29 4.2-5.2-7.4 4.8-5.9-8.3 289 31 5.2-6.4-9.1 578 32 21-26-37	A B 181 36 4.5-5.8-8.2 36 181 271 36 362 38 5.8-7.2-10.1 723 39 24-29-41 27.41	A B 217 42 5.2-6.4-9.0 217 217 325 42 5.2-6.4-9.0 5.9-7.2-10.2 434 44 6.4-7.8-11.1 867 45 26-32-45	A B 253 48 5.6-6.9-9.7 379 253 379 48 5.6-6.9-9.7 506 49 6.9-8.5-12.0 1012 49 28-34-48	A B 289 52 6.0-7.4-10.4 52 52 53 578 53 7.4-9.1-12.8 1156 54 30-37-52 1510 1510	A B 325 56 6.4-7.8-11.0 56 56 56 6.4-7.8-11.07.2-8.8-12. 650 57 7.8-9.6-13.6 1301 57 57 32-39-55 1699 1699
Duct Area - 0.284 m ² . Duct Size	▲ L/s/side NC Throw (m) ↓/s/side NC 3A2 Throw (m) ↓/s/side NC NC Throw (m) ↓/s/side NC NC Throw (m) Total L/s	A B 109 19 2.7-4.1-6.4 163 109 163 19 2.7-4.1-6.4 217 22 3.8-5.5-7.8 434 23 5.4-6.8-9.7 546-6.8-9.7 566 A B	A B 144 29 3.6-5.2-7.4 217 29 217 4.2-5.2-7.4 4.8-5.9-8.3 289 31 5.2-6.4-9.1 578 578 32 21-26-37 755 A B	A B 181 36 4.5-5.8-8.2 181 271 36 4.7-5.8-8.2 5.4-6.6-9.3 362 38 5.8-7.2-10.1 723 39 24-29-41 944 A B	A B 217 42 5.2-6.4-9.0 325 42 5.2-6.4-9.0 5.9-7.2-10.2 434 44 6.4-7.8-11.1 867 45 26-32-45 1133 A A B	A B 253 48 5.6-6.9-9.7 379 253 379 48 5.6-6.9-9.7 6.3-7.8-11.0 506 49 6.9-8.5-12.0 1012 1012 49 28-34-48 1322 A B	A B 289 52 6.0-7.4-10.4 289 434 52 6.0-7.4-10.46.8-8.3-11.7 578 53 7.4-9.1-12.8 1156 54 30-37-52 1510 A	A B 325 56 6.4-7.8-11.0 325 488 56 64-7.8-11.07.2-8.8-12. 650 57 7.8-9.6-13.6 1301 57 32-39-55 1699 A B 8
Duct Area - 0.284 m ² . Duct Size		A B 109 19 2.7-4.1-6.4 109 109 163 19 2.7-4.1-6.4 217 22 2.8-5.5-7.8 434 23 5.4-6.8-9.7 566 A B 142 22 3.1-4.6-6.9	A B 144 29 3.6-5.2-7.4 217 144 217 29 29 4.2-5.2-7.4 4.8-5.9-8.3 289 31 5.2-6.4-9.1 578 32 21-26-37 755 A 89 31 31 31 4.1-5.6-8.0 31	A B 181 36 4.5-5.8-8.2 181 181 271 36 362 38 5.8-7.2-10.1 723 39 24-29-41 944 A B 236 39 5.1-6.3-8.9 16.3-8.9	A B 217 42 5.2-6.4-9.0 325 42 5.2-6.4-9.0 5.9-7.2-10.2 434 44 6.4-7.8-11.1 867 45 26-32-45 1133 A B 283 45 5.6-6.9-9.8 5.6-6.9-9.8	A B 253 48 256-6.9-9.7 379 253 379 48 5.6-6.9-9.7 6.3-7.8-11.0 506 49 6.9-8.5-12.0 1012 49 28-34-48 1322 A 30 50 6.1-7.5-10.5 50	A B 289 52 6.0-7.4-10.4 334 52 52 6.0-7.4-10.46.8-8.3-11.7 578 578 53 7.4-9.1-12.8 1156 54 30-37-52 1510 A 378 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54	A B 325 56 6.4-7.8-11.0 325 325 488 56 6.4-7.8-11.07.2-8.8-12. 650 57 7.8-9.6-13.6 1301 57 32-39-55 1669 A 425 58 6.9-8.4-11.9 58
Duct Area - 0.284 m ² . Duct Size		A B 109 19 2.7-4.1-6.4 109 109 163 19 2.7-4.1-6.4 217 22 3.8-5.5-7.8 434 23 5.4-6.8-9.7 566 A B 142 22 3.1-4.6-6.9 142 212	A B 144 29 3.6-5.2-7.4 217 144 217 29 29 4.2-5.2-7.4 4.8-5.9-8.3 289 31 5.2-6.4-9.1 578 52 32 21-26-37 755 A B 189 31 4.1-5.6-8.0 189	A B 181 36 4.5-5.8.8.2 181 271 36 36 36 4.7-5.8.8.2 5.4-6.6-9.3 36 36 38 5.8-7.2-10.1 723 723 39 39 24-29-41 944 A B 236 39 5.1-6.3-8.9 236 354	A B 217 42 5.2-6.4-9.0 217 217 325 42 5.2-6.4-9.0 5.9-7.2-10.2 434 44 6.4-7.8-11.1 867 45 26-32-45 26-32-45 1133 A B 283 45 5.6-6.9-9.8 283 283 425	A B 253 48 5.6-6.9-9.7 379 48 5.6-6.9-9.7 6.3-7.8-11.0 506 49 6.9-8.5-12.0 1012 49 28-34-48 1322 A A B 330 50 6.1-7.5-10.5 330 496	A B 289 52 6.0-7.4-10.4 289 434 52 6.0-7.4-10.46.8-8.3-11.7 578 53 7.4-9.1-12.8 1156 54 30-37-52 1510 A B 378 378 54 6.5-8.0-11.3 378 566 566	A B 325 56 6.4-7.8-11.0 325 488 56 6.4-7.8-11.07.2-8.8-12. 650 57 7.8-9.6-13.6 1301 57 32-39-55 469 469 425 58 6.9-8.4-11.9 425
Duct Area - 0.284 m ² . - Duct Size 610x610		A B 109 19 109 163 19 2.7-4.1-6.4 209 163 19 2.7-4.1-6.4 217 22 3.8-5.5-7.8 434 23 5.4-6.8-9.7 566 A B 142 22 3.1-4.6-6.9 212 22 212	A B 144 29 144 217 29 217 42:52:7.4 4.8:59:8.3 289 31 52:6.4:9.1 578 578 32 21:26:37 755 A B 189 31 4.1-5.6-8.0 283 31 31	A B 181 36 4.5-5.8-8.2 181 271 36 371 36 4.7-5.8-8.2 5.4-6.6-9.3 36 362 38 5.8-7.2-10.1 723 39 24-29-41 944 A B 236 39 5.1-6.3-8.9 236 354 39	A B 217 42 5.2-6.4-9.0 325 42 5.2-6.4-9.0 5.9-7.2-10.2 434 44 6.4-7.8-11.1 867 45 26-32-45 1133 A B 283 45 5.6-6.9-9.8 425 283 425	A B 253 48 5.6-6.9-9.7 379 253 379 48 5.6-6.9-9.7 5.0-6.9-9.7 6.3-7.8-11.0 506 49 6.9-8.5-12.0 1012 1012 49 28-34-48 1322 A B 330 50 6.1-7.5-10.5 330 496 50 496	A B 289 52 6.0-7.4-10.4 289 434 52 60-7.4-10.46.8-8.3-11.7 578 53 7.4-9.1-12.8 1156 54 30-37-52 1510 A 378 54 54 378 54 54 378 54 54 54 378 54 54 54 57 54 57 54 57 54 57 54 54 54 54 54 54 54 54 54 54 566 54 54	A B 325 56 6.4-7.8-11.0 325 488 56 64-7.8-11.07.2-8.8-12. 650 57 7.8-9.6-13.6 1301 57 32-39-55 1699 A B 425 58 6.9-8.4-11.9 637 58 58 58
Duct Area - 0.284 m ² . Duct Size		A B 109 19 2.7-4.1-6.4 163 109 163 19 2.7-4.1-6.4 217 22 3.8-5.5-7.8 434 23 5.4-6.8-9.7 566 A B 142 22 3.1-4.6-6.9 212 212 23 5.4-6.8-9.7 566 A B 142 22 3.1-4.6-6.9 4.5-5.5-7.8	A B 144 29 3.6-5.2-7.4 217 29 217 4.2 29 4.2-5.2-7.4 4.8-5.9-8.3 289 31 5.2-6.4-9.1 578 578 32 21-26-37 755 A B 189 31 4.1-5.6-8.0 189 31 4.6-5.6-8.0 5.2-6.4-9.0 52-6.4-9.0	A B 181 36 4.5-5.8.8.2 271 36 273 362 38 5.8-7.2-10.1 723 723 39 24-29-41 944 A B 236 39 5.1-6.3-8.9 354 39 354	A B 217 42 5.2-6.4-9.0 325 42 5.2-6.4-9.0 5.9-7.2-10.2 434 44 6.4-7.8-11.1 867 45 26-32-45 1133 A 283 45 5.6-6.9-9.8 425 45 5.6-6.9-9.8	A B 253 48 263 379 253 379 253 379 48 5.6-6.9-9.7 506 49 6.9-8.5-12.0 1012 49 28-34-48 1322 A A B 330 50 6.1-7.5-10.5 330 496 50 6.1-7.5-10.56.9-8.4-11.9	A B 289 52 6.0-7.4-10.4 334 52 53 6.0-7.4-10.46.8-8.3-11.7 578 578 53 7.4-9.1-12.8 1156 54 30-37-52 1510 A A B 378 54 6.5-8.0-11.3 566 54 54	A B 325 56 5.4-7.8-11.0 325 488 56 6.4-7.8-11.07.2-8.8-12. 650 57 7.8-9.6-13.6 1301 57 32-39-55 1699 A B 425 58 6.9-8.4-11.9 58 6.9-8.4-11.97.8-9.5-13.5 58
Duct Area - 0.284 m ² . Duct Size 610x610 Duct Area -		A B 109 19 2.7-4.1-6.4 19 109 163 19 2.7-4.1-6.4 217 22 3.8-5.5-7.8 434 23 5.4-6.8-9.7 566 A 142 22 3.1-4.6-6.9 142 22 3.1-4.6-6.9 142 212 23 3.1-4.6-6.9 122 21 23 3.1-4.6-6.9 3.8-5.5-7.8 283	A B 144 29 3.6-5.2-7.4 217 29 217 4.2-5.2-7.4 4.8-5.9-8.3 289 31 5.2-6.4-9.1 578 578 32 21-26-37 755 A B 189 31 4.1-5.6-8.0 189 31 4.1-5.6-8.0 31 4.6-5.6-8.0 31 4.6-5.6-8.0 378 283	A B 181 36 4.5-5.8-8.2 181 181 271 36 362 38 362 38 38 5.8-7.2-10.1 723 723 39 24-29-41 944 A B 236 39 5.1-6.3-8.9 236 236 354 39 5.1-6.3-8.9 236 354 39 5.1-6.3-8.9 236 354 39 5.1-6.3-8.9	A B 217 42 5.2-6.4-9.0 325 42 5.2-6.4-9.0 5.9-7.2-10.2 434 44 6.4-7.8-11.1 867 45 26-32-45 1133 A 283 45 5.6-6.9-9.8 283 283 425 5.6-6.9-9.8 45 5.6-6.9-9.8 6.4-7.8-11.0 566 56-6.4-7.8-11.0	A B 253 48 253 379 253 379 48 5.6-6.9-9.7 506 49 6.9-8.5-12.0 1012 49 28-34-48 1322 A A B 330 50 6.1-7.5-10.5 330 496 5.0 6.1-7.5-10.5.6.9-8.4-11.9 661	A B 289 52 6.0-7.4-10.4 344 289 434 52 52 6.0-7.4-10.46.8-8.3-11.7 578 578 53 7.4-9.1-12.8 1156 54 30-37-52 1510 A 378 54 6.5-8.0-11.3 378 378 566 54 54 6.5-8.0-11.3 378 54 54 6.5-8.0-11.3 378 54 54 55 54 54 54 55 54 54 54 55 54 54 54 55 54 54 54 55 54 54 54 55 54 55 54 55 54 55 54 55 54 <t< th=""><th>A B 325 56 6.4-7.8-11.0 325 325 488 56 6.4-7.8-11.07.2-8.8-12. 650 57 7.8-9.6-13.6 1301 57 32-39-55 1699 A 425 58 6.9-8.4-11.9 425 58 6.9-8.4-11.9 425 637 58 6.9-8.4-11.9.5-13.</th></t<>	A B 325 56 6.4-7.8-11.0 325 325 488 56 6.4-7.8-11.07.2-8.8-12. 650 57 7.8-9.6-13.6 1301 57 32-39-55 1699 A 425 58 6.9-8.4-11.9 425 58 6.9-8.4-11.9 425 637 58 6.9-8.4-11.9.5-13.
Duct Area - 0.284 m ² . Duct Size 610x610 Duct Area -		A B 109 19 2.7-4.1-6.4 109 109 163 19 2.7-4.1-6.4 217 22 3.8-5.5-7.8 434 23 5.4-6.8-9.7 5.4-6.8-9.7 566 A B 142 22 3.1-4.6-6.9 142 22 3.1-4.6-6.9 142 212 23.1-4.6-6.9 4.5-5.5-7.8 283 24	A B 144 29 3.6-5.2-7.4 217 144 217 29 29 4.2-5.2-7.4 4.8-5.9-8.3 289 31 5.2-6.4-9.1 578 578 32 21-26-37 755 A B 189 31 4.1-5.6-8.0 189 31 4.1-5.6-8.0 189 283 31 4.6-5.6-8.0 378 33	A B 181 36 4.5-5.8-8.2 181 181 271 36 362 38 38 5.8-7.2-10.1 723 723 39 24-29-41 944 A B 236 354 39 5.1-6.3-8.9 236 354 39 5.1-6.3-8.9 236 354 39 5.1-6.3-8.9 236 354 39 5.1-6.3-8.9 236 354 39 5.1-6.3-8.9 40 40	A B 217 42 5.2-6.4-9.0 325 42 5.2-6.4-9.0 5.9-7.2-10.2 434 44 6.4-7.8-11.1 86 86-32-45 1133 A B 283 45 5.6-6.9-9.8 283 283 425 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45	A B 253 48 253 379 253 379 48 5.6-6.9-9.7 506 49 6.9-8.7-12.0 1012 49 28-34-48 330 50 6.1-7.5-10.5 330 496 50 50 50 6.1-7.5-10.5 50 50 51 51 51	A B 289 52 6.0-7.4-10.4 289 328 434 52 52 6.0-7.4-10.46.8-8.3-11.7 578 578 53 7.4-9.1-12.8 1156 54 54 30-37-52 1510 A B 378 54 6.5-8.0-11.3 378 566 54 54 54 6.5-8.0-11.3 566 54 55 55 55	A B 325 56 6.4-7.8-11.0 325 325 488 56 6.4-7.8-11.07.2-8.8-12. 650 57 7.8-9.6-13.6 1301 57 32-39-55 1699 A 425 58 6.9-8.4-11.9 425 425 637 58 58
Duct Area - 0.284 m ² . Duct Size 610x610 Duct Area -		A B 109 19 109 163 19 2.7-4.1-6.4 209 163 19 2.7-4.1-6.4 217 22 2.8-5.5-7.8 434 23 5.4-6.8-9.7 5.4-6.8-9.7 566 A B 142 22 3.1-4.6-6.9 212 23 3.1-4.6-6.9 4.42 212 23 2.1-4.6-6.9 4.4-6.9 4.5-5.5-7.8 23 2.1-4.6-6.9 24 4.4-6.0-8.5	A B 144 29 144 217 29 217 42:52:7.4 4.8:59:8.3 289 31 52:6.4:9.1 578 578 32 21:26:37 755 A B 189 31 4.1:5:6:8.0 283 31 4.6:5:6:8.0 4.6:5:6:8.0 5:2:6:4:9.0 378 33 5:7:6:9:9:8 5	A B 181 36 4.5-5.8-8.2 181 271 36 371 36 4.7-5.8-8.2 5.4-6.6-9.3 36 362 38 5.8-7.2-10.1 723 39 24-29-41 944 A B 236 39 5.1-6.3-8.9 236 354 39 5.1-6.3-8.9 5.8-7.1-10.1 40 6.3-7.8-11.0 40 6.3-7.8-11.0	A B 217 42 5.2-6.4-9.0 325 42 5.2-6.4-9.0 5.9-7.2-10.2 434 44 6.4-7.8-11.1 867 45 26-32-45 1133 A 283 425 5.6-6.9-9.8 283 283 425 5.6-6.9-9.8 425 5.6-6.9-9.8 425 4.6 6.9-8.5-12.0	A B 253 48 5.6-6.9-9.7 379 253 379 48 5.6-6.9-9.7 5.0-6.9-9.7 6.3-7.8-11.0 506 49 6.9-8.5-12.0 1012 1012 49 28-34-48 1322 A B 330 50 6.1-7.5-10.5 330 330 50 6.1-7.5-10.56.9-8.4-11.9 661 51 7.5-9.2-13.0	A B 289 52 6.0-7.4-10.4 289 434 52 6.0-7.4-10.46.8-8.3-11.7 578 53 7.4-9.1-12.8 1156 54 30-37-52 1510 A A B 378 54 6.5-8.0-11.3 378 378 566 54 566 54 55 80-9.8-13.9 55	A B 325 56 6.4-7.8-11.0 325 488 56 6.4-7.8-11.07.2-8.8-12. 650 57 7.8-9.6-13.6 1301 57 32-39-55 1699 A B 425 58 6.9-8.4-11.9 425 637 580 58 8.5-10.4-14.7 58 58
Duct Area - 0.284 m ² - - - - - - - - - - - - - - - - - - -		A B 109 19 2.7-4.1-6.4 109 109 163 19 2.7-4.1-6.4 217 22 3.8-5.5-7.8 434 23 5.4-6.8-9.7 5.4-6.8-9.7 566 A B 142 21 21-4.6-6.9 142 22 3.1-4.6-6.9 142 212 23.1-4.6-6.9 4.5-5.5-7.8 283 24	A B 144 29 3.6-5.2-7.4 217 144 217 29 29 4.2-5.2-7.4 4.8-5.9-8.3 289 31 5.2-6.4-9.1 578 578 32 21-26-37 755 A B 189 31 4.1-5.6-8.0 189 31 4.1-5.6-8.0 189 283 31 4.6-5.6-8.0 378 33	A B 181 36 4.5-5.8-8.2 181 181 271 36 362 38 38 5.8-7.2-10.1 723 723 39 24-29-41 944 A B 236 354 39 5.1-6.3-8.9 236 354 39 5.1-6.3-8.9 236 354 39 5.1-6.3-8.9 236 354 39 5.1-6.3-8.9 236 354 39 5.1-6.3-8.9 40 40	A B 217 42 5.2-6.4-9.0 325 42 5.2-6.4-9.0 5.9-7.2-10.2 434 44 6.4-7.8-11.1 86 86-32-45 1133 A B 283 45 5.6-6.9-9.8 283 283 425 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45 5.6-6.9-9.8 45	A B 253 48 253 379 253 379 48 5.6-6.9-9.7 506 49 6.9-8.7-12.0 1012 49 28-34-48 330 50 6.1-7.5-10.5 330 496 50 50 50 6.1-7.5-10.5 50 50 51 51 51	A B 289 52 6.0-7.4-10.4 289 328 434 52 52 6.0-7.4-10.46.8-8.3-11.7 578 578 53 7.4-9.1-12.8 1156 54 54 30-37-52 1510 A B 378 54 6.5-8.0-11.3 378 566 54 54 54 6.5-8.0-11.3 566 54 55 55 55	A B 325 56 6.4-7.8-11.0 325 325 488 56 56 6.4-7.8-11.07.2-8.8-12. 650 57 7.8-9.6-13.6 1301 57 57 32-39-55 1699 A 425 58 6.9-8.4-11.9 425 58 58

Performance Notes:

1. All units are tested in accordance with ASHRAE Standard 70-2006.

2. All pressures are in Pascals (Pa).

as listed below:

Minimum Throw to VT	0.75 m/s
Middle Throw to VT	0.5 m/s
Maximum Throw to VT	0.25 m/s

- 4. Throw data is based on supply air and room air being at isothermal conditions.
- 3. Throw data is listed in meters to terminal velocities (VT) 5. Sound data NC values are based on a room absorption of -10dB, re 10⁻¹² watts.
 - 6. Blanks (--) indicate an NC level below 15.
 - 7. Additional performance data for other patterns and rectangular sizes available upon request.

CEILING DIFFUSERS

	ocity (m/s) ressure (1.		2.0 2		2.5 4			3.0 6	3.5 8		4.0 10		4.	
	sure (Pa)				17		26			38	52		68		8	
Duct Size	ouro (r u)	L/s	5		71		89			106	124		142		15	
230x150			A	В	Α	В	A	В	A	В	A	В	A	В	A	В
	_	L/s/side	13		18		22		26		31		35		40	
	•⊈ً•	NC	-	-			18			24	29		33		3	7
	4B	Throw (m)	0.9-1.4-2.8		1.3-1.9-3.8		1.6-2.4-4.4		1.9-2.8-4.	8	2.2-3.3-5.2		2.5-3.8-5.5		2.8-4.1-5.9	
	L	L/s/side	13	20	18	26	22	33	26	40	31	46	35	53	40	60
Duct	۹₩		-	-			18			24	29		33		3	
Area	3A2			1.9-2.7-3.8	2.3-2.8-3.9 2	2.5-3.1-4.4		9-3.5-4.9		8 3.1-3.8-5.4	3.0-3.7-5.2 3	.4-4.1-5.8		.6-4.4-6.2		3.8-4.7-6.6
0.035 m ²		L/s/side	26		35		44		53		62		71		80	
	ۥ▥ᆘᄐ	NC	-	-	17		24			30	35		39		4	3
	2A 2B	Throw (m)	1.3-2.0-4.0		2.4-3.4-4.8		3.1-3.8-5.4		3.4-4.2-5.	9	3.7-4.5-6.4		3.9-4.8-6.8		4.2-5.1-7.2	
ſ		L/s/side	53		71		89		106		124		142		159	
l					16		23		29	_	34		38		41	
		Throw (m)	1.9-2.8-5.1		11-14-19		13-15-22		14-17-24		15-18-26		16-19-28		17-21-29	
Duct Size		L/s	7		94	в	118	в		142 B	165	в	189	в	21	
305x150		L/s/side	A 18	В	A 24	D	A 30	D	A 35	D	A 42	D	A 47	D	A 53	В
	• D •	NC	10		24		20			26	42 31		36		4	0
	4B		1.1-1.7-3.3	-	1.5-2.2-4.3		1.8-2.7-4.8		2.2-3.3-5.		2.6-3.8-5.7		2.9-4.3-6.0		3.3-4.5-6.4	0
	l	L/s/side	18	26	24	35	30	44	35	53	42	62	47	71	53	80
	™	NC	-	- 20		00	20			26	31	02	36	/ 1	4	
Duct	3A2	Throw (m)	1.1-1.7-3.3	2.2-2.9-4.2	2.5-3.0-4.3	2.8-3.4-4.8		1-3.8-5.4			3.3-4.0-5.7 3	7-4.5-6.4		9-4.8-6.8		
Area		L/s/side	35		47		59		71		83		94		106	
0.046 m ² .		NC	-	-	19		26			32	37		41		4	5
	2A 2B	Throw (m)	1.5-2.3-4.6		2.7-3.7-5.3		3.4-4.2-5.9		3.7-4.6-6.	4	4.0-4.9-7.0		4.3-5.3-7.4		4.6-5.6-7.9	
		L/s/side	71		94		118		142		165		189		212	
	mmm ===				10		05				1 00		40		44	
[NC			18		25		31		36		40		44	

Performance Data - Metric Units - Rectangular Neck

For Performance Notes, see page C140.

Performance Data - Metric Units - Rectangular Neck

Neck Velr	ocity (m/s)		1.5		2.0		2.5		3.0		3.5	5	4.0		4.5	
	Pressure (Pa)		1		2		4		6		8		10		13	
Total Pres			9		17		26		38		52		68		86	
Duct Size	L/s		89		118		148		177		20	7	236		266	
380x150			Α	В	A	В	A	В	A	В	A	В	Α	В	Α	В
	L/s/si	de	22		30		37		44		51		59		67	
	¹⊈" NC						22		28		33	}	38		42	
	48 Throv	/ (m)	1.2-1.8-3.7		1.6-2.5-4.6		2.0-3.1-5.1		2.4-3.7-5.6		2.8-4.3-6.0		3.3-4.6-6.5		3.7-4.8-6.9	
	L/s/si	de	22	33	30	44	37	55	44	67	51	77	59	88	67	100
Durat	<⊠r NC						22		28		33	}	38		42	
Duct Area	342 Throv	/ (m)	1.2-1.8-3.7 2	2.5-3.2-4.5)-3.6-5.2	2.9-3.6-5.1 3.	3-4.1-5.8	3.2-4.0-5.6 3.	6-4.5-6.3	3.5-4.3-6.0	3.9-4.8-6.8	3.7-4.6-6.5 4.2	2-5.2-7.3	4.0-4.8-6.9 4.5	5-5.5-7.2
0.059 m ²	L/s/si	le	44		59		74		89		103		118		133	
0.009 111-	1 NC				21		28		33		38	}	42		46	
	^{2A} ²⁸ Throv	/ (m)	1.7-2.6-4.9		3.1-4.0-5.6		3.6-4.4-6.3		4.0-4.9-6.9		4.3-5.3-7.4		4.6-5.6-7.9		4.9-6.0-8.4	
	L/s/si	de	89		118		148		177		207		236		266	
	NC				20		27		32		37		42		45	
		/ (m)	2.4-3.7-6.0		13-16-23		15-18-25		16-20-28		17-21-30		19-23-32		20-24-34	
Duct Size	L/s		106		142		177		212		24		283		319	
455x150			A	В	A	В	A	В	A	В	A	В	A	В	A	В
	L/s/si	le	26		35		44		53		62		71		80	
	¹∰t NC				16		24		30		35	5	39		43	
	48 Throv		1.3-2.0-4.0		1.8-2.7-4.8		2.2-3.4-5.4		2.7-4.0-5.9		3.1-4.5-6.4		3.6-4.8-6.8		4.0-5.1-7.2	
	L/s/si	de	26	40	35	53	44	67	53	80	62	93	71	106	80	119
Duct					16		24		30		35		39		43	
Area	11100			./-3.3-4./	2.8-3.4-4.8 3.	1-3.8-5.4		5-4.3-6.1		9-4.7-6.7		4.2-5.1-7.2	3.9-4.8-6.8 4.4	1-5.4-7.7		/-5.8-8.2
0.070 m ²	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	le	53		71		89		106		124	, ,	142		160	
			100051		22		29		35		39	1	44		47	
			1.9-2.8-5.1		3.4-4.2-5.9		3.8-4.7-6.6		4.2-5.1-7.3		4.5-5.6-7.9		4.8-5.9-8.4		5.1-6.3-8.9	
	L/s/si	le	106		142 21		177 28		212 34		248 39		283 43		319 47	
		. (2.7-4.0-6.3								39 18-22-32				47	
Duct Size		/ (III)	2.7-4.0-0.3 106		14-17-24 142		15-19-27 177		17-21-29 212		10-22-32 24	0	20-24-34 283		319	
305x230	L/S		A	в	A 142	в	A 1//	В	A 212	в	A 24	B	A 203	в	A 315	в
3037230				D	A	D		D	N 1	D		D	A	D		Б
		de ob	26		35				53		62		71		1 80	
	L/s/si	le	26		35		44		53		62 3F		71		80	
	¹₽₽► NC				16		44 24		30		35	ō	39		43	
	NC	/ (m)	 1.3-2.0-4.0	40	16 1.8-2.7-4.8	53	44 24 2.2-3.4-5.4	67	30 2.7-4.0-5.9	80	35 3.1-4.5-6.4		39 3.6-4.8-6.8	106	43 4.0-5.1-7.2	119
	NC 48 Throw	/ (m)		40	16 <u>1.8-2.7-4.8</u> 35	53	44 24 2.2-3.4-5.4 44	67	30 2.7-4.0-5.9 53	80	35 <u>3.1-4.5-6.4</u> 62	93	39 3.6-4.8-6.8 71	106	43 4.0-5.1-7.2 80	119
Duct	NC 48 Throv ↓ L/s/si ↓ NC	<u>/ (m)</u> de	 <u>1.3-2.0-4.0</u> 26 		16 <u>1.8-2.7-4.8</u> 35 16		44 24 2.2-3.4-5.4 44 24		30 2.7-4.0-5.9 53 30		35 <u>3.1-4.5-6.4</u> 62 35	93	39 3.6-4.8-6.8 71 39		43 4.0-5.1-7.2 80 43	
Area	⁴ B ⁴ B ⁴ B ⁴ B ⁴ D ⁴ D	<u>/ (m)</u> de / (m)	 <u>1.3-2.0-4.0</u> 26 1.3-2.0-4.0 2		16 1.8-2.7-4.8 35 16 2.8-3.4-4.8 3.		44 24 2.2-3.4-5.4 44 24 3.1-3.8-5.4 3.		30 2.7-4.0-5.9 53 30 3.4-4.2-5.9 3.		35 3.1-4.5-6.4 62 3.7-4.5-6.4	93	39 3.6-4.8-6.8 71 39 3.9-4.8-6.8 4.4		43 4.0-5.1-7.2 80 43 4.2-5.1-7.2 4.7	
	NC 48 Throv ↓/s/si √m № NC 342 Throv Throv	<u>/ (m)</u> de / (m)	 <u>1.3-2.0-4.0</u> 26 		16 1.8-2.7-4.8 35 16 2.8-3.4-4.8 3. 71		44 2.2-3.4-5.4 44 24 3.1-3.8-5.4 3. 89		30 2.7-4.0-5.9 53 30 3.4-4.2-5.9 3. 106		35 3.1-4.5-6.4 62 35 3.7-4.5-6.4 124	93 5 4.2-5.1-7.2	39 3.6-4.8-6.8 71 39 3.9-4.8-6.8 4.4 142		43 4.0-5.1-7.2 80 43 4.2-5.1-7.2 4.7 160	
Area	KC KC KF	<u>/ (m)</u> de / (m) de	1.3-2.0-4.0 26 1.3-2.0-4.0 2 53 		16 1.8-2.7-4.8 35 16 2.8-3.4-4.8 3: 71 22		44 2.2-3.4-5.4 44 2.1-3.8-5.4 89 29		30 2.7-4.0-5.9 53 30 3.4-4.2-5.9 3. 106 35		35 <u>3.1-4.5-6.4</u> 62 3.7-4.5-6.4 124 39	93 5 4.2-5.1-7.2	39 3.6-4.8-6.8 71 39 3.9-4.8-6.8 4.4 142 44		43 4.0-5.1-7.2 80 43 4.2-5.1-7.2 4.7 160 47	
Area	KC K	<u>r (m)</u> de <u>r (m)</u> de r (m)	 <u>1.3-2.0-4.0</u> <u>1.3-2.0-4.0 2</u> 53 1.9-2.8-5.1		16 1.8-2.7-4.8 35 16 2.8-3.4-4.8 3. 71 22 3.4-4.2-5.9		44 2.2-3.4-5.4 44 3.1-3.8-5.4 3. 89 29 3.8-4.7-6.6		30 2.7-4.0-5.9 53 30 3.4-4.2-5.9 3. 106 35 4.2-5.1-7.3		3.1-4.5-6.4 62 3.7-4.5-6.4 124 4.5-5.6-7.9	93 5 4.2-5.1-7.2	39 3.6-4.8-6.8 71 39 3.9-4.8-6.8 4.4 142 44 4.8-5.9-8.4		43 4.0-5.1-7.2 80 43 4.2-5.1-7.2 4.7 160 47 5.1-6.3-8.9	
Area	KC KC KF	<u>r (m)</u> de <u>r (m)</u> de r (m)	1.3-2.0-4.0 26 1.3-2.0-4.0 2 53 		16 1.8-2.7-4.8 35 16 2.8-3.4-4.8 3: 71 22		44 2.2-3.4-5.4 44 2.1-3.8-5.4 89 29		30 2.7-4.0-5.9 53 30 3.4-4.2-5.9 3. 106 35		35 <u>3.1-4.5-6.4</u> 62 3.7-4.5-6.4 124 39	93 5 4.2-5.1-7.2	39 3.6-4.8-6.8 71 39 3.9-4.8-6.8 4.4 142 44		43 4.0-5.1-7.2 80 43 4.2-5.1-7.2 4.7 160 47	

Performance Notes:

1. All units are tested in accordance with ASHRAE Standard 3. Throw data is listed in meters to terminal velocities (VT) 5. Sound data NC values are based on a room absorption of 70-2006.

2. All pressures are in Pascals (Pa).

as listed below:

Minimum Throw to VT Middle Throw to VT

0.75 m/s 0.5 m/s 0.25 m/s

Maximum Throw to VT 4. Throw data is based on supply air and room air being at isothermal conditions.

-10dB, re 10⁻¹² watts.

6. Blanks (--) indicate an NC level below 15.

7. Additional performance data for other patterns and rectangular sizes available upon request.

CEILING DIFFUSERS

SMCD

CEILING DIFFUSERS

Product Information

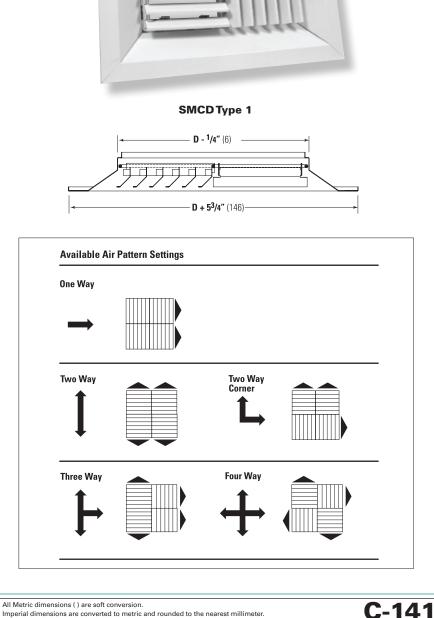
Models

Modular Core Steel Construction

Price SMCD Series high capacity modular core directional diffusers are designed to supply large volumes of air at low sound levels and pressure drops. The Steel Modular Core Diffuser design enables a quick and easy re-configuration of the air discharge pattern by repositioning the individual cores. The excellent horizontal discharge pattern, maintained at low volumes, makes this diffuser ideal for VAV applications.

Features

- Steel construction.
- · Four louvered air pattern modules can be repositioned in the field simply and quickly without tools.
- Adjustable for 1, 2, 2 way corner, 3 and 4 way blow in a wide selection of sizes.
- · Removable air pattern modules can be removed for access to optional VCS3 opposed blade damper.
- Square to round adaptors SR / SR3 are available as an accessory (see page C184).


Finish

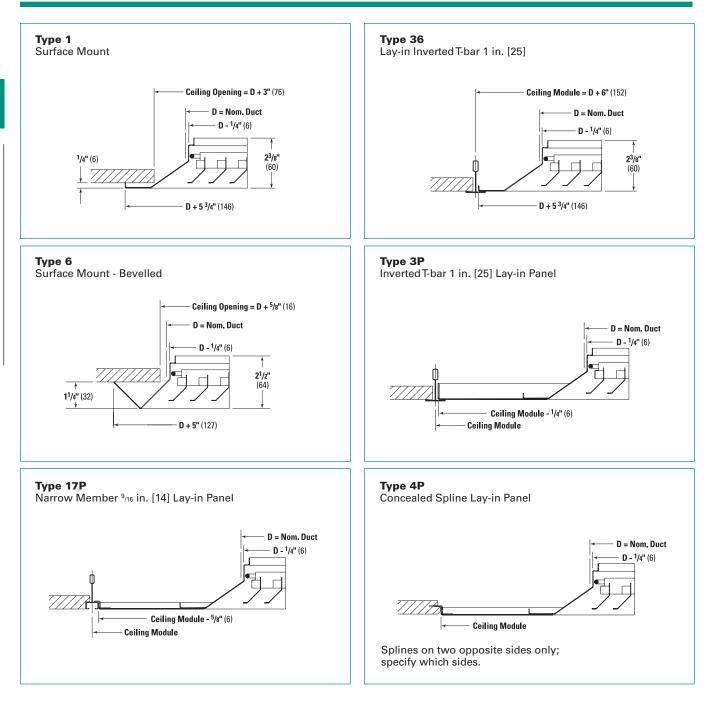
White Powder Coat **B12**

For optional and special finishes see color matrix.

Available Module Sizes

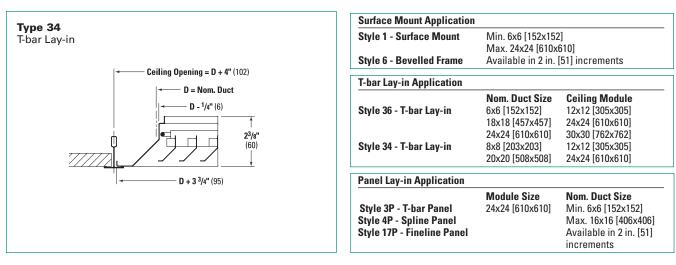
See Pages C126 - C127.

Select Square Inlet Size based on 1]


- desired performance characteristics. 2] Select Face Size based on square ceiling
- module.
- 31 Select Border / Panel Style according to installation requirements.
- Select Volume Control Accessories, if 41 desired (pages C181 - C186). 5] Select Finish.

Example: 12 in. x 12 in. / 24 in. x 24 in. / SMCD / 3P / 4 / B12

© Copyright Price Industries Limited 2014



Frame Selection

Frame Selection

Performance Data

Inlet Size	Neck Velocity, fpm Velocity Pressure, in. w.g. Total Pressure, in. w.g.		200 0.002 0.009	300 0.006 0.020	400 0.010 0.036	500 0.016 0.057	600 0.022 0.082	700 0.031 0.112	800 0.040 0.146	900 0.050 0.184	1000 0.062 0.228
6 x 6	Flow Rate, cfm NC		50	75	100	125	150 17	175 22	200 27	225 30	250 34
	Throw (150, 100, 50)	4 Way 3 Way "A" 3 Way "B" 2 Way 1 Way	0-0-1 4-6-12 0-0-1 4-6-12 12-16-27	1-3-6 8-10-18 1-3-6 8-10-18 16-21-34	4-5-9 10-14-22 4-5-9 10-14-22 20-25-39	6-8-12 13-16-25 6-8-12 13-16-25 22-28-43	7-9-14 14-18-27 7-9-14 14-18-27 24-31-46	8-11-16 16-20-29 8-11-16 16-20-29 26-33-48	9-12-17 17-22-31 9-12-17 17-22-31 28-35-50	10-13-18 18-23-33 10-13-18 18-23-33 29-36-52	11-14-20 19-24-34 11-14-20 19-24-34 30-38-54
8 x 8	Flow Rate, cfm NC		89	133	178	222	267 20	311 25	356 29	400 33	444 36
	Throw (150, 100, 50)	4 Way 3 Way "A" 3 Way "B" 2 Way 1 Way	1-2-5 7-9-17 1-2-5 7-9-17 15-20-33	4-6-10 11-14-22 4-6-10 11-14-22 20-25-40	6-8-13 13-17-26 6-8-13 13-17-26 23-29-45	8-10-16 16-20-29 8-10-16 16-20-29 26-32-48	10-12-18 17-22-32 10-12-18 17-22-32 28-35-51	11-14-19 19-24-34 11-14-19 19-24-34 30-37-54	12-15-21 20-25-36 12-15-21 20-25-36 31-39-56	13-16-22 21-26-38 13-16-22 21-26-38 33-40-58	14-17-24 22-28-39 14-17-24 22-28-39 34-42-60
10 x 10	Flow Rate, cfm NC		139	208	278	347 16	417 22	486 27	556 31	625 35	694 38
	Throw (150, 100, 50)	4 Way 3 Way "A" 3 Way "B" 2 Way 1 Way	3-4-8 9-12-20 3-4-8 9-12-20 18-23-37	6-8-13 13-17-26 6-8-13 13-17-26 23-29-44	8-11-16 16-20-30 8-11-16 16-20-30 26-33-49	10-13-19 18-22-33 10-13-19 18-22-33 28-36-53	11-14-21 20-25-36 11-14-21 20-25-36 31-38-56	13-16-23 21-26-38 13-16-23 21-26-38 32-40-58	14-17-24 22-28-40 14-17-24 22-28-40 34-42-60	15-18-25 24-29-41 15-18-25 24-29-41 35-44-62	16-19-27 25-30-43 16-19-27 25-30-43 37-45-64
12 x 12	Flow Rate, cfm NC		200	300	400	500 18	600 24	700 28	800 33	900 36	1000 40
	Throw (150, 100, 50)	4 Way 3 Way "A" 3 Way "B" 2 Way 1 Way	4-6-11 11-14-23 4-6-11 11-14-23 20-26-41	7-10-15 15-19-29 7-10-15 15-19-29 25-31-48	10-12-19 18-22-33 10-12-19 18-22-33 28-35-53	12-14-21 20-25-36 12-14-21 20-25-36 31-38-56	13-16-23 21-27-39 13-16-23 21-27-39 33-41-59	14-18-25 23-28-41 14-18-25 23-28-41 35-43-62	15-19-27 24-30-43 15-19-27 24-30-43 36-45-64	16-20-28 25-31-44 16-20-28 25-31-44 38-46-66	17-21-29 26-33-46 17-21-29 26-33-46 39-48-68

For Performance Notes, see page C128.

CEILING DIFFUSERS

Performance Data

14 x 14	Flow Rate, cfm NC		272	408	544	681 19	817 25	953 30	1089 34	1225 38	1361 41
	Throw (150, 100, 50)	4 Way	5-7-13	9-11-17	11-14-21	13-16-23	14-18-25	16-19-27	17-20-29	18-22-30	18-23-31
		3 Way "A"	12-16-26	16-21-32	19-24-36	21-26-39	23-29-41	25-30-43	26-32-45	27-33-47	28-34-48
		3 Way "B"	5-7-13	9-11-17	11-14-21	13-16-23	14-18-25	16-19-27	17-20-29	18-22-30	18-23-31
		2 Way	12-16-26	16-21-32	19-24-36	21-26-39	23-29-41	25-30-43	26-32-45	27-33-47	28-34-48
		1 Way	22-28-44	27-34-51	30-37-56	33-40-59	35-43-62	37-45-65	38-47-67	39-48-69	41-50-71
16 x 16	Flow Rate, cfm NC		356	533	711	889 20	1067 26	1244 31	1422 35	1600 39	1778 42
	Throw (150, 100, 50)	4 Way	7-9-14	10-13-19	12-15-22	14-17-25	15-19-27	17-21-29	18-22-31	19-23-32	20-24-33
	TIITOW (150, 100, 50)	3 Way "A"	14-18-28	18-22-34	20-26-38	23-28-41	24-30-43	26-32-46	27-33-47	28-35-49	20-24-33
		3 Way "B"	7-9-14	10-22-34	12-15-22	14-17-25	24-30-43 15-19-27	17-21-29	18-22-31	19-23-32	29-30-30
		2 Way	14-18-28	18-22-34	20-26-38	23-28-41	24-30-43	26-32-46	27-33-47	28-35-49	29-36-50
		1 Way	24-30-47	28-35-53	32-39-58	34-42-62	36-45-65	20-32-40 38-47-68	40-49-70	41-50-72	42-52-73
18 x 18	Flow Rate, cfm		450	675	900	1125	1350	1575	1800	2025	2250
	NC		-	-	-	21	27	32	36	40	43
	Throw (150, 100, 50)	4 Way	8-10-16	11-14-21	13-16-24	15-19-27	16-20-29	18-22-31	19-23-32	20-24-33	21-25-35
		3 Way "A"	15-19-30	19-24-36	22-27-40	24-30-43	26-32-45	27-33-47	28-35-49	30-36-51	31-37-52
		3 Way "B"	8-10-16	11-14-21	13-16-24	15-19-27	16-20-29	18-22-31	19-23-32	20-24-33	21-25-35
		2 Way	15-19-30	19-24-36	22-27-40	24-30-43	26-32-45	27-33-47	28-35-49	30-36-51	31-37-52
		1 Way	25-32-49	30-37-56	33-41-61	36-44-64	38-47-67	40-49-70	41-51-72	43-52-74	44-54-76
Inlet	Neck Velocity, fpm		200	300	400	500	600	700	800	900	1000
Size	TP/VP		3.650	3.650	3.650	3.650	3.650	3.650	3.650	3.650	3.650
	Velocity Pressure, in. v Total Pressure, in. w.g.	•	0.002 0.009	0.006 0.020	0.010 0.036	0.016 0.057	0.022 0.082	0.031 0.112	0.040 0.146	0.050 0.184	0.062 0.228
20 x 20	Flow Rate, cfm NC		556	833	1111 15	1389 22	1667 28	1944 33	2222 37	2500 41	2778 44
	Throw (150, 100, 50)	4 Way	8-11-18	12-15-22	14-17-26	16-20-28	17-21-30	19-23-32	20-24-34	21-25-35	21-26-36
	1110W (150, 100, 50)	3 Way "A"	16-20-32	20-25-37	23-28-41	25-31-45	27-33-47	28-35-49	20-24-34 29-36-51	31-37-53	32-39-54
		3 Way "B"	8-11-18	12-15-22	14-17-26	16-20-28	17-21-30	19-23-32	20-24-34	21-25-35	21-26-36
		2 Way	16-20-32	20-25-37	23-28-41	25-31-45	27-33-47	28-35-49	29-36-51	31-37-53	32-39-54
		1 Way	26-33-51	31-39-58	34-43-63	37-46-66	39-48-69	41-50-72	42-52-74	44-54-76	45-55-78
22 x 22	Flow Rate, cfm NC		672	1008	1344 16	1681 23	2017 29	2353 34	2689 38	3025 42	3361 45
		4 14/	9-12-19	13-16-24	15-18-27	17-21-29	18-22-32	19-24-33	20-25-35	21-26-36	22-27-37
	Throw (150, 100, 50)	4 Way	9-12-19 17-21-33	13-16-24 21-26-39	15-18-27 24-29-43	26-32-46	18-22-32 28-34-49	19-24-33 29-36-51	20-25-35 30-37-53	21-26-36 32-39-54	22-27-37 33-40-56
		3 Way "A" 3 Way "B"	9-12-19	21-26-39 13-16-24	24-29-43 15-18-27	26-32-46 17-21-29	28-34-49 18-22-32	29-36-51 19-24-33	30-37-53 20-25-35	32-39-54 21-26-36	22-27-37
		2 Way	17-21-33	21-26-39	24-29-43	26-32-46	28-34-49	29-36-51	20-25-35 30-37-53	21-20-30 32-39-54	33-40-56
		1 Way	27-34-53	32-40-60	24-23-43 35-44-64	20-32-40 38-47-68	40-49-71	42-52-74	44-53-76	45-55-78	46-56-80
24 x 24	Flow Rate, cfm NC		800	1200	1600 17	2000 24	2400 30	2800 35	3200 39	3600 42	4000 46
	Throw (150, 100, 50)	4 Way	10-13-20	13-17-25	16-19-28	17-21-31	19-23-33	20-25-35	21-26-36	22-27-37	23-28-39
		3 Way "A"	18-23-35	22-27-40	25-30-44	27-33-47	29-35-50	30-37-52	31-38-54	32-40-56	34-41-57
		3 Way "B"	10-13-20	13-17-25	16-19-28	17-21-31	19-23-33	20-25-35	21-26-36	22-27-37	23-28-39
								0			
		2 Way	18-23-35	22-27-40	25-30-44	27-33-47	29-35-50	30-37-52	31-38-54	32-40-56	34-41-57

Performance Notes:

1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."

2. Air flow is in cfm.

3. All pressures are in in. w.g.

 Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).

- 5. Throw data is based on supply air and room air at isothermal conditions.
- 6. NC values are based on room absorption of 10 dB re $10^{\text{-}12}$ Watts and one diffuser.

7. Blanks "--" indicate an NC level below 15.

AMCD

B12

Product Information

Models

Modular Core

Aluminum Construction

Price AMCD Series high capacity modular core directional diffusers are designed to supply large volumes of air at low sound levels and pressure drops. Field adjustment of the air pattern is fast and easy by repositioning the louvered modular pattern controllers to suit the desired application. The excellent horizontal discharge pattern, maintained at low volumes, makes this diffuser ideal for VAV applications.

Features

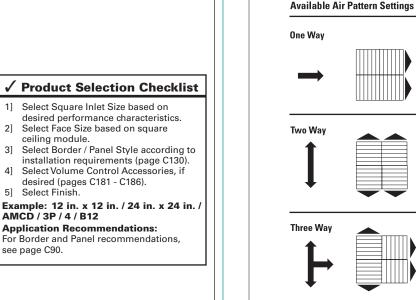
- Aluminum construction.
- Stamped aluminum core.
- · Four louvered air pattern modules can be repositioned in the field simply and quickly without tools.
- Adjustable for 1, 2, 2 way corner, 3 and 4 way blow in a wide selection of sizes.
- Removable air pattern modules can be removed for access to optional VCS3 / VCS3AL opposed blade damper.
- Square to round adaptors SR / SR3 are available as an accessory (see page C184).

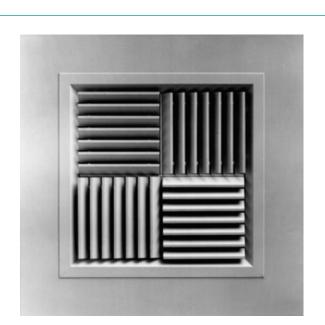
Finish

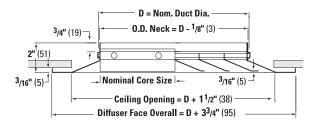
1]

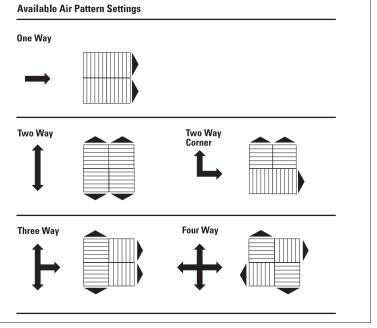
21

31

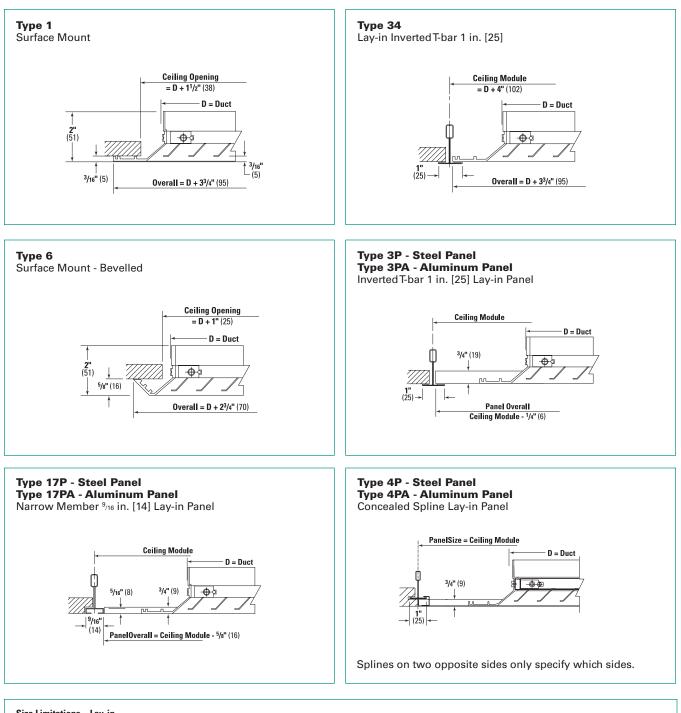

41


5] Select Finish.


see page C90.


White Powder Coat

For optional and special finishes see color matrix.



All Metric dimensions () are soft conversion Imperial dimensions are converted to metric and rounded to the nearest millimeter

C-145

Frame Selection

Ceiling	Minimum		Maximum	
Module	Neck Size	Туре 34	Type 4P, 17P, 3P	
12 x 12	6 x 6	8 x 8	6 x 6	
24 x 24	6 x 6	20 x 20	18 x 18	

CEILING DIFFUSERS

Price

Performance Data

Inlet Size	Neck Velocity, fpm Velocity Pressure, in. v Total Pressure, in. w.g.	v.g.	200 .002 .013	300 .006 .040	400 .010 .066	500 .016 .106	600 .022 .145	700 .031 .205	800 .040 .264	900 .050 .330	1000 .062 .409
	Flow Rate, cfm NC		50 -	75 -	100 15	125 21	150 26	175 30	200 33	225 36	250 39
6 x 6	Throw (150, 100, 50)	4 Way	1-1-6	1-3-7	2-6-8	4-6-9	6-7-10	6-7-10	6-8-11	7-8-12	7-9-12
	Throw	3 Way	1-2-8	2-4-10	3-8-11	5-9-12	8-10-14	8-10-15	9-11-16	10-12-17	10-12-17
	Throw	2 Way	1-2-8	2-4-10	3-8-11	5-9-12	8-10-14	8-10-15	9-11-16	10-12-17	10-12-1
	Throw	1 Way	1-3-11	3-6-14	5-11-16	8-12-18	11-14-19	12-15-21	13-16-22	14-17-24	14-18-2
	Flow Rate, cfm NC		89 -	133	178 16	222 22	266 27	311 31	355 35	400 38	444 41
8 x 8	Throw (150, 100, 50)	4 Way	1-2-7	2-5-9	4-7-10	6-8-12	7-9-13	8-10-14	9-10-15	9-11-16	10-12-1
0 A O	Throw	3 Way	1-3-10	3-7-13	5-10-15	8-12-16	10-13-18	11-14-19	12-15-21	13-16-22	13-16-2
	Throw	2 Way	1-3-10	3-7-13	5-10-15	8-12-16	10-13-18	11-14-19	12-15-21	13-16-22	13-16-2
	Throw	1 Way	2-4-15	4-10-18	8-15-21	12-17-23	15-18-26	16-20-28	17-21-30	18-22-31	19-23-3
	Flow Rate, cfm		139	208	278	347	416	486	555	625	694
	NC		-	-	18	24	29	33	36	40	42
10 x 10	Throw (150, 100, 50)	4 Way	1-2-7	2-5-10	4-7-12	6-9-13	7-10-14	9-11-16	10-12-17	10-12-18	11-13-1
	Throw	3 Way	1-3-10	3-6-14	5-10-16	8-13-18	10-14-20	12-15-22	13-16-23	14-17-25	15-18-2
	Throw	2 Way	1-3-10	3-6-14	5-10-16	8-13-18	10-14-20	12-15-22	13-16-23	14-17-25	15-18-2
	Throw	1 Way	2-4-15	4-9-20	7-15-23	11-18-26	15-20-29	17-22-31	19-23-33	20-25-35	21-26-3
	Flow Rate, cfm		200	300	400	500	600	700	800	900	1000
	NC		-	-	19	25	30	34	38	41	44
12 x 12	Throw (150, 100, 50)	4 Way	2-4-11	4-8-14	7-11-16	9-12-18	11-14-19	12-15-21	13-16-22	14-17-24	14-18-2
	Throw	3 Way	3-6-15	6-11-19	10-15-22	13-17-25	15-19-27	17-21-29	18-22-31	19-23-33	20-25-3
	Throw	2 Way	3-6-15	6-11-19	10-15-22	13-17-25	15-19-27	17-21-29	18-22-31	19-23-33	20-25-3
	Throw	1 Way	4-8-22	8-16-27	14-22-31	18-25-35	22-27-38	24-29-42	26-31-44	27-33-47	29-35-5
	Flow Rate, cfm		272	408	544	681	817	953	1089	1225	1361
	NC		-	-	20	26	31	35	39	42	45
14 x 14	Throw (150, 100, 50)	4 Way	2-5-13	5-9-16	8-13-18	10-14-20	13-16-22	14-17-24	15-18-26	16-19-27	17-20-2
	Throw	3 Way	3-7-18	7-13-22	12-18-26	15-20-29	18-22-31	20-24-34	21-26-36	22-27-38	23-29-4
	Throw	2 Way	3-7-18	7-13-22	12-18-26	15-20-29	18-22-31	20-24-34	21-26-36	22-27-38	23-29-4
	Throw	1 Way	5-11-25	11-19-32	17-25-37	21-29-41	25-32-45	28-34-48	30-37-52	32-39-55	33-41-5

Performance Notes:

1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."

2. Air flow is in cfm.

3. All pressures are in in. w.g.

 Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).

5. Throw data is based on supply air and room air at isothermal conditions.

6. NC values are based on room absorption of 10 dB re $10^{\mbox{-}12}$ Watts and one diffuser.

7. Blanks "--" indicate an NC level below 15.

Performance Data

Inlet Size	Neck Velocity, fpm Velocity Pressure, in. v Total Pressure, in. w.g.		200 .002 .013	300 .006 .040	400 .010 .066	500 .016 .106	600 .022 .145	700 .031 .205	800 .040 .264	900 .050 .330	1000 .062 .409
	Flow Rate, cfm NC		356 -	533 -	711 21	889 27	1067 32	1245 36	1422 39	1600 43	1778 45
16 x 16	Throw (150, 100, 50) Throw Throw Throw	4 Way 3 Way 2 Way 1 Way	3-7-14 4-9-20 4-9-20 6-13-29	7-11-18 9-15-25 9-15-25 13-21-36	10-14-21 13-20-29 13-20-29 19-29-42	12-17-23 17-23-33 17-23-33 24-33-47	14-18-26 20-25-36 20-25-36 29-36-51	16-20-28 22-27-39 22-27-39 32-39-55	17-21-30 24-29-41 24-29-41 34-42-59	18-22-31 25-31-44 25-31-44 36-44-63	19-23-33 27-33-46 27-33-46 38-47-66
	Flow Rate, cfm NC		450 -	675 -	900 21	1125 27	1350 32	1575 37	1800 40	2025 43	2250 46
18 x 18	Throw (150, 100, 50) Throw Throw Throw	4 Way 3 Way 2 Way 1 Way	3-8-16 5-11-22 5-11-22 7-16-32	8-12-20 11-17-29 11-17-29 16-24-41	11-16-24 15-22-33 15-22-33 21-32-47	13-19-26 19-26-37 19-26-37 27-37-53	16-20-29 22-29-40 22-29-40 32-41-58	18-22-31 25-31-44 25-31-44 36-44-62	19-24-33 27-33-47 27-33-47 38-47-67	20-25-35 29-35-49 29-35-49 41-50-71	22-26-37 30-37-52 30-37-52 43-53-74
	Flow Rate, cfm NC	-	556 -	833 -	1111 22	1389 28	1667 33	1945 37	2222 41	2500 44	2778 47
20 x 20	Throw (150, 100, 50) Throw Throw Throw	4 Way 3 Way 2 Way 1 Way	4-9-18 6-12-25 6-12-25 8-18-35	9-13-23 12-19-32 12-19-32 18-26-45	12-18-26 16-25-37 16-25-37 24-35-52	15-21-29 21-29-41 21-29-41 29-41-58	18-23-32 25-32-45 25-32-45 35-45-64	20-24-35 28-34-48 28-34-48 40-49-69	21-26-37 30-37-52 30-37-52 43-52-74	23-28-39 32-39-55 32-39-55 45-55-78	24-29-41 33-41-58 33-41-58 48-58-83
	Flow Rate, cfm NC		672 -	1008 15	1344 23	1681 29	2017 34	2353 38	2689 41	3025 45	3361 47
22 x 22	Throw (150, 100, 50) Throw Throw Throw	4 Way 3 Way 2 Way 1 Way	4-10-19 6-14-27 6-14-27 9-19-39	10-15-25 14-20-35 14-20-35 19-29-50	13-19-29 18-27-40 18-27-40 26-39-58	16-23-32 23-32-45 23-32-45 32-45-64	19-25-35 27-35-49 27-35-49 39-50-70	22-27-38 31-38-53 31-38-53 44-54-76	23-29-41 33-40-57 33-40-57 47-58-81	25-31-43 35-43-60 35-43-60 50-61-86	26-32-45 37-45-64 37-45-64 53-64-91
	Flow Rate, cfm NC		800 -	1200 16	1600 23	2000 29	2400 34	2800 38	3200 42	3600 45	4000 48
24 x 24	Throw (150, 100, 50) Throw Throw Throw	4 Way 3 Way 2 Way 1 Way	5-11-21 8-15-29 8-15-29 11-21-42	11-16-27 15-22-38 15-22-38 21-32-54	14-21-31 20-29-44 20-29-44 28-42-63	18-25-35 25-35-49 25-35-49 35-50-70	21-27-38 29-38-54 29-38-54 42-54-77	24-29-42 34-41-58 34-41-58 48-59-83	26-31-44 36-44-62 36-44-62 51-63-89	27-33-47 38-47-66 38-47-66 54-67-94	29-35-50 40-49-69 40-49-69 57-70-99

Performance Notes:

1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."

2. Air flow is in cfm.

3. All pressures are in in. w.g.

 Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).

5. Throw data is based on supply air and room air at isothermal conditions.

6. NC values are based on room absorption of 10 dB re $10^{\text{-}12}$ Watts and one diffuser.

7. Blanks "--" indicate an NC level below 15.

Model CVD

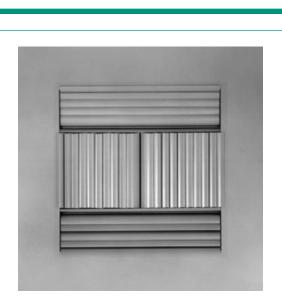
Shown

Product Information

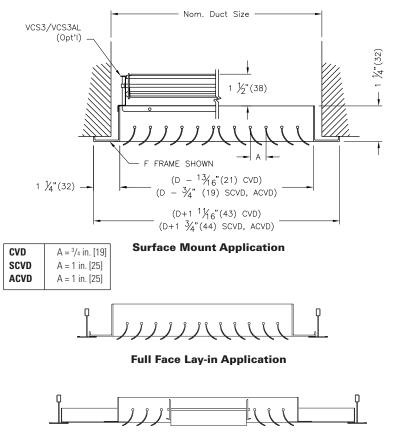
Models

Curved Vane CVD Extruded Aluminum Construction Formed Steel Construction SCVD Formed Aluminum Construction ACVD Price CVD/SCVD/ACVD Series curved vane directional diffusers feature individually adjustable curved vanes to direct supply air precisely to suit the desired application. A clean, functional appearance with excellent performance characteristics. the CVD/SCVD/ACVD can be installed in ceiling or sidewall locations, and provides a wide range of application versatility. Features

- Choice of extruded aluminum, roll-formed aluminum or roll-formed steel construction.
- Curved vanes provide superior air control.
- Curved vanes are individually adjustable from the grille face.
- Six mounting styles are available.
- Countersunk screwholes with factory painted oval head screws are supplied (Type C and F only).
- Mullion supports supplied when vanes exceed 20 in. [508] for strength and stability.


Finish

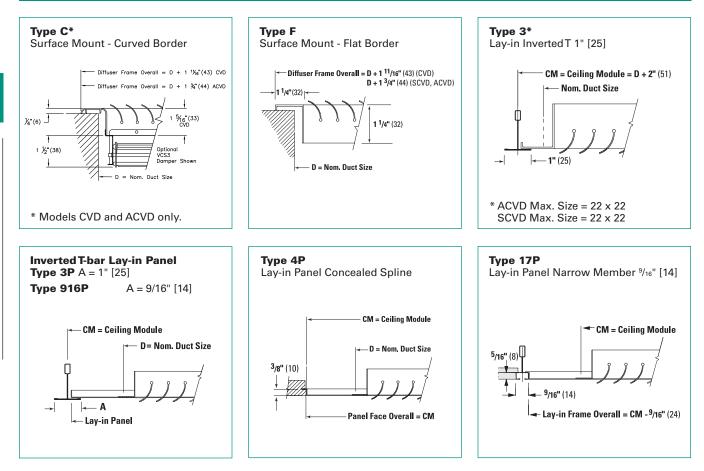
White Powder Coat

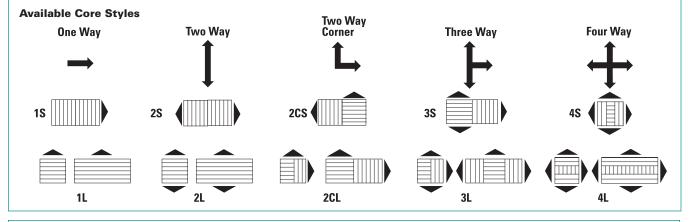

For optional and special finishes see color matrix.

B12

1]	Select Inlet Size L x W based on desired
2]	performance characteristics. Select Face Size based on ceiling module (n/a type C or F).
3]	Select Outlet Type by model number.
4]	Select Border / Panel Style according to installation requirements (page C134).
5]	Select Core Style based on application.
6]	Select Volume Control Accessories, if desired (pages C181-C186).
7]	Select Fastening Desired (type C or F only).
8]	
24 i	nple: n.x 24 in. / CVD / C / 2S / A / B12
	lication Recommendations:
	Border and Panel recommendations,
see p	bage C90.

CVD / SCVD / ACVD Series




Panel Type Lay-in (Steel Panel) Application

Frame Selection

Minimum Duct Size	Maximum Duct Size	Panel Sizes Type 3P, 4P, 17P	Minimum Duct Size	Maximum Duct Size	Panel Sizes Type 3 4P, 17P
6x4 / 150 x 100	36x36 / 900 x 900	12x12 / 300 x 300	6x4 / 150 x 100*	24x24 / 600 x 600	12x12 / 300 x 300
		24x24 / 600 x 600			24x24 / 600 x 600
		48x24 / 1200 x 600			48x24 / 1200 x 600

Fire-Rated Steel Curved Vane Diffusers SCVD-FR Series

Product Information - Fixed Air Pattern

Three Hour Rating - Lay-in

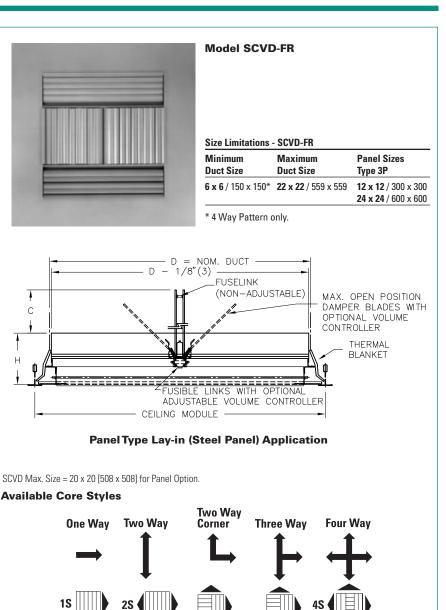
Price SCVD-FR steel curved vane diffusers are Fire-Rated Assemblies listed in the UL Listed (Underwriters Laboratories Fire Resistance Directory) and ULC Listed (Underwriters Laboratories of Canada Equipment and Materials Directory). This design meets time versus temperature test criteria and NFPA 90A requirements.

Price SCVD-FR Series steel curved vane directional diffuser features individually adjustable curved vanes to direct supply air precisely to suit the desired application and a clean, functional appearance with excellent performance characteristics.

Features

- Roll formed steel construction.
- Curved vanes provide superior air control.
- Curved vanes are individually adjustable from the grille face.
- Non-adjustable, butterfly-type ceiling radiation damper.
- Designed for use in an exposed grid suspension ceiling (T-bar Lay-in) with a three hour or less restrained or unrestrained assembly rating. Units must be installed in accordance with the instructions that accompany each unit.
- Thermal blanket is non-asbestos.
- Standard 165°F [74°C] fusible link, optional 212°F [100°C] fusible link.
- Optional adjustable volume controller (Allen key adjustable).
- Optional T-bar Lay-in Panel 12" x 12" and 24" x 24".

Available Module Sizes


Imperial	Metric
24" x 24"	600 x 600
20" x 20"	500 x 500
12" x 12"	300 x 300

Finish

White Powder Coat

For optional and special finishes see color matrix.

B12

2CI

31

Product Selection Checklist

- 1] Select Inlet Diameter.
- 2] Select Face Size based on ceiling module.
- 3] Select Diffuser Style by model number.
- 4] Select Options desired.
- 5] Select Finish.

Example: 8" / 24" x 24" / SCVD-FR / 3P / B12

C-151

Performance Data

Size	Core Velocity Velocity Pressure Total Pressure		100 .001 .003	200 .002 .014	300 .006 .031	400 .010 .056	500 .016 .090	600 .022 .131	700 .031 .175	800 .040 .225	900 .051 .290	1000 .062 .355
Ac = .12 ft² 6 x 4	cfm NC		10 -	25 -	35 -	50 -	60 20	70 24	85 28	95 32	110 35	120 38
	Throw ft	4 Way 3 Way 2 Way 1 Way	- - -	- - -	- - -	5-7-11 5-7-12 5-8-13 7-10-16	5-8-13 6-9-14 7-10-16 8-12-19	7-10-16 7-11-17 8-12-19 10-14-23	8-12-19 8-12-20 9-14-22 11-17-27	9-13-21 10-14-23 10-16-25 12-19-30	10-15-24 10-16-25 12-18-28 14-21-34	11-16-26 12-18-28 13-19-31 15-23-37
Ac = .16 ft ² 8 x 4	cfm NC		15 -	30 -	50 -	65 15	80 21	95 26	110 30	130 33	145 36	160 39
	Throw ft	4 Way 3 Way 2 Way 1 Way	- - -	- - -	4-6-9 4-6-10 5-7-11 5-8-13	5-7-12 5-8-13 6-9-14 7-11-17	6-9-14 6-9-15 7-11-17 9-13-21	7-11-17 8-12-19 9-13-21 10-16-25	8-12-20 9-14-22 10-15-24 12-18-29	9-14-22 10-15-24 11-17-27 13-20-32	10-16-25 11-17-27 12-19-30 15-22-36	12-18-28 12-19-30 14-21-33 17-25-40
Ac = .20 ft ² 10 x 4	cfm NC		20	40 -	60 -	80 16	100 22	120 27	140 31	160 34	180 37	200 40
6 x 6	Throw ft	4 Way 3 Way 2 Way 1 Way	- - -	- - -	4-5-9 4-6-10 5-7-11 6-9-14	5-8-13 6-9-14 6-9-15 8-11-18	6-9-15 7-10-16 8-11-18 9-14-22	8-11-18 8-12-20 9-14-22 11-16-26	9-13-21 10-14-23 10-16-25 12-19-30	10-15-24 11-16-26 12-18-29 14-21-34	11-17-27 12-18-29 13-20-32 16-24-38	12-18-29 13-20-32 15-22-35 18-26-42
Ac = .26 ft ² 12 x 4	cfm NC		25 -	50 -	80 -	105 17	130 23	155 28	180 32	210 35	235 38	260 41
8 x 6	Throw ft	4 Way 3 Way 2 Way 1 Way	- - -	3-4-7 3-4-7 3-5-8 4-6-10	4-6-10 5-7-11 5-7-12 6-9-15	6-9-14 6-9-15 7-10-16 8-12-19	7-10-16 8-11-18 8-12-20 10-15-24	8-12-20 9-13-21 10-15-24 12-18-28	10-14-23 10-15-24 11-17-27 13-20-32	11-16-26 11-17-27 13-19-31 15-23-37	12-18-29 13-19-31 14-21-34 17-26-41	13-20-32 14-21-34 16-24-38 19-28-45
Ac = .30 ft ² 14 x 4	cfm NC	<u> </u>	30 -	60 -	90 -	120 18	150 23	180 28	210 32	240 36	270 39	300 42
	Throw ft	4 Way 3 Way 2 Way 1 Way	- - -	3-4-7 3-5-8 3-5-8 4-6-10	4-6-10 5-7-11 5-8-13 6-9-15	6-9-14 6-9-15 7-11-17 8-12-20	7-11-17 8-12-19 9-13-21 10-16-25	9-13-21 9-14-22 10-15-24 12-18-29	10-15-24 10-16-25 12-18-28 14-21-34	11-17-27 12-18-29 13-20-32 16-24-38	12-19-30 13-20-32 16-24-38 18-27-43	14-21-33 15-22-35 16-24-39 20-29-47
Ac = .35 ft2 16 x 4	cfm NC	<u> </u>	35 -	70 -	105 11	140 18	175 24	210 29	245 33	280 37	315 39	350 42
10 x 6 8 x 8	Throw ft	4 Way 3 Way 2 Way 1 Way	- - -	3-4-7 3-5-8 4-6-9 4-6-10	5-7-11 5-7-12 5-8-13 7-10-16	6-9-15 6-9-15 7-11-17 9-13-21	8-11-18 8-12-19 9-13-21 10-16-25	9-13-21 10-14-23 10-16-25 12-19-30	10-16-25 11-16-26 12-18-29 15-22-35	12-18-28 14-19-30 14-21-33 17-25-40	13-19-31 14-21-33 15-23-37 18-27-44	14-21-34 15-23-37 17-26-41 20-31-49
Ac = .40 ft ² 18 x 4	cfm NC		40 -	80 -	120 12	160 19	200 25	240 30	280 34	320 37	360 40	400 43
12 x 6	Throw ft	4 Way 3 Way 2 Way 1 Way		3-5-8 3-5-8 4-6-9 5-7-11	5-7-11 5-7-12 6-9-14 7-10-16	6-9-15 7-10-16 8-11-18 9-14-22	8-12-19 8-12-20 9-14-22 10-16-26	9-14-22 10-15-24 11-16-26 13-19-31	11-16-26 11-17-27 12-19-30 15-22-36	12-18-29 13-19-31 14-21-34 17-26-41	13-20-32 15-22-35 16-24-38 19-29-46	15-22-35 16-24-38 18-26-42 21-32-51
Ac = .45 ft ² 20 x 4	cfm NC		45 -	90	135	180 19	225 26	270 30	315 34	360 38	405 41	450 44
14 x 6 10 x 8	Throw ft	4 Way 3 Way 2 Way 1 Way	- - -	3-5-8 3-5-8 4-6-9 5-7-11	5-7-12 5-8-13 6-9-14 7-11-17	6-9-15 7-11-17 8-12-19 9-14-22	8-12-19 9-13-21 10-14-23 11-17-27	10-14-23 10-15-24 11-17-27 13-20-32	11-16-26 12-18-28 13-19-31 15-23-37	12-19-30 13-20-32 15-22-35 18-26-42	14-21-33 15-22-36 16-24-39 20-29-47	15-23-37 16-24-39 18-27-44 22-33-53
Ac = .55 ft ² 4 x 4	cfm NC		55 -	110 -	165 -	220 20	275 26	330 31	385 35	440 39	495 41	550 44
16 x 6 12 x 8	Throw ft	4 Way 3 Way 2 Way 1 Way	2-3-4 2-3-5 2-3-5 2-4-6	3-5-8 4-6-9 4-6-10 5-7-12	5-7-12 5-8-13 6-9-15 8-11-18	7-10-16 8-11-18 8-12-20 10-14-23	8-12-20 9-14-22 10-15-24 12-18-29	10-15-24 11-16-26 12-18-29 14-21-34	12-18-28 12-19-30 14-21-33 16-24-39	13-19-31 14-21-33 15-23-37 18-27-44	15-22-35 16-24-38 17-26-41 21-31-50	16-24-39 17-26-41 19-29-46 23-35-56

See Performance Notes, Page C133

Performance Data

Size	Core Velocity Velocity Pressure Total Pressure		100 .001 .003	200 .002 .014	300 .006 .031	400 .010 .056	500 .016 .090	600 .022 .131	700 .031 .175	800 .040 .225	900 .051 .290	1000 .062 .355
Ac = .62 ft ² 18 x 6	cfm NC		60 -	125 -	185 -	250 21	310 27	370 32	435 36	495 39	560 42	620 45
10 x 10	Throw ft	4 Way 3 Way 2 Way 1 Way	2-3-4 2-3-5 2-3-5 2-4-6	4-6-9 4-6-9 4-6-10 5-7-12	5-8-13 6-9-14 6-9-15 8-11-18	7-11-17 8-11-18 8-12-20 10-15-24	9-13-21 9-14-22 10-16-25 12-19-30	10-16-25 11-17-27 12-18-29 15-22-35	12-18-28 13-19-31 14-21-34 17-26-41	13-20-32 14-21-34 16-24-38 19-29-46	15-22-36 16-24-39 18-27-43 21-32-51	17-25-40 18-27-43 20-29-47 24-36-57
Ac = .70 ft ² 30 x 4	cfm NC		70 -	140 -	210 14	280 21	350 27	420 32	490 36	560 40	630 42	700 45
20 x 6 14 x 8 12 x 10	Throw ft	4 Way 3 Way 2 Way 1 Way	2-3-5 2-3-5 2-3-6 3-4-7	4-6-9 4-6-9 5-7-11 5-8-13	5-8-13 6-9-14 7-10-16 8-12-19	7-11-17 8-12-19 9-13-21 10-16-25	9-13-21 10-14-23 10-16-25 12-19-30	10-16-25 11-17-27 12-19-30 15-22-36	12-18-29 13-20-32 15-22-35 18-26-42	14-21-33 15-22-36 17-25-40 20-29-47	15-23-37 17-25-40 18-27-44 22-33-53	17-26-41 18-27-44 20-31-49 25-37-59
Ac = .81 ft ² 36 x 4	cfm NC		80 -	160 -	245 15	375 22	405 28	485 33	565 37	650 40	730 43	810 46
24 x 6 16 x 8 14 x 10	Throw ft	4 Way 3 Way 2 Way 1 Way	2-3-5 2-3-5 2-4-6 3-4-7	4-6-9 4-6-10 5-7-11 5-8-13	6-9-14 6-9-15 7-10-16 8-12-20	8-11-18 8-12-20 9-14-22 11-16-26	9-14-22 11-16-26 11-16-26 13-20-32	11-16-26 12-18-28 13-19-31 16-24-38	12-19-30 14-21-33 15-22-36 18-27-44	14-21-34 15-23-37 17-26-41 20-31-49	16-24-38 17-26-41 19-26-46 23-34-55	18-27-43 19-29-46 21-32-51 26-39-62
Ac = .87 ft ² 18 x 8	cfm NC		85 -	175 -	260 15	350 22	435 28	520 33	610 37	695 40	785 43	870 46
12 x 12	Throw ft	4 Way 3 Way 2 Way 1 Way	2-3-5 2-3-5 2-4-6 3-4-7	4-6-9 4-6-10 5-7-11 6-9-14	6-9-14 6-9-15 7-11-17 8-12-20	8-12-19 8-12-20 9-14-22 11-16-26	10-14-23 10-16-25 11-17-27 13-20-32	11-17-27 12-18-29 13-20-32 16-24-39	13-19-31 14-21-33 15-23-37 19-29-45	15-22-35 16-24-38 18-26-42 21-31-50	16-24-39 18-26-42 20-29-47 25-35-56	18-27-43 20-29-47 22-32-52 26-39-63
Ac = 1.02 ft ² 30 x 6	cfm NC	,	100	205	305 16	410 23	510 29	610 34	715 38	815 41	920 44	1020 47
20 x 8 16 x 10 14 x 12	Throw ft	4 Way 3 Way 2 Way 1 Way	2-3-5 2-4-6 2-4-6 3-4-7	4-6-10 4-6-10 5-7-12 6-9-14	6-9-15 7-10-16 7-11-17 8-12-20	8-12-19 9-13-21 10-14-23 11-16-26	10-15-24 10-16-25 12-18—28 13-20-32	12-18-28 12-19-30 14-21-33 16-24-39	13-20-32 15-22-35 16-24-39 19-28-45	15-22-36 16-24-39 18-27-43 21-31-50	17-26-41 18-27-44 20-31-49 25-35-56	19-28-45 20-30-48 23-34-55 26-39-63
Ac = 1.15 ft ² 24 x 8	cfm NC	,	115	230	345 16	460 24	575 30	690 34	805 38	920 42	1040 45	1150 48
18 x 10 16 x 12	Throw ft	4 Way 3 Way 2 Way 1 Way	2-3-5 2-4-6 2-4-6 3-5-8	4-6-10 5-7-11 5-7-12 6-9-15	6-9-15 7-10-16 8-11-18 9-14-22	8-12-20 9-13-21 10-14-23 12-18-28	10-16-25 11-16-26 12-18-29 15-22-35	12-18-29 13-19-31 14-21-34 17-26-41	14-21-33 15-22-36 17-25-40 20-29-47	16-24-38 17-26-41 19-28-45 22-34-54	18-26-42 19-28-45 21-31-50 25-37-60	19-29-46 21-31-50 23-35-56 28-42-68
Ac = 1.25 ft ² 36 x 6	cfm NC		125 -	250 -	375 16	500 24	625 30	750 34	875 38	1000 42	1120 45	1250 48
20 x 10 14 x 14	Throw ft	4 Way 3 Way 2 Way 1 Way	2-3-5 2-4-6 2-4-6 3-5-8	4-6-10 5-7-11 5-7-12 6-9-15	6-9-15 7-10-16 8-11-18 9-14-22	8-12-20 9-14-22 10-15-24 12-18-29	10-16-25 11-17-27 12-19-30 15-22-35	12-18-29 13-20-32 15-22-35 18-26-42	14-21-34 15-23-37 17-26-41 20-30-48	16-24-38 17-26-41 19-29-46 23-34-55	18-27-43 19-29-46 21-32-51 26-39-62	20-29-47 21-32-51 24-36-57 29-43-69
Ac = 1.35 ft ² 16 x 4	cfm NC		135 -	270 -	405 17	540 24	675 30	810 35	945 39	1080 42	1220 45	1350 48
18 x 12	Throw ft	4 Way 3 Way 2 Way 1 Way	2-4-6 2-4-6 3-4-7 3-5-8	4-6-10 5-7-11 5-8-13 6-9-15	7-10-16 7-11-17 8-12-19 10-14-23	9-13-21 9-14-22 10-16-25 12-18-29	10-16-25 11-17-27 12-19-30 15-22-36	12-19-30 13-20-32 15-22-36 18-27-43	15-22-35 15-23-37 18-26-42 21-31-50	16-24-39 18-26-42 20-29-47 23-35-56	18-27-44 20-29-47 22-33-53 26-39-63	20-30-48 22-32-52 25-37-59 29-44-70
Ac = 1.53 ft ² 30 x 8	cfm NC		155 -	305 -	460 17	610 25	765 31	920 36	1070 40	1220 43	1380 46	1530 49
24 x 10 20 x 12 18 x 14 16 x 16	Throw ft	4 Way 3 Way 2 Way 1 Way	2-4-6 2-4-6 3-4-7 3-5-8	5-7-11 5-7-12 5-8-13 7-10-16	7-10-16 7-11-17 8-12-19 10-14-23	9-13-21 10-14-23 10-16-25 12-19-30	11-16-26 12-18-28 13-20-32 15-23-37	13-19-31 14-21-33 15-23-37 18-27-44	15-22-36 16-24-39 18-27-43 21-32-51	17-25-40 18-27-44 20-30-48 24-36-58	19-28-45 20-31-49 23-34-55 27-41-65	21-31-50 22-34-54 25-37-60 30-46-73

Performance Notes:

- 1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- 2. Air flow is in cfm.
- 3. All pressures are in in. w.g.
- 4. Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum), with a cooling temperature differential of 20 °F. The throw values may be increased or decreased 20% by changing the vane settings.

5. NC values are based on room absorption of 10 dB re 10⁻¹² Watts and one diffuser.

- 6. Blanks (----) indicate NC levels below 15.
- 7. This data is based on an opening of about 1/8 in. between the frame and the first vane, with progressively wider spacing between vanes away from the frame. The setting will cause the air to be discharged parallel to the face of the diffuser (horizontal discharge if installed in ceiling).
- 8. If the vanes are adjusted to the full open position, the listed NC values will be reduced by 7 and the total pressure will be 0.30 times that shown in the tables.
- 9. Models SCVD / ACVD 4 in. rectangular units are available in 1 and 2 way patterns only.
- 10. Does not include effects of ceiling radiation damper (SCVD-FR)

All Metric dimensions () are soft conversion Imperial dimensions are converted to metric and rounded to the nearest millimeter.

Size	Core Velocity Velocity Pressure Total Pressure		100 .001 .003	200 .002 .014	300 .006 .031	400 .010 .056	500 .016 .090	600 .022 .131	700 .031 .175	800 .040 .225	900 .051 .290	1000 .062 .355
Ac = 1.82 ft ² 36 x 8	cfm		182 -	365 -	545 18	730 26	910 32	1090 36	1270 40	1460 44	1640 47	1820 50
30 x 10 24 x 12 20 x 14 18 x 16	Throw ft	4 Way 3 Way 2 Way 1 Way	2-4-6 2-4-6 3-4-7 3-5-8	5-7-11 5-7-12 6-9-14 7-10-16	7-11-17 8-11-18 8-12-20 10-15-24	9-14-22 10-15-24 11-17-27 13-20-32	11-17-27 12-18-29 14-21-33 16-24-39	13-20-32 15-22-35 16-24-39 19-29-46	15-23-37 17-25-40 19-28-45 22-34-54	18-26-42 19-28-45 21-31-50 25-37-60	20-29-47 21-32-51 24-36-57 28-42-68	22-33-53 24-36-57 26-39-63 32-48-76
Ac = 2.10 ft ² 24 x 14	cfm NC		210 -	420 -	630 19	840 26	1050 32	1260 37	1470 41	1680 44	1890 47	2100 50
20 x 16 18 x 18	Throw ft	4 Way 3 Way 2 Way 1 Way	2-4-6 3-4-7 3-4-7 4-6-9	5-7-12 5-8-13 6-9-14 7-11-17	8-11-18 8-12-19 9-13-21 10-16-25	10-14-23 10-16-25 12-18-28 14-21-33	12-18-28 12-19-30 14-21-34 17-25-40	14-21-34 15-22-36 17-25-40 20-30-48	16-24-39 18-26-42 19-29-46 23-34-55	18-27-44 20-29-47 22-32-52 26-39-62	20-31-49 22-33-53 25-37-59 29-44-70	23-34-55 25-37-59 28-41-66 33-50-80
Ac = 2.35 ft ² 36 x 10	cfm NC		235	470 -	705 19	940 27	1180 33	1410 37	1640 41	1880 45	2120 48	2350 51
30 x 12 24 x 16 20 x 18	Throw ft	4 Way 3 Way 2 Way 1 Way	2-4-6 3-4-7 3-5-8 4-6-9	5-7-12 5-8-13 6-9-15 7-11-17	8-11-18 8-12-20 9-14-22 11-16-26	10-15-24 10-16-25 12-18-28 14-21-34	12-18-29 13-19-31 15-22-35 18-26-42	15-22-35 15-23-37 18-26-42 20-31-49	17-25-40 18-27-43 20-30-48 24-36-57	19-28-45 20-31-49 22-34-54 27-40-64	21-31-50 23-34-55 25-38-61 30-45-72	24-36-57 25-37-60 28-42-68 34-51-82
Ac = 2.68 ft ² 36 x 12	cfm NC		270 -	535 -	805 20	1070 27	1340 33	1610 38	1880 42	2140 45	2410 48	2680 51
30 x 14 24 x 18 20 x 20	Throw ft	4 Way 3 Way 2 Way 1 Way	3-4-7 3-4-7 3-5-8 4-6-9	5-8-13 6-9-14 6-9-15 8-11-18	8-12-19 8-12-20 9-14-22 11-17-27	10-16-25 11-16-26 12-18-29 15-22-35	12-19-30 14-21-33 15-22-36 18-27-43	15-22-36 16-24-39 20-30-48 21-32-51	18-26-42 19-28-45 20-31-49 25-37-59	20-29-47 21-31-50 23-35-56 28-41-66	22-32-52 24-36-57 26-39-62 31-47-75	25-37-59 26-39-63 29-44-70 35-53-85
Ac = 3.15 ft ² 36 x 14	cfm NC		315 -	630 -	945 20	1260 28	1580 34	1890 39	2200 43	2520 46	2840 49	3150 52
30 x 16 24 x 20	Throw ft	4 Way 3 Way 2 Way 1 Way	3-4-7 3-4-7 3-5-8 4-6-10	5-8-13 6-9-14 7-10-16 8-12-19	8-12-19 9-13-21 10-15-24 12-18-28	11-16-26 11-17-27 12-19-30 15-22-36	13-19-31 14-21-34 16-24-38 19-28-45	15-23-37 17-25-40 19-28-45 22-33-53	18-27-43 19-29-46 21-32-51 26-39-62	20-31-49 22-32-52 24-36-58 29-43-69	23-34-55 25-37-59 27-41-65 33-49-47	26-39-62 28-41-66 30-46-73 37-56-89
Ac = 3.65 ft ² 36 x 16	cfm NC		365 -	730 -	1100 21	1460 29	1820 35	2190 39	2560 43	2920 47	3280 50	3650 53
30 x 18 24 x 24	Throw ft	4 Way 3 Way 2 Way 1 Way	3-4-7 3-5-8 3-5-8 4-6-10	6-9-14 6-9-15 7-10-16 8-12-20	8-12-20 9-14-22 10-15-24 12-18-29	11-17-27 12-18-28 13-20-32 15-23-37	14-21-33 15-22-35 16-24-39 19-29-46	16-24-39 18-26-42 19-29-46 23-34-55	19-28-45 20-30-48 22-34-54 27-40-64	21-31-50 23-34-55 25-37-60 30-45-72	24-36-57 25-38-61 28-42-68 34-51-82	27-40-64 28-42-68 32-48-76 38-57-92

Performance Notes:

 Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."

2. Air flow is in cfm.

3. All pressures are in in. w.g.

4. Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum), with a cooling temperature differential of 20 °F. The throw values may be increased or decreased 20% by changing the vane settings. 5. NC values are based on room absorption of 10 dB re $10^{\cdot 12}\,$ Watts and one diffuser.

6. Blanks (----) indicate NC levels below 15.

7. This data is based on an opening of about 1/s" between the frame and the first vane, with progressively wider spacing between vanes away from the frame. The setting will cause the air to be discharged parallel to the face of the diffuser (horizontal discharge if installed in ceiling). If the vanes are adjusted to the full open position, the listed NC values will be reduced by 7 and the total pressure will be 0.30 times that shown in the tables.

 Models SCVD / ACVD 4" rectangular units are available in 1 and 2 way patterns only.

10. Does not include effects of ceiling radiation damper (SCVD-FR)

Performance Data

Size	Core Velocity Velocity Pressure Total Pressure		100 .001 .003	200 .002 .014	300 .006 .031	400 .010 .056	500 .016 .090	600 .022 .131	700 .031 .175	800 .040 .225	900 .051 .290	1000 .062 .355
Ac = 4.05 ft ² 36 x 18	cfm		405 -	810 11	1220 22	1620 29	2020 35	2430 40	2830 44	3240 47	3640 50	4050 53
30 x 20	Throw ft	4 Way 3 Way 2 Way 1 Way	3-4-7 3-5-8 4-6-9 4-6-10	6-9-14 6-9-15 7-11-17 8-12-20	9-13-21 9-14-22 10-16-25 12-19-30	11-17-27 12-18-29 13-20-32 16-24-39	14-21-34 15-22-36 17-25-40 20-29-47	17-25-40 18-27-43 20-29-47 24-36-57	19-29-46 20-31-49 23-34-55 28-41-66	22-32-52 23-35-56 26-39-62 31-46-74	25-37-59 26-39-63 29-44-70 35-52-84	28-41-66 29-44-70 33-49-79 39-59-94
Ac = 4.72 ft ² 36 x 20	cfm NC		470 -	945 12	1420 22	1890 30	2360 36	2830 40	3300 44	3780 48	4250 51	4720 54
30 x 24	Throw ft	4 Way 3 Way 2 Way 1 Way	3-5-8 3-5-8 4-6-9 5-7-11	6-9-15 7-10-16 7-11-17 9-13-21	9-14-22 10-14-23 11-16-26 13-19-31	12-18-28 12-19-30 14-21-34 17-25-40	15-22-35 16-24-38 18-26-42 20-31-49	18-26-42 19-28-45 20-31-49 25-37-59	20-30-48 22-32-52 24-36-57 28-42-68	22-34-54 24-36-58 27-40-64 32-49-78	25-38-61 28-41-66 30-46-73 37-55-88	28-42-68 31-46-74 34-51-82 41-61-98
Ac = 5.82 ft ² 36 x 24	cfm NC		580 -	1160 13	1750 23	2330 31	2910 37	3490 41	4070 45	4660 49	5240 52	5820 55
30 x 30	Throw ft	4 Way 3 Way 2 Way 1 Way	3-5-8 4-6-9 4-6-9 5-7-11	6-9-15 7-10-16 8-11-18 9-14-22	10-14-23 10-16-25 11-17-27 13-20-32	12-19-30 13-20-32 15-22-35 18-26-42	15-23-37 17-25-40 18-27-44 22-32-52	18-27-44 20-29-47 22-32-52 26-39-62	21-32-51 23-34-55 25-37-60 30-45-72	24-36-57 25-38-61 28-42-68 34-51-82	27-40-64 29-44-70 32-48-77 39-56-93	30-45-72 32-49-78 36-54-87 44-66-105
Ac = 7.17 ft ² 36 x 30	cfm NC		715 -	1430 14	2150 24	2870 31	3580 37	4300 42	5020 46	5740 50	6450 53	7170 56
	Throw ft	4 Way 3 Way 2 Way 1 Way	3-5-8 4-6-9 4-6-10 5-7-12	7-10-16 7-11-17 8-12-20 10-14-23	10-15-24 11-16-26 12-18-29 14-21-34	13-20-32 14-21-34 15-23-37 18-27-44	16-24-39 18-26-42 19-29-46 23-34-55	19-29-46 21-31-50 23-34-55 28-41-66	22-34-54 24-36-57 27-40-64 32-48-77	25-37-60 27-41-65 30-45-72 36-54-87	28-42-68 30-46-73 34-51-82 41-61-98	32-48-76 34-51-82 38-57-92 46-69-110
Ac = 8.63 ft ² 36 x 36	cfm NC		865 -	1730 14	2590 25	3450 32	4320 38	5180 43	6040 47	6900 51	7700 53	8630 56
	Throw ft	4 Way 3 Way 2 Way 1 Way	4-6-9 4-6-10 4-6-10 5-8-13	7-11-17 8-11-18 8-12-20 10-15-24	10-16-25 11-17-27 12-19-30 15-22-36	14-21-33 15-22-35 16-24-39 19-29-46	17-26-41 18-27-44 20-30-48 24-36-58	20-31-49 22-32-52 24-36-58 29-44-70	23-35-56 25-37-60 28-42-67 33-50-80	27-40-64 28-42-68 32-48-76 38-57-91	30-44-71 32-48-77 36-54-86 43-64-103	33-50-80 36-54-87 40-60-96 48-72-116

Performance Notes:

- Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- 2. Air flow is in cfm.
- 3. All pressures are in in. w.g.
- 4. Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum), with a cooling temperature differential of 20 °F. The throw values may be increased or decreased 20% by changing the vane settings.
- NC values are based on room absorption of 10 dB re 10⁻¹² Watts and one diffuser.
- 6. Blanks (-----) indicate NC levels below 15.
- 7. This data is based on an opening of about 1/8" between the frame and the first vane, with progressively wider spacing between vanes away from the frame. The setting will cause the air to be discharged parallel to the face of the diffuser (horizontal discharge if installed in ceiling).
- 8. If the vanes are adjusted to the full open position, the listed NC values will be reduced by 7 and the total pressure will be 0.30 times that shown in the tables.
- 9. Models SCVD / ACVD 4" rectangular units are available in 1 and 2 way patterns only.
- 10. Does not include effects of ceiling radiation damper (SCVD-FR)

Round Cone Diffusers

Product Overview

Price offers a complete line of round cone ceiling diffusers that combine the classic beauty of round cone styling with maximum air diffusion efficiency.

Models RCD / ARCD / RCDA

The round cone styling of this diffuser makes for classic beauty and exceptional performance. Center cones move in unison for optimum aesthetic appeal and provide excellent adjustable horizontal and vertical air patterns. Because of the ceiling-hugging feature of air, these diffusers can be used for VAV applications. Sizes range from 6 in. [152] to 36 in. [914] nominal duct / neck. Available in steel (RCD / RCDA) and aluminum (ARCD) construction [6 in. [152] to 20 in. [508]].

Model RCDE

This diffuser combines economy, simplicity and versatility in one unit. Center cones can be adjusted to provide a two position horizontal air pattern, and because of the ceiling-hugging feature of air, can be used for VAV applications. Sizes range from 6 in. [152] to 24 in. [610] nominal duct / neck.

Model RPD

The round plaque diffuser satisfies engineering performance criteria, both in architectural ceilings and facilities with exposed ductwork. The smooth faced plaque is adjustable in three positions for horizontal or vertical air patterns. The ceiling-hugging feature of the horizontal air pattern means these diffusers can be used for VAV applications. Sizes range from 6 in. [152] to 14 in. [356] nominal duct / neck. Available in steel construction.

Model RID

Designed for high ceiling installation, this round cone high capacity industrial diffuser is easily field adjusted for full vertical or horizontal air pattern for heating/cooling applications. Suggested installations are factories, warehouses, convention centers, arenas, shopping malls, etc. Sizes range from 10 in. [254] to 36 in. [914] nominal duct / neck.

Models	
Horizontal / Vertical Adjustable Air Pattern Three Position Adjustment	RCD / ARCD
Fully Adjustable	RCDA
Horizontal Adjustable Air Pattern Two Position	RCDE
Horizontal / Vertical Adjustable Air Pattern Three Position	RPD
Industrial, Horizontal / Vertical Application Fully Adjustable	RID

Types

Quick Selection Guide

Installation	Discharge Pattern	Recommended Model
Commercial / Institutional	Fully Adjustable	RCDA
	Two Position Horizontal	RCDE
	Three Position	RPD
Industrial	Fully Adjustable, Pole Operated	RID

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter.

Round Cone Diffusers RCD Series

Product Information

Models

Horizontal / Vertical Air Pattern

RCD Three Position Adjustment (Steel) Three Position Adjustment (Aluminum) ARCD

RCDA

B12

Fully Adjustable

Price RCD / ARCD / RCDA Series adjustable round cone ceiling diffusers combine the classic beauty of 4 cone styling with maximum air diffusion efficiency. The three center cones move in unison when adjusted and retain their relative position so maximum uniformity of design and minimum pressure loss are assured under all conditions.

Model RCD / ARCD

Adjustment of inner cones is accomplished by removing cones and repositioning screws. Three adjustment positions available.

Model RCDA

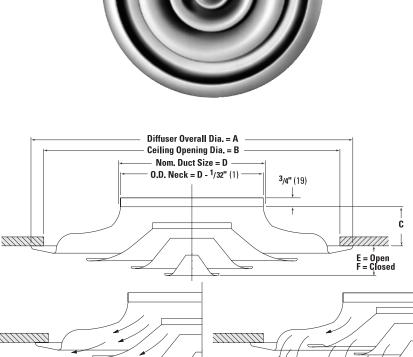
Air pattern is adjustable from full horizontal to full vertical by turning the small center cone.

Features

- Heavy gauge spun steel (RCD / RCDA) or heavy gauge aluminum (ARCD) construction.
- · Three center cones move in unison to ensure uniform appearance.
- · Easily adjustable without requiring special tools.
- Excellent performance VAV for applications.
- Optional wire guards available to protect diffuser face for gymnasium applications.
- Complete range of available accessory dampers, equalizing grids, etc.

Finish

White Powder Coat


For optional and special finishes see color matrix.

Product Selection Checklist		
V I IOUUCI Selection Checkingt	✓ Product Selection C	hecklist

- 1] Select Unit Size based on specified inlet diameter.
- Select Outlet Type by model number.
 Select Volume Control and/or Mounting
- Accessory, if desired. Select Wire Guard / Safety Chain 41 Accessories, if desired.
- 5] Select Finish.

Example: 24 in. / RCDA / B12

* These sizes not available for Model ARCD

Horizontal Air Pattern

Vertical Air Pattern

Dimensional Data — Imperial (in.) / Metric [mm]

Nominal Size	А	В	C	D	E	F
6	13 ¹ /2 [343]	12 [305]	1 ⁵ /8 [41]	6 [44]	1 ³ /4 [44]	¹⁵ /16 [24]
8	18 [457]	16 [406]	2 ¹ /8 [54]	8 [56]	2 ³ /16 [56]	1 ³ /16 [30]
10	22 ¹ /2 [572]	20 [508]	2 ⁵ /8 [67]	10 [68]	211/16 [68]	17/16 [37]
12	27 [686]	24 [610]	31/4 [83]	12 [79]	3 ¹ /8 [79]	1 ⁵ /8 [41]
14	31 ¹ /2 [800]	28 [711]	3 ³ /4 [95]	14 [100]	315/16 [100]	1 ¹⁵ /16 [49]
16	36 [914]	32 [813]	4 ¹ /4 [108]	16 [108]	4 ¹ /4 [108]	2 ¹ /4 [57]
18	40 ¹ /2 [1029]	36 [914]	4 ⁷ /8 [124]	18 [121]	4 ³ /4 [121]	2 ¹ /2 [64]
20	45 [1143]	40 [1061]	5 ⁵ /8 [137]	20 [133]	5 ¹ /4 [133]	2 ³ /4 [70]
24*	54 [1372]	48 [1219]	6 ¹ /2 [165]	24 [159]	6 ¹ /4 [159]	3 ¹ /4 [83]
30*	67 ¹ /2 [1715]	60 [1524]	8 [203]	30 [184]	7 ¹ /4 [184]	3 ⁹ /16 [90]
36*	67 ¹ /2 [1715]	60 [1524]	8 [203]	36 [184]	7 ¹ /4 [184]	3 ⁹ /16 [90]

Round Cone Diffusers RCD / RCDA Series

Performance Data

					N	C 20		30	4	00	
Size	Neck Jet Velocity, fpm	400	500	600	700	800	900	1000	1200	1400	1600
	Velocity Pressure, in. w.g.	.010	.016	.023	.031	.040	.051	.063	.090	.122	.160
	Total Horizontal	.021	.034	.048	.065	.084	.107	.132	.189	.256	.346
	Pressure Vertical	.027	.044	.063	.085	.109	.139	.172	.246	.333	.437
6	Flow Rate, cfm	80	100	120	140	160	180	200	235	275	315
	Radius of Diffusion, ft	1-2-3	2-3-4	2-3-5	2-4-6	3-4-7	3-5-7	4-5-8	4-6-10	5-7-11	6-8-13
	NC	-	-	15	20	24	27	31	36	41	45
8	Flow Rate, cfm	140	175	210	245	280	315	350	420	490	560
	Radius of Diffusion, ft	2-3-4	2-3-5	3-3-7	3-5-8	4-5-9	4-6-10	5-7-11	5-9-13	6-9-15	7-11-17
	NC	-	-	16	21	26	29	32	38	43	47
10	Flow Rate, cfm	220	270	330	380	435	490	545	655	765	870
	Radius of Diffusion, ft	2-3-5	3-4-7	3-5-8	4-6-9	4-7-11	5-8-12	6-8-14	7-10-16	8-12-19	9-13-22
	NC	-	-	17	22	27	30	33	39	44	48
12	Flow Rate, cfm	315	390	470	550	630	705	785	940	1100	1255
	Radius of Diffusion, ft	3-4-7	3-5-8	4-6-10	5-7-11	5-8-13	6-9-15	7-10-16	8-12-19	9-14-23	11-16-2
	NC	-	-	18	23	27	31	34	40	45	50
14	Flow Rate, cfm	425	530	635	745	850	955	1060	1270	1490	1695
	Radius of Diffusion, ft	3-5-8	4-6-9	5-5-11	5-8-13	6-9-15	7-11-17	8-12-19	9-14-22	11-16-26	13-19-3
	NC	-	-	19	24	28	32	35	41	46	50
16	Flow Rate, cfm	560	700	840	980	1120	1260	1400	1680	1960	2240
	Radius of Diffusion, ft	4-5-9	5-7-11	5-8-13	6-9-15	7-11-17	8-12-20	9-14-22	11-16-26	13-19-30	14-22-3
	NC	-	-	19	25	29	32	36	41	46	51
18	Flow Rate, cfm	710	885	1060	1240	1420	1590	1770	2120	2480	2830
	Radius of Diffusion, ft	4-6-10	5-8-12	6-9-15	7-11-17	8-12-20	9-14-22	10-15-24	12-18-29	14-21-34	16-24-3
	NC	-	15	20	26	30	33	36	42	47	52
20	Flow Rate, cfm	875	1100	1310	1530	1750	1970	2190	2610	3060	3500
	Radius of Diffusion, ft	4-7-11	6-9-14	7-10-16	8-12-19	9-14-22	10-15-24	11-14-27	13-19-32	16-24-38	18-27-4
	NC	-	15	21	26	30	34	37	43	48	52
24	Flow Rate, cfm	1260	1570	1880	2200	2510	2830	3140	3770	4400	5020
	Radius of Diffusion, ft	5-8-13	7-10-16	8-12-19	9-14-23	11-16-26	12-18-29	14-20-32	16-24-39	19-28-45	22-32-5
	NC	-	16	22	27	31	35	38	44	49	53
30	Flow Rate, cfm	1960	2450	2940	3430	3920	4410	4900	5880	6860	7840
	Radius of Diffusion, ft	7-10-16	8-13-20	10-15-24	12-18-28	13-20-32	15-23-36	17-25-41	20-30-49	24-34-57	27-40-6
	NC	-	17	23	27	32	36	39	45	50	54
36	Flow Rate, cfm	2820	3520	4230	4930	5630	6340	7040	8450	9850	11,260
	Radius of Diffusion, ft	8-12-20	10-15-24	12-18-29	14-21-34	16-24-39	18-27-44	20-30-49	24-36-58	28-42-68	32-48-7
	NC	-	18	24	28	33	37	40	46	51	55
			NC	20	3)		4) 5	i0	
ownwa	rd Projection*										
Heate	d Air, ft										
	10 Degrees Differential	6-6-3	8-8-6	10-12-11	13-15-16	15-19-24	17-23-28	19-25-33	21-32-42	25-38-52	27-40-6
	20 Degrees Differential	4-4-2	6-7-5	7-8-7	9-11-11	10-14-16	12-16-20	13-18-24	15-21-30	17-25-36	19-29-4
	30 Degrees Differential	3-3-2	5-5-4	6-7-6	7-9-9	9-11-13	10-13-16	11-15-19	13-18-25	14-20-30	15-24-3
	40 Degrees Differential	3-2-2	4-4-3	5-6-6	7-8-9	8-10-12	9-12-15	10-13-17	11-16-22	12-18-27	14-20-3

Performance Notes:

1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Oulets and Inlets."

2. Air flow is in cfm.

3. All pressures are in in. w.g.

 Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
 If the diffuser is mounted on an exposed duct, multiply

5. Throw data is based on supply air and room air being at

the throw value in table by 0.70.

isothermal conditions.

 NC values are based on room absorption of 10 dB re 10⁻¹² Watts and one diffuser. Values shown are for a horizontal pattern. Add 1 dB for a vertical pattern.

7. Blanks (-----) indicate an NC level below 15.

CEILING DIFFUSERS

Round Cone Diffusers RCDE Series

Product Information

Models

Horizontal Air Pattern

Two Position Adjustment Price RCDE round cone ceiling diffusers feature a spring lock arrangement permitting quick, easy removal of the inner cone assembly. Ample adjustment of inner screw allows two different horizontal air patterns.

Features

- Heavy gauge spun steel construction.
- · Two horizontal discharge settings for different flow rate conditions. In the open position (E), maximum capacity is obtained. In the closed position (F) induction is increased, and the noise levels increase by 1 NC above those shown in the performance table on page C144.
- · Deeply contoured outer cone prevents smudging.
- · Easily adjustable without requiring special tools.
- Excellent performance VAV for applications when selected within the range of tabulated performance values.
- Optional wire guards available to protect diffuser face for gymnasium applications.
- Complete range of available accessory dampers, equalizing grids etc.

Finish

1]

21

31

4]

diameter.

5] Select Finish.

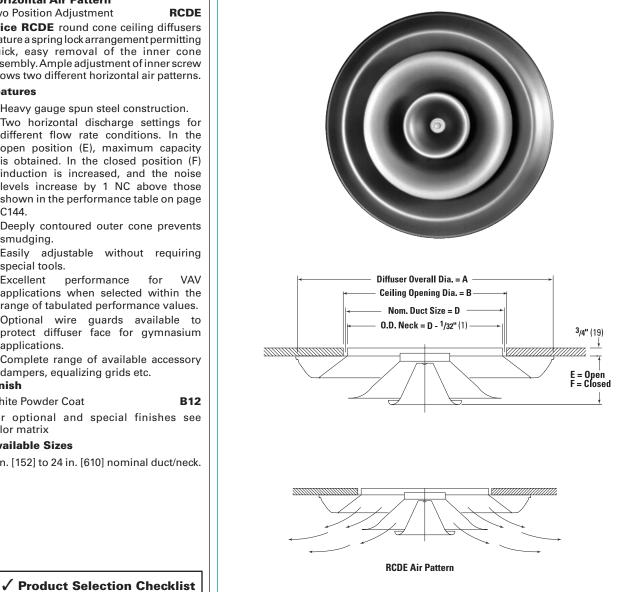
Accessory, if desired.

Example: 24 in. / RCDE / B12

White Powder Coat

For optional and special finishes see color matrix

Available Sizes


6 in. [152] to 24 in. [610] nominal duct/neck.

Select Unit Size based on specified inlet

Select Volume Control and / or Mounting

Select OutletType by model number.

Select Wire Guard / Safety Chain Accessories, if desired.

Dimensional Data — Imperial (in.) / Metric [mm]

Nominal Size	Α	В	D	E	F
6	11 ¹ /8[283]	61/2[165]	6 [152]	13/4[45]	11/8[29]
8	14 ³ /4[375]	81/2[216]	8 [203]	21/8[54]	1 ¹ /2[38]
10	18 ¹ /4[464]	10 ¹ /2[267]	10 [254]	27/8[73]	21/8[54]
12	22 [559]	12 ¹ /2[318]	12 [305]	31/8[79]	2 ³ /8[60]
14	26 [660]	141/2[368]	14 [356]	33/4[86]	25/8[67]
16	29 [737]	16 ¹ /2[419]	16 [406]	4 [102]	31/4[83]
18	321/2[826]	18 ¹ /2[470]	18 [457]	43/4[121]	37/8[98]
20	36 [914]	20 ¹ /2[521]	20 [508]	57/8[149]	47/8[124]
24	431/4[1099]	241/2[622]	24 [610]	73/4[197]	6 ⁵ /8[168]

Round Cone Diffusers RCDE Series

Performance Data

					NC	20		30		40	
Size	Neck Velocity, fpm Velocity Pressure, in. w.g.	400 .010	500 .016	600 .023	700 .031	800 .040	900 .051	1000 .063	1200 .090	1400 .122	1600 .160
	Total Pressure, in. w.g.	.026	.041	.059	.079	.102	.130	.161	.230	.311	.408
6	Flow Rate, cfm	80	100	120	140	160	180	200	235	275	315
	Radius of Diffusion, ft	2-2-4	2-3-5	2-4-6	3-4-7	3-5-8	4-5-9	4-6-10	5-7-11	6-8-13	6-10-15
	NC		—		19	23	26	30	35	40	44
	Total Pressure, in. w.g.	.033	.052	.075	.101	.130	.166	.205	.292	.397	.520
8	Flow Rate, cfm	140	175	210	245	280	315	350	420	490	560
	Radius of Diffusion, ft	2-4-8	3-4-7	4-5-9	4-6-10	5-7-11	5-8-13	6-9-14	7-11-17	8-13-20	10-14-2
	NC	_	15	21	26	31	34	37	44	48	53
	Total Pressure, in. w.g.	.027	.043	.062	.084	.108	.138	.170	.243	.329	.432
10	Flow Rate, cfm	220	270	330	380	435	490	545	655	765	870
	Radius of Diffusion, ft	3-4-7	3-5-8	4-6-10	5-7-11	5-8-13	6-9-15	7-10-16	8-12-20	10-14-23	11-16-2
	NC		—	17	21	26	30	33	39	44	48
	Total Pressure, in. w.g.	.026	.042	.060	.081	.105	.135	.166	.236	.320	.420
12	Flow Rate, cfm	315	390	470	550	630	705	785	940	1100	1255
	Radius of Diffusion, ft	3-5-8	4-6-10	5-7-12	6-8-13	6-10-15	7-11-17	8-12-19	10-14-23	11-17-23	12-19-3
	NC	_	_	17	22	26	30	33	39	45	49
	Total Pressure, in. w.g.	.038	.061	.087	.118	.152	.194	.240	.342	.465	.608
14	Flow Rate, cfm	425	530	635	745	850	955	1060	1270	1490	1695
	Radius of Diffusion, ft	4-6-10	5-8-12	6-9-15	7-11-17	8-12-20	9-14-22	10-15-24	12-18-29	14-21-34	16-24-3
	NC		18	23	28	32	36	40	46	51	55
	Total Pressure, in. w.g.	.033	.053	.076	.102	.132	.168	.208	.297	.403	.528
16	Flow Rate, cfm	560	700	840	980	1120	1260	1400	1680	1960	2240
	Radius of Diffusion, ft	5-7-11	6-9-14	7-10-16	8-12-19	9-14-22	10-15-24	11-17-27	14-20-33	16-24-38	18-27-4
	NC	16	16	22	27	31	35	39	44	49	53
	Total Pressure, in. w.g.	.030	.048	.069	.093	.120	.153	.189	.270	.366	.480
18	Flow Rate, cfm	710	885	1060	1240	1420	1590	1770	2120	2480	2830
	Radius of Diffusion, ft	5-7-12	6-9-15	7-11-18	9-13-21	10-15-24	11-17-27	12-19-30	15-22-36	17-26-42	20-30-4
	NC	_	15	21	26	30	34	37	43	48	52
	Total Pressure, in. w.g.	.030	.047	.068	.091	.118	.115	.186	.266	.360	.472
20	Flow Rate, cfm	875	1100	1310	1530	1750	1970	2190	2610	3060	3500
	Radius of Diffusion, ft	6-8-13	7-10-17	8-12-20	10-15-23	11-17-27	12-19-30	14-21-33	16-25-40	19-29-46	22-33-5
	NC	—	16	21	26	30	34	38	43	48	52
	Total Pressure, in. w.g.	.024	.038	.054	.073	.094	.120	.148	.211	.286	.376
24	Flow Rate, cfm	1260	1570	1880	2200	2510	2820	3140	3770	4400	5020
	Radius of Diffusion, ft	6-9-15	8-12-19	9-14-22	11-16-26	12-19-30	14-21-34	16-23-37	19-28-45	22-33-52	25-37-6
	NC	_	_	19	24	28	32	35	41	46	50
					NC 20	3	0	4	0	50	-

Performance Notes:

1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Oulets and Inlets."

2. Air flow is in cfm.

3. All pressures are in inches of water in in. w.g.

 Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).

If the diffuser is mounted on an exposed duct, multiply the throw value in table by 0.70.

5. Throw data is based on supply air and room air being at isothermal conditions.

 NC values are based on room absorption of 10 dB re 10¹² Watts and one diffuser. Values shown are for a horizontal pattern. Add 1 dB for a vertical pattern.

Round Plaque Diffusers RPD Series

Product Information

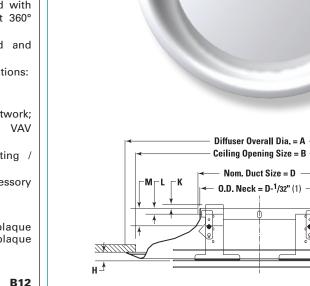
Models

Horizontal / Vertical Air Pattern

Three Position Adjustable (Steel) **RPD Price RPD** Series round plaque diffuser satisfies engineering performance criteria, both in architectural ceilings and facilities with exposed ductwork. The smooth faced plaque is adjustable in three positions for horizontal or vertical air flow.

Features

- Heavy gauge spun steel construction.
- Outer cone is one-piece with smooth, aerodynamically designed surfaces to help prevent ceiling smudging.
- The outer cone shape combined with the face plaque delivers a tight 360° radial horizontal air pattern.
- Face plaque is easily installed and removed without special tools.
- Three field adjustable plaque positions:
 Vertical air flow;
 - Horizontal air flow, with ceiling;
 - Horizontal air flow, exposed ductwork;
- Excellent performance for VAV applications.
- Excellent performance for heating / cooling applications.
- Complete range of available accessory dampers, equalizing grids, etc.


Options

Retaining cable to attach inner plaque assembly to outer cone when a plaque removed for maintenance, etc.

Finish

White Powder Coat

For optional and special finishes see color matrix.

mensio	onal Data -	— Imperial	(in.) / Met	ric [mm]		que Positi to Ceiling			ie Web He r. top of in	•
Nom.]				Vert. Pattern	Horiz.1 Pattern	Horiz.2 Pattern	Vert. Pattern	Horiz.1 Pattern	Horiz.2 Pattern
Size	Α	В	C	D	G	H	J	К	L	М
6	14[356]	12 [305]	15/8 [41]	6 [152]	- ⁵ / ₁₆ [-8]	³ /8[10]	¹ / ₂ [13]	⁵ / ₁₆ [8]	- ³ /8[-10]	- ⁹ / ₁₆ [-14]
8	18[457]	16 [406]	2 ¹ /8 [54]	8 [203]	- ¹ /8[-3]	⁹ / ₁₆ [14]	1 ¹ / ₁₆ [27]	¹ /4[6]	- ⁷ / ₁₆ [-11]	- ¹⁵ / ₁₆ [-24]
10	221/2 [572]	20 [508]	25/8 [67]	10[254]	7/16[11]	1 ³ / ₁₆ [30]	1 ¹ /2[38]	7/16[11]	-1/4[-6]	- ⁹ / ₁₆ [-14]
12	27 [686]	24 [610]	31/4[83]	12 [305]	0[0]	1 [25]	1 ³ /8[35]	³ /8[10]	- ⁵ /8[-16]	- ¹⁵ / ₁₆ [-24]
14	31 ¹ /2 [800]	28[711]	33/4 [95]	14[356]	¹ / ₂ [13]	1 ¹ /8[29]	17/8[48]	⁹ /16[14]	³ /8[10]	³ /8[10]

3/4" (19)

✓ Product Selection Checklist

- 1] Select Unit Size based on specified inlet diameter.
- 2] Select Outlet Type by model number.

Select Finish.

Example: 14 in. / RPD / B12

Round Plaque Diffusers **RPD Series**

Performance Data

Size	v	Neck Velocity, fpm /elocity Pressure, in. w.g.	400 .010	500 .016	600 .023	700 .031	800 .040	900 .051	1000 .063	1200 .090	1400 .122
	Plaque Position	Flow Rate, cfm	79	98	118	137	157	177	196	236	275
	Center	Total Pressure, in. w.g. Static Pressure, in. w.g. N.C (Noise Criteria)	0.014 0.004	0.022 0.007	0.032 0.010	0.044 0.013	0.057 0.017	0.073 0.022	0.090 0.027 15	0.129 0.039 21	0.176 0.054 26
		Horizontal Throw (ft)	1-2-4	2-3-5	2-3-5	2-4-5	3-4-6	3-4-6	3-5-7	4-5-7	4-5-8
6 in.	Down	Total Pressure, in. w.g. Static Pressure, in. w.g. NC. (Noise Criteria)	0.015 0.005 -	0.024 0.008	0.035 0.012 -	0.047 0.017 -	0.062 0.022 -	0.078 0.028 -	0.096 0.034 16	0.139 0.049 22	0.189 0.067 27
	-	Horizontal Throw (ft)	1-2-5	2-3-6	2-4-7	3-4-8	3-5-8	4-5-9	4-6-9	5-7-10	6-8-11
	Up	Total Pressure, in. w.g. Static Pressure, in. w.g. NC (Noise Criteria)	0.039 0.029	0.061 0.046 -	0.088 0.066 -	0.120 0.089 -	0.156 0.117 16	0.198 0.147 19	0.244 0.182 23	0.352 0.262 29	0.479 0.357 34
	Vertical Projection Vertical Projection Vertical Projection	to 50fpm 20 degF Heating	11 10 9	12 11 11	13 12 12	14 13 12	15 14 13	16 15 14	17 15 15	18 17 16	20 18 18
	Vertical Projection		9	10	11	12	12	13	14	15	16
								N	C 20		
	Plaque Position	Flow Rate, cfm	140	175	209	244	279	314	349	419	489
	Center	Total Pressure, in. w.g. NC (Noise Criteria)	0.019	0.030	0.043	0.058	0.076	0.096	0.118	0.171 20	0.232 25
		Horizontal Throw, ft	2-3-6	3-4-8	3-5-10	4-6-11	4-6-13	5-7-14	5-8-16	6-10-19	7-11-22
8 in.	Down	Total Pressure, in. w.g. NC (Noise Criteria)	0.016	0.025	0.036	0.049	0.064	0.081	0.100	0.144	0.196 23
		Horizontal Throw, ft	2-3-6	3-4-8	3-5-9	4-5-11	4-6-12	5-7-14	5-8-15	6-9-18	7-11-21
	Up	Total Pressure, in. w.g. NC (Noise Criteria)	0.045	0.070	0.101	0.137	0.179 18	0.227 21	0.280 24	0.403 29	0.549 33
	Vertical Projection		10	11	12	13	13	14	15	16	18
	Vertical Projection	to 50fpm 20 degF Heating	9	10	11	11	12	13	14	15	16
	Vertical Projection		8	9	10	10	11	12	12	14	15
	Vertical Projection	to 50fpm 40 degF Heating	7	8	9	9	10	11	11	12	13
							NC	20			
	Plaque Position	Flow Rate, cfm	218	273	327	382	436	491	545	654	763
		Total Pressure, in. w.g.	0.019	0.030	0.043	0.058	0.076	0.096	0.118	0.171	0.232
	Center	NC (Noise Criteria)	—	—	—	—	16	19	22	28	32
		Horizontal Throw, ft	3-4-8	3-5-10	4-6-11	4-7-13	5-8-15	6-9-17	6-10-19	8-11-23	9-13-27
	_	Total Pressure, in. w.g.	0.016	0.025	0.036	0.049	0.064	0.081	0.100	0.144	0.196
10 in.	Down	NC (Noise Criteria)	-	- 2 E 0	-	-	16 5 7 1 5	19	22	27	31
		Horizontal Throw, ft	2-4-7	3-5-9	4-6-11	4-7-13	5-7-15	6-8-17	6-9-19	7-11-22	9-13-26
	lla.	Total Pressure, in. w.g.	0.024	0.037	0.053	0.072	0.095	0.120	0.148	0.213	0.290
	Up Vertical Projection	NC (Noise Criteria) to 50fpm 10 degF Heating	- 11	12	- 14	- 15	15 16	19 17	22 17	28 19	33 21
	vertical riujection										
	Vertical Projection	to 50fnm 20 deaF Heating	10	11	1/	<	14	15	h	1/	19
	Vertical Projection Vertical Projection		10 9	11 10	12 11	13 12	14 13	15 13	16 14	17 16	19 17

NC 20

6. Throw data is based on supply air and room air being at isothermal conditions.

NC 30

- 7. NC values are based on room absorption of 10 dB re 10^{-12} Watts and one diffuser.
- 8. Blanks (-) indicate an NC level below 15.

CEILING DIFFUSERS

C-162

Performance Notes:

Oulets and Inlets."

3. All pressures are in in. w.g.

2. Air flow is in cfm.

1. Tested in accordance with ASHRAE Standard 70-2006

"Method of Testing for Rating the Performance of Air

4. Vertical projections are to terminal velocities of 50 fpm.

5. Throw values are measured in feet for terminal velocities

of 150 fpm (minimum), 100 fpm (middle) and 50 fpm

(maximum).

Round Plaque Diffusers RPD Series

Performance Data

Size		ck Velocity, fpm ressure, in. w.g.	400 .010	500 .016	600 .023	700 .031	800 .040	900 .051	1000 .063	1200 .090	1400 .122	
Plaque	Position	Flow Rate, cfm	314	393	471	550	628	707	785	942	1099	
Center	Ν	Pressure, in. w.g. IC (Noise Criteria) prizontal Throw, ft	0.019 - 3-5-9	0.030 - 4-6-11	0.043 - 5-7-14	0.058 18 5-8-16	0.076 22 6-9-18	0.096 26 7-10-21	0.118 29 8-11-23	0.171 34 9-14-28	0.232 39 11-16-32	
2 in. Down	Ν	Pressure, in. w.g. IC (Noise Criteria) prizontal Throw, ft	0.016 - 3-4-9	0.025 - 4-6-11	0.036 - 4-7-14	0.049 19 5-8-16	0.064 23 6-9-18	0.081 26 7-10-21	0.100 29 7-11-23	0.144 34 9-13-28	0.196 38 10-16-32	
Vi Vi		Pressure, in. w.g. IC (Noise Criteria) 10 degF Heating 20 degF Heating 30 degF Heating 40 degF Heating	0.032 - 13 12 10 9	0.050 - 14 13 11 10	0.071 - 16 14 13 11	0.097 19 17 15 14 12	0.127 23 18 16 15 13	0.161 27 19 17 15 14	0.198 30 20 18 16 14	0.285 35 22 20 18 16	0.389 40 24 22 19 17	
						NC	20		NC	; 30	NC	40
Plaque	Position	Flow Rate, cfm	428	535	641	748	855	962	1069	1283	1497	
Center	Ν	Pressure, in. w.g. IC (Noise Criteria) prizontal Throw, ft	0.019 - 4-6-11	0.030 - 5-7-14	0.043 19 6-9-17	0.058 24 7-10-20	0.076 28 8-11-23	0.096 31 9-13-26	0.118 34 10-14-29	0.171 40 11-17-34	0.232 44 13-20-40	
4 in. Down	Ν	Pressure, in. w.g. IC (Noise Criteria) prizontal Throw, ft	0.016 - 3-5-10	0.025 15 4-6-13	0.036 20 5-8-16	0.049 24 6-9-18	0.064 28 7-10-21	0.081 31 8-12-23	0.100 34 9-13-26	0.144 39 10-16-31	0.196 43 12-18-36	
Up	۸ ertical Projection to 50fpm/	Pressure, in. w.g. IC (Noise Criteria) 10 degF Heating	0.031 - 13	0.048 18 14	0.069 22 15	0.094 27 17	0.122 30 18	0.155 33 19	0.191 36 20	0.276 41 22	0.375 45 24	
	/ertical Projection to 50fpm	20 degF Heating	11 10	12 11	14 12	15 13	16 14	17 14	18 15	19 17	21 18	

Performance Notes:

- 1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Oulets and Inlets."
- 2. Air flow is in cfm.
- 3. All pressures are in in. w.g.

- 4. Vertical projections are to terminal velocities of 50 fpm. 6. Throw data is based on supply air and room air being at
- 5. Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- Throw data is based on supply air and room air being at isothermal conditions.
- 7. NC values are based on room absorption of 10 dB re $10^{\text{-}12}$ Watts and one diffuser.
- 8. Blanks (-) indicate an NC level below 15.

Price

Round Cone Diffusers - Industrial RID Series

RID

Product Information

Models

Horizontal / Vertical Air Pattern Fully Adjustable

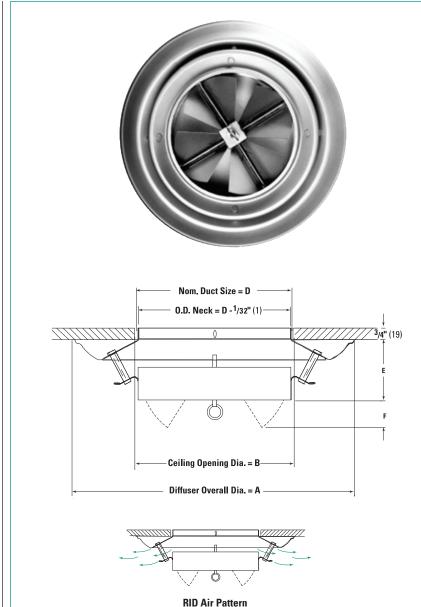
Price RID heavy duty round cone ceiling diffusers feature a wide range of pattern adjustment. At the full vertical setting it provides a long downward projection for effective heating and cooling from high mounting locations.

Classified as an industrial ceiling diffuser, the RID is well suited to factories, warehouses, convention halls, shopping malls and other applications where ceilings are high and conditions are variable.

Features

- Heavy gauge spun steel construction.
- Radial vanes adjust from full horizontal to full vertical pattern.
- · Ring operator allows adjustments with pole.
- Deeply contoured outer cone helps prevent smudging.
- Complete range of available accessory dampers, equalizing grids etc.

Finish


CEILING DIFFUSERS

White Powder Coat	B12
Aluminum Powder Coat	B15

For optional and special finishes see color matrix.

Available Sizes

10 in.[254] to 36 in. [914] nominal duct/neck.

1] Select Unit Size based on specified inlet

diameter. 21 Select OutletType by model number.

Product Selection Checklist

- Select Volume Control and/or Mounting 31 Accessories, if desired.
- Select Wire Guard / Safety Chain 41 Accessories, if desired.
- 5] Select Finish.

Example: 24 in. / RID / B12

Dimensional Data — Imperial (in.) / Metric [mm]

Nominal Size	Α	В	D	E	F
10	181/4[464]	10 ¹ /2[267]	10 [254]	4[102]	13/4[44]
12	22 [559]	121/2[318]	12 [305]	4[102]	21/2[63]
14	26 [660]	141/2[368]	14 [356]	4 ¹ / ₂ [114]	23/4[70]
16	29 [737]	16 ¹ / ₂ [419]	16 [406]	51/4[133]	3 ¹ /2[89]
18	32 ¹ / ₂ [826]	18 ¹ / ₂ [470]	18 [457]	5 ¹ / ₂ [140]	4 ¹ / ₄ [108]
20	36 [914]	201/2 [521]	20 [508]	55/8[143]	43/4[121]
24	43 ¹ / ₄ [1099]	241/2[622]	24 [610]	65/8[168]	4 ¹ / ₂ [114]
30	53 ⁷ /8[1368]	301/2 [775]	30 [762]	81/4[210]	5 ¹ /2[140]
36	65 ¹ /2[1664]	36 ¹ /2[927]	36 [914]	87/8[225]	7[178]

C-164

All Metric dimensions () are soft conversion Imperial dimensions are converted to metric and rounded to the nearest millimeter.

© Copyright Price Industries Limited 2014

Round Cone Diffusers - Industrial RID Series

Performance Data

Size	Neck Jet Velocity, fpm Velocity Pressure, fpm		400 .010	500 .016	600 .023	700 .031	800 .040	900 .051	1000 .063	1200 .090	1400 .122	1600 .160
	Total Pressure	v	.013	.021	.030	.040	.053	.067	.082	.118	.160	.210
		H	.023	.036	.052	.070	.091	.115	.143	.205	.280	.358
10	Flow Rate, cfm		220	270	330	380	435	490	545	655	765	870
	Radius of Diffusion, ft	н	4	5	6	7	8	10	10	12	14	15
	Projection, ft	V	4-14	5-17	6-19	7-23	9-28	10-31	11-36	16-52	19-63	22-72
		NC	15	19	23	27	33	37	40	43	47	53
	Total Pressure	V	.012	.019	.028	.037	.049	.062	.076	.110	.148	.195
		н	.020	.032	.046	.062	.080	.102	.125	.180	.245	.318
12	Flow Rate, cfm		315	390	470	550	630	705	785	940	1100	1255
	Radius of Diffusion, ft	H	5	_5	7	8	9	11	12	13	16	18
	Projection, ft	V	4-15	5-17	6-22	8-25	9-31	10-34	11-37	17-55	21-69	25-8
		NC	15	19	23	27	33	37	39	45	51	54
	Total Pressure	V	.012	.019	.027	.036	.047	.060	.074	.106	.144	.188
		н	.020	.032	.046	.062	.080	.102	.125	.180	.245	.318
14	Flow Rate, cfm		425	530	635	745	850	955	1060	1270	1490	1695
	Radius of Diffusion, ft	H	6	6	8	10	11	12	13	16	17	20
	Projection, ft	V NC	5-17 15	6-18 19	7-23 22	8-26 28	10-32 34	11-36 39	12-38 42	18-60 47	22-72 52	27-8 56
						-						
	Total Pressure	v	.012	.018	.026	.035	.046	.058	.072	.103	.140	.183
40	Floor Data da	н	.020	.032	.046	.062	.080	.102	.185	.180	.245	.318
16	Flow Rate, cfm		560	700 7	840 9	980	1120	1260	1400	1680	1960	2240
	Radius of Diffusion, ft Projection, ft	H V	6 5-17	/ 6-19	9 7-23	10 9-29	12 10-33	14 11-36	14 12-41	17 18-62	20 23-75	22 28-9
	Flojection, it	NC	16	19	23	28	32	38	42	47	51	20-9
	TALD	V	.011		.025	.034	.045					.177
	Total Pressure	V H	.011	.018 .032	.025	.034 .062	.045 .080	.056 .102	.070 .125	.099 .180	.135 .245	.177
18	Flow Rate, cfm	п	.020	.032 885	.046 1060	1240	1420	1590	1770	2120	.245 2480	2830
10	Radius of Diffusion, ft	н	6	8	1000	1240	1420	15	16	19	2460	2030
	Projection, ft	v	5-17	7-21	8-25	9-29	10-33	11-37	13-42	20-65	24-77	28-9
		NC	16	19	25	32	35	38	42	47	52	56
	Total Pressure	V	.011	.017	.024	.033	.043	.054	.067	.096	.130	.170
	lotarriessure	Ĥ	.019	.017	.024	.053	.043	.034	.120	.030	.130	.305
20	Flow Rate, cfm		875	1100	1310	1530	1750	1970	2190	2610	3060	3500
	Radius of Diffusion, ft	н	7	9	11	13	14	16	17	21	24	27
	Projection, ft	V	6-17	7-22	8-25	9-30	11-34	12-38	13-43	20-67	25-80	30-9
		NC	16	19	26	33	36	39	43	48	52	56
	Total Pressure	V	.011	.017	.023	.031	.042	.053	.065	.094	.128	.167
		H	.019	.030	.043	.058	.076	.096	.120	.170	.235	.305
24	Flow Rate, cfm		1260	1570	1880	2200	2510	2820	3140	3770	4400	5020
	Radius of Diffusion, ft	н	8	10	13	15	16	19	21	24	28	31
	Projection, ft	V	6-18	7-23	8-27	10-31	11-36	12-39	14-46	22-70	26-83	32-10
		NC	19	23	27	33	36	39	43	48	54	59
	Total Pressure	V	.010	.016	.023	.031	.041	.052	.064	.092	.125	.162
		н	.020	.031	.045	.060	.078	.100	.123	.176	.240	.313
30	Flow Rate, cfm		1960	2450	2940	3430	3920	4410	4900	5880	6860	784
	Radius of Diffusion, ft	H	10	12	15	18	20	23	24	29	34	38
	Projection, ft	V	6-19	7-23	9-27	10-32	11-36	13-42	14-47	22-72	27-85	33-11
		NC	15	21	26	29	33	36	38	43	47	50
	Total Pressure	V	.010	.016	.023	.031	.041	.052	.064	.092	.125	.162
		Н	.015	.024	.036	.047	.062	.079	.098	.139	.189	.247
36	Flow Rate, cfm		2820	3520	4230	4930	5630	6340	7040	8450	9850	1126
	Radius of Diffusion, ft	Н	11	14	17	20	23	26	29	34	39	46
	Projection, ft	V	6-19	7-24	9-29	10-33	11-37	13-43	15-61	24-78	27-98	35-11
		NC	23	29	33	37	41	44	46	51	55	58

Performance Notes:

- 1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- 2. Air flow is in cubic feet per minute.
- 3. All pressures are in in. w.g.
- 4. Vertical Projections are to terminal velocities of 50 fpm.
- Minimum projections are with a 40 °F heating temperature differential and maximum projections are with a 20 °F cooling temperature differential.
- 5. Horizontal throws are to a terminal velocity of 50 fpm with a 20 $^{\circ}\mathrm{F}$ cooling temperature differential.
- 6. NC values are based on a room absorption of 10dB re $10^{\rm -12}\,watts$ and one diffuser.
- 7. NC Values based on a horizontal pattern (center closed). For vertical pattern (center open) use the following correction.

Size Correction

10 - 24	subtract 3 NC
30, 36	no correction

8. Blanks (----) indicate an NC level below 15 .

CEILING DIFFUSERS

Overview

Model RVD

Price RVD Series Radial Vane Diffusers are unique in design. Fixed radial slots produce a high induction horizontal vortex of air that travels out from the face of the diffuser. The high induction vortex air pattern provides rapid mixing of the supply and room air, producing excellent uniformity of temperature in the conditioned space.

The RVD series produces the high induction horizontal vortex over a wide range of air flows, making it an ideal selection for VAV applications with high turndown ratios.

RTD

Price RTD Radial Twist Diffuser is a unique diffuser with simple construction and superior performance. 16 radial slots formed out of a thick gage steel face produce a high induction horizontal vortex of air that travels out from the face of the diffuser. Due to its extremely low noise level and short throw, the RTD is ideal for spaces requiring high air change rates. The RTD can be used in both heating and cooling applications, creating a highly desirable, draft free thermal environment in occupied spaces.

Model RSD

The RSD series is a square face outlet that produces a high induction radial pattern. The diffuser has a series of slots arranged radially around the face, each slot with its own adjustable pattern controller. Adjustment of the pattern controllers will produce 4 way, 3 way, 2 way, 1 way or full vertical discharge. There are two different face patterns available with the RSD series, a square slot pattern and a circular slot pattern.

Туреѕ	
Radial Twist Diffuser	RTD
Radial Vane Diffuser	RVD
Radial Slot Diffuser Square or Circular pattern	RSD

Radial Vane Diffuser **RVD Series**

Product Information

Models

Steel Face **Aluminum Face** Stainless Steel Face

Price RVD Series Radial Vane Diffusers are unique in design. Radial slots produce a high induction horizontal vortex of air that travels out from the face of the diffuser. The high induction vortex air pattern provides rapid mixing of the supply and room air, producing excellent uniformity of temperature in the conditioned space.

RVD

RVDAL

RVDSS

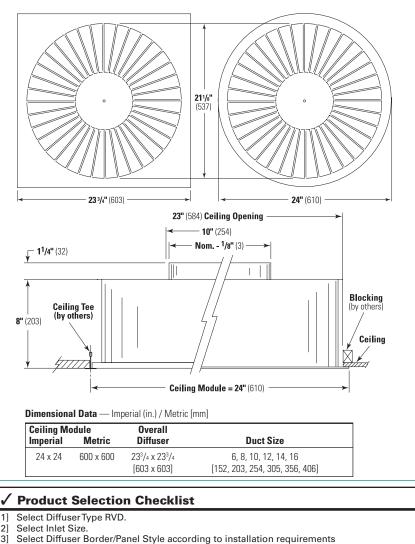
The RVD series produces the high induction horizontal vortex over a wide range of air flows, making it an ideal selection for VAV applications with high turndown ratios. The RVD provides a comfortable thermal environment with no drafts in both heating and cooling modes.

Application

Applications for this diffuser include areas of high heat load where large quantities of cool air must be rapidly mixed with room air. This would include industrial applications with ceilings from 8 feet to 12 feet high. Other applications include areas which require high air change rates of up to 30 changes per hour. For open office environments, multiple units can be arranged in a row or more than one row.

Features

- · Radial pattern air slots with fixed horizontal deflectors.
- Round plenum chamber has internal baffles and top mounted air inlet.
- 6", 8", 10", 12", 14", 16" round inlets available.


Construction / Finish

- RVD Steel plenum and face. RVDAL - Coated steel plenum and
- aluminum face. • RVDSS - Coated steel plenum and
- stainless face. Standard finish is B12 White Powder
- Coat on diffuser face (RVD, RVDAL) #4 finish on RVDSS.

Style 1 Round Face (steel only)

Example: RVD / 10 / 3

(3 for square face; 1 for round face).

31

Performance Data - 24 x 24

Inlet Size	6"								
Neck Velocity	300	400	500	600	700	800	900	1000	
VP	0.006	400 0.010	0.016	0.022	0.031	800 0.040	900 0.050	0.062	
Total Pressure	0.010	0.018	0.028	0.040	0.054	0.071	0.090	0.111	
cfm	59	79	98	118	137	157	177	196	
NC			—			18	21	24	
Throw,ft	1-1-2	1-1-2	1-1-3	1-2-4	1-2-4	2-2-5	2-3-5	2-3-6	
Inlet Size	8"								
Neck Velocity	300	400	500	600	700	800	900	1000	
VP .	0.006	0.010	0.016	0.022	0.031	0.040	0.050	0.062	
Total Pressure	0.017	0.030	0.047	0.068	0.092	0.120	0.152	0.188	
cfm	105	140	174	209	244	279	314	349	
NC					19	23	26	29	
Throw,ft	1-2-3	1-2-4	2-3-5	2-3-6	2-4-7	3-4-7	3-5-8	3-5-8	
THIOW,IC	1-2-0	1-2-4	2-3-3	2-3-0	2-4-7	5-4-7	5-5-0	5-5-0	
Inlet Size	10"								
Neck Velocity	300	400	500	600	700	800	900	1000	
VP	0.006	0.010	0.016	0.022	0.031	0.040	0.050	0.062	
Total Pressure	0.029	0.051	0.079	0.114	0.156	0.203	0.257	0.318	
cfm	164	218	273	327	382	436	491	545	
NC		15	22	27	31	35	38	41	
Throw,ft	2-2-5	2-3-6	3-4-7	3-5-8	4-6-8	4-6-9	5-7-9	5-7-10	
Inlet Size	12"								
Neck Velocity	300	400	500	600	700	800	900	1000	
VP	0.006	0.010	0.016	0.022	0.031	0.040	0.050	0.062	
Total Pressure	0.048	0.086	0.134	0.194	0.264	0.344	0.436	0.538	
cfm	236	314	393	471	550	628	707	785	
NC	17	24	31	36	40	44	47	50	
	2-4-7	24 3-5-8	4-6-8	50 5-7-9	40 5-7-10	44 6-8-11	47 7-8-11	7-8-12	
Throw,ft	Z-4-7	3-2-8	4-0-8	5-7-9	5-7-10	0-0-11	/-8-11	7-8-1Z	
Inlet Size	14"								
Neck Velocity	300	400	500	600	700	800			
VP	0.006	0.010	0.016	0.022	0.031	0.040			
Total Pressure	0.082	0.146	0.228	0.328	0.446	0.583			
cfm	321	428	535	641	748	855			
NC	24	32	38	43	47	51			
Throw,ft	3-5-8	4-6-9	5-7-10	6-8-11	7-8-12	7-9-12			
Inlet Size	16"								
Neck Velocity	300	400	500	600					
VP	0.006	0.010	0.016	0.022					
Total Pressure	0.139	0.247	0.385	0.555					
cfm	419	558	698	837					
NC	30	38	44	49					
Throw,ft	30 4-6-9	30 6-7-10	44 6-8-11	49 7-9-12					
intow,it	4-0-3	0-7-10	0-0-11	1-3-12					

Performance Notes:

1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."

2. Air flow is in cfm.

3. All pressures are in in. w.g.

 Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).

5. Throw data is based on supply air and room air being at isothermal conditions.

- 6. NC values are based on room absorption of 10 dB re $10^{\text{-}12}$ Watts and one diffuser.
- 7. Blanks "-" indicate an NC level below 15.

C-168

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter. © Copyright Price Industries Limited 2014.

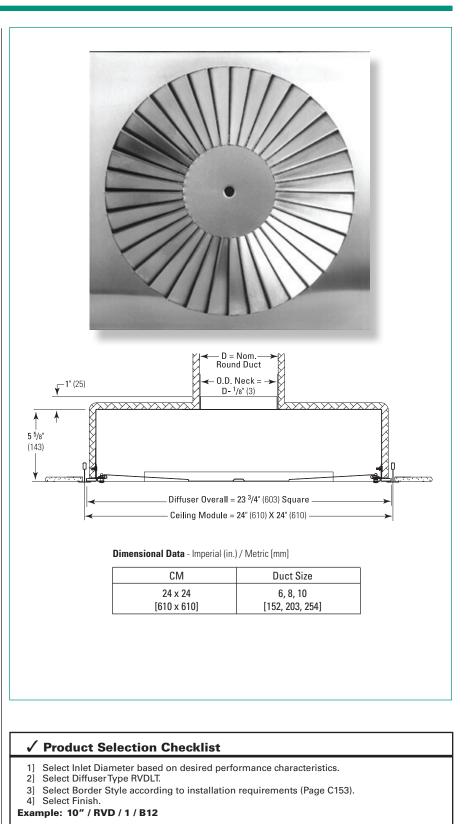
Radial Vane Diffuser **Low Temperature Series**

RVDLT

Product Information

Model RVDLT

Steel Construction


Price Model RVDLT low temperature radial vane diffuser is designed to distribute low temperature supply air to the space without drafts or thermal stratification.

Price Model RVDLT diffuser is unique in design as its radial slots provide a high induction vortex air flow projecting horizontally from the face of the diffuser. This design provides rapid mixing of the low temperature supply air with room air resulting in uniformity of temperature within the occupied space. The excellent horizontal air pattern is maintained at low flows, even with low temperature supply air.

The RVDLT is totally constructed of steel with no plastic components. In order to reduce the risk of condensation forming, the distribution plenum and the back of the faceplate are externally wrapped with $^{3}/_{4}$ " dual density fibreglass with foil facing.

Standard finish

Plenum - Coated Steel	MILL
Diffuser Face - White Powder Coat	B12
Optional finish	
Plenum - Coated Steel	MILL
Diffuser Face - Stainless Steel	#4

Radial Vane Diffuser Low Temperature Series

Frame Selection

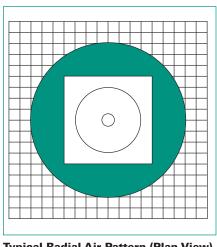
Installation Guidelines

Low Temperature Diffusers

Diffusers designed for low temperature air distribution must be installed using recommended industry practice to ensure that condensation does not form. Because installation is critical to successful performance, the following is recommended:

- Provide externally insulated duct, complete with vapor barrier and a suggested minimum resistivity of R3. Field install duct and duct insulation so as to tightly compress foil face insulation on the diffuser backpan.
- Seal airtight the field joint at the diffuser with industry approved duct sealer.
- In the event that the foil face lining of the insulation is punctured, repair with foil tape.

Frame Styles


Style 1 Surface Mount is offered for plastered ceiling mounting where a surface mount condition exists. Flexible, insulated and jacketed duct is required for installation of the diffuser. The surface mount frame is fastened into the frame opening (fasteners supplied by others). The flexduct connection must be in accordance with the instructions previously described. Allow sufficient ceiling space clearance above diffuser to insert the unit through the opening and complete duct connections.

The surface mount frame ensures a smooth, clean fit between the frame and the drywall ceiling. This mounting arrangement also allows the diffuser to be lifted out to provide access to the ceiling plenum for service and adjustment. Style 3 T-bar Mount is offered for mounting intoT-bar ceilings.The diffuser, when resting on the T-bar frame, is thermally isolated by a coated cloth tape.

Dampers

Since access to the inlet through the diffuser face is not available, inlet dampers are not offered as an option. Air volume control is recommended by field installation of dampers at the branch take-off, upstream of the diffuser. The further the damper can be mounted remote from the diffuser, the less likely damper generated noise will enter the occupied space. It is recommended to insulate and seal the damper quadrant to prevent air leakage.

Air Pattern – RVDLT Series

The RVDLT Series low temperature radial vane diffuser produces a radial air pattern. The angular discharge blades produce a high induction vortex, which maintains the air stream on the ceiling, even at low flow conditions. The above characteristic makes the RVDLT an excellent choice for VAV applications.

Typical Radial Air Pattern (Plan View)

C-170

Radial Vane Diffuser Low Temperature Series

Performance Data - 24 x 24 [610 x 610] Module

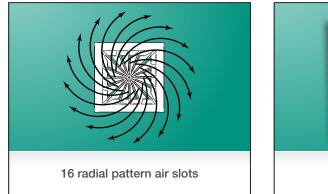
Inl	et	Si	ze	6"	Ø

				Isot	thermal Conditi	ons		Cooling Conditions					
					Throw (ft)		Drop		Throw (ft)		Drop		
cfm	TP	SP	NC	150 fpm	100 fpm	50 fpm	in.	150 fpm	100 fpm	50 fpm	in.		
100	0.03	0.01	_	1	2	3	3	1	2	2	5		
200	0.12	0.06	25	2	3	6	6	2	3	5	11		
300	0.27	0.12	36	3	5	8	8	3	5	6	15		
400	0.48	0.22	44	4	6	9	9	4	5	7	16		
500	0.75	0.35	50	5	7	10	10	5	6	8	18		
600	1.08	0.50	55	6	7	11	11	6	6	8	20		

Inlet Size 8"ø

				Isot	thermal Conditi	ons		Cooling Conditions					
				Throw (ft)			Drop			Drop			
cfm	TP	SP	NC	150 fpm	100 fpm	50 fpm	in.	150 fpm	100 fpm	50 fpm	in.		
100	0.01	0.01	_	1	2	3	3	1	2	2	5		
200	0.06	0.04	_	2	3	6	6	2	3	5	11		
300	0.13	0.08	24	3	5	8	8	3	5	6	15		
400	0.23	0.15	32	4	6	9	9	4	5	7	16		
500	0.36	0.23	38	5	7	10	10	5	6	8	18		
600	0.51	0.33	44	6	7	11	11	6	6	8	20		

				Isot	hermal Conditi	ons	Cooling Conditions					
					Throw (ft)		Drop		Throw (ft)		Drop	
cfm	ТР	SP	NC	150 fpm	100 fpm	50 fpm	in.	150 fpm	100 fpm	50 fpm	in.	
100	0.01	0.01	_	1	2	3	3	1	2	2	5	
200	0.04	0.03	_	2	3	6	6	2	3	5	11	
300	0.10	0.08	23	3	5	8	8	3	5	6	15	
400	0.18	0.15	32	4	6	9	9	4	5	7	16	
500	0.29	0.24	39	5	7	10	10	5	6	8	18	
600	0.40	0.32	44	6	7	11	11	6	6	8	20	


Performance Notes:

- 1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- 2. Air flow is in cfm.
- 3. All pressures are in in. w.g.
 - TP = total pressure
 - SP = static pressure

- 4. NC values are based on room absorption of 10 dB re $10^{\cdot 12}$ watts and one diffuser.
 - 5. Blanks (----) indicate a NC level below 15.
 - 6. Isothermal conditions indicate supply air temperature is equal to room air temperature.
 - 7. Cooling conditions are based on a supply air temperature of 40 $^{\circ}\text{F}$ and a room temperature of 75 $^{\circ}\text{F}.$
- Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- 9. Drop is in inches at a terminal velocity of 50 fpm.

RTD HIGH INDUCTION RADIAL TWIST DIFFUSER

This radial design allows the RTD to combine excellent air mixing capabilities with low noise values throughout its cataloged range. Supply and room air is effectively mixed over a wide range of air flows in both heating and cooling applications. The diffuser comes with round inlets ranging from 6 inch to 14 inch. The most quiet, efficient and economical high induction radial twist diffuser on the market today.

Aesthetically pleasing stamped face

Room air is effectively mixed over a wide range of air flows

www.priceindustries.com for additional product information, including product videos and brochures.

Radial Twist Diffuser **RTD Series**

Product Information

Models

```
Steel Face
Price RTD Radial Twist Diffuser is a unique
```

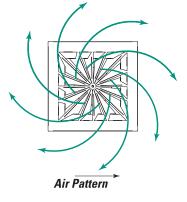
RTD

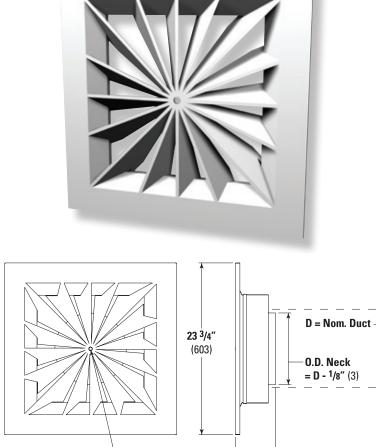
diffuser with simple construction and superior performance. 16 radial slots formed out of a thick gage steel face produce a high induction horizontal vortex of air that travels out from the face of the diffuser. Due to its induction properties, the supply air vortex rapidly mixes with the room air, producing excellent uniformity of temperature in the conditioned space. The RTD combines excellent air mixing capabilities with low NC values throughout its cataloged range.

The RTD is extremely effective at mixing supply and room air over a wide range of air flows, making it an ideal choice for VAV applications with high turndown ratios. Due to its extremely low noise level and short throw, the RTD is ideal for spaces requiring high air change rates. The RTD can be used in both heating and cooling applications, creating a highly desirable, draft free thermal environment in occupied spaces.

Applications

Office spaces, labs, patient rooms.


Features


- 16 radial pattern air slots with fixed horizontal deflectors.
- 24x24T-bar mount module.
- 6 in., 8 in., 10 in., 12 in. and 14 in. round inlets.
- Removable plug in the center of the face provides access to round damper.
- Construction
- Steel face and plenum.
- Painted with B12 White, highly durable powder coat paint.

Options

Choice of three round dampers (VCR7, VCR8 or VCR9).

Air Pattern:

Max. 5 3/4" (146)

Removable Plug -

Product Selection Checklist

Select Diffuser Type RTD. 1] 2] Select Inlet Size. Example: RTD / 10

Performance Data - 24" x 24" / 600 x 600 Module

Inlet	Neck Velocity, fpm	200	300	400	500	600	700	800	900	1000	1200
Size	Velocity Pressure, in. w.g.	0.002	0.006	0.010	0.016	0.022	0.031	0.040	0.040	0.062	0.090
	Total Pressure, in. w.g.	0.003	0.007	0.012	0.019	0.028	0.038	0.049	0.062	0.077	0.110
6	Flow Rate, cfm	39	59	79	98	118	137	157	177	196	236
U	NC									16	21
	Throw 150, 100, 50	0-1-1	1-1-2	1-1-2	1-1-3	1-2-3	1-2-4	2-2-5	2-3-5	2-3-6	2-3-7
	Total Pressure, in. w.g.	0.003	0.007	0.012	0.019	0.028	0.038	0.049	0.062	0.077	0.110
8	Flow Rate, cfm	70	105	140	174	209	244	279	314	349	419
0	NC								18	21	26
	Throw 150, 100, 50	1-1-2	1-2-3	1-2-4	2-3-5	2-3-6	2-4-7	3-4-8	3-5-9	3-5-10	4-6-12
	Total Pressure, in. w.g.	0.003	0.007	0.013	0.021	0.030	0.041	0.053	0.067	0.083	0.119
10	Flow Rate, cfm	109	164	218	273	327	382	436	491	545	654
10	NC							18	22	25	30
	Throw 150, 100, 50	1-2-3	2-2-5	2-3-6	3-4-8	3-5-9	4-5-11	4-6-12	5-7-13	5-8-13	6-9-15
	Total Pressure, in. w.g.	0.005	0.011	0.020	0.031	0.044	0.060	0.078	0.099	0.122	0.176
12	Flow Rate, cfm	157	236	314	393	471	550	628	707	785	942
12	NC						18	22	25	28	34
	Throw 150, 100, 50	2-2-5	2-3-7	3-5-9	4-6-11	5-7-12	5-8-13	6-9-14	7-10-15	8-11-16	9-12-17
	Total Pressure, in. w.g.	0.007	0.015	0.027	0.043	0.061	0.084	0.109	0.138	0.171	0.246
14	Flow Rate, cfm	214	321	427	534	641	748	855	962	1068	1282
14	NC					16	21	25	28	31	37
	Throw 150, 100, 50	2-3-6	3-5-9	4-6-12	5-8-13	6-9-14	7-11-16	8-12-17	9-12-18	10-13-19	12-14-20

Performance Notes:

- 1. Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- 4. Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).

5. Throw data is based on supply air and room air beingat

isothermal conditions.

- 6. NC values are based on room absorption of 10 dB re 10^{-12} Watts and one diffuser.
- 7. Blanks (----) indicate NC levels below 15.

- 2. Air flow is in cfm.
- 3. All pressures are in in. w.g.

C-174

Ceiling Twist Outlets RSD Series

price

Product Information

Models

Radial Slot Diffuser

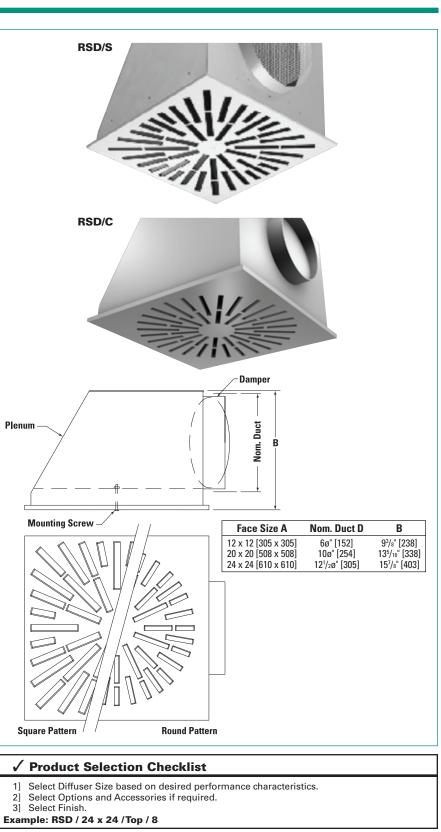
Square Discharge Pattern Circular Discharge Pattern

The **Price RSD Series** of radial outlets produces a high induction radial pattern generated by individually adjustable radial slots. The discharge pattern can be manually adjusted to produce 4 way, 3 way, 2 way or 1 way discharge, and from horizontal to vertical down by adjusting the pattern controller on each slot. Two face patterns are available, square and round.

RSD/S

RSD/C

Features

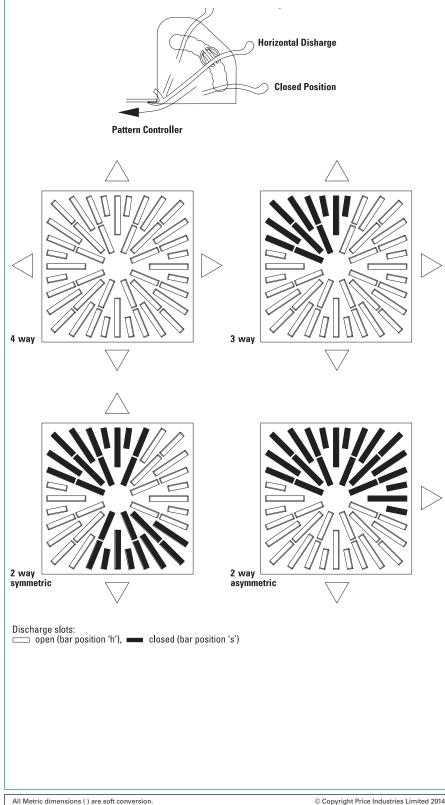

- High induction radial pattern.
- Rapid temperature equalization.
- Manually adjustable discharge direction from horizontal to vertical down.
- Manually adjustable discharge pattern, 4 way, 3 way, 2 way or 1 way.
- Surface mounting or suspended from duct.
- Accommodates ceiling heights up to 14 feet.
- Plenum with integral damper.

Finish

9003 white powder coat finish. White polycarbonate pattern controllers (black optional). Galvanized steel plenum.

Available Sizes

12 in.x12 in. [300 x 300]	
20 in.x20 in. [500 x 500]	
24 in.x24 in. [600 x 600]	


Product Information (continued)

Mode of Operation

The direction of the discharge air jet can be manually modified by adjusting the polycarbonate pattern controllers on each slot. With the pattern controller in the position indicated as "v", the air jet will be discharged vertically downward.

By moving each pattern controller to the center position, shown as "h", the air jet will be deflected to produce a horizontal discharge pattern.

At position "s" the pattern controller will have closed off the slot allowing the user to modify the discharge pattern from 1 way to 2 way to 3 way to 4 way to achieve the desired distribution pattern.

C-176

© Copyright Price Industries Limited 2014.

Ceiling Twist Outlets RSD Series

Performance Data - Circular Slot Arrangement

		Neck Velocity, fpm	400	500	600	700	800	900	1000
Face Module	Neck Size	Velocity Pressure, in. w.g.	0.010	0.016	0.022	0.031	0.040	0.050	0.062
12 in. x 12 in.	6	Total Pressure, in. w.g.	0.058	0.091	0.131	0.179	0.234	0.296	0.365
		Air Flow, cfm	79	98	118	137	157	177	196
		NC		20	26	31	35	39	13
20 in. x 20 in.	10	Total Pressure, in. w.g.	0.061	0.096	0.138	0.188	0.246	0.311	0.384
		Air Flow, cfm	218	273	327	382	436	491	545
		NC		22	28	33	37	41	44
24 in. x 24 in.	12.5	Total Pressure, in. w.g.	0.063	0.098	0.141	0.197	0.251	0.318	0.392
		Air Flow, cfm	341	426	511	597	682	767	852
		NC	15	22	28	33	37	41	45

Performance Notes:

1. Air flow is in cfm.

2. All pressures are in in. w.g.

4. Blanks (--) indicate an NC value less than 15.

5. Performance is based on 4 way discharge and one diffuser mounted in a ceiling.

3. NC values are based on room absorption of 10 dB re 10⁻¹² Watts and one diffuser.

Performance Data - Square Slot Arrangement

		Neck Velocity, fpm	400	500	600	700	800	900	1000
Face Module	Neck Size	Velocity Pressure, in. w.g.	0.010	0.016	0.022	0.031	0.040	0.050	0.062
12 in. x 12 in.	6	Total Pressure, in. w.g.	0.058	0.091	0.131	0.179	0.234	0.296	0.365
		Air Flow, cfm	79	98	118	137	157	177	196
		NC		16	23	29	34	39	43
20 in. x 20 in.	10	Total Pressure, in. w.g.	0.061	0.096	0.138	0.188	0.246	0.311	0.384
		Air Flow, cfm	218	273	327	382	436	491	545
		NC		20	27	33	39	43	47
24 in. x 24 in.	12.5	Total Pressure, in. w.g.	0.063	0.098	0.141	0.192	0.251	0.318	0.392
		Air Flow, cfm	341	426	511	597	682	767	852
		NC		22	29	35	41	45	49

Performance Notes:

1. Air flow is in cfm.

4. Blanks (--) indicate an NC value less than 15.

2. All pressures are in in. w.g.

3. NC values are based on room absorption of 10 dB re 10^{-12} Watts and one diffuser.

5. Performance is based on 4 way discharge and one diffuser

mounted in a ceiling.

Minimum Spacing Between Outlets

Air Flow, cfm	50	75	100	125	150	175	200	225	250	275	300
Spacing, ft	7	7	8	8	9	9	10	10	11	11	11

Performance Notes:

- 1. Air flow is in cfm.
- 2. Minimum spacing required to give air velocity 50 fpm or less in the occupied zone.
- 3. Minimum distances are based on 20 °F cooling temperature differential between the supply air and room air temperatures and a 12 ft mounting height.

Extruded Aluminum Ceiling Systems Unitee Series

Product Information

Design Objectives

Unitee Ceiling Systems were developed as a cost-competitive alternative to solid and narrow screw-slot extruded aluminum T-bar systems. Assembled by means of patented two-piece clips, Unitee is an aesthetically pleasing system that accommodates low-cost square-edge Layin acoustic panels.

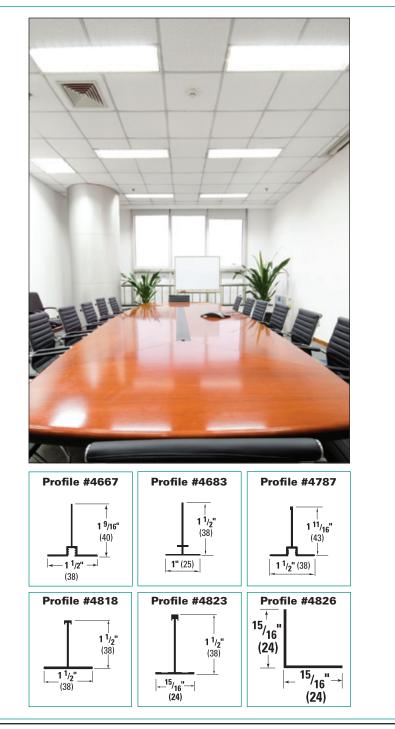
For further information, performance and specification details on any architectural product, please contact your nearest Price sales rep. Detailed brochures are available.

Applications

Unitee Ceiling Systems can be used in any retail, commercial or public space where steel Ts or other unsealed extruded aluminum ceiling products would be installed.

Fully Accessible

A major feature of Unitee Series is that it can be easily removed and reinstalled to provide access to the plenum space. Occasionally mechanical or electrical equipment fail, requiring large areas of the ceiling to be removed. Some applications require that the entire ceiling be removed for cleaning the plenum space above the ceiling. Unitee Series uses the Price two-piece Universal Assembly Clips, which allow the grid to be easily removed and reinstalled.


Features/Benefits

- Accepts square-edge Lay-in panels; panels are easily installed and removed for full plenum access.
- Unique connector clips provide rapid installation of ceiling members.
- Continuous screw slots for attaching partitions without damaging ceiling members.
- Thru-slot intersections for aesthetically pleasing appearance.
- Design flexibility several profiles to choose from in any module size.
- Extruded aluminum construction for clean, crisp lines, maximum durability and rust-proof performance. Choice of painted or anodized finishes.

Finish

The standard finish for Unitee Series is B12 White Powder Coat.

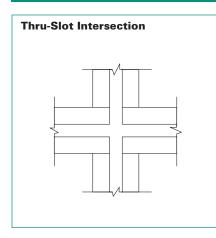
Other finishes, including anodizing, are available by request.

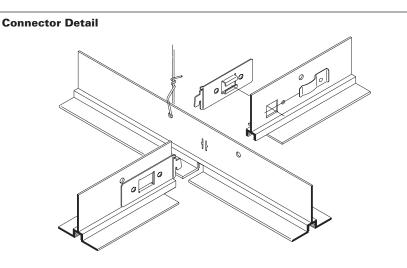
✓ Product Selection Checklist

- 1] Select Profile Number based on design conditions.
- 2] Select Ceiling Panel Type.
- Select Finish B12 or other (specify).
- Note: Drawings must be provided showing designer's reflected ceiling plan, as well as air distribution and lighting layouts.

C-178

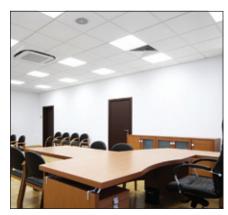
All Metric dimensions () are soft conversion.


© Copyright Price Industries Limited 2014.



Extruded Aluminum Ceiling Systems Unitee Series

Product Information (continued)



Partition Mounting

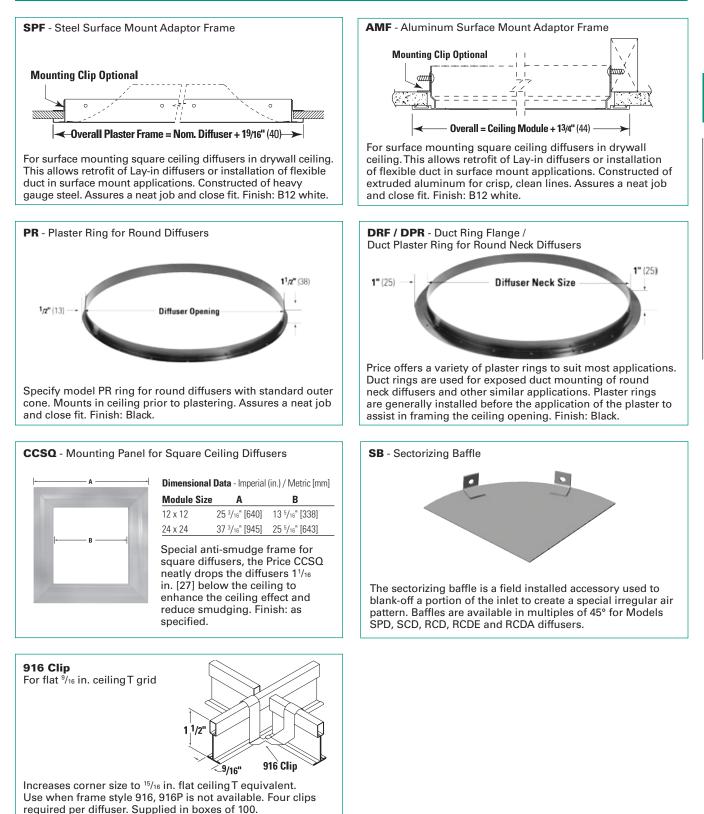
Easy to Install and Remove

Unitee assembles by means of a patented two-piece Universal Clip consisting of a steel mounting clip and spring locking clip, both of which are normally factory installed. The bayonet-type mounting clips are designed to pass through the regimentation holes in connecting grid members and lock securely in place. The speed of installation with this design helps reduce installation cost and assures better alignment and a more rigid installation. If it becomes necessary to remove a member at a later date, simply remove the locking clips and the grid member will easily disengage from the intersection.

© Copyright Price Industries Limited 2014.

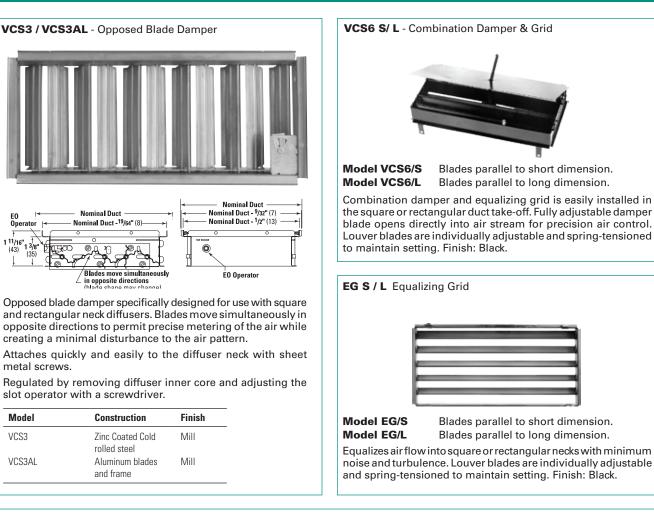
The designer has total creative control with Unitee Ceiling Systems.

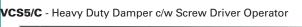
Ceiling Diffusers Accessories

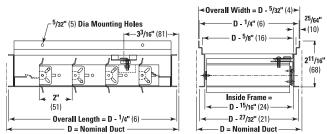


Quick Selection Guide

Accessory Application	Accessory Type	Recommended Mode
Surface Mounted	Lay-in Adaptor Frame	
	Steel Construction	SPF
	Aluminum Construction	APF
Round Neck	Opposed Blade Damper	
	6 in 36 in.	VCR7 (w/ Duct Ring)
	4 in 24	VCR8, VCR8E
	Equalizing Grid	EG
	Damper / Grid	VCR6
	Sectorizing Baffles	SB
Square / Rectangular Neck	Opposed Blade Damper	VCS3
	Equalizing Grid	EG
	Damper / Grid	VCS6
Duct Mounted	Opposed Blade Damper	
	Round 6 in 36 in. dia.	VCR7
	Square / Rectangular	VCS3B
	Air Volume Extractor	AE1, AE2


Surface Mounting Accessories

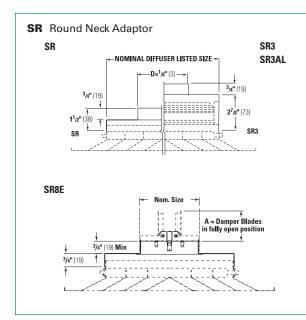



Square / Rectangular Neck Accessories

Heavy Duty Balancing Damper specifically designed for use with high capacity industrial type grilles and diffusers from HCD, 150 and 300 series. Blades move simultaneously in opposite directions to allow for precise metering of the air while creating a minimal disturbance to the air flow. The damper comes with a positive screw type locking mechanism that immobilizes the blades once the desired damper set-point is achieved.

Attaches quickly and easily to diffuser neck with sheet metal screws.

Damper is face adjustable when used with HCD, 150 and 300 series of products.

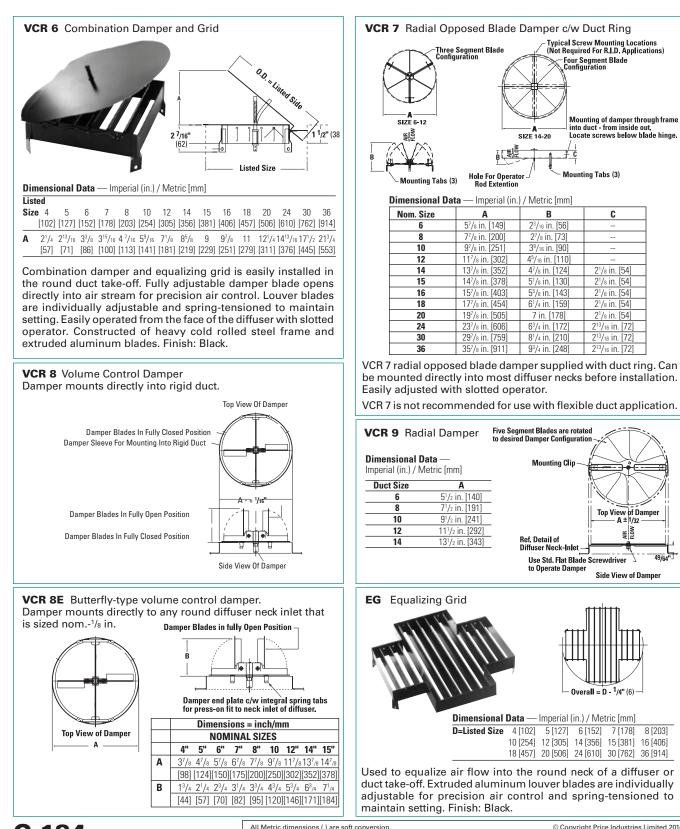

Additional Information Index

For more information on VCS5/C - Heavy Duty Damper c/w Screw Driver Operator, please see Section D of this catalog.

C-182

Square / Rectangular Neck Accessories

SR – Adapts square neck diffusers to a round neck, permitting attachment of round flexible or rigid duct. Damper selection is then restricted to dampers for round neck, such as VCR7, VCR8, VCR6. Adaptors fit over the diffuser neck for fast assembly. SR shipped attached.


SR3 – Adapts square neck diffusers to a round neck with Type 3 opposed blade damper, permitting attachment of round flexible or rigid duct. SR and damper shipped unattached.

SR3AL – Adapts square neck diffusers to a round neck with aluminum opposed blade damper, permitting attachment of round flexible or rigid duct. SR and damper shipped unattached.

SR8E – Adapts square neck diffusers to a round neck VCR8E damper, permitting attachment of round flexible or rigid duct. SR and damper shipped unattached.

Round Neck Accessories

C-184

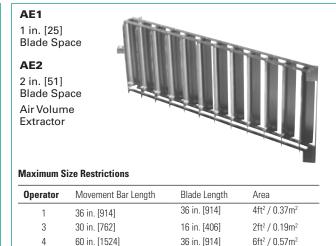
All Metric dimensions () are soft conversion Imperial dimensions are converted to metric and rounded to the nearest millimeter. © Copyright Price Industries Limited 2014

8 [203]

Ceiling Diffusers

Duct Mounted Accessories

VCS3B, VCS3BEO, VCS3BAL, VCS3BALEO, VCS3BSS, VCS3BSSEO


Opposed Blade Damper, and with External Operator

Identical in design and construction to the VCS3, this opposed blade damper comes with an integral frame for duct mounting.

VCS3BEO option features a hex operator that projects through the mounting frame. For installation in a duct where damper is inaccessible from the face of the diffuser.

0
-

Model	Construction	Finish
VCS3B	Zinc Coated Cold	Mill
VCS3BE0	Rolled Steel	
VCS3BAL	Aluminum Blade	Mill
VCS3BALEO	and Frame	Alum.
VCS3BSS	Stainless	#4
VCS3BE0	Steel	Finish

Fully adjustable gang-operated blades move from fully open to fully closed positions to control air direction and volume to ceiling diffuser.

- Rugged cold rolled steel construction.
- Blades spaced 1 in. [25] or 2 in. [51] on center.
- Finished in matte black .
- Factory assembled.

Available Operators

No. 1 Operator - Manual Adjusting Lever.

No. 3 Operator - Hex Key Operated mechanism.

No. 4 Operator - Manually Externally controlled Operating Rod.

Recommended for all oversize volume extractors. Supplied complete with set screw lock.

For complete information on Air Volume Extractors, please refer to Duct Mounted Accessories for Grilles and Registers in Section D.

Miscellaneous Accessories

Safety Chains

For any large diffuser with removable cores situated in areas where the outlet may be subject to impact.

Wire Guards

For Round Cone Diffusers. Recommended for gymnasiums and areas where diffusers are subject to abusive conditions.

Sectorizing Baffles

Allows modification of the air patterns of radial discharge round neck diffusers. Sectorizing baffles blank off the appropriate portion of the round inlet areas to direct air pattern away from obstructions, etc.

Contact your local Price sales rep for additional details and information.

CEILING DIFFUSERS

Engineering Guide VAV Diffusers

Please refer to the **Price Engineer's HVAC Handbook** for more information on VAV Diffusers.

Diffuser Types

Conventional air distribution systems typically group several rooms into a zone that is controlled by a single thermostat. Because rooms within the zone can have different heating/cooling requirements, the system's response to heating/cooling loads within the zone may not be consistent with load requirements. The result can be a system that compromises the comfort of the occupants in each room by providing a blanket response to individual needs. As well, there is resulting system inefficiency due to the overheating/overcooling of rooms within the building.

Self-modulating Variable Air Volume (VAV) diffusers allow for smaller, comfortable zones. They monitor local space conditions and regulate air flow to satisfy the occupants' selected level of comfort. As air flow varies, the unique design of VAV diffusers adjusts an integral damper to maintain face discharge velocities and excellent throw characteristics. VAV diffusers can help solve the inconsistent throws or dumping that may occur with some overhead diffusers due to varying supply conditions.

Several different types of VAV diffusers exist, however most can be grouped into two models: Thermally Powered and Electronically Powered.

Thermally Powered VAV Diffusers

Thermally powered VAV diffusers, shown in **Figure 1**, commonly use thermal actuators to modulate the flow rate of supply air into a room according to a desired temperature setting. The diffuser works independent of a BAS and does not require external power. Based on this, the unit provides system flexibility and a low-cost installation. Each occupant or small group of occupants can adjust their local diffuser to their desired temperature, ensuring tailored comfort levels for all occupants in the building.

A thermally powered VAV diffuser installs much like any other ceiling diffuser. Once the supply duct is connected and air is flowing, the thermally powered VAV diffuser begins to operate. Temperature setpoint adjustments and minimum air flow settings can be adjusted on the diffuser core. The diffuser measures the room temperature by inducing room air into the diffuser core and passing it over a thermal actuator. Linkage contained within the core adjusts the damper based on the difference between room and desired setpoint temperatures. Typically, diffusers are available for VAV cooling and VAV cooling with automatic changeover.

Electronically Powered VAV Diffusers

An electronically powered VAV diffuser, shown in **Figure 2**, uses an electric modulating damper inside the diffuser core assembly. The electronics to control the device are mounted on the top of the backpan, out of sight from the occupied space. The analog or DDC controller with proportional integral control will provide stable, precise control with fast response. Space temperature control within 1 °F of set-point, true VAV cooling and heating, activation of perimeter heat, and optional BACnet interface are all possible with these types of units.

An electronically powered VAV diffuser will require an electrical connection. Temperature set-point adjustment can be made in a variety of ways:on board the unit, wall mounted thermostat, remote control, or a building management system such as BACnet. The room temperature is measured either by inducing room air into the diffuser core or by the use of a wall thermostat. For a zone larger than one diffuser, a master diffuser can drive several drone diffusers. The drone units will adjust their dampers in unison as dictated by the master unit.

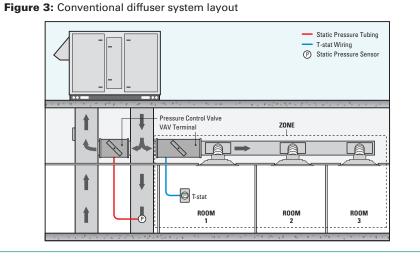
All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter. © Copyright Price Industries Limited 2014.

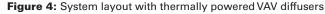
Conventional Design vs. VAV Diffuser Layouts

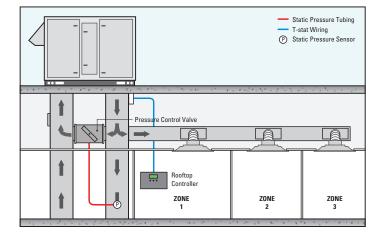
Conventional Diffuser System Layout

In **Figure 3**, a zone thermostat controls the conditions for a zone, which can include several rooms. In this illustration, the VAV terminal will supply air to the zone based on the feedback from the thermostat. When the load has been satisfied, the damper limits the downstream air flow. A pressure control valve monitors the upstream static pressure and allows air to bypass the supply duct.

The disadvantage to this design is that the onethermostatis controlling multiple rooms within a zone. The loads within each of the three rooms will vary throughout the day and will require different supply conditions. The zone thermostat will dictate the amount of cool or warm air necessary to keep its room temperature at the occupant's desired set-point. Therefore, this system will provide inadequate comfort control to all other rooms in the zone since the demand is generated based on the conditions at the thermostat. Overcooling or overheating will likely occur in other rooms.


System Layout with Thermally Powered VAV Diffusers


In Figure 4, thermally powered diffusers are used to regulate the air flow within each room. Thethermallypowereddiffuserhasanintegrated thermostat that reacts to the conditions in that room. A pressure control valve monitors duct static pressure and allows air to bypass the supply duct. This system design gives the occupant the ability to control local space comfort within each room. Because the damper is regulated by a thermal actuator, reaction time to changing conditions will be gradual and stable. The standalone unit is self powered, thus allowing for future layout modifications and requirements. Due to the simple operation of this diffuser, no special training is required for installation and maintenance. Thermal comfort and diffuser performance also are maintained at lower flows.


Networked System Layout with Electronically Powered VAV Diffusers

In **Figure 5**, electronically powered VAV diffusers are used to regulate the air flow within each room. A thermostat or an integrated temperature sensor is located in each space. The electronically powered VAV diffuser actuates based on feedback from the thermostat. A pressure control valve monitors duct static pressure and allows air to bypass the supply duct. BACnet may be utilized for electronically powered VAV diffuser output management and control.

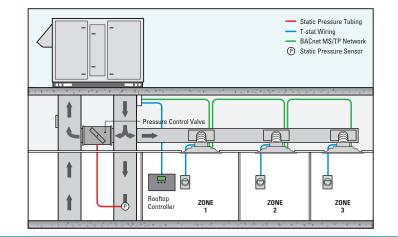

Occupants of each room can control their temperature set-point, thus creating an acceptable space for almost all occupants. As shown in **Figure 5**, an RTU controller can be integrated into the system to allow for polling and heating/cooling strategies to increase energy efficiency and enhanced comfort control.

Figure 5: Networked system layout with electronically powered VAV diffusers

© Copyright Price Industries Limited 2014

C-189

CEILING DIFFUSERS

Operating Principles

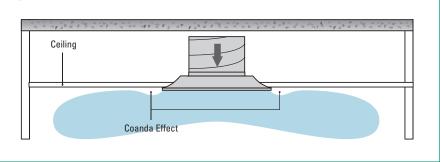
Coanda Effect

When air passes over a static surface it will follow the surface's profile, providing there are no sharp edges or abrupt changes. This is what is known as the Coanda Effect (Figure 6) (ASHRAE, 2009) (Nevin, R. G., 1976). The aerodynamic diffuser backpan ensures that the supply air has a smooth transition from the duct to the room. Supply air leaves the diffuser, adhering to the ceiling as it flows into the space, where it mixes with room air, minimizing air pattern drop. By design, the VAV diffuser backpan and internal damper generate a tight high velocity jet pattern with the Coanda Effect attaching it to the ceiling surface. Without this design, the air flow patterns may detach from the ceiling prematurely and cause thermal discomfort.

Room Air Induction

Induction is the phenomenon of air being drawn towards air in motion. As the speed of air movement increases, the static pressure in the local zone at the diffuser decreases, pulling the surrounding air towards it. This principle is important to the performance of mixing systems; it is the elevated discharge velocity that draws in room air and mixes it with the supply air, as illustrated in **Figure 7** (ASHRAE, 2007b). VAV diffusers rely on high induction to effectively mix the supply and room air to provide uniform room temperature distribution with low room velocities.

NoTurn-Down Effects


Conventional systems typically respond to changes to the heating/cooling load by varying the flow of air to the diffusers at low loads. At low loads this can create low velocity air streams at the diffuser, creating the potential for unwanted drafts in the occupied zone (ASHRAE, 2009). VAV diffusers vary the volume of air supplied to a space by modifying the diffuser outlet area. Face velocities are maintained at a more consistent level; high enough to maintain the Coanda Effect and prevent diffuser dumping. Thus, the performance of VAV diffusers is maintained at all load levels due to the consistent face velocities promoting increased room air induction as illustrated in Figure 8.

Minimum Air Volume

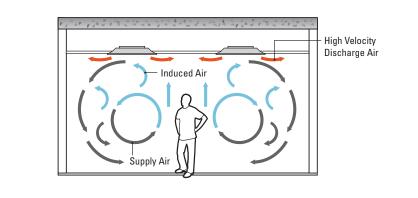
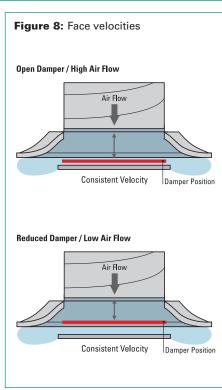

To meet ventilation rate requirements, the VAV diffuser must be set for a minimum air volume. Both thermal powered and electronically powered VAV diffuser, typically have a means of setting this minimum air volume which can be preset in the factory or adjusted in the field. In some cases, this minimum air volume setting may exceed the cooling load, overcooling the space. To prevent overcooling, some method of introducing heat must be applied. With electronically powered VAV diffusers, the control board can activate perimeter radiation, radiant panels or an upstream duct heater. Thermally powered VAV diffusers will require an additional thermostat to activate heat.

Figure 6: Coanda Effect


Figure 7: Room air induction

Maintained ADPI

By definition, the air diffusion performance index (ADPI) is the statistical percentage of the points, when measured uniformly within a space, whose local draft velocities and temperatures fall within acceptable comfort limits (ASHRAE, 2007b). An explanation of the ASHRAE method for estimating ADPI and selection procedures can be found in Chapter 9–Mixing Ventilation in the Price Engineer's HVAC Handbook (**Table 1**).

VAV diffusers are designed to maintain a higher ADPI over the full range of movement of their integral dampers within the published operating range. As the damper closes, the air volume discharged from the diffuser is decreased; however, the velocity of the air remains virtually constant due to the resulting reduction in open area. By maintaining the discharge velocity, VAV diffusers ensure good induction and mixing of the room through their operating range. Furthermore, by maintaining the velocity, the throw to 50 fpm is not reduced as much as it is for a conventional air outlet with a constant outlet area, which means theT50/L ratio is not as significantly affected. Therefore, the ADPI value should remain acceptable as the integral diffuser damper modulates.

All Metric dimensions () are soft conversion.

Imperial dimensions are converted to metric and rounded to the nearest millimeter.

© Copyright Price Industries Limited 2014

Operating Principles

Room Temperature Measurement

Commonly VAV diffusers are designed to operate without a room thermostat, reducing cost, field labor and wiring. Room temperature is measured and controlled based on inducing room air into the diffuser core. During cooling this induced air will be very representative of the occupied zone temperature as the entire room is well mixed due to the high induction characteristics of the VAV diffuser. During heating some stratification of room temperature will exist due to the buoyancy of the warm air, causing a difference in temperature reading between the induced room air and the temperature in the occupied zone. This difference will vary depending on the supply air temperature. The higher the supply air temperature the greater the difference. To correct this temperature difference an "offset" is often applied to more accurately estimate the occupied zone temperature. With a thermally powered VAV diffuser a constant offset is applied in the thermal actuator linkage. Since the actual temperature error varies with air flow and supply air temperature this constant offset will provide limited room control accuracy. An electronically powered VAV diffuser can be programmed to calculate a room temperature offset based on the duct temperature reading to more accurately determine the room temperature in the occupied zone. For applications with limited heating requirements, or for morning warm up sequences the above control strategy will provide acceptable room temperature control. For applications requiring significant hours of heating and where room temperature control is critical an electronically powered VAV diffuser with wall mounted thermostat would be recommended.

Figure 9: Thermally powered diffuser with minimum air flow adjustment

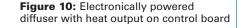
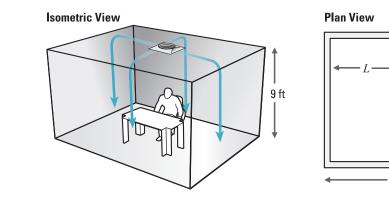
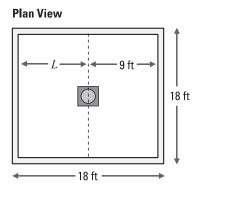


Table 1: Air diffusion performance index (ADPI) selection guide (ASHRAE, 2007b) - IP


Terminal Device	Room Load Btu/ hft²	T _{₅0} /L for Max. APDI	Maximum ADPI	ADPI Greater Than	Range of T ₅₀ /L
	80	1.8	68	-	-
High Sidewall	60	1.8	71	70	1.5-2.2
Grilles	40	1.6	78	70	1.2-2.3
	20	1.5	85	80	1.0-1.9
	80	0.8	76	70	0.7-1.3
Circular ¹ Ceiling	60	0.8	83	80	0.7-1.2
Diffusers	40	0.8	88	80	0.5-1.5
	20	0.8	93	90	0.7-1.3
	80	1.7	61	60	1.5-1.7
Sill Grille	60	1.7	72	70	1.4-1.7
Straight Vanes	40	1.3	86	80	1.2-1.8
	20	0.9	95	90	0.8-1.3
	80	0.7	94	90	0.8-1.5
Sill Grille Spread	60	0.7	94	80	0.6-1.7
Vanes	40	0.7	94	-	-
	20	0.7	94	-	-
	80	0.3	85	80	0.3-0.7
Ceiling Slot	60	0.3	88	80	0.3-0.8
Diffusers (T100 /L)	40	0.3	91	80	0.3-1.1
	20	0.3	92	80	0.3-1.5
	60	2.5	86	80	<3.8
Light Troffer Diffusers	40	1.0	92	90	<3.0
Billions	20	1.0	95	90	<4.5
Perforated &					
Louvered Ceiling	11.51	2.0	96	90	1.4-2.7
Diffusers				80	1.0-3.4


¹Includes square cone diffuser (SCD) and square plaque diffuser (SPD). Since VAV diffusers are based on the geometry of a square plaque diffuser, they will be included in this category as well.

Example 1

In the following example, the ADPI will be evaluated for an electronically powered VAV diffuser and standard perforated diffuser at the same room condition. Consider a 18 ft x 18 ft x 9 ft room with a 24 in. x 24 in. outlet centered in the ceiling.

Space Considerations

Some of the assumptions made for the space are as follows:

- Maximum cooling load = 6900 Btu/h or 21 Btu/h/ft²
- Minimum cooling load = 3100 Btu/h or 10 Btu/h/ft²
- Maximum flow rate = 376 cfm
- Minimum flow rate = 169 cfm
- A 10 in. inlet neck is selected
- The VAV diffuser will operate at 0.30 in. inlet static pressure
- Characteristic length, L, is 9 ft
- Throw at 50 fpm terminal velocity(T50) is determined from product catalogs

Determine the ADPI at maximum flow from Table 1

Model	L	T 50	T ₅₀ /L	ADPI
Perforated 4 way	9 ft	15 ft	1.7	90
VAV	9 ft	12 ft	1.3	90

Determine the ADPI at minimum flow from Table 1

Model	L	T 50	T ₅₀ /L	ADPI
Perforated 4 way	9 ft	8 ft	0.9	<80
VAV	9 ft	8 ft	0.9	90

Both diffusers provide good ADPI at the maximum flow. At minimum flow, the VAV diffuser has a much greater ADPI compared to the perforated diffuser, which does not achieve the minimum acceptable ADPI level of 80.

VAV Diffusers and LEED®

Incorporating VAV diffusers into building design may contribute to LEED credits. Two credits available when using VAV diffusers are:

Controllability of Systems – Thermal Comfort – IEQ Credit 6.2

The intent of this credit is to provide a high level of thermal comfort system control by individual occupants or groups to support optimum health, productivity and comfort conditions. In order to qualify for this credit, 50% of occupants must have the ability to make adjustments to meet their individual space comfort condition preferences.

C-192

VAV diffusers allow personal control of a zone by allowing the user to set the temperature set-point locally, by manually adjusting the diffuser or, in the case of the electronic versions, with the use of an optional thermostat or infrared remote control. These diffusers are the ideal solution for providing personal control in an office environment.

Thermal Comfort – Design – IEQ Credit 7.1

To qualify for this credit the system must provide a thermally comfortable environment that supports the productive and healthy performance of the building occupants in accordance with ASHRAE Standard 55 (ASHRAE, 2004). Under ASHRAE 55, 80% of the occupants must be comfortable in their environment.

VAV diffusers create high room air induction at all cataloged air flow ranges. The increased induction at low air flow eliminates turn-down effects as seen in some standard overhead ceiling diffusers and maintains an acceptable ADPI rating.

All Metric dimensions () are soft conversion.

Imperial dimensions are converted to metric and rounded to the nearest millimeter.

Zoning Solutions

Building with Multiple Demands

Buildings often have multiple zones with different air conditioning needs due to local equipment, solar loads, room locations, the number of occupants and the activity level in this space.

A building in the winter can experience varying exterior loads. For this discussion, we will assume the rooftop does have heating capability and three rooms have been identified as needing supplemental heat as shaded blue in Figure 11. The south side can be primary cooling, while the north side has a heating load.

Solution 1

If this set of offices only has one rooftop unit and one thermostat, the system can only satisfy one of the cooling/heating requirements. A VAV diffuser can be incorporated into each room to improve individual comfort without additional heating strategies, such as baseboard heat.

Solution 2

Perimeter heat or radiant panels offer another solution to the multiple demand spaces example. The system can be designed so that the Air Handling Unit (AHU) supplies cool air to all diffusers and the perimeter radiation system responds to any requirement for heat (**Figure 12**). If the zone requires no further cooling, the VAV diffusers will move to minimum position, and perimeter heat is activated on a call for heating. **Figure 11:** Solution 1 - Zones call for heating and cooling. Rooftop supplies either cool air or warm air.

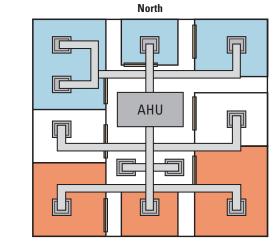
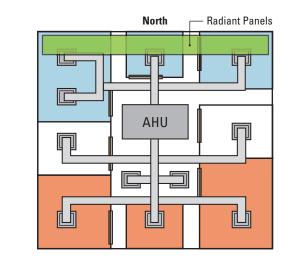



Figure 12: Solution 2 - Perimeter heat or radiant panels, cool supply.

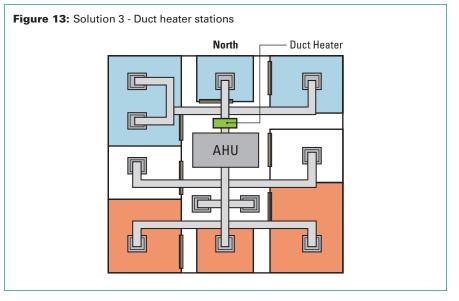
Example 1

Solution 3

Duct heater stations, an alternative to Perimeter Radiation or Radiant Panels, allow for thermal and ventilation demands in a larger multiple demand zone system (Figure 13). For zones that require heating, specific duct heater stations can energize to supply heat to the specific zones rather than supplying hot air from the rooftop to all zones. The zones in which VAV diffusers are located will automatically switch to heating mode (if the option is selected) ensuring that there is adequate zone ventilation for each specific zone demand, and allowing other zones to continue to function in cooling mode. A major drawback for duct heater station design is the additional energy costs required to cool then reheat the air.

Solution 4

By using a rooftop unit with both cooling and heating coils and a DDC rooftop unit controller, BACnet networked VAV diffusers can control the system to supply cooling or heating based on the demand in the various zones or rooms. Weighted and average polling strategies can be used to determine the overall building need for heating and cooling, and control the rooftop unit directly to ensure that these needs are met.


In the example shown in Figure14, the red diffusers require 85% heating, the green diffusers are 100% neutral, and the blue diffusers require 30% cooling.

Under the polling average strategy, the total system demand for the building is shown in Table 2.

In this case, it would not make sense to supply cooling to the blue diffusers since they are a minority with respect to the building's overall heating/cooling requirements. Under this control method, the rooftop would supply heated air until the demand was satisfied.

The advantage of this solution is that it takes into account the size of the demand for either heating or cooling, where the other solutions simply energize heat when there is a demand for heat. This method is more energy efficient.

A drawback of this system design is that not everyone is satisfied as the polling scheme determines when the system is in heating and cooling. However, this can be adjusted through the addition of reheat stations, perimeter heat or multiple AHUs depending on the size of the space. This method of measuring load can be more energy efficient and comfort can be addressed through proper polling schemes.

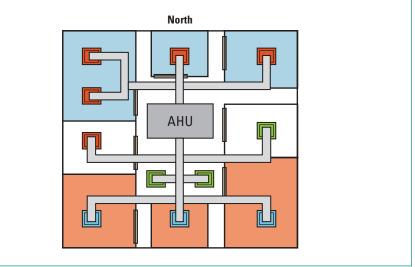


Table 2: Total System Demand for Solution 4

425% Heat	
90% Cooling	
300% Neutral	
815%	
52% of the total	
11% of the total	
49% of the total	
	90% Cooling 300% Neutral 815% 52% of the total 11% of the total

Selection Procedure

Selection of a VAV diffuser is dependent on two main criteria: noise and pressure dependent flow rate.

- 1. Determine the duct pressure for the system based on pressure drop between the fan discharge and the farthest outlet. The static pressure should be a maximum of 1/4 in. w.g. entering the VAV diffuser inlet to minimize the noise generation.
- 2. Determine the maximum and minimum flow rate to the diffuser based on the room load and ventilation rate.
- 3. Select the VAV diffuser size from the Modulated Flow Selection Table (see

Table 3). Under the appropriate design duct pressure column, select the inlet size which will meet the specified sound criteria at the maximum design air volume.

- 4. Check the cataloged throw values to ensure they match the space requirements. Refer to Chapter 9—Mixing Ventilation in the Price Engineer's HVAC Handbook for further selection information.
- 5. Once the VAV diffuser size has been selected, note the lowest air volume cataloged under the duct pressure column. This is the minimum limit of the VAV diffuser at the listed static pressure.

Check the air volume to ensure it meets the design ventilation rate and also check the throw and noise levels. In some cases, the noise level of the VAV diffuser increases with reduced flow and damper closure.

 For more information on NC and air distribution selection procedures, please reference Chapter 9—Mixing Ventilation in the Price Engineer's HVAC Handbook. Note: The VAV diffusers will not operate below the lowest air volume values listed in the Modulated Flow Selection Table (see Table 3). Zero minimum or shut-off is not available.

Example 2

In the following example, a VAV diffuser will be selected referencing performance catalog data (**Table 3**).

Space Considerations

Some of the assumptions made for the space are as follows:

Maximum flow = 350 cfm

Minimum flow = 150 cfm

Duct Static Pressure = 0.20 in. w.g.

Max Room NC = 40

Table 3: Performance Data

Inlet Size		0.10 Duct P _s		0.20 Duct P _s			
	cfm	Throw, ft	NC	cfm	Throw, ft	NC	
	20	0-0-1	-	28	0-1-2	16	
6 in.	54	0-1-2	-	79	0-1-3	23	
0 111.	77	0-1-3	15	111	1-2-3	25	
	109	1-2-3	17	152	2-2-4	27	
	46	1-1-3	-	64	1-2-4	24	
8 in.	112	2-3-5	20	158	3-4-7	31	
8 In.	170	3-4-7	23	240	4-6-9	33	
	242	4-6-9	26	342	6-4-10	36	
	95	1-2-4	23	135	2-3-6	33	
10 in.	190	3-4-8	26	268	4-6-10	36	
iu m.	274	4-6-11	28	388	6-8-13	38	
	365	6-9-12	29	517	8-10-14	39	
	120	2-3-6	27	169	3-4-8	38	
12 in.	202	3-4-9	28	285	4-6-11	38	
12 m.	311	5-7-11	29	441	6-9-13	39	
	478	8-10-14	30	675	10-12-17	40	
	139	3-4-8	27	197	4-5-9	36	
14 in.	213	3-5-9	28	302	5-7-11	37	
14 1[].	370	5-8-12	30	524	8-10-15	39	
	555	9-11-15	30	785	10-13-18	40	

By interpolating the performance data:

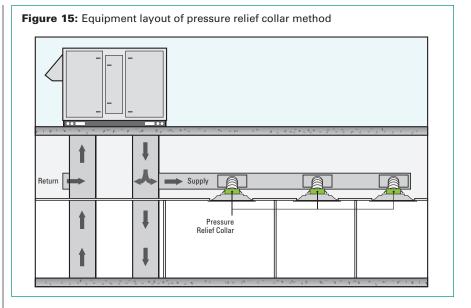
Maximum air flow - 350 cfm - 37 NC - 13 ft throw to 50 fpm terminal velocity Minimum air flow - 135 cfm - 33 NC - 6 ft throw to 50 fpm terminal velocity

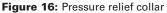
Duct Pressure Control

It is important to control the system pressure for two main reasons. The first is to maintain design noise levels. When some rooms or zones are at low load conditions, diffusers will be forced to throttle off more air to maintain room temperature, creating increased duct static pressure. As the duct static pressure increases, the noise level of the diffusers will increase proportionally. Secondly, as diffusers throttle to reduce air flow to the room or zone, the air flow over the direct expansion (DX) coil is also reduced, potentially causing freeze-up on the coil. Pressure control with a bypass loop will prevent this situation by maintaining constant flow over the coil and limiting duct static pressure to acceptable levels.

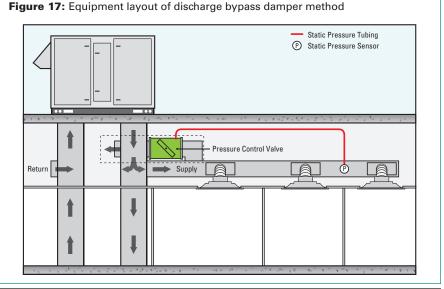
The following pressure control methods are commonly used.

Pressure Relief Collar


Pressure relief collars (Green) are a simple mechanical method of controlling system static pressure (**Figure 15**). These collars have bypass gates that are forced open by a predetermined system pressure, shown in **Figure 16**.


When they open, air is bypassed into the ceiling return plenum, thus reducing the static pressure in the supply duct. This method is common with retrofit VAV diffuser applications as installation is simple and does not require extensive system modification.

Care must be taken to ensure that the return air plenum does not over-pressurize and force the bypassed supply air into the occupied space (i.e. exhaust fan or rooftop relief damper).


Discharge Bypass Damper Method

The bypass damper or pressure control valve (Green) is connected to a static pressure sensor, which will actuate the valve when duct system pressure becomes too high, illustrated in Figure 17. In this method excess air will be bypassed into the ceiling return plenum, thereby reducing the static pressure. Care must be taken to ensure that the return air plenum does not overpressurize and force the bypassed supply air into the occupied space (i.e. exhaust fan or rooftop relief damper). The static pressure sensor must be placed at least 3/4 of the way downstream from the control valve to ensure that all pressure losses induced by the ductwork are accounted for (ASHRAE, 2007a).

© Copyright Price Industries Limited 2014.

Duct Pressure Control

Ducted Bypass Damper Method

This method, illustrated in **Figure 18**, is similar to the plenum return method, except in this case you duct the bypass exhaust terminal or pressure control valve (GREEN) straight to the return ductwork. Since the return ductwork could become pressurized and bypass into the plenum, methods to ensure that the return duct does not get pressurized must be taken (i.e. exhaust fan or rooftop relief damper).The static pressure sensor must be placed at least 3/4 of the way downstream from the control valve to ensure that all pressure losses induced by the ductwork are accounted for (ASHRAE, 2007a).

Fan Control Method

There are two possible methods of fan control that will maintain static pressure in the system. By using a pressure controller (Red) to signal a variable frequency drive (VFD) motor, we can slow down or speed up the flow of air into the space, as illustrated in **Figure 19**. The alternative to the VFD motor is to use inlet vanes. The pressure controller can signal an actuator to close or open the vanes, thus controlling air flow. Fan control should not be used with DX Coils.

The static pressure sensor must be placed at least 3/4 of the way downstream from the control valve to ensure that all pressure losses induced by the ductwork are accounted for (ASHRAE, 2007a).

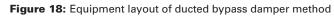
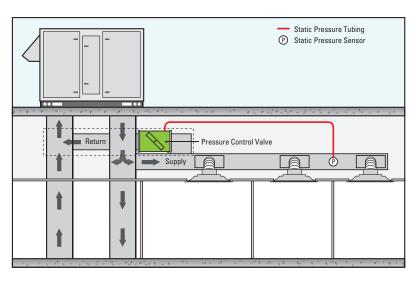
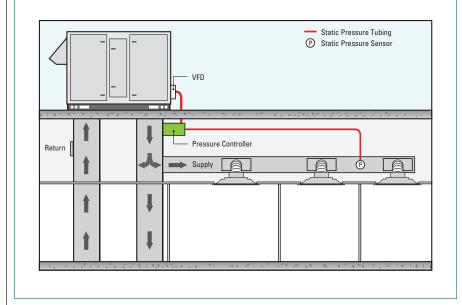




Figure 19: Equipment layout of fan control method

Retrofit Applications

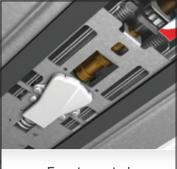
Reduce Thermal Comfort Complaints

When multiple occupants exist in a single zone, chances are one or more people will be thermally uncomfortable. VAV diffusers may be a solution to this problem by subdividing the zone and allowing the occupants to adjust their local zone for temperature. Either thermally or electronically actuated VAV diffusers can be utilized for this. The decision is usually made by weighing the installation requirements versus the type of temperature set-point control desired.

Facility Renovations

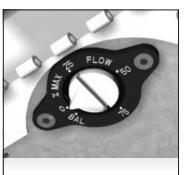
Instead of installing terminal units to subdivide a large zone, VAV diffusers are a practical alternative. Both thermally and electronically powered models may be used with the decision mainly based on preference and requirements of the diffusers. If the building already has or is being upgraded to a building management system, the preferred choice would be the electronically powered models, as outputs such as room temperature, supply temperature and damper position would be useful in troubleshooting the HVAC system. One point to investigate, in either case, is how the system will react, as the proposed VAV diffusers open and close the dampers. As the damper regulates flow, there will be a change in system static pressure. Adding a single VAV diffuser to a large zone may not have much impact on the system. However, replacing a large percentage of diffusers within a zone will cause problems upstream to equipment capacities without proper pressure and flow control being implemented.

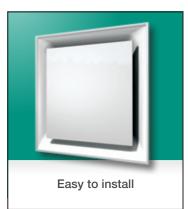
References


- ASHRAE (2007a). Chapter 46. *ASHRAE handbook—HVAC applications.* Atlanta, GA: American Society of Heating, Refrigeration, Air-Conditioning Engineers.
- ASHRAE (2007b). Chapter 56. ASHRAE handbook—HVAC applications. Atlanta, GA: American Society of Heating, Refrigeration, Air-Conditioning Engineers.
- ASHRAE (2009). Chapter 20. ASHRAE handbook—Fundamentals. Atlanta, GA: American Society of Heating, Refrigeration, Air-Conditioning Engineers.
- Nevins, R. G. (1976). Air diffusion dynamics, theory, design and application. Birmingham, MI: Business News Publishing Company.

VARITHERM® THERMALLY POWERED VAV DIFFUSER

Comfort made easy! All of the Varitherm[®] settings can be easily accessed and adjusted from the room side of the diffuser chassis—a first in the industry. You can trust the Price Varitherm[®] to perform to the highest industry standards as it is AHRI certified and backed by a 10 year warranty.


Offers wider air flow ranges and lower pressure drop compared to other thermally powered VAV diffusers.


Easy to control

Lasy to access

Easy to use

www.priceindustries.com for additional product information, including product videos and brochures.

Product Overview

Varitherm[®]

The Varitherm[®] self-modulating diffuser series is designed to provide accurate personal VAV control, while being easy to install, maintain and operate. Thermal sensors, mounted just above the plaque, sense the room temperature and modulate a damper according to the supply air temperature and load in the room – all done mechanically so there is no requirement for power or wiring.

Traditional VAV strategies include grouping rooms and spaces with similar loads and environmental requirements into zones, all controlled by a single VAV device and a single thermostat. As people have varying comfort criteria, there are often many who are left unsatisfied or uncomfortable by being placed in a zone where the thermostat is controlled by other people. Complaints of people being "too cold" or "too warm" are common as the system typically works to satisfy the occupant representing the "worst case" within the zone.

The Varitherm[®] eliminates this issue by allowing individual control at the diffuser level, providing much more flexibility and greater comfort. Patented technology allows the Varitherm[®] to provide highly accurate flow rates determined by the heating or cooling requirement in the room. The thermal actuators are constantly engaged with the damper and thus, provide constant feedback and enable precise control of the room temperature.

As the room load varies, the Varitherm[®] diffuser compensates by controlling the flow of supply air into the space. The diffuser is available in two models, a cooling only model and a heating-cooling model. Modulation for both models is precise and proportional to the requirements of the space and occupant.

By varying the open area at the diffuser, a near constant velocity of supply air is maintained, even at very low flows. This ensures that the Coanda effect is maintained at all flows and diffuser performance issues due to VAV turn down (dumping, for example) are eliminated.

The actuator mechanism features robust thermal sensors that operate an engineered linkage to adjust the damper. An inletmounted thermal sensor provides the heating-cooling model with automatic changeover between heating and cooling modes.

C-200

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter. © Copyright Price Industries Limited 2014.

Product Information

Models

VPD-C VAV Cooling **VPD-HC** VAV Cooling and VAV Heating Varitherm® diffusers feature an architecturally appealing solid plaque design and high performance control linkage. The plaque can be opened to allow for easy access to temperature set-point dials, and minimum air flow adjustment.

Thermal actuators sense room air and adjust air flow into the space to satisfy the room load, requiring no wires for simple installation and maintenance.

Standard Construction Features

- · Steel backpan, faceplate and linkage for strength and durability.
- Thermal elements for consistent, repeatable performance.
- Hinged faceplate, with powerful magnetic closure ensures simple yet strong closure that allows for quick access to adjustment features.
- Specially engineered damper stack for reduced linkage binding and superior performance over the entire operating range.

Standard Linkage and Control Features

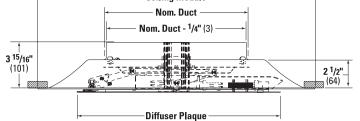
- Individual heating and cooling setpoints (Varitherm-HC only).
- Minimum air flow adjustment.
- Balancing mode for easy setup.
- Automatic heating /cooling changeover (Varitherm-HC only).
- Engineered damper lift track for a more predictable linear performance and for isolating the force of the damper on the linkage for freer, smoother operation improving the response of the diffuser to fluctuating room loads.

Accessories

- PRC Pressure Relief Collar regulates static pressure at the Varitherm®.
- PCV Pressure Control Valve.

Options

R6 Insulation


Finish

White Powder Coat

For optional and special finishes see color matrix.

B12

Dimensional Data — Imperial (in.)

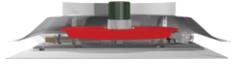
Ceiling Module	Nominal Duct
24 x 24	6, 8,10,12

Dimensional Data — Metric [mm]

Ceiling Module	Nominal Duct
610 x 610	152, 203, 254, 305

Product Selection Checklist

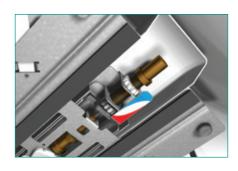
- Select Inlet Diameter based on desired performance characteristics. 11
- Select DiffuserType by model number. 21 Select Frame Style according to installation requirements.
- 31
- 41 Select Options.
- Select Finish (B12 is standard). 51
- Example: 8" / VPD-HC / 3 / B12



Model Nomenclature

Varitherm[®] Series Model VPD-C VAV Cooling

The VPD-C is suitable for cooling only applications without heating requirements.


- Minimum air flow adjustment at diffuser.
- Forced open damper mode allows for system balancing at maximum flow.
- Manual temperature set-point adjustment at diffuser.
- Hinged plaque with powerful magnetic closure.

Varitherm[®] Series Model VPD-HC VAV Cooling and VAV Heating

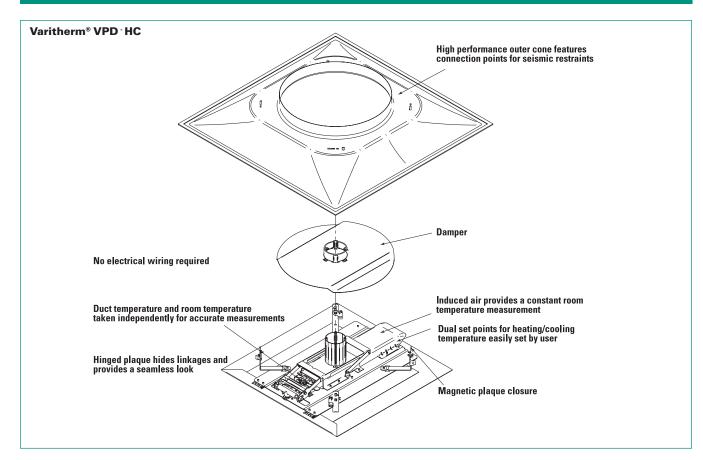
VPD-HC is suitable for applications that require dedicated heating and cooling cycles.

- Dual set-points for control in heating and cooling.
- Minimum air flow adjustment at diffuser.
- Forced open damper mode allows for system balancing at maximum flow.
- Manual temperature set-point adjustment at diffuser.
- Automatic changeover to heating / cooling modes.
- Hinged plaque with powerful magnetic closure.

CEILING DIFFUSERS

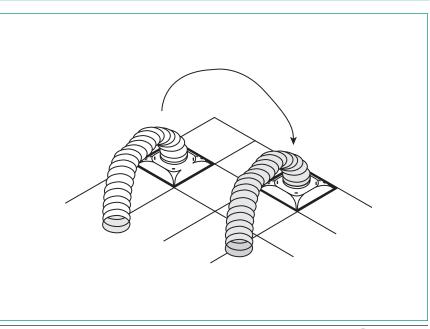
Accessories

Varitherm Dial Adjustment Tool VPD-AT


Varitherm Dial Adjustment tool is shipped with every unit.

- Works with cooling (VPD-C) and heating-cooling (VPD-HC) units.
- Provides user with better grip to adjust dials.
- Aluminum construction.
- Magnets in handle allow the tool to be stored anywhere on the base plate.

Product Feature Summary


Installation

Installation

The installation of the Price Varitherm[®] is as quick and easy as the installation of a standard ceiling diffuser, either in a T-bar Lay-in or surface mounted application. Once the unit is fully secured to the ceiling, round ductwork is connected to the inlet connection via standard fastening methods.

Relocation

Relocation of Varitherm[®] to new zones is easy. No movement of VAV boxes or thermostats is required. Just move the unit and reconnect to the duct; change any settings as required.

CEILING DIFFUSERS

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter.

Significant Features

Ease of Installation:

The Price Varitherm[®] diffuser is easily and quickly configured because it installs as a traditional ceiling diffuser would. Installation of the Varitherm[®] does not require wiring or special trades person. Also, because it is not connected to any power source, the unit will not require special start-up or recalibration upon power loss.

Dual Temperature Set-Points:

The Price Varitherm[®] has dual face operable temperature set-points for heating and cooling modes. The two set-point dials can be set to the desired room temperature and are hidden behind the hinged plaque. A convenient gauge shows the user what the current temperature settings are.

Minimum Air Flow Adjustment:

The Price Varitherm[®] has a minimum air flow adjustment, allowing for control of the zone ventilation requirements sustaining minimum ventilation requirements.

Automatic Heating/Cooling Changeover:

The engineered linkage that controls the damper position incorporates a heating/ cooling changeover so that when the system changes from heating to cooling (and vice versa) the VPD-HC will continue to control accordingly.

Room Air Temperature Sensing:

The high supply air exit velocities, even at low flow, ensure sufficient room mixing. The induced room air draws occupied zone air up to the diffuser face. Room air is then induced over the temperature sensors for consistent, accurate room temperature monitoring.

Incorporated Forced Open Mode:

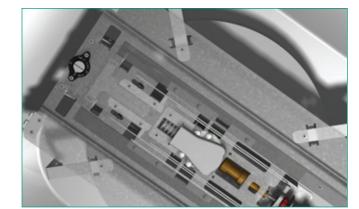
A manual forced open mode is designed into the system for balancing purposes. This is accomplished by turning a screw, which allows for easy adjustment of the minimum damper position.

No Turn Down Effects:

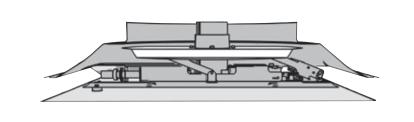
The design of the outer cone ensures that the speed of the air exiting the diffusers is always sufficient enough to maintain a proper Coanda across the ceiling. By maintaining the Coanda, no dumping is seen, even mixing occurs, and personal comfort is maintained. Smoke Test - Full Flow 8"Ø - 350 cfm (203mm Ø - 165 L/s)

Smoke Test – Modulated Flow 8"Ø – 200 cfm (203mm Ø - 94 L/s)

Varitherm® Temperature Measurement and Control


Price Varitherm®

The Varitherm[®] incorporates thermal actuators as the heart of its design. The actuators respond to temperature change, retracting as they cool and extending as they warm up. Price has developed a specialized linkage to harness the power of these actuators, and provide accurate room temperature control for heating and cooling applications.The Varitherm[®] control features are accessible from behind the hinged plaque.


The Varitherm[®] measures temperature for both of its models in similar ways. As the supply air passes through the inlet, a portion of the air passes through a center stack and a port directs the exiting air towards a predetermined edge of the diffuser. The directed air causes an induction effect at the opposite edge of the diffuser; in both the cooling only model (VPD-C) and the heating-cooling model (VPD-HC), two actuators are positioned within this induced air path. This induced air provides these two actuators with air at room temperature, allowing the diffuser to measure the room air temperature accurately. In the case of the VPD-HC, three interconnected actuators are needed, with a heat-cooling changeover actuator located within the center stack measuring the duct temperature.

The desired temperature of the room is easily changed and set by adjusting the control dials under the plaque. Each dial can be spun along a threaded shaft, either to increase or decrease the desired set-point temperature. Between both dials is a gauge to indicate what the dial is currently set at and to show what the allowable range for the dial is. The VPD-HC has two dials; one red for the heating temperature set-point and one blue for the cooling temperature set-point.The VPD-C has one blue dial to set the cooling temperature.

In cooling mode, the actuators will close the damper as the room cools down and open the damper as the room heats up. In heating mode (VPD-HC only), the actuators will close the damper as the room air becomes warmer and open the damper upon a decrease in room air temperature. The actuator assembly is connected to a linkage system that will automatically engage heating or cooling modes of the diffuser based on the supply air temperature. Varitherm[®] – Minimum air flow adjustment

Varitherm®

Minimum Air Flow and Balancing Mode

To ensure that a room meets minimum air flow rate requirements, an easy adjustment dial is provided near the hinge of the diffuser. This dial can be turned to allow for 10% to 100% of the minimum air flow rate of the selected diffuser size. Inscribed upon the dial is an easy to read gauge and only requires a standard screwdriver to set to the appropriate percentage.

To change the diffuser to balancing mode, simply rotate the dial to 100%. The damper will become disengaged from the linkage allowing for a quick and easy balancing of the diffuser. Once the diffuser is balanced, rotate the dial back to the desired minimum percentage.

Key Features and Advantages

- Hinged plaque with magnetic closure ensures simple operation and strong closure. Plaque has no risk of falling from unit as it is permanently fastened to the support chassis via a hinge.
- Circular stack and bearing design allow for free movement of damper, with no binding between the stack and damper.
- Local zone control by user.
- Simple minimum air flow adjustment, with integrated balancing mode accessible from room side for easy adjustment.
- No calibration required.
- Resistant to power fluctuations (burnouts, blackouts).
- No wiring required.
- Does not require special journeymen/ tradesmen for installation.
- No thermostat required; utilizes induction to measure room temperature.
- Senses true average room temperature.
- Smooth operation for quiet modulation.
- Separate temperature settings for heating and cooling.

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter

Performance Data - Imperial Units - 24 x 24

Inlet Size	Neck Velocity, fpm Velocity Pressure	400 0.010	500 0.016	600 0.022	700 0.031	800 0.040	900 0.050	1000 0.062	1200 0.090
6	Static Pressure	0.014	0.021	0.031	0.042	0.054	0.069	0.085	0.123
	Total Pressure	0.024	0.037	0.053	0.072	0.094	0.119	0.147	0.212
	cfm	79	98	118	137	157	177	196	236
	NC	_	_	_	17	21	24	28	33
	Throw, ft	1-2-4	2-2-5	2-3-6	2-3-6	2-4-7	3-4-7	3-5-8	4-6-8
8	Static Pressure	0.022	0.034	0.049	0.067	0.087	0.110	0.136	0.196
	Total Pressure	0.032	0.050	0.072	0.097	0.127	0.161	0.199	0.286
	cfm	140	174	209	244	279	314	349	419
	NC	—		18	23	27	30	33	39
	Throw, ft	2-3-7	3-4-7	3-5-8	4-6-9	5-7-9	5-7-10	6-7-11	7-8-12
10	Static Pressure	0.030	0.047	0.068	0.092	0.120	0.152	0.188	0.271
	Total Pressure	0.040	0.063	0.090	0.123	0.160	0.203	0.250	0.361
	cfm	218	273	327	382	436	491	545	654
	NC	_	17	23	27	31	35	38	44
	Throw, ft	4-5-9	4-7-11	5-8-12	6-9-12	7-9-13	8-10-14	9-11-15	9-12-16
12	Static Pressure	0.038	0.060	0.086	0.118	0.154	0.195	0.240	0.346
	Total Pressure	0.048	0.076	0.109	0.148	0.194	0.245	0.302	0.436
	cfm	314	393	471	550	628	707	785	942
	NC	_	21	26	31	35	39	42	47
	Throw, ft	5-8-11	6-9-13	8-10-14	9-11-15	9-11-16	10-12-17	10-13-18	11-14-20

Performance Notes:

1. Performance data is presented for the Varitherm[®] diffuser with the damper in the full open (maximum flow) position.

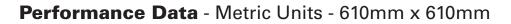
3. Air flow is in cfm.

4. All pressures are in in. w.g.

 Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."

- Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- 6. Throw data is based on supply air and room air at isothermal conditions.
- 7. NC values are based on room absorption of 10 dB re $10^{\text{-}12}$ Watts and one diffuser.
- 8. Blanks "-" indicate an NC level below 15.

Modulated Flow Selection Table - Imperial Units


Inlet	.05 Duct Ps				0.10 Duct Ps			0.20 Duct Ps		0.30 Duct Ps		
Size	cfm	Throw, ft	NC	cfm	Throw, ft	NC	cfm	Throw, ft	NC	cfm	Throw, ft	NC
6"	111	2-3-6	21	157	3-4-7	29	222	4-6-8	37	272	4-6-9	41
	128	2-3-6	24	181	3-4-7	29	256	4-6-9	38	313	5-7-10	44
	150	2-4-7	28	213	3-5-8	30	301	5-7-10	40	369	6-7-11	46
8"	144	2-4-7	20	203	3-5-9	28	287	5-7-11	35	352	6-8-12	40
	176	3-5-8	24	249	5-7-10	28	352	6-8-12	37	432	8-9-13	43
	211	3-5-8	28	299	5-7-10	29	423	7-8-12	39	518	7-9-13	45
10"	179	2-3-7	19	254	3-5-9	27	359	4-7-11	35	440	5-8-12	40
	231	5-7-13	25	326	7-10-16	27	461	9-13-19	37	565	11-14-21	43
	281	5-7-11	30	398	6-9-13	29	562	9-11-15	39	689	10-12-17	45
12"	217	4-6-12	19	307	6-9-15	27	434	8-12-18	35	532	10-14-20	40
	290	5-8-14	26	410	8-11-17	27	579	11-14-20	37	709	13-16-23	43
	358	6-9-12	31	507	8-10-14	29	716	10-12-17	39	877	11-13-19	45

Performance Notes:

- Performance data is presented for Varitherm[®] diffuser at several modulated damper positions with constant duct static pressures of .05, 0.10, 0.20, and 0.30 inches w.g.
- Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- 3. Air flow is in cfm.
- Throw values are measured in feet for terminal velocities of 150 fpm (minimum), 100 fpm (middle) and 50 fpm (maximum).
- 5. Throw data is based on supply air and room air at isothermal conditions.
- NC values are based on room absorption of 10 dB re 10⁻¹² Watts and one diffuser.

7. Blanks "—" indicate an NC level below 15.

C-206

Inlet	Inlet Velocity	2.0	2.5	3.0	3.6	4.1	4.6	5.1	6.1
Size	Velocity Pressure	2	4	5	8	10	12	15	22
150mm	Static Pressure	3	5	8	10	13	17	21	31
	Total Pressure	6	9	13	18	23	30	37	53
	Air Flow	37	46	56	65	74	84	93	111
	NC	-	-	-	17	21	24	28	33
	Throw, m	0.3-0.6-1.2	0.6-0.6-1.5	0.6-0.9-1.8	0.6-0.9-1.8	0.6-1.2-2.1	0.9-1.2-2.1	0.9-1.5-2.4	1.5-1.8-2.4
200mm	Static Pressure	5	8	12	17	22	27	34	49
	Total Pressure	8	12	18	24	32	40	50	71
	Air Flow	66	82	99	115	132	148	165	198
	NC	-	-	18	23	27	30	33	39
	Throw, m	0.6-0.9-2.1	0.9-1.2-2.1	0.9-1.5-2.4	1.2-1.8-2.7	1.5-2.1-2.7	1.5-2.1-3.0	1.8-2.1-3.4	2.1-2.4-3.7
250mm	Static Pressure	7	12	17	23	30	38	47	68
	Total Pressure	10	16	22	31	40	51	62	90
	Air Flow	103	129	154	180	206	232	257	309
	NC	-	17	23	27	31	35	38	44
	Throw, m	1.2-1.5-2.7	1.2-2.1-3.4	1.5-2.4-3.7	1.8-2.7-3.7	2.1-2.7-4.0	2.4-3.0-4.3	2.7-3.4-4.6	2.7-3.7-4.9
300mm	Static Pressure	9	15	21	29	38	49	60	86
	Total Pressure	12	19	27	37	48	61	75	109
	Air Flow	148	185	222	260	296	334	370	445
	NC	-	21	26	31	35	39	42	47
	Throw, m	1.5-2.4-3.4	1.8-2.7-4.0	2.4-3.0-4.3	2.7-3.4-4.6	2.7-3.4-4.9	3.0-3.7-5.2	3.0-4.0-5.5	3.4-4.3-6.1

Performance Notes:

Outlets and Inlets."

 Performance data is presented for the Varitherm® diffuser with the damper in the full open (maximum flow) position.
 Tested in accordance with ASHRAE Standard 70-2006

"Method of Testing for Rating the Performance of Air

3. Air flow is in L/s.

4. All pressures are in Pa.

 Throw values are measured in feet for terminal velocities of 0.75 m/s (minimum), 0.5 m/s (middle) and 0.25 m/s (maximum). 6. Throw data is based on supply air and room air at isothermal conditions.

7. NC values are based on room absorption of 10 dB re $10^{\text{-}12}$ Watts and one diffuser.

8. Blanks " -- " indicate an NC level below 15.

Modulated Flow Selection Table - Metric Units

Inlet	12.5 Pa Duct Pressure			24.9 Pa Duct Pressure			49.8 Pa Duct Pressure			74.7 Pa Duct Pressure		
Size	L/s	Throw, m	NC									
150mm	52	0.6-0.9-1.8	21	74	0.9-1.2-2.1	29	105	1.2-1.8-2.4	37	128	1.2-1.8-2.7	41
	60	0.6-0.9-1.8	24	85	0.9-1.2-2.1	29	121	1.2-1.8-2.7	38	148	1.5-2.1-3.0	44
	71	0.6-1.2-2.1	28	101	0.9-1.5-2.4	30	142	1.5-2.1-3.0	40	174	1.8-2.1-3.4	46
200mm	68	0.6-1.2-2.1	20	96	0.9-1.5-2.7	28	135	1.5-2.1-3.4	35	166	1.8-2.4-3.7	40
	83	0.9-1.5-2.4	24	118	1.5-2.1-3.0	28	166	1.8-2.4-3.7	37	204	2.4-2.7-4.0	43
	100	0.9-1.5-2.4	28	141	1.5-2.1-3.0	29	200	2.1-2.4-3.7	39	245	2.1-2.7-4.0	45
250mm	85	0.6-0.9-2.1	19	120	0.9-1.5-2.7	27	169	1.2-2.1-3.4	35	208	1.5-2.4-3.7	40
	109	1.5-2.1-4.0	25	154	2.1-3.0-4.9	27	218	2.7-4.0-5.8	37	267	3.4-4.3-6.4	43
	133	1.5-2.1-3.4	30	188	1.8-2.7-4.0	29	265	2.7-3.4-4.6	39	325	3.0-3.7-5.2	45
300mm	102	1.2-1.8-3.7	19	145	1.8-2.7-4.6	27	205	2.4-3.7-5.5	35	251	3.0-4.3-6.1	40
	137	1.5-2.4-4.3	26	194	2.4-3.4-5.2	27	273	3.4-4.3-6.1	37	335	4.0-4.9-7.0	43
	169	1.8-2.7-3.7	31	293	2.4-3.0-4.3	29	338	3.0-3.7-5.2	39	414	3.4-4.0-5.8	45

Performance Notes:

- 1. Performance data is presented for Varitherm® diffuser at several modulated damper positions with constant duct static pressures of 12.5, 25, 50, and 75 Pa.
- Tested in accordance with ASHRAE Standard 70-2006 "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- 3. Air flow is in L/s.
- Throw values are measured in meters for terminal velocities of 0.75 m/s (minimum), 0.5 m/s (middle) and 0.25 m/s (maximum).
- 5. Throw data is based on supply air and room air at isothermal conditions.
- 6. NC values are based on room absorption of 10 dB re $10^{\text{-}12}$ Watts and one diffuser.

7. Blanks " -- " indicate an NC level below 15.

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter.

JLICG

ARI Certification Rating Points

Maximum Flow

Inlet Size	Rated Air Flow		Minimum Operating Static Pressure			Discharge Sound Power Level, dB Octave Band						
	cfm	L/s	in. Water	Pa	2	3	4	5	6	7		
6	150	71	0.06	15	49	41	38	36	32	26		
8	260	123	0.08	20	51	43	41	38	33	26		
10	410	193	0.10	25	53	44	43	40	34	28		
12	590	378	0.14	35	57	50	48	46	40	31		

Modulated Flow

Inlet Size	Rated Air Flow		Minimum Operating Static Pressure			Discharge Sound Power Level, dB Octave Band					
	cfm	L/s	in. Water	Pa	2	3	4	5	6	7	
6	80	38	0.08	20	50	42	40	35	31	26	
8	140	66	0.21	52	52	47	48	42	36	30	
10	220	104	0.22	55	54	49	50	45	37	32	
12	315	149	0.30	75	55	51	52	49	44	36	

Performance Notes:

1. Air flow is in cfm [L/s].

2. All pressures are in in. w.g [Pa].

3. Sound Power Levels expressed in Decibels, (dB) re 10⁻¹²

watts and one diffuser.

JLICE

PRODIGY[®] SELF MODULATING DIFFUSER

The Price Prodigy[®] diffuser features a high-torque gear motor for fast response, long life and reliable operation. A room temperature sensor provides constant feedback to the microprocessor controller located in the diffuser, enabling precise control of the space temperature. Re-heat output is available on the master unit and installation is made easy with RJ-45 connectors. Enhances traditional system design by adding the element of personal control.

wireless thermostat

Universal junction panel on Prodigy[®] master

www.priceindustries.com for additional product information, including product videos and brochures.

Personal Self-Modulating Diffusers **Prodigy®** Series

Product Overview

Prodigy[®]

The Prodigy® self-modulating diffuser series has been designed to address many of the problems common to today's conventional HVAC systems.

Most traditional approaches group rooms with similar load characteristics together to form zones. As these zones are created, multiple work spaces are controlled by a single thermostat. "Thermostat wars" ensue as occupants attempt to adjust the thermostat to their level of comfort. Complaints from occupants who are "too hot" or "too cold" are common. Often, the system works at capacity to satisfy that one occupant who represents the "worst case" within that zone.

The Prodigy[®] enhances traditional system design by adding the element of personal control. A room temperature sensor provides constant feedback to the microprocessor controller located in the diffuser, enabling precise monitoring of the space temperature.

As room load varies, the Prodigy® compensates by controlling the flow of supply air into the space. A superior cone design maintains air performance characteristics throughout the performance range. Diffuser response is controlled through advanced PI control algorithms. Modulation is precise and proportionate to the requirements of the space and occupant.

The actuator mechanism features a high-torque, low voltage motor, which offers immediate response that is superior to the sluggish response and delayed action common to thermally activated expansion devices. A supply air temperature sensor provides automatic heating / cooling changeover. An output is available to activate supplemental perimeter heating devices if required.

Three models are available with convenient set-point adjustment at the diffuser, a wall mounted thermostat or a handheld remote.

A BACnet interface option allows Prodigy master units to connect to a MS/TP network. This allows the Prodigy master to share information with the building automation system.

The Prodigy[®] Series is an evolving product line.

Please contact your Price sales rep or visit our website www.priceindustries.com for the most current features and accessories.

C-210

Model Nomenclature

Prodigy® Series

Prodigy® Series Model PPD1 VAV Cooling and VAV Heating Manual Adjustment

VAV Diffusers

PPD1 is suitable for cooling only applications and limited heating requirements, including morning warm-up cycles.

- Native BACnet compliant (optional).
- Face mounted room temperature sensor.
- · Manual set-point adjustment at diffuser.
- Upgradable to PPD2 or PPD3.

Prodigy® Series Model PPD2 VAV Cooling and VAV Heating Wall Mounted T-Stat

PPD2 is suitable for applications that require dedicated heating and cooling cycles. To more accurately sense room temperature while in the heating mode, the unit features a wall thermostat with temperature sensor.

- Native BACnet compliant (optional).
- · Face mounted room temperature sensor for cooling mode.
- · Set-point adjustment at the thermostat.
- · Five thermostat options for PPD2 model
 - Room Sensor (Blank face)
 - DialThermostat
 - LCDThermostat
 - LCDThermostat with motion sensor for occupancy
 - Wireless Thermostat.

Note: LCD models can be used to set up variables in Prodigy units such as BACnet address, set-point limits and many others.

Prodigy® Series Model PPD3 VAV Cooling and VAV Heating IR Remote Control Device (hand-held)

PPD3 is suitable for cooling only applications and limited heating requirements, including morning warm-up cycles.

- Native BACnet compliant (optional).
- Face mounted room temperature sensor.
- · Hand-held infrared remote control device for set-point adjustment.

Prodigy® Series Model PPDD Drone Unit

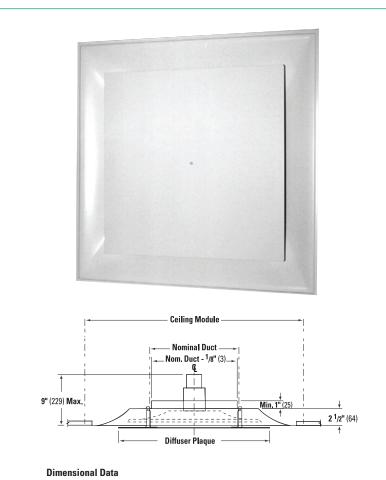
Drone units contain actuators and control circuitry to respond to signals from the master unit. The damper mechanism is synchronous with the master unit. Up to five drones can be supported by one master.

Drone 2

Drone 3

Drone 1

VAV Diffusers **Prodigy® Series**



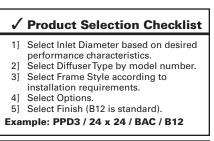
Product Information

Models

CEILING DIFFUSERS

VAV Cooling and VAV Heating	
Vanual Adjustment	PPD1
VAV Cooling and VAV Heating	
c/wT-stat c/w 35 ft plenum cable)	PPD2
AV Cooling and VAV Heating	
/w Hand held IR remote)	PPD3
rone Unit /w 35 ft plenum cable)	PPDD
II Prodigy [®] diffusers featu	
rchitecturally pleasing faceplate	design
nd high performance inner cone.	
ntroller utilizes PI control algorit	
odulate air flow and maintain c	
om temperatures as load and nditions vary.	space
tandard Construction Feature	
Steel backpan, faceplate and inn for strength and durability.	er cone
Engineered inner damper and	l panel
design for enhanced air performa	
low sound ratings.	
High-torque gear motor for fast resolved to a series of the series of th	sponse,
Drive components are enclosed	d in an
extruded housing.	
Unit mounted RJ modular jacks	
drone outputs and modular power input.	supply
tandard Controls and Electron	lice
Microprocessor-based direct electronics.	digitai
Advanced PI algorithms for en	hanced
control and response.	nanoca
Duct temperature sensor for au	tomatic
heating / cooling changeover.	
"Positive Positioning Feature	
synchronous operation with dror	ne units
(Model PPDD).	
Set-point flow limits are reta	ined if
power is lost.	ativataa
A pulsed 24 VAC signal output ac auxiliary perimeter heating dev	
others).	
Three output signal options are av	vailable
to suit a variety of applications.	
ptions	
BAC (BACnet interface module	e) (see
page C218).	
	اممان المعا
115 or 277/24 VAC transformer pl and mounted. Junction box inclu	

	Ceiling Module	Nominal Duct		
Imperial (in.)	24 x 24	6, 8,10,12,14		
Metric [mm]	610 x 610	152, 203, 254, 305, 356		


Accessories

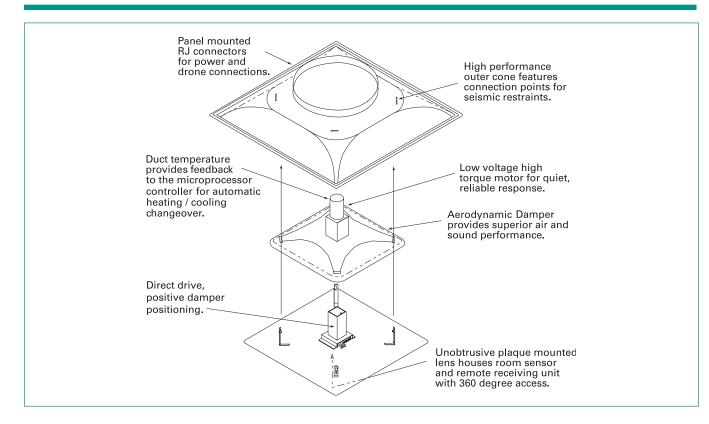
- Power Module supports up to 15 master units via modular cable connections.
- PRC Pressure Relief Collar regulates static pressure at Prodigy inlet (see page C227).
- Baffle an optional baffle is available to provide 3 way and 2 way air patterns.
- PCV Pressure Control Valve.

Finish

White Powder Coat

For optional and special finishes see color matrix.

C-212


All Metric dimensions () are soft conversion Imperial dimensions are converted to metric and rounded to the nearest millimeter. © Copyright Price Industries Limited 2014.

B12

VAV Diffusers Prodigy[®] Series

Product Feature Summary

DDC Controller

- Microprocessor-based digital control.
- Closed feedback loop with sensors modulates inner damper to maintain room temperature +/- 1°F [0.5°C].
- Monitors supply air temperature for automatic heating / cooling changeover.
- Set-point factory preset at 72°F [22°C].
- Advanced PI control.
- Retains settings if power is lost.
- Positive positioning feature for synchronous drone operation.
- 24VAC Output to energize supplemental perimeter heat (by others).\

BACnet interface option:

- MS/TP Network.
- Uses modular RJ-45 connections for network.
- Shares room temperature, room load, room set-point and much more with the building automation system (BAS).

Significant Features

Individual Comfort and Control

The Prodigy[®] Personal Diffuser monitors space conditions and regulates the flow of supply air to maintain the room set-point with an accuracy of +/- 1° F (0.5°C). This setpoint is adjustable, enabling occupants to establish the setting that represents their individual level of comfort.

Robust PI Control

The Prodigy[®] features **PI** (Proportional + Integral) control algorithms for proven control stability and versatility. Integral feedback improves proportional response by evaluating room conditions and diffuser response over time to eliminate offset errors and maximize comfort in the space.

Immediate Response

Direct digital control signals and a direct drive motor enable the Prodigy[®] to provide an immediate and controlled response to even the smallest fluctuations in room or load conditions. This feature prevents the delayed or disproportional response that contributes to "hunting" and "thermal overshoot" that is common to thermal expansion devices.

True VAV Cooling and Heating Modes

The Prodigy[®] provides optimal performance and flexibility in operational modes that include both heating and cooling cycles. Diffuser mounted room temperature sensors support VAV cooling and heating, while wall mounted thermostats supply the most accurate measurement needed for more demanding VAV heating applications. Heating/Cooling changeover is automatic.

Superior Air Performance

The engineered direct drive damper is designed to maintain outlet velocities as the unit modulates. Throws and mixing characteristics remain relatively constant throughout the performance range of the diffuser.

Infrared Remote Devices (PPD3) A hand-held infrared remote provides a means for set-point adjustment for VAV cooling and constant volume heating, by pressing a button on the remote controller and directing it at the diffuser. The remote device provides "warmer" and "cooler" settings, and a "reset" option. Set-point factory preset at 74 °F (23°C) Cooling, 72 °F (22°C) Heating.

Perimeter Heat Activation

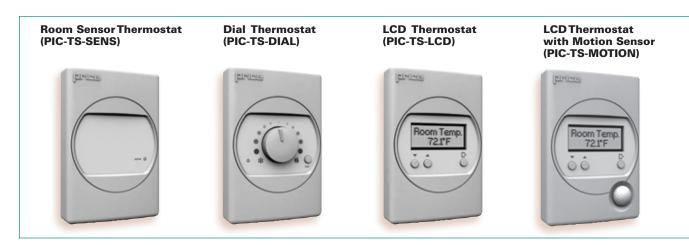
A standard feature of the Prodigy[®] is a pulsed 24 VAC output signal for perimeter heating devices such as baseboard units or radiant panels. On/off, Pulse Width Modulation, and Pulse Delay Modulation (default) configurations are available.

Smoke Test - Full Flow 8"Ø - 350 cfm (203mm Ø - 165 L/s)

Smoke Test – Modulated Flow 8"Ø - 200 cfm (203mm Ø - 94 L/s)

Thermostat Options

A broad range of thermostat options including LCD, Motion Sensor and Wireless allow the building owner to match the functionality of the thermostat to their specific project requirements. Existing installations can be easily upgraded to accommodate future changes. All wired thermostats have plug and play connections and a service port for configuration without having to access the plenum.


BACnet Interface Option

The Prodigy BACnet interface option allows connection to any Building Automation System supporting the industry standard BACnet communication protocol. This option allows remote monitoring and control of the Prodigy to maximize energy efficiency and occupant comfort.

VAV Diffusers Prodigy[®] Series

Thermostat Options - Wired

Several wired thermostats are available to suit the specific requirements and budget of any project. All thermostats feature easy RJ-45 connections for fast and error free field connection as well as a service port for field configuration if required.

Room Sensor Thermostat (PIC-TS-SENS)

This economical model of thermostat measures room temperature. The set-point can be set from a hidden dial on the back of theT-Stat, through free setup software, or through a BACnet system. This eliminates the problem of unauthorized tampering without the need for visually unappealing thermostat lock boxes.

Dial Thermostat (PIC-TS-DIAL)

This model measures room temperature and features a dial adjustment and an occupancy button. Temperature set-point limits are set through software/BACnet.

LCD Thermostat (PIC-TS-LCD)

This model measures room temperature and features an LCD screen with an advanced menu structure and three pushbuttons. Temperature set-point limits are set through software/BACnet.

LCDThermostat with Motion Sensor (PIC-TS-MOTION). This model possesses the same features as the LCDT-Stat with the addition of a passive infrared motion sensor. The motion sensor allows for automatic detection of space occupancy and therefore can save energy by shutting down during unoccupied periods.

Balancing and modification to the controller setup can be accomplished from the LCD screen.

Field Setup Options

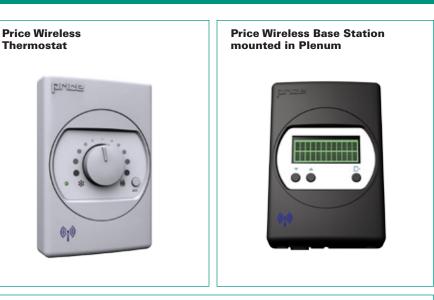
The Prodigy[®] comes pre-calibrated from the factory. However if field conditions require readjustment the Service/Maintenance personnel may change Prodigy[®] settings.

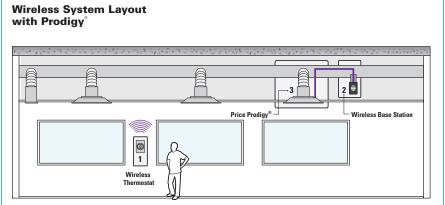
- There are several ways to access setup variables in the Prodigy®:
- Through the password protected menu structure built into the LCD thermostats.
- 2. Through the BACnet network (for controllers ordered with the BACnet option.
- 3. Through the service jack located on the bottom of each thermostat and the Price LINKER. The LINKER is a USB 2.0 interface to Price controls. It is used in conjunction with FREE setup and balancing software available from Price.
- 4. Using the standalone setup tool: LCD-SETUP. This special setup tool resembles the LCD thermostat in both appearance and menu function. It can be plugged into either the Dial Thermostat or the Room Sensor Thermostat and used to setup the controller when a computer is not available.

Wireless Thermostat

Introduction

Occasionally an installation arises where running CAT5 and other wiring is inconvenient or even impossible. For jobs such as these, Price is proud to introduce its Wireless thermostat. Using cutting edge wireless technology, a base station mounted in the ceiling communicates with a battery powered remote thermostat up to 50 ft away. The thermostat also contains a temperature sensor, which is linked to the base through the wireless connection as well. The remote unit requires no wiring whatsoever, making the Price Wireless Thermostat kit a breeze to install.


What's included?


The Price Wireless Thermostat Kit comes with everything you need to get set up. Included in the kit are:

- Price Wireless Base Module
- Price Wireless Remote Thermostat
- A CAT5 data cable to connect the base module to the Prodigy
- Mounting bracket

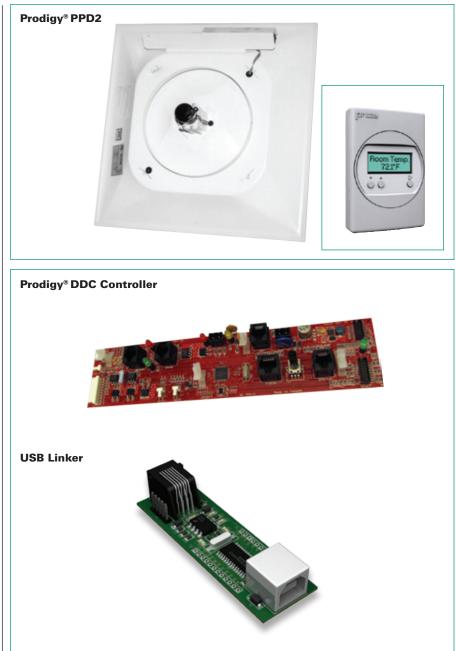
Product Features

- Reduced installation and labor costs
- Easily relocated to accomodate occupancy changes and renovations
- Up to 5 year battery life with off-theshelf user-replaceable batteries
- FCC and IC certified wireless module
- LCD screen on Base Station displays signal strength, battery level, room temperature and set-point
- Field reconfigured if required with Linker software or LCD-Setup tool

Prodigy® Temperature Measurement and Control

Supply Air Temperature Measurement

Mounted near the 24VAC motor is a solid state, low drift temperature sensor that reads the supply (duct) air temperature. This temperature reading is fed into the DDC controller. Based on this supply air temperature, the Prodigy[®] will respond as shown below:


- Supply Air Temperature below 67 °F (19°C) → Prodigy[®] is in cooling mode.
- Supply Air Temperature between 67-77 °F (19 - 25°C) → Prodigy[®] is in neutral mode.
- Supply Air Temperature 77 °F (25°C) and above → Prodigy[®] is in heating mode.
 These ranges can be user specified if the

Room Air Temperature Measurement and Control

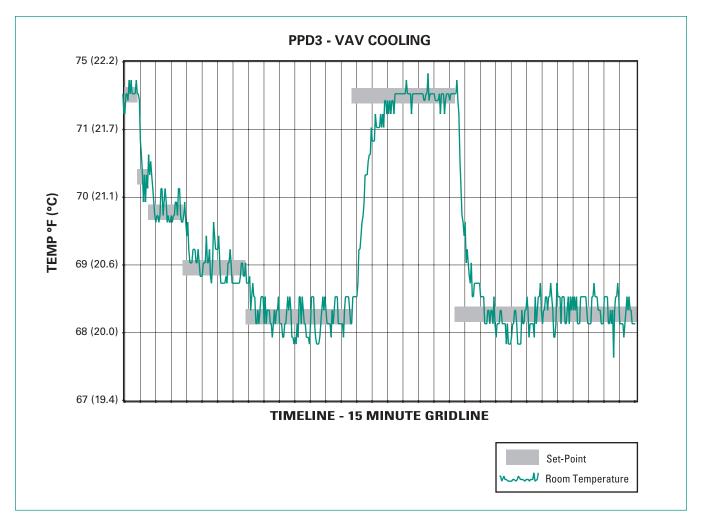
BACnet option is selected.

The Prodigy[®] PPD1 (set-point is adjusted at a potentiometer located on the back of the diffuser junction panel) and PPD3 (setpoint is adjusted via infrared remote control) measure the room air temperature via a solid state, low drift temperature sensor at the plaque. A small plastic port allows room air to be induced toward the sensor. This port is also used to detect infrared signals from the remote control. Please note the PPD1 and PPD3 models supportVAV cooling and heating based on the plaque temperature sensor. During cooling this temperature reading will be very representative of the actual room temperature as the entire room is well mixed due to the high induction characteristics of the Prodigy[®] diffuser. During heating some stratification of room temperature will exist due to the buoyancy of the warm air, causing a difference in temperature reading between the plaque sensor and the temperature in the occupied zone. This difference will vary depending on the supply air temperature. To correct this temperature difference the Prodigy[®] controller is programmed to calculate a room temperature offset based on the duct temperature reading to more accurately determine the room temperature in the occupied zone. For applications with limited heating requirements, or for morning warm up sequences the above control strategy will provide acceptable room temperature control. For applications requiring significant hours of heating and where room temperature control is critical the PPD2 with wall mounted thermostat would be recommended.

For the Prodigy[®] PPD2 (set-point is adjusted via a wall mounted thermostat), temperature is measured at the thermostat. This model of Prodigy[®] is intended for VAV cooling and VAV heating modes.Typically, measuring the room air temperature via a wall mounted thermostat will provide reliable readings

independent of heating or cooling modes.

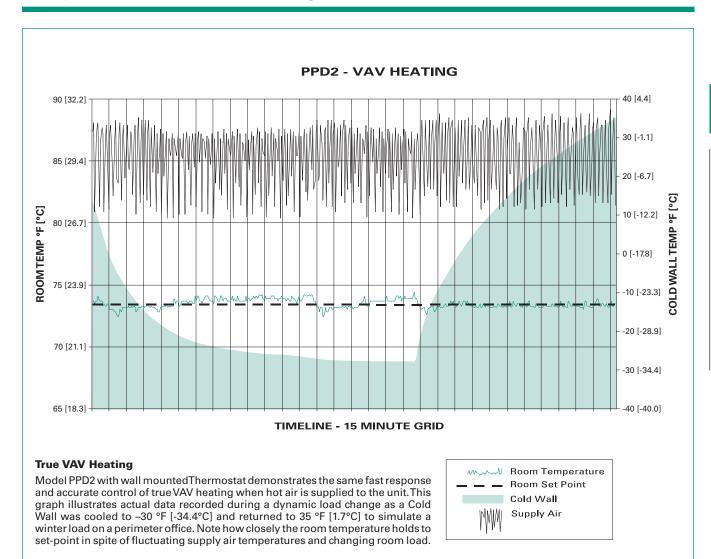
The Prodigy[®] series diffusers have several different control features available to aid in the functionality of the diffusers. The BACnet option diffuser has the distinct ability to control all set-points through the BAS.


Minimum Air Flow and Balancing

The Prodigy[®] has preset minimum damper positions and can be changed either via the LCD thermostat or through the USB Linker servicetool. In order to balance a unit without the LCD thermostat or USB Linker, unplug the diffuser and reconnect the diffuser. Once the Prodigy[®] diffuser calibrates the damper to fully open, unplugging the unit will keep the damper fully open, at which point balancing can be done.

Temperature Control – Cooling

The Prodigy[®] design incorporates DDC control, a direct drive motor and positive positioning feedback, resulting in precise and reliable performance.


Fast Response

Prodigy[®] responds to set-point changes with remarkable speed. This graph represents actual laboratory data showing how quickly Prodigy[®] affects changes in room temperature to accommodate a change in set-point. The Prodigy[®] DDC control and direct drive motor allow the unit to respond immediately to new settings, achieving the desired result within 15 minutes. Even with a large change in set-point of 3° [1.67°C], Prodigy[®] brought the room temperature under control and within 1° [0.5°C] of the target in under 15 minutes.

Accurate Control

Robust PI control and positive damper position feedback virtually eliminates thermal overshoot. Prodigy[®] is able to maintain control of room temperature within +/- 1 °F [0.5 °C] of set-point.

Temperature Control – Heating

C-219

Networking

Networking

Networking allows building systems, including the HVAC system, to share information with each other. This information includes set-points, room temperatures, room loads and much more. This allows HVAC devices to work together as a system, resulting in:

- Increased energy efficiency
 - o Using schedules (Day/Night/Weekend)
 - o Monitoring room load data
 - o Shutting down unoccupied zones
- Control and monitoring of several devices from a single workstation (typically a personal computer or laptop)
- Easier troubleshooting

Networking with BACnet

Using the ASHRAE network standard BACnet allows the Prodigy[®] to communicate with other BACnet devices. This allows interoperability between different devices even if they are made by different manufacturers. For more information on networking and different communication protocols please see section L of the Price catalog.

Once the Prodigy[®] diffusers are networked, a software package (typically with graphics) can be used to show any device connected to the network. This allows for accurate information that is both current and accurate to be accessed by the user.

Also, once networked, it is possible to setup scheduling to shut down certain zones during the day or at night based on occupancy.

MS/TP Network

The Prodigy[®] uses the BACnet network type MS/TP (Master Slave Token Passing), which uses two wires in a daisy chain configuration. This network type is based RS-485 physical laver and is very robust in industrial environments, while being economical enough to be implemented on each device.

The network connection between Prodigy® (with BACnet option) diffusers is done with the included plenum rated network cable. No tools needed!

Connecting the Prodigy® diffusers with the BACnet interface option is very simple and efficient. Dual RJ-45 jacks on each diffuser allow daisy chaining each device without splitters or tools. Included with each Prodigy diffuser is a 35 foot plenum-rated network cable to simplify installation in the field.

Local addresses can be set at each Prodigy® diffuser using the on-board DIP switches. The media access control (MAC) address range is 1-99. Each device on the network segment must have a unique address, otherwise communication errors will occur.

To show proper data exchange, TX (transmit) and RX (receive) LEDs indicate when data is being sent and received. This provides a visual

check of how the network is performing. For example, if the RX LED is not blinking this could indicate a cable is unplugged at the other end.

Standard baud rates for the BACnet MS/TP network are 9600, 19200, 38400 and 76800. All devices on the network segment must be set to communicate at the same speed, otherwise communication errors will occur.

Prodigy® Control Variables

There are several control variables that can be monitored and/or adjusted via the network.These include, but are not limited to:

- **Room Temperature**
- Room Set-point
- Supply Air Temperature
- Supply Air Temperature switch over points (hot/cold/neutral temperatures)

- Inlet Size
- ReheatType
- Damper Position
- Damper Target
- Model Type (PPD1, PPD2, PPD3)
- · Ping (sounds the Prodigy beeper to help you locate the unit)
- Day/Night Mode
- Cooling/Heating Load (100% auto + 100%)

These variables allow the user to determine the current status of a zone. This information can also be relayed to a main controller, allowing it to calculate the total heating or cooling loads.

All Metric dimensions () are soft conversion

BACnet Network Option

The BACnet interface option allows the Prodigy Master units to connect to a MS/TP network (sometimes referred to as RS-485). Using the ASHRAE standard BACnet allows interoperability between a new or existing building automation system (BAS). A standard communication protocol such as BACnet will ensure future updates and expansions can be done with minimal problems.

A proprietary system would only allow products to be networked if they are all from the same company. This can cause problems if that one company cannot provide all the products and solutions needed for a job.

Information Sharing

The BACnet interface allows the Prodigy Master units to share information with the building automation system. This allows for more intelligent control of the entire building automation system. The values that can be shared are room temperature, room set-point, room load and many more. The values are passed through the MS/TP network as analog variables.

Connection

To allow for fast and easy field connection, the network uses standard RJ-45 jacks. No tools are needed to hook up the network connection; it is as easy as plugging in a laptop computer.

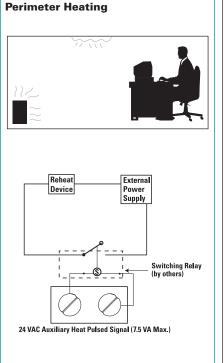
Also included with each Prodigy Master Unit is a 35 foot shielded plenum-rated cable. This reduces field installation costs greatly since cables do not need to be sourced and assembled on site.

Addressing

Addresses are set at the Prodigy Master junction bracket using field adjustable DIP switches. Status LEDs show network receive and transmit activity to aid in troubleshooting.

MS/TP Network Termination

In order to properly terminate an MS/ TP network there must be a terminator (typically a 120 ohm resistor) at the start and end of the network. The terminators help reduce reflections on the network and aid in creating a solid and stable network.


Each Prodigy Master has a built-in terminator that can be enabled by clicking a DIP switch. This saves wiring cost and reduces complexity in the field.

The Prodigy Series is constantly evolving to include new features. Please contact Price for more information.

Auxiliary Heat

A standard feature of the Prodigy[®] is an on board solid state relay that provides a pulsed 24 VAC signal to operate auxiliary heating devices such as hot water or electric baseboard units or radiant panels. Three output signal options are offered:

- 1. Pulse Width Modulation (PWM). Rapid cycle is ideal for electric baseboard and radiant panels for fine control and heater longevity.
 - a) Rapid cycle time (2 seconds).
 - b) ON portion of cycle is proportionate to heating requirements of space.
 - c) Requires intermediate Solid State relay (by others) to drive electric device (7.5 VA maximum).
- 2. Pulse Delay Modulation (PDM). Longer cycle is recommended for hot water systems to ensure that entire system is charged with hot water.
 - a) Minimum ON cycle of 2 minutes.
 - b) OFF cycle varies proportionate to heating requirements of space.
 - c) Intermediate Solid State relay (by others) recommended to drive water valve (7.5 VA maximum).

- ON / OFF- operates more like a traditional thermostat and cycles least of all three options.
 - a) ON cycle begins when space temperature falls lower than 2 °F [1 °C] below heating set-point.
 - b) OFF cycle resumes when space temperature reaches heating set-point.
 - c) Suitable for use with intermediate mechanical relay by others (7.5 VA maximum).

VAV Diffusers **Prodigy® Series**

Performance Data - Imperial Units - Models PPD1, PPD2, PPD3, PPDD

Inlet	Neck Velocity	400	500	600	700	800	900	1000
Size	VP, in. w.g.	0.010	0.016	0.022	0.031	0.040	0.050	0.062
	Static Pressure	0.056	0.087	0.124	0.167	0.216	0.272	0.333
	Total Pressure	0.066	0.102	0.146	0.197	0.256	0.322	0.396
6"	CFM	79	98	118	137	157	177	196
	NC	21	25	29	33	36	38	40
	Throw, ft	2-3-5	3-4-6	3-4-6	4-5-7	4-5-7	4-5-8	5-6-8
	Static Pressure	0.040	0.060	0.083	0.111	0.141	0.175	0.213
	Total Pressure	0.050	0.075	0.106	0.141	0.181	0.226	0.275
8"	CFM	140	175	209	244	279	314	349
	NC	17	23	27	32	35	38	41
	Throw, ft	2-3-7	3-4-7	3-5-8	4-6-9	5-7-9	5-7-10	6-7-11
	Static Pressure	0.048	0.072	0.101	0.134	0.171	0.212	0.257
	Total Pressure	0.058	0.088	0.123	0.164	0.211	0.263	0.320
10"	CFM	218	273	327	382	436	491	545
	NC	19	25	30	34	37	41	43
	Throw, ft	4-5-9	4-7-11	5-8-12	6-9-12	7-9-13	8-10-14	9-11-15
	Static Pressure	0.055	0.083	0.117	0.155	0.199	0.247	0.299
	Total Pressure	0.065	0.099	0.139	0.186	0.238	0.297	0.362
12"	CFM	314	393	471	550	628	707	785
	NC	21	27	32	36	39	42	45
	Throw, ft	5-8-11	6-9-13	8-10-14	9-11-15	9-11-16	10-12-17	10-13-1
	Static Pressure	0.062	0.094	0.132	0.176	0.225	0.279	0.339
	Total Pressure	0.072	0.110	0.155	0.206	0.265	0.330	0.402
14"	CFM	428	535	641	748	855	962	1069
	NC	22	28	33	37	41	44	47
	Throw, ft	7-9-13	8-10-15	9-11-16	10-12-17	11-13-19	11-14-20	12-15-2

1. Performance data is presented for the Prodigy diffuser with the inner cone in the full open (maximum flow) position.

2. Tested in accordance with ASHRAE Standard 70-1991 "Method of Testing for Rating the Performance of Air Outlets and Inlets.

3. Air Flow is in cubic feet per minute, CFM.

4. All pressures are in inches of water.

- 5. Throw values are given in feet to terminal velocities of 150-100-50 fpm.
- 6. Throw data is based on supply air and room air at isothermal conditions
- 7. The NC values, sound pressure level are based on a room absorption of 10 dB re 10-12 watts one diffuser.
- 8. Blanks "-" indicate an NC level below 15.

Modulated Flow Selection Table

Performance Notes:

Inlet	0.10	Duct Pressur	e Ps	0.20	Duct Pressur	e Ps	0.30	Duct Pressur	e Ps	0.40	Duct Pressur	re Ps
Size	CFM	Throw,ft.	NC									
	29	0-1-1	21	46	1-1-2	31	57	1-1-3	36	66	1-2-3	39
6"	70	1-1-3	22	101	1-2-4	32	124	2-3-5	38	144	2-3-6	42
0	89	2-3-5	24	125	2-4-6	33	154	3-4-7	38	178	3-5-8	42
	108	3-4-6	27	152	4-5-7	35	189	4-5-8	40	218	5-6-8	43
	65	1-2-4	22	93	2-3-5	32	119	2-4-6	39	125	3-4-6	40
8"	130	2-3-6	28	193	3-5-8	38	220	4-5-8	41	251	4-6-9	44
0	191	3-5-8	29	284	4-7-10	39	308	5-7-10	41	393	6-8-11	47
	237	4-6-9	31	345	6-7-11	41	405	7-8-11	45	477	7-9-12	49
	76	1-2-3	21	110	2-3-5	31	133	2-3-6	37	165	3-4-8	42
10"	155	2-3-7	26	220	3-5-9	35	320	5-7-11	44	360	5-8-12	47
10	252	4-5-10	28	374	5-8-12	38	497	7-10-14	46	570	8-11-15	49
	334	5-8-12	30	500	8-10-14	41	634	9-11-16	47	750	10-12-17	52
	100	2-2-5	25	141	2-3-7	34	170	3-4-8	39	220	4-5-9	46
12"	200	3-4-9	28	295	4-7-11	38	370	5-8-12	43	440	6-9-13	48
12	320	5-7-11	28	480	7-10-14	39	580	8-11-15	44	704	10-12-17	48
	438	7-9-13	30	640	9-11-16	40	780	10-13-18	45	912	11-14-19	49
	110	2-3-6	24	165	3-5-8	35	215	4-6-9	42	233	4-6-10	44
14"	245	4-6-10	29	367	6-8-12	39	473	7-10-14	45	532	8-10-15	48
14	414	6-9-13	30	620	9-11-16	40	770	10-12-18	46	883	11-13-19	49
	554	9-11-15	29	812	10-13-18	40	1008	12-14-20	45	1142	12-15-22	49

Performance Notes:

- 1. Performance data is presented for the Prodigy Diffuser at several modulated inner cone positions with constant duct static pressures of 0.10, 0.20, 0.30, and 0.40 inches w.g.
- 2. Tested in accordance with ASHRAE Standard 70-1991 "Method of Testing for Rating the Performance of Air Outlets and Inlets"
- 3. Air Flow is in cubic feet per minute, CFM.
- 4. Throw values are given in feet to terminal velocities of 150-100-50 fpm.
- 5. Throw data is based on supply air and room air at isothermal condition.
- 6. The NC values, sound pressure level are based on a room absorption of 10 dB re 10-12 watts one diffuser.
- 7. Blanks "-" indicate an NC level below 15.

VAV Diffusers **Prodigy® Series**

Performance Data - Metric Units - Models PPD1, PPD2, PPD3, PPDD

Maximum Flow Selection Table

Inlet	Inlet Velocity	2.0	2.5	3.0	3.6	4.1	4.6	5.1
Size	Velocity Pressure	2	4	5	8	10	12	15
150mm	Static Pressure	14	22	31	42	54	68	83
	Total Pressure	16	25	36	49	64	80	99
	Air Flow	37	46	56	65	74	84	93
	NC	21	25	29	33	36	38	40
	Throw, m	0.6-0.9-1.5	0.9-1.2-1.8	0.9-1.2-1.8	1.2-1.5-2.1	1.2-1.5-2.1	1.2-1.5-2.4	1.5-1.8-2.4
200mm	Static Pressure	10	15	21	28	35	44	53
	Total Pressure	12	19	26	35	45	56	68
	Air Flow	66	83	99	115	132	148	165
	NC	17	23	27	32	35	38	41
	Throw, m	0.6-0.9-2.1	0.9-1.2-2.1	0.9-1.5-2.4	1.2-1.8-2.7	1.5-2.1-2.7	1.5-2.1-3.0	1.8-2.1-3.4
250mm	Static Pressure	12	18	25	33	43	53	64
	Total Pressure	14	22	31	41	53	66	80
	Air Flow	103	129	154	180	206	232	257
	NC	19	25	30	34	37	41	43
	Throw, m	1.2-1.5-2.7	1.2-2.1-3.4	1.5-2.4-3.7	1.8-2.7-3.7	2.1-2.7-4.0	2.4-3.0-4.3	2.7-3.4-4.6
300mm	Static Pressure	14	21	29	39	50	62	74
	Total Pressure	16	25	35	46	59	74	90
	Air Flow	148	185	222	260	296	334	370
	NC	21	27	32	36	39	42	45
	Throw, m	1.5-2.4-3.4	1.8-2.7-4.0	2.4-3.0-4.3	2.7-3.4-4.6	2.7-3.4-4.9	3.0-3.7-5.2	3.0-4.0-5.5
350mm	Static Pressure	15	23	33	44	56	69	84
	Total Pressure	18	27	39	51	66	82	100
	Air Flow	202	252	303	353	404	454	505
	NC	22	28	33	37	41	44	47
	Throw, m	2.1-2.7-4.0	2.4-3.0-4.6	2.7-3.4-4.9	3.0-3.7-5.2	3.4-4.0-5.8	3.4-4.3-6.1	3.7-4.6-6.4

6. Throw data is listed in meters to terminal velocities (VT)

0.76 m/s

0.51 m/s

0.25 m/s

as listed below:

Minimum Throw to VT

Maximum Throw to VT

Middle Throw to VT

Performance Notes:

- 1. Performance data is presented for Prodigy diffuser with inner core in the full open (maximum flow) position.
- 2. Tested in accordance with ASHRAE Standard 70-2006.
- 3. Velocity is given in meters per second, m/s.
- 4. All pressures are in Pascals.
- 5. Air flow is in liters per second, L/s.

Modulated Flow Selection Table

Inlet	25	Pa Duct Press	ure	50	Pa Duct Press	ure	75	Pa Duct Press	ure	100) Pa Duct Press	sure
Size	L/s	Throw, m	NC	L/s	Throw, m	NC	L/s	Throw, m	NC	L/s	Throw, m	NC
	14	0.0-0.3-0.3	21	22	0.3-0.3-0.6	31	27	0.3-0.3-0.9	36	31	0.3-0.6-0.9	39
150mm	33	0.3-0.3-0.9	22	48	0.3-0.6-1.2	32	59	0.6-0.9-1.5	38	68	0.6-0.9-1.8	42
I JUIIIII	42	0.6-0.9-1.5	24	59	0.6-1.2-1.8	33	73	0.9-1.2-2.1	38	84	0.9-1.5-2.4	42
	51	0.9-1.2-1.8	27	72	1.2-1.5-2.1	35	89	1.2-1.5-2.4	40	103	1.5-1.8-2.4	43
	31	0.3-0.6-1.2	22	44	0.6-0.9-1.5	32	56	0.6-1.2-1.8	39	59	0.9-1.2-1.8	40
200mm	61	0.6-0.9-1.8	28	91	0.9-1.5-2.4	38	104	1.2-1.5-2.4	41	119	1.2-1.8-2.7	44
20011111	90	0.9-1.5-2.4	29	134	1.2-2.1-3.0	39	145	1.5-2.1-3.0	41	186	1.8-2.4-3.4	47
	112	1.2-1.8-2.7	31	163	1.8-2.1-3.4	41	191	2.1-2.4-3.4	45	225	2.1-2.7-3.7	49
	36	0.3-0.6-0.9	21	52	0.6-0.9-1.5	31	63	0.6-0.9-1.8	37	78	0.9-1.2-2.4	42
250mm	73	0.6-0.9-2.1	26	104	0.9-1.5-2.7	35	151	1.5-2.1-3.4	44	170	1.5-2.4-3.7	47
ZJUIIIII	119	1.2-1.5-3.0	28	177	1.5-2.4-3.7	38	235	2.1-3.0-4.3	46	269	2.4-3.4-4.6	49
	158	1.5-2.4-3.7	30	236	2.4-3.0-4.3	41	299	2.7-3.4-4.9	47	354	3.0-3.7-5.2	52
	47	0.6-0.6-1.5	25	67	0.6-0.9-2.1	34	80	0.9-1.2-2.4	39	104	1.2-1.5-2.7	46
300mm	94	0.9-1.2-2.7	28	139	1.2-2.1-3.4	38	175	1.5-2.4-3.7	43	208	1.8-2.7-4.0	48
30011111	151	1.5-2.1-3.4	28	227	2.1-3.0-4.3	39	274	2.4-3.4-4.6	44	332	3.0-3.7-5.2	48
	207	2.1-2.7-4.0	30	302	2.7-3.4-4.9	40	368	3.0-4.0-5.5	45	430	3.4-4.3-6.1	49
	52	0.6-0.9-1.8	24	78	0.9-1.5-2.4	35	102	1.2-1.8-2.7	42	110	1.8-1.8-3.0	44
350mm	116	1.2-1.8-3.0	29	173	1.8-2.4-3.7	39	223	2.1-3.0-4.3	45	251	2.4-3.0-4.6	48
20011111	151	1.8-2.7-4.0	30	293	2.7-3.4-4.9	40	363	3.0-3.7-5.5	46	417	3.4-4.0-5.8	49
	207	2.7-3.4-4.6	29	383	3.0-4.0-5.5	40	476	3.7-4.3-6.1	45	539	3.7-4.6-6.7	49

Performance Notes:

- 1. Performance data is presented for Prodigy diffuser at several modulated inner core positions with constant duct static pressures (as listed)
- 2. Tested in accordance with ASHRAE Standard 70-2006.
- 3. Velocity is given in meters per second, m/s.
- 4. All pressures are in Pascals.

- 5. Air flow is in liters per second, L/s.
- 6. Throw data is listed in meters to terminal velocities (VT) as 0.75 m/s minimum, 0.5 m/s middle, and 0.25 m/s maximum
- 7. Throw data is based on supply air and room air being at isothermal conditions.
- 8. Sound data NC values are based on a room absorption of -10dB, re 10⁻¹² watts.

7. Throw data is based on supply air and room air being at

8. Sound data NC values are based on a room absorption of

10 Performance data is tabulated for supply air applications.

9. Blanks (--) indicate an NC level below 15.

isothermal conditions.

-10dB, re 10⁻¹² watts.

- 9. Blanks (--) indicate an NC level below 15.
- 10. Performance data is tabulated for supply air applications.

All Metric dimensions () are soft conversion Imperial dimensions are converted to metric and rounded to the nearest millimeter.

ARI Certification Rating Points - Models PPD1, PPD2, PPD3, PPDD

Maximum	Flow

Inlet Size	Rated A	ir Flow	Minimum Operating	J Static Pressure		Dis		l Power Level e Band	, dB	
	cfm	L/s	in. Water	Pa	2	3	4	5	6	7
6	150	71	0.18	45	48	43	48	42	34	25
8	260	123	0.15	37	51	48	50	46	38	28
10	410	193	0.15	37	57	52	51	47	37	27
12	590	278	0.18	45	57	53	52	49	40	29
14	800	378	0.20	50	57	53	53	49	42	30

Modulated Flow

Inlet Size	Rated A	ir Flow	Minimum Operating	g Static Pressure		Dis		l Power Level e Band	, dB	
	cfm	L/s	in. Water	Pa	2	3	4	5	6	7
6	80	38	0.40	100	48	43	48	42	34	25
8	140	66	0.40	100	51	48	50	46	38	28
10	220	104	0.40	100	57	52	51	47	37	27
12	315	149	0.40	100	57	53	52	49	40	29
14	430	203	0.40	100	57	53	53	49	42	30

Performance Notes:

Air flow is in cfm [L/s].

2. All pressures are in in. w.g. [Pa].

 Sound Power Levels expressed in Decibels, (dB) re 10⁻¹² watts and one diffuser.

Installation

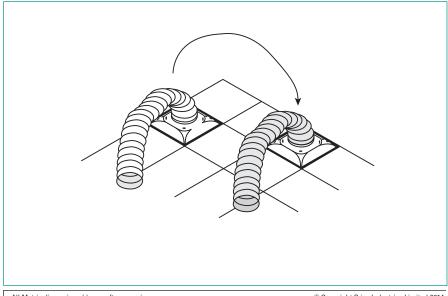
Master Unit

The Prodigy[®] installs much like a traditional diffuser. Standard ductwork is used and the round inlet connection accepts the same fastening methods.

The advanced DDC control requires a 24V power source. This can be provided through an optional unit mounted transformer or the convenient Prodigy Power Module (PPM), which supports up to 15 master and drone units. A terminal plug is also provided to accept 24 VAC field supplied power.

LED status lights on each diffuser indicate presence of 24 VAC power supply, 2-10VDC drone signal and reheat signals.

Drone Unit

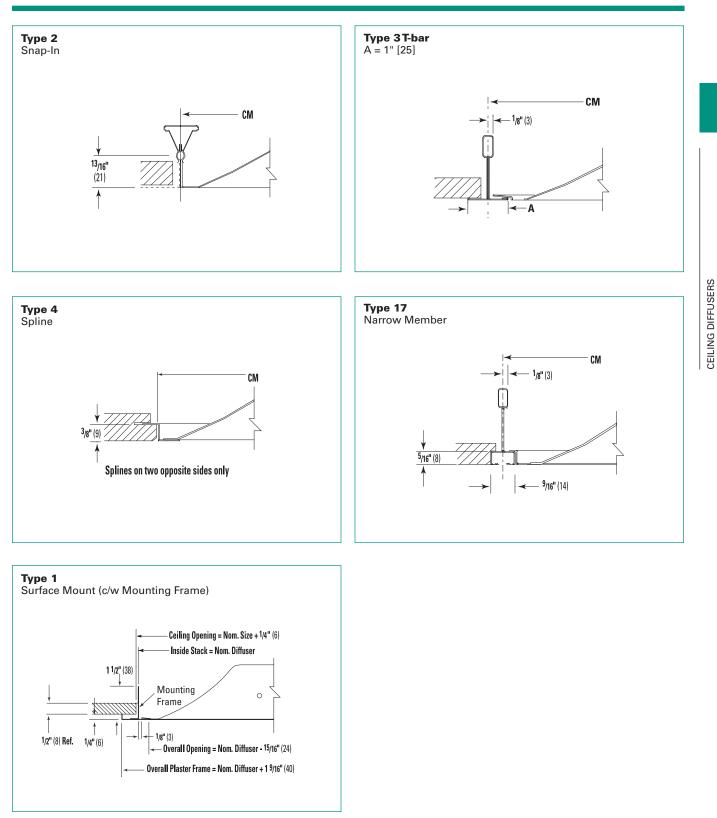

Prodigy[®] Drone units install in the same manner as master units. The first drone receives power and control signals from the master unit via a cable connection. Additional drones are connected together in a similar manner.

Drone units include a 35 ft plenum cable with RJ modular connectors at both ends for simple connections between units. One cable carries both power and control signals.

Relocating Prodigy® Diffusers

Each Prodigy[®] represents an individual zone of control and is easily moved as zones are reconfigured. It is not necessary to incur the cost of relocating VAV boxes, thermostats, or hard ducting.

This modular approach provides the flexibility that is required for today's dynamic tenant environments.



All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter.

VAV Diffusers Varitherm[®] / Prodigy[®] Series

Frame Selection

© Copyright Price Industries Limited 2014.

VAV Diffusers **Pressure Control Valve**

PCV

The Price PCV is designed as a pressure control valve to regulate duct pressure in a VAV or VVT system.

The PCV uses either a field calibrated electric or PIC DDC controller to ensure that over or under pressurization of the duct will not occur.

Typical Applications

The PCV can be used as either a bypass unit or as a throttling device.

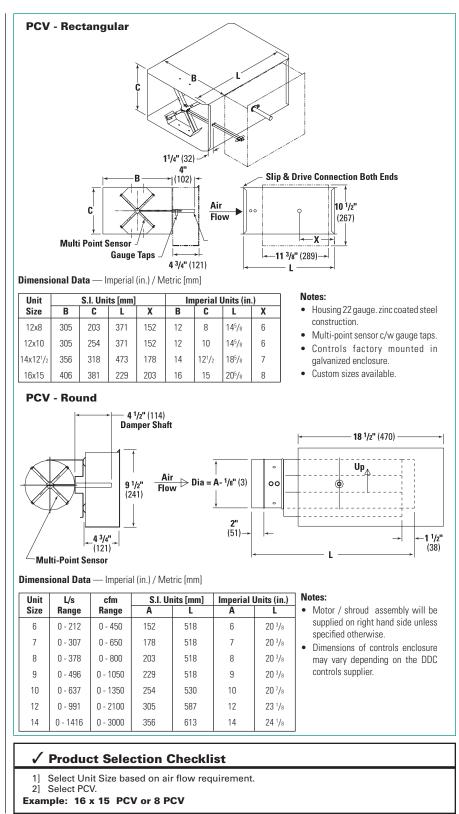
In the bypass application, static pressure is normally measured 2/3 down the longest duct run. The PCV will bypass main supply air to a plenum or air handler return to maintain duct static pressure at a constant setting.

In the throttling (or "downstream") application, placing a static pressure sensor downstream of a PCV unit will allow for control of the pressure supplied to the VAV diffusers. The control valve is designed to maintain duct static pressure through adjustment of a control damper.

Construction PCV

CEILING DIFFUSERS

- Rectangular ducts constructed of 22 gauge zinc-coated steel.
- · Round ducts constructed of 24 gauge zinc-coated steel.
- Damper fabricated from 22 gauge zinc-coated steel, mechanically fastened.
- Damper shaft, sensor and all fasteners exposed to air flow are type 304 stainless steel.
- Damper shaft bearings and damper gasket are polyethylene.
- Controller cover and all external metal components are zinc-coated steel.


SP300 sensor.

Sequence of Operation - Constant pressure, bypass

- On an increase in duct static pressure the controller/actuator will open the VAV damper to increase the amount of air bypassed.
- On a decrease in duct static pressure the controller/actuator will close the VAV damper to reduce the amount of air bypassed.
- · Duct static pressure is held constant.

Calibration

PCV controllers require field calibration of the duct static pressure set-point. Controllers are factory set at a default value of 0.3 in. w.g.

C-226

Price Intelligent Controller for PCV

Introduction

Direct digital control is a proven control technology that has traditionally been used in large-scale building automation systems. DDC has brought unprecedented control and efficiency to building ventilation. The PIC combines the accuracy of direct digital control with the flexibility of an individual room system, providing maximum control and efficiency.

The Price Intelligent Controller (PIC) is a cutting edge control package that offers a new level of control. An advanced and configurable proportional integral (PI) controller allows for exceptional user comfort and energy efficiency. Installation of the controller is simple and error proof with RJ-45 (network type) connections to the BACnet network.

Field setup changes can be accomplished with the Price USB LINKER setup tool (combined with FREE software) or through BACnet front end software.

PIC Features

The Price Intelligent Controller comes with the following standard features:

- Stand-alone or BACnet network operation (with the optional BACnet expansion module).
- Integrated actuator.
- Service jack to provide a computer interface (using the Price USB LINKER) for setup/balancing.
- Expansion modules for additional functionality, when required.
- Fast and error proof RJ-45 BACnet connections that use suppled cables.
- LEDs on the PIC to indicate the status of all outputs, aiding with troubleshooting.
- Pressure sensing module to provide accurate duct static pressure readings for reliable control.
- BACnet module (optional) to provide a native BACnet MS/TP interface.

Optional Expansion Modules BACnet Module (PIC-BAC)

With native BACnet MS/TP compatibility, the PIC can tie into an existing or future BACnet compliant BAS system for maximum flexibility.

When connected, the network can monitor all of the controller's functions and variables, assign set-points or log historical data. This takes advantage of the level of control and visibility inherent to BAS systems.

A computer on the BACnet network can also be used to configure the PIC instead of using the LINKER local setup tool.

Each PIC on the BACnet network can relay data that contains a variety of setup and system condition information.

BACnet Module (PIC-BAC)

Discharge Sound Data - PCV - Round

										S	ound	Pow	/er Le	vels l	.w dl	3 Re	10 ⁻¹²	Wat	ts								
			0.5	in. w	.g. [1	25 Pa	a]		1.0) in. v	v.g. [2	250 P	a]			2.0) in. v	w.g. [500 P	a]		:	3.0 in	. w.g	[750	Pa]	
Unit	Air I	Flow		Octa	ve Ba	and				Octa	ive B	and					Octa	ave B	land				0	ctave	Ban	d	
Size	L/S	cfm	2	3	4	5	6	7	2	3	4	5	6	7		2	3	4	5	6	7	2	3	4	5	6	7
6	94	200	51	52	49	47	42	38	56	57	53	50	47	44		60	61	58	54	51	50	63	63	61	56	54	53
	118	250	54	56	51	50	45	41	58	60	56	53	49	46		63	64	61	57	54	52	66	66	63	59	57	56
	165	350	58	60	55	54	49	44	62	65	60	58	53	50		67	69	64	61	58	56	69	71	67	64	60	59
	212	450	60	64	58	58	51	47	65	68	62	61	56	52		69	72	67	65	61	58	72	75	70	67	63	62
7	118	250	51	48	48	47	45	40	56	53	53	51	50	46		61	57	57	54	55	52	64	60	60	56	57	55
	165	350	55	52	52	52	48	43	60	57	57	55	53	49		64	61	61	59	58	55	67	64	64	60	60	58
	212	450	57	55	55	55	51	46	62	60	60	58	55	51		67	64	64	62	60	57	70	67	67	64	63	60
	260	550	59	58	57	57	53	47	64	63	62	61	57	53		69	67	66	64	62	59	72	70	69	66	65	62
	307	650	61	60	59	60	54	49	66	65	64	63	59	55		70	69	68	66	64	60	73	72	71	68	66	64
8	189	400	55	51	50	49	45	41	59	56	55	52	50	48		64	61	59	56	55	54	67	64	62	58	58	57
	236	500	57	54	53	52	48	43	62	59	58	56	53	49		67	64	62	59	57	56	69	67	65	61	60	59
	283	600	59	56	56	55	50	45	63	61	60	58	55	51		68	66	65	62	59	57	71	69	67	64	62	61
	330	700	60	58	58	57	52	46	65	63	62	60	56	52		70	68	67	64	61	58	73	71	69	66	64	62
	378	800	61	60	59	59	53	47	66	65	64	62	58	53		71	70	68	66	63	59	74	73	71	68	65	63
9	212	450	53	48	49	44	45	42	57	53	53	48	49	47		62	57	56	52	54	52	64	60	59	55	56	56
	307	650	57	53	54	49	48	45	61	58	58	53	53	50		65	62	61	57	57	56	68	65	64	59	60	59
	401	850	59	57	57	52	51	47	64	61	61	56	55	52		68	66	65	60	60	58	71	68	67	62	63	61
	496	1050	62	59	60	55	53	49	66	64	64	59	58	54		70	69	68	63	62	60	73	71	70	65	65	63
10	260	550	55	51	49	44	46	46	60	55	53	48	51	52		64	59	57	53	55	58	67	62	59	55	57	61
	354	750	58	55	53	47	49	48	63	59	57	52	54	54		67	64	61	56	58	60	70	66	64	59	60	63
	448	950	61	58	57	50	52	49	65	63	61	55	56	55		69	67	65	59	60	61	72	70	67	62	63	64
	543	1150	63	61	59	53	54	50	67	65	63	57	58	56		71	70	67	61	62	62	74	72	69	64	65	66
	637	1350	64	63	62	55	55	51	69	68	65	59	59	57		73	72	69	63	64	63	76	75	72	66	66	66
12	425	900	56	51	51	47	46	44	61	56	55	51	50	50		65	60	58	55	55	56	68	63	60	57	58	60
	614	1300	60	55	56	52	50	47	65	60	60	56	54	53		69	65	63	60	59	59	72	68	66	62	62	63
	708	1500	62	57	58	54	51	48	67	62	62	58	56	54		71	67	65	62	61	60	74	69	68	64	64	64
	802	1700	64	59	60	55	53	49	68	63	63	59	58	55		72	68	67	63	62	61	75	71	69	66	65	65
	991	2100	66	61	63	58	55	51	70	66	66	62	60	57		75	71	70	66	65	63	78	73	72	68	67	66
14	472	1000	52	49	48	45	45	44	57	54	52	49	50	49		61	58	56	54	55	54	64	61	58	56	58	57
	708	1500	57	54	54	50	49	47	62	59	58	54	54	52		66	63	62	59	59	57	69	66	64	61	62	60
	944	2000	61	57	58	54	52	49	65	62	62	58	57	54		70	67	66	62	62	60	72	70	68	65	65	63
	1180	2500	63	60	61	56	54	51	68	65	65	61	60	56		73	70	69	65	65	61	75	72	71	68	68	64
	1416	3000	66	62	63	59	56	52	70	67	67	63	61	57		75	72	71	68	66	63	77	75	74	70	69	66

Performance Notes:

1. Test data obtained in accordance with ARI Standard 880-98

and ASHRAE Standard 130-1996.

2. Air flow is given in L/s and cfm.

3. Pressure given in Pa and in. w.g.

4. Above data is not certified by ARI.

5. Data for rectangular duct PCV units unavailable at time of release.

Radiated Sound Data - PCV - Round

										s	ound	Pow	ver Le	evels	Lw dB	Re	10 ⁻¹²	Wat	ts								
			0.5	in. w	.g. [1	25 Pa	a]		1.0) in. v	v.g. [2	50 P	a]			2.0) in. v	v.g. (500 F	a]		:	3.0 in	. w.g	[750) Pa]	
Unit	Air Flow			Octa	ve Ba	ind				Octa	ve B	and					Octa	ave B	and				0	ctave	Ban	d	
Size	L/S	cfm	2	3	4	5	6	7	2	3	4	5	6	7		2	3	4	5	6	7	2	3	4	5	6	7
6	94	200	38	33	32	33	31	28	42	35	36	37	37	35	L	16	38	40	41	43	42	48	40	42	44	47	46
	118	250	39	34	35	35	32	29	43	37	39	39	38	36	4	17	40	42	43	45	43	49	42	45	46	48	47
	165	350	40	37	38	38	34	31	44	40	42	42	40	38	4	18	43	46	46	47	44	50	45	48	49	50	48
	212	450	41	40	40	40	36	32	45	42	44	44	42	39	4	19	45	48	48	48	46	51	47	50	51	52	50
7	118	250	28	28	31	33	32	28	35	31	34	36	37	35	2	12	35	38	39	42	42	46	37	40	41	45	46
	165	350	31	32	35	37	34	30	38	36	39	39	39	37	2	15	39	43	42	45	44	49	41	45	44	47	48
	212	450	34	35	39	39	36	31	41	39	42	42	41	38	2	18	43	46	45	46	45	52	45	48	47	49	49
	260	550	36	38	41	41	38	32	43	41	45	44	43	39	Ę	50	45	48	47	48	46	54	47	51	49	51	51
	307	650	38	40	43	43	39	33	45	44	47	46	44	40	Ę	52	47	51	49	49	47	56	49	53	50	52	52
8	189	400	37	30	36	33	34	29	42	35	39	37	40	36	2	17	39	43	41	46	44	50	42	45	43	50	48
	236	500	39	33	38	35	35	30	44	37	42	39	42	38	4	19	42	46	43	48	45	52	44	48	45	52	50
	283	600	40	35	40	37	37	31	45	39	44	41	43	39	Ę	50	44	48	45	50	46	53	46	50	47	53	51
	330	700	42	36	42	39	38	32	46	41	46	43	44	40	Ę	51	45	50	46	51	47	54	48	52	49	54	52
	378	800	43	38	44	40	39	33	47	42	48	44	45	41	Ę	52	47	51	48	52	48	55	49	54	50	56	53
9	212	450	39	30	36	35	34	30	41	33	38	38	39	38	Z	13	35	40	41	45	45	45	37	42	43	49	49
	307	650	43	36	41	38	36	32	45	38	43	41	42	39	4	17	41	46	45	48	47	49	42	47	46	51	51
	401	850	46	39	45	41	38	33	48	42	47	44	44	40	Ę	50	44	49	47	49	48	52	46	51	49	53	52
	496	1050	48	42	48	43	39	34	50	45	50	46	45	41	Ę	53	47	52	49	51	49	54	49	54	51	54	53
10	260	550	41	33	36	36	36	30	44	36	40	40	41	37	Z	17	38	43	44	47	44	49	40	45	47	51	48
	354	750	43	37	40	38	38	32	46	40	43	43	44	39	4	19	42	47	47	50	46	51	44	49	50	54	50
	448	950	44	40	43	40	40	33	47	43	46	45	46	40	Ę	50	46	50	49	52	49	52	47	52	52	56	52
	543	1150	45	43	45	42	42	34	48	45	48	47	48	42	Ę	51	48	52	51	54	49	53	50	54	54	57	53
	637	1350	46	45	47	44	43	35	49	48	50	48	49	43	Ę	52	50	54	52	55	50	54	52	56	55	59	54
12	425	900	38	37	35	33	32	29	43	39	39	37	38	36	4	17	41	42	41	44	44	50	42	44	44	48	48
	614	1300	41	41	40	37	35	32	45	43	43	41	41	39	Ę	50	45	47	46	47	46	52	47	49	48	51	50
	802	1700	43	44	44	40	38	34	47	46	47	44	44	41	Ę	52	48	50	49	50	48	54	50	52	51	53	52
	897	1900	44	46	45	41	39	35	48	48	49	45	45	42	Ę	53	50	52	50	51	49	55	51	54	52	54	53
	991	2100	45	47	47	42	40	36	49	49	50	47	46	43	Ę	53	51	53	51	52	50	56	52	55	53	55	54
14	472	1000	40	34	38	36	35	32	43	39	43	42	41	38	4	16	44	47	47	46	45	48	47	50	50	50	49
	708	1500	44	38	42	40	38	34	48	43	47	45	44	41	Ę	51	48	51	51	50	48	53	50	54	54	53	52
	944	2000	47	41	45	42	40	36	51	46	50	48	46	43	Ę	54	50	54	53	52	49	56	53	57	56	55	53
	1180	2500	50	43	47	44	41	38	53	48	52	50	47	44	Ę	56	53	56	55	53	51	58	55	59	58	57	55
	1416	3000	52	45	49	46	43	39	55	50	54	51	49	45	Ę	59	54	58	57	55	52	60	57	61	60	58	56

Performance Notes:

- 1. Test data obtained in accordance with ARI Standard 880-98 and ASHRAE Standard 130-1996.
- 2. Air flow is given in L/s and cfm.
- 3. Pressure given in Pa and in. w.g.
- 4. Above data is not certified by ARI.
- 5. Data for rectangular duct PCV units unavailable at time of release.

Recommended Air Volume Ranges - PCV – Round

Electronic or Digital Controls*

Selection

For throttling valve applications, the PCV is sized in accordance with the design flow through the duct run supplied by the PCV. Selecting the PCV in the mid range will allow for future changes.

For bypass applications, the PCV is sized to handle the bypass air volume at minimum load for the zone or branch controlled by the PCV. This will typically be 50-70% of maximum design flow. Over-sizing the PCV will accommodate a safety factor, but may result in less stable control of duct pressure.

Field Adjustment of Pressure Controller

The pressure controller set-point will be determined by the actual pressure losses of the branch duct and diffusers, and cannot be accurately predicted. Field calibration of the PCV pressure controller is therefore required. The PCV pressure controller is factory calibrated for a default value of 0.3 in. w.g.

	PC	CV V
Unit Size	L/s Min Max.	cfm Min Max.
6	38 - 212	81 - 450
7	50 - 307	106 - 650
8	65 - 378	137 - 800
9	84 - 496	179 - 1050
10	103 - 637	218 - 1350
12	153 - 991	325 - 2100
14	272 - 1888	576 - 4000

Minimum Operating Pressure

Unit	Air	Flow	Mir	ι. Δ Ρs
Size	L/s	cfm	Pa	in. w.g.
6	94	200	10	0.04
	118	250	19	0.08
	165	350	37	0.15
	212	450	55	0.22
7	118	250	5	0.02
	165	350	15	0.06
	212	450	25	0.10
	260	550	35	0.14
	307	650	45	0.18
8	189	400	7	0.03
	236	500	12	0.05
	283	600	17	0.07
	330	700	23	0.09
	378	800	28	0.11
9	212	450	4	0.02
	307	650	11	0.04
	401	850	18	0.07
	496	1050	25	0.10

Unit	Air	Flow	Mir	1. Δ Ps
Size	L/s	cfm	Pa	in. w.g.
10	260	550	4	0.02
	307	650	11	0.04
	401	850	18	0.07
	543	1150	24	0.10
	637	1350	31	0.13
12	425	900	3	0.01
	614	1300	8	0.03
	708	1500	11	0.04
	802	1700	14	0.05
	991	2100	19	0.08
14	472	1000	2	0.01
	708	1500	8	0.03
	944	2000	15	0.06
	1180	2500	22	0.09
	1416	3000	28	0.11

Performance Notes:

1. Test data obtained in accordance with ARI Standard 880-98 and ASHRAE Standard 130-1996.

2. Air flow given in L/s and cfm.

3. Pressure given in Pa and in. w.g.

4. Data is not certified by ARI.

VAV Diffusers Accessories

Price Power Module

The Price Power Module (PPM) supports up to 15 Prodigy master units and associated drone units. It provides the most economical and convenient method of powering multiple Prodigy® diffusers because electrician time is minimized. Designed to be ceiling mounted during any phase of a project, the enclosed 96 VA Class 2 transformer is offered for 115V or 277V primary voltage supply. Final power connections to the Prodigy® diffusers are completed via plenum cables with RJ (Snap-In) plugs. Since the cables are all low voltage, commissioning or relocation of Prodigy® diffusers is simple.

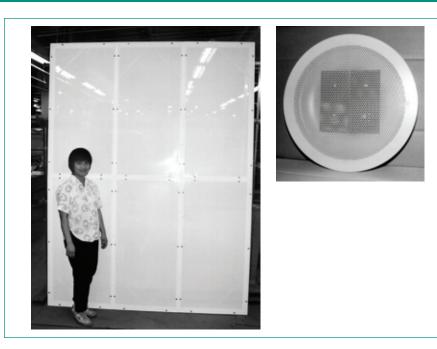
Features

- 96 VA Class Transformer with circuit breaker. Supports input voltages: (115 VAC 60 Hz, 240 VAC 60 Hz, 277 VAC 60 Hz, 480 VAC 60 Hz). Output voltage: 24 VAC
- Six parallel power jacks, each of which support up to five Prodigy[®] units – any combination of masters and associated drones. Overload indicator LEDs on each line light up if too many Prodigy[®] units are connected or if there is a short in the cable.
- C35 (35 ft plenum-rated cable) with RJ12 plugs provides flexible and convenient power connection. One required for each master unit (order separately). Multiple cables can be connected by using a CC (Cable Connector) for longer runs.
- Power switch with indicator LED.

Pressure Relief Collar

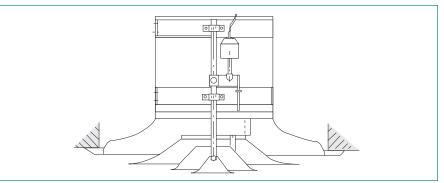
The Prodigy® Pressure Relief Collar (PRC) provides a simple and inexpensive solution when duct pressures are higher than desired. When the Prodigy® responds to part-load requirements by reducing the air flow, the pressure at the Prodigy[®] inlet increases. The PRC's dual shutters are designed to gradually open in response to pressures in excess of approx. 0.25" w.g. and allow some of the supply air to escape into the return air plenum. This decreases static pressure at the inlet, which reduces the risk of increased noise levels or excessive air flow. When the room cooling load increases, Prodigy[®] provides more air flow to the space and the PRC shutters gradually close. This minimizes energy waste while maximizing comfort.

The PRC is intended for use only in systems that have a non-ducted return air plenum.


Ceiling Diffusers Special Manufacture

Introduction

For over 50 years, Price has built an enviable reputation as a qualified designer and dependable supplier of specialized ceiling diffusers. These are often required to satisfy a unique function without compromising air distribution performance.


Illustrated on these pages are a few examples of special manufacture ceiling component diffusers. We have a commendable track record of successful applications. We invite your inquiry.

Spl. Motorized Round Diffuser

 Price Model RCDA Round Cone Diffuser is modified to accept a pneumatic or electric actuator, allowing remote control of diffuser pattern from horizontal to vertical.

• Diffuser discharge pattern can be modified to suit supply air temperature e.g. horizontal for cooling and vertical for heating.

Square Ceiling Diffusers

SCD / SCD AS / ASCD

Square Cone Diffuser, Fixed Air Pattern (3 and 4 Cone)

Furnish and install Price model SCD steel, SCD AS aluminized steel, ASCD aluminum ceiling diffusers of sizes and mounting types designated by the plans and air distribution schedule. Diffusers shall consist of a precision formed back cone of one-piece seamless construction that incorporates a round inlet collar of sufficient length for connecting rigid or flexible duct. The diffuser shall integrate with all duct sizes shown on the plans without affecting the face size and appearance of the unit. An inner cone assembly shall consist of 3 cones (or optional 4 cones) which drop below the ceiling plane to assure optimal VAV air diffusion performance. The inner cone assembly shall be completely removable from the diffuser face to allow for full access to any dampers or other ductwork components located near the diffuser neck. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

SCD-FR

Supply - Square Cone Diffuser, Fixed Air Pattern (3 and 4 Cone), Fire-Rated

Furnish and install Price model SCD-FR ceiling diffusers of sizes and mounting types designated by the plans and air distribution schedule. Diffusers shall be Fire-Rated Assemblies listed in the UL, Underwriters Laboratories Fire Resistance Directory and in the ULC, Underwriters Laboratories of Canada Equipment and Materials Directory. Diffusers shall meet UL time vs. temperature test criteria and NFPA 90A requirements. This design is intended for use in an exposed grid suspended ceiling (T-bar Lay-in) with up to a three-hour rating and must be installed in accordance with the installation instructions.

Diffusers shall consist of a precision formed steel back cone of one-piece seamless construction. Diffuser shall incorporate a non-adjustable butterfly-type ceiling radiation damper, a 165 °F [74 °C] fusible link and a non-asbestos thermal blanket. The diffuser shall integrate with all duct sizes shown on the plans without affecting the face size and appearance of the unit. An inner cone assembly shall consist of 3 cones which drop below the ceiling plane to assure optimal VAV air diffusion performance. The inner cone assembly shall be completely removable from the diffuser face to allow for full access to any dampers or other ductwork components located near the diffuser neck. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

Options

- 4 cone inner cone assembly.
- Volume adjustment for balancing.
- 212 °F [100 °C] fusible link.
- Optional finishes available.
- Optional T-bar Lay-in Panel.

SCDA / ASCDA

Square Cone Diffuser, Adjustable Pattern (3 and 4 Cone)

Furnish and install Price model SCDA steel, ASCDA aluminum ceiling diffusers of sizes and mounting types designated by the plans and air distribution schedule. Diffusers shall consist of a precision formed back cone of one-piece construction that incorporates a round inlet collar of sufficient length for connecting rigid or flexible duct and outer frame which is recessed from the ceiling plane to allow for field adjustment of the air flow discharge from fully horizontal to fully vertical. The diffuser shall integrate with all duct sizes shown on the plans without affecting the face size and appearance of the unit. An inner cone assembly shall consist of 3 cones (or optional 4 cones) which assure optimal VAV air diffusion performance. The inner cone assembly shall be completely removable from the diffuser face to allow for full access to any dampers or other duct work components located near the diffuser neck. Non-protrusive air flow directional tabs shall be provided on the back of the inner cones which may be positioned for either horizontal or vertical discharge. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

SCDA-FR

Supply - Square Cone Diffuser, Adjustable Pattern (3 and 4 Cone), Fire-Rated

Furnish and install Price model SCDA-FR ceiling diffusers of sizes and mounting types designated by the plans and air distribution schedule. Diffusers shall be Fire-Rated Assemblies listed in the UL, Underwriters Laboratories Fire Resistance Directory and in the ULC, Underwriters Laboratories of Canada Equipment and Materials Directory. Diffusers shall meet UL time vs. temperature test criteria and NFPA 90A requirements. This design is intended for use in an exposed grid suspended ceiling (T-bar Lay-in) with up to a three-hour rating and must be installed in accordance with the installation instructions.

Diffusers shall consist of a precision formed steel back cone of one-piece construction. Diffuser shall incorporate a non-adjustable butterfly-type ceiling radiation damper, a 165 °F [74 °C] fusible link, and a non-asbestos thermal blanket. Outer frame of diffuser is recessed from the ceiling plane to allow for field adjustment of the air flow discharge from fully horizontal to fully vertical. Non-protrusive air flow directional tabs shall be provided on the back of the inner cones which may be positioned for either horizontal or vertical discharge. The diffuser shall integrate with all duct sizes shown on the plans without affecting the face size and appearance of the unit. An inner cone assembly shall consist of 3 cones which assure optimal VAV air diffusion performance. The inner cone assembly shall be completely removable from the diffuser face to allow for full access to any dampers or other duct work components located near the diffuser neck. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

Options

- 4 cone inner cone assembly.
- Volume adjustment for balancing.
- 212 °F [100 °C] fusible link.
- Optional finishes available.
- Optional T-bar Lay-in Panel.

C-233

Square Ceiling Diffusers

SPD / SPD AS / ASPD

Square Plaque Diffuser

Furnish and install Price model (SPD steel, SPD AS aluminized steel, ASPD aluminum) ceiling diffusers of sizes and mounting types designated by the plans and air distribution schedule. Diffusers shall consist of a precision formed back cone of one-piece seamless construction that incorporates a round inlet collar of sufficient length for connecting rigid or flexible duct. An inner plaque assembly shall be incorporated and shall drop no more than 1/4 in. below the ceiling plane to assure proper air distribution performance. The inner plaque assembly shall be completely removable from the diffuser face to allow for full access to any dampers or other ductwork components located near the diffuser neck. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

SPD-FR

CEILING DIFFUSERS

Supply - Square Plaque Diffuser, Fire-Rated

Furnish and install Price model SPD-FR steel ceiling diffusers of sizes and mounting types designated by the plans and air distribution schedule. Diffusers shall be Fire-Rated Assemblies listed in the UL, Underwriters Laboratories Fire Resistance Directory and in the ULC, Underwriters Laboratories of Canada Equipment and Materials Directory. Diffusers shall meet UL time vs. temperature test criteria and NFPA 90A requirements. This design is intended for use in an exposed grid suspended ceiling (T-bar Lay-in) with up to a three-hour rating and must be installed in accordance with the installation instructions.

Diffusers shall consist of a precision formed back cone of one-piece seamless construction. An inner plague assembly shall be incorporated and shall drop no more than ¹/₄ in. below the ceiling plane to assure proper air distribution performance. The inner plaque assembly shall be completely removable from the diffuser face to allow for full access to any dampers or other ductwork components located near the diffuser neck. Diffuser shall incorporate a non-adjustable butterfly-type ceiling radiation damper, a 165 °F [74 °C] fusible link, and a non-asbestos thermal blanket. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

Options

- volume adjustment for balancing.
- 212 °F [100 °C] fusible link.
- optional finishes available.
- optional T-bar Lay-in Panel.

SPD HI

High Induction Square Plaque Diffuser

Furnish and install Price model (SPD HI) ceiling diffusers of sizes designated by the plans and air distribution schedule. Diffusers shall consist of a precision formed back cone of one-piece seamless construction that incorporates a round inlet collar of sufficient length for connecting rigid or flexible duct. An inner plaque assembly shall be incorporated and shall drop no more than 1/4 in. below the ceiling plane to assure proper air distribution performance. An induction chamber furnishing openings in all side walls shall be attached to back cone over the inlet. The inner plaque assembly shall be completely removable from the diffuser face. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

SPDLT/ASPDLT

Square Plaque - Low Temperature Diffuser

Furnish and install Price model (SPDLT steel, ASPDLT aluminum) low temperature ceiling diffusers of sizes and mounting types designated by the plans and air distribution schedule. Diffusers shall consist of a precision formed aerodynamic shape back cone of one-piece seamless construction which incorporates a round inlet collar of sufficient length for connecting rigid or flexible duct. An inner plaque assembly shall be incorporated that drops no more than ¹/4 in. (6mm) below the ceiling plane to assure proper air distribution performance. The inner plaque assembly shall be completely removable from the diffuser face.

The diffuser induction chamber shall project the supply air through multiple tapered discharge slots. The induction chamber shall be all metal of the same material as the diffuser assembly. Unit shall incorporate the following construction features to prevent formation of condensation:

- Diffuser backpan shall be factory insulated with ³/₄ in. dual density insulation with foil facing which meets the requirements of NFPA 90A and UL181. All seams and joints shall be sealed with coated cloth tape.
- The induction chamber shall be internally lined with ¹/₂ in. foil face insulation which meets the requirements of NFPA 90A and UL181.

• The upstream side of the inner plaque assembly shall be thermally lined with polyurethane foam insulation. The unit shall be designed and verified by test to prevent condensation from forming on the surface of the unit at 40 °F (4°C) supply temperature and ceiling plenum conditions of 78 °F (25°C), 60% humidity. Units shall be tested in accordance with ASHRAE Standard 70-2006. Performance data shall be provided for throw and drop at 40 °F (4°C) supply temperature with a room temperature of 75° (24°C). Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

All Metric dimensions () are soft conversion. Imperial dimensions are converted to metric and rounded to the nearest millimeter.

PDN / APDN

Supply - Flush Face, Deflectors in Neck

Furnish and install Price model (PDN steel, APDN aluminum) perforated face supply diffuser as described on plans and air distribution schedules. Diffuser shall consist of a flush perforated air distribution face of no less than 51% free area, a heavy gauge steel backpan with round / square inlet collars as noted on plans, and curved blade air deflector modules located in the neck of the diffuser. Air deflector modules shall allow full field adjustment of air flow pattern from 1 way to 4 way discharge without affecting the inlet free area or the pressure/noise performance of the diffuser. The perforated face shall be removable from the diffuser face and shall be fitted with hinges to facilitate the removal of face screen for cleaning or air pattern adjustment. The perforated face screen shall be steel for PDN and aluminum for APDN. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

PDN-FR

Supply – Flush Face, Deflectors in Neck, Fire-Rated

Furnish and install Price model PDN-FR perforated face supply diffusers as described on plans and air distribution schedules. Diffusers shall be Fire-Rated Assemblies listed in the UL, Underwriters Laboratories Fire Resistance Directory and in the ULC, Underwriters Laboratories of Canada Equipment and Materials Directory. Diffusers shall meet UL time vs. temperature test criteria and NFPA 90A requirements. This design is intended for use in an exposed grid suspended ceiling (T-bar Lay-in) with up to a three-hour rating and must be installed in accordance with the installation instructions.

Diffuser shall consist of a flush perforated air distribution face of no less than 51% free area, a steel backpan with round / square inlet collars as noted on plans, and curved blade air deflector modules located in the neck of the diffuser. Air deflector modules shall allow full field adjustment of air flow pattern from 1 way to 4 way discharge without affecting the inlet free area or the pressure/noise performance of the diffuser. The perforated face shall be removable from the diffuser frame and shall be fitted with hinges to facilitate cleaning or air pattern adjustment. The perforated face screen shall be steel. Diffuser shall incorporate a non-adjustable butterfly-type ceiling radiation damper, a 165 °F [74 °C] fusible link, and a non-asbestos thermal blanket. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

Options

- Volume adjustment for balancing.
- 212 °F [100 °C] fusible link.
- Optional finishes available.

PDNE / APDNE

Supply – Extended Face, Deflectors in Neck

Furnish and install Price model (PDNE steel, APDNE aluminum) perforated face supply diffusers as described on plans and air distribution schedules. Diffuser shall consist of a perforated air distribution face of no less than 51% free area that extends 3/8 in. below the ceiling plane, a heavy gauge steel backpan with round / square inlet collars as noted on plans, and curved blade air deflector modules located in the neck of the diffuser. Air deflector modules shall allow full field adjustment of air flow pattern from 1 way to 4 way discharge without affecting the inlet free area or the pressure / noise performance of the diffuser. The perforated face shall be removable from the diffuser face and shall be fitted with hinges to facilitate the removal of face screen for cleaning or air pattern adjustment. The perforated face screen shall be steel for PDNE and aluminum for APDNE. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

Perforated Diffusers

PDNE-FR

Supply – Extended Face, Deflectors in Neck, Fire-Rated

Furnish and install Price model PDNE-FR perforated face supply diffusers as described on plans and air distribution schedules. Diffusers shall be Fire-Rated Assemblies listed in the UL, Underwriters Laboratories Fire Resistance Directory and in the ULC, Underwriters Laboratories of Canada Equipment and Materials Directory. Diffusers shall meet UL time vs. temperature test criteria and NFPA 90A requirements. This design is intended for use in an exposed grid suspended ceiling (T-bar Lay-in) with up to a three-hour rating and must be installed in accordance with the installation instructions.

Diffuser shall consist of a perforated air distribution face of no less than 51% free area that extends 3/8 in. below the ceiling plane, a steel backpan with round / square inlet collars as noted on plans, and curved blade air deflector modules located in the neck of the diffuser. Air deflector modules shall allow full field adjustment of air flow pattern from 1 way to 4 way discharge without affecting the inlet free area or the pressure / noise performance of the diffuser. . The perforated face shall be removable from the diffuser frame and shall be fitted with hinges to facilitate cleaning or air pattern adjustment. The perforated face screen shall be steel. Diffuser shall incorporate a non-adjustable butterfly-type ceiling radiation damper, a 165 °F [74 °C] fusible link, and a non-asbestos thermal blanket. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

Options

- Volume adjustment for balancing.
- 212 °F [100 °C] fusible link.
- Optional finishes available.

PDSP / APDSP

Supply – Star Pattern

Furnish and install Price model PDSP steel, APDSP aluminum perforated face supply diffuser as described on plans and air distribution schedules. Diffuser shall consist of a flush perforated air distribution face of no less than 51% free area, a heavy gauge steel backpan with round / square inlet collars as noted on plans, and curved blade air deflectors located in the neck of the diffuser.

The diffuser shall be factory set for 4 way side throw or 4 way diagonal throw. Field adjustment of the air pattern shall be achieved by simply rotating the deflector assembly. A vertical pattern shall also be achieved by turning the deflector blades. The deflector assembly shall include a center opening to allow for access to an optional damper.

The perforated face shall be removable from the diffuser face and shall be fitted with hinges to facilitate the removal of face screen for cleaning or air pattern adjustment. The perforated face screen shall be steel for PDSP and aluminum for APDSP. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

PDSP-FR

Supply - Perforated Diffuser Star Pattern Fire-Rated

Furnish and install Price model PDSP-FR ceiling mounted diffusers of size and mounting types designated by the plans and air distribution schedule. Diffusers shall be Fire-Rated Assemblies listed in the UL, Underwriters Laboratories Fire Resistance Directory and in the ULC, Underwriters Laboratories of Canada Equipment and materials Directory. Diffusers shall meet UL time vs. temperature test criteria and NFPA 90A requirements. This design is intended for use in exposed grid suspended ceiling (T-bar Lay-in) with up to three-hour rating and must be installed in accordance with the installation instructions.

Diffusers shall consist of a removable perforated air distribution face of no less than 51% free area, a steel backpan with round / square inlet collars as noted on plans. Diffuser shall incorporate a non-adjustable butterfly-type ceiling radiation damper, 165°F [74°C] fusible link, and a non-asbestos thermal blanket. Diffuser shall have field adjustable air deflector modules mounted at the diffuser neck which can change the pattern from a standard 4 way diagonal throw. The deflector modules shall be completely removable from the diffuser face to allow for full access to any dampers or other ductwork components located near the diffuser neck. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

Options

- · Volume adjustment for balancing.
- 212 °F [100 °C] fusible link.
- Optional T-bar Lay-in Panel.

Perforated Diffusers

PDSPE / APDSPE

Supply – Star Pattern

Furnish and install Price model PDSPE steel, APDSPE aluminum perforated face supply diffusers as described on plans and air distribution schedules. Diffuser shall consist of a perforated air distribution face of no less than 51% free area that extends ³/₈ in. below the ceiling plane, a heavy gauge steel backpan with round / square inlet collars as noted on plans, and curved blade air deflectors located in the neck of the diffuser.

The diffuser shall be factory set for 4 way side throw or 4 way diagonal throw. Field adjustment of the air pattern shall be achieved by simply rotating the deflector assembly. A vertical pattern shall also be achieved by turning the deflector blades. The deflector assembly shall include a center opening to allow for access to an optional damper.

The perforated face shall be removable from the diffuser face and shall be fitted with hinges to facilitate the removal of face screen for cleaning or air pattern adjustment. The perforated face screen shall be steel for PDSPE and aluminum for APDSPE. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

PDF / APDF

Supply – Deflectors on Face

Furnish and install Price model PDF steel, APDF aluminum perforated face supply diffusers as described on plans and air distribution schedules. Diffuser shall consist of a flush perforated air distribution face of no less than 51% free area, a heavy gauge steel backpan with round / square inlet collars as noted on plans, and air deflector modules located on the back of the perforated face of the diffuser. Air deflector modules shall allow full field adjustment of air flow pattern from 1 way to 4 way discharge without affecting the inlet free area or the pressure / noise performance of the diffuser. The perforated face shall be removable from the diffuser face and shall be fitted with hinges to facilitate the removal of face screen for cleaning or air pattern adjustment. The perforated face screen shall be steel for PDF and aluminum for APDF. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

PDF-FR

Supply - Flush Face, Deflectors on Face, Fire-Rated

Furnish and install Price model PDF-FR perforated face supply diffusers as described on plans and air distribution schedules. Diffusers shall be Fire-Rated Assemblies listed in the UL, Underwriters Laboratories Fire Resistance Directory and in the ULC, Underwriters Laboratories of Canada Equipment and Materials Directory. Diffusers shall meet UL time vs. temperature test criteria and NFPA 90A requirements. This design is intended for use in an exposed grid suspended ceiling (T-bar Lay-in) with up to a three-hour rating and must be installed in accordance with the installation instructions.

Diffuser shall consist of a flush perforated air distribution face of no less than 51% free area, a steel backpan with round / square inlet collars as noted on plans, and air deflector modules located on the back of the perforated face of the diffuser. Air deflector modules shall allow full field adjustment of air flow pattern from 1 way to 4 way discharge without affecting the inlet free area or the pressure / noise performance of the diffuser. The perforated frame shall be removable from the diffuser face and shall be fitted with hinges to facilitate cleaning or air pattern adjustment. The perforated face screen shall be steel. Diffuser shall incorporate a non-adjustable butterfly-type ceiling radiation damper, a 165 °F [74 °C] fusible link, and a non-asbestos thermal blanket. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

Options

- Volume adjustment for balancing.
- 212 °F [100 °C] fusible link.
- · Optional finishes available.

PDFE / APDFE

Supply – Extended Face, Deflectors on Face

Furnish and install Price model PDFE steel, APDFE aluminum perforated face supply diffusers as described on plans and air distribution schedules. Diffuser shall consist of a perforated air distribution face of no less than 51% free area that extends 3/8 in. below the ceiling plane, a heavy gauge steel backpan with round / square inlet collars as noted on plans, and air deflector modules located on the back of the perforated face of the diffuser. Air deflector modules shall allow full field adjustment of air flow pattern from 1 way to 4 way discharge without affecting the inlet free area or the pressure / noise performance of the diffuser. The perforated face shall be removable from the diffuser face and shall be fitted with hinges to facilitate the removal of face screen for cleaning or air pattern adjustment. The perforated face screen shall be steel for PDFE and aluminum for APDFE. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

Perforated Diffusers

PDFE-FR

Supply – Extended Face, Deflectors on Face, Fire-Rated

Furnish and install Price model PDFE-FR perforated face supply diffusers as described on plans and air distribution schedules. Diffusers shall be Fire-Rated Assemblies listed in the UL, Underwriters Laboratories Fire Resistance Directory and in the ULC, Underwriters Laboratories of Canada Equipment and Materials Directory. Diffusers shall meet UL time vs. temperature test criteria and NFPA 90A requirements. This design is intended for use in an exposed grid suspended ceiling (T-bar Lay-in) with up to a three-hour rating and must be installed in accordance with the installation instructions.

Diffuser shall consist of a perforated air distribution face of no less than 51% free area that extends 3/8 in. below the ceiling plane, a steel backpan with round / square inlet collars as noted on plans, and air deflector modules located on the back of the perforated face of the diffuser. Air deflector modules shall allow full field adjustment of air flow pattern from 1 way to 4 way discharge without affecting the inlet free area or the pressure / noise performance of the diffuser. . The perforated face shall be removable from the diffuser frame and shall be fitted with hinges to facilitate cleaning or air pattern adjustment. The perforated face screen shall be steel. Diffuser shall incorporate a non-adjustable butterfly-type ceiling radiation damper, a 165 °F [74 °C] fusible link, and a non-asbestos thermal blanket. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

Options

- Volume adjustment for balancing.
- 212 °F [100 °C] fusible link.
- Optional finishes available.

PDC / APDC

Supply – Flush Face, Individually Adjustable Curved Blades

Furnish and install Price model PDC steel, APDC aluminum perforated face supply diffusers as described on plans and air distribution schedules. Diffuser shall consist of a flush perforated air distribution face of no less than 51% free area, a heavy gauge steel backpan with round / square inlet collars as noted on plans, and adjustable curved blade air deflector modules located in the neck of the diffuser. Individually adjustable curved deflectors shall be available in 1, 2, 2 way corner, 3 and 4 way horizontal pattern and allow adjustment to vertical pattern, if desired. The perforated face shall be removable from the diffuser face and shall be fitted with hinges to facilitate the removal of face screen for cleaning or air pattern adjustment. The perforated face screen shall be steel for PDC and aluminum for APDC. The finish of the diffuser shall be B12 White Powder Coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

PDC-FR

Supply – Flush Face, Individually Adjustable Curved Blades, Fire-Rated

Furnish and install Price model PDC-FR perforated face supply diffusers as described on plans and air distribution schedules. Diffusers shall be Fire-Rated Assemblies listed in the UL, Underwriters Laboratories Fire Resistance Directory and in the ULC, Underwriters Laboratories of Canada Equipment and Materials Directory. Diffusers shall meet UL time vs. temperature test criteria and NFPA 90A requirements. This design is intended for use in an exposed grid suspended ceiling (T-bar Lay-in) with up to a three-hour rating and must be installed in accordance with the installation instructions.

Diffuser shall consist of a flush perforated air distribution face of no less than 51% free area that does not extend below ceiling (flush), a steel backpan with round / square inlet collars as noted on plans, and adjustable curved blade air deflector modules located in the neck of the diffuser. Individually adjustable curved deflectors shall be available in 1, 2, 2 way corner, 3 and 4 way horizontal pattern and allow adjustment to vertical pattern, if desired. The perforated face shall be removable from the diffuser frame and shall be fitted with hinges to facilitate cleaning or air pattern adjustment. The perforated face screen shall be steel. Diffuser shall incorporate a non-adjustable butterfly-type ceiling radiation damper, a 165 °F [74 °C] fusible link, and a non-asbestos thermal blanket. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

Options

- Volume adjustment for balancing.
- 212 °F [100 °C] fusible link.
- Optional finishes available.

Perforated Diffusers

PDCE / APDCE

Supply – Extended Face, Individually Adjustable Curved Blades

Furnish and install Price model PDCE steel, APDCE aluminum perforated face supply diffusers as described on plans and air distribution schedules. Diffuser shall consist of a flush perforated air distribution face of no less than 51% free area, a heavy gauge steel backpan with round / square inlet collars as noted on plans, and adjustable curved blade air deflector modules located in the neck of the diffuser. Individually adjustable curved deflectors shall be available in 1, 2, 2 way corner, 3 and 4 way horizontal pattern and allow adjustment to vertical pattern, if desired. The perforated face shall be removable from the diffuser face and shall be fitted with hinges to facilitate the removal of face screen for cleaning or air pattern adjustment. The perforated face screen shall be steel for PDCE and aluminum for APDCE. The finish of the diffuser shall be B12 White Powder Coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

PDCE-FR

Supply – Extended Face, Individually Adjustable Curved Blades, Fire-Rated

Furnish and install Price model PDCE-FR perforated face supply diffusers as described on plans and air distribution schedules. Diffusers shall be Fire-Rated Assemblies listed in the UL, Underwriters Laboratories Fire Resistance Directory and in the ULC, Underwriters Laboratories of Canada Equipment and Materials Directory. Diffusers shall meet UL time vs. temperature test criteria and NFPA 90A requirements. This design is intended for use in an exposed grid suspended ceiling (T-bar Lay-in) with up to a three-hour rating and must be installed in accordance with the installation instructions.

Diffuser shall consist of a perforated air distribution face of no less than 51% free area that extends 3/8 in. below the ceiling plane, a steel backpan with round / square inlet collars as noted on plans, and adjustable curved blade air deflector modules located in the neck of the diffuser. Individually adjustable curved deflectors shall be available in 1, 2, 2 way corner, 3 and 4 way horizontal pattern and allow adjustment to vertical pattern, if desired. The perforated face shall be removable from the diffuser frame and shall be fitted with hinges to facilitate cleaning or air pattern adjustment. The perforated face screen shall be steel. Diffuser shall incorporate a nonadjustable butterfly-type ceiling radiation damper, a 165 °F [74 °C] fusible link, and a non-asbestos thermal blanket. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

Options

- Volume adjustment for balancing.
- 212 °F [100 °C] fusible link.
- Optional finishes available.

PDMC / APDMC

Furnish and install Price model PDMC (steel), APDMC (aluminum) directional modular core, perforated face diffusers of the sizes and mounting types shown on the plans and air distribution schedule. Diffusers shall consist of louvered pattern control modules, a heavy gauge backpan, and hinged perforated face screen. The perforated face screen shall be steel (Model APDMC aluminum) with a free area of 51%. A collar that allows connection to the square or round duct size indicated shall be an integral part of the frame assembly. The diffuser core shall consist of fixed louver directional modules that may be easily field adjusted from the diffuser face (without any type of tools or mechanical device) for 1, 2, 3, or 4 way discharge. Each module shall be easily removable to allow for access to any damper or other ductwork component in or near the diffuser neck. Finish shall be B12 White Powder Coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

PDMC-FR

Supply – Flush Face, Modular Core, Fire-Rated

Furnish and install Price model PDMC-FR directional modular core, perforated face diffusers of the sizes and mounting types shown on the plans and air distribution schedule. Diffusers shall be Fire-Rated Assemblies listed in the UL, Underwriters Laboratories Fire Resistance Directory and in the ULC, Underwriters Laboratories of Canada Equipment and Materials Directory. Diffusers shall meet UL time vs. temperature test criteria and NFPA 90A requirements. This design is intended for use in an exposed grid suspended ceiling (T-bar Lay-in) with up to a three-hour rating and must be installed in accordance with the installation instructions.

Diffusers shall consist of steel louvered pattern control modules, a steel backpan, and hinged perforated face screen. The perforated face screen shall be steel with

a free area of 51%. A collar that allows connection to the round / square duct size indicated shall be an integral part of the frame assembly. The perforated face shall be removable from the diffuser frame and shall be fitted with hinges to facilitate cleaning or air pattern adjustment. The diffuser core shall consist of fixed louver directional modules that may be easily field adjusted from the diffuser face (without any type of tools or mechanical device) for 1, 2, 3, or 4 way discharge. Each module shall be easily removable to allow for access to any damper or other ductwork component in or near the diffuser neck. Diffuser shall incorporate a non-adjustable butterfly-type ceiling radiation damper, a 165 °F [74 °C] fusible link, and a non-asbestos thermal blanket. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

Options

- Volume adjustment for balancing.
- 212 °F [100 °C] fusible link.
- Optional finishes available.

Perforated Diffusers

PDDR / APDDR

Return – Flush Face

Furnish and install Price model PDDR steel, APDDR aluminum perforated face return diffusers as described on plans and air distribution schedules. Diffuser shall consist of a perforated air distribution face of no less than 51% free area, a heavy gauge steel backpan with round / square inlet collars as noted on plans. The perforated face shall be removable from the diffuser face and shall be fitted with hinges to facilitate the removal of face screen for cleaning purposes. The perforated face screen shall be steel for PDDR and aluminum for APDDR. The finish of the diffuser shall be B12 White Powder Coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

PDDR-FR

Return – Flush Face, Fire-Rated

Furnish and install Price model PDDR-FR perforated face return diffusers as described on plans and air distribution schedules. Diffusers shall be Fire-Rated Assemblies listed in the UL, Underwriters Laboratories Fire Resistance Directory and in the ULC, Underwriters Laboratories of Canada Equipment and Materials Directory. Diffusers shall meet UL time vs. temperature test criteria and NFPA 90A requirements. This design is intended for use in an exposed grid suspended ceiling (T-bar Lay-in) with up to a three-hour rating and must be installed in accordance with installation instructions.

Diffuser shall consist of a perforated air distribution face of no less than 51% free area, a steel backpan with round/square inlet collars as noted on plans. The perforated face shall be removable from the diffuser frame and shall be fitted with hinges to facilitate the removal of face screen for cleaning purposes. The perforated face screen shall be steel. Diffuser shall incorporate a non-adjustable butterfly-type ceiling radiation damper, a 165 °F [74 °C] fusible link, and a non-asbestos thermal blanket. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

Options

- Volume adjustment for balancing.
- 212 °F [100 °C] fusible link.
- Optional finishes available.

PDDRE / APDDRE

Return – Extended Face

Furnish and install Price model PDDRE steel, APDDRE aluminum perforated face return diffusers as described on plans and air distribution schedules. Diffuser shall consist of a perforated air distribution face of no less than 51% free area that extends 3/8 in. below the ceiling plane, a heavy gauge steel backpan with round / square inlet collars as noted on plans. The perforated face shall be removable from the diffuser face and shall be fitted with hinges to facilitate the removal of face screen for cleaning purposes. The perforated face screen shall be steel for PDF and aluminum for APDF. The finish of the diffuser shall be B12 White Powder Coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

PDDRE-FR

Return – Extended Face, Fire-Rated

Furnish and install Price model PDDRE-FR perforated face return diffusers as described on plans and air distribution schedules. Diffusers shall be Fire-Rated Assemblies listed in the UL, Underwriters Laboratories Fire Resistance Directory and in the ULC, Underwriters Laboratories of Canada Equipment and Materials Directory. Diffusers shall meet UL time vs. temperature test criteria and NFPA 90A requirements. This design is intended for use in an exposed grid suspended ceiling (T-bar Lay-in) with up to a three-hour rating and must be installed in accordance with installation instructions.

Diffuser shall consist of a perforated air distribution face of no less than 51% free area that extends 3/8 in. below the ceiling plane and a steel backpan with round / square inlet collars as noted on plans. The perforated face shall be removable from the diffuser frame and shall be fitted with hinges to facilitate cleaning purposes. The perforated face screen shall be steel. Diffuser shall incorporate a non-adjustable butterflytype ceiling radiation damper, a 165 °F [74 °C] fusible link, and a non-asbestos thermal blanket. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

Options

- Volume adjustment for balancing.
- 212 °F [100 °C] fusible link.
- Optional finishes available.

PFRF / APFRF

Return – Flush Face

Furnish and install Price model PFRF steel, APFRF aluminum perforated face return diffusers as described on plans and air distribution schedules. Diffuser shall consist of a perforated air distribution face of no less than 51% free area. The perforated face screen shall be steel for PFRF and aluminum for APFRF. The finish of the diffuser shall be B12 White Powder Coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

Perforated Diffusers

Architectural Quality

PDS

Furnish and install Price model PDS perforated face supply air diffuser of all sizes and mounting styles as shown. Diffuser shall have face panel mounted fully adjustable louvered pattern controllers. Adjustment of pattern controllers shall permit setting of air patterns from 4 way to 3 way, 2 way or 1 way. Diffuser shall have square or round necks as indicated on the drawing or diffuser schedule.

Steel backpan shall be snap-in assembly with extruded aluminum border(s). Framed perforated steel face panel sub-assembly shall have spring clip latch arrangement to permit an easy removal and access to pattern controllers. Face panel when installed shall be flush with the border frame.

Finish of frames and face panel shall be B12 White Powder Coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.. Backpan and pattern controllers shall be painted black.

PDR

Furnish and install Price model PDR perforated face return air diffusers of sizes and mounting styles as shown on the drawings (or the diffuser schedule). The outlet shall have square or round necks as indicated on the drawing or diffuser schedule.

Steel backpan (where applicable) shall be snap-in assembly with extruded aluminum border(s). Framed perforated steel face panel sub-assembly shall have spring clip latch arrangement to permit an easy removal and access to pattern controllers. Face panel when installed shall be flush with the border frame.

Finish of frames and face panel shall be B12 White Powder Coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714...Backpan and pattern controllers shall be painted black.

Square / Rectangular Directional

Louvered Face

SMD / AMD

Fixed Air Pattern

Furnish and install Price model SMD steel, AMD aluminum directional louvered face diffusers of the sizes and mounting types shown on the plans and air distribution schedule. Diffusers shall consist of an outer frame assembly, which facilitates mounting in the application shown. A collar that allows connection to the square (or rectangular) duct size indicated shall be an integral part of the frame assembly. An inner core assembly consisting of fixed louvers capable of producing the air flow discharge pattern indicated on the plans shall be fully removable from the installed diffuser frame for access to any dampers or other ductwork components located in or near the diffuser neck. The inner core assemblies shall be identically constructed so that directional core assemblies providing different air flow discharge patterns may be interchanged between frames, provided the frame duct connections are of the same size. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

LCMD

Light Commercial Directional Diffuser

Furnish and install Price model LCMD directional louvered face diffuser of the sizes and mounting types shown on the plans and air distribution schedule. Diffusers shall consist of an outer frame assembly which facilitates mounting in the application shown. A collar that allows connection to the square (or rectangular) duct size indicated shall be an integral part of the frame assembly. Diffuser shallbeofallextruded aluminum construction, including an extruded aluminum frame. An inner core assembly consisting of fixed louvers capable of producing the air flow discharge pattern indicated on the plans shall be fully removable from the installed diffuser frame for access to any dampers or other ductwork components located in or near the diffuser neck. Diffuser louver patterns shall be available in 1, 2, 2 way corner, 3 and 4 way horizontal patterns. Louvered blades shall be spaced one (1) inch from each other. The inner core assemblies shall be identically constructed so that directional core assemblies providing different air flow discharge patterns may be interchanged between frames, provided the frame duct connections are of the same size. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

SMD-FR

Supply - Louvered Face, Fixed Air Pattern, Fire-Rated

Furnish and install Price model SMD-FR directional louvered face diffusers of the sizes and mounting types shown on the plans and air distribution schedule. Diffusers shall be Fire-Rated Assemblies listed in the UL, Underwriters Laboratories Fire Resistance Directory and in the ULC, Underwriters Laboratories of Canada Equipment and Materials Directory. Diffusers shall meet UL time vs. temperature test criteria and NFPA 90A requirements. This design is intended for use in an exposed grid suspended ceiling (T-bar Lay-in) with up to a three-hour rating and must be installed in accordance with installation instructions.

Diffusers shall consist of an outer frame assembly, which facilitates mounting in the application shown. A collar that allows connection to the square (or rectangular) duct size indicated shall be an integral part of the assembly. An inner core assembly consisting of fixed louvers capable of producing the air flow discharge pattern indicated on the plans shall be fully removable from the installed diffuser frame for access to any dampers or other ductwork components located in or near the diffuser neck. The inner core assemblies shall be identically constructed so that directional core assemblies providing different air flow discharge patterns may be interchanged between frames, provided the frame duct connections are of the same size. Diffuser shall incorporate a non-adjustable butterfly-type ceiling radiation damper, a 165 °F [74 °C] fusible link, and a non-asbestos thermal blanket. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

Options

- Volume adjustment for balancing.
- 212 °F [100 °C] fusible link.
- Optional finishes available.
- Optional T-bar Lay-in Panel.

SMDA / AMDA

Adjustable Air Pattern

Furnish and install Price model SMDA steel, AMDA aluminum directional louvered face diffusers of the sizes and mounting types shown on the plans and air distribution schedule. Diffusers shall consist of an outer frame assembly, which facilitates mounting in the application shown. A collar that allows connection to the square (or rectangular) duct size indicated shall be an integral part of the frame assembly. An inner core assembly consisting of fixed louvers capable of producing the air flow discharge pattern indicated on the plans shall be fully removable from the installed diffuser frame for access to any dampers or other ductwork components located in or near the diffuser neck. A set of adjustment vanes shall be provided on each side of the diffuser to allow for field adjustment from horizontal to vertical air flow discharge.

Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

SMDP

Fixed Air Pattern

Furnish and install Price model SMDP steel louvered face diffusers of the sizes and mounting types shown on the plans and air distribution schedule. Diffusers shall consist of an outer frame assembly, which facilitates mounting in the application shown. A collar that allows connection to the square duct size indicated shall be an integral part of the frame assembly. An inner core assembly consisting of fixed louvers with a plaque in the center shall be fully removable from the installed diffuser frame for access to any dampers or other ductwork components located in or near the diffuser neck. FFinish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

CEILING DIFFUSERS

Square / Rectangular Directional

SMDA-FR

Supply - Louvered Face, Adjustable Air Pattern, Fire-Rated

Furnish and install Price model SMDA-FR directional louvered face diffusers of the sizes and mounting types shown on the plans and air distribution schedule. Diffusers shall be Fire-Rated Assemblies listed in the UL, Underwriters Laboratories Fire Resistance Directory and in the ULC, Underwriters Laboratories of Canada Equipment and Materials Directory. Diffusers shall meet UL time vs. temperature test criteria and NFPA 90A requirements. This design is intended for use in an exposed grid suspended ceiling (T-bar Lay-in) with up to a three-hour rating and must be installed in accordance with installation instructions.

Diffusers shall consist of an outer frame assembly, which facilitates mounting in the application shown. A collar that allows connection to the square (or rectangular) duct size indicated shall be an integral part of the assembly. An inner core assembly consisting of fixed louvers capable of producing the air flow discharge pattern indicated on the plans shall be fully removable from the installed diffuser frame for access to any dampers or other ductwork components located in or near the diffuser neck. The inner core assemblies shall be identically constructed so that directional core assemblies providing different air flow discharge patterns may be interchanged between frames, provided the frame duct connections are of the same size. A set of adjustment vanes shall be provided on each side of the diffuser to allow for field adjustment from horizontal to vertical air flow discharge. Diffuser shall incorporate a non-adjustable butterfly-type ceiling radiation damper, a 165 °F [74 °C] fusible link, and a non-asbestos thermal blanket. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

Options

- Volume adjustment for balancing.
- 212 °F [100 °C] fusible link.
- Optional finishes available.
- Optional T-bar Lay-in Panel.

CSRD

Furnish and install Price model CSRD square or rectangular neck directional supply and return air combination diffusers of sizes and capacities as shown on the drawings (or the diffuser schedule). Diffuser shall supply air to the space with horizontal air flow pattern through outer slots and return air through a center mounted core of 1/2 in. x 1/2 in. x 1/2 in. aluminum eggcrate.

Supply section of diffuser shall provide ceiling blanketing air pattern and shall adapt to variable volume roof top units.

Diffusers shall consist of an outer frame (flanged) sub-assembly for surface mounting and a removable* inner core, along with center eggcrate (*on most sizes).

Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

SMX

Steel Construction

Furnish and install Price model SMX louvered rapid mixing diffusers of the sizes and frame types shown on the plans and schedules.

Diffusers shall consist of a formed steel outer frame (except frames 6 and 33 which shall have an extruded aluminum frame) assembly, which facilitates mounting in the application shown. A collar that allows connection to the square (or rectangular) duct size indicated shall be an integral part of the frame assembly. This collar fits inside the duct.

Optional

Provide a connecting collar, sized to fit outside the supply duct for a low leakage joint.The formed steel collar shall be welded or clinch locked to the diffuser frame.

The inner core assembly shall consist of formed steel fixed louvers capable of producing the air flow discharge pattern indicated on the plans. Steel mixing vanes shall be fastened to the back of the fixed louvers. Vanes shall be designed to produce high induction and rapid mixing of the primary and room air. Inner core assemblies shall be easily removable from the installed diffuser frame for access to any dampers or other ductwork components located in or near the diffuser neck.

Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

Options

- Opposed blade damper shall be of coated steel construction.
- Square to round adaptor shall be of coated steel construction.

SMX-FR

Supply - Louvered Face, Fixed Pattern, Fire-Rated

Furnish and install Price model SMX-FR louvered rapid mixing diffusers of the sizes and frame types shown on the plans and schedules. Diffusers shall be Fire-Rated Assemblies listed in the UL, Underwriters Laboratories Fire Resistance Directory and in the ULC, Underwriters Laboratories of Canada Equipment and Materials Directory. Diffusers shall meet UL time vs. temperature test criteria and NFPA 90A requirements. This design is intended for use in an exposed grid suspended ceiling (T-bar Lay-in) with up to a three-hour rating and must be installed in accordance with installation instructions.

Diffusers shall consist of a formed steel outer frame assembly, which facilitates mounting in the application shown. A collar that allows connection to the square (or rectangular) duct size indicated shall be an integral part of the assembly. This collar fits inside the duct. The inner core assembly shall consist of formed steel fixed louvers capable of producing the air flow discharge pattern indicated on the plans. Steel mixing vanes shall be fastened to the back of the fixed louvers. Vanes shall be designed to produce high induction and rapid mixing of the primary and room air. Inner core assemblies shall be easily removable from the installed diffuser frame for access to any dampers or other ductwork components located in or near the diffuser neck. Diffuser shall incorporate a non-adjustable butterfly-type ceiling radiation damper, a 165 °F [74 °C] fusible link, and a non-asbestos thermal blanket. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

Options

- Volume adjustment for balancing.
- 212 °F [100 °C] fusible link.
- Optional finishes available.
- Optional T-bar Lay-in Panel.

Square / Rectangular Directional

AMX

Aluminum Construction

Furnish and install Price model AMX louvered rapid mixing diffusers of the sizes and frame types shown on the plans and schedules.

Diffusers shall consist of an extruded aluminum outer frame assembly, which facilitates mounting in the application shown. For styles 3P, 4P, 17P, a steel frame and panel shall be provided. A collar that allows connection to the square (or rectangular) duct size indicated shall be an integral part of the frame assembly. This collar fits inside the duct.

Optional

CEILING DIFFUSERS

Provide a connecting collar, sized to fit outside the supply duct for a low leakage joint. The formed aluminum collar shall be welded or clinch locked to the diffuser frame.

The inner core assembly shall consist of extruded aluminum fixed louvers capable of producing the air flow discharge pattern indicated on the plans. Aluminum mixing vanes shall be fastened to the back of the fixed louvers. Vanes shall be designed to produce high induction and rapid mixing of the primary and room air. Inner core assemblies shall be easily removable from the installed diffuser frame for access to any dampers or other ductwork components located in or near the diffuser neck.

Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

Options

- Opposed blade damper shall be of (coated steel construction) (aluminum construction mill finish).
- Square to round adaptor shall be of coated steel construction.
- 3PAL, 4PAL, 17PAL all aluminum frame and panel.

Modular Core

SMCD / AMCD

Furnish and install Price model SMCD steel, AMCD aluminum directional modular core louvered face diffusers of the sizes and mounting types shown on the plans and air distribution schedule. Diffusers shall consist of an outer frame assembly, which facilitates mounting in the application shown. A collar that allows connection to the square duct size indicated shall be an integral part of the frame assembly. The diffuser core shall consist of fixed louver directional modules that may be easily field adjusted from the diffuser face (without any type of tools or mechanical device) for 1, 2, 3, or 4 way discharge. Each module shall be easily removable to allow for access to any damper or other ductwork component in or near the diffuser neck. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

Curved Vane

CVD

Supply and install Price model CVD curved vane supply air diffusers of sizes and mounting styles as shown on the drawings (or diffuser schedule).

Diffusers shall have adjustable curved extruded aluminum louver vanes.

Finish of diffuser face shall be B12 White Powder Coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

SCVD

Supply and install Price model SCVD curved vane supply air diffusers of sizes and mounting styles as shown on the drawings (or diffuser schedule).

Diffusers shall have adjustable curved roll-formed steel louver vanes.

Finish of diffuser face shall be B12 White Powder Coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

ACVD

Supply and install Price model ACVD curved vane supply air diffusers of sizes and mounting styles as shown on the drawings (or diffuser schedule).

Diffusers shall have adjustable curved roll-formed aluminum louver vanes.

Finish of diffuser face shall be B12 White Powder Coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

SCVD-FR

Supply - Steel Curved Vane Diffuser Fire-Rated

Furnish and install Price model SCVD-FR ceiling mounted diffusers of size and mounting types designated by the plans and air distribution schedule. Diffusers shall be Fire-Rated Assemblies listed in the UL, Underwriters Laboratories of Canada Equipment and Materials Directory. Diffusers shall meet UL time vs. temperature test criteria and NFPA 90A requirements. This design is intended for use in exposed grid suspended ceiling (T-bar Lay-in) with up to three-hour rating and must be installed in accordance with the installation instructions.

Diffusers shall consist of an outer frame assembly, which facilitates mounting in the application shown. A collar that allows connection to the square duct size indicated shall be an integral part of the assembly. The inner core assembly shall consist of individual adjustable steel curved vanes capable of producing the air flow discharge pattern indicated on the plans. Diffuser shall incorporate a non-adjustable butterfly-type ceilng raditation damper, a 165 °F [74°C] fusible link, and a non-asbestos thermal blanket. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

Options

- Volume adjustment for balancing.
- 212 °F [100°C] fusible link.
- Optional T-bar Lay-in Panel.

RCD / ARCD / RCDA

Furnish and install Price model RCD / RCDA (steel) / ARCD (aluminum) round ceiling diffusers of the size and capacities shown on the plans and air distribution schedule. Diffusers shall have round neck inlets and face with a removable inner assembly of cones that extend below the diffuser face. The diffuser air pattern shall be field adjustable from horizontal to vertical by means of rotating the smallest inner cone (RCDA) / removing the cones and repositioning the mounting screws to one of three locations (RCD / ARCD). Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

RCDE

Furnish and install Price model RCDE round ceiling diffusers of size and capacities shown on the plans and air distribution schedule. Diffusers shall have round neck inlets and face with a removable inner assembly of cones that extend below the diffuser face. The diffuser air flow discharge pattern shall be field adjustable by the removal and repositioning of the cone assembly. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

RPD

Supply and install Price model RPD (Steel) round plaque diffusers of the size and capacities shown on the plans and air distribution schedule. Diffusers shall consist of an outer cone of one-piece seamless construction that incorporates a round inlet. The exposed surface of the plaque shall be smooth and flat. The air flow discharge pattern shall be field adjustable from horizontal to vertical by repositioning the mounting screws to one of three locations. The plaque shall be easily removed to allow for full access to any dampers or other ductwork components located near the diffuser neck. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

Options

• Factory mounted retaining cable to hold inner plaque assembly when removed.

RID

Furnish and install Price model RID round industrial type ceiling diffuser of size and capacities shown on the plans and air distribution schedule. The diffusers shall consist of an outer cone and an inner air flow vane assembly that allows field adjustment of the air flow from horizontal to vertical by rotating an operator ring that extends below the diffuser face. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

Ceiling Twist Outlets

RSD

Adjustable Discharge

Furnish and install Price model RSD/S (square face) / RSD/C (circular face) radial discharge outlets of the sizes, discharge patterns and mounting styles shown on the plans and air distribution schedule. Diffuser shall have individually adjustable manual pattern controllers to allow for field adjustment of the discharge pattern. Diffuser shall be of steel construction with RAL 9003 white powder coat finish and white polycarbonate pattern controllers. Diffuser shall be supplied with a galvanized steel plenum.

RVDLT Radial Vane

Low Temperature Diffuser

Furnish and install Price model RVDLT Radial Vane Low Temperature Diffusers of sizes and capacities as shown on the drawings or diffuser schedule. Diffusers shall have a face panel with a radial pattern of air slots and fixed horizontal deflectors. The diffuser also consists of a circular plenum chamber with inlet baffles and a top mounted neck inlet. The diffuser air flow discharge pattern shall provide a high induction vortex air flow projecting horizontally from the diffuser.

Unit shall incorporate the following construction features to prevent formation of condensation:

Diffuser plenum and backpan shall be factory insulated with $^{3}/_{4}$ in. dual density insulation with foil facing. All seams and joints shall be sealed with coated cloth tape which meets and requirements of NFPA 90A and UL181.

The unit shall be designed and verified by test to prevent condensation from forming on the surface of the unit at 40 °F supply temperature and ceiling plenum conditions of 78 °F, 60% humidity.

Units shall be tested in accordance with ASHRAE Standard 70-2006. Performance data shall be provided for throw and drop at 40 °F supply temperature with a room temperature of 75 °F.

The radial pattern face shall be construction of (choose from coated steel, aluminum, stainless steel). Plenum chamber shall be construction of galvanized steel.

Finish shall be B12 White Powder Coat for steel or aluminum units, #4 brushed finish for stainless steel.

RVD

Radial Vane Diffuser

Furnish and install Price model RVD Radial Vane Diffusers of sizes and capacities shown on the drawings or diffuser schedule.

Diffusers shall have a face panel with a radial pattern of air slots and fixed horizontal deflectors. The diffuser shall also consist of a plenum chamber with inlet baffles and a top mounted neck inlet. The square radial pattern face shall open easily with ¼ turn quick-release fasteners for damper adjustment and cleaning purposes. The circular radial pattern face shall open easily with a stove bolt for cleaning purposes. The diffuser air flow discharge pattern shall provide a high induction vortex air flow projecting horizontally from the diffuser.

The radial pattern face and corresponding plenum shall be constructed of coated steel, aluminum or stainless steel.

RTD

Radial Twist Diffuser

Furnish and install Price model RTD Radial Vane Diffusers of sizes and capacities shown on the drawings or diffuser schedule.

Diffusers shall have a face panel with a radial pattern of 16 air slots and fixed horizontal deflectors. The diffuser shall also consist of a plenum chamber and a top mounted neck inlet. The square radial pattern face shall come with centrally located, removable plug for damper adjustment. The diffuser air flow discharge pattern shall provide a high induction vortex air flow projecting horizontally from the diffuser.

The radial pattern face and corresponding plenum shall be constructed of coated steel.

VAV Diffusers

Prodigy Series

Furnish and install Prodigy[®] Series Personal Self-Modulating Diffusers as manufactured by Price in sizes and capacities as shown on plans.

The diffuser shall provide variable air volume control and regulate supply air volume to maintain room temperature settings. The VAV actuator mechanism shall be fully electronic direct drive with immediate response to control signals from the controller board. Thermal expansion devices are not acceptable.

Diffuser construction shall be of steel with one-piece backpan, aerodynamically designed inner cone damper assembly, and plaque faceplate. Finish shall be B12 white powder coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

Controls shall be microprocessor-based (direct digital) with the following features:

- Proportional plus integral (PI) control algorithms for cooling and heating.
- Automatic heating/cooling changeover.
- Power and output signals to fully control Prodigy Drone units.
- Pulsed 24 VAC contacts with auto-reset overload protection and indicator lights to activate reheat.
- Retention of set-point and settings information in case of power loss. Stored in EEPROM indefinitely. No battery to replace.

Modulating damper assembly will have the following features:

- Quiet ultra long life brushless AC drive motor.
- Direct drive system without gears/belts/ levers, resulting in zero maintenance and long life.
- Completely automatic damper recalibration as needed.

Operational mode is defined by model selection as follows:

Model PPD1

Diffuser shall be Price model PPD1, providing VAV cooling and constant volume heating. The room temperature sensor shall be mounted on the diffuser face and enclosed to provide a continuous appearance. A manual set-point adjustment must be provided at the diffuser. Output jacks (RJ11) to provide power and signals for up to five drones will be accessible on the junction bracket.

Model PPD2

Diffuser shall be Price model PPD2, providing VAV cooling and VAV heating. A diffuser mounted temperature sensor shall be utilized in cooling mode. A wall mounted assembly will provide room temperature sensing in heating mode, as well as set-point adjustment for heating and cooling. Output jacks (RJ11) to provide power and signals for up to five drones will be accessible on the junction bracket.

Model PPD3

Diffuser shall be Price model PPD3, providing VAV cooling and constant volume heating. Set-point adjustment is accomplished with a hand held infrared (IR) remote device. The room temperature sensor and infrared receiving mechanism shall be mounted in the center of the diffuser for 360 degree signal response and enclosed for continuous appearance. Output jacks (RJ11) to provide power and signals for up to five drones will be accessible on the junction bracket.

Note: All Prodigy Master Units have auto model detection. For example this would allow a PPD1 unit to recognize a thermostat (PPD2) and adjust itself accordingly.

Model PPDD

Diffuser shall be Price model PPDD, providing drone operation only. The diffusers shall respond to a signal provided by the controlling unit. Output jacks (RJ11) on the Prodigy Master PPD1, 2, 3 will provide the drone with power and signals. Up to five drones may be connected to one Prodigy master. The PPDD will automatically recalibrate itself as needed.

Optional BACnet Interface

The DDC controller shall have native BACnet connectivity using a MS/TP (Master Slave Token Passing) network. The network connections shall be shieled RJ-45 connections for tool-free hookup. Each DDC controller shall be supplied with a 35ft plenum-rated shielded network cable. Multiple values will be shared through the MS/TP network including (but not limited to) room temperature, room set-point and room load.

Optional Pressure Relief Collar

A pressure relief collar (PRC) shall be fitted to the inlet collar of the Prodigy[®] diffusers to relieve excess static pressure arising from modulation of the air flow by the Prodigy[®] diffuser.

Optional Power Module

A power module shall provide 24VAC power supply to Prodigy diffusers via plenum cables with modular connectors. The single power module can power up to 15 Prodigy units.

VAV Diffusers

Pressure Control Valve

Furnish and install Price variable volume control valve assemblies of the series and capacities as shown on the plans.

The duct shall be constructed of 24 gauge type 304 stainless steel for round ducts, and 22 gauge type 304 stainless steel for rectangular ducts. The damper shall be 22 gauge type 316 stainless steel, with polyethylene damper shaft bearings and damper gasket. Damper shaft shall be type 304 stainless steel. The control enclosure and mounting bracket shall be zinc coated steel.

In the full closed position, air leakage past the closed damper shall not exceed 2% of the nominal catalogue rating 3" w.g. inlet static pressure when tested in accordance with ASHRAE Standard 130.

An air flow sensor of a cross configuration shall be located at the inlet of the assembly. The sensor shall have 12 total pressure sensing ports and center averaging chamber designed to accurately average the flow across the inlet of the assembly. Sensor shall provide accuracy within 5% with a 90° sheet metal elbow directly at the inlet of the assembly. The air flow sensor shall amplify the sensed air flow signal.

Controls

Refer to Single Duct Controller Type in Volume 3.

Varitherm[®] Series

Furnish and install Varitherm[®] Series Personal Self-Modulating Diffusers as manufactured by Price in sizes and capacities as shown on plans.

The diffuser shall provide variable air volume control and regulate supply air volume to maintain room temperature settings.TheVAV actuator assembly shall be fully independent of electric or pneumatic drives and will respond only via thermal wax actuators.

Diffuser construction shall be of steel with one-piece backpan, fully supported chassis, and hinged plaque faceplate. Finish to be B12 white powder coat on damper, backpan and hinged plaque faceplate. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714. Chassis and linkage system shall be galvanized steel and engineered plastic.

Room temperature set-point adjustment shall be completed by rotating a thumbwheel in correspondence to the provided scale, independent adjustment shall be provided for heating and cooling modes. The adjustment must be made on the chassis system and accessible from behind the hinged plaque. Each set-point shall be adjustable through the range of 71 °F to 82 °F. For the VPD-C cooling only diffuser, only one set-point thumbwheel is required; for the VPD-HC heating/cooling diffuser, two set-point thumbwheels are required.

The VAV diffuser damper shall open when the unit is in cooling mode and the room air temperature rises, and when the unit is in heating mode and the room air temperature lowers. The diffuser damper shall close when the unit is in cooling mode and the room air temperature lowers, and when the unit is in heating mode and the room air temperature rises. The changeover thermostat must be factory installed and calibrated to engage heating mode when the supply air temperature exceeds 80 °F/27 °C and engage cooling mode when the supply air temperature drops below 65 °F/18 °C.

Minimum air flow adjustment must be accessible from the room side of the chassis and hidden behind the hinged plaque. The minimum air flow dial shall be adjustable with a flathead screwdriver and must have a readable gauge with a range from 0% to 100% of maximum flow. Factory set-point of the minimum flow is 0% of maximum flow. Balancing mode is accessible from the minimum air flow adjustment dial. A full turn of the dial will place the unit into balancing mode.

Imperial dimensions are converted to metric and rounded to the nearest millimeter.

All Metric dimensions () are soft conversion

The manufacturer shall warrant that the VAV diffuser shall be defect free in the material and workmanship for a period of 10 years from date of shipment.

The hinged plaque must be rigidly fastened to the chassis on one side with an interlocked piano hinge to allow for access to and free adjustment of the temperature set-points or minimum air flow. Removable plaques are not acceptable. The plaque must be retained when closed, by rare earth magnets, for consistent closing and for easy opening. Instruction for use must be placed on the inside of the plaque.

Static pressure at the inlet of the diffuser shall be within .05 in. w.g./12 Pa and .25 in. w.g./62 Pa at full and partial air flows. Static pressures below .05 in. w.g./12 Pa will result in low air flow and poor induction. Operation at a static pressure above .25 in. w.g./62 Pa will result in excessive noise.

Unitee Series

The following specification is for a defined application. Price would be pleased to assist in developing a specification for your specific need.

Criteria

- Main Member #4787.
- Cross Member #4683.
- Perimeter Mould #4826.
- Module size 5 ft x5 ft [1.5 m x 1.5 m].
- Basketweave assembly.
- To accept 20" x 60" [.508 m x 1.5 m] lighting fixture.

General

Concept

 The ceiling shall be the Unitee Ceiling System as manufactured by Price in a 5 ft x 5 ft [1.5 m x 1.5 m] planning grid complete with acoustical ceiling panels.

Scope

Supply and install the specified ceiling system complete with:

- grid suspension system
- acoustical infill panels
- related accessories

Work Not Included

- Air distribution devices and other mechanical services.
- Lighting fixtures and other electrical services.

Submittal Drawings

Prior to commencement of work, furnish a complete set of shop drawings for approval.

Product

Suspension System

- The suspension system shall be Price extruded aluminum type # 4787 main members, type #4683 cross members and type #4826 perimeter mould.
- 10 ft [3 m] main members shall assemble in a basketweave pattern to form 5 ft x 5 ft [1.5 m x 1.5 m] modules. At each 5 ft x 5 ft [1.5 m x 1.5 m] intersection, the accent screw-slot shall be thru-slot, i.e. the screw-slot shall run continuous in all directions. #4683 Cross Members shall be used to subdivide all modules to receive an under-sized 20" x 60" [.508 m x 1.5 m] lighting fixture in the centre of those modules so indicated.
- Main Members shall use the Price two-piece Universal Clip at each end for positive interconnection to other Main Members.
- Cross Members shall use the Price two-piece Universal Clip at each end, thereby permitting the spot removal or 90° rotation of any Cross Member without the use of tools.
- All exposed components shall be finished in B12 White Powder Coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.
- Main Members shall be supported by #12 gauge prestressed hanger wire at 5 ft [1.5 m] centres. One additional hanger shall be used to suspend the Main Member at the mid-module location at each end of the lighting fixtures.
- Maximum deflection shall not exceed L/360, according to ASTM C635 deflection test, based on design loads.
 Sound Control
- Supply and install acoustical panels (designer to specify the product and performance required).

Execution

Installation

- Install all components in accordance to the manufacturer's instructions.
- Install ceilings to heights indicated on the plans and specifications to a tolerance of ¹/₈" in 12 ft-0" [or 3 mm in 3600 mm].
- Temperature and humidity during installation of the ceiling is important. The system shall not be installed when the temperature in the area is under 60 °F or over 85 °F [16 °C or over 29 °C], or if the humidity is above 80 percent.