

BCS 3.0 Working Paper

Analysis of ISO 13443 Implementation

A Working Paper describing and explaining the principles behind calculation variations when using ISO 13443 within SAP Oil, Gas, & Energy systems.

Notes

The latest version of this documentation can be found in the QuantityWare <u>Knowledge Base</u>. All documentation is kept current for the combinations of latest BCS release with the latest supported SAP Oil, Gas, & Energy release. For all currently supported combinations see <u>Note #000086 "Support and</u> <u>Release (Lifecycle) details" page 2, "Release Lifecycle"</u>.

Your release level can be determined via:

"/o/QTYW/COCKPIT" -> "Cockpit" -> "Support Package Level" or

"/o/QTYW/COCKPIT_GAS" -> "Cockpit" -> "Support Package Level"

Version History

Version	Date	Description
00	2016-09-02	First published
01	2017-08-02	Editorially revised and confirmed
02	2021-06-18	Modern QW document style applied
03	2023-11-30	Editorially revised and confirmed

Contents

1.	Question	4
2.	Answer	5
Арр	endix A. QuantityWare Calculation Transparency	8

1. Question

ISO 13443(1996) - last reviewed and confirmed in 2020 - specifies:

The ISO standard reference condition (standard reference conditions / base reference conditions) for combustion and metering temperature T_1 and T_2 is 15 °C = 288.15 K, the ISO standard reference condition for combustion and metering pressure p_1 and p_2 is 101.325 kPa.

In the normative Annex A of ISO 13443 conversion factors with four decimals between natural gas physical properties at various alternative reference conditions (0 °C, 15 °C, 20 °C, 25 °C for T₁, T₂ and 101.325 kPa for p₁, p₂) are defined.

In the informative Annex B, conversion formulas (B.1 to B.21) are given for conditions not covered in Annex A, e.g., a temperature base of 60 °F.

ISO 13443 (1996) eq. B.8/ B.10/ B.12/ B.14 [Conversion of a molar-basis or mass-basis ideal or real superior calorific value H(ISO) to a mass-basis ideal or real superior calorific value H (T₁, p₁)] is given as:

HS (ISO) = HS (T₁, p₁) × [1+ 0.00010 × (T₁ - 288.15)]

If a conversion factor from 60 °F to 15 °C is calculated using this formula (which may also be utilized to convert energy quantity values), the calculation result is:

1.000 055 56, which rounded to 5 decimals equals 1.000 06.

With T₁ = 60 °F "=" 288.7056 K and setting HS (T₁, p₁) = 1

The SAP ERP system with QuantityWare BCS installed calculates: **1.000 055 555 5⁻³**.

How can this be explained?

2. Answer

The difference is due to in the rounding of the conversion result from °F to K (Kelvin) for the absolute temperature T_1 . The formula to convert a °F value to a K value is given e.g., in <u>NIST SP811</u>, page 66:

T / K = (t / °F + **459.67**) / **1.8** (1)

In the calculation described in the question, the Kelvin value for 60 °F is rounded to 4 decimals, i.e., 288.7056 K. Then, the exact ISO 13443 factor is, as calculated, 1.000 055 560 - using 288.706 K would result in a factor of 1.000 055 600; using 288.70556 K one calculates 1.000 055 556 and so on).

Since ISO 13443 does not explicitly specify the number of decimals for the absolute temperatures T_1 and T_2 , (although the numbers in the informative Annex D examples use 3 decimals and final values, e.g., heating values, are rounded therein to 4 or 5 significant digits), the QuantityWare implementation uses the unrounded floating-point number for the ISO 13443 calculations. This is the "weak spot" of ISO 13443; it does not contain a state-of-the-art implementation guideline for software implementations (e.g., as ASTM D1250-04 does).

Having said this, one would expect a value of 1.000 0⁻⁵ as the "most accurate" ISO 13443 value, and not 1.000 055 555 5⁻³ as in the SAP system. Why is this not the case?

The reason for this deviation is that the SAP UoM conversion between temperatures (centrally defined via SAP transaction CUNI) calculates for formula (1) a value of 288.70555 5⁻³ K– an insignificant inconsistency (for a non-scientific system) of the SAP UoM conversion factor definition and underlying conversion calculation for **temperatures (other quantities are not affected)**.

¹ Repeating Decimals notation is not internationally standardized. QuantityWare uses the U.S. "vinculum" notation to denote the repetend e.g., 0. ⁻³ to represent 0.3333... or 0. ⁻⁵⁴ to represent 0.54545454... etc.

In detail, the SAP transaction CUNI requires the implementation of formula (1) as:

T / K = t / °F / 1.8	+ 459.67 / 1.8	(2)	⇔
T / K = t / °F / 1.8	+ 255.37 ⁻ 2	(3)	

With 1.8 = 9 / 5, one can maintain the repeating decimal value 255.37^{-2} with a maximum of six decimals in transaction CUNI:

Unit of <u>m</u> easurement	<u>E</u> dit <u>G</u> oto Ut <u>i</u> li	ties S <u>y</u> stem <u>H</u> elp	< 🗗 🗕 🖬 ×
< SAP Char	nge Units of Me	easurement of Dimension tempera	ture: Details
✓	~ 🖫 💼 🕯	🗐 忌 🔊 Cancel	🗔 🕄 🗘 Exit
Int. meas. unit Display Commercial Technical Decimal places float. point exp.	FAH °F 2	Measurement unit text degree Fahrenheit °F	
Conversion		ALE/EDI ISO code FAH Primary code	
Numerator Denominator Exponent	5 9	Application Parameters	
Additive constant Decimal pl. rounding Unit of meas.family	255.372222	 Commercial meas.unit Value-based commt 	

The Help information specifies only 2 decimals:

■ Performance Assistant	. 🗆 ×
Additive constant for conversion to SI unit	^
Constant used for converting units of temperature.	
Use	
1. Simplified formula: Measurement unit = (N/D) x SI unit	
2. Complete formula: A * measurement unit = (A * N/D * 10**E + K) * SI unit	
 A = number of measurement units N = numerator D = denominator E = exponent (only required in the case of very large or very small numbers) K = additive constant (only required for temperature conversions) 	
Examples	
1. Dimension length Measurement unit mm (millimeter) SI unit m (meter) 1 mm = (1/1000) * meter	
2. Dimension temperature Measurement unit °F (Fahrenheit) SI unit K (Kelvin) 32 °F = (32 * 5/9 * 10**0 + 255,37) * K = 273,15 K = 0 °C	
	× //.

If one calculates the ratio of the "most accurate" ISO 13443 value 1.000 0⁻⁵ and the "most accurate" SAP ISO 13443 value 1.000 055 555 5⁻³, one obtains a ratio of 1,000 000 000 022 220 987 723 398 055 390 8 (MS Desktop Calculator) i.e., a deviation at the 11th decimal. Thus, quantity values exceeding 99 billion (in any UoM) would show a noticeable difference – however quantities exceeding 99 billion are not "sensible" in business process terms, so noticeable differences are usually never encountered in live business transactions.

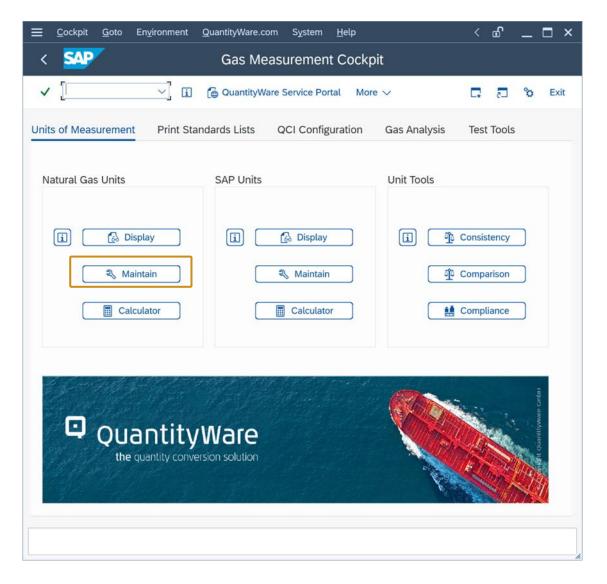
On the other hand, the fact that business contracts typically specify a "rounded ISO 13443 factor" is of benefit in approaching a well-defined implementation guideline, which automatically overcomes the two weaknesses or inconsistencies, outlined above.

Alternatively, when using the ASTM D1250-04 (API MPMS Chapter 11.1 – 2004) for comparison, ISO could clearly specify the use of 64-bit floating point accuracy values for all intermediate calculations; this however would not eliminate the SAP ERP transaction CUNI "inconsistency".

Appendix A. QuantityWare Calculation Transparency

In the Gas Measurement Cockpit, you access the ISO 13443 Calculator via push button "Calculator" in the "Units of Measurement -> Natural Gas Units" tab strip:

<u> </u>	QuantityWare.com System <u>H</u> elp	× 🗖 _ 🖻 ×
< SAP	Gas Measurement Cockp	it
 ✓ [] I 	DuantityWare Service Portal More	e∨ 📮 टू ⁰o Exit
Units of Measurement Print Star	ndards Lists QCI Configuration	Gas Analysis Test Tools
Natural Gas Units	SAP Units	Unit Tools
i Display	Display	i) 한 Consistency
Raintain	R Maintain	Comparison
Calculator	Calculator	te Compliance
an a	ANNE AND FRANK MAND	and the second
		abrityware cribit
Quantity	Ware	La Cuantity


The conversion of a theoretical mass-basis real superior calorific value of 1.0 Joule per kilogram leads to a result of 1.000 055 560 Joule per kilogram (rounded to 8 display decimals).

<u>Ξ</u> <u>P</u> rogram <u>E</u> dit <u>G</u> oto System <u>H</u> e	ջի	< 🗗 _ 🗖 ×
< SAP Gas Measuremer	nt Cockpit: Specialist Calculator - Proper	ty Conversion
✓ @ ©	<u>i</u> Cancel 률	📮 🗗 🗞 Exit
Select natural gas property and base con	ditions for conversion	
Natural gas property	Mass-basis real superior calorifc value	\checkmark
Base condition combustion from	t: 60 °F, p: any (use for molar \checkmark	
Property value from:	1.00000000 JKG joule per kilogram	
Base condition combustion to	t: 15 °C, p: 101.325 kPa	
Property value to:	1.00005556 JKG joule per kilogram	
 Use ISO 13443 table factors Use ISO 13443 formula Round result (UoM definition) 	ר ג	
Select print options:		
 Print conversion Print all ISO 13443 factors 		
		< >

The conversion of a theoretical mass-basis real superior calorific value of 1 000 000.0 Joule per kilogram leads to a result of 1,000,055.55553333 Joule per kilogram (rounded to 8 display decimals), revealing the exact floating-point result of 1.000 055 555 5^{-3}

<u> </u>	elp < 🗗 _ 🗖 🖌
< SAP Gas Measuremer	nt Cockpit: Specialist Calculator - Property Conversion
✓ ── ── ♥	i Cancel 🖶 🖬 🗘 Exit
Select natural gas property and base con	nditions for conversion
Natural gas property	Mass-basis real superior calorifc value \checkmark
Base condition combustion from	t: 60 °F, p: any (use for molar \checkmark
Property value from:	1,000,000.00000000 JKG joule per kilogram
Base condition combustion to	t: 15 °C, p: 101.325 kPa
Property value to:	1,000,055.55553333 [JKG]]]le per kilogram
 Use ISO 13443 table factors Use ISO 13443 formula 	
Round result (UoM definition)	
Select print options:	
Print conversion	
O Print all ISO 13443 factors	
\mathbf{c}	()

You access the ISO 13443 Annex A normative table factors via push button "Maintain" in the "Units of Measurement -> Natural Gas Units" tab strip:

✓ ₩	New Entries 📓 \ominus 😏	■5 88 88 Cancel	1 G G		ම් 🗖 🗖 🖒 Exit
efine ISO 13443 Property Conversion F	actors				C
Property	Metering (t2,p2) from	Metering (t2,p2) to	Combustion (t1,p1) from	Combustion (t1,p1) to	Conversion factor
Mass-basis real superior calor.	.∨not relevant	∨not relevant	∨t: 25 °C, p: 101.325 kPa	∨t: 0 °C, p: 101.325 kPa ∨	1.00260000000000
Mass-basis real superior calor.	,∨not relevant	∨not relevant	∨t: 25 °C, p: 101.325 kPa	∨t: 15 °C, p: 101.325 kPa ∨	1.00100000000000
Mass-basis real superior calor.	.∨not relevant	∼not relevant	∨t: 25 °C, p: 101.325 kPa	\sim t: 20 °C, p: 101.325 kPa \sim	1.00050000000000
Mass-basis real inferior calor.	.∨not relevant	∨not relevant	∨t: 15 °C, p: 101.325 kPa	\sim t: 0 °C, p: 101.325 kPa \sim	1.00020000000000
Mass-basis real inferior calor.	.∨not relevant	∨not relevant	∨t: 20 °C, p: 101.325 kPa	∨t: 0 °C, p: 101.325 kPa ∨	1.00020000000000
Mass-basis real inferior calor.	.∨not relevant	∨not relevant	∨t: 20 °C, p: 101.325 kPa	∨t: 15 °C, p: 101.325 kPa ∨	1.0000000000000000
Mass-basis real inferior calor.	,∨not relevant	∨not relevant	∨t: 25 °C, p: 101.325 kPa	∨t: 0 °C, p: 101.325 kPa ∨	1.00030000000000
Mass-basis real inferior calor.	.∨not relevant	∨not relevant	∨t: 25 °C, p: 101.325 kPa	\sim t: 15 °C, p: 101.325 kPa \sim	1.0001000000000
Mass-basis real inferior calor.	.∨not relevant	∨not relevant	∨t: 25 °C, p: 101.325 kPa	∨t: 20 °C, p: 101.325 kPa ∨	1.0001000000000
Volume-basis ideal superior ca.	.∨t: 0 °C, p: 101.325 kPa	∨t: 0 °C, p: 101.325 kPa	v ∨t: 25 °C, p: 101.325 kPa	∨t: 0 °C, p: 101.325 kPa ∨	1.00260000000000
Volume-basis ideal superior ca.	√t: 0 °C, p: 101.325 kPa	∨t: 15 °C, p: 101.325 kPa	vt: 25 °C, p: 101.325 kPa	∨t: 15 °C, p: 101.325 kPa ∨	0.94890000000000
Volume-basis ideal superior ca.	.∨t: 15 °C, p: 101.325 kPa	∨t: 0 °C, p: 101.325 kPa	v t: 15 °C, p: 101.325 kPa	∨t: 0 °C, p: 101.325 kPa ∨	1.05660000000000
Volume-basis ideal superior ca.	.∨t: 20 °C, p: 101.325 kPa	∨t: 0 °C, p: 101.325 kPa	v ∨t: 25 °C, p: 101.325 kPa	∨t: 0 °C, p: 101.325 kPa ∨	1.07600000000000
Volume-basis ideal superior ca.	√t: 20 °C, p: 101.325 kPa	∨t: 0 °C, p: 101.325 kPa	∨t: 25 °C, p: 101.325 kPa	∨t: 25 °C, p: 101.325 kPa ∨	1.07320000000000
Volume-basis ideal superior ca.	√t: 20 °C, p: 101.325 kPa	∨t: 15 °C, p: 101.325 kPa	∨t: 25 °C, p: 101.325 kPa	∨t: 15 °C, p: 101.325 kPa ∨	1.01840000000000
Volume-basis ideal inferior ca.	√t: 0 °C, p: 101.325 kPa	∨t: 0 °C, p: 101.325 kPa	v t: 25 °C, p: 101.325 kPa	∨t: 0 °C, p: 101.325 kPa ∨	1.00030000000000
Volume-basis ideal inferior ca.	.∨t: 0 °C, p: 101.325 kPa	∨t: 15 °C, p: 101.325 kPa	v ∨t: 25 °C, p: 101.325 kPa	∨t: 15 °C, p: 101.325 kPa ∨	0.94810000000000

Printing of these factors is also available via the ISO 13443 calculator (Option "Print all ISO 13443 Factors -> F8"):

< SAP	0	as Meas	urement	Cockpit:	Print ISO	13443 Ta	ble A.1					
 ✓ 	Cancel 😭	00	[₽					Q Q*	ê 📮	5	°	Exit
SO 13443 Annex A (normat	ive)								:	L		
		ISO 13443	table va	lues from	customizin	g are prin	ted			_		
	Table A	.1 - Facto	ors for co	nversion b	etween ref	erence con	ditions					
	Me	tering t2/	°C		С	ombustion	t1/°C					
	20	20	15	25	25	25	20	20	15			
	to 15	to 00	to 00	to 20	to 15	to 00	to 15	to 00	to 00			
1 Ideal Volume 2 Ideal density 3 Ideal relative density 4 Compression factor 5 Real volume 6 Real density 7 Real relative density	0.9829 1.0174 1.0000 0.9999 0.9828 1.0175 1.0001	0.9318 1.0732 1.0000 0.9995 0.9313 1.0738 1.0003	0.9479 1.0549 1.0000 0.9996 0.9476 1.0553 1.0002									
8 Molar-basis ideal supe 9 Molar-basis ideal infe				1.0005	1.0010	1.0026	1.0005	1.0021	1.0016			
0 Mass-basis ideal super 1 Mass-basis ideal infer	ior calorif	c value		1.0005	1.0010	1.0026	1.0005	1.0021	1.0016			
1 Mass-basis ideal inter 2 Molar-basis real super 3 Molar-basis real infer	ior calorif	c value		1.0001	1.0001 1.0010	1.0003 1.0026 1.0003	1.0005 1.0000	1.0021	1.0002 1.0016 1.0002			

Thus, full transparency of the ISO 13443 conversion options and configurations is available via the Gas Measurement Cockpit.

Legal Notices

© Copyright 2023 QuantityWare GmbH. All rights reserved.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP AG in Germany and in several other countries all over the world. All other product and service names mentioned are the trademarks of their respective companies.

Microsoft, Windows, SQL-Server, PowerPoint and Outlook are registered trademarks of Microsoft Corporation.

These materials and the information therein are subject to change without notice. These materials are provided by the company QuantityWare GmbH for informational purposes only. There is no implied representation or warranty of any kind, and QuantityWare GmbH shall not be liable for errors or omissions with respect to the materials provided. The only warranties for the products and services of QuantityWare GmbH are those set forth in the express warranty statements accompanying such products and services, if any. No statement within this document should be construed as constituting an additional warranty.