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In the marine environment, all hard surfaces includingmarinemacroorganims are colonized by microorganisms
mainly from the surrounding environment. The microorganisms associated with marine macroorganisms offer
tremendous potential for exploitation of bioactive metabolites. Biofouling is a continuous problem in marine
sectors which needs huge economy for control and cleaning processes. Biotechnological way for searching
natural product antifouling compounds gained momentum in recent years because of the environmental
pollution associated with the use of toxic chemicals to control biofouling. While, natural product based
antifoulants from marine organisms particularly sponges and corals attained significance due to their activities
in field assays, collection of larger amount of organisms from the sea is not a viable one. The microorganisms
associated with sponges, corals, ascidians, seaweeds and seagrasses showed strong antimicrobial and also
antifouling activities. This review highlights the advances in natural product antifoulants research from
microbes associated with marine organisms.

© 2016 Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

Biofouling (accumulation of organisms) is a common problem
on man-made objects submerged in the marine waters throughout
the world. The biofouling growth on a substratum in the aquatic
environment is a complex process (Fig. 1) with initial biofilm formation
(consisting of microbes and microalgae) followed by settlement of

invertebrate larvae and algal spores [1,2]. Biofouling assemblage in
marine environment is made up of thousands of marine organisms
such as bacteria, fungi, phytoplankton, polychaetes, barnacles, molluscs,
ascidians and algae (Fig. 2). Biofouling on submerged surfaces in
the marine environment has considerable ecological and economical
importance particularly serious implications for shipping, offshore
aquaculture and coastal industries [3,4,5]. The effects are mainly due to
the loss of productivity in aquaculture [6] or increased costs of fuel to
shipping as well as the costs associated with ongoing prevention,
management and control [7,8].

Due to the economic significance of the problem in the marine
waters, various control strategies are adopted by the marine sectors
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(Fig. 3). Tributyltin (TBT) containing antifouling paintswerewidely used
in the commercial vessels to control biofouling [9,10]. However, use of
TBT caused environmental problems as it is more toxic to non-target
marine organisms [11,12,13,14]. Due to the environmental concern
over the use of TBT, the International Maritime Organization and
Marine Environment Protection Committee banned the application of
TBT for marine applications from January 1, 2008 [5]. After the ban of
TBT containing antifoulants, copper paints are used as an alternative
despite the higher toxicity of copper to the marine environment
[15]. In addition, many other compounds are also commonly used
as antifouling biocides [16,17] which include irgarol 1051 diuron,
dichloroflumid, chlorothalonil, zine, pyrithione, pyridine and zineb
[10]. Some of these antifouling compounds are now under strict
regulations in various regions due to the possible effects on marine
ecosystems. Natural products are suggested as an alternative to toxic
biocides in the antifouling paints for controlling biofouling. In a
previous review by Qian et al. [10] have highlighted the recent
progress in natural product antifouling research which consists of both

marine and terrestrial sources. Recently, Qian et al. [18] reported
another comprehensive review on the antifouling activities of natural
products from marine sources and their synthectic analogs. Another
review by Dobretsov et al. [19] reported the progress of biofouling
inhibitory activities of marine microorganisms. However, antifouling
activities of marine microbes associated with living surfaces are not
reviewed comprehensively. The aim of this review was to expand our
knowledge on current status of antifouling research from marine
microbes associated with macroorganisms.

2. Eco-friendly antifoulants from marine organisms

After the ban of TBT based antifouling paints and environmental
concerns associated with other toxic biocides, there is a growing need
for the effective eco-friendly antifoulants for marine applications
[20,21]. Research interest on natural product antifoulants has been
increased in the recent years that was evident from the growing
number publications [21,22]. In nature, many marine sessile organisms

Fig. 1. Progression of biofouling development on hard substratum submerged in tropical coastal waters.

Fig. 2. Examples of fouling organisms commonly found on the hard substrata submerged in the marine waters. a: Macroalga; b: Ascidian; c: Barnacle; d: Bivalves.
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are keeping their surfaces free from fouling organisms [23,24]
mainly through the production of secondary metabolites [1,25,26].
The secondary metabolites produced by many marine organisms
that showed inhibitory activities against the biofouling organisms
would be the ideal lead molecules for the development of natural
product antifoulants that can be incorporated into paints [27,28]. The
compounds belonging to terpenoids, steroids, carotenoids, phenolics,
furanones, alkaloids, peptides and lactones extracted from the marine
organisms showed antifouling activities [29]. Among the marine
organisms, antifouling activities were largely reported from sponges
and corals [24,30,31,32,33,34]. Sponges especially attracted the
attention of the researchers due to their close relationship with wide
variety of microbes and presence of large number of biologically active
secondary metabolites [35]. Another important group attracted the
attention of investigators is the ascidians from which good number
of antifouling molecules were reported in the literature [36,37].
Antifouling activities were also reported from seaweeds, seagrasses,
[38,39], bryozoans [40,41],mangroves andmicroorganisms [42,43,44,45].

Few antifouling coatings based on natural products from themarine
organisms such as Sea Nine- 211, Netsafe and Pearlsafe have already
been commercialized [46,47]. During the past five decades bioactive
metabolites from the marine environment attracted the attention of
researchers all over the world for the discovery of lead compounds in
medicine and industry [48,49,50,51,52,53,54,55]. Due to the concern
on exploitation of large amount of marine organisms for natural
products discovery, marine microbes are considered as the viable
source for searching bioactive molecules. Many novel bioactive
metabolites with antifouling activities were reported from marine
microbes in the literature [56,57,58,59,60].

3. Marine macroorganisms–microbe associations

In themarine environment,macroorganisms are generally colonized
by an array ofmicrobial communities from the surroundingwaters [61],
sometimes in high density up to 40–60% of weight reported for sponge,
e.g.Hentchel et al. [62] or diversity (i.e., many strains in an animal, e.g. Li
et al. [63]). This association also referred as ‘symbiosis’ (which includes
both ectosymbiosis and endosymbiosis) has been described from all
animal and plant groups in the marine realm [64]. The symbionts
commonly reported in the literature include microorganisms belonged
to bacteria, archaea and unicellular eukaryotes [64]. Generally,
the microorganisms attached to marine invertebrates and plants
possess more physiological activities than free-living ones [65,66].
The association between invertebrates and microbes occur for many

purposes. For example, these microbes may produce secondary
metabolites to enhance their survival in the competitive conditions
prevailing on the surface of the host's body [67]. The production of
secondary metabolites by these microbes was evident from the
studies made by Burkholder et al. [68] in which they reported a
bioactive metabolite from the bacterium obtained from the surface of
Caribbean seagrass Thalassia. Microbes are believed to produce
different types of metabolites with pharmocodynamic properties,
insecticidal and repellants activities [69,70]. These metabolites are
mainly exploited for screening of lead molecules for drugs and other
compounds with industrial applications [71,72,73].

Themicrobes associatedwithmarine organisms and their secondary
metabolites may enhance (inductive) or inhibit (non-inductive) the
larval settlement of marine organisms. Those microbes which inhibit
the larval settlement could be used as a potential source for the
exploration of antifouling compounds. Also, bacteria associated with
the surface of marine invertebrates are reported to contain a higher
proportion of antibacterial and antifouling activities than those occur as
planktonic forms [74,75]. This hypothesis was confirmed by the studies
made by Long and Azam [76] in which they reported that a major
proportion of microbes attached with surfaces produce inhibitory
compounds than free-living forms. Several studies indicate that the
metabolite believed to be produced by the host organism for the
defense purpose is actually originated from the microbes [77,78,79]. To
confirm this hypothesis, many investigations were carried out to
isolate the bacteria associated with sponges and number of novel
metabolites have been reported [80,81]. For example, the cytotoxic
macrolide swinholide 1, extracted from the sponge Theonella swinhoei,
was found to be synthesized by one of the unicellular bacterial
symbionts inhabiting the endosome of this sponge species [82]. Hence,
microbial associations with higher organisms serve as a sustainable
resource for novel biologically active secondary metabolites. This
prompted more studies focusing on the metabolites produced by the
microorganisms associated with marine macroorganisms.

4. Antifouling activities of microbes associated with marine
invertebrates and ascidians

In this review, antifouling activities of bacteria and fungi associated
with marine macroorganisms are highlighted with examples (Table 1
and Table 2). Among the marine organisms, microbes associated with
sponges and corals topped the list for antifoulant screening assays
(Fig. 4). To mention few, Kon-ya et al. [83] isolated upiquinone-8 from
a sponge-associated bacterial strain Alteromonas sp. which possess

Fig. 3. Common antifouling adopted by various industries for biofouling management.
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inhibitory activities against barnacle larval settlement. Olguin-Uribe et
al. [84] isolated an epibiotic bacterium, Acinetobacter sp. from the
surface of the ascidian Stomozoa murrayi. This bacterium produces
6-bromindole-3-carbaldhyde that inhibited the settlement of cyprid of
the barnacle Balanus amphitrite at a concentrations of 10 mg mL-1. The
ecological role of soft coral-associated bacterium Arthrobacter sp. against
marine biofilm-forming bacteria was highlighted by Radjasa and
Sabdono [85]. Another study by Dobretsov and Qian [86] assessed the
antifouling effect of epibiotic bacteria isolated from the surface of the
soft coral Dendronephthya sp. These researchers isolated 11 bacterial
strains from the coral surface and found that 2 strains inhibited the
settlement of the larva of tubeworm Hydroides elegans. Another study
by Kanagasabhapathy et al. [87] examined the effects of four strains of
Gram positive bacteria (PS2, PS9, PS11 and PS79) isolated from the
sponge Pseudoceratina pupurea on the growth of bacteria isolated from

the biofilms and standard strains of genera Vibrio-Photobacterium. Two
antifouling compounds, 3-methyl-N-(2-phenylethyl) butanamide and
cyclo(D-Pro-D-Phe) were isolated from a sponge-associated fungus
Letendraea helminthicola [21]. Another fungal strain Cochliobolus lunatus
associated with the gorgonian Dichotella gemmacea collected from the
South China Sea showed antifouling activities [88]. The bacterium
Bacillus cereus isolated from the surface of the sponge Sigmodocia
sp. was capable of inhibiting the adhesion of biofilm bacteria and
microalgae [44]. In a study carried out by Bao et al. [22] screened
the antifouling activity of gorgonian derived fungus Penicillium sp.
SCSGAF0023. The symbiotic bacteria associated with sponge Aplysina
gerardogreeni showed antifouling activities against microfouling
organisms such as bacteria and microalgae in laboratory assays [89]. The
crude extracts of 52 bacterial strains associated with sponge species
were tested for anti-adhesion activities against diatoms by Jin et al.
[90] and suggested Bacillus sp. as potential source for antifouling
compounds. Dihydroquinolin-2(1H)-one containing alkaloids from a
fungal strain Scopulariopsis sp. associated with the gorgonian coral
from the South China Sea showed strong antifouling activities against
the larvae of barnacle Amphibalanus amphitrite [91]. The compounds
produced by a gorgonian derived fungus Penicillium pinophilum
showed inhibitory activities against the barnacle larvae at non-toxic
concentrations [92].

The microbes associated with other macroorganisms were also
subjected to extensive studies for antifouling activities. For example,
bacterial communities associated with barnacle B. amphitrite (= A.
amphitrite) was found to be active against the settlement of barnacle
larvae [93]. The extract of bacterial strain NudMB50-11 isolated from
the surface of the nudibranch, Archidoris pseudoargus was found to be
active against fouling bacteria [4]. Three antibacterial compounds,
pyolipic acid, phenazine-1-carboxylic acid and 2-alkylquinol-4-ones
extracted from a Pseudomonas sp. isolated from the nudibranchs
showed strong antifouling activities in both laboratory and field
assays [94,95]. Extracellular polymeric substances produced by
Exiguobacterium sp. associated with the polychaete Platynereis
dumerilii showed inhibitory activities against the biofilm bacteria
[96]. Another study by Shankar et al. [97] evaluated the antibiofilm
activities of bacteria associated with polychaetes. The Acinetobacter sp.
associated with the ascidian S. murrayi produces an antifouling
metabolite 6-bromindole-3-carbaldhyde that inhibits the settlement of
cyprids of the barnacle B. amphitrite [84]. Pseudoalteromonas tunicata, a
bacterial strain isolated from the surface of ascidian Ciona intestinalis
showed inhibitory activities against larval forms of barnacle,
polychaete, ascidian and spores of macroalgae [98,99,100,101]. The
resorcyclic acid lactones isolated from a sea anemone-associated
fungus C. lunatus exhibited antifouling activities against the barnacle
larvae in laboratory assays [102]. Eight bioactive compounds that
belonged to di(1H-indol-3-yl) methane family were isolated from the
ascidian associated Pseudovibrio denitrificans and all the compounds
showed moderate to strong antifouling activities against larval forms of
barnacle B. amphitrite and bryozoan Bugula neritina [103].

5. Antifouling activities of microbes associated with seaweeds and
seagrasses 5

Microbes associated with seaweeds and seagrasses were also
screened extensively for antifouling activity since they constitute
an important source for bioactive substances. Among the seaweed
epibiotic bacteria, the genus Pseudoalteromonas was highlighted as
an important group with antifouling, antimicrobial and cytotoxic
activities. For example, Pseudoalteromonas ulvae sp. nov., a bacterium
with antifouling activities was isolated from the surface of the alga Ulva
lactuca by Egan et al. [101]. The bacterial strains Pseudoalteromonas
sp. and Vibrio alginolyticus isolated from an alga produce either
non-soluble or waterborne metabolites that inhibit larval settlement
[104]. Besides, Pseudoalteromonas and unidentified bacterial strains

Table 1
Some bacterial strains isolated from the marine macroorganisms with reported
antifouling activity/bioactivity.

Host
organism

Bacterial strain Activity Reference

Sponge Alteromonas sp. Antifouling [83]
Ascidian Acinetobacter sp. Antifouling [84]
Macroalga Pseudoalteromonas ulvae sp. Antifouling [101]
Nudibranchs Pseudomonas sp. Antifouling [94]
Macroalga Vibrio sp. Antifouling [104]
Sponge Pseudoalteromonas piscicida Antimicrobial [138]
Macroalga Phaeobacter gallaeciensis Antifouling [139]
Molluscan Pseudomonas fulva Antimicrobial [140]
Coral Bacillus horikoshii Antibacterial/antibiofilm [141]
Ascidian Pseudoalteromonas haloplanktis Antifouling [118]
Soft coral Bacillus sp. Antibacterial [142]
Seagrass Bacillus sp. Antifouling [107]
Macroalga Pseudovibrio sp. Antibacterial [143]
Sponge Bacillus licheniformis Antibacterial/antibiofilm [144]
Macroalga Leucothrix mucor Antifouling [145]
Macroalga Streptomyces praecox Antifouling [108]
Sponge B. cereus Antifouling [44]
Macroalga Streptomyces violaceoruber Antifouling [110]
Sponge Bacillus sp. Antifouling [90]
Sponge Bacillus sp. Antifouling [89]
Macroalga Bacillus subtilis Antibacterial [146]
Ascidian P. denitrificans Antifouling [103]
Sponge Pseudomonas fluorescens Antimicrobial [147]

Table 2
Examples of fungal strains associated with different macroorganisms. These strains were
reported to produce bioactive metabolites with antifouling and antimicrobial activities.

Host organism Fungal strain Activity Reference

Sponge L. helminthicola Antifouling [21]
Gorgonian Aspergillus sp. Antibacterial [148]
Gorgonian C. lunatus Antifouling [88]
Sponge Aspergillus insuetus Antifungal, cytotoxic [149]
Sponge Aspergillus sp. Antibacterial, antifouling [150]
Sponge Aspergillus sp. cytotoxic [151]
Macroalga Drechslera sp. Antifouling, antibacterial [152]
Gorgonian Penicillium sp. Antifouling, antibacterial [22]
Coral Aspergillus Antifouling [153]
Coral Alternaria Antifouling [153]
Gorgonian Xylariaceae sp. Antifouling, enyme-inhibitory

activity
[154]

Soft coral Aspergillus elegans Antifouling, antibacterial [155]
Gorgonian Aspergillus terreus Antifouling, antiviral [156]
Sea Anemone C. lunatus Antifouling, antifungal [102]
Sponge Aspergillus sydowii Antimicrobial, antiviral [157]
Gorgonian Aspergillus sp. Antimicrobial, antifouling [158]
Gorgonian Talaromyces sp. Cytotoxic, antifouling [16]
Gorgonian Scopulariopsis sp. Antifouling [91]
Soft coral Aspergillus unguis Antifungal [159]
Gorgonian P. pinophilum Antifungal, cytotoxic [92]
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were also reported to possess antifouling activities. A study by Dobretsov
and Qian [105] reported that bacterial strains from the surface of the
green alga Ulva reticulata showed inhibitive activities against micro-
and macrofouling organisms. Active compounds from the cells and
culture supernatant of the bacterial strain, FS-55 isolated from the
surface of seaweed, Fucus serratus, were extracted using solid phase
extraction, combined with acrylic based paint resin and showed good
antifouling activity against the fouling bacteria [4]. A study carried out
by Ma et al. [106] showed the inhibition of common fouling organisms
in mariculture by epiphytic bacteria associated with the surface of
seaweeds and invertebrates off the Dalian coast in China. The bacterial
symbionts of seagrasses Thalassia hemprichii and Enhalus acoroides
were screened for antifouling activities against biofilm-forming
bacteria and identified members of the genus Bacillus and Virgibacillus
as active symbionts [107]. The actinomycetes associated with seaweeds
and sediments along the coast of Korea were evaluated for their
antifouling activity by Cho et al. [108] and reported diketopiperazines
as active metabolites. An unidentified epibiotic bacterium from the
surface of the seaweed Sargassum wightii showed antifouling activity in
laboratory and field assays [109]. Two furanone derivatives produced
by the bacterium Streptomyces violaceoruber isolated from the surface
of the brown seaweed Undaria pinnatifida showed antifouling activities
against macroalgae and mussel larvae [110].

6. Pseudoalteromonas associated with marine organisms: A
potential genus for antifouling research

Most of the antifouling screening studies on themicrobes associated
with marine organisms mainly focused on a particular species for
detailed study based upon the activities. In general, Alteromonas,
Pseudoalteromonas, Vibrio and Bacillus were dominant bacterial groups
frequently found associated with marine macroorganisms [70,86].
Among these, Pseudoalteromonas, a genus reclassified by Gauthier et
al. [111] is widely isolated from animal and plant surfaces and reported
to produce many bioactive molecules [60,70,100,101,112]. The
dominance of this genus on marine living surfaces may be due to the
bacteriolytic and algicidal activities [100] which provide effective way
for competition with other colonizing organisms [113]. They can also
survive under poor nutritional conditions because of the biochemical
pathways and production of secondary metabolites which include
bioactive compounds and enzymes [114,115].

Pseudoalteromonas received more attention in recent years for
natural product research due to the widespread distribution and easy
cultivability under laboratory conditions [116]. Previous studies
showed that the bioactive molecules present in this genus possess
antifouling activities against micro and macrofouling organisms
[117,118]. The antifouling activities are mainly related to the presence
of yellow and purple pigments in Pseudoalteromonas [56] and
Franks et al. [119] have identified the yellow pigments as a new
member belonging to tambjamine compounds. In addition, many
members of this genus are reported to produce extracellular enzymes,
toxins and extracellular polymeric substances [100,120,121,122]. The
compounds produced by Pseudoalteromonas will definitely serve as
lead for the development of novel antifoulants. Due to the ecological
and biotechnological significance of Pseudoalteromonas, more than
50 genomes of this genus have been sequenced [123]. Though,
Pseudoalteromonas bacteria were isolated from many organisms, given
the nature of vast diversity in the marine realm opportunities still
exist for concerted research program for searching bioactive
molecules with potential antifouling activities from this genus.

7. Advantages of microbes as a source of bioactive metabolites

Majority of the antifouling compounds isolated from the marine
organisms are from invertebrates of tropical or subtropical seas where
species diversity and resource competition are reported to higher than
other ecosystems [50]. Bioactive compounds are synthesized in small
quantities by the organisms and occur as a complex mixture [124]
and due to that the extraction and purification are labor-intensive and
a time-consuming process [124,125]. For the extraction of a bioactive
compound from a marine organism, large number of animals or
algae would have to be collected from the sea. The collection of
large amount of marine organisms particularly sponges; corals and
rare species will be a cause of concern from the biodiversity
conservation point of view [21]. Contrary to this, if the microbe is
considered as a source for the bioactive compound, then the product
supply will be ensured by culturing the microorganisms or isolating
the genes responsible for the biosynthesis of the particular metabolite
[126,127,128,129].

Although the microbes are suggested as an alternative source for
marine organisms for antifouling compound discovery, microbial
symbionts have complex molecular structures that are hard to

Fig. 4. Examples of marine invertebrate groups commonly reported in the literature for studyingmicrobial symbionts. a: Coral; b: Gorgonian; c: Sponge; d: Soft coral. (Underwater images
from the Red Sea).
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synthesize chemically [21]. The isolation of microbes from the
macroorganisms is a bottleneck especially in sponges where the
microbe lives inside the tissues. Notwithstanding above issues, the
advantages are more when microorganisms associated with marine
organisms are used as a source for the exploitation of antifouling
compounds. The microbes can be cultured in the laboratory using
appropriate culture media and conditions, though there are some
limitations to culture some strains using traditional methods. Jensen et
al. [130] confirmed higher recovery of cultivable bacteria from marine
algal surfaces using culture-dependent methods. The fermentation
process allows us to extract good quantity of metabolites from the
microbes for bioassays [131]. The microbial strains will grow in
laboratory under optimum temperature, pH, and nutrient conditions.
Most of the previous studies suggested that microorganisms will grow
successfully under conditions that mimic the physical and chemical
characters of the natural environment. For example, Okazaki et al.
[132] reported that a marine isolate from the shallow sea mud produce
antibiotics only when supplemented with powdered Laminaria in the
growth medium. In addition, there are possibilities that bacterial
strains of the same species can produce different bioactive compounds
depending on culture conditions and thus increasing the prospective
number of valuable compounds [4]. Some of the microorganisms
which showed antifouling activities in laboratory assays are failed to
exhibit the same in field assays. For the development of natural
product based antifouling coatings, there is a need for the evaluation of
antifouling potential of the compound through laboratory and field
trails (Fig. 5).

The antifouling performance of the bioactive compounds isolated
from the marine microbes can be tested in the laboratory against
biofilm-forming bacteria, diatoms and barnacle larvae as target
organisms. An ideal natural product antifouling compound will
act different ways on the target organisms (Fig. 6). Generally, the
compound should prevent the formation of biofilms, which is
considered as a cue for the further settlement of invertebrate larvae in
the marine environment. The extracts or compounds from the
microbes isolated from the marine macroorganisms showed inhibitory
activities against an array of biofilm-forming bacteria [44,45,97].
The main mechanism of antibiofilm activities of microbial strains
associated with marine macroorganisms includes antibiotic activity
and anti-adhesion property and affects the extracellular polymers
production (EPS) which is essential for biofilm formation [44]. It is

believed that the compounds produced by the microbes associated
with marine macroorganisms may exhibit same mode of mechanism
(anti-settlement) against larval forms and macroalgal spores though
more studies required to confirm the antifouling mechanism.

8. Conclusions and future perspectives

Marine microorganisms are taxonomically diverse and unique,
which makes them as potential source for discovery of novel bioactive
molecules [133]. In the aquatic ecosystems, microbial communities
possess strong affinity towards the living and non-living surfaces
[134]. The microbial association with living surfaces in the marine
environment provides ample opportunities for bioprospecting natural
products. This review clearly confirms the antifouling activities
expressed by microbes associated with living surfaces in the marine
environment. However, most of the studies were conducted under
laboratory conditions and failed to test the compounds in natural
water for commercial applications. Hence two possible approaches are
suggested for further research. First, as pointed out by Qian et al.
[10,18], those metabolites which showed antifouling/antimicrobial
activities should be investigated further through different antifouling
assays using various target species. These assays may also include field
trials by incorporating these metabolites into a suitable paint. Most of
the previous investigators used pure compounds or crude extracts
from microbes for preparing the antifouling paints [15,94,109]. This
approach is rather good than incorporation of surface-associated
bacterial strains in suitable paints. Second, more bioprospecting efforts
are required to recover novel antifouling molecules from the marine
macroorganism–microbe association. Culture dependent methods
were previously used to identify the bacterial communities and the
advent of molecular methods provides many tools for studying the
microbes associated with surfaces [131,135]. Hence, applying the
genomic tools along with bioassay guided antifouling assays will yield
valid information and novel metabolites from the microbial consortia
associated with marine macroorganisms.

The industries certainly request a potent antifouling system with
long durability (at least 5 years), cost effective, easy for application
and non-toxic to marine ecosystem [136]. However, most of the
new antifouling systems failed to meet the above characters. Natural
products can be successfully used for antifouling applications
by incorporating in a suitable paint. However, preparation of an

Fig. 5. Schematic diagram showing the steps involved in isolation and identification of natural product antifouling compounds from themicrobes associatedwithmarinemacroorganisms.
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antifouling coat using microbial products is a major challenge as these
compounds will breakdown rapidly in the environment [137]. Finding
a best way to increase the durability of the compound when applied
as antifouling coating may provide more opportunities for natural
product based antifouling systems. Developing a natural product
antifouling coatings based on microbes associated with marine
macroorganisms definitely takes much time and efforts. The
toxicity of compounds produced by these microbes on non-target
organisms in the marine ecosystem also needs to be analyzed
before commercial applications [19]. In conclusion, the microbes
associated with marine macroorganisms are an untapped source
for natural product antifouling compounds and many more novel
compounds could be identified through interdisciplinary approach.
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