
ibm.com/redbooks

 Front cover

DB2 UDB for z/OS B2 UDB for z/OS 2 UDB for z/OS UDB for z/OS UDB for z/OS DB for z/OS B for z/OS for z/OS for z/OS or z/OS r z/OS z/OS z/OS /OS OS S
Version 8ersion 8rsion 8sion 8ion 8on 8n 8 88
Technical Preview

Paolo Bruni
Bart Steegmans

Rafael Garcia
Sabine Kaschta

Ravi Kumar

Browse the functional contents of the
largest release ever

Understand the prerequisites and
the setup for the new functions

Start planning for a smooth
migration

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

DB2 UDB for z/OS Version 8 Technical Preview

April 2003

SG24-6871-00

© Copyright International Business Machines Corporation 2003. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM
Corp.

First Edition (April 2003)

This edition applies to Version 8 of DB2 for z/OS (program number 5625-DB2) and Version 8 of DB2 Utilities
Suite for z/OS (program number 5655-K63) for use with z/OS Version 1.3 and later versions.

Note: Before using this information and the product it supports, read the information in “Notices” on
page xvii.

Note: This book is based on a pre-GA version of a product and may not apply when the product becomes
generally available. We recommend that you consult the product documentation or follow-on versions of
this redbook for more current information.

Contents

Figures . ix

Tables . xiii

Examples .xv

Notices . xvii
Trademarks . xviii

Preface . xix
The team that wrote this redbook. xix
Become a published author . xxi
Comments welcome. xxi

Chapter 1. Introduction. 1
1.1 The evolution of DB2 UDB for z/OS . 2
1.2 Summary of features. 3

1.2.1 New DB2 function: msys for set-up DB2 Customization Center 4
1.2.2 No-extra-charge features . 4
1.2.3 Charge features . 7

1.3 This redbook . 7

Chapter 2. DB2 UDB for z/OS V8 at a glance . 9
2.1 Scalability . 10
2.2 Availability . 10
2.3 SQL . 12
2.4 e-business. 14
2.5 Utilities. 16
2.6 Performance . 17
2.7 Data sharing . 19
2.8 Installation and migration . 19

Chapter 3. Scalability . 21
3.1 The 64-bit architecture support . 22

3.1.1 The z/OS architecture . 22
3.1.2 DB2’s virtual storage expansion . 25
3.1.3 Moving above the 2 GB bar . 26
3.1.4 General performance expectations. 31
3.1.5 Storage monitoring and tuning . 32
3.1.6 DB2 V8 requires z/Architecture and z/OS V1R3. 33

3.2 More partitions . 33
3.3 More tables in join . 35
3.4 More log data sets. 36

Chapter 4. Availability . 39
4.1 DB2 V8 partition and index related terminology . 40

4.1.1 Table-controlled partitioning . 40
4.1.2 Index-controlled partitioning terminology . 42
4.1.3 Table-controlled partitioning terminology . 43

4.2 Data partitioned secondary indexes . 46

© Copyright IBM Corp. 2003. All rights reserved. iii

4.2.1 Creating a data partitioned secondary index. 46
4.2.2 The need for DPSIs . 48
4.2.3 DPSI considerations . 49

4.3 Online schema changes . 50
4.3.1 Online schema changes overview . 50
4.3.2 Table data type changes. 52
4.3.3 Index changes. 55
4.3.4 Versioning . 56
4.3.5 Usage considerations . 59
4.3.6 New DBET states for online schema changes . 59
4.3.7 Impact of online schema changes on user tasks . 59
4.3.8 Dynamic partitions . 60

4.4 System level point-in-time recovery . 62
4.4.1 Backing up the system . 63
4.4.2 Restoring the system . 64

4.5 Online ZPARMs . 67
4.6 Other availability enhancements . 69

4.6.1 Control intervals larger than 4 KB . 69
4.6.2 Monitor system checkpoints and log offload activity . 69
4.6.3 Log monitor long running UR backout. 69
4.6.4 Improved LPL recovery . 70

Chapter 5. SQL . 71
5.1 Long names . 72
5.2 SQL statements 2 MB long . 73
5.3 Dynamic scrollable cursors . 75

5.3.1 Cursor positioning and serialization . 79
5.3.2 Considerations . 79

5.4 Common table expressions and recursive SQL . 80
5.4.1 Example of fullselect . 80
5.4.2 Example with CREATE VIEW and INSERT . 82
5.4.3 Recursive SQL . 82

5.5 Multi-row fetch and insert . 84
5.5.1 DECLARE CURSOR. 84
5.5.2 FETCH . 85
5.5.3 INSERT. 87

5.6 Get diagnostics . 90
5.7 Scalar fullselect . 94

5.7.1 Functional description . 95
5.7.2 Restrictions . 98

5.8 Select from insert . 98
5.8.1 Functional description . 98

5.9 Qualified column names in INSERT and UPDATE . 103
5.10 Expressions in GROUP BY. 104
5.11 Multiple DISTINCT . 106
5.12 Sequences . 107

5.12.1 Usage considerations . 110
5.12.2 Using sequences in applications. 114

5.13 Identity columns enhancements . 115
5.13.1 SQL statements for identity column enhancements . 115

5.14 Sequences and identity columns comparison. 117
5.15 Multilevel security . 119
5.16 MQSeries UDFs . 123

iv DB2 UDB for z/OS Version 8 Technical Preview

5.17 ASCII flag for compile . 126

Chapter 6. e-business . 129
6.1 IBM DB2 Universal Driver for SQLJ and JDBC features. 130

6.1.1 IBM JDBC Type 4 driver . 131
6.1.2 New IBM JDBC Type 2 driver . 132
6.1.3 Java API enhancements . 132
6.1.4 SQLJ . 133
6.1.5 Nested stored procedure result sets for JDBC and ODBC applications 135
6.1.6 Extended DESCRIBE . 135
6.1.7 SQLcancel . 136
6.1.8 LOB streaming . 136

6.2 Unicode support . 136
6.2.1 Unicode parser . 137
6.2.2 Program preparation with new Unicode precompiler . 138
6.2.3 Utility Unicode parser . 140
6.2.4 Multiple CCSIDs per SQL statement. 140
6.2.5 ODBC Unicode support . 142
6.2.6 Unicode and distributed support . 142

6.3 ODBC enhancements . 143
6.3.1 ODBC SQLConnect user and password support . 143
6.3.2 ODBC Unicode support . 143
6.3.3 Cursor extensions . 144
6.3.4 SQLCancel support. 144

6.4 XML publishing functions . 144
6.5 CURRENT PACKAGE PATH special register. 153
6.6 DDF communication database enhancements . 154

6.6.1 Requester database ALIAS . 155
6.6.2 Server location alias . 156
6.6.3 Member routing in a TCP/IP network . 157

6.7 Enhancements for stored procedures and UDFs . 159
6.7.1 Maximum failures . 159
6.7.2 Exploit WLM server task thread management . 160
6.7.3 Enhancements to SQL stored procedure language . 160
6.7.4 COMPJAVA stored procedures no longer supported . 164
6.7.5 DB2 established stored procedures . 164

6.8 Miscellaneous enhancements . 165
6.8.1 RRSAF compatibility for CAF applications . 165
6.8.2 Roll up accounting data for DDF and RRSAF threads . 166
6.8.3 Improved query and result set processing . 167
6.8.4 Time out for SNA allocate conversation requests . 167
6.8.5 Data stream encryption . 167
6.8.6 DISPLAY LOCATION command. 168

Chapter 7. Utilities. 169
7.1 Online schema changes support. 170

7.1.1 More flexibility with partitions . 170
7.1.2 Utility support for schema evolution . 178
7.1.3 Point-in-time recovery restrictions. 186

7.2 Delimited LOAD and UNLOAD . 189
7.3 Unicode . 194
7.4 Distribution statistics . 196

7.4.1 Collecting cardinality and distribution statistics . 198

 Contents v

7.4.2 Collecting column correlation statistics . 198
7.4.3 Use of work data sets . 199
7.4.4 Examples . 199

7.5 Backing up and restoring the system . 200
7.6 Other changes. 202

7.6.1 New default RESTART . 202
7.6.2 New defaults SORTDATA and SORTKEYS . 202
7.6.3 COPY and RECOVER tape parallelism . 203

Chapter 8. Performance . 205
8.1 Comparing unlike data types. 206
8.2 Materialized query tables . 209

8.2.1 Creating an MQT . 210
8.2.2 Populating and maintaining an MQT. 212
8.2.3 Automatic query rewrite using Materialized Query Tables 213
8.2.4 Determining if query rewrite occurred . 220

8.3 Multi-row INSERT and FETCH . 220
8.4 Cost based parallel sort . 221
8.5 Data caching and sparse index usage for star join . 221
8.6 Long and variable length keys . 225
8.7 Support for backward index scan . 228
8.8 Trigger enhancements . 229
8.9 Reduced lock contention on volatile tables . 229
8.10 Table UDF cardinality option and block fetch . 230

8.10.1 Table UDF cardinality clause . 230
8.10.2 Table UDF block fetch . 232

Chapter 9. Data sharing . 235
9.1 CF lock propagation reduction . 236
9.2 Reduction of overhead costs for data sharing workloads . 237
9.3 Batched updates for index page splits . 237
9.4 Improved LPL recovery . 238
9.5 Resolution of indoubt units of recovery in restart light . 238
9.6 Change to IMMEDWRITE BIND option default . 238
9.7 Change to -DISPLAY GROUPBUFFERPOOL output. 239

Chapter 10. Installation and migration . 241
10.1 Currency of versions and migration paths. 242
10.2 Major changes to installation and migration . 243

10.2.1 Before migrating . 244
10.3 Installation . 246

10.3.1 Major changes to install jobs. 247
10.4 Migration . 248

10.4.1 Compatibility Mode . 250
10.4.2 Enabling New Function Mode . 251
10.4.3 ENMF jobs . 254
10.4.4 New Function Mode . 256

10.5 Catalog changes . 259
10.6 msys for Setup DB2 Customization Center. 259
10.7 Samples . 261

Appendix A. Unicode definitions . 263
A.1 Basic conversions. 264
A.2 Additional conversions . 264

vi DB2 UDB for z/OS Version 8 Technical Preview

Related publications . 267
IBM Redbooks . 267

Other resources . 267
Referenced Web sites . 268
How to get IBM Redbooks . 269

IBM Redbooks collections. 269

Abbreviations and acronyms . 271

Index . 273

 Contents vii

viii DB2 UDB for z/OS Version 8 Technical Preview

Figures

1-1 DB2 features . 4
3-1 The challenge . 22
3-2 The 64-bit memory architecture . 23
3-3 64-bit virtual address space mapping . 24
3-4 Summary of z/OS current versions . 25
3-5 Data spaces. 27
3-6 The new buffer pool values . 29
3-7 RID pool . 29
3-8 EDM pool . 31
3-9 New number of partitions. 34
3-10 Logs data sets increase. 37
4-1 Table-controlled partitioning. 40
4-2 Index-controlled partitioning terminology — 1 . 42
4-3 Index-controlled partitioning terminology — 2 . 43
4-4 Table-controlled partitioning terminology . 43
4-5 Partitioned versus non-partitioned index . 44
4-6 Partitioning index . 45
4-7 Clustering index . 45
4-8 Secondary index used as clustering index. 46
4-9 Creating a partitioned index. 47
4-10 Data partitioned secondary index layout . 47
4-11 Online schema evolution . 51
4-12 ALTER TABLE SET DATATYPE statement . 53
4-13 ALTER INDEX statement. 55
4-14 Versioning information in the DB2 catalog. 58
4-15 Backup system operations. 64
4-16 Restore system operation . 66
5-1 Scrollable cursors in DB2 V7 . 75
5-2 Sensitive and insensitive cursors with DB2 V7 . 76
5-3 Scrollable DECLARE CURSOR syntax . 77
5-4 Cursor types comparison. 78
5-5 Common table expression in fullselect . 81
5-6 Recursive SQL. 83
5-7 Multirow DECLARE CURSOR syntax . 84
5-8 Multirow FETCH syntax . 85
5-9 Multirow INSERT syntax . 88
5-10 GET DIAGNOSTICS statement . 91
5-11 GET DIAGNOSTICS syntax . 91
5-12 Scalar fullselect — Extension to expression . 94
5-13 Scalar fullselect — Extension to CASE expression . 95
5-14 Tables used in the scalar fullselect examples . 96
5-15 Scalar fullselect — Example of WHERE clause . 96
5-16 Scalar fullselect — Example of nesting in a SELECT list . 97
5-17 Scalar fullselect — Example of CASE expression . 98
5-18 SELECT FROM INSERT — Table specification syntax changes 99
5-19 SELECT FROM INSERT — Order by clause syntax changes 99
5-20 SELECT FROM INSERT — INSERT trigger . 101
5-21 SELECT FROM INSERT — Effect of updates and deletes against result table . . . 102

© Copyright IBM Corp. 2003. All rights reserved. ix

5-22 SELECT FROM INSERT — Ordering sequence example 103
5-23 Sequences — CREATE SEQUENCE statement. 108
5-24 Sequences — ALTER SEQUENCE statement . 109
5-25 Identity columns — altering attributes . 116
5-26 Sequences and identity columns . 118
5-27 Multilevel security hierarchy. 120
5-28 Row granularity with seclabel . 121
5-29 Basic DB2/MQSeries configuration . 124
5-30 MQSeries UDF environment . 126
6-1 Existing SQLJ preparation process . 133
6-2 Universal Client SQLJ preparation process . 134
6-3 Nested stored procedure result sets . 135
6-4 Program preparation using the NEWFUN keyword . 139
6-5 SELECT statement using multiple CCSIDs . 142
6-6 Relational data displayed in HTML format . 145
6-7 XML2CLOB syntax diagram . 147
6-8 XMLELEMENT syntax diagram . 147
6-9 XMLFOREST syntax diagram . 149
6-10 XMLCONCAT syntax diagram. 151
6-11 XMLAGG syntax diagram . 152
6-12 Access LUW database without DBALIAS . 155
6-13 Access LUW database with DBALIAS. 156
6-14 Location alias name. 157
6-15 DDF communication record . 157
6-16 Member routing in a TCP/IP network. 158
6-17 Stored procedure and UDF enhanced failure handling syntax 159
6-18 SIGNAL statement syntax diagram . 162
6-19 SIGNAL used in condition handler?. 162
6-20 RESIGNAL statement syntax diagram. 163
7-1 Online schema — Table space with 59 partitions . 170
7-2 Online schema — ALTER TABLE ADD PARTITION syntax 171
7-3 Online schema — Table space after adding a partition . 172
7-4 Online schema — Rotate partition overview . 173
7-5 Online schema — Rotate partition syntax . 174
7-6 Online schema — Rotate partition example . 175
7-7 Online schema — Alter partition boundary syntax. 176
7-8 Online schema — Alter partition boundary example . 176
7-9 Example of REORG TABLESPACE to rebalance partitions 179
7-10 Example of index-based partitioning . 181
7-11 A proposed solution to eliminate BUILD2 phase with online REORG 182
7-12 REPAIR VERSIONS syntax. 185
7-13 Online schema — Recovery of table space to a point-in-time 187
7-14 Online schema — Recovery of index to a point-in-time. 188
7-15 LOAD delimited input syntax . 190
7-16 UNLOAD delimited output syntax . 192
7-17 DSNUTILU definition . 195
7-18 RUNSTATS syntax changes . 197
7-19 RUNSTATS — Distribution statistics and key correlation statistics blocks 197
8-1 Mismatched operands — Numeric type. 208
8-2 Mismatched operands — Transitive closure . 209
8-3 CREATE MQT syntax . 210
8-4 Credit card application schema . 217
8-5 Decision between workfile caching or sparse index . 222

x DB2 UDB for z/OS Version 8 Technical Preview

8-6 Data caching in outside-in join phase . 223
8-7 Work file sorts prior to sparse index enhancement . 223
8-8 Benefits of using a sparse index on workfiles used in a star join plan 224
8-9 Example of star join plan . 225
8-10 Table UDF cardinality clause. 231
8-11 Predicate using table UDF indexable and stage 1. 233
10-1 Currency of DB2 versions . 242
10-2 Possible migration paths . 243
10-3 Install through TSO or msys for Setup. 247
10-4 Modes of operation . 249
10-5 DSNTIPA1 — Main panel for ENFM . 251
10-6 DSNTIPT — Choose a new name for SDSNSAMP library 252
10-7 DSNTIP00 — Shadow data set allocation . 253
10-8 DSNTIP01 — Image copy data set allocations . 254
10-9 DISPLAY GROUP command. 256
10-10 Checking BSDS conversion. 257
10-11 DSNJCNVB sample JCL . 257
10-12 DSNJCNVB SYSPRINT. 258
10-13 DSNJU004 output indicating new BSDS structure . 258
10-14 msys description . 260

 Figures xi

xii DB2 UDB for z/OS Version 8 Technical Preview

Tables

3-1 Maximum number of partitions versus DSSIZE and page size 34
4-1 New subsystem parameters changeable online with DB2 V8 68
5-1 SQL Identifier length limits . 72
5-2 Data values for :hva1 and :hva2 . 93
6-1 Query result — Simple usage of XMLELEMENT and XML2CLOB 148
6-2 Query result — Nested elements. 148
6-3 Query result — XMLATTRIBUTES . 149
6-4 Query result — XMLFOREST . 150
6-5 Query result — XMLCONCAT . 151
6-6 Query result — XMLAGG . 153
7-1 RECOVER TABLESPACE PIT actions . 187
7-2 RECOVER INDEXSPACE PIT actions . 189
7-3 Acceptable data type forms for the delimited file format . 194
10-1 Evolution of the DB2 catalog . 250

© Copyright IBM Corp. 2003. All rights reserved. xiii

xiv DB2 UDB for z/OS Version 8 Technical Preview

Examples

3-1 New data set naming convention. 35
4-1 Index-controlled vs. table-controlled partitioning syntax . 41
4-2 Converting from index-controlled to table-controlled partitioning. 41
5-1 C program using CLOB for host-variable on EXECUTE IMMEDIATE statement . . . 73
5-2 COBOL program using DBCLOB for host-variable on PREPARE statement 74
5-3 Examples of using scrollable cursors. 78
5-4 Common table expression in SELECT . 81
5-5 Common table expression in CREATE VIEW or INSERT . 82
5-6 Multirow DECLARE CURSOR. 84
5-7 FETCH examples. 86
5-8 Example 1 of INSERT . 90
5-9 Example 2 of INSERT . 90
5-10 Expressions in GROUP BY . 105
5-11 Multiple COUNT(DISTINCT) . 106
5-12 Creating and using a sequence . 114
5-13 Sample program with ASCII option . 127
6-1 Multiple CCSID SQL statement — 1 . 141
6-2 Multiple CCSID SQL statement — 2 . 141
6-3 Multiple CCSID SQL statement — 3 . 141
6-4 Complex query using XML publishing functions . 145
6-5 XMLELEMENT and XML2CLOB usage. 148
6-6 Nested elements . 148
6-7 Using the XMLATTRIBUTES function . 149
6-8 Using XMLFOREST. 150
6-9 Alternative query not using XMLFOREST . 150
6-10 Using the XMLCONCAT function. 151
6-11 Using the XMLAGG function . 152
6-12 Using the RETURN statement . 161
6-13 Using the SIGNAL statement. 163
6-14 Using the RESIGNAL statement . 164
7-1 Displaying a four-partition table space. 177
7-2 Displaying partitions added with DB2 V8. 177
7-3 Displaying ranges of partitions with DB2 V8 . 178
7-4 Displaying indexes after ALTER . 178
7-5 Sample DDL for index partitioned table space. 180
7-6 Avoiding BUILD2 phase. 181
7-7 Sample LOAD job with delimited input. 190
7-8 Sample UNLOAD job with delimited output . 192
7-9 Distribution statistics — Example 1 . 199
7-10 Distribution statistics — Example 2 . 199
7-11 Distribution statistics — Example 3 . 200
7-12 Distribution statistics — Example 4 . 200
7-13 Distribution statistics — Example 5 . 200
8-1 Sample SELECT statement . 206
8-2 Employee table definition. 208
8-3 Sample create of a materialized query table . 211
8-4 Converting a base table into an MQT . 211
8-5 Sample REFRESH TABLE statement . 212

© Copyright IBM Corp. 2003. All rights reserved. xv

8-6 Creating a informational RI constraint . 215
8-7 UserQ1. 217
8-8 MQT TRANSCNT . 217
8-9 NewQ1. 218
8-10 UserQ2. 218
8-11 TRANSIAB MQT . 218
8-12 NewQ2. 218
8-13 UserQ3. 219
8-14 TRANSAVG MQT . 219
8-15 NewQ3. 220
8-16 Sample SQL statement . 221
8-17 Create a NOT PADDED index . 226
8-18 Create a PADDED index . 226
8-19 Comparing non-padded index entries . 227
8-20 Alter an index to NOT PADDED . 227
8-21 Alter an index to PADDED. 227
8-22 Conditional after trigger . 229
8-23 Using the CARDINALITY MULTIPLIER clause in a query. 231
8-24 Using the CARDINALITY clause instead. 232

xvi DB2 UDB for z/OS Version 8 Technical Preview

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.

© Copyright IBM Corp. 2003. All rights reserved. xvii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Affinity™
AIX®
AS/400®
BookMaster®
CICS®
CT™
DB2 Connect™
DB2 Extenders™
DB2®
DFS™
DFSMShsm™
DFSORT™
DRDA®
Enterprise Storage Server™
eServer™
FlashCopy®
Footprint®

GDDM®
Informix®
IBM®
IMS™
iSeries™
Lotus®
MQSeries®
MVS™
Net.Data®
OS/2®
OS/390®
Parallel Sysplex®
Perform™
PAL®
QBIC®
QMF™
Redbooks™

Redbooks(logo)™
RACF®
RAMAC®
RETAIN®
RMF™
S/390®
SecureWay®
System/390®
SOM®
SP™
VTAM®
WebSphere®
Word Pro®
XT™
z/Architecture™
z/OS™
zSeries™

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.

xviii DB2 UDB for z/OS Version 8 Technical Preview

Preface

IBM DATABASE 2 Universal Database Server for z/OS Version 8 (DB2 V8 throughout this
IBM Redbook) is the twelfth and largest release of DB2 for MVS. It brings synergy with the
zSeries hardware and exploits the z/OS 64-bit virtual addressing capabilities. DB2 V8 offers
data support, application development, and query functionality enhancements for e-business,
while building upon the traditional characteristics of availability, exceptional scalability, and
performance for the enterprise of choice. The DB2 V8 environment is available only for the
z/OS platform, either for brand new installations of DB2, or for migrations exclusively from
DB2 UDB for OS/390 and z/OS Version 7 subsystems.

DB2 Version 8 has been re-engineered for e-business, with many fundamental changes in
architecture and structure. Key improvements enhance scalability, application porting,
security architecture, and continuous availability. Management for very large databases is
made much easier, while 64-bit virtual storage support makes management simpler and
improves scalability and availability. This new version breaks through many old limitations in
the definition of DB2 objects, including SQL improvements, schema evolution, longer names
for tables and columns, longer SQL statements, enhanced Java and Unicode support,
enhanced utilities, more log data sets, and many more advantages.

This redbook introduces the major changes and enhancements made available with DB2 V8.
It will help you understand the functions offered by DB2 V8, and provides enough information
to start evaluating their applicability to your environment, as well as to start planning for the
installation of DB2 V8 or the migration from DB2 V7.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world working at the
International Technical Support Organization, San Jose Center.

Paolo Bruni is a certified Consultant IT Architect working as a Data Management Project
Leader at the International Technical Support Organization, San Jose Center since 1998. In
this capacity he has authored several redbooks on DB2 for OS/390 and DM tools, and has
conducted workshops and seminars worldwide. During Paolo’s many years with IBM, in
development, and in the field, his work has been mostly related to database systems.

Bart Steegmans is a DB2 Product Support Specialist from IBM Belgium on assignment as a
Data Management for z/OS Specialist at the International Technical Support Organization,
San Jose Center. He has over 12 years of experience in DB2. Before joining IBM in 1997,
Bart worked as a DB2 system administrator at a banking and insurance group. His areas of
expertise include DB2 performance, database administration, and backup and recovery.

Rafael Garcia has been in the IT business for 20 years and has held various positions.
He was a COBOL and CICS Developer, an Application Development Manager, and a DB2
Applications DBA for one of the top 10 banks in the US. For the last 6 years he has been a
Field DB2 Technical Specialist working for the IBM Silicon Valley Laboratory supporting DB2
for OS/390 customers across various industries, including migrations to data sharing. He has
an associate’s degree in Arts and an associate’s degree in Science in Business Data
Processing from Miami-Dade Community College.

Sabine Kaschta is a DB2 Specialist working for IBM Global Learning Services in Germany
as an education consultant. She has 12 years of experience working with DB2. Before she

© Copyright IBM Corp. 2003. All rights reserved. xix

joined IBM in 1998, she worked for a third-party vendor providing second-level support for
DB2 utility products. She is also experienced in DB2 system programming and client/server
implementations within the insurance industry in Germany. She is also a co-author of the IBM
Redbooks, DB2 UDB Server for OS/390 Version 6 and Continuous Availability, SG24-5486,
and Cross-Platform DB2 Distributed Stored Procedures: Building and Debugging,
SG24-5485-01.

Ravi Kumar is a Senior Instructor and Specialist for DB2 with IBM Learning Services,
Australia. He has over 17 years of experience in DB2. He was on assignment at the
International Technical Support Organization, San Jose Center, as a Data Management
Specialist from 1994 to 1997. He is currently on virtual assignment as a Course Developer for
DB2 for z/OS in the EMEA Development Team, IBM Learning Services.

Thanks to the following people for their contributions to this project:

Emma Jacobs
Yvonne Lyon
Deanna Polm
International Technical Support Organization, San Jose Center

Rich Conway
Bob Haimowitz
International Technical Support Organization, Poughkeepsie Center

Meg Bernal
Mengchu Cai
Gayathiri Chandran
Jason Cu
Margaret Dong
Gene Fu
Shivram Ganduri
John Garth
Michelle Guo
Muniza Hasan
Keith Howell
Ming Hu
Koshy John
Le Kha
Heather Lamb
John Lawler
Li-Mey Lee
Dave Levish
Phyllis Marlino
Bruce McAlister
Claire McFeely
Roger Miller
David Moy
Paul Ostler
Mary Petras
Jim Pizor
Mike Shadduck
Sampanna Shanbbhag
Akira Shibamiya
Kalpana Shyam
John Tobler
Yoichi Tsuji

xx DB2 UDB for z/OS Version 8 Technical Preview

Yumi Tsuji
Grace Tzeng
Koko Yamaguchi
Devon Yu/
Kathy Zagelow
Ruiming Zhou
IBM Silicon Valley Laboratory

Judy Ruby-Brown
IBM Americas Advanced Technical Support

Ian Cook
Sarah Ellis
IBM EMEA Product Introduction Centre

Karen Galloway
Mark Wilson
IBM Americas Product Introduction Center

Samson Tai
IBM AP Product Introduction Center

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with
specific products or solutions, while getting hands-on experience with leading-edge
technologies. You'll team with IBM technical professionals, Business Partners and/or
customers.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus,
you'll develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments about this or
other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

 Preface xxi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

xxii DB2 UDB for z/OS Version 8 Technical Preview

Chapter 1. Introduction

In this chapter we give a brief introduction to DB2 UDB for z/OS Version 8 and describe the
main features and the packaging of the product. We then discuss the contents of this
redbook.

For the most up-to-date version of this redbook, or any other follow-up redbook that replaces
it, check the following Web site:

ibm.com/redbooks

1

Note: The reader should bear in mind that DB2 V8 is currently still at the stage of a work in
progress. This redbook is a preview of DB2 V8 main functions, and, while accurate at the
time of writing, the chances are that it will progressively become less correct as time goes
by, until general availability. This is due to normal development detailed changes, and
corrections and improvements originating from the experience of early users during the
introduction program.

© Copyright IBM Corp. 2003. All rights reserved. 1

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

1.1 The evolution of DB2 UDB for z/OS
DB2 UDB for z/OS Version 8 makes a fundamental change in many areas, re-engineering
much of DB2. Key improvements enhance scalability, application porting, and continuous
availability. Management for very large databases is much easier. Support for key vendor
applications is compelling. The enhancements for 64-bit virtual storage make management
simpler, and improve scalability and availability. This new version breaks through many old
DB2 limitations.

DB2 is going through a renaissance and a re-engineering process. For example, the degree
of improvement for indexes is similar to the difference between type 1 and type 2 indexes.
DB2 is able to use indexes more effectively and in cases that it could not before. DB2 V8
reduces the space in variable-length indexes, is able to have index-only access with
variable-length data, and uses the index when the predicates do not match exactly.
Partitioning and clustering are independent. This change is important because you will be
able to partition without an index and be able to cluster on any index. It means in some cases
tables can have one less index and reduce the occurrences of “death by random I/O” using
faster sequential processing. This will improve INSERT, DELETE, LOAD, REORG, and
UPDATE processing if the index can be removed.

DB2 V8 has more flexibility in indexes with longer index keys, up to 2000 bytes. Longer
indexes are needed for Unicode and for longer names. Unicode will be used much more in the
future. All platforms are moving to Unicode: Windows, UNIX, Linux and z/OS. It is not a
question of whether you are moving to Unicode, it is when. If you use Java, you are running
with Unicode now. Version 7 of DB2 UDB for z/OS and OS/390 delivered support for
Unicode-encoded data. You can easily store multilingual data within the same table or on the
same DB2 subsystem. DB2 V8 makes Unicode support more flexible. SQL statements and
literals are able to be Unicode or EBCDIC. Unicode tables can join with an EBCDIC table.
Many of the DB2 catalog character columns are converted to Unicode, so Unicode will be
used by everyone.

Improving continuous availability is another key area for our work. A huge enhancement in
this area is schema evolution. For some changes to tables or columns today, our users have
to drop an object and recreate it. The process can be lengthy and error-prone. In DB2 V8, you
can make more changes using an alter in a fraction of a second. For example, you can extend
numeric and character columns, you can change between CHAR and VARCHAR. You can
add a new partition to an existing partitioned table space. You can rotate the partitions, which
will allow you to do such things as keep the most current 36 months of data.

You will find that the SQL consistency across the DB2 family has improved substantially in the
past few versions, while significant new function has been added. The IBM DB2 Universal
Database SQL Reference for Cross-Platform Development defines IBM DB2 Universal
Database Structured Query Language (DB2 UDB SQL). It is intended for programmers who
want to write portable applications using SQL that is common to the DB2 UDB relational
database products and the SQL 1999 Core standard.

The book describes the rules and limits for preparing portable programs. Version 1 of the
book showed the dramatic improvements from DB2 V5, 6 and 7. Version 1.1 reflects the
common SQL available on DB2 UDB for z/OS V7, iSeries V5R2, and Linux, UNIX, and
Windows V8. DB2 V8 breaks many more barriers to DB2 family compatibility and application
portability with extensive improvements in the SQL language that include materialized query
tables, insert within a SELECT statement, sequences, improvements in identity columns, long
names, long statements, multi-row fetch and insert, dynamic scrollable cursors and the ability
to group by an expression. We look forward to the next version of the Reference reflecting
these further SQL enhancements.

2 DB2 UDB for z/OS Version 8 Technical Preview

The biggest impact of the z/Architecture on DB2 is the ability to have large real memory
support. Prior to the zSeries, customers were limited to 2 GB real storage due to the 31-bit
addressing of the S/390 architecture. The real storage limit of 2 GB is a leading performance
inhibitor for many high end customers. Another performance inhibitor is the 2 GB virtual
storage limit for the main DB2 (DBM1) address space. DB2 V3 provided hiper pools to offer
some relief, but many customers need more. Version 6 allowed customers to use large real
storage by moving to buffer pools in data spaces.

DB2 V8 delivers 64-bit virtual storage addressing. Instead of hiper spaces or data spaces, the
single large address space can allow easier management of storage as we transition from
multiple 31-bit address spaces to a few 64-bit address spaces, improving both availability and
scalability. Think about it! In a single address space, we have addressability up to 16
exabytes. Right now, we do not know anyone who has that big a database. But DB2 will be
there when there are. See the 64-bit Virtual Storage Roadmap, GM13-0076-01, which was
updated in June 2002, available from:

http://www.ibm.com/servers/eserver/zseries/library/whitepapers/gm130076.html

Migration to DB2 V8 is only from DB2 V7, running on z/OS Version 1 Release 3 or higher, and
running on a zSeries processor. If you want to migrate from V6 to this one, then migrate first
to V7, zSeries, and z/OS V1R3 or later.

The most exciting feature of DB2 V8 depends upon you and what you want most. This version
breaks through many limits, and our many customers face many different limits. Scalability,
continuous availability, cross platform compatibility, and usability are some of the many “ities”
that are improved. Anyone who is interested in ERM products such as SAP, PeopleSoft, and
Siebel should understand that most of these enhancements will help with those large
applications. The larger memory, Unicode, and SQL flexibility improvements are at the top of
many vendor lists. Longer table and column names, multi-row fetch and insert and raising
many other limitations will help DB2’s application vendors.

The biggest problem with DB2 V8 is that there is so much to describe. This redbook provides
a good preview, but you will find that this version has more to offer.

More details and more accurate information will be provided in follow-on redbooks.

1.2 Summary of features
The contents of this section reflect the January 28, 2003 Software Announcements of DB2
UDB for z/OS V8, and the DB2 Utilities Programs. Refer to the DB2 for z/OS Web site for
these announcements and any updated information:

http://ibm.com/software/data/db2/os390/

In Figure 1-1 we summarize the features of DB2 UDB for z/OS Version 8.

Chapter 1. Introduction 3

http://www.ibm.com/servers/eserver/zseries/library/whitepapers/gm130076.html
http://ibm.com/software/data/db2/os390/

Figure 1-1 DB2 features

Notice that:

� The REXX Language Support has moved to DB2 base.

� Net.Data was stabilized as of V7.

� The DB2 Warehouse Manager has been removed as a priced feature of DB2 V7 in March
2002 and it is now a separate tool.

� Estimator is available as download from the Web only.

� Installer has been replaced by the msys plug-in, now in DB2 base.

� The DB2 Extenders are divided in three groups:

– Text Extenders
– Audio, Video, Image Extenders
– XML Extender

1.2.1 New DB2 function: msys for set-up DB2 Customization Center
msys for set-up is a z/OS initiative with the intent to ease installation tasks. It consists on
Web-based interactive dialogs for configuration and guidance through a set of high level
questions which use defaults and best practises where possible to reduce user decision
making. See 10.6, “msys for Setup DB2 Customization Center” on page 259 for its
description.

1.2.2 No-extra-charge features
The features or products that can be obtained at no extra charge are:

� DB2 Management Clients Package
� DB2 Estimator
� DB2 Net.Data

DB2 V8 features

DB2 Base

DB2 Management Client Package

DB2 Administration Tools

(D
B2 C

onnect PE)

DB2 Control Center

DB2 Development Center

DB2 for z/OS Visual Explain

DB2 Replication Center

DB2 Net.Data

DB2 Estimator

DB2 Administration Server

msys for Setup
Customization Center

REXX support

DB2 Utilities

DB2 Text and AVI Extenders

DB2 XML Extender

4 DB2 UDB for z/OS Version 8 Technical Preview

� DB2 Extenders

DB2 Management Clients Package
The DB2 UDB for z/OS Version 8 Management Clients Package feature is a collection of the
following workstation-based tools:

� DB2 Development Center: This new function extends and replaces the capabilities of the
Stored Procedure Builder. As well as providing an easy to use development environment
for stored procedures, it also supports:

– Wizards for fast development of SQL and Java stored procedures

– Advanced import, export, deployment options

– A read-only server view to look at stored procedures, UDFs, triggers, tables, and views
separately from the standard project view

– Connection pooling and disconnected mode

– More support for languages and authorizations

– Integrated and remote multi-platform debugging tool

It also integrates stored procedures with code generated by Microsoft Visual Studio 6.0,
ActiveX Data Objects, and Visual SourceSafe.

� DB2 Administration Tools: This category includes DB2 Administration Server (DAS),
DB2 Control Center, and DB2 Replication Center:

– DB2 Administration Server (DAS): DAS provides a general mechanism for running
z/OS level functions to support the IBM Universal Database GUI Tools such as Control
Center, Command Center, and Replication Center. DAS provides the following
functions:

• Building and creating JCL jobs (Control Center Version 8 supports creating and
storing JCL jobs for most functions including executing DB2 utilities or cloning a
subsystem)

• Reading and writing data sets (supports PS, PDS, PDSE data sets with
RECFM=FB)

• Querying operating system catalog information

• Executing shell scripts in z/OS UNIX

• Issuing MVS system commands through an extended console

DAS provides these functions in the form of an SMP/E installable package with 390
Enablement.

– DB2 Control Center: IBM DB2 Control Center provides support to help you manage
DB2 databases on an array of operating systems in your workplace. A set of stored
procedures, a user-defined function and a set of batch programs must be installed at
each DB2 UDB for z/OS subsystem that you want to work with using Control Center
and other tools including Replication Center and Information Catalog Center. The 390
Enablement provides these stored procedures, the user-defined function, and batch
programs, in the form of an SMP/E installable package.

– DB2 Replication Center: The Replication Center is a graphical user interface of DB2
UDB Data Replication V8, used to define replication sources and map sources to
targets. It is also used to manage and monitor the Capture and Apply processes on
local and remote systems. The Replication Center runs on Windows and UNIX/Linux
systems and must have connectivity to both the source and target servers. For
information, refer to the DB2 Replication home page:

http://www.software.ibm.com/data/dpropr

Chapter 1. Introduction 5

� DB2 Visual Explain: The latest version of Visual Explain is a totally redesigned and
rewritten new release, soon to be available on the Web site:

http://www.ibm.com/software/db2os390/db2ve/

Visual Explain is a workstation based feature of DB2 UDB for z/OS that displays:

– An easy-to-understand graph of the access paths of SQL statements

– The catalog statistics for referenced objects from the access path graph

– A list of explainable statements from plans and packages, optionally filtered by costs or
access path criteria

The graphical representation of the access path allows you to instantly distinguish
operations such as a sort, parallel access or the use of one or more indexes. You can view
suggestions from the graph that describe how you might improve the performance of your
SQL statement. Visual Explain allows you to filter capabilities by access path of
explainable SQL statements. For example, you can choose to only display statements that
contain a sort or have an estimated cost greater than 500 milliseconds.

The report feature of Visual Explain allows you to generate an HTML report regarding the
access path descriptions, statistics, SQL text and cost of current explained SQL
statement. You can also EXPLAIN SQL statements dynamically and immediately, and
graph their access path. You can enter that statement, have Visual Explain read it from a
file, or extract it from a bound plan or package. Also available through Visual Explain is the
capability for you to browse the real time settings of DSNZPARMs (DB2 subsystem
parameters) and DSNHDECP.

– The DB2 Visual Explain subsystem parameter browser requires an activated WLM
address space.

Assistance is provided through the IBM Support Centers on all of these tools, just as for the
main product.

The DB2 Administration Tools and the DB2 Development Center (which includes the former
DB2 Stored Procedure Builder) are also shipped with the DB2 distributed and DB2 Connect
V8.1 products. A restricted-use copy of DB2 Connect Personal Edition V8.1 (57324-B56) for
Windows is provided in the DB2 Management Package feature of DB2 UDB for z/OS to
satisfy the functional dependency.

This feature also contains two components that need to be installed at the host:

� Enablement for Control Center
� Enablement for Administration Server

DB2 Extenders
� Several types of Extenders are available:

– Text Extenders
– Audio, Video, Image Extender
– XML Extender, for:

• DTD and XML schema validation
• Stylesheet processing
• Shredding of XML documents into DB2 tables
• Composition of XML documents from DB2 tables

6 DB2 UDB for z/OS Version 8 Technical Preview

1.2.3 Charge features
These are the features or products that can be obtained at an additional cost. They will be
detailed with a later announcement, among them are the DB2 Utilities. The Utilities provide
full support for DB2 UDB for z/OS V8, and enhancements are related to all three programs:

– DB2 Diagnostic and Recovery Utilities for z/OS, V8
– DB2 Operational Utilities for z/OS, V8
– DB2 Utilities Suite for z/OS, V8

The powerful enhancements in each utility package are available, without charge, if you
have a license for the Version 7 utility package and also have licensed Subscription and
Support. The major functional enhancements are described in Chapter 7, “Utilities” on
page 169.

1.3 This redbook
This redbook is the result of an International Technical Support Organization (ITSO)
residency and follow-on work done before DB2 UDB for z/OS Version 8 has reached General
Availability (GA). It is a best effort on trying to keep up with a complete re-engineering of the
product, as well as the addition of many functions, and the never-ending task of making the
product the best enterprise server in the market. Its contents are most probably correct over
95%, and this should be sufficient to provide a good base for evaluating the new version for
your needs, but by no means can we claim it 100% correct.

The results of the introduction program (ESP), currently under way, will probably continue to
tune the product to the customer’s needs until GA and beyond. Please refer to the standard
DB2 documentation available with the product for the correct specification of parameters.
More redbooks are planned to provide more technical information, recommendations, and
catch up with any other enhancements.

The book is structured in the following chapters:

� Chapter 2, “DB2 UDB for z/OS V8 at a glance” on page 9
� Chapter 3, “Scalability” on page 21
� Chapter 4, “Availability” on page 39
� Chapter 5, “SQL” on page 71
� Chapter 6, “e-business” on page 129
� Chapter 7, “Utilities” on page 169
� Chapter 8, “Performance” on page 205
� Chapter 9, “Data sharing” on page 235
� Chapter 10, “Installation and migration” on page 241

Chapter 1. Introduction 7

8 DB2 UDB for z/OS Version 8 Technical Preview

Chapter 2. DB2 UDB for z/OS V8 at a glance

DB2 V8 includes dozens of changes in SQL, improving family consistency in many cases,
and leading the way in others. Many barriers that had been limiting our customers are now
removed: using 64 bit memory, providing consistent table and column name lengths, allowing
two-megabyte SQL statements, 4096 partitions, and three times the log space.

Key performance enhancements deliver better family consistency and run many times faster.
Being able to make database changes without an outage, such as adding a partition, is a
breakthrough for availability. Improvements in Java function, consistency, and integration with
WebSphere make z/OS a much better platform for Java. Expansions to security allow for row
level granularity, helping with the security issues of Web related applications. Many of these
enhancements also help in key vendor applications like PeopleSoft, SAP, and Siebel.

In this chapter we introduce the main enhancements available to you in New Function Mode.
These enhancements are broadly associated to the following categories:

� Scalability
� Availability
� SQL
� e-business
� Utilities
� Performance
� Data sharing
� Installation and migration

2

© Copyright IBM Corp. 2003. All rights reserved. 9

2.1 Scalability
With V8, DB2 UDB for z/OS breaks through limits and sets new heights for scalability and
performance. In this section we introduce the major scalability enhancements.

Virtual storage expansion
This enhancement utilizes zSeries 64-bit architecture to support 64-bit virtual storage.

The zSeries 64-bit architecture allows DB2 UDB for z/OS to move various storage areas
above the 2-GB bar:

� Buffer pool
� EDM pool
� Sort pool
� RID pool
� Compression dictionaries

A single large address space of up to 264 bytes (16 exabytes) replaces hiper spaces and data
spaces. As a result, managing virtual storage becomes simpler, and the scalability,
availability, and performance improve as your real storage requirements and number of
concurrent users increase.

More partitions
This enhancement increases the maximum number of partitions in a partitioned table space
and index space past the current maximum of 254. The new maximum number of partitions is
4096. The DSSIZE value determines the maximum number of partitions that is possible.

More tables in join
In V7 the number of tables in the FROM clause of a SELECT statement can be 225 for a star
join. However, the number of tables that can be joined in other types of join is 15. V8 allows
225 tables to be joined in all types of joins.

More log data sets
The maximum number of active log data sets per log copy is increased from 31 to 93. The
maximum number of archive log volumes recorded in the BSDS before there is a wrap around
and the first entry is overwritten is increased from 1,000 to 10,000 per log copy.

2.2 Availability
In this section we cover the various enhancements related to availability.

Partitioned secondary indexes
V8 introduces data partitioned secondary indexes to improve data availability during partition
level utility operations (REORG PART, LOAD PART, RECOVER PART) and facilitate fancier
partition level operations (roll on/off part, rotate part) introduced by Online Schema Evolution.
The improved availability is accomplished by allowing the secondary indexes on partitioned
tables to be partitioned according to the partitioning of the underlying data. There is no
BUILD2 phase component to REORG SHRLEVEL CHANGE when all secondary indexes are
so partitioned, nor is there contention between LOAD PART jobs executing on different
partitions of a table space. Query-wise, a data partitioned secondary index is most useful
when the query has predicates on both the secondary index column(s) and the partitioning
index column(s).

10 DB2 UDB for z/OS Version 8 Technical Preview

Online schema changes
Several changes to DB2 objects can now be implemented without disrupting the availability of
DB2.

You can add a new partition to an existing partitioned table space and rotate partitions.

You can change the data type for columns. In V5 you could increase the size of varchar
columns, but the changes in V8 allow you to extend numeric and character columns and to
change between char and varchar.

Partitioning and clustering were bundled together in versions prior to V8. Now you can have a
partition without an index and can cluster the data on any index. These changes may spare
one index and reduce random I/O.

System level point-in-time recovery
The system level point-in-time recovery enhancement provides the capability to recover the
DB2 system to any point-in-time, irrespective of the presence of uncommitted units of work, in
the shortest amount of time. This is accomplished by identifying the minimum number of
objects that should be involved in the recovery process, which in turn reduces the time
needed to restore the data and minimizing the amount of log data that need to be applied.
For the larger DB2 systems with more than 30,000 tables, this enhancement significantly
improves the data recovery time, which in turn results in considerably shorter system
downtime.

Online ZPARMs
V7 introduced the ability to change some of the ZPARMs online using SET SYSPARM
command, without the need to recycle DB2 UDB for the changed values to become effective.
In V8 you can change more ZPARMs online. However, you cannot change the serviceability
and DSNHDECP ZPARMs online.

CI size larger than 4 KB
DB2 V8 introduces the support for CI sizes of 8, 16, and 32 KB. This is valid for user defined
and DB2 defined table spaces. The new CI sizes relieve some restrictions on backup,
concurrent copy, and the use of striping, as well as provide the potential for reducing elapsed
time for large table space scans.

Monitor system checkpoint and log offload activity
In V8, DB2 monitors system checkpoint and log offload activity and uses the active log switch
routine to notify when it detects that the checkpoint process or the offload task may have
stalled.

Monitor long running UR backout
In V7 it is not possible to determine how long the backout of a long running UR might take.
V8 issues a new progress message every 2 minutes until the backout is completed.

Improved LPL recovery
This enhancement improves availability, performance, usability, and serviceability for DB2
LPL recovery. Specifically, the following functions are added:

� Usability and serviceability: DB2 automatically initiates an LPL recovery processor if
pages are added into the LPL, and recovers those pages. This avoids the manual
intervention for LPL recovery, such as the START DATABASE command or the RECOVER
utility.

Chapter 2. DB2 UDB for z/OS V8 at a glance 11

� Availability and performance: The improved LPL recovery processor (the START
DATABASE command or the automatic LPL recovery) makes a write claim on an object (a
page set or partition) instead of draining it. This makes good pages in the object available
to SQL users. Also, it improves the performance, since the claim is less disruptive than the
drain.

2.3 SQL
There are many enhancements with the SQL language that provide compatibility with the
DB2 family. In this section we introduce the major SQL enhancements.

Long names
Architectural changes to DB2 V8 expand the DB2 catalog with support for long names.
Support for longer string constants (up to 32,704 bytes), longer index keys (up to 2,000
bytes), and longer predicates (up to 32,704 bytes) make DB2 UDB for z/OS compatible with
other members of the DB2 family.

SQL statements 2 MB long
Complex SQL coding, SQL procedures and generated SQL, as well as compatibility with
other platform and conversions from other products have required the extension of the SQL
statements in DB2. DB2 V8 extends the limit on the size of an SQL statement to 2
Megabytes.

Enhanced scrollable cursors
The DYNAMIC option of scrollable cursors allows scrolling directly on the DB2 table without
an intermediate temporary result table. Depending on the access path chosen, scrolling can
occur using an Index or doing a table space scan.

Common table expression and recursive SQL
DB2 V8 introduces the common table expression and recursive SQL function, which extends
the expressiveness of SQL and lets users derive the query result through recursion. It is also
a convenient way for users to express complex queries because using common table
expression instead of views saves both users and the system the work of creating and
dropping views.

Multi-row fetch and insert
The multi-row FETCH/INSERT is a performance as well as compatibility enhancement that
allows a user to execute multiple fetches or inserts with one SQL statement. This feature can
be used for read only window scrolling applications, as well by users that want to view specific
rows of data and at the same time have the ability to change any of the viewed rows.

Get diagnostics
The new GET DIAGNOSTICS statement is important to provide the information from all of the
extended names and new function. Most programmers will need to switch from using SQLCA
and use this more standard, more capable facility for diagnostic information. The GET
DIAGNOSTICS statement can return much more information about the statement and about
conditions and connections. For example, it can return the longer names, the multiple
conditions for the multi-row statements, and the error message associated with an error.

12 DB2 UDB for z/OS Version 8 Technical Preview

Scalar fullselect
V8 allows scalar fullselects to appear wherever expressions are allowed. A scalar fullselect
can return a maximum of one row and one column, that is, a single value.

Select from insert
This enhancement supports the requirement to retrieve row or rows inserted into a table in
the following situations:

� Provide a way for an application to find out the value of an automatically generated column
(such as a ROWID, identity) when a new row is inserted into a table.

� Provide a way for an application to request that one or more column values that were
inserted be returned because their values were not specified by the invoking application
(either the values inserted were the default values, or the values were changed by a
trigger).

� Provide a short hand syntax for returning all values for each row being inserted (that is, do
not require specification of all column names).

� Provide a way to return values for multiple rows being inserted.

Qualified column names in INSERT and UPDATE
DB2 V8 allows the column name to be qualified in the INSERT statement and in the SET
clause of the UPDATE statement. This enhancement is introduced for DB2 family
compatibility.

Expressions in GROUP BY
DB2 V8 supports expressions to be specified in the GROUP BY clause. This enhancement
not only accomplishes DB2 family compatibility but also facilitates many vendor developed
applications running without any changes.

Multiple DISTINCT
This enhancement allows the DISTINCT keyword to appear in multiple column functions with
different expressions. For example, DB2 V8 now allows

SELECT SUM(DISTINCT C1), AVG(DISTINCT C2) FROM T1

Sequences
V8 provides support for a new data object called sequence. A sequence is a user-defined
object that generates a sequence of numeric values according to user-specifications.
Sequences provide an ideal way for applications to have the DBMS generate fast,
recoverable, guaranteed-unique, sequential numeric key-values, and to coordinate keys
across tables and in data sharing environments. A sequence is created with the CREATE
SEQUENCE statement. Its attributes are altered with the ALTER SEQUENCE statement.
Other SQL statements related to sequences are GRANT/REVOKE ON SEQUENCE, DROP
SEQUENCE and COMMENT ON SEQUENCE. The current and next value of a sequence are
retrieved with the PREVious VALUE FOR SEQUENCE and NEXT VALUE FOR SEQUENCE
expressions.

Identity columns enhancement
With DB2 V8 identity column enhancements extend the ALTER TABLE ALTER COLUMN
statement to include identity column specifications, allow dynamic alter of the attributes of an
existing identity column, and provide support for some additional keywords for the column
specification.

Chapter 2. DB2 UDB for z/OS V8 at a glance 13

Multilevel security
A high priority requirement is for row-level security for applications that need more granularity
in their security schemes. Traditionally, views and joins have been the application solution to
this requirement. The multilevel security introduced with DB2 V8 supports hierarchical
security schemes and combines extensions to SQL with RACF access control to provide row
granularity.

MQSeries UDF
DB2 and MQSeries can be used to construct applications that combine messaging and
database access. It is now possible to integrate MQSeries messaging operations within SQL
statements.

2.4 e-business
DB2 UDB for z/OS is more than a large storehouse for your enterprise data. DB2 V8 helps
you to leverage your enterprise for e-business. In this section we introduce the major
enhancements that help you to achieve this.

Universal Driver for SQLJ and JDBC
Organizations increasingly require access to data residing in multiple sources in multiple
platforms throughout the enterprise. More and more companies are buying applications
rather than database management systems, as database selection is being driven by
interoperability, price performance, and scalability of the server platform. This enhancement
provides an open and consistent set of database protocols to access data on the UNIX,
Windows, and z/OS platforms. Tools and applications can be developed using a consistent
set of interfaces regardless of the platform where the data resides. End users can integrate
their desktop tools and other applications in a consistent manner with whatever databases (or
multiple databases concurrently) are in the enterprise. The objective of this enhancement is
to implement Version 3 of the Open Group DRDA Technical Standard. It eliminates the need
for gateways, improves desktop performance, and provides a consistent set of database
protocols accessing data from a z/OS server as well as UNIX and Windows servers.

Unicode support
Architectural changes to DB2 V8 expand the DB2 catalog with full support for the Unicode
catalog. This means that you can manage data from around the world. DB2 now converts any
SQL statement to Unicode before parsing and as a result, all characters parse correctly. DB2
also supports hexadecimal string constants.

ODBC enhancements
Several enhancements have been provided to ODBC. Among them:

� Unicode support: ODBC now supports Unicode formats UTF-8 and UCS-2. In addition, a
new ODBC initialization keyword, CURRENTAPPENSCH, lets you specify the encoding
scheme that you want the ODBC driver to use for input and output of host variable data,
SQL statements, and all character string arguments of the ODBC application
programming interfaces. You can specify Unicode, EBCDIC, or ASCII encoding scheme.

� ODBC SQL Connect user and password support: With V7, the DB2 ODBC driver
validates the userid and password, but their argument values are not used for end user
authentication. DB2 V8 implements the new support for USER/USING SQL CONNECT
statement, and the ODBC driver makes use of the userid and password values provided
on the APIs to perform authentication.

14 DB2 UDB for z/OS Version 8 Technical Preview

XML publishing functions
XML has increasingly become the de facto data format language on the internet, on corporate
intranets, and for data exchange. However, in many cases applications have to generate XML
data from traditional relational databases using application packages or middleware. This
enhancement provides a set of SQL built-in-functions that allow applications to generate XML
data from relational data with high performance. This reduces application development efforts
in generating XML data for data integration, information exchange, and Web services.

CURRENT PACKAGE PATH special register
Package switching and versioning for static SQL applications is critical. SQLJ access
increases the need for these types of control. This enhancement introduces a new special
register, CURRENT PACKAGE PATH, as a means to specify a list of collections to search for
the appropriate package. The semantics are similar to the PKLIST bind option, except that
the PACKAGE PATH list is processed at the server. This new special register provides this
control to applications that do not run under a DB2 plan.

DDF enhancements
The enhancements provided to DDF include:

� Requester database ALIAS: A new column DBALIAS, which has been added to the
SYSIBM.LOCATIONS table, now points to the correct TCP/IP address for the workstation
you want to access. You can now connect to databases with the same name on every
LINUX/UNIX/Windows system.

� Server location alias: To ease the migration of location names when consolidating in a
data sharing group, you can now update the BSDS to add server location aliases.

� Member routing in a TCP/IP network: By combining the server location alias and a
definition in the new SYSIBM.IPLIST table, you can route to a specific member rather than
letting WLM do the balancing.

Enhancements for stored procedures and UDFs
Currently, you can specify a maximum abend value for all stored procedures and user defined
functions on a single DB2 subsystem. However, this may not be always satisfactory because
you can have a mix of established applications and applications under testing. This
enhancement allows you to set a limit on how many times a stored procedure or a user
defined function can fail before it is stopped. This enhancement also exploits the z/OS WLM
function designed to determine appropriate resource utilization and provide a method of
changing the number of tasks within a stored procedure address space.

DB2 V8 no longer supports COMPJAVA stored procedures.

SQL procedure enhancements
Among other improvements, the SIGNAL and RESIGNAL SQL statements allow the SQL
procedure to specify a specific SQLSTATE and message text to raise a condition within the
SQL procedure. If the condition is not handled by the procedure body, this information is
returned to the caller. This capability is useful to packaged applications such as the extenders
which have their own SQLSTATEs that they want to return to the invoking application.

Chapter 2. DB2 UDB for z/OS V8 at a glance 15

2.5 Utilities
Significant enhancements have been introduced in the area of DB2 Utilities. In this section we
introduce the major ones.

Online schema changes
As 24x7 availability becomes more critical for applications, the need grows for allowing
changes to database objects while minimizing the impact on availability. Online schema
evolution allows for table, index, and table space attribute changes while maximizing
application availability. For example, you can change column types and lengths, add columns
to an index, add, rotate, or rebalance partitions, and specify which index (the partitioning
index or the non-partitioning index) you want to use as the clustering index.

Delimited LOAD and UNLOAD
This enhancement allows LOAD to process input files where the columns are identified by
delimiters such as “,” rather than having fixed positions within the record and/or 2-byte length
fields for VARCHAR input. This allows LOAD to process files unloaded, for example, from the
workstation DB2, Oracle, Sybase, or Informix.

Conversely, UNLOAD unloads the data in the output file with delimiters and this data set can
be used to load the data in another system.

Unicode parser
You can provide the utility control statements entirely in EBCDIC characters or entirely in
Unicode characters. DB2 automatically detects which is being used and therefore there is no
OPTIONS control statement or system parameter setting required in order to submit utility
control statements in Unicode.

Distribution statistics
This enhancement adds the new functionality of calculating the frequencies for non-indexed
columns to RUNSTATS. The relevant catalog tables are updated with the specified number of
highest frequencies and optionally with the specified number of lowest frequencies. The new
functionality also optionally collects multicolumn cardinality for non-indexed column groups
and update the catalog.

Back up and restore system
These two new utilities provide system level, point-in-time, level of recovery. They activate
new functionalities available with the new z/OS V1R5 DFSMShsms, which allow a much
easier and less disruptive way for fast volume-level backup and recovery to be used for
disaster recovery and system cloning. This function is of great interest for ERP solutions
where recovery copies of large number of disk volumes for data and indexes need to be
synchronized for application related consistency, but it could be used as cornerstone for any
recovery solution.

REORG enhancements
REORG utility is enhanced to allow you to specify that only partitions placed in Reorg
Pending state should be reorganized. You do not have to specify the partition number or the
partition range. You can also specify that the rows in the table space or the partition ranges
being reorganized should be evenly distributed for each partition range when they are
reloaded. Thus, you do not have to execute ALTER INDEX statement before executing the
REORG utility. You can specify DISCARD with SHRLEVEL CHANGE. You can avoid BUILD2
phase during online REORG by using the new data partitioned secondary indexes.

16 DB2 UDB for z/OS Version 8 Technical Preview

2.6 Performance
In this section we introduce the major enhancements that help improve the performance of
your applications:

Compare unlike data types
This enhancement improves the performance of DB2 V8 by allowing the predicates to be
stage 1, even when comparing columns/values of different data types, as long as their data
types are compatible.

Materialized query tables
This enhancement provides a set of functions which allow DB2 applications to define,
populate, and make use of materialized query tables. The elements of these functions are as
follows:

� A source table is either a base table, view, table expression, or a user-defined table
function.

� A materialized query table is a table that is used to contain materialized data that is
derived and summarized from one or more source tables specified by a fullselect.

� A materialized query table can be either a system-maintained materialized query table,
which does not allow user update, or a user-maintained materialized query table, which
allows user update.

� The extended CREATE TABLE SQL statement is used to define a materialized query table
to DB2. It specifies a fullselect associated with the table (much in the way a fullselect is
used to define a global temporary table), and specifies the mechanisms that are to be
used to refresh the materialized query table and to keep the data in the materialized query
table synchronized with the data in the source tables from which the materialized query
table was derived. The extended CREATE TABLE SQL statement can also be used to
define a base table by specifying a fullselect for DEFINITION ONLY to derive the column
definitions of the table.

� The extended ALTER TABLE SQL statement can be used to register an existing base
table as a materialized query table to DB2. It can specify a fullselect associated with a
table so that the table can be used in automatic query rewrite. It can also be used to
enable or disable a materialized query table for automatic query rewrite and to switch the
materialized query table types between the system-maintained and the user-maintained.
The extended ALTER SQL statement can also be used to change a materialized query
table into a base table.

� The REFRESH TABLE SQL statement is used to refresh a named materialized query
table. This statement deletes the data currently in the materialized query table and then
executes the fullselect associated with the materialized query table to repopulate it.

� Automatic query rewrite is a process that examines a submitted query that references
source table(s), and if appropriate, rewrites the query so that it executes against a
materialized query table derived from the source tables. The automatic query rewrite
results in a significant reduction in query execution time in most cases.

� The CURRENT REFRESH AGE special register is used to control, at the SQL statement
level, whether a materialized query table with a certain refresh timestamp can be used in
the automatic query rewrite.

� The CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special register is
used to control, at the SQL statement level, which types of materialized query tables
(system-maintained, user-maintained, both, or none) are exploited in the automatic query
rewrite.

Chapter 2. DB2 UDB for z/OS V8 at a glance 17

Multi-row INSERT and FETCH
With this SQL enhancement, a single FETCH can be used to retrieve multiple rows of data,
and an INSERT can insert one or more rows into a table. This reduces the number of times
that the application and database must switch control, as well as reducing the number of
network trips required for multiple fetch or insert operations for distributed requests. For some
applications, this can help performance dramatically.

Parallel sort
The sort process has been enhanced to be able to run multi-table sorts in parallel. Based on
a cost model decision, sort parallelism can exploit CPU resources and reduce elapsed time.

Sparse index for star join
The star join implementation in DB2 UDB for z/OS has to deal with, potentially, a large
number of work files, especially for a highly normalized star schema that can involve many
snowflakes and the cost of the sorting of these workfiles can be very expensive. DB2 V8
extends the use of a sparse index (a dynamically built index pointing to a range of values) to
the star join work files and adds a new optional function of data caching on star join workfiles.
The decision to use the sparse index is done based on the estimation of the costs of the
access paths available.

Long and variable length keys
DB2 V8 extends support for long index keys, variable length index keys, and long predicates.
The maximum length of a long index key is 2000 bytes, increased from 255 in DB2 V7. True
variable length keys are supported in the index. That is, variable length key columns are not
padded to the maximum length of the index key. This reduces the storage requirements for
the index, since only actual data is stored. More importantly, DB2 allows index-only access to
variable length index keys. The maximum column length for predicate operands is 32704 (the
maximum size of a VARCHAR column), increased from 255 in DB2 V7.

Backward index scan
With this enhancement it is no longer necessary to create an ascending and a descending
index on the same table columns in order to satisfy scans in both directions.

Trigger enhancement
Each time an AFTER trigger with a WHEN clause is invoked, a work file is created for the old
and new transition variables. The work file is always created, even when the trigger is not
activated. This enhancement saves the changes in memory if there are only few, instead of
creating and deleting the workfile each time.

Reduced lock contention on volatile tables
Volatile (or cluster) tables, used primarily in the SAP application environment, are tables that
contain groups (or clusters) of rows which logically belong together. Within each cluster, rows
are meant to be accessed in the same sequence every time. Lock contention occurs when
DB2 chooses different access paths for different applications operating on the same cluster
table. In the absence of support for cluster tables in DB2, users have to either change
system-wide parameters that will affect all tables, or change statistics for each such table to
ease the lock contention.

Cluster tables are referred to as volatile tables in DB2. Adding a new keyword, VOLATILE, to
the CREATE TABLE and ALTER TABLE statements signifies to DB2 which tables should be
treated as volatile tables. For volatile tables, index access is chosen whenever possible,
regardless of the efficiency of the available index(es). That is, a table scan is not chosen in
preference to an inefficient index.

18 DB2 UDB for z/OS Version 8 Technical Preview

Table UDF cardinality option
This enhancement introduces the cardinality option for a user defined table function reference
in the SQL language level. Queries involving user defined table functions, in general, could
benefit from this feature, when users can estimate the number of rows returned by the
function before the queries are run. The performance improvement of such queries could be
achieved in conjunction with the features introduced by table UDF block fetch. This option is a
nonstandard SQL extension, and it is specific to DB2 UDB for z/OS implementation.

2.7 Data sharing
Data sharing includes CF lock propagation reduction and other performance and usability
enhancements.

CF lock propagation reduction
This enhancement allows in a data sharing environment, parent L-locks to be granted locally
without invoking global contention processing. Thereby, locking overhead due to false
contention is reduced. As a result, DB2 data sharing performance is enhanced. Performance
benefit varies depending on factors such as commit interval, thread reuse, number of tables
accessed in a commit interval, if the SQL processing is read-only or update etc.

Other performance and usability enhancements
� Reduction of overhead costs for data sharing workloads
� Batched updates for index page splits
� Improved LPL recovery
� Resolution of indoubt units of recovery in restart light
� Change to IMMEDWRITE BIND option default
� Change to -DISPLAY GROUPBUFFERPOOL output

2.8 Installation and migration
The two key items we anticipate in this brief section are prerequisites and migration changes.

Prerequisites
The DB2 V8 environment is available only for the z/OS platform, that is, you need to run DB2
on a zSeries processors with z/OS V1R3 operating system or later. For some specific function
a later release of z/OS might be necessary.

Migration changes
Migration is allowed exclusively from DB2 UDB for OS/390 and z/OS Version 7 subsystems.
The migration SPE must have been applied and started. The migration process is changed
and now consists of three distinct steps or phases:

1. Compatibility Mode (CM): This is the first phase, during which the user makes all the
tests needed to make sure that all the applications run without problems with the new
version. Fall back to V7 in case of problems is allowed.

2. Enable New Function Mode (ENFM): During this (possibly short) second phase, the user
converts the DB2 catalog and directory to a new format by using on-line Reorg executions.
No fallback to DB2 V7 is allowed once this phase is entered.

3. New Function Mode (NFM): This is the target third and final phase, where all new V8
functions are available.

Chapter 2. DB2 UDB for z/OS V8 at a glance 19

20 DB2 UDB for z/OS Version 8 Technical Preview

Chapter 3. Scalability

DB2 for z/OS V8 offers zSynergy and breaks through some of the previous operating system
limitations that affect scalability and availability by delivering large address spaces with the
exploitation of the 64-bit virtual addressing provided by the z/Architecture. With this support
DB2 can guarantee to keep up with the explosive demands of e-business, transaction
processing, and business intelligence.

With DB2 V8 you can manage more data with larger buffers in memory, utilize larger control
fields such as the EDM and RID Pools, and gain more capacity for concurrent locks. You can
also access your data through more partitions and join more tables in a single SQL
statement.

In this chapter we discuss the following topics:

� The 64-bit architecture support
� More partitions
� More tables in join
� More log data sets

3

© Copyright IBM Corp. 2003. All rights reserved. 21

3.1 The 64-bit architecture support
In this section we first describe objectives and functions of the z/OS architecture as a level
set, and then we look at the 64-bit virtual support with DB2 UDB for z/OS Version 8.

3.1.1 The z/OS architecture
Figure 3-1 is meant to demonstrate why the new 64-bit architecture was introduced. It shows
that, for several storage starved environments, adding CPU capacity was not allowing any
further growth, and resulted in little or no additional real work being done. The limiting factor
was that the paging overhead increased due to the 2 GB (31-bit) central storage limit.

Expanded storage had provided an excellent interim solution, and the G5/G6 experienced
some relief with the implementation of the enhanced MOVE PAGE instruction, but systems
with large and variable workloads needed the storage constraint removed.

Figure 3-1 The challenge

IBM launched the zSeries in the year 2000. This class of servers was designed for high
performance data and transaction serving and was optimized to handle the volatile demands
of the e-business climate.

OS/390 R10 and z/OS have provided the 64-bit real storage addressability needed to scale in
real memory addressing. OS390 R10 has the ability to run in either 31-bit mode or 64-bit
mode on a zSeries, while z/OS only runs in a 64-bit mode real storage environment. z/OS 1.2
and later releases provide virtual storage exploitation of the addressing range above 2 GB.

Basically, R10 has provided initial z/Architecture real addressing support (up to 128 GB of
central storage, with the z900 offering 64 GB) and the support for 24-bit, 31-bit, and 64-bit
applications.

The challenge

Memory Intensive
Applications
(TSO, Notes, Baan
etc.)

G6

DB2 based
Applications

Paging

CPU power

22 DB2 UDB for z/OS Version 8 Technical Preview

z/OS 64-bit real storage support has provided significant and transparent reduction of paging
overhead, now only to disk, and real storage constraint relief for workload limited by the 2 GB
of real storage by configuring all z900 and z800 memory as REAL. The elimination of
Expanded Storage support has been handled by z/OS with minimal customer impact while
reducing memory management overhead. It has also enabled the 16-way multi-processors in
z900 and allowed the consolidation of LPARs.

For more information on 64-bit real exploitation see the z/OS migration Web site at:

http://www.ibm.com/servers/eserver/zseries/zos/installation/

In z/OS V1.2, IBM has delivered the initial 64-bit virtual storage management support. With
the new z/OS 64-bit operating environment now an application address space can have 2 to
the power of 64 (or 2**64) virtual addresses with backing by real storage as needed. With this
new architecture z/OS delivers the functions to meet the needs of growing e-business
application environments that will dominate future commercial data processing while
maintaining today’s critical applications.

S/390 hardware and software have a long and outstanding history of support for large scale
computing environments. High capacity and flexible scalability in both hardware and software
are the main characteristics of the architecture, and the OS/390 Parallel Sysplex and
Workload Manager have provided outstanding horizontal growth for subsystems and
application servers. z/OS is providing 64-bit virtual storage addressability to increase the
capacity and throughput of applications in various e-business environments.

Figure 3-2 gives a pictorial representation of the evolution of the memory management from
the 24-bit to the 31-bit to the 64-bit support.

Figure 3-2 The 64-bit memory architecture

Figure 3-3 shows in more detail the mapping of an address space using 64-bit addressability.
The left hand column numbers are upper boundary hexadecimal values associated with each
area. The picture is obviously not drawn to scale; the area “above the bar” would be
dramatically larger if drawn to scale, and should be larger by a factor of 10 to the power of 12.
This should be able to accommodate the storage requirements for many years to come.

XA/ESA-31bit z/Architecture-64bit 370 - 24bit
Central Storage

Central Storage

Expanded
Storage

Real
Storage

Virtual Storage
Virtual Storage Virtual Storage

 ESA
Architecture

 370
Architecture

64-bit memory architecture

 New
z/Architecture

Chapter 3. Scalability 23

http://www.ibm.com/servers/eserver/zseries/zos/installation/

With z/OS 64-bit virtual storage support, database subsystems like DB2 and other
middleware can make use of this large 64-bit virtual storage to increase capacity by
supporting a larger number of concurrent users and concurrent transactions. DB2 was one of
the first subsystems designed for the MVS and OS/390 31-bit environment and one of the first
subsystems to support MVS and OS/390 extended addressability.

Figure 3-3 64-bit virtual address space mapping

DB2 has established itself as the enterprise database manager of choice for OS/390 with its
abilities to handle varied large system workloads efficiently, including transaction and large
query environments. DB2 is now again one of the first subsystems to take advantage of 64-bit
data addressability. With 64-bit virtual storage exploitation, DB2 can relieve virtual storage
constraints and provide capacity enhancement to a large number of DB2 applications.

DB2 64-bit virtual storage exploitation is a two-step plan described in the white paper IBM
eserver zSeries 900 z/OS 64-bit Virtual Storage Roadmap, available in PDF from the Web
site:

http://www.ibm.com/servers/eserver/zseries/library/whitepapers/gm130076.htm

In summary, the first step is to take advantage of the basic 64-bit virtual storage system
infrastructure and system services to enhance database manager buffer support. With DB2
V8 all existing 31-bit DB2 applications (including those written in Assembler, PL/I, COBOL,
FORTRAN, C/C++ and Java), and future DB2 applications can benefit transparently from
DB2’s 64-bit virtual storage support. The benefit is derived from the efficiencies with the local
availability of data made possible through 64-bit data addressability. DB2 UDB for z/OS V8,
with 64-bit virtual address support, can only execute on IBM ~ zSeries 800/900
including the zSeries 900 turbo, or equivalent, running z/OS V1R3, or later. DB2 V6
(5645-DB2) and V7 (5675-DB2) already support 64-bit real storage addressing for data space
buffers, providing improved scalability and performance in a zSeries processor running in
64-bit real mode. Using 64-bit real provides a significant storage relief for most customers.

64-bit Virtual Address Space

0
1000000

80000000
1_00000000

200_00000000

20000_00000000

1_00000000_00000000 2**64 (16 Exabytes)

2**49 (system default 512 Terabytes)

2**41 (system default 2 Terabytes)

2**31 (2 Gigabytes) - the Bar

2**32 (4 Gigabytes)

2**24 (16 Megabytes) - the Line

User Private Area

reserved

User Private Area

Below the Line
Above the Line

unused

24 DB2 UDB for z/OS Version 8 Technical Preview

http://www.ibm.com/servers/eserver/zseries/library/whitepapers/gm130076.htm

The second step is to exploit the z/OS C/C++ and Java infrastructure to extend DB2’s support
to 64-bit C/C++ and Java applications. DB2 APIs will be enabled to support 64-bit data, to
facilitate 64-bit C/C++, and Java applications to access existing data or store new data into
the database.

DB2 V8 makes use of extra services provided by z/OS V1R3. For a brief summary of the main
functions of the z/OS recent versions, see Figure 3-4.

Figure 3-4 Summary of z/OS current versions

3.1.2 DB2’s virtual storage expansion
Over the years, virtual storage usage has grown dramatically in DB2's DBM1 address space.
This storage growth has been fueled by larger workloads, new functions, and larger real
storage available on mainframe processors. The latter, in particular, has allowed customers to
run workloads that in the past would have been definitely limited by paging overhead.

With the arrival of z/Architecture and z/OS support for real storage larger than 2 GB, we have
seen that the problem may become worse, since the reduced paging, faster CPUs, and
higher multi-processor levels can promote larger and larger workloads. The DBM1 2 GB
virtual storage constraint, already the single biggest inhibitor to scaling DB2 workloads on
31-bit machines, becomes an even larger growth inhibitor as z/Architecture and large 64-bit
main memories continue to take hold in the field.

z/OS 1.1 & 1.2 z/OS 1.3 z/OS 1.4
z/Architecture

-64-bit real storage (1.1)
-Intelligent Resource Director (1.1)

Interoperability with Linux
-IRD extensions, HiperSockets (1.2)

Availability
-Parallel Sysplex coupling
enhancements (1.1, 1.2)

Networking
-HiperSockets (1.2)
-TCP/IP enhancements (1.2)

Security
-Industry and international standards
(1.2)
-Extended support for SSL and
Digital Certificates (1.2)

Open Applications
-Java, C++ and File System
enhancements (1.2)

Cost of Ownership
-Simplified setup and operations (1.1,
1.2)
-New tools and utilities for DB2 and IMS

64 bit virtual support

Application Flexibility
-zSeries File System improvements
-UNIX System Services availability
enhancement

eLiza Self Optimizing
-WLM improved for distributed DB2®
and WebSphere applications

Improved Storage and I/O
Management (DFSMS)

-Business continuity and business
efficiency improvements

Security
-PKI Services for Digital Certificate
Life-Cycle Management
-Enhanced Crypto Algorithms and
Standards
-More granular access control for UNIX
file systems with Access Control Lists

Tools to manage your e-business
-Increase scalability by new extended
network addressing with IPv6
-Enable clock synchronization between
clients & servers with SNTP
-Add systems to your sysplex without
sysplex wide IPL
-Enhanced System SSL, Firewall and
LDAP Technologies for e-business
security

Application Flexibility and
Autonomic Computing extensions

-Enhancement of dynamic balancing of
business workloads
-Self optimization of WebSphere for
z/OS by more granular reporting
-Ease system setup & support multiple
users with msys for setup framework
-Simplify management of Unix System
Services (USS) identities
-Performance and Usability
improvements for zFS and SMB
File/Print Server

Availability & Serviceability
improvements

-Server activity logged by the LDAP
Server
-z/OS Service through the internet with
ShopzSeries

z/OS current versions

Chapter 3. Scalability 25

3.1.3 Moving above the 2 GB bar
DB2 V8 has made massive changes to its code, and now provides a solution to the current
virtual storage constraint by utilizing 64-bit virtual addressing to move the following data areas
above the 2 GB bar (2**31) in the DBM1 address space:

� Buffer pools and buffer pool control blocks
� Sort pool
� RID pool
� EDM pool
� Compression dictionaries
� Castout buffers
� IRLM locks
� Materialized LOB values

Larger buffer pools
With the very large and ever-cheaper main memories that are available on the current and
upcoming z/Architecture machines (currently 10s of GB, moving towards 100s of GB), it is
becoming feasible for customers to configure very large buffer pools to gain significant
performance advantages. However, due to DBM1 virtual storage constraints, DB2 currently
enforces maximum buffer pool sizes that are far less than the memory capacities of these
machines:

� The total size of virtual pools is limited to 1.6 GB. However, in actual practice, customers
typically cannot configure more than 1.0 GB due to DBM1 virtual storage constraints.
VSAM control blocks and compression dictionaries are other sizeable contributors to the
demands on DBM1.

� DB2 V7 limits the total size of hiperpools to 8 GB. This limit could be raised, however
hiperpools have several drawbacks which make them undesirable as a long term solution:

– They are only page addressable, not byte addressable, and therefore buffers must be
moved into the virtual pool before they can be used,

– They can contain only clean pages.

– You cannot do I/O directly into or out of a hiperpool.

– The hiperpool page control blocks (HWBs) reside in the DBM1 address space and thus
contribute to virtual storage constraints.

– Hiperpools require a fairly substantial virtual pool size for effective use. Typically, the
hiperpool to virtual pool size is on the order of 2:1 to 5:1. Therefore, virtual pool size
ultimately limits hiperpool size.

– A separate set of latches is used to manage hiperpool and virtual pool buffers, so as
the frequency of page movement between virtual pools and hiperpools increases, the
Least Recently Used (LRU) management of these pools increases, and latch
contention issues can quickly arise.

Hiperpools were designed over a decade ago to exploit ESA and to make efficient use of
large amounts of expanded storage.

Data spaces provided a good short term solution by exploiting the 64-bit REAL memory
support introduced OS/390 V2R10. DB2 V6 could place buffer pools and statement caching
in data spaces freeing up space for other work in the DBM1 address space. A performance
penalty would be paid when such buffering was not 100% backed by real storage.

26 DB2 UDB for z/OS Version 8 Technical Preview

The advantages of data spaces over hiperpools were:

� Read and write cache with direct I/O to data space
� Byte addressability
� Large buffer pool sizes (32 GB for 4 KB page size and 256 GB for 32 KB page size)
� Single buffer pool can span multiple data spaces
� Multiple buffer pools in same data space
� Excellent performance experienced with z900 and large processor storage
� Performance dependent upon being in 64-bit REAL mode

With the z/Architecture processors running in 64-bit addressing mode and having no
expanded storage (all storage is central), hiperpools have no reason to exist.

The total size of data space virtual pools is limited to 32 GB (4 KB page size). This limit is
imposed by a maximum of 8 million “page manipulation blocks” (PMBs) which reside in the
DBM1 address space. Also, the lookaside pool resides in DBM1. Although data spaces
provide a good short term solution for exploiting 64-bit real memory, they are undesirable as a
long term solution, not only because of the size limitations, but also because of the overhead
involved with copying buffers between the data spaces and the “lookaside” pool as they are
accessed and updated. Data spaces have scalability issues, and the VSTOR limit of 2 GB for
DBM1 address space remains the biggest constraint to achieving linear scalability (see
Figure 3-5).

Figure 3-5 Data spaces

Lookaside

2 GB

DBM1

Data
space 2 GB

Data
space 2 GB

Bufferpool

Chapter 3. Scalability 27

The use of 64-bit virtual addressing greatly increases the maximum buffer pool sizes. DB2 V8
is 64-bit exclusive, and therefore always allocates the buffer pools above the 2 GB bar. This
effectively eliminates the need for hiperpools and data space pools and simplifies DB2
systems management and operations tasks. Therefore, hiperpools and data space pools are
no longer supported in DB2 V8. As of DB2 V8, the terms buffer pool and virtual pool become
synonymous.

Buffer pools can now scale to extremely large sizes, constrained only by the physical memory
limits of the machine (64-bit allows for 16 exabites of addressability). System consolidation by
having multiple DB2 images, with or without data sharing, is now possible without significant
paging activity. The recommendation still stands that buffer pools should not be over-allocated
relative to the amount of real storage that is available. DB2 V8 issues the following warning
messages:

� DSNB536I: This indicates that the total buffer pool virtual storage requirement exceeds
the size of real storage of the z/OS image.

� DSNB610I: This indicates that a request to increase the size of the buffer pool will exceed
real storage, or the normal allocation of a buffer pool not previously used will cause an
aggregate size which exceeds the real storage. Either request will then be limited to 8 MB
(2000 pages for 4 KB, 1000 pages for 8 KB, 500 pages for 16 KB, and 250 pages for
32 KB).

As mentioned, DB2 limits the allocation of buffer pools if the aggregated (allocated) pool size
exceeds the value of 2 x REAL storage size of system image.

DB2 V8 increases the maximum buffer pool sizes to the limit of the architecture, 1 TB,
however the limitation is the given by the real storage available:

� Maximum size for a single buffer pool is 1 TB
� Maximum size for summation of all active buffer pools is 1 TB

When first migrating to V8, DB2 uses the following parameters to determine the size of the
buffer pool:

� For data space pools and virtual pools with no corresponding hiperpool, the VPSIZE is
used.

� For virtual pools with a corresponding hiperpool, VPSIZE + HPSIZE is used.

� VPSEQT, VPPSEQT and VPXSEQT keep their previous values, even if the buffer pool
size is determined by VPSIZE + HPSIZE.

DB2 V8 maintains the old V7 virtual pool and hiperpool definitions as they were at the time of
migration to be used in case of fallback, and it adds new definitions of buffer pools for the
catalog.

For newly installed V8 subsystems, as in prior releases, DB2 initially uses the buffer pool
sizes that were specified during the installation process. Thereafter, the buffer pool attributes
can be changed via the ALTER BUFFERPOOL command, and they are stored in the BSDS.

The buffer pool names (BP0, BP1, etc.) do not change. Neither do the page sizes: The
options are still 4 KB, 8 KB, 16 KB, or 32 KB. The values change as listed in Figure 3-6.

28 DB2 UDB for z/OS Version 8 Technical Preview

Figure 3-6 The new buffer pool values

The ALTER BUFFERPOOL command parameters no longer supported are VPTYPE,
HPSIZE, HPSEQT, CASTOUT. If they are specified, just a warning message DSNB539I is
issued.

The other parameters remaining unchanged are VPSEQT, VPPSEQT, VPXPSEQT, DWQT,
VDWQT, and PGSTEAL.

LSTATS report removes the references to hiperpool related counters.

RID pool
The RID Pool is split into two parts. A small part of the RID Pool remains below the 2 GB bar
and the majority (about 75%) is moved above; see Figure 3-7. The RID Pool below the 2 GB
bar stores the RID Maps which are small in number, and the RID Pool above the 2 GB bar
contains the RID Lists which comprise the bulk of the RID Pool storage.

Figure 3-7 RID pool

Parameter Value

BP0 Minimum and default 2000

BP8K0 Minimum and default 1000

BP16K0 Minimum and default 500

BP32K Minimum and default 250

CTHREAD Limit increased from 2000
(check REAL storage availability)

RID POOL

2 GB Bar

RIDLIST
RIDLIST

RIDLIST

RIDLIST

RIDLIST

RIDMAP RIDMAP

64 bit pointers

RIDLIST pointer
size doubled -
RIDMAP size
increased

31 bit pointers
in various control
blocks

Chapter 3. Scalability 29

Because of the changes, there are some slight modifications in estimating the size for the RID
pool. The same size RIDMAPs would have held half as many RIDLISTs. The RIDMAP size is
doubled to accommodate the same number of 8 byte RIDLISTs, and each RIDLIST now
holds twice as many RIDs. Each RIDBLOCK is now 32 KB in size.

Here is the new RIDPOOL calculation:

� Each RIDMAP contains over 4000 RIDLISTs.

� Each RIDLIST contains 6400 RID entries.

� Each RIDMAP/RIDLIST combination can then contain over 26 million RIDs, versus
roughly 13 million in previous DB2 versions.

Sort pool
Sorting requires a large amount of virtual storage, as there can be multiple copies of the data
being sorted at a given time. Two kinds of storage pools are used for DB2 Sort to store
various control structures and data records. One pool is an agent-related local storage pool,
and the other is a global sort pool. To take advantage of the 64-bit addressability for a larger
storage pool, some high level sort control structures remain in agent-related storage below
the 2 GB bar, but these structures contain 64-bit pointers to areas in the global sort pool
above the 2 GB bar. The sort pool above the 2 GB bar contains sort tree nodes and data
buffers.

Compression dictionaries
The compression dictionary for a compressed table space is loaded into virtual storage for
each compressed table space or partition as it is opened. Even though it is not accessed
frequently, it occupies a good chunk of storage while the data set is open. A compression
dictionary can occupy up to 64 KB bytes of storage per data set (sixteen 4 KB pages)
therefore moving the dictionary above the 2 GB bar provides significant storage relief for
many customers.

For some customers, those who have a large number of compressed table spaces, the
compression dictionaries can use up as much as 500 megabytes. This can further increase
compression dictionary storage requirement for some systems, depending upon how many of
these data sets contain compressed table spaces. DB2 V8 also implements support for 4096
partitions for a single table or index, this is another driver for moving compression dictionaries
above the 2 GB bar. With 4096 partitions, customers might choose to have a larger number of
smaller partitions resulting in a corresponding increase in the total number of compression
dictionaries in those partitioned database.

The compression dictionary is loaded above the bar after it is built. All references to the
dictionary now use 64-bit pointers. Compression uses standard 64-bit hardware compression
instructions. Standalone utilities still load the dictionary below the bar.

EDM pool
A new dynamic statement cache is created above the 2 GB bar. Today if “cache dynamic” is
on, the statements are cached in the data space, if one is defined, or in the normal EDM pool
if a data space is not defined. Now, cached, dynamic statements are always cached in the
dynamic statement cache pool above the 2 GB bar, see Figure 3-8.

A new EDM DBD cache is created above the 2 GB bar. This gives the DBDs the needed
space to grow and relieves contention with other objects in the EDM pool. Three parameters
are now used to allocate the EDM pool: EDMPOOL storage size, EDM storage cache, and
EDM DBD cache.

30 DB2 UDB for z/OS Version 8 Technical Preview

Figure 3-8 EDM pool

LOB data
LOBs are now materialized, depending on the application requirements, above the 2 GB bar
in DBM1 address space, and allocated in areas limited by the system parameters previously
used for allocating data spaces:

� LOBVALA (the size per user):

The default is 2048 KB, the limit value is 2097152 KB.

� LOBVALS (the size per system):

The default is 2048 KB, the limit value is 512 MB.

Other changes
Other changes have been made to complement the 64-bit virtual support. There are 64-bit
serviceability enhancements such as the 64-bit dump formatter and continued IPCS support.
The locks now reside above the 2 GB bar, and the default for IRLM has changed in V2.2, it
was PC=NO, now PC=YES is forced.

3.1.4 General performance expectations
The performance objective with the 64-bit virtual support is to increase system throughput
with virtual storage constraint relief. This allows DB2 to support more concurrent threads.

The new factors affecting performance are:

� The 64-bit address translation
� Increased code size due to 4 byte vs. 2 byte instructions
� More expensive linkage between modules

EDM Pool - DBD Cachings and OBDs

2 GB Bar

DBD Cache
OBD
OBD
OBD

OBD
OBD
OBD

OBD
OBD
OBD

Dynamic
Statement

Cache

Relieves contention
with other objects in the

EDM pool like plans
and packages

Chapter 3. Scalability 31

Here is the expected impact when comparing to DB2 V7 BPOOLs with same size and backed
by REAL storage:

� Up to 10% CPU degradation for intensive page processing workloads is likely.
� Other workloads are expected to be within 5%.

3.1.5 Storage monitoring and tuning
With DB2 V8’s exploitation of 64-bit virtual storage, the following capabilities are possible:

� Buffer pool monitoring and tuning becomes simpler:

– Hiperpools and data space pools are eliminated, thus reducing complexity. There is
now only one type of buffer pool. EDM pool and LOB data spaces have been
eliminated.

– Buffer pool size limits are increased, therefore buffer pool storage does not need to be
as tightly monitored and controlled, especially in cases where there is a large amount
of real memory available on the machine.

– ssnmDBM1 virtual storage constraints are no longer a key consideration in determining
the optimum sizes for buffer pools.

� This may allow installations to increase the number of current active threads (CTHREAD).
ECSA allocation may need to be increased if CTHREAD is raised.

� A single DB2 subsystem is able to run larger workloads. This may cause some
installations to defer going to a data sharing environment for capacity reasons (since data
sharing is still required for the highest scalability and availability), or to consolidate the
data sharing groups to fewer members.

� To handle the expected increases in workload, the maximum number of deferred write and
castout engines are increased in order to decrease engine not available conditions.

You can use IFCIDs 0217 and 0225 to monitor ssnmDBM1 virtual storage usage above and
below 2 GB.

VSTOR information is collected in SMF by RMF in record type 78-2. RMF can produce:

� Common storage summary and detail reports
� Private area summary and detail reports

The report are requested as follows:

� Specify S, either explicitly or by default, RMF produces summary reports
� Specify D, RMF produces both summary reports and detail reports

These are the available options:

� REPORTS(VSTOR(D)):

This produces a summary and detail report for common storage.

� REPORTS(VSTOR(D,xxxxDBM1)):

This produces a summary and detail report for common storage and a summary and
detail report for the private area of the xxxxDBM1 address space.

� REPORTS(VSTOR(MYJOB)):

This produces a summary report for common storage and a summary report for the
private area of the MYJOB address space.

More information on setting up and monitoring 64-bit is contained in the technical bulletin,
z/OS Performance: Managing Processor Storage in an all “Real” Environment, available from:

32 DB2 UDB for z/OS Version 8 Technical Preview

http://www.ibm.com/support/techdocs

3.1.6 DB2 V8 requires z/Architecture and z/OS V1R3
The main focus of DB2 V8 and virtual storage constraint relief is to utilize 64-bit virtual
addressing to move the buffer pools and their associated buffer control blocks above the 2 GB
bar in the ssnmDBM1 address space. DB2's data access modules are enhanced to access
the 64-bit addressable buffers in place, without any data movement as is done today for data
space buffer pools.

DB2 V8 requires z/Architecture machines and also requires that those machines must be
running in 64-bit addressing mode. If an attempt is made to start DB2 V8 on a non-64-bit
machine, then DB2 issues an error message during startup and terminates.

DB2 V8 needs z/OS V1R3 or above as prerequisite. If an attempt is made to start DB2 V8 on
an OS/390 or a z/OS R1 or R2 system, then DB2 issues an error message during startup and
terminates.

Note that these prerequisite have implications for disaster recovery and sysplex cross-system
restart scenarios.

Summarizing the key points:

� zSeries processor running 64-bit mode and z/OS 1.3 (or later) are prerequisite:

– This requires preliminary migrations for test and development environments.
– You should also consider the disaster recovery implications.
– Parallel Sysplex and cross system restart are possible.

� DB2 now allocates space above 2 GB bar in DBM1:

– This frees up significant storage in the 31 bit addressable area.
– There are more concurrent threads.
– Higher transaction throughput is possible.

� z/OS provides a new MEMLIMIT JCL keyword which controls how much VSTOR above 2
GB bar is available in each address space.

In order to minimize the impact of changing z/OS and DB2, it is appropriate to experiment
Global Trace and diagnostics — in general, in a pilot system with minimal users. A fully tested
Stand Alone Dump should be available in its High Virtual Option.

The growth of threads and corresponding ECSA should be kept under control. The ECSA
previously used by IRLM is now freed up.

Start by running a DB2 UDB for OS/390 Version 7 subsystem under a 64-bit virtual O/S and
set low values for everything in the beginning, then gradually increase the values based on
resources consumption due to the increase of buffer pools, EDM pool, number of threads.

3.2 More partitions
Customers have a need for more partitions in their partitioned table spaces for certain types
of applications. One example of these applications is collection and retrieval of daily data,
which, of course, means 365 partitions (or 366 for a leap year). If the customer wants to keep
11 years worth of daily data in separate daily partitions, that would be 4026 partitions.
Another example is keeping weekly data in partitions; if a customer wanted to keep 10 or 20
years worth of weekly data that would be 520 or 1040 partitions.

Chapter 3. Scalability 33

http://www.ibm.com/support/techdocs

Customers also want to have their large table spaces spread out in many partitions to reduce
the size of their partition data sets. For a 16 terabyte table, the maximum values allowed for
page size 4 KB, each partition has to be 64 gigabytes and that may be too unwieldy to
manage. More partitions would allow to reduce the data set size by making the data more
granular (for example, having daily partitions instead of weekly partitions.)

With DB2 V7, the maximum number of partitions in a partitioned table space and index space
is 254. With DB2 V8 the new maximum number of partitions is 4096 for partitioned table
spaces. The value is dependent on the page size and the LARGE (not recommended) or
DSSIZE (preferred) parameter. 4096 partitions would help the applications mentioned above
and eliminate the work around solutions. You can define new partitioned table spaces with the
new value of partitions, or you can use online schema changes (see 4.3.8, “Dynamic
partitions” on page 60) to apply the new limits to existing partitioned table spaces.

The CREATE TABLESPACE statement now allows you to specify up to 4096 partitions in the
NUMPARTS clause for a partitioned table space; see Figure 3-10.

Figure 3-9 New number of partitions

The maximum number allowed in NUMPARTS is dependent on the page size and DSSIZE
specified for the table space, see Table 3-1 for details. If DSSIZE (or LARGE) keywords are
not specified, a default data set size is given depending on the page size value; for 4 KB page
size, DSSIZE default is 4 GB, for 8 KB page size, DSSIZE default is 8 GB, for 16 KB page
size, DSSIZE default is 16 GB, for 32 KB page size, DSSIZE default is 32 GB.

Table 3-1 Maximum number of partitions versus DSSIZE and page size

DSSIZE Page size 4 KB Page size 8 KB Page size 16 KB Page size 32 KB

1-4 GB 4096 4096 4096 4096

Maximum number of partitions
The maximum number of PARTs depends on the DSSIZE and the
page size in the CREATE TABLESPACE statement

USE DSSIZE when creating table space for partitions of 4GB and
larger

LARGE clause is only for compability with previous release to
identify each partition of a partitioned table space has a maximum
partition size of 4 GB.
Use DSSIZE clause as a preferred method instead

DB2 creates default DSSIZE (if LARGE or DSSIZE keywords are
omitted) based on the page size value

 Page size Default DSSIZE

 4 KB 4 GB
 8 KB 8 GB
 16 KB 16 GB
 32 KB 32 GB

34 DB2 UDB for z/OS Version 8 Technical Preview

The size of catalog objects SYSDBASE, SYSCOPY, SYSSTATS, SYSTABLEPART_HIST,
SYSINDEXPART_HIST, SYSTABSTATS_HIST and SYSINDEXSTATS_HIST is greatly
increased, as are directory objects DBD01, SYSUTILX and SYSLGRNX if a large number of
partitions are created or added to table spaces. These tables should be sized correctly so that
there is no need to resize them too often in the future.

A good solution for customers who want daily or weekly granular segments is to start with a
minimum number of partitions when creating the table space. The customer can then add
more partitions using the ALTER ADD PARTITION statement provided with Online Schema
Evolution (see 4.3.8, “Dynamic partitions” on page 60.)

For example, if a customer wanted daily data segments, the table space could be created with
365 partitions and then partitions could be added later for subsequent years.

Customers that have existing partitioned table spaces with 254 partitions can use Online
Schema Evolution to add more partitions to their table spaces.

Be aware that with LOBs, there needs to be one LOB table space, one auxiliary table and one
auxiliary index per partition per LOB. A single database can hold a maximum of 65,535
objects, therefore, if a table with 4096 partitions has a LOB column, there is a need to create
12,288 objects (4096 LOB table spaces, 4096 auxiliary tables, 4096 auxiliary indexes), so
only 5 LOB columns could be defined on a 4096 partition table space.

New data set naming convention
Currently, DB2 names the DB2 data sets with the convention of 'Axxx' where xxx is the
partition number. This naming convention allows for the definition of no more than 999
partitions. With DB2 V8, a new data set naming convention allows data sets with partition
numbers greater than 999.

The naming scheme for a data set with more than 999 partitions is shown in Example 3-1.

Example 3-1 New data set naming convention

catname.DSNDBx.dbname.psname.p0001.lnnn
where
p is I or J,
lnnn is A001-A999 for partitions 1 through 999,
lnnn is B000-B999 for partitions 1000 through 1999,
lnnn is C000-C999 for partitions 2000 through 2999,
lnnn is D000-D999 for partitions 3000 through 3999, and
lnnn is E000-E096 for partitions 4000 through 4096

3.3 More tables in join
The documented limit on the number of tables that can be joined is 15 for DB2 versions prior
to V8. Many customers need to run queries that join more than the 15 tables in their ERP or
CRM applications, typically designed with large numbers of tables to be joined. For queries

8 GB 2048 4096 4096 4096

16 GB 1024 2048 4096 4096

32 GB 512 1024 2048 4096

64 GB 256 512 1024 2048

DSSIZE Page size 4 KB Page size 8 KB Page size 16 KB Page size 32 KB

Chapter 3. Scalability 35

which qualify for star join processing, the limit is up to 225 tables in the FROM clause. To get
around the 15 table limit, customers can evaluate the use of a “hidden” ZPARM so that their
queries can run. This parameter is hidden because, in general, there is a need for extra
storage and processor time when dealing with these complex queries.

The reason the default limit on the number of tables joined has stayed at 15 is because there
has been a risk that a large query could cause DB2 to consume extra amounts of resources
(storage and CPU) when evaluating the cost of each possible join sequence. This in turn can
cause critical storage shortages and negatively impact the DB2 subsystem. See APAR
PQ31326 for more details.

In DB2 V8 the default limit is changed from 15 to 225 tables to be joined. This means that
users can more easily join more than 15 tables. It also means that DB2 can join this many
tables without restriction.

A number of enhancements have been implemented in DB2 V8 to reduce the amount of
resources needed for the optimization process. This allows us to join more tables using less
resources. A new functionality can recognize common query patterns (like star schema) and
optimize large joins very efficiently.

These improvements, while reducing the risk of running into resource shortages, do not by
themselves eliminate the risk. Queries that do not fit the star schema pattern, but join a large
number of tables could still run into problems even in DB2 V8.

To address this problem, DB2 V8 has enhanced the monitoring of how much storage and
CPU is being consumed by the optimization process. If it exceeds certain thresholds, then
curbs are put in place to force the optimization process to complete quickly. When excessive
resources have been consumed by the optimization process, the goal changes — from
selecting the “optimal” plan, to selecting a “reasonable” plan, in a minimal amount of time.

The resource threshold used is expressed in terms of storage (number of megabytes), CPU
(number of seconds), and elapsed time (also in number of seconds). The threshold is large
enough so that most existing queries are not impacted, but small enough so that they prevent
severe resource shortages.

To guard against regressing existing queries, the threshold is only applied when the number
of tables joined is greater than 15 (the limit prior to DB2 V8). This way, only customers that
were using the “hidden” ZPARM to run queries with >15 tables may see any change to their
existing workload.

3.4 More log data sets
With the explosion of e-business and the extremely high transaction volumes that large
customers are processing today, customers are finding that the current maximum of 1,000
archive log volumes (per log copy) recorded in the BSDS is no longer sufficient to remain
recoverable without having to take frequent image copies. Even with the maximum size of
each log data set, active or archive, now increased to 4 MB minus 1 CI (this increase was
made available via the PTF for APAR PQ48126 to DB2 V6 and V7, and is now in the base
code of V8), large DB2 systems are creating so many archive log data sets that the 1,000
archive log volume maximum only allows them to register a few days of log data in the BSDS.

Having more log data available in the active log data sets reduces the chances of DB2
requiring archive log data sets for an extended rollback or for media recovery. Since active log
read is generally faster than archive log read, queuing for archive log tape volumes would be
virtually eliminated.

36 DB2 UDB for z/OS Version 8 Technical Preview

The enhancements are summarized in Figure 3-10. DB2 V8 increases the maximum number
of archive log volumes recorded in the BSDS from 1,000 volumes per log copy to 10,000
volumes. The maximum number of active log data sets is also increased from 31 per log copy
to 93 log data sets.

Figure 3-10 Logs data sets increase

DB2 V8 increases the maximum number of active log data sets to 93 per log copy. DB2 V8 is
able to support 10,000 archive log data sets per log copy.

Increasing the maximum number of active log data sets and archive log volumes requires
conversion of the BSDS to allow more data sets entries. To do the conversion, the user runs a
new utility job DSNJCNVB. In order to minimize the fallback and data sharing co-existence
impact of this change, your current DB2 system must be in V8 New Function Mode (NFM)
before you can convert your BSDS to support the new maximum values. BSDS conversion is
optional in DB2 V8, but recommended.

DB2 install job DSNTIJIN automatically provides a larger BSDS definition during a new
installation, however, the user must still convert the BSDS by running the new conversion
utility job DSNJCNVB once in NFM. When migrating to V8, the user should follow the
documented pre-conversion procedure to manually redefine a larger BSDS before converting
with DSNJCNVB.

Prior to running the conversion utility, you need to do the following steps:

1. Rename existing BSDS data set to save the original in case conversion fails.

2. Allocate larger BSDS using original BSDS name using VSAM DEFINE statements in
DSNTIJIN.

3. Copy the original data set to a new, larger data set; VSAM REPRO is recommended.

4. Repeat for the second copy dual BSDSs.

Active and archive logs are increased
The maximum size of active or archive log data set is 4 GB

APAR PQ48126 for DB2 V6 and V7
The maximum number of archive log volumes increases from
1000 to 10,000 per log copy

 DB2 system can remain recoverable without having to take frequent image
copies

The maximum number of active log data sets increases from
31 to 93 per log copy

 more active logs means less chances for DB2 to require the archive log
data sets for an extended rollback or media recovery
 faster recovery as active log read isgenerally faster than archive log read

Changes are required in the BSDS to allow the new maximum
values

 convert BSDS with the new DSNJCNVB utility
MAXARCH (RECORDING MAX on install panel DSNTIPA)
now allows a maximum value of 10,000

 if DB2 detects the a value > 1000 without BSDS conversion
 DSNJ155I is issued at startup
 the value is reset to 1000 and processing continues

Preconversion tasks
 save and rename BSDS
 redefine a larger BSDS using statements in DSNTIJIN
 copy old BSDS to new

Chapter 3. Scalability 37

See also “Increase number of active and archive log data sets in BSDS” on page 256.

38 DB2 UDB for z/OS Version 8 Technical Preview

Chapter 4. Availability

DB2 UDB for z/OS breaks through many limitations that affect availability, keeping up with the
explosive demands of e-business, transaction processing, and business intelligence. DB2 V8
delivers increased application availability with schema evolution support, which permits
schema changes without stopping data access while the changes are implemented.

You can access your data through more partitions, gain greater availability and management
through data partitioned secondary indexes (DPSIs), and minimize partition management for
historical data with support for rolling partitions. Version 8 also introduces a new technique to
back up and recover an entire DB2 subsystem, as well as improvements to CI size support,
the LPL recovery process, and better monitoring of the system checkpoint process, log
offload activity, and UR backouts.

In this chapter we discuss the following topics:

� Online schema changes
� System level point-in-time recovery
� Data partitioned secondary indexes
� Online ZPARMs
� Control intervals larger than 4 KB
� Monitor system checkpoints and log offload activity
� Log monitor long running UR backout
� Improved LPL recovery

4

© Copyright IBM Corp. 2003. All rights reserved. 39

4.1 DB2 V8 partition and index related terminology
Up to V7, terms such as secondary index (on a partitioned table), non-partitioning index, or
non-clustering index, were often used interchangeably. With all the enhancements related to
partitioning and indexes in DB2 V8, it is important that we make sure to use the correct
terminology. It is important to distinguish between:

� Index-controlled and table-controlled partitioning
� Partitioned and non-partitioned indexes
� Partitioning and non-partitioning or secondary indexes

4.1.1 Table-controlled partitioning
Before V8, only index-controlled partitioning was supported. With index-controlled
partitioning, the partition boundaries are specified on the CREATE INDEX statement, when
creating a partitioning index on the table. This results in a table that is unusable or
“incomplete” until the partitioning index is created.

DB2 V8 introduces table-controlled partitioning. That is, when creating a partitioned table,
the partition boundaries can be specified on the CREATE TABLE statement, as shown in
Figure 4-1.

Both types of partitioning are supported with DB2 V8, but several new enhancements are only
supported when using table-controlled partitioning.

Figure 4-1 Table-controlled partitioning

Example 4-1 compares the index-controlled partitioning syntax with the new table-controlled
partitioning syntax. Notice that when using table-controlled partitioning, an index is not
required.

CREATE TABLE table-name (column-definition)

other options

PARTITION BY (column-name
ASC

DESC

)

,

 (PARTITION integer ENDING AT (constant))
,

40 DB2 UDB for z/OS Version 8 Technical Preview

Example 4-1 Index-controlled vs. table-controlled partitioning syntax

Create table space statement has not changed

CREATE TABLESPACE tsname NUMPARTS n
 (PART 1 USING PQTY...,
 PART n ...);

Index-controlled partitioning

CREATE TABLE tbname (col1,col2,col3...) ...;
CREATE INDEX ixname on tbname (col1,col2) CLUSTER
 (PART 1 VALUES (bnd1a,bnd1b) USING PQTY ...,
 PART n VALUES (bndna,bndnb) ...);

Table-controlled partitioning

CREATE TABLE tbname (col1,col2,col3...)
 PARTITION BY (col1,col2) ...
 (PARTITION 1 ENDING AT (bnd1a,bnd1b),

PARTITION n ENDING AT (bndna,bndnb));

Partitioning control specifics
When creating a partitioned table (that is, the table space has a NUMPARTS specification),
table-controlled partitioning is initiated by specifying the new PARTITION BY clause, which
identifies the columns and values used to delimit the partition boundaries. When the new
clause is used, the definition of the table is complete and data can be inserted into the table.
Once establishing table-controlled partitioning for a table, index-controlled partitioning is no
longer an option for that table. Any attempt to create an index on this table with the VALUES
keyword is disallowed.

Because the table definition of a table-controlled partitioned table is complete after executing
the CREATE TABLE statement, no partitioning index is required. So you can have a table
controlled partitioned table without a partitioning index.

For some applications, the partitioning column (for example, a date) is not the column that is
used to access the data. The partitioning column is often chosen to accommodate easy data
maintenance (like loading additional rows). Now that a partitioning index is no longer required
in a table controlled partitioned table, you can consider getting rid of the partitioning index in
those cases. If the partitioning index is only used to define partition boundaries, the
partitioning index can be dropped.

Converting to table-controlled partitioning
For tables that use index-controlled partitioning created in DB2 V8 or in previous releases, the
use of any of the statements listed in Example 4-2 automatically converts the table to
table-controlled partitioning.

Example 4-2 Converting from index-controlled to table-controlled partitioning

DROP partitioning index
ALTER INDEX NOT CLUSTER (on the partitioning index)
ALTER TABLE ADD PARTITION
ALTER TABLE ALTER PARTITION ROTATE
ALTER TABLE ALTER PARTITION part
CREATE INDEX PARTITIONED
CREATE INDEX ENDING AT... omitting CLUSTER keyword

Chapter 4. Availability 41

Users are encouraged to convert partitioned tables to use table-controlled partitioning. A
non-disruptive method for doing this involves:

1. Creating a Data Partitioned Secondary Index (CREATE INDEX PARTITIONED) with
DEFER YES. The CREATE INDEX PARTITIONED syntax triggers conversion to
table-controlled partitioning, and the index is left in RBDP. There is no loss of availability.

2. Dropping the newly created (empty) index.

4.1.2 Index-controlled partitioning terminology
In DB2 V7 you only have index-controlled partitioning at your disposal to create a partitioned
table. When using index-controlled partitioning, concepts such as “partitioned”, “partitioning”
and “clustering” are intertwined. This occurs because the index that defines the key ranges
for the different partitions is the partitioning index, it is necessarily partitioned (made up of
different physical partitions), and it is also the clustering index, as shown in Figure 4-2.

Figure 4-2 Index-controlled partitioning terminology — 1

Any other index on an index-controlled partitioned table is called a secondary index, and it is
non-partitioned, that is, not split up into multiple partitions (although you can define pieces for
those indexes to improve I/O performance). This is shown in Figure 4-3. Notice that logical
partitions do exist for the secondary index, but they are only used by utilities to claim and
drain.

ClusteringClustering

PartitionedPartitioned

PartitioningPartitioning

Partitioned Table

Partitioning Index

10
1

10
2

10
3

10
4

10
5

10
6

10
1

10
2

10
3

10
4

10
5

10
6

20
1

20
2

20
3

20
4

20
5

20
6

30
1

30
2

30
3

30
4

30
5

30
6

40
1

40
2

40
3

40
4

40
5

40
6

20
1

20
2

20
3

20
4

20
5

20
6

30
1

30
2

30
3

30
4

30
5

30
6

40
1

40
2

40
3

40
4

40
5

40
6

Clustering order

TB

IX

42 DB2 UDB for z/OS Version 8 Technical Preview

Figure 4-3 Index-controlled partitioning terminology — 2

4.1.3 Table-controlled partitioning terminology
By using table-controlled partitioning, clustering, being partitioned and being the partitioning
index are separate concepts. When using table-controlled partitioning, a table does not
require a partitioning index, as the partitioning is done based on the PARTITION BY clause in
the CREATE TABLE statement, as shown in Figure 4-4.

Figure 4-4 Table-controlled partitioning terminology

Partitioned Table

Partitioning Index -- Both logically and physically partitioned

10
1

10
2

10
3

10
4

10
5

10
6

10
1

10
2

10
3

10
4

10
5

10
6

20
1

20
2

20
3

20
4

20
5

20
6

20
1

20
2

20
3

20
4

20
5

20
6

30
1

30
2

30
3

30
4

30
5

30
6

30
1

30
2

30
3

30
4

30
5

30
6

40
1

40
2

40
3

40
4

40
5

40
6

40
1

40
2

40
3

40
4

40
5

40
6

Non-partitioning index - Secondary index - Not partitioned - Logically partitioned

AL AR C
T

D
E FL G
A IA IL IN K
Y LA M
A

M
D M
I

M
N

M
O

M
S

N
C

N
H N
J

N
Y

IX

IX

TB

Partitioned table

10
6

10
2

10
4

10
3

10
1

10
5

20
2

20
1

20
3

20
6

20
5

20
4

30
1

30
6

30
3

30
4

30
5

30
2

40
1

40
2

40
5

40
6

40
4

40
3

No index is required for partitioning!!

ClusteringClustering

PartitionedPartitioned
PartitioningPartitioning

Chapter 4. Availability 43

Index classification
Indexes on table-controlled partitioned tables can be classified as follows:

� Based on whether or not an index is physically partitioned:

Partitioned index The index is made up of multiple physical partitions (not just
index pieces)

Non-partitioned index The index is a single physical data set (or multiple pieces)

� Based on whether or not the columns in the index correlate with the partitioning columns
of the table (the leftmost partitioning columns of the index are those specified in the
PARTITION BY clause of the table):

Partitioning index The columns in the index are the same as (and have the same
collating sequence), or start with the column(s) in the PARTITION
BY clause of the CREATE TABLE statement.

Secondary index Any index where the columns do not coincide with the partitioning
columns of the table. These are dealt with in more detail in 4.2,
“Data partitioned secondary indexes” on page 46.

� Based on whether or not the index determines the clustering of the data. Please note that
when using table-controlled partitioning:

Clustering index The index determines the order in which the rows are stored in
the partitioned table.

Non-clustering index The index does not determine the data order in the partitioned
table.

Now let us look at a few examples to illustrate their characteristics.

Figure 4-5 shows the difference between a partitioned and a non-partitioned index. The
partitioned index is made up of multiple partitions, one per data partition.

Figure 4-5 Partitioned versus non-partitioned index

Figure 4-6 shows what a partitioning (and in this case partitioned) index looks like. The
left-most columns in the index have to be the same as the columns in the PARTITION BY
clause, including the collating sequence, to qualify as a partitioning index. Note that starting in
Version 8, a partitioning index can be partitioned (part_IX_1) or non-partitioned (part_IX_2).

10
1

10
2

10
3

10
4

10
5

10
6

20
1

20
2

20
3

20
4

20
5

20
6

30
1

30
2

30
3

30
4

30
5

30
6

40
1

40
2

40
3

40
4

40
5

40
6

Partitioned table

Non-partitioned index

Partitioned index -- multiple partitions -- 1 per data partition

IX

IX

TB

44 DB2 UDB for z/OS Version 8 Technical Preview

Figure 4-6 Partitioning index

Figure 4-7 shows a clustering index. In this example, the clustering index is also the
partitioning index (in previous versions of DB2, this was always the case.) and it is also
partitioned. It could also be defined as UNIQUE.

Figure 4-7 Clustering index

A partitioning index has the same left-most columns, in the
same collating sequence, as the columns which partition the table

Partitioning index part_IX_1 (ACCOUNT_NUM)

Partitioned table
10

2
10

3
10

4
10

5
10

6

10
1

10
2

10
3

10
4

10
5

10
6

10
1

20
6

20
2

20
3

20
4

20
5

20
6

20
1

20
2

20
3

20
4

20
5

20
1

 3
02

 3
03

 3
04

 3
05

 3
06

 3
01

30
2

30
3

30
4

30
5

30
6

30
1

 4
02

 4
03

 4
04

 4
05

 4
06 4
01

40
2

40
3

40
4

40
5

40
6

40
1

10
2,

 M
O

10
3,

 M
I

10
4,

 IL
10

5,
 C

T
10

6,
 K

Y

10
1,

 D
E

20
2,

 F
L

20
3,

 IA
20

4,
 M

D
20

5,
 A

L
20

6,
 N

C

20
1,

 N
J

30
2,

 M
D

30
3,

 M
N

30
4,

 M
S

30
5,

 C
T

30
6,

 N
H

30
1,

 L
A

40
2,

 IA
40

3,
 F

L
40

4,
 IN

40
5,

 M
A

40
6,

 N
H

40
1,

 N
Y

IX

IX

TB

CREATE TABLE CUSTOMER (
ACCOUNT_NUM INTEGER,
CUST_LAST_NM CHAR(30),
. . .

)
PARTITION BY (ACCOUNT_NUM ASC)
. . .

Partitioning index part_IX_2 (ACCOUNT_NUM, STATE)

Partitioned Table

10
1

10
2

10
3

10
4

10
5

10
6

10
1

10
2

10
3

10
4

10
5

10
6

20
1

20
2

20
3

20
4

20
5

20
6

30
1

30
2

30
3

30
4

30
5

30
6

40
1

40
2

40
3

40
4

40
5

40
6

20
1

20
2

20
3

20
4

20
5

20
6

30
1

30
2

30
3

30
4

30
5

30
6

40
1

40
2

40
3

40
4

40
5

40
6TB

IX

The clustering index is the index defined with the CLUSTER
keyword.

The clustering key dictates the order in which the rows are
stored in the partitioned table
There can be only one clustering index on a table
The clustering key can be dynamically altered CLUSTER <->
NOT CLUSTER and take effect immediately

Clustering index part_IX_1 (ACCOUNT_NUM) (also partitioning index here)

Clustering order Clustering order Clustering order Clustering order

Chapter 4. Availability 45

However, starting with DB2 V8, a secondary index can also be defined as the clustering
index. This is shown in Figure 4-8. In this case we choose to use a non-partitioned secondary
index as the clustering index. Note that the rows within each partition are now stored
according to the index on the STATE column.

Figure 4-8 Secondary index used as clustering index

Keep in mind that with the unbundling of partitioning, partitioned and clustering, all the
combinations are now possible for any index.

4.2 Data partitioned secondary indexes
With DB2 V7, secondary indexes on partitioned tables are non-partitioned indexes.
Secondary indexes cannot be physically partitioned. They can only be allocated across
multiple pieces to reduce I/O contention.

DB2 V8 introduces the ability to physically partition secondary indexes. The partitioning
scheme introduced is the same as that of the table space. That is, there are as many index
partitions in the secondary index as table space partitions, and index keys in partition 'n' of
the index reference, but only data in partition 'n' of the table space. Such an index is called a
Data Partitioned Secondary Index (DPSI).

4.2.1 Creating a data partitioned secondary index
You create a DPSI by specifying the new PARTITIONED keyword in the CREATE INDEX
statement, shown in Figure 4-9, and defining keys on columns that do not coincide with the
partitioning columns of the table. When defining a DPSI, the index cannot be created as
UNIQUE or UNIQUE WHERE NOT NULL. This is to avoid having to search each part of the
DPSI to make sure the key is unique.

After creation, a DPSI looks somewhat like Figure 4-10. In this example, the index
“data_part_si_1” is a data partitioned secondary index. In our example, the DPSI is also the
clustering index, but that is not necessarily the case. You can see that inside each part of the
DPSI, the keys are stored by month in ascending order. Also note that each part of the DPSI
potentially has values for all months, as each part of the DPSI stores keys that related to the
rows in the corresponding data partition.

10
2,

 M
AR

,M
O

10
3,

 D
EC

, M
I

10
4,

 N
O

V,
 IL

10
5,

 A
PR

, C
T

10
6,

 J
AN

, K
Y

10
1,

 F
EB

, D
E

20
3,

 O
CT

, I
A

20
4,

 D
EC

, M
D

20
5,

 J
AN

, A
L

20
6,

 F
EB

, N
C

20
1,

 J
UL

, N
J

30
2,

 J
U

L,
 M

D

30
3,

 M
AY

,M
N

30
4,

 A
PR

, M
S

30
5,

 S
EP

, C
T

30
6,

 J
U

N,
 N

H

30
1,

 N
O

V,
 L

A

40
2,

 N
O

V,
 IA

40
3,

 M
AR

, F
L

40
4,

 F
EB

, I
N

40
5,

 J
UN

, M
A

40
6,

 O
CT

, N
H

40
1,

 S
EP

, N
Y

Partitioned table

20
2,

 A
UG

, F
L

Non-partitioned secondary clustering index -- on STATE

M
O

M
I

IL KYD
E

FL IA M
D

AL N
C

N
JM
N

M
S

N
HLAIN M
A

N
Y

C
T

IX

TB

Clustering order Clustering order Clustering order Clustering order

46 DB2 UDB for z/OS Version 8 Technical Preview

Figure 4-9 Creating a partitioned index

Figure 4-10 also shows a Non-Partitioned Secondary Index (NPSI) “non_part_si_2”. This is
the only type of secondary index that was available before DB2 V8. The NPSI consists of a
single data set (or multiple pieces) and is not partitioned according to the table’s partitioning
scheme. This diagram also illustrates that a single table may support a mix of non-partitioned
and data-partitioned secondary indexes. However, for utility performance, it is best to have all
data partitioned secondary indexes rather than non-partitioned secondary indexes.

Figure 4-10 Data partitioned secondary index layout

CREATE INDEX index-name ON table name ...

UNIQUE

NOT CLUSTER
CLUSTER
PARTITIONED
NOT PADDED
PADDED

other options

(PART integer
VALUES ...

)1

using block, etc.1

Data Partitioned Secondary Index -- data_part_si_1

10
2,

 M
AR

,M
O

10
3,

 D
EC

, M
I

10
4,

 N
O

V,
 IL

10
5,

 A
PR

, C
T

10
6,

 J
AN

, K
Y

10
1,

 F
EB

, D
E

20
3,

 O
CT

, I
A

20
4,

 D
EC

, M
D

20
5,

 J
AN

, A
L

20
6,

 F
EB

, N
C

20
1,

 J
U

L,
 N

J

30
2,

 J
UL

, M
D

30
3,

 M
AY

,M
N

30
4,

 A
PR

, M
S

30
5,

 S
EP

, C
T

30
6,

 J
UN

, N
H

30
1,

 N
O

V,
 L

A

40
2,

 N
O

V,
 IA

40
3,

 M
AR

, F
L

40
4,

 F
EB

, I
N

40
5,

 J
UN

, M
A

40
6,

 O
C

T,
 N

H
40

1,
 S

EP
, N

Y

M
AR

D
EC

N
O

V

AP
R

JA
N

FE
B

AU
G

O
C

T

D
EC

JA
N

FE
B

JU
L

JU
L

M
AY

AP
R

SE
P

JU
N

N
O

V

N
O

V

M
AR

FE
B

JU
N

O
C

T

SE
P

Partitioned table

20
2,

 A
UG

, F
L

Non-Partitioned Secondary Index -- non_part_si_2

M
O

M
I

IL KYD
E

FL IA M
D

AL N
C

N
JM
N

M
S

N
H

LAIN M
A

N
Y

C
T

TB

IX

IX

Chapter 4. Availability 47

4.2.2 The need for DPSIs
Indexes may be created on a table for one or several reasons — to enforce a uniqueness
constraint, to achieve data clustering, but most likely, to provide access paths to data for
queries or referential constraint enforcement. And while the cost of maintaining any index
must always be evaluated against its benefit, several unique factors come into play when
deciding whether to add a non-partitioned index to a table in a partitioned table space. This is
because there are areas where non-partitioned indexes can cause performance and
contention problems.

Availability
Partitioned table spaces are recommended for storing large tables. Two of the reasons for this
recommendation deal with availability issues:

� Potential to divide and conquer: The elapsed time to perform certain utilities, or the
storage requirement to perform online REORG against a large table space, may be
prohibitively high. Because utility jobs can be run at the partition level, operations on a
table space can be broken along partition boundaries into jobs of more manageable size.
The jobs may be run in parallel to accomplish the task in reduced elapsed time, or serially
to limit resource consumed by the task at any one point-in-time.

� Positive recovery characteristics: If the data set backing a physical partition becomes
damaged, the data outage is limited to that partition's data, and only that fraction of the
data needs be recovered. Furthermore, if partitioning is performed along lines meaningful
to applications, any logical damage (by a wayward application, for example) can be
isolated to certain partitions, again limiting the data outage and recovery scope.

These positive aspects of partitioning begin to deteriorate if there are non-partitioned indexes
present. Here are some examples:

� A BUILD2 phase is performed during online REORG of a partition, when non-partitioned
indexes exist on the table space. This phase uses the shadow index for the index's logical
partition to correct RID values in the global index. During this phase, the utility takes
exclusive control of the logical partition. This blocks queries that are not partition restrictive
from operating.

� LOAD PART jobs, running concurrently, contend on non-partitioned indexes because keys
of all parts are interleaved. In addition, during a LOAD PART job, key processing against
non-partitioned indexes follows insert logic which is slower than append logic.

� Recovery from media failure is available for the entire index only. No piece-level rebuild or
recovery is available.

By looking at the layout of the keys in the DPSI’s parts, it is obvious that this organization
promotes high data availability by facilitating efficient utility processing on data partitioned
secondary indexes:

� Using DPSIs eliminates the need for a BUILD2 phase. There is no BUILD2 phase
processing for DPSIs. Because keys for a given data partition reside in a single DPSI
partition, a simple substitution of the index partition newly built by REORG for the old
partition is all that is needed. If all indexes on a table are partitioned (partitioned PI or
DPSIs), the BUILD2 phase of REORG is eliminated.

� Using DPSIs also eliminates LOAD PART job contention and enables append (load) mode
insertion for much more efficient processing. There is no contention between LOAD PART
jobs during DPSI processing. This is because there are no shared pages between
partitions on which to contend. Thus if all indexes on a table are partitioned, index page
contention is eliminated.

48 DB2 UDB for z/OS Version 8 Technical Preview

� Also note that during parallel LOAD PART job execution, each LOAD job inserts (loads)
DPSI keys into a separate index structure, in key order. This allows the insertion logic to
follow an efficient append strategy.

� DPSIs also improve the recovery characteristics of your system. DPSIs can be copied and
recovered at the partition level. Individual partitions can be rebuilt in parallel to achieve a
fast rebuild of the entire index.

Partition-level operations
One common partitioning scheme is to partition by date. Typically, the oldest data resides in
part 1 and the youngest data resides in part n. As time progresses and more data is collected,
the usual desire is to add partitions to the table space to house the new periods of data. At
some point enough history has been collected, and you now want to do one of two things:

1. To discard the oldest partition's worth of data and reuse that partition to hold the newest
period's data. This reflects a cyclic use of some set number of partition numbers.

2. To roll-off the oldest partition of data and roll-on a new partition in which to collect the next
period’s data. This delays the need to reuse a partition number until the name space is
exhausted (that is, until the number wraps). A variation on this is to make the data in
“rolled off” partitions available to queries only on demand. The partition is hibernating, as it
were, but can be awakened to participate in special queries.

Partition-level operations become less clean if there are secondary (non-partitioned) indexes
present. For example, to erase the data of a partition, you normally LOAD that partition with
an empty input file. This operation quickly “resets” the data partition as well as the partitioned
index, but also entails removing key entries from the secondary indexes that reference the
partition being erased. For each row being removed from that partition, DB2 has to look up
the key entry for that row in the non-partitioned index and delete it.

The use of DPSIs also streamlines partition-level operations such as adding and rotating
partitions, also introduced in DB2 V8 (see 4.3, “Online schema changes” on page 50 and 7.1,
“Online schema changes support” on page 170).

Data sharing overhead
In a data sharing environment, some customers find benefit from isolating the work on certain
members to certain partitions. Such affinity-routing eliminates intersystem read/write interest
on physical partitions, thereby reducing data sharing overhead. Affinity routing does not
alleviate contention on non-partitioned indexes, since keys belong to different data partitions
are spread throughout the non-partitioned index.

Also in this case, DPSIs can come to the rescue. Because P-locking occurs at the physical
partition level, affinity routing is effective for DPSIs because the parts of the DPSI are aligned
with the data parts in the table. This is most beneficial during batch type applications with
heavy insert/update/delete activity.

4.2.3 DPSI considerations
The physical nature of a DPSI can weaken the profile of some types of queries. Queries with
predicates that solely reference columns of the secondary index are likely to experience
performance degradation, due to the need to probe each partition of the index for values that
satisfy the predicate. Queries with predicates against the secondary index that also restrict
the query to a single partition (by also referencing columns of the partitioning index), on the
other hand, benefit from the organization.

Chapter 4. Availability 49

For example, if you are aware of a correlation between DPSI and PI key values, you need to
code the PI restriction explicitly when supplying a DPSI predicate to facilitate partition
pruning. Let’s assume that the partitioning column of a table is DATE, and a data partitioned
secondary index exists on ORDERNO. If the company has a policy that the first four digits of
ORDERNO are always a four digit year, write queries on ORDERNO as queries on
ORDERNO and DATE, with DATE restricted to reflect this policy. This allows the pruning of
uninteresting partitions from the query.

The DB2 optimizer is aware of the nature of DPSIs and takes the strong points and
weaknesses into account when determining the best access path.

DPSIs allow for query parallelism and are likely to be picked by the optimizer for queries with
predicates on partitioning columns plus predicates on the secondary index columns.

The decision to use a non-partitioned secondary index or a data-partitioned secondary index
must take into account both data maintenance practices and the access patterns of the data.
We recommend replacing an existing non-partitioned secondary index with a data-partitioned
index only if there are perceivable benefits such as easier data or index maintenance,
improved data or index availability, or improved performance.

A more detailed account of utility and query processing of partitioned secondary indexes is
given in Chapter 7, “Utilities” on page 169.

4.3 Online schema changes
Traditionally, customers needing to change object attributes have been subjected to periods
of unavailability because of the methods that were required to implement those changes. DB2
V8 makes great strides in implementing schema changes without impacting data availability.

4.3.1 Online schema changes overview
Over the last versions of DB2, significant enhancements have already been implemented to
reduce the window of application unavailability:

� Better application maintenance is now possible through the use of DB2 packages and
package versioning since Version 2 Release 3. By using package versions, you can
prepare DB2 packages for the new version of the application in advance, and once the
new application code gets activated, it automatically picks up the new version of the DB2
package, without any service interruption.

� Easier code maintenance is available with the introduction of DB2 data sharing. You can
stop and start individual members (DB2 subsystems) to activate maintenance (PTFs) or a
new DB2 release, while applications continue to use the active members of the data
sharing group.

� Another area in which much work has been accomplished is to have the data available as
much as possible. Data requires maintenance every so often. DB2 utilities have come a
long way over the last releases, for example, by introducing online REORG, inline copy
and statistics, and online LOAD RESUME.

50 DB2 UDB for z/OS Version 8 Technical Preview

Schema maintenance
Starting in Version 8, DB2 takes on a new challenge, that is to reduce the unavailability
window when making changes to the data definition of DB2 objects (see Figure 4-11).

Figure 4-11 Online schema evolution

In the past, DB2 releases have implemented most DDL ALTER enhancements without
actively addressing the problem of data unavailability while modifying object attributes.

Many changes to table, table space, and index schemas (DDL) in today’s DB2 V7 require that
you adhere to the following procedure to implement them:

1. Unload the data, extract the DDL and authorizations of the object you are about to change
and all dependent objects, like tables, indexes, views, synonyms, triggers.

2. Drop the object

3. Create the object with the new definition

4. Reestablish authorization for the object

5. Recreate all dependent objects like views and indexes, etc. and their authorizations

6. Reload the data

7. Rebind plans and packages

8. Test that all is OK

However, some schema changes can already be done without having to drop and recreate an
object, or stopping and starting the object, such as adding a column to a table, renaming a
table, altering the primary and secondary quantity of an object, or changing partition
boundaries.

Upgraded
subsystem

Original
table

definition

No access

R/W
Access

R/W
Access

Change schema definitions

Alter column length, add,
rotate, or rebalance partitions

Before

R/W accessNow

Chapter 4. Availability 51

As 24x7 availability becomes more critical for applications, the need grows for allowing
changes to database objects reflected in the catalog and the DBD while minimizing the
impact upon availability. We call this Online Schema Evolution (or Online Schema Changes or
Online Alter). In an ideal world, this enhancement would provide support for changes to all
object attributes without losing availability. DB2 V8 lays the groundwork for allowing many
changes, while implementing a reasonable subset of these changes.

The following schema changes are allowed in DB2 V8:

� Extend CHAR(n) column lengths

� Change type within character data types (CHAR, VARCHAR)

� Change type within numeric data types (SMALLINT, INTEGER, FLOAT, REAL, FLOAT,
DOUBLE, DECIMAL)

� Change type graphic data types (GRAPHIC, VARGRAPHIC)

� Allow column data type changes for columns that are referenced within a view

� Allow these column changes for columns that are part of an index

� Add a column to an index

� Drop the partitioning index (or create a table without one)

� Change the clustering index

� Create/alter an index to have non-padded varying length character columns within a key

� Allow an alter of identity columns

� Add a partition to the end of a table which extends the limit value

� Rotate partitions

� Support automatic rebalancing of partitions during REORG

� Support REORG of parts in REORG pending states

� Loosen the restrictiveness of indexes in recover or rebuild pending states

4.3.2 Table data type changes
After a table column data type is changed via an ALTER statement, the new definition
immediately applies for all data in the associated table. No existing data is converted to the
new version format.

When rows are retrieved, they are materialized in the new format indicated by the catalog.
Likewise, when a data row is modified or inserted, the entire row is saved using the new
catalog definition.

When the object is reorganized, all rows are converted into the format of the latest version
(see 4.3.4, “Versioning” on page 56).

To support changing the column data type of a column in an existing table, the SET
DATATYPE clause of the ALTER TABLE ALTER COLUMN was enhanced to support these
additional changes. The command is shown in Figure 4-12.

52 DB2 UDB for z/OS Version 8 Technical Preview

Figure 4-12 ALTER TABLE SET DATATYPE statement

A column data type may be altered if the data can be converted from the old type to the new
without losing significance. This basically means that the new column definition has to allow
for “larger” values than the current column definition.

Impact on dependent objects
The ALTER TABLE SET DATATYPE has different implications for different types of objects
affected by it.

Table spaces
When the ALTER completes, the table space is placed in an Advisory Reorg Pending
(AREO*) state. See 4.3.6, “New DBET states for online schema changes” on page 59 for
more details on this new database exception state. Access to a table can continue with rows
containing columns in multiple version formats, but there is a performance degradation since
altered columns have to converted to the new format when they are accessed, and the full
row is always logged, until the table space is reorganized. To reduce the performance impact,
it is recommended to schedule a REORG after issuing the ALTER statement that changes the
data type of a column in a table.

Indexes
When the data type or length of a column is altered on a table and that column is defined for
an index, the index is altered accordingly. If a change is made to a non-indexed column, it
results in a new table (and table space) version but not a new index version. For more
information on versioning, see 4.3.4, “Versioning” on page 56. If a table has multiple indexes,
the change of a table column results in a new table version and a new index version for each
index that contains the column. Indexes created on different tables in the same table space or
unchanged columns in the same table are not affected.

All new keys inserted are in the new index format. Changed columns which are included as
part of an index key affect availability of the index according to the column data type. Whether
or not the index is immediately available after a column in the index incurred a data type
change depends on the data type of the column being changed.

� Immediate index availability:

In DB2 V5, the ALTER TABLE statement was enhanced to provide the ability increase the
length of VARCHAR columns. If an index on the altered table had a key containing altered
columns, index versioning support allowed immediate access to the index.

With DB2 V8 this index versioning design is extended to support immediate access of
indexes containing keys from all forms of fixed length or varying length character and
graphic columns.

ALTER TABLE table-name

ADD COLUMN column definition

ALTER column name

COLUMN

SET DATATYPE data type

Chapter 4. Availability 53

Changes for character data type columns result in immediate index availability. This
includes columns defined as CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC.

� Delayed index availability:

In some cases, supporting immediate changes with index versioning would result in
severely degraded performance. To avoid this, the index is placed into Rebuild Pending
(RBDP) instead (for both COPY NO and COPY YES indexes). Availability to the index is
delayed until the index is rebuilt.

Changes for numeric data type columns are immediate with delayed index availability. This
includes columns defined as SMALLINT, INTEGER, DECIMAL or NUMERIC, FLOAT,
REAL, or DOUBLE.

If an entire index is rebuilt from the data, all the keys are converted to the latest format.
Utilities which may rebuild an entire index include:

� REBUILD INDEX
� REORG TABLESPACE
� LOAD REPLACE

If data type changes, reorganization of the entire index materializes all keys to the format of
the latest version unless the index is in RBDP. In this state, access to the data is required to
get the length of the key.

Scope of unavailability
To limit the scope of unavailability for dynamic SQL:

� Deletes are allowed for table rows, even if there are indexes in RBDP.

� Updates and inserts are allowed for table rows, even if their corresponding non-unique
indexes are in RBDP state.

� Inserting or updating data rows which result in inserting keys into an index that is in RBDP
state is disallowed for unique or unique where not null indexes.

� For queries, DB2 does not choose an index in RBDP for an access path.

Runstats
Some of the statistics get converted at the time of the ALTER (for instance, HIGH2KEY,
LOW2KEY). Invalidation is done for distribution statistics in SYSCOLDISTSTATS and
SYSCOLDIST, and DB2 sets the STATSTIME in SYSCOLUMNS to January 1, 0001, which
signals the optimizer to ignore the distribution frequency statistics.

Plans, packages, and cached dynamic statements
Plans, packages, and cached dynamic statements referencing the changed table are
invalidated. If auto-rebind is enabled, the plans and packages referencing the changed table
space are automatically rebound during the next access if not manually rebound previously.

Views and check constraints
When a column is altered in a base table, the views that reference the column are
immediately regenerated. If one of the views cannot be regenerated, then the ALTER TABLE
statement fails on the first error encountered.

A change to any column within a view invalidates all plans, packages, and dynamic cached
statements which are dependent on that view.

When a column data type is altered, the precision and scale of the decimal arithmetic result
needs to be recalculated.

54 DB2 UDB for z/OS Version 8 Technical Preview

The value of the CURRENT PRECISION special register that is in effect for the ALTER
TABLE is used to regenerate all the views affected by the altered column. Since a single
CURRENT PRECISION setting is used for all the views, it is possible the ALTER TABLE can
fail with an sqlcode -419 or complete with a precision calculated for view columns that does
not work well for an application. In this case the user has to DROP and CREATE the view in
order to correct the problem.

If an ALTER TABLE fails because of a problem regenerating a view, the failing SQLCODE and
tokens identifying which ALTER failed is returned and the entire ALTER TABLE statement
fails.

If a check constraint is dependent on the column being altered, it is also “regenerated”. The
regeneration may also fail in the case where different options are in use during the
regeneration than the options in use at the time the check constraint was created. The options
are the decimal point indicator and quote delimiter. The failing SQLCODE and tokens
identifying which ALTER failed is returned.

4.3.3 Index changes
In DB2 V8, some index attributes can also be changed “in-flight” using an ALTER INDEX
statement, without causing the index to become unavailable, as shown in Figure 4-13.

Figure 4-13 ALTER INDEX statement

Adding index columns
Columns can now be appended to the end of an existing index key with the ALTER INDEX
statement.

� If the index is not defined (created with the DEFINE NO keyword), no restricted state is set
and a new index version is not created.

� If the index is defined and the column for the table is added in the same unit of work that
the column is also added to the index, the index is immediately available for access, and
the index is placed in Advisory Reorg Pending (AREO*) state.

� However, if the column was not added to the table in the same unit of work, the index is left
in a Rebuild Pending state (RBDP). This could be the case when you add an existing
column to an index.

This support allows maximum availability for the situations where new columns are added to a
table, and these new columns are also desired as part of an existing index. By making
changes in one unit of work there is no loss of availability. The alternative is optionally
dropping an index, and then creating a new index with the column. When creating a new
index, there is always a period of unavailability while the index is being created.

ALTER INDEX index- name

CLUSTER

NOT CLUSTER

 PADDED
 NOT PADDED

ADD COLUMN (column name) DESC
 ASC

Chapter 4. Availability 55

Varying length index keys
In DB2 V8, varying length columns are no longer always padded to their full length when they
are part of an index key. When specifying NOT PADDED during the creation or altering of an
index, padding does not occur and the keys are stored as true varying length keys. Varying
length indexes are marked in the new SYSINDEXES column, PADDED, with a value of 'N'.
NOT PADDED is the default for new V8 installations, while PADDED is the default when
migrating from V7 for compatibility reason. A new ZPARM, PADIX, can change the default.
The application and performance implications of this enhancement are explained in 8.6,
“Long and variable length keys” on page 225.

An index can be changed from PADDED to NOT PADDED using ALTER INDEX, as shown in
the diagram in Figure 4-13. If the index has varying length columns, it is placed in a pending
state and a value of 'N' is placed in the PADDED column of SYSINDEXES. Once the index
has been rebuilt, all the keys are varying length, and the pending state is reset.

In a similar way, an index can also be changed from NOT PADDED to PADDED using ALTER
INDEX. If the index has varying length columns, it is placed in a pending state and a value of
'Y' is placed in the PADDED column of SYSINDEXES. Once the indexed has been rebuilt, all
the keys are padded to the maximum length, and the pending state is reset.

Changing the table clustering
In V8, there are two enhancements related to clustering:

� Specifying the CLUSTER keyword for a secondary index in a partitioned table space.
Historically, the partitioning index for partitioned tables also had to be the clustering index.
These two attributes are now unbundled so that the clustering attribute can be assigned to
a secondary index. Also see 4.1.1, “Table-controlled partitioning” on page 40 for more
information.

� Changing the clustering order in a partitioned or non-partitioned table space without
dropping the index. The clustering attribute of an index can be modified by using the
CLUSTER and NOT CLUSTER options of ALTER INDEX. As before, only one clustering
index is allowed for any table.

If no explicit clustering index is specified for a table, the REORG utility now recognizes the
first index created on each table as the implicit clustering index when ordering data rows.

If explicit clustering for a table is removed (changed to NOT CLUSTER), that index is still used
as the implicit clustering index until a new explicit clustering index is chosen.

When the clustering index is changed, new INSERTs are immediately placed using the new
clustering order. Preexisting data rows are not affected until the next reorganization
rearranges them all to be in clustering order.

4.3.4 Versioning
To support online schema evolution, DB2 has implemented a new architecture, called
versioning, to track object definitions at different times during its life by using versions.

Altering existing objects may result in a new format for tables, table spaces, or indexes which
indicates how the data should be stored and used. Since all the data for an object and its
image copies cannot be changed immediately to match the format of the latest version,
support for migrating the data over time in some cases is implemented by using versions of
tables and indexes. This allows data access, index access, recovery to current, and recovery
to a point-in-time while maximizing data availability.

56 DB2 UDB for z/OS Version 8 Technical Preview

Versioning existed before DB2 V8 for indexes (after an indexed VARCHAR column in a table
had been enlarged). It was tracked using the IOFACTOR column of SYSINDEXES. In DB2
V8, the first ALTER that creates a new index version switches to DB2 V8 versioning by setting
the OLDEST_VERSION and CURRENT_VERSION columns to the existing versions in the
index. And to support the table data type changes mentioned before, versioning in Version 8
is also implemented for tables and table spaces.

Version generating ALTER statements
The following statements result in a new version for the affected tables and/or indexes:

ALTER TABLE table-name ALTER COLUMN column-name SET DATA TYPE altered-data-type
ALTER INDEX index-name NOT PADDED
ALTER INDEX index-name PADDED
ALTER INDEX index-name ADD COLUMN column-name

Multiple ALTER COLUMN SET DATA TYPE statements in the same unit of work are included
in one new schema version.

The following ALTER statements do not result in a new version:

ALTER TABLE table-name ADD PARTITION ENDING AT constant
ALTER TABLE table-name ALTER PARTITION n ENDING AT constant
ALTER TABLE table-name ALTER PARTITION ROTATE FIRST TO LAST
ALTER TABLE table-name ADD PARTITIONING KEY column-name
ALTER INDEX index-name NOT CLUSTER
ALTER INDEX index-name CLUSTER

The following cases also do not generate a new version:

� When the table space or index was created as DEFINE NO and contains no data.

� When a varying character or varying graphic column length is extended.

� When an ALTER TABLE specifies the same data type and length so the definition is not
changed.

Version limits
A table space can have up to 256 different active versions while an index can have up to 16
different “active” versions (“active” versions include those within the pageset and all available
image copies).

The range of active versions, which are all versions that exist for rows in the page set itself as
well as the versions that exist in image copies registered in SYSCOPY. If the maximum
number of active versions is reached, the SQL statement fails with an SQLCODE -4702.

Unaltered objects remain at version 0 (zero).

Storing version information
The version information is stored in the DB2 catalog as well as inside the page set system
pages.

Version information in the DB2 catalog
As can be seen in Figure 4-14, versioning information for an object is kept in the catalog
tables SYSIBM.SYSTABLESPACE, SYSIBM.SYSTABLEPART, SYSIBM.SYSINDEXES,
SYSIBM.SYSINDEXPART, SYSIBM.SYSTABLES, and SYSIBM.SYSCOPY.

In addition, the new catalog table SYSIBM.SYSOBDS, when there is more than one active
version, contains one row for each OBD or index that can be recovered to an image copy that
was made before the first version was generated for that OBD or index.

Chapter 4. Availability 57

Figure 4-14 Versioning information in the DB2 catalog

A table space starts out with all data in tables at version zero. When an ALTER creates a new
version, it gets the next available number after the active table space CURRENT_VERSION.
Once version 255 is reached, numbering starts again with version 1 if it can be reclaimed. A
version of 0 indicates that a version creating ALTER statement has never been issued for the
corresponding table or table space.

Versioning information inside the page set
The version information relevant to the data is stored inside the page set. Storing the version
information inside the page set, makes the objects self-defining. System pages can be
included in incremental image copies if the SYSTEMPAGES YES keyword is specified.

Reclaiming versions
For table spaces, and indexes defined as COPY YES, the MODIFY utility must be run to
update OLDEST_VERSION for either SYSTABLEPART and SYSTABLESPACE, or
SYSINDEXPART and SYSINDEXES. If there are COPY, REORG, or REPAIR VERSIONS
SYSCOPY entries (ICTYPE of V) for the table space, MODIFY updates OLDEST_VERSION
to be the lowest value of OLDEST_VERSION found from matching SYSCOPY rows. If no
SYSCOPY rows remain for the object, MODIFY sets OLDEST_VERSION to the lowest
version data row or key that exists in the active pageset.

For indexes defined as COPY NO, a REORG, REBUILD, or LOAD utility that resets the entire
index before adding keys updates OLDEST_VERSION in SYSIBM.SYSINDEXES to be the
same as CURRENT_VERSION.

OLDEST_VERSION CURRENT_VERSION VERSION VERSION 0
DATA

SYSTABLESPACE X X

SYSTABLEPART X

SYSTABLES X

SYSINDEXES X X X
(data version)

SYSINDEXPART X

SYSCOPY X
SYSOBDS X

Oldest for pageset and
all available copies -
updated by utilities
such as MODIFY and
REORG

Used to allocate next
number

Note that versioning is tracked at table space and index level
Each table in a segmented table space will be assigned a different
version number

58 DB2 UDB for z/OS Version 8 Technical Preview

4.3.5 Usage considerations
As mentioned before, DB2 V8 takes the first steps to avoid outages due to schema changes.
Certain restrictions are still in place, such as:

� Data types must be compatible and lengths must be the same or longer.

� Online schema changes are not allowed on columns that are defines as ROWID, DATE,
TIME, TIMESTAMP and FOR BIT DATA columns.

� Data type and lengths cannot be altered when:

– The column is part of a referential constraint
– An EDITPROC or VALIDPROC exists on the table
– The table is referenced in the definition of a materialized query table
– The column is defined as an identity column

When using this feature, please make sure that you not forget to assess which programs
need to be changed. Host variables, for example, may need to be extended to cater for the
extra length.

To minimize any performance degradation, schedule a REORG as soon as possible after
ALTER.

Rebuild any affected indexes and rebind plans and packages. This prevents the system from
picking an inefficient access path during automatic rebind because the best suited index is
currently not available.

Schedule RUNSTATS to repopulate the catalog with accurate column and index statistics.

4.3.6 New DBET states for online schema changes
In support of online schema changes, DB2 V8, besides using the existing RBDP state,
introduces a new Database Exception Tables (DBET) state, Advisory Reorg (AREO*). AREO*
indicates that the table space, index, or partition identified should be reorganized for optimal
performance.

The DISPLAY DATABASE command now shows the new DBET state AREO* for all objects.

4.3.7 Impact of online schema changes on user tasks
In this section we discuss the effects of online schema changes on the major tasks involved in
using DB2.

Database design and implementation
Designing databases and objects for applications is more forgiving than in the past. The
problem with underestimating the size of objects is lessened with the ability to change column
data types without losing availability to the data. When designing applications, you can give
more consideration to saving space and reducing the number of data sets up front without the
fear of being locked in at a future point by initial schema decisions.

Up until DB2 V7, for an application that requires inserting time based data, a separate
partition is often assigned to store the data for each month. The design usually leans toward
allocating the maximum number of partitions allowed up front. This probably meant allocating
254 partitions (with most of them initially with minimum space allocation) so that the
application had a life span of about 20 years before running out of partitions.

Chapter 4. Availability 59

With DB2 V8, it is much easier to add partitions at a later date, so the plan may be to start out
with 24 partitions, and then reevaluate partition needs within the next 12 to 18 months. This
results in “managing” many fewer objects which today may be preallocated without being
immediately used. The use of templates and LISTDEFs in your utilities, by dynamically
adding new partitions and objects, will also contribute to the overall flexibility and
manageability of the schema changes.

When designing an application that requires storing the data for only a certain amount of time,
for example for legal reasons, consider a rolling partitions design. Now that there is the ability
to easily ROTATE and reuse partitions over time, it is easier to manage a limited partitions
which are set up based upon dates.

Operational considerations
The creation of new versions for objects can degrade performance of existing access paths.
Schema changes should be planned to balance the trade-off between performance and
availability expectations within a customer environment. Typically, the best time to make
schema changes to minimize the poor performance impact is before a scheduled
reorganization of an object.

When rotating partitions of a partitioned table, consider the time needed to complete the DDL
statement. The reset operation requires that the keys for these deleted rows must also be
deleted from all non-partitioned indexes. Each NPI must be scanned to delete these keys;
therefore, the process can take an extended amount of elapsed time to complete as each NPI
is processed serially.

Additional consideration must be given for the time needed to delete data rows if processing
must be done row at a time. Individual delete row processing is required for referential
integrity relationships, when DATA CAPTURE is enabled, or when there are delete triggers.

Application programming
When making schema changes, applications are usually affected. Changes in the schema
must be closely coordinated between database objects and applications to avoid “breaking”
existing applications. For example, if a column is extended from CHAR(n) to CHAR(n+m), the
processing application truncates the last m bytes if the application is not changed to handle
the longer column.

4.3.8 Dynamic partitions
DB2 V8 has the ability to immediately add partitions, rotate partitions, and change the
partitioning key values for table-controlled partitioned tables via the ALTER TABLE statement.
Here we give a brief description of these enhancements. More detailed information can be
found in 7.1, “Online schema changes support” on page 170.

Adding partitions
With Version 8, users are able to dynamically add partitions to a partitioned table. You can
add partitions up to the maximum limit which is determined by the parameters specified when
the partitioned table was initially created (see Table 3-1 on page 34). When you add a
partition, the next available physical partition number is used. When objects are DB2
managed (STOGROUP defined), the next data set is allocated for the table space and each
partitioned index.

When objects are user managed (USING VCAT), these data sets must be predefined. The
data sets for the data partition and all partitioned indexes must be defined using the VSAM
access method services DEFINE command for the partition to be added (that is the value of

60 DB2 UDB for z/OS Version 8 Technical Preview

the PARTITIONS column in SYSTABLESPACE plus one), before issuing the ALTER TABLE
ADD PARTITION statement. Note that no partition number is supplied on the ALTER TABLE
ADD PARTITION statement. The part number is selected by DB2 based on the current
number of partitions of the table.

The newly added partition is immediately available. However, you have to stop the table
space and partitioned index before adding the partition.

The table is quiesced and all related plans, packages and cached statement are invalidated.
This is necessary as access path may be optimized to read only certain partitions. Automatic
rebinds will occur (if allowed), but you may wish to issues rebinds manually.

Since you cannot specify attributes like PRIQTY, the values of the previous logical partition
are used. Therefore you probably want to run an ALTER TABLESPACE statements afterwards
to provide accurate space parameters, before starting to use the newly added partition.

Rotating partitions
Rotating partitions allows old data to “roll off” while reusing the partition for new data with the
ALTER TABLE ALTER PARTITION ROTATE FIRST TO LAST statement. A typical case is
where 13 partitions are used to continuously keep the last 12 months of data. When rotating,
one can specify that all the data rows in the oldest (or logically first) partition is to be deleted,
and then specify a new table space high boundary so that the partition essentially becomes
the last logical partition in sequence ready to hold the data which is added. Because the data
of the partition being rolled off is deleted, you may want to consider running an unload job
before rotating the partition.

If this REUSE option is specified, a logical reset of the partition is done instead of deleting
and redefining data sets.

The partition that was rolled off is immediately available after the SQL statements is
successfully executed. No REORG is necessary.

After using the new ALTER PARTITION ROTATE statement, the logical and physical order of
the partitions is no longer the same. The display command lists the status of table space
partitions in logical partition. Logical order is helpful when investigating ranges of partitions
which are in REORP. It enables one to more easily see groupings of adjacent partitions that
may be good candidates for reorganization. When used in conjunction with the new SCOPE
PENDING keyword of REORG, a reasonable subset of partitions can be identified if one
wants to reorganize REORP ranges in separate jobs.

Changing partition boundaries
In DB2 V6, the ability to modify limit keys for table partitions was introduced. The
enhancement in DB2 V8 introduces the same capability for table-based partitioning with the
ALTER TABLE ALTER PARTITION ENDING AT statement. The affected data partitions are
placed into Reorg Pending state (REORP) until they have been reorganized:

Rebalancing partitions
Rebalancing partitions is done through the means of the REORG TABLESPACE utility.
Specifying the REBALANCE option when specifying a range of partitions to be reorganized,
allows DB2 to set new partition boundaries for those partitions, so that all the rows that
participate in the reorganization are evenly distributed across the reorganized partitions.
(However, If the columns used in defining the partition boundaries have many duplicate
values within the data rows, even balancing is not always possible.)

Chapter 4. Availability 61

Rebalancing is ideal when no skewing of data between partitions is required, or needs to be
catered for. It has an advantage over changing the partition boundaries using the ALTER
TABLE ALTER PARTITION...ENDING AT statement, in that the partitions involved in the
rebalancing are not put into REORP status (like in the case of ALTER TABLE ALTER
PARTITION... ENDING AT statement.)

You cannot specify REBALANCE with REORG TABLESPACE SHRLEVEL CHANGE. Also,
do not specify partitioned table spaces with LOB columns. Also note that when the clustering
sequence does not match the partitioning sequence, REORG must be run twice; once to
move rows to the right partition; and secondly to sort in clustering sequence. DB2 leaves the
table space in AREO* (Advisory Reorg Pending) state after the first REORG, indicating that a
second one is recommended. (More information about this new pending state can be found in
4.3.6, “New DBET states for online schema changes” on page 59.)

Upon completion, DB2 invalidates plans, packages, and the dynamic statement cache that
reference the reorganized object.

For examples using the various functions implemented with dynamic partitions support,
please refer to 7.1.2, “Utility support for schema evolution” on page 178.

4.4 System level point-in-time recovery
DB2 V8 provides enhanced backup and recover capabilities at the DB2 subsystem or data
sharing group level. The purpose is to provide an easier and less disruptive way to make fast
volume-level backups of an entire DB2 subsystem or data sharing group with minimal
disruption, and recover a subsystem or data sharing group to any point-in-time, regardless of
whether you have uncommitted units of work.

Two new utilities provide the vehicle for system-level point-in-time recovery (see also 7.5,
“Backing up and restoring the system” on page 200):

� The BACKUP SYSTEM utility provides fast volume-level copies of DB2 databases and
logs.

� The RESTORE SYSTEM utility recovers a DB2 system to an arbitrary point-in-time.
RESTORE SYSTEM automatically handles any creates, drops, and LOG NO events that
might have occurred between the backup and the recovery point-in-time

Using the new BACKUP SYSTEM utility, you can copy both the data and logs, or only the
data. Previously, to make a system-level backup, you had to issue the SET LOG SUSPEND
command, which stops the logging and thus prevents any new database updates. A BACKUP
SYSTEM job does not stop the logging. However, it does quiesce some system activities, but
the process is less disruptive than SET LOG SUSPEND processing. The list of quiesced
system activities during SYSTEM BACKUP processing is described in 4.4.1, “Backing up the
system” on page 63. The BACKUP SYSTEM utility can operate on an entire data sharing
group, whereas the SET LOG SUSPEND command has to be issued for each data sharing
member.

As a further enhancement to taking system-level backups, the SET LOG SUSPEND
command now quiesces 32 KB page writes (for page sets that are not using a 32 KB CI size)
and data set extensions.

The BACKUP SYSTEM and RESTORE SYSTEM utilities rely on new DFSMShsm services,
and SMS constructs in z/OS V1R5 that automatically keep track of which volumes need to be
copied.

62 DB2 UDB for z/OS Version 8 Technical Preview

You can specify the number of copy versions to be maintained on disk (max 15) by using the
VERSIONS attribute.

Prerequisites for this feature
To use the BACKUP SYSTEM and RESTORE SYSTEM utilities, all data sets that you want to
recover must be SMS-managed data sets. Additionally, you must meet the following
requirements:

� z/OS V1R5 or above
� Disk control units that support the ESS FlashCopy ® API
� HSM constructs defined by using the DB2 naming convention
� Defined SMS copy target storage groups
� DB2 has to be running in NFM

4.4.1 Backing up the system
As mentioned before, you can use the new BACKUP SYSTEM utility to back up an entire
DB2 subsystem or an entire DB2 data sharing group with a single command. The BACKUP
SYSTEM utility has two options that you can specify:

� FULL: In this case, the backup contains both the logs and databases. This is referred to
as a full system backup. When taking a FULL backup, the copies of the log are always
taken after the database copies.

� DATA ONLY: This type of copy only contains the “database” data. Notice that a BACKUP
SYSTEM DATA ONLY does NOT copy the “log” data. Such a copy is referred to as a
data-only system backup.

Full or data only system backups can be used in conjunction with the new RESTORE
SYSTEM utility to recovery the system to an arbitrary PIT between system copies, or any
RBA of the active log following the last backup. Full system backups could be used to recover
the system to the point-in-time (PIT) at which the copy was taken, using normal DB2 restart
recovery.

These system backups (full and data-only) are recorded in the BSDS (up to 50 entries) and
the header page of DBD01. The information in DBD01 is called the Recovery Base Log Point
(RBLP) and is the RBA (non-data sharing) or an LRSN (data sharing — the RBLP LRSN
determined by taking minimum of all member level RBLP values) of the time the most recent
system backup ran.

Figure 4-15 gives an overview of how the BACKUP SYSTEM utility operates.

Chapter 4. Availability 63

Figure 4-15 Backup system operations

BACKUP SYSTEM invokes DFSMShsm services to either take a data-only or full system
backup via volume copy functions. The backups may (and probably do) contain uncommitted
data. This is not a problem since the data is brought back to consistency (no outstanding
in-flight, in commit, or in abort units of work) by a DB2 restart operation or by using the
RESTORE SYSTEM utility. While the BACKUP SYSTEM utility is active in the system, the
following DB2 system activities are quiesced:

� System checkpoints
� 32 KB page writes (if CIs are not 32 KB)
� Writing close page set control log records (PSCRs)
� Data set creation, extensions, renaming and deletions

However, the log write latch is not obtained by the BACKUP SYSTEM utility, as is done by the
SET LOG SUSPEND command. Therefore using the BACKUP SYSTEM utility should be less
disruptive in most cases.

In a data sharing environment, the BACKUP SYSTEM utility fails when it detects any member
that is in a “failed” or “not normally quiesced” state.

The BACKUP SYSTEM utility completes after the “logical” copies have completed. This
should typically within a few seconds. Taking copies of the volumes is done in parallel.

4.4.2 Restoring the system
Depending on the type of system backup that is available, and the point-in-time (PIT) that you
want to go back to, you have different options to restore the system.

 SG1

DFSMShsm

COPYV3COPYV2COPYV1 LOGV2LOGV1

TOKEN COPY

RBA1 COPYV1

RBAh COPYV2

RBAn COPYV3

BACKUP SYSTEM
FULL

BACKUP SYSTEM
FULL

BACKUP SYSTEM
DATA ONLY

RBLP:
RBA 1

RBLP:
RBA h

RBLP:
RBA n

COPYV1
RBA1

COPYV3
RBAn

COPYV2
RBAh

BSDS DBD01 page set
RBLP

RBA1

RBAh

RBAn

DB2 DBs Logs/
BSDS

ICF
Catalog

ICF
Catalog

TOKEN COPY

RBA1 LOGV1

RBAh LOGV2

DB2 DBs
Logs/
BSDS

ICF
Catalog

ICF
Catalog DB2 DBs

Logs/
BSDS

ICF
Catalog

ICF
Catalog

sc1 sc2 sc3 sc4 sc5 sc6 sc7 sc8 sc9 sc10 sc11

 RBA1 RBAh RBAn

SG2

64 DB2 UDB for z/OS Version 8 Technical Preview

Restoring a DB2 system to the PIT of a prior system level backup
To restore a DB2 system to the PIT of a prior system level backup, you need to have a copy of
both the databases and the logs.

1. Obtain a full system backup. This can either be done through:

– The execution of a BACKUP SYSTEM FULL utility, or
– Creating the copies manually, via:

i. Issuing a SET LOG SUSPEND to quiesce system activity

ii. Taking backups of all DB2 data, as well as the logs; this can be done by issuing the
DFSMShsm commands manually

iii. Issuing the SET LOG RESUME command

2. Stop DB2. In case of a data sharing group, stop all members.

3. Use HSM commands to restore the database and log data.

4. If data sharing, delete the CF structure.

5. Restart DB2. For a data sharing system, restart all non-dormant members. During restart
all in-flight, in-abort and in-commit URs get resolved.

6. If data sharing, execute GRECP/LPL recovery. This recovers changed data that was
stored in the CF at the time of the backup.

Note that in this scenario, we do not use the new RESTORE SYSTEM utility.

Restoring a DB2 system to arbitrary PIT
To restore the system to an arbitrary point-in-time, it is sufficient to have DATA ONLY backups
available. Of course, you can also use FULL system backups. Both are created using the
BACKUP SYSTEM utility.

This procedure uses the RESTORE SYSTEM utility. To be able to run the RESTORE
SYSTEM utility, the system has to be in System Recover Pending mode. A DB2 system goes
into System Recover Pending mode after a conditional restart is performed, using a special
type of conditional restart record called a “PITR” conditional restart control record (CRCR).

Creating a PITR CRCR and performing a conditional restart
A CRCR record is as always created using the Change Log Inventory (DSNJU003) utility. A
new option called “SYSPITR” is added to the CRESTART keyword. The syntax is:

CRESTART CREATE SYSPITR=log-point

Here, log-point is an RBA (non-data sharing) or an LRSN (data sharing) that represents
the PIT to which the system is to be recovered.

After the conditional restart completes the system enters into System Recover Pending
mode. This means that:

� Only the RESTORE SYSTEM utility is allowed to execute.
� The DB2 data remains unavailable until the RESTORE SYSTEM utility has completed.
� DB2 has to be recycled to reset the System Recover Pending mode.

In a data sharing environment, each non-dormant member needs to be restarted with the
PITR CRCR, with all members specifying the same log truncation LRSN. After the conditional
restart of all members is complete, you can run the RESTORE SYSTEM on one of the
members. This utility has to start and complete on the same member. It cannot be restarted
on a different member. After RESTORE SYSTEM successfully completes, you must bring
down all members to reset the System Recover Pending mode.

Chapter 4. Availability 65

Executing the RESTORE SYSTEM utility
As mentioned before, the RESTORE SYSTEM utility can only be executed when the system
is in System Restore Pending mode.

You can specify a single option on the RESTORE SYSTEM utility. These are the possibilities:

� No option specified: In this case, RESTORE SYSTEM first restores the version of the
database data (created by the BACKUP SYSTEM utility) that was taken immediately prior
to the specified logpoint (on the PITR CRCR). Then it recovers from that point onwards
using the log.

� LOGONLY: By using this option, you indicate that the database volumes have already
been restored and the restore phase will be skipped. In this case, the RESTORE SYSTEM
utility will only apply outstanding log changes to the databases. This option is useful if the
user (or some automation tool) has already restored the database volumes prior to
invoking the RESTORE SYSTEM utility. It uses the recovery base log point that is
recorded in DBD01 to determine the starting point of the log apply phase.

Figure 4-16 shows how a RESTORE SYSTEM utility is executed. In this example, the
LOGONLY option is not used.

Figure 4-16 Restore system operation

Note: The RESTORE SYSTEM utility does not restore the log data. The ability to back up
logs with a FULL backup is designed to allow for the recovery of an entire subsystem via
means other than the RESTORE SYSTEM utility. Such a recovery can be realized by direct
invocation of DFSMShsm services, as shown in “Restoring a DB2 system to the PIT of a
prior system level backup” on page 65.

COPYV1
RBA1

COPYV3
RBAn

COPYV2
RBAh

BSDS

SYSPITR=RBAk

DB2 DBs

Log Apply

DFSMShsm

COPYV3COPYV2COPYV1 LOGV2LOGV1

TOKEN COPY

RBA1 COPYV1

RBAh COPYV2

RBAn COPYV3

RBAh
is returned

RBAk

SYSPITR=RBAk

logscan
RESTORE
SYSTEM

DBD01 page set

Note that only the database data is restored

1

2

3

4

5

6

 SG1 SG2

sc1 sc2 sc3 sc4 sc5 sc6 sc7 sc8 sc9 sc10 sc11

 RBA1 RBAh RBAn

RBLP

RBAh

66 DB2 UDB for z/OS Version 8 Technical Preview

As indicated above, each backup of data can have multiple VERSIONS. You cannot specify a
specific desired version, other than implicitly via the log truncation point. RESTORE SYSTEM
automatically recovers from the latest version prior to the log truncation point. The restore of
the database volume from the backup copy is done in parallel.

After the data is restored, the RESTORE SYSTEM utility uses the recovery base log point
(RBLP) that is recorded in DBD01 to determine the starting point of the log apply phase. the
log apply phase uses the fast log apply (FLA) function to recover objects in parallel.

The consistency for LOG NO utilities is established when, during the logapply phase of
RESTORE SYSTEM, a log record is encountered that represents the open of a table space or
index space with recovery(no). In this case table spaces will be put in RECP state, index
spaces will be either put in RECP or in RBDP state, depending on their COPY attribute.
These objects should than be recovered to a different point-in-time, prior to the log truncation
point using image copies, or rebuild from the data in the case of a COPY NO index.

4.5 Online ZPARMs
In order to minimize the events which require recycling your DB2 subsystem to make ZPARM
changes effective, DB2 V7 introduced online change for subsystem parameters. This function
allows a user to load a new subsystem parameter load module into storage without recycling
DB2. To do this, you can use the normal installation parameter update process to produce a
new load module, which includes any desired changes to parameter values. You can then
issue the -SET SYSPARM command to load the new module in order to affect the change.

Not all subsystem parameters are dynamically changeable in DB2 V7. Refer to DB2 Universal
Database for OS/390 and z/OS Command Reference Version 7, SC26-9934 for a list of online
changeable subsystem parameters.

DB2 V8 adds some more online changeable parameters. Table 4-1 lists the ZPARMs made
online changeable in Version 8, including those new to Version 8.

Note: With DB2 V8, system-level point-in-time recovery is an all-or-nothing approach, as it
is operating at the subsystem level or at the data sharing group level. This architecture
might be extended in the future to handle backup and recovery at a more granular level,
like an application or a single table space.

Chapter 4. Availability 67

Table 4-1 New subsystem parameters changeable online with DB2 V8

Parameter Macro Panel Panel Field

CHGDC DSN6SPRM DSNTIPO DPROP Support

EDPROP

SYSADM DSNTIPP System Admin 1

SYSADM2 System Admin 2

SYSOPR1 System Operator 1

SYSOPR2 System Operator 2

CACHEDYN DSNTIP4 Cache dynamic SQL

MAINTYPE Materialized query table

PADNTSTR Pad null terminating strings in output
host variables

REFSHAGE Current refresh age

EDMDBDC DSNTIPC Min DBD cache size

EDMSTMTC Size of the statement cache

SRTPOOL Sort pool size

XLKUPDLT DSNTIPI X lock for searched U/D

MAXKEEPD DSNTIPE Max kept dyn stmt

PADIX Pad indexes (default)

PARTKEYU DSNTIP4 Update part key cols

RESYNC DSN6FAC DSNTIPR Resync interval

MAXTYPE1 Max type 1 inactive

IDTHTOIN Idle thread timeout

POOLINAC DSNTIP5 Pool thread timeout

TCPKPALV TCP/IP keepalive

TCPALVER TCP/IP already verified

IMMEDWRI DSN6GRP DSNTIP4 Immediate write

ACCUMACC DSN6SYSP DSNTIPN DDF / RRSAF ACCUM

UIFCIDS Unicode IFCIDs

EXTRAREQ DSNTIP5 Extra blocks — Req

EXTRASRV Extra blocks — SRV

IXQTY DSNTIP7 Index space allocation

TSQTY Table space allocation

DSVCI New CI size

SVOLARC DSN6ARVP DSNTIPA SINGLE VOLUME

68 DB2 UDB for z/OS Version 8 Technical Preview

For most parameters, online change is transparent, with the change taking effect immediately
or as soon as DB2 can make them effective.

4.6 Other availability enhancements
DB2 V8 also takes actions to avoid a loss of availability, by trying to anticipate and warn you
about potential availability problems, as well as to take more automatic action to reduce the
outage to a minimum. We list here the following enhancements:

� Control intervals larger than 4 KB
� Monitor system checkpoints and log offload activity
� Log monitor long running UR backout
� Improved LPL recovery

4.6.1 Control intervals larger than 4 KB
DB2 table spaces and index spaces are defined as VSAM linear data sets. Up to DB2 V7
every page set has been allocated in control intervals of 4 KB, even though VSAM allows CI
sizes multiple of 4 up to 32 KB for linear data sets, and DB2 has chained the CIs up to the
required page size.

DB2 V8 introduces support for CI sizes of 8, 16, and 32 KB, activated by the default of the
new DSVCI ZPARM in panel DSNTIP7 (see also “Use CI size > 4 KB” on page 244). This is
valid for user defined and DB2 defined table spaces. Index spaces only use 4 KB pages. If
you decide to activate the new CI sizes, once you are in New Function Mode (NFM), all new
table space page sets will be allocated by DB2 with a CI corresponding to the page size. The
page sets already existing at the time of migrating will be later converted by the execution of
Loads or Reorgs. The DB2 install procedure will also prepare the correct JCL for the (user)
defined DB2 catalog table spaces, and will convert them to the new page size during the
ENFM phase.

The new CI sizes reduce integrity exposures, relieve some restrictions on concurrent copy
and the use of striping, and provide the potential for reducing elapsed time for table space
scans.

4.6.2 Monitor system checkpoints and log offload activity
With DB2 V7, you had the chance to monitor the actuality of system checkpoints and the
status of the log offload activity using DB2 command -DISPLAY LOG, which was introduced
to DB2 V6. Sometimes, however, there are situations where DB2 stopped taking system
checkpoints or was stuck during its log offload activity. Since both situations might cause
problems during operations, DB2 V8 provides you with new messages, which help you to
identify problems faster. In addition a new 0335 IFCID record is produced if a statistics class 3
is active.

4.6.3 Log monitor long running UR backout
During restart processing, DB2 issues progress messages during the forward and backward
phase of the restart. Message DSNR031I is issued in 2 minute intervals, showing the current
log RBA being processed and the target RBA to complete the restart phase.

With DB2 V8, a new progress message is issued during the backout of postponed URs as
well. This message is first issued after the process has at least exceeded one two minute
interval and is repeated every two minutes until the backout process is complete.

Chapter 4. Availability 69

For in-abort URs, there is also a new progress message that is issued after every two
minutes.

4.6.4 Improved LPL recovery
The LPL (logical page list) is a list of pages that are logically in error, kept in DBET by DB2.
These pages cannot be referenced until the pages are recovered. For example, DB2 typically
puts pages into the LPL when I/O or coupling facility read or write errors are encountered.

Prior to DB2 V8, once a page is entered into the LPL, that page is inaccessible until it is
recovered. There are two ways to recover pages which are in LPL:

� Use the -START DATABASE command with SPACENAM option

� Use the RECOVER utility to recover the page set or partition in question to the current
point-in-time

However, during the execution of both the START DATABASE command, as well as the
RECOVER utility, the entire page set or partition is unavailable.

Reason ID for adding a page to the LPL
When pages are added into the LPL, DB2 issues message DSNB250E to tell the page range,
database and pageset/partition names of the LPL pages. DB2 V8 adds the reason why the
pages are added in the LPL to this message.

Automatic recovery of LPL pages
After the pages are added in the LPL, DB2 V8 attempts to initiate the automatic LPL recovery
processor. If the automatic LPL recovery completes successfully, the pages are deleted from
the LPL and DB2 issues an existing message, DSNI021I, to indicate the completion.

If the automatic LPL recovery fails, DB2 V8 issues message DSNI005I to indicate the failure
of the automatic LPL recovery.

Less disruptive LPL recovery
Even more important than automatic LPL recovery is that with DB2 V8, during LPL recovery,
all pages that are not in the LPL are accessible by SQL. Up to DB2 V7, the entire table space
or partition was unavailable during LPL recovery.

The LPL recovery processor (by way of the STARTDATABASE command or the new
automatic LPL recovery feature), makes a write claim instead of a drain on the object that is
being recovered. As a result, good pages in the object are available to SQL users, and
performance is improved because the claim is less disruptive than a drain. To enforce the
requirement that only one LPL recovery process is running at a time for a given pageset or
partition, this is now done by using a new “LPL recovery” lock, instead of the drain(all) lock.

70 DB2 UDB for z/OS Version 8 Technical Preview

Chapter 5. SQL

In this chapter we discuss the following topics:

� Long names
� SQL statements 2 MB long
� Dynamic scrollable cursors
� Common table expressions and recursive SQL
� Multi-row fetch and insert
� Get diagnostics
� Scalar fullselect
� Select from insert
� Qualified column names in INSERT and UPDATE
� Expressions in GROUP BY
� Multiple DISTINCT
� Sequences
� Identity columns enhancements
� Multilevel security
� MQSeries UDFs
� ASCII flag for compile

5

© Copyright IBM Corp. 2003. All rights reserved. 71

5.1 Long names
Applications for DB2 UDB for z/OS are very often developed on other platforms and then
ported. In doing this, care has to be exercised because of the restrictions on the number of
characters that can be used for the object names. For example, table names and column
names are restricted with DB2 V7 to 18 characters. DB2 V8 support for long names goes a
long way to help easily port applications from other platforms. Long names require the DB2
V8 New Function Mode to be active; during the catalog migration process DB2 will ALTER the
existing definitions to the new ones.

Table 5-1 shows the new SQL identifier length limits in DB2 V8.

Table 5-1 SQL Identifier length limits

Item Limit in bytes

Alias name 128

Authorization name 128

Auxiliary table name 128

Buffer pool name 8

Catalog name 8

Collection id 128

Column name 30

Condition name 128

Constraint name 128

Correlation name 128

Cursor name 30 for a DECLARE CURSOR WITH RETURN
or 128 in any other context.

Database name 8

Distinct type name Two part name, both parts are 128

External Java routine name 1305

Function name Two part name, both parts are 128

Host identifier 64

Index key 2000

Index name 128

Location name 16

Package id 8 for a package and 128 for a trigger

Parameter name 128

Plan name 8

Predicates 32704

Procedure name 128

Program name 8

72 DB2 UDB for z/OS Version 8 Technical Preview

5.2 SQL statements 2 MB long
Complex SQL coding, SQL procedures, and generated SQL, as well as compatibility with
other platform and conversions from other products, have required the extension of the SQL
statements in DB2. DB2 V8 extends the limit on the size of an SQL statement to 2 MB. To do
this, SQL statements passed to DB2 on PREPARE and EXECUTE IMMEDIATE statements
will be passed in Character Large Objects (CLOBs). The catalog has had the ability to
accommodate longer than 32 KB statements for a long time, since SQL statements are
broken up into pieces, and stored in succeeding records with a sequence number to keep
them in order.

EXECUTE IMMEDIATE: host-variable may now be specified as a CLOB or DBCLOB. When
host-variable is specified as a VARCHAR or VARGRAPHIC, the maximum length of the
contained SQL statement remains 32,767 bytes or 16,383 DBCS characters (32767 bytes),
respectively. However, when a CLOB or DBCLOB is used, the maximum length of the SQL
statement contained in the CLOB or DBCLOB is 2 MB or 1 MB respectively. If the SQL
statement exceeds the limit described above, then SQLCODE of -101 is returned.

In Example 5-1 we illustrate how to use a CLOB host variable in the EXECUTE IMMEDIATE
statement of a sample C program.

Example 5-1 C program using CLOB for host-variable on EXECUTE IMMEDIATE statement

main() {

 EXEC SQL BEGIN DECLARE SECTION;

 SQL TYPE IS CLOB(4K) string1;100

 EXEC SQL END DECLARE SECTION;

Schema name 128

Sequence name 128

Specific name 128

SQL variable name 64

Statement name 128

Stogroup name 128

String constant 32704

Savepoint name 128

Synonym 128

Table name 128

Table space name 8

Trigger name 128

Version ID 64

View name 128

Item Limit in bytes

Chapter 5. SQL 73

 strcpy(string1.data,"UPDATE DSN8610.EMP SET SALARY = SALARY * 1.1");
 string1.length = 44;

 EXEC SQL EXECUTE IMMEDIATE :string1;

PREPARE: FROM host-variable may now be specified as a CLOB or DBCLOB. When
host-variable is specified as a VARCHAR or VARGRAPHIC, maximum length of the contained
SQL statement remains 32,767 bytes or 16,383 bytes, respectively. However, when a CLOB
or DBCLOB is used, the maximum length of the SQL statement contained in the CLOB or
DBCLOB is 2 Megabytes or 1 Megabyte respectively. If the SQL statement exceeds the limit
described above, then SQLCODE of -101 is returned.

In Example 5-2 we illustrate the use of a DBCLOB host variable in the PREPARE statement
of a sample COBOL program.

Example 5-2 COBOL program using DBCLOB for host-variable on PREPARE statement

IDENTIFICATION DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.
 01 USTRING SQL TYPE IS DBCLOB(3K).100
 01 ATTRSTG.
 49 ATTR-LEN PIC S9(4) USAGE BINARY.
 49 ATTR-DATA PIC X(1000).

 PROCEDURE DIVISION.

 MOVE " long sql statement in UNICODE(UTF-16) " TO USTRING-DATA.
 MOVE <length of sql statement> TO USTRING-LENGTH.

 MOVE "INSENSITIVE SCROLL WITH CS " TO ATTR-DATA.
 MOVE 27 TO ATTR-LEN.

 EXEC SQL EXECUTE PREPARE ATTRIBUTES :ATTRSTG FROM :USTRING.

Note that CLOB or DBCLOB cannot be used for ATTRIBUTES host-variable

When the precompiler option of NEWFUN(YES) is specified, the V8 Precompiler produces a
DBRM in V8 format and support for greater than 32 KB SQL statements. Since V8 DBRMs
are unusable by prior releases due to the Unicode enhancement, the fact that an application
program precompiled by the V8 Precompiler with NEWFUN(YES) cannot be used in prior
releases is moot. An application program cannot be run until its DBRM has been bound, and
a V8 DBRM cannot be bound on a prior release.

When the precompiler option of NEWFUN(NO) is used, the V8 Precompiler produces a
DBRM in V7 format and with no support for greater than 32 KB SQL statements.

Distributed data
Remote support for large SQL statements requires requester and server support for the new
database protocol version, The Open Group DRDA Version 3 Technical Standard. DB2 and
DB2 Connect is adding support for this new version of the database protocol and can flow
large SQL statements.

74 DB2 UDB for z/OS Version 8 Technical Preview

SQL statements longer than 32 KB prepared at the requester can be sent to the server.
However, distributed private protocol does not provide support for large objects.

Sample programs, tools, and utilities
With DB2 V8, the sample programs DSNTEP2 and DSNTIAUL are modified to handle greater
than 32 KB SQL statements. DSNTIAD has not been modified since it is used by the
installation procedure in compatibility mode. Utilities which imbed SQL statements are also
modified, as well as the REXX support, so that they can handle greater than 32 KB SQL
statements. SPUFI has also been modified to handle greater than 32 KB SQL statements.

5.3 Dynamic scrollable cursors
DB2 V7 introduced static scrollable cursors; see Figure 5-1. When a static scrollable cursor is
opened, the qualifying rows are copied to a declared temporary table automatically created
by DB2 in a TEMP database defined by you. Scrolling is performed in both the forward
direction and backward direction. DB2 deletes the result table when the cursor is closed. DB2
V7 only supports static scrollable cursors.

Figure 5-1 Scrollable cursors in DB2 V7

V7 introduced keywords to control whether the data in the result set is maintained with the
actual rows in the base table.

You can declare a scrollable cursor in one of the following two levels of awareness dictated by
the combination of SENSITIVE STATIC in the DECLARE CURSOR statement and whether
INSENSITIVE or SENSITIVE is defined in the FETCH statement; see Figure 5-2.

� INSENSITIVE:

This means that the cursor is read-only and not interested in changes made to the base
data once the cursor is opened.

Static scrollable cursors in DB2 V7

FETCH CURSOR...

Cursors can be scrolled
backwards
forwards
to an absolute position
to a position relative to
the current cursor
before/after position

Result table in TEMP DB

Rows refreshed on demand

Chapter 5. SQL 75

– The number and content of the rows stored in the result table is fixed when the cursor
is opened and does not change with changes to the base data.

– FETCH processing on the result table is insensitive to changes made to the base table
after the result table has been built.

– The cursor cannot be used to issue positioned updates and deletes

� SENSITIVE STATIC:

This means that the cursor is interested in changes which may be made after the cursor is
opened.

– The number rows stored in the result table is fixed when the cursor is opened.
However, the content of the rows can change.

– FETCH processing on the result table is sensitive (to varying degrees) to changes
made to the base table after the result table has been built.

– The cursor can be used to issue positioned updates and deletes

Figure 5-2 Sensitive and insensitive cursors with DB2 V7

V7 provides the static scrollable cursor function in which the result table of the SELECT
statement associated with the cursor was materialized in a declared global temporary table
and the scrolling was performed on the temporary table.

DB2 V8 introduces dynamic scrollable cursors. A dynamic scrollable cursor enables
backward index scan and backward sequential detect to avoid sort.

The dynamic scrollable cursor is defined as:

DECLARE C1 SENSITIVE DYNAMIC SCROLL CURSOR
FOR SELECT C1, C2 FROM T1;

Sensitive and insensitive cursors with DB2 V7

DECLARE C1 INSENSITIVE
 SCROLL..
 ...
FETCH INSENSITIVE...

TEMP TABLE

BASE TABLE

Read only cursor
Not aware of updates or
deletes in base table

PROGRAM

DECLARE C1 SENSITIVE
 STATIC SCROLL..
 ...
FETCH INSENSITIVE...

Updatable cursor
Aware of own updates or
deletes within cursor
Other changes to base
table not visible to cursor
All inserts not recognized

TEMP TABLE

BASE TABLE

PROGRAM

DECLARE C1 SENSITIVE
 STATIC SCROLL..
 ...
FETCH SENSITIVE...

Updatable cursor
Aware of own updates and
deletes within cursor
sees all committed
updates and deletes
All inserts not recognized

TEMP TABLE

BASE TABLE

PROGRAM

Order by, table join and aggregate functions will force READ ONLY

76 DB2 UDB for z/OS Version 8 Technical Preview

A dynamic scrollable cursor does not materialize the result table at any time. Instead, it scrolls
directly on the base table and is therefore sensitive to all committed inserts, updates and
deletes. Dynamic scrollable cursors are supported for the index scan access path and the
table space scan access path. The data-partitioned secondary indexes (DPSI) also support
dynamic scrolling.

You can declare a scrollable cursor as INSENSITIVE, SENSITIVE STATIC, or SENSITIVE
DYNAMIC. The syntax is reported in Figure 5-3.

Figure 5-3 Scrollable DECLARE CURSOR syntax

For client applications that do not care whether or not the server supports the sensitivity or
scrollability, DB2 uses the default option ASENSITIVE to determine whether the cursor
behaves as SENSITIVE DYNAMIC or INSENSITIVE depending on the complexity of the
associated SELECT statement. If the cursor is specified as ASENSITIVE and is read-only, it
behaves as an INSENSITIVE cursor. If the cursor is specified as ASENSITIVE and is not
read-only, DB2 provides the maximum allowable sensitivity, which is SENSITIVE DYNAMIC.

Figure 5-4 summarizes the cursor types characteristics.

Note: Dynamic scrolling does not apply if a result table has to be materialized at the time
cursor is opened.

>>-DECLARE-cursor-name---+--+---->
 | |
 | |-ASENSITIVE-------------------| |
 +---|--------------------------------------|-----SCROLL-+
 |-INSENSITIVE-------------------|
 |-SENSITIVE---STATIC---------|
 | |
 +-DYNAMIC----+

>-----CURSOR--------+-----------------------+-----FOR---+-select-statement---+---------><
 +-WITH HOLD-----+ +-statement-name---+
 +-WITH RETURN-+

Chapter 5. SQL 77

Figure 5-4 Cursor types comparison

Regarding updatability, note that a cursor can become read-only if the SELECT statement
references more than one table, or contains a GROUP BY. In Example 5-3 we list some
examples of syntax for scrollable cursors.

Example 5-3 Examples of using scrollable cursors

� Declare cursor
DECLARE CURSOR ORDERSCROLL SENSITIVE DYNAMIC SCROLL FOR
 SELECT ORDERNUM, CUSTNAME, ORDERAMT, ORDERDATE FROM ORDERS
 WHERE ORDERAMT > 1 FOR UPDATE OF COMMENTS;

� Open cursor
OPEN CURSOR ORDERSCROLL;

� Fetch forward
LOOP-TO-FILL SCREEN
 DO 3 TIMES
 FETCH FROM ORDERSCROLL INTO :hv1, :hv2, :hv3, :hv4;
 END

� Fetch RELATIVE

SKIP-FORWARD-1-ROWS
 FETCH RELATIVE +1 FROM ORDERSCROLL INTO :hv1, :hv2, :hv3, :hv4;

SKIP-BACKWARD-5-ROWS
 FETCH RELATIVE -5 FROM ORDERSCROLL INTO :hv1, :hv2, :hv3, :hv4;

� Fetch ABSOLUTE
RE-READ-THE-THIRD-ROW
 FETCH ABSOLUTE + 3 FROM ORDERSCROLL INTO :hv1, :hv2, :hv3, :hv4;

� Execute a positioned Update through scrollable cursor
UPDATE-THE-CURRENT-ROW
 UPDATE ORDERS SET COMMENTS = "Expedite"
 WHERE CURRENT OF ORDERSCROLL;

� Close the scrollable cursor
CLOSE CURSOR ORDERSCROLL;

Cursor type Result table Visibility of
own changes

Visibility of
others'
changes

Updatability

Non-Scrollable
(SQL contains a
Join or Sort or etc)

Fixed, workfile No No No

Non-Scrollable No workfile, base
table access

Yes Yes Yes

INSENSITIVE
SCROLL

Fixed, declared
temp table

No No No

SENSITIVE
STATIC SCROLL

Fixed, declared
temp table

Yes
(Inserts not
allowed)

Yes
(Not Inserts)

Yes

SENSITIVE
DYNAMIC
SCROLL

No declared temp
table, base table
access

Yes Yes Yes

78 DB2 UDB for z/OS Version 8 Technical Preview

5.3.1 Cursor positioning and serialization
At OPEN CURSOR, the cursor is positioned before the first row. After FETCH, the fetched
row becomes the current row and the cursor is positioned on the current row. On any cursor,
scrollable or non-scrollable, the cursor is positioned on the most recently fetched row. At this
point, the UPDATE or DELETE WHERE CURRENT OF statement operates on the current
row under the existing rules of positioned updates/deletes.

When FETCH returns EOF condition, SQLCODE +100, the cursor is positioned after the last
row if the scroll number is positive (or FETCH NEXT is executed), and the cursor is positioned
before the first row if the scroll number is negative (or FETCH PRIOR executed). With
dynamic scrollable cursors, the most recently fetched row from the base table remains locked
in order to maintain its position for a positioned update or delete, and there is no optimistic
locking.

Dynamic scrollable cursor is useful when it is important to the application to see the updated
rows and the newly inserted rows, and there is no need to see deleted rows. If the application
requires constant result table, a SENSITIVE STATIC scrollable cursor with ISOLATION CS is
recommended.

Optimistic locking was introduced with SENSITIVE STATIC in DB2 V7. With the SENSITIVE
STATIC scrollable cursor, under ISOLATION CS, DB2 does not keep locks on rows or pages
after the result table is materialized into the declared temporary table. DB2 also releases
subsequently acquired locks for FETCH SENSITIVE requests. Locks are not held on the
current row because DB2 is optimistic that no positioned update/delete will occur. Even if it
does occur, DB2 is optimistic that the values in SELECT list will not have changed, so it
compares temporary result table values with current values under a new lock to ensure data
integrity before allowing positioned update/delete. With static scrollable cursors, with
ISOLATION CS, there are no locks held after the cursor is opened, and the row is unlocked
after each FETCH. Subsequent positioned updates or deletes use optimistic locking.

If ISOLATION UR is specified as a BIND option and the associated SELECT statement
contains a FOR UPDATE of clause, DB2 promotes UR to CS. If WITH UR is specified in the
SELECT statement along with the FOR UPDATE OF clause, DB2 returns SQLSTATE 42801,
SQLCODE -173.

5.3.2 Considerations
You should be aware of the following important considerations:

� A dynamic scrollable cursor is useful when it is important to see updated as well as newly
inserted rows.

� For maximum concurrency with dynamic scrollable cursors, use ISOLATION CS, and row
level locking.

� Cursors requiring use of a work file cannot be declared SENSITIVE DYNAMIC. For
example, you cannot associate the following SQL statement with a dynamic scrollable
cursor, as the entire result must be materialized to a work file:

SELECT COL1, MAX(COL2), COUNT(*) FROM T1 GROUP BY COL1 ORDER by 3

� Changes to tables referenced in subqueries are not reflected. For example, the subquery
in the following SQL statement is executed once when the cursor is opened, and the
subquery value does not change if there are any changes to the table referenced in the
subquery:

SELECT * FROM EMPLOYEES WHERE SALARY >(SELECT AVG(SALARY) FROM EMPLOYEES)

Chapter 5. SQL 79

� The use of a non-deterministic function (built-in or UDF) in the WHERE clause can cause
misleading results because the result of the function can vary from one FETCH to a
subsequent FETCH of the same row.

� Rollback to an external savepoint works the same way as rollback works with forward only
cursors.

� Dynamic scrollable cursors are supported with stored procedures. The stored procedure
itself can update through a dynamic scrollable cursor. However, the program calling the
stored procedure is restricted from updating using the allocated cursor.

� Parallelism is not supported with scrollable cursors.

� Dynamic scrollable cursors can be associated with views.

� There are no special considerations for dynamic scrollable cursors on summary tables.

� DRDA support for dynamic scrollable cursors is provided. Since these cursors are not
DRDA block fetched, one row at the time will be fetched from a remote server. You might
consider declaring the cursor for rowset positioning to obtain a similar blocking effect.

� Scalar functions and arithmetic expressions in SELECT list are re-evaluated at every fetch

� Column functions (AVG, MIN, MAX, etc.) are calculated once at open cursor (functions
may not be meaningful because size of result set can change)

5.4 Common table expressions and recursive SQL
With this enhancement, DB2 V8 introduces a new SQL feature called common table
expressions and recursive SQL. A common table expression is similar to a temporary view,
defined and used only for the duration of the SQL statement. There can be many common
table expressions in a single SQL statement, and each common table expression can be
referenced many times in the statement. All references to a common table expression in a
given SQL statement share the same result table. This is unlike regular views or nested table
expressions (another way of avoiding the creation of views), which are derived each time they
are referenced.

A common table expression takes the form of a WITH clause at the beginning of an SQL
statement with a syntax similar to a view definition. A common table expression can be used:

� To avoid creating a view (and when positioned updates and deletes are not required)
� When the result table is based on host variables
� When the same result table is shared in a fullselect
� When the result is derived via recursion

5.4.1 Example of fullselect
The fullselect syntax diagram is changed by adding an optional WITH clause for common
table expression prior to the fullselect, as reported in Figure 5-5. A common table expression
permits defining a result table with a table name that can be referenced as a table name in
any FROM clause of the fullselect that follows. Multiple common table expressions can be
specified following the single WITH keyword. Each common table expression specified can
also be referenced by name in the FROM clause of subsequent common table expressions.

The table name of a common table expression must be different from any other common table
expression table name in the same statement. If a list of columns is specified, it must consist
of as many names as there are columns in the result table of the fullselect. Each
column-name must be unique and unqualified. If these column names are not specified, the
names are derived from the select list of the fullselect used to define the common table
expression.

80 DB2 UDB for z/OS Version 8 Technical Preview

Figure 5-5 Common table expression in fullselect

As an example, imagine that you need to write a query to find the department with highest
total pay. This query involves two levels of aggregations: first the total pay for each
department is computed using GROUP BY and SUM function; then the maximum total pay is
found, based on the result of the first step.

We can write this query by first defining a view to calculate the total pay by department
(DTOTAL) and then selecting from it, or we can use the common table expression clause
thereby saving the overhead of creating and dropping the DTOTAL view. See Example 5-4.
Avoiding the view creation, especially for occasional queries, can make the life of the
programmer much easier.

Example 5-4 Common table expression in SELECT

WITH DTOTAL (deptno,totalpay) AS
(SELECT deptno,sum(salary+bonus)
FROM employee GROUP BY deptno)

 SELECT deptno FROM DTOTAL
WHERE totalpay =(SELECT max(totalpay) FROM DTOTAL)

As for regular table expressions, common table expressions can contain references to host
variables.

Chapter 5. SQL 81

5.4.2 Example with CREATE VIEW and INSERT
Common table expressions may also be used prior to the fullselect nested immediately inside
a CREATE VIEW or an INSERT statement. Example 5-5 shows their usage.

Example 5-5 Common table expression in CREATE VIEW or INSERT

CREATE VIEW RICH_DEPT (deptno) AS
WITH DTOTAL (deptno,totalpay) AS

 (SELECT deptno,sum(salary+bonus)
FROM employee GROUP BY deptno)

 SELECT deptno FROM DTOTAL
WHERE totalpay >(SELECT AVG(totalpay) FROM DTOTAL);

INSERT INTO vital_mgr (mgrno) AS
WITH vitaldept (deptno,se_count) AS

(SELECT deptno,count()
FROM employee

 WHERE job ='senior engineer' GROUP BY deptno)
 SELECT d.manager

FROM Department d, DTOTAL s
 WHERE d.deptno =s.deptno

 AND s.se_count >(SELECT AVG(se_count)
FROM vitaldept)

If the common table expression is specified in a CREATE VIEW statement the table name
cannot be the same as the view name being created. If the common table expression is
specified in an INSERT statement, the table name cannot be the same as the table or view
name that is the object of the insert.

5.4.3 Recursive SQL
If the fullselect of a common table expression contains a reference to itself in a FROM clause,
the common table expression is a recursive common table expression. Queries using
recursion are useful in supporting applications such as bill of materials, reservation systems,
and network planning.

Each fullselect that is part of the recursion cycle must start with SELECT or SELECT ALL.
Use of SELECT DISTINCT is not allowed. The unions must be UNION ALL.

When developing recursive common table expressions, remember that an infinite recursion
cycle (loop) can be created. Check that recursion cycles will terminate. This is especially
important if the data involved is cyclic. A recursive common table expression is expected to
include a predicate that will prevent an infinite loop. The recursive common table expression
is expected to include:

� In the iterative fullselect, an integer column incremented by a constant.

� A predicate in the where clause of the iterative fullselect in the form "counter_col <
constant" or "counter_col < :hostvar".

To illustrate the capability of a recursive common table expression for bill of material
applications, consider the example in Figure 5-6, where the objective is to find all
descendents of AAA.

The WITH statement at the top defines a temporary table called PARENT.

The upper part of the UNION ALL is only invoked once. It does an initial population of the
PARENT table with the three rows that have an immediate parent key of AAA.

82 DB2 UDB for z/OS Version 8 Technical Preview

The second part of the UNION ALL is run recursively until there are no more matches to the
join. In the join, the current child value in the temporary PARENT table is joined to the related
parent values in the HIERARCHY table. Matching rows are added to the (temporary)
PARENT table. This recursive processing will stop when all of the rows in the PARENT table
that match rows in the HIERARCHY table are found.

The SELECT statement at the bottom of the statement returns the final contents of the
PARENT table back to the user.

Figure 5-6 Recursive SQL

Common table expressions and nested table expressions follow the same set of rules for
determining whether they are deletable, updatable, insertable, or read-only.

How to define a temporary table
A temporary result table can now be derived through a nested table expression, a common
table expression, or a view. How to define a temporary table depends in part upon how often,
and for how long, you intend to use it:

� For a single use within a query, you can use either a common table expression or a nested
table expression for this case. Using a common table expression makes the main query
smaller and easier to read.

� For multiple uses within a query, a common table expression is more suitable.

� For multiple queries, you need to use views.

Recursive SQL exampleRecursive SQL example

WITH PARENT (PKEY, CKEY) AS
(SELECT PKEY, CKEY

 FROM HIERARCHY
 WHERE PKEY = 'AAA'

 UNION ALL
 SELECT C.PKEY, C.CKEY
 FROM HIERARCHY C ,PARENT P

 WHERE P.CKEY = C.PKEY
)
SELECT PKEY, CKEY
 FROM PARENT;

AAA

BBB CCC DDD

EEE FFF

GGG

PKEY CKEY
AAA BBB
AAA CCC
AAA DDD
CCC EEE
DDD EEE
DDD FFF
FFF GGG

Chapter 5. SQL 83

5.5 Multi-row fetch and insert
DB2 V8 introduces support for multiple-row processing for both the FETCH and INSERT
statements. Remember that in prior versions of DB2, an application had to execute multiple
SQL FETCH statements, one for each row to be retrieved from a table and multiple SQL
INSERT statements, as well as one for each row to be inserted into a table. The DB2 V8
enhancement helps to lower the execution cost, and in a distributed environment, also the
network cost. Multiple trips between the application and the database are no longer required,
and there will be fewer send and receive messages over the network. This capability
increases the usability and the portability of SQL. Combined with scrollable cursors, this
makes it easier to code browsing applications.

In the following sections we introduce the changes to the SQL statements and provide some
examples to introduce the enhanced SQL FETCH and INSERT statements.

5.5.1 DECLARE CURSOR
Figure 5-7 shows the syntax of the DECLARE CURSOR.

Figure 5-7 Multirow DECLARE CURSOR syntax

Example 5-6 shows how to define the cursor of a query to retrieve a rowset from the table
DEPT. The prepared statement is MYCURSOR.

Example 5-6 Multirow DECLARE CURSOR

EXEC SQL
 DECLARE CURSOR CURS1 CURSOR
 WITH ROWSET POSITIONING
 FOR MYCURSOR;

Rowset positioning specifies whether multiple rows of data can be accessed as a rowset on a
single FETCH statement. The default is WITHOUT ROWSET POSITIONING.

DECLARE CURSOR syntax

DECLARE cursor-name

select-statement
statement-name

(1)

CURSOR

STATIC
DYNAMIC

SCROLL

FOR
WITH HOLD
WITH RETURN
rowset-positioning

NO SCROLL (default) inserted for family compatibility

SENSITIVE
INSENSITIVE

NO SCROLL

WITHOUT ROWSET POSITIONING

WITH ROWSET POSITIONING

rowset-positioning

ASENSITIVE

84 DB2 UDB for z/OS Version 8 Technical Preview

5.5.2 FETCH
Figure 5-8 shows the multirow FETCH syntax with the new options shaded.

Figure 5-8 Multirow FETCH syntax

Two new blocks, multiple-row-fetch and rowset-positioned fetch, have been introduced.

The multiple-row fetch block is identical to the existing single-row-fetch block in DB2 V7,
except that there is an additional clause FOR n ROWS.

The rowset-positioned block is similar to the existing row-positioned block in DB2 V7.
The row-positioned clause specifies positioning of the cursor with row-positioned fetch
orientations NEXT, PRIOR, FIRST, LAST, CURRENT, ABSOLUTE, and RELATIVE, whereas
the rowset-positioned clause specifies positioning of the cursor with rowset-positioned fetch
orientations NEXT ROWSET, PRIOR ROWSET, FIRST ROWSET, LAST ROWSET,
CURRENT ROWSET, ROWSET STARTING AT ABSOLUTE, ROWSET STARTING AT
RELATIVE.

FETCH cursor-namefetch-orientation
FROMFETCH

INSENSITIVE

SENSITIVE

single-row-fetch
multiple-row-fetch

fetch-orientation:

row-positioned
rowset-positioned

BEFORE

row-positioned:

PRIOR
FIRST
LAST
CURRENT
ABSOLUTE

RELATIVE

host-variable
integer-constant
host-variable
integer-constant

NEXT

AFTER

rowset-positioned:

ABSOLUTE
RELATIVE

host-variable
integer-constant

NEXT ROWSET
PRIOR ROWSET
FIRST ROWSET
LAST ROWSET
CURRENT ROWSET
ROWSET STARTING AT

FETCH

multiple-row-fetch:

single-row-fetch:

INTO

INTO DESCRIPTOR

,

descriptor-name

host-variable

FOR

INTO DESCRIPTOR

,

descriptor-name

host-variable-array

host-variable
integer-constant

ROWS

INTO

Chapter 5. SQL 85

The multiple-row FETCH is implemented as a static SQL statement. A single FETCH
statement can be used to retrieve multiple rows of data from the result table of a query as a
rowset. A rowset is a group of rows that are grouped together and operated on as a set. For
example, you may fetch the next rowset, or update the current rowset. Fetching multiple rows
of data can be done with both scrollable and nonscrollable cursors. New syntax on the
FETCH statement allows specification of the number of rows to be returned in the rowset.
The maximum rowset size is 32767.

Fetch works with a host variable array in which each element of the array contains a value for
the same column. Changes to allow host variable arrays have been made to COBOL, PL/1,
C++. Assembler support is limited to cases where USING DESCRIPTOR is allowed. Multiple
row fetch is not supported in REXX, FORTRAN, Java, or SQL procedures.

Example 5-7 shows some simple examples of FETCH being used.

Example 5-7 FETCH examples

Given the cursor C1 is defined as:

DECLARE C1 CURSOR WITH ROWSET POSITIONING FOR SELECT * FROM EMP

– Fetch the previous rowset, and have the cursor positioned on that rowset.

FETCH PRIOR ROWSET FROM C1 FOR 3 ROWS INTO or
FETCH ROWSET STARTING AT RELATIVE -3 FROM C1 FOR 3 ROWS INTO

– Fetch 3 rows starting with row 20 regardless of the current position of the cursor, and
cause the cursor to be positioned on that rowset at the completion of the fetch.

FETCH ROWSET STARTING AT ABSOLUTE 20 FROM C1 FOR 3 ROWS INTO

– Fetch the first x rows and leave the cursor positioned on that rowset at the completion
of the fetch.

FETCH FIRST ROWSET FROM C1 FOR x ROWS INTO
FROM C1 FOR 3 ROWS INTO...

In the foregoing example:

� The clause FOR n ROWS specifies that with a single FETCH statement in the application
program, DB2 fetches n rows starting from the positioned cursor. It determines the
ROWSET size.

� In the clause INTO :hva1, :hva2, ... the first host variable array corresponds to the first
column's output, the second host variable array corresponds to the second column's
output, and so on.

� The ROWSET is the group of rows for the result table of the query which are returned by
the single FETCH statement.

Single row and multiple row fetches can be mixed for a multi-fetch cursor. If FOR n ROWS is
NOT specified and the cursor is declared for rowset positioning, then the size of rowset will be
the same as the previous rowset fetch (as long as it was the previous fetch for this cursor) or
the previous fetch was a FETCH BEFORE or FETCH AFTER and the fetch before that was a
rowset fetch. Otherwise the rowset is 1.

86 DB2 UDB for z/OS Version 8 Technical Preview

Note that the clause specifying the desired number of rows can be specified in either the
SELECT statement of the cursor, or on a FETCH statement for the cursor, or in both.
However, these clauses have a different effect:

� In the SELECT statement, the FETCH FIRST n ROWS ONLY clause controls the
maximum number of rows that can be accessed with the cursor. When a FETCH
statement attempts to retrieve a row beyond the number specified in the FETCH FIRST n
ROWS ONLY clause of the SELECT statement then an end of data condition occurs.

� In a FETCH statement, the FOR n ROWS clause controls the number of rows that are
returned for a single FETCH statement.

Both these clauses can be specified.

OPEN CURSOR, ALLOCATE CURSOR, and DESCRIBE CURSOR have been extended to
comply with multirow support.

Positioned UPDATE
The new syntax allows you to specify in the UPDATE statement the following clause to update
a specified row in the rowset:

FOR CURSOR cursor-name FOR ROW row-number OF ROWSET

Instead, if you specify the existing WHERE CURRENT OF cursor-name, all the rows in the
rowset are updated. For example:

Update all the rows in the rowset that cursor CSR1 is positioned on.
UPDATE T1
SET C1 = 5
WHERE CURRENT OF CSR1

Positioned DELETE
The new syntax allows you to specify in the DELETE statement the following clause to delete
a specified row in the rowset:

FOR CURSOR cursor-name FOR ROW row-number OF ROWSET

Instead, if you specify the existing WHERE CURRENT OF cursor-name, all the rows in the
rowset are deleted. The following example deletes the fourth row in the rowset that cursor
CSR1 is positioned on.

DELETE FROM T1
FOR CURSOR CSR1 FOR ROW 4 OF ROWSET

5.5.3 INSERT
With DB2 V7 there are two ways to insert a row into a table:

� INSERT via VALUES is used to insert a single row into the table or view using values
provided or referenced.

� INSERT via SELECT is used to insert one or more rows into the table or view using values
from other tables or views.

With DB V8, a third way has been added with the syntax shown in Figure 5-9.

Chapter 5. SQL 87

Figure 5-9 Multirow INSERT syntax

� INSERT via FOR n ROWS form is used to insert multiple rows into a table or view using
values provided in the host variable array.

There are two forms of multiple row insert:

– Static SQL INSERT with host variable arrays:
INSERT INTO T FOR :n ROWS
VALUES(:hva1, :hva2) ATOMIC

– Dynamic SQL INSERT with host variable arrays:
stmt = 'INSERT INTO T VALUES(?,?)'
attrvar = ’FOR MULTIPLE ROWS ATOMIC’
PREPARE my_insert ATTRIBUTES :attrvar FROM :stmt
EXECUTE my_insert FOR :hv ROWS USING (:hva1, :hva2)

The FOR n ROWS clause is supplied on the EXECUTE statement for the dynamic SQL
INSERT instead of on the INSERT statement itself, as in the case of static SQL INSERT. If n
is greater than or equal to 1, then the parameter marker represents a host variable array. The
maximum number of rows that can be inserted with a single INSERT statement is 32767. The
input data for these multiple rows is provided with new host variable arrays, where each array
represents the multiple rows of a single column.

VALUES

INSERT INTO table-name
view-name OVERRIDING USER VALUE

column-name()

,

expression
DEFAULT
NULL

()

,

expression
DEFAULT
NULL

fullselect
WITH RR

RS
CS

QUERYNO-integer

multiple-row-insert

VALUES

multiple-row-insert

descriptor-name

ATOMIC
,

()

USING DESCRIPTOR

FOR
integer-constant
host-variable

ROWS

NOT ATOMIC

expression
host-variable-array
NULL
DEFAULT

88 DB2 UDB for z/OS Version 8 Technical Preview

The VALUES or USING DESCRIPTOR clause allows specification of multiple rows of data.
For example, assuming :hva1 and :hva2 represent host variable arrays, the VALUES (:hva1,
:hva2) clause may be used to specify the multiple values for an insert statement.

The ATOMIC or NOT ATOMIC clause is provided so that the application can specify if it
wants the multiple-row INSERT to succeed or fail as a unit, or if it wants DB2 to proceed
despite a partial (one or more rows) failure. ATOMIC specifies that if the insert for any row
fails, then all changes made to the database by any of the inserts, including changes made by
successful inserts are undone. This is the default. When NOT ATOMIC is specified, the
inserts are processed independently. This means that if one or more errors occur during the
execution of an INSERT statement, then processing continues and any changes made during
the execution of the statement are not undone. Size and number of rows should be
considered when deciding, since logging and roll back are affected.

To use a multiple-row FETCH or INSERT statement with a host variable array per column,
the application must define one or more host variable arrays that can be used by DB2. Each
language has its own conventions and rules for defining a host variable array. A host variable
array corresponds to the values for one column of the result table for FETCH, or column of
data to be inserted for INSERT. The first value in the array corresponds to the value for that
column for the first row, the second value in the array corresponds to the value for the column
in the second row, and so on. DB2 determines the attributes of the values in the array based
on the declaration of the array. host variable arrays are used to return the values for a column
of the result table on FETCH, or to provide values for a column on INSERT.

To handle nulls, you can also have an indicator array and you specify the name of this array
following the host variable array. In the following example, COL1 is the host variable array and
COL1IND is its indicator array. Assuming that COL1 has 10 elements (for fetching a single
column of data for multiple rows of data), then COL1ID must also have 10 entries.

EXEC SQL
FETCH C1 FOR 5 ROWS
INTO :COL1:COL1IND
END_EXEC.

SQLCA
After a multiple-row INSERT or multiple-row FETCH statement, information is returned to the
program through the SQLCA as follows:

� SQLSTATE: SQLSTATE of last error

� SQLCODE: SQLCODE of last error

� SQLERRD3: actual number of rows inserted (in the case of INSERT), or the number of
rows returned in the case of FETCH

� SQLWARN: accumulation of flags set during any single insert

SQLDA
SQLDA must contain a valid description of the host variable arrays or buffers which contain
the values to be inserted. Each SQLVAR describes a host variable array or buffer which
contains a value for a column of target table. SQLDA must have enough storage to contain
SQLVAR for each target column for which values are provided, plus an additional SQLVAR
entry for use by DB2 UDB for z/OS. Prior to the multi-row insert, the SQLDA fields must be set
correctly to include number of SQLVAR occurrences, number of variables used, pointer to
arrays, indicator variables etc.

Chapter 5. SQL 89

Examples of INSERT
In Example 5-8 we insert a variable number of rows using host variable arrays for column
values. Assume that the table T1 has one column and that a variable (:hv) number of rows of
data are to be inserted into the table T1.

Example 5-8 Example 1 of INSERT

EXEC SQL
INSERT INTO T1 FOR :hv ROWS
VALUES (:hva:hvind) ATOMIC ;

In this example, :hva represents the host variable array and :hvind represents the array of
indicator variables.

In Example 5-9 we insert multiple rows using host variable arrays for column values. Assume
table T2 has 2 columns, C1 is SMALL INTEGER and C2is INTEGER. INSERT 10 rows of
data into T2. Values to be inserted are inhost variable arrays :hva1 (array of SMALL
INTEGER) and :hva2 (array of INTEGER values).

Example 5-9 Example 2 of INSERT

EXEC SQL INSERT INTO T2 (C1, C2) FOR 10 ROWS
 VALUES (:hva1 :hvind1, :hva2 :hvind2) NOT ATOMIC;

PREPARE
A new block cursor-width is introduced to specify whether multiple rows of data can be
inserted as a rowset on a single dynamic INSERT statement and use of keywords ATOMIC
and NOT ATOMIC.

Assume that the table PROG has 9 columns. Prepare a dynamic INSERT statement which
inserts 5 rows into this table.

stmt=‘INSERT INTO PROG(C1, C2, C3, C4, C5, C6, C7, C8, C9)
VALUES(?,?,?,?,?,?,?,?,?)’ ;
attrvar=’FOR MULTIPLE ROWS’ ;
NROWS=5 ;
EXEC SQL PREPARE ins_stmt ATTRIBUTES :attrvar FROM :stmt ;

EXECUTE
A new block multiple-row-insert is introduced to specify whether multiple rows of data can be
inserted with a single dynamic INSERT statement. For example:

Execute the dynamic SQL statement prepared above.
EXEC SQL
EXECUTE ins_stmt FOR :NROWS ROWS
USING :V1,:V2,:V3,:V4,:V5,:V6,:V7,:V8,:V9 ;

In this example, each host variable in the USING clause represents an array of values for the
corresponding column of the target of the INSERT statement.

5.6 Get diagnostics
The GET DIAGNOSTICS statement enables applications to retrieve diagnostics information
about statements that have been executed. This statement complements and extends the
diagnostics that are available in the SQLCA. See Figure 5-10.

90 DB2 UDB for z/OS Version 8 Technical Preview

Figure 5-10 GET DIAGNOSTICS statement

In Figure 5-11 we show the syntax for the GET DIAGNOSTICS statement.

Figure 5-11 GET DIAGNOSTICS syntax

GET DIAGNOSTICS statement

It enables more diagnostic information to be returned than it can be
contained in SQLCA
It returns SQL error information

for overall statement
for each condition, when multiple conditions occur

It supports SQL error message tokens larger than 70 bytes (SQLDA
size limitation)

INSERT INTO T1 FOR 5 ROWS VALUES (:array);
GET DIAGNOSTICS :errcount = NUMBER;
 DO || = 1 TO ERR_COUNT;
 GET DIAGNOSTICS FOR CONDITION :||
 :rc = RETURNED_SQLSTATE;
 END;

GET DIAGNOSTICS

,

statement-information-item-namehost-variable

statement-information
condition-information
combined-information

statement-information:

=

statement-information-item-name:
DB2_GET DIAGNOSTICS_DIAGNOSTICS
DB2_LAST_ROW
DB2_NUMBER_PARAMETER_MARKERS
DB2_NUMBER_RESULT_SETS

DB2_RETURN_STATUS
DB2_SQL_ATTR_CURSOR_HOLD
DB2_SQL_ATTR_CURSOR_ROWSET
DB2_SQL_ATTR_CURSOR_SCROLLABLE
DB2_SQL_ATTR_CURSOR_SENSITIVITY
DB2_SQL_ATTR_CURSOR_TYPE
MORE
NUMBER
ROW_COUNT

condition-information:

condition-information-item-name
connection-information-item-name

CONDITION host-variable2
integer

host-variable3 =

,

GET DIAGNOSTICS syntax

Indicates if cursor can be used for rowset positioned
operations, i.e., multi-fetch

Information about last statement
executed (capability of cursor)

Some fields will only apply for
 particular statements
Get Diagnostics
Multi-row fetch
Prepare
Call
Open/Allocate

Chapter 5. SQL 91

The following C language program example demonstrates the use of this new statement:

In an application, use GET DIAGNOSTICS to determine how many rows were updated.

long rcount;
EXEC SQL UPDATE T1 SET C1 =C1 +1;
EXEC SQL GET DIAGNOSTICS :rcount = ROW_COUNT;

After execution of this code segment, rcount contains the number of rows that were updated.

Diagnostic information for multi-row fetch
The SQLCA is used to return information on errors and warnings found while fetching from a
rowset cursor. After each FETCH statement from a rowset cursor, information is returned to
the program through the SQLCA as follows:

� SQLCODE contains the SQLCODE.

� SQLSTATE contains the SQLSTATE.

� SQLERRD3 contains the actual number of rows returned. If SQLERRD3 is less than the
number of rows requested, then an error or end-of-data condition occurred.

� SQLWARN flags are set to represent all the warnings that were accumulated while
processing the FETCH statement.

Additional information may be obtained about the fetch, including information on all exception
conditions encountered while processing the fetch statement, from the GET DIAGNOSTICS
statement.

Consider the following examples, where we attempt to fetch 10 rows with a single FETCH
statement.

� Example 1:

Assume that an error, SQLCODE -802, is detected on the 5th row. SQLERRD3 is set to 4
for the 4 returned rows, SQLSTATE is set to 22003, SQLCODE is set to -802. This
information is also available from the GET DIAGNOSTICS statement, for example:

GET DIAGNOSTICS :num_rows = ROW_COUNT, :num_cond = NUMBER;

Would result in num_row = 4 and num_cond = 1 (1 condition).

GET DIAGNOSTICS CONDITION 1 :sqlstate = RETURNED_SQLSTATE,
:sqlcode = DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;

Would result in sqlstate = 22003, sqlcode = -802, and row_num = 5.

There are some cases where DB2 returns a warning if indicator variables are provided, or an
error if indicator variables are not provided. These errors can be thought of as data mapping
errors that result in a warning (SQLCODE +802 for instance) if indicator variables are
provided. The GET DIAGNOSTICS statement may be used to retrieve information about all
the data mapping errors that have occurred. For example:

Diagnostic information for multi-row insert
When NOT ATOMIC is specified the inserts are processed independently. This means that if
one or more errors occur during the execution of an INSERT of a row, then processing
continues. The row that was being inserted at the time of the error is not inserted. Execution
continues with the next row to be inserted, and any other changes made during the execution
of the multiple row INSERT statement are not backed out. When ATOMIC is in effect, if an
insert value violates any constraints, or if any other error occurs during the execution of an
INSERT of a row, then all changes made during the execution of the multiple row INSERT
statement are backed out.

92 DB2 UDB for z/OS Version 8 Technical Preview

The SQLCA reflects the last warning encountered. The SQLCA is used to return information
on errors and warnings found during a multiple-row-insert. If indicator arrays are provided, the
indicator variable values are used to determine if the value from the host variable array, or
NULL, is used. The SQLSTATE contains the warning from the last data mapping error.

Additionally, when NOT ATOMIC is in effect, then status information is available for each
failure or warning that occurred while processing the insert. The status information for each
row is available via the GET DIAGNOSTICS statement.

As an example, assume that you are inserting multiple rows using host variable arrays for
Column Values. The table T1 has 2 columns, C1 is a SMALL INTEGER column, and C2 is an
INTEGER column. INSERT 10 rows of data into the table T1. The values to be inserted are
provided in host variable arrays :hva1 (an array of INTEGERS and :hva2 an array of
DECIMAL(15,0) values. The data values for :hva1 and :hva2 are represented in Table 5-2.

Table 5-2 Data values for :hva1 and :hva2

EXEC SQL
INSERT INTO T1 (C1, C2) FOR 10 ROWS VALUES (:hva1:hvind1, :hva2:hvind2)
NOT ATOMIC;

After execution of the INSERT statement, we have the following in the SQLCA:

SQLCODE = 0
SQLSTATE = 0
SQLERRD3 = 8

Although we attempted to insert 10 rows, only 8 rows of data were inserted. Further
information can be found by using the GET DIAGNOSTICS statement, for example:

GET DIAGNOSTICS :num_rows = ROW_COUNT, :num_cond = NUMBER;

Would result in num_row = 8 and num_cond = 2 (2 conditions)

GET DIAGNOSTICS CONDITION 1 :sqlstate = RETURNED_SQLSTATE,
:sqlcode = DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;

Would result in sqlstate = 22003, sqlcode = -302, and row_num = 4

GET DIAGNOSTICS CONDITION 2 :sqlstate = RETURNED_SQLSTATE,
:sqlcode = DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;

Would result in sqlstate = 22003, sqlcode = -302, and row_num = 8

Array entry :hva1 :hva2

1 1 32768

2 -12 90000

3 79 2

4 32768 19

5 8 36

6 5 24

7 400 36

8 73 4000000000

9 -200 2000000000

10 35 88

Chapter 5. SQL 93

5.7 Scalar fullselect
DB2 on the UNIX and Windows platforms provides support for scalar fullselect. This allows
applications that use scalar fullselects to be portable without change and also conform with
the SQL standards.

Figure 5-12 shows the extended syntax of scalar fullselect to expression.

Figure 5-12 Scalar fullselect — Extension to expression

Scalar fullselect
extension to expression

cast-specification
case-expression
labeled-duration

function

special-register
host-variable
column-name
constant
(expression)

-+
operator

expression:

(scalar-fullselect)

 operator:
CONCAT
| |

*
+
-

/

94 DB2 UDB for z/OS Version 8 Technical Preview

Figure 5-13 shows the extended syntax of scalar fullselect to CASE expression.

Figure 5-13 Scalar fullselect — Extension to CASE expression

5.7.1 Functional description
A scalar fullselect enclosed in parentheses can be specified in an expression and returns
either a null or a single value. If more than one value is retrieved, it results in SQLSTATE
21000, SQLCODE -811, and no value is returned.

You can code a SELECT statement as follows:

SELECT (sfs1) AS COL1,
(SELECT (sfs2) FROM T3 WHERE ...) AS COL2
FROM T1,
TABLE(TUDF(T1.C1 + (sfs3))) T2
WHERE (sfs4) + (sfs5) = (sfs6)

In this example, sfs1 to sfs6 are any correlated or noncorrelated scalar fullselects, and TUDF
represents a table user defined function.

Next we explain the enhancement with the help of a few examples.

Figure 5-14 shows the four tables, PARTS, PRODUCTS, PARTPRICE, and
PARTINVENTORY, used in the examples.

CASE
ELSE NULL

ELSE
searched-when-clause
simple-when-clause

END
result-expression

CASE expression :

search-condition result-expressionWHEN THEN

expression WHEN THEN

NULL

NULL
result-expressionexpression

searched-when-clause :

simple-when-clause :

Allows as a search-condition, a
predicate that contains fullselects

(scalar or non-scalar)

Scalar fullselect
extension to CASE-expression

Chapter 5. SQL 95

Figure 5-14 Tables used in the scalar fullselect examples

Figure 5-15 shows the use of scalar fullselect in the WHERE clause.

Figure 5-15 Scalar fullselect — Example of WHERE clause

 Tables used in the examples

PART PROD# SUPPLIER
WIRE 10 ACWF
OIL 160 WESTERN_CHEM
MAGNETS 10 BATEMAN
PLASTIC 30 PLASTIC_CORP

BLADES 205 ACE_STEEL

PROD# PRODUCT PRICE
505 SCREWDRIVER 3.70
30 RELAY 7.55
205 SAW 18.90
10 GENERATOR 45.75

PRODUCTS

PART _ PROD# SUPPLIER PRICE
WIRE 10 ACWF 3.50
OIL 160 WESTERN_CHEM 1.50
MAGNETS 10 BATEMAN 59.50
PLASTIC 30 PLASTIC_CORP 2.00
BLADES 205 ACE_STEEL 8.90

PART PROD# SUPPLIER ONHAND#
WIRE 10 ACWF 8
OIL 160 WESTERN_CHEM 25
MAGNETS 10 BATEMAN 3
PLASTIC 30 PLASTIC_CORP 5
BLADES 205 ACE_STEEL 10

INVENTORY

PARTS PARTPRICE

Example of scalar fullselects
in a WHERE clause

Find which products have the prices in the range of
at least twice the lowest price of all the products and
at most half the price of all the products.

SELECT PRODUCT, PRICE
 FROM PRODUCTS A
 WHERE PRICE BETWEEN 2 * (SELECT MIN(PRICE) FROM PRODUCTS)
 AND .5 * (SELECT MAX(PRICE) FROM PRODUCTS) ;

PRODUCT PRICE
RELAY 7.55

SAW 18.90

96 DB2 UDB for z/OS Version 8 Technical Preview

Figure 5-16 shows an example which uses nested scalar fullselects in a SELECT list. Since
the SQL construct is not very easy to follow at a glance, we provide some explanation. If the
AS clause is specified, then the name of the result column is the name specified on the AS
clause. Therefore, in this example, the name of the result column is COST and is derived by
multiplying the values in two columns. These columns are PRICE retrieved from table
PARTPRICE and ONHAND# retrieved from INVENTORY table. Since the scalar fullselects for
these two tables are within the scope of the SELECT statement for PARTS table, the columns
in the PARTS table can be referred to in these statements. Since the scalar fullselect for the
PARTS table is within the scope of the SELECT statement for PRODUCTS table, the columns
in the PRODUCTS table can be referred to in thIs statement. The column COST is passed
through the derived table X.

Figure 5-16 Scalar fullselect — Example of nesting in a SELECT list

Example of nested scalar
fullselects in a SELECT list

Find the cost of inventory for each product by
calculating the sum of (price * onhand#) for each part
in the product.
SELECT
 PRODUCT,
 (SELECT COALESCE(SUM(COST),0) AS INV_COST
 FROM (SELECT (
 (SELECT PRICE FROM PARTPRICE WHERE PART = B.PART)
 *(SELECT ONHAND# FROM INVENTORY WHERE PART = B.PART)
) AS COST
 FROM PARTS B

 WHERE B.PROD# = A.PROD#
) X(COST)
)

 FROM PRODUCTS A;

PRODUCT INV_COST
SCREWDRIVER .00
RELAY 10.00
SAW 89.00
GENERATOR 206.50

Chapter 5. SQL 97

Figure 5-17 shows an example of the use of scalar fullselect in CASE expression.

Figure 5-17 Scalar fullselect — Example of CASE expression

5.7.2 Restrictions
The scalar fullselects are not supported in the following cases:

� CHECK constraint
� Grouping expression
� View created with the WITH CHECK OPTION
� CREATE FUNCTION (SQL scalar)
� Column function
� ORDER BY clause
� Join conditions of the ON clause for INNER and OUTER joins

5.8 Select from insert
In applications that use triggers, timestamp columns, identity columns, and ROWID columns,
the data values generated and inserted automatically by DB2 are not visible immediately, and
the applications have to query the tables to retrieve these values. The SELECT FROM
INSERT new statement provides this capability. The INSERT statement can be used in the
FROM clause of a SELECT statement that is a subselect and the SELECT INTO statement.

5.8.1 Functional description
Changes have been done to the SQL syntax in the table-spec and order-by-clause to support
this enhancement. The keywords FINAL TABLE in the table-spec and INPUT SEQUENCE in
the order-by-clause are introduced.

Example of scalar fullselect
in a CASE expression

Give discount to the parts that have the large inventory
and raise price on the parts that have the small
inventory.

CREATE TABLE NEW_PARTPRICE LIKE PARTPRICE;
INSERT INTO NEW_PARTPRICE SELECT * FROM PARTPRICE;
UPDATE NEW_PARTPRICE N SET PRICE =
 CASE
 WHEN((SELECT ONHAND# FROM INVENTORY WHERE PART=N.PART) < 7)
 THEN 1.1 * PRICE
 WHEN((SELECT ONHAND# FROM INVENTORY WHERE PART=N.PART) > 20)
 THEN .8 * PRICE
 ELSE PRICE
 END;

SELECT * FROM NEW_PARTPRICE;

PART PROD# SUPPLIER PRICE
WIRE 10 ACWF 3.50
OIL 160 WESTERN_CHEM 1.20
MAGNETS 10 BATEMAN 65.45
PLASTIC 30 PLASTIC_CORP 2.20
BLADES 205 ACE_STEEL 8.90

98 DB2 UDB for z/OS Version 8 Technical Preview

Figure 5-18 shows the syntax changes to the table-spec.

Figure 5-18 SELECT FROM INSERT — Table specification syntax changes

Example 5-19 shows the syntax changes to the order-by-clause.

Figure 5-19 SELECT FROM INSERT — Order by clause syntax changes

SELECT FROM INSERT
table-spec syntax changes

table-spec
>>---+-table-name-----------------+--------+--------------------------------+------------><
 | |--view-name------------------| +--correlation-clause------+ |
 | +--table-locator-reference-+ |
 | |
 |---+--------------+----(--fullselect--)---correlation-clause---------------------|
 | +--TABLE--+ |
 | |
 |--i-table-reference------------+------------------------------+-----------------------|
 | +--correlation-clause--+ |
 |--table-function-reference--|
 |--joined-table--|

>>---FINAL TABLE------(---INSERT statement---)---------------------------------><
i-table reference

SELECT FROM INSERT
order-by-clause syntax changes

 +--,--------------------------------+
 | +--ASC----+ |
>>-----ORDER BY------+-------+--sort-key----+------------|----+--------------------><
 | | +--DESC--+ |
 | | |
 |-------------------------+---INPUT SEQUENCE--------------+

order-by-clause

Chapter 5. SQL 99

The SELECT FROM INSERT statement enhancement provides the applications with the
following facilities:

� Find the value of an automatically generated column.
� Retrieve default values for columns.
� Retrieve column values changed by a BEFORE INSERT trigger.
� Retrieve all values for an inserted row without specifying individual column names.
� Retrieve all values inserted through a multiple-row INSERT.

With the new syntax of having an INSERT statement on the SELECT statement, the rows
inserted into the table are considered to be a result table. Therefore, all of the columns in this
result table can be referenced by name in the select list of the query.

In the following sections we discuss various scenarios, illustrating them with examples.

Result table rows from the INSERT statement
The result table of the INSERT contains all of the rows that are inserted. Triggers, constraints
and DB2-generated values affect the result table in the following ways:

� If the INSERT activates a BEFORE trigger, the values in the result table include any
changes that are made by the trigger. AFTER triggers cannot affect the values in the result
table.

� DB2 enforces check constraints, unique index constraints and referential integrity
constraints before it generates the result table.

� The result table includes generated values for identity columns, ROWID columns, and
columns based on expressions.

For example, consider an EMPLOYEE table defined with columns EMPNO, NAME, SALARY,
DEPTNO, TELE, and LEVEL. The column EMPNO holds integer data and is defined as
GENERATED ALWAYS AS IDENTITY.

A BEFORE INSERT trigger is created on this table to give all new employees at level
‘Associate’ a $5000 salary raise.

Figure 5-20 shows the BEFORE INSERT trigger statement followed by the SELECT FROM
INSERT statement.

100 DB2 UDB for z/OS Version 8 Technical Preview

Figure 5-20 SELECT FROM INSERT — INSERT trigger

Since the value specified for column LEVEL is ‘Associate’, the INSERT trigger is activated
and the salary is raised by $5000 before the row is inserted. Thus, the SELECT statement
returns a salary of $40000.00 for employee ‘New Hire’.

What happens if the INSERT statement or the SELECT fails in the SELECT INTO statement?
No row is inserted into the target table and so no row is returned.

What happens if the INSERT statement fails during OPEN CURSOR processing time? If any
row being inserted fails, then all the rows successfully inserted till the failure are undone and
the result table is empty.

What happens if the result table has 100 rows and the 90th row being fetched fails? The result
table still contains 100 rows and the related SQLCODE is returned to the application. The
application can decide whether to commit all the rows inserted or undo all the rows inserted.

Result table columns from the INSERT statement

The target of an INSERT statement can be either a table or a view. When the target is a table,
the columns of the result table include all the columns of the target table. If the target is a
view, the columns of the result table include all the columns of the target view. This is true
even when the INSERT statement only assigns values for a subset of the columns of the
target table or view.

For example, suppose you want to determine what value DB2 generates for the EMPNO
column when you insert a row into EMPLOYEE table. Recall that EMPNO is defined to hold
integer data and is defined as GENERATED ALWAYS AS IDENTITY. You can use the
following SQL statements to achieve this.

SELECT EMPNO INTO :empno_hv
FROM FINAL TABLE
(INSERT INTO EMPLOYEE (NAME, SALARY, LEVEL)
VALUES(‘New Hire’,35000.00,’Associate’)

INSERT trigger
CREATE TRIGGER TRIG1
NO CASCADE BEFORE INSERT ON EMPLOYEE
REFERENCING NEW AS NEWSALARY
FOR EACH ROW MODE DB2SQL
WHEN (NEWSALARY.LEVEL = 'Associate')
BEGIN ATOMIC
 SET NEWSALARY.SALARY = NEWSALARY.SALARY + 5000.00
END;

SELECT NAME,SALARY INTO :name_hv, :salary_hv
FROM FINAL TABLE
(INSERT INTO EMPLOYEE(NAME,SALARY,LEVEL)
 VALUES('New Hire',35000.00,'Associate'));

:name_hv =
'New Hire'

:salary_hv =
40000.00

Chapter 5. SQL 101

Effect of updates and deletes against result table rows
If the application declares a nonscrollable cursor and the same application performs a
searched update or searched delete against the target object of the INSERT statement within
the SELECT statement, the searched update or searched delete does not affect the result
table rows of the cursor.

For example, the application declares a cursor, opens the cursor, performs a fetch, updates
the table, and then fetches additional rows. The fetches after the update statement always
return those values that are determined at the time the cursor is opened.

Figure 5-21 shows an example.

Figure 5-21 SELECT FROM INSERT — Effect of updates and deletes against result table

Returning rows in the same sequence as they are inserted
If there is a requirement in the application to retrieve the rows in the same sequence as they
are inserted, the application may use the INPUT SEQUENCE keywords in the ORDER BY.

Figure 5-22 shows the example of a multi-row INSERT. In this example, HVA1 and HVA2 are
host variable arrays, each representing multiple rows, with each entry for each array
representing a single row.

SELECT FROM INSERT
effect of updates and deletes

against result table rows
DECLARE CS1 CURSOR FOR
SELECT SALARY
FROM FINAL TABLE
(INSERT INTO EMPLOYEE (NAME, SALARY, LEVEL)
 SELECT NAME, INCOME, BAND FROM OLD_EMPLOYEE);

OPEN CS1;
FETCH CS1 INTO :DECHV; <--- returns the first row
UPDATE EMPLOYEE
SET SALARY = SALARY + 500; <--- give employee $500 raise
DO WHILE (SQLCODE = 0);
 FETCH CS1 INTO :DECHV; <--- values determined prior
 to the UPDATE
 statement are returned
END;

102 DB2 UDB for z/OS Version 8 Technical Preview

Figure 5-22 SELECT FROM INSERT — Ordering sequence example

Considerations
You should be aware of the following considerations:

� The INSERT statement can only appear in the FROM clause of the top-level SELECT
statement, that is a subselect or a SELECT INTO statement.

� A fullselect in the INSERT statement cannot contain correlated references to columns
outside the fullselect of the INSERT statement.

� If a table-spec includes an INSERT, then exactly one table-spec can be specified in the
FROM clause. That is, joins are not allowed.

� The underlying base table of the INSERT statement must not have any AFTER INSERT
triggers that have a dependency on the target table.

� The INSERT statement in a SELECT statement makes the cursor read-only. That is, you
cannot use UPDATE WHERE CURRENT OF or DELETE WHERE CURRENT OF against
the cursor.

� The INPUT SEQUENCE clause can only be specified if the table-spec is included in a
SELECT statement that contains an INSERT statement.

5.9 Qualified column names in INSERT and UPDATE
DB2 V7 does not allow column names to be qualified in INSERT and UPDATE statements.
This hampers application portability, as DB2 on UNIX and Windows platforms does not have
this restriction.

SELECT FROM INSERT
ordering sequence example

DECLARE CS2 CURSOR WITH ROWSET POSITIONING FOR
SELECT EMPNO
FROM FINAL TABLE
(INSERT INTO EMPLOYEE (NAME, TELE)
 VALUES(:HVA1, :HVA2))
ORDER BY INPUT SEQUENCE;

INTEGER
GENERATED
ALWAYS AS

IDENTITY

HVA1 HVA2
Liz 555-1212
David 555-9876
Jessica 555-0110

EMPNO
1
2
3

Input

Result

Chapter 5. SQL 103

DB2 V8 allows column names to be qualified with a table name, or a schema followed by a
table name in INSERT statements.

Also, DB2 V8 allows column names in the SET clause of an UPDATE statement to be
qualified. Consider the following examples:

� A correlation name is not specified for the table (or view) name, and the table name is
used as the qualifier. This is allowed:

UPDATE T1 SET T1.C1 = C1 + 10 WHERE C1 = 1;

� A correlation name 'T' is specified for the table name, and it is used to qualify the column
name. This is allowed:

UPDATE T1 T SET T.C1 = C1 + 10 WHERE C1 = 2;

� A correlation name 'T' is specified for the table name, but it is not used to qualify the
column name. Instead, the table name is used as the qualifier, but it is not exposed
because of the correlation name. This results in SQLCODE -206 being returned:

UPDATE T1 T SET T1.C1 = C1 + 10 WHERE C1 = 3;

� A correlation name is not specified, and the qualifier for the column name is not the table
name. That is, the qualifier is not a valid name in this context. This results in SQLCODE
-206 being returned:

UPDATE T1 SET T.C1 = C1 + 10 WHERE C1 = 4;

� The table name is qualified following the UPDATE verb, and the qualifier is also used in
qualifying the column name. This is allowed:

UPDATE MY.T1 SET MY.T1.C1 = C1 + 10 WHERE C1 = 4;

� The table name is qualified following the UPDATE verb, and the qualifier is not used in
qualifying the column name. This is allowed:

UPDATE MY.T1 SET T1.C1 = C1 + 10 WHERE C1 = 4;

� The table name is not qualified after the UPDATE verb, but the implicit qualifier is used as
an explicit qualifier for the column name. myid is the authid of the statement. This is
allowed:

UPDATE T1 SET myid.T1.C1 = C1 + 10 WHERE C1 = 4;

� The table name is qualified with the location, but the location is not used in qualifying the
column name. This is allowed:

UPDATE SVL.MY.T1 SET T1.C1 = C1 + 10 WHERE C1 = 4;

� The table name is qualified with the location, and the location is used in qualifying the
column name:

UPDATE SVL.MY.T1 SET SVL.MY.T1.C1 = C1 + 10 WHERE C1 = 4;

5.10 Expressions in GROUP BY
DB2 V7 does not allow expressions to be specified in the GROUP BY clause which is
supported by DB2 on the UNIX, Windows, and AS/400 platforms. The current work-around is
for the applications to code nested table expressions or a view to first provide a result table
with the expression as a column of the result, then specify the column in the GROUP BY
clause.

The GROUP BY clause specifies an intermediate result table that consists of a grouping of
the rows of R. R is the result of the previous clause of the subselect.

104 DB2 UDB for z/OS Version 8 Technical Preview

A grouping-expression is an expression used in defining the grouping of R. In its simplest
form, a grouping-expression contains a single column-name. Each column-name included in
a grouping-expression must unambiguously identify a column of R. A grouping-expression
cannot include a scalar-fullselect or any function that is non-deterministic or is defined to have
an external action. Columns with a LOB data type (or distinct type for which the source type is
a LOB) cannot be used in a grouping-expression. Correlated columns or host variables
cannot be used in a grouping-expression.

The length attribute of each grouping-expression cannot exceed 255 for a character
expression or 127 for a graphic expression.

The result of the GROUP BY clause is a set of groups of rows. In each group of more than
one row, all values of each grouping-expression are equal, and all rows with the same set of
values of the grouping-expressions are in the same group. For grouping, all null values for a
grouping-expression are considered equal.

Grouping-expressions can be used in a search condition in a HAVING clause, in the SELECT
clause, or in a sort-key-expression of an ORDER BY clause. In each case, the reference
specifies only one value for each group. The grouping-expression specified in these clauses
must exactly match the grouping-expression in the GROUP BY clause, except that blanks are
not significant (HAVING clause, and SELECT clause and sort-key-expression of an ORDER
BY clause). For example, a grouping-expression of

SALARY * .10

matches the expression in a having-clause of

HAVING SALARY * .10

but does not match

HAVING .10 * SALARY

or

HAVING (SALARY*.10)+100

If the grouping-expression contains varying-length strings with trailing blanks, the values in
the group can differ in the number of trailing blanks and may not all have the same length.
In that case, a reference to the grouping- expression still specifies only one value for each
group, but the value for a group is chosen arbitrarily from the available set of values. Thus, the
actual length of the result value is unpredictable.

We demonstrate use of this enhancement in Example 5-10.

Example 5-10 Expressions in GROUP BY

CREATE TABLE T1(
C1 VARCHAR(5),
C2 DECIMAL(9,2),
C3 INT,
C4 DATE);
SELECT SUBSTR(C1,LENGTH(C3), 1), <- match to grouping expression SUBSTR
C2 + C3, <- match to grouping expression C2+C3
C3 + C2, <- does not match to any grouping expression or column
C2 + C3 + 4, <- does not match to any grouping expression or column
C1||CHAR(C2), <- match to grouping columns C1 and C2
MAX(C2), <- match to grouping column C2
SUBSTR(C1,LENGTH(C3),1)||'A', <- does not match to any grouping expression or column
C4||CURRENT TIMESTAMP <- does not match to any grouping expression or column
FROM T1
GROUP BY C1, <- grouping column
C2, <- grouping column

Chapter 5. SQL 105

C2 + C3, <- grouping expression
SUBSTR(C1,LENGTH(C3),1), <- grouping expression
HAVING C2 + 2 = 177.1 AND <- match to grouping column C2
C2 + C3 = 277.2; <- match to grouping expression C2+C3

5.11 Multiple DISTINCT
The DISTINCT keyword can be used at the statement level, as in:

SELECT DISTINCT C1,C2,C3 FROM T1

Or, it can be used at the column level, as in:

SELECT AVG(C1),COUNT(DISTINCT C2) FROM T1

With DB2 V7 you can also have multiple DISTINCT on the same column only, as in:

SELECT COUNT(DISTINCT(A1)), SUM(DISTINCT A1) FROM T1

However, you cannot specify multiple DISTINCT on different columns, you get SQLCODE
-127 for the reason " DISTINCT IS SPECIFIED MORE THAN ONCE IN A SUBSELECT"
if you try to issue a query such as :

SELECT COUNT(DISTINCT A1), SUM(DISTINCT A2) FROM T1

In general, DB2 V7 only allows one DISTINCT keyword on the SELECT or HAVING clause of
any given query. This restriction causes multiple queries to be executed to retrieve the same
information thereby resulting in complexity and performance degradation.

DB2 V8, in NFM, removes this restriction, and allows more than one DISTINCT keywords on
the SELECT clause or the HAVING clause for a query. This enhancement is accomplished by
performing multiple sorts on multiple distinct columns. As a result, when multiple distinct
column values need to be processed, only one query is required. This enhancement supports
DB2 family compatibility.

Executing a query with multiple distinct columns can be costly in terms of number of sorts
performed and work files created. Therefore, whenever possible, some optimization may be
done to the query by eliminating unnecessary DISTINCT if it is semantically correct to do so.
For instance, the following two SELECT statements are semantically the same after
DISTINCT is removed from the first statement:

SELECT DISTINCT COUNT(DISTINCT(A1)), COUNT(A2)
SELECT COUNT(DISTINCT(A1)), COUNT(A2)

The use of this enhancement in DB2 V8 is shown in the list of queries in Example 5-11.

Example 5-11 Multiple COUNT(DISTINCT)

SELECT DISTINCT COUNT(DISTINCT(A1)), COUNT(A2) FROM T1
SELECT DISTINCT SUM(DISTINCT(A1)), COUNT(A2) FROM T1
SELECT DISTINCT AVG(DISTINCT(A1)), COUNT(A2) FROM T1
SELECT COUNT(DISTINCT(A1)), COUNT(DISTINCT(A2)) FROM T1
SELECT COUNT(DISTINCT(A1)), AVG(DISTINCT(A2)) FROM T1
SELECT DISTINCT COUNT(DISTINCT(A1)), COUNT(A2) FROM T1 GROUP BY A3
SELECT COUNT(DISTINCT(A1)), SUM(DISTINCT(A2)) FROM T1 GROUP BY A3
SELECT COUNT(DISTINCT(A1)) FROM T1 HAVING AVG(DISTINCT(A4)) > 1
SELECT COUNT(DISTINCT(A1)) FROM T1 WHERE A3 > 0 GROUP BY A2 HAVING AVG(DISTINCT(A4)) > 1

If executed under DB2 V7, all the queries in the example would result in SQLCODE -127.

106 DB2 UDB for z/OS Version 8 Technical Preview

5.12 Sequences
The need for generating sequential numbers was addressed by introducing support for
identity columns in DB2 V6, and enhanced in V7. However, the identity column is a column of
a table and as such is associated and tied with the table. There is a strong requirement to
have efficient stand-alone, sequential-number-generating objects. In 5.14, “Sequences and
identity columns comparison” on page 117 we summarize the differences.

To address this requirement, DB2 DB2 V8 introduces a new SQL data object called a
sequence. This also facilitates the porting of applications across DB2 platforms as well as
non-DB2 platforms.

In the absence of support for sequences, one common-application level implementation is to
maintain a one-row table that contains the sequence number., have each transaction lock this
table, increment the number, and then commit to unlock the table. That is, only one
transaction at a time can increment the sequence number. A variation on this theme would be
to use, for example, SELECT MAX() + 1 WITH RR followed by INSERT using the retrieved
key. Performance bottlenecks can easily occur with this method if high concurrency is
required in updating the sequence number.

In a data sharing environment, the page that contains the counter can constitute a hot spot in
the database, resulting in unpredictable transaction delays caused by inter-system P-lock
negotiation for that page and by buffer invalidation and refresh. This contention inhibits
transaction throughput and the application’s processing power. Moreover, if one DB2 member
fails, retained locks that are held by the failed member can prevent access to the shared
counter from the surviving members.

All the above problems are solved by the introduction of the support for sequences. A
sequence is a user-defined object that generates a sequence of numeric values according to
the specifications with which the sequence is created. This provides a means for the
applications to have the unique numeric key values generated by DB2 and to coordinate keys
across multiple rows and tables. A sequence can be accessed and incremented by many
applications concurrently without waiting.

DB2 does not wait for an application that has incremented a sequence to commit before
allowing the sequence to be incremented again by another application. Applications can use
one sequence for many tables, or create multiple sequences for use of each table requiring
generated key values. In either case, the applications control the relationship between the
sequences and the tables. In addition, the failure of one DB2 member in a data sharing group
never prevents read or update access to the sequence from the surviving members. There
are no retained locks to prevent access to the sequence.

We now look at some examples of the SQL statements to support sequences and the major
parameters.

CREATE SEQUENCE
The CREATE SEQUENCE statement creates a sequence at the application server. This
statement can be issued interactively, embedded in an application program, or dynamically
prepared. DB2 stores the information in the new catalog tables added to support the
sequences: SYSIBM.SYSSEQUENCES, SYSIBM.SYSSEQUENCEDEP and
SYSIBM.SYSSEQUENCEAUTH.

Chapter 5. SQL 107

Figure 5-23 shows the attributes of the CREATE SEQUENCE statement.

Figure 5-23 Sequences — CREATE SEQUENCE statement

The attributes are as follows:

� Sequence name:

The sequence name is a qualified or unqualified name that designates a sequence. A
qualified name is a two-part name consisting of the schema name and an identifier, up to
128 bytes each, separated by a period.

� AS data type

This specifies the data type to be used for the sequence value with default INTEGER.

� START WITH

This specifies the first value for the sequence.

� INCREMENT BY

This specifies interval between consecutive values of the sequence with default 1.

� MINVALUE

This specifies the minimum end point of the range of values for the sequence.

� MAXVALUE

This specifies the maximum end point of the range of values for the sequence.

� CYCLE

This specifies whether the sequence should wrap around and repeat after reaching its
maximum or minimum value.

� CACHE

This specifies whether to keep some pre allocated values in memory for better access.
This is a performance and tuning option: The integer value that optionally follows specifies
the number of values of the sequence for DB2 to preallocate in memory. Pre-allocating
values in the cache reduces synchronous I/O to the catalog table
SYSIBM.SYSSEQUENCES when new sequence numbers are requested.

� NO CACHE

When this option is specified, every request for a new sequence number results in
synchronous I/O to the catalog table SYSIBM.SYSSEQUENCES, since sequence values
are not logically pre allocated in a cache. This is a performance consideration.

CREATE SEQUENCE statement

 CREATE SEQUENCE <sequence-name>
 AS < data type >
 START WITH <numeric value>
 INCREMENT BY <numeric value>
 NO MINVALUE / MINVALUE <numeric value>
 NO MAXVALUE / MAXVALUE <numeric value>
 NO CYCLE / CYCLE
 NO CACHE / CACHE <integer value>

108 DB2 UDB for z/OS Version 8 Technical Preview

ALTER SEQUENCE
Use the ALTER SEQUENCE statement to change the attributes of a sequence.

Figure 5-24 shows what can be done with the ALTER SEQUENCE statement.

This statement can be issued interactively, embedded in an application program, or
dynamically prepared. You can change the INCREMENT BY, MINVALUE, MAXVALUE,
CACHE and CYCLE attributes of a sequence, and optionally restart the sequence from a
point that is different from where it would otherwise have continued.

� Only future values of the sequence are affected by the ALTER statement.

� The data type of a sequence cannot be altered. To change the data type, the sequence
must be dropped and recreated.

� The unused cache values for the sequence may be lost when the sequence is altered.

Figure 5-24 Sequences — ALTER SEQUENCE statement

ALTERing a sequence results in the update of relevant columns of the row that describes the
altered sequence in the SYSIBM.SYSSEQUENCES catalog table. The row is updated to
reflect the new values for parameters explicitly specified with the ALTER statement. Values for
other parameters of the sequence not explicitly specified with the ALTER statement remain
unchanged in the catalog table.

The value of the START field in SYSIBM.SYSSEQUENCES table row is never modified. The
changes to the attributes of a sequence become effective only after the ALTER SEQUENCE
is committed. If the ALTER SEQUENCE request is rejected or rolled back, it would be as if it
never took place. However, unused cache values may be lost.

Note on effect of caching in data sharing: DB2 always generates sequence numbers in
order of request; however, in DB2 data sharing environments where multiple caches could
be active simultaneously when the CACHE option is used, it is possible that the requests
for next value assignments from different DB2 members may not result in the assignment
of values in strict numeric order. For example, if members DB2A and DB2B are using the
same sequence, and DB2A gets the cache of values 1-20 and DB2B gets the cache of
values 21-40, the actual order of values assigned would be 1,21,2 if DB2A requested for
next value first, then DB2B, and then DB2A again. So, if sequence numbers must be
generated in strict numeric order for multiple DB2 members using the same sequence
concurrently in a data sharing environment, then use NO CACHE.

ALTER SEQUENCE statement
 ALTER SEQUENCE <sequence-name>

 INCREMENT BY <numeric value>
 NO MINVALUE / MINVALUE <numeric value>
 NO MAXVALUE / MAXVALUE <numeric value>
 NO CYCLE / CYCLE
 NO CACHE / CACHE <integer value>
 RESTART / RESTART WITH <numeric value>

Chapter 5. SQL 109

DROP SEQUENCE
Use the DROP SEQUENCE statement to drop a sequence.

This statement can be issued interactively, embedded in an application program, or
dynamically prepared. You specify the sequence name and the key word RESTRICT.

RESTRICT prevents the sequence from being dropped if any of the following dependencies
exists:

� A trigger exists such that a NEXT VALUE or PREVIOUS VALUE expression in the trigger
specifies the sequence.

� An in-line SQL routine exists such that a NEXT VALUE or PREVIOUS VALUE expression
in the routine body specifies the sequence.

DROP of a distinct type should fail if the distinct type is being used by a sequence.

When a sequence is dropped, all privileges on the sequence are also dropped, and plans and
packages that refer to the sequence are invalidated.

Dropping a sequence, even if the DROP is rolled back, results in the loss of the
still-unassigned cache values for the sequence.

5.12.1 Usage considerations
You should be aware of the following considerations when using sequence objects:

Sequences that cycle
A sequence can be explicitly defined to cycle by specifying the CYCLE keyword. A NO
CYCLE option (the default) can be altered to be CYCLE at any time during the life of the
sequence.

When the sequence reaches one end point of the logical range, and the cycle option is in
effect, the sequence wraps around to the other end point of the range. The 'end points' of the
range, in this context, are defined by the (user defined or default) MINVALUE and
MAXVALUE values.

Regardless of whether the CYCLE option is in effect or not, a sequence, either a user-defined
sequence or an implicit sequence associated with an identity column, can be RESTARTed
from any point of the defined or redefined range with the ALTER SEQUENCE statement or
the ALTER TABLE (ALTER COLUMN) statement for an identity column.

When defining a sequence with CYCLE, any application conversion tools (for converting
applications from other vendor platforms to DB2) should also explicitly specify MINVALUE,
MAXVALUE and START WITH.

Range of sequence values and cycles
The word 'range' is used in this document to denote a sequence or series between two end
points. The range of a sequence is determined by the combination of the data type and the
MINVALUE, MAXVALUE, START WITH and INCREMENT BY values, either user-specified or
default. The actual maximum value generated for an ascending sequence or minimum value
generated for a descending sequence may not be the same as the MAXVALUE or
MINVALUE (user-defined or default), if the INCREMENT BY value is some thing other than 1
or -1. For example, for a sequence defined with MINVALUE = 1, MAXVALUE = 9, START
WITH = 1 and INCREMENT BY = 3, the logical range of values is from 1 to 7 although the
defined range is from 1 to 9, since 7 is the maximum valid value that can be generated for this
sequence.

110 DB2 UDB for z/OS Version 8 Technical Preview

The first cycle (first set of values) for the sequence always start with the START WITH value.
Subsequent cycles start with MINVALUE for ascending sequence, and MAXVALUE for
descending sequence.

If START WITH < MAXVALUE for an ascending sequence, then the first cycle (first set of
values) for the sequence would contain the values starting from START WITH up to the
maximum possible value within the logical range and the subsequent cycles would contain
the values from MINVALUE up to the maximum possible value within the logical range.

If START WITH > MINVALUE for a descending sequence, then the first cycle (first set of
values) for the sequence would contain the values starting from START WITH down to the
minimum possible value within the logical range and the subsequent cycles would contain the
values from MAXVALUE down to the minimum possible value within the logical range.

If START WITH >= MAXVALUE for an ascending sequence, then the first cycle (first set of
values) for the sequence would contain only the START WITH value, and the subsequent
cycles would contain the values from MINVALUE up to the maximum possible value within the
logical range.

If START WITH <= MINVALUE for a descending sequence, then the first cycle (first set of
values) for the sequence would contain only the START WITH value, and the subsequent
cycles would contain the values from MAXVALUE down to the minimum possible value within
the logical range.

When START WITH falls at the starting end point of the defined range (at MINVALUE for
ascending sequence or MAXVALUE for descending sequence), all cycles of the sequence
will have the same number of values.

Defining a constant sequence
It is possible to define a sequence that would always return a constant value. A constant
sequence can be used as a numeric global variable. ALTER SEQUENCE can be used to
change the constant value or to change the constant sequence into a non-constant
sequence.

If INCREMENT BY is 0, and any of the following conditions is true, then the sequence would
generate a single constant value (= START WITH) repeatedly.

� START WITH value is within the range defined by MINVALUE and MAXVALUE
� START WITH value is less than MINVALUE for an ascending sequence

This is a constant sequence which does not require the CYCLE option to be in effect for the
constant value to repeat.

If INCREMENT BY is #, but START WITH value is greater than MAXVALUE for an ascending
sequence, which means that START WITH is beyond the destination end-point of the range
defined by MINVALUE and MAXVALUE, then the sequence would generate the START WITH
value once; and then, when the next value is requested, if the NO CYCLE option is in effect, it
would return the out-of-range error. Otherwise it would wrap around to the other end-point
(MINVALUE for ascending sequence; MAXVALUE for descending sequence), generate the
first value of the range, and then generate this last value repeatedly.

If INCREMENT BY is not 0, but MINVALUE = MAXVALUE = START WITH, then the
sequence would first generate the START WITH value. In order for this sequence to be a
repeating constant sequence, it requires the CYCLE option to be in effect. For example, if
MINVALUE = MAXVALUE = START WITH = 1, then the sequence first generates 1 value, = 1.
If the NO CYCLE option is in effect for this sequence, then after generating the first value,
when the next value is requested it returns the out-of-range error.

Chapter 5. SQL 111

Consumed values of a sequence
Once DB2 generates a value for a sequence, that value is said to be consumed regardless of
whether that value is utilized by the application or not, and is not reused within the current
cycle. This is true for both sequences and identity columns.

A consumed value may be unutilized when the statement which caused the value to be
generated fails for some reason or is ROLLed BACK after the value was generated.

Generated but unused values may constitute gaps in a sequence.

Gaps in a sequence
Consecutive values in a sequence (either a user-defined sequence or an implicit sequence
associated with an identity column) differ by the constant INCREMENT BY value specified for
the sequence. If it is a sequence associated with an identity column, we refer to
DB2-generated values only. However, gaps can occur in a sequence. Following is a list of
SOME examples of how gaps can be introduced in a sequence:

� A transaction has advanced the sequence and then rolls back.

� The SQL statement leading to the generation of the next value fails after the value was
generated.

� The NEXT VALUE expression is used in the SELECT statement of a cursor in a DRDA
environment where:

– The client uses block-fetch, and not all retrieved rows are FETCHed by the application.

– The sequence or an identity column associated with a sequence is altered and then
the ALTER is rolled back

– The sequence or an identity column table is DROPped and then the DROP is rolled
back.

– The SYSIBM.SYSSEQ table space is stopped, leading to the loss of unused cache
values.

– DB2 is stopped, leading to the loss of unused cache values.

– The DB2 subsystem goes down, leading to the loss of unused cache values.

Values of such gaps are not available for the current cycle, unless the sequence is altered
and restarted in a specific way as to make them available.

Since a sequence is incremented independently of the transaction, a given transaction
incrementing a sequence two times may see a 'gap' in the two numbers that it received if
there are other transactions concurrently incrementing the same sequence. Most applications
can tolerate these, since these are really not “gaps”.

Duplicate sequence values
DB2-generated sequence values are guaranteed to be unique except under the following
circumstances, when duplicate values can happen:

� The CYCLE option is in effect, causing a set of values to be repeated once the sequence
reaches one end of its logical range of values. (The sequence could also be a
CONSTANT-sequence.)

� The sequence is RESTARTed WITH a value that has already been generated.

� The ascending/descending direction of a sequence is reversed by the ALTER statement
(by changing INCREMENT BY value from a positive number to a negative number or vice
versa). This could cause duplicate sequence values.

112 DB2 UDB for z/OS Version 8 Technical Preview

� The system crashes, followed by a COLD START or a CONDITIONAL RESTART that
skips forward recovery, leaving the SYSIBM.SYSSEQUENCES table in an inconsistent
state.

� A point-in-time recovery of the SYSIBM.SYSSEQ table space regresses the
SYSIBM.SYSSEQUENCES table to a prior point-in-time, causing MAXASSIGNEDVAL to
become inconsistent with the actual current point of the sequence.

CACHE considerations
Sequence number allocation can happen faster with caching than without caching, since a
range of sequence numbers can be virtually allocated in DB2 memory when caching is in
effect.

When a cache is virtually allocated, the first value of this cache is assigned to the sequence,
the MAXASSIGNEDVAL column of the SYSIBM.SYSSEQUENCES table is updated to
contain the last value of this cache, and then the subsequent values assigned to the
sequence come from the set of the cache values that have not been assigned yet, until all the
cache values are exhausted. There is no update of the SYSIBM.SYSSEQUENCES table
while the values from a cache, except the very first value, are being assigned.

When caching is not in effect, each assignment of a sequence value results in an update of
the Catalog; and when caching is in effect, the Catalog is only updated when the cache is
refreshed.

Choosing a value for CACHE that is not too small allows you to access more successive
sequence numbers with fewer I/Os to the catalog table. However, if DB2 goes down in the
event of a system failure or shut-down, all still unassigned values in the cache are lost. Such
“lost” values represent a gap in the sequence. To remove such a gap in case of a system
crash or shut-down, the user would need to determine the actual last value assigned for the
sequence, and then ALTER the sequence to RESTART WITH the next logical value.

Effect of CACHE in data sharing
DB2 always assigns the value in order of request. However, when the CACHE option is used,
caches are also reserved in order of request. In a data sharing environment where
transactions from different members can request numbers from a single sequence, each DB2
member gets its own CACHE containing the next available set of n consecutive numbers to
assign, where n is the value specified for CACHE. This means that each member gets the
sequence values from its own cache. Thus, since DB2 generated numbers are assigned in
order of request but possibly from different simultaneously-existing caches, in the data
sharing environment the numbers may not be in strict numeric order, although guaranteed to
be unique.

For example, assume a sequence named SEQ1 that was defined with START WITH = 1,
INCREMENT BY = 1, CACHE = 20, in a data sharing environment. A transaction from
member DB2A requests the first value for SEQ1. It gets the value 1 from its cache of values 1
to 20. Now another transaction from member DB2B requests the next value for SEQ1. Since
each DB2 member gets its own separate cache, DB2B gets the value 21 from its cache of
values 21 to 40. If DB2A issues the next request it would get the value 2. Each member gets
the values from its own cache in numeric order until the cache is exhausted and the next
available cache is allocated; but the numbers assigned are 1, 21, 2, ... in this example.

For data sharing systems, if sequence numbers must be assigned in strict numeric order,
then the NOCACHE option must be used. This consideration does not apply for non-data
sharing subsystems where the assigned numbers are always in strict numeric order, since
there is only one active cache at any given time.

Chapter 5. SQL 113

5.12.2 Using sequences in applications
To create a sequence, use the CREATE SEQUENCE statement. After you create the
sequence, GRANT usage/alter privileges to all users who should be able to use the
sequence.

An application can retrieve the next value in a sequence, or see what its current sequence
value is.

To retrieve the first value and the successive values one by one, use the NEXT VALUE
expression specifying the sequence name. A new sequence number is generated every time
the NEXT VALUE expression is invoked, until all values of the range are exhausted. However,
if NEXT VALUE is invoked multiple times within a query, the number generation happens only
once for each row of the result.

To retrieve the value generated previously within the current session, (after at least one value
has been generated), use the PREVIOUS VALUE expression specifying the sequence name.
The current sequence number can be repeatedly referenced using PREVIOUS VALUE.
There may be multiple instances of a PREVIOUS VALUE expression specifying the same
sequence name within a single statement.

Once defined, sequences can be efficiently used by many users; DB2 does not wait for a
transaction that has incremented a sequence to commit before allowing the sequence to be
incremented again by another transaction.

Example 5-12 shows how to create and use a sequence named “order_seq” and use it for a
table named “orders”.

Example 5-12 Creating and using a sequence

CREATE SEQUENCE order_seq
START WITH 1
INCREMENT BY 1
NOMAXVALUE
NOCYCLE
CACHE 20
INSERT INTO orders (orderno, custno)
VALUES (NEXT VALUE FOR order_seq, 123456);

or,

UPDATE orders
SET orderno = NEXT VALUE FOR order_seq
WHERE custno = 123456;

or,

SELECT NEXT VALUE FOR order_seq INTO :hv_seq from orders;

A program can use the same sequence number as a unique key value in two separate tables
by referencing the sequence number with a NEXT VALUE expression for the first row
(this generates the sequence value), and a PREVIOUS VALUE expression for the other rows
(the instances of PREVIOUS VALUE refer to the sequence value most recently generated).

INSERT INTO orders (orderno, custno)
VALUES (NEXT VALUE FOR order_seq, 123456);
INSERT INTO line_items (orderno, partno, quantity)
VALUES (PREVIOUS VALUE for order_seq, 987654, 1);

114 DB2 UDB for z/OS Version 8 Technical Preview

If NEXT VALUE is invoked in the same statement as the PREVIOUS VALUE then, regardless
of their order in the statement, PREVIOUS VALUE returns the previous non-incremented
value, and NEXT VALUE returns the next value.

To change the attributes of a sequence object, use the ALTER SEQUENCE statement.

5.13 Identity columns enhancements
Some of the new features introduced in sequences are also made available to identity
columns in DB2 V8.

Here we provide a list of the identity column enhancements:

� Allow dynamic ALTER of identity column attributes. The ALTER TABLE (ALTER COLUMN)
SQL statement is extended to allow modifying the attributes of an existing identity column.

� Support the following keywords as part of identity column attribute specification in order to
aid porting from other vendor implementations and stay in sync with sequences:

– NO MINVALUE
– NO MAXVALUE
– NO ORDER
– ORDER

The single-word keywords NOMINVALUE, NOMAXVALUE, NOCYCLE, NOCACHE, and
NOORDER can be used as alternatives to the corresponding two-word variations.

� Allow separator commas between identity column attribute specifications to be optional
(instead of required) when the identity column is defined.

� Allow INCREMENT BY to be 0 for identity columns.

� Allow MINVALUE to be less than OR equal to MAXVALUE (instead of less than only) for
identity columns.

5.13.1 SQL statements for identity column enhancements
The ALTER COLUMN clause of the ALTER TABLE SQL statement is extended to include
identity column specifications, to allow modifying the attributes of an existing identity column,
as described below.

ALTER TABLE statement
Use the “ALTER COLUMN” clause of the “ALTER TABLE” SQL statement to modify the
attributes of an existing identity column, and optionally, to specify continuation of the
sequence associated with the identity column from a new point in the range of values that is
different from where the column values would otherwise have continued.

Only future values of the column will be affected by the changes made using the ALTER
TABLE statement with the ALTER COLUMN clause.

The data type of an identity column CANNOT be altered. To change the data type, the table
containing the column must be dropped and recreated.

The unused cache values of an identity column may be lost when the column attributes are
altered.

ALTERing an identity column's sequence attributes results in the update of relevant columns
of the row that describes the sequence associated with the identity column in the

Chapter 5. SQL 115

SYSIBM.SYSSEQUENCES catalog table. The row is updated to reflect the new values for the
parameters explicitly specified with the ALTER statement.

Values for other parameters of the sequence not explicitly specified with the ALTER statement
remain unchanged in the catalog table. The value of the START field in
SYSIBM.SYSSEQUENCES table row is never modified.

The user is responsible for the effects of ALTERing attributes of the identity column. No check
is done by DB2, at ALTER time, in the context of the existing sequence associated with the
column. For example, if an ascending sequence is now altered to become a descending
sequence (which could create the possibility of duplicate values if NO CYCLE), or the range
of values is extended or shortened by the ALTER, DB2 issues no warning for the ALTER.

The changes to the attributes of an identity column become effective only after the ALTER
statement is committed.

If the ALTER request is rejected or is ROLLed BACK, it would be as if it never took place.
However, unused cache values may be lost.

Any of the attributes of an identity column, except data type, can be specified as part of the
“ALTER TABLE” statement with the “ALTER COLUMN <IdentityColumnName>” clause.

Figure 5-25 shows the syntax for the ALTER TABLE ALTER COLUMN enhancement.

Figure 5-25 Identity columns — altering attributes

If SET GENERATED ALWAYS or SET GENERATED BY DEFAULT is explicitly specified in the
ALTER statement, then the information is recorded in the DEFAULT column of the
SYSIBM.SYSCOLUMNS table.

If SET GENERATED ALWAYS and SET GENERATED BY DEFAULT are both NOT explicitly
specified in the ALTER statement, then the information in the DEFAULT column of the
SYSIBM.SYSCOLUMNS table remains unchanged.

If INCREMENT BY numeric-constant is explicitly specified in the ALTER statement, then the
value in the INCREMENT column of the SYSIBM.SYSSEQUENCES table row is updated to
contain the new value.

Altering identity column attributes

 ALTER TABLE ALTER COLUMN <identity-column-name>
 SET GENERATED ALWAYS / BY DEFAULT
 SET INCREMENT BY <numeric value>
 SET NO MINVALUE / MINVALUE <numeric value>
 SET NO MAXVALUE / MAXVALUE <numeric value>
 SET NO CYCLE / CYCLE
 SET NO CACHE / CACHE <integer value>
 RESTART / RESTART WITH <numeric value>

116 DB2 UDB for z/OS Version 8 Technical Preview

If MINVALUE numeric-constant is explicitly specified in the ALTER statement, then the value
in the MINVALUE column of the SYSIBM.SYSSEQUENCES table row is updated to contain
the new value.

If MAXVALUE numeric-constant is explicitly specified in the ALTER statement, then the value
in the MAXVALUE column of the SYSIBM.SYSSEQUENCES table row is updated to contain
the new value.

If CYCLE is explicitly specified in the ALTER statement, then the value in the CYCLE column
of the SYSIBM.SYSSEQUENCES table row is updated to indicate that the CYCLE option is in
effect.

If CACHE is explicitly specified in the ALTER statement, then the value in the CACHE column
of the SYSIBM.SYSSEQUENCES table row is updated to contain the new cache value.

If RESTART is specified without the WITH numeric-constant, then the sequence associated
with the identity column that is being altered is restarted at the START WITH value specified
implicitly or explicitly when the identity column was defined.

The value of the START field in SYSIBM.SYSSEQUENCES table row is not modified when
the sequence is altered to RESTART (with or without a value).

Using the RESTART option could cause sequence numbers to be duplicates of values
generated by the sequence previously.

Other identity column enhancements
In addition to allowing dynamic ALTER of identity column attributes described above, the
following identity column enhancements are also implemented:

� Support the following keywords as part of identity column attribute specification (during
CREATE TABLE AND ALTER-ADD of an identity column) in order to aid porting from other
vendors and stay in sync with sequences:

– NO MINVALUE
– NO MAXVALUE
– NO ORDER

The single-word keywords NOMINVALUE, NOMAXVALUE, NOCYCLE, NOCACHE, and
NOORDER as alternatives to the corresponding two-word variations.

� Allow separator commas between identity column attribute specifications to be optional
(instead of required) when the identity column is defined.

� Allow INCREMENT BY to be 0 for identity columns.

� Allow MINVALUE to be less than OR equal to MAXVALUE (instead of less than only) for
identity columns.

� Prevent loss of unused cache values at the end of a utility LOAD for an identity column.
There is no LOAD involvement with sequences.

5.14 Sequences and identity columns comparison
Sequences are stand-alone sequence-objects created at user request. They are used by
users for whatever purpose they may choose, while identity columns are sequence-objects
generated and maintained by DB2, and are associated with a particular table.

Chapter 5. SQL 117

Here is a list of the differences:

� The NEXTVAL/PREVVAL expressions (used for retrieving the next/previous value of a
sequence) cannot be used for identity columns. An identity column value can either be
SELECTed, or retrieved using the IDENTITY_VAL_LOCAL function invocation.

� The ALTER SEQUENCE statement cannot be used for identity columns. Identity column
attributes can be altered by using the “ALTER TABLE(ALTER COLUMN)” statement.

� The DROP SEQUENCE, COMMENT ON SEQUENCE, and
GRANT/REVOKE...SEQUENCE statements cannot be used for identity columns.

� Sequences and DB2 V8 identity columns allow INCREMENT BY to be 0, whereas V6 and
V7 identity columns do not.

� Sequences and DB2 V8 identity columns allow MINVALUE to be equal to MAXVALUE. For
V7 identity columns, MINVALUE must be less than MAXVALUE. V6 identity columns do
not support these keywords.

� The set of keywords with which identity column attributes are defined in V6 and V7, with
the exception of the GENERATED keyword, is a subset of the full set of keywords for
defining the attributes of a sequence and DB2 V8 identity columns.

– In V6, identity columns do not support the CYCLE/NO CYCLE, MINVALUE/NO
MINVALUE, MAXVALUE/NO MAXVALUE.

– The V7 identity columns do not support NO MINVALUE and NO MAXVALUE
keywords.

In Figure 5-26 we summarize these differences.

Applications can use sequences to avoid the concurrency and performance problems that
can result when they generate their own sequence numbers.

Figure 5-26 Sequences and identity columns

Sequence objects vs. Identity columns

Sequence Identity columns
Stand-alone object Tied to a table

Can use one sequence for many
tables or many sequences in one table

One to one relationship between
identity and tables

Retrieved via NEXT VALUE FOR /
PREVIOUS VALUE FOR expressions

Retrieved via IDENTITY_VAL_LOCAL
function - within agents scope only

Can be altered via ALTER
SEQUENCE

Can be altered via ALTER TABLE
(ALTER COLUMN)
Prior to V8 could not be altered

118 DB2 UDB for z/OS Version 8 Technical Preview

5.15 Multilevel security
Security, privacy, and auditing have become more important in the last few years. One high
priority requirement is for row-level security for applications that need more granularity in their
security schemes. For example, in organizational hierarchies, it is desirable to set up a
corresponding security hierarchical scheme in which employees can see their own payroll
data, a first line manager can see payroll information on all of the reporting employees, and
so on. In addition, government security schemes often include a security hierarchy such as
TOP SECRET, SECRET, or UNCLASSIFIED.

Also, Web hosting companies need to store multiple customers' data into a single DBMS, and
security and laws on privacy demand row level security. The granularity must be extended
from table level to row level for individual user access to be restricted to a specific set of rows.
Traditionally, views and joins have been the application solution to limit access to selected
rows and columns, but they are cumbersome to construct with the desired level of granularity
and not very effective for update/insert/delete. Triggers, database constraints, and stored
procedures are often needed for update control.

DB2 V8 has several additional security related functions, the RACF exit has additional
capabilities for sequences, the additional REFRESH privilege for MQTs, and the change in
the interface necessary to handle long names.

A major security enhancement with DB2 V8 is the multilevel security (MLS) with row
granularity introduced to support the types of hierarchical security schemes mentioned
above. This support combines with new RACF access control functions available with z/OS
V1R5.

Two central concepts of security are security policy and accountability. A security policy is a
set of laws, rules and practices that regulate how an organization manages, protects and
distributes its sensitive data. It is the set of rules that the system uses to decide whether a
particular subject can access a particular object. Accountability requires that each security-
relevant event must be able to be associated with a subject. Accountability ensures that every
action can be traced to the user who caused the action.

Multilevel security (MLS) is a security policy that allows the classification of data and users
based on a system of hierarchical security levels combined with a system of non-hierarchical
security categories. A multilevel-secure security policy has two primary goals. First, the
controls must prevent unauthorized individuals from accessing information at a higher
classification than their authorization (read up). Second, the controls must prevent individuals
from declassifying information (write down).

In the example in see Figure 5-27, an application wants to have a hierarchy representing the
colors of the rainbow.

At the top of the hierarchy, RAINBOW would be a security label that includes all the colors
(RED, ORANGE, YELLOW, GREEN, BLUE, INDIGO, VIOLET). At the middle of the hierarchy,
you could have other security labels: PASTEL (BLUE, INDIGO, VIOLET) and SUNSET (RED,
ORANGE, YELLOW).

Chapter 5. SQL 119

Figure 5-27 Multilevel security hierarchy

Basically, you are able to activate this support on a table base, and at row level, by adding a
column that acts as the security label. See Figure 5-28.

The first step is to establish the MLS structure in RACF with the security labels. You then add
a column to your table for the security label or seclabel. You can now use the SecureWay
Security Server functions available with z/OS V1R5 for MLS access control. Each row value
has a specific security label value provided by RACF and saved in rows for INSERT, UPDATE,
LOAD. The seclabel in each row is used to compare with the seclabels for the DB2 users for
authority checking. If access is allowed, then normal access to the data row takes place. If
access is not allowed, then data is not returned. Runtime user seclabel values for data
checking are cached to minimize CPU usage.

With the hierarchy established in RACF, the system understands that users with authority to
access RAINBOW can access anything. Users with authority to access PASTEL information
can access any row associated with BLUE, INDIGO, VIOLET, or PASTEL. Users with
SUNSET can access SUNSET, RED, ORANGE, YELLOW. This is much more powerful than
just having an exact match on security label, that is, user's label must exactly match the data's
label, since it has the notion of groups which makes security administration easier to manage
and is an expansion of the existing security concepts.

Multilevel Security

RED

120 DB2 UDB for z/OS Version 8 Technical Preview

Figure 5-28 Row granularity with seclabel

With this additional capability, DB2 is able to implement that type of security scheme without
requiring the application to access the data using special views or predicates.

The terms for comparing seclabels differ from relational algebra, and the combination of
hierarchies and non-hierarchical categories means that the result of a comparison for valid
seclabels has four possible values:

� Dominate: greater than or equal to

� Reverse dominate: less than or equal to

� Equivalence: equal to

Equivalent means that the seclabels are the same or have the same level and set of
categories. One way to check this is to determine whether both dominance and reverse
dominance are true.

� Null: none of the above

SECLABEL definition
To enable the row level security the table must have a column defined in the CREATE/ALTER
TABLE statement with the column-option

AS SECURITY LABEL

Once created with seclabel, the table cannot be disabled. Any column name can be the
security label, but the same column name cannot be used more than once in the same table.
Only one security label is allowed in a table.

The security label column must be data type single byte character, char(8), NOT NULL WITH
DEFAULT. This column cannot have field procedures, edit procedures or check constraints.

Audit records IFCID 0142 are produced every time the table with security label is created,
altered or dropped.

MLS with row granularity

RED

RED

Chapter 5. SQL 121

The security mechanism on a table with MLS row level granularity is mandatory and
automatic, each user has to be identified to SecureWay Security Server with a valid seclabel,
if the user is not known, authorization error occurs and an audit record is produced. The
verification works as follows on DML:

� SELECT:

If the user has a valid seclabel, its value is compared with the data seclabel of the row to
be selected, and if the user seclabel dominates the data seclabel, the row is returned.

If the user seclabel does not dominate the data seclabel, then the row is not included in
data returned, but no error is reported.

� INSERT:

For user with valid seclabel, then the value of the data seclabel column for that row to be
inserted is set to the value of the user seclabel. If a user does not have the write-down
privilege, then the seclabel of inserted rows will be exactly the current seclabel. If the user
does have the write-down privilege, then he or she can set the value of the seclabel
column to any value.

� UPDATE:

For user with valid seclabel, it is compared with the data seclabel of the row to be updated,
if the seclabels are the same then the row updates, if the seclabels are not the same, then
both dominance and reverse dominance are checked. Update is permitted if both are true
and the value of the original data seclabel in the updated row is set to the value of the user
seclabel. A user who has write down authority can access and delete down-level
(dominance) rows, but not up-level (reverse dominance) rows.

� DELETE:

For user with valid seclabel, it is compared with the data seclabel of the row to be deleted
if the seclabels are the same, then row deletes, if the seclabels are not the same, then
both dominance and reverse dominance are checked. The delete is permitted only if both
are true. A user who has write down authority can access and delete down-level
(dominance) rows, but not up-level (reverse dominance) rows.

Utilities have been updated to reflect MLS; the user must be identified to RACF and have a
valid ACEE:

� LOAD RESUME (similar to INSERT)

Without write down permission, seclabel is set to the current seclabel. With write down
permission, the user is permitted to specify the seclabel.

� LOAD REPLACE

This deletes all rows, so write down authority is required.

� UNLOAD and REORG UNLOAD EXTERNAL (similar to SELECT)

Only rows can be unloaded if the user seclabel dominates the data seclabel. No error is
returned if this is not true, but the row is not unloaded.

� UNLOAD and REORG UNLOAD EXTERNAL (similar to SELECT)

Rows can only be unloaded if the user seclabel dominates the data seclabel. No error is
returned if this is not true, but the row is not unloaded.

� REORG DISCARD (similar to DELETE)

For each row unloaded from those tables, if the row qualifies to be discarded, the user
seclabel is compared to the data seclabel. if they are the same then the row is discarded.
If the check for dominance and reverse dominance of the two seclabels are true, then the
row is discarded; otherwise, the row is not discarded.

122 DB2 UDB for z/OS Version 8 Technical Preview

Note that there are requirements for z/OS V1R5 and the Security Server (RACF) V1R5 (or
equivalent function).

MLS scope and requirements
The use of MLS requires z/OS V1R5 and the Security Server (RACF) V1R5 (or equivalent
function).

The following restrictions also apply:

� Referential constraints cannot be defined on a security label column.
� Sysplex parallelism is not used for queries that access a table with a security label column.
� Field procedures are not allowed on a security label column.
� Edit procedures are not allowed on a security label column.
� Trigger transition tables do not have security labels.

Row-level access controls can be used with native DB2 access controls or with RACF access
controls. If you use RACF access controls, then you can define multilevel security for other
objects. Security labels can be used also to define the access controls on most DB2 objects
such as subsystem or data sharing group, database, table space, table, view, schema, plan,
package, collection, stored procedure, UDFs, Java ARchive (JAR), distinct type, sequence,
storage group, and buffer pool. Then, access will require both the discretionary access control
(PERMIT) and the mandatory access control (seclabel comparison). The grouping will
depend upon the hierarchy of the objects.in general, so you will define the seclabel of an
object higher in the object hierarchy to dominate all objects within it.

5.16 MQSeries UDFs
DB2 and MQSeries can be used to construct applications that combine messaging and
database access. It is now possible to integrate MQSeries messaging operations within SQL
statements. This is accomplished via a set of User Defined Functions (UDFs) which
incorporate the MQSeries Application Messaging Interface (AMI).

The same functionality is available also for DB2 V7 by applying the PTF for APAR PQ59549.

The capabilities of MQSeries UDFs are:

� Send and forget
� Read or receive
� Request/response

In Figure 5-29 we show a basic MQSeries configuration.

Chapter 5. SQL 123

Figure 5-29 Basic DB2/MQSeries configuration

The names of the DB2 MQSeries UDFs are as follows:

� MQRead(‘receive-service’ , ‘service-policy’)

– Returns message at the head of the queue specified by receive-service

– Uses the quality of service policy defined in service-policy

– Returns a VARCHAR(4000) containing the message

– Does not remove the message from the queue

� MQReadAll(‘receive-service’ , ‘service-policy’ , ‘num-rows’)

– Returns a table containing the messages and message metadata from the MQSeries
location specified by receive-service

– Uses the quality of service policy service-policy

– Does not remove the message from the queue associated with receive-service

� MQReadClob('receive-service' , 'service-policy')

– Returns a message at the head of the queue specified by receive-service

– Uses the quality of service policy defined in service-policy

– Does not remove the message from the queue

– Returns a CLOB of 1MB maximum length, containing the message

� MQREADAllClob('receive-service' , 'service-policy' , 'num-rows')

– Returns a table containing the messages and message metadata from the MQSeries
location specified by receive-service

– Uses the quality of service policy service-policy

– Does not remove the messages from the queue

– Returns a maximum of num-rows messages if num-rows is specified

– Returns all messages if num-rows is not specified

MQSeries
AMI

Repository

MQ Series

DB2
client

DB2
client

DB2
client

MQ Series
Functions

MQ Series
Functions

DB2

Basic DB2/MQ Configuration

z/OS

124 DB2 UDB for z/OS Version 8 Technical Preview

� MQSend('send-service' , 'service-policy' , 'msg-data' , 'correl-id')

– Sends the data contained in msg-data to the MQSeries location specified by
send-service

– Uses the quality of service policy defined by service-policy

– Specifies a correl-id for a message (optional)

– Returns a value of '1' if successful or a '0' if unsuccessful

� MQReceive('receive-service' , 'service-policy' , 'correl-id')

– Returns a message from the MQSeries location specified by receive-service

– Uses the quality of service policy service-policy

– Returns the message at the head of the queue if correl-id is not specified

– Return value is a VARCHAR(4000) containing the message

– Returns null if no messages are available

– Removes the message from the queue associated with receive-service

� MQReceiveAll('receive-service' , 'service-policy' , 'correl-id' , 'num-rows')

– Returns a table containing the messages and message metadata from the MQSeries
location specified by receive-service

– Uses the quality of service policy service-policy

– Removes the messages from the queue associated with receive-service

– Returns messages with a matching correlation identifier if correl-id is specified

– Returns a maximum of num-rows messages if num-rows is specified

� MQReceiveClob('receive-service' , 'service-policy' , 'correl-id')

– Returns a message from the MQSeries location specified by receive-service

– Uses the quality of service policy service-policy

– Removes the message from the queue associated with receive-service

– Returns the first message with a matching correlation identifier if correl-id is specified

– Returns a CLOB with a maximum length of 1MB containing the message

– Returns NULL if no messages are available

� MQReceiveAllClob('receive-service' , 'service-policy' , 'correl-id' , 'num-rows')

– Returns a table containing the messages and message metadata from the MQSeries
location specified by receive-service

– Uses the quality of service policy service-policy

– Removes the messages from the queue associated with receive-service

– Returns a CLOB with a maximum length of 1MB containing the message

– Returns a maximum of num-rows messages if num-rows is specified

DB2 provides two flavors of these MQSeries functions. One flavor supports only single-phase
commit and is identified by a schema name of DB2MQ1C. The second flavor supports
two-phase commit and is identified by a schema name of DB2MQ2C. Each flavor of the
functions should run under a separate WLM environment and WLM will need to be
customized for running MQSeries UDF support.In Figure 5-30 you can see a high level view
of this environment.

Chapter 5. SQL 125

Figure 5-30 MQSeries UDF environment

5.17 ASCII flag for compile
z/OS V1R2 C and C++ compilers have introduced a new compiler option called the ASCII
option. This option, when specified, sets a flag in the control structure produced by the
compiler and used by the LE environment and tells LE that the program is an ASCII program,
although the program itself is written in EBCDIC. The argv input to main is in ASCII and
library functions expect ASCII arguments. Thus, the compiler converts all of character
constants and string literals that appear in the program from the codepage that the source is
written in to ASCII (ISO8859-1 codepage for character constants and literals or UCS-2 for
wide constants and literals).

The precompiler generates some character string literals in the modified source program.
Character string literals currently generated by the Precompiler are:

� Program name in RDI
� SQLDA ID
� Location-name in the CONNECT statement
� Procedure-name in the CALL statement
� Cursor-name in the ALLOCATE CURSOR statement

In order for DB2 for z/OS to function properly, these precompiler generated string literals will
not be converted to ASCII by the compiler even when the ASCII option is specified. These
string literals will always be generated by the precompiler as hexadecimal string literals
instead of character string literals. In Example 5-13 we can see the effects of the ASCII option
on a program.

Set up the environment for user-defined function

application program WLM-Established
Address space DB2 System SP address space

EXEC SQL
select
MQSEND
from EMP

MQSeries
Functions

Package A
select

MQSEND('1')...
invoke prog A
select
MQSEND('1')
from EMP

 The user-defined function environment

126 DB2 UDB for z/OS Version 8 Technical Preview

Example 5-13 Sample program with ASCII option

Here is the sample program after being processed by the precompiler
and with the ASCII option turned on

/***$$$
 EXEC SQL CONNECT TO "SANTA_TERESA_LAB"
$$$***/
 strcpy(SQLTEMP,
 "\xE2\xC1\xD5\xE3\xC1\x6D\xE3\xC5\xD9\xC5\xE2\xC1\x6D\xD3\xC1\xC2");
 {
 SQLPLIST SQLPLIST1 =
 {64, 16384, 30, "\xD7\xD4\xC7\xF8\xF4\xF1\x40\x40", 0, 0, 0, 0,
 0, 0, 0, 0, 0, 769, 23};
 SQLELTS_PTR SQLELTS_PTR1;
 struct
 { char SQLDAID??(8??);
 long SQLDABC;
 short SQLN;
 short SQLD;
 char SQLPVELT??((sizeof(SQLELTS) * 1) ??);
 } SQLPVARS1;
 SQLELTS_PTR1 = (SQLELTS *) &SQLPVARS1.SQLPVELT;
 SQLELTS_PTR1->SQLTYPE = 460;
 SQLELTS_PTR1->SQLLEN = 17;
 SQLELTS_PTR1->SQLADDR = (char *)
 &(SQLTEMP);
 SQLELTS_PTR1->SQLIND = NULL;
 SQLELTS_PTR1->LENGTH = 8;
 memcpy(SQLELTS_PTR1->DATA,
 "\x00\x00\x03\xA2\x00\x00\x00\x00", 8);
 SQLELTS_PTR1 = SQLELTS_PTR1 + 1;
 strcpy(SQLPVARS1.SQLDAID, "\xE2\xD8\xD3\xC4\xC1\x4E\x40\x08");
 SQLPVARS1.SQLDABC = 60;
 SQLPVARS1.SQLN = 1;
 SQLPVARS1.SQLD = 1;
 SQLPLIST1.SQLVPARM = (char *) &SQLPVARS1.SQLDAID;
 SQLPLIST1.SQLCODEP = (char *) &sqlca;
 SQLPLIST1.SQLTIMES??(0 ??) = 0x16FC;
 SQLPLIST1.SQLTIMES??(1 ??) = 0xDECB;
 SQLPLIST1.SQLTIMES??(2 ??) = 0x1E53;
 SQLPLIST1.SQLTIMES??(3 ??) = 0x200C;
 DSNHLI ((unsigned int *) &SQLPLIST1);
 }

Chapter 5. SQL 127

128 DB2 UDB for z/OS Version 8 Technical Preview

Chapter 6. e-business

In this chapter we discuss the following topics:

� IBM DB2 Universal Driver for SQLJ and JDBC features
� Unicode support
� ODBC enhancements
� XML publishing functions
� CURRENT PACKAGE PATH special register
� DDF communication database enhancements
� Enhancements for stored procedures and UDFs
� Miscellaneous enhancements

6

© Copyright IBM Corp. 2003. All rights reserved. 129

6.1 IBM DB2 Universal Driver for SQLJ and JDBC features
The current client (prior to DB2 V8) for Linux, UNIX, Windows and OS/2 platforms provides
the basis for three distinct products, DB2 Run-Time Client, also known as the Client
Application Enabler (CAE), the DB2 Application Development Client, formerly known as the
Software Development Kit (SDK), and DB2 Connect Personal Edition. DB2 Connect
Enterprise Edition is based on a combination of the UNIX, Windows, OS/2 engine
infrastructure and DB2 Connect Personal Edition. Each product is positioned as either the
client for a Linux, UNIX, Windows application server, or the client for a z/OS database server.

Currently, access to a Linux/UNIX/Windows (LUW) server and a z/OS server use different
database connection protocols, for example, DB2RA, DRDA, “net driver”. Each protocol
defines a different set of methods to implement the same functions. To provide transparent
access across the DB2 Family, the database connection protocols are now standardized, and
all of them use the Open Group’s DRDA Version 3 standard, which provides an open,
published architecture that enables communication between applications, application servers
and database servers on platforms with the same or different hardware and software
architectures. This new architecture is called the Universal Driver. The first deliverable of this
new architecture is the IBM DB2 Universal Driver for SQLJ and JDBC Version 1.0, also
known as the IBM Java Combined Client.

The Universal Driver is architected as an abstract JDBC processor that is independent of
driver-type connectivity or target platform. (More more information on driver types, see 6.1.1,
“IBM JDBC Type 4 driver” on page 131.) The IBM DB2 JDBC Universal Driver is an
architecture-neutral JDBC driver for distributed and local DB2 access.

Since the Universal Driver has a unique architecture as an abstract JDBC state machine, it
does not fall into the conventional driver-type categories as defined by Sun. Because the
Universal Driver is an abstract machine, driver types become connectivity types.

This abstract JDBC machine architecture is independent of any particular JDBC driver-type
connectivity or target platform, allowing for both all-Java connectivity (Type 4) or JNI-based
connectivity (Type 2) in a single driver. A single Universal Driver instance is loaded by the
driver manager for both Type 4 and Type 2 implementations. Type 2 and 4 connections may
be made (simultaneously if desired) using this single driver instance.

Objectives
The new common runtime environment fulfills the following key requirements:

� Have a single driver for Linux, UNIX, Windows and z/OS. This eliminates the major cause
of today’s Java porting problems and also enables to deliver performance and functional
enhancements quicker (since they only need to be developed once).

� Enhance the current API to provide a fully compliant JDBC 2.0 driver, for both a Type 2
and Type 4 JDBC driver. The enhanced functionality will not be in the current Type 2 driver.
It is only made available in the new Universal Client based Type 2 driver. The current Type
2 driver will be shipped for compatibility reasons, but will not be enhanced.

� Reduce the client footprint. Footprint reduction is achieved by eliminating the multiple
layers of processing which reduces both disk and memory consumption on the client.
An additional gain is made by partitioning the client into three distinct components:

– A C based client supporting all SQL and CLI/ODBC access (this will not be discussed
any further in this section, as we are focusing on the Java part).

– A Java based client supporting all SQLJ and JDBC access.

130 DB2 UDB for z/OS Version 8 Technical Preview

– An administrative client providing a consistent set of administrative function, including
replication, across all platforms. This is not discussed any further, as we concentrate
on the Java client.

Each of the components above can be installed separately, or as any combination of the
three, to allow consistent access to both a LUW server, and a z/OS server without any
additional installation steps.

� Provide a full Java application development process for SQLJ, by:

– Providing a fully portable customized SQLJ profile
– Enabling the bind of DB2 packages from the client (using the Type 4 driver)

� Trace improvements, by allowing:

– Turning traces on and off dynamically, and
– Allowing multiple levels of tracing, with different levels of detail

The new Universal Driver for SQLJ and JDBC is made available in DB2 V7 as well via the
maintenance stream.

Benefits for DB2 UDB for z/OS
At first glance this change might look like something that only impacts DB2 UDB for LUW and
DB2 Connect users. This is certainly not the case, as explained hereafter:

� First, and most importantly, because of a common code base, the functions provided on
DB2 UDB for LUW and DB2 UDB for z/OS is exactly the same, not just similar. This largely
improves DB2 Family compatibility. For example, it enables users to develop on LUW, and
deploy on z/OS without having to make any change.

� As mentioned before, there are also many functionality enhancements to the Java API for
the (Universal Driver based) Type 2 and the new Type 4 JDBC driver, to make it fully
compliant with the JDBC 2.0 standard.

� With the elimination of the “private protocols” used by the LUW clients in previous
versions, using DRDA will render better performance.

� Ease of installation and deployment. The Java type 4 driver is 100% Java code, without
dependencies on a runtime or DLL. Installation is merely a copy operation of a .jar and .zip
file. Deployment on z/OS can now be completely done from the workstation.

Functional enhancements
Not only will the new DB2 Universal Driver bring more consistent application behavior, it also
introduces several new functions, making it fully JDBC 2.0 compliant, such as:

� Java API enhancements
� Nested stored procedure result sets for JDBC and ODBC applications
� Extended DESCRIBE
� SQLcancel
� LOB streaming

6.1.1 IBM JDBC Type 4 driver
Not only does DB2 V8 provide a new JDBC driver architecture, known as the IBM DB2
Universal Driver for SQLJ and JDBC. IBM also delivers a JDBC Type 4 driver for the first time.
This driver is also shipped with DB2 UDB for LUW Version 8.

Chapter 6. e-business 131

As a reminder, we give a brief description of the JDBC driver architectures based upon the
JDBC 3.0 specification:

Type 1: Drivers that implement the JDBC API as a mapping to another data access API,
such as ODBC. Drivers of this type are generally dependent on a native library,
which limits their portability. The JDBC-ODBC bridge driver is an example of a
Type 1 driver.

Type 2: Drivers that are written partly in the Java programming language, and partly in
native code. The drivers use a native client library specific to the data source to
which they connect. Again, because of the native code, their portability is
limited. Notice that a Type 2 has a native component that is part of the driver
and is separate from the database access API.

Type 3: Drivers that use a pure Java client and communicate with a middleware server
using a database independent protocol. The middleware server then
communicates the client's requests to the data source.

Type 4: Drivers that are pure Java and implement the network protocol for a specific
data source. The client connects directly to the data source. In case of the
Universal Driver, the DRDA protocol is used to talk directly to the data source.

Using the Type 4 driver, a client application can now talk directly to DB2 UDB for z/OS,
without going through DB2 Connect (although a DB2 Connect licence is required to be able to
use the Type 4 driver).

The support of a Type 4 driver, combined with a fully portable SQLJ customized profile, will
allow WebSphere to provide better tooling to support the development of SQLJ applications.

6.1.2 New IBM JDBC Type 2 driver
In addition to a brand new Type 4 driver, DB2 V8 delivers a newType 2 driver as well. It is also
based on the same common code base of the Universal Driver for SQLJ and JDBC. The
current Type 2 driver (available since DB2 V5) will still be shipped with V8 for compatibility
reasons, but will not be enhanced. All enhancements described hereafter are only available
with the new Type 2 driver delivered with Universal Driver for JDBC and SQLJ.

6.1.3 Java API enhancements
The current API has been enhanced to provide a fully compliant JDBC 2.0 driver, for both the
Type 2 and Type 4 JDBC driver. The enhanced functionality will not be made available in the
current Type 2 driver. It will only by made available in the new DB2 Universal Driver based,
Type 2 driver. Among these enhancements are:

� Scrollable cursor support (exploiting DB2 engine scrolling).

� Batch updates support.

� Improved security for DB2 authentication.

� Improved Java SQL error information via the DB2Diagnosable class. This class allows
reporting of the contents of the SQLCA and SQL error message text.

Note: The number in the driver type has no meaning whatsoever. Do not assume that
because 4 is greater than 2, that a Type 4 driver is better than a Type 2 driver. In fact, a
Type 2 driver is almost certain to outperform a Type 3 or Type 4 driver, because it does not
have to route through a network layer. Normally, a Type 2 driver is the best suitable driver
from the point of view of performance and scalability.

132 DB2 UDB for z/OS Version 8 Technical Preview

� “Native” DB2 server SQL error messages can be returned when explicitly requested by the
getSQLErrorMessage() method. EachDB2 server provides an “error message” stored
procedure to allow a DB2 Client to retrieve the “native” message text from the target DB2
server.

� Java API for Set Client Information (SQLESETI).

In the meantime, development is underway to deliver a JDBC 3.0 compliant Universal Driver.

6.1.4 SQLJ
SQLJ support has been around for a while now. It provides superior performance, because it
uses static SQL (in contrast to JDBC that uses dynamic SQL), and uses a powerful
authorization model (like static SQL in other programming languages).But prior to the
Universal Driver, the development and deployment of SQLJ applications was somewhat
cumbersome.

Existing SQLJ program preparation process
Figure 6-1 shows the existing SQLJ program preparation process. After creating the
serialized profile by means of the SQLJ translator, you have to execute the db2profc utility to
create a DBRM, and then bind the DBRM into a set of packages (one package for each
isolation level, UR, CS, RS, and RR). Even if you prefer to develop your Java applications on
a workstation, the (uncustomized) serialized profile has to be shipped to the host before you
can run the db2profc utility. This is because db2profc creates DBRMs, which are a DB2 UDB
for z/OS and OS/390 only feature.

The db2profc utility also creates a customized serialized profile. Unfortunately, after
customization, the profile is no longer portable.

Figure 6-1 Existing SQLJ preparation process

Customized
serialized

profile

DBRM
PackageDBRM

Source
program

Modified
source

Java
class file

Serialized
profile

 SQLJ
Translator

Compile

DB2
BindDBRM

DBRM
PackageDBRM

Package

One for each
isolation level

One for each
isolation level

Customize on each
server platform

(DB2PROFC)

.sqlj

.java .class

.ser

Chapter 6. e-business 133

Universal Driver SQLJ program preparation process
Using the new Universal Driver, DBRMs (or .bnd files) are no longer required, as shown in
Figure 6-2. Using the db2sqljcustomize command, you can customize the serialized profile
and bind the packages at the same time against the target DB2 system. With the Type 4
driver, we connect from any platform directly to the target DB2 system, do the online checking
(highly recommended), and bind the packages on the target DB2 system.

Figure 6-2 Universal Client SQLJ preparation process

For example, when you develop on the workstation, using WebSphere Studio Application
Developer (WSAD), you may now use the Type 4 driver to bind the packages against the DB2
UDB for z/OS system. You no longer have to ship the uncustomized profile to the z/OS
system for customization.

In addition, the new Universal Driver customizes the serialized profile in such a way that it
remains portable. You can execute using the same customized program files against any
platform, as long as the db2sqljbind utility was used to connect to the new location and bind
the correct program packages.

WSAD Version 5 will provide support for this new application development scheme used by
the Universal Driver for SQLJ and JDBC.

Source
program

Modified
source

Java
class file

Serialized
profile

 SQLJ
Translator

Compile

DBRM
PackageDBRM

Package

One for each
isolation level

Customize on each
server platform

.sqlj

.java .class

.ser

Optional
implicit bind call

Customized
serialized

profile

Serialized
profile

(db2sqljcustomize)

db2sqljbind

.ser

134 DB2 UDB for z/OS Version 8 Technical Preview

6.1.5 Nested stored procedure result sets for JDBC and ODBC applications
Up to V7 it is not possible for a JDBC or a CLI application to have more than one instance of
an open result set cursor. Figure 6-3 shows that an attempt to open a cursor that is already
open from the previous call of the same procedure fails within DB2 UDB for OS/390 and
z/OS. DB2 returns an error because the cursor is already open from the previous call.

Figure 6-3 Nested stored procedure result sets

With the new Universal Java Client, as well as using ODBC/CLI applications on Linux, UNIX
Windows, and z/OS, you can now have multiple instances of the same result set cursor open
concurrently. This nesting of instances is possible for up to 16 instances. The DB2 server now
provides a unique identifier to the requester for each open cursor or result set. The request
can then manage the multiple instances using the unique cursor identifier.

6.1.6 Extended DESCRIBE
Some applications require a great deal of descriptive information to be returned from the
server. With this enhanced function, the requester can control the amount and the type of
information returned from a prepare, a describe, a query or an execution of a stored
procedure.

ODBC/CLI (on LUW) and JDBC applications can request database metadata through a
standard set of APIs. In order for ODBC/CLI and JDBC drivers to accurately return this
information, they must be sensitive to the underlying database server which the application is
requesting the information about.

The extended describe feature is enabled by the DESCSTAT DSNZPARM (as well as the
enhancements to the DRDA flow). It provides:

� Additional descriptive information for a cursor or a result set

� Information about whether or not a column can be updated

� Information about whether or not a column is a primary key and/or a preferred candidate
key member

� Information about whether or not a column is an expression or an actual column

� Information about whether or not a column is a generated column or a real table column

� The fully qualified view or table name, location.schema.name

� The fully qualified column name, location.schema.name

For example, a DB2 server can provide extended descriptive information to support the JDBC
2.0 updateRow and deleteRow methods.

Prog1
....
Call Procedure1

Procedure1
....
Open C1
Call Procedure1

Procedure1
....
Open C1

Chapter 6. e-business 135

6.1.7 SQLcancel
The SQL cancel() statement allows an ODBC/CLI or JDBC application to cancel an SQL
request long running on a DB2 server. Note that SQL cancel() is at a more granular level than
the DB2 -CANCEL THREAD command. SQLcancel() only rolls back the currently executing
SQL statement, not the entire unit of work. In addition, the thread is not destroyed in the
process, but is allowed to continue processing.

If the database server is not in an interruptible state, the request completed before DB2 can
interrupt, or the request is not interruptible, then DB2 returns a DRDA reply message back to
the client confirming the attempt. A new sqlcode -952 is returned if the SQL statement was
interrupted (roll back worked). If the SQL statement just reads the data (not write), then we
issue -952 even if rollback did not work.

Currently only dynamic SQL statements are interruptible. Stored procedures cannot be
interrupted. Transaction level SQL statements like connect, commit and rollback cannot be
interrupted. Even bind package cannot be interrupted.

6.1.8 LOB streaming
In prior releases, Universal Clients and Linux/UNIX/Windows servers had to read the entire
LOB to determine its length prior to flowing it to DB2.

With this improvement, when using the DRDA flow, DB2 V8 is able to read in the LOB
immediately without knowing the exact length up-front.

The main benefit is performance. But there is another advantage. It is not always possible to
determine a LOB's attributes (like length and nullness) up-front, for example when a client is
acting on behalf of a CLI application that is being supplied with chunks of a LOB value in a
piecemeal fashion using the SQLPutData API. Therefore this improvement provides a more
flexible mechanism whereby the sender can defer indicating the nullness and/or the length of
a LOB value until a chunk is ready to be sent.

The new Universal Driver for SQLJ and JDBC also benefits from this enhancement for Type 4,
and Type 2 drivers on both z/OS and distributed platforms.

6.2 Unicode support
DB2 UDB for OS/390 and z/OS is increasingly being used as a part of large client server
systems. In these environments, character representations vary on clients and servers across
many different platforms and across different geographies. One area where this sort of
environment exists is in the data centers of multinational companies. Another example is
e-commerce. In both of these examples, a geographically diverse group of users interact with
a central server, storing and retrieving data.

The traditional way of encoding characters requires hundreds of different encoding systems,
because no single encoding scheme is adequate for all the letters, punctuations, and
technical symbols in common use. These encoding systems also conflict with one another,
because two encoding schemes can use the same codepoints for different characters.

In order to get rid of these problems, the support of the Unicode encoding scheme was
introduced in DB2 V7. Refer to the redbook DB2 UDB Server for OS/390 and z/OS Version 7
Presentation Guide, SG24-6121 to learn more about Unicode and the functions which have
been introduced with DB2 V7.

136 DB2 UDB for z/OS Version 8 Technical Preview

The Unicode support that was introduced in DB2 V7 allows you to store data in Unicode.
However, being able to store data in Unicode is not enough to solve all code page related
problems. For example, DB2, in V7, does not allow you to join tables with different encoding
schemes. You cannot join an EBCDIC table with a Unicode table.

With DB2 V8, considerable new functionality is added to improve the use of the Unicode
encoding scheme. Those improvements include:

� Unicode parsing of SQL and utility statements
� Unicode catalog
� Possibility of using multiple CCSIDs per SQL statement
� ODBC Unicode support

These improvements require that your z/OS Conversion Services and your DB2 CCSID and
Unicode definitions are properly set up. See 10.2, “Major changes to installation and
migration” on page 243, and Appendix A, “Unicode definitions” on page 263 for details.

6.2.1 Unicode parser
The use of an EBCDIC parser in a DB2 subsystem that is used for global e-commerce
creates a few interesting problems.

� One problem is that if a single source of SQL statements includes string constants from
multiple locales, you must use one of the following techniques to handle it:

– Host variables (or parameter markers for dynamic SQL) and DECLARE VARIABLE (or
a descriptor)

– Hexadecimal string constants

Both techniques are obviously not very convenient.

� A second problem is that various EBCDIC code pages are inconsistent regarding code
points of various characters. Those characters include “$@#|¬
For example, some EBCDIC CCSIDs represent the “¬“ character as a different hex code
point than CCSID 37 uses. The DB2 V7 parser always uses CCSID 37, irrespective of the
system EBCDIC code page you specified during installation. The result is that you have to
use alternate syntax in your statements:

SELECT C1 FROM T1 WHERE C1<> ‘A’;

instead of:

SELECT C1 FROM T1 WHERE C1 ¬= ‘A’;

As stated previously, the support of Unicode encoding in DB2 V7 allows you to store your
data in Unicode. DB2 V8 introduces the Unicode parser. This adds some of the key
functionalities which will lead you from a basic Unicode implementation (data only), to full
Unicode exploitation.

Unicode parsing in V8 transforms the traditional code page 37 EBCDIC parser into a parser
which accepts either syntax regardless of the EBCDIC system CCSID. The Unicode parser
converts all SQL statements that are not currently encoded as Unicode UTF-8 to that format
before parsing.

Chapter 6. e-business 137

6.2.2 Program preparation with new Unicode precompiler
When migrating your DB2 UDB for OS/390 and z/OS from V7 to V8, you must go through
three different modes. Independent of the question in which mode you are currently running
your DB2 subsystem, any mode of DB2 V8 now uses a Unicode precompiler (or precompiler
services). The Unicode precompiler converts the program source code to Unicode UTF-8,
performs the precompilation and than converts all statements, including the generated and
modified statements back to the system CCSID as specified on the panel DSNTIPF during
installation.

Apart from the modified source, the Unicode precompiler also generates the corresponding
DBRM. If you do not specify any additional precompiler options, the DBRM is generated in
EBCDIC, as long as your subsystem is not running in New Function Mode (NFM).

NEWFUN precompiler/coprocessor option
Only NFM allows the use of new SQL functions. Since the precompiler executes outside DB2,
it cannot ascertain the current mode of DB2. Therefore, a new precompiler option (NEWFUN)
has been added which tells the precompiler whether or not to allow new syntax, as well as to
tell whether or not to produce a DBRM in EBCDIC or Unicode.

If you specify a value of NEWFUN(NO), the precompiler rejects any source SQL statements
that contain new V8 syntax. A successful precompilation produces an EBCDIC DBRM, which
is compatible with DB2 V7 and earlier releases. The DBRM can be bound on DB2 V7 or V8.

If you specify a value of NEWFUN(YES), the precompiler accepts source SQL statements
that contains new V8 SQL syntax. A successful precompilation produces a DBRM that is
marked as V8-dependent and therefore not compatible with V7. This happens regardless of
whether the program contains new syntax or not. As a consequence it can neither be bound
on a V7 nor on a V8 subsystem which is not yet running in NFM. The DBRM which is
produced as a result of the precompilation is in Unicode.

The default value for the NEWFUN precompiler parameter is set to NO during compatibility
and EFN mode.
For a new V8 subsystem or for a subsystem which has successfully been converted to NFM,
the default changes to YES.

This behavior is also illustrated in Figure 6-4. As you can see, regardless of whether
NEWFUN is set to YES or NO, DB2 invokes the V8 parser. The V8 parser uses Unicode
UTF-8 for parsing. If the source program’s SQL statements are not in UTF-8, the precompiler
converts them to UTF-8 for parsing.

Important: The advantage of changing the default is that there is no need to change all the
precompile jobs once you get to NFM.

138 DB2 UDB for z/OS Version 8 Technical Preview

Figure 6-4 Program preparation using the NEWFUN keyword

CCSID(n) precompiler/coprocessor option
In addition to NEWFUN, a second new precompiler option (CCSID(n)) has been added. The
new option enables the DB2 precompiler to prepare application programs written in any
CCSID. Until now, the DB2 precompiler expected the source programs to be coded in the
CCSID specified on the panel DSNTIPF during installation. Therefore the portability of
application programs developed on a system other than the default encoding scheme used to
be a problem.

In Version 8, the precompiler first converts the complete source program from the specified
code page to Unicode UTF-8. Then, the ‘real’ precompiling is done in UTF-8. After that, the
modified source is converted back to the specified CCSID, so the final result of the
precompilation is a modified source program file in specified CCSID.

Since CCSID(n) is only valid in combination with NEWFUN(YES), the generated DBRM will
always be Unicode.

Although this new precompiler option now provides you the possibility to use source
programs written in any available CCSID, you have to make sure that the language compiler
can handle that codepage correctly. For example, if you specify CCSID(500) for the
precompile, the COBOL compilation should also be done using codepage 500.

Load Module

Application
source

Unicode
DBRM

Listing,
Messages

Unicode
Parser

Linkage
Editor

Modified
Source

DB2
Bind

Runnable
Program

Object
Module

Plan/Package

Compiler

Unicode
Precompiler

EBCDIC
DBRM

YES

NO

NEWFUN ?

Chapter 6. e-business 139

Hexadecimal string constants
Since it is not easy to enter Unicode or Graphic characters unless you are equipped with a
correct keyboard, DB2 V8 now supports two new types of hexadecimal graphic string
constants. Hexadecimal Unicode or graphic strings allow you to enter them from any
keyboard.

UX’xxxx’
UX’xxxx’ represents a string of graphic Unicode UTF-16 characters, where x is a hexadecimal
digit. The number of digits must be a multiple of 4. Each group of 4 digits represents a single
UTF-16 character.

GX’xxxx’
GX’xxxx’ represents a string of graphic characters, where x is a hexadecimal digit. The
number of digits must be a multiple of 4. Each group of 4 digits represents a single DBCS
graphic character.

Length of string constant
Up to DB2 UDB for OS/390 and z/OS V7, the maximum length of a string constant was 255
bytes. To accommodate the lengthening of keys and predicates, in V8 this limit is increased to
32704 bytes in most places.

6.2.3 Utility Unicode parser
As stated previously, DB2 V8 extends its Unicode support in many different areas. One effect
can be that Unicode object names contain characters that can not be translated back to
EBCDIC. In this case, to avoid problems, the utility control statements must be written in
Unicode. The DB2 V7 utility parser is not able to interpret utility statements written in Unicode.

DB2 V8 on the other hand, accepts utility statements written completely in Unicode UTF-8 or
EBCDIC. A mixture of both encoding schemes is not allowed in utility control statements.

The primary use of this parser probably has to be seen in conjunction with UNIX and Intel
based platforms products and features such as CC/390 and ERM applications. For use of
remote utility processing, a new stored procedure DSNUTILU has been created. Refer to 7.3,
“Unicode” on page 194 for additional information regarding this stored procedure.

6.2.4 Multiple CCSIDs per SQL statement
Initially DB2 did not need to store CCSID values. In an isolated EBCDIC world, it was
sufficient to know whether data was single, mixed or double byte. With the introduction of
distributed data in DB2 for MVS V2.2, it became important for DB2 to know the specific
CCSID value associated with the subtypes, even though only a single EBCDIC encoding
scheme was supported. DB2 for MVS V5 added the ability to store character data with an
ASCII encoding scheme. However, you were still restricted to one set of EBCDIC or ASCII
CCSIDs per DB2 subsystem.

Unicode was introduced to DB2 UDB for OS/390 and z/OS V7 to address the problems of
users in many different geographies interacting with one DB2 server, because it is able to
represent the characters of many different geographics and languages. Though DB2 UDB for
OS/390 and z/OS now supports all three encoding schemes, DB2 V7 still does not allow you
to reference table objects defined with different encoding schemes in the same SQL
statement.

140 DB2 UDB for z/OS Version 8 Technical Preview

With DB2 V8, this restriction is removed. Once your DB2 subsystem runs in ENFM, it allows
you to access multiple CCSID sets per SQL statement. Apart from the general improvement
that this new feature introduces, it is absolutely necessary for you if you currently have
applications where you, or a vendor product, join DB2 catalog tables with your own EBCDIC
tables. Without this feature, all of these statements would run into errors. Most of the other
new features of DB2 V8 are only available once you successfully migrate to NFM. This feature
is an exception, because already during ENFM the catalog tables are step by step migrated to
Unicode.

When a statement references table objects with multiple CCSID sets, there is a need to
determine which CCSID set to use in the various semantic rules. This need further requires
every string expression, such as a string constant, a special register, etc. in the statement to
have a CCSID associated to it. Example 6-1 shows the importance of knowing the CCSID
associated with the string constants in the predicates.

Example 6-1 Multiple CCSID SQL statement — 1

SELECT ET1.C1, UT1.C1
FROM ET1,UT1
WHERE ET1.C1 = X’C1C2C3’
AND UT1.C1 = X’414243’

The statement joins two tables, an EBCDIC table ET1 and a Unicode table UT1. The EBCDIC
column ET1.C1 is compared with a hexadecimal constant X’C1C2C3’. The Unicode column
UT1.C1 is compared with a hexadecimal constant X’414243’.

Should the hexadecimal constants use EBCDIC or Unicode? Or should DB2 use EBCDIC for
the comparison of ET1.C1=X’C1C2C3’ and Unicode for UT1.C1=X’414243’? This decision
influences the result set.

Assuming the application encoding scheme is EBCDIC, both hexadecimal constants use the
EBCDIC SBCS CCSID set. This means that in our example, the SQL statement would look
like Example 6-2.

Example 6-2 Multiple CCSID SQL statement — 2

SELECT ET1.C1, UT1.C1
FROM ET1,UT1
WHERE ET1.C1 = ’ABC’
AND UT1.C1 = ’ âä’

This is not what was intended with this SELECT statement. The intent here is to compare the
contents of the EBCDIC (ET1) and the Unicode (UT1) table with value ’ABC’. In EBCDIC
C’ABC’ is X’C1C2C3’. To make sure that both tables are compared with string ’ABC’, in a
multi-CCSID set comparison, you must code the hexadecimal values based on the
application encoding scheme. This means that although the comparison of UT1.C1 =
X’C1C2C3’ in our example is done in Unicode, you must code the statement as shown in
Example 6-3.

Example 6-3 Multiple CCSID SQL statement — 3

SELECT ET1.C1, UT1.C1
FROM ET1,UT1
WHERE ET1.C1 = X’C1C2C3’
AND UT1.C1 = X’C1C2C3’

DB2 then translates the EBCDIC value of the hexadecimal string to Unicode and compares
this to column C1 of the Unicode table. That is, DB2 searches for the corresponding code

Chapter 6. e-business 141

point in Unicode, converts it to Unicode hexadecimal representation and compares it to the
existing hexadecimal values in UT1.c1 afterwards.

There are many rules that influence this decision. We illustrate some using the sample query
in Figure 6-5.

Figure 6-5 SELECT statement using multiple CCSIDs

6.2.5 ODBC Unicode support
DB2 V8 provides you with the ability to update, insert, delete and fetch Unicode data through
ODBC application variables. In addition to that, with the ODBC application programming
interface, you are now able to use Unicode character strings. For more information, see 6.3.2,
“ODBC Unicode support” on page 143.

6.2.6 Unicode and distributed support
DB2 may not connect to its remote partner with EBCDIC CCSID defined in DECP. DB2 will
attempt to connect with UTF-8 (mixed) CCSIDs when creating a connection to a server
system. If the server rejects the CCSIDs, then it will reconnect with its EBCDIC CCSIDs. If
that fails, then the connect will fail. If DB2 gets a connection request from a requester system,
it will reply with the Unicode CCSIDs if the requester supports Unicode. Otherwise, DB2 will
connect with its EBCDIC CCSIDs.

Also, if we connect to a server system with the mixed Unicode CCSID (even if the local DECP
only defines a single-byte EBCDIC CCSID), and the server also is only a single-byte system,
then the server may respond with an informational 863 warning SQLCODE in response to the

Important: In a multiple CCSID scenario X' ' (hexadecimal) constants should always be
coded based on the application encoding scheme. You should code the same way, no
matter where the X' ' constant is used.

With statements containing one CCSID set, the X ‘ ‘ constant is interpreted based on the
encoding scheme of the SQL statement and not of the application encoding scheme.

Assuming a Unicode catalog, the result will
contain multiple CCSIDs and the comparisons
and ordering will be dependent on the context

SELECT a.name, a.creator, b.charcol, 'ABC',
 :hvchar, X'C1C2C3'

FROM SYSIBM.SYSTABLES a,
 ebcdictable b
WHERE a.name = b.name AND
 b.name > 'B' AND
 a.creator = 'SYSADM'
ORDER BY b.name;

Result or evaluated:
 EBCDIC
 Unicode
 Application Encoding Scheme

142 DB2 UDB for z/OS Version 8 Technical Preview

CONNECT. The installation may not have received this SQLCODE before, but in case they
do, they should not be concerned as this is due to the use of Unicode CCSIDs to connect.

6.3 ODBC enhancements
In this section we describes the ODBC/CLI enhancements in DB2 V8:

� ODBC SQLConnect user and password support
� ODBC Unicode support
� Cursor extensions
� SQLCancel support

6.3.1 ODBC SQLConnect user and password support
When you run an ODBC application on z/OS, you use RRS or CAF to connect to the
database. (In case of a DB2 UDB for z/OS, the database is an entire DB2 subsystem.)

Actually, the DB2 thread is created when allocating the connection handle. After you created
the connection handle, the ODBC application can now start the DRDA communication with
the DB2 subsystem. To do this, you must use the SQLConnect or SQLDriverConnect API.

You have always been able to specify a user ID and password argument on the SQLConnect
and SQLDriverConnect API calls. They were however not passed to the DB2 UDB for z/OS
system. These keywords were only checked to validate if they were syntactically correct,
which basically means that they were not allowed to exceed the length restrictions for user ID
and password and that they did not contain blank values.

The user ID that was used to establish the thread and checked for authorization in DB2, was
the user ID that was used to logon to the system. At that time the userID and password were
verified with the system’s security software, for example RACF.

In terms of compatibility with other DB2 platforms, this behavior has been changed in DB2
V8. Now the values for the user ID and password arguments on the input to SQLConnect and
SQLDriverConnect APIs are propagated to the target DB2 system. For compatibility reasons
to existing application programs, the user authentication is only performed when both a user
ID and password are provided on the API call.

This function has been made available in DB2 V7 through the maintenance stream, via APAR
PQ58787 (PTF UQ67626).

6.3.2 ODBC Unicode support
As we mentioned in 6.2, “Unicode support” on page 136, one of the major enhancements of
DB2V8 is the exploitation of Unicode in many different areas. ODBC is one of the important
interfaces to DB2.

Attention: Applications which try to connect to a local DB2 system with an invalid user ID
or password fail with SQLCODE -922. That means that if you used any values in your
existing applications, because they have not been checked until now, you must make sure
that those values are either valid or set to blank or NULL. When connecting to a remote
DB2, and you specify a user ID but no password, you receive an SQLCODE -1403, or
SQLCODE -30082 when the user ID or password is wrong.

Chapter 6. e-business 143

Up to DB2 V7, only the EBCDIC encoding scheme was fully supported for ODBC. There was
no support for Unicode and only partial support for ASCII encoding scheme. DB2 V8 now
provides you with the ability to:

� Update, insert, delete and fetch Unicode data through ODBC application variables.

� Unicode strings within the ODBC application programming interface (which allow you to
use Unicode SQL statements in your ODBC application)

The following DB2 ODBC elements support this new functionality:

� A new initialization keyword CURRENTAPPENSCH (in the .INI file) to specify the current
encoding scheme (EBCDIC, ASCII, or Unicode). When you set this keyword to Unicode,
generic ODBC APIs support UTF-8 data.

� New APIs with the suffix W, called wide APIs, are introduced to support UCS-2 data.
Wide APIs accept Unicode UCS-2 string arguments only, and require that the
CURRENTAPPENSCH keyword is set to Unicode. The equivalent wide API for the
SQLConnect () function call is SQLConnectW(). Wide APIs are enabled in V6 with PTF
UQ60475 and in V7 with PTF UQ60476.

� The non-wide functions, for example SQLSolumnPivileges, have been changed to accept
UTF-8 string arguments and return all character string data in the result set in UTF-8
encoding scheme.

� New SQL_C_WCHAR data type to support UCS-2 data

� Additional SQLGetInfo() attributes to query the CCSID settings of the DB2 subsystem in
each encoding scheme, for example SQL_ASCII_SCCSID.

6.3.3 Cursor extensions
With Version 8, DB2 allows an ODBC application to be able to specify:

� Whether the server should release read locks when a query is closed. This is governed by
using the SQL_CLOSE_BEHAVIOR (ODBC 2.0) SQL_ATTR_CLOSE_BEHAVIOR
(ODBC 3.0) attribute.

� Whether the server should close a query implicitly when there are no more rows for a
non-scrollable cursor, regardless of whether the cursor has the HOLD attribute. This
function enabled by using the SQL_ATTR_EARLYCLOSE attribute.

Prior to V8, it was the server that always determined when to release the locks and whether
or not a cursor could be closed early.

6.3.4 SQLCancel support
This allows an application to cancel the currently executing SQL statement. For more
information, see 6.1.7, “SQLcancel” on page 136.

6.4 XML publishing functions
For the past few years, XML has been increasingly become the de facto data format on the
internet, on corporate intranets, and for data exchange. Up to DB2 UDB for OS/390 and z/OS
V7, if you need XML data from traditional relational databases, you must create application
packages that convert the DB2 data to the XML format. DB2 V8 provides six new built-in
functions to help with this conversion. These functions reduce your application development
efforts in generating XML data from relational data with high performance, and enable the
development of lightweight applications.

144 DB2 UDB for z/OS Version 8 Technical Preview

As mentioned before, the XML publishing functions are built-in DB2 functions. They run inside
the DB2 address spaces, unlike external User Defined Functions (UDFs) that run in a WLM
managed address space outside of DB2. The fact that the XML publishing functions are built
into the DB2 engine gives them better performance. In addition, much extra work has been
done inside the DB2 engine, for example, to make the tagging as efficient as possible.

Figure 6-6 gives you an impression of what the result of using these XML publishing functions
can look like in your Web applications.

Figure 6-6 Relational data displayed in HTML format

The SQL statement in Example 6-4 was used to generated the XML data directly, using DB2
V8 XML publishing functions and data stored in DB2 tables.

At this point, you should not try to understand every part of this query. We come back to it at
the very end of this section.

Example 6-4 Complex query using XML publishing functions

SELECT VARCHAR(XML2CLOB(XMLElement(NAME "TABLE",
 XMLATTRIBUTES('1' as "border"),
 XMLElement(NAME CAPTION, 'Department-Employee Table'),
 XMLElement(NAME TR, XMLFOREST('Dept No' as TH, 'Dept Name' as TH,
 'Emp No' as TH, 'Emp Name' as TH, 'Phone' as TH)),
 XMLAGG(
 XMLCONCAT(
 XMLELEMENT(NAME TR, XMLELEMENT(NAME TD,
 XMLATTRIBUTES(X.CNT+1 as "rowspan"),
 D.DEPTNO),
 XMLELEMENT(NAME TD,
 XMLATTRIBUTES(X.CNT+1 as "rowspan"),
 D.DEPTNAME)
),
 (SELECT XMLAGG(XMLElement(NAME TR,
 XMLForest(EMPNO as TD,

Chapter 6. e-business 145

 FIRSTNME || ' ' || LASTNAME as TD,
 PHONENO as TD)))
 FROM DSN8810.EMP E
 WHERE E.WORKDEPT = D.DEPTNO)
)))))
FROM DSN8810.DEPT D, (SELECT WORKDEPT, COUNT(*)
 FROM DSN8810.EMP GROUP BY WORKDEPT) X(DEPTNO, CNT)
WHERE D.DEPTNO = X.DEPTNO AND
 D.DEPTNO IN ('A00', 'C01');

Refer to subsequent pages within this chapter for more information about how to use the new
XML functions.

Six new built-in functions related to XML publishing can be used with DB2 V8.

� Cast function
– XML2CLOB

� Scalar functions
– XMLELEMENT
– XMLATTRIBUTES
– XMLFOREST
– XMLCONCAT

� Aggregate function
– XMLAGG

These are described here in more detail.

XML data type
The XML data type is a new data type introduced by DB2 V8. However, it is not like any other
existing data type. It is a so-called transient data type. Transient means, that this data type
only exists during query processing. There is no persistent data of this type and it is not an
external data type that can be declared in application programs. In other words, the XML data
type cannot be stored in a database or returned to an application.

Valid values for the XML data type include the following:

� An element
� A forest of elements
� The textual content of an element
� An empty XML value

There are restrictions for the use of the XML data type:

� A query result cannot contain this data type
� Columns of a view cannot contain this data type
� XML data cannot be used in SORT, that is GROUP BY / ORDER BY and predicates
� XML data type is not compatible with any other data type
� The only CAST function that can be used is XML2CLOB

XML2CLOB
The XLM2CLOB function returns a CLOB representation of an XML value. The XML2CLOB
function provides applications with an interface, so it can access the transient XML data type.

Figure 6-7 shows the syntax diagram of the XML2CLOB cast function.

146 DB2 UDB for z/OS Version 8 Technical Preview

Figure 6-7 XML2CLOB syntax diagram

XMLELEMENT
The XMLELEMENT function returns an XML element from one or more arguments. The
arguments can be:

� An element name
� An optional collection of attributes
� Zero or more arguments that make up the element’s content.

The result type is the transient XML data type. Refer to Figure 6-8 for the syntax diagram.

Figure 6-8 XMLELEMENT syntax diagram

Let us now take a look at the components of the XMLELEMENT function.

� NAME:

The NAME keyword marks the identifier that is supplied to XMLELEMENT for the element
name.

� XML-element-name:

Specifies an identifier that is used as the XML element name.

� XML-attributes:

Specifies the attributes for the XML element. See the XMLATTRIBUTES function below.

� XML-element-content:

Specifies an expression making up the XML element content; the expression cannot be:

– A ROWID
– A character string defined with the FOR BIT DATA attribute
– BLOB
– A distinct type sourced on these types

If the result of the expression is an SQL value, it is mapped to the XML value according to
the mapping rules from an SQL value to an XML value.

If multiple XML-element-contents are specified, their XML values are concatenated to form
the content of the XML element. If the result of an expression is a null value, it is not
included in the concatenation result. If all the results of the arguments are the null value,
then the result of XMLELEMENT is an element with empty content.

Refer to the SELECT statement shown in Example 6-5 for a short and simple example of the
use of the XML2CLOB and XMLELEMENT function.

XML2CLOB (XML-value-expression)

XML-attributes:

XMLATTRIBUTES
AS

XMLELEMENT

XML-element-content

 (NAME) XML-element-name
XML-attributes ,

 ,

 (
 ,

XML-attribute-value

XML-attribute-name
)

Chapter 6. e-business 147

Example 6-5 XMLELEMENT and XML2CLOB usage

SELECT e.id,XML2CLOB(
XMLELEMENT (NAME "Emp",e.fname ||' '||e.lname)
) AS "Result"

FROM employee e;

The format of the result of this query is shown in Table 6-1:

Table 6-1 Query result — Simple usage of XMLELEMENT and XML2CLOB

As you can see in the SQL statement above, the XMLELEMENT function is used to create an
element called Emp, which contains the concatenation of the contents of columns fname and
lname.

Example 6-6 shows a more complex SELECT statement using multiple elements.

Example 6-6 Nested elements

SELECT e.id, XML2CLOB(
 XMLELEMENT(NAME "Emp",
 XMLELEMENT (NAME "name", e.fname ||' ' ||e.lname),

XMLELEMENT (NAME "hiredate", e.hire)
)

) AS "Result"
FROM employee e;

As you can see, element <Emp> itself contains two nested elements <name> and <hiredate>.
Table 6-2 shows the result of this SELECT statement:

Table 6-2 Query result — Nested elements

XMLATTRIBUTES
This function constructs XML attributes from the arguments. It can only be used as the
second argument to the XMLELEMENT function.

� XML-attribute-value:

An expression that specifies the value of the attribute. The expression cannot be:

– A ROWID
– A character string defined with the FOR BIT DATA attribute
– A BLOB
– A distinct type sourced on these types, or XML

The result of the expression is mapped to an XML value according to the mapping rules
from an SQL value to an XML value. If the value is null, the corresponding XML attribute is
not included in the XML element.

ID Result

1001 <Emp> John Smith</Emp>

1206 <Emp> Mary Martin</Emp>

ID Result

1001 <Emp> <name>JohnSmith</name>
<hiredate>2000-05-24</hiredate></Emp>

1206 <Emp> <name>Mary Martin</name>
<hiredate>1996-02-01</hiredate></Emp>

148 DB2 UDB for z/OS Version 8 Technical Preview

� AS XML-attribute-name:

Specifies an identifier that is used as the attribute name. The partially escaped mapping
from an SQL identifier to an XML name is used.

If XML-attribute-name is not specified, the expression must be a column name, and the
attribute name is created from the column name using the fully escaped mapping from a
column name to an XML attribute name. The attribute names for an element must be
unique for the XML element to be well-formed. The result of XMLELEMENT cannot be
null. Refer to Figure 6-8 for the syntax diagram.

Example 6-7shows a sample of how to use the XMLATTRIBUTES function:

Example 6-7 Using the XMLATTRIBUTES function

SELECT e.id, XML2CLOB(
XMLELEMENT(NAME "Emp",

 XMLATTRIBUTES(e.id, e.fname ||' '|| e.lname AS "name")
)

) AS "result"
 FROM employee e ;

In the foregoing example, the result is an empty XML element named Emp with two attributes.
One attribute is the ID column, and the other one, “name”, is the concatenation of the fname
and lname column of the employee table. The result is shown in Table 6-3.

Table 6-3 Query result — XMLATTRIBUTES

XMLFOREST
The XMLFOREST function returns a bunch of XML elements that all share a specific pattern
from a list of expressions, one element for each argument.

The syntax for XMLFOREST function is shown in Figure 6-9.

Figure 6-9 XMLFOREST syntax diagram

� Expression:

Specifies an expression that is used as an XML element content. The result of the
expression is mapped to an XML value according to the mapping rules from an SQL value
to an XML value. The expression cannot be:

– A ROWID
– A character string defined with the FOR BIT DATA attribute
– A BLOB
– A distinct type sourced on these types

If the result of an expression is null, then it is not included in the concatenation result for
XMLFOREST.

ID result

1001 <Emp ID=’1001’ name=’John Smith’></Emp>

1206 <Emp ID=’1206’ name=’Mary Martin’></Emp>

XMLFOREST () expression

 ,

AS XML-element-name

Chapter 6. e-business 149

� AS XML-element-name:

Specifies an identifier that is used for the XML element name. The partially escaped
mapping is used to map the identifier to an XML name.

If XML-element-name is not specified, the expression must be a column name, and the
element name will be created from the column name. The fully escaped mapping is used
to map the column name to an XML element name.

The result type of XMLFOREST is a transient XML data type. The result of the function is the
concatenation of the elements, each of which is an XML element from an argument, or the
null value if all the arguments are null.

Refer to Example 6-8 for an example of how to use this built-in function:

Example 6-8 Using XMLFOREST

SELECT e.id, XML2CLOB(
XMLELEMENT(NAME "Emp",

XMLATTRIBUTES(e.fname ||' '|| e.lname AS "name"),
XMLFOREST(e.hire, e.dept AS "department")

)
) AS "result"

FROM employee e ;

This sample generates an Emp element for each employee. It uses the employee name as its
attribute and two subelements which are generated from columns HIRE and DEPT by using
XMLFOREST as its content. The element names for the two subelements are ‘HIRE’ and
‘department’. The result is shown in Table 6-4.

A query equivalent to the one shown in Example 6-8 is shown below in Example 6-9.

Example 6-9 Alternative query not using XMLFOREST

SELECT e.id, XML2CLOB(
XMLELEMENT(NAME "Emp",

XMLATTRIBUTES(e.fname ||' '|| e.lname AS "name"),
XMLELEMENT(NAME “HIRE”,e.hire),
XMLELEMENT(NAME “department”,e.dept)

)
) AS "result"

FROM employee e ;

Instead of using the XMLFOREST function, we used two separate XMLELEMENT functions.

Table 6-4 Query result — XMLFOREST

ID result

1001 <Emp name=”John Smith”>
<HIRE>2000-05-24</HIRE>
<department>Accounting</department>
</Emp>

1206 <Emp name=”Mary Martin”>
<HIRE>1996-02-01</HIRE>
<department>Shipping</department>
</Emp>

150 DB2 UDB for z/OS Version 8 Technical Preview

XMLCONCAT
The XMLCONCAT function returns a forest of XML elements that are generated from a
concatenation of two or more arguments. A syntax diagram is shown in Figure 6-10.

Figure 6-10 XMLCONCAT syntax diagram

Where:

� XML-value-expression

Specifies an expression whose value is the XML data type. If the value of
XML-value-expression is null, it is not included in the concatenation.

The result type of XMLCONCAT is the transient XML data type. If all of the arguments are
null, then the null value is returned.

Example 6-10 shows how to use XMLCONCAT:

Example 6-10 Using the XMLCONCAT function

SELECT XML2CLOB(
XMLCONCAT (

XMLELEMENT (NAME "first",e.fname),
XMLELEMENT (NAME "last",e.lname)
)

)as "Result"
FROM employee e ;

Table 6-5 shows the result of the query above.

Table 6-5 Query result — XMLCONCAT

XMLAGG
The XMLAGG function returns a concatenation of XML elements from a collection of XML
elements. A syntax diagram is shown in Figure 6-11.

Attention: As you can see in Table 6-4, the generated element names are folded to
uppercase. If you want them to be lowercase or mixed, you must use quotes
(“department”)

ID Result

1001 <first>John</first><last>Smith</last>

1206 <first>Mary</first><last>Martin</last>

 XMLCONCAT () XML-value-expression , XML-value-expression

Chapter 6. e-business 151

Figure 6-11 XMLAGG syntax diagram

The XMLAGG function has one argument with an optional ORDER BY clause. The ORDER
BY clause specifies the ordering of the rows from the same grouping set to be processed in
the aggregation. If the ORDER BY clause is not specified, or the ORDER BY clause cannot
differentiate the order of the sort key value, the order of rows from the same group to be
processed in the aggregation is arbitrary.

� XML-value-expression:

Specifies an expression whose value is the transient XML data type. Different from other
column functions, a scalar fullselect is allowed as an argument to XMLAGG. The function
is applied to the set of values derived from the argument values by the elimination of null
values. If all inputs are null, or there are no rows, then the result of XMLAGG is null.

� sort-key:

Specifies a sort-key that is either a column name or an expression. The ordering is based
on the SQL values of the sort keys, which may or may not be used in the XML value
expression. If the sort-key is a constant, it does not refer to the position of the output
column as in the ORDER BY clause of a SELECT statement and it has no impact on the
ordering. You cannot use a CLOB value as a sort key. A character string expression
cannot have a length greater than 4000 bytes.

If the sort key is a character string that uses an encoding scheme other than Unicode, the
ordering might be different. For example, a column PRODCODE uses EBCDIC. For two
values "P001" and "PA01", the relationship "P001" > "PA01" is true in EBCDIC, whereas in
Unicode UTF-8 "P001" < "PA01" is true. If the same sort key values are used in the XML
value expression, use the CAST function to convert the sort key to Unicode to keep the
ordering of XML values consistent with that of the sort key.

The result type is XML. The result can be NULL.

Let us look at Example 6-11 to become more familiar with the way you can use this function:

Example 6-11 Using the XMLAGG function

SELECT XML2CLOB(
XMLELEMENT(NAME "Department",

XMLATTRIBUTES (e.dept AS "name"),
XMLAGG (

XMLELEMENT (NAME "emp",e.lname)
ORDER BY e.lname

)
)

)AS "dept_list"
FROM employee e
GROUP BY dept ;

sort-key
 column name

 expression

 XMLAGG

ORDER BY sort-key

 DESC

 ,
 ASC

 (XML-value-expression)

152 DB2 UDB for z/OS Version 8 Technical Preview

The layout of the result of the query may look like Table 6-6. The result column is a CLOB.
The contents are formatted for your convenience.

Table 6-6 Query result — XMLAGG

In this example, the employees are grouped by their department. We generate a Department
element for each department and nest all the emp elements for employees in each
department. In addition, all emp elements are ordered by lname.

Now that you have learned about all the built-in functions, let us get back to the complex
query which we showed at the very beginning of this section (see Example 6-4 on page 145).
Apart from the XML publishing functions, the sample also contains many HTML tags, which
are needed to format the output the way it is. The as “border” option or the as “rowspan”
option are examples for these HTML tags.

These XML publishing functions complement the functionality delivered by the XML Extender
product. For more information, see DB2 UDB for OS/390 and z/OS Version 7 XML Extender
Administration and Programming, SC26-9949.

6.5 CURRENT PACKAGE PATH special register
DB2 V7 provides the ability to specify a list of collection IDs in which DB2 will look for
packages at execution time. This is done via the BIND PLAN PKLIST option. DB2 will search
for a package in each of the collections in the PKLIST. However, not all execution
environments have this PKLIST capability. The new CURRENT PACKAGE PATH may help
the following cases:

� DB2 UDB for z/OS Application Requestors connected via DRDA, requesting the execution
of a package on a remote DB2 UDB for z/OS.

When OS/390 and z/OS requesters are using DRDA to access remote OS/390 and z/OS
servers, today these applications have the PKLIST bind option that allows them to search
package collections at runtime. The PKLIST option is a “requester” function, that is the
remote server does not know the value set for PKLIST, because it is part of the PLAN and
only packages are used at the remote servers. When you specify PKLIST(*.PROD.*,
.TEST., *.MIGR.*), the DB2 requester uses the PKLIST values to resolve package
references when CURRENT PACKAGESET is blank. The algorithm is pretty expensive.
In the case of the package list specified above:

– A message is sent to the current server first requesting a package (for example
PROGA) with the first collection from the PKLIST. In our example, the request would be
for PROD.PROGA.

– If this results in SQLCODE -805 (package not found), another message is sent
requesting for the package within the next collection in the PKLIST. In our example,

dept_list

<Department name="Accounting">
<emp>Smith</emp>
<emp>Yates</emp>

</Department>

<Department name="Shipping">
<emp>Martin</emp>

</Department>

Chapter 6. e-business 153

TEST.PROGA would be requested, and so on, until the requester receives a result
indicating that a requested package is found.

Although DB2 caches the fully qualified package names at the requester to avoid
resending all these network messages on subsequent SQL statements issued from this
same package, this algorithm still involves much network traffic when there is a long list of
collections in the PKLIST. Considerable network traffic is generated if the requester
application has many separately compiled modules, because the resolution algorithm has
to be performed for each package.

The new CURRENT PACKAGE PATH special register reduces network traffic and
improves CPU and elapsed time for applications that use DRDA from a DB2 UDB for z/OS
Application Requester. The network is only crossed once to resolve the package collection
ID at the server, instead of one message per collection ID to perform the resolution at the
Application Server.

� Stored procedures and user-defined functions

In DB2 UDB for OS/390 and z/OS, you cannot identify package resolution schemes for
stored procedures and UDFs independent from the rules established by the caller's plan.
Although the SET CURRENT PACKAGESET statement, or the COLLID option for a
routine can be used within a procedure or function to change the package resolution rule
from the invokers, these can only specify one collection. The new CURRENT PACKAGE
PATH special register allows a stored procedure or user-defined function to be
implemented without concern for the invoker's runtime environment, and also allows
multiple collections to be specified.

� Programs that run from the workstation, for example Windows, to access DB2 UDB for
z/OS do not use a plan. Currently, those applications must issue a SET CURRENT
PACKAGESET statement each time they want to use a package from a different collection
(package set).

To give you more flexibility regarding the specification of packages you want to use during
program execution, you can now use the new CURRENT PACKAGE PATH special
register. You can issue a SET CURRENT PACKAGE PATH statement at the beginning of
your application. This way you can obtain similar functionality than the PLKIST bind option
on DB2 UDB for z/OS. This new function is especially helpful for those of you who are
using SQLJ and JDBC applications, since there is a strong tendency to use a single plan
for all applications.

Using the new SET CURRENT PACKAGE PATH, you can implement versioning in a
similar way for non-DB2 UDB for z/OS ARs than you have today for DB2 UDB for z/OS
ARs, or local DB2 UDB for z/OS applications. This can for example be a very useful
technique in helping to control changes made in production environments. You can for
instance use versioning to keep a backup version of a package in a different collection. A
previous version of a package is used in same way as a backup application load module or
executable during a fallback.

6.6 DDF communication database enhancements
In this section we examine the following enhancements:

� Requester database ALIAS
� Server location alias
� Member routing in a TCP/IP network

154 DB2 UDB for z/OS Version 8 Technical Preview

6.6.1 Requester database ALIAS
When connecting to a DB2 UDB for z/OS and OS/390 system through DRDA, you address
the entire DB2 subsystem by using its location name. A DB2 UDB for LINUX/UNIX/Windows
database is known in the network by its database name. If the requester is a DB2 UDB for
z/OS, you must specify the database name of the DB2 UDB for LUW system you want to
connect to, in the LOCATION column of the SYSIBM.LOCATION catalog table.

Up to DB2 V7, there is always a one-to-one mapping between location name and database
name, as there is a unique index on the LOCATION column. As you can see in Figure 6-12,
prior to DB2 V8, there is no way to access multiple DB2 UDB for LUW databases that have
the same name (even when they reside on different machines).

Figure 6-12 Access LUW database without DBALIAS

This restriction is removed in DB2 V8. A new column DBALIAS is added to the
SYSIBM.LOCATIONS table. As reported in Figure 6-13, you continue to specify the
LOCATION name as the first qualifier of your three part table name in your SELECT
statement [1]. The mapped LINKNAME links you to the corresponding entry in
SYSIBM.IPNAMES [2], which provides the correct TCP/IP address for the workstation you
want to access [3]. The entry in column DBALIAS of SYSIBM.LOCATIONS points your
SELECT statement to the real database name on the DB2 UDB for LUW that you want to
connect to. You can now access the Sample database on every LINUX/UNIX/Windows
system, even if thousands of them exist with the same database name.

DB name =
Sample

Workstation1
TCP/IP = 9.165.70.1

DB name =
Sample

Workstation2
TCP/IP = 9.165.70.2

DB name =
Sample

Workstation3
TCP/IP = 9.165.70.3

SYSIBM.LOCATIONS
LOCATION LINKNAME
SAMPLE WORKSTATION1

SYSIBM.IPNAMES
LINKNAME IPADDR
WORKSTATION1 9.165.70.1
WORKSTATION2 9.165.70.2
WORKSTATION3 9.165.70.3

Only one entry possible here!

SELECT * FROM SAMPLE.creator.tab1
can only be used to retrieve rows from SAMPLE database
on Workstation1.
No way to access the Sample database on Workstation2 without
changing the CDB.

Chapter 6. e-business 155

Figure 6-13 Access LUW database with DBALIAS

6.6.2 Server location alias
As mentioned before, a DB2 UDB for z/OS server is known in the network by its location
name. This name is used by applications to identify a DB2 subsystem or an entire DB2 data
sharing group. When two or more DB2 subsystems are consolidated to a single DB2 data
sharing group, multiple locations must be consolidated into a single location (because the
entire data sharing group uses the same location name). This means that all applications that
use the old location name (used when the DB2 was still a stand-alone subsystem) need to be
changed to access the location name of the data sharing group.

To ease this type of migration, DB2 V8 allows you to define up to eight alias names in addition
to the location name for a DB2 data sharing group. A location alias is an alternative name
that a requester can use to access a DB2 subsystem. You can define those location alias
names with the CHANGE LOG INVENTORY utility (DSNJU003). As shown in Figure 6-14,
you do not have to change the location names in your applications programs to be able to
access your data after migrating to a new data sharing group. The only thing you must do is to
add additional location alias names to your BSDS data sets on each member of the data
sharing group.

SYSIBM.IPNAMES
LINKNAME IPADDR

WORKSTATION1 9.165.70.1
WORKSTATION2 9.165.70.2
WORKSTATION3 9.165.70.3

SELECT * FROM DB1.creator.tab1
DB1 is now mapped to Linkname WORKSTATION1 and therefore
to IP address 9.165.70.1
On 9.165.70.1, the request is sent to database SAMPLE.

SYSIBM.LOCATIONS
LOCATION LINKNAME DBALIAS

SAMPLEWORKSTATION1DB1

SAMPLEWORKSTATION2DB2

SAMPLEWORKSTATION3DB3

1

DB name =
Sample

Workstation1
TCP/IP = 9.165.70.1

DB name =
Sample

Workstation2
TCP/IP = 9.165.70.2

DB name =
Sample

Workstation3
TCP/IP = 9.165.70.3

2

3
4

156 DB2 UDB for z/OS Version 8 Technical Preview

Figure 6-14 Location alias name

The syntax for the CHANGE LOG INVENTORY utility is:

DDF ALIAS = aliasname

The distributed data facility communication record in the BSDS data sets has been changed
to store the location alias names you have specified for your subsystem. Figure 6-15 shows
the output of the PRINT LOG MAP utility (DSNJU004). you can see the location alias name
DB7OGRP we added for our subsystem.

Figure 6-15 DDF communication record

6.6.3 Member routing in a TCP/IP network
Currently in a data sharing environment, remote TCP/IP connections are normally set up to
automatically balance connections across all members of a data sharing group. Sometimes
the default TCP/IP workload balancing does not meet your needs and you might therefore
want to be able to route requests from certain DB2 UDB for z/OS requesters to specific
members of your data sharing group, similar to the support for SNA connections that use the
SYSIBM.LULIST table.

Location name:
LOCDB2P

Location name:
LOCDB2A

DB2P DB2A

Migrate 2 separate subsystems
to 1 DB2 data sharing group

Group DBP0

Location name:
LOCDBP0

Location name:
LOCDBP0

DB2P DB2ABSDS BSDS
Location = LOCDBP0
Loc Alias = LOCDB2P
Loc Alias = LOCDB2A

Location = LOCDBP0
Loc Alias = LOCDB2P
Loc Alias = LOCDB2A

SELECT * FROM LOCDBP0.creator.tab1
SELECT * FROM LOCDB2P.creator.tab1
SELECT * FROM LOCDB2A.creator.tab1

Valid SELECT statements after migrate:

{
Location aliases

}

Location aliases

 **** DISTRIBUTED DATA FACILITY ****
 COMMUNICATION RECORD
 14:26:17 SEPTEMBER 30, 2003
LOCATION=DB7O ALIAS=DB7OGRP
LUNAME=LU1 PASSWORD=(NULL) GENERICLU=(NULL) PORT=33744 RPORT=33745

Chapter 6. e-business 157

To achieve this we combine the server location alias feature, described in 6.6.2, “Server
location alias” on page 156, with the use of a new table in the CDB, namely SYSIBM.IPLIST.
Refer to Figure 6-16 to understand the process.

A location alias, LOCDBP1, has been defined for data sharing members DBP1 and DBP2.
Note however that this alias does not exist in the BSDS for DBP3. In SYSIBM.LOCATIONS,
you can find two entries. One for the “normal” location name of the data sharing group
(LOCDBP0), and one for the location alias (LOCDBP1). If you now enter rows into the new
communication database table SYSIBM.IPLIST, any requests for location name LOCDBP1
are routed to either of the mapped TCP/IP addresses in SYSIBM.IPLIST(for instance
9.165.70.1 or 9.165.70.2 in Figure 6-16) [1].

Figure 6-16 Member routing in a TCP/IP network

If a request comes in for location name LOCDBP0 [2], the entry in SYSIBM.SYSIPNAMES
routes it to all available members in group DBP0.

When using WLM domain name server to perform workload balancing, the SYSIBM.IPLIST
must contain the member specific domain name for each DB2 subsystem that requests are to
be routed. When using dynamic VIPA to perform workload balancing, the IPLIST must contain
the member specific dynamic VIPA for each DB2 subsystem whose requests are to be routed.
Domain names and DVIPA cannot be defined in SYSIBM.IPLIST for the same DB2 data
sharing group.

DB2 first checks the IPLIST table, and then the IPNAMES table. For member specific routing
to NODEDBP1, if there is no entry in IPNAMES, or the entry for NODEDBP1 in IPNAMES is
specified with an IPADDRESS, then SQLCODE -904 is issued.

Group DBP0

Location name:
LOCDBP0

IP: 9.165.70.1

Location name:
LOCDBP0

IP: 9.165.70.2

DBP1 DBP2

BSDS

Location = LOCDBP0
Loc Alias = LOCDBP1

BSDS

Location = LOCDBP0
Loc Alias = LOCDBP1

Location name:
LOCDBP0

IP: 9.165.70.3

DBP3

BSDS

Location = LOCDBP0

SYSIBM.IPLIST
LINKNAME IPADDR

NODEDBP1 9.165.70.1

SYSIBM.LOCATIONS
LOCATION LINKNAME DBALIAS

NODEDBP0LOCDBP0
NODEDBP1LOCDBP1 NODEDBP1 9.165.70.2

SYSIBM.IPNAMES
LINKNAME IPADDR

NODEDBP0 9.165.70.3
NODEDBP1

SELECT * FROM LOCDBP1.creator.tb2

SELECT * FROM LOCDBP0.creator.tb1

1
1

{

2

}

Either routed to DBP1
or DBP2

2

Application Server

Application Requester

11

158 DB2 UDB for z/OS Version 8 Technical Preview

6.7 Enhancements for stored procedures and UDFs
DB2 V8 offers some improvements for stored procedures and user-defined functions (UDF).
Read the next few topics to learn more about those changes and how they might affect your
daily work.

6.7.1 Maximum failures
With DB2 UDB for OS/390 and z/OS Version 7 you can specify a value for the maximum
abend count on installation panel DSNTIPX (DSNZPARM parameter STORMXAB). With this
value you can specify the number of times a stored procedure or UDF is allowed to terminate
abnormally before it is stopped. This parameter is subsystem wide, which means that you
have to treat all stored procedures and UDF equally.

With DB2 V8, you can specify a value for each stored procedure or UDF. This means that you
can now specify an appropriate value at the procedure level (instead of the subsystem level),
for example, depending upon whether it is already an established application, or a new
procedure being tested.

How to invoke this new functionality
The new functionality (syntax shown in Figure 6-17) is valid for external scalar and table
functions, as well as external and SQL stored procedures.

Figure 6-17 Stored procedure and UDF enhanced failure handling syntax

These parameters cannot be used for sourced functions and SQL scalar functions. These
functions does not really have a “program” associated with them that runs in another address
space. Therefore the options have no relevance for them.

We now describe the new options in more detail.

� STOP AFTER nn FAILURES:

This option puts the routine in a stopped state after nn failures. nn Can be any value
between 1 and 32767. That means it can either be higher or lower than the value specified
for the DB2 subsystem (STORMXAB).

STOP AFTER SYSTEM DEFAULT FAILURES

STOP AFTER integer FAILURES

 name
PRO CEDURE

FUNCTIO N

 external

 SQL
 external table

external scalar

ALTER

CREATE

CONTINUE AFTER FAILURE

Chapter 6. e-business 159

� STOP AFTER SYSTEM DEFAULT FAILURES:

This option puts the routine in a stopped state when it reaches the number of abnormal
terminations specified in the ZPARM value STORMXAB. This option is the default.
Therefore, if you accept the default for STORMXAB (zero), and if you do not specify
anything specific in your CREATE and ALTER PROCEDURE SQL statement, your stored
procedure or UDF is stopped after every abnormal termination.

� CONTINUE AFTER FAILURE:

If you decide to use this option, your stored procedures or UDFs are never put in stopped
state, unless you explicitly use the -STOP PROCEDURE command.

To store this information, a new column MAX_FAILURE has been added to the
SYSIBM.SYSROUTINES catalog table.

Monitoring the current status of your SP or UDF
If you either specify STOP AFTER nn FAILURES or STOP AFTER SYSTEM DEFAULT
FAILURES, it might be interesting to monitor the number of abnormal terminations that have
already occurred. To satisfy your needs, the output of the DISPLAY PROCEDURE and
DISPLAY FUNCTION SPECIFIC command has been enhanced to show you the failure count
for the procedure or function.

6.7.2 Exploit WLM server task thread management
The stored procedure management has been changed to exploit z/OS workload manager
functions that allow z/OS’s System Resource Manager and Workload Manager to determine
the appropriate resource utilization, and recommend changes in the number of tasks
operating inside a single WLM managed stored procedure address space. Up to DB2 V7,
specifying NUMTCB meant that a new WLM address space is started, if the number of TCBs
running in one WLM managed stored procedure address space exceeded the value of
NUMTCB. You can find more information regarding WLM application environments, in
conjunction with stored procedures in redbook Cross-Platform DB2 Stored Procedures:
Building and Debugging, SG24-5485.

This behavior is changed in DB2 V8. With V8, the value specified in NUMTCB is sent to WLM
as a maximum task limit. WLM determines the actual number of TCBs that will run inside a
WLM managed stored procedure address space. We recommend that you use higher
numbers in NUMTCB than you use in V7. This way WLM has more flexibility to decide how
many tasks should run in one address space, and when to start an additional started task.
NUMTCB can easily be around 60 or 30 if using Java stored procedures.

This recommendation only applies for stored procedures which are able to share the
resources in one address space. There are still some stored procedures, for example
DSNUTILS, which requires a value of 1 in NUMTCB.

6.7.3 Enhancements to SQL stored procedure language
The SQL stored procedure language and SQL stored procedures were introduced in DB2
UDB for OS/390 V5. The SQL procedure language is a procedural language that is designed
only for writing stored procedures. It is available across the entire DB2 family. The SQL
procedure language is based on SQL extensions, as defined by the SQL/PSM (Persistent

Attention: To activate these new settings, you must stop and start the corresponding
stored procedure or UDF.

160 DB2 UDB for z/OS Version 8 Technical Preview

Stored Modules) standard. The current implementation of the SQL procedures language on
DB2 UDB for OS/390 and z/OS does not cover everything which is described in this standard.
In addition to that, there are also some differences regarding the available language elements
within the entire DB2 family. In order to achieve a better compatibility between the different
DB2 platforms, some new language elements have been added to DB2 V8.

RETURN
Currently (up to V7) there are only two methods available for returning status information from
an SQL procedure:

� Leave a condition unhandled

Each condition that is not handled in a SQL procedure is returned to the caller in the
SQLCA.

� Define an extra parameter for status information

In this case, you would have to include an additional parameter (OUT or INOUT) for the
status information as part of the parameter list.

Because both methods are not very convenient, support for the RETURN statement was
added to SQL procedures. The RETURN statement can be used to return an integer value to
the invoking application. Refer to Example 6-12 to see how this can be implemented:

Example 6-12 Using the RETURN statement

BEGIN
...
IF <failing condition> THEN
GOTO FAIL;
END IF;
...
SUCCESS: RETURN 0;
FAIL: RETURN -200;
END

SIGNAL
As described above, the RETURN statement allows you to pass back status information to
the calling program of an SQL stored procedure. However, without the additional functionality
of the SIGNAL SQL statement, the stored procedure cannot dictate what information is to be
returned to the caller. To remove this restriction, the SIGNAL SQL statement can now be used
for SQL stored procedures. The SIGNAL statement was already available for triggered
actions of a trigger in DB2 V7.

The SIGNAL statement can be used to:

� Allow a procedure to set the SQLSTATE to a specific value
– SQLCODE is set to +438 for an SQLSTATE class of ‘01’ or ‘02’
– SQLCODE is set to -438 otherwise

� Specify an optional MESSAGE_TEXT (1K max. size)

– The first 70 bytes of the message text is stored in the SQLERRMC field of the SQLCA

Note: This behavior came in with APAR PQ56323. Prior to this change, SQL
procedures for DB2 UDB for OS/390 did not return unhandled conditions to the calling
application. This behavior is consistent with the rest of the DB2 family, and with the SQL
standard.

Chapter 6. e-business 161

– The full message text can be obtained from the MESSAGE_TEXT and
MESSAGE_LENGTH fields of GET DIAGNOSTICS

The syntax for the SIGNAL SQL statement has changed from V7 to V8, as shown in
Figure 6-18.

Figure 6-18 SIGNAL statement syntax diagram

You can use the SIGNAL keyword within a condition handler or anywhere else in the stored
procedure body. Refer to Figure 6-19 to find out the differences in behavior, depending upon
where the SIGNAL statement is specified.

Figure 6-19 SIGNAL used in condition handler?

� If the SIGNAL is in the procedure body, but not part of a handler and a handler exists, the
handler is activated.

SIGNAL sqlstore-string-constantSQLSTATE

VALUE
(2)

signal-information (4)condition-name (3)

Notes:

1. This form of specifying the message text is only supported in the triggered action of a CREATE TRIGGER statement
 and must be specified.

2. The SQLSTATE variation must be used within a trigger body (SQLSTATE xxxxx, SQLCODE -xxx).
3. condition-name must not be specified within a trigger body (SQLSATE xxxxx, SQLCODE - xxx).
4. signal-information must be specified within a trigger body (SQLSTATE xxxxx, SQLCODE - xxx).

signal-information:

SQL-parameter-name

diagnostic-string-constant
diagnostic-string-constant (1)()

SQL-variable-nameSET MESSAGE_TEXT =

Handler
exists?

SIGNAL
in

handler?

Signaled
SQLSTATE
a warning?

Terminate
proc

Activate
handler

Continue w/
next stmt

NoYes

No

Yes

Yes

No

162 DB2 UDB for z/OS Version 8 Technical Preview

� If the SIGNAL is in the procedure body and there is no handler defined for this condition,
then:

– Continue if warning is signaled.
– Exit if exception is signaled.

� If SIGNAL is part of a handler, then:

– Continue if a warning is signaled.
– Exit if exception is signaled.

The CREATE PROCEDURE statements Example 6-13 shows the use of a SIGNAL
statement which is part of a handler.

Example 6-13 Using the SIGNAL statement

CREATE PROCEDURE SUBMIT_ORDER
 (IN ONUM INTEGER, IN CNUM INTEGER,
 IN PNUM INTEGER, IN QNUM INTEGER)
 LANGUAGE SQL
 MODIFIES SQL DATA
 BEGIN
 DECLARE EXIT HANDLER FOR SQLSTATE VALUE '23503'
 SIGNAL SQLSTATE '75002'
 SET MESSAGE_TEXT = 'Customer number is not known';
 INSERT INTO ORDERS (ORDERNO, CUSTNO, PARTNO, QUANTITY)
 VALUES (ONUM, CNUM, PNUM, QNUM);
 END

If the stored procedure, during execution, encounters an SQLSTATE ‘23503’ (which indicates
that the insert or update value of a foreign key is invalid), the EXIT handler is invoked. As part
of the EXIT handler, the SIGNAL statement signals SQLSTATE ‘75002’ with message text
‘Customer number is not known’ instead. SQLSTATE ‘75002’ is no predefined SQLSTATE
used by DB2.

RESIGNAL
In contrast to the SIGNAL statement, the RESIGNAL statement is only used within a handler
to return an error or warning condition. It causes an error or warning to be returned with the
specified SQLSTATE, along with optional message text. As for SIGNAL, the RESIGNAL
statement sets SQLCODE to:

� +438 if SQLSTATE class is ‘01’ or ‘02’
� - 438 otherwise

The syntax diagram for the RESIGNAL statement is provided for your reference in
Figure 6-20.

Figure 6-20 RESIGNAL statement syntax diagram

signal-information:

SQL-parameter-name

diagnostic-string-constant

SQL-variable-nameSET MESSAGE_TEXT =

RESIGNAL

sqlstore-string-constantSQLSTATE
VALUE

condition-name signal-information

Chapter 6. e-business 163

Example 6-14 shows how the RESIGNAL statement can be used.

Example 6-14 Using the RESIGNAL statement

CREATE PROCEDURE divide (IN numerator INTEGER,
 IN denominator INTEGER,
 OUT divide_result INTEGER)
LANGUAGE SQL CONTAINS SQL
BEGIN
 DECLARE overflow CONDITION FOR SQLSTATE '22003';
 DECLARE EXIT HANDLER FOR overflow
 RESIGNAL SQLSTATE '22375';
 IF denominator = 0 THEN
 SIGNAL overflow;
 ELSE
 SET divide_result = numerator / denominator;
 END IF;
END

Referring to the example above, you can see that if the denominator equals to 0, the SIGNAL
statement is used to signal a condition name, that is overflow in this example. Since we
defined an EXIT handler for this overflow condition, the handler is fired now, that is the
RESIGNAL statement assigns ‘22375’ to SQLSTATE. SQLSTATE ‘22375’ is not predefined
and used by DB2. As you can see in Figure 6-20, you could have also added a message text
as additional information.

GET DIAGNOSTICS
The GET DIAGNOSTICS statement has also been enhanced. you can now retrieve much
more information than just the ROW_COUNT. The GET DIAGNIOSTICS statement can not
also be used by any other programming language, not just by an SQL procedure as is the
case in DB2 V7. More information can be found in 5.6, “Get diagnostics” on page 90.

6.7.4 COMPJAVA stored procedures no longer supported
Visual Age for JAVA does no longer support compiled Java link library files. For this reason,
DB2 V8 no longer supports stored procedures written in compiled JAVA. Therefore, you can
not use the keyword LANGUAGE COMPJAVA any more. Take the following steps to migrate a
LANGUAGE COMPJAVA stored procedure to LANGUAGE JAVA:

1. Use ALTER PROCEDURE to change the LANGUAGE and the WLM ENVIRONMENT.
The EXTERNAL NAME clause must also be specified, even if it is not changed. DB2
needs to verify it.

2. Make sure the WLM environment has been set up and the required JVM installed.

3. Make sure the .class file identified in the EXTERNAL NAME clause of the ALTER
PROCEDURE is either contained in a JAR chat has been installed to DB2 with an
invocation of the INSTALL_JAR stored procedure, or that the .class file is in a directory
name in the CLASSPATH ENVAR of the data set named on the JAVAENV DD card of the
WLM stored procedures address space JCL.

6.7.5 DB2 established stored procedures
In DB2 V7 you have the choice between so called, DB2 managed, and WLM managed stored
procedures. All DB2 managed stored procedures are executed in the same address space
called ssidSPAS. The way to create a DB2 managed stored procedure is to specify NO WLM
ENVIRONMENT in your CREATE or ALTER PROCEDURE statement.

164 DB2 UDB for z/OS Version 8 Technical Preview

WLM managed stored procedures provide many advantages, and because running WLM in
goal mode is required in z/OS 1.3, and z/OS 1.3 is a prerequisite for DB2 V8, there are no
reasons to continue using DB2 managed stored procedures. Therefore, DB2 V8 no longer
allows the creation of DB2 managed stored procedures. This means that the keyword NO
WLM ENVIRONMENT is no longer valid in the CREATE or ALTER PROCEDURE SQL
statement.

For compatibility reasons, you can continue to use your existing DB2 managed stored
procedures, but you should consider to convert them to WLM managed stored procedures, to
take advantage of the enhanced functionality described above.

6.8 Miscellaneous enhancements
This section described a number of miscellaneous enhancements, but still mean a great deal
to a large numbers of customers. The following topics are discussed:

� RRSAF compatibility for CAF applications
� Roll up accounting data for DDF and RRSAF threads
� Improved query and result set processing
� Time out for SNA allocate conversation requests
� Data stream encryption
� DISPLAY LOCATION command

6.8.1 RRSAF compatibility for CAF applications
The DB2 Call Attach Facility (CAF) is used by many applications today. Recoverable
Resources Manager Services Attachment Facility (RRSAF) provides roughly the same
functionality as CAF. However, RRSAF has a major advantage over CAF, and that is its ability
to support two phase commit processing. Therefore, if your current CAF applications need
two phase commit support, you have to migrate them to RRSAF.

To use RRSAF, you must link your programs with the RRSAF language interface module,
DSNRLI instead of the CAF language interface DSNALI. For information on loading or
linkediting this module, you can refer to DB2 UDB for z/OS and OS/390 Application
Programming and SQL Guide, SC26-9933-02.

Explicit DB2 connections are established in almost the same way by CAF and RRSAF. For
CAF applications, you must issue a CONNECT and OPEN. For RRSAF, an IDENTIFY and
CREATE THREAD is necessary. You can then run your SQL statements. To disconnect, CAF
uses a CLOSE and DISCONNECT, whereas RRSAF invokes a TERMINATE THREAD and
TERMINATE IDENTIFY.

In contrast to this, CAF applications also have the possibility to connect implicitly to a DB2
subsystem; that is just by issuing SQL statements or IFI calls (without first doing a CONNECT
and an OPEN). An implicit CAF connection derives the DB2 subsystem name it will connect
to from the DSNHDECP module and will allocate a plan that has the same name as the
program (DBRM) that issues the first SQL call.
With DB2 V7, implicit connections are not supported when you use RRSAF.

However, with DB2 V8, you can also connect to DB2 via RRSAF but just issuing SQL
statements or IFI calls. When you request an implicit connection, RRSAF issues an
IDENTIFY and CREATE THREAD under the covers, using the following values:

Chapter 6. e-business 165

� Subsystem name: The default DB2 subsystem name specified in module DSNHDECP is
used. (The usual search order is used to find the DSNHDECP module; that is STEPLIB,
JOBLIB, linklist. In a data sharing group, the default subsystem name is the group
attachment name.

� Plan name: The member name of the database request module (DBRM) that DB2
produced when you precompiled the source program that contains the first SQL call. If
your program can make its first SQL call from different modules with different DBRMs,
then you cannot use a default plan name. You must use an explicit call using the CREATE
THREAD function.

� Authorization ID: The authorization ID is set from the seven byte user ID associated with
the address space, unless an authorized function has built an ACEE (an Accessor
Environment Element is a RACF control block) for the address space. If an authorized
function has built an ACEE, DB2 passes the eight byte user ID from the ACEE.

6.8.2 Roll up accounting data for DDF and RRSAF threads
If you establish a connection to DB2 V7 via DDF, you normally want to use DB2’s type 2
inactive threads. This function is also known as thread pooling. This feature is enabled by
specifying CMSTAT=INACTIVE in DSNZPARM. Using the inactive thread support allows you
to connect up to 150.000 users to a single DB2 subsystem. However, if you are running high
volume OLTP workloads in this environment, you might encounter a performance bottleneck,
because DB2 cuts an accounting record on every COMMIT or ROLLBACK when using thread
pooling, and SMF might have a hard time to keep up with the massive number of DB2
accounting records that are produced.

You may encounter a similar problem when using the RRS attach, in combination with
WebSphere. WebSphere drives the RRS signon interface on each new transaction, and DB2
cuts an accounting record when this happens. An accounting record is cut, even though some
of these transactions contain just one SELECT statement followed by a COMMIT.

DB2 V8 adds a new installation option to activate the rollup of accounting information for DDF
threads that become inactive, and RRS threads. The new option DDF/RRSAF ACCUM has
been added to installation panel DSNTIPN The default is NO. The values accepted for this
option range from 2 to 65535. The corresponding DSNZPARM is ACCUMACC.

When NO is specified, DB2 writes an accounting record when a DDF thread is made inactive,
or when signon occurs for an RRSAF thread. If any number between 2 and 65535 is
specified, DB2 writes an accounting record after every n occurrences of end user on any RRS
or DDF thread, where n is the number specified for this parameter. An end user is identified
by a combination of the following three values:

� End user userid
� End user transaction name
� End user workstation name

Even when you specify a value between two and 65535, DB2 may choose to write an
accounting record prior to the nth occurrence of the end user in the following cases:

� A storage threshold is reached for the accounting rollup blocks.

� You have specified accounting interval = ‘COMMIT’ on the RRSAF signon call.

� When no updates have been made to the rollup block for 10 minutes, that is the user has
not performed any activity for over 10 minutes that can be detected in accounting.

166 DB2 UDB for z/OS Version 8 Technical Preview

6.8.3 Improved query and result set processing
DB2 provides more flexibility for requestors such as DB2 Connect to specify larger query
block sizes. This helps requestors to optimize their use of network resources. The DRDA
protocol has been enhanced to allow for a maximum query block size of 10 MB, instead of the
current 32 KB.

6.8.4 Time out for SNA allocate conversation requests
With DB2 V8, DDF searches every three minutes for threads waiting for a VTAM allocate
conversation request to complete. When an allocate request has waited for a session for
more than three minutes, DDF issues a deallocate abend conversation to VTAM to force
VTAM to abnormally terminate the request. The remote SQL statement fails with a SQLCODE
of -904 with reason code of 00D31033. This is an indicator that the network is down and the
network administrator should be notified of the communication failure.

6.8.5 Data stream encryption
A new connection encryption security mechanism is introduced in The Open Group Version 3
DRDA Technical Standard. In DB2 V, if connection encryption security mechanism is
selected, then the userid, password and user data will be encrypted. This function:

� Provides the ability to encrypt and decrypt data as it is sent and received on the remote
connection

� Is based on the technology used for password encryption

� Uses z/OS ICSF facilities with hardware assist

During connect processing, requester and server connection keys are exchanged and a
shared connection key is generated. The connection keys are generated using the standard
Diffie-Hellman distribution algorithm. Diffie-Hellman is the first standard public key algorithm
ever invented. It gets its security from the difficulty of calculating discrete logarithms in a finite
field. Diffie-Hellman requires three agreed upon values n, g such that g is a primitive of large
prime n and the size of the exponent. The values for n and g are fixed. First, the application
requester chooses a random large integer x and generates the value X where X=gx mod n.
X is the requester connection key. Second, the application server chooses another random
large integer y and generates the value Y where Y=gy mod n. Y is the server connection key.
The application requester computes the shared private key, k=Yx mod n. The application
server computes the shared private key, k1=Xy mod n.

The 56-bit DES encryption key is generated from the shared private key. The Data Encryption
Standard (DES), known as the Data Encryption Algorithm (DEA) by ANSI and the DEA-1 by
ISO, is the worldwide standard for encrypting data. DES is a block cipher; it encrypts data in
64-bit blocks. DRDA encryption uses DES CBC mode as defined by the FIPS standard (FIPS
PUB 81). DES CBC requires a 56-bit encryption key and an 8 byte token to encrypt the data.
The Diffie-Hellman shared private key is 256 bits. To reduce the number of bits, 64 bits are
selected from the connection key by selecting the middle 8 bytes and parity is added to the
lower order bit of each byte producing a 56-bit key with 8 bits of parity. The middle 8 bytes of
the server's connection key is used as the token.

The userid and password are encrypted at the requester. Once the userid and password are
decrypted and the connection is authenticated, data streams exchanged between the
requester and the server are encrypted using the same DES encryption key. The connection
key is uniquely generated for each connection preventing the replay of data streams on
different connection.

Chapter 6. e-business 167

Connection encryption to a remote location
The communications database needs to be configured to enable connection encryption to a
remote location. The SECURITY_OUT column in the IPNAMES that relates to the remote
location must be updated with an “E” for connection encryption required. This column defines
the security option that is used when local SQL applications connect to any remote server
associated with this TCP/IP host.

Connection encryption from a remote location
No configuration is required to enable connection encryption from a remote location. During
connect processing, the client negotiates the security mechanism for the connection. DB2 as
a server will accept any connections requesting connection encryption.

Open Cryptographic Services Facility
Prior to V8, DB2 provided software support for the Diffie-Hellman algorithm and the DES
decryption by loading in the required BSAFE services into the distributed address space. The
encryption, decryption and D-H services were invoked directly by DDF. In V8, connection
encryption will use The Open Cryptographic Services Facility (OCSF) to exploit any
crytographic hardware installed on the processor. If properly configured, DB2 will utilize the
IBM CCA Cryptographic Module and the Cryptographic Hardware feature instead of invoking
the BSAFE services directly using the software-only support. Additionally, the OS/390
Integrated Cryptographic Service Facility (ICSF) must be installed, configured to run with the
Cryptographic Hardware feature, and must be active. See the OS/390 ICSF Administrator's
Guide, SC23- 3975, for more information.

6.8.6 DISPLAY LOCATION command
Prior to DB2 V3, the DISPLAY LOCATION command allowed no PARMs, and displayed all
locations. Beginning with DB2 V3 and with SNA two-phase-commit support, the DISPLAY
LOCATION command was enhanced to accept PARMs and also a DETAIL keyword. In order
to provide simplified transition to the new option of this command, DB2 allowed a blank PARM
to provide the same output as it did before the PARM was introduced. That is, DISPLAY
LOCATION() would behave as if DISPLAY LOCATION was used and displayed all locations.
Adding a PARM displayed only matching locations.

This behavior of the DISPLAY LOCATION with an empty PARM is different from the behavior
of DISPLAY DATABASE with an empty PARM. DISPLAY DATABASE command parsing
requires a value in the PARM. If you issue a DISPLAY DB() SPACENAME(), the command parser
will fail the command with message DSN9010I.

In an effort to make all commands behave in a more predicable and consistent manner,
beginning with DB2 V8, the semantics of DISPLAY LOCATION command with an empty
PARM are changed. DISPLAY LOCATION() will now behave the same way as a DISPLAY
DATABASE() SPACE() command, the command will fail with the message DSN9010I.

168 DB2 UDB for z/OS Version 8 Technical Preview

Chapter 7. Utilities

The utilities have all been enhanced to support the other important changes that DB2 V8 has
introduced, which we have described in the other chapters. For instance, extensive updates
have been required to provide support for long names, Unicode, 64-bit addressing, the new
data partitioning techniques, and online schema evolution.

In this chapter, we concentrate on the following topics:

� Online schema changes support:

We examine the changes implemented across the various SQL statements, DB2
commands, and utilities in order to fully support the online schema evolution functions.
We discuss the details with examples of the following:

– Adding, rotating, and changing partitions
– Utility support for schema evolution
– Point-in-time recovery restrictions

� Delimited LOAD and UNLOAD

� Utility Unicode parser

� Distribution statistics

� Backing up and restoring the system

� Other changes, which include:

– New default: RESTART
– New defaults: SORTKEYS and SORTDATA
– COPY and RECOVER tape parallelism

7

© Copyright IBM Corp. 2003. All rights reserved. 169

7.1 Online schema changes support
Online schema evolution allows for table, index, and table space attribute changes while
maximizing application availability. This is described in 4.3, “Online schema changes” on
page 50. In this section we discuss in more detail how you can add and rotate partitions in
partitioned table spaces, and then show the changes in the utilities to accommodate for the
new functionalities.

7.1.1 More flexibility with partitions
As we have seen in 4.3, “Online schema changes” on page 50, DB2 V8 allows the unbundling
of partitioning and clustering, the data of table-controlled partitioning rather than index
partitioning, and the data partitioned secondary indexes. Online schema evolution allows
adding a partition to a partitioned table space through the ALTER TABLE statement. For
example, you want to add a partition to the table space shown in Figure 7-1. The table space
has data for each month in a separate partition starting from January 1998 and currently has
59 partitions.

Figure 7-1 Online schema — Table space with 59 partitions

Adding partitions
Suppose that there is the requirement to define one more partition to store the data for
December 2002. In V7, the only way this can be done is by dropping the table space and
recreating the table space with 60 partitions. This would of course involve saving the existing
data before dropping the table space, recreating the partitioning and non-partitioning indexes,
reloading the data, recreating other objects which might have been dropped in the cascade
process, reestablishing the privileges to users, rebinding all affected packages, etc.

 Table space with 59 partitions

ts pi

part 1

part 2

wk01_1998Jan_1998

wk01_1998Feb_1998

wk01_1998Oct_2002part 58

wk01_1998Nov_2002 part 59

npi

170 DB2 UDB for z/OS Version 8 Technical Preview

In V8, you use the ALTER TABLE statement using the ADD PARTITION clause to add the
partition. Figure 7-2 shows the new partition-definition block in the ALTER TABLE syntax.
ADD PARTITION specifies that a partition is to be added to the table and each partitioned
index of the table. The new partition is the next physical partition not being used, until the
maximum for the table space has been reached.

The existing table space PRIQTY and SECQTY attributes are used for the new partition. For
the partitioning index, the existing PRIQTY and SECQTY attributes of the previous index
partition are used. You should execute ALTER TABLESPACE and ALTER INDEX statements
after the new partition has been added to change the space attributes for the new partition.
ENDING AT (constant,...) specifies the high key limit for the new partition, which should be
higher than any other partition in the table.

Figure 7-2 Online schema — ALTER TABLE ADD PARTITION syntax

You should be aware of the following considerations when using the ALTER TABLE statement
with the ADD PARTITION clause.

� Stop the table space and the partitioned indexes before executing the ALTER statement.

� You can add only one partition within a single unit of work. If you want to add multiple
partitions, add a COMMIT statement after each ALTER TABLE statement with the ADD
PARTITION clause.

� When a partition is added, all the packages, plans, and dynamic cached statements
referring to the table are invalidated.

� If the boundary for the last partition was not previously enforced, it is enforced after adding
a partition, and the last two logical partitions are left in a Reorg Pending (REORP) state.

� If the last partition before adding the new one was in a REORP state, then the added
partition is also placed in REORP state.

� You cannot add a partition if the table is a materialized query table or a materialized query
table is defined on this table.

Add partition syntax

ALTER TABLE table-name

ADD COLUMN column definition

,
ADD PARTITION ENDING AT (constant)

Chapter 7. Utilities 171

Figure 7-3 shows the table space with 60 partitions after the ALTER TABLE statement with
the ADD PARTITION clause is executed.

Figure 7-3 Online schema — Table space after adding a partition

The physical partition number, logical partition number, and time that the partition was added
are recorded in columns PART, LOGICAL_PART, and CREATEDTS of the SYSTABLEPART
catalog table.

In the above example, we started with the table created in V7. After the ALTER statement with
the ADD PARTITION clause is executed, the table that used index-controlling partitioning is
automatically converted to a table that uses table-controlled partitioning so that all the new
features introduced by online schema enhancement can be exploited (see table controlled
partitioning in 4.1.1, “Table-controlled partitioning” on page 40.

This conversion consists of the following steps:

� SYSTABLES.PARTKEYCOLNUM (new column introduced in V8) gets populated with the
number of partitioning key columns.

� SYSCOLUMNS.PARTKEY_COLSEQ (new column introduced in V8) gets populated with
the numeric sequence in the partitioning key.

� SYSTABLEPART.PARTKEY_ORDERING (new column introduced in V8) gets populated
with the limit key values from SYSINDEXPART.LIMITKEY.

� SYSINDEXES.INDEXTYPE for the partitioning index is changed to ‘P’.

� SYSTABLESPACE.IBMREQD is marked with V8 release dependency.

� The last two logical partitions in the table space are placed in REORP state if the highest
limit key was not previously enforced. In this example, partitions 59 and 60 are placed in
REORP state.

Add table partition

ts pi

part 1

part 2

wk01_1998Jan_1998

wk01_1998Feb_1998

wk01_1998Oct_2002part 58

wk01_1998Nov_2002 part 59

wk01_1998Dec_2002 part 60

npi
ALTER TABLE ADD PART VALUES("12/31/2002");

172 DB2 UDB for z/OS Version 8 Technical Preview

Rotating partition
Online schema evolution allows rotating partitions in a partitioned table space through the
ALTER TABLE statement. For example, you want to rotate a partition in the table space
shown in Example 7-3. The table space has data for each month in a separate partition
starting from January 1998 and currently has 60 partitions. Assume that at any time you want
to have data for a maximum of 60 months in the table. Therefore, you want to rotate a partition
so that the data in the oldest (or logically the first) partition is deleted and the partition
essentially becomes the last logical partition in sequence ready to hold the new data which
will be added. After the rotation, the table space should look as shown in Figure 7-4.

Figure 7-4 Online schema — Rotate partition overview

Figure 7-5 shows the ALTER TABLE syntax to rotate a partition. You can only rotate the
oldest (or logically the first) partition and so the syntax does not allow you to specify the
partition number. ROTATE FIRST TO LAST specifies that the first logical partition should be
rotated to become the last logical partition. You can specify ROTATE and omit FIRST TO
LAST. You supply the new partitioning key value with the ENDING AT clause. For an
ascending partitioning key, this should be higher than any other partition in the table and for a
descending partitioning key, this value should be lower than any other partition in the table.

If there is a referential constraint with DELETE RESTRICT on the table, the ROTATE will fail.

Rotate partition overview

ts pi

 60 1 wk01_1998Jan_2003

wk01_1998Feb_1998

wk01_1998Nov_2002 58 59

wk01_1998Dec_2002 59 60

wk01_1998Jan_1998

Keys deleted

Partition Number
 Logical Physical

Reset Reset

N
P
I

 1 2

 1 1

Chapter 7. Utilities 173

Figure 7-5 Online schema — Rotate partition syntax

Rotating a partition occurs immediately. Activity on the table is quiesced during the operation,
and all the packages, plans, and dynamic cached statements referring to the table are
invalidated.

If the boundary for the last partition was not previously enforced, it is enforced after issuing
the ROTATE and the last two logical partitions are left in a REORP state.

If the last partition before issuing the ROTATE was in REORP state, then the last two logical
partitions are left in REORP state.

A SYSCOPY record with an ICTYPE of ‘A’ and STYPE of ‘R’ is inserted for the partition
rotated.

The keyword RESET specifies that the partition holding the “oldest” data should be rotated to
the end and become a partition which will hold the “newest” data, or the active data being
added to the table. The existing data in the “oldest” partition is deleted. SYSCOPY and
SYSLGRNX rows associated with the partition being reset are deleted.

The optional keyword REUSE specifies that existing extents for the partition should be kept
instead of deleting and redefining the underlying data sets. Logical reset of the partition is
done instead of deleting and redefining data sets.

Rotate partition syntax

ALTER TABLE table-name

ADD COLUMN column definition

ALTER PART ROTATE
FIRST TO LAST

,
VALUES constant)(RESET

REUSE

1

1

174 DB2 UDB for z/OS Version 8 Technical Preview

Figure 7-6 shows how the table space looks like after the rotate partition is achieved.

Figure 7-6 Online schema — Rotate partition example

You must have noticed though, the new key value specified is February whereas in fact it
should have been January. You can alter the partition boundary by executing the ALTER
TABLE statement.

Rotate partition example

part 1

part 2

wk01_1998Feb_2003

wk01_1998Feb_1998

wk01_1998Nov_2002part 59

wk01_1998Dec_2002 part 60

ALTER TABLE ... ALTER PART ROTATE
 VALUES("02/28/2003") RESET

.

.

Chapter 7. Utilities 175

Figure 7-7 shows the ALTER TABLE syntax to achieve this. The syntax allows you to specify
the partition number and the key value.

Figure 7-7 Online schema — Alter partition boundary syntax

Figure 7-8 shows the revised key value for the rotated partition after the ALTER TABLE
statement is executed.

Figure 7-8 Online schema — Alter partition boundary example

Alter partition boundary syntax
ALTER TABLE table-name

ADD COLUMN column definition

,
ALTER PART integer VALUES (constant)

Alter partition boundary example

part 1

part 2

wk01_1998Jan_2003

wk01_1998Feb_1998

wk01_1998Nov_2002part 59

wk01_1998Dec_2002 part 60

ALTER TABLE ALTER PART 1
 VALUES("01/31/2003");

REORP

REORP

176 DB2 UDB for z/OS Version 8 Technical Preview

DISPLAY DATABASE command changes
With the ability to add or rotate partitions at any time, the logical ordering can be quite
different than the physical order. The DISPLAY DATABASE command in Example 7-1 shows
the status of a table space with four partitions after a single part rotation:

-DISPLAY DATABASE(DB) SPACENAME(TS1) PART(1,2,3,4)

or

-DISPLAY DATABASE(DB) SPACENAME(TS1) PART(1:4)

Example 7-1 Displaying a four-partition table space

DSNT362I = DATABASE = DB STATUS = RW
 DBD LENGTH = 16142
DSNT397I =
NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE
-------- ---- ---- ------------------------- -------- -------- ------- -----
TS1 TS 0002 RW
TS1 TS 0003 RW
TS1 TS 0004 RW
TS1 TS 0001 RW
******* DISPLAY OF DATABASE DB ENDED ************************************

The DISPLAY DATABASE command in Example 7-2 is valid if 4 partitions were created within
the table space, a single rotate operation was done and then 8 more partitions were added.
The DISPLAY support shown in is included with the V8 enhancement that supports 4096
partitions:

-DIS DB(DB) SP(TS1) PART(1,2,4:6,9,10:12)

Example 7-2 Displaying partitions added with DB2 V8

DSNT362I = DATABASE = DB STATUS = RW
 DBD LENGTH = 16142
DSNT397I =
NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE
----------- ---- ---- ------------------------- -------- -------- ------- -----
TS1 TS 0002 RW
TS1 TS 0004 RW
TS1 TS 0001 RW
TS1 TS 0005 RW
TS1 TS 0006 RW
TS1 TS 0009 RW
TS1 TS 0010 RW
TS1 TS 0011 RW
TS1 TS 0012 RW
******* DISPLAY OF DATABASE DB ENDED ************************************

The above example also demonstrates that you can choose any partition or a range of
partitions in the DISPLAY DATATBASE command.

Assume there are 4096 partitions for table space TS1. Example 7-3 is one more example of
output using DISPLAY support included with the 4096 partition enhancement:

-DIS DB(DB) SP(TS1)

Chapter 7. Utilities 177

Example 7-3 Displaying ranges of partitions with DB2 V8

DSNT362I = DATABASE = DB STATUS = RW
 DBD LENGTH = 16142
DSNT397I =
NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE
-------- ---- ---- ------------------ ------- -------- -------- ------- -----
TS1 TS 0001 STOP
 - THRU 0100
TS1 TS 0101 RW
 - THRU 0999
TS1 TS 1000 RW,REORP
 - THRU 1002
TS1 TS 2002 RW,REORP
 - THRU 2003
TS1 TS 1005 RW,REORP
 - THRU 1006
TS1 TS 1007 RW
 - THRU 1100
TS1 TS 1101 RW,REORP
TS1 TS 1102 RW,REORP
TS1 TS 1103 RW
 - THRU 4096
******* DISPLAY OF DATABASE DB ENDED *************************************

The DBET state,RBDP, is set for indexes after altering from PADDED to NOT PADDED.
Example 7-4 shows an example.

-DIS DB(DB) SP(PIX)

Example 7-4 Displaying indexes after ALTER

DSNT362I = DATABASE = DB STATUS = RW
 DBD LENGTH = 16142
DSNT397I =
NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE
-------- ---- ---- -------------------------- -------- -------- ------- -----
PIX IX 0001 RW,RBDP
PIX IX 0002 RW,RBDP
PIX IX 0003 RW,RBDP
PIX IX 0004 RW,RBDP
******* DISPLAY OF DATABASE DB ENDED ************************************

7.1.2 Utility support for schema evolution
In this section we examine the changes implemented across the various utilities in order to
fully support the schema evolution functions.

REORG TABLESPACE
We discuss the various enhancements introduced in the REORG TABLESPACE utility.

SCOPE PENDING
REORG TABLESPACE is extended with the new keyword SCOPE to indicate the scope of the
reorganization for the table space or partition range. You specify SCOPE ALL to reorganize
the entire table space or the partition range. This is the default. You specify SCOPE
PENDING to indicate that only the partitions in a REORP or AREO* state for a specified table
space or partition range are to be reorganized.

178 DB2 UDB for z/OS Version 8 Technical Preview

If you reorganize a range of partitions and specify SCOPE PENDING, make sure that the
adjacent partition outside the specified range is not in a REORP state. The REORG
terminates with an error otherwise.

You cannot specify SCOPE PENDING with REBALANCE, OFFPOSLIMIT, INDREFLIMIT,
REPORTONLY, UNLOAD ONLY, and UNLOAD EXTERNAL keyword specifications.

Rebalance
The REORG utility has a new keyword, REBALANCE, which indicates that the rows in the
table space or the partition ranges being reorganized should be evenly distributed for each
partition range when they are reloaded. Figure 7-9 shows an example of reorganizing a table
space to rebalance the partitions.

Figure 7-9 Example of REORG TABLESPACE to rebalance partitions

REBALANCE specifies that REORG should set new partition boundaries so that all the rows
participating in the reorganization are evenly distributed across the partitions being
reorganized. The SYSTABLEPART and SYSINDEXPART tables are updated during this
process so that they contain the new limit values and limit keys.

Perfect rebalancing is not always possible if the columns used in defining the partition
boundaries have many duplicate values within the data rows. You cannot specify the keyword
REBALANCE with SHRLEVEL CHANGE, nor with SCOPE PENDING, OFFPOSLIMIT,
INDREFLIMIT, REPORTONLY, UNLOAD ONLY, and UNLOAD EXTERNAL keyword
specifications.

The default setting for REORG TABLESPACE is now SORTDATA when either UNLOAD
CONTINUE or UNLOAD PAUSE is in effect. Sorting uses the implicit clustering index if there
is no explicit CLUSTER index. If there is a table in the table space without an index,
SORTDATA operates as in previous releases.

REBALANCE

Partitioning IndicesPart 2Part 1 Part 3 Part 4

Data PartitionsPart 1
Part 2

Part 3 Part 4

LK='50000' LK='80000'

Logical Part1
Logical Part2
Logical Part3
Logical Part4

Nonpartitioning Index

Partitioning IndicesPart 2Part 1 Part 3 Part 4

LK='30000' LK='80000'

Logical Part1
Logical Part2
Logical Part3
Logical Part4

Nonpartitioning Index

Data PartitionsPart 1 Part 3 Part 4Part 2

Before REORG

After REORG TABLESPACE ... PART 2:3 REBALANCE

LK = Limit Key Value

Chapter 7. Utilities 179

The default setting for REORG TABLESPACE is SORTKEYS.

When using REBALANCE on a table where the clustering index does not match the
partitioning key, REORG must be run on the partition range twice to ensure that the rows are
in optimal clustering order. The first reorganization moves data rows to the appropriate
partition, and the second reorganization orders each data row in clustering order within the
appropriate partition.

When reorganizing a table space which has indexes defined as COPY NO and IOFACTOR is
-1 (no longer using pre-V8 versioning), REORG updates the new catalog column
SYSINDEXPART.OLDEST_VERSION to the value of CURRENT_VERSION for those
indexes (this is not done for non-partitioned indexes unless reorganizing the whole table
space). For non-partitioned table spaces, REORG also updates
SYSINDEXES.OLDEST_VERSION to the same value. If the index is partitioned, REORG
also updates SYSINDEXES.OLDEST_VERSION if the lowest OLDEST_VERSION from all
SYSINDEXPART entries has changed.

The REORG TABLESPACE utility resets table spaces and all indexes which are in AREO*
state. SYSCOPY records with an ICTYPE value of 'X' (for REORG LOG YES) or 'W' (for
REORG LOG NO) and an STYPE value of 'A' are inserted for each data partition where
REORP is reset. SYSCOPY records include the current version number, or
CURRENT_VERSION, at the time of reorganization. The REORG TABLESPACE utility
inserts SYSCOPY records for each index that is built as part of the reorganization.

Discard with SHRLEVEL CHANGE
You can specify the keyword DISCARD with SHRLEVEL CHANGE. However, modifications to
data rows are not allowed during the window when they are being discarded in the unload
phase by reorganization. If this is detected, REORG terminates with an error.

Online REORG has no BUILD2 phase for DPSI
You can use the new data partitioned secondary indexes to your advantage when using
online REORG. We illustrate this with the following example:

A partitioned table space with 13 partitions is created in V7, with each partition holding the
data for a month. The partitioning index is on the date. The non-partitioning index is on the
account number. The DDL is as shown in Example 7-5.

Example 7-5 Sample DDL for index partitioned table space

CREATE TABLE TRANSACTIONS (
ACCTNO INTEGER NOT NULL,
POSTED DATE NOT NULL,
AMOUNT DECIMAL(12,2) NOT NULL)

IN DB.TS ;

CREATE INDEX IX1 ON TRANSACTIONS(POSTED)
CLUSTER
(PART 1 VALUES(‘01/31/2002’),
PART 2 VALUES(‘02/28/2002’),
PART 3 VALUES(‘03/31/2002’),
PART 4 VALUES(‘04/30/2002’),
PART 5 VALUES(‘05/31/2002’),
PART 6 VALUES(‘06/30/2002’),
PART 7 VALUES(‘07/31/2002’),
PART 8 VALUES(‘08/31/2002’),
PART 9 VALUES(‘09/30/2002’),
PART 10 VALUES(‘10/31/2002’),
PART 11 VALUES(‘11/30/2002’),

180 DB2 UDB for z/OS Version 8 Technical Preview

PART 12 VALUES(‘12/31/2002’),
PART 13 VALUES(‘01/31/2003’) ;

CREATE INDEX IX2 ON TRANSACTIONS(ACCTNO) ;

REORG TABLESPACE DB.TS PART 11 SHRLEVEL CHANGE

Figure 7-10 shows the index-based partitioning with a non-partitioning index on ACCTNO.
Access to the data is predominantly through the index based on ACCTNO. The partitioning
index is a mandatory requirement in index-based partitioning and so has to be created. If you
run online REORG at a partition level, data cannot be accessed during the BUILD2 phase
when DB2 corrects the logical partitions of the non-partitioning index on ACCTNO. This may
not always be acceptable in a 24x7 environment.

Figure 7-10 Example of index-based partitioning

In V8, data-based partitioning and use of data-partitioned secondary indexes helps to
overcome the non-availability of data in the BUILD2 phase as shown in Example 7-6.

Example 7-6 Avoiding BUILD2 phase

DROP INDEX IX1 ;
CREATE INDEX IX3 ON TRANSACTIONS(ACCTNO)
PARTITIONED CLUSTER DEFER YES;

COMMIT ;
DROP INDEX IX2 ;
COMMIT ;
REBUILD INDEX IX3;

REORG TABLESPACE DB.TS PART 11 SHRLEVEL CHANGE

.. .

.
FEB2002

JAN2002

NOV2002

DEC2002

JAN2003

JAN2002

FEB2002

NOV2002

DEC2002

JAN2003

.

..
.

00001
00002
00003

99998
99999

..

.

.

.

clustering
 index

Part 1

Part 2

Part 11

Part 12

Part 13

TRANSACTIONS
 (data)

IX1
(PI)

 IX2
(NPI)

clustering by date

REORG SHRLEVEL CHANGE with NPI

Chapter 7. Utilities 181

This solution retains a single index based on ACCTNO. However, since this index is a DPSI,
there is no BUILD2 phase during online REORG of partition 11.

Figure 7-11 shows a proposed solution to eliminate BUILD2 phase with online REORG.

Figure 7-11 A proposed solution to eliminate BUILD2 phase with online REORG

When you drop the partitioning index IX1, DB2 converts the index-based partitioning to
table-based partitioning. At this point, DB2 marks the table space as release dependent. The
DPSI IX3 is a partitioned index with 13 partitions matching the number of data partitions.
There is no need to retain the non-partitioning index and therefore you can drop index IX2.

REORG INDEX
REORG INDEX accepts an index space name instead of just an index name.

When reorganizing an entire index defined as COPY NO and IOFACTOR is -1 (no longer
using pre-V8 versioning), REORG INDEX updates the new catalog columns
SYSINDEXES.OLDEST_VERSION and SYSINDEXPART.OLDEST_VERSION to the value
of CURRENT_VERSION.

For non-partitioned indexes, REORG also updates SYSINDEXES.OLDEST_VERSION to the
same value. If the index is partitioned, REORG INDEX also updates
SYSINDEXES.OLDEST_VERSION if the lowest OLDEST_VERSION from all
SYSINDEXPART entries has changed.

The REORG INDEX utility resets indexes which are in AREO* state.

.

.
FEB2002

JAN2002

NOV2002

DEC2002

JAN2003

00001-99999

00001-99999

00001-99999

00001-99999

00001-99999

.

..
.

clustering
 index

Part 1

Part 2

Part 11

Part 12

Part 13

TRANSACTIONS
 (data)

 IX3
(DPSI)

REORG PART 11
SHRLEVEL CHANGE

REORG SHRLEVEL CHANGE with DPSI

.

182 DB2 UDB for z/OS Version 8 Technical Preview

SYSCOPY records have the OLDEST_VERSION column filled in from the
CURRENT_VERSION value at the time of reorganization.

REBUILD INDEX
REBUILD INDEX accepts index space names instead of just index names.

REBUILD INDEX is extended with the new keyword SCOPE to indicate the scope of the
rebuild. You specify SCOPE ALL to reorganize all the specified indexes. This is the default.
You specify SCOPE PENDING to indicate that the specified indexes should be built only if
they are in a RBDP, RECP, or AREO* state. Unlike REORG TABLESPACE, the adjacent high
and low parts not included in the range are not checked for RBDP.

When rebuilding an entire index defined as COPY NO and IOFACTOR is -1 (no longer using
pre-V8 versioning), REBUILD updates the new catalog column
SYSINDEXES.OLDEST_VERSION and SYSINDEXPART.OLDEST_VERSION to the value
of CURRENT_VERSION.

This is not done for non-partitioned indexes unless rebuilding the entire index. For
non-partitioned indexes, REBUILD INDEX also updates SYSINDEXES.OLDEST_VERSION
to the same value. If the index is partitioned, REBUILD INDEX also updates
SYSINDEXES.OLDEST_VERSION if the lowest OLDEST_VERSION from all
SYSINDEXPART entries has changed.

SYSCOPY records with an ICTYPE value of 'B' and an STYPE value of 'A' (when RBDP is
reset) are inserted for each index partition.

LOAD
LOAD is able to process a partitioned table space which does not have a partitioning index. If
a single index exists and the data is ordered, the sort phase is skipped if SORTKEYS is not
specified.

LOAD PART REPLACE is still restricted from running against partitions in REORP state, even
if all partitions in the pending state have been specified with the PART REPLACE option.

When doing LOAD REPLACE of an entire table space LOAD updates the catalog for all
indexes defined as COPY NO so that the new catalog column
SYSINDEXES.OLDEST_VERSION is equal to the value of CURRENT_VERSION.

The LOAD REPLACE utility resets indexes which are in AREO* or RDBP state.

SYSCOPY records with an ICTYPE value of ‘R’ or ‘S’ and an STYPE of ‘A’ are inserted for
each index partition where RDBP is reset.

SYSCOPY records include the current version number, or CURRENT_VERSION, at the time
of reorganization. LOAD REPLACE inserts SYSCOPY records for each index that is built as
part of LOAD.

The default setting for LOAD is SORTKEYS.

UNLOAD
UNLOAD supports image copies with data from different versions. If the system pages
containing the version describing the format of a row is not available within a image copy, an
error message is issued up to the maximum allowed by the MAXERR specification.

Chapter 7. Utilities 183

DSN1COMP
DSN1COMP retrieves a row as is when estimating the effects of compression on a table
space. There is no attempt to convert data to the latest version before compressing rows and
deriving a savings estimate.

DSN1PRNT
DSN1PRNT is changed to recognize the table space system pages. When the FORMAT
option is specified, details of fields within system pages are not identified with formatted
output. Rows on system pages are simply printed in a hex format. Page ranges specified as
input identify physical pages and may still be specified even when physical partitions do not
match the logical ordering.

DSN1COPY
DSN1COPY is changed to tolerate the existence of table space system pages. When the
PRINT option is specified, they are printed in hexadecimal format.

When the OBIDXLAT option is specified all OBIDs within the system pages are translated. It
is recommended that the object be reorganized before using DSN1COPY with the OBIDXLAT
option. Before using the copied object on the target system, the version numbers should be
updated using the REPAIR utility.

The CHECK option now also validates system pages.

COPY
COPY is extended with the new keyword SYSTEMPAGES. You can specify either YES (this is
the default) or NO. SYSTEMPAGES YES ensures the dictionary and version system pages
are located at the beginning of the object being copied. This ensures that an unload from the
image copy has the necessary system pages to correctly format and unload all data rows.
SYSTEMPAGES NO does not ensure this and the behavior of COPY utility is the same as in
the versions prior to V8.

COPY ensures that each image copy includes a header page for each partition, page set, or
piece that is copied. This simplifies processing by other utilities which can exploit embedded
information to interpret the contents and original environment of the image copy.

The SYSCOPY records inserted by COPY have the OLDEST_VERSION column filled in with
the lowest version of data within the copied object.

The CHECKPAGE option also validates system pages.

MODIFY
MODIFY reclaims obsolete versions for reuse by updating the new catalog column
OLDEST_VERSION values for an objects within the SYSTABLEPART, SYSINDEXPART,
SYSTABLESPACE, and SYSINDEXES tables in the catalog. The lowest version for an object
is determined by the lowest OLDEST_VERSION value among all SYSCOPY rows left for the
object or partition.

MODIFY updates SYSTABLEPART.OLDEST_VERSION for table spaces and
SYSINDEXPART.OLDEST_VERSION for all indexes with the COPY YES attribute.

For non-partitioned table spaces, MODIFY also updates the appropriate
SYSTABLESPACE.OLDEST_VERSION or SYSINDEXES.OLDEST_VERSION to the same
value. If the object is partitioned, MODIFY also updates OLDEST_VERSION of the
appropriate SYSTABLESPACE or SYSINDEXES table if the lowest OLDEST_VERSION from
all partitions has changed.

184 DB2 UDB for z/OS Version 8 Technical Preview

RUNSTATS
The RUNSTATS utility continues to handle unusable statistics in the same manner it does
when a column is changed to extend the length of a varying length character column.

When ALTER TABLE ALTER COLUMN SET DATA TYPE updates the STATSTIME column in
SYSCOLUMNS and SYSCOLSTATS tables to default + 1 day to indicate that certain statistics
are unusable, RUNSTATS treats these statistics as not existing when doing aggregation of
partition level statistics. A DSNU623 message is issued during aggregation if all parts in
SYSCOLSTATS do not have legitimate STATSTIME values.

REPAIR
REPAIR DBD rebuilds new OBD structures from the catalog. The catalog contains
information about added partitions, rotated partitions, and limit keys for the partition
boundaries, and partitioning columns.

The REPAIR utility is extended with new syntax, REPAIR VERSIONS. Figure 7-12 shows the
new syntax.

Figure 7-12 REPAIR VERSIONS syntax

REPAIR VERSIONS allows fixing version information for table spaces and indexes when
moving them between systems using DSN1COPY with the OBIDXLAT option. This also
facilitates version recycling procedure for objects that do not use the IBM REORG utility.
REPAIR VERSIONS also cuts a SYSCOPY record with an ICTYPE of 'V' that MODIFY can
use for reclaiming version numbers. It fills in the OLDEST_VERSION column with the lowest
version found within the active object.

When objects are moved from one system to another and contain system pages, the version
information on the target system must match the source versions for the data to be
accessible. You should follow the process outlined below:

REPAIR VERSIONS

VERSIONS table-space-spec
index-name-spec

TABLESPACE database-name table-space-name
table-space-spec

database-name

INDEX

index-name-spec

creator-id
index-name

INDEXSPACE index-space-name

Chapter 7. Utilities 185

1. Ensure that the current object definitions on the source and target systems are defined the
same. For table spaces, each table must have the same number of columns, and each
column must be of the same data type.

Indexes that are copied may or may not have been altered in V8 so that they have a
OLDEST_VERSION and CURRENT_VERSION. If not altered in V8, then version
information is tracked in IOFACTOR. In this case ensure that CURRENT_VERSION and
OLDEST_VERSION contain zeros for both the source and target systems. REPAIR
VERSIONS updates IOFACTOR appropriately on the target system.

2. When IOFACTOR is -1, OLDEST_VERSION and CURRENT_VERSION are being used.
Ensure that the source object does not have a OLDEST_VERSION of 0 with a
CURRENT_VERSION greater than 0. If this is the case, first reorganize the object so that
the OLDEST_VERSION matches the high version.

3. Ensure there are enough versions available. For a table space, the combined active
number of versions for the object on both the source and target systems must be less than
255. For an index, the combined active number of versions must be less than 16.

The active number of versions can be calculated as follows:

 For the object on both source and target systems,
 If the CURRENT_VERSION is less than the OLDEST_VERSION,
 add the max number of versions (255 or 16) to CURRENT_VERSION;
 #active_versions = MAX(target.CURRENT_VERSION,source.CURRENT_VERSION) -

MIN(target.OLDEST_VERSION,source.OLDEST_VERSION) + 1;

If the number of active versions is too high, first reorganize the entire source and target
objects, take image copies, and run MODIFY to reclaim versions.

4. Run the DSN1COPY with the OBIDXLAT option specifying the proper mapping of table
OBIDs from the source to the target system.

5. When on the target system, run REPAIR VERSIONS specifying the object which was
copied over. For table spaces, this will update the OLDEST_VERSION and
CURRENT_VERSION in SYSTABLEPART. It will also update VERSION in SYSTABLES.
For indexes, this will update the OLDEST_VERSION and CURRENT_VERSION in
SYSINDEXES.

The formula for updating the SYSTABLEPART and SYSINDEXES version numbers
follows:

CURRENT_VERSION = MAX(target.CURRENT_VERSION,source.CURRENT_VERSION)
OLDEST_VERSION = MIN(target.OLDEST_VERSION,source.OLDEST_VERSION)

REPAIR can also be used to reset the RBDP status for the specified index and the AREO*
status for the specified table space or index. The keywords provided for these are
NORBDPEND and NOAREORPENDSTAR respectively.

7.1.3 Point-in-time recovery restrictions
With the enhancements introduced by online schema, it is not always possible for you to
recover a table space to a point-in-time. In some instances such a recovery is blocked.

Figure 7-13 discusses the following scenario of recovering a table space to a point-in-time:

� At time T1, you do an ALTER TABLESPACE to rotate a partition. When the rotation is
completed, DB2 writes a record in SYSCOPY.

� At time T2, you do an ALTER TABLE ALTER COLUMN to change, for example, the data
type of a column. This causes DB2 to place the table space in AREO* state.

� At time T4, you do a REORG TABLESPACE and this resets the AREO* state.

186 DB2 UDB for z/OS Version 8 Technical Preview

Figure 7-13 Online schema — Recovery of table space to a point-in-time

� At time T5, if you recover the table space to point-in-time T3 which is before the time you
did the REORG TABLESPACE, then after the recovery is done, DB2 places the table
space in REORP state.

� At time T6, if you recover the table space to a point-in-time T0 which is before you did the
rotate partition, DB2 displays a message to the effect that the recovery is blocked and
cannot be done.

We discuss some specific details regarding recovery of a table space to a point-in-time.

RECOVER TABLESPACE
RECOVER TABLESPACE to current assumes that the current catalog and directory
definitions remain intact. There is no special handling required.

RECOVER TABLESPACE to a previous point-in-time is changed when crossing new
SYSCOPY records inserted to support new functions in this enhancement.

New SYSCOPY records are listed in Table 7-1.

Table 7-1 RECOVER TABLESPACE PIT actions

Action SYSCOPY
ICTYPE

SYSCOPY
STYPE

PART RANGE RECOVER to
PIT ACTION

SET DATA TYPE N/A N/A N/A Completes

ADD PARTITION N/A N/A N/A Completes

ROTATE
PARTITION

A R For physical part
reset

Blocked

ALTER
PARTITION
BOUNDARY

W,X,R or S A For each REORP Turn on REORP

Recovery of table space to point-in-time

REORG TABLESPACEROTATE PART

SYSCOPY
ICTYPE=A
STYPE=R

ALTER TABLE
places the
table space in
AREO* state

Recovery to point-in-time is blocked

turn on REORP
Time T0 T1 T2 T3 T4 T6T5

Chapter 7. Utilities 187

Since all version definitions within the object being recovered are kept, there is no problem
recovering data from a previous version. When recovering to a point before the first version
was saved in system pages, the version definition is contained within the new SYSOBDS
catalog table.

With the enhancements introduced by online schema, it is not always possible for you to
recover a COPY YES index to a point-in-time. In some instances such a recovery is blocked.

Example 7-14 discusses the following scenario of recovering an index to a point-in-time:

Figure 7-14 Online schema — Recovery of index to a point-in-time

� At time T1, you do an ALTER TABLESPACE to rotate a partition. When the rotation is
completed, DB2 writes a record in SYSCOPY.

� At time T2, you do an ALTER INDEX to change, for example, from NOT PADDED to
PADDED. This causes DB2 to place the index space in RBDP state.

� At time T4, you do a REBUILD INDEX and this resets the RBDP state.

� At time T5, if you recover the index to point-in-time T3 which is before the time you did the
REBUILD INDEX, then after the recovery is done, DB2 places the index in RBDP state.

� At time T6, if you recover the index to a point-in-time T0 which is before you did the rotate
partition, DB2 displays a message to the effect that the recovery is blocked and cannot be
done.

We discuss some specific details regarding recovery of an index to a point-in-time.

RECOVER INDEXSPACE
Indexes for point-in-time recovery are handled the same as without versions. If copies of the
indexes taken at a consistent point with the table space are also part of the recovery, then the
indexes are immediately available. If the table space is recovered but not the indexes, then
the indexes are set to RBDP state.

New SYSCOPY records are listed in Table 7-2.

Recovery of index to point-in-time

REBUILD INDEXROTATE PART

SYSCOPY
ICTYPE=A
STYPE=R

ALTER INDEX
places the
index space
in RBDP and
ARBDP states

Recovery to point-in-time is blocked

turn on RBDP&ARBDP
Time T0 T1 T2 T3 T4 T6T5

188 DB2 UDB for z/OS Version 8 Technical Preview

Table 7-2 RECOVER INDEXSPACE PIT actions

7.2 Delimited LOAD and UNLOAD
A delimited file, in general, is a sequential file with row and column delimiters. Each delimited
file is a string of characters consisting of cell values ordered by row, and then by column.
Columns within each row are separated by column delimiters. Rows are separated by row
delimiters. The beginning and ending of each individual cell value may be indicated by
character delimiters. In z/OS a row is a BSAM record.

Most relational database management systems including DB2 on the UNIX and Windows
platforms, are capable of unloading data in a delimited format, where each record is a row,
with columns separated by commas, and optionally delimited with, for example, double quote
marks. The LOAD utility in DB2 V7 and prior releases expects data in the positional format
and most other DBMS systems cannot unload data in the positional format. If you want to
move data to DB2 for z/OS and OS/390, you have to therefore either write a program to
convert the data into the positional format, or use insert processing, thereby without exploiting
the performance advantages of the LOAD utility.

The LOAD utility in DB2 V8 is enhanced to accept data from a delimited file. The UNLOAD
utility in DB2 V8 is also enhanced to produce a delimited file when unloading the data. This
enhancement helps to simplify the process of migrating data into and out of DB2 for z/OS.
This function is implemented in total compatibility with the other members of the DB2 family.

LOAD delimited input functional description
The delimited file on z/OS is a sequential file consisting of one or more fixed or variable
records. Since the end of the record is inherent in the file structure, record delimiters, such as
CRLF, are not used. The LOAD utility syntax has been changed and additional options are
added for the keyword FORMAT. Figure 7-15 shows the syntax to support the enhancement.

Action SYSCOPY
ICTYPE

SYSCOPY
STYPE

PART RANGE RECOVER
ACTION

SET DATA TYPE
numeric

N/A N/A N/A Blocked because
SYSCOPY rows
were deleted

SET DATA TYPE
numeric

B A All parts Set RBDP

ALTER NOT
PADDED

X,W,R,S, or B V All parts Sets RBDP

ALTER PADDED N/A N/A N/A Completes

ALTER
PARTITION
BOUNDARY

A R For each REORP
reset

Turn on REORP

ALTER
PARTITION
BOUNDARY

W,X,R, or S A For each REORP
reset

Turn on REORP

ROTATE
PARTITION

A R For physical or
logical part reset

Blocked

Chapter 7. Utilities 189

Figure 7-15 LOAD delimited input syntax

DELIMITED specifies that the input file is a delimited file. This is a BSAM file with column and
character data string delimiters. In this format all fields in the input data set are in character
string or numeric external form, each column value is separated from the next by a column
delimiter character (the default is a comma), and character strings which contain column
delimiters are demarcated by character string delimiter characters (the default is a double
quote).

COLDEL coldel specifies the column delimiter character (the default is a comma) that is used
in the input file when FORMAT DELIMITED is specified.

CHARDEL chardel specifies the character data string delimiter (the default is double quote)
that is used in the input file when FORMAT DELIMITED is specified. The character string
delimiter is permitted within character string input fields; two successive character delimiters
within the enclosing character delimiters are interpreted as a single character that is part of
the character string. For example:

"what a ""nice day"" day" is loaded as what a "nice day" day

DECPT decpt specifies the decimal point character (the default is a period) that is used in the
input file when FORMAT DELIMITED is specified.

Example 7-7 on page 190 shows a sample LOAD job with delimited input.

In the example the column delimiter is a comma, the character string delimiter is a double
quote, the decimal point is a period; these are also the defaults. Note that a comma is not
allowed in the data since it is defined as column delimiter. Two successive commas would
mean that no value is specified for the skipped column. A comma. or any column delimiter,
would be allowed within any cell value as long as the values was enclosed in character
delimiters.

Example 7-7 Sample LOAD job with delimited input

//*
//STEP3 EXEC DSNUPROC,UID=’JUQBU101.LOAD2 ’,TIME=1440,
// UTPROC=’’,
// SYSTEM=’SSTR ’,DB2LEV=DB2A

FORMAT

LOAD

 SQL/DS

DELIMITED

UNLOAD

COLDEL- coldel _ CHARDEL -chardel DECPT-decpt --

LOAD delimited input syntax

190 DB2 UDB for z/OS Version 8 Technical Preview

//SYSERR DD DSN=JUQBU101.LOAD2.STEP3.SYSERR,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4096,(20,20),,,ROUND)
//SYSDISC DD DSN=JUQBU101.LOAD2.STEP3.SYSDISC,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4096,(20,20),,,ROUND)
//SYSMAP DD DSN=JUQBU101.LOAD2.STEP3.SYSMAP,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4096,(20,20),,,ROUND)
//SYSUT1 DD DSN=JUQBU101.LOAD2.STEP3.SYSUT1,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4096,(20,20),,,ROUND)
//UTPRINT DD SYSOUT=*
//SORTOUT DD DSN=JUQBU101.LOAD2.STEP3.SORTOUT,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4096,(20,20),,,ROUND)
//SYSIN DD *
 LOAD DATA
 FORMAT DELIMITED COLDEL ’,’CHARDEL ’"’DECPT ’.’
 INTO TABLE TBQB0103
 (FILENO CHAR,
 DATE1 DATE EXTERNAL,
 TIME1 TIME EXTERNAL,
 TIMESTMP TIMESTAMP EXTERNAL)
/*
//SYSREC DD *
"001",2000-02-16,00.00.00,2000-02-16-00.00.00.0000
"002",2001-04-17,06.30.00,2001-04-17-06.30.00.2000
"003",2002-06-18,12.30.59,2002-06-18-12.30.59.4000
"004",1991-08-19,18.59.30,1991-08-19-18.59.30.8000
"005",2000-12-20,24.00.00,2000-12-20-24.00.00.0000
/*

UNLOAD delimited output functional description
The UNLOAD utility syntax is changed to add the DELIMITED, COLDEL, CHARDEL, and
DECPT keywords.

Figure 7-16 on page 192 shows the changes to the UNLOAD syntax.

DELIMITED specifies that the output data file is a delimited file format. In this format, all fields
in the output data set are in character string or numeric external form, each column value is
separated from the next by a column delimiter character (the default is a comma), and
character strings which contain column delimiters are demarcated by character string
delimiter characters (the default is a double quote).

COLDEL specifies a single column delimiter character (the default is a comma) that is used in
the output file when DELIMITED is specified.

CHARDEL specifies a single character string delimiter character (the default is a double
quote) that is used in the output file when DELIMITED is specified. The character string
delimiter character is permitted within character string output fields; to delimit character
strings that contain the character string delimiter, UNLOAD repeats it. For example:

what a "nice day" day is unloaded as "what a ""nice day"" day"

DECPT specifies a single decimal point character (the default is a period) that is used in the
output file when DELIMITED is specified.

Chapter 7. Utilities 191

Figure 7-16 UNLOAD delimited output syntax

Example 7-8 shows a sample UNLOAD job with delimited output. In the example the column
delimiter is a semicolon, the character string delimiter is a pound sign, the decimal point
character is an exclamation point.

Example 7-8 Sample UNLOAD job with delimited output

//*
//STEP3 EXEC DSNUPROC,UID=’JUQBU105.UNLD1 ’,
// UTPROC='',
// SYSTEM='SSTR'
//UTPRINT DD SYSOUT=*
//SYSREC DD DSN=JUQBU105.UNLD1.STEP3.TBQB0501,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSPUNCH DD DSN=JUQBU105.UNLD1.STEP3.SYSPUNCH
// DISP=(MOD,CATLG,CATLG)
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSUT1 DD DSN=JUQBU105.UNLD1.STEP3.SYSUT1,
// DISP=(MOD,DELETE,CATLG)
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SORTOUT DD DSN=JUQBU105.UNLD1.STEP3.SORTOUT,
// DISP=(MOD,DELETE,CATLG)
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
 UNLOAD TABLESPACE DBQB0501.TSQB0501
 DELIMITED CHARDEL '#'COLDEL ';'DECPT '!'
 PUNCHDDN SYSPUNCH
 UNLDDN SYSREC EBCDIC
 FROM TABLE ADMF001.TBQB0501
 (RECID POSITION(*) CHAR,
 CHAR7SBCS POSITION(*) CHAR,
 CHAR7SBIT POSITION(*) CHAR(7),
 VCHAR20 POSITION(*) VARCHAR,
 VCHAR20SBCS POSITION(*) VARCHAR,
 VCHAR20BIT POSITION(*) VARCHAR)
/*

UNLOAD

DELIMITED

COLDEL -coldel CHARDEL -chardel DECPT -decpt

UNLOAD-SPEC

UNLOAD delimited output syntax

192 DB2 UDB for z/OS Version 8 Technical Preview

Delimiter considerations
You should be aware of the following considerations when using the delimited file format:

� LOAD:

– When the delimited input format is used, field position specifications, if supplied, are
ignored. Field data type specifications, if supplied, are overridden by the requirements
of the delimited format; that is, the lengths of CHAR, VARCHAR, GRAPHIC,
VARGRAPHIC, CLOB, DBCLOB, and BLOB fields are taken from the delimited lengths
of each field in the input data set, and all numeric types are assumed to be in external
format.

– For either EBCDIC or ASCII input, if any of the field data type specifications include the
MIXED keyword, then the input data is assumed to be in the mixed CCSID specified in
the LOAD statement; or if CCSID is omitted, in the mixed CCSID specified at install
time. If no field data type specifications include the MIXED keyword then the input data
is assumed to be in the single byte CCSID specified in the LOAD statement, or defaults
to the system SBCS CCSID.

– If no field specifications are supplied, the input data is assumed to be in the mixed
CCSID if any columns in the table are FOR MIXED. Otherwise it is assumed to be
SBCS.

– For Unicode input, the input data must be in CCSID 1208, UTF-8.

– CONTINUEIF is not allowed with FORMAT DELIMITED.

– INCURSOR is not allowed with FORMAT DELIMITED.

– Multiple INTO TABLE statements are not allowed with FORMAT DELIMITED. FORMAT
DELIMITED may be used to load only a single table at a time.

� UNLOAD:

– When DELIMITED is specified for UNLOAD, the NOPAD option is in effect for variable
length columns output even if this keyword is not specified by the user. However, if the
length is specified for a fixed length (for example, CHAR) column output field, and is
longer than the length of the table column, the normal padding rule applies.

– The default for HEADER is HEADER NONE.

– HEADER OBID and ROWID are not valid output fields for delimited output file format.
Neither OBID nor ROWID are generated in the delimited output file. Since the header is
not allowed, output must be from a single table.

– When the delimited output format is used, field POSITION is ignored if you specify it.
Field data type specifications, if supplied, are overridden by the requirements of the
delimited format; that is, the lengths of CHAR, VARCHAR, GRAPHIC, VARGRAPHIC,
CLOB, DBCLOB, and BLOB fields are the delimited lengths of each field in the output
data set, and all numeric types are unloaded in external format.

– A NULL value is indicated by the absence of a cell value where one would normally
occur (that is, two successive column delimiters, or missing columns at the end of a
record). There is no NULL indicator byte present.

Delimited file data type forms for LOAD and UNLOAD
Table 7-3 shows the acceptable data type forms for the delimited file format.

Chapter 7. Utilities 193

Table 7-3 Acceptable data type forms for the delimited file format

Note: that all numeric fields are in EXTERNAL format for LOAD. Field specifications of
INTEGER or SMALLINT will be treated as if they were INTEGER EXTERNAL, specifications
of DECIMAL, DECIMAL PACKED, or DECIMAL ZONED are treated as DECIMAL
EXTERNAL, and specifications of FLOAT, REAL, or DOUBLE are treated as FLOAT
EXTERNAL.

7.3 Unicode
This enhancement modifies the utility control statement parser to allow Unicode input to
utilities, specifically UTF-8 CCSID 1208. You are allowed to provide control statements in the
control statement input data sets either entirely in EBCDIC characters or entirely in Unicode
characters. This function could be used to execute utilities with stored procedures or via a
front end tool.

Data type Form acceptable to LOAD utility Form in file created by UNLOAD utility

CHAR,
VARCHAR

A delimited or non-delimited character
string

Character data enclosed by character
delimiters. There are no length bytes
preceding the data in the string for
VARCHAR.

GRAPHIC-
Any Type

A delimited or non-delimited character
stream

Data is unloaded as a delimited
character string. There are no length
bytes preceding the data in the string for
VARGRAPHIC.

INTEGER -
Any Type

A stream of characters representing a
number in external format

Numeric data in external format

DECIMAL -
Any Type

A character string that represents a
number in external format

A string of characters representing a
number

FLOAT Representation of number in the range
of -7.2E+75 7.2E+75 in external format

A string of characters representing a
number in floating point notation

BLOB, CLOB A delimited or non-delimited character
string

Character data enclosed by
character delimiters. There are no length
bytes preceding the data in the string.

DBCLOB A delimited or non-delimited character
string

Character data enclosed by character
delimiters. There are no length bytes
preceding the data in the string.

DATE A delimited or non-delimited character
string containing a date value in
external format

Character string representation of a date

TIME A delimited or non-delimited character
string containing a time value in
external format

Character string representation of a time

TIMESTAMP A delimited or non-delimited character
string containing a timestamp value in
external format

Character string representation of a
timestamp

194 DB2 UDB for z/OS Version 8 Technical Preview

All utility control statement input data sets which begin with any of these characters are
processed as Unicode.

� '20'x - Unicode blank
� '2D'x - Unicode dash (i.e. a utility comment delimiter)
� '41'x through '5A'x inclusive — upper case ASCII alphabets

Utility control statement input data sets are those provided to the DSNUTILB program with
DD name SYSIN, SYSLISTD or SYSTEMPL or the contents of the UTSTMT field passed to
the DSNUTILU stored procedure discussed below.

All output to the SYSPRINT data set and the MVS console continue to be in EBCDIC with
translation taking place as required.

The DSNUTILU definition is identical to DSNUTILS with two exceptions:

1. The inputs to the procedure are in Unicode. UTILITY_ID and RESTART inputs are
translated to EBCDIC by the stored procedure for processing. UTSTMT input is stored in a
temporary SYSIN data set and processed in Unicode as outlined above.

2. The dynamic allocation of data sets is removed. As of V7 this function is performed by the
TEMPLATE control statement. In order to eliminate dynamic allocation, the following
DSNUTILS keywords are not supported by DSNUTILU for all values of xxxx:

– UTILITY
– xxxxDSN
– xxxxDEVT
– xxxxSPACE

Figure 7-17 shows the DSNUTILU definition. A new sample C-language caller program
DSN8ED8 and a sample job DSNTEJ6R to prepare and execute the caller demonstrate the
use of DSNUTILU.

Figure 7-17 DSNUTILU definition

CREATE PROCEDURE DSNUTILU
CREATE PROCEDURE DSNUTILU
 (IN UTILITY_ID VARCHAR(16) CCSID UNICODE
 , IN RESTART VARCHAR(8) CCSID UNICODE
 , IN UTSTMT VARCHAR(32704) CCSID UNICODE
 , OUT RETCODE INTEGER)
 EXTERNAL NAME DSNUTILU
 LANGUAGE ASSEMBLE
 WLM ENVIRONMENT WLMENV1
 NO COLLID
 RUN OPTIONS 'TRAP(OFF)'
 PROGRAM TYPE MAIN
 MODIFIES SQL DATA
 ASUTIME NO LIMIT
 STAY RESIDENT NO
 COMMIT ON RETURN NO
 PARAMETER STYLE GENERAL
 RESULT SETS 1
 EXTERNAL SECURITY USER;

Chapter 7. Utilities 195

7.4 Distribution statistics
With DB2 V7, Runstats does not collect distribution statistics on non-leading indexed
columns. Skewed distributions within the data can cause performance problems with DB2
queries, especially in ad hoc query applications. The symptom includes apparently illogical
join sequences and excessive use of synchronous I/O, as well as long response times.

When there is asymmetrical distribution of data, not having distribution statistics on
non-leading indexed columns and/or non-indexed columns can cause DB2 to make
sub-optimal table join order and table join method decisions. This ultimately results in queries
which perform inefficiently or do not complete.

Collection of distribution statistics for non-leading indexed columns and/or non-indexed
columns ensures that DB2 can use these statistics for better access path selection. Better
index selections can be made, when there are screening predicates or there are matching
in-list/in-subquery predicates which break up matching equals predicates.

DSTATS (Distribution Statistics for DB2 for OS/390), a downloadable tool, was made available
for use with Versions 5, 6, and 7. DSTATS is a standalone DB2 application program
containing embedded dynamic and static SQL statements. This tool is aimed to address the
issue by collecting additional statistics on column distributions that were not being collected
by Runstats. DSTATS builds the SYSCOLDIST catalog table entries.

With the growth of data warehousing, data mining, and ad hoc query applications, Runstats
utility is enhanced in V8 to provide more information to DB2 by collecting additional
distribution statistics on columns that would likely be used in a predicate. This enhancement
to the Runstats utility eliminates the need to use the DSTATS tool for DB2 V8.

This enhancement is implemented only in Runstats and not in inline statistics. It greatly
improves the accuracy of the filter factors determined by DB2. More accurate filter factor
computations should lead to better optimization choices. Thus the query performance
improves with better filter factor information in the DB2 catalog.

To summarize, Runstats enhancements provide the following functionalities:

� Frequency value distributions for non-indexed columns or groups of columns.

� Cardinality values for groups of non-indexed columns

� LEAST frequently occurring values, along with MOST for both index and non-indexed
column distributions.

Two subtasks, one to sort the records based on the column group specified and the other to
sort the frequency records generated, are used in the execution of RUNSTATS utility.

Figure 7-18 and Figure 7-19 show the changes to the RUNSTATS syntax to collect
distribution statistics on non-indexed columns and column correlation statistics on indexed
columns.

196 DB2 UDB for z/OS Version 8 Technical Preview

Figure 7-18 RUNSTATS syntax changes

Figure 7-19 RUNSTATS — Distribution statistics and key correlation statistics blocks

RUNSTATS - syntax changes

RUNSTATS - Distribution statistics and
key correlation statistics blocks

COLGROUP--spec:
|---|
 | <--,---------------< |
 |--COLGROUP(---column-name---)-, --,----|
 | |---MOST---| |
 |--FREQVAL COUNT ---- integer------+--------------+----|
 |---BOTH---|
 |---LEAST--|

correlation-stats-spec:
|---.-----------------------.--.-----|
 '--KEYCARD--' | .-----1------. .-----10----- .---MOST--. |
 '----FREQVAL---NUMCOLS-'--integer--'----COUNT-'--integer--'---------|--------------|----'
 |--BOTH---|
 '--LEAST-.'

Chapter 7. Utilities 197

7.4.1 Collecting cardinality and distribution statistics
To enable the collection of cardinality and distribution statistics on non-indexed columns, a
new dist-spec block is introduced. New keywords COLGROUP, MOST, LEAST, and BOTH are
introduced in this block. In addition the existing keywords FREQVAL and COUNT are also
used. Cardinality and distribution statistics are collected only on the columns explicitly
specified. Cardinality and distribution statistics are not collected if you specify COLUMN ALL.

The distribution statistics are collected in SYSCOLDIST and if the table space is partitioned
also in SYSCOLDISTSTAT catalog tables. If the COLGROUP keyword is specified, the
cardinality statistics are also collected in these tables. Otherwise, the cardinality statistics are
collected in SYSCOLUMNS catalog table.

COLGROUP
When the keyword COLGROUP is specified, the set of columns specified with the COLUMN
keyword is treated as a group. The cardinality values are collected on the column group.
When COLGROUP is not specified, the columns are treated as individual columns and
cardinality values are collected on the columns specified in the list.

FREQVAL
Controls the collection of frequent value statistics. These are collected either on the column
group or on individual columns depending on whether COLGROUP is specified or not. If
FREQVAL is specified, then it must be followed by the keyword COUNT.

COUNT integer:
COUNT indicates the number of frequent values to be collected. Specifying an integer value
of 20 means to collect 20 frequent values for the specified columns.No default value is
assumed for COUNT. Although the syntax might suggest the default value is 10, you have to
explicitly specify COUNT 10. This can be optionally followed by the keyword MOST (which is
the default), LEAST, or BOTH.

MOST
The most frequent values are collected when the keyword MOST is specified.

LEAST
The least frequent values are collected when the keyword LEAST is specified.

BOTH
The most frequent values and the least frequent values are collected when the keyword
BOTH is specified.

7.4.2 Collecting column correlation statistics
In V7, the keywords FREQVAL, NUMCOLS, and COUNT in the correlation-stats-spec block
can be used to collect the frequent value statistics for the specified index. In V8, this block is
enhanced to include specification of the keyword MOST ((which is the default), LEAST, or
BOTH.

MOST
The most frequent values on the indexed columns are collected when the keyword MOST is
specified.

198 DB2 UDB for z/OS Version 8 Technical Preview

LEAST
The least frequent values on the indexed columns are collected when the keyword LEAST is
specified.

BOTH
The most frequent values and the least frequent values on the indexed columns are collected
when the keyword BOTH is specified.

7.4.3 Use of work data sets
When RUNSTATS is executed to collect distribution statistics on non-indexed columns, only
one SORT subtask is created. The SORT subtask invokes DFSORT (or equivalent) and each
instance of sort needs its own sort work data sets and sort message data set.

The DDNAMEs STATWKnn define the sort work data sets used by the utility subtask, where
nn identifies one or more data sets to be used by that subtask's invocation of DFSORT (or
equivalent). The sort work data sets may be allocated by dynamic allocation or may be
allocated by the user with DD statements in the job JCL.

SORTDEVT device-type
SORTDEVT specifies the device type for sort work data sets to be dynamically allocated by
SORT. It can be any device type acceptable to the DYNALLOC parameter of the SORT or
OPTION options for DFSORT.

You cannot use a TEMPLATE specification to dynamically allocate sort work data sets.
Dynamic allocation of these data sets is controlled by the SORTDEVT keyword.

SORTNUM integer
SORTNUM specifies the number of sort work data sets to be dynamically allocated by the
sort program. If you omit SORTDEVT, SORTNUM is ignored. If you use SORTDEVT and
SORTNUM, no value is passed to DFSORT. If you omit SORTDEVT, SORT is not requested
to do dynamic allocation, and whether it does so is governed by its installation options.

7.4.4 Examples
We provide some examples to collect cardinality and distribution statistics for non-indexed
columns.

In Example 7-9, by specifying the COLGROUP keyword the cardinality of the column group is
collected for the specified group of columns (EMPLEVEL, EMPGRADE, EMPSALARY).

Example 7-9 Distribution statistics — Example 1

RUNSTATS TABLESPACE DSN8D71A.DSN8S71E
 TABLE(DSN8710.DEPT)
 COLGROUP(EMPLEVEL, EMPGRADE, EMPSALARY)

In Example 7-10, the 10 most frequent values, and the group column cardinalities are
collected for the specified columns (EMPLEVEL, EMPGRADE, EMPSALARY).

Example 7-10 Distribution statistics — Example 2

RUNSTATS TABLESPACE DSN8D71A.DSN8S71E
 TABLE(DSN8710.DEPT)
 COLGROUP(EMPLEVEL, EMPGRADE, EMPSALARY) FREQVAL COUNT 10

Chapter 7. Utilities 199

In Example 7-11, the 15 least frequent values are collected for the specified columns
(EMPLEVEL, EMPGRADE, EMPSALARY) as well as the cardinalities for the column group
specified in the list.

Example 7-11 Distribution statistics — Example 3

RUNSTATS TABLESPACE DSN8D71A.DSN8S71E
 TABLE(DSN8710.DEPT)
 COLGROUP(EMPLEVEL, EMPGRADE, EMPSALARY) FREQVAL COUNT 15 LEAST

In Example 7-12, the 15 most frequent values and the 15 least frequent values are collected
for the specified columns (EMPLEVEL, EMPGRADE, EMPSALARY) as well as the group
cardinalities for the column group specified in the list.

Example 7-12 Distribution statistics — Example 4

RUNSTATS TABLESPACE DSN8D71A.DSN8S71E
 TABLE(DSN8710.DEPT)
 COLGROUP(EMPLEVEL, EMPGRADE, EMPSALARY) FREQVAL COUNT 15 BOTH

In Example 7-13, by specifying the COLUMN keyword the individual cardinalities of the
columns are collected. By specifying the COLGROUP keyword the cardinality of the column
group is collected, and by specifying the FREQVAL keyword the frequent values are
collected. The cardinality is collected for the specified column group (EMPLEVEL,
EMPGRADE, EMPSALARY). Also both the 10 most frequent values and the 10 least frequent
values are collected for the column group (EMPLEVEL, EMPGRADE, EMPSALARY).

Example 7-13 Distribution statistics — Example 5

RUNSTATS TABLESPACE DSN8D71A.DSN8S71E
 TABLE(DSN8710.DEPT)
 COLUMN(EMPLEVEL, EMPGRADE, EMPSALARY)

COLGROUP(EMPLEVEL, EMPGRADE, EMPSALARY) FREQVAL COUNT 10 BOTH

7.5 Backing up and restoring the system
Two new utilities have been introduced with DB2 V8 with the intent to provide a system level,
point-in-time level of recovery. This architecture is described at 4.4, “System level
point-in-time recovery” on page 62. Please also refer to the figures in that section when
reading about these utilities:

� BACKUP SYSTEM
� RESTORE SYSTEM

Certain activities are disabled during the backup stage, but by activating through these new
DB2 utilities the new functionalities provided within the new z/OS V1R5 by DFSMShsm, you
now have a much easier and less disruptive way for fast volume-level backup and recovery to
be used for disaster recovery and system cloning. This function is of great interest for ERP
solutions where recovery copies of large number of disk volumes for data and indexes need
to be synchronized for application related consistency.

BACKUP SYSTEM
This utility statement invokes DHSMShsm services to take fast, and (few minutes) minimally
disruptive volume copies of all the DB2 data and/or logs. No DB2 QUIESCE point is required,
nothing gets stopped as it did during the previous solution which required the SET LOG
SUSPEND command.

200 DB2 UDB for z/OS Version 8 Technical Preview

Two options are available:

� BACKUP SYSTEM FULL: This is the default. It is a full backup which allows recovery of
the entire system in later stage, both the database and log volumes need to be defined.
DB2 will backup both database and then all log related data sets (system logs and BSDS).

� BACKUP SYSTEM DATA: This is a data-only system backup; only the database volumes
needs to be defined for database backup.

A new SMS construct representing a set of SMS volumes is used. Each DB2 system uses
two pools of volumes with prescribed DB2 naming convention (30 bytes in length) for:

� Database data
� LOG data

A new storage group will hold the volume copies.

When the BACKUP SYSTEM command is issued the 32 KB page writes are disabled, if
necessary, as well as data set creation, deletion, rename and extension operations. The PITR
locks are acquired in X mode in order to ensure that no restore is taking place on any other
member. The BACKUP is serialized with the RESTORE SYSTEM process. The Recover
Based Log Point (RBLP) is recorded in DBD01 for use to speed up the logscan process in the
RESTORE log apply phase. In data sharing the RBLP LRSN is determined by taking the
minimum of all member level RBLP values. Backup of the volumes are done in parallel.

Once the “logical” copies have completed (should typically be within a few seconds), each
data sharing member updates the BSDS with the system backup information, while only the
submitting member logs BSDS information. Full volume copies of the LOG volumes are taken
in case of Backup System Full option. Once terminated, the quiesced activities will resume.

RESTORE SYSTEM
RESTORE SYSTEM, in order to Recover the system to the PIT at which the backup copy was
taken, uses the copies from BACKUP SYSTEM FULL and the normal restart/recovery
process.

The RESTORE SYSTEM utility is needed to recover the system to an arbitrary PIT. It uses
copies from BACKUP SYSTEM FULL or DATAONLY. RESTORE SYSTEM does not restore
LOG backup copies, therefore copies from DATAONLY are sufficient.

It consists on two phases:

� RESTORE phase: Recover the database volumes from the latest BACKUP version prior
to the arbitrary PIT

� LOG APPLY phase: Apply log records to recover database object to that arbitrary PIT

If the optional parameter LOGONLY is specified, the RESTORE phase is skipped. The
assumption here is that the database volumes have been resored outside of DB2.

Prerequisites
In terms of prerequisites, the following is necessary for PITR:

� z/OS V1R5 or above
� DASD control units which support ESS FlashCopy APIs
� DB2 data sets must reside on SMS-managed volumes
� DB2 V8 must be in 'new function' mode

Chapter 7. Utilities 201

7.6 Other changes
In this section we mention other miscellaneous utility changes.

7.6.1 New default RESTART
In DB2 V8 you no longer need to add the RESTART or RESTART(PHASE) parameters to the
utility jobs. The RESTART is assumed to be the default.

A restartable online utility can now be restarted with or without the RESTART keyword. DB2
determines whether PHASE or CURRENT is used depending on the utility and phase where
it failed, unless the RESTART PARM has been explicitly coded.

You should ensure that the data sets have the correct size and disposition to enable restart.

This function is going to be available for DB2 V7 via the PTF for APAR PQ72337, currently
open.

7.6.2 New defaults SORTDATA and SORTKEYS
With DB2 V8 two REORG parameters SORTDATA and SORTKEYS (this one also applies to
LOAD) are assumed as default.

SORTDATA
The SORTDATA parameter of REORG invokes the execution of a sort on the unclustered data
that are columns of the clustering index. This allows consistent execution time, and better
performance than the method of accessing the data through the clustering index. And the
more data is disorganized, the better it will perform, since the previous default of going
through the clustering index will take progressively longer with more disorganized rows.

SORTKEYS
The SORTKEYS keyword is a performance related option which can improve performance of
Load and Reorg utilities by having impact during both of the following situations:

� The index key sort elapsed time — by reducing I/O and overlapping phases
� The index load elapsed time — by activating index load parallelism

During the index key sort, with SORTKEYS, index keys are passed in memory rather than
written to the SYSUT1 and SORTOUT work files. Avoiding this I/O to the work files improves
LOAD performance. It also reduces disk space requirements for the SYSUT1 and SORTOUT
data sets. Using the SORTKEYS option reduces the elapsed time from the start of the reload
phase to the end of the build phase.

Of course, if the index keys are already in sorted order, or there are no indexes, SORTKEYS
does not provide any advantage. Remember that if SORKEYS is activated and the job
abends, during the reload, sort, or build phase, it will always need to restart from the
beginning of the reload phase. More information on the usage and the performance of
SORTKEYS for this functionality is reported in the standard DB2 manuals and in the redbook
DB2 for OS/390 Version 5 Performance Topics, SG24-2213.

202 DB2 UDB for z/OS Version 8 Technical Preview

You can reduce the elapsed time of a LOAD job for a table space or partition with more than
one defined index by invoking a parallel index build. We have seen that DB2 V5 introduced
the SORTKEYS option to eliminate multiple I/Os to access the keys that are needed to build
the indexes. The keys are passed in storage to the sort process, and then directly to the build
phase. But, since there is only a single sort and build subtask, the indexes are built serially,
the DB2 V6, with SORTKEYS specified, also provided multiple pairs of sort and build
subtasks so that indexes are built in parallel, thereby improving the elapsed time of LOAD and
REORG.

You can use dynamic allocation (SORTDEVT and SORTNUM keywords) to allocate the sort
work data sets, or you can allocate them by specifying the ddnames in the form SWnnWKmm,
where nn is the subtask pair number and mm is the number of data sets for that subtask pair.
You can therefore control and limit the amount of parallelism by restricting the number of
these data sets. More information on the usage and the performance of SORTKEYS for this
functionality is reported in the standard DB2 manuals and in the redbook DB2 for OS/390
Version 6 Performance Topics, SG24-5351.

7.6.3 COPY and RECOVER tape parallelism
Parallelism has been enhanced in COPY and RECOVER when tapes are utilized. This
enhancement is added to DB2 Utilities Suite V7 via Program Temporary Fixes (PTFs). This
new function removes the parallelism support restriction in COPY and RECOVERY when
backup copies are on tape. This improves backup and recovery elapsed time performance by
permitting parallel processing of backup copies going to or from different tape devices.

Furthemorer, this enhancement improves usability and performance by implicitly RETAINing
mounted volumes for input data sets used by RECOVER and COPYTOCOPY. This allows
dynamic allocation access for data sets stacked onto a tape volume, without causing an
unnecessary unload and remount of the tape volume between data set accesses. To obtain
this new function, please refer to the following APAR Numbers when ordering from your IBM
marketing representative:

� PQ56295 for DB2 Operational Utilities (5655-E63)
� PQ56296 for DB2 Diagnostic and Recovery Utilities (5655-E62)
� PQ56295 and PQ56296 for DB2 Utilities Suite, V7 (5697-E98)
� PQ56293 for DB2 V7 (5675-DB2)

You can refer to DB2 UDB for OS/390 and z/OS Version 7 Utility Guide and Reference,
SC26-9945-02 for details.

Chapter 7. Utilities 203

204 DB2 UDB for z/OS Version 8 Technical Preview

Chapter 8. Performance

In this chapter we provide a description of the following topics:

� Comparing unlike data types
� Materialized query tables
� Multi-row INSERT and FETCH
� Cost based parallel sort
� Data caching and sparse index usage for star join
� Long and variable length keys
� Trigger enhancements
� Reduced lock contention on volatile tables
� Support for backward index scan
� Table UDF cardinality option and block fetch

8

© Copyright IBM Corp. 2003. All rights reserved. 205

8.1 Comparing unlike data types
When you do a database and application design, you normally make sure that the data type
of the columns in your tables match with the data types used by the host variables in your
programs. This has always been a good design rule (and still is) because it allows DB2 to use
certain techniques (like using an index) to boost performance.

However, it has become more and more difficult to apply this rule in all situations, especially
when you build new applications to access existing data (with an existing design) on a DB2 for
z/OS system. For example, when your application is coded in C, that language does not have
a DECIMAL data type, although some of the existing tables might have columns defined as
DECIMAL(p,s). Another case is Java. The Java language does not have a fixed length
character string data type; every string is variable length. In DB2, on the other hand, in most
cases, fixed length character columns defined as CHAR(n), are used.

Prior to DB2 V8, for many types of predicates, if the data types of the predicate operands do
not match, then the predicate is considered residual, also known as stage 2, and its treatment
can have a negative effect on the performance of the query.

So when you run a simple SELECT statement like Example 8-1 in a Java application, DB2
cannot use an index on RESOURCE_GROUP because of the mismatch in data type. The
data type of the RESOURCE_GROUP column is CHAR, and that of the :hv_res_gr host
variable has to be VARCHAR (since that is the only string data type supported by Java).

In addition, it is sometimes also necessary to join tables on columns with different data types,
also resulting in not maximizing performance.

Example 8-1 Sample SELECT statement

SELECT RESOURCE_GROUP,RESOURCE_OPTION,INTVAL,CHARVAL
 FROM Q.RESOURCE_TABLE
 WHERE RESOURCE_GROUP = :hv_res_gr

In DB2 V8, we improve the performance of queries that involve predicates with mismatched
data types. Now those predicates can be processed at stage 1, and can possibly also use an
index (subject to certain restrictions).

Processing the following types of predicates is improved by this enhancement:

� col op expression
� expression op col
� col BETWEEN expression1 AND expression2

In these expressions:

� 'col' is the column name of a table.

� 'expression' is any expression. It may contain constants, host variables, special registers,
parameter markers or columns. The expression can be a simple column. For example,
T1.col = T2.col, or T1.col > T2.col. If it contains a column, the column must not be in the
same table as the other predicate operand.

� 'op' is either =, <, <=, >, >= or <> (note that '<>' cannot be indexable, but can be processed
at stage 1).

When each predicate operand is a simple column from different tables (for example T1.col =
T2.col), then the join sequence determines which predicate operand is considered the
'column' and which is considered the 'expression'. The inner table is considered to be the
‘column’ and the outer table in the join the ‘expression’.

206 DB2 UDB for z/OS Version 8 Technical Preview

For example, consider the following predicate:

T1.col > T2.col

If T1 is the inner table of the join, then T1.col is considered the 'column' and T2.col is
considered the 'expression'. Likewise, if T2 is the inner table of the join, then T2.col is
considered the 'column' and T1.col is considered the 'expression'.

All predicates of the form listed above are now indexable and processed during stage 1,
subject to the following conditions:

Numeric comparisons
All numeric comparisons are stage 1 and indexable except the following:

� REAL -> DEC(p,s) where p > 15
� FLOAT -> DEC(p,s) where p > 15

Note that in the comparison notation above (and throughout the rest of this section), the
REAL or FLOAT “value” refers to the “right-hand side” of the predicate, or the outer table in a
join. For example, the restriction applies to the following predicate: DEC_column >
REAL_hostvar (if the precision of the DEC_colum is greater than 15).

In the case above, the decimal value is the indexed value, so the comparison must be done
on the decimal value. However, REAL and FLOAT values cannot be converted to decimal with
precision > 15 without possibly changing the collating sequence. Consequently, these are
stage 2 (residual) predicates.

String comparisons
In the following sections we consider several types of string comparisons.

Same CCSID string comparisons
All predicates comparing string types with the same CCSID are stage 1 and indexable except
the following:

� graphic/vargraphic -> char/varchar

In general, predicates comparing graphic/vargraphic to char/varchar are not indexable.
However, if the char/varchar is Unicode mixed and the predicate is an '=' predicate, then
the predicate is indexable.

� char/varchar(n1) -> char/varchar(n2) n1 > n2 and not '=' pred
� graphic/vargraphic(n1) -> graphic/vargraphic(n2) n1 > n2 and not '=' pred
� char/varchar(n1) -> graphic/vargraphic(n2) n1 > n2 and not '=' pred

Here the indexed value is the right hand side of “->”, and so the comparison must be done
with that data type and length. However, when the left hand side value in these cases is cast
to the right hand side data type and length, truncation may occur. Consequently, these cases
are stage 1 but not indexable.

Unlike CCSID string comparisons
The same restrictions as for string comparisons between the same CCSID also apply here.
Besides that, in order to be stage 1 and indexable, the inner table column, or the “col” side of
the predicate, has to be Unicode. Otherwise, the predicates will be stage 1 but not indexable.
The reason is all predicates comparing unlike CCSID are evaluated in Unicode encoding
scheme.

In all cases involving “column = column” comparisons (same or unlike CCSID) with columns
from different tables, the optimizer will consider a merge scan join as a potential access path.

Chapter 8. Performance 207

String and date/time/timestamp comparisons
Let us consider predicates comparing date/time/timestamp to string columns, such as:

date/time/timestamp -> string column

These are stage 2 (residual) if the string column is on the inner table or the “col side” of the
predicate.

Note that if the comparison is the other way around, the predicate is stage 1 and indexable:

string -> date/time/timestamp

Examples
Let us now look at a few examples to illustrate these enhancements.

In the first example, assume that we have a table defined as shown inExample 8-2:

Example 8-2 Employee table definition

EMPLOYEE (NAME CHAR(20),
 SALARY DECIMAL(12,2),
 DEPTID CHAR(3));

Figure 8-1 shows how a decimal column type (see SALARY’s definition in Example 8-2) is
compared with a float host variable. In this case the predicate can be processed during stage
1 and, assuming an index exists on SALARY, can be indexable. Note that salary has a
precision less than 16.

Figure 8-1 Mismatched operands — Numeric type

In Figure 8-2, assume that emp.deptID is defined as CHAR(4). Here we can see that
predicate transitive closure is done even though emp.depID and dept.id are of different
lengths. The new predicate is stage 1 and can be indexable. The generated parameter
marker has the same size as the parameter marker in the emp.deptID predicate.

SELECT * FROM employee
 WHERE salary > :hv_float ;

Stage 2 pr edica te
Table space scan

Stage 1 pr edica te
Can u se in dex on
sa la r y colu m n

v8 pr ior to v8

208 DB2 UDB for z/OS Version 8 Technical Preview

Figure 8-2 Mismatched operands — Transitive closure

8.2 Materialized query tables
The nature of queries in a data warehouse is to access a significant amount of rows of very
large fact tables joined with one to several dimension tables, sometimes billions of rows. A
typical query selects based on dimensions, aggregates on a few dimension columns, and
applies column functions on the records of interest. A common access path for these types of
queries is via a star join access path. Due to the large amount of data to be processed, these
queries can take up to many hours of elapsed time to process. In order to improve the
performance and reduce the elapsed time of these queries, we can either use parallelism or
somehow save (precompute and materialize) the results of prior queries and reuse these
common query results for subsequent queries. With DB2 V8 we can now materialize and
save these results for later use and avoid recomputation of the same (complex) result thus
reducing the elapsed time from hours down to minutes or seconds. This method we call
Materialized Query Tables (MQTs).

You should expect to see a reduction in elapsed time for queries which can make use of
materialized query tables. Queries which reference tables on which materialized query tables
are defined may see increased BIND time due to the catalog accesses and processing during
the automatic query rewrite phase.

The design and use of materialized query tables involves trade-off between conflicting design
objectives. On one hand, MQTs that are specialized to a particular query or set of queries can
lead to the greatest performance benefits. This approach can also lead to a proliferation of
MQTs, since many are needed to support a wide variety of queries. Since MQTs can be
expensive to define and keep current, this approach can be expensive.

On the other hand, MQTs that are more general purpose, and that support a large number of
submitted queries will often tend to provide less performance improvement. Since there are
fewer of these, the maintenance of the MQTs will be reduced.

SELECT dept.name, e1.name
 FROM emp, dept
 WHERE emp.deptID = ? AND
 emp.deptID = dept.id AND
 dept.id = ? ; generated

char(4)

Stage 2 pr edica te
Table space scan

Stage 1 pr edica te
Can u se in dex on

 dept.id colu m n

v8 pr ior to v8

char(3)

Chapter 8. Performance 209

In order to exploit MQTs, you have to:

� Create the MQT
� Populate the MQT
� Enable the MQT for query optimization

8.2.1 Creating an MQT
As we mentioned previously, a materialized query table contains pre-computed data. The
pre-computed data is the result of a query, that is a fullselect associated with the table.

You can either:

� Create an MQT from scratch using the CREATE TABLE statement
� Change an existing table into an MQT using the ALTER TABLE statement

Creating an MQT from scratch
The CREATE TABLE statement syntax has been enhanced to allow you to create an MQT.
The new syntax is shown in Figure 8-3.

Figure 8-3 CREATE MQT syntax

Creating a materialized query table is similar to creating a view. In both cases you specify a
fullselect to define its contents. The difference is that a view is only a logical definition, while a
materialized query table contains materialized data of the query result on disk. For this
reason, a materialized query table is also called a Materialized View. In Example 8-3 we see
a CREATE TABLE statement to create a materialized query table.

CREATE TABLE table-name

as-subquery-clause

as-subquery-clause :

(column name)
,

AS (fullselect)

materialized-query-table-options

DEFINITION ONLY
copy-options

MAINTAINED BY SYSTEM

MAINTAINED BY USER

ENABLE QUERY OPTIMZATION

DISABLE QUERY OPTIMIZATION

DATA INITIALLY DEFERRED REFRESH DEFERRED

materialized-query-table-options :

(1)

(1) The same clause should not be specified more than once

210 DB2 UDB for z/OS Version 8 Technical Preview

Example 8-3 Sample create of a materialized query table

CREATE TABLE TRANSCNT (ACCTID, LOCID, YEAR, CNT)
AS (SELECT ACCTID, LOCID, YEAR, COUNT(*)

FROM TRANS
GROUP BY ACCTID, LOCID, YEAR)

DATA INITIALLY DEFERRED
REFRESH DEFERRED
MAINTAINED BY SYSTEM
ENABLE QUERY OPTIMIZATION;

The fullselect, together with the DATA INITIALLY DEFERRED and REFRESH DEFERRED
clauses, defines the table as a materialized query table.

The column names of a materialized query table can be explicitly specified or be derived from
the fullselect associated with the table.

You can specify most fullselects for a materialized query table if the materialized query table
is disabled for the automatic query rewrite (the DISABLE QUERY OPTIMIZATION clause is
specified). However, if a materialized query table is enabled for automatic query rewrite (by
default or the ENABLE QUERY OPTIMIZATION clause is specified), there are more
restrictions on what kind of fullselects can be specified.

Registering existing tables as MQT
Many customers have already use base tables as a form of materialized query tables in their
systems. With DB2 V8, they may want to take advantages of the automatic query rewrite for
these tables by registering these existing tables as materialized query tables. This can be
achieved by using the extension of the ALTER TABLE statement for materialized query tables.

The statement in Example 8-4, registers a table TRANSCOUNT as a materialized query table
with the associated subselect to DB2. The data in the table will remain the same as indicated
by DATA INITIALLY DEFERRED, and will still be maintained by the user, as specified by the
MAINTAINED BY USER clause. The user can continue to LOAD, INSERT, UPDATE, or
DELETE data in the table TRANSCOUNT. ALTER TABLE can also change a materialized
query table into a base table.

Example 8-4 Converting a base table into an MQT

ALTER TABLE TRANSCOUNT ADD MATERIALIZED QUERY
 (SELECT ACCTID, LOCID, YEAR, COUNT(*) as cnt

FROM TRANS
GROUP BY ACCTID, LOCID, YEAR)

DATA INITIALLY DEFERRED
REFRESH DEFERRED
MAINTAINED BY USER;

The ALTER TABLE statement can be used to enable (the default) or disable an existing
materialized query table for consideration by automatic query rewrite. Altering a table to
change it to a materialized query table with query optimization enabled makes the table
eligible for use in query rewrite immediately. Therefore, pay attention to the accuracy of the
data in the table. If necessary, the table should be altered to a materialized query table with
query optimization disabled, and then the table should be refreshed and enabled with query
optimization.

You can also switch materialized query table types between system-maintained and
user-maintained with the ALTER TABLE statement.

Chapter 8. Performance 211

The isolation level at the time when a base table is first altered to become a materialized
query table by the ALTER TABLE statement is the isolation level for the materialized query
table.

8.2.2 Populating and maintaining an MQT
The time when a materialized query table is populated with the pre-computed data depends
on the definition of DATA INITIALLY DEFERRED or REFRESH DEFERRED.

DATA INITIALLY DEFERRED means that when a materialized query table is created, the
materialized query table will not be populated by the result of the query.

REFRESH DEFERRED means the data in the materialized query table is not refreshed
immediately when its base tables are updated. However the data can be (manually) refreshed
at any time, for example by using the REFRESH TABLE statement.

The MAINTAINED BY option indicates how the data in the MQT is to be refreshed:

� MAINTAINED BY SYSTEM, which is the default, indicates that the materialized query
table is system-maintained. The only way to refresh the data in a system-maintained MQT
is by using the REFRESH TABLE statement. A system-maintained materialized query
table cannot be updated by using the LOAD utility, INSERT, UPDATE or DELETE SQL
statements. Therefore, a system-maintained materialized query table is read-only. If a
view or a cursor is defined on a system-maintained materialized query table, it becomes
read-only.
Since the REFRESH TABLE statement is implemented by using DELETE, INSERT, and
UPDATE, materialized query tables are transparent to the DATA CAPTURE and AUDIT
options.

� Alternatively, MAINTAINED BY USER can be specified to define a user-maintained
materialized query table. A user-maintained materialized query table can be updated by
the LOAD utility, INSERT, UPDATE or DELETE SQL statements, as well as the REFRESH
TABLE statement. Therefore, a user-maintained materialized query table is updatable.

REFRESH TABLE
The REFRESH TABLE statement can be used to populate a materialized query table. See
Example 8-5 for a sample REFRESH TABLE statement.

Example 8-5 Sample REFRESH TABLE statement

REFRESH TABLE mq_table;

The REFRESH TABLE statement:

1. Deletes all rows in the materialized query table.

Important: With DB2 UDB for z/OS Version 8, all MQTs have to be defined as DATA
INITIALLY DEFERRED or REFRESH DEFERRED. This means the user has to ensure that
the data currency meets the user requirements to avoid using outdated data and that the
user is responsible to keep the data in the MQT up to date.

Note: With DB2 UDB for Linux, UNIX, and Windows the REFRESH TABLE is only
allowed on system-maintained tables.

212 DB2 UDB for z/OS Version 8 Technical Preview

2. Executes the fullselect in the materialized query table definition to recalculate the data
from the tables specified in the fullselect with the isolation level for the materialized query
table (as recorded in the catalog).

3. Inserts the calculated result into the materialized query table.

4. Updates the catalog for the refresh timestamp and cardinality of the materialized query
table.

Even though the REFRESH TABLE statement involves delete and insert, it is a single commit
scope. All changes made by the REFRESH TABLE statement are logged. Note that because
the REFRESH TABLE statement uses a mass delete (DELETE FROM table-name), the
performance of REFRESH TABLE will be better if the materialized query table is stored in a
segmented table space.

The REFRESH TABLE statement is an explainable statement. The explain output contains
rows for INSERT with the fullselect in the materialized query table definition.

8.2.3 Automatic query rewrite using Materialized Query Tables
The good thing about MQTs is that the optimizer understands them. In your queries, you
always reference the base table. During access path selection, the optimizer will take a look
at your query, and determine whether or not your table can be replaced by an MQT to reduce
the query cost.

The process of recognizing when a materialized query table can be used in answering a
query, deciding whether one or more materialized query tables should actually be used in
answering a query, and rewriting the query accordingly, is done by a DB2 function called
automatic query rewrite (AQR).

Automatic query rewrite is based on the fact that the submitted query may share a number of
common sub-operations specified in the fullselect of a materialized query table definition.
Therefore, the result of the submitted query can be derived from or can directly use the result
of one or more materialized query tables. In other words, the automatic query rewrite process
analyzes the user query to see if it can take advantage of any of the existing materialized
query tables, by “proving” that the contents of a materialized query table overlaps with the
content of a query, and compensating for the non-overlapping parts. When such an overlap
exists, the query and the materialized query table are said to match. After discovering a
match, the query is rewritten to access the matched materialized query table instead of one
or more source tables, originally specified in the query.

The automatic query rewrite process searches for matched materialized query tables that
result in an access path with the lowest cost after rewrite. The costs of the rewritten query and
the original query are compared and the one with the lowest cost is chosen. If the final query
plan comes from a rewritten query, the PLAN_TABLE will show the name of the matched
materialized query table(s) and the access path using the materialized query table(s). For
more information on the information about MQTs in the PLAN_TABLE, see 8.2.4,
“Determining if query rewrite occurred” on page 220. No authorization on a materialized
query table is required for it to be used in automatic query rewrite.

There are a number of options and settings that affect whether or not an MQT will be
considered by AQR. They can be grouped into the following categories:

� DDL options
� Special registers
� Query properties
� Database design properties

Chapter 8. Performance 213

DDL options
You can specify the following options on the CREATE or ALTER TABLE statement that affect
whether or not DB2 will consider an MQT during automatic query rewrite.

� ENABLE QUERY OPTIMIZATION, which is the default, specifies that this materialized
query table can be exploited by automatic query rewrite. The other choice is DISABLE
QUERY OPTIMIZATION.

� When the DISABLE QUERY OPTIMIZATION clause is specified, the materialized query
table will not be considered by the automatic query rewrite process.

In addition, the optimizer (automatic query rewrite) will only use a system-maintained MQT if
a REFRESH TABLE has occurred. When using user-maintained MQTs, you may wish to
create the MQT with the DISABLE QUERY OPTIMIZATION option, and ALTER it later to
ENABLE QUERY OPTIMZATION, once the table has been (re)populated.

Special registers
The new special registers CURRENT REFRESH AGE and CURRENT MAINTAINED TABLE
TYPES FOR OPTIMIZATION also control whether or not a materialized query table can be
considered by automatic query rewrite for a dynamically prepared query.

� CURRENT REFRESH AGE. The value in this special register represents a refresh age.
The refresh age of a materialized query table is the time between the current timestamp
and the time that the MQT was last refreshed using the REFRESH TABLE statement. (The
latter information is recorded in the REFRESH_TIME column of the SYSVIEWS system
catalog table.)

In DB2 V8, only CURRENT REFRESH AGE of 0 or ANY is supported:

– 0 means only materialized query tables that are kept current with the source tables are
considered by automatic query rewrite. Since DB2 V8 does not support immediately
refreshed MQTs, specifying 0 means that AQR will not consider any MQTs.

– ANY represents the maximum duration, meaning all materialized query tables are
considered by automatic query rewrite.

A subsystem default value for CURRENT REFRESH AGE can be specified in the
CURRENT REFRESH AGE field on panel DSNTIP4 at installation time, DSNZPARM
REFSHAGE.

� Besides the REFRESH TABLE statement, user-maintained materialized query tables can
be updated using INSERT, UPDATE, or DELETE SQL statements, or via the LOAD utility.
Therefore, the refresh age of a user-maintained materialized query table can no longer
truly represent the freshness of data in the MQT. Hence, the new special register
CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION is used to determine
which type of materialized query tables, system-maintained materialized query tables or
user-maintained materialized query tables, are considered by automatic query rewrite.

– ALL Indicates that all MQTs will be considered by automatic query rewrite.

– NONE Indicates that no materialized query tables will be considered.

– SYSTEM Indicates that only system-maintained materialized query tables (that are
refresh deferred) will be considered.

– USER Indicates that only user-maintained materialized query tables that are
refresh deferred will be considered.

A subsystem default value for CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION can be specified in the CURRENT MAINT TYPES field on panel
DSNTIP4 at installation time, DSNZPARM MAINTYPE.

214 DB2 UDB for z/OS Version 8 Technical Preview

Materialized query tables created or altered with DISABLE QUERY OPTIMIZATION specified
are not eligible for automatic query rewrite, thus, are not affected by the above special
registers. If a system-maintained materialized query table has not been populated with data,
then the materialized query table is not considered by automatic query rewrite. For a
user-maintained materialized query table, the refresh timestamp in the system catalog table is
not maintained.

Query properties
Automatic query rewrite is only supported for read-only dynamically prepared queries. AQR is
not supported for statically bound queries.
However, a materialized query table can be “used manually”, that is selecting directly from the
MQT instead of the base table, if appropriate, in either a statically bound query or a
dynamically prepared query to improve the response time. The users must be aware of the
freshness of data in the materialized query table and refresh or update it when necessary.

In addition, only materialized query tables with an isolation level equal to or higher than the
query isolation level will be considered in query optimization.

The user query may contain multiple query blocks, for example, subselect of UNION or
UNION ALL, temporarily materialized views, materialized table expressions, and subquery
predicates. In general, automatic query rewrite is considered at the query block level. When a
query block is considered for automatic materialized query table rewrite, it has to adhere to a
set of rules. It must not be or contain any of the following:

� A fullselect in the UPDATE SET statement
� A fullselect in the INSERT statement
� A fullselect in the materialized query table definition in the REFRESH TABLE statement
� An outer join
� The predicate contains user-defined scalar or table functions with the EXTERNAL

ACTION or NON-DETERMINISTIC attribute, including built-in function RAND

Otherwise, automatic query rewrite will not be attempted and the query block is processed
using the normal optimization options provided today.

Database design properties
Referential constraints between the base tables specified in materialized query table
definitions are important in automatic query rewrite in determining whether or not a
materialized query table can be used in answering a query when the definition of the MQT
contains extra tables that are not referenced by the query. For this reason, informational
referential constraints are introduced. For these constraints, DB2 relies on the user
application to enforce the constraints. DB2 ignores informational referential constraints during
INSERT, UPDATE and DELETE processing. This way you avoid the overhead of enforcing the
referential constraints by DB2. The DB2 LOAD and CHECK DATA utilities also ignore
informational referential constraints. However, DB2 will employ both types of referential
constraints in query optimization using materialized query tables.

Informational referential constraints can be specified in both the CREATE TABLE and ALTER
TABLE statements for base tables, by using the NOT ENFORCED keyword, as shown in
Example 8-6.

Example 8-6 Creating a informational RI constraint

CREATE TABLE TRANS
 (TRANSID CHAR(10) NOT NULL PRIMARY KEY,
 ACCTID CHAR(10) NOT NULL,
 PDATE DATE NOT NULL,
 STATUS VARCHAR(15),

Chapter 8. Performance 215

 LOCID CHAR(10) NOT NULL,
 CONSTRAINT ACCTTRAN FOREIGN KEY (ACCTID)
 REFERENCES ACCT NOT ENFORCED,
 CONSTRAINT LOC_ACCT FOREIGN KEY (LOCID)
 REFERENCES LOC NOT ENFORCED
)
 IN DBND0101.TLND0101;

Informational constraints are not enforced by DB2, as mentioned before, and are also ignored
by most DB2 utilities. However, they are exploited by the QUIESCE and REPORT
TABLESPACESET utility, as well as by the LISTDEF RI utility control statement.

Since informational RI constraint are not enforced by the DBMS, the applications have to take
care of enforcing them.

You can still take advantage of using informational RI, even when not using MQTs. You can
use informational RI to document the relationships between tables. When application RI
exists, you normally still want to make a backup or take a quiesce point for all application
related RI tables, just as would for “normal” DB2 RI related tables. Now that the system allows
you to define informational RI constraints, you can use these for that purpose, since
QUIESCE TABLESPACESET and LISTDEF RI will take informational RI into account and
quiesce or generate a list of informational RI related tables.

Examples
The examples below demonstrate how automatic query rewrite is applied to queries to use
materialized query tables. Figure 8-4 shows the sample database schema. The schema
consists of seven tables that represent the data of a simplified credit card application. The
CUST table describes the credit card holders (customers). The ACCT table stores the
corresponding credit card accounts.

It is assumed that each account has a single customer (but each customer can have many
credit card accounts). This is indicated in Figure 8-4 by the N:1 arrow between ACCT.CUSTID
and CUST.ID, which designates an informational referential integrity constraint between those
two columns. The TRANS table records the set of credit card transactions. It is assumed that
each transaction consists of a set of products that are purchased together, and this
information is stored in the TRANSITEM table. TRANS and TRANSITEM are the fact tables of
the schema, as they are both large and are continuously updated as new transactions are
performed.

In addition to these two fact tables, the schema contains three hierarchical dimensions as well
that further describe a transaction. The product dimension is recorded in two normalized
tables, PGROUP and PLINE, representing the product group and product line respectively.
The location dimension contains CITY, STATE, and COUNTRY and is represented by a
single, denormalized table (LOC). The time dimension contains DAY, MONTH, and YEAR and
is located in the TRANS table.

216 DB2 UDB for z/OS Version 8 Technical Preview

Figure 8-4 Credit card application schema

Example 1
An analyst of such a credit card application may be interested in the aggregation of the sales
data for the different dimensions and at different levels of the hierarchy for each dimension.
Queries may typically perform joins of one or more dimension tables with fact tables
according to the referential integrity relationships shown in the figure. For example, the query
UserQ1 in Example 8-7, counts the number of transactions performed in the USA for each
credit card account, state, and year.

Example 8-7 UserQ1

SELECT T.ACCTID, L.STATE, T.YEAR, COUNT(*) AS CNT
FROM TRANS T, LOC L

WHERE T.LOCID = L.ID AND
L.COUNTRY = 'USA'

GROUP BY T.ACCTID, L.STATE, T.YEAR;

Assume we define an MQT TRANSCNT as shown in Example 8-8.

Example 8-8 MQT TRANSCNT

CREATE TABLE TRANSCNT
AS (SELECT ACCTID, LOCID, YEAR, COUNT(*) AS CNT

FROM TRANS
GROUP BY ACCTID, LOCID, YEAR

)
DATA INITIALLY DEFERRED
REFRESH DEFERRED;

ID

NAME

ID CITY STATE COUNTRY

LINEID

NAME

ID

TRANS

PGROUP

PLINE

Product dimension

LOCID

YEAR

MONTH

DAY

ACCTID

ID

CUSTID

STATUS

ID

MARITAL_S

INCOME_R

ZIPCODE

RESIDENCE

ID

PGID

TRANSID

PRICE

DISCOUNT

QUANTITY

ID

LOC

ACCT CUSTTRANSITEM

N:1N:1

N:1

N:1

N:1

Location dimension

N:1 Informational Referential Constraint

N:1

Account dimension

Fact table

Chapter 8. Performance 217

Then, assuming the MQT is populated and automatic query rewrite is enabled, DB2 can
rewrite UserQ1 as NewQ1, shown in Example 8-9, which accesses the TRANSCNT MQT
instead of the TRANS fact table.

Example 8-9 NewQ1

SELECT A.ACCTID, L.STATE, A.YEAR, SUM(A.CNT) AS CNT
FROM TRANSCNT A, LOC L

WHERE A.LOCID = L.ID AND
L.COUNTRY = 'USA'

GROUP BY A.ACCTID, L.STATE, A.YEAR;

Given that customers typically perform a few hundred transactions per year and most of them
are within the same city, TRANSCNT is about a hundred times smaller than the TRANS table.
Therefore, using TRANSCNT instead of TRANS in can improve the response time of the
UserQ1 query significantly.

Example 2
Example 8-10 shows how the columns in the select list, and predicates can be matched
between the query and the fullselect in the materialized query table definition. Query UserQ2
selects some important transactions, such as TV items with a price over 100 and a discount
greater than 0.1 that were purchased by a credit card account.

Example 8-10 UserQ2

SELECT T.ID, TI.QUANTITY * TI.PRICE * (1 - TI.DISCOUNT) AS AMT
FROM TRANSITEM TI, TRANS T, PGROUP PG

WHERE TI.TRANSID = T.ID AND
TI.PGID = PG.ID AND
TI.PRICE > 100 AND
TI.DISCOUNT > 0.1 AND
PG.NAME = 'TV';

Assuming the following MQT, called TRANSIAB, is defined (see Example 8-11), DB2 can
rewrite UserQ2 as NewQ2 (shown in Example 8-12).

Example 8-11 TRANSIAB MQT

CREATE TABLE TRANSIAB
AS (SELECT TI.TRANSID, TI.PRICE, TI.DISCOUNT, TI.PGID,

L.COUNTRY, TI.PRICE * TI.QUANTITY as VALUE
FROM TRANSITEM TI, TRANS T, LOC L
WHERE TI.TRANSID = T.ID AND

T.LOCID = L.ID AND
TI.PRICE > 1 AND
TI.DISCOUNT > 0.1

)
DATA INITIALLY DEFERRED
REFRESH DEFERRED;

Example 8-12 NewQ2

SELECT A.TRANSID, A.VALUE * (1 - A.DISCOUNT) as AMT
FROM TRANSIAB A, PGROUP PG

WHERE A.PGID = PG.ID AND
A.PRICE > 100 AND
PG.NAME = 'TV';

218 DB2 UDB for z/OS Version 8 Technical Preview

DB2 can rewrite UserQ2 as the NewQ2 query that uses the TRANSIAB MQT because of the
following reasons:

� Although the predicate T.LOCID = L.ID only appears in the MQT, DB2 still considers the
MQT for query rewrite because the predicate does NOT result in rows being discarded.
The referential constraint that exists between the TRANS.LOCID and LOC.ID columns
makes the join between TRANS and LOC in the subselect “lossless”, provided that the
foreign key in the constraint is defined as NOT NULL.

� The predicates TI.TRANSID = T.ID and TI.DISCOUNT > 0.1 appear in both the query and
the TRANSIAB fullselect.

� The query predicate TI.PRICE > 100 references a column that is also produced by the
TRANSIAB fullselect. The TRANSIAB fullselect specifies TI.PRICE > 1. Therefore, all
rows where TI.PRICE > 100 are also included in the MQT. The predicate PG.NAME='TV'
references a table which is not in the TRANSIAB fullselect.
Both predicates (TI.PRICE > 100 and PG.NAME='TV') must be part of the rewritten query
NewQ2, and both must be computable from either TRANSIAB columns, or from the
residual table which is not in the TRANSIAB fullselect.

� The columns in the select list of the query result can be derived from the materialized
query table definition, although that may not be readily apparent:

– T.ID in the query is derived from the TI.TRANSID column in the fullselect. Although
these two columns originate from different tables (TRANS and TRANSITEM
respectively), they are in fact equivalent because of the TI.TRANSID = T.ID predicate.
Such column equivalency is recognized through join predicates and thus T.ID can be
derived from TI.TRANSID.

– AMT in the query is derived from the DISCOUNT and VALUE in the TRANSIAB
fullselect.

Example 3
Example 8-13 shows how the GROUP BY items and column functions can be matched
between the query and fullselect in the materialized query table definition.Query UserQ3
selects the average value for transaction items for each year.

Example 8-13 UserQ3

SELECT YEAR, AVG(QUANTITY * PRICE) AS AVGVAL
FROM TRANSITEM TI, TRANS T

WHERE TI.TRANSID = T.ID
GROUP BY YEAR;

Assuming that the following materialized query table TRANSAVG is defined (see
Example 8-14), DB2 can rewrite UserQ3 as NewQ3 (shown in Example 8-15).

Example 8-14 TRANSAVG MQT

CREATE TABLE TRANSAVG
AS (SELECT T.YEAR, T.MONTH,

SUM(QUANTITY * PRICE) AS TOTVAL,
COUNT(QUANTITY * PRICE) AS CNT

FROM TRANSITEM TI, TRANS T
WHERE TI.TRANSID = T.ID
GROUP BY T.YEAR, T.MONTH

)
DATA INITIALLY DEFERRED
REFRESH DEFERRED;

Chapter 8. Performance 219

Example 8-15 NewQ3

SELECT YEAR, CASE WHEN SUM(CNT) = 0 THEN NULL
ELSE SUM(TOTVAL)/SUM(CNT)

END AS AVGVAL
FROM TRANSAVG

GROUP BY YEAR;

DB2 can rewrite UserQ3 as NewQ3 that uses the TRANSAVG MQT for the following reasons:

� YEAR in the two SELECT lists are considered to be matched exactly.

� The AVG function in NewQ3 is derivable from two column functions SUM and COUNT in
the TRANSAVG MQT, even when the MQT is at the monthly level and the query requests
information at the yearly level. However, the monthly SUM and COUNT information is
enough to derive a yearly average.

� The two GROUP BY lists are considered matches as well because the GROUP BY in the
query NewQ3, requests data at a higher level than that in the definition of TRANSAVG.

� In the NewQ3 query, AVGVAL is calculated differently compared with UserQ3’s
AVG(QUANTITY * PRICE) calculation. It is now derived from the TRANSAVG's two
columns CNT and TOTVAL, using a case expression.

8.2.4 Determining if query rewrite occurred
You can use the SQL EXPLAIN statement to determine if DB2 has rewritten a user query to
use a materialized query table. When DB2 rewrites the query, the PLAN TABLE shows the
name of the materialized query being used in the TNAME column, instead of the table you
specified in the query, and the value of the TABLE_TYPE column is set to “M”, to indicate that
the table in the TNAME column is a materialized query table.

This information is also available in mini-plan performance trace record (IFCID 0022).

8.3 Multi-row INSERT and FETCH
Prior to DB2 V8, a user has to execute a separate SQL FETCH statement for each row of
data that the application requires from the database. Likewise, if an application needs to
insert several rows, that application has to execute a separate SQL INSERT statement for
each row being stored into the database.

For local processing, the execution cost consists of the multiple trips between the application
and the database engine. For distributed applications, the performance cost consists of
multiple trips into the database engine plus the network cost to send each request. In some
cases, block fetching mitigated the network costs for the FETCH statement but not for
INSERT statements.

Now, in DB2 V8, a single FETCH statement can be used to retrieve multiple rows of data from
the result table of a query as a rowset. A rowset is a group of rows that are grouped together
and operated on as set. For example, you may fetch the next rowset, or update the current
rowset. The program or application controls how many rows are returned on a single FETCH
statement. Fetching multiple rows of data can be done with both normal and scrollable
cursors. New syntax on the FETCH statement allows specification of the number of rows to
be returned in the rowset.

The INSERT statement can now also insert one or more rows into a table or view with one
SQL statement. There are two forms of multiple-row INSERT: a static, and a dynamic form.

220 DB2 UDB for z/OS Version 8 Technical Preview

This reduces the number of trips between the application and the database engine, as well as
reduces the number of network trips required for multiple fetch or insert operations for
distributed requests. For some applications this can have a dramatic performance
improvement. For details on how to use this new function, see the section 5.5, “Multi-row fetch
and insert” on page 84.

8.4 Cost based parallel sort
In data warehousing environments, it is often good practise to utilize as many resources as
are available, in order to reduce the elapsed time of critical queries. Prior to DB2 V8, is some
situations it was not possible to fully utilize the CPU when parallel sort was involved. This was
mainly due to the fact that sort-composite was not pushed down for parallelism if the
composite involves more than one table.

In DB2 V8, the sort process has been enhanced to be able to run the multi-table sorts in
parallel. In this case CPU resources can be exploited and elapsed time can be reduced.
However, there are instances where it may not be cost effective to execute the sort process in
parallel, one typical case being a small data sort. In DB2 V8 not all sorts are done in parallel.
A cost model is used to decide whether or not to run the sorts in parallel, for both single-table
as well as multi-table sorts.

Let us assume that the access path for the query in Example 8-16 (a 3 table join) uses two
merge scan joins, also known as sort merge join (SMJ):

Example 8-16 Sample SQL statement

SELECT * from T1 , T2 , T3 where a2 = b2 and b3 = c3;

Prior to DB2 V8, the “sort composite” for SMJ2 (output of SMJ1 involving T1 and T2 and input
to SMJ2), is executed in the parent task (performed as a sequential sort). In DB2 V8, this sort
may be pushed down to the child task and performed in parallel.

8.5 Data caching and sparse index usage for star join
For background information on star join refer to the redbook DB2 UDB Server for OS/390
Version 6 Technical Update, SG24-6108 and the whitepaper The Evolution of Star Join
Optimization available from the Web site:

http://www.ibm.com/software/data/db2/os390/techdocs/starjoin.pdf

The performance of star join is critical to data warehousing applications where the star
schema is one of the main database designs. The star join implementation in DB2 for z/OS
has to deal with potentially a large number of work files because:

� Snowflakes that appear in a star join query are materialized as workfiles.

� When the pushdown star join method is used in the access path ('S' in the JOIN_TYPE
column of PLAN_TABLE), the dimension tables joined before the fact table are sorted and
stored as workfiles.

If one or more snowflake workfiles are joined after the fact table, the sort merge join tends to
be selected as the join method, because the workfiles do not have indexes. In this case, the
cost of the sorting can be large, both in time and space.

Chapter 8. Performance 221

For the pushdown star join method, even with the index key feedback and repositioning
mechanism (JOIN_TYPE = ’S’ in the PLAN_TABLE), the dimension workfiles joined before
the fact table may be scanned many times. This can cause a high getpage count on the
workfile buffer pool and, possibly, many physical page reads.

In DB2 V8, an in-memory virtual index may be created on each workfile created for a star join
query. By default, the records of the entire workfile will be cached along with the join keys in a
dedicated storage pool (created above the 2 GB bar). The maximum size of the pool is
determined by a new installation parameter SJMXPOOL. The SJMXPOOL parameter is in
effect only when the STARJOIN parameter is set to enable. This global pool is shared by
multiple DB2 threads that execute star join queries.

When a star join query is executed, DB2 tries to allocate the space required to cache a work
file in the pool. If the allocation of a block is successful, the sorted records for the workfile are
cached in-memory and the physical workfile will not be created. This technique is called data
caching. The key field is prepended to the record and serves as the (virtual) index. A binary
search is used to find a match. When data caching is used, the keys are always dense, not
sparse (see next paragraph), that is, the entire work file content is always cached.

If the pool is not created, or a block allocation failed because no more space is available in the
pool, only the key data is saved in-memory as a sparse index, and the data records are stored
in a physical workfile. A sparse index is a dynamically built index, pointing to a single value or
a range of values, depending on the number of keys that can be stored in a pre-allocated
space. (Sparse indexes were first introduced in DB2 V4, to improve non-correlated IN
subquery performance.)

The decision to use this enhancement (both sparse indexing as well as data caching) is made
by the optimizer, based on the estimation of the costs of the available access paths.

Data caching is applicable to any work file created for a star join query. Figure 8-5 illustrates
the process.

Figure 8-5 Decision between workfile caching or sparse index

If sparse index for star join
and the star join op pool is available (SJMXPOOL > 0)

Allocate a block for the
WF in the pool and
initialize the header area

If allocation is successful

Move the sort output data
to the data cache area
(no WF)

 If sparse index is used

Build sparse index on WF

Build a WF

yes

yes

yes

no

no

no

222 DB2 UDB for z/OS Version 8 Technical Preview

Data caching is most effective in the outside-in phase of a pushdown star join plan
(JOIN_TYPE = ’S’ in the PLAN_TABLE), shown in Figure 8-6, particularly when a large
number of rows of the fact table is retrieved. Some queries on a star schema, typically
aggregate queries that populate summary tables or generate summary reports, can run hours
and take large amounts of resources.

Figure 8-6 Data caching in outside-in join phase

In general, the dimension workfiles joined before the fact table are scanned many times. Inner
dimension tables tend to be accessed more randomly and sparsely because of the
key-feedback feature. This can cause a high getpage count on the workfile buffer pool, and
possibly, many physical page reads. By caching the workfile data in memory, getpage and I/O
activities on the workfile buffer pool can be reduced.

Let us now look at an example where data caching is not used (for example because the
SJMXPOOL DSNZPARM is set to 0 (zero)). Figure 8-7 shows the access path of a star join
query before any of the enhancements described in this section. We see that a sort is
performed on the composite table (the result of outside-in processing) at the start of the
merge scan join processing. This can use many resources and cause additional parallelism
overhead (merge and repartition).

Figure 8-7 Work file sorts prior to sparse index enhancement

DIM
WF

DIM
WF

DIM
WF

DIM
WF

FACT
TABLE
 (big)

NLJ with key-feedback/repositioning (pushdown star join)

Star join outside-in join phase

Data caching in virtual memory. WF creation no longer required

SORT
NEW

SMJ

WF(Product)

SALES
(300M)

WF(Store)WF(Time)

SCAN SCAN ISCAN SCAN
NLJ NLJ

S S

WF(Customers)

SCAN
SMJ

WF = Work File
NLJ = Nested Loop Join
MSJ = Merge Scan Join
S = Pushdown Star Join

SORT
COMP

15M rows (5%)

Outside-in phase

Chapter 8. Performance 223

In Figure 8-8 we show the benefits of using a sparse index on workfiles. The benefits are:

� Avoid merge scan join during the inside-out joining phase. A nested loop join is used
instead:

– The sort of a large composite (result of the outside-in joining phase) table is avoided
(no sort work file space requirements) because the query no longer uses a merge scan
join.

– Reduction of parallelism overhead (merge and repartition).

� Speed up the skipping of unqualified keys in the inside-out joining phase:

– Significant I/O cost reduction.

– Slight CPU cost reduction. More CPU reduction can be expected when large sorts or
multiple sorts are involved.

� Greater exploitation of parallelism.

Figure 8-8 Benefits of using a sparse index on workfiles used in a star join plan

The biggest performance gain can be expected by replacing a sort merge join by a nested
loop join with a sparse index on the snowflake workfile, thus avoiding the sort operation,
especially if the outer composite size is large. Note that in Figure 8-8 the query can also use
data caching instead. However, we assumed that data caching is disabled (SJMXPOOL=0).

You can determine if this enhancement is used by looking at the PLAN_TABLE. Figure 8-9
shows an example of a (pushdown) star join access path. When you see ACCESS_TYPE =
‘T’, this indicates that either data caching or a sparse index is used for this query. The
decision to use data caching or sparse index is made at execution time, when the work file
data is sorted. Therefore the EXPLAIN output in the PLAN_TABLE cannot show which one of
both features is actually used when running the query.

Time
NLJ

Store
NLJ

Fact
NLJ

Prod
NLJ

Customer ...

Fast binary search of workfile

Access through sparse index

100 500 10,000,000 600 300,000

Outside-in phase

Inside-out phase

No sort of outside-in result
since not using merge scan join

224 DB2 UDB for z/OS Version 8 Technical Preview

Figure 8-9 Example of star join plan

The possibility of caching workfiles not only can help star join performance. Other
concurrently running jobs which normally use workfiles, such as sort, merge join, view
materialization, nested table expression materialization, trigger, created temp table,
non-correlated subquery, table UDF, etc. can also benefit. Since the star join is now capable
of caching the data in memory, instead of using workfiles, these jobs will not have to compete
for workfile storage in the buffer pool and table spaces used for workfile processing, resulting
in fewer workfile access contention.

8.6 Long and variable length keys
In this section we discuss three new functions:

� Varying-length index keys
� Long index
� Keys and long predicate support

Varying-length index keys
Prior to DB2 V8, VARCHAR and VARGRAPHIC columns are padded to their maximum
lengths when they are part of an index, but remain in their variable length format in the tables.
This allowed us to have fast key comparisons since these comparisons are between equal
length columns. The disadvantage to this approach is that index only access was not allowed
when retrieving a varying length key column.

Note: Sparse index support is planned to be available with DB2 V7 via maintenance.
Check PTF UQ67433 for APAR PQ61458 for details. At the time of writing, there are no
plans to make data caching available in V7.

Query# Pln# Corr
Name

Table
Name

Join
Mtd

Join
Typ

e

Acc
Type

Access
Name

Sort
New

11001 1 DP /BI0/D0SD_C01P 0 S I /BI0/D0SD_C01P~0 N
11001 2 DT /BI0/D0SD_C01T 1 S T Y
11001 3 DU /BI0/D0SD_C01U 1 S T Y
11001 4 F /BI0/F0SD_C01 1 S I /BI0/F0SD_C01~0 N
11001 5 D5 /BI0/D0SD_C015 1 I /BI0/D0SD_C015~0 N
11001 6 D3 /BI0/D0SD_C013 1 I /BI0/D0SD_C013~0 N
11001 7 DSN_DIM_TBLX(02) 1 T Y
11001 8 D2 /BI0/D0SD_C012 1 I /BI0/D0SD_C012~0 N

Access_type T indicates either "sparse
index" or "data caching" is used

The final decision is done at runtime
and cannot be shown by EXPLAIN

Example of a push-down star join plan

Chapter 8. Performance 225

Prior to V8, you can use the RETVLCFK=YES DSNZPARM. This allows you to use
VARCHAR columns of an index and still have index only access. However, when one of the
columns in the SELECT list of the query, is retrieved from the index when using index-only
access, the column is padded to the maximum length and the actual length of the variable
length column is not provided. Therefore, an application must be able to handle these “full
length” variable length column. V7 enhances this feature by allowing index-only access
against variable length columns in an index, even with RETVLCFK=NO, if no variable length
column is present in the SELECT list of the query.

DB2 V8 supports true varying-length key columns in an index. Varying-length columns will no
longer need to be padded to their maximum lengths. This will reduce the storage
requirements for this type of index since only actual data is stored. Furthermore, this allows
for index-only access to index key columns of varying-length in all cases, since the length of
the variable length column is now stored in the index, and can potentially improve
performance.

Indexes can now be created or altered to contain true varying-length columns in the keys. The
padding of both VARCHAR and VARGRAPHIC data to their maximum length can now be
controlled.

The new keywords NOT PADDED or PADDED on a CREATE and ALTER INDEX statement
specify how varying-length columns will be stored in the index.

� NOT PADDED specifies that varying-length columns will not be padded to there maximum
length in the index. If there exists at least one varying-length column within the key, length
information will be stored with the key. For indexes comprised only of fixed length columns,
there is no length information added to the key. The default on the CREATE INDEX
statement, NOT PADDED for new V8 installation, can be controlled via the new PADIX
ZPARM. A sample create of a non-padded index is shown in Example 8-17.

Example 8-17 Create a NOT PADDED index

CREATE UNIQUE INDEX DSN8710.XDEPT1
ON DSN8710.DEPT (DEPTNO ASC)
NOT PADDED
USING STOGROUP DSN8G710
PRIQTY 512
SECQTY 64
ERASE NO
BUFFERPOOL BP1
CLOSE YES
PIECESIZE 1 M;

� PADDED specifies that varying-length columns within the index are always padded with
the default pad character to their maximum length. All indexes prior to DB2 V8 NFM are
padded by default.

Example 8-18 Create a PADDED index

CREATE UNIQUE INDEX DSN8710.XDEPT1
ON DSN8710.DEPT (DEPTNO ASC)
PADDED
USING STOGROUP DSN8G710
PRIQTY 512
SECQTY 64
ERASE NO
BUFFERPOOL BP1
CLOSE YES
PIECESIZE 1 M;

226 DB2 UDB for z/OS Version 8 Technical Preview

� An index can be created or altered to NOT PADDED, even though the index key may not
contain any varying-length columns. The index will be marked as “not padded”, which will
allow for varying-length columns to be added in the future without the index being set to
pending state.

When comparisons are made between keys with varying-length columns, the keys have to
match in length. This will require that like columns of different sizes have the smaller column
padded to the size of the larger column. Key comparison is left to right and column by column.
Example 8-19 illustrates this using a single column index.

Example 8-19 Comparing non-padded index entries

Key entry 1 length=4 Value= x'F1F2F3F4'
Key entry 2 length=3 Value= x'F1F2F3'
Pad character = x'40'

After padding, Key 2 = x'F1F2F340'
When Key entry 1 and Key entry 2 are compared
Key value 1 > Key value 2

You can continue to use existing indexes that contain padded varying-length columns.
however, with DB2 V8, you will now have the ability to convert padded indexes to
varying-length indexes and also to convert varying-length indexes back to padded indexes.

Indexes from a prior release will not automatically convert to NOT PADDED, even if an ALTER
TABLE ALTER COLUMN SET DATATYPE statement is executed and the altered column is
part of an the index. You have to use the ALTER INDEX statement to change a PADDED
index to NOT PADDED.

After an index has been altered to NOT PADDED, the index will be marked as being in
pending state, if there exists at least one varying-length column in the index. A REBUILD of
the index will be necessary to realize the full benefit of a not-padded index.

How to dynamically change an index from padded to not padded and vice versa, is also at
“Varying length index keys” on page 56.

Altering a padded index to a not padded index can be done as shown in Example 8-20

Example 8-20 Alter an index to NOT PADDED

ALTER INDEX DSN8710.XDEPT1 NOT PADDED;

When altering from NOT PADDED to PADDED, the index is placed into pending state, if there
exists at least one varying-length column in the index.

Altering a not padded index to a padded index can be done as shown in Example 8-21

Example 8-21 Alter an index to PADDED

ALTER INDEX DSN8710.XDEPT1 PADDED;

Long index keys
Prior to DB2 V8, the maximum key length on a DB2 for z/OS and OS/390 is 255 bytes. This
presented us with some design challenges. With the implementation of Unicode support,
multiple bytes may be required to represent a single character. Existing data that is converted
to Unicode or new data in Unicode can result in index keys greater than the prior limit of 255
bytes.

Chapter 8. Performance 227

Furthermore, long index keys are already supported by DB2 for UNIX, Linux and Windows.
Applications using keys greater than 255 bytes cannot easily be ported to the z/OS platform.

In DB2 V8 the maximum key length is extended from 255 bytes to 2000 bytes.

This support requires no SQL change. The increased key limit of 2000 bytes is only available
in New Function Mode. The partitioning key limit of 255 bytes does not change with this
enhancement.

Long predicates
Prior to DB2 V8, the maximum column length for predicate operands is 255 bytes, or 254
bytes for graphic strings. This is incompatible with the rest of the DB2 family. In DB2 V8 the
maximum column length for predicates is increased to 32704 bytes, matching the maximum
defined size of a VARCHAR column.

This support requires no SQL changes. Predicates are supported for both indexable and
non-indexable columns. The maximum length for the pattern expression for LIKE predicates
remains 4000 bytes.

8.7 Support for backward index scan
With the enhancements introduced to support dynamic scrollable cursors, DB2 also provides
the capability for backward index scans. This allows DB2 to avoid a sort and/or allows you to
define fewer indexes. With this enhancement it is no longer necessary to create an ascending
and descending index on the same table columns.

For example, if you create an ascending index (the default) on the ACCT_NUM,
STATUS_DATE and STATUS_TIME columns of the ACCT_STAT table, DB2 can use this
index for backward index scanning for the following SQL statement:

SELECT STATUS_DATE, STATUS
FROM ACCT_STAT
WHERE ACCT_NUM = :HV
ORDER BY STATUS_DATE DESC, STATUS_TIME DESC

DB2 can use the same index for forward index scan for the following SQL statement:

SELECT STATUS_DATE, STATUS
FROM ACCT_STAT
WHERE ACCT_NUM = :HV
ORDER BY STATUS_DATE ASC, STATUS_TIME ASC

This is true also for static scrollable cursors and non-scrollable cursors. In V7 you have to
create two indexes for the above to avoid a sort for both queries.

To be able to use the backward index scan, you have to create the index on the same
columns as the ORDER BY and the ordering must be exactly opposite of what is requested in
the ORDER BY.
For example, if you create the index as ACCT_NUM, STATUS_DATE DESC, STATUS_TIME
ASC, then DB2 can do a forward index scan for an ORDER BY on STATUS_DATE DESC,
STATUS_TIME ASC, and a backward index scan for ORDER BY STATUS_DATE ASC,
STATUS_TIME DESC. For ORDER BY STATUS_DATE DESC, STATUS_TIME DESC and
STATUS_DATE ASC and STATUS_TIME ASC, as in the above SQL statements, DB2 has to
perform a sort.

228 DB2 UDB for z/OS Version 8 Technical Preview

8.8 Trigger enhancements
Prior to DB2 V8, each time an AFTER trigger with a WHEN clause (also known as a
conditional trigger) is invoked, a work file is created for the old and new transition variables.
The work file is always created, even when the trigger is not activated.

For example, lets say that you want to insert 1000 rows into a table that has a trigger. Assume
that only 3 of these rows will fire the trigger (satisfying the WHEN clause) that is defined on
the table. Since a transition table (work file) is created for each change/insert, the transition
table will be created 1000 times and only used by trigger manager 3 times. So 997 times the
workfile is created and deleted needlessly.

In Example 8-22, the insert of the first row will cause the row to be put into a transition table,
but the trigger will not fire, because the NAME = 'TASHA' and POUNDS = 10, does not match
the WHEN clause for TRIGGER NEWCAT. The transition table will be deleted after the
statement is completed. The same happens for the second row (it does not match the
WHEN clause). The third row however does, so the row that is inserted into the transition
table will actually be used to process the after trigger.

Example 8-22 Conditional after trigger

CREATE TRIGGER NEWCAT
AFTER INSERT ON CATS
REFERENCING NEW AS NROW

FOR EACH ROW MODE DB2SQL
WHEN (NROW.NAME = 'SUNSHINE' AND NROW.POUNDS = 12)
BEGIN ATOMIC

INSERT INTO PETS
VALUES (0, 1, NROW.NAME, 'INSERTED SUNSHINE')

END?

INSERT INTO CATS
VALUES (1, 'TASHA', 10, '001',4, 2, 2, 4342, 'PURINA CAT CHOW', 'ANN')

INSERT INTO CATS
VALUES (2, 'BLACKIE', 9, '001', 4, 2, 2, 3023, 'KAL KAN', 'BETH')

INSERT INTO CATS
VALUES (3, 'SUNSHINE', 12, '001', 4, 2, 2, 1000, 'FRISKIES BUFFET', 'BETH')

An enhancement has been made to the trigger processing to save the changes in memory if
there are only few, instead of creating and deleting the workfile each time.

8.9 Reduced lock contention on volatile tables
This enhancement provides a way in DB2 to indicate that a given table is made up of logical
rows, with each logical row consisting of multiple physical rows from that table. A logical row is
identified by the primary key with a “sequence number” appended to provide the logical
ordering of the physical rows. When accessing this type of table, the physical rows are
intended to be accessed in this order (primary key + sequence number). This reduces the
chance of deadlocks occurring when two applications attempt to lock the same logical row but
touch the underlying physical rows in a different order. This means that certain types of
access paths are disabled for these types of tables. They are: list prefetch, hybrid join and
multi-index access.

Chapter 8. Performance 229

Another case in which “forcing index access” may be desired is for tables whose size can vary
greatly. If statistics are taken when the table is empty or has only a few rows, those statistics
might not be appropriate when the table has many rows. The optimizer might decide to use a
table space scan, which is fine for an almost empty table, but can be disastrous when the
table contains a million rows at the end of a business day.

DB2 V8 adds two new keywords to the CREATE TABLE and ALTER TABLE statements;
VOLATILE (to force index access whenever possible) and NOT VOLATILE (to allow any type
of access to be used). Note that DB2 uses the CLUSTER keyword for other purposes.

� VOLATILE: Specifies that for SQL operations, index access is to be used on this table
whenever possible. However, be aware that by specifying this keyword, list prefetch and
certain other optimization techniques are disabled.

� NOT VOLATILE: Specifies that SQL access to this table will be based on the current
statistics. This is the default.

� CARDINALITY: An optional keyword expressing the fact that the table can have frequently
changing cardinality; it can have only a few rows at times, and thousands or millions of
rows at other times. This keyword is allowed for DB2 family compatibility, but will serve no
additional function in DB2 for z/OS.

8.10 Table UDF cardinality option and block fetch
Today, when you create a table UDF, you can specify the CARDINALITY option to specify an
estimate of the expected number of rows that the function returns. The number is used for
optimization purposes. This is fine as long as each invocation of the UDF returns more or less
the same number of rows. However, that is not always the case. Subsequent invocations of
the table UDF, depending on the input parameters can return a totally different answer set
size.

In Version 8, DB2 allows you to specify the cardinality option when you reference a
user-defined table function in an SQL statement, for example in a SELECT. This is a
non-standard SQL feature, specific to IBM DB2 for z/OS implementation. With this option,
users have the capability to better tune the performance of queries that contain user-defined
table functions.

The user-defined table function cardinality option indicates the total number of rows returned
by a user defined table function reference. The option will be used by DB2 at bind time to
evaluate the table function access cost.

8.10.1 Table UDF cardinality clause
A cardinality clause can be specified to each user-defined table function reference within the
table specification of the FROM clause in a subselect. This option indicates the expected
number of rows to be returned by referencing the function in a particular query. The
cardinality clause comes in two flavors, as shown in Figure 8-10.

Note: Users are warned that for VOLATILE tables, index access will always be chosen
whenever possible, regardless of the efficiency of the available index. Therefore, it is highly
recommended that the available index be constructed such that index access would
perform satisfactorily on both single table and join scenarios.

230 DB2 UDB for z/OS Version 8 Technical Preview

Figure 8-10 Table UDF cardinality clause

� The CARDINALITY keyword, followed by an integer that represents the expected number
of rows returned by the table UDF.

� The CARDINALITY MULTIPLIER keyword, followed by a numeric constant. The expected
number of rows returned by the table function will be computed by multiplying the given
number to the reference cardinality value that is retrieved from the CARDINALITY field of
SYSIBM.SYSROUTINES for the corresponding table function name, that was specified
when the table UDF was created.

Specifying the cardinality option when referencing a table UDF in a SELECT statement does
not change the corresponding CARDINALITY field in SYSIBM.SYSROUTINES. When you
specify the cardinality clause when referencing a table UDF, the value only applies for that
particular query, and the value in the CARDINALITY column in SYSIBM.SYSROUTINES is
ignored for that particular query (unless of course when you use the CARDINALITY
MULTIPLIER keyword when referencing the table UDF).
The CARDINALITY field value in SYSIBM.SYSROUTINES can be initialized by the
CARDINALITY option in the CREATE FUNCTION statement when the user-defined table
function is created. It can be changed by the CARDINALITY option in the ALTER FUNCTION
statement.

Example 8-23 illustrates a case where the cardinality option for a table UDF can influence the
query optimization process of DB2.

Example 8-23 Using the CARDINALITY MULTIPLIER clause in a query

SELECT *
 FROM BOOKS B,
 TABLE(CONTAINS(1,'cs') CARDINALITY MULTIPLIER 15.0) AS X1(ID),
 TABLE(CONTAINS(2,'database') CARDINALITY MULTIPLIER 2.0) AS X2(ID),
 TABLE(CONTAINS(3,'Clark') CARDINALITY MULTIPLIER 0.03) AS X3(ID)
 WHERE B.ID = X1.ID AND B.ID = X2.ID AND B.ID = X3.ID;

Table-function-reference / table-spec

SELECT ... FROM ...TABLE

(function-name (

expression
TABLE translation_table_name

,

table-UDF-cardinality-clause

)

) correlation-clause

Table-UDF-cardinality-clause:

CARDINALITY integer

CARDINALITY MULTIPLIER num_const

Chapter 8. Performance 231

In this example, we assume that, for a user-defined table function CONTAINS, the
CARDINALITY column in SYSIBM.SYSROUTINES is 1000. The table function CONTAINS
searches a string in a column of the BOOKS table and returns ID numbers of the matching
BOOKS rows. The first argument of CONTAINS indicates the column number of BOOKS and
the second argument is the search string.

� The first reference to CONTAINS searches a string 'cs' in the category of books (which is
column 1 of the BOOKS table). We expect that 15000 books will meet the condition.

� The second reference indicates that we expect to find 2000 books that contain a string
'database' in their abstracts (column 2).

� The third reference indicates that there are probably around 30 books written by authors
called 'Clark' (the authors column is column 3 in the BOOKS table).

Example 8-24 shows that, instead of using the CARDINALITY MULTIPLER clause, the same
query can be written using the CARDINALITY keyword.

Example 8-24 Using the CARDINALITY clause instead

SELECT *
 FROM BOOKS B,
 TABLE(CONTAINS(1,'cs') CARDINALITY 15000) AS X1(ID),
 TABLE(CONTAINS(2,'database') CARDINALITY 2000) AS X2(ID),
 TABLE(CONTAINS(3,'Clark')) CARDINALITY 30) AS X3(ID)
 WHERE B.ID = X1.ID AND B.ID = X2.ID AND B.ID = X3.ID;

When you estimate the number of rows returned by each reference of the CONTAINS
function, DB2 can evaluate the access cost more accurately based on the specified
cardinality option, and a more appropriate join sequence and join type can be chosen by the
query optimization process. The effectiveness of the option depends on the access cost of
the user defined table function computed by DB2, relative to the access costs of the other
tables in the query.

8.10.2 Table UDF block fetch
The performance improvement of queries like Example 8-24 are achieved in conjunction with
another new features introduced in DB2 V8, called “table UDF block fetch”.

Before this enhancement, each returned row from a table UDF needs a UDF fetch call, and
each call needs a context switch since a UDF runs in an WLM managed address space, like a
stored procedure. Context switches can become expensive, especially when the table UDF
returns many rows.

To reduce the amount of context switches required, DB2 V8 can use a technique called
materialized fetch or block fetch.

All rows are returned during the first invocation of the UDF, prefetched and stored in DB2
workfile. By using this technique, we save #rows_in_table_UDF_result - 1 context switches, at
the cost of a one-time workfile creation, the cost to insert the rows into workfile and the cost of
deallocating the workfile.

Note that this type of block fetch is not to be confused with block fetching in a distributed
environment.

232 DB2 UDB for z/OS Version 8 Technical Preview

During access path selection, the optimizer decides whether or not to use this new block
fetching technique, depending on:

� Estimated #rows returned by the table UDF
� SYSIBM.SYSROUTINES information. When available, the values in the

IOS_PER_INVOC, INSTS_PER_INVOC, INITIAL_IOS, INITIAL_INSTS columns are
taken into consideration. Note that you have to supply this information by manually
updating the catalog. RUNSTATS has no way of collecting this information. When the
information is not available, default values are used.

� The processor speed of the machine you are running on is also taken into consideration
since the INST_PER_INVOC and INITIAL_INSTS columns are expressed in number of
instructions, and not in service units or CPU seconds.

You can determine if DB2 will use the table UDF block fetch feature by using EXPLAIN. When
used, the ACCESSTYPE field in the PLAN_TABLE will contain “RW.” Equivalent information
is available in the mini-plan trace record IFCID 22.

Another performance improvement that impacts table UDFs was introduced in DB2 V7 with
the APAR PQ54042, and extended in V8 to unlike data types. An example is shown in
Figure 8-11. With this enhancement, the book.ID = tf.id predicate is stage 1 and indexable
provided that the table UDF is accessed first (outer table).

Figure 8-11 Predicate using table UDF indexable and stage 1

More information about the performance enhancements when comparing unlike data types in
general, can be found in 8.1, “Comparing unlike data types” on page 206.

CREATE TABLE book
 (ID integer,
 Title character (60),
 Author character (30))

SELECT book.ID, book.title
 FROM book, TABLE (tf_contain('Computer')) tf(id)
 WHERE book.ID = tf.id ;

Stage 2 pr edica te
Table space scan

 on book

If t f is th e in n er ta ble
Sta ge 2 pr edica te

If book is th e in n er table
Sta ge 1 pr edica te
Ca n u se in dex on book .ID colu m n

v8 an d beyon dpr ior to v8
 (w/ o PQ54042)

Table UDF

Chapter 8. Performance 233

234 DB2 UDB for z/OS Version 8 Technical Preview

Chapter 9. Data sharing

In this chapter we introduce the following data sharing topics:

� CF lock propagation reduction
� Reduction of overhead costs for data sharing workloads
� Batched updates for index page splits
� Improved LPL recovery
� Resolution of indoubt units of recovery in restart light
� Change to IMMEDWRITE BIND option default
� Change to -DISPLAY GROUPBUFFERPOOL output

9

© Copyright IBM Corp. 2003. All rights reserved. 235

9.1 CF lock propagation reduction
The purpose of this enhancement is to avoid the cost of global contention processing
whenever possible, and improve availability due to a reduction in retained locks following a
subsystem failure.

This enhancement will remap IX parent L-locks from XES-X to XES-S. Data sharing locking
performance will benefit because IX and IS parent L-locks are now both mapped to XES-S,
and are therefore compatible and can now be granted locally. Invoking global lock contention
processing to determine that the new IX or IS lock is compatible with existing IX or IS locks is
no longer required.

However, to ensure that an IX-lock remains incompatible with an S-lock, S-table and table
space locks are remapped to XES-X locks. This means that global contention processing will
now be required to verify that a page set S L-lock is compatible with another page set S
L-lock. This is normally not a problem as this is a relatively rare case. The majority of cases
are comparing IS-IS, IS-IX and IX-IX, all of which can now be done locally. Because DB2 can
now avoid having to go through global lock contention processing for the majority of cases,
the performance of applications that previously had a great deal of XES false contention will
improve significantly.

This enhancement has some repercussions on other areas as well.

With this enhancement, explicit hierarchical locking can no longer propagates child L-locks
based on the parent L-lock. Instead, child L-locks will be propagated based on the held state
of the pageset P-lock. If the page set P-lock is negotiated from X to SIX or IX, then child
L-locks will be propagated.

Another consequence of this enhancement is that, since child L-lock propagation is no longer
dependent upon the parent L-lock, parent L-locks will no longer be held in retained state
following a system failure. This means for example that a page set IX L-lock will no longer be
held as a retained X-lock after a system failure. This can provide an important availability
benefit in a data sharing environment. Because there is no longer a retained X-lock on the
page set, most of the data in the page set remains available to applications running on other
members. Only the pages (assuming page locking is used) with a retained X-lock will be
unavailable.

Another consequence of this enhancement is that it is now important that L-locks and P-locks
are maintained at the same level of granularity. For partitioned table spaces defined
LOCKPART NO DB2 versions prior to V8 lock the last partition to indicate a lock on the whole
table space. This behavior will be changed so that even when you specify LOCKPART NO,
table spaces will now obtain locks at the part level.
As before, LOCKPART YES is not compatible with LOCKSIZE TABLESPACE. However, if
LOCKPART NO and LOCKSIZE TABLESPACE are specified then DB2 will lock every
partition, just as every partition is locked today when LOCKPART YES is used with
AQCQUIRE(ALLOCATE). With this change you may see additional locks acquired on
individual partitions even though LOCKPART NO is specified.
This change applies to both data sharing and non-data sharing environments.

With this enhancement, the recommendation for RELEASE(DEALLOCATE) and thread reuse
to reduce XES messaging for page set L-locks in a data sharing environment is no longer
required.

236 DB2 UDB for z/OS Version 8 Technical Preview

This is good news because using RELEASE(DEALLOCATE):

� Can cause increased EDM pool consumption, because plans and packages stay allocated
longer in the EDM pool

� May also cause availability concerns due to parent L-locks being held for longer. This can
potentially prevent DDL from running, or cause applications using the LOCK TABLE
statement and some utilities to fail.

However, as in previous versions of DB2, to avoid locking overhead, you should use
ISOLATION UR, or try to limit the table space locks to IS on all data sharing members to avoid
child lock propagation.

9.2 Reduction of overhead costs for data sharing workloads
The current architecture allows multiple pages to be registered to the coupling facility with a
single command. z/OS 1.4 and CF level 12 introduces two new “batch” processes to:

� Write and register multiple (WARM) pages of a group buffer pool with a single command.

� Read multiple pages from a group bufferpool for castout processing with a single CF read
request. The actual command is called Read For Castout Multiple (RFCOM).

This enhancement will reduce the amount of traffic to and from the coupling facility for writes
to group buffer pools and reads for castout processing, thus reducing the data sharing
overhead for most workloads. The most benefit is expected for workloads which update large
numbers of pages belonging to GBP-dependent objects, for example batch workloads.

DB2 instrumentation (statistics IFCID 2 and Accounting 3 and 148) records are enhanced to
reflect the usage of these new commands.

9.3 Batched updates for index page splits
Another enhancement to boost performance by reducing the cost of page set GBP
dependency, but even more by reducing the log I/O wait time, is a more efficient mechanism
to process index page splits.

In previous versions of DB2, index page splits require up to five separate writes the group
buffer pool and flushes of the DB2 log buffers. This may cause significant overhead for
GBP-dependent indexes, resulting in additional synchronous GBP writes, and even more
important, in high wait times for synchronous log I/O.

With this enhancement, DB2 accumulates the index page split updates and process them as
a single entity, thereby reducing log writes and CF traffic. This will improve performance for
high-volume INSERT OLTP workloads and other operations.

The implementation of these improvements is transparent to the end-user.

Note: You have to be in New Function Mode to be able to benefit from this new way of
mapping IRLM lock states to XES lock states. The new mapping takes effect after the
restart of first member, after successful quiesce of all members in the DB2 data sharing
group. So, to enable this feature, a group wide outage is required.

Chapter 9. Data sharing 237

9.4 Improved LPL recovery
Prior to Version 8, you had to manually recover pages that DB2 put into the logical page list
(LPL). But DB2 V8 adds automatic recovery of LPL pages. When pages are added to the
LPL, DB2 issues message DSNB250E, which is enhanced to indicate the reason the pages
are added to the LPL. DB2 then attempts automatic recovery, except in the following
situations:

� Disk I/O errors
� During DB2 restart or end_restart times
� Group buffer pool structure failures
� 100% loss of connection to the group buffer pool

DB2 does not attempt automatic LPL recovery in the situations mentioned above, because
DB2 understands that it will not benefit from trying to do so in those cases.

If automatic-LPL recovery completes successfully, DB2 deletes the pages from the LPL and
issues message DSNI021I, which indicates completion.

In addition, and probably more significant than the previous enhancement, DB2 V8, only locks
the LPL pages during the recovery process, leaving the remaining pages in the page set or
partition accessible to DB2 applications while LPL recovery is in progress. This improves
system performance and enhances data availability. Before Version 8, even though a few
pages may have been in the LPL list, the entire pageset or partition was unavailable while
DB2 was doing LPL recovery.

9.5 Resolution of indoubt units of recovery in restart light
Prior to DB2 V8, starting a DB2 member in LIGHT(YES) mode (restart light) will remove
retained locks with minimal disruption in the event of a system failure. Restart light is
improved in DB2 V8. If indoubt units of recovery (UR) exist at the end of restart recovery, DB2
will remain running so that the indoubt URs can be resolved. After all the indoubt URs have
been resolved, the DB2 member that is running in LIGHT(YES) mode will shut down and can
be restarted normally.

9.6 Change to IMMEDWRITE BIND option default
Currently, changed pages in a data sharing environment are written during phase 2 of the
commit process, unless otherwise specified by the IMMEDWRITE BIND parameter, or
IMMEDWRI DSNZPARM. This enhancement changes the default processing to write
changed pages during phase 1 of commit processing. This change will aid those customers
that have transactional data dependencies across data sharing members.

The options you can specify for the IMMEDWRITE BIND parameter remain unchanged.
However, whether you specify “NO”' or “PH1”, the behavior will be the identical. The “PH1”
option remains for compatibility reasons, but its usage should be deprecated. The
DSNZPARM IMMEDWRI parameter will no longer accept a value of “PH1”.

238 DB2 UDB for z/OS Version 8 Technical Preview

9.7 Change to -DISPLAY GROUPBUFFERPOOL output
Currently, the CF level displayed by the -DISPLAY GROUPBUFFERPOOL command may be lower
than the actual CF level as displayed by a D CF command. This enhancement changes
-DISPLAY GROUPBUFFERPOOL command output. Instead of having the CFLEVEL field, the
command now displays both, the OPERATIONAL CF LEVEL as before, and also the ACTUAL
CF LEVEL. The operational CF level indicates the capabilities of the CF from DB2's
perspective. The actual CF level is the microcode level as displayed by the D CF command.

Chapter 9. Data sharing 239

240 DB2 UDB for z/OS Version 8 Technical Preview

Chapter 10. Installation and migration

In this chapter we provide you with enough information to start evaluating the changes and
planning for a successful installation and/or migration to DB2 UDB for z/OS Version 8
(program number 5625-DB2). The following topics are covered:

� Currency of versions and migration paths
� Major changes to installation and migration
� Installation
� Migration
� Catalog changes
� msys for Setup DB2 Customization Center
� Samples

10

© Copyright IBM Corp. 2003. All rights reserved. 241

10.1 Currency of versions and migration paths
Figure 10-1 summarizes the versions of DB2 which are currently available or announced.

Figure 10-1 Currency of DB2 versions

Customers still running DB2 Version 3, 4, and 5 have a maintenance issue since the end of
service is past. End of marketing has occurred also for Version 6.

The customers that are currently still running Version 5 must move to DB2 V7 taking
advantage of the skip-migration from V5 to V7 supported as one-time effort only for the Y2K
issues.

Updated information is available from the Web site:

http://www.ibm.com/software/data/db2/os390/availsum.html

In Figure 10-2 we show the possible migration paths. DB2 V7 is the only release from which
you can migrate to DB2 V8. If your DB2 is still at V5 level, the only way to migrate to V7 is to
skip V6 and migrate to V7 directly. After you have completed this, you can then migrate to V8.
DB2 V6 has been withdrawn from market on June 30, 2002 and it cannot be acquired any
more.

Attention:

The only current OS/390 release with DB2 V6 and V7 is V2R10, the other levels mentioned
in Figure 10-1 were correct at the time of announcement, but now they are obsolete.

Before migrating to V8 you need to have z/OS V1R3 or higher (depending on the
requirements of the functions that will be utilized) active on your zSeries processor.

Version PID Generally
Available

Minimum
MVS
level

Marketing
Withdrawal End of Service

V3 5685-DB2 December 1993 February 2000 January 2001

V4 5695-DB2 November 1995 December 2000 December 2001

V5 5655-DB2 June 1997 MVS
 V4R3 December 2001 December 2002

V6 5645-DB2 June 1999 OS/390
V1R3 June 2002

V7 5675-DB2 March 2001 OS/390
V2R7

V8 5625-DB2 QPP announced
January 2003

z/OS
V1R3

DB2 availability summary

242 DB2 UDB for z/OS Version 8 Technical Preview

Figure 10-2 Possible migration paths

10.2 Major changes to installation and migration
We define installation as the process of installing a new DB2 subsystem. In this case there is
no worry of compatibility and regression or conversion of pre-existing data. With a newly
installed DB2 V8 subsystem, the user can immediately take advantage of all new functions
provided by the re-engineered product.

We describe the major changes in the install procedure (also valid for migration) in 10.3,
“Installation” on page 246.

Migration is the process of converting an existing DB2 V7 subsystem, user data and catalog
data, to V8. This process is changed with V8 in order to minimize the possible impact of
regression and fall-back incompatibilities.

The key changes to the installation and migration processes are:

� A CCSID must be defined.

� DECP user library must be defined.

� Buffer pools of sizes 4 KB, 8 KB, 18 KB, 32 KB must be defined.

� Only WLM-supported stored procedures can be defined.

� DB2 system parameters can have short and long components.

� DB2 can now use VSAM control intervals larger than 4 KB.

� The migration process now consists of three distinct phases:

– CM: Compatibility Mode: During this phase, which can last as long as deemed
necessary, the user will make all the tests needed to ensure that no regression is
taking place, and is always allowed to fall back to V7 in case of problems

– ENFM: Enable New Function Mode: During this phase the user will convert the DB2
subsystem to the format ready to support the new functions by using on-line Reorg
executions. No fallback to DB2 V7 is allowed once the ENFM is entered.

Migration paths

V8V5 V6 V7

Chapter 10. Installation and migration 243

– NFM: New Function Mode: This is the target phase, triggered by the user activated
execution of a job which confirms the conclusion and synchronization of the
preparatory enabling steps for one or more DB2 subsystems.

We examine the major migration changes in 10.4, “Migration” on page 248.

10.2.1 Before migrating
Before you start with the migration of your DB2 subsystem to V8, make sure that you are
aware of some changes that will affect your DB2 operations.

Fall back SPE on DB2 V7
Make sure the fall back SPE PQ48486 is installed and started on all DB2 V7 members that
are being migrated. DB2 code will not allow the migration unless the SPE is active.

CCSIDs and Unicode
You now must specify valid CCSIDs, first the one that identifies the coded character set
supported by the I/O devices at your site (otherwise character conversion may produce
incorrect results), but also CCSIDs for EBCDIC, ASCII, and Unicode, even though you do not
use these encoding schemes to store application data. You also need to define and
customize z/OS Unicode support as described in the z/OS V1R3.0 Support for Unicode Using
Conversion Services, SA22-7649-01.

Define a user DSNHDECP module
DB2 is no longer defining a default DECP module library. Just use job DSNTIJUZ to define it
in SDSNLOAD and SDSNEXIT. DSNTIJUZ also supports short and long ZPARMs, Unicode
definitions, and new and updated DB2 system and DSNHDECP parameters.

Verify BP8K0, BP16K0, and BP32K buffer pools definition
In DB2 V7, all catalog and directory table spaces have been allocated in buffer pool BP0. In
DB2 V8, some table spaces are allocated in buffer pools BP8K0, BP16K0 and BP32K. Verify
Ensure that BP8K0, BP16K0, and BP32K buffer pools definitions (notice the exception in not
having a buffer pool called BP32K0) are corresponding to your needs. If these buffer pools do
not exist before you begin ENFM, the processing will not fail, DB2 will allocate them in any
case with the default values. For data sharing groups, you must define GBP8K0, GBP16K0,
and GBP32K buffer pools.

Install IRLM 2.2
DB2 V8 requires IRLM 2.2, delivered with DB2 as FMID HIR220. IRLM has both the 64-bit
and the 31-bit versions delivered, so the size of the libraries is about double. With DB2
running IRLM in 64-bit mode you can have approximately 100 million locks. IMS V8 uses the
31-bit version.

Use CI size > 4 KB
The VARY DS CONTROL INTERVAL in DSNTIP7 specifies whether you want DB2-managed
data sets have variable VSAM CI size possibly providing better availability and performance.
This parameter has also effect on the DB2 catalog (user) allocation by defining the new
values and then implementing them during the ENFM phase.

New utility for converting BSDSs
In V8, you can convert BSDSs with a new utility (DSNJCNVB) to support more data sets, up
to 10000 for archive logs and 93 for each copy of the active log. You can run the conversion
utility once DB2 is in ENFM or NFM. Converting the BSDS is required for a larger number of
active log data sets and archive log data sets. For information about converting BSDSs, see
Section , “Enlarge current BSDS data sets” on page 257.

244 DB2 UDB for z/OS Version 8 Technical Preview

Consider increasing the external sort size
The new default SORTDATA and SORTKEYS for Load and Reorg utilities, active in CM, will
provide better and consistent performance by increasing parallelism of execution. This might
require more active tasks concurrently active and more sort work definitions. You might want
verify DB2’s settings for IDBACK and CTHREAD, and check out the SORTWORK and current
DFSORT (or equivalent product) definitions with your MVS system programmer.

Scrollable cursors
Temporary result tables for static scrollable cursors are stored in declared temporary tables.
You must allow sufficient storage space for the new TEMP database and segmented table
spaces. The updated installation documentation provides guidance in estimating the storage
needs.

Modify RUNSTATS jobs
After you migrate to V8, some existing RUNSTATS jobs might fail if the tables on which they
run have data-partitioned secondary indexes. RUNSTATS jobs on data-partitioned secondary
indexes require sort operations; if the sort package you use does not dynamically allocate
sort work data sets, these RUNSTATS jobs need to be modified to allocate the sort work data
sets. You can modify the RUNSTATS jobs with the SORTDEVT and SORTNUM keywords, or
by adding STATWKnn DD statements to the JCL.

More space for SYSSTATS table space
You may need to allocate more space for the SYSSTATS table space. In V8, the
SYSCOLDISTSTATS and SYSCOLDIST catalog tables contain more data than in previous
versions.

Consider increasing the size for catalog table spaces and index spaces
After finishing ENFM, your catalog and directory accept long names for most objects being
stored in your subsystem. This might cause the underlying VSAM cluster to grow over time. In
addition to that, the fact that the catalog data is stored in Unicode might also require a bit
more disk space. To avoid running out of space in your catalog and directory table spaces,
you should consider to enlarge the underlying clusters either before entering the ENFM or
monitor very carefully how the extents develop over time after migration. You can also enlarge
catalog and directory allocations by increasing the shadow data sets used during the ENFM
conversion.

Consider increasing EDM pool size
With the additional partitioned objects in V8, the database descriptors for the database
containing the objects will grow, which might create a need to increase the size of the EDM
pool. The EDM pool size can be increased by modifying the EDMPOOL STORAGE SIZE field
on installation panel DSNTIPC and stopping and restarting DB2. You can also modify the
EDM pool size without stopping and restarting DB2 by using the SET SYSPARM command.
However, using the SET SYSPARM command may result is a non-contiguous pool.

LANGUAGE COMPJAVA no longer supported for stored procedures
After migrating to V8, you will no longer be able to define or run COMPJAVA stored
procedures. Convert LANGUAGE COMPJAVA stored procedures to LANGUAGE JAVA using
the three following steps:

1. Use ALTER PROCEDURE to change the LANGUAGE and the WLM ENVIRONMENT.
The EXTERNAL NAME clause must also be specified. Use the following example as a
model:

ALTER PROCEDURE SYSPROC.JAVADVR
LANGUAGE JAVA EXTERNAL
NAME ’display.display.main ’
WLM ENVIRONMENT WLMENVJ;

Chapter 10. Installation and migration 245

2. Ensure that the WLM environment has been configured and that the required JVM is
installed.

3. Ensure that the .class file identified in the EXTERNAL NAME clause of the ALTER
PROCEDURE is either:

– Contained in a JAR that has been installed to DB2 by an invocation of the
INSTALL_JAR stored procedure, or

– Located in a directory in the CLASSPATH ENVAR of the data set named on the
JAVAENV DD card of the WLM stored procedures address space JCL.

JDBC/SQLJ driver no longer supported
The DB2 for OS/390 and z/OS type 2 JDBC/SQLJ driver is no longer supported. In V8, only
the Java combined client JDBC/SQLJ drivers are supported.

Support for DB2-established address spaces is deprecated
In V8, the support for DB2-established address spaces is deprecated. You can no longer
specify the NO WLM ENVIRONMENT option when you create or alter stored procedure
definitions. Although pre-existing stored procedures can still run in a DB2-established stored
procedure address space, you should move your stored procedures to WLM environments as
soon as possible.

New precompiler option for string host variables
In previous releases of DB2, if you selected a value from a character column into a C or C++
host variable of the null-terminated character form, and the length of the host variable was
longer than the length of the value, DB2 padded the string with blanks and inserted the
null-terminator after the blanks. In DB2 V8, the default behavior is to not pad the string with
blanks. If you want to produce blank-padded strings, as in previous releases, specify YES in
field PAD NUL-TERMINATED in installation panel DSNTIP4, or precompile your program with
the PADNTSTR option.

New column for encoding scheme
After you successfully migrate to V8, the encoding scheme used for system-generated
parameters for procedures and functions will be stored in a new column in
SYSIBM.SYSROUTINES. This information was previously stored in a special row in the
SYSIBM.SYSPARMS table.

System level point-in-time recovery
If you plan on using the BACKUP SYSTEM online utility to take volume copies of the data and
logs of your non-data sharing DB2 subsystem or your DB2 data sharing group, all of your DB2
data sets must reside on volumes managed by DFSMS. The BACKUP SYSTEM utility and its
counterpart, the RESTORE SYSTEM utility, require:

� z/OS Version 1 Release 5 or above.

� Disk control units that support ESS FlashCopy.

� DFSMShsm Copy constructs that are defined, following the DB2 naming convention.

� DFSMS Copy target storage pools that are defined. (The BACKUP SYSTEM utility
enables volume-level backups of a DB2 system that use these target storage groups.)

10.3 Installation
You can install your DB2 V8 subsystem either as a host based installation or via msys for
Setup as shown in Figure 10-3. Refer to 10.6, “msys for Setup DB2 Customization Center” on
page 259 for more information on msys for Setup.

246 DB2 UDB for z/OS Version 8 Technical Preview

Since DB2 V5, the DB2 Installer was the workstation based alternative to the traditional way
of installing DB2 through TSO command line. With DB2 V8, msys for Setup is the
replacement for DB2 Installer. The replacement is referred to as the msys for Setup DB2
Customization Center.

The host based installation process must be executed from the TSO command line. The
process itself does not differ from the previous releases. As usual, some panels have been
changed to support those new, added, or changed functionalities whose behavior you are
able to influence by specifying your own values for specific parameters. In this section we
show the most important new or changed panel options and the changes to the installation
jobs.

Figure 10-3 Install through TSO or msys for Setup

10.3.1 Major changes to install jobs
The installation jobs are as follows:

� DSNTIJPM: Identify unsupported objects:

This job now only checks for type 1 indexes.

� DSNTIJMV: Define DB2 to MVS:

This job now defines the DBM1 address space for 64-bit addressing, creates SPAS only
during migration, and modifies the SQL procedure, proc, to use CCSID(1047.)

� DSNTIJIN: Define system data sets:

This job now defines several new table and index spaces for the catalog and, depending
on the new VSAM control interval ZPARM, defines them with new CI values.

msys
for Setup

z/OS

IMS IMS IMSIMS CICS Web
Sphere

Strategic Open Access
 Enterprise Server

DB2

install/migrate

install/migrate

Chapter 10. Installation and migration 247

� DSNTIJUZ: Define DB2 parameters:

This job now defines DECP in SDSNLOAD and SDSNEXIT and runs before DSNTIJID. It
also supports short and long ZPARMs, Unicode definitions, and changes in DSNHDECP.

� DSNTIJID: Initialize system data sets:

This job now initialize catalog new and old tables with the new CI size if requested.

� DSNTIJTM: Define user exit routines:

This job now defines the required buffer pool for each size, since the V8 catalog has table
spaces with 4, 8, 16, and 32 KB.

� DSNTIJSG: Define and BIND DB2 objects:

This job now defines the RLF table for long names support, adds support for DSNUTILU,
the Utilities stored procedure with Unicode parser, and defines the DSNWZP stored
procedure for system parameters tracking in WLM-managed address space.

� DSNTIJTC: Tailor catalog (CATMAINT):

This job now has only one step.

10.4 Migration
The migration to DB2 V8 is only allowed from V7 and differs from the previous migration
processes. As we have seen, a DB2 V8 subsystem can operate in three different modes:

� Compatibility Mode (CM)
� Enabling New Function Mode (ENFM)
� New Function Mode (NFM)

We describe the modes in detail on the following pages. During the migration process, you
must go through the CM and ENFM, before reaching the NFM. As shown in Figure 10-4, in
CM, your Catalog and Directory have successfully been converted to V8, that is new columns
have been added to existing tables, new indexes and table spaces have been created and so
on.

248 DB2 UDB for z/OS Version 8 Technical Preview

Figure 10-4 Modes of operation

There are two major changes to the DB2 catalog, which are necessary to make most of the
new functions provided with DB2 V8 possible. These changes are:

� Change existing catalog columns so that they can store long names. Refer to 5.1, “Long
names” on page 72.

� Convert the catalog to Unicode.

In CM, none of these changes have been done. Furthermore, very few of the new functions
are available for use in this mode of operation. Refer to 10.4.1, “Compatibility Mode” on
page 250 for more detailed information.

In ENFM, you are in the process of converting your Catalog table spaces so that after
completion of the conversion, they now accept long names and exist in Unicode encoding
scheme. Catalog conversion is performed by running job DSNTIJNE. You can spread
conversion of your catalog table across several maintenance intervals. Use job DSNTIJNH to
direct DSNTIJNE to halt after conversion of the current table space has completed. To
resume, simply rerun DSNTIJNE from the top. It will automatically locate the next table space
to be converted. The process of conversion is not disruptive, that is, you can continue
operation while being in ENFM. Refer to 10.4.2, “Enabling New Function Mode” on page 251
for more detailed information.

Once you have migrated all table spaces of your DB2 catalog to Unicode, your DB2
subsystem will operate in NFM once you run the DSNTIJNF to indicate that everything is
ready. This step can be helpful for instance in making sure that all your member of a data
sharing group, or all subsystems DRDA related, have been migrated. Now all new functions
which have been introduced with DB2 V8 are available.

DSN1 - Compatibility Mode

Catalog and Directory
available in Unicode

New V8 functions
available

DSN1 - New Function Mode

DSN1 - Enabling New Function Mode

New V8 functions
available

Catalog and Directory
converted to V8

Catalog and Directory
converted to V8

Catalog and Directory
in Unicode accepting
long names

Catalog and Directory
in Unicode accepting
long names

Catalog and Directory
converted to V8

New V8 functions
available

DSNTIJNF

Chapter 10. Installation and migration 249

10.4.1 Compatibility Mode
The first step in the process of migrating from V7 to V8 is a traditional release migration
implemented by DSNTIJTC (CATMAINT) execution as in previous migrations. The completion
of this migration phase places the DB2 subsystem into V8 CM.

This migration is a very quick process. The catalog and directory migration is one part of this
migration step. Table 10-1 shows how the catalog continues to grow with every DB2 release.

Table 10-1 Evolution of the DB2 catalog

Job DSNTIJTC only contains one step. The result of this process is a current V8 catalog and
directory. Refer to 10.5, “Catalog changes” on page 259 for a detailed description of all
catalog changes for V8.

Installation Verification Process in CM
After you have successfully migrated your subsystem to V8 CM, you should run the
installation verification process (IVP) samples. As stated previously, since you cannot perform
any of the new functions provided by V8 at this point of time, the IVP differs very little from
DB2 V7. You can run selected V7 sample jobs if the DB2 objects from V7 sample jobs still
exist on your subsystem. If you do not have the V7 objects available any more, you can either
decide to verify the migration only using your own application samples or use the old V7
sample jobs to recreate the objects and run the IVP job afterwards.

Fallback
If you successfully finished the migration of your catalog and directory to DB2 V8 CM, fallback
to DB2 V7 is fully supported. In case you encounter any severe error while operating your
DB2 V8 subsystem, follow the fallback procedure.

DB2 version Table spaces Tables Indexes Columns Table Check
Constraints

V1 11 25 27 269 N/A

V3 11 43 44 584 N/A

V4 11 46 54 628 0

V5 12 54 62 731 46

V6 15 65 93 987 59

V7 20 84 117 1212 105

V8 22 87 128 1286 105

Note: Note that you can only migrate to V8 if your V7 subsystem has the fallback small
program enhancement (SPE) PQ48486 applied. The existence of the fallback SPE is
enforced for both data sharing and non-data sharing. The information is kept in the
BSDS/SCA, which is checked at startup time to make sure that all group members of a
data sharing group have the SPE applied.

Note: Note that DB2 V7 must be started at least once after the fallback SPE is applied
before V8 catalog maintenance is allowed to run successfully.

250 DB2 UDB for z/OS Version 8 Technical Preview

Release coexistence
If your DB2 V8 subsystem is a member of a data sharing group, all other members of this
group can only either be V7 or V8. DB2 V8 subsystems operating in CM, cannot coexist
within one data sharing group with any DB2 subsystems prior to V7. Before you can enter the
next mode of DB2 V8 operation, which is the ENFM, you must successfully migrate all
members to V8 and make sure that they run without any problems.

10.4.2 Enabling New Function Mode
The next mode you have to go through is the ENFM, an interim phase until you actually reach
the NFM. During ENFM, you do two things to your DB2 V8 catalog:

� Convert the Catalog from EBCDIC to Unicode UTF-8 encoding scheme

� Convert all affected columns so that your catalog can handle long names as described in
5.1, “Long names” on page 72.

In contrast to the first migration step, that is the migration from DB2 V7 to DB2 V8 CM, the
steps which need to be performed during ENFM only have a minor impact on DB2’s
operations. The migration of your catalog table spaces is done via online REORG
SHRLEVEL REFERENCE, which means that DB2 only needs exclusive access to the
underlying table spaces during a very short period of time.

To start the conversion, you must first go through the installation CLIST again to get new jobs
created for this task. Once you called the installation CLIST, you must enter ENFM for option
1 ‘INSTALL TYPE’ as shown in Figure 10-5. Make sure that option 2 ‘DATA SHARING’ is set
to ‘blank’ now.

Figure 10-5 DSNTIPA1 — Main panel for ENFM

The next panel which is displayed is panel DSNTIPT.

 DSNTIPA1 DB2 VERSION 8 INSTALL, UPDATE, MIGRATE, AND ENFM - MAIN PANEL

 ===>

 Check parameters and reenter to change:

 1 INSTALL TYPE ===> ENFM Install, Update, or Migrate

 or ENFM (Enable New Function Mode)
 2 DATA SHARING ===> ___ Yes or No (blank for Update or ENFM)

 Enter the data set and member name for migration only. This is the name used
 from a previous Installation/Migration from field 7 below:

 3 DATA SET(MEMBER) NAME ===>

 Enter name of your input data sets (SDSNLOAD, SDSNMACS, SDSNSAMP, SDSNCLST):

 4 PREFIX ===> DSN810
 5 SUFFIX ===>

 Enter to set or save panel values (by reading or writing the named members):
 6 INPUT MEMBER NAME ===> DSNTIDcm Default parameter values

 7 OUTPUT MEMBER NAME ===> DSNTIDnf Save new values entered on panels

 PRESS: ENTER to continue RETURN to exit HELP for more information

Chapter 10. Installation and migration 251

DSNTIPT — Data set names panel 1
You should consider choosing a new name for your customized SDSNSAMP output data set,
which you can specify for option 2 as shown in Figure 10-6. This data set will then contain,
based on the values you used for input member (option 6 in DSNTIPA1), three new migration
and all the IVP jobs.

Figure 10-6 DSNTIPT — Choose a new name for SDSNSAMP library

DSNTIP00 — Shadow data set allocation
The migration process during ENFM is done via online REORG. Since the table spaces of the
DB2 catalog are user-defined table spaces, you must manually allocate shadow data sets for
the REORG SHRLEVEL REFERENCE. Panel DSNTIP00, shown in Figure 10-7, lists all 18
DB2 catalog and directory table spaces that are transformed during ENFM processing. The
values are based on PERMANENT UNIT NAME and VOLUME SERIAL 3 from panel
DSNTIPA2, and PRIMARY RECS and SECONDARY RECS from panel DSNTCALC in CM
migration. They can be overridden in this panel.

 DSNTIPT ENFM DB2 - DATA SET NAMES PANEL 1
 ===>

 Data sets allocated by the installation CLIST for edited output:
 1 TEMP CLIST LIBRARY ===> DSN810.NEW.SDSNTEMP
 2 SAMPLE LIBRARY ===> DSN810.NEW.ENFM.SDSNSAMP
 Data sets allocated by the installation jobs:
 3 CLIST LIBRARY ===> DSN810.NEW.SDSNCLST
 4 APPLICATION DBRM ===> DSN810.DBRMLIB.DATA
 5 APPLICATION LOAD ===> DSN810.RUNLIB.LOAD
 6 DECLARATION LIBRARY===> DSN810.SRCLIB.DATA
 Data sets allocated by SMP/E and other methods:
 7 LINK LIST LIBRARY ===> DSN810.SDSNLINK
 8 LOAD LIBRARY ===> DSN810.SDSNLOAD
 9 MACRO LIBRARY ===> DSN810.SDSNMACS
 10 LOAD DISTRIBUTION ===> DSN810.ADSNLOAD
 11 EXIT LIBRARY ===> DSN810.SDSNEXIT
 12 DBRM LIBRARY ===> DSN810.SDSNDBRM
 13 IRLM LOAD LIBRARY ===> DSN810.SDXRRESL
 14 IVP DATA LIBRARY ===> DSN810.SDSNIVPD
 15 INCLUDE LIBRARY ===> DSN810.SDSNC.H

 PRESS: ENTER to continue RETURN to exit HELP for more information

252 DB2 UDB for z/OS Version 8 Technical Preview

Figure 10-7 DSNTIP00 — Shadow data set allocation

DSNTIP01 — Image copy data set allocations
When you reorganize a DB2 table space using either SHRLEVEL REFERENCE or CHANGE,
it is mandatory that you take an image copy as part of the reorganization. During online
REORG the image copies are taken. You can use panel DSNTIP01 as shown in Figure 10-8
to enter image copy names that follow your installation’s naming standards and which output
device you want for the copies.

Tape devices are supported, but not stacking.

 DSNTIP00 ENABLE NEW FUNCTION MODE FOR DB2 - SHADOW DATA SET ALLOCATION
 ===>
 OBJECT DASD DEVICE VOL/SERIAL PRIMARY RECS SECONDARY RECS
 1 SPT01 ==> SYSDA ==> DSNV02 ==> 636 ==> 636
 2 SYSDBASE ==> SYSDA ==> DSNV02 ==> 7049 ==> 7049
 3 SYSDBAUT ==> SYSDA ==> DSNV02 ==> 478 ==> 478
 4 SYSDDF ==> SYSDA ==> DSNV02 ==> 144 ==> 144
 5 SYSGPAUT ==> SYSDA ==> DSNV02 ==> 3060 ==> 3060
 6 SYSGROUP ==> SYSDA ==> DSNV02 ==> 48 ==> 48
 7 SYSGRTNS ==> SYSDA ==> DSNV02 ==> 144 ==> 144
 8 SYSHIST ==> SYSDA ==> DSNV02 ==> 144 ==> 144
 9 SYSJAVA ==> SYSDA ==> DSNV02 ==> 144 ==> 144
 10 SYSOBJ ==> SYSDA ==> DSNV02 ==> 616 ==> 616
 11 SYSPKAGE ==> SYSDA ==> DSNV02 ==> 9673 ==> 9673
 12 SYSPLAN ==> SYSDA ==> DSNV02 ==> 13373 ==> 13373
 13 SYSSEQ ==> SYSDA ==> DSNV02 ==> 144 ==> 144
 14 SYSSEQ2 ==> SYSDA ==> DSNV02 ==> 144 ==> 144
 15 SYSSTATS ==> SYSDA ==> DSNV02 ==> 53355 ==> 53355
 16 SYSSTR ==> SYSDA ==> DSNV02 ==> 661 ==> 661
 17 SYSUSER ==> SYSDA ==> DSNV02 ==> 1675 ==> 1675
 18 SYSVIEWS ==> SYSDA ==> DSNV02 ==> 7093 ==> 7093
 19 INDEXES ==> SYSDA ==> DSNV02 Catalog and directory index shadows
 PRESS: ENTER to continue RETURN to exit HELP for more information

Chapter 10. Installation and migration 253

Figure 10-8 DSNTIP01 — Image copy data set allocations

After the necessary jobs have been generated, you can start the ENFM processing. The first
job you must submit is job DSNTIJNF.

10.4.3 ENMF jobs
The ENMF jobs are:

� DSNTIJNE: ENFM processing:

This new job calls online Reorg and executes 18 groups of steps for each catalog table
space to be converted. It can be stopped with job DSNTIJNH and it will restart from the
beginning of the interrupted group.

� DSNTIJNH: Halt DSNTIJNE:

This new job stops the execution of DSNTIJNE at the end of the active group.

� DSNTIJNF: Turn NFM on:

This new job positions the catalog for NFM.

� DSNTIJNG: Update DECP for NFM:

This job updates DECP with NEWFUN=YES in SDSNEXIT and SDSNLOAD.

� DSNTIJEN: Return to ENFM status:

This job returns from NFM to ENFM status at user request.

� DSNTIJNR: Convert the RLST for long name support:

This job ALTERs the columns to support long names.

� V8 IVPs:

This job performs a heath check on the V8 new functions. See 10.7, “Samples” on
page 261.

 DSNTIP01 ENABLE NEW FUNCTION MODE FOR DB2 - IMAGE COPY DATA SET ALLOCATIONS
 ===>

 OBJECT IMAGE COPY DATA SET NAME DEVICE TYPE
 1 SPT01 ==> DSN810.IMAGCOPY.SPT01 ==> SYSDA
 2 SYSDBASE ==> DSN810.IMAGCOPY.SYSDBASE ==> SYSDA
 3 SYSDBAUT ==> DSN810.IMAGCOPY.SYSDBAUT ==> SYSDA
 4 SYSDDF ==> DSN810.IMAGCOPY.SYSDDF ==> SYSDA

 5 SYSGPAUT ==> DSN810.IMAGCOPY.SYSGPAUT ==> SYSDA
 6 SYSGROUP ==> DSN810.IMAGCOPY.SYSGROUP ==> SYSDA
 7 SYSGRTNS ==> DSN810.IMAGCOPY.SYSGRTNS ==> SYSDA
 8 SYSHIST ==> DSN810.IMAGCOPY.SYSHIST ==> SYSDA
 9 SYSJAUXB ==> DSN810.IMAGCOPY.SYSJAUXB ==> SYSDA
 10 SYSJAVA ==> DSN810.IMAGCOPY.SYSJAVA ==> SYSDA

 11 SYSOBJ ==> DSN810.IMAGCOPY.SYSOBJ ==> SYSDA
 12 SYSPKAGE ==> DSN810.IMAGCOPY.SYSPKAGE ==> SYSDA
 13 SYSPLAN ==> DSN810.IMAGCOPY.SYSPLAN ==> SYSDA
 14 SYSSEQ ==> DSN810.IMAGCOPY.SYSSEQ ==> SYSDA
 15 SYSSEQ2 ==> DSN810.IMAGCOPY.SYSSEQ2 ==> SYSDA
 16 SYSSTATS ==> DSN810.IMAGCOPY.SYSSTATS ==> SYSDA
 17 SYSSTR ==> DSN810.IMAGCOPY.SYSSTR ==> SYSDA

 18 SYSUSER ==> DSN810.IMAGCOPY.SYSUSER ==> SYSDA
 19 SYSVIEWS ==> DSN810.IMAGCOPY.SYSVIEWS ==> SYSDA
 PRESS: ENTER to continue RETURN to exit HELP for more information

254 DB2 UDB for z/OS Version 8 Technical Preview

DSNTIJNE
This job performs the actual conversion of the table spaces listed in Figure 10-8 starting with
SYSVIEWS and then in alphabetical order and last the DB2 directory. There is no need for
you to run the conversion of all affected table spaces without interruption. You can interrupt
the execution. You can start the conversion whenever you think your subsystem is available
for a short interrupt during the last log apply and switch phase of online reorg. There is
another new migration job, DSNTIJNH, which can be used any time to stop the processing of
DSNTIJNF. Refer to “DSNTIJNH” on page 255 for more information regarding DSNTIJNH, but
it basically stop the execution at the end of the current table space being reorganized. You
must then run DSNTIJNF from the top when you resume the conversion process for your
table spaces, and the job will go through the already executed phases and restart from the
next one to be run.

The job contains the following steps:

� ENFM0001 — Signal start of ENFM processing
� ENFM0nn0 — Check NFM status of table space in sequence
� ENFM0nn1 — Clean up workfiles for converting table space in sequence
� ENFM0nn3 — Allocate shadow data sets for table space in sequence
� ENFM0nn7 — REORG SHRLEVEL REFERENCE table space in sequence
� ENFM0nn9 — Delete workfiles used converting the table space in sequence

Steps ENFM0nn1 — ENFM0nn9 are repeated for all table spaces which are converted
during ENFM.

DSNTIJNF
This job seals the completion of ENFM and allows the user to synchronize NFM across
multiple DB2 subsystems.

DSNTIJNH
The only step in this DSNTIJNH job contains the following job card for Utility CATENFM:

CATENFM HALTENFM

If you execute this job while DSNTIJNF is running, DSNTIJNF will continue to run until the
conversion of the current catalog table space is completed. DSNTIJNF will then end with
return code six.

DSNTIJNG
The purpose of this job is to rebuild the DSNHDECP module so that the NEWFUN parameter
is set from NO to YES. From then on, the precompiler will accept by default all SQL that uses
V8 NFM.

Verifying your migration mode
You can check the mode in which your DB2 subsystem is currently operating using the
following command:

-DISPLAY GROUP DETAIL

Note: It is absolutely necessary to keep the sequence of steps provided in job DSNTIJNE.

Note: Use job DSNTIJNH when you plan to interrupt the conversion processing of
DSNTIJNF. Never use any other means except this job to halt conversion processing.

Chapter 10. Installation and migration 255

As you can see highlighted in Figure 10-9, the output of the DISPLAY GROUP command has
been enhanced so that you can figure out the current mode of operation for your DB2
subsystem. This command is valid for data sharing and for non-data sharing members.

Figure 10-9 DISPLAY GROUP command

MODE can show C for CM, E for ENFM and N for NFM.

Fallback
Once you started the conversion of your DB2 catalog and directory using the new CATENFM
utility, you are no longer able to fallback to:

� DB2 V8 CM or
� DB2 V7

Therefore, you should make sure that you do not begin with the migration to ENFM unless
your DB2 subsystems, including all data sharing members, are stabilized in DB2 V8 CM.

Release Coexistence
The scope of the fact of whether your DB2 subsystem is operating in ENFM is group wide.
This means that prior to start with ENFM, you must make sure that all members of you data
sharing group are running in DB2 V8 CM.

10.4.4 New Function Mode
Once you have completed the ENFM, your DB2 subsystem or data sharing group enters the
NFM. At this mode, all new DB2 V8 functions are enabled and available for use. The catalog
is completely Unicode and long names can be used.

Increase number of active and archive log data sets in BSDS
Large DB2 systems are creating so many archive log data sets that the maximum number of
archive log volumes of 1000, which existed up to DB2 V7, only allows you to restore a few
days of log data in your BSDSs.

In addition to that, you might feel like having more then the 31 active log data sets per log
copy, which are allowed for DB2 V7, would be helpful for you. This is especially important if
you write your archive logs to tape. In this case, having more than 31 active log data sets
available for extended rollback or for media recovery could speed up these operations
enormously.

 DSN7100I -DB8O DSN7GCMD
*** BEGIN DISPLAY OF GROUP(........) GROUP LEVEL(...) MODE(N)
 GROUP ATTACH NAME(....)
--
DB2 DB2 SYSTEM IRLM
MEMBER ID SUBSYS CMDPREF STATUS LVL NAME SUBSYS IRLMPROC
-------- --- ---- -------- -------- --- -------- ---- --------
........ 0 DB8O -DB8O ACTIVE 810 SC48 ID8O DB8OIRLM
--
*** END DISPLAY OF GROUP(........)
DSN9022I -DB8O DSN7GCMD 'DISPLAY GROUP ' NORMAL COMPLETION

256 DB2 UDB for z/OS Version 8 Technical Preview

DB2 V8 takes care of these needs and enables you to store up to the following amounts in
your BSDS data sets:

� 10000 archive log data sets (20000 if recording in dual mode)
� 93 active log data sets (186 for dual copy)

The current layout of your BSDS data sets does not allow to store all these information.
Therefore in order to be able to use these new limits for active and archive log data sets, you
must:

� Enlarge your current BSDS VSAM KSDS clusters using the following procedure
� Convert your old BSDS copy1 and cop2 using the newly introduced utility DSNJCNVB

You can use stand-alone utility DSNJU004 to find out if your BSDS data sets have already
been converted to the new format. Refer to the highlighted information in Figure 10-10. As
you can see, the BSDS data set has not yet been converted.

Figure 10-10 Checking BSDS conversion

Enlarge current BSDS data sets
Follow the steps below to enlarge your current BSDS data sets while DB2 is shutdown:

� Rename your existing BSDS copies. Be sure and save the original versions.
� Allocate larger BSDS data sets. Remember that you can use DSNTIJIN as sample.
� Use VSAM REPRO to copy the original data set to the new, larger data set

Run DSNJCNVB conversion utility
DSNJCNVB conversion utility is a new DB2 V8 stand-alone utility. You can run it in the same
manner as the DSNJU003 and DSNJU004 utilities. Refer to Figure 10-11 for a sample JCL.

Figure 10-11 DSNJCNVB sample JCL

Execute this utility to convert your existing BSDS data sets. If the job completes successfully,
you will receive the utility output shown in Figure 10-12.

 DSNJCNVB CONVERSION PROGRAM HAS NOT RUN DDNAME=SYSUT1
 LOG MAP OF BSDS DATA SET COPY 1, DSN=DB7OU.BSDS01
 LTIME INDICATES LOCAL TIME, ALL OTHER TIMES ARE GMT.
 DATA SHARING MODE IS OFF
 SYSTEM TIMESTAMP - DATE=2002.252 LTIME=22:15:43.72
 UTILITY TIMESTAMP - DATE=2002.249 LTIME=18:23:22.80
 VSAM CATALOG NAME=DB7OU
 HIGHEST RBA WRITTEN 00000428E1F4 0000.000 00:00:00.0
 HIGHEST RBA OFFLOADED 0000041F3FFF
 RBA WHEN CONVERTED TO V4 000000000000

 //DSNTLOG EXEC PGM=DSNJCNVB
//STEPLIB DD DISP=SHR,DSN=DSN810.SDSNLOAD
//SYSUT1 DD DISP=OLD,DSN=DB7OU.BSDS01
//SYSUT2 DD DISP=OLD,DSN=DB7OU.BSDS02
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD *

Chapter 10. Installation and migration 257

Figure 10-12 DSNJCNVB SYSPRINT

If you print your BSDS again, you can see the information highlighted in Figure 10-13.

Figure 10-13 DSNJU004 output indicating new BSDS structure

Fallback
Once your DB2 subsystem is operating at DB2 V8 NFM, you are no longer able to fallback to:

� DB2 V8 CM or
� DB2 V7

Release coexistence
The scope of the fact of whether your DB2 subsystem is operating in NFM is group wide. This
means that prior to start with NFM, you must make sure that all members of you data sharing
group are running in DB2 V8 CM.

Note: If you install your DB2 V8 from scratch, that is if you do not migrate from Version 7,
the installation already provides large BSDS data sets. But in order to be able to use more
than 31 active log data sets and more than 1000 archive log data sets, you must manually
convert your BSDS data sets using the stand-alone utility DSNJCNVB.

 CONVERSION OF BSDS DATA SET - COPY 1, DSN=DB7OU.BSDS01
 SYSTEM TIMESTAMP - DATE= 2.252 LTIME=22:15:43.72
 UTILITY TIMESTAMP - DATE= 2.249 LTIME=18:23:22.80
 PREVIOUS HIKEY - 04000053
 NEW HIKEY - 040002F0
 RECORDS ADDED - 669
CONVERSION OF BSDS DATA SET - COPY 2, DSN=DB7OU.BSDS02
 SYSTEM TIMESTAMP - DATE= 2.252 LTIME=22:15:43.72
 UTILITY TIMESTAMP - DATE= 2.249 LTIME=18:23:22.80
 PREVIOUS HIKEY - 04000053
 NEW HIKEY - 040002F0
 RECORDS ADDED - 669
DSNJ260I DSNJCNVB BSDS CONVERSION FOR DDNAME=SYSUT1 COMPLETED SUCCESSFULLY
DSNJ260I DSNJCNVB BSDS CONVERSION FOR DDNAME=SYSUT2 COMPLETED SUCCESSFULLY
DSNJ200I DSNJCNVB CONVERT BSDS UTILITY PROCESSING COMPLETED SUCCESSFULLY
******************************** BOTTOM OF DATA *******************************

 DSNJCNVB CONVERSION PROGRAM HAS RUN DDNAME=SYSUT1
 LOG MAP OF BSDS DATA SET COPY 2, DSN=DB7OU.BSDS01
 LTIME INDICATES LOCAL TIME, ALL OTHER TIMES ARE GMT.
 DATA SHARING MODE IS OFF
 SYSTEM TIMESTAMP - DATE=2002.252 LTIME=22:15:43.72
 UTILITY TIMESTAMP - DATE=2002.249 LTIME=18:23:22.80
 VSAM CATALOG NAME=DB7OU
 HIGHEST RBA WRITTEN 00000428E1F4 0000.000 00:00:00.0
 HIGHEST RBA OFFLOADED 0000041F3FFF
 RBA WHEN CONVERTED TO V4 000000000000
.........

258 DB2 UDB for z/OS Version 8 Technical Preview

Verification
After activating NFM with job DSNIJNF, and rebuilding the DSNHDECP with job DSNTIJNG,
you might want to run the DB2 V8 IVB jobs. Once stabilized in NFM, you can run DSNTIJNR
to convert the RLST tables for long names support.

10.5 Catalog changes
As for previous versions, DB2 V8 requires some changes to the DB2 catalog in order to
support new functions. The only difference is that these changes are massive with V8.

The introduction of long names (varchar 128) for most of the objects defined in the DB2 V8
catalog has a cascading and pervasive effect on other definitions. For instance keys need
more than 255 bytes, rows can be bigger that 4056, and therefore buffer pools of 8 KB and 16
KB pages have to be defined for use by the catalog, in addition to the 4 KB and 32 KB already
used with DB2 V7.

Another major change is that the catalog is now defined as Unicode, so if you have existing
queries on the catalog, you might receive results in a different ordering.

Besides the large numbers of changes to the existing objects, two new tables have been
added in existing table spaces:

� SYSIBM.IPLIST has been added to DSNDB06.SYSDDF table space.

SYSIBM.IPLIST allows multiple IP addresses to be specified for a given LOCATION.
Insert rows to this table when you want to define a remote DB2 data sharing group. The
same value for IPADDR column cannot appear in both the SYSIBM.IPNAMES table and
the SYSIBM.IPLIST table. Rows in this table can be inserted, updated, and deleted. Refer
to Chapter 6, “e-business” on page 129 for additional usage information.

� SYSIBM.SYSSEQUENCEAUTH has been added to DSNDB06.SYSSEQ2 table space.

This table records the privileges that are held by users over sequences. Refer to 5.14,
“Sequences and identity columns comparison” on page 117 for additional usage about
sequences.

10.6 msys for Setup DB2 Customization Center
Managed System Infrastructure for Setup (msys for Setup) is a z/OS initiative to simplify the
customization and installation of all z/OS products. msys for Setup is a base element of z/OS,
which currently supports TCP/IP, UNIX System Services, RACF, AMS, SMS, BCP, Parallel
Sysplex, ISPF, LE, and DB2 (see Figure 10-14.)

msys for Setup has been developed to automate all setup processes that do not require
decisions by a system programmer and by deriving values when decisions by a human
operator are required. msys for Setup uses wizard-like configuration dialogs that guide the
user through a set of high-level questions. These configuration dialogs are part of the
graphical user interface called the msys for Setup workplace. The configuration dialogs use
defaults and best practices values wherever this is possible to cut down on the number of
decisions that you have to make. Because the customization process is now handled by a
program instead of being a manual process, input is immediately checked for syntactical and
semantic correctness.

Chapter 10. Installation and migration 259

A second component of msys is the z/OS management directory, which is msys for Setup’s
central repository for configuration data of msys for Setup-enabled systems. It is based on the
Lightweight Directory Access Protocol (LDAP) directory support that is available as part of
z/OS and on the Common Information Model (CIM) data schema. The management directory
provides a single interface to all management-related system data.

Figure 10-14 msys description

DB2 V8 base includes a DB2 for msys plug-in which provides installation support for DB2 for
use within the z/OS msys framework. It requires msys for Setup, which is included with z/OS
Version 1.3. The msys for Setup framework consists of 3 components:

� msys workplace: This runs on the workstation and provides the user with a Windows
Explorer-style GUI to manage z/OS products

� msys host program: This resides and runs on a z/OS system and manages all
installation/customization tasks

� msys management directory: This uses an LDAP Server and stores configuration data
for all msys-enabled products.

More information about msys for Setup is available from the Web site:

http://www.ibm.com/servers/eserver/zseries/msys/moreset.html

Easing System Configuration

Traditional way

OS/390
Web-based
Assistants

z/OS Managed
System
Infrastructure for
Setup
(z/OS msys for
Setup)

260 DB2 UDB for z/OS Version 8 Technical Preview

10.7 Samples
New samples have been introduced to facilitate the use of new V8 functions. The new
samples are related to:

� Multi-row fetch:

The existing sample program DSNTEP2 (sample dynamic SQL program in the PL/I
language) now uses multi-row FETCH.

� Online schema:

The new sample is executed with four new steps in DSNTEJ1:

– The first step reduces the partitioning key on partition of table space DSN8S!!E

– The second step adds a fifth partition to the DSN8S!!E table space for the EMP table

– The third step reorganizes table space DSN8D!!A.DSN8S!!E

– The fourth step extends the length of a fixed char column in the PARTS table. It also
convert a small integer field to a decimal type field in the EEMP table

Running the DSNTEJ1 job with DSN8S!!E table space started demonstrates that these
steps can be done without stopping the table space.

� 2 MB SQL statement:

The sample programs DSNTEP2 and DSNTIAUL have been modified to handle SQL
statements up to 2 MB in size.

� Materialized Query Tables (MQTs):

The new job DSNTEJ3M creates and populates base and materialized query tables. It
also issues EXPLAIN statements that demonstrate the use of MQTs by the optimizer for
queries against the base tables.

� > 18 char table/column names:

The sample program DSNTEP2 has been modified to handle greater than 18 character
table or column names.

� Utilities Unicode Parser:

The new job DSNTEJ6R prepares and executes program DSN8ED8, a C language
sample caller of the Utilities Unicode Parser (DSNUTILU) stored procedure. Since DB2
IVPs are provided in EBCDIC, DSN8ED8 uses z/OS Unicode Services to:

– Convert arguments for DSNUTILU statements from EBCDIC to Unicode
– Convert DSNUTILU results from Unicode to EBCDIC

Some enhancements have also been provided to existing functions:

� New MAXERRORS value:

A new MAXERRORS valuehas been added in DSNTEP2 during runtime. It allows the user
to dynamically set the number of errors that DSNTEP2 will tolerate. The MAXERRORS
value can be modified during runtime via the functional comment --#SET MAXERRORS
being included in the SQL statements allowing the user to dynamically set the number of
errors that DSNTEP2 will tolerate.

� SYSPRINT blocking in DSNTEP2:

A change in SYSPRINT blocking in DSNTEP2 will speed up the rate in which DSNTEP2
outputs results. The blocking size was very small before, thus impacting the performance
when processing large result sets.

Chapter 10. Installation and migration 261

� New COBOL samples for the usage of LOBs:

There are four new COBOL samples that demonstrate the usage of LOBs:

– DSN8CLPL is a COBOL version of DSN8DLPL. It uses a LOB locator data type to
populate BLOB columns greater than 32 KB in length. Job DSNTEJ76 prepares and
runs the programs DSN8CLPL and DSN8CLTC.

– DSN8CLTC is a COBOL version of DSN8DLTC. It fetches the data back from
DSN8CLPL and verifies that this was the same as the source data.

– DSN8CLRV is a COBOL version of DSN8DLRV. It demonstrates LOB locator functions,
parsing a CLOB column to pull out resume data to be displayed on an ISPF panel. Job
DSNTEJ77 prepares and runs the program DSN8CLRV.

– DSN8CLPV is a COBOL version of DSN8DLPV. It extracts the BLOB data that
contains a photo image and displays it using GDDM. Job DSNTEJ78 prepares and
runs the program DSN8CLPV.

� Support for Common Sample Tables:

A standard set of tables, indexes, and data are provided for usage across the DB2 family

The new job DSNTEJCS calls a new sample module, DSN8CST, which creates and
populates the tables within a user-specified schema.

� Support for long tokens in formatted SQL messages:

DSNTIAR is being enhanced to support long name tokens in formatted SQL messages

� New sample Java stored procedure:

A new sample stored procedure, MRSPcli.java and MRSPsrv.java, returns multiple result
sets back to the caller.

� WLM-managed stored procedures:

All the sample stored procedures have been converted to WLM managed stored
procedures

� Changes made to all C and C++ IVP jobs:

All C and C++ language IVP jobs now specify the new precompiler option CCSID(1047)
because the IVP C and C++ source code is CCSID 1047.

262 DB2 UDB for z/OS Version 8 Technical Preview

Appendix A. Unicode definitions

DB2 V8 requires you to provide a DSNHDECP module that specifies valid, non-zero CCSIDs
for single-byte character sets (SBCS) for both EBCDIC and ASCII. For Far East languages
like Chinese, Korean, etc., you must also specify valid, non-zero CCSIDs for mixed-byte
(MBCS) and double-byte (DBCS) character sets for both EBCDIC and ASCII.

DB2 uses the same CCSIDs for Unicode regardless of language. DB2's Unicode CCSIDs
are: 367 for SBCS data, 1208 for MBCS data, and 1200 for DBCS data. Unicode UTF-16
(CCSID 1200) supports the same group of characters as Unicode UTF-8 (CCSID 1208), so
they are compatible and can convert to and from any EBCDIC/ASCII SBCS/MBCS/DBCS
CCSIDs.

DB2 requires the z/OS Unicode Services and appropriate conversion definitions to perform
most Unicode conversions. For additional information on setup, read the Information APARs
II13048 and II13049, consult the z/OS V1R3.0 Support for Unicode Using Conversion
Services, SA22-7649-01, and go to the Web sites:

 http://www.ibm.com/downloads
 http://www.s390.ibm.com/os390/bkserv/v2r10books.html

A

© Copyright IBM Corp. 2003. All rights reserved. 263

A.1 Basic conversions
These z/OS Unicode Services conversion definitions are required by all DB2 V8 systems.

In planning your z/OS Unicode Services setup, you need to begin with a set of basic
conversions between DB2's SBCS, DBCS, MBCS CCSIDs for Unicode, as follows:

CONVERSION 367, 1200, ER;

CONVERSION 367, 1208, ER;

CONVERSION 1200, 367, ER;

CONVERSION 1200, 1208, ER;

CONVERSION 1208, 367, ER;

CONVERSION 1208, 1200, ER;

A.2 Additional conversions
These z/OS Unicode Services conversion definitions are required to use DB2 V8 samples:

� Some DB2-supplied sample programs require precompiler option CCSID(37) or
CCSID(1047), the following conversions are also needed:

CONVERSION 00037, 00367, ER;

CONVERSION 00037, 01200, ER;

CONVERSION 00037, 1208, ER;

CONVERSION 00367, 0037, ER;

CONVERSION 01200, 00037, ER;

CONVERSION 1208, 00037, ER;

CONVERSION 01047, 00367, ER;

CONVERSION 01047, 01200, ER;

CONVERSION 01047, 1208, ER;

CONVERSION 00367, 1047, ER;

CONVERSION 01200, 1047, ER;

CONVERSION 1208, 1047, ER;

� For completeness, add conversions between 37 and 1047:

CONVERSION 00037, 01047, ER;

CONVERSION 001047, 0037, ER;

These z/OS Unicode Services conversion definitions are required for your EBCDIC CCSIDs.

� If your DSNHDECP specifies an EBCDIC SBCS CCSID (SCCSID) other than 37 or 1047,
you need additional conversions:

CONVERSION <your sccsid>, 00367, ER;

CONVERSION <your sccsid>, 01200, ER;

CONVERSION <your sccsid>, 01208, ER;

CONVERSION 00367, <your sccsid>, ER;

CONVERSION 01200, <your sccsid>, ER;

264 DB2 UDB for z/OS Version 8 Technical Preview

CONVERSION 01208, <your sccsid>, ER;

� For completeness, also add conversions between your SCCSID and 37, and between
SCCSID and 1047:

CONVERSION 00037, <your sccsid>, ER;

CONVERSION <your sccsid>, 00037, ER;

CONVERSION 01047, <your sccsid>, ER;

CONVERSION <your sccsid>, 01047, ER;

� For Far East languages, also add conversions between your EBCDIC MBCS CSSID
(MCCSID) and EBCDIC DBCS CCSID (GCCSID) and each Unicode CCSID:

CONVERSION <your mccsid>, 00367, ER;

CONVERSION <your mccsid>, 01200, ER;

CONVERSION <your mccsid>, 01208, ER;

CONVERSION 00367, <your mccsid>, ER;

CONVERSION 01200, <your mccsid>, ER;

CONVERSION 01208, <your mccsid>, ER;

CONVERSION <your gccsid>, 00367, ER;

CONVERSION <your gccsid>, 01200, ER;

CONVERSION <your gccsid>, 01208, ER;

CONVERSION 00367, <your gccsid>, ER;

CONVERSION 01200, <your gccsid>, ER;

CONVERSION 01208, <your gccsid>, ER;

These z/OS Unicode Services conversion definitions are required for your ASCII CCSIDs.

� You need these additional conversions for your ASCII SBCS CCSID (ASCCSID):

CONVERSION <your asccsid>, 00367, ER;

CONVERSION <your asccsid>, 01200, ER;

CONVERSION <your asccsid>, 01208, ER;

CONVERSION 00367, <your asccsid>, ER;

CONVERSION 01200, <your asccsid>, ER;

CONVERSION 01208, <your asccsid>, ER;

� For completeness, also add conversions between your ASCCSID and 37, and between
your ASCCSID and 1047:

CONVERSION 00037, <your asccsid>, ER;

CONVERSION <your asccsid>, 00037, ER;

CONVERSION 01047, <your asccsid>, ER;

CONVERSION <your asccsid>, 01047, ER;

� For Far East languages, also add conversions between your ASCII MBCS CCSID
(AMCCSID) and ASCII DBCS CCSID (AGCCSID) and each Unicode CCSID:

CONVERSION <your amccsid>, 00367, ER;

CONVERSION <your amccsid>, 01200, ER;

CONVERSION <your amccsid>, 01208, ER;

Appendix A. Unicode definitions 265

CONVERSION 00367, <your amccsid>, ER;

CONVERSION 01200, <your amccsid>, ER;

CONVERSION 01208, <your amccsid>, ER;

CONVERSION <your agccsid>, 00367, ER;

CONVERSION <your agccsid>, 01200, ER;

CONVERSION <your agccsid>, 01208, ER;

CONVERSION 00367, <your agccsid>, ER;

CONVERSION 01200, <your agccsid>, ER;

CONVERSION 01208, <your agccsid>, ER;

These z/OS Unicode Services conversion definitions are required to convert between your
ASCII and EBCDIC CCSIDs:

� If your DSNHDECP specifies an SCCSID other than 37 or 1047, you need these
additional conversions:

CONVERSION <your sccsid>, <your asccsid>, ER;

CONVERSION <your asccsid>, <your sccsid>

� For Far East languages, add conversions between your MCCSID and AMCCSID and
between your GCCSID and AGCCSID:

CONVERSION <your mccsid>, <your amccsid>, ER;

CONVERSION <your amccsid>, <your mccsid>

CONVERSION <your gccsid>, <your agccsid>, ER;

CONVERSION <your agccsid>, <your gccsid>

266 DB2 UDB for z/OS Version 8 Technical Preview

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” on page 269.

� A Practical Guide to DB2 UDB Data Replication V8, SG24-6828

� DB2 for z/OS and OS/390 Version 7 Using the Utilities Suite, SG24-6289

� DB2 for z/OS and OS/390 Version 7 Selected Performance Topics, SG24-6884

� DB2 for z/OS and OS/390 Version 7 Performance Topics, SG24-6129

� DB2 UDB Server for OS/390 and z/OS Version 7 Presentation Guide, SG24-6121

� DB2 UDB Server for OS/390 Version 6 Technical Update, SG24-6108

� DB2 UDB for OS/390 Version 6 Performance Topics, SG24-5351

� DB2 for z/OS Application Programming Topics, SG24-6300

� DB2 for OS/390 Version 5 Performance Topics, SG24-2213

Other resources
These publications are also relevant as further information sources:

� IBM DB2 UDB for z/OS V8 What’s New? manual available from the Web site:

http://www.ibm.com/software/data/db2/os390/v8books.html

� The Evolution of Star Join Optimization, whitepaper available from the Web site:

http://www.ibm.com/software/data/db2/os390/techdocs/starjoin.pdf

� z/OS V1R3.0 Support for Unicode Using Conversion Services, SA22-7649-01

� OS/390 Integrated Cryptographic Service Facility Administrator's Guide, SC23- 3975

� DB2 UDB for OS/390 and z/OS Version 7 Installation Guide, GC26-9936

� DB2 UDB for OS/390 and z/OS Version 7 Command Reference, SC26-9934

� DB2 UDB for OS/390 and z/OS Version 7 Messages and Codes, GC26-9940

� DB2 UDB for OS/390 and z/OS Version 7 Utility Guide and Reference, SC26-9945-02

� DB2 UDB for OS/390 and z/OS Version 7 Programming Guide and Reference for Java,
SC26-9932

� DB2 UDB for OS/390 and z/OS Version 7 Administration Guide, SC26-9931

� DB2 UDB for OS/390 and z/OS Version 7 Application Programming and SQL Guide,
SC26-9933-02

� DB2 UDB for OS/390 and z/OS Version 7 Release Planning Guide, SC26-9943

� DB2 UDB for OS/390 and z/OS Version 7 SQL Reference, SC26-9944

� DB2 UDB for OS/390 and z/OS Version 7 Text Extender Administration and Programming,
SC26-9948

© Copyright IBM Corp. 2003. All rights reserved. 267

http://www.ibm.com/software/data/db2/os390/v7books.html
http://www.ibm.com/software/data/db2/os390/techdocs/starjoin.pdf

� DB2 UDB for OS/390 and z/OS Version 7 Data Sharing: Planning and Administration,
SC26-9935

� DB2 UDB for OS/390 and z/OS Version 7 Image, Audio, and Video Extenders, SC26-9947

� DB2 UDB for OS/390 and z/OS Version 7 ODBC Guide and Reference, SC26-9941

� DB2 UDB for OS/390 and z/OS Version 7 XML Extender Administration and Reference,
SC26-9949

� DB2 UDB for OS/390 and z/OS Version 7 Diagnosis Guide and Reference, LY37-3740

� DB2 UDB Replication Guide and Reference Version 7, SC26-9920

� SQL Reference for Cross-platform Development Version 1.1, available as PDF from:

http://ww7b.boulder.ibm.com/dmdd/library/techarticle/0206sqlref/0206sqlref.html

� IBM eServer zSeries 900 z/OS 64-bit Virtual Storage Roadmap, available as PDF from:

http://www.ibm.com/servers/eserver/zseries/library/whitepapers/gm130076.html

Referenced Web sites
These Web sites are also relevant as further information sources:

� DB2 for z/OS and OS/390

http://ibm.com/software/data/db2/os390/
ibm.com/software/db2zos

� DB2 for z/OS and OS/390 Version 7 books

http://www.ibm.com/software/data/db2/os390/v7books.html

� Unicode

http://ibm.com/servers/s390/os390/bkserv/latest/v2r10unicode.html

� DB2 Image, Audio, and Video Formats

http://www.ibm.com/software/data/db2/extenders/imgfmt.htm

� Developing Java applications using DB2 Image and Audio Extenders

http://www7b.boulder.ibm.com/dmdd/library/techarticle/cox/0201cox.html

� XML Extender WIZARD

http://www.ibm.com/software/data/db2/extenders/xmlext/downloads.html

� DAD examples

http://www.ibm.com/software/data/pubs/papers/db2webservices/db2webservices.pdf

� Building an XML application and writing a DTD

http://www.ibm.com/developerworks/library/buildappl/writedtd.html

� z/OS UNIX System Services

http://www.s390.ibm.com/products/oe

� zSeries whitepapers

http://www.ibm.com/servers/eserver/zseries/library/whitepapers/gm130076.html

� DB2 Replication home page:

http://www.ibm.com/software/data/dpropr

� DB2 Cross-platform SQL Reference

http://ww7b.boulder.ibm.com/dmdd/library/techarticle/0206sqlref/0206sqlref.html

268 DB2 UDB for z/OS Version 8 Technical Preview

http://ibm.com/software/data/db2/os390/
http://www.ibm.com/software/data/db2/os390/v7books.html
http://ibm.com/servers/s390/os390/bkserv/latest/v2r10unicode.html
http://www.ibm.com/software/data/db2/extenders/imgfmt.htm
http://www7b.boulder.ibm.com/dmdd/library/techarticle/cox/0201cox.html
http://www.ibm.com/software/data/db2/extenders/xmlext/downloads.html
http://www.ibm.com/software/data/pubs/papers/db2webservices/db2webservices.pdf
http://www.ibm.com/developerworks/library/buildappl/writedtd.html
http://www.s390.ibm.com/products/oe
http://www.s390.ibm.com/products/oe
http://ww7b.boulder.ibm.com/dmdd/library/techarticle/0206sqlref/0206sqlref.html
http://www.ibm.com/servers/eserver/zseries/library/whitepapers/gm130076.html
http://www.ibm.com/software/data/db2/extenders/imgfmt.htm
http://www.ibm.com/software/data/db2/extenders/imgfmt.htm
http://www.ibm.com/software/data/db2/extenders/imgfmt.htm

How to get IBM Redbooks
You can order hardcopy Redbooks, as well as view, download, or search for Redbooks at the
following Web site:

ibm.com/redbooks

You can also download additional materials (code samples or diskette/CD-ROM images) from
that site.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the Redbooks Web
site for information about all the CD-ROMs offered, as well as updates and formats.

 Related publications 269

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

270 DB2 UDB for z/OS Version 8 Technical Preview

ronyms

AIX Advanced Interactive eXecutive
from IBM

APAR authorized program analysis report

AQR automatic query re-write

AR access register

ARM automatic restart manager

ART access register translation

ASCII American National Standard Code
for Information Interchange

BLOB binary large object

CCA client configuration assistant

CCSID coded character set identifier

CD compact disk

CEC central electronics complex

CF coupling facility

CFCC coupling facility control code

CFRM coupling facility resource
management

CLI call level interface

CLOB character large object

CLP command line processor

CM compatibility mode

CPU central processing unit

CRLF carriage return and line feed

CSA common storage area

CTT created temporary table

DAD document access definition

DASD direct access storage device

DAT dynamic address translation

DB2 PM DB2 performance monitor

DBAT database access thread

DBCLOB double byte character large object

DBET database exception tables states

DBD database descriptor

DBID database identifier

DBMS database management system

DBRM database request module

DCL data control language

DDCS distributed database connection
services

DDF distributed data facility

Abbreviations and ac

© Copyright IBM Corp. 2003. All rights reserved.
DDL data definition language

DLL dynamic load library

DML data manipulation language

DNS domain name server

DPSI data partitioned secondary index

DRDA distributed relational database
architecture

DSC dynamic statement cache, local or
global

DTT declared temporary tables

EA extended addressability

EBCDIC extended binary coded decimal
interchange code

ECS enhanced catalog sharing

ECSA extended common storage area

EDM environment descriptor manager

ENFM enabling new function mode

ERP enterprise resource planning

ESA Enterprise Systems Architecture

ESS Enterprise Storage Server

ETR external throughput rate, an
elapsed time measure, focuses on
system capacity

FTP File Transfer Program

GB gigabyte (1,073,741,824 bytes)

GBP group buffer pool

GRS global resource serialization

GUI graphical user interface

HA Host adapter

HFS Hierarchical File System

HPJ high performance Java

I/O input/output

IBM International Business Machines
Corporation

ICF integrated catalog facility

ICF integrated coupling facility

ICMF internal coupling migration facility

IFCID instrumentation facility component
identifier

IFI instrumentation facility interface

IPLA IBM Program Licence Agreement

IRLM internal resource lock manager
 271

IRWW IBM Relational Warehouse
Workload

ISPF interactive system productivity
facility

ISV independent software vendor

ITR internal throughput rate, a
processor time measure, focuses
on processor capacity

ITSO International Technical Support
Organization

IVP installation verification process

JDBC Java Database Connectivity

JFS journaled file systems

JIT Just in time (Java compiler)

JNI Java Native Interface

JVM Java Virtual Machine

KB kilobyte (1,024 bytes)

LCU logical control unit

LOB large object

LPAR Logical Partition

LPL logical page list

LRECL logical record length

LRSN log record sequence number

LVM logical volume manager

MB megabyte (1,048,576 bytes)

MQT materialized query table

MSM Multidimensional Storage Manager

NFM new function mode

NPI non-partitioning index

NVS Non-Volatile Storage

ODB object descriptor in DBD

ODBC Open Data Base Connectivity

OLAP Online Analytical Processing

OS/390 Operating System/390

PAV Parallel Access Volume

PDS partitioned data set

PIB parallel index build

PITR point-in-time recovery

PSID pageset identifier

PSP preventive service planning

PTF program temporary fix

PUNC possibly uncommitted

QBIC query by image content

QMF Query Management Facility

RACF Resource Access Control Facility

RBA relative byte address

RECFM record format

RID record identifier

ROT rule of thumb

RR repeatable read

RRS resource recovery services

RRSAF resource recovery services attach
facility

RS read stability

RSM Real Storage Manager

RTS real time statistics

RVA RAMAC Virtual Array

SDK software developers kit

SMIT System Management Interface Tool

SPE small program enhancement

SVL IBM Silicon Valley Laboratory

TCB Task control block

USS UNIX System Services

WAS WebSphere Application Service

WLM Workload Manager

WSAD WebSphere Studio Application
Developer

XML eXtensible Markup Language

272 DB2 UDB for z/OS Version 8 Technical Preview

Index

Numerics
00D31033 167
0217 32
0225 32
-127 106
-173 79
2 GB bar 26
32 KB CI size 69
42801 79
5625-DB2 241
64-bit addressability 23
64-bit virtual storage 10
-805 153
-904 167
-952 136

A
ACCUMACC 166
ADD PARTITION 35, 171
adding index columns 55
adding partitions 60, 170
Advisory Reorg 59
Advisory Reorg Pending 53
ALTER BUFFERPOOL 29
ALTER INDEX 55
ALTER SEQUENCE 109, 118
ALTER TABLE ALTER COLUMN 116
AREO* 53, 59
ASCII precompiler option 126
ASENSITIVE 77
ATOMIC 89
automatic query rewrite 213

B
back up and restore system 16, 200
BACKUP SYSTEM 62, 200
backward index scan 18, 228
BOTH 198
BP32K 244
BSDS 36, 257
BUILD2 48, 180

C
CACHE 108, 113
CAF 165
Call Attach Facility 165
CASTOUT 29
CCSID 137
CF lock propagation 19
CF lock propagation reduction 236
CHARDEL 190
CI size 11, 69, 244

© Copyright IBM Corp. 2003. All rights reserved.
cluster tables 18
clustering 44, 56
clustering index 42
CM 250
COBOL samples 262
COLDEL 190
COLGROUP 198
common table expressions 80
compare unlike data types 17
compatibility mode 19, 243, 248
COMPJAVA 245
compression dictionaries 30
conditional restart control record 65
converting BSDS 244
COPY 184
COUNT 198
CRCR 65
CREATE SEQUENCE 107
CTHREAD 32
CURRENT PACKAGE PATH 15, 153
current versions 242
CURRENT_VERSION 57–58, 180
CYCLE 118

D
DATA ONLY 65
Data Partitioned Secondary Index 46
data set naming convention 35
data sharing 235
data space 27
database ALIAS 155
Database Exception Tables 59
DB2 Administration Server 5
DB2 Administration Tools 5
DB2 Control Center 5
DB2 features 3
DB2 for z/OS evolution 2
DB2 Installer 247
DB2 Management Clients Package 4
DB2 Replication Center 5
DB2 V8 requirements 33
DB2 Visual Explain 6
db2profc 133
db2sqljcustomize 134
DBD 30
DBD01 67
DBET 59, 70
DDF enhancements 15
DDL 51
DECPT 191
delimited Load and Unload 16
DESCRIBE 135
DESCSTAT 135
DISPLAY DATABASE 177
 273

-DISPLAY GROUP DETAIL 255
-DISPLAY GROUPBUFFERPOOL 239
DISPLAY LOCATION 168
-DISPLAY LOG 69
distribution statistics 16
DPSI 46
DROP SEQUENCE 110, 118
DSN1COMP 184
DSN1COPY 184
DSN1PRNT 184
DSN9010I 168
DSNB250E 70
DSNB536I 28
DSNB539I 29
DSNB610I 28
DSNDB06.SYSDDF 259
DSNDB06.SYSSEQ2 259
DSNHDECP 244
DSNI005I 70
DSNI021I 70
DSNJCNVB 37, 257
DSNJU004 257
DSNR031I 69
DSNTEJ6R 195
DSNTEP2 75, 261
DSNTIAD 75
DSNTIAUL 75
DSNTIJEN 254
DSNTIJID 248
DSNTIJIN 37, 247
DSNTIJMV 247
DSNTIJNE 254–255
DSNTIJNF 254–255
DSNTIJNG 254–255
DSNTIJNH 254–255
DSNTIJNR 254
DSNTIJPM 247
DSNTIJSG 248
DSNTIJTC 248
DSNTIJTM 248
DSNTIJUZ 248
DSNTIP00 252
DSNTIP01 253
DSNTIPT 252
DSNUTILS 195
DSNUTILU 195
DSSIZE 34
DSTATS 196

E
EBCDIC 137
e-business 14
ECSA 33
EDM pool 30
EDM pool size 245
element 146
enable new function mode 19, 243, 248
ENDING AT 173
ENFM 251
ENFM panels

DSNTIP00 252
DSNTIP01 253
DSNTIPA1 247
DSNTIPT 252

enhanced scrollable cursors 12
expressions in GROUP BY 13, 104
external sort size 245

F
fast log apply 67
FLA 67
FOR n ROWS 86
forest 146
FREQVAL 198
FULL 65

G
gaps 112
GENERATED 118
get diagnostics 12, 90
GROUP BY 104
groups 120

H
hiperpools 26
host variable array 89
HPSIZE 28

I
identity columns 117
identity columns enhancement 13
IFCID 69
IFCID 0142 121
IFCIDs 32
IMMEDWRITE BIND option 238
INCREMENT BY 118
index classification 44
index page splits 237
index space name 182
index-controlled partitioning 40
indicator array 89
indoubt units of recovery 238
INSENSITIVE 75
INSERT within SELECT

effect of updates and deletes 102
multi-row results 102

install jobs changes 247
IOFACTOR 182
IRLM 2.2 244
ISOLATION 79

J
Java API 132
JDBC 2.0 131
JDBC 3.0 132

274 DB2 UDB for z/OS Version 8 Technical Preview

K
KSDS 257

L
LARGE 34
larger buffer pools 26
LEAST 198
linear data sets 69
L-locks 236
LOAD 183
LOAD delimited input 189
LOB 136
LOBs 31
LOBVALA 31
LOBVALS 31
log data sets 36
LOGONLY 66
long and variable length keys 18
long names 12, 72
long running UR backout 11
LPL 70
LPL recovery 11, 238

M
major changes to installation and migration 243
Managed System Infrastructure for Setup 259
Materialized Query Tables 209
materialized query tables 17
Materialized View 210
MAXERRORS 261
MEMLIMIT 33
memory management 23
migration paths 242
MINVALUE 118
MLS 119
MODIFY 184
more log data sets 10
more partitions 10
more tables in join 10
MOVE PAGE 22
MQSeries UDF 14
msys for Setup 247, 259
multilevel security 14, 119
multiple COUNT(DISTINCT) 13, 106
multiple SQL FETCH 84
multiple SQL INSERT 84
multi-row fetch and insert 12

N
nested elements 148
new function mode 19, 244, 248
NEWFUN 138
NFM 256
Non-Partitioned Secondary Index 47
NPSI 47
NUMCOLS 198
NUMPARTS 34, 41

O
ODBC SQL Connect user and password support 14
OLDEST_VERSION 57–58
online schema and utilities 16
Online schema changes 16
online schema changes 11, 50
online ZPARMs 11, 67
OS/390 V2R10 22

P
PADDED 56, 178
PADIX 56, 226
page set control log record 64
parallel sort 18
PARTITION BY 41, 43
partitioned 44
partitioned index 42
partitioned secondary indexes 10
partitioning 44
partitioning index 42
partitions roll-on and roll-off 49
performance 31
piece 42
PIT 65
plans 54
PQ31326 36
PQ48126 36
PQ48486 250
PQ54042 233
PQ56293 203
PQ56295 203
PQ56296 203
PQ56323 161
PQ59549 123
PQ61458 225
PQ72337 202
private protocol 75
PSCR 64

Q
qualified column names in INSERT and UPDATE 13,
103

R
RACF 14
RBDP 42
rcount 92
REBALANCE 179
rebalancing partitions 61
REBUILD INDEX 183
Rebuild Pending 54
RECOVER INDEXSPACE 188
RECOVER TABLESPACE 187
Recoverable Resources Manager Services Attachment
Facility 165
recovery 186
recursive SQL 80
Redbooks Web site 1, 269

 Index 275

Contact us xxi
referential constraint 173
REORG 16
REORG INDEX 182
REORP 174
REPAIR 185
REPAIR VERSIONS 185
RESET 174
RESTART 202
restart light 238
RESTART(PHASE) 202
RESTORE SYSTEM 62, 64, 200
RETVLCFK=YES 226
REUSE 174
RID pool 29
RIDLIST 30
RIDMAP 30
RIDs 30
RMF 32
rotating partition 173
rotating partitions 61
rowset 84, 86
RRS signon 166
RRSAF 165
RUNSTATS 16, 185, 196, 245
Runstats 54

S
samples 261
scalability 10, 21
scalar fullselect 13, 94

CASE expression 98
nested 97
WHERE clause 96

SCOPE PENDING 178
scrollable cursors 75
seclabel 120
SecureWay Security Server 120
SELECT from INSERT 98
Select from insert 13
SENSITIVE 75
SENSITIVE DYNAMIC 77
SENSITIVE STATIC 77
sequences 13, 117
sequences in applications 114
SET DATATYPE 52
SET LOG SUSPEND 62
-SET SYSPARM 67
SIGNAL 15
SMF 32
sort storage 30
SORTDATA 202
SORTDEVT 199
SORTKEYS 202
SORTNUM 199
sparse index for star join 18
SPUFI 75
SQL 12
SQL Procedure 15
SQL statement 2 MB long 12, 73

SQL statements 2 MB long 12
SQLCA 89
SQLDA 89
SQLJ 133
STATWKnn 199
storage monitoring and tuning 32
stored procedures 15
SYSCOLDIST 196
SYSCOPY 174
SYSIBM.IPLIST 259
SYSIBM.LOCATION 155
SYSIBM.SYSSEQUENCEAUTH 259
SYSIBM.SYSSEQUENCES 117
SYSLGRNX 174
SYSSTATS 245
system checkpoint and log offload activity 11
system level point in time recovery 246
system level point-in-time recovery 11, 62
System Recover Pending 65

T
table UDF block fetch 232
table UDF cardinality 19, 230
table-controlled partitioning 40
tape parallelism 203
thread pooling 166
trigger 18, 229
type 1 drivers 132
type 2 drivers 132
type 2 inactive threads 166
type 3 drivers 132
type 4 drivers 132
type 4 JDBC driver 131

U
UDFs 15
Unicode 137, 194
Unicode support 14
UNIQUE 46
Universal Driver 130
Universal Driver for SQLJ and JDBC 14
unlike data types 206
UNLOAD 183
UNLOAD delimited output 191
UQ60475 144
UQ60476 144
UQ67433 225
UQ67626 143

V
VARCHAR 53
variable length keys 225
version information 57
versioning 56
views 54
virtual storage expansion 25
volatile tables 18, 229
VPPSEQT 28

276 DB2 UDB for z/OS Version 8 Technical Preview

VPSEQT 28
VPSIZE 28
VPXSEQT 28

W
WebSphere Studio Application Developer 134
WITH 80
WSAD 134, 272

X
XLM2CLOB 146
XML 144, 153
XML built-in functions 146
XML data type 146
XML publishing 15
XML publishing functions 145
XMLAGG 151
XMLATTRIBUTES 148
XMLCONCAT 151
XMLELEMENT 147
XMLFOREST 149

Z
z/Architecture 21
z/OS architecture 22
z/OS recent versions 25
z800 23
z900 23
zSeries 22

 Index 277

278 DB2 UDB for z/OS Version 8 Technical Preview

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

DB2 UDB for z/OS Version 8 Technical Preview

®

SG24-6871-00 ISBN 0738427462

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

DB2 UDB for z/OS S
Version 8
Technical Preview
Browse the functional
contents of the
largest release ever

Understand the
prerequisites and the
setup for the new
functions

Start planning for a
smooth migration

IBM DATABASE 2 Universal Database Server for z/OS Version 8 (DB2 V8
throughout this IBM Redbook) is the twelfth and largest release of DB2
for MVS. It brings synergy with the zSeries hardware and exploits the
z/OS 64-bit virtual addressing capabilities. DB2 V8 offers data support,
application development, and query functionality enhancements for
e-business, while building upon the traditional characteristics of
availability, exceptional scalability, and performance for the enterprise
of choice. The DB2 V8 environment is available only for the z/OS
platform, either for brand new installations of DB2, or for migrations
exclusively from DB2 UDB for OS/390 and z/OS Version 7 subsystems.

DB2 Version 8 has been re-engineered for e-business, with many
fundamental changes in architecture and structure. Key improvements
enhance scalability, application porting, security architecture, and
continuous availability. Management for very large databases is made
much easier, while 64-bit virtual storage support makes management
simpler and improves scalability and availability. This new version
breaks through many old limitations in the definition of DB2 objects,
including SQL improvements, schema evolution, longer names for
tables and columns, longer SQL statements, enhanced Java and
Unicode support, enhanced utilities, more log data sets, and many
more advantages.

This redbook introduces the major changes and enhancements made
available with DB2 V8. It will help you understand the functions offered
by DB2 V8, and provides enough information to start evaluating their
applicability to your environment, as well as to start planning for the
installation of DB2 V8 or the migration from DB2 V7.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Figures
	Tables
	Examples
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Introduction
	1.1 The evolution of DB2 UDB for z/OS
	1.2 Summary of features
	1.2.1 New DB2 function: msys for set-up DB2 Customization Center
	1.2.2 No-extra-charge features
	1.2.3 Charge features

	1.3 This redbook

	Chapter 2. DB2 UDB for z/OS V8 at a glance
	2.1 Scalability
	2.2 Availability
	2.3 SQL
	2.4 e-business
	2.5 Utilities
	2.6 Performance
	2.7 Data sharing
	2.8 Installation and migration

	Chapter 3. Scalability
	3.1 The 64-bit architecture support
	3.1.1 The z/OS architecture
	3.1.2 DB2’s virtual storage expansion
	3.1.3 Moving above the 2 GB bar
	3.1.4 General performance expectations
	3.1.5 Storage monitoring and tuning
	3.1.6 DB2 V8 requires z/Architecture and z/OS V1R3

	3.2 More partitions
	3.3 More tables in join
	3.4 More log data sets

	Chapter 4. Availability
	4.1 DB2 V8 partition and index related terminology
	4.1.1 Table-controlled partitioning
	4.1.2 Index-controlled partitioning terminology
	4.1.3 Table-controlled partitioning terminology

	4.2 Data partitioned secondary indexes
	4.2.1 Creating a data partitioned secondary index
	4.2.2 The need for DPSIs
	4.2.3 DPSI considerations

	4.3 Online schema changes
	4.3.1 Online schema changes overview
	4.3.2 Table data type changes
	4.3.3 Index changes
	4.3.4 Versioning
	4.3.5 Usage considerations
	4.3.6 New DBET states for online schema changes
	4.3.7 Impact of online schema changes on user tasks
	4.3.8 Dynamic partitions

	4.4 System level point-in-time recovery
	4.4.1 Backing up the system
	4.4.2 Restoring the system

	4.5 Online ZPARMs
	4.6 Other availability enhancements
	4.6.1 Control intervals larger than 4 KB
	4.6.2 Monitor system checkpoints and log offload activity
	4.6.3 Log monitor long running UR backout
	4.6.4 Improved LPL recovery

	Chapter 5. SQL
	5.1 Long names
	5.2 SQL statements 2 MB long
	5.3 Dynamic scrollable cursors
	5.3.1 Cursor positioning and serialization
	5.3.2 Considerations

	5.4 Common table expressions and recursive SQL
	5.4.1 Example of fullselect
	5.4.2 Example with CREATE VIEW and INSERT
	5.4.3 Recursive SQL

	5.5 Multi-row fetch and insert
	5.5.1 DECLARE CURSOR
	5.5.2 FETCH
	5.5.3 INSERT

	5.6 Get diagnostics
	5.7 Scalar fullselect
	5.7.1 Functional description
	5.7.2 Restrictions

	5.8 Select from insert
	5.8.1 Functional description

	5.9 Qualified column names in INSERT and UPDATE
	5.10 Expressions in GROUP BY
	5.11 Multiple DISTINCT
	5.12 Sequences
	5.12.1 Usage considerations
	5.12.2 Using sequences in applications

	5.13 Identity columns enhancements
	5.13.1 SQL statements for identity column enhancements

	5.14 Sequences and identity columns comparison
	5.15 Multilevel security
	5.16 MQSeries UDFs
	5.17 ASCII flag for compile

	Chapter 6. e-business
	6.1 IBM DB2 Universal Driver for SQLJ and JDBC features
	6.1.1 IBM JDBC Type 4 driver
	6.1.2 New IBM JDBC Type 2 driver
	6.1.3 Java API enhancements
	6.1.4 SQLJ
	6.1.5 Nested stored procedure result sets for JDBC and ODBC applications
	6.1.6 Extended DESCRIBE
	6.1.7 SQLcancel
	6.1.8 LOB streaming

	6.2 Unicode support
	6.2.1 Unicode parser
	6.2.2 Program preparation with new Unicode precompiler
	6.2.3 Utility Unicode parser
	6.2.4 Multiple CCSIDs per SQL statement
	6.2.5 ODBC Unicode support
	6.2.6 Unicode and distributed support

	6.3 ODBC enhancements
	6.3.1 ODBC SQLConnect user and password support
	6.3.2 ODBC Unicode support
	6.3.3 Cursor extensions
	6.3.4 SQLCancel support

	6.4 XML publishing functions
	6.5 CURRENT PACKAGE PATH special register
	6.6 DDF communication database enhancements
	6.6.1 Requester database ALIAS
	6.6.2 Server location alias
	6.6.3 Member routing in a TCP/IP network

	6.7 Enhancements for stored procedures and UDFs
	6.7.1 Maximum failures
	6.7.2 Exploit WLM server task thread management
	6.7.3 Enhancements to SQL stored procedure language
	6.7.4 COMPJAVA stored procedures no longer supported
	6.7.5 DB2 established stored procedures

	6.8 Miscellaneous enhancements
	6.8.1 RRSAF compatibility for CAF applications
	6.8.2 Roll up accounting data for DDF and RRSAF threads
	6.8.3 Improved query and result set processing
	6.8.4 Time out for SNA allocate conversation requests
	6.8.5 Data stream encryption
	6.8.6 DISPLAY LOCATION command

	Chapter 7. Utilities
	7.1 Online schema changes support
	7.1.1 More flexibility with partitions
	7.1.2 Utility support for schema evolution
	7.1.3 Point-in-time recovery restrictions

	7.2 Delimited LOAD and UNLOAD
	7.3 Unicode
	7.4 Distribution statistics
	7.4.1 Collecting cardinality and distribution statistics
	7.4.2 Collecting column correlation statistics
	7.4.3 Use of work data sets
	7.4.4 Examples

	7.5 Backing up and restoring the system
	7.6 Other changes
	7.6.1 New default RESTART
	7.6.2 New defaults SORTDATA and SORTKEYS
	7.6.3 COPY and RECOVER tape parallelism

	Chapter 8. Performance
	8.1 Comparing unlike data types
	8.2 Materialized query tables
	8.2.1 Creating an MQT
	8.2.2 Populating and maintaining an MQT
	8.2.3 Automatic query rewrite using Materialized Query Tables
	8.2.4 Determining if query rewrite occurred

	8.3 Multi-row INSERT and FETCH
	8.4 Cost based parallel sort
	8.5 Data caching and sparse index usage for star join
	8.6 Long and variable length keys
	8.7 Support for backward index scan
	8.8 Trigger enhancements
	8.9 Reduced lock contention on volatile tables
	8.10 Table UDF cardinality option and block fetch
	8.10.1 Table UDF cardinality clause
	8.10.2 Table UDF block fetch

	Chapter 9. Data sharing
	9.1 CF lock propagation reduction
	9.2 Reduction of overhead costs for data sharing workloads
	9.3 Batched updates for index page splits
	9.4 Improved LPL recovery
	9.5 Resolution of indoubt units of recovery in restart light
	9.6 Change to IMMEDWRITE BIND option default
	9.7 Change to -DISPLAY GROUPBUFFERPOOL output

	Chapter 10. Installation and migration
	10.1 Currency of versions and migration paths
	10.2 Major changes to installation and migration
	10.2.1 Before migrating

	10.3 Installation
	10.3.1 Major changes to install jobs

	10.4 Migration
	10.4.1 Compatibility Mode
	10.4.2 Enabling New Function Mode
	10.4.3 ENMF jobs
	10.4.4 New Function Mode

	10.5 Catalog changes
	10.6 msys for Setup DB2 Customization Center
	10.7 Samples

	Appendix A. Unicode definitions
	A.1 Basic conversions
	A.2 Additional conversions

	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Abbreviations and acronyms
	Index
	Back cover

