
ibm.com/redbooks

WebSphere V5
for Linux on zSeries
Connectivity Handbookdbook

Viviane Anavi-Chaput
Michael Rask Christensen

Joerg Haertel
Joerg Schmidbauer

Lynn Winkelbauer

WAS for Linux on zSeries
implementation

J2EE Connector architectures
for Linux on zSeries

Linux to z/OS and VSE
connection scenarios

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

WebSphere V5 for Linux on zSeries Connectivity
Handbook

June 2004

International Technical Support Organization

SG24-7042-00

© Copyright International Business Machines Corporation 2004. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (June 2004)

This edition applies to WebSphere for Linux on zSeries Version 5.0.2.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xi.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
The team that wrote this redbook. xiii
Become a published author . xiv
Comments welcome. xv

Chapter 1. J2EE connector architecture overview . 1
1.1 J2C overview. 2

1.1.1 Resource adapter . 2
1.1.2 Common client interface . 2
1.1.3 System contracts. 3
1.1.4 Application contracts . 5
1.1.5 Deployment and packaging protocols . 5

1.2 System contracts. 5
1.3 Connection management . 5

1.3.1 Connection pooling . 5
1.3.2 Managed access to the resource adapter. 6
1.3.3 Non-managed access to the resource adapter 8

1.4 Transaction management . 9
1.4.1 Global transactions . 11
1.4.2 Local transactions . 12
1.4.3 One-phase commit optimization . 13
1.4.4 Local transactions versus one-phase commit optimization 13

1.5 Security management . 13
1.5.1 Terminology . 13
1.5.2 Security model overview . 14

1.6 Common client interface . 17
1.6.1 Enterprise application integration . 17

1.7 Deployment and packaging. 19
1.7.1 Packaging of the resource adapter module 20
1.7.2 Deployment descriptor . 20
1.7.3 Deploying the resource adapter . 22

Chapter 2. Introducing the connectors test environment 25
2.1 System configurations . 26

2.1.1 Hardware. 27
2.1.2 Software . 27

© Copyright IBM Corp. 2004. All rights reserved. iii

2.2 Frontend environment . 28
2.3 Backend environments . 29

2.3.1 z/OS . 29
2.3.2 VSE . 29

2.4 Connector scenarios overview . 29
2.4.1 The Trader application scenarios . 31

Chapter 3. The Trader applications . 33
3.1 Introducing the Trader application. 34

3.1.1 Trader application components. 34
3.1.2 Trader datastores . 35
3.1.3 Trader frontend GUI . 36
3.1.4 Trader Web frontend architecture . 38
3.1.5 Packaging . 40
3.1.6 Dependencies . 41
3.1.7 Trader connector paths . 42
3.1.8 Downloading Trader application modules . 45

3.2 Running Trader in WSAD.IE test environment . 45
3.2.1 Configuring the test server in WSAD.IE . 47
3.2.2 Runing Trader application in WSAD.IE test environment 56
3.2.3 Configuring DB2 tables in the test environment 58
3.2.4 Running Trader application in WSAD.IE test environment 59

3.3 Deploying Trader application. 59
3.3.1 Installing Trader application . 60
3.3.2 Running Trader application . 60

3.4 Trader DB2 table definitions . 63
3.5 Trader VSAM file definitions . 65
3.6 Trader CICS Transaction Gateway usage . 66
3.7 WebSphere Studio Integration Edition hints and tips 66

Chapter 4. WebSphere Application Server setup. 67
4.1 Planning for WebSphere Application Server setup 68

4.1.1 Space requirements for installation. 68
4.1.2 WebSphere MQ client for Linux on zSeries 68

4.2 Installing WebSphere MQ Client for Linux on zSeries 69
4.2.1 Verifying the MQ Client installation . 70
4.2.2 Testing the MQ installation . 72

4.3 Installing WebSphere Application Server . 72
4.3.1 Installing with the installation wizard GUI . 73
4.3.2 Getting started. 78

Chapter 5. CICS J2EE connectors . 83
5.1 Overview of the test environment . 84

5.1.1 CICS connection to z/OS . 84

iv WebSphere V5 for Linux on zSeries - Connectivity Handbook

5.1.2 CICS connection to VSE . 85
5.2 Setting up the CTG on Linux for zSeries. 86

5.2.1 Installing the CTG on Linux for zSeries. 86
5.2.2 Configuring the CTG on Linux for zSeries . 88

5.3 Setting up the CICS regions on z/OS and VSE. 96
5.3.1 Setting up the CICS TS for z/OS environment 96
5.3.2 Setting up the CICS TS for VSE environment. 98
5.3.3 Testing the CTG to VSE CICS/TS connectivity. 100

5.4 Testing the connectivity from Linux for zSeries. 103
5.4.1 Testing the connections . 103
5.4.2 Creating a simple TestECI program on Linux for zSeries 103

5.5 Configuring WebSphere for CICS connections . 105
5.5.1 Installing the resource adapter . 105
5.5.2 Configuring a J2C connection factory for z/OS 108
5.5.3 Configuring a J2C connection factory for VSE 112
5.5.4 Deploying the application in WebSphere . 114
5.5.5 Implementing application security in WebSphere 115

5.6 Problem determination . 116
5.6.1 Common errors . 116

Chapter 6. Using SOAP to communicate with CICS. 119
6.1 SOAP overview . 120

6.1.1 SOAP on z/OS . 121
6.1.2 SOAP on VSE . 121

6.2 Configuring CICS on VSE for SOAP support . 122
6.2.1 Step 1: Specify TCP/IP=YES in CICS setup. 122
6.2.2 Step 2: Define the symbolic name of VSE to TCP/IP 123
6.2.3 Step 3: Define the TCP/IP service . 123
6.2.4 Step 4: Activate the ASCII to EBCDIC converter 124

6.3 Compiling the SOAP service on VSE . 124
6.4 Testing the SOAP communication . 126

6.4.1 Software prerequisites for the Java SOAP client 127
6.4.2 Implementing a Java-based SOAP client . 127
6.4.3 Running the Java-based SOAP client. 128

6.5 Writing your own SOAP programs on VSE . 129
6.6 Considerations for using SOAP in WebSphere. 129

Chapter 7. DB2 connectors . 131
7.1 DB2 Connect scenario . 132
7.2 Installing DB2 Connect V8.1 . 132

7.2.1 Simple connect to DB2 for z/OS . 142
7.2.2 Simple connect to DB2 for VSE . 143

7.3 Customizing WebSphere Application Server for DB2 Connect. 144

 Contents v

7.3.1 Updating the WebSphere Application Server startup script 144
7.3.2 Configuring a WebSphere data source . 145

7.4 Deploying TraderDB in WebSphere Application Server 149

Chapter 8. WebSphere MQ connectors . 153
8.1 Introducing the MQ environment . 154

8.1.1 MQ-CICS bridge . 156
8.1.2 MQ-IMS bridge . 156

8.2 WebSphere MQ setup on Linux for zSeries frontend 157
8.3 WebSphere MQ setup on z/OS backend . 162

8.3.1 Configuring queues and channels on z/OS. 162
8.3.2 Configuring queues and channels on Linux for zSeries 167

8.4 WebSphere MQ setup on VSE backend . 168
8.4.1 Configuring queues and channels on Linux for zSeries 168
8.4.2 Defining MQ resources to Linux for zSeries 168
8.4.3 Shell script to define the Linux-VSE connection 169

8.5 Configuring VSE for MQ . 175
8.5.1 Defining the VSAM data files . 176
8.5.2 Defining the MQ files to CICS using RDO. 180
8.5.3 Defining MQ resources to VSE/ESA . 184
8.5.4 Defining MQ local queues on VSE . 185
8.5.5 MQ troubleshooting. 195

8.6 Configuring the MQ connector in WebSphere. 196
8.6.1 Defining a WebSphere MQ queue connection factory 197
8.6.2 Defining WebSphere MQ queue destinations 197
8.6.3 Defining message listeners . 197
8.6.4 Deploying TraderMQ application to WebSphere. 198
8.6.5 Defining resources for VSE in WebSphere 200

Chapter 9. IMS J2EE connectors . 207
9.1 IMS connectors overview . 208

9.1.1 IMS Connect . 208
9.1.2 IMS Connector for Java . 208

9.2 Installing IMS Connector for Java . 209
9.3 Installing the IMS resource adapter in WebSphere Application Server. . 211
9.4 Configuring IMS J2C connection factories . 214
9.5 Deploying TraderIMS application in WebSphere Application Server . . . 217
9.6 IMS Connect configuration . 218
9.7 Testing TraderIMS application . 220
9.8 Problem determination . 220

9.8.1 Common errors . 221
9.9 Thread identity support . 222

Chapter 10. VSE Java-based connector to access VSAM data. 223

vi WebSphere V5 for Linux on zSeries - Connectivity Handbook

10.1 VSE Java-based connectors overview . 224
10.1.1 Client-server components . 225

10.2 Installing the VSE Java-based connector . 226
10.2.1 Client . 226
10.2.2 Server . 227

10.3 Using VSE Connector Client as resource adapter 227
10.3.1 Defining a resource adapter . 227
10.3.2 Related servlet code . 231

10.4 Using the VSE connector client as a JDBC provider. 231
10.4.1 Defining a JDBC provider . 232
10.4.2 Related servlet code . 240

10.5 Setting up sample data for Trader. 241
10.5.1 Installing the VSE Navigator . 242
10.5.2 Installing the VSAM maptool . 242
10.5.3 Creating the sample VSAM files . 243
10.5.4 Creating the VSAM maps . 244
10.5.5 Populating the sample VSAM files . 249

10.6 Installing an application in WebSphere . 252
10.6.1 Setting up an EAR file in the Application Assembly Tool 253
10.6.2 Deploying the EAR file in WebSphere Administrative Console. . . 260

10.7 Configuring for SSL secure connections . 262
10.7.1 Installing Keyman/VSE . 263
10.7.2 Generating keys and certificates. 264
10.7.3 Uploading certificate items to VSE . 270
10.7.4 Transferring the keyring file to WebSphere. 272
10.7.5 Checking VSE keyring library . 272
10.7.6 Defining an SSL connection factory in WebSphere 273
10.7.7 Adding SSL resource reference in EAR file 275
10.7.8 Redeploying the EAR file . 275
10.7.9 Configuring VSE Connector Server for SSL 277
10.7.10 Restarting VSE Connector Server . 279
10.7.11 Changing your servlet code to support SSL 279
10.7.12 Configuring an SSL JDBC data source. 280
10.7.13 Considerations on SSL key lengths . 282
10.7.14 Considerations on different SSL scenarios 283

10.8 Problem determination . 284
10.8.1 Activating stdout trace in WebSphere . 284
10.8.2 Tracing a servlet . 285

Chapter 11. VSE Java-based connector to access DL/1 data 287
11.1 DL/I database access overview. 288

11.1.1 Prerequisites for the DL/1 connector. 289
11.1.2 The DL/I example . 289

 Contents vii

Chapter 12. VSE VSAM Redirector connector . 293
12.1 VSAM Redirector connector overview. 294
12.2 Client-server components . 295
12.3 Installing the Redirector server . 297

12.3.1 Downloading the Redirector server. 297
12.3.2 Installing the Redirector server . 297
12.3.3 Configuring the Redirector server . 298
12.3.4 Starting the Redirector server . 299

12.4 General setup using the HtmlHandler . 300
12.4.1 Step 1: Decide on the VSAM source file . 301
12.4.2 Step2: Create a new file as target file . 302
12.4.3 Step 3: Configure and activate Redirector client exit 303
12.4.4 Step 4: Modify the HtmlHandler Java source 305
12.4.5 Step 5: Create a sample VSAM application 307
12.4.6 Step 6: Run the REPRO job . 307
12.4.7 Step 7: Check the HTML output file. 308

12.5 Special setup for Trader using the DB2 handler 309
12.5.1 Providing VSAM map definition. 309
12.5.2 Populating the sample VSAM files . 312
12.5.3 Preparing for creating DB2 tables . 312
12.5.4 Creating DB2 tables . 312
12.5.5 Setting up the VSE side . 314
12.5.6 Testing the setup. 315
12.5.7 Checking the target DB2 table . 316
12.5.8 Trader scenario with redirected VSAM files 317

Appendix A. VSE/ESA code samples . 319
Sample Java SOAP client program . 320
Sample Java program to populate VSAM files on VSE 322
IBM-provided SOAP service C program. 325
IBM-provided include file for SOAP . 330

Appendix B. Additional material . 337
Locating the Web material . 337
Using the Web material . 337

System requirements for downloading the Web material 338
How to use the Web material . 338

Related publications . 339
IBM Redbooks . 339
Other publications . 339
Online resources . 340
How to get IBM Redbooks . 342
Help from IBM . 342

viii WebSphere V5 for Linux on zSeries - Connectivity Handbook

Index . 343

 Contents ix

x WebSphere V5 for Linux on zSeries - Connectivity Handbook

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2004. All rights reserved. xi

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

1-2-3®
CICS/ESA®
CICS/VSE®
CICS®
DB2 Connect™
DB2®
developerWorks®
DFS™
DRDA®
HiperSockets™

Hummingbird®
IBM®
ibm.com®
IMS™
Lotus®
MQSeries®
OS/2®
OS/390®
POWER™
Redbooks™

Redbooks (logo) ™
RACF®
SupportPac™
Tivoli®
VSE/ESA™
WebSphere®
z/OS®
zSeries®
z/VM®

The following terms are trademarks of other companies:

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.

xii WebSphere V5 for Linux on zSeries - Connectivity Handbook

Preface

This IBM® Redbook discusses Linux-based Java™ applications connecting to
z/OS® and VSE backend environments on zSeries®. The book describes the
implementation and deployment of Websphere Application Server, Java frontend
applications, and the J2EE connectors needed on Linux for zSeries to connect to
backend applications, such as CICS®, IMS™, DB2® and MQ on zSeries. This
book explains the J2EE Connector architecture and provides the following
comprehensive connector scenarios for connections to both z/OS and VSE
backend environments:

� CICS Transaction Gateway
� IMS Connect
� WebSphere® MQ
� JDBC to DB2
� SOAP to CICS

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Poughkeepsie
Center.

Viviane Anavi-Chaput is a Senior IT Specialist for zSeries Software Solutions
at the IBM International Technical Support Organization, New York. She
writes extensively, teaches worldwide, and presents at international
conferences. Before joining the ITSO in 1999, Viviane was a Senior Data
Management Consultant at IBM Europe, France. She was also an ITSO
Specialist for DB2 at the San Jose Center from 1990 to 1994.

Michael Rask Christensen is a Senior IT Specialist in Denmark. He has three
years of experience in J2EE application design and development on various
platforms. He has worked for IBM for three years. Before that he worked since
the early 1980s as a PL/I and VAG developer for various IBM customers. His
areas of expertise include J2EE, MQ and DB2.

Joerg Haertel is a Senior IT Specialist working for System Sales Technical
Support zSeries in Germany. He holds a diploma in communications
engineering. He has 16 years of technical experience in the VM and VSE
environment. He has worked at IBM for 18 years. His areas of expertise include
Linux for zSeries, TCP/IP, DB2 and zSeries-related hardware. He has written

© Copyright IBM Corp. 2004. All rights reserved. xiii

extensively on the CICS, CTG and MQSeries® setup on Linux as well as on
VSE.

Joerg Schmidbauer is a VSE developer in the IBM Boeblingen Lab, Germany.
He mainly works on VSE connectors, including SSL and crypto-related functions.

Lynn Winkelbauer is a system engineer in Poughkeepsie, NY. She has 19
years of experience in CICS, z/VM® , z/OS and Linux for zSeries. She holds a
Bachelor of Science degree in Computer Science and Business Administration.
Her areas of expertise include Linux for zSeries, CICS TS on z/OS, and
WebSphere.

Thanks to the following people for their contributions to this project:

Dave Bennin, Rich Conway, Greg Geiselhart, Robert Haimowitz, Franck Injey,
Tamas Vilaghy, Julie Czubik
International Technical Support Organization, Poughkeepsie Center

Claus Schroder-Hansen
IBM Denmark

Ingo Franzki, Karsten Graul, Wilhelm Mild
IBM Boeblingen Lab, Germany

Hans Joachim Ebert, Dagmar Kruse
System Sales Technical Support zSeries, Muenchen, Germany

Hidenori Fujioka
IBM Japan

Phil Wakelin
IBM UK

Bob Cronin, Mitch Johnson, Allen Schmutzler
IBM USA

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

xiv WebSphere V5 for Linux on zSeries - Connectivity Handbook

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

xvi WebSphere V5 for Linux on zSeries - Connectivity Handbook

Chapter 1. J2EE connector architecture
overview

This chapter gives an overview of J2EE connector architecture (JCA, also
referred to as J2C) for connecting the J2EE platform to enterprise information
systems (EIS).

We describe the following:

� J2C overview
� System contracts

– Connection management
– Transaction management
– Security management

� Common client interface
� Deployment and packaging

For detailed coverage of the J2C specification see the Java Community Process
site at:

http://jcp.org/en/jsr/detail?id=16

On the Java software site there is a whitepaper that also gives a short
introduction to the J2C, at:

http://java.sun.com/j2ee/white/connector.html

1

© Copyright IBM Corp. 2004. All rights reserved. 1

http://jcp.org/en/jsr/detail?id=16
http://java.sun.com/j2ee/white/connector.html

1.1 J2C overview
As Java became the defacto language for Internet application development,
many businesses have their enterprise applications based on it. Java 2 Platform
Enterprise Edition (J2EE) is the specification for a standard Java platform to
meet the requirements of the enterprise. It provides a component-based,
server-centric, multi-tier application architecture.

As the J2EE platform is designed for enterprise computing, it should be no
surprise that applications need to connect to EIS, such as:

� Enterprise resource planning (ERP) systems, such as SAP R/3
� Mainframe transaction processing systems, such as CICS
� Legacy applications and non-relational database systems, such as IMS

In the past, most EIS vendors and application server vendors used
vendor-specific architectures to provide EIS integration. This means that for each
application server an EIS vendor wants to support, the EIS vendor needs to
provide a specific connector (also called adapter); and for every connector an
application server wants to support it will need to extend the server.

To overcome this problem the J2C defines a standard for connecting a compliant
J2EE platform to EIS through the usage of a resource adapter and the common
client interface.

1.1.1 Resource adapter
If both EIS vendors and application server vendors follow this architecture, then
only one resource adapter (RA) needs to be written for an EIS, which can plug
into any J2EE-compliant application server.

1.1.2 Common client interface
Conversely, an application server only needs to be extended (or support the
common client interface, CCI) to conform to the J2C, and this will ensure that any
J2EE EIS connector will work with it.

Figure 1-1 shows on one side an EIS connecting to multiple application servers
and, on the other side, one application server connecting to many EISs.

2 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Figure 1-1 One resource adapter - Two different topologies

1.1.3 System contracts
The architecture provides this pluggability by defining a standard set of system
contracts between an application server and the resource adapter. In the current
release of J2C 1.0 the contracts defined are:

� Connection management
� Transaction management
� Security management

More contracts will be supported in later releases of the specification, but these
are the three most pressing concerns for enterprise integration and are
mandatory in the implementation of J2C.

The J2EE connector architecture makes system-level mechanisms transparent
to the application components by having the application server and EIS manage
them. This allows the application developer to focus on the business logic and
presentation, without needing to worry about the low-level integration issues.
This in turn leads to easier and faster development times, lowering costs of both
development and maintenance. Figure 1-2, describes the J2EE connector
architecture and how system contracts are made transparent to the application
component.

Application
Server

Application
Server

EIS

EIS

EIS

EIS

Application
Server

Application
Server

 Chapter 1. J2EE connector architecture overview 3

Certain system functions can be container-managed or component-managed:

� Container-managed

In an application server, different functions are grouped together in
containers. The J2EE implementation in an application server is one such
container, and the others are the servlet container and EJB container. In this
chapter when something is described as container-managed, it means that
the container handles the management of the function to be executed.
Container-managed also allows the application server to introduce quality of
service and other system services. An example of this is the ability to use
connection pooling provided by the application server; if you wanted
connection pooling to be component-managed you would need to implement
it yourself.

� Component-managed

When the application component manages something, it means it is
bypassing the application server and dealing directly with the resource
adapter instead of letting the application server deal with the adapter on its
behalf.

Figure 1-2 J2EE connector architecture overview

Security
Manager

Connection
Manager

Transaction
Manager

Application
Server

Resource
Adapter

J2EE
Application

EIS
Application

Database

System Level
Contract:
- Transaction
Management
- Connection
Management
- Security
Management

Application
Contract

EIS-specific
Interface

4 WebSphere V5 for Linux on zSeries - Connectivity Handbook

1.1.4 Application contracts
The architecture also defines an application contract, which is implemented as
the common client interface (CCI). This defines a common API set for interacting
with J2EE resource adapters. The CCI is targeted at EIS development tools and
other sophisticated users of EISs. The CCI provides a way to minimize the
EIS-specific code required by such tools. Most J2EE developers access EISs
using these tools rather than using CCI directly.

1.1.5 Deployment and packaging protocols
There are also definitions for a standard deployment and packaging protocols for
the resource adapters.

1.2 System contracts
To achieve the ease of pluggability between the application server and EIS, the
architecture defines a set of system-level contracts. The application server is
extended to support these contracts, and the EIS vendors implement a resource
adapter. The resource adapter implements the system contracts to collaborate
with the application server and use an EIS-specific API to communicate with the
EIS. System contracts include the following topics:

� Connection management
� Transaction Management
� Security management

1.3 Connection management
The connection management contract simply gives an application component a
connection to an EIS. This is sometimes all the application developer needs or
wants to know, but with enterprise computing you need to also know that the
connection you are getting is fast and scalable. To deliver this performance and
scalability, connection management contracts implement connection pooling.

1.3.1 Connection pooling
Connection pooling is a quality of service offered by the application server. When
retrieving data from an EIS, a large portion of the time is spent in opening and
closing the connection. To save the open/close time of the connection, what you
need is a connection that is defined in advance, so that when you actually want
to use the connection it is already there waiting to be used. This is exactly what

 Chapter 1. J2EE connector architecture overview 5

connection pooling is all about; it is a collection (pool) of connections that have
already accomplished the hard work of making the connection to the EIS.

When you call for a connection, you are just passed a handle to the next
available connection that is in a ready-to-use state. This considerably increases
the performance by removing the actual connection time, and scalability is
achieved by predefining as many connections in the pool as you need.

1.3.2 Managed access to the resource adapter
This is typically an environment in which the application component and resource
adapter are running in an application server. The resource adapter and
application component use the runtime supplied by the server. This is a scenario
where the application accesses the resource adapter through the application
sever. Figure 1-3 shows the architecture of the connection management between
an application server and resource adapter in a managed environment.

6 WebSphere V5 for Linux on zSeries - Connectivity Handbook

.

Figure 1-3 Connection management architecture

When you ask for a connection, the resource adapter provides a Connection
from a ConnectionFactory, which acts as a factory for EIS connections. The CCI
defines javax.resource.cci.ConnectionFactory and
javax.resource.cci.Connection as interfaces for a connection factory and a
connection, respectively.

The application component uses JNDI to do a lookup of a connection factory.
The connection factory instance then delegates the creation request for a
connection to the ConnectionManager instance.

Application Server

ConnectionManager

SecurityService
 Manager

Pool
 Manager

Transaction
 Manager

ConnectionEventListener

ConnectionFactory Connection

ManagedConnectionFactory

ManagedConnection

LocalTransaction

XAResource

Enterprise Information System (EIS)

Application Component

Resource Adapter

Architected contract
Implementation specific

 Chapter 1. J2EE connector architecture overview 7

The ConnectionManager that is supplied by the application server enables
different qualities of services to be provided. These qualities of services include
transaction management, security, error logging and tracing, and connection
pool management. The application server can provide these services in any
implementation-specific way it chooses; the specification does not specify how it
should be done.

The ConnectionManager instance looks in the connection pool provided by the
application server to see if there is a connection that will satisfy the request. If
there is no connection in the pool that can satisfy the connection request, the
application server uses the ManagedConnectionFactory interface to create a
new physical connection to the underlying EIS. If a matching connection is found
in the pool, then it uses the matching ManagedConnection instance to satisfy the
connection request.

If a new ManagedConnection instance is created, the application server adds the
new ManagedConnection instance to the connection pool.

A ConnectionEventListener is registered with the ManagedConnection instance
by the application server. This listener enables the application server to get event
notifications related to the state of the ManagedConnection instance. The
application server can then use these notifications to manage connection
pooling, transactions, cleanup connections, and handle any error conditions.

The application receives a handle to the connection from the application server,
which gets it from the ManagedConnection instance. The application component
then uses this handle to access the EIS.

1.3.3 Non-managed access to the resource adapter
In the non-managed environment there is no application server. There is a
runtime machine supplied by the Java platform and the application accesses
directly the resource adapter.

The ConnectionManager class may be implemented by either the resource
adapter as a default ConnectionManager, or by the application developer.

On a connection request, the default ConnectionManager instance intercepts the
request and passes it on to the ManagedConnectionFactory instance. The
physical connection to the EIS is then created by the instance of the
ManagedConnectionFactory. The ConnectionManager gets a handle to the
connection from the ManagedConnection and returns it to the connection factory,
which then passes it to the application, as shown in Figure 1-4.

8 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Figure 1-4 Connection management in a non-managed environment

1.4 Transaction management
One of the prime requirements of any type of computing is data integrity, that is,
you have full confidence that your data is correct and consistent.

What is a transaction
Quite often you need to manipulate data by performing more than one operation
on it. A transaction is a group of such operations, that is, to maintain data
integrity all must happen or else none should happen at all.

A good transaction example is moving money from one account to another. You
might have two simple steps, debit money from account A and credit money in
account B. If everything goes correctly, after you complete your two steps the
same amount of money removed from account A will have been added to
account B. What happens if after debiting account A there is a computer crash
before you can credit it to account B, and you lose knowledge of the transaction
and neither account has the money?

ConnectionFactory

ManagedConnectionFactory

Enterprise Information System (EIS)

Application Component

Resource Adapter

Architected contract
Implementation specific

ConnectionManager

Connection

ManagedConnection

 Chapter 1. J2EE connector architecture overview 9

The idea of a transaction is when you take the money out of account A you do
not commit the change until after you successfully put the money in account B. At
that time you commit the changes to both accounts and all is well. If there is a
crash before you can make the commit, when the system restarts it can see that
there was an uncommitted transaction and rolls back the changes so that both
accounts are put back in the same state as they were before the transaction
started.

Transactions are handled in the J2C by the transaction management contract.

Transaction management contract
Figure 1-5 shows the architecture of the transaction management contract.

Figure 1-5 Transaction management contract

Application Server

ConnectionManager

Transaction
 Manager

ConnectionEventListener

ConnectionFactory

LocalTransaction

XAResource

Enterprise Information System (EIS)

Application Component

Resource Adapter

Architected contract
Implementation specific

Connection

ManagedConnection

10 WebSphere V5 for Linux on zSeries - Connectivity Handbook

The application component may need to perform transactions over one or more
resource managers (resource manager refers to the combination of resource
adapter and the resource manager of the underlying EIS). To do this, the
application server uses a transaction manager to manage transactions across
multiple resource managers. The application server and the transaction manager
both communicate with the resource adapter via the transaction management
contract.

A resource manager has three options for supporting transactions:

� No support—The resource adapter and underlying EIS do not support
transactions.

� Local transaction—The resource manager is responsible for coordinating the
transaction.

� Global transactions—There are multiple resource managers involved and an
external transaction manager must be used to coordinate the transaction
using two-phase commit. Optionally, the transaction manager may use
one-phase commit when only one resource is involved in the transaction.

The level of transaction support can be set by the resource manager (or
deployer) in the deployment descriptor described in 1.7.2, “Deployment
descriptor” on page 20.

1.4.1 Global transactions
These transactions are also referred to in the specification as JTA transactions
and are supported by the resource adapter implementing the
javax.transaction.xa.XAResource interface.

In a managed environment, the application server uses a transaction manager to
coordinate the transaction. The application server will inform the transaction
manager when a transaction begins. It will then perform some actions and then
tell the transaction manager to commit the transaction.

In a non-managed environment, the application component is responsible for
doing the job of the transaction manager. By using the managed environment,
the programmer does not even need to think about managing the transaction, as
the transaction manager is one of the qualities of services provided.

The transaction manager uses the XAResource interfaces of the resource
adapters to coordinate the two-phase commit process across multiple resource
managers. With two-phase commit each resource manager is queried about the
success of its transaction by the transaction manager issuing a prepare
statement. Each resource manager is then required to return information about
the success of its transaction. If all resource managers reply with success then

 Chapter 1. J2EE connector architecture overview 11

the transaction manager issues a COMMIT causing all the resource managers to
commit their resources. If any of the resource managers reply with a failure then
the transaction manager issues a ROLLBACK, forcing all the resource managers
to back out of the transaction.

Although the XAResource interface is intended to support two-phase commit, the
specification does not force an adapter to support two-phase commit. However, if
the resource adapter does implement XAResource it must also implement
support for one-phase commit. This allows the transaction manager to do
one-phase commit optimization by setting the onePhase flag to true when doing
a commit.

If the resource manager has indicated in the deployment descriptor that it
supports xa_transaction, and it has an implementation of XAResource, then the
application server assumes that two-phase commit is supported. If the resource
manager has only implemented one-phase commit, two things could happen:

� Only one resource is referenced—the transaction manager will perform
one-phase commit optimization so everything will work.

� Multiple resources are referenced—the transaction manager will issue a
prepare statement, at which point the resource manager is forced to
acknowledge that it does not really support two-phase commit by issuing an
exception.

1.4.2 Local transactions
A local transaction is managed by the resource manager without the need for an
external transaction manager, and can be utilized when only one resource is
involved. Local transactions only support one-phase commit, because they only
reference one EIS.

To support local transactions, the resource manager must implement the
javax.resource.spi.LocalTransaction interface. If the resource adapter supports
the CCI, then it will also send a number of transaction events to the application
server.

The application server is required to implement the interface
javax.resource.spi.ConnectionEventListener, which, among other events, allows
the application server to hear and react to the following local transaction events:

� LOCAL_TRANSACTION_STARTED
� LOCAL_TRANSACTION_COMMITTED
� LOCAL_TRANSACTION_ROLLEDBACK

By listening for these events the application server can do various things, such
as local transaction cleanup.

12 WebSphere V5 for Linux on zSeries - Connectivity Handbook

1.4.3 One-phase commit optimization
One-phase commit optimization is forcing the use of one-phase commit in the
situation when two-phase commit is not needed. This would be when only one
EIS was referenced, so two-phase commit would be an unnecessary overhead.

When the application server needs to do a global transaction, it informs the
transaction manager of its intention to begin a transaction. The application server
then performs whatever operations it has to, and when finished informs the
transaction manager to commit the transaction. The transaction manager now
has the ability to do one-phase optimization. If the number of EISs referenced is
only one, then the transaction manager skips the prepare statement and goes
straight to commit with the onePhase flag set to true.

1.4.4 Local transactions versus one-phase commit optimization
Since there is an overhead with using the transaction manager, if you know there
is only one resource involved in the transaction, the transaction support in the
deployment descriptor can be set to local_transaction. When this is set, the
application server uses the local transaction methods instead of going to the
transaction manager and allowing it to perform the one-phase commit
optimization.

1.5 Security management
The single biggest concern of e-business enterprise computing is security. The
end users are concerned that their personal details are secure, and the business
is concerned that only authorized access to their EISs is allowed.

Three mechanisms can be used to provide security:

� Authentication—Verifying that the users are who they say they are

� Authorization—Controls access to services

� Secure communications—Securing the link between end points, for example,
using secure socket layer (SSL)

1.5.1 Terminology
We explain some terminology before we continue with our description of security.

� Principal—An entity that can be authenticated using an authentication
mechanism

� Security attribute—A set of security attributes associated with a principal

 Chapter 1. J2EE connector architecture overview 13

� Credential—Security information about a principle that can be used to
authenticate the principal to other services

� Security principal—A security principal under whose security context a
connection to an EIS is established

1.5.2 Security model overview
There are two sign-on scenarios when an application component requests a
connection to an EIS under the security context of a resource principal.

The res-auth element in the deployment descriptor must be set to indicate which
method is being used.

Container-managed
The deployer must set up the resource principal and sign-on information, for
example, the deployer sets the username and password to be used for the
connection.

The res-auth descriptor element should be set to Container. The deployer also
configures the descriptor to hold the authentication data (user ID, password, etc.)
needed for the authentication.

The application then uses the getConnection method of the ConnectionFactory
and lets the application server manage the security to sign on to the EIS.
Example 1-1 is a simple sample of application code to get the connection.

Example 1-1 Requesting a connection with the application server handling the security

// create a Context
Context ctx = new InitialContext();

// use JDNI to get a ConnectionFactory
javax.resource.cci.ConnectionFactory cxf =
(javax.resource.cci.ConnectionFactory) ctx.lookup(“some/jndi/name”);

// request a connection
// note that no security information is passed in the call to getConnection
javax.resource.cci.Connection con = cxf.getConnection();

Component-managed
The component code is responsible for supplying the sign-on information to be
used by the resource principal.

14 WebSphere V5 for Linux on zSeries - Connectivity Handbook

The res-auth element needs to be set to Application. The application code must
then supply all the security information when making the connection. This can be
seen in the code sample in Example 1-2.

Example 1-2 Requesting a connection with the application code handling the security

// create a Context
Context ctx = new InitialContext();

// use JDNI to get a ConnectionFactory
javax.resource.cci.ConnectionFactory cxf =
(javax.resource.cci.ConnectionFactory) ctx.lookup(“some/jndi/name”);

// create a connectionSpec to hold the security information
sample.ConnectionSpec cs = new sample.ConnectionSpec();

// set the userid/password
cs.setUserName(“userid”);
cs.setPassword(“pasword”);

// request the connection passing the ConnectionSpec to getConnection
javax.resource.cci.Connection con = cxf.getConnection(cs);

To create a connection to an EIS, there must be some form of signing on to the
EIS—this is to authenticate who the connection requester is. Re-authentication
can also take place if supported by the EIS—this is when the security context is
changed after a connection is made (connection pooling could cause a
re-authentication when the connection is redistributed). Not all EISs support
re-authentication, so the J2C only recommends this and does not make it
mandatory for a resource adapter to implement.

Performing the sign-on generally involves one or more of the following steps:

� Determine the resource principal under whose security context the
connection will be made.

� Authenticate the resource principal.

� Establish secure communications.

� Determine authorization (that is, access control).

Resource principal
The resource principal security context is used when a connection is made. The
deployer can set the resource principal with the following options:

� Configured identity—A resource principal has its own identity that can be
configured at deployment time or dynamically by the application component
when connecting.

 Chapter 1. J2EE connector architecture overview 15

� Principal mapping—A resource principal maps the identity and/or security
attributes of the calling principal. It does not inherit the attributes but only
maps them.

� Caller impersonation—A resource principal acts on behalf of the calling
principal. This requires that the caller’s credential is delegated to the EIS. The
way this is implemented is dependent on the security mechanism used.

� Credentials mapping—If the security mechanisms used by the application
server and the EIS are different, then the credentials of the calling principal
are mapped to a form that is understood by the security mechanism of the
EIS.

Authentication
Authentication is the mechanism of determining that you are what you say you
are. The EIS must be sure of who is connecting to it and only allow connections
from trusted parties.

The connector architecture does not require any specific authentication methods
and is independent of the security mechanism.

Although the specification does not require any specific mechanism, it does
identify the following two options as commonly supported authentication
mechanisms:

� Basic password—Standard user-password mechanism specific to a EIS.

� kerbv5—This is an authentication mechanism called Kerebos (Version 5).

If a specific type of mechanism is used, the deployer uses the auth-mech-type
element in the deployment descriptor to identify this.

Secure communication
If the links on which information is being sent are not secured, there is a
possibility that the information can be intercepted. You then cannot be certain
that you received all data or that the data you did receive was not modified.
Methods such as cryptographic keys and message sequence numbers can be
used to secure the link.

Securing the link between the application server and the EIS is always handled
by the resource adapter and can be implemented using any security mechanism
the resource adapter chooses.

Authorization
Checking that a principal is authorized to access certain resources can be done
either at the applications server or in the EIS.

16 WebSphere V5 for Linux on zSeries - Connectivity Handbook

If the checking is done in the EIS, then it is done in an EIS-specific way and is
independent of the J2C specification.

The application server can also be configured to only allow connections to be
made from an authorized principal. In J2EE both the EJB and Servlet engines
have the capacity to support both programmatic and declarative security to set
up the authorization policy.

1.6 Common client interface
The common client interface (CCI) defines a standard client API for application
components to access the resource adapter. The intention of the CCI is not for
application developers to use it directly ,as it is a quite low-level API, but for
enterprise application integration (EAI) frameworks to use, to generate EIS
access code for the developer. The CCI is designed to be an EIS-independent
API, such that an EAI can produce code for any J2EE-compliant resource
adapter that also implements the CCI interface.

1.6.1 Enterprise application integration
The CCI does not replace the standard JDBC API; instead, it complements it.
JDBC is used for accessing relational databases, and the CCI can be used to
access all other EISs that are not relational databases. This can be seen in
Figure 1-6.

Important: The CCI is only recommended in the specification. It is not
mandatory. IBM connectors will implement it.

 Chapter 1. J2EE connector architecture overview 17

Figure 1-6 Enterprise application integration framework

The vendor of the EAI uses the CCI as a standard way to plug into resource
adapters. The framework they supply sits on top of the functionality provided by
the resource adapter.

The framework can also use a metadata repository to get meta information about
the underlying EIS. This metadata may include things like the underlying data
structure of the commarea that is passed by a CICS ECI interaction with a CICS
J2EE resource adapter.

The enterprise application development tool uses the metadata to produce Java
classes. These classes encapsulate CCI-based API calls and expose simple
interactions to the application developer, usually as JavaBeans. Among other
things, the application developer then has a simple set of commands to set input
data, read output data, and execute the transaction. This model can be seen in
Figure 1-7.

Enterprise Application
Integration
Framework

Metadata
RepositoryJDBC Driver

Resource
Adapter

Common
Client

Interface
JDBC API

18 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Figure 1-7 Enterprise application development tool

1.7 Deployment and packaging
To use the resource adapter on a J2EE application server, the resource adapter
needs to be deployed. There are two options for deploying the resource adapter:

� As a stand-alone module in the application server so that multiple
applications can access it

� As part of the deployment of a J2EE application, which can have a number of
modules as well as the resource adapter module

Reference was made to deploying a module. In J2EE a module is the basic unit
of composition of a J2EE application. Other examples of J2EE modules are the
EJB module, a Web client module, and an application module.

Application Components or
Java Classes

Metadata
Repository

JDBC Driver
Resource
Adapter

Common
Client

Interface
JDBC APIEnterprise Application

Development Tool

Generates and/or
Composes

 Chapter 1. J2EE connector architecture overview 19

1.7.1 Packaging of the resource adapter module
A packaged resource adapter consists of:

� Java classes that implement the J2EE/CA contracts and the other
functionality of the adapter

� Any utility classes

� Native libraries required for any platform dependencies

� Documentation

� A deployment descriptor

This is all packaged together using the Java Archive (JAR) format into a
Resource Adapter Archive (RAR). The deployment descriptor must be stored in
the rar file with the name META-INF/ra.xml. The Java classes used should be
stored as jar files, and multiple jar files can be stored if needed.

Example 1-3 on page 20 is an example of how the RAR file directory structure
could look.

Example 1-3 Example directory structure of RAR file

/META-INF/ra.xml
/doco.html
/adaptor.jar
/windows.dll
/aix.so

1.7.2 Deployment descriptor
The provider of the resource adapter is responsible for specifying the
deployment descriptor, while the deployer is responsible for configuring it in a
target environment.

The following must be specified in the descriptor by the provider:

� General information

– Name of the resource adapter
– Description
– URI of a UI icon
– Vendor name
– Licensing requirements
– Type of EIS supported
– Version of J2EE/CA supported
– Version of resource adapter

20 WebSphere V5 for Linux on zSeries - Connectivity Handbook

� ManagedConnectionFactory fully qualified class name

� Connection factory interface and implementation fully qualified class name

� Connection interface and implementation fully qualified class name

� Transactional support, that is, none, local, or xa

� Configurable properties per ManagedConnectionFactory instance: Name,
type, description and optional default values that have to be configured per
instance of a ManagedConnectionFactory

� Authentication mechanisms supported

� Reauthentication supported, that is, yes or no

� Extended security permissions

Example 1-4 shows a sample deployment descriptor for a sample CICS
Connector.

Example 1-4 Sample deployment descriptor for CICS Connector

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE connector PUBLIC "EN" "connector_1_0.dtd">
<connector>
 <display-name>J2CICS Connector</display-name>
 <description>Provides access to the CICS systems</description>
 <vendor-name>IBM Corporation</vendor-name>
 <spec-version>1.0</spec-version>
 <eis-type>CICS</eis-type>
 <version>1.0</version>
 <resourceadapter>

<managedconnectionfactory-class>com.ibm.connector2.cics.J2CICSManagedConnection
Factory

</managedconnectionfactory-class>

<connectionfactory-interface>javax.resource.cci.ConnectionFactory</connectionfa
ctory-interface>

<connectionfactory-impl-class>com.ibm.connector2.cics.J2CICSConnectionFactory
</connectionfactory-impl-class>
<connection-interface>javax.resource.cci.Connection</connection-interface>

<connection-impl-class>com.ibm.connector2.cics.J2CICSConnection</connection-imp
l-class>

<transaction-support>local_transaction</transaction-support>
<config-property>
 <config-property-name>logonLogoffClassName</config-property-name>
 <config-property-type>java.lang.String</config-property-type>

 Chapter 1. J2EE connector architecture overview 21

<config-property-value>com.ibm.connector2.sample.appclient.ClientLogonClass

</config-property-value>
</config-property>
<config-property>
 <config-property-name>ServerName</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>testsrv</config-property-value>
</config-property>
<config-property>
 <config-property-name>GatewayHostName</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>testgateway</config-property-value>
</config-property>
<config-property>
 <config-property-name>Port</config-property-name>
 <config-property-type>java.lang.Integer</config-property-type>
 <config-property-value>testport</config-property-value>
</config-property>
<config-property>
 <config-property-name>useUserData</config-property-name>
 <config-property-type>java.lang.Boolean</config-property-type>
 <config-property-value>true</config-property-value>
</config-property>
<auth-mechanism>
 <auth-mech-type>basic-password</auth-mech-type>
 <credential-interface>javax.resource.security.PasswordCredential

</credential-interface>
</auth-mechanism>
<reauthentication-support>False</reauthentication-support>

 </resourceadapter>
</connector>

1.7.3 Deploying the resource adapter
As mentioned before, the deployer is responsible for configuring the resource
adapter in the target environment. To do this, the deployer uses a deployment
tool. The deployment tool should be part of a J2EE-supported application servers
suite of tools.

The deployment tool should read the ra.xml file in the rar file. It should then install
all the components of the resource adapter module into the application server.

To configure the resource adapter, the deployer must create a property set (one
set per ManagedConnectionFactory instance). This is done using the
deployment tool to set valid values for each field based on the name, type, and
description in the deployment descriptor.

22 WebSphere V5 for Linux on zSeries - Connectivity Handbook

One resource adapter can be used to provide connections to multiple instances
of the same EIS, so there can be multiple property sets to configure (one per
ManagedConnectionFactory instance). The deployment tool may make multiple
copies of the deployment descriptor to accomplish this.

The deployer also needs to configure the application server based on the type of
transactions supported by the resource adapter, as well as the security
requirements specified by the resource adapter. The deployer can also check
that the EIS also supports the same security mechanism as the adapter. If it does
not, the deployer may decide not to configure that type of security. The deployer
does not have to check this, but if the mechanisms do not match there will be
runtime exceptions to indicate a problem.

 Chapter 1. J2EE connector architecture overview 23

24 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Chapter 2. Introducing the connectors
test environment

In this chapter, we introduce the test environment infrastructure we used to test
our connectors.

We describe the following:

� System configurations

� Frontend environment

� Backend environments

� Connector scenarios overview

2

© Copyright IBM Corp. 2004. All rights reserved. 25

2.1 System configurations
Figure 2-1 describes the system configurations that we used to test the Trader
application, which uses the connectors on our Linux for zSeries to connect to
z/OS and VSE backends.

Figure 2-1 System configurations

z/VM 4.3
Linux SLES 7

WAS 502

Trader
Application

HTTP
Server

CTG
Client/Server

z/OSz/OS
1.41.4 CICS

IMS

DB2

VSAM

DL1

DB2

z/VM 4.3
VSE2.7

VSAM

HiperSockets

MQ
Client/Server

IMS Connctor
 for Java

VSAM Redirector
Server

DB2 Connect
JDBC

VSEConnector
Client - JDBC

CICS

SOAP
Connector

VSEConnector
Server

VSAM

CTG Server

IMS Connector

MQ
Client/Server

TCP/IP
MQ

Client/Server

VSAM Redirector
Connector

POK

POK

BOE

26 WebSphere V5 for Linux on zSeries - Connectivity Handbook

2.1.1 Hardware
We used two zSeries servers:

� A z900 server with:

– One LPAR (SC52) running z/OS 1.4

– One LPAR (WTSCVMT) running z/VM 4.3

On the z/VM LPAR, we defined a virtual guest running Linux SuSE SLES 7
with the following configuration:

• 2 GB real storage

• 0 MB expanded storage

• Two 3390-3 DASD devices for root and for /opt

• 200 cylinder minidisk for swap

• HiperSockets™ connectivity to access the z/OS backend

• Remote TCP/IP connectivity to access the VSE backend

The Linux for zSeries had one OSA card defined to it, which is a
HiperSocket. The TCP/IP gateway used is 9.12.9.1.

� A z900 server with one LPAR running z/VM 4.3

On the z/VM LPAR we defined a virtual guest running VSE/ESA™ V2.7.

2.1.2 Software
We used the following software products:

� Linux for zSeries

SuSE SLES 7 - Kernel 2.4.7 SuSE SMP #1

� Middleware Software installed on the Linux for zSeries

– DB2 Connect™ Enterprise Edition V8.1.0-16
– WebSphere MQ Client V5.3.0.4
– WebSphere MQ Server V5.3.0.4 (for local testing only)
– WebSphere Application Server V5.0.2 (build number ptf2M0325.01)
– CICS Transaction Gateway V5.0.1
– IMS Connect for Java V2.1.0.1
– HTTP Server V1.3.26
– VSE/ESA V2.7 Connector Client with PTF UQ77749
– VSE/VSAM Redirector Server with PTF UQ77749

� z/OS Software

– CICS Transaction Gateway V5.0.1
– CICS TS V2.2

 Chapter 2. Introducing the connectors test environment 27

– IMS Connect V2.1
– IMS V8.1
– DB2 for z/OS V7
– WebSphere MQSeries V5.3.1

� VSE Software

– VSE/ESA 2.7.1
– CICS TS V1.1
– MQSeries for VSE/ESA V2.1.1
– DB2 for VSE/ESA V7.3
– VSE/ESA v2.7 Connector Server with PTF UQ77749
– VSE/VSAM Redirector Client with PTF UQ77749
– VSE/ESA v2.7 CICS/SOAP Service with PTF UQ81044

� Desktop Software

– Windows® 2000
– Hummingbird® Exceed V8
– WSAD IE V5.0
– WebSphere Application Assembly Tool (part of WebSphere Application

Server V5)

2.2 Frontend environment
Our frontend environment is on Linux for zSeries. We used the standard SuSE
SLES 7.2 build to create this system. The only additional package that we
needed was the Public Domain Korn Shell, as many of the installation scripts
require this: pdksh-5.2.14-248.

We used a Linux for zSeries NFS server to hold our middleware software. We
NFS mounted it from a local directory called /mnt/sw.

To run many of the configuration tools and installation wizards on Linux for
zSeries, we need an X-Windows server on our Windows 2000 workstation. We
needed to specify the address of the X-Windows server on our Windows 2000
machine in the DISPLAY environment variable on Linux:

export DISPLAY=9.12.6.140:0.0

For our X-Windows server, we chose to use Hummingbird’s Exceed V8.0.

There are two backend operating systems that our Linux for zSeries system will
connect to: VSE and z/OS. We use WebSphere Application Server V5.0.2 on our
Linux for zSeries system as our application server of choice to deploy our
enterprise Web service solutions on.

28 WebSphere V5 for Linux on zSeries - Connectivity Handbook

2.3 Backend environments
We considered both z/OS backend and VSE backend in our connector
scenarios, as shown in Figure 2-1 on page 26. We do not give a detailed
description of how to set up those environments because this is outside the
scope of this book. We assume that you have a system support team who
installs and maintains the EIS systems including the connectors that reside on
the backend environment. However, we do describe how you should customize
your backend environments to support our specific connector scenarios if any
changes are necessary to allow remote invocations.

2.3.1 z/OS
The z/OS backend comprises EIS environments such as CICS, IMS and DB2. It
hosts connector/middleware softwares such as the CTG sever, the MQ server,
and the IMS connector.

2.3.2 VSE
The VSE backend comprises EIS environments such as CICS and VSAM
applications. It hosts connector/middleware software such as the VSE Connector
server and the MQ server for VSE/ESA. There is no CTG middleware on this
platform. The CTG connector to VSE scenario uses a CTG on the frontend Linux
platform. A new CICS-based SOAP connector is provided with VSE/ESA 2.7 and
CICS TS 1.1 for VSE; this allows accessing CICS transactions via the Web
Services using SOAP and XML protocols.

In addition to these standard zSeries operating system connectors, VSE
provides some VSE-specific connectors:

� The VSE Java-based connector, which consists of the VSE Connector Client
(VCC) and VSE Connector Server (VCS). This connector provides access to
all kinds of VSE file systems and functions from any kind of Java program,
including WebSphere applications.

� The VSE/VSAM Redirector connector, which consists of the VSAM
Redirector Client (VRC) and the VSAM Redirector Server (VRS). This
connector allows transparently redirecting access to VSAM files on any
remote platform.

2.4 Connector scenarios overview
We describe how to set up the appropriate resources, especially the middleware,
to allow our J2EE applications (such as Trader) running in WebSphere

 Chapter 2. Introducing the connectors test environment 29

Application Server on Linux for zSeries to connect to backend environments
running in VSE and z/OS, as shown in Figure 2-1 on page 26.

Chapter 3, “The Trader applications” on page 33, describes the Trader
application.

Chapter 4, “WebSphere Application Server setup” on page 67, describes the
WebSphere setup on Linux for zSeries. All of the J2EE connectors use
WebSphere as their application deployment environment.

We continue by describing our connector scenarios and how to configure the
infrastructure to support them as follows.

Chapter 5, “CICS J2EE connectors” on page 83, describes how to set up the
WebSphere connections for CICS. We describe the configuration steps to
connect to a CICS TS for VSE application and to a CICS TS for z/OS application
using the CICS resource adapter.

Chapter 6, “Using SOAP to communicate with CICS” on page 119, describes the
connection configuration to connect to a CICS TS for VSE application from a
stand-alone Java program on Linux for zSeries.

Chapter 7, “DB2 connectors” on page 131, describes how to set up the
connections for DB2. We describe how to connect a Java application running in
WebSphere Application Server to connect to DB2 for z/OS using the Type 2
JDBC driver.

Chapter 8, “WebSphere MQ connectors” on page 153, describes how to set up
the connections from WebSphere MQ for Linux for zSeries to WebSphere MQ on
z/OS and VSE.

Chapter 9, “IMS J2EE connectors” on page 207, describes how to set up
WebSphere connections for IMS. We describe how to connect a Java application
running in WebSphere Application Server to IMS running on z/OS using the IMS
resource adapter.

Chapter 10, “VSE Java-based connector to access VSAM data” on page 223,
describes how a Java program can access VSAM data in VSE environments. We
explain how to set up the VSE Java-based connectors in WebSphere.

Chapter 11, “VSE Java-based connector to access DL/1 data” on page 287,
describes the usage of the VSE Java-based connector to access DL/1 data in
VSE. We illustrate this with a DL/1 example.

Chapter 12, “VSE VSAM Redirector connector” on page 293, describes how to
redirect VSE VSAM accesses, typically requested by existing VSE programs, to

30 WebSphere V5 for Linux on zSeries - Connectivity Handbook

any database or file system residing on a Java-enabled platform that can be
reached via TCP/IP.

2.4.1 The Trader application scenarios
In most scenarios we use the Trader (Java) application to illustrate the use of the
connectors. The Trader application was developed by the ITSO to run on
WebSphere for z/OS for the redbook WebSphere for z/OS V5 Connectivity
Handbook, SG24-7064. We reused those Java applications and ran them on the
Linux for zSeries platform connecting them to Enterprise Information Systems
(EIS) running on z/OS and VSE backends. The Trader application has multiple
modules, each connecting respectively to CICS, IMS, JDBC, and MQ. The
Trader modules are discussed in Chapter 3, “The Trader applications” on
page 33.

You can also refer to Appendix B, “Additional material” on page 337, for
information on how to download the programs that can be used as small demo
applications to study and test the J2EE connectors.

Figure 2-2 describes the connector scenarios to the z/OS backend.

Figure 2-2 Overview of the Trader application connections to backend EISs on z/OS

Figure 2-3 describes the connector scenarios to the VSE backend.

Client with a
Web Browser

Linux for zSeries
SuSE 7.2

DB2

z/OS

MQMQ

CTG

IMS IMS
Trader App.

WebSphere
Application

Server
5.0.2

DB2

IMS

CICS

 Chapter 2. Introducing the connectors test environment 31

Figure 2-3 Overview of the Trader application connections to backend EIS on VSE

On the VSE backend, Trader is only involved in the CTG connection because:

� There is currently no MQ Bridge on CICS for VSE. That, however, should not
stop anyone from writing their own MQ wrapper functions on CICS for VSE if
they want to expose existing CICS transactions to enterprise applications in
WebSphere Application Server.

� Trader does not use direct access to VSAM or SOAP. However, other sample
programs demonstrating this feature are provided.

Client with a
Web Browser

Linux for zSeries
SuSE 7.2

VSE/ESA 2.7

CICS
(Trader)

MQ

MQSeries for
VSE V2.1.1

MQ

CTG

CICS Transaction
Gateway 5.0.1

VCC VCS

VSE Connector
Server

Note:
Only the CTG
connection
accesses the
Trader
application

SOAP SOAP

VSE Connector
Client

DB2

VSAM Redirector
Client

Trader App.
(partly)

WAS 5.0.2

Java Demo

VSAM
Redirector

Server

VSAM

CICS
(SOAP Demo)

DB2

VRC

32 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Chapter 3. The Trader applications

In this chapter we describe the Trader applications, how to install them in the
WebSphere Studio Application Developer Integration Edition (WSAD.IE), and
how to deploy them to WebSphere Application Server on Linux for zSeries.

� Trader application components

� Trader data stores

� Trader frontend GUI

� Trader Web frontend architecture

� Implementing and testing Trader in WSAD.IE

– Downloading
– Importing MQ
– Configuring DB2 tables
– Running

� Deploying Trader to WebSphere Application Server

– Installing Trader to WebSphere Application Server runtime
– Running

3

© Copyright IBM Corp. 2004. All rights reserved. 33

3.1 Introducing the Trader application
Trader is a sample application which shows different scenarios describing how
J2EE connectors can be utilised in an application running in a WebSphere
Application Server and/or WSAD.IE environment.

As we already mentioned, the Trader application was developed by the
International Technical Support Organization (ITSO) to run on WebSphere for
z/OS for the redbook WebSphere for z/OS V5 Connectivity Handbook,
SG24-7064; the current chapter has been lifted from the previously mentioned
redbook for your convenience, and you can of course refer to the WebSphere for
z/OS V5 Connectivity Handbook for more information on the Trader application.
We reused those Java applications and ran them on the Linux for zSeries
platform, connecting them to Enterprise Information Systems (EIS) running on
z/OS and VSE backends.

The Trader application on Linux for zSeries has multiple modules, each
connecting respectively to CICS, IMS, JDBC, and MQ on z/OS and VSE.

You can also refer to Appendix B, “Additional material” on page 337, for
information on how to download the programs that can be used as small demo
applications to study and test the J2EE connectors.

3.1.1 Trader application components
Trader is a very simple application, mimicking trading stocks in four different
companies. It has four components:

� A backend
� A datastore
� A middle tier providing access to the backend
� A frontend, implemented as a Web application

Figure 3-1 Trader application components

The Web frontend is a regular J2EE Web module. The middle tier (backend
interface) is based on EJBs.

Web
Frontend

Backend
Interface Backend Logic Backend

Datastore

34 WebSphere for z/OS V5 Connector Handbook

It uses the following connectors:

� The CICS ECI J2C resource adapter, providing direct access from Linux to
the backend logic hosted in CICS TS, using the CTG

� The IMS J2C resource adapter, providing direct acces from Linux to the
backend logic hosted in IMS TS

� A JDBC connection using either straight JDBC from an EJB session or using
CMP Entity EJBs, in which case the backend logic is located with the Web
frontend and the backend interface and is implemented as session EJBs

� The WebSphere MQ JMS provide access to either IMS transactions via the
IMS-MQ bridge or CICS terminals via the CICS-MQ bridge

We created a Trader application for each of the connectors utilized: TraderCICS,
TraderIMS, TraderDB and TraderMQ.

3.1.2 Trader datastores
The datastores for all Trader applications share the same structure. Figure 3-2
describes the DB2 example used for the application TraderDB.

Figure 3-2 DB2 table definitions for TraderDB application

TRADER.COMPANY

Column name Type Len Nulls
---------------------- ----------- ---- -----
COMPANY CHARACTER 20 No
SHARE_PRICE REAL 4 Yes
UNIT_VALUE_7DAYS REAL 4 Yes
UNIT_VALUE_6DAYS REAL 4 Yes
UNIT_VALUE_5DAYS REAL 4 Yes
UNIT_VALUE_4DAYS REAL 4 Yes
UNIT_VALUE_3DAYS REAL 4 Yes
UNIT_VALUE_2DAYS REAL 4 Yes
UNIT_VALUE_1DAYS REAL 4 Yes
COMM_COST_SELL INTEGER 4 Yes
COMM_COST_BUY INTEGER 4 Yes

TRADER.CUSTOMER

Column name Type Len Nulls
---------------------- ----------- ---- -----
CUSTOMER CHARACTER 60 No
COMPANY CHARACTER 20 No
NO_SHARES INTEGER 4 Yes

 Chapter 3. The Trader applications 35

The datastores used by the different Trader applications are as follows:

� TraderDB uses a DB2 database as a datastore.
� TraderCICS uses a VSAM file as a datastore.
� TraderIMS uses a DL/1 database as a datastore.
� TraderMQ rely on the same backend logic as the IMS and CICS samples and

uses the same datastores.

3.1.3 Trader frontend GUI
All the Trader Web modules provide the same user interactions.

Figure 3-3 shows the Trader screen flows.

Figure 3-3 Trader screen flows

The entry page is the logon page. It provides you with a field to enter a username
and one or more push buttons that will take you into the applications. The
number of push buttons depends on the actual Trader application. For example,
TraderMQ provides you with a choice between using CICS or IMS as the
processor of the MQ messages. There is also a possibility to modify the way the
connector is used. For example, TraderDB provides both straight JDBC and
JDBC encapsulated in Entity EJBs using CMP connections.

If the logon is successful, a list of companies is presented on the next page
(Figure 3-4).

Logon Page Companies
List Buy Shares

Sell
Shares

Quotes
Page

Logon

Go to Companies List

Sell

Go to Companies List

Quotes

Logoff

Buy

Go to
Companies List

36 WebSphere for z/OS V5 Connector Handbook

For each company, there are push buttons to get quotes and holdings status,
buy and sell shares. This list is obtained from the backend datastore.

Figure 3-4 Trader companies list

Clicking the Logoff button will take you back to the logon page of the Trader
application.

Clicking the Buy or Sell buttons will take you to a page with a field where you
can enter the number of shares you want to buy/sell and a pushbutton to start the
transaction.

When the transaction is done, the application displays the companies list again
(Figure 3-4).

To see the result of a transaction, you will have to go to the quotes page. This is
done by clicking the Quotes button on the Companies list page.

Figure 3-5 shows the Quotes page.

 Chapter 3. The Trader applications 37

Figure 3-5 The company quotes page

3.1.4 Trader Web frontend architecture
The overall architecture of the Trader Web applications is presented in
Figure 3-6. It is a classic MVC approach.

Figure 3-6 Component diagram of the Trader Web applications

JSP

TraderProcessEJBTraderServletBrowser Connector

38 WebSphere for z/OS V5 Connector Handbook

The TraderServlet contains the control logic, providing a method for each user
interaction. We decided—for time constraints—not to use the Command pattern.
Our advice is to use the Command pattern for applications larger than Trader. It
gives a better separation of control and command logic, which makes the
application easier to maintain.

The TraderProcessEJB contains the frontend business logic: Buy, sell,
getCompanies, etc. The implementation is split in two: An interface
(TraderProcess), which is what is used and seen by the TraderServlet; and the
actual implementation, which is dependent on the connector used.

The JSPs format the output for the browser.

To simplify the implementation of the different variations of Trader, we used the
simplified class diagram, as shown in Figure 3-6.

Figure 3-7 Trader class diagram - simplified overview

The TraderSuperServlet contains all the control and command logic of the
application. The only method implemented by the actual servlets is a method for
creating the TraderProcess instance (createTrader) and the init() method of the
servlet, which initializes the text-strings to be used for the construction of the
URL’s in the applications and to display what type of connector is used.

 Chapter 3. The Trader applications 39

The TraderProcess implementations are all specialized according to the
connectors being used.

3.1.5 Packaging
The different Trader applications are packaged in EAR files:

� TraderCICS2004.ear
� TraderIMS2004.ear
� TraderMQ2004.ear
� TraderDB2004.ear

Figure 3-8 shows the Trader ear file contents.

Figure 3-8 Trader Ear file contents

The TraderLib.jar is shared between all the Trader applications. It contains the
TraderSuperServlet, TraderProcess, and some utility classes.

The Trader Web module contains the servlet(s) sub-classed from
TraderSuperServlet and the JSPs used in the Web-application. Because of the
way J2EE 1.3 works it is impossible to share the JSPs the way done with the
TraderSuperServlet, so each Web module contains its own copy of the JSPs.
The Logon.html is different for each Trader application, the JSP’s are not.

Trader Class
Library Jar
(TraderLib)

Trader Connectors
Jar

(TraderXXCommand)

Trader Enterprise
Application

(TraderXXEAR)

Trader EJB Jar's
(TraderXXX, can be

more than one EJB Jar
pr Trader App)

Trader Web Module
War

(TraderXXWeb)

40 WebSphere for z/OS V5 Connector Handbook

The Trader EJB jars contain the EJB used by the servlets. In the case of the
TraderDB it also contains the EJBs used for communication with the database
and the business logic implementation.

The Trader Connectors jar contains the Web service that provides access to the
J2C connectors, including the EJB that connects to the J2C connector and the
generated classes used for getting and setting data on the J2C transaction
object(s). In CICS this is the ECI CommArea; in IMS they are the InputHandler
and OutputHandler objects.

3.1.6 Dependencies
To be able to deploy and run, each Trader application depends on some external
resources. These resources are specified, if possible, by their JNDI name and a
type.

TraderMQ dependencies
TraderMQ requires the following external resources:

� jms/TraderQCF, WebSphere MQ JMS provider connection factory

� jms/TraderCICSReqQ, JMS request destination for CICS

� jms/TraderCICSRepQ, JMS reply destination for CICS

� jms/TraderIMSReqQ, JMS request destination for IMS

� jms/TraderIMSRepQ, JMS reply destination for IMS

� jms/TraderProcessQ, JMS postprocessing destination for the MDB case

� TraderMQCICSListener, MDB EJB listener (When a message is received on
a Queue listened to, the corresponding MDB is executed.)

� TraderMQIMSListener, MDB EJB Listener

Depending on your local environment you might also need to define JAAS user
ID and password to be used by the MQ Bridge.

If you want TraderMQ to work you need to set up WebSphere MQ for z/OS, the
proper queues, and MQ Bridge for CICS or IMS. Details on this are provided in
Chapter 8, “WebSphere MQ connectors” on page 153.

TraderDB dependencies
TraderDB requires the following external resources: jdbc/TraderDB2, JDBC
Datasource (not specific to be DB2 even if the name indicates so). Note that
TraderDB can support any JDBC-compliant database as there is no DB2-specific
code in the connector implementation.

 Chapter 3. The Trader applications 41

TraderCICS dependencies
TraderCICS requires the following external resources:
itso/cics/eci/j2ee/trader/TraderCICSECICommandCICSECIServiceTraderCICSE
CICommandCICSECIPort, an ECI J2C connector to CICS.

TraderIMS dependencies
TraderIMS requires the following external resources:
itso/ims/j2ee/trader/TraderIMSCommandIMSServiceTraderIMSCommandIMSPo
rt, an IMS J2Cconnector to IMS.

3.1.7 Trader connector paths
Figure 3-9 gives a good overview of the different connector paths implemented in
Trader.

Restriction: Not all of the necessary resources have been externalized in the
Web deployment and EJB deployment descriptors. Some of the resources
have to be looked up directly and not indirectly using the “java:comp/env”
context, which also means that the possibility of setting up transaction control
and redirection is limited.

42 WebSphere for z/OS V5 Connector Handbook

Figure 3-9 Trader connector paths

The following describes the connector-specific issues:

� CICS ECI Connector:

Uses the J2C CICS ECI Connector. The connector uses the CICS
Transaction Gateway (CTG) Java client, and the code for accessing the J2C
ECI connector is generated by WebSphere Studio Integration Edition. The
generated code consists of a Web-service implemented as an EJB and
classes for setting and getting information in the ECI CommArea, based on
the object definitions used in the CICS programs.

� IMS Connector:

Uses a J2C IMS Connector. It works the same way as the CICS ECI
Connector and the code is generated the same way.

� JDBC Connector:

The JDBC connector does not have a backend CICS/IMS transaction with
business logic, so we had to implement this logic in the WebSphere

CICS

IMS

DB2

EJB

EJB

J2C ECI Connector

JMS MQ-CICS Bridge
MQ

EJB
J2C IMS Connector

EJB
JMS MQ-IMS Bridge

MQ

Servlet

Servlet

Logon
HTML

CMP

EJB

EJB

Direct JDBC

Servlet

Servlet

Servlet

Servlet

BL

BL

BL

BL

CICS

IMS

DB2

EJB

EJB

J2C ECI Connector

JMS MQ-CICS Bridge
MQ

EJB
J2C IMS Connector

EJB
JMS MQ-IMS Bridge

MQ

Servlet

Servlet

Logon
HTML

CMP

EJB

EJB

Direct JDBC

Servlet

Servlet

Servlet

Servlet

BL

BL

BL

BL

 Chapter 3. The Trader applications 43

application. This was done using EJBs. The data resided in a DB2 for z/OS
database.

Data is accessed in two ways:

– Using traditional straight JDBC from a session EJB
– Using Container-Managed Persistence (CMP) Entity EJBs

� WebSphere MQ

Instead of going straight to IMS/CICS from the application, there is the option
of using WebSphere MQ. The TraderMQ application sends a message via
WebSphere MQ to the backend business logic in CICS/IMS (the TRADERBL
program). The message receiver is the MQ bridge—either the IMS-MQ bridge
or the CICS-MQ bridge. When the transaction is completed in either IMS or
CICS, the reply is returned via WebSphere MQ to the Trader application in
WebSphere. This is a quasi-synchronous solution to frontend any traditional
business logic in CICS or IMS.

There is an option of using a Message Driven Bean (MDB) EJB as the
receiver in the Trader Web application instead of a session EJB querying the
reply queue. When using this option check the MDB box on the TraderMQ
logon panel and start the message listener ports on the server. When the
MDB listeners are enabled, the normal TraderMQ scenarios will not work
(non-MDB case), as the MDB listener will pick up the messages from the
TRADER.CICS.REPLYQ or TRADER.IMS.REPLYQ no matter if the check
box was marked or not. The XA (two-phase commit) feature has to be
enabled on the WebSphere MQ connection factory for this to work.

Important: If the message listeners are started when TraderMQ is executed
and the MDB box is not checked on the logon screen, TraderMQ will wait for
the message to come back from CICS or IMS; it will never get the reply (you
have to click the Abort button). The reason for this is that the MDB already
picked up the message from the TRADER.CICS.REPLYQ (or IMS) reply
queue and put it on the TRADER.PROCESSQ, but as the MDB check box
was not marked, the EJB business logic does not receive the message from
the TRADER.PROCESSQ.

44 WebSphere for z/OS V5 Connector Handbook

3.1.8 Downloading Trader application modules
You can download the various Trader applications from the following Web site:

http://www.redbooks.ibm.com/redbooks/sg247042

The applications are provided in a zip file that includes both the EAR file to use
for deployment to WebSphere Application Server and a zip file with the
corresponding resources (projects, source files, server configurations, etc.) to
use for importing into WSAD.IE.

The EAR file does not contain any source files and will not restore the WSAD
projects necessary for WSAD.IE to compile and run the application.

See also Appendix B, “Additional material” on page 337.

3.2 Running Trader in WSAD.IE test environment
If you skip running an application in the WebSphere Studio Application developer
Integration Edition (WSAD.IE) test environment, all you have to do is to
download the application module as described in 3.1.8, “Downloading Trader
application modules” on page 45.

When you download the Trader application and extract the .zip file, you can see
the following folders:

� TraderCICS
� TraderIMS
� TraderDB
� TraderMQ

Each folder contains the ear file of the given Trader application and also the
zipped workspace. Create a directory that will be the workspace of your Trader

Restriction: Trader was not implemented with the purpose of being a fully
production-qualified application.

Because of this, the screen flow is based on the need to be there, the fault
tolerance is limited, the application cannot be expected to run in parallel
without flaws, all resources have not been externalized using the
“java:comp/env“ context, thereby lacking transactional control, and part of the
implementation is not in compliance with best practices and recommended
implementation patterns. However, the application(s) will assist on verifying
that a WebSphere Connector has been set up properly, as an example of how
a WebSphere Connector can be used in an application.

 Chapter 3. The Trader applications 45

http://www.redbooks.ibm.com/redbooks/sg247042

application. We suggest that you use separate workspaces for each application.
Unzip the workspace zip file into that workspace directory. You will have a
directory that WebSphere Studio Integration Edition will use for the project. All
the project folders are there, but you have to import the projects to let
WebSphere Studio Integration Edition know about them. Use the following steps
to restore your WebSphere Studio Integration Edition workspace.

1. Start WebSphere Studio Integration Edition and specify the repository where
you extracted the .zip file, as shown in Figure 3-10.

Figure 3-10 WebSphere Studio Integration Edition startup window

2. An empty workspace will appear. You can import using File → Import... and
choose Existing Project into Workspace, and click Next. In the Project
contents field, navigate to the directory that is located under the directory from
which you have extracted the zip file contents, and select the project to
import. You should import all the projects with names that start with Trader,
and also the Server project, but you can import only one project at a time.
Then click Finish.

3. You have to repeat the import several times to import all of the projects
needed by Trader.

4. In the case of the TraderCICS project, you have to import the RAR file to
create CICS connectors. We provide an ECIConnector project in the
workspace, but the location of our connector is not necessarily the same as
your WebSphere Studio Integration Edition installation. To complete this task,
do the following:

a. Select File → Import... and choose the RAR file, and click Next.

b. In the Connector file field, navigate to your WebSphere Studio installation
and look for your resource adapters, for example specify D:\Program
Files\IBM\WebSphere Studio\resource adapters\cicseci.rar file. Specify
New Project Name as ECIConnector (Figure 3-11).

46 WebSphere for z/OS V5 Connector Handbook

Figure 3-11 Importing ECI J2C connector to WebSphere Studio Integration Edition

c. Click Finish.

5. In the case of the TraderIMS application, do the same step for IMS connector.
You have to choose ims.rar as the connector file name and specify
IMSConnector as the new project name.

6. If any tasks or errors remain in the Tasks field, you have to rebuild project,
then the tasks go away. You can do this step from the Project → Rebuild All
menu. If you get a broken link message, make sure that the Web project
references the lib project. Right-click the Web project and select Properties.
Select the Java build path → Order and Export tab and select TraderLib.
Then rebuild the project.

3.2.1 Configuring the test server in WSAD.IE
This section shows how to configure the test environment to run the Trader
application. We provide server definitions in the workspace; however, you have
to verify that the resource definitions in the server projects match your
environment.

In case you want to use your own server definitions, follow the instructions
below.

To configure the test environment, do the following steps:

1. Open Server Perspective. As shown in Figure 3-12, at first you click (1) to
open a new perspective, and choose Server. Now you can see the Server
Perspective and you can go directly to Server Perspective by clicking (2).

 Chapter 3. The Trader applications 47

Figure 3-12 Opening Server Perspective

2. At the lower left of the window, you can see the Server Configuration panel.
Right-click Servers, and proceed with New → Server and Server
Configuration. Specify TraderServer in the Server name field, and other
options are left as defaults. Then click Finish.

3. Double-click TraderServer, and the configuration panel opens. First you
have to change to Security tab, and create three JAAS authentrication
entries.

– LocalUser: Specify your local administrator ID and password. This is used
as a JMS user authentication alias.

– TraderDB2User: Specify your DB2 user ID and password to get to DB2.

– TraderUser: Specify your CICS and IMS user ID and password. This alias
is used as authentication in the connection factory of J2C.

As a result, you can see the aliases as shown in Figure 3-13.

Figure 3-13 JAAS authentication alias

Setting up CICS/IMS connection factories
These activities depend on which Trader application you try to set up.

� In case of TraderCICS create CICS ECI J2C connection factory on the J2C
tab. In the Node setting, you can see J2C Resource Adapters. Choose Add...
and you can select ECIConnector in Resource adapter name field, then click
OK.

48 WebSphere for z/OS V5 Connector Handbook

Next you have to add connection factory. At first you select ECIConnector.
Second, you click the Add... button in the J2C Connection Factory field, as
shown below, to Resource adapter settings. The Name and JNDI name fields
should be specified as follows:

itso/cics/eci/j2ee/trader/TraderCICSECICommandCICSECIServiceTraderCICSECICo
mmandCICSECIPort

The container-managed authentication alias should be TraderUser. Then
click OK.

Now you can see the Resource properties of the CICS ECI connector. As
shown in Figure 3-14 on page 50, specify server definitions if you have a
CICS Trader application. We specified Server name, connection URL, and
server port.

� In the case of TraderIMS you have to add IMSConnector in the same way. In
case of TraderRRS, you have to add both.

In case of the TraderIMS application do the same steps 5 and 6 as for the
IMS Connector. The Name and JNDI name fields of J2C connection factory
should be specified as follows:

itso/ims/j2ee/trader/TraderIMSCommandIMSServiceTraderIMSCommandIMSPort

For Resource properties, we specified the values HostName, PortNumber,
and DataStoreName.

 Chapter 3. The Trader applications 49

Figure 3-14 J2C connection factory settings

Setting up DB2 datasources
To do this?

� In the case of the TraderDB application switch to the Datasource tab. Now
you have to configure the datasource to connect to DB2. Select Default DB2
JDBC Provider and Add new datasource. The important thing in this wizard
is checking on how to use this datasource from container-managed
persistence (CMP) field.

We used the following parameters to configure the DB2 datasource:

– Name: TraderDB2.

– JNDI name: jdbc/TraderDB2.

– Container-managed authentication alias: DB2User.

You may use any defined name here. Go to the Security tab and define an
alias that is valid for the given system you want to access.

– We checked the “Use this datasource from container-managed
persistence (CMP)” field.

– Database name: DB4B (in resource properties).

50 WebSphere for z/OS V5 Connector Handbook

Running TraderDB2 also requires setting up DB2 Connect. We installed DB2
Connect Personal Edition. After installation you have to use Set-up tools →
Configuration Assistant to configure the connection to the host. We used
the following values:

– Protocol: TCP/IP

– Host name: wtsc48.itso.ibm.com®

– Portnumber: 37720

– Database name: DB4B

– Operating system: OS/390® or z/OS

– System name: SC48

– Security options: Server authentication

Setting up JMS environment
In order to run the TraderMQ application in the WebSphere Studio Integration
Edition test environment, you need to define the following:

� WebSphere MQ connection factory

� Queue destinations

� Message listener ports

� Queues and connections and other z/OS host definitions

For the first three items, you need to access the Admin Console of the imbedded
server. Open the server configuration and look at the Configuration tab. Click the
Enable admininstration console check box and restart the server. When it
restarts, open a Web browser in WebSphere Studio Integration Edition and
navigate to the Admin Console, as follows:

http://localhost:9090/admin/

Log in and open up Resources. Go to WebSphere MQ JMS Provider to define
the Connection Factories and Queue Destinations.

We defined the following under Connection Factories:

� Name: TraderQCF.

� JNDI Name: jms/TarderQCF.

� Container-Managed Authentication Alias: Select what you defined under J2C
Authentication Data Entries.

� Queue manager: MQ4C (your z/OS Queue Manager name).

� Host: wtsc50.itso.ibm.com (your host DNS name).

 Chapter 3. The Trader applications 51

� Port: 1561 (where your Channel Initiator is listening on z/OS).

� Channel: TRADER (the SVRCONN channel you defined on z/OS).

� Transport type: CLIENT (we are accessing MQ remotely, not from z/OS).

� Message Retention: Enabled.

� XA: Enabled.

We defined the following queue destinations:

� TraderCICSReqQ, TraderCICSRepQ, TraderIMSReqQ, TraderIMSRepQ and
TraderProcessQ as Names

� JNDI Name: The same as the Names with jms/ (for example,
jms/TraderIMSRepQ)

� Persistence and Priority: Queue defined

� Expiry: Application defined

� Base queue name: TRADER.CICS.BRIDGEQ, TRADER.CICS.REPLYQ,
TRADER.IMS.BRIDGEQ, TRADER.IMS.REPLYQ and
TRADER.PROCESSQ, respectively, to the destination names above

� Base Queue Manager name: MQ4C (your WebSphere MQ manager on
z/OS)

� Integer, decimal and floatingpoint encoding: Normal

� Target client: MQ for the request queues (TraderCICSReqQ and
TraderIMSReqQ, hence the target queue is on z/OS) and JMS for the rest, as
the target is our WebSphere JMS environment on Windows

� Queue Manager Host: wtsc50.itso.ibm.com

� Port: 1561

� Server Connection Channel Name: TRADER (the SVRCONN channel you
defined on z/OS)

In Example 3-1we show you the server connection channel definition we used on
z/OS for TraderMQ running on WebSphere Studio Integration Edition.

Example 3-1 Server connection channel definition used for TraderMQ

CHANNEL(TRADER)
CHLTYPE(SVRCONN)
QSGDISP(QMGR)
TRPTYPE(TCP)
DESCR(Channel for serving from Windows/WSAD)
SCYEXIT()
SCYDATA()
MSGEXIT()

52 WebSphere for z/OS V5 Connector Handbook

MSGDATA()
SENDEXIT()
SENDDATA()
RCVEXIT()
RCVDATA()
PUTAUT(DEF)
MCAUSER()
KAINT(AUTO)
ALTDATE(2004-02-11)
ALTTIME(15.17.00)
SSLCAUTH(REQUIRED)
SSLCIPH()
SSLPEER()
MAXMSGL(4194304)

We defined the following listener ports. Open your Servers—Application Servers
—server1 and scroll down to Additional Properties: Message Listener Service
and click it, and then click Listener Ports. Select New and define two message
listeners. We used the following values to define their properties:

� Name: TraderMQCICSListener and TraderMQIMSListener.

� Initial state: Stopped. (This is important. When you later test the MDB case,
start the message listener manually.)

� Connection factory JNDI name: jms/TraderQCF.

� Destination JNDI name: jms/TraderCICSRepQ and TraderIMSRepQ,
respectively, for the two listeners. (This defines on which queues the MDB
listens.)

Troubleshooting
If you made an error somewhere, sometimes it is hard to find it because we are
dealing with a distributed environment. This can be eased with a tool that can be
installed on the Windows PC. The tool can be downloaded from:

http://www-306.ibm.com/software/integration/support/supportpacs/category.html#c
at2

It is WebSphere MQ SupportPac™, called IH03: WBI Message Broker V5 -
Message display, test and performance utilities. In order to use that you need the
WebSphere MQ Client for Windows, which can be found at:

http://www-306.ibm.com/software/integration/support/supportpacs/product.html#wm
q

 Chapter 3. The Trader applications 53

http://www-306.ibm.com/software/integration/support/supportpacs/category.html#cat2
http://www-306.ibm.com/software/integration/support/supportpacs/product.html#wmq
http://www-306.ibm.com/software/integration/support/supportpacs/product.html#wmq

The name of the SupportPac is MACV. Download and install the package. This
provides the connectivity to the Queue Manager running on z/OS. After
installation navigate to the MQ client “bin” directory, in our case:

F:\Program Files\IBM\WebSphere MQ\bin\

Open a Command window. Issue two commands, as in Example 3-2. The first
command (SET with the parameters on one line) defines the MQSERVER
environment variable with server connection channel name (TRADER), the
protocol to be used (TCP), the host name (wtsc50.itso.ibm.com) and the port
number (1561). The second command connects to the Queue Manager and
shows you whether the connection was successful. In our case we connected to
Queue Manager MQ4C.

Example 3-2 Testing connection to Queue Manager on z/OS

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

F:\Program Files\IBM\WebSphere MQ\bin>SET
MQSERVER=TRADER/TCP/wtsc50.itso.ibm.com(1561)

F:\Program Files\IBM\WebSphere MQ\bin>amqscnxc
Sample AMQSCNXC start
Connecting to the default queue manager
with no client connection information specified.
Connection established to queue manager MQ4C
Sample AMQSCNXC end

After validating the connection from the same command window navigate to the
directory where you installed the IH03 SupportPac. Invoke the rfhutilc
command and the window shown in Figure 3-15 on page 55 will appear.

54 WebSphere for z/OS V5 Connector Handbook

Figure 3-15 rfhutilc command window

The output displayed in Figure 3-15 on page 55 already shows that we executed
some commands. The important fields are the Queue Manager name (MQ4C)
and the queue name (TRADER.CICS.REPLYQ). After specifying these click the
Read Q button and you may see the number of bytes read from the queue or you
can see that there are no messages on the queue. In our case we read 547 bytes
from SYSTEM.DEAD.LETTERQ. Now you can click the Data tab and you see
the message in the queue, as shown on Figure 3-16 on page 56.

 Chapter 3. The Trader applications 55

Figure 3-16 rfhutilc message data output

This window shows you the message data on the queue, and on the right side of
the window you can select different output formats. The MQMD tab shows you
other important message fields, like the correlation ID. The IH03 package comes
with a description and other useful utilities that you may use to test your
connection outside your WebSphere environment.

3.2.2 Runing Trader application in WSAD.IE test environment
You have configured the test environment in WebSphere Studio Integration
Edition. From the Server Perspective, you can start your defined server, and
when the server is ready for e-business, you can access the Trader application
from an external browser or by simply selecting Run on Server... by
right-clicking Logon.html from the J2EE Navigator view of J2EE the Perspective
that gives you an internal browser.

In the case of the TraderMQ application you have to specify the environment
variables that are used to control the codepage translation. When a message is
passed from the application to MQ and IMS, the message needs to be traslated
from character string to bytes array and vice versa. This is controlled by code
page traslation. We defined two environment variables to be used:

� prop/Encoding_send
� prop/Encoding_receive

The first controls the codepage used for sending messages to WebSphere MQ
for z/OS and should be set to cp437 for the WebSphere Studio Integration
Edition embedded server, US English case. That is the Windows US English
codepage, since we are sending the message from Windows to z/OS.

56 WebSphere for z/OS V5 Connector Handbook

The second controls the codepage used to receive messages from WebSphere
MQ for z/OS and should be set to cp037 for the WebSphere Studio Integration
Edition embedded server, US English case. That is the z/OS US English
codepage, since we are receiving the message from z/OS.

The variables can be defined by going to the J2EE perspective and clicking the
EJB Modules and then double-clicking the TraderMQIMS EJB. This will open the
deplyment descriptor. Click the Beans tab and select the TraderMQIMS bean,
as shown in Figure 3-17 on page 57.

Figure 3-17 TraderMQIMS bean environment variables - 1

Click Add and enter the variable names and values as shown in Figure 3-18 on
page 58. Save the deployment descriptor and restart your server. Now you can
invoke the TraderMQ application from an external browser or simply select Run
on Server... by right-clicking Logon.html from J2EE Navigator view of the J2EE
Perspective that gives you an internal browser. If you want to test the MDBs, do
not forget to start the Listener ports.

 Chapter 3. The Trader applications 57

Figure 3-18 Entering the environment variables

3.2.3 Configuring DB2 tables in the test environment
When you run the Trader application in trhe WSAD.IE test environment, you
should configure the DB2 tables in your local PC. From the DB2 command
window, you can proceed with this task with DDL, which is included in the Trader
application module. Example 3-3 shows the command input you should key in.

Example 3-3 Creating DB2 table in sample database

C:\work\db2>db2 connect to sample
C:\work\db2>db2 -tvf DB2table_trader.ddl

The Trader application uses two tables, the definitions of which are shown in
Example 3-4.

Example 3-4 DB2 table definition of Trader application

TRADER.COMPANY

Column name Type Len Nulls
---------------------- ----------- ---- -----
COMPANY CHARACTER 20 No
SHARE_PRICE REAL 4 Yes
UNIT_VALUE_7DAYS REAL 4 Yes
UNIT_VALUE_6DAYS REAL 4 Yes
UNIT_VALUE_5DAYS REAL 4 Yes
UNIT_VALUE_4DAYS REAL 4 Yes
UNIT_VALUE_3DAYS REAL 4 Yes
UNIT_VALUE_2DAYS REAL 4 Yes
UNIT_VALUE_1DAYS REAL 4 Yes
COMM_COST_SELL INTEGER 4 Yes
COMM_COST_BUY INTEGER 4 Yes

58 WebSphere for z/OS V5 Connector Handbook

TRADER.CUSTOMER

Column name Type Len Nulls
---------------------- ----------- ---- -----
CUSTOMER CHARACTER 60 No
COMPANY CHARACTER 20 No
NO_SHARES INTEGER 4 Yes

3.2.4 Running Trader application in WSAD.IE test environment
At this point, you have configured the test environment in WSAD.IE. You can run
all the Trader scenarios from the test environment except the MQ-CICS Bridge
portion and MQ-IMS Bridge portion. From the Server Perspective, you can start
TraderServer, and when the server is ready for e-business, you can access the
Trader application from the following URL or simply select Run on Server... by
right-clicking Logon.html from the J2EE Navigator view of the J2EE
Perspective.

:http://localhost:9080/TraderWeb/Logon.html

3.3 Deploying Trader application
After you have configured WebSphere Application and started the server, as
described in Chapter 4, “WebSphere Application Server setup” on page 67, you
can access the WebSphere Administrative Console (Admin Console) from a Web
Browser. The typical URL of the Admin Console is:

:http://servername:9090/admin/

When you log on to Admin Console, you can see the window shown in
Figure 3-19 on page 60.

Note: ‘port’ should be your TCP/IP port number of Admin Console, which is
specified when you set up WebSphere Application Server for z/OS.

 Chapter 3. The Trader applications 59

http://www.software.ibm.com/wsdd/library/techarticles/0207_searle/searle.html
http://www.software.ibm.com/wsdd/library/techarticles/0207_searle/searle.html
http://www.software.ibm.com/wsdd/library/techarticles/0207_searle/searle.html
http://www.software.ibm.com/wsdd/library/techarticles/0207_searle/searle.html

Figure 3-19 WebSphere for z/OS V5 admin console

3.3.1 Installing Trader application
You can install the Trader application for IMS, CICS, DB2, and MQ after you
have configured the WebSphere resources used by the Trader application. To
configure the resources in WebSphere, please see the corresponding chapters
in this book.

You can install the Trader application from Applications → Install New
Application. Specify TraderXXXXEAR.ear (where XXXX is the application of
choice: MQ, IMS, CICS, or DB2) in the Server path field and proceed though all
of the installation steps (there will be eight of them) without changing the default
values to the last panel. You might have to change the target application server
to deploy. When you get to the last panel, click Apply and Save to the Master
Configuration.

3.3.2 Running Trader application
You can access the Trader application from a Web browser. The logon page of
Trader is as follows, where XXXX is the name of the connect, that is, CICS:

http://servernameTraderXXXXWeb/Logon.html

60 WebSphere for z/OS V5 Connector Handbook

http://www.software.ibm.com/wsdd/library/techarticles/0207_searle/searle.html

The servername is the name of the server that you are deploying, and port is port
number of HTTP transfer port of server. You can see the logon screen shown in
Figure 3-20. For demonstration purposes, we are going to use the CICS
example, although all of the scenarios were designed to operate the same.

Figure 3-20 Trader application logon screen for the CICS Trader application

Enter a valid user ID and click Go.

This will take you to the CICS Trader Servlet, as shown in Figure 3-21, where you
can buy, sell, or get a quote on four fictious companies.

 Chapter 3. The Trader applications 61

Figure 3-21 CICS Trader servlet

We are going to buy 100 shares of IBM stock, so we are going to click the Buy
button. In Figure 3-22, we entererd 100 in the number of shares to buy field, and
clicked the Buy button.

Figure 3-22 Buy 100 shares of IBM stock

62 WebSphere for z/OS V5 Connector Handbook

We will then be presented with the original CICS Trader Servlet screen. From
here we click Quotes and can see our purchase, as shown in Figure 3-23.

Figure 3-23 Quotes - Summary of shares held

3.4 Trader DB2 table definitions
Figure 3-24 on page 64 shows how the Trader sample application is accessing
DB2. The TraderDB2 JDBC application has the business logic, and the data is
stored in DB2 tables. The CMP component is similar, with the only difference
being the use of a Container-Managed Persistence (CMP) entity bean to access
DB2.

 Chapter 3. The Trader applications 63

Figure 3-24 Trader application using DB2

The Trader application uses two DB2 tables. The first table is the company table
and the second is the customer table. Example 3-5 shows the commands used
to create the Trader database, tablespace, tables and unique indices.

Example 3-5 Trader sample database and table creation

DROP DATABASE TRADERDB ;
COMMIT;
CREATE DATABASE TRADERDB ;
CREATE TABLESPACE TRADERTS IN TRADERDB ;
COMMIT;
CREATE TABLE TRADER.COMPANY
 (COMPANY CHAR(20) NOT NULL PRIMARY KEY,
 SHARE_PRICE REAL,
 UNIT_VALUE_7DAYS REAL,
 UNIT_VALUE_6DAYS REAL,
 UNIT_VALUE_5DAYS REAL,
 UNIT_VALUE_4DAYS REAL,
 UNIT_VALUE_3DAYS REAL,
 UNIT_VALUE_2DAYS REAL,
 UNIT_VALUE_1DAYS REAL,
 COMM_COST_SELL INT,
 COMM_COST_BUY INT)
 IN TRADERDB.TRADERTS ;

CREATE,TABLE TRADER.CUSTOMER
 (CUSTOMER CHAR(60) NOT NULL,
 COMPANY CHAR(20) NOT NULL,
 NO_SHARES INT,
 PRIMARY KEY (CUSTOMER,COMPANY))
 IN TRADERDB.TRADERTS ;

EJB
Business

Logic
DB2

trader.custfile

DB2
trader.compfile

DB2WebSphere

Browser
Logon.html Servlet

Servlet
EJB

Business
Logic

CMP

64 WebSphere for z/OS V5 Connector Handbook

CREATE TYPE 2 UNIQUE INDEX TRADER.COMPANYX1
 ON TRADER.COMPANY (COMPANY) ;

CREATE TYPE 2 UNIQUE INDEX TRADER.CUSTOMERX1
 ON TRADER.CUSTOMER (CUSTOMER,COMPANY) ;

COMMIT;

3.5 Trader VSAM file definitions
Example 3-6 shows the IDCAMS delete/define of the TraderCICS VSAM files. It
also copies the example data into the file. These jobs are available in
Appendix B, “Additional material” on page 337.

Example 3-6 Trader sample VSAM files delete/define

//???????? JOB USER=????????,CLASS=?,NOTIFY=????????,MSGCLASS=?
//***
//* *
//* THIS JOB WILL: *
//* *
//* 1. DELETE AND DEFINE THE TRADER 'COMPFILE'. *
//* 2. REPRO THE REQUIRED DATA INTO THE 'COMPFILE'. *
//* *
//***
//STEP01 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE hlq.SAMPLE.COMPFILE CLUSTER
 SET MAXCC = 0
 DEFINE CLUSTER -
 (NAME(hlq.SAMPLE.COMPFILE) -
 INDEXED -
 TRACKS(1) -
 SHAREOPTIONS(3 4)) -
 DATA -
 (NAME(hlq.SAMPLE.COMPFILE.DATA) -
 KEYS(20 0) -
 RECORDSIZE(90 90) -
 CONTROLINTERVALSIZE(4096)) -
 INDEX -
 (NAME(hlq.SAMPLE.COMPFILE.INDEX))
/*
//*
//STEP02 EXEC PGM=IDCAMS

 Chapter 3. The Trader applications 65

//OUTFILE DD DSN=hlq.SAMPLE.COMPFILE,DISP=OLD
//INFILE DD DSN=tradercodata.txt,DISP=OLD
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 REPRO INFILE(INFILE) OUTFILE(OUTFILE)
/*

3.6 Trader CICS Transaction Gateway usage
Figure 3-25 provides an overview of how our Trader application uses CTG. The
figure shows a remote connection to a CICS system running on z/OS.

Figure 3-25 Overview of Trader appliction using CTG

3.7 WebSphere Studio Integration Edition hints and tips
For developing an application with IMS connectors, you have to update
WebSphere Studio Integration Edition to Version 5.0.1, and you also have to
apply Interim fix 004 (which is known as the IMS Connector fix).

Servlet J2C ECI Connector

CTG

compfile
VSAM

custfile
VSAM

WebSphere

MRO/ISC

SCSCERWW
Netname=

ConnectionURL - tcp://wtsc52.itso.ibm.com
PortNumber - 2006
ServerName - SCSCERW3

Browser
Logon.html EJB CTG Gateway Daemon

DFHJVPIPE = SCSCERWW

z/OS

CICS Region
SCSCERW3

TRADERBL
Business Logic

66 WebSphere for z/OS V5 Connector Handbook

Chapter 4. WebSphere Application
Server setup

In this chapter we describe the WebSphere Application Server setup including
the prerequisite product WebSphere MQ.

We describe the following:

� Planning for WebSphere Application Server setup

� Installing WebSphere MQ client for Linux for zSeries

� Installing WebSphere Application Server

4

© Copyright IBM Corp. 2004. All rights reserved. 67

4.1 Planning for WebSphere Application Server setup
IBM WebSphere Application Server Version 5 offers a world-class infrastructure
for the next phase in open e-business platforms. As the foundation of the
WebSphere software platform, WebSphere Application Server provides a rich,
e-business application deployment environment with a complete set of
application services including capabilities for transaction management, security,
clustering, performance, availability, connectivity and scalability. Version 5 offers
full J2EE specification support (Servlet 2.3, JSP 1.2, EJB 2.0, and others), as
well as a variety of extensions.

After installing the Linux for zSeries system, we needed to configure the system
to test our connectors. First we made sure we had enough storage to install
WebSphere Application Server, then we installed the full WebSphere Application
Server product and its prerequisites, as follows.

4.1.1 Space requirements for installation
Table 4-1 shows the space requirements for the WebSphere Application Server.

Table 4-1 WebSphere Application Server space requirements

4.1.2 WebSphere MQ client for Linux on zSeries
When installing the IBM WebSphere Application Server, you can install the
embedded messaging feature (selected by default) for use as the Java Message
Service (JMS) provider. However, in order to install the embedded messaging
feature successfully, you need to complete several other actions first. These
actions include considering whether you also want to use WebSphere MQ on the
same host, and defining the groups and users needed for embedded messaging.
Because one of our scenarios is to test the MQ connector, we needed to install
WebSphere MQ locally and define the groups and users needed for embedded
messaging. So we will describe the installation steps for WebSphere MQ.

Base
product

Network
deployed
product

IBM HTTP
Server

Tivoli®
Global
Security
Kit

Temp
space

Install Dir /opt/WebSp
here/AppS
erver

/opt/WebSp
here/Deplo
ymentMana
ger

/opt/WebSp
here/Deplo
ymentMana
ger

/opt/ibm/gs
k5

/tmp

Min free
space

512 MB 512 MB 20.4 MB 13.2 MB

68 WebSphere V5 for Linux on zSeries - Connectivity Handbook

4.2 Installing WebSphere MQ Client for Linux on zSeries
Following are the steps required to install WebSphere MQ Client. We also chose
to install the WebSphere MQ Server so that we could test the local puts and gets
to and from the local queue.

1. Log in as root. We set up a secure environment to log in, so we telnetted in to
a user called user1, then issued the su - root command to switch to root, or
we sshed to root. This allowed us to pick up the effective groups that root was
defined to. This was important because when we telnetted directly to root,
although the mqm and mqbrkrs groups were defined, they were not the root’s
effective group list.

2. Go to the directory containing the WebSphere MQ for Linux for zSeries
software:

cd /mnt/sw/mq53

3. Before you can install the MQSeries components you need to read and
accept the license agreement.

Run the mqlicense.sh script and accept the license agreement:

./mqlicense.sh

Enter the number that corresponds to the language you prefer (1 for English).

Press Enter to see the agreement.

Press 1 to accept.

If you are using an x-11 window, then instead of performing the previous
steps, you will see a panel to which you can click Accept, as shown in
Figure 4-1.

 Chapter 4. WebSphere Application Server setup 69

Figure 4-1 MQ license agreement

4. Use the rpm command to install each MQ component. The runtime
component must be installed first, but the other packages can be installed in
any order.

rpm -Uvh MQSeriesRuntime-5.3.0-4.s390.rpm
rpm -Uvh MQSeriesSDK-5.3.0-4.s390.rpm
rpm -Uvh MQSeriesServer-5.3.0-4.s390.rpm
rpm -Uvh MQSeriesClient-5.3.0-4.s390.rpm
rpm -Uvh MQSeriesSamples-5.3.0-4.s390.rpm

5. Run the setmqcap command, inputting the number of processors that you
have paid for.

setmqcap 2

4.2.1 Verifying the MQ Client installation
We verify the MQ Client installation by testing if we can create a default queue,
start the Queue Manager, and define a local queue as follows:

1. Change the effective user ID to mqm, making the shell a login shell, then
create a default Queue Manager called venus.queue.manager from mqm:

su -l mqm

70 WebSphere V5 for Linux on zSeries - Connectivity Handbook

crtmqm -q venus.queue.manager

2. Start the Queue Manager that is going to run the commands and wait for the
started message:

strmqm

3. Start using the MQ Series commands (MQSC) facility interactively by using
the runmqsc command. A Queue Manager name has not been specified,
therefore the MQSC commands will be processed by the default Queue
Manager we created previously:

runmqsc

4. Define a local queue called ORANGE.QUEUE:

define qlocal (orange.queue)

5. End the interactive input of MQSC:

end

Our output is shown in Example 4-1.

Example 4-1 Verify the MQ client installation

linux11:/mnt/sw/mq # su -l mqm
mqm@linux11:~> crtmqm -q venus.queue.manager
WebSphere MQ queue manager created.
Creating or replacing default objects for venus.queue.manager.
Default objects statistics : 31 created. 0 replaced. 0 failed.
Completing setup.
Setup completed.
mqm@linux11:~> strmqm
WebSphere MQ queue manager 'venus.queue.manager' started.
mqm@linux11:~> runmqsc
5724-B41 (C) Copyright IBM Corp. 1994, 2002. ALL RIGHTS RESERVED.
Starting MQSC for queue manager .
define qlocal (orange.queue)
 1 : define qlocal (orange.queue)
AMQ8006: WebSphere MQ queue created.
endd
 2 : end
One MQSC command read.
No commands have a syntax error.
All valid MQSC commands were processed.

 Chapter 4. WebSphere Application Server setup 71

4.2.2 Testing the MQ installation
To test the Queue Manager and queue, use the amqsput sample program to put
a message on the queue, and the amqsget sample program to get the message
back from the queue as follows:

1. Change into the /opt/mqm/samp/bin directory, which contains the sample
programs:

cd /opt/mqm/samp/bin

2. Put a message on the queue:

./amqsput ORANGE.QUEUE

Type some message text, on one or more lines, followed by a blank line.

3. Get the message from the queue:

./amqsget ORANGE.QUEUE

Press Enter to end.

Example 4-2 shows this procedure.

Example 4-2 Testing the MQ installation commands

mqm@linux11:~> cd /opt/mqm/samp/bin
mqm@linux11:/opt/mqm/samp/bin> ./amqsput ORANGE.QUEUE
Sample AMQSPUT0 start
target queue is ORANGE.QUEUE
Say it aint so
beauty

Sample AMQSPUT0 end
mqm@linux11:/opt/mqm/samp/bin> ./amqsget ORANGE.QUEUE
Sample AMQSGET0 start
message <Say it aint so>
message <beauty>
end
no more messages
Sample AMQSGET0 end
MQJE001: Completion Code 2, Reason 2085

4.3 Installing WebSphere Application Server
There are two ways to install the WebSphere Application Server: By using the
GUI mode or by using the silent mode. We chose to use the GUI mode for our
installation.

72 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Interactive - GUI mode
This method requires an X-server on your workstation. We chose to install using
this method. For our installation we used Hummingbird’s Exceed product.

Automated - silent mode
This process uses a default response file. A default response file, named
install.script, is supplied with the WebSphere Application Server.

4.3.1 Installing with the installation wizard GUI
To do this:

1. Log in as root and set up our graphical environment.

2. Launch the installation wizard.

Change to the installation directory cd /mnt/sw/was502/linuxs390.

Execute the install script ./install.sh&.

3. Accept the default language (English). Click Next.

4. The installation wizard opens and a welcome page appears. Click Next, as
shown on Figure 4-2.

Note: The launchpad.sh script does not work on the zSeries product. You
have to execute the install script instead.

 Chapter 4. WebSphere Application Server setup 73

Figure 4-2 WebSphere Application Server welcome page

5. The license agreement appears for you to read. Accept the agreement and
click Next.

6. The installation Wizard checks for system prerequisites at this time. If all
requirements have been met, another panel will appear asking you to choose
the setup type that best suits your needs, Custom or Full. We chose the Full
install. Click Next.

7. A panel then appears with the installation directories for IBM WebSphere
Application Server Version 5 and IBM HTTP Server Version 1.3.26, as shown
in Figure 4-3. You may customize theses directories or accept the defaults.
We accepted the defaults. Click Next.

74 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Figure 4-3 WebSphere Application Server and HTTP server directories

8. The next panel shows the node name and host name or IP address. You may
override this information or accept the defaults as shown in Figure 4-4 on
page 76. Accept the defaults. Click Next.

 Chapter 4. WebSphere Application Server setup 75

Figure 4-4 Node name and host name

9. The next panel shows you a summary of the features that you have chosen to
be installed, as shown in Figure 4-5. Click Next to install the product(s) if you
have no changes.

76 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Figure 4-5 Summary of products selected for installation

10.When the installation is complete, the wizard displays the registration form.
You can register now or deselect the registration form to register later. We
deselected the button. Click Next.

11.Click Finish to close the installation wizard.

12.After the installation completes, the First Steps application should be
launched for you, as shown in Figure 4-6.

 Chapter 4. WebSphere Application Server setup 77

Figure 4-6 WebSphere Application Server - First Steps

To restart the First Steps interface, you can execute the first steps script:

/opt/WebSphere/AppServer/bin/firststeps.sh&

We are going to perform the steps manually so that we know how to execute
them again later. Exit out of first steps.

4.3.2 Getting started
To get started:

1. Start the application. Back on the Linux shell execute the startServer script to
start the application server. Server1 is the name of the configuration directory
of the server you want to start.

/opt/WebSphere/AppServer/bin/startServer.sh server1

You will see the following messages when the server is started:

Server server1 open for e-busines; process id is 18000

78 WebSphere V5 for Linux on zSeries - Connectivity Handbook

2. Explore the sample applications you just installed. Samples are installed by
default. You can point your browser directly to
http://9.12.9.12:9080/WSamples, as shown in Figure 4-7.

Figure 4-7 Samples

The Samples Gallery includes the following samples:

– The Plants by WebSphere application, which demonstrates several J2EE
functions, using an online store that specialized in plant and garden tool
sales.

– Technology samples, which showcase enterprise beans, servlets,
JavaServer Pages technology, message-driven beans, and J2EE
application client.

– The Java Pet Store Application, which demonstrates J2EE technology
using an online pet store.

– The message-driven beans samples demonstrate message-driven beans
receiving messages from the Point-to-Point and Publish Subscribe
messaging models. It also demonstrates Java Message Service (JMS)
inside the client container.

3. Launch the Administrative Console.

 Chapter 4. WebSphere Application Server setup 79

The Administrative Console is a confirmation editor that runs in a Web
browser. It lets you work with application server configuration files encoded in
XML. Changes made using the Administrative Console take effect the next
time you start the application server. Point your browser to:

http://linux11.itso.ibm.com:9090/admin

A login window pops up. Enter a user and click OK. We used the user
ITSOUser. You will now see the WebSphere Application Server’s
Administration Console, as shown in figure Figure 4-8 on page 80.

Figure 4-8 WebSphere Application Server’s Administration Console

4. Start the IBM HTTP server:

/opt/IBMHttpServer/bin/apachectl start

5. Test the HTTP server as shown in Figure 4-9. Point your browser to
http://linux11.itso.ibm.com. You will see the welcome page from the
HTTP server.

80 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Figure 4-9 HTTP home page

6. Test the HTTP server plug-in for the WebSphere Application Server. Point
your browser to http://linux11.itso.ibm.com/WSamples. You will once again
see the samples gallery page (Figure 4-10). The difference is that the request
is now coming from the HTTP server instead of directly from the browser.

 Chapter 4. WebSphere Application Server setup 81

Figure 4-10 The samples gallery page

82 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Chapter 5. CICS J2EE connectors

This chapter describes how we configured WebSphere Application Server to
work with the CICS Transaction Gateway on Linux for zSeries to communicate
with CICS regions on VSE and z/OS.

We describe the following:

� Overview of the test environment
� Setting up the CTG on Linux for zSeries
� Setting up the CICS regions on VSE and z/OS
� Testing the connectivity from Linux for zSeries
� Configuring WebSphere for CICS connections
� Problem determination

5

© Copyright IBM Corp. 2004. All rights reserved. 83

5.1 Overview of the test environment
We had two test scenarios for our CICS connections, one for z/OS and one for
VSE (Figure 5-1). The first thing we need to do is to install the CICS Transaction
Gateway onto our Linux system. After the code is installed, we configured our
CTG connections and tested them with a sample Java application. Finally, we
configured WebSphere Application Server to allow us to communicate with CICS
TS and CICS/VSE®, as shown in Figure 5-2 and Figure 5-3, from the
WebSphere Application Server. For our testing purposes, we used the same
CICS J2EE Trader application for both of these scenarios.

Figure 5-1 Overview of CICS connections to z/OS and VSE

To validate the two scenarious there were minimal unique definitions that we had
to make. In WebSphere, we defined one resource adapter, but created two
different J2C connection factories, one pointing to the z/OS environment and one
pointing to the VSE environment. In the CTG, we defined two server definitions,
one for z/OS and one for VSE. We will describe both scenarios.

5.1.1 CICS connection to z/OS
Figure 5-2 shows the environment for our CICS connection from Linux to z/OS.
We have configured the WebSphere Application Server for Linux for zSeries to
use the CICS resource adapter. We defined a J2C connection factory associated
with the CICS resource adapter that the application references. The J2C
connection factory holds a list of configuration properties, including the JNDI
name and customer properties, such as the the server name defined to the CTG
and the port to which the CTG is listening on. It is through the CICS J2EE
connector definition that we can access the program running on the CICS TS
V2.2 region on z/OS.

Client with a
Web browser

Linux for zSeries
SuSE 7.2 z/OS

CICS

WebSphere
Application

Server
5.0.2

CTG
VSE

CICS

CICS Transaction
Gateway 5.0.1

84 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Figure 5-2 CICS connection to z/OS

5.1.2 CICS connection to VSE
Figure 5-3 shows the environment for our CICS connection from Linux to VSE.
We have configured the WebSphere Application Server for Linux for zSeries to
use the CICS resource adapter. We defined a J2C connection factory associated
with the CICS resource adapter that the application references. The J2C
connection factory holds a list of configuration properties including the JNDI
name and customer properties, such as the the server name defined to the CTG
and the port to which the CTG is listening on. It is through the CICS J2EE
connector definition that we can access the program running on the CICS VSE
region.

Client with a
Web browser

Linux for zSeries
SuSE 7.2

DB2 DB2

z/OS V1.04

CICS TS
2.2

IMS

MQMQ

IMS IMSWebSphere
Application

Server
5.0.2

DB2

IMS

MQ MQ

IMS

CICS Transaction
Gateway 5.0.1

IMS

DB2

CTG

 Chapter 5. CICS J2EE connectors 85

Figure 5-3 CICS connection to VSE

5.2 Setting up the CTG on Linux for zSeries
The CICS Transaction Gateway (CICS TG) is a set of client and server software
components that allow a Java application to invoke services in a CICS region.
The Java application can be an applet, a servlet, an enterprise bean, or any other
Java application. The CTG is suported for use with CICS/ESA® V4.1, CICS/VSE
2.3 and CICS TS for VSE/VSE/ESA V1,but only if the CTG runs on a distributed
platform. For use with CICS TS V1 for OS/390 or CICS TS V2 for z/OS, the CTG
can run on z/OS, OS/390, or a distributred platform. There are many ways to set
up the CICS TG for communication, which are thoroughly described in CICS
Transaction Gateway V5.0: Unix Administration, SC34-6190, and in the redbook
CICS Transaction Gateway V5 The WebSphere Connector for CICS,
SG24-6133. We are going to describe one of the configurations here that we
used to test our CICS Trader application.

5.2.1 Installing the CTG on Linux for zSeries
The first thing we need to do is to install the CICS Transaction Gateway onto our
Linux system. After the code is installed, we can configure our connections and
test them with a sample Java application. Finally, we can test the J2EE resource
adapter using the CICS Trader application. Following are the steps we needed to
take to install the CTG:

1. Log in as root.

Client with a
Web browser

Linux for zSeries
SuSE 7.2

VSE/ESA 2.7

CICS
(Trader)

MQ

VSAM

CTG

CICS Transaction
Gateway 5.0.1

Note:
Only the CTG
connection
accesses the
Trader
application

CICS
(SOAP Demo)

WebSphere
Application

Server
5.0.2

Trader
App.

SOAP

VCC VCS

MQ

DB2 DB2

VRC
VSAM

Redirector
Server

86 WebSphere V5 for Linux on zSeries - Connectivity Handbook

2. The CICS Transaction Gateway is distributed as a compressed tar file
containing an executable script file. When the file is uncompressed and
untarred, there will be a customization guide (in PDF format), an rpm file, a list
of changes for this edition (in various formats), and two zip files. Uncompress
and untar the files:

gunzip c51t3mlCTG502.tar.Z
tar xvf c51t3mlCTG502.tar

3. Install the CICS Transaction Gateway package with the rpm command. This
will create a directory, /opt/ctg. In that directory there is a command,
ctginstall, which will be used to install the CICS Transaction Gateway.

rpm -ivh ctg-5.0.1-1.s390.rpm

4. Start the installation of the CICS Transaction Gateway by entering:

ctginstall

5. Read and accept the license agreement (Figure 5-4) to continue the
installation. If the agreement does not display properly, restart the installation
using the command ctginstall 40. This sets your screen width to 40
characters during installation.

To view the license agreement after installation, issue the command
ctgbrowse. If the agreement does not display properly, issue the command
ctgbrowse 40.

 Chapter 5. CICS J2EE connectors 87

Figure 5-4 CTG license agreement

5.2.2 Configuring the CTG on Linux for zSeries
We needed to define two server definitions in the CTG that we would use to
connect to CICS TS and CICS/VSE. We configure the CICS Transaction
Gateway to define the CICS server running on the z/OS, followed by configuring
the CTG to define the CICS server running on VSE. Here are the steps that we
took:

1. Enter the ctgcfg command. A panel will appear asking if you wish to use the
Task Guide for configuration, as shown in Figure 5-5. Click Yes. A
Configuration Taskguide information panel will appear. Click Next.

88 WebSphere V5 for Linux on zSeries - Connectivity Handbook

.

Figure 5-5 CICS Transaction Gateway Task Guide

2. The Task Guide will ask if you wish to create a CICS server definition for the
clients to connect to. The default is Yes. Click Next.

We defined the CICS TS definitions first.

3. You need to name your CICS server definition. Although this name is
arbitrary, this will be the server name that is used when testing the Java
application and that will be referenced by the WebSphere Application Server.
We chose to use the same name as the name of our CICS TS region,
SCSCERW3, as shown in Figure 5-6 on page 89. Click Next.

Figure 5-6 CICS Server connection name for z/OS

4. Select the protocol to use to connect to the CICS server of either TCP/IP or
TCP62, as shown in Figure 5-7, and click Next. We chose TCP/IP, as we are
connecting the directory to a CICS TS server that has the TCP/IP capability. A
TCP/IP configuration is straightforward to configure, flowing over an IP

 Chapter 5. CICS J2EE connectors 89

network, and does not incur the protocol conversion overhead of TCP62,
eliminating the need for Anynet on the z/OS side.

Figure 5-7 CTG protocol selection

5. Enter the host name or IP address and the port number that CICS TS is
listening on, as shown in Figure 5-8, and click Next. In our case, the first
server that we defined was for the CICS TS V2.2 region on z/OS. Remember,
our goal in this redbook is not to test all of the potential connection
possibilities in the CTG, but to test the J2EE resource adapters from
WebSphere Application Server.

90 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Figure 5-8 CICS host and port number selection for z/OS

6. The taskguide then asks if you wish to define another server. If you have no
other servers to define, you may select No. We selected Yes since we also
wanted to define the CICS VSE server definition at this time. Click Next. If
you selected No, you may proceed to step 12 on page 93. Since we had
another server to define, we were presented with the CICS Server
Connection panel again.

Now we need to define our CICS/VSE server definition. We will be presented
with the same panels as we were for the previous z/OS definitions. This time,
however, we will enter the information for our VSE environment.

7. We needed to enter the name of the CICS/VSE server definition. Although
this name is arbitrary, this will be the server name that is used when testing
the Java application and that will be referenced by the WebSphere
Application Server. We chose to use the same name as the name of our
CICS/VSE region, VSE270, as shown in Figure 5-9. Click Next.

 Chapter 5. CICS J2EE connectors 91

Figure 5-9 CICS Server connection for VSE

8. You are asked to select the protocol to use to connect to the CICS/VSE
server of either TCP/IP or TCP62. Chose TCP/IP and click Next.

9. Enter the host name or IP address and the port number that CICS/VSE is
listening on, as shown in Figure 5-10, and click Next.

92 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Figure 5-10 CICS host and port number selection for VSE

10.The Task Guide then asks if you wish to define another server. Since we did
not have any more servers to define, we selected No and clicked Next.

11.You are asked which protocols you would like to use with the Java Gateway.
We chose TCP and clicked Next.

12.You will see a panel that says Finished. Click Finish.

Congratulations. You have successfully defined two CICS server definitions. At
this point, the IBM CICS Transaction Gateway Confiruration Tool shows all of the
Server definitions that the client can connect to and the protocols that the CTG
can use, as shown in Figure 5-11 on page 94.

 Chapter 5. CICS J2EE connectors 93

Figure 5-11 CTG definitions on the Configuration Tool

You should save your configuration file. Click File, then Save. The default is in
CTG.INI, which resides in the /opt/ctg/bin directory (Example 5-1).

Example 5-1 Example CTG.INI file

SECTION GATEWAY
closetimeout=10000
ecigenericreplies=off
uowvalidation=on
msgqualvalidation=on
connectionlogging=off
initconnect=1
initworker=1
maxconnect=100
maxworker=100
noinput=off

nonames=on
notime=off
workertimeout=10000

ENDSECTION

SECTION CLIENT = *

94 WebSphere V5 for Linux on zSeries - Connectivity Handbook

CPIPADDRESSMASK=00000000
LOGFILE=CICSCLI.LOG
TCP62PORT=0
MAXBUFFERSIZE=32
MAXREQUESTS=256
MAXSERVERS=10
MAXWRAPSIZE=0
REMOTENODEINACTIVITYPOLLINTERVAL=60
SRVRETRYINTERVAL=60
TERMINALEXIT=EXIT
TRACEFILE=CICSCLI.BIN

ENDSECTION

SECTION SERVER = SCSCERW3
DESCRIPTION=CICS TS on z/OS
UPPERCASESECURITY=N
PROTOCOL=TCPIP
NETNAME=wtsc52.itso.ibm.com
PORT=8019
CONNECTTIMEOUT=30
TCPKEEPALIVE=N

ENDSECTION

SECTION SERVER = VSE270
DESCRIPTION=CICS on VSE
UPPERCASESECURITY=N
PROTOCOL=TCPIP
NETNAME=9.156.175.131
PORT=1435
CONNECTTIMEOUT=30
TCPKEEPALIVE=N

ENDSECTION

SECTION DRIVER = TCPIP
DRIVERNAME=CCLIBMIP

ENDSECTION

You may use the default or save it to another file. We chose to use the default
name, as shown in Figure 5-12.

 Chapter 5. CICS J2EE connectors 95

Figure 5-12 Save the CTG configuration information

You may now exit the configuration tool.

5.3 Setting up the CICS regions on z/OS and VSE
ECI over TCP/IP is a communications mechanism that provides the ability to
connect from the CTG on Linux for zSeries to a CICS region over an IP network.
It utilizes the support for ECI over TCPIP in CICS TS for z/OS V2.2 and CICS TS
for VSE/ESA V1.1.

We will discuss the necesary TCP/IP definitions in CICS TS for zOS and CICS
TS for VSE for our CTG on Linux for zSeries connection.

5.3.1 Setting up the CICS TS for z/OS environment
Before the CTG on Linux could connect to the CICS TS application on z/OS we
needed to make sure that our CICS TS environment was configured.

96 WebSphere V5 for Linux on zSeries - Connectivity Handbook

TCP/IP definitions for CICS TS for z/OS
On z/OS, we have a CICS TS 2.2 region called SCSCERW3. To configure the
CICS TCP/IP listener to handle ECI requests, we first had to confirm that the
following definitions were installed into SCSCERW3:

� SIT parameter: TCPIP=YES
� CICS-supplied Transaction CIEP in group DFHIPECI installed
� CICS-supplied Program DFHIEP in group DFHIPECI installed

We then had to create a TCP/IP listener to CICS. We did this by defining a
TCPIPSERVICE called ERW3TCP in the group ERW3GRP with the following
definitions with the CEDA DEF TCPIPS(ERW3) GROUP(ERW3GRP) command:

� The port number on which the TCP/IP service is listening (8019)
� The protocol of the service (ECI)
� The transaction that handles incoming ECI requests (CIEP)
� The level of Attach-time security required for TCP/IP connections to CICS

Clients (local or verify). We used local, as we were in a test environment.

These definitions are shown in Figure 5-13.

Figure 5-13 TCP/IP service definition

We installed the TCPIPService with the following command:

CEDA INS TCPIPSERVICE(ERW3TCP) GROUP(ERW3GRP)

We then used the CICS CEMT I TCPIPS command to display the active service.

 Chapter 5. CICS J2EE connectors 97

Application definitions for CICS TS for z/OS
We defined two COBOL programs in SCSCERW3. One was called EC01, which
was used for our simple ECI connection test from our Linux system. The other
was called TRADERBL, which was used for the J2EE CICS Trader application
running on WebSphere Application Server for Linux for zSeries.

z/OS verification commands
After we configured the definitions is CICS, we wanted to verify that they were
being picked up by the z/OS system. We issued the netstat -a command to
verify that TCP/IP is listening on that PORT and looked for the CICS definition,
as shown in Figure 5-14.

Figure 5-14 netstat command

5.3.2 Setting up the CICS TS for VSE environment
On VSE CICS TS runs in a partition. There ia a COBOL program called
TRADERBL defined to this CICS. This program will be called by the Trader
application running on the WebSphere Application Server for Linux on zSeries.
The connection to CICS TS is established via the CTG and TCP/IP on the Linux
side addressing the port CICS TS is listening on.

Before the CTG on Linux can connect to the CICS TS application on VSE/ESA
we needed to make sure that our CICS TS environment supports TCP
connections.

TCP/IP definitions for CICS TS for VSE
To configure the CICS TCP/IP listener to handle ECI requests, we first have to
make sure the following definitions are active for the CICS TS:

� SIT parameter: TCPIP=YES
� CICS-supplied Transaction CIEP in group DFHIPECI is installed
� CICS-supplied Program DFHIEP in group DFHIPECI is installed

We then have to create a TCP/IP listener to CICS. We do this by defining a
TCPIPSERVICE called ECI in group CTG. The following command brings up the
following screen, which you have to complete with additional information.

CEDA DEF TCPIPS(ECI) GROUP(CTG)

Example 5-2 Define the IP listener for the CTG

OVERTYPE TO MODIFY CICS RELEASE = 0411
 CEDA ALter TCpipservice(ECI)

98 WebSphere V5 for Linux on zSeries - Connectivity Handbook

 TCpipservice : ECI
 Group : CTG
 Description ==>
 Urm ==>
 Portnumber ==> 01435 1-65535
 Certificate ==>
 STatus ==> Open Open | Closed
 SSl ==> No Yes | No | Clientauth
 Attachsec ==> Verify Local | Verify
 TRansaction ==> CIEP
 Backlog ==> 00005 0-32767
 TSqprefix ==>
 Ipaddress ==>
 SOcketclose ==> No No | 0-240000

SYSID=CIC5 APPLID=A0006CI2

 PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

The parameters are:

TCPipservice ECI: This is only a logical name, and can be any other
8-character string.

Group CTG: The name of the group can be new or an already
exicting group.

Description Put in whatever makes sence.

Urm Leave it free.

Portnumber 1435: The port that the Linux MQ must connect to can be
any free port.

STatus Open: The port will be serviced immediately after CICS
starts.

SSl No we do not use Secured Socket Layer.

Attachsec Verify that incomming requests have to provide user ID
and Password.

TRansaction CIEP: This transaction code will invoke the program
DFHIPECI to handle the request.

Backlog 0005: The max number of unserviced requests.

The rest of the parms you can leave with the default.

We install the new group containing the TCPIPService with the following
command:

CEDA INS TCPIPSERVICE(ECI) GROUP(CTG)

 Chapter 5. CICS J2EE connectors 99

Do not forget to add the new group to the CICS TS configuration list.

We then use the CEMT I TCPIPS command to display the active service.

Example 5-3 CEMT I TCPIPS

I TCPIPS
 STATUS: RESULTS - OVERTYPE TO MODIFY
 Tcpips(ECI) Bac(00005) Con(0000) Por(01435) Ope
 Tra(CIEP) Ipa(9.156.175.132) Wai

In addition we verify that tcp is active with CEMT I TCP.

Example 5-4 CEMT I TCP

I TCP
 STATUS: RESULTS - OVERTYPE TO MODIFY
 Tcp Ope

5.3.3 Testing the CTG to VSE CICS/TS connectivity
The CTG for Linux on zSeries includes some programing examples we can use
to test our environment.

The host-based programs can be found in /opt/ctg/samples/server; see
Example 5-5.

Example 5-5 Host-based program examples

linux11:/opt/ctg/samples/server # ls -l
total 76
drwxr-xr-x 2 root root 4096 Oct 31 14:21 .
drwxr-xr-x 8 root root 4096 Oct 31 14:21 ..
-rw-r--r-- 1 root root 6475 Jul 16 00:01 ec01.ccp
-rw-r--r-- 1 root root 7983 Jul 16 00:01 ec02.ccp
-rw-r--r-- 1 root root 7971 Jul 16 00:01 ep01.ccp
-rw-r--r-- 1 root root 12838 Jul 16 00:01 ep02.ccp
-rw-r--r-- 1 root root 2079 Jul 16 00:01 ep02map.bms
-rw-r--r-- 1 root root 4060 Jul 16 00:01 ep03.ccp
-rw-r--r-- 1 root root 8494 Jul 16 00:01 epiinq.ccs
-rw-r--r-- 1 root root 6449 Jul 16 00:01 mapinq.bms
linux11:/opt/ctg/samples/server #

The Linux-based Java programs can be found in
/opt/ctg/samples/java/com/ibm/ctg/samples/eci; see Example 5-6.

100 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Example 5-6 Java-based ECI program example

linux11: # ls -l
total 96
drwxr-xr-x 2 root root 4096 Nov 20 16:32 .
drwxr-xr-x 7 root root 4096 Nov 19 14:08 ..
-rw-r--r-- 1 root root 18695 Jul 16 00:01 EciA1.java
-rw-r--r-- 1 root root 5184 Nov 19 14:06 EciB1.class
-rw-r--r-- 1 root root 12273 Jul 16 00:01 EciB1.java
-rw-r--r-- 1 root root 22810 Jul 16 00:01 EciB2.java
-rw-r--r-- 1 root root 23944 Jul 16 00:01 EciI1.java
linux11:/opt/ctg/samples/java/com/ibm/ctg/samples/eci #

For testing the ECI interface first upload the host program EC01.CPP to your
VSE system. EC01.CCP is a small CICS COBOL online program. Called by the
Java servlet program EciB1 using ECI, it returns his commarea to the ECI
interface. The commarea is returned to the Java servlet and displayed on the
screen.

First compile and install program EC01 as a CICS online program.

Next complile the Java servlet to do that change to subdirectory
/opt/ctg/samples/java, and compile EciB1.java (see Example 5-7). The new
EciB1.class file is placed in the subdirectory:

/opt/ctg/samples/java/com/ibm/ctg/samples/eci/

Example 5-7 Compile EciB1.java

linux11:/opt/ctg/samples/java # javac ./com/ibm/ctg/samples/eci/EciB1.java
linux11:/opt/ctg/samples/java #

Now we can run our test by starting the servlet. The servlet must be started
exactly from the /opt/ctg/samples/java directory.

Example 5-8 Test ECI connection with host program EC01

linux11:/opt/ctg/samples/java # java com.ibm.ctg.samples.eci.EciB1
CICS Transaction Gateway Basic ECI Sample 1
Usage: java com.ibm.ctg.samples.eci.EciB1 [Gateway URL]
 [Gateway Port Number]
 [SSL Classname]
 [SSL Password]

To enable client tracing, run the sample with the following Java option:
 -Dgateway.T.trace=on

The address of the Gateway has been set to local: Port:2006

 Chapter 5. CICS J2EE connectors 101

CICS Servers Defined:

 1. SCSCERW3 -CICS TCP/IP
 2. VSE260 -
 3. VSE270 -
 4. ERW3REM -Using CTG On z/OS
 5. SCSCERWX -CICS TS on z/OS

Choose Server to connect to, or q to quit:
3

Program EC01 returned with data:-

 Hex:
fffffff2fffffff561fffffff1fffffff161fffffff0fffffff340fffffff2fffffff17afffffff
2fffffff27afffffff0fffffff10
 ASCII text: ??a??a??@??z??z??
linux11:/opt/ctg/samples/java #

Now we disable the CICS program with cemt s prog (EC01) disabled and see
what happens.

Example 5-9 Test ECI connection with host program EC01 disabled

linux11:/opt/ctg/samples/java # java com.ibm.ctg.samples.eci.EciB1
CICS Transaction Gateway Basic ECI Sample 1
Usage: java com.ibm.ctg.samples.eci.EciB1 [Gateway URL]
 [Gateway Port Number]
 [SSL Classname]
 [SSL Password]

To enable client tracing, run the sample with the following Java option:
 -Dgateway.T.trace=on

The address of the Gateway has been set to local: Port:2006

CICS Servers Defined:

 1. SCSCERW3 -CICS TCP/IP
 2. VSE260 -
 3. VSE270 -
 4. ERW3REM -Using CTG On z/OS
 5. SCSCERWX -CICS TS on z/OS

Choose Server to connect to, or q to quit:
3

You are not authorised to run this transaction.

102 WebSphere V5 for Linux on zSeries - Connectivity Handbook

ECI returned: ECI_ERR_TRANSACTION_ABEND
Abend code was AEI0

5.4 Testing the connectivity from Linux for zSeries
After you have installed and configured the CTG on Linux for zSeries and set up
your CICS servers on the host systems for TCP/IP communication, the next step
is to test the communication links between the CICS Transaction Gateway and
your CICS servers.

5.4.1 Testing the connections
Log on to Linux as root and ping the IP address of the image that CICS is running
on:

ping 9.12.6.1 -c2

You should have no packets lost, as shown in Example 5-10.

Example 5-10 Test ping to TCP/IP zOS

linux11:~ # ping 9.12.6.1 -c2
PING 9.12.6.1 (9.12.6.1): 56 data bytes
64 bytes from 9.12.6.1: icmp_seq=0 ttl=63 time=3.003 ms
64 bytes from 9.12.6.1: icmp_seq=1 ttl=63 time=1.175 ms
--- 9.12.6.1 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 1.175/2.089/3.003 ms
linux11:~ #

5.4.2 Creating a simple TestECI program on Linux for zSeries
We found that by testing the connection using a traditional servlet-based
application that only uses the CICS TG ECI Request class to call a program in a
CICS region and invoked by a Linux line command was helpful in assuring that
the connection from the CTG on Linux to the CICS application on VSE or z/OS
was set up correctly. Once we had verified the connection from our simple
connection test, we were able to focus our attention on configuring the
WebSphere connector for CICS.

For testing the connections to CICS TS on both z/OS and on VSE, we used a
Java program called TestECI. This program was designed to allow you to make
calls to CICS via the CTG. It allows you to specify all the relevant call
parameters, and one or more programs to run as an extended LUW. It is a

 Chapter 5. CICS J2EE connectors 103

variation of EciB1.java, which is supplied with the CTG. It sends a simple
commarea over to a program running under CICS. The program, in turn,
received the COMMAREA and returned a date and timestamp. In order to test
the program we did the following:

� We put the following definitions in /etc/profile so that each time the user logs
on to Linux, he will have them in his profile:

export JAVA_HOME=/opt/IBMJava2_s390-131
export CLASSPATH=.:/opt/classes:/opt/ctg/classes/ctgclient.jar:$CLASSPATH
export PATH=/opt/IBMJava2_s390-131/bin:/opt/IBMJava_s390_131/jre/bin:$PATH

� We made a subdirectory under the CTG sample Java directory on Linux to
put our sample Java code in, as the package name used in the application is
com.ibm.ctg.test:

cd /opt/ctg/samples/java/com/ibm/ctg
mkdir test
cd test

� We put the compiled Java code for the TestECI application into this directory:

mv TestECI.class /opt/ctg/samples/java/com/ibm/ctg/test

� We executed the java code, TestECI, from the /opt/ctg/samples/java directory
with the following command:

java com.ibm.ctg.test.TestECI jgate=local: server=SCSCERW3 commarea=Hello
commarealength=100 prog0=SAMPLE1

Where:

java Command used to execute the java program.

com.ibm.ctg.test.TestECI Package Name to execute.

jate Specifies the IP address of the CICS Gateway that
we are using. Since the CTG is on the system we
are running on, we enter local:

Note: You can use the EciB1.java code to validate your connections.
EciB1 is a sample Java program provided with CTG V5 and shows the
basic use of CTG API by querying the Client for a list of available servers
and launching a transaction on the server chosen. It requires a program,
EC01, to be installed on your CICS server. The CICS server must be set
up to return the contents of the commarea as ASCII text. If the code page
of the application is different from the code page of the server, data
conversion must be performed at the server by making use of
CICS-supplied resource conversion capabilities, such as the DFHCNV
macro definitions. This source for the EciB1.java can be found in:

/opt/ctg/samples/java/com/ibm/ctg/samples/eci

104 WebSphere V5 for Linux on zSeries - Connectivity Handbook

server Names the server definition in the CTG.INI file that
we used to describe our connection.

commarea Specifies the contents of the COMMAREA.

commarealength Specifies the length of the COMMAREA.

prog0 Specifies the he name of the program that is being
executed.

Now that we have verified that the communication between a simple java
application on Linux For zSeries using our CTG definition to our CICS TS for
z/OS server is working correctly, we are now ready to configure WebSphere for
the CICS J2EE connector so that we can test our CICS Trader application on our
Linux system.

5.5 Configuring WebSphere for CICS connections
For the WebSphere Application Server to successfully connect to our backend
CICS systems, we needed to make several definitions in the WebSphere
Administrative Console to define the CICS resources that the WebSphere
Application Server will use when executing the CICS J2EE application.

5.5.1 Installing the resource adapter
First we needed to install the CICS ECI Resource Adapter (cicseci.rar). The
CICS Resource Adapter is part of the CTG installation package and resides in
/opt/ctg/deployable. Two resource adapters are provided with the installation of
the CTG: External Call Interface (ECI) and External Presentation Interface (EPI).
For our purposes, we only needed to install the CICS ECI Resource Adapter, as
we are not performing EPI requests in our application. On the WebSphere
Administrative Console, we expanded Resources, clicked Resource Adapters,
selected the node on which we want to install the resource adapter ,and then
clicked Install RAR to start the installation process, as shown on Figure 5-15.

Note: If we used the CTG on z/OS, the jgate would be the IP address of the
z/OS image (that is, 9.12.9.1) without the colon (:), and the server definition
would be the name of the server in the CTG.INI file on the z/OS machine. All
else would be the same.

 Chapter 5. CICS J2EE connectors 105

Figure 5-15 WebSphere for z/OS Administrative Console

On the next panel (Figure 5-16 on page 106), we clicked Server path for our
desired node and typed in the location path on the Linux server where the CICS
RAR resides. We then clicked Next. As mentioned previously, the RAR file is in
the directory /opt/ctg/deployable.

Figure 5-16 Identify the RAR file

Note: The target node cannot be the deployment manager node.

106 WebSphere V5 for Linux on zSeries - Connectivity Handbook

A Resource Adapter configuration panel will be displayed (Figure 5-17 on
page 107). We entered ECIConnector as a name for this resource adapter and a
description and clicked OK.

Figure 5-17 Resource Adapter configuration

This adapter is now displayed as being install on this node (Figure 5-18 on
page 108).

Tip: Resource Adapter Archive (RAR) files can be installed from either of two
locations. The file can be loaded from a path on the local workstation to a
browser or from a path on the server.

We recommend using the RAR file (cicseci.rar) shipped with WSAD.IE. This
file contains a JAR file (cicsecitools.jar) that is not included in the RAR
shipped with CICS Transaction Gateway for z/OS. If you deployed an
application developed with WSAD.IE, which uses WSIF, then this JAR file will
be required.

 Chapter 5. CICS J2EE connectors 107

Figure 5-18 List of installed Resource Adapters

We could have saved our configuration changes at this time but we wanted to
configure a J2C connection factory for the CICS ECI resource adapter.

5.5.2 Configuring a J2C connection factory for z/OS
We clicked the just installed ECIConnector resource adapter to display its
Configuration panel (Figure 5-19 on page 108).

Figure 5-19 CICS Transaction Gateway Configuration pane

108 WebSphere V5 for Linux on zSeries - Connectivity Handbook

We next clicked J2C Connection Factories, as shown in Figure 5-19, at the
bottom of the ECIConnector - Configuration panel to display the J2C Connection
Factories panel (not shown). On this panel we clicked New to open the New
Configuration panel.

On the Resource Adapter → CICS ECI → J2C Connection Factories - New panel
(Figure 5-20 on page 109), we entered CICS ECI Connection Factory as the
name for the factory, and for its JNDI name we entered
itso/cics/eci/j2ee/trader/TraderCICSECICommandCICSECIServiceTraderCICSE
CICommandCICSECIPort. This was the name that the CICS J2EE application,
called TraderCICSEAR, used.

Figure 5-20 CICS local general properties

We then clicked Apply to display Additional Properties at the bottom of the panel
(Figure 5-21 on page 110).

Important: There are two types of CICS ECI J2C connection factories. One
directly accesses a CICS region using XCF (LOCAL), which can be used if
WebSphere Application Server is running on the same z/OS as CICS, and the
other accesses a CICS Transaction Gateway task using TCP/IP (REMOTE).

 Chapter 5. CICS J2EE connectors 109

Figure 5-21 J2C connection factory Additional Properties panel

We clicked Custom Properties to display the Custom Properties panel for this
connection factory (Figure 5-22 on page 110). On this panel we entered a
ServerName (SCSCERW3), the ConnectionURL (local:), and the PortNumber.

Figure 5-22 CICS J2C Custom Properties panel

Note: Component-managed Authentication Alias is used to provide a user
ID/password when the application’s res-auth deployment descriptor specifies
Application and there is no explicit user ID/password provided on the
connection request.

Container-managed Authentication Alias is used to provide a user
ID/password when the application’s res-auth deployment descriptor specifies
Container.

110 WebSphere V5 for Linux on zSeries - Connectivity Handbook

The properties are:

� ConnectionURL - Must be set to local: for a local connection factory.

� ServerName - The name of the CICS server to which CTG will connect for all
interactions for this connection factory. This is the name of the server
definition in the CTG.INI file.

� PortNumber - We are using the default CTG port number of 2006.

� TraceLevel:

– 0 - No tracing or logging occurs.

– 1 - Only errors and exceptions are logged.

– 2 - Errors and exceptions plus the entry and exit of importmant methods
are logged.

– 3 - Errors and exceptions, the entry and exit of importmant methods, and
the contents of buffers sent and received are logged.

� TranName - The name of the CICS transaction under which the target
application program will run. This does not affect the name of the transaction
under which the mirror program is initially started.

� Userid - A default user ID to be used for this connection if no other is
provided.

� Password - A password to be used with the above default user ID.

Figure 5-23 List of Installed J2C connection factories

After this step we saved our changes in WebSphere.

Tip: If you need to add additional J2C connection factories you can click J2C
Connection Factories at the top of the panel to redisplay the list of J2C
connection factories (Figure 5-23 on page 111) configured for this adapter and
repeat this process; otherwise, save the changes.

 Chapter 5. CICS J2EE connectors 111

5.5.3 Configuring a J2C connection factory for VSE
This section shows the steps to define a second J2C connection factory to
WebSphere, which is used to connect to the VSE CICS. We added this
connection factory to the already defined ECI resource adapter.

1. Click Resources → Resource Adapters.

2. Click the already defined ECI resource adapter.

3. Click J2C Connection Factories.

4. Add a new connection factory with the follwing properties (see below figure).
Then click Apply.

5. Scroll down and click J2C Authentication Entries.

112 WebSphere V5 for Linux on zSeries - Connectivity Handbook

6. Add a new entry specifying a valid VSE user ID and its password.

7. In the connection factory, select this J2C authentication entry for
component-managed and container-managed authentication alias. Click
Apply.

8. Scroll down and click Custom Properties.

Note: Specifying a value for container-managed authentication is not
necessary, because only the component-managed authentication entry is
used to log on to VSE, but WebSphere issues warnings when it is not
specified. So we used the same entry for both definitions.

 Chapter 5. CICS J2EE connectors 113

9. Enter the following values (see figure below).

10.Save your definitions. We had to restart WebSphere at this point to make the
changes active.

5.5.4 Deploying the application in WebSphere
The JNDI name specified in the application needed to be resolved to a JNDI
name of one of our J2C connection factories.

During the installation of the TraderCICS application, a panel was presented that
listed the JNDI names found in the application. Selecting the pull-down displayed
a list of the available J2C connection factories. We selected the desired factory
and the desired modules and clicked Apply.

Note: In our scenario we had to specify local: for the connection URL.
Entering the IP address of the Linux system did not work.

114 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Figure 5-24 Map resource references to resources

We then continued with the installation and successfully executed the
application.

5.5.5 Implementing application security in WebSphere
Each application that accesses a J2C resource has a resource deployment
descriptor (res-auth) that determines the authentication behavior when
accessing the resource. There are two options:

� Container authentication

When container authentication is specified, the user ID and password used
on the connection are provided by the container. The user ID and password
combination is provided to the container by the J2C connection factory in the
Container-managed Authentication Alias entry in the Configuration - General
Properties panel of the J2C connection factory.

� Application authentication

When application authentication is specified the user ID and password used
on the connection are provided explicitly by the application or by the J2C
connection factory in the Component-managed Authentication Alias entry in
the Configuration - General Properties panel of the J2C connection factory.

We wanted the application to provide the user ID and password, so we change
the authentication deployment descriptor from container to application.

Tip: The J2C connection factory can be modified later without re-installing the
application.

 Chapter 5. CICS J2EE connectors 115

5.6 Problem determination
To perform problem determination we recommend enabling the following
WebSphere traces:

� com.ibm.ejs.j2c.*=all=enabled
� com.ibm.connector2.*=all=enabled

And setting the trace level in the J2C connection factory custom property to 3.

Figure 5-25 Diagnostic traces

5.6.1 Common errors
The following are some common errors:

� CTG9630E: IOException occurred in communication with CICS.

– Explanation: A configuration error has ocurred.

– Usual cause: Review the JNI trace for the root cause. Some possibilities
are:

• RRS register return code 0x300 - CTG has not been properly
configured to use RRS.

• EXCI reason code 403 - CTG is unable to contact the target CICS
server because of an invalid pipe name.

� CTG9631E: Error occurred during interaction with CICS. Error
Code=ECI_ERR_NO_CICS minor code: 0 completed:

– Explanation: CTG is unable to contact the target CICS server.

116 WebSphere V5 for Linux on zSeries - Connectivity Handbook

– Usual cause: EXCI reason code 203 - the target CICS server is not active
or has not opened IRC communicatoins.

CTG9631E and AZI4 are typically the same problem:

� AZI4:

– Explanation: An error occured when executing a program on CICS.
Although the message and codes book says that IRC has not been
enabled, we found that an AZI4 presented to us on LINUX corresponds to
ECI_ERR_NO_CICS.

• Check the TCPIPServer and make sure it is open.

• Check the TCPIP in z/OS and make sure it is listening on that port.
Possibly recycle the TCPIPService in CICS.

• Make sure your port in WebSphere (or line command) when executing
the program uses the correct port in CICS or the CTG.

• Make sure the port you specified in the CTG uses the correct PORT.

� CTG9631E: Error occurred during interaction with CICS. Error
Code=ECI_ERR_SECURITY_ERROR.

– Explanation: An error occur either validating a user ID, or a RACF®
authorization failure has occurred.

– Usual cause: Review the JNI trace for the root error. Some possibilities
are:

• EXCI reason code 423 - RACF surrogate checking has failed.

• RACF return code 143 - The user ID is unknown or not defined to
RACF or does not have an OMVS RACF segment.

� Return code - 22:

Explanation: The connection to the gateway was successful, however, the
program does not exist. See Example 5-26 on page 118.

� Hang after connect to gateway message:

– Explanation: The port of the remote gateway cannot be found.

– Check you port definitions.

� Return code - 3:

Explanation: The server definition that you used does not exist.

 Chapter 5. CICS J2EE connectors 117

Figure 5-26 Example of TestECI or EciB1 test invocation

For more information on the CTG you can refer to the following documentation:

� Chapters 5 and 10 of CICS Transaction Gateway V5 The WebSphere
Connector for CICS, SG24-6133

� CICS Transaction Gateway V5.0: Unix Administration, SC34-6190

� CICS TS V2.2 External Interfaces Guide, SC34-6006

� UNIX System Services Messages and Codes, SA22-7807

118 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Chapter 6. Using SOAP to
communicate with CICS

Simple Object Access Protocol (SOAP) for CICS is an XML-based connectivity
solution that enables CICS applications to provide and request services
independently of platform, environment, application language or programming
model.

This chapter gives an overview of SOAP support in CICS TS 2.2 for z/OS and
CICS TS 1.1 for VSE/ESA. It also describes an implementation example of a
stand-alone Java application using SOAP to access CICS TS 1.1 on VSE/ESA.

We discuss the following:

� SOAP overview

� Configuring CICS on VSE for SOAP support

� Compiling the SOAP service on VSE

� Testing the SOAP communication

� Writing your own SOAP programs on VSE

� Considerations on using SOAP in WebSphere

6

© Copyright IBM Corp. 2004. All rights reserved. 119

6.1 SOAP overview
The SOAP for CICS feature on z/OS and VSE/ESA provides a mechanism that
allows CICS applications, written in any supported programming language, to
communicate via SOAP. Transports are provided over Hypertext Transfer
Protocol (HTTP) and WebSphere MQ (z/OS only). Both inbound and outbound
function is provided. The implementation supports SOAP 1.1.

On z/OS, the SOAP for CICS feature delivers an enhanced level of the function
already available as a Technology Preview in SupportPac CA1M, as a fully
supported product for use in production.

On VSE/ESA 2.7, the SOAP for CICS feature is part of the operating system.
This includes:

� A SOAP server that is running in CICS on the basis of CICS Web Support
(CWS). It allows to call a WebService that is implemented as a CICS program
from any kind of WebService client (for example Apache, AXIS, Microsoft®
.Net (C#), and so on).

� A SOAP client that can be used from a CICS program to invoke a
WebService that is running on any kind of WebService provider (for example
WebSphere with Apache or AXIS, and so on).

Besides the SOAP client and server parts, there is an XML parser, which can
also be used in user written CICS programs.

Figure 6-1 shows the SOAP scenario.

Figure 6-1 Using SOAP to communicate with CICS

Linux z/OS or VSE

Data

SOAP
Client

CICS

SOAP
Service

CICS
App.

Java
Program

CWS

120 WebSphere V5 for Linux on zSeries - Connectivity Handbook

In this scenario, a stand-alone Java program uses SOAP-related class libraries
to call a CICS application on the backend host, which can be either z/OS or VSE.
The call goes over TCP/IP to a CICS Web Support (CWS) based listener, which
calls the SOAP service, which in turn calls a CICS application.

The SOAP for CICS feature enables existing or new CICS applications, written in
any supported programming language, to communicate outside of the CICS
environment via the Simple Object Access Protocol (SOAP). Message transport
is provided over Hypertext Transfer Protocol (HTTP), using functions of CICS
Web Support (CWS), and includes support for Secure Sockets Layer (SSL) via
HTTPS. Message transport is also provided over WebSphere MQ (z/OS only).
The SOAP protocol is supported at the Version 1.1 level.

The SOAP for CICS feature enables a user-written application layer to map the
XML-based SOAP message into a COMMAREA, thus enabling access to
COMMAREA-based applications using SOAP messages. SOAP for CICS not
only permits existing CICS COMMAREA-based applications to be driven via
XML-formatted SOAP messages, it can also be used for new applications driven
via SOAP messages, and enables CICS applications to issue outbound SOAP
messages targeted via SOAP or XML messaging to remote applications.

This feature will help to maximize the reuse of enterprise assets via standard
interfaces, enhancing the value of existing applications in the CICS environment.

More details about SOAP can be found in the WebSphere Version 5 Web
Services Handbook, SG24-6891.

6.1.1 SOAP on z/OS
SOAP for CICS requires CICS Transaction Server Version 2.2 or 2.3, and has
the same hardware requirements as the base product. Please refer to IBM
Software Announcements 201-354 and 203-296.

6.1.2 SOAP on VSE
SOAP for CICS on VSE requires CICS Transaction Server Version 1.1 and
VSE/ESA 2.7 or VSE/ESA 2.6 with PTF UQ81044.

On the VSE side, the SOAP server is based on CICS Web Support (CWS). A
detailed description of how to activate the SOAP server and an overview of the
IBM-provided SOAP sample is contained in the manual VSE/ESA e-business
Connectors User’s Guide, SC33-6719. The VSE Connector Client provides the
same information as the online documentation, including the source code of all

 Chapter 6. Using SOAP to communicate with CICS 121

Java and C-sources, compile and link jobs. You can download the latest version
of the VSE Connector Client also from:

http://www-1.ibm.com/servers/eserver/zseries/os/vse/support/vseconn/

The following software prerequisites must be met in order to get SOAP on VSE
to run:

� If running VSE 2.6, the following VSE PTF must be applied:

APAR PQ78973/PTF UQ81044

� If running VSE 2.6 or VSE 2.7, the following CICS PTFs must be applied:

– APAR PQ51395/PTF UQ57278
– APAR PQ60964/PTF UQ75840
– APAR PQ73753/PTF UQ76951

6.2 Configuring CICS on VSE for SOAP support
CICS has to be configured in order to accept incoming TCP/IP traffic destined for
a SOAP server running under the control of CICS. This section describes the
necessary setup steps on VSE. The z/OS-related configuration is similar.

The following configuration steps have to be done:

1. Specify TCP/IP=YES in CICS setup.
2. Define the symbolic name of the VSE system in TCP/IP.
3. Define a TCP/IP service.
4. Activate the ASCII to EBCDIC converter.

The following sections describe each of these steps.

6.2.1 Step 1: Specify TCP/IP=YES in CICS setup
Make sure that TCPIP=YES is defined either in your DFHSIT or in your CICS
startup job.

Example 6-1 Specify TCPIP=YES in DFHSIT or CICS startup job

// EXEC DFHSIP,SIZE=DFHSIP,PARM='APPLID=&XAPPLF2.,START=&XMODEF2.,EDSAL*
 IM=&ELIM.,SI',DSPACE=2M,OS390
SIT=SP,STATRCD=OFF,MXT=20,NEWSIT=YES,TCPIP=YES,

Put the LIBDEF to your VSE library, where you have cataloged the SOAP
application, into the CICS job if necessary.

122 WebSphere V5 for Linux on zSeries - Connectivity Handbook

http://www-1.ibm.com/servers/eserver/zseries/os/vse/support/vseconn/

Example 6-2 Make your private VSE library known to CICS

* $$ JOB JNM=CICSICCF,CLASS=2,DISP=L
* $$ LST CLASS=A,DISP=D,RBS=100
// JOB CICSICCF CICS/ICCF STARTUP
// OPTION SADUMP=5
// OPTION SYSDUMPC
// UPSI 11100000
// LIBDEF *,SEARCH=(PRD2.CONFIG,PRD1.BASED,PRD1.BASE,PRD2.PROD, X

PRD2.SCEEBASD,PRD2.SCEEBASE,PRD2.DBASE,PRD1.MACLIBD, X
PRD1.MACLIB,PRIMARY.JSCH),PERM

...

6.2.2 Step 2: Define the symbolic name of VSE to TCP/IP
You have to make the symbolic name of your VSE system known to CICS,
because CICS internally references this name when starting its TCP/IP service.
You can make this definition either online at the VSE console via the TCP/IP
command.

DEFINE NAME,NAME=VSEDEMO,IPADDR=9.152.82.82

Or put this statement in your TCP/IP startup member (IPINITxx.L).

Another way of enabling CICS to look up the symbolic name of the VSE system
is to have the symbolic name defined in a name server. In this case you would
just make this name server known to TCP/IP for VSE with the TCP/IP command:

SET DNS1=ip addr or name of name server

6.2.3 Step 3: Define the TCP/IP service
The SOAP server needs a TCP/IP listener in order to receive data from a client.
This listener is defined as a TCP/IP service as shown in Example 6-3.

Example 6-3 Define the TCP/IP service to CICS

CEDA DEFine TCpipservice()
 TCpipservice ==> SOAP
 Group ==> VSESPG
 Description ==> TCP/IP SERVICE FOR SOAP SERVER
 Urm ==> DFHWBADX
 Portnumber ==> 01080 1-65535
 Certificate ==>
 STatus ==> Open Open | Closed
 SSl ==> No Yes | No | Clientauth
 Attachsec ==> Local Local | Verify
 TRansaction ==> CWXN

 Chapter 6. Using SOAP to communicate with CICS 123

 Backlog ==> 00001 0-32767
 TSqprefix ==>
 Ipaddress ==>
 SOcketclose ==> No No | 0-240000

Now check if the TCP/IP service is open, as shown in Example 6-4.

Example 6-4 Check if TCP/IP is open

msg f2,data=cemt i tcpip
AR 0015 1I40I READY
F2 0112
 Tcpip
 Openstatus(Open)
 RESPONSE: NORMAL TIME: 22.56.52 DATE: 10.30.03
 SYSID=CIC1 APPLID=DBDCCICS

6.2.4 Step 4: Activate the ASCII to EBCDIC converter
An ASCII to EBCDIC converter is provided in ICCF library 59 as skeleton
DFHCNV. It is used by CICS Web Support (CWS) to convert incoming XML data
from ASCII to EBCDIC and outgoing data from EBCDIC to ASCII.

Just submit the skeleton DFHCNV, which catalogs a VSE phase DFHCNVBA
into PRD2.CONFIG to be used as the character conversion table.

6.3 Compiling the SOAP service on VSE
Before testing the SOAP communication you have to compile the IBM-provided
SOAP server sample. The source code is included in the VSE Connector Client.
See the subdirectory /samples/soap.

The source code for the sample SOAP service consists of the following files:

� GETQUOTE.C, the program code
� IESSOAPH.H, the header file

The header file is shipped with VSE in PRD1.BASE.

For the complete source code of both files, refer to “IBM-provided SOAP service
C program” on page 325 and “IBM-provided include file for SOAP” on page 330.

To compile and link the C source, you can use the following two jobs.

124 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Compile job
Example 6-5 shows the compile job you can use for compiling the SOAP service.
Replace the placeholder XXXX with your VSE sublibrary, where you want to
catalog the phase. If it is a private library, you have to put it into the LIBDEF of
the CICS startup job.

Example 6-5 Compile job for IBM-provided SOAP service

* $$ JOB JNM=GETQUOTE,DISP=D,CLASS=4
* $$ LST DISP=D,CLASS=Q,PRI=3
* $$ PUN DISP=I,DEST=*,PRI=9,CLASS=4
// JOB GETQUOTE CICS PRE TRANSLATE GETQUOTE
// ASSGN SYSIPT,SYSRDR
* ***
// EXEC IESINSRT
$ $$ LST DISP=D,CLASS=Q,PRI=3
$ $$ PUN DISP=I,DEST=*,PRI=9,CLASS=4
// JOB GETQUOTE COMPILE GETQUOTE
// ASSGN SYSIPT,SYSRDR
* ***
// EXEC IESINSRT
$ $$ LST DISP=D,CLASS=Q,PRI=3
// JOB GETQUOTE CATALOG OBJECT GETQUOTE
// LIBDEF *,SEARCH=(PRD2.SCEEBASE,PRD2.DBASE,PRIMARY.XXXX)
// EXEC LIBR
 ACCESS SUBLIB=PRIMARY.XXXX
 CATALOG GETQUOTE.OBJ REPLACE=YES
$ $$ END
* ***
// ON $CANCEL OR $ABEND GOTO ENDJ3
// LIBDEF *,SEARCH=(PRD2.SCEEBASE,PRD2.DBASE,PRIMARY.XXXX)
// OPTION ERRS,SXREF,SYM,CATAL,DECK,LISTX
// EXEC EDCCOMP,SIZE=EDCCOMP,PARM='LONGNAME SS SOURCE RENT TEST'
* $$ END
* ***
// ON $CANCEL OR $ABEND GOTO ENDJ2
// LIBDEF *,SEARCH=(PRD2.SCEEBASE,PRD2.DBASE,PRIMARY.XXXX)
// OPTION ERRS,SYM,DECK,NOXREF
// EXEC DFHEDP1$,SIZE=512K,PARM='SP'
* $$ SLI MEM=GETQUOTE.C,S=PRIMARY.XXXX
/*
/. ENDJ2
* ***
// EXEC IESINSRT
/*
/. ENDJ3
* ***
// EXEC IESINSRT
/*

 Chapter 6. Using SOAP to communicate with CICS 125

#&
$ $$ EOJ
$ $$ END
* ***
#&
$ $$ EOJ
* $$ END
* ***
/&
* $$ EOJ

Link job
Example 6-6 shows the link job you can use to link the IBM-provided SOAP
service. Replace the placeholder XXXX with your VSE sub library, where you
want to catalog the phase. If it is a private library, you have to put it into the
LIBDEF of the CICS startup job.

Example 6-6 Link job for the IBM-provided SOAP sample

* $$ JOB JNM=LINKGETQ,DISP=D,CLASS=4
* $$ LST DISP=D,CLASS=Q,PRI=3
// JOB LINKGETQ
// LIBDEF *,SEARCH=(PRD2.SCEEBASE,PRIMARY.XXXX)
// LIBDEF PHASE,CATALOG=PRIMARY.XXXX
// OPTION ERRS,SXREF,SYM,CATAL,NODECK,LISTX
 PHASE GETQUOTE,*,SVA
 INCLUDE GETQUOTE
 INCLUDE DFHELII
/*
// EXEC EDCPRLK,SIZE=EDCPRLK,PARM='UPCASE MAP'
/*
// EXEC LNKEDT,SIZE=256K
/*
/&
* $$ EOJ

6.4 Testing the SOAP communication
To test the SOAP communication, you need a SOAP client that uses the SOAP
service on VSE to retrieve some data. The next section shows how to implement
a simple Java client. The Java sample is taken from the following Web site and
has been slightly modified to work with VSE.

http://www.apache.org

126 WebSphere V5 for Linux on zSeries - Connectivity Handbook

http://www.apache.org

In this example, the Java client requests the stock quote of a given company
from the SOAP service running on VSE. The SOAP service is a LE/VSE C
program, which just returns a hard-coded value instead of really accessing a
database or VSAM file.

6.4.1 Software prerequisites for the Java SOAP client
The Java SOAP client program is based on a couple of Java class libraries that
you can download from the Web.

What you need are the following packages:

� soap.jar, which implements the SOAP-related functions. Download this from:

http://xml.apache.org/soap

� activation.jar, which contains the Sun JavaBeans Activation Framework
(JAF). Download thsi from:

http://java.sun.com/products/javabeans/glasgow/jaf.html

� mail.jar, which implements the Sun Java Mail API. Download this from:

http://java.sun.com/products/javamail

� xerces.jar, which implements XML-related functions. Download the latest
Xerces-J-bin package from:

http://xml.apache.org/xerces-j/index.html

6.4.2 Implementing a Java-based SOAP client
The Java SOAP client sample is the popular GetQuote.java sample taken from
the Apache SOAP distribution. You can find the original file in the Apache SOAP
directory soap-2_3_1\samples\stockquote\GetQuote.java.

Only one single line was changed to call the IBM-supplied getQuote SOAP
service.

Example 6-7 IBM-supplied getQuote SOAP service

...
// Build the call.
Call call = new Call ();
call.setTargetObjectURI ("urn:iessoapd:getquote"); // CHANGED
call.setMethodName ("getQuote");
call.setEncodingStyleURI(encodingStyleURI);
Vector params = new Vector ();
params.addElement (new Parameter("symbol", String.class, symbol, null));
call.setParams (params);

 Chapter 6. Using SOAP to communicate with CICS 127

http://xml.apache.org/soap
http://java.sun.com/products/javabeans/glasgow/jaf.html
http://java.sun.com/products/javamail
http://xml.apache.org/xerces-j/index.html

...

You can find the complete source code of the java client in Appendix A,
“VSE/ESA code samples” on page 319.

6.4.3 Running the Java-based SOAP client
The Java client can be run with the following Windows batch file. Here it is
assumed that all necessary jar files are copied to the current directory. The
example calls the CWS service IESSOAPS with parameter “IBM” to get the IBM
stock quote.

Example 6-8 Running the SOAP client

set CLASSPATH=j2ee.jar;soap.jar;xerces.jar;mail.jar;activation.jar;%classpath%
java GetQuote http://9.152.82.82:1080/cics/CWBA/IESSOAPS IBM
pause

On the VSE side, you will see the following output on the operator console when
running the SOAP client (Example 6-9).

Example 6-9 Output on operator console

F2 0103 SSRV: SOAPSERVER called
F2 0103 SSRV: Method = getQuote
F2 0103 SSRV: method getQuote
F2 0103 SSRV: stock symbol = IBM
F2 0103 SSRV: rc = 0
F2 0103 SSRV: SOAPSERVER finished

On the client side, the following output is shown (Example 6-10). The sample has
been slightly modified to show some input parameters on the Java console.

Example 6-10 Client-side output

C:\SOAP\client>set
CLASSPATH=j2ee.jar;soap.jar;xerces.jar;mail.jar;activation.jar;.

C:\SOAP\client>java GetQuote http://9.152.82.82:1080/cics/CWBA/IESSOAPS IBM

url = http://9.152.82.82:1080/cics/CWBA/IESSOAPS
symbol = IBM
80.10

C:\SOAP\client>pause
Press any key to continue . . .

128 WebSphere V5 for Linux on zSeries - Connectivity Handbook

6.5 Writing your own SOAP programs on VSE
There is a detailed description of how to implement a host-based SOAP server
and client in the VSE/ESA e-business Connectors User’s Guide, SC33-6719,
which you can download from:

http://www-1.ibm.com/servers/eserver/zseries/os/vse/support/vseconn/

All referenced coding samples, compile and link jobs are provided with the VSE
Connector Client, which is downloadable from the same Web page.

6.6 Considerations for using SOAP in WebSphere
There is a lot of information about SOAP and how it can be used in a WebSphere
environment in the IBM Redbook WebSphere Version 5 Web Services
Handbook, SG24-6891.

 Chapter 6. Using SOAP to communicate with CICS 129

http://www-1.ibm.com/servers/eserver/zseries/os/vse/support/vseconn/

130 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Chapter 7. DB2 connectors

This chapter describes how to run a J2EE application on Linux for zSeries using
DB2 connectors to access data on DB2 for z/OS and DB2 for VSE/ESA.

We describe the following:

� DB2 Connect scenario
� Installing DB2 Connect V8.1
� Customizing WebSphere Application Server for DB2 Connect
� Deploying TraderDB in WebSphere Application Server

7

© Copyright IBM Corp. 2004. All rights reserved. 131

7.1 DB2 Connect scenario
Figure 7-1 shows the DB2 Connect scenario with z/OS and VSE/ESA.

Figure 7-1 DB2 connect overview

You see the DB2 Connect component on Linux interfacing to the WebSphere
Application Server on the left side. On the right side two database connections
using TCP/IP are defined for data access, one for DB2 on z/OS and the other for
DB2 on VSE/ESA. DB2 Connect uses the Distributed Relational Database
Access (DRDA®) protocol.

7.2 Installing DB2 Connect V8.1
IBM DB2 Connect Enterprise Edition enables local and remote client applications
to create, update, control, and manage DB2 databases on host systems using
Structured Query Language (SQL), DB2 APIs, Open Database Connectivity
(ODBC), Java Database Connectivity (JDBC), Embedded SQL for Java (SQLJ)
or DB2 Call Level Interface (*CLI). In addition, DB2 connect supports Microsoft
Windows data interfaces such as ActiveX Data Objects (ADO), Remote Data
Objects (RDO), and Object Linking and Embedding (OLE) DB.

DB2 Connect Enterprise Edition is often installed on a dedicated intermediate
server to allow multiple DB2 clients to connect to the host. This way the clients

Client with a
Web browser

Linux for zSeries
SuSE 7.2

DB2
DB2

z/OS

Trader App.

WebSphere
Application

Server
5.0.2

CICS

IMS

MQ MQ

IMS

DB2 Connect
8.1.2

IMS

CTG
VSE/ESA 2.1.7

CICS

DB2

MQ

132 WebSphere V5 for Linux on zSeries - Connectivity Handbook

are relived from the DRDA overhead. In our scenario we installed the DB2
Connect on Linux to give multiple DB2 client applications running under the
control of WebSphere access to the remote DB2 databases.

DB2 Connect for Linux on zSeries installs as follows:

1. Log in as root. You will need a graphical environment. Make sure your display
is set up properly and your Windows X-server is started.

2. Unpack the DB2 Connect installation code and change the directory (cd) to
the directory where you packed the DB2 Connect into.

3. Start the DB2 Connect setup by executing the db2setup script:

./db2setup

Click Install Products, as shown in Figure 7-2, to start the installation.

Figure 7-2 IBM DB2 Connect setup launchpad

4. Select the product(s) to install.

Select the DB2 Connect Enterprise Edition, as shown in Figure 7-3, and
click Next.

 Chapter 7. DB2 connectors 133

Figure 7-3 DB2 products to install

You will see an installation wizard introductory screen. Click Next. Review
and accept the license. Click Next again.

5. Set up the DB2 Administration server user ID as shown in Figure 7-4.

Enter a new password twice for the administration server user dasusr1. Click
Next.

134 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Figure 7-4 DB2 Administration Server user information

6. Create a DB2 instance.

7. Select the option to create a DB2 instance. Click Next.

8. Specify and confirm the password for the instance owner, db2inst1 as shown
in Figure 7-5. Click Next.

 Chapter 7. DB2 connectors 135

Figure 7-5 DB2 instance owner user information

9. Specify and confirm the password for the fenced user, db2fenc1 as shown in
Figure 7-6. Click Next.

136 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Figure 7-6 DB2 fenced user information

10.Prepare the DB2 tools catalog, as shown in Figure 7-7.

Accept the defaults to not prepare the DB2 tools catalog. Click Next.

 Chapter 7. DB2 connectors 137

Figure 7-7 Prepare the DB2 tools catalog

11.You will get a chance to specify a user ID for notification. Since we did not
have an SMTP server running at this time, we were still able to set up the
contact list, but we disabled the Enable notification until later, as shown in
Figure 7-8.

Accept the defaults to create a contact list on this system. Do not enable
notification if you do not have an SMTP server running. Click Next.

138 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Figure 7-8 Administration contact list set up

Ignore the warning about the notification SMTP server. Click OK.

Accept the defaults for an ID to receive health notifications, as shown in
Figure 7-9. Click Next.

 Chapter 7. DB2 connectors 139

Figure 7-9 Specify a contact for health monitor notification

12.You should now see a summary of your choices. Our choices are
summarized in Figure 7-10. Review your choices and click Finish to start
copying files and setting up your system.

140 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Figure 7-10 DB2 summary information

13.While the installation is completing, you will see a status bar indicating the
progress of the install. When the installation completes, you should see a
post-install summary.

 Chapter 7. DB2 connectors 141

Figure 7-11 DB2 setup is complete

At this point you have installed DB2 Connect and its Administration Server and
created an instance of DB2 and a DB2 fenced user. If you need to make
additional changes later, you can always rerun db2setup.

7.2.1 Simple connect to DB2 for z/OS
The following line commands are what we used to test the connection to the
Trader DB2 database on z/OS before we set up our WebSphere Application
Server:

1. Catalog the remote node of the z/OS system:

db2 catalog tcpip node node_name remote ip_addr server port_number

– Where node_name is any name you want. You may use the DB2 remote
location name for consistency.

– Where ip_addr is the IP address of the system where the DB2 subsystem
resides.

– Where port_number is the TCP/IP port that DB2 is listening to (default is
446). This port number can be found in the TCPIP.PROFILES member for
your TCP/IP procedure (search for DB2).

142 WebSphere V5 for Linux on zSeries - Connectivity Handbook

2. Catalog the data connection services:

db2 catalog dcs db node_name

Where node_name is the DB2 location name that you get from the syslog
when DDF is started.

3. Map the remote DB2 database to a local database alias:

db2 catalog db node as alias at node node authentication dcs

– Where node equals node_name in step 2.

– Where alias is any name. We suggest that you chose trader for the Trader
application.

4. Test the connection to the remote database using the alias:

db2 connect to trader user userID using password

Where userID and password are a user ID and a password known to DB2 on
the z/OS server. You should then see something like Figure 7-12.

Figure 7-12 Connection to the Trader database has been tested

7.2.2 Simple connect to DB2 for VSE
The steps to connect to DB2 for VSE are very similar to those used for z/OS.

1. If necessary, switch the user to DB2INST1 for authorization purposes:

linux11:/ # su db2inst1
db2inst1@linux11:/ >

2. Catalog the remote node of the VSE system:

db2inst1@linux11:/ > db2 catalog tcpip node db2vse remote 9.152.82.82
server 446
DB20000I The CATALOG TCPIP NODE command completed successfully.

3. Catalog the data connection services:

db2inst1@linux11:/ > db2 catalog dcs db db2vse
DB20000I The CATALOG DCS DATABASE command completed successfully.

 Chapter 7. DB2 connectors 143

4. Map the remote DB2 database to a local database alias:

db2inst1@linux11:/ > db2 catalog db sqlds as tradedb at node db2vse
DB20000I The CATALOG DATABASE command completed successfully.
db2inst1@linux11:/ > db2 catalog dcs database tradedb as sqlds
DB20000I The CATALOG DCS DATABASE command completed successfully.

5. Test the connection to the remote database using the alias. The output
should look similar to Example 7-1.

Example 7-1 Testing the connection to the sample database on VSE

db2inst1@linux11:/ > db2 connect to tradedb user mydbuser using mydbpw

 Database Connection Information

 Database server = SQL/DS VSE 7.3.0
 SQL authorization ID = MYDBUSER
 Local database alias = TRADEDB

db2inst1@linux11:/ >

7.3 Customizing WebSphere Application Server for DB2
Connect

When DB2 Connect is installed and able to make a connection to the remote
DB2 database, you need to customize WebSphere Application Server to be able
to communicate with DB2 Connect, and you need to define in WebSphere
Application Server the data sources.

7.3.1 Updating the WebSphere Application Server startup script
In order to avoid a java.lang.UnsatisfiedLinkError when WebSphere Application
Server connects to the database, you have to make a few changes to the
WebSphere startup script:

� Ensure that the db2profile has been run in the shell starting WebSphere.

� The shared library path environment variable, LD_LIBRARY_PATH, must be
extended to include <DB2 instance home>/sqllib/java12 and
<DB2 instance home>/sqllib/lib.

The changes are described in a Technote, which can be found at:

http://www-1.ibm.com/support/docview.wss?uid=swg21110708

1. Make the changes to the startServer.sh file. In Figure 7-13 on page 145 the
changes are marked up.

144 WebSphere V5 for Linux on zSeries - Connectivity Handbook

http://www-1.ibm.com/support/docview.wss?uid=swg21110708

2. Restart WebSphere Application Server in order to activate the changes:

. /opt/WebSphere/AppServer/bin/stopServer.sh server1

. /opt/WebSphere/AppServer/bin/startServer.sh server1

Figure 7-13 Necessary changes to the startServer.sh file

7.3.2 Configuring a WebSphere data source
To configure:

1. Log in to WebSphere by typing http://myserver:9090/admin/ in a browser.

2. In the WebSphere Administrative Console left panel menu choose
Resources → JDBC Providers.

3. In the right panl, click New to create a new JDBC provider. Register a new
JDBC provider

4. In the Configuration panel, select the DB2 driver that you want to use from
the drop down list and click OK. We choose the “DB2 Legacy CLI-based type
2 JDBC Driver” as the one named “DB2 JDBC Driver“ is now deprecated and

 Chapter 7. DB2 connectors 145

may be obsolete in future versions of DB2.

Figure 7-14 Choose a type of JDBC provider to create

5. Enter the location of the DB2 driver in the Classpath field. The location of the
driver will usually be /home/db2inst1/sqllib/java12/db2java.zip.

Figure 7-15 Enter the location of the DB2 driver in the Classpath field

6. Go to the bottom of the Configuration panel. Under Additional Properties,
click Data Sources and then click New.

7. In the new Configuration panel, enter TraderDB2 in the Name field and
jdbc/TraderDB2 in the JNDI Name field. Make sure that the “Use this Data

146 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Source in container-managed persistence (CMP)” box is checked. Then scroll
down to the bottom of the panel and click Apply.

Figure 7-16 Enter the data source name and properties

8. Again scroll down to the bottom of the Configuration panel and click Custom
Properties. In Custom Properties you need to do three things:

a. Change the databaseName to trader.

b. As shown on Figure 7-17 on page 148, add a new property named user.
The value is the a user name that has access to the DB2 on z/OS. Click
OK to add the property.

c. Also add a new property named password. The value is the password of
the user in step b. Click OK to add the property.

 Chapter 7. DB2 connectors 147

Figure 7-17 Enter new properties for user and password

9. When you have added the new properties, click Save in the Messages panel.
If a Save to Master Configuration panel comes up, click Save in that panel,
too.

Figure 7-18 Click Save to apply changes to the master configuration

10.Click Resources → JDBC Providers in the left panel. In the right panel click
DB2 Legacy CLI-based Type 2 JDBC Driver, which is the JDBC provider
that you have just created.

11.Under Additional Resources (you may have to scroll down the right panel)
click Data Sources.

12.Put a checkmark at TraderDatasource, as shown in Figure 7-19.

148 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Figure 7-19 The data source ready to be tested

13.Click Test Connection and the following message should appear
(Figure 7-20).

Figure 7-20 The connection for the data source has been verified successfully

7.4 Deploying TraderDB in WebSphere Application
Server

In this section we look at the part of Trader that focuses on DB2 connections.

1. Download and unzip the Trader install package into a directory on which you
have read/write authority to, for example, /temp.

2. Copy the EAR file to WebSphere Application Server’s installable applications:

cd /temp
cp TraderDBEAR.ear /opt/WebSphere/AppServer/installableApps/TraderDBEAR.ear

3. Open the WebSphere Administrative Console and select Applications →
Install New Application.

4. On the Preparing for the application installation panel select Server path and
enter /opt/WebSphere/AppServer/installableApps/TraderDBEAR.ear in the
field and click Next.

 Chapter 7. DB2 connectors 149

Figure 7-21 Preparing for the application installation

5. On the subsequent panels, click Next to accept all defaults. On the last one,
click Finish.

6. Click Save to save the new configuration.

7. Go to Applications → Enterprise Applications and start the application.
Put a checkmark at the TraderDBEAR application and click Start (see
Figure 7-22).

Figure 7-22 Starting the TraderDBEAR application

8. Enter http://yourServer/TraderDBWeb/ in a browser to access the
TraderDBEAR application, and you will see something like Figure 7-23.

150 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Figure 7-23 The ITSO Trader application using the DB2 connectors

9. Type a user ID, for example, linux1, and click Go. If you want Trader to use
CMP to access the DB2 data instead of hand-coded JDBC, then put a
checkmark in the Use CMP box.

 Chapter 7. DB2 connectors 151

152 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Chapter 8. WebSphere MQ connectors

This chapter discusses how to set up the necessary MQ objects needed by the
TraderMQ application both on the Linux for zSeries frontend as well as on the
z/OS and VSE/ESA backends.

We describe the following topics:

� Introducing the MQ environment

� WebSphere MQ setup on Linux for zSeries frontend

� WebSphere MQ setup on z/OS backend

� WebSphere MQ setup on VSE backend

� Configuring VSE for MQ

� Configuring the MQ connector in WebSphere

8

© Copyright IBM Corp. 2004. All rights reserved. 153

8.1 Introducing the MQ environment
Figure 8-1 shows the WebSphere MQ scenario with z/OS.

Figure 8-1 WebSphere MQ scenario with z/OS

In this scenario the MQ Queue Manager components are on each side of the
TCP/IP connection. On z/OS you can use the MQ-CICS bridge as an interface to
the CICS TS application without making any change to these applications.

Figure 8-2 shows the MQ scenario with the VSE backend.

Client with a
Web browser

Linux for zSeries
SuSE 7.2

DB2 DB2

z/OS

CICS

IMS

MQMQ

CTG

IMS IMSWebSphere
Application

Server
5.0.2

DB2

IMS

CTG

IMS WebSphere
MQ 5.3.1

IMS

DB2

WebSphere MQ
for z/OS 5.3.1

TCP/IP

154 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Figure 8-2 WebSphere MQ scenario with VSE/ESA

There is currently no MQ bridge on CICS for VSE. We will, however, show how
to set up an MQ connection for VSE. Any installation that wishes to access CICS
online transactions using WebSphere MQ must write MQ wrappers for these
transactions.

Figure 8-3 shows the MQ setup needed to access the TraderCICS transaction on
z/OS via the MQ-CICS bridge. A similar setup is needed to access the TraderIMS
transaction.

Client with a
Web browser

Linux for zSeries
SuSE 7.2

VSE/ESA 2.7

CICS
(Trader)

VCC VSAM

MQNote:
Only the CTG
connection
accesses the
Trader
application

CICS
(SOAP Demo)

WebSphere
Application

Server
5.0.2

Trader
App.

SOAP

CTG

VCS

DB2 DB2

MQ

MQSeries for
VSE/ESA 2.1.1

WebSphere
MQ 5.3.1

VSAM
Redirector

Server

VRC

 Chapter 8. WebSphere MQ connectors 155

Figure 8-3 MQ setup to access the TraderCICS transaction via the MQ-CICS bridge

8.1.1 MQ-CICS bridge
The MQ-CICS bridge enables an application not running in a CICS environment
to run a program or transaction on CICS/ESA and get a response back. You can
read more about this feature, as well as dowload the software and
documentation, at:

http://www6.software.ibm.com/devcon/devcon/docs/ma1e.htm

8.1.2 MQ-IMS bridge
The bridge is an IMS Open Transaction Manager Access (OTMA) client. In
bridge applications there are no MQ calls within the IMS application. The
application gets its input using a GET UNIQUE (GU) to the IOPCB and sends its
output using an ISRT to the IOPCB. MQ applications use the IMS header (the
MQIIH structure) in the message data to ensure that the applications can

Linux for zSeries z/OS

WAS MQ Manager: SC52LINUX MQ Manager: MQ4D CICS

Trader
EJB

Session
Bean

LINUX11.SC52.CHANNEL LINUX11.SC52.CHANNEL

SC52.LINUX11.CHANNEL

MQ4D
Transmission queue

SC52LINUX11
Transmission queue

TRADER.CICS.REPLYQ
Local queue

TRADER.CICS.BRIDGEQ
Remote queue

TRADER.CICS.BRIDGEQ
Local queue

Trader
Cobol

Program

MQ
CICS
Bridge

SC52.LINUX11.CHANNEL

TRADER.PROCESSQ
Local queue

Trader
EJB

Message
Driven
Bean

156 WebSphere V5 for Linux on zSeries - Connectivity Handbook

execute as they did when driven by nonprogrammable terminals. You can read
more about this feature as well as download the support pack at:

http://www-3.ibm.com/software/integration/support/supportpacs/individual/ma
1c.html

8.2 WebSphere MQ setup on Linux for zSeries frontend
This section describes how to configure WebSphere MQ resources on the
frontend Linux on zSeries platform. At this point there are no definitions in
WebSphere Application Server involved.

How to find out your default Queue Manager
On a single Linux System you can run more than one Queue Manager. Each
Queue Manager will only service its own queues and channels. One of the
Queue Managers will be the default manager on the system.

If you do not know the name of your default Queue Manager check out the
mqs.ini file in /var/mqm (Example 8-1). This file is the WebSphere MQ
Machine-wide Configuration File.

Example 8-1 What is the default Queue Manager in my system

linux11:/ # cat /var/mqm/mqs.ini | less
...

AllQueueManagers:
...
 DefaultPrefix=/var/mqm

ClientExitPath:
 ExitsDefaultPath=/var/mqm/exits

LogDefaults:
 LogPrimaryFiles=3
 LogSecondaryFiles=2
 LogFilePages=1024
 LogType=CIRCULAR
 LogBufferPages=0
 LogDefaultPath=/var/mqm/log

QueueManager:
 Name=venus.queue.manager
 Prefix=/var/mqm
 Directory=venus!queue!manager
DefaultQueueManager:
 Name=venus.queue.manager

 Chapter 8. WebSphere MQ connectors 157

QueueManager:
 Name=WAS_linux11_server1
 Prefix=/var/mqm
 Directory=WAS_linux11_server1
QueueManager:
 Name=ITSO_MQ.queue.manager
 Prefix=/var/mqm
 Directory=ITSO_MQ!queue!manager
QueueManager:
 Name=SC52LINUX11
 Prefix=/var/mqm
 Directory=SC52LINUX11
linux11:/

How to query all available Queue Managers
The command to use is dspmq. As we learned, there can be more than one
Queue Manager in the system. To find out more about the number, the names,
and the status, you can use the dspmq command (Example 8-2). To do this you
need to be logged into the system with root authority.

Example 8-2 Show all Queue Managers in the system

llinux11:~ # dspmq
QMNAME(venus.queue.manager) STATUS(Ended unexpectedly)
QMNAME(WAS_linux11_server1) STATUS(Running)
QMNAME(ITSO_MQ.queue.manager) STATUS(Ended unexpectedly)
QMNAME(SC52LINUX11) STATUS(Ended unexpectedly)
QMNAME(QM11) STATUS(Ended immediately)
QMNAME(MQ11) STATUS(Running)
QMNAME(VSELINUX11) STATUS(Ended unexpectedly)
linux11:~ #

How to start the MQ command line interface
The command to use is runmqsc queue manager name. In order to use the
command line interface you need to log on to the Linux system with root
authority.

After you are logged in, first check that the Queue Manager you want to work
with is running. To do that use the dspmq command. If the Queue Manager is not
running, execute the strmqm command with the name of the Queue Manager you
want to work with as a parameter (Example 8-3).

Example 8-3 Starting a Queue Manager

linux11:/ # strmqm ITSO_MQ.queue.manager
WebSphere MQ queue manager 'ITSO_MQ.queue.manager' started.

158 WebSphere V5 for Linux on zSeries - Connectivity Handbook

linux11:/ #

Now you are ready to run the runmqsc command. As long as you do not want to
work with the default Queue Manager, you have to provide the name for the local
Queue Manager as a parameter (Example 8-4).

Example 8-4 Start the command-line interface

linux11:/ # runmqsc ITSO_MQ.queue.manager
5724-B41 (C) Copyright IBM Corp. 1994, 2002. ALL RIGHTS RESERVED.
Starting MQSC for queue manager ITSO_MQ.queue.manager.

Now the MQ command interface is up and running, ready to accept our
commands.

Commands available within the MQ command interface
With the runmqsc command, use ?. With the MQ manager started and the
command-line interface being active and ready to work, type the following
(Example 8-5).

Example 8-5 Query all available MQ definition commands

2 : ?

AMQ8426: Valid MQSC commands are:

 ALTER
 CLEAR
 DEFINE
 DELETE
 DISPLAY
 END
 PING
 REFRESH
 RESET
 RESOLVE
 RESUME
 START
 STOP
 SUSPEND

A question mark (?) entered at the runmqsc prompt prints out all available
commands that can be used.

The most important commands will be described in short in the next topics.

 Chapter 8. WebSphere MQ connectors 159

How to display MQ resources
With the runmqsc command, use display. With the MQ manager started and the
command-line interface active and ready to work with this Queue Manager, type
the following (Example 8-6).

Example 8-6 MQ command interface: Display a resource

display
 3 : display
AMQ8405: Syntax error detected at or near end of command segment below:-
display

AMQ8426: Valid MQSC commands are:

 DISPLAY AUTHINFO
 DISPLAY CHANNEL
 DISPLAY CHSTATUS
 DISPLAY CLUSQMGR
 DISPLAY PROCESS
 DISPLAY NAMELIST
 DISPLAY QALIAS
 DISPLAY QCLUSTER
 DISPLAY QLOCAL
 DISPLAY QMGR
 DISPLAY QMODEL
 DISPLAY QREMOTE
 DISPLAY QUEUE
 DISPLAY QSTATUS

Besides the fact that this command on its own is not correct, the command-line
interface displays all options of the display command. The same happens if
parameters or additional options are missing.

You can go ahead and add an option to the display command, and as a
response you will receive additional information about what is expected next
(Example 8-7).

Example 8-7 MQ command interface: Display a resource

display channel
 4 : display channel
AMQ8405: Syntax error detected at or near end of command segment below:-
display channel

AMQ8427: Valid syntax for the MQSC command:

 DISPLAY CHANNEL(generic_channel_name)
 [TYPE(ALL | SDR | SVR | RCVR | RQSTR | CLNTCONN | SVRCONN)]

160 WebSphere V5 for Linux on zSeries - Connectivity Handbook

 [ALL] [BATCHHB] [BATCHINT] [BATCHSZ] [CHLTYPE]
 [CONNAME] [CONVERT] [DESCR] [DISCINT] [HBINT]
 [LONGRTY] [LONGTMR] [MAXMSGL] [MCANAME] [MCATYPE]
 [MCAUSER] [MODENAME] [MRDATA] [MREXIT] [MRRTY]
 [MRTMR] [MSGDATA] [MSGEXIT] [NPMSPEED] [PASSWORD]
 [PUTAUT] [QMNAME] [RCVDATA] [RCVEXIT] [SCYDATA]
 [SCYEXIT] [SENDDATA] [SENDEXIT] [SEQWRAP] [SHORTRTY]
 [SHORTTMR] [SSLCAUTH] [SSLCIPH] [SSLPEER] [TPNAME]
 [TRPTYPE] [TYPE] [USERID] [XMITQ] [LOCLADDR]
 [KAINT]

How to define MQ resources
With the runmqsc command, use define. With the MQ manager started and the
command-line interface active and ready to work with this Queue Manager, type
the following (Example 8-8).

Example 8-8 MQ command interface: Define a resource

5 : define qlocal
AMQ8405: Syntax error detected at or near end of command segment below:-
define qlocal

AMQ8427: Valid syntax for the MQSC command:

 DEFINE QLOCAL(q_name)
 [BOQNAME(string)] [BOTHRESH(integer)]

[CLUSNL(namelist_name)] [CLUSTER(cluster_name)]
 [DEFBIND(NOTFIXED | OPEN)] [DEFPRTY(integer)]
 [DEFPSIST(NO | YES)] [DESCR(string)]
 [DEFSOPT(EXCL | SHARED)] [DISTL(NO | YES)]
 [GET(ENABLED | DISABLED)] [INITQ(string)]
 [LIKE(qlocal_name)] [MAXDEPTH(integer)]
 [MAXMSGL(integer)] [MSGDLVSQ(PRIORITY | FIFO)]
 [NOHARDENBO | HARDENBO] [NOREPLACE | REPLACE]
 [NOSHARE | SHARE] [NOTRIGGER | TRIGGER]
 [PROCESS(string)] [PUT(ENABLED | DISABLED)]
 [QDEPTHHI(integer)] [QDEPTHLO(integer)]
 [QDPHIEV(ENABLED | DISABLED)] [QDPLOEV(ENABLED | DISABLED)]
 [QDPMAXEV(ENABLED | DISABLED)] [QSVCIEV(NONE | HIGH | OK)]
 [QSVCINT(integer)] [RETINTVL(integer)]
 [SCOPE(QMGR | CELL)] [TRIGDATA(string)]
 [TRIGDPTH(integer)] [TRIGMPRI(integer)]
 [TRIGTYPE(FIRST | EVERY | DEPTH |
NONE)] [USAGE(NORMAL | XMITQ)]

Again, the define command by itself is not sufficient, but it gives an overview of
the resources that you can define.

 Chapter 8. WebSphere MQ connectors 161

8.3 WebSphere MQ setup on z/OS backend
There is an ISPF panel-driven interface to WebSphere MQ for z/OS. The tool is
helpful and easy to use, create, and maintain MQ objects.

Figure 8-4 The IBM WebSPhere MQ for z/OS - Main Menu panel

However, in the process of writing this book, we used the batch API, which we
find more suitable to create multiple MQ objects at one time.

8.3.1 Configuring queues and channels on z/OS
We set up an MQ manager on z/OS called MQ4D. This name, of course, may be
different at your installation. It will, however, be used throughout this book.

The JCL you need to run in order to create the MQ4D MQ manager and Trader’s
MQ objects is listed in Figure 8-9.

Example 8-9 JCL for configuring WebSphere MQ on z/OS

//COMMAND EXEC PGM=CSQUTIL,PARM=MQ4D
//STEPLIB DD DSN=MQ531.SCSQANLE,DISP=SHR
//CSQUCMD DD DSN=MQ4D.INSTALL.JCL(MQ4DSCXC),DISP=SHR
// DD DSN=MQ4D.INSTALL.JCL(MQ4DCBRG),DISP=SHR
// DD DSN=MQ4D.INSTALL.JCL(MQ4DLINZ),DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

162 WebSphere V5 for Linux on zSeries - Connectivity Handbook

* NEXT STATEMENT CAUSES COMMANDS TO BE READ FROM CSQUCMD DDNAME
COMMAND
/*

The two script files, MQ4D.INSTALL.JCL (MQ4DCBRG) and
MQ4D.INSTALL.JCL (MQ4DSCXC), contain statements to create the following
MQ objects (Table 8-1).

Table 8-1 MQ objects

If you plan to run a Trader application that does not use WebSphere MQ, such as
TraderDB or TraderCICS, you may leave out the MQ definitions because they
are not used by programs that do not communicate via MQ.

The MQ4DCBRG member contains the definitions needed for the MQ-CICS
bridge to work (Example 8-10).

Example 8-10 MQ4DCBRG: Definitions to handle calls to CICS Trader application via
MQ-CICS bridge

* IBM MQSeries for OS/390
* Sample for Queue
* definitions for the CICS Bridge

* This sample data set contains a set of definitions for
* the following objects for general use
* that you can customize as required:
* - queues
* - process

* RECOMMENDED NON-SYSTEM OBJECTS
* CICS Bridge Request Queues for incoming CICS transactions
* CICS Bridge Reply Queues for returning CICS data
* Process STRTCKBR to start CICS Bridge Monitor CKBR

Object type Target Object name Example

Queue CICS TRADER.CICS.BRIDGEQ Example 8-10

Process CICS SRTCKBR Example 8-10

Queue IMS TRADER.IMS.BRIDGEQ Example 8-11

Storage class IMS IMSBRG Example 8-11

Xmit queue Both SC52LINUX11 Example 8-12

Receiver channel Both LINUX11.SC52.CHANNEL Example 8-12

Sender channel Both SC52.LINUX11.CHANNEL Example 8-12

 Chapter 8. WebSphere MQ connectors 163

DEFINE QLOCAL('TRADER.CICS.BRIDGEQ') +
 REPLACE +
 QSGDISP(QMGR) +
 DESCR('CICS Bridge request queue') +
 PUT(ENABLED) +
 DEFPRTY(0) +
 DEFPSIST(NO) +
 CLUSTER(' ') CLUSNL(' ') DEFBIND(OPEN) +
 GET(ENABLED) +
 SHARE +
 DEFSOPT(SHARE) +
 MSGDLVSQ(FIFO) +
 RETINTVL(999999999) +
 MAXDEPTH(999) +
 MAXMSGL(4194304) +
 NOHARDENBO +
 BOTHRESH(0) +
 BOQNAME(' ') +
 STGCLASS('SYSVOLAT') +
 USAGE(NORMAL) +
 INDXTYPE(NONE) +
 CFSTRUCT(' ')
 QDPMAXEV(ENABLED) +
 QDPHIEV(DISABLED) +
 QDEPTHHI(80) +
 QDPLOEV(DISABLED) +
 QDEPTHLO(40) +
 QSVCIEV(NONE) +
 QSVCINT(999999999) +
 NOTRIGGER +
 TRIGTYPE(FIRST) +
 TRIGMPRI(0) +
 TRIGDPTH(1) +
 TRIGDATA(' ') +
 PROCESS('STRTCKBR') +
 INITQ('CICS01.INITQ')

DEFINE PROCESS('STRTCKBR') +
 REPLACE +
 QSGDISP(QMGR) +
 APPLTYPE(CICS) +
 APPLICID('CKBR') +
 USERDATA('WAIT=600, AUTH=IDENTIFY ')

* End of MQ4DCBRG

Example 8-11 MQ4DSCXC: Definitions to handle calls to Trader IMS transaction via
MQ-IMS bridge

* IBM MQSeries for OS/390

164 WebSphere V5 for Linux on zSeries - Connectivity Handbook

* Sample for Storage Class definitions using XCF for the IMS Bridge

* This sample data set contains a set of definitions for
* the following objects for general use
* that you can customize as required:
* - storage classes
* - queues

* STORAGE CLASSES

* These storage class definitions are needed to match the IMS
* OTMA GRNAME (XCF group) and USERVAR/APPLID1 (XCF member)
* You are recommended not to define any storage classes to map
* to page set 00 where object definitions are kept in order to keep
* messages separate from them.
* Further storage class definitions should
* be added to this sample as required.

*DELETE STGCLASS('IMSBRG')

DEFINE STGCLASS('IMSBRG') +
 QSGDISP(QMGR) +
 PSID(03) +
 XCFGNAME('HAOTMA') +
 XCFMNAME('SCSIMS4D')

*

* RECOMMENDED NON-SYSTEM OBJECTS
* IMS Bridge Request Queues for incoming IMS transactions
* IMS Bridge Reply Queues for returning IMS data

DEFINE QLOCAL('TRADER.IMS.BRIDGEQ') +
 REPLACE +
 QSGDISP(QMGR) +
 DESCR('IMS Bridge request queue') +
 PUT(ENABLED) +
 DEFPRTY(0) +
 DEFPSIST(NO) +
 CLUSTER(' ') CLUSNL(' ') DEFBIND(OPEN) +
 GET(ENABLED) +
 SHARE +
 DEFSOPT(SHARE) +
 MSGDLVSQ(FIFO) +
 RETINTVL(999999999) +
 MAXDEPTH(999) +
 MAXMSGL(4194304) +
 NOHARDENBO +
 BOTHRESH(0) +
 BOQNAME(' ') +
 STGCLASS('IMSBRG') +
 USAGE(NORMAL) +
 INDXTYPE(NONE) +

 Chapter 8. WebSphere MQ connectors 165

 CFSTRUCT(' ') +
 QDPMAXEV(ENABLED) +
 QDPHIEV(DISABLED) +
 QDEPTHHI(80) +
 QDPLOEV(DISABLED) +
 QDEPTHLO(40) +
 QSVCIEV(NONE) +
 QSVCINT(999999999) +
 NOTRIGGER +
 TRIGTYPE(NONE) +
 TRIGMPRI(0) +
 TRIGDPTH(1) +
 TRIGDATA(' ') +
 PROCESS(' ') +
 INITQ(' ')

* End of MQ4DSCXC

The MQ4DLINZ contains the definitions on z/OS needed to handle the
communications with the MQ manager on Linux for zSeries (Example 8-12).

Example 8-12 MQ4DLINZ: Definitions on z/OS to handle communications with the MQ
manager on Linux for zSeries

* Channels & xmit queue necessary to connect
* to MQ mgr. on Linux for zSeries

*DELETE CHL(LINUX11.SC52.CHANNEL)
*DELETE CHL(SC52.LINUX11.CHANNEL)
*DELETE QLOCAL(SC52LINUX11)

DEF CHL(LINUX11.SC52.CHANNEL) +
 CHLTYPE(RCVR) +
 TRPTYPE(TCP)

DEF CHL(SC52.LINUX11.CHANNEL) +
 CHLTYPE(SDR) +
 TRPTYPE(TCP) +
 CONNAME('9.12.9.12(1414)') +
 CONVERT(YES) +
 XMITQ(SC52LINUX11)

DEF QLOCAL(SC52LINUX11) +
 USAGE(XMITQ)

* End of MQ4DLINZ

166 WebSphere V5 for Linux on zSeries - Connectivity Handbook

8.3.2 Configuring queues and channels on Linux for zSeries
On Linux we create an MQ manager called SC52LINUX11 and we set up queues
and channels as follows:

1. Create and start the MQ manager:

/opt/mqm/bin/crtmqm SC52LINUX11
/opt/mqm/bin/strmqm SC52LINUX11

2. Start the MQ command-line interface:

runmqsc SC52LINUX11

3. Enter the channel and queue definitions as listed in Example 8-13.

Example 8-13 Channel and queue definitions on Linux

DEF CHL(LINUX11.SC52.CHANNEL) +
 CHLTYPE(SDR) +
 TRPTYPE(TCP) +
 CONNAME('wtsc52.itso.ibm.com(1562)') +
 CONVERT(YES) +
 XMITQ(MQ4D)

DEF CHL(SC52.LINUX11.CHANNEL) CHLTYPE(RCVR) TRPTYPE(TCP)

DEF QLOCAL(TRADER.CICS.REPLYQ)

DEF QLOCAL(TRADER.IMS.REPLYQ)

DEF QLOCAL(TRADER.PROCESSQ)

DEF QLOCAL(MQ4D) USAGE(XMITQ)

DEF QREMOTE(TRADER.CICS.BRIDGEQ) +
 RNAME(TRADER.CICS.BRIDGEQ) +
 RQMNAME(MQ4D) +
 XMITQ(MQ4D)

DEF QREMOTE(TRADER.IMS.BRIDGEQ) +
 RNAME(TRADER.IMS.BRIDGEQ) +
 RQMNAME(MQ4D) +
 XMITQ(MQ4D)

When defining the sender channel, the name of the remote MQ manager and
the IP address of the remote z/OS server should be changed from those of
the example to reflect the settings of your own shop.

4. Start the MQ manager’s TCP/IP listener and the sender channel:

runmqlsr -t TCP -m SC52LINUX11 &

 Chapter 8. WebSphere MQ connectors 167

runmqchl -c SC52.LINUX11.CHANNEL -m SC52LINUX11 &

The MQ manager is now ready to serve the Trader application.

8.4 WebSphere MQ setup on VSE backend
The MQ part of the Trader application cannot be used with VSE as a backend
because there is no MQ Bridge on VSE. So, this section just shows the
WebSphere setup for a simple test servlet.

8.4.1 Configuring queues and channels on Linux for zSeries
It is assumed that MQ for Linux on zSeries is already installed on the WebSphere
Application Server system.

MQ for Linux on zSeries does not have a graphical user interface as it has on
Windows. Due to that fact all MQ-related definitions like defining queues and
channels have do be done thorough the command-line interface.

To give you a good understanding on how things relate to each other, we like to
give you a short overview about the most common commands used to administer
MQ for Linux on zSeries.

8.4.2 Defining MQ resources to Linux for zSeries
First, we create a new Queue Manager. With Linux you can have as many
Queue Managers as you want running at the same time. That makes it easer to
try new things without disturbing others.

Telnet into Linux with root permission. Type:

crtmqm MQ11

A new Queue Manger with the name MQ11 is created with a name exactly the
way you typed it. Keep that in mind. This Queue Manager already has the default
resources defined.

Attention: MQ Series treats some of its definitions in a case-sensitive way.

If you experience any problem make sure you typed the parameters the same
way as they are displayed.

168 WebSphere V5 for Linux on zSeries - Connectivity Handbook

The new Queue Manager is ready for use immediately. Start the Queue Manager
by typing in the command strmqm with the Queue Manager’s name:

strmqm MQ11

Trying to start MQ11 with strmqm mq11 will show the case sensitivity of the Queue
Manager’s name. Now think about the situation where your VSE has to provide
the name of the remote Queue Manager. It will simply not work (Example 8-14).

Example 8-14 Small upper/lower-case test

linux11:/ # strmqm mq11
AMQ8118: WebSphere MQ queue manager does not exist.
linux11:/ #

8.4.3 Shell script to define the Linux-VSE connection
The next definiton steps are placed into a shell script. These are all the
statements needed to define a connection to VSE (Example 8-15).

Example 8-15 Definition script was_vse270.sh

! /bin/sh
runmqsc MQ11 << EOF
 delete qlocal (was.tx.vse270) purge
 delete qlocal (vse270.was)
 delete channel (was.vse270)
 delete channel (vse270.was)
 delete qremote (was.vse270)
 define qlocal (vse270.was)
 define qlocal (was.tx.vse270) usage (xmitq)
 define qremote (was.vse270) rname (WAS.VSE270) rqmname ('QMVSE27')
xmitq (was.tx.vse270)
 define channel (was.vse270) chltype (sdr) conname
('9.156.175.132(1414)') convert (yes) xmitq (was.tx.vse270) trptype (tcp)
seqwrap (999999)
 define channel (vse270.was) chltype (rcvr) trptype (tcp) seqwrap
(999999)
 end

Important: At this point, our recommendation is to use upper-case definitions
on both sides for the Queue Manager’s name.

Check how many characters of a definition are supported by each side.

If a mixed-case definition is used for addressing or to be addressed, it is very
likely that it will end up in a failure.

 Chapter 8. WebSphere MQ connectors 169

EOF

Let us have a closer look at the contents of Example 8-15.

The first line is only a comment telling that it is a shell script. The second line
invokes the command-line processor for the MQ11 Queue Manager, and opens
a pipe to pass the definition statment for input until the string ‘EOF’ is discoverd.

Now:

delete qlocal (was.tx.vse270) purge
delete qlocal (vse270.was)
delete channel (was.vse270)
delete channel (vse270.was)
delete qremote (was.vse270)

In case we made changes on the define statments it is best to delete what we
defined before. You can also use the ALTER command for changing properties
of a definition, but we prefer the general cleanup.

Defining the local queue
Defining local queues can involve two dozen options, most of them having a
default (Example 8-16).

Example 8-16 Complete syntax of the define qlocal command

DEFINE QLOCAL(q_name)
 [BOQNAME(string)] [BOTHRESH(integer)]
 [CLUSNL(namelist_name)] [CLUSTER(cluster_name)]
 [DEFBIND(NOTFIXED | OPEN)] [DEFPRTY(integer)]
 [DEFPSIST(NO | YES)] [DESCR(string)]
 [DEFSOPT(EXCL | SHARED)] [DISTL(NO | YES)]
 [GET(ENABLED | DISABLED)] [INITQ(string)]
 [LIKE(qlocal_name)] [MAXDEPTH(integer)]
 [MAXMSGL(integer)] [MSGDLVSQ(PRIORITY | FIFO)]
 [NOHARDENBO | HARDENBO] [NOREPLACE | REPLACE]
 [NOSHARE | SHARE] [NOTRIGGER | TRIGGER]
 [PROCESS(string)] [PUT(ENABLED | DISABLED)]
 [QDEPTHHI(integer)] [QDEPTHLO(integer)]
 [QDPHIEV(ENABLED | DISABLED)] [QDPLOEV(ENABLED | DISABLED)]
 [QDPMAXEV(ENABLED | DISABLED)] [QSVCIEV(NONE | HIGH | OK)]
 [QSVCINT(integer)] [RETINTVL(integer)]
 [SCOPE(QMGR | CELL)] [TRIGDATA(string)]
 [TRIGDPTH(integer)] [TRIGMPRI(integer)]
 [TRIGTYPE(FIRST | EVERY | DEPTH |
NONE)] [USAGE(NORMAL | XMITQ)]

170 WebSphere V5 for Linux on zSeries - Connectivity Handbook

define qlocal (vse270.was)

This statement creates a local queue to which other Queue Managers can send
messages. Even if the queue is ‘vse270.was’, this name is not treated as case
sensitive, as it is with the Queue Manager’s name.

A display of the queue definition shows the following properties (Example 8-17).

Example 8-17 Detailed view of the queue properties

display qlocal (vse270.was) all
 27 : display qlocal (vse270.was) all
AMQ8409: Display Queue details.
 DESCR(WebSphere MQ Default Local Queue)
 PROCESS() BOQNAME()
 INITQ() TRIGDATA()
 CLUSTER() CLUSNL()
 QUEUE(VSE270.WAS) CRDATE(2003-11-18)
 CRTIME(08.06.56) ALTDATE(2003-11-18)
 ALTTIME(08.06.56) GET(ENABLED)
 PUT(ENABLED) DEFPRTY(0)
 DEFPSIST(NO) MAXDEPTH(5000)
 MAXMSGL(4194304) BOTHRESH(0)
 SHARE DEFSOPT(SHARED)
 HARDENBO MSGDLVSQ(PRIORITY)
 RETINTVL(999999999) USAGE(NORMAL)
 NOTRIGGER TRIGTYPE(FIRST)
 TRIGDPTH(1) TRIGMPRI(0)
 QDEPTHHI(80) QDEPTHLO(20)
 QDPMAXEV(ENABLED) QDPHIEV(DISABLED)
 QDPLOEV(DISABLED) QSVCINT(999999999)
 QSVCIEV(NONE) DISTL(NO)
 DEFTYPE(PREDEFINED) TYPE(QLOCAL)
 SCOPE(QMGR) DEFBIND(OPEN)
 IPPROCS(0) OPPROCS(0)
 CURDEPTH(0)

Defining the transmit queue
Key in the following:

define qlocal (was.tx.vse270) usage (xmitq)

Now the local transmit queue (was.tx.vse270) is created. This queue serves the
purpose of storing message put into a local queue until the channel manager for
this system can deliver them.

qlocal (was.tx.vse270) The name for local transmit queue.

 Chapter 8. WebSphere MQ connectors 171

usage (xmitq) This attribute turns a local queue into a transmit
queue.

Defining the remote queue
Example 8-18 shows th syntax of the define qremote command.

Example 8-18 Complete syntax of the define qremote command

DEFINE QREMOTE(q_name)
 [CLUSNL(namelist_name)] [CLUSTER(cluster_name)]
 [DEFBIND(NOTFIXED | OPEN)] [DEFPRTY(integer)]
 [DEFPSIST(NO | YES)] [DESCR(string)]
 [LIKE(qremote_name)] [PUT(ENABLED | DISABLED)]
 [NOREPLACE | REPLACE] [RNAME(string)]
 [RQMNAME(string)] [SCOPE(QMGR | CELL)]
 [XMITQ(string)]

define qremote (was.vse270) rname (WAS.VSE270) rqmname ('QMVSE27') xmitq
(was.tx.vse270)

Here, we build the first relation between our system and the remote system.
First, we declare the remote queue name qremote (was.vse270) as a local
queue. The definition rname (WAS.VSE270) is the queue local to remote MQ
that will receive our messages. Do not get confused because the names are both
the same. The name of the local queue pointing to the remote queue can be any
name you like. The next important information is the name of the remote Queue
Manager. Here again this name is case sensitive. Because the system we
connect to is a VSE system, the name must be in uppercase, otherwise the VSE
MQ manager will not respond. Last, we point to the transmit queue xmitq
(was.tx.vse270). This is the linking chain between the local queue was.vse270
and the local sender channel.

qremote (was.vse270) Local name for remote queue

rname (WAS.VSE270) Real name of remote queue

rqmname ('QMVSE27') Real name of remote QM

xmitq (was.tx.vse270) Local name of xmit queue

Defining the sender channel
Example 8-19 shows the syntax of the define channel chtype (sdr) command.

Example 8-19 Complete syntax of the define channel chltype (sdr) command

DEFINE CHANNEL(channel_name)
 CHLTYPE(SDR) CONNAME(string)
 XMITQ(string) [BATCHHB(integer)]
 [BATCHINT(integer)] [BATCHSZ(integer)]

172 WebSphere V5 for Linux on zSeries - Connectivity Handbook

 [CONVERT(NO | YES)] [DESCR(string)]
 [DISCINT(integer)] [HBINT(integer)]
 [KAINT(integer)] [LIKE(channel_name)]
 [LONGRTY(integer)] [LONGTMR(integer)]
 [MAXMSGL(integer)] [MCANAME(string)]
 [MCATYPE(PROCESS | THREAD)] [MCAUSER(string)]
 [MODENAME(string)] [MSGDATA(string)]
 [MSGEXIT(string)] [NOREPLACE | REPLACE]
 [NPMSPEED(NORMAL | FAST)] [PASSWORD(string)]
 [RCVDATA(string)] [RCVEXIT(string)]
 [SCYDATA(string)] [SCYEXIT(string)]
 [SENDDATA(string)] [SENDEXIT(string)]
 [SEQWRAP(integer)] [SHORTRTY(integer)]
 [SHORTTMR(integer)] [SSLCIPH(string)]
 [SSLPEER(string)] [TPNAME(string)]
 [TRPTYPE(LU62 | TCP)] [USERID(string)]
 [LOCLADDR(string)]

define channel (was.vse270) chltype (sdr) conname ('9.156.175.132(1414)')
convert (yes) xmitq (was.tx.vse270) trptype (tcp) seqwrap (999999)

Now we set up the sender path channel (was.vse270). This channel is
monitoring the transmit queue, and if the other side of the connection is
available, it delivers what is in the transmit queue. The destination is describe by
the host name or IP address. In addition, if we decide not to use port 1414, which
is the default, we can provide a different one by putting the port number into
parenthesis next to the host definition conname ('9.156.175.132(1414)'). The
next important thing is to make a character conversion from ASCII format to the
EBCDIC format defining convert (yes), as follows:

channel (was.vse270) Name of the sender channel.
chltype (sdr) This is a sender channel.
conname ('9.156.175.132(1414)') Our target host and port.
convert (yes) Convert ASCII to EBCDIC.
xmitq (was.tx.vse270) Monitor this xmit queue.
trptype (tcp) Use tcp/ip.
seqwrap (999999) Set the sequence number to what VSE

can support.

Defining the receiver channel
Key in the following:

define channel (vse270.was) chltype (rcvr) trptype (tcp) seqwrap (999999)

The receiver channel is the network interface for the local queue to which a
remote system will send its messages.

 Chapter 8. WebSphere MQ connectors 173

The receiver channel must reflect the definition of the sender side. If the channel
is supposed to receive messages from a VSE system there are restrictions you
have to take note of. First, do not run the receiver queue with a name containing
lower-case characters. Second, the sequence wrap counter has a maximum of
999999; the default on MQ linux is 999 999 999. The attempt to connect from
VSE to a MQ Linux channel defined with the default will fail.

channel (vse270.was) Name of the receiver channel.
chltype (rcvr) This is a receiver channel.
trptype (tcp) Use tcp/ip.
seqwrap (999999) Set the sequence number to what VSE

can support.

Starting the listener for the receiver channel
Now, everything to connect MQ VSE and Linux is definend. In order to test the
connection, we have to start our listener as well as our sender channel. The MQ
manager must be active; otherwise you have to start the task (Example 8-20).

Example 8-20 Start the MQ manager MQ11

linux11:/ # dspmq
QMNAME(MQ11) STATUS(Ended normally)
linux11:/ #
linux11:/ #
linux11:/ #
linux11:/ # strmqm MQ11
WebSphere MQ queue manager 'MQ11' started.
linux11:/ #

After the Queue Manager is up and running, start the listener as shown in
Example 8-21.

Example 8-21 Start the listener for MQ11 with port 1414

linux11:/ #
linux11:/ # runmqlsr -m MQ11 -t tcp -p 1414

Important: This definition will not start the active part of the MQ listener.

You have to start the listener with the following command:

runmqlsr [-m QMgrName] -t TCP [ProtocolOptions] -p port

To stop the listener use the following command:

endmqlsr [-m QMgrName]

174 WebSphere V5 for Linux on zSeries - Connectivity Handbook

5724-B41 (C) Copyright IBM Corp. 1994, 2002. ALL RIGHTS RESERVED.

Now we can continue with the VSE/ESA side of the MQ connection.

8.5 Configuring VSE for MQ
MQ Series for VSE/ESA runs under control of VSE CICS/ESA 2.x as well as
CICS TS 1.1. There is a batch interface available to support MQ Batch
applications as well as MQ online applications.

Configuring MQ must be a straightforward approach. This means that you have
to decide on a couple of naming definitions that will have an impact on other MQ
systems:

� The name of the sender channel must match the name of the receiver
channel on the remote end of your MQ connection.

� The remote queue name on the sender side must match the local queue
name connected to the receiver channel on the receiving MQ system.

� The definition for the remote queue name must reference the same transmit
queue name as the definition for the sender channel.

Figure 8-5 summarizes these naming conventions.

 Chapter 8. WebSphere MQ connectors 175

Figure 8-5 MQ naming conventions

MQ Series for VSE uses VSAM data files to store messages to send or to
receive. These files are assigned to the local queues that will receive messages
from other hosts addressing the target using the name for these queues. MQ
messages targeting another MQ system are kept till they are delivered in
so-called transmit queues, which again are represented by local VSAM data
files.

If you plan to connect from Websphere to VSE using MQ you have to set up the
following resources first.

� VSAM CLUSTER for the LOCAL QUEUE
� VSAM CLUSTER for the TRANSMIT QUEUE
� CICS RDO DEFINITIONS for the VSAM CLUSTER
� MQ SENDER / RECEIVER CHANNEL DEFINITIONS
� MQ LOCAL QUEUE DEFINITIONS
� MQ REMOTE QUEUE DEFINITIONS

8.5.1 Defining the VSAM data files
We recommend that you use the Interactive User Interface (IUI). The IUI will also
take care of defining the nesseccery DLBL statements by adding them to the
label procedure STDLABUP.PROC in IJSYSRS.SYSLIB.

Remote Q-Name

Sender Channel

Local Q-Name

Linux for zSeries

Websphere

MQ for Linux

VSE/ESA

CICS

MQ for VSE

Receiver Channel

Sender channel

Transmit Q-Name

Local Q-Name

Remote Q-Name

Receiver Channel

Transmit Q-Name

176 WebSphere V5 for Linux on zSeries - Connectivity Handbook

You now must decide in which of your system VSAM catalogs you want the MQ
VSAM data files to reside. A message queue file is required for each queue
defined to the MQ (CICS) subsystem. You need one file for the local queue to
receive messages and one data file for the queue used for transmitting
messages to other systems.

Depending on the size and amount of messages that will be exchanged between
the systems you have, you have to make decisions about the following:

� USER CATALOG
� USER CATALOG LOCATION
� PRIMARY ALLOCATION
� SECOUNDARY ALLOCATION

Member MQJQUEUE.Z in library PRD2.PROD is the installation job stream that
defines the default MQ VSAM data files. Use the values given there to define
your own data sets. Provide your own definitions only where you see question
marks. Never change any of the other attributes.

You are strongly recommended to define one local queue in each physical file. If
you intend to use the automatic VSAM reorganization feature with a queue, that
queue must be the only queue in a physical VSAM file.

After having done this go ahead and define the files using the IUI dialogs. For
using the menu item Resource Definition from the entry panel you must have
proper privileges.

FAST PATH 22
Start from the entry panel of the IUI (see Example 8-22, IUI Entry Panel), and
type 22 at the prompt on the bottom line.

Example 8-22 IUI entry panel

IESADMSL.SYSA VSE/ESA FUNCTION SELECTION
 APPLID: A0006CI1
 Enter the number of your selection and press the ENTER key:

 1 Installation
 2 Resource Definition
 3 Operations
 4 Problem Handling
 5 Program Development
 6 Command Mode

Tip: Please read the MQ for VSE/ESA System Management Guide Version 2
Release 1 Modification 2 (GC34-5364-03).

 Chapter 8. WebSphere MQ connectors 177

 7 CICS-Supplied Transactions
 8 DITTO

 VSE/ESA Version 2.7.1 (9/2003)

 PQ71111 (TCP-OME) DY46058 AF(IJBAR,etc)
 PQ76974 (TCPIP)
 PF1=HELP 3=SIGN OFF 6=ESCAPE(U)
 9=Escape(m)
==> 22

The next examples show the definition process for the local receiver queue with
data set name (DSN) ‘WAS.VSE.RRECEIVER.QUEUE’.

The VSAM file gets to the DLBL name ‘WASVSE’.

Example 8-23 Defining the MQ receiver queue file (part 1)

IESFILDEFA DEFINE A NEW FILE

 CATALOG NAME: ESCAT10

 FILE ID............... was_____ . vse______ . receiver . queue___ . ________
 FILE NAME............. wasvse__

 FILE ORGANIZATION..... 2 1=Non keyed (ESDS) 3=Numbered (RRDS)
 2=Keyed (KSDS) 4=Numbered (VRDS)
 5=Sequential (SAM ESDS)
 FILE ADDRESSABILITY... 1 1=Not extended 2=Extended (KSDS only)

 FILE ACCESS........... 2 1=Multiple Read OR Single Write
 2=Multiple Read AND Single Write
 3=Multiple Read AND Write (no integrity)
 4=Multiple Read AND Write (with integrity)

 FILE USAGE............ 1 1=File is used as a Data File (NOREUSE)
 2=File is used as a Work File (REUSE)

 PF1=HELP 2=REDISPLAY 3=END 4=RETURN

Example 8-24 Defining the MQ receiver queue file (part 2)

IESFILDEFD DEFINE A NEW FILE

 FILE ID: VSE270.RX.QUEUE
 FILE NAME: VSERXQ

 EXPIRATION DATE.......... 99366

178 WebSphere V5 for Linux on zSeries - Connectivity Handbook

 ALLOCATION UNIT.......... 1 1=Cylinder, 2=Track
 PRIMARY ALLOCATION....... 5
 SECONDARY ALLOCATION..... 3

 CONTROL INTERVAL SIZE.... 4096
 AVERAGE RECORD SIZE...... 200
 MAXIMUM RECORD SIZE...... 4089

 ENABLE DATA COMPRESSION.. 2 1=Yes, 2=No

 KEY LENGTH............... 56_
 KEY POSITION............. 0 Position 0 starts at the beginning

 PF1=HELP 2=REDISPLAY 3=END 4=RETURN

Example 8-25 Defining the MQ receiver queue file (part 3)

IESFILJOBX JOB EXECUTION

 The control statements for the specified function can be executed
 immediately or delayed for later submission.

 JOB EXECUTION..... 1 1=Delayed, Submission is handled by user
 2=Immediate, Job is executed

 For delayed execution and job submission, the control statements
 are stored in the following ICCF library member.

 LIBRARY MEMBER.... vserxq Existing member is overwritten

 PF1=HELP 3=END 4=RETURN

On the last panel we save the VSAM IDCAMS job to member VSERXQ in our
primary ICCF library for the purpose of review and later reuse.

Because you saved the job you have to submit it to batch from your primary
ICCF library.

Repeat the procedure for the transmit queue to the WebSphere Application
Server. You can use the same properties except for the file ID, which should be
‘VSE.WAS.TRANSMIT.QUEUE’, and the filename, which should be
‘VSETWAS”. The job streams you generated this way will also add the DLBL

 Chapter 8. WebSphere MQ connectors 179

statements to the‘STDLABUP.PROC’ and update the ICCF control definitions
needed to display the file name in resource definition dialogs.

The file names ‘VSEWAS’ and WASVSE’ will later be used to associate the MQ
local and transmit queues to the VSAM data files.

8.5.2 Defining the MQ files to CICS using RDO
Before you can use the VSAM data files you defined in the previous step, you
must make them known to CICS. This is done using the Resource Definition
Online (RDO) facility, part of CICS TS. With RDO, defining new resources to
CICS is a matter of minutes.

RDO is a CICS transaction that updates the CICS Resource Definition File. This
file holds groups of definitions you associate with each other. Groups are then
added to lists CICS can load during startup. CICS is able to load more than one
list at startup time. In case a definition list references the same definition more
than once, the last definition in the list will overwrite the preceding definition of
the same type and name. Having this in mind, think carefully about where to
place your MQ-related definitions.

In order to use RDO you need a SignOn user ID for CICS with the permission to
execute the CEDA transaction.

Now go to CICS and execute the CEDA transaction (CEDA def file) to define the
MQ receiver queue and the MQ transmit queue.

Example 8-26 shows how to define the MQ receiver queue.

Example 8-26 RDO definition for the receiver queue

OVERTYPE TO MODIFY CICS RELEASE = 0411
 CEDA DEFine File(WASVSE)
 File : WASVSE
 Group : MQMITSO
 DEScription ==> THIS IS THE RECEIVER QUEUE FOR MESSAGES FROM WEBSPHERE
 VSAM PARAMETERS
 DSNAme ==> WAS.VSE.RECEIVER.QUEUE
 Password ==> PASSWORD NOT SPECIFIED
 Lsrpoolid ==> 01 1-15 | None
 Catname ==> ESCAT10
 DSNSharing ==> Noreqs Noreqs | Allreqs | Modifyreqs
 STRings ==> 001 1-255
 Nsrgroup ==>
 SHr4access ==> Key Key | Rba
 REMOTE ATTRIBUTES
 REMOTESystem ==>

180 WebSphere V5 for Linux on zSeries - Connectivity Handbook

 REMOTEName ==>
 RECORDSize ==> 1-32767
 Keylength ==> 056 1-255
 INITIAL STATUS
 STAtus ==> Enabled Enabled | Disabled | Unenabled
 Opentime ==> Firstref Firstref | Startup
 BUFFERS
 DAtabuffers ==> 00002 2-32767
 Indexbuffers ==> 00001 1-32767
 DATATABLE PARAMETERS
 Table ==> No No | Cics | User
 Maxnumrecs ==> 16-16777215
 DATA FORMAT
 RECORDFormat ==> V V | F
 OPERATIONS
 Add ==> Yes No | Yes
 Browse ==> Yes No | Yes
 DELete ==> Yes No | Yes
 REAd ==> Yes Yes | No
 Update ==> Yes No | Yes
 AUTO JOURNALLING
 JOurnal ==> No No | 1-99
 JNLRead ==> None None | Updateonly | Readonly | All
 JNLSYNCRead ==> No No | Yes
 JNLUpdate ==> No No | Yes
 JNLAdd ==> None None | Before | AFter | ALl
 JNLSYNCWrite ==> Yes Yes | No
 RECOVERY PARAMETERS
 RECOVery ==> None None | Backoutonly | All
 Fwdrecovlog ==> No No | 1-99

Example 8-27 shows how to define the MQ transmit queue.

Example 8-27 RDO definition for the transmit queue

CEDA DEFine File(VSEWAS)
 File : VSEWAS
 Group : MQMITSO
 DEScription ==> THIS IS THE TRANSMIT QUEUE TO WEBSPHERE
 VSAM PARAMETERS
 DSNAme ==> VSE.WAS.TRANSMIT.QUEUE
 Password ==> PASSWORD NOT SPECIFIED
 Lsrpoolid ==> 01 1-15 | None
 Catname ==>
 DSNSharing ==> Noreqs Noreqs | Allreqs | Modifyreqs
 STRings ==> 001 1-255
 Nsrgroup ==>
 SHr4access ==> Key Key | Rba
 REMOTE ATTRIBUTES

 Chapter 8. WebSphere MQ connectors 181

 REMOTESystem ==>
 REMOTEName ==>
 RECORDSize ==> 1-32767
 Keylength ==> 056 1-255
 INITIAL STATUS
 STAtus ==> Enabled Enabled | Disabled | Unenabled
 Opentime ==> Firstref Firstref | Startup
 BUFFERS
 DAtabuffers ==> 00002 2-32767
 Indexbuffers ==> 00001 1-32767
 DATATABLE PARAMETERS
 Table ==> No No | Cics | User
 Maxnumrecs ==> 16-16777215
 DATA FORMAT
 RECORDFormat ==> V V | F
 OPERATIONS
 Add ==> Yes No | Yes
 Browse ==> Yes No | Yes
 DELete ==> Yes No | Yes
 REAd ==> Yes Yes | No
 Update ==> Yes No | Yes
 AUTO JOURNALLING
 JOurnal ==> No No | 1-99
 JNLRead ==> None None | Updateonly | Readonly | All
 JNLSYNCRead ==> No No | Yes
 JNLUpdate ==> No No | Yes
 JNLAdd ==> None None | Before | AFter | ALl
 JNLSYNCWrite ==> Yes Yes | No
 RECOVERY PARAMETERS
 RECOVery ==> None None | Backoutonly | All
 Fwdrecovlog ==> No No | 1-99

Please note that the group is MQITSO. If this group does not exist it will be
created at the first reference. It is completely up to you to choose every other
name or even the name of the group where you already hold all your MQ-related
definitions.

The next step is to install the new definitions, so CICS can access them. The
RDO file can be shared by more than one CICS. So make sure you are in the
same CICS where MQ is supposed to run.

Installing the new definitions is done by entering the command:

CEDA INSTALL GROUP (MQITSO)

Or you can enter the name of the group you choose. If you have added the
definition to an already existing group, open that group and install the new items

182 WebSphere V5 for Linux on zSeries - Connectivity Handbook

by typing an I like INSTALL next to the new definition. Now CICS has access to
the new resources. Use CEMT for verification.

In case you created a new group, it is necessary to add this group to the list of
the CICS that runs the MQ, so it can load the definitions during startup
(Example 8-28).

Example 8-28 CEDA ADD GROUP

ADD GR
 OVERTYPE TO MODIFY
 CEDA ADd
 Group ==> MQMITSO
 List ==> vselstf5
 Before ==>
 After ==> mqm

SYSID=CIC5 APPLID=A0006CI2
 ADD SUCCESSFUL TIME: 21.07.45 DATE: 03.315
 PF 1 HELP 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

You have the option of which list and at which position in the list you want to add
your new group MQITSO.

Now end the CEDA session as follows:

� CEMT I FILE (WASVSE), as shown in Example 8-29.

Example 8-29 Display WASVSE properties

I FILE(WASVSE)
 STATUS: RESULTS - OVERTYPE TO MODIFY
 Fil(WASVSE) Vsa Clo Ena Rea Upd Add Bro Del
 Dsn(WAS.VSE.RECEIVER.QUEUE) Cat(ESCAT10)

� CEMT I FILE (VSEWAS), as shown in Example 8-30.

Example 8-30 Display VSETXQ properties

I FILE(VSEWAS)
 STATUS: RESULTS - OVERTYPE TO MODIFY
 Fil(VSEWAS) Vsa Clo Ena Rea Upd Add Bro Del
 Dsn(VSE.WAS.TRANSMIT.QUEUE)

Both Example 8-29 and Example 8-30 show the MQ file properties. They are
available but still closed. If you want, you can open them at this point.

 Chapter 8. WebSphere MQ connectors 183

8.5.3 Defining MQ resources to VSE/ESA
As mentioned before, MQ runs on VSE as a set of transactions under the control
of CICS for VSE or CICS TS. All necessary definitions ar done calling the MQ
master transaction MQMT. Before you can use the MQ environment it must be
initialized by running the transaction MQSE with option I.

After executing MQMT, you are in the main menu of the MQ administration
facility, as shown in Example 8-31.

Example 8-31 MQMT entry screen

11/21/2003 IBM MQSeries for VSE/ESA Version 2.1.2 A0006CI2
 17:20:20 *** Master Terminal Main Menu *** CIC5
 MQWMTP A001
 SYSTEM IS ACTIVE

 1. Configuration

 2. Operations

 3. Monitoring

 4. Browse Queue Records

 Option: 1
5686-A06 (C) Copyright IBM Corp. 1998, 2002. All Rights Reserved.
 Clear/PF3=Exit Enter=Select 11/11/2003 IBM

From the entry panel select option 1 to invoke the Configuration dialog
(Example 8-32).

Example 8-32 Configuration main menu

MQSeries for VSE/ESA Version 2.1.2 A0006CI2
 18:55:32 *** Configuration Main Menu *** CIC5
 MQWMCFG A000
 SYSTEM IS ACTIVE

 Maintenance Options :
 1. Global System Definition
 2. Queue Definitions
 3. Channel Definitions
 4. Code Page Definitions

 Display Options :
 5. Global System Definition
 6. Queue Definitions

184 WebSphere V5 for Linux on zSeries - Connectivity Handbook

 7. Channel Definitions
 8. Code Page Definitions

 Option: 1

 Please enter one of the options listed.
 5686-A06 (C) Copyright IBM Corp. 1998, 2002. All Rights Reserved.
 Enter=Process PF2=Return PF3=Exit

Select Global System Definition to take some notes of the system and
connection relevant definitions (Example 8-33).

Example 8-33 MQ Global System Definition

11/11/2003 IBM MQSeries for VSE/ESA Version 2.1.2 A0006CI2
 19:01:40 Global System Definition CIC5
 MQWMSYS Queue Manager Information A000
 Queue Manager: QMVSE27
 Description Line 1.: QUEUE MANAGER FOR ESA270
 Description Line 2.:
 Queue System Values
 Maximum Number of Tasks . .: 00001000 System Wait Interval : 00000030
 Maximum Concurrent Queues .: 00001000 Max. Recovery Tasks : 0000
 Allow TDQ Write on Errors : Y CSMT Allow Internal Dump : Y
 Queue Maximum Values
 Maximum Q Depth: 01000000 Maximum Global Locks.: 00001000
 Maximum Message Size. . . .: 00004096 Maximum Local Locks .: 00001000
 Maximum Single Q Access . .: 00000100
 Global QUEUE /File Names
 Local Code Page . . : 01047
 Configuration File. : MQFCNFG
 LOG Queue Name. . . : SYSTEM.LOG
 Dead Letter Name. . : SYSTEM.DEAD.LETTER.QUEUE
 Monitor Queue Name. : SYSTEM.MONITOR

 Requested record displayed.
 PF2=Return PF3=Quit PF4/Enter=Read PF6=Upd PF9=Comms PF10=Log

8.5.4 Defining MQ local queues on VSE
If you are still in the Gobal System Definition, return to the Configuration Main
Menu by pressing PF2. PF2 is always used to return to the upper level menus.
PF3 will kick you out and you will have to start with MQMT again.

 Chapter 8. WebSphere MQ connectors 185

Enter 2 at the selection panel to enter the Queue Configuration Part of the
adminstration tool (Example 8-34).

Example 8-34 Configuration main menu

11/21/2003 IBM MQSeries for VSE/ESA Version 2.1.2 A0006CI2
 20:00:25 *** Configuration Main Menu *** CIC5
 MQWMCFG A001
 SYSTEM IS ACTIVE

 Maintenance Options :
 1. Global System Definition
 2. Queue Definitions
 3. Channel Definitions
 4. Code Page Definitions

 Display Options :
 5. Global System Definition
 6. Queue Definitions
 7. Channel Definitions
 8. Code Page Definitions

 Option: 2

 Please enter one of the options listed.
 5686-A06 (C) Copyright IBM Corp. 1998, 2002. All Rights Reserved.
 Enter=Process PF2=Return PF3=Exit

Option 2 takes you to the queue administration panel.

In a senario where two Queue Managers exchange messages, both sides need
to have the following queues:

� Sender
� Transmit
� Receiver

The sender path from MQ-VSE to MQ on Linux
We start with the definition needed to send messages to the remote system
(Example 8-35).

Example 8-35 Queue managment selection panel

11/22/2003 IBM MQSeries for VSE/ESA Version 2.1.2 A0006CI2
 00:04:27 Queue Main Options CIC5
 MQWMQUE A001

186 WebSphere V5 for Linux on zSeries - Connectivity Handbook

 SYSTEM IS ACTIVE

 Default Q Manager. : QMVSE27

 Object Type. . . . : R L = Local Queue
 R = Remote Queue
 AQ = Alias Queue
 AM = Alias Queue Manager
 AR = Alias Reply Queue

 Object Name. . . . : VSE270.was

 Function has been terminated.

 PF2=Return PF3=Quit PF4/Enter=Read PF5=Add PF6=Update
 PF9=List PF12=Delete

Enter R for the object type the name for the new queue at the object name
definition field and press PF5. Now you are in the section where you have to give
all of the details regarding the new queue.

Remote queue definition for the sender path
Example 8-36 illustrates the remote queue definition for the sender path.

Example 8-36 Defining the local queue VSE270.WAS

11/21/2003 IBM MQSeries for VSE/ESA Version 2.1.2 A0006CI2
 20:37:10 Queue Definition Record CIC5
 MQWMQUE QM - QMVSE27 A001

 Remote Queue Definition

 Object Name. : VSE270.WAS
 Description line 1 : QUEUE TO SEND MESSAGES TO THE
 Description line 2 : WEBSPHERE APPLICATION SERVER

 Put Enabled : Y Y=Yes, N=No
 Get Enabled : Y Y=Yes, N=No

 Remote Queue Name. : VSE270.WAS
 Remote Queue Manager Name. : MQ11
 Transmission Queue Name. . : VSE270.TX.WAS

 Chapter 8. WebSphere MQ connectors 187

 Record updated OK.
 PF2=Return PF3=Quit PF4/Enter=Read PF5=Add PF6=Update
 PF9=List PF12=Delete

On this panel you have to provide the information that has an impact on your
connection.

Object Name This is the name your local applications use
to address the remote system. This name is
not case sensitive. We decided to use a
name equal to the queue name at the
remote system that is receiving what we
sent.

Put/Get Enabled Leave the fields with the default Y.

Remote Queue Name This must be exactly the name of the queue
as it is defined at the remote system. This
name is not case sensitive.

Remote Queue Manager Name Here we provide the name of the remote
Queue Manager. Because MQ on VSE will
store and use the name in uppercase, the
Queue Manager at the remote system must
have a upper-case name.

Transmission Queue Name This is the name of a local queue. The
queue will be defined in the next step. It is a
interim queue. All messages are first stored
in that queue until delivery is acknowledged
by the remote system.

Transmit queue definition for the sender path
Each local queue pointing to a remote queue has to have a transmit queue. The
transmit queue works like a buffer for the outgoing messages. Example 8-37
illustrates the transmit queue definition for the sender path.

Example 8-37 Defining the transmit queue - Part 1

11/21/2003 IBM MQSeries for VSE/ESA Version 2.1.2 A0006CI2
 21:54:28 Queue Definition Record CIC5
 MQWMQUE QM - QMVSE27 A001

 Local Queue Definition

 Object Name. : VSE270.TX.WAS
 Description line 1 : QUEUE TO HOLD MESSAGES TILL

188 WebSphere V5 for Linux on zSeries - Connectivity Handbook

 Description line 2 : DELIVERED TO REMOTE SYSTEM

 Put Enabled : Y Y=Yes, N=No
 Get Enabled : Y Y=Yes, N=No

 Default Inbound status . . : A A=Active,I=Inactive
 Outbound status. . : A A=Active,I=Inactive

 Dual Update Queue. :

 Automatic Reorganize (Y/N) : N Start Time. : 0000 Interval. . : 0000
 VSAM Catalog :

 Record updated OK.
 PF2=Return PF3=Quit PF4/Enter=Read PF5=Add PF6=Update
 PF9=List PF10=Queue PF12=Delete

On this panel you have to provide the following information:

Object Name This is a logical name for the transmit
queue. It is used in the remote queue and
the sender channel definition.

Put/Get Leave the fields with the default Y.

Default In/Outbound status Leave this option with the default A.

Change to the next panel by pressing PF10 (Example 8-38).

Example 8-38 Defining the transmit queue - Part 2

11/21/2003 IBM MQSeries for VSE/ESA Version 2.1.2 A0006CI2
 23:02:17 Queue Extended Definition CIC5
 MQWMQUE QM - QMVSE27 A001
 Object Name. : VSE270.TX.WAS
 Physical Queue Information
 Usage Mode : T N=Normal, T=Transmission
 Share Mode : Y Y=Yes, N=No
 Physical File Name : VSEWAS VSE.WAS.TRANSMIT.QUEUE
 Maximum Values
 Maximum Q Depth. : 01000000 Global Lock Entries . : 00001000
 Maximum Message Length . . : 00004096 Local Lock Entries. . : 00001000
 Maximum Concurrent Accesses: 00000100
 Trigger Information
 Trigger Enable : Y Y=yes, N=No
 Trigger Type : F F=First, E=Every
 Maximum Trigger Starts . . : 0001
 Allow Restart of Trigger : Y Y=Yes, N=No
 Trans ID : Term ID:
 Program ID : MQPSEND Channel Name: VSE270.WAS

 Chapter 8. WebSphere MQ connectors 189

 User data :
 :

 PF2=Return PF3=Quit PF4/Enter=Read PF5=Add PF6=Update
 PF9=List PF10=Queue

On this panel you have to provide the following information:

Object Name VSE270.TX.WAS is the logical name for the
transmit queue. This is taken from the
previous panel.

Usage Mode This must be T=Transmission.

Share Mode Leave it with the default Y.

Physical File Name VSEWAS is the filename as defined in the
DLBL and RDO definitions.

Default In/Outbound status Leave this option with the default A.

Trigger Enable Y means if a messages appears in the
queue some action should happen.

Trigger Type F means that the action should happen at
the first occurrence.

Program ID MQPSEND: The CICS Program executed
(triggered) if a message is transferred to the
transmit queue.

Channel Name VSE270.WAS is the name of the channel
that holds the information for the target
system.

Sender channel definition
Example 8-39 shows what is needed to define the network connection to the
remote system and link the connection to the transmit queue for message
transfer.

Example 8-39 Define the sender channel properties

11/24/2003 IBM MQSeries for VSE/ESA Version 2.1.2 A0006CI2
 19:15:23 Channel Record UPDATE CIC5
 MQWMCHN Channel name. . : VSE270.WAS A000
 Protocol: T (L/T) Type : S (Sender/Receiver/Client)

 Sender
 Partner/Rem: 9.12.9.12
 Remote TCP/IP Port : 01414
 Get retry number : 00000000 LU62 Allocation Retry Num : 00000000
 Get retry delay (secs) . . : 00000000 LU62 Delay fast (secs). . : 00000000

190 WebSphere V5 for Linux on zSeries - Connectivity Handbook

 Convert Msgs(Y/N). : Y LU62 Delay slow (secs). . : 00000000
 Transmission Queue Name. . : VSE270.TX.WAS
 TP Name. . :
 Receiver
 Dead Letter Store(Y/N) . . : N
 Sender/Receiver
 Max Messages per Batch . . : 000001 Message Sequence Wrap. . : 999999
 Sender/Receiver/Client
 Max Transmission Size . . : 032766 Max Message Size : 0004096
 Split Msg(Y/N) : N
 Enable(Y/N). : Y

 Enter fields to be updated.
 F2=Return PF3=Quit PF4=Read PF5=Add PF6=Upd PF9=List PF10=SSL PF12=Del

On this panel you have to provide the following information:

Channel name VSE270.WAS: The name for the sender
channel must appear in the transmit queue
definition. This is the linking element to the
transmit queue.

Protocol T: For TCP/IP because Linux only supports
this type of protocol.

Type S: This is a sender type channel.

Partner/Rem Either the remote host name or its IP
address.

Remote TCP/IP Port 1414: The port the other system is listening
on.

Convert Msgs(Y/N) Y: Because we connect to ASCII type
system.

Transmission Queue Name VSE270.TX.WAS: The name we defined in
the former steps.

Max Messages per Batch Leave it with the default, both MQ managers
will negotiate about this value.

Message Sequence Wrap 999999 is the maximum VSE can handle.
See also “Defining the receiver channel” on
page 173.

Channel Name VSE270.WAS: The name of the channel
that holds the information for the target
system.

Max Transmission Size Leave it with the default, both MQ managers
will negotiate about this value.

 Chapter 8. WebSphere MQ connectors 191

Max Message Size Leave it with the default, both MQ managers
will negotiate about this value.

Enable (Y?N) Y: Yes, this channel should become active
when MQ gets initialized.

The receiver path from MQ-VSE to MQ on Linux
We continue with the definition needed to receive messages from the remote
system.

Receiver queue definition
Example 8-40 illustrates the definition of the local receiving queue.

Example 8-40 Defining the local receiving queue (part 1)

11/21/2003 IBM MQSeries for VSE/ESA Version 2.1.2 A0006CI2
 21:46:43 Queue Definition Record CIC5
 MQWMQUE QM - QMVSE27 A001

 Local Queue Definition

 Object Name. : WAS.VSE270
 Description line 1 : queue to receive messages
 Description line 2 : from websphere

 Put Enabled : Y Y=Yes, N=No
 Get Enabled : Y Y=Yes, N=No

 Default Inbound status . . : A A=Active,I=Inactive
 Outbound status. . : A A=Active,I=Inactive

 Dual Update Queue. :

 Automatic Reorganize (Y/N) : N Start Time. : 0000 Interval. . : 0000
 VSAM Catalog :

 Record being updated - Press UPDATE key again.
 PF2=Return PF3=Quit PF4/Enter=Read PF5=Add PF6=Update
 PF9=List PF10=Queue PF12=Delete

On this panel you have to provide the following information:

Object Name WAS.VSE270: This is the name of the local
on which the system will recieve messages
from other systems.

Put/Get Enabled Leave the fields with the default Y.

Default In/Outbound status Leave it with the default A.

192 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Automatic Reorganize (Y?N) N

Continue as shown in Example 8-41.

Example 8-41 Defining the local receiving queue (part 2)

11/21/2003 IBM MQSeries for VSE/ESA Version 2.1.2 A0006CI2
 21:50:11 Queue Extended Definition CIC5
 MQWMQUE QM - QMVSE27 A001
 Object Name. : WAS.VSE270
 Physical Queue Information
 Usage Mode : N N=Normal, T=Transmission
 Share Mode : Y Y=Yes, N=No
 Physical File Name : WASVSE WAS.VSE.RECEIVER.QUEUE
 Maximum Values
 Maximum Q Depth. : 01000000 Global Lock Entries . : 00001000
 Maximum Message Length . . : 00004096 Local Lock Entries. . : 00001000
 Maximum Concurrent Accesses: 00000100
 Trigger Information
 Trigger Enable : N Y=yes, N=No
 Trigger Type : F F=First, E=Every
 Maximum Trigger Starts . . : 0001
 Allow Restart of Trigger : N Y=Yes, N=No
 Trans ID : Term ID:
 Program ID : Channel Name: WAS.VSE270
 User data :
 :

 PF2=Return PF3=Quit PF4/Enter=Read PF5=Add PF6=Update
 PF9=List PF10=Queue

On this panel you have to provide the following information:

Object Name WAS.VSE270: The logical name for the
local queue. This is taken from the pervious
panel.

Usage Mode Must be N=Normal.

Share Mode Leave it with the default Y.

Physical File Name WASVSE: This is the filename as defined in
the DLBL and RDO definitions.

Default In/Outbound status Leave this option with the default A.

Trigger Enable N: We set it to no because we do not have a
program to pick up the messages.
Messages will stay in the queue as long as
they are read by some application or
deleted.

 Chapter 8. WebSphere MQ connectors 193

Trigger Type F has no meaning because trigger enable is
no.

Program ID Here we would name the CICS Program to
be executed (triggered) if we had one.

Channel Name Name of the receiver channel we will define
next.

Sender channel definition
Example 8-42 illustrates how to define the receiver channel properties.

Example 8-42 Define the receiver channel properties

11/24/2003 IBM MQSeries for VSE/ESA Version 2.1.2 A0006CI2
 21:07:47 Channel Record DISPLAY CIC5
 MQWMCHN Channel name. . : WAS.VSE270 A000
 Protocol: T (L/T) Type : R (Sender/Receiver/Client)

 Sender
 Partner/Rem:
 Remote TCP/IP Port : 01414
 Get retry number : 00000000 LU62 Allocation Retry Num : 00000000
 Get retry delay (secs) . . : 00000000 LU62 Delay fast (secs). . : 00000000
 Convert Msgs(Y/N). : N LU62 Delay slow (secs). . : 00000000
 Transmission Queue Name. . :
 TP Name. . :
 Receiver
 Dead Letter Store(Y/N) . . : N
 Sender/Receiver
 Max Messages per Batch . . : 000001 Message Sequence Wrap. . : 999999
 Sender/Receiver/Client
 Max Transmission Size . . : 032766 Max Message Size : 0004096
 Split Msg(Y/N) : N
 Enable(Y/N). : Y

 Channel record displayed.
 F2=Return PF3=Quit PF4=Read PF5=Add PF6=Upd PF9=List PF10=SSL PF12=Del

On this panel you have to provide the following information:

Channel name WAS.VSE270: The name for the receiver
channel must appear in the local queue
definition. This is the linking element to the
receiver queue.

Protocol T for TCP/IP because Linux only supports
this type of protocol.

Type R: This is a receiver type channel.

194 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Partner/Rem Leave empty.

Remote TCP/IP Port 1414: The port the local system is listening
on.

Convert Msgs(Y/N) N: The sender will do the conversion from
ASCII to EBCDIC.

Transmission Queue Name Leave empty.

Max Messages per Batch Leave it with the default; both MQ managers
will negotiate about this value.

Message Sequence Wrap 999999 is the maximum VSE can handle.
See also “Defining the sender channel” on
page 172.

Max Transmission Size Leave it with the default; both MQ managers
will negotiate about this value.

Max Message Size Leave it with the default; both MQ managers
will negotiate about this value.

Enable (Y/N) Y: Yes, this channel should become active
when MQ gets initialized.

8.5.5 MQ troubleshooting
In case that the connection between Linux and VSE will not start, there are a few
things you should check first.

On Linux
Log in as user root and enter the command:

dspmq

Make sure that your MQ is up and running. Next check if the listener is running
and connected to the right port. The port must be the same as in your
counterpart definitions on MQ for VSE or MQ for z/OS. That can be done with the
folllowing command:

ps -ef | grep runmqlsr

You receive an output as shown in Example 8-43. Watch out for the name of the
MQ manager you have trouble with. If it does not appear in the list, it means that
it is not started. Try to start the listener with the runmqlsr command. Before you
do that, check the port numbers on the display. You have to use a different port
for every Queue Manager.

 Chapter 8. WebSphere MQ connectors 195

Example 8-43 Show all active MQ listeners

linux11:/home/jhae # ps -fe | grep runmqlsr
mqm 1651 1650 0 Nov21 ? 00:00:03 runmqlsr -t tcp -p 5558 -m WAS_linux11_server1
mqm 1652 1651 0 Nov21 ? 00:00:00 runmqlsr -t tcp -p 5558 -m WAS_linux11_server1
mqm 1653 1652 0 Nov21 ? 00:00:00 runmqlsr -t tcp -p 5558 -m WAS_linux11_server1
mqm 1654 1652 0 Nov21 ? 00:00:00 runmqlsr -t tcp -p 5558 -m WAS_linux11_server1
mqm 1655 1652 0 Nov21 ? 00:00:00 runmqlsr -t tcp -p 5558 -m WAS_linux11_server1
mqm 21222 1 0 Nov25 ? 00:00:00 runmqlsr -m SC52LINUX11 -t tcp
mqm 21223 21222 0 Nov25 ? 00:00:00 runmqlsr -m SC52LINUX11 -t tcp
mqm 21224 21223 0 Nov25 ? 00:00:00 runmqlsr -m SC52LINUX11 -t tcp
mqm 21225 21223 0 Nov25 ? 00:00:00 runmqlsr -m SC52LINUX11 -t tcp
mqm 21226 21223 0 Nov25 ? 00:00:00 runmqlsr -m SC52LINUX11 -t tcp
mqm 6043 25162 0 Nov27 pts/2 00:00:00 runmqlsr -m MQ11 -t tcp -p 1450
mqm 6044 6043 0 Nov27 pts/2 00:00:00 runmqlsr -m MQ11 -t tcp -p 1450
mqm 6045 6044 0 Nov27 pts/2 00:00:00 runmqlsr -m MQ11 -t tcp -p 1450
mqm 6046 6044 0 Nov27 pts/2 00:00:00 runmqlsr -m MQ11 -t tcp -p 1450
mqm 6047 6044 0 Nov27 pts/2 00:00:00 runmqlsr -m MQ11 -t tcp -p 1450
root 18161 24994 0 09:36 pts/5 00:00:00 grep runmqlsr
linux11:/home/jhae #

If you see a listener with no port information, this listener is using the default port
1414. In a system where more than one MQ listener is active, this has an impact
on the port definitions of the counterpart as well. To start the listener with a
different port, you have to provide the port number with option -p, such as:

runmqlsr -m MQ11 -t tcp -p 2000

During your tests, it may happen that you try to connect from two different Queue
Managers to the local queue and could successfully transmit one or more
messages only from the first Queue Manager. If that happens, it means that the
local message counter of your local queue differs from the message counter of
the second remote Queue Manager on the other side. In this situation no further
messages are accepted untill the counters on both sides have been reset or
adjusted to each other.

8.6 Configuring the MQ connector in WebSphere
Configuring the MQ connector in WebSphere consists of the following steps:

� Define a WebSphere MQ queue connection factory.
� Define WebSphere MQ queue destinations.
� Define message listeners.

The following sections describe each of these steps.

Note: You do not have to create J2C Authentication entries for MQ.

196 WebSphere V5 for Linux on zSeries - Connectivity Handbook

8.6.1 Defining a WebSphere MQ queue connection factory
To define a queue connection factory in the WebSphere Administrative Console:

1. Click Resources → WebSphere MQ JMS Provider.

2. Click WebSphere MQ Queue Connection Factories.

3. Create a new queue connection factory and enter the following parameters:

– Name: TraderQCF.
– JNDI Name: jms/TraderQCF.
– Queue Manager: Specify the name of your local MQ Queue Manager.

All other fields should be left as default. Click OK to proceed.

8.6.2 Defining WebSphere MQ queue destinations
Next, you have to create several queue destination resources:

1. Click WebSphere MQ Queue Destinations.

2. Create the following five queue destinations, as shown in Table 8-2.

Table 8-2 Queue destinations used in Trader application

8.6.3 Defining message listeners
Message listeners are used by the Message Driven Bean (MDB). Even if you do
not use MDB option in the Trader application, you have to define Message
Listeners, otherwise the server will not run correctly.

1. Click Application Servers → server_name → Message Listener Service.

2. Click Listener Ports.

3. Click New to define two Message Listeners.

Message Listener #1:

– Name: TraderMQCICSListener
– Initial State: Change to Started if you configure to use MDB option

Name JNDI name Base queue name Target client

TraderCICSReqQ jms/TraderCICSReqQ TRADER.CICS.BRIDGEQ MQ

TraderCICSRepQ jms/TraderCICSRepQ TRADER.CICS.REPLYQ JMS

TraderIMSReqQ jms/TraderIMSReqQ TRADER.IMS.BRIDGEQ MQ

TraderIMSRepQ jms/TraderIMSRepQ TRADER.IMS.REPLYQ JMS

TraderProcessQ jms/TraderProcessQ TRADER.PROCESSQ JMS

 Chapter 8. WebSphere MQ connectors 197

– Connection Factory JNDI name: jms/TraderQCF
– Destination JNDI name: jms/TraderCICSRepQ

Message Listener #2:

– Name: TraderMQIMSListener
– Initial State: Change to Started if you configure to use MDB option
– Connection Factory JNDI name: jms/TraderQCF
– Destination JNDI name: jms/TraderIMSRepQ

Then click OK.

4. Save the current configuration.

8.6.4 Deploying TraderMQ application to WebSphere
In this chapter we look at the part of Trader that focuses on MQ connections.

1. Download and unzip the Trader install package to a directory that you have
read/write authority to, for example, /temp.

2. Copy the MQ EAR file to WAS’s installable applications:

cd /temp
cp TraderMQEar.ear /opt/WebSphere/AppServer/installableApps/TraderMQEar.ear

3. Open the WebSphere Adminstrative Console and select Applications →
Install New Application.

4. On the panel Preparing for the application installation, select Server path,
enter /opt/WebSphere/AppServer/installableApps/TraderMQEar.ear in the
field, and click Next (Figure 8-6).

Figure 8-6 Preparing for the application installation

5. On the subsequent panels, click Next to accept all defaults. On the last one,
click Finish.

6. Click Save to save the new configuration.

198 WebSphere V5 for Linux on zSeries - Connectivity Handbook

7. Go to Applications → Enterprise Applications and start the application.
Put a checkmark at the TraderMQEar application and click Start (see
Figure 8-7).

Figure 8-7 Starting the TraderMQEar application

8. To work with the application, enter the following URL in a Web browser to
access the MQ part of the Trader application, and you will see a screen
similar to Figure 8-8:

http://yourServer/TraderMQWeb/

 Chapter 8. WebSphere MQ connectors 199

Figure 8-8 The ITSO Trader application using the MQ connectors

9. Type a user ID, for example linux1, and click Go at either MQ-CICS Bridge or
at MQ-IMS bridge depending on the connection you want to test. If you want
Trader to use a message driven bean (MDB) to receive the reply, then put a
checkmark in the Use MDB box.

8.6.5 Defining resources for VSE in WebSphere
Defining WebSphere resources for VSE consists of four steps:

1. Define an MQ queue connection factory.
2. Define an MQ queue.
3. Create resource references in application .ear file.
4. Redeploy .ear file in the WebSphere admin console.

The following sections describe each of these steps.

200 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Step 1: Defining an MQ connection factory
Open the WebSphere administration console. In the WebSphere admin console
do as follows:

1. Click Resources → WebSphere MQ JMS Provider.

2. Click WebSphere MQ Queue Connection Factories.

3. Create a new MQ queue factory with the following properties (see figure
below).

We defined the following additional properties:

Queue Manager MQ11
XA Enabled NO

For the definition of the local MQ Queue Manager MQ11 on Linux refer to
“Defining MQ resources to Linux for zSeries” on page 168.

4. Click OK and save your definitions.

 Chapter 8. WebSphere MQ connectors 201

Step 2: Defining an MQ queue
In the WebSphere admin console do as follows:

1. Click Resources → WebSphere MQ JMS Provider.

2. Click WebSphere MQ Queue Destinations.

3. Create a new MQ Queue with the following properties (see figure below).

We defined the following additional properties:

Base Queue Name WAS.VSE270
Target Client MQ

Scroll down to define the following MQ Queue Connection properties (see
figure below).

4. Click OK and save your changes.

202 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Step 3: Creating resource references in the EAR file
Start the Application Assembly tool and open your EAR file. Now create resource
references for the MQ queue connection factory and the MQ queue.

1. Expand the tree view to the Resource References node, right-click the node,
and select New.

2. Create a new resource reference with the following properties (see figure
below).

3. Specify JNDI name.

4. Click OK and save the EAR file.

 Chapter 8. WebSphere MQ connectors 203

5. Transfer the new EAR file to the WebSphere platform. We did an FTP into the
/installableApps directory.

Step 4: Redeploying EAR file
Open the WebSphere admin console and do as follows:

1. Click Applications → Enterprise Applications.

2. Stop your application.

3. Select your application and click the Update button.

4. Specify the ear file pathname.

5. In the next panel select Override existing bindings.

6. Provide further options unless already shown.

204 WebSphere V5 for Linux on zSeries - Connectivity Handbook

7. Map resource references for MQ queue and connection factory.

8. Proceed with the panels by clicking Next.

9. After finishing the deployment steps, save your changes.

10.Restart your application.

 Chapter 8. WebSphere MQ connectors 205

Step 5: Using the MQ connection from a servlet
The code snippet shown in Example 8-44 can be used in a servlet to look up the
MQ connection and MQ queue and send a test string to VSE. Here, the
previously specified JNDI names of the queue connection factory and the MQ
queue are used to reference the respective WebSphere definitions.

Example 8-44 Use MQ queue connection in a servlet

String qcfName = "jms/queue/QueueConnectionFactory";
String qName = "jms/queue/Queue";

try {
 Context ctx = new InitialContext();
 QueueConnectionFactory qcf = (QueueConnectionFactory) ctx.lookup(qcfName);

QueueConnection connection = qcf.createQueueConnection();
 connection.start();

 boolean transacted = false;
 QueueSession session = connection.createQueueSession(transacted,
 Session.AUTO_ACKNOWLEDGE);

Queue ioQueue = (Queue)ctx.lookup(qName);
QueueSender queueSender = session.createSender(ioQueue);

 TextMessage outMessage = session.createTextMessage();
 outMessage.setText("Hello VSE");

queueSender.send(outMessage);
QueueReceiver queueReceiver = session.createReceiver(ioQueue);

 Message inMessage = queueReceiver.receive(1000); // wait 1 sec.

 queueReceiver.close();
 queueSender.close();
 session.close();
 connection.close();
}
catch (Exception e)
{
 ...
}

206 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Chapter 9. IMS J2EE connectors

This chapter provides a description of the IMS J2EE connectors and describes
the WebSphere Application Server V5.0.2 for Linux on zSeries and IMS
Connector for Java V2.1.0.1 configuration steps to install and execute the IMS
Trader sample application.

We discuss the following topics:

� IMS connectors overview
� Installing the IMS Connector for Java
� Installing the IMS resource adapter in WebSphere Application Server
� Configuring IMS J2C connection factories
� IMS Connect configuration
� Testing TraderIMS application
� Problem determination
� Thread identity support

9

© Copyright IBM Corp. 2004. All rights reserved. 207

9.1 IMS connectors overview
Figure 9-1gives an overview of backend IMS Connect and how it works with
frontend IMS Connector for Java.

Figure 9-1 IMS Connection from Linux for zSeries to z/OS

9.1.1 IMS Connect
IMS Connect is a TCP/IP server that runs on OS/390 and enables TCP/IP clients
to exchange messages with IMS Open Transaction Manager Access (OTMA).
As shown in Figure 9-1, this server provides communication links between
TCP/IP clients (such as our IMS Trader application using the IMS resource
adapter running in WebSphere Application Server for Linux for zSeries) and IMS
(datastores).

9.1.2 IMS Connector for Java
The IMS resource adapter is also called IMS Connector for Java.The IMS
resource adapter is used during development to create Enterprise Service Java
applications, as shown in Figure 9-2, and is used by those Java applications
during runtime to access IMS transactions running on host IMS systems, as
shown in Figure 9-1. WebSphere Studio Application Developer Integration
Edition (WSAD.IE) is a service-based development environment, and the IMS
resource adapter is one of the service providers included in it. It is also provided
with IMS Connect. We used WSAD IE V5.1 to create our IMS Trader application
and will be deploying the ear file that WSAD.IE created to WebSphere
Application Server V5.0.1.

OS/390 or z/OS

IMS
Connect
V2.1.0

IMS

O
T

M
A

TRAN

DATA

User Exit

TCP/IP

XCF

TCP/IP

Linux for zSeries

IMS Connector
for Java V2.1.0.1

HTTP/Apache
 WAS V5.0.2

EAR

208 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Figure 9-2 WebSphere Studio Application Developer’s use of IMS resource adapter

9.2 Installing IMS Connector for Java
The code IMS Connector for Java needs to be installed on our Linux for zSeries
system. We accessed the IMS Connector for Java executable from our NFS
Server.

We then ran the executable with the following command:

./imsicosetup_linux390_2101

We were then presented with a Welcome Panel, as shown inFigure 9-3. We
clicked Next.

IMS Resource
Adapter

EAR

Java Program

WebSphere Studio Application Developer
Integration Edition

Enterprise Service
Java application

 Chapter 9. IMS J2EE connectors 209

Figure 9-3 Install Wizard for IMS Connector for Java

We were then presented with a panel where we could install to the default
directory, /opt, or a different directory. We accepted the default and clicked Next.

We were then presented with an informational panel stating the total size for the
IMS Connector. We clicked Next.

The installer showed that it was updating the RPM database, then presented us
with a panel stating that the Install Wizard had successfully installed IMS
Connector for Java V2.1.0.1. Click Finish.

Successful completion of the installation created a new directory called
/opt/IMSICO, which contained several files; one of which is the IMS resource
adapter (imsico.rar). At run time, the IMS resource adapter is used with IBM
WebSphere Application Server. We now describe the process to install and
configure the IMS resource adapter for WebSphere Application Server so we can
run our IMS Trader application.

210 WebSphere V5 for Linux on zSeries - Connectivity Handbook

9.3 Installing the IMS resource adapter in WebSphere
Application Server

Now that we have our code installed on our Linux for zSeries system, we need to
install the IMS Resource Adapter (imsico.rar) in WebSphere Application Server.

On the WebSphere Administrative Console (Figure 9-4), we expanded
Resources, clicked Resource Adapters, selected the node on which we wanted
to install the resource adapter, and then clicked Install RAR to start the
installation process.

Figure 9-4 WebSphere Application Server V5.0.2 for Linux on zSeries Administration Console

On the next panel (Figure 9-5 on page 212), we chose to use the server path for
IMS resource adapter and made sure that the desired node for this resource was
our Linux for zSeries system (that is, linux11). We then clicked Next.

 Chapter 9. IMS J2EE connectors 211

Figure 9-5 Install the IMS RAR file

A resource adapter configuration panel will be displayed (Figure 9-6). We
entered IMS Connect as the name for this resource adapter and clicked OK.

Tip: RAR files can be installed from either of two locations. The file can be
loaded from a path on the local workstation to the browser, or from a path on
the server. There maybe times when the RAR file shipped with WSAD.IE is
the preferred source since it may contain maintenance not available on the
host.

212 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Figure 9-6 Resource adapter configuration

The adapter is now displayed as being installed on this node, as shown on
Figure 9-7 on page 213.

Figure 9-7 List of installed resource adapters

We could have saved our configuration changes at this time, but since
WebSphere Application Server will obtain the security information from the J2C
connection factory’s custom properties, we decided to configure the connection
factory for the IMS adapter resource next.

 Chapter 9. IMS J2EE connectors 213

9.4 Configuring IMS J2C connection factories
We clicked the newly installed IMS resource adapter, IMS Connect, to display its
Configuration panel. We then entered the archive path and the classpath of the
RAR file (Figure 9-8) and clicked Apply.

Figure 9-8 IMS Connect Configuration panel

We next clicked J2C Connection Factories at the bottom of the IMS Connect -
Configuration panel to display the J2C Connection Factories panel (not shown).
On this panel we clicked New to open the New Configuration panel.

On the New J2C Connection Factory panel, we entered IMS Connection Factory
for the name of the factory and for its JNDI name (Figure 9-9).

Important: There are two types of IMS Connect J2C connection factories.
One directly accesses IMS Connect using XCF (LOCAL), which can be used
only if you are on the same system as IMS; and the other accesses IMS
Connect using TCP/IP (REMOTE), which can be used if you are on the same
or on a different system as the IMS. We are using the remote type.

214 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Figure 9-9 IMS Remote J2C general properties

We clicked Apply to display Additional Properties at the bottom of the panel
(Figure 9-9 on page 215).

We clicked Custom Properties to display the J2C Custom Properties panel
(Figure 9-10). We entered the HostName (wtsc48.itso.ibm.com), the PortNumber
(6001), and the DataStoreName (IM4B), provided by the IMS System
Programmer.

Important: Component-managed Authentication Alias is used to provide a
user ID/password when the application’s res-auth deployment descriptor
specifies Application and there is no explicit user ID/password provided on the
connection request.

Container-managed Authentication Alias is used to provide a user
ID/password when the application’s res-auth deployment descriptor specifies
Container.

 Chapter 9. IMS J2EE connectors 215

Figure 9-10 IMS Remote J2C custom properties

Note the following properties:

� HostName - The TCP/IP host name of the system on which the IMS Connect
task is running.

� PortNumber - The port on which the IMS Connect task is listening
(Example 9-3 on page 219).

� DataStoreName - The name of the target IMS datastore. It must match the ID
parameter of the DataStore statement specified in the IMS Connect
configuration member (Example 9-3 on page 219).

� IMSConnectName - Not used for remote J2C connection factories.

� UserName - A default user ID to be used for this connection if no other is
provided.

� Password - A password to be used with the above default user ID.

� GroupName - A RACF group to be used with the above user ID/password.

� TraceLevel:

– 0 - No tracing or logging occurs.
– 1 - Only errors and exceptions are logged.

216 WebSphere V5 for Linux on zSeries - Connectivity Handbook

– 2 - Errors and exceptions plus the entry and exit of importmant methods
are logged.

– 3 - Errors and exceptions, the entry and exit of importmant methods, and
the contents of buffers sent and received are logged.

Since we had no other J2C connection factories to enter, we saved our
configuration changes. Click Save on the messages panel at the top of the
screen. There will be a message to save to the master configuration. Click Save.

9.5 Deploying TraderIMS application in WebSphere
Application Server

The JNDI name specified in the application needs to be resolved to a JNDI name
from one of our J2C connection factories.

During the installation of the Trader application, there are several panels that are
displayed. We took the defaults and clicked Next on all but one of the panels,
step 3. In step 3, as shown in Figure 9-11 on page 217, we needed to map the
resource references to the resources. The panel presented us with a list of JNDI
names found in the Trader application. We selected the pull-down that displayed
a list of the available J2C connection factories. We selected the factory that we
defined previously for our remote connection and the desired Modules and
clicked Apply.

Figure 9-11 Map resource reference to resouces

Tip: If you need to add additional J2C connection factories you can click J2C
Connection Factories at the top of the panel to redisplay the list of J2C
connection factories configured for this adapter and repeat this process;
otherwise save the changes.

 Chapter 9. IMS J2EE connectors 217

We then continued with the application installation, accepting the defaults, and
successfully deployed the application in the WebSphere Application Server.

We have now completed the required steps in WebSphere Application Server to
deploy the application.

Now that our application has been deployed in the WebSphere Application
Server, we need to make sure that the z/OS system has the necessary
definitions to allow us to connect to it.

9.6 IMS Connect configuration
Our goal is to describe the parameters and configuration definitions to allow our
WebSphere Application Server for Linux for zSeries to connect to IMS on the
z/OS machine, and not to describe all of the parameters and configuration
options of IMS Connect in this book. For more information on setting up IMS
Connect, see IMS Connect Guide and Reference V2.1,SG18-7260. Since IMS
Connect was already configured on our z/OS system for local communications,
the following IMS Connect setup has already been defined:

1. SCHEDxx member of SYS1.PARMLIB

SCHEDxx already had a PPT entry for HWSHWS00, as shown in
Example 9-1. Note that if you are using IMS Connect for TCP/IP
communications only, you can make the PPT entry SWAP.

Example 9-1 PPT entry for IMS Connect

PPT PGMNAME(HWSHWS00) /* PROGRAM NAME = HWSHWS00 */
CANCEL /* PROGRAM CAN BE CANCELED */
KEY(7) /* PROTECT KEY ASSIGNED IS 7 */
NOSWAP /* PROGRAM IS NOT SWAPPABLE */
NOPRIV /* PROGRAM IS NOT PRIVILEGED */
DSI /* REQUIRES DATA SET INTEGRITY */
PASS /* CANNOT BYPASS PASSWORD PROTECTION */
SYST /* PROGRAM IS A SYSTEM TASK */
AFF(NONE) /* NO CPU AFFINITY */
NOPREF /* NO PREFERRED STORAGE FRAMES */

If you are just adding this member, you will need to make the changes
effective by either re-IPLing MVS or issuing the SETSCH= command.

2. IMS Connect PROCLIB member

Tip: The J2C connection factory can be modified later without re-installing the
application.

218 WebSphere V5 for Linux on zSeries - Connectivity Handbook

A proclib member already existed, which is shown in Example 9-2. The IMS
Connect configuration is specified by the HWSCFG parameter, shown in bold.

Example 9-2 IMS Connect Proclib member

//HWS PROC RGN=4096K,SOUT=A,
// BPECFG=BPECFGHT,
// HWSCFG=HWSCFG00
//*
//***
//* BRING UP AN IMS CONNECT *
//***
//STEP1 EXEC PGM=HWSHWS00,REGION=&RGN,TIME=1440,
// PARM=íBPECFG=&BPECFG,HWSCFG=&HWSCFGí
//STEPLIB DD DSN=SHWSRESL,DISP=SHR
// DD DSN=SDFSRESL,DISP=SHR
// DD DSN=CEE.SCEERUN,UNIT=SYSDA,DISP=SHR
// DD DSN=SYS1.CSSLIB,UNIT=SYSDA,DISP=SHR
// DD DSN=GSK.SGSKLOAD,UNIT=SYSDA,DISP=SHR
//PROCLIB DD DSN=USER.PROCLIB,DISP=SHR
//SYSPRINT DD SYSOUT=&SOUT
//SYSUDUMP DD SYSOUT=&SOUT
//HWSRCORD DD DSN=HWSRCDR,DISP=SHR

3. The IMS Connect configuration parameter

The IMS Connect configuration parameters are shown in Example 9-3. From
the member that is pointed to by the HWSCFG parameter in the IMS Connect
procedure, we needed to take note of two keyword parameters: DATASTORE
ID and PORTID. These were the values that we specified for our IMS
resource adapter on the J2C customer properties panel in Figure 9-10 on
page 216.

Example 9-3 IMS Connect configuration parameters

HWS (ID=IM4BCONN,RRS=Y,RACF=Y
TCPIP (HOSTNAME=TCPIP,PORTID=(6001,LOCAL),MAXSOC=2000)
DATASTORE (ID=IM4B,GROUP=HAOTMA,MEMBER=HWS814B,TMEMBER=SCSIMS4B)

The DATASTORE ID provides the custom property DataStoreName for our IMS
J2C connection factory.

The TCPIP PORTID provides the custom property portNumber for our remote
J2C connection factory.

Now that we have verified our definitions, it is time to test the application.

 Chapter 9. IMS J2EE connectors 219

9.7 Testing TraderIMS application
We can test our TraderIMS application by using the following HTML:

http://myserver/TraderIMSWeb/

Figure 9-12 The ITSO Trader application using the IMS Connector

Type a user ID, for example linux1, and click Go.

9.8 Problem determination
To perform problem determination (Figure 9-13) we recommend enabling the
following WebSphere traces and setting the trace level in the J2C connection
factory customer property to 3:

� com.ibm.ejs.j2c.*=all=enabled
� com.ibm.connector2.*=all=enabled

220 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Figure 9-13 Diagnostic traces

9.8.1 Common errors
The following are some common errors:

� ICO0079E:com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@3b1bf
125.getOutputData (InteractionSpec) error. IMS returned DFS™ message:
DFS064 08:31:04 DESTINATION CAN NOT BE FOUND OR CREATED.

– Explanation: The first eight characters of the input could not be recognized
as a valid transaction, logical terminal name, or command.

– Usual cause: The transaction name specified in the input request is not
recognized by the target IMS system.

� ICO0001E:com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@d6fd9
46.processOutputOTMAMsg(byte [], InteractionSpec, Record) error. IMS
Connect returned the error: RETCODE=[8], REASONCODE=[SECFNPUI].
Security failure; no password and no user ID.

– Explanation: The application descriptor specifies the res-auth Application
but the application did not provide a user ID or password.

– Solution: Consider changing the res-auth to Container.

� ICO0003E:com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@5072
da31.connect() error. Failed to connect to host [p390.raleigh.ibm.com], port
[4000]. [java.net.ConnectException: Connection refused: connect]

– Explanation: The IMS Connect task on the specifed host is not accepting
the connection request.

– Solution: Verify that the IMS Connect task is active on the target host
system and is listening on the specified port.

 Chapter 9. IMS J2EE connectors 221

� ICO0064E:com.ibm.connector2.ims.ico.IMSLocalOptionManagedConnection@
12d18e56.processSubject(javax.security .auth.Subject aSubject) error.
Invalid security credential.

– Explanation: IMS connect was unable to validate the user ID and
password passed on the request with the external security manager.

– Solution: An invalid user ID and/or password was provided.

9.9 Thread identity support
IMS J2C connection factories support the assignment of a thread identifier as the
owner of a connection for authentication purposes. This assignment is enabled
when the following conditions are met:

� Contained Managed resource authority (res-auth=Container) is specified in
the application deployment descriptors.

� The J2C Connection factory uses local (no TCP/IP) access, and no
Container-managed Authentication Alias is specified.

222 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Chapter 10. VSE Java-based connector
to access VSAM data

The VSE Java-based connector can be used to access all kinds of VSE data
such as VSAM, DL/I, POWER™, Librarian, and ICCF. Java programs such as
applets, servlets, or stand-alone programs can also use this connector to access
console or job submission functions. In this chapter, we describe how to access
VSE/VSAM data from a WebSphere environment.

We discuss the following topics:

� VSE Java-based connector overview
� Installing the VSE Java-based connector
� Using the VSE connector client as a resource adapter
� Using the VSE connector client as a JDBC provider
� Setting up sample data for Trader
� Installing an application in WebSphere
� Configuring for SSL secure connections
� Problem determination

10

© Copyright IBM Corp. 2004. All rights reserved. 223

10.1 VSE Java-based connectors overview
The VSE Java-based connectors consist of a client part and a server part, as
shown in Figure 10-1. The VSE Connector Client (VCC) includes a Java class
library of JavaBeans. These beans represent VSE system components and file
systems, such as VSAM, POWER and the operator console. There is extensive
online documentation and ready-to-run samples. The server part is the VSE
Connector Server (VCS), a batch application that receives requests from the
VSE JavaBeans and uses native methods to access VSE data and functions.

Figure 10-1 VSE Java-based connector overview

There is a number of other connectors, for example the VSE Script connector,
which allows access to VSE data from non-Java programs. It uses a proxy server
that executes scripts. This connector can be used to access VSE from
spreadsheet applications, like MS Excel or Lotus® 1-2-3® via VisualBasic. There
is also a variety of tools around these connectors, for example, to print host data
formatted on LAN-attached printers or to set up SSL.

A detailed description can be found in the book VSE/ESA e-business Connectors
User’s Guide, SC33-6719.

All connector components, online books, and documentation can be downloaded
from the following Web site:

http://www-1.ibm.com/servers/eserver/zseries/os/vse/support/vseconn/

Client with a
Web browser

Linux for zSeries
SuSE 7.2

VSE/ESA 2.7

CICS
(Trader)

MQ

VSAMVCC

Note:
Only the CTG
connection
accesses the
Trader
application

CICS
(SOAP Demo)

WebSphere
Application

Server
5.0.2

Trader
App.

SOAP

CTG

MQ

DB2 DB2

VCS

VSE Connector
Client

VSE Connector
Server

VSAM
Redirector

Server

VRC

224 WebSphere V5 for Linux on zSeries - Connectivity Handbook

http://www-1.ibm.com/servers/eserver/zseries/os/vse/support/vseconn/

10.1.1 Client-server components
The VSE Java-based connector consists of a client and server components.

� The VSE Connector Client (VCC) includes:

– The VSE JavaBeans class library (VSEConnector.jar). This includes a
VSAM JDBC driver.

– The related Java documentation.

– Online documentation in HTML format, including details about using the
CICS SOAP support.

– Samples for all kinds of data access.

� The VSE Connector Server (VCS) is a LE/VSE C-application. It runs on VSE,
and uses native methods to access VSE data and functions.

Both components talk to each other via TCP/IP using a proprietary application
protocol.

The VSE JavaBeans class library can be deployed to WebSphere as a resource
adapter. Also, JDBC requests are possible against VSAM data. So the primary
use of this connector in our project was to access VSAM data via a servlet.

Figure 10-2 shows a typical scenario with a servlet accessing VSE/VSAM data.

Figure 10-2 Access VSAM data from a servlet

The servlet uses the VSE-provided resource adapter (RA) to connect to the VSE
Connector Server (VCS) running on VSE. The connector server accesses the
VSAM data and sends it back to the resource adapter, which in turn delivers it to
the servlet.

Important: Make sure you have the most recent level of both components.

Linux VSE

WebSphere

Servlet
RA VCS

VSAM

VSAM

 Chapter 10. VSE Java-based connector to access VSAM data 225

10.2 Installing the VSE Java-based connector
The installation of the VSE Java-based connector requires both client and server
implementation.

10.2.1 Client
The VSE Connector Client is shipped with VSE and can be downloaded from
either of the following:

� PRD1.BASE, member IESINCON.W

Download the member in binary, rename the file extension to .zip, and open it
with any zip tool, like winzip or pkzip. There are four files contained in the zip
file:

– install.class - Contains the product code and install wizard
– install.bat - Install batch file for Windows
– install.cmd - Install batch file for OS/2 or Windows NT®
– install.sh - Install batch file for Unix/Linux

� The Internet

http://www-1.ibm.com/servers/eserver/zseries/os/vse/support/vseconn/

Running the appropriate installation batch file on your workstation will launch an
install wizard, which prompts you for some install options.

To create a WebSphere resource adapter, we need the following jar files, which
are located in the connector client’s install directory:

� VSEConnector.jar, the VSE JavaBeans class library
� cci.jar, the J2C Common Connector Interface definitions
� ibmjsse.jar, the SSL-related classes

Note: The installation process is based on Java and needs JDK 1.3 or later on
your workstation. We recommend that you use JDK 1.4, because some VSE
tools, which are based on the connector class library, require JDK 1.4.

Tip: When installing on Windows, the installation process adds some
environment variables, which are referenced by connector-based tools. These
new variables become active when rebooting your workstation. But you can
get them active without reboot, by clicking Control Panel → System →
Environment Variables and clicking OK on this dialog box.

226 WebSphere V5 for Linux on zSeries - Connectivity Handbook

http://www-1.ibm.com/servers/eserver/zseries/os/vse/support/vseconn/

10.2.2 Server
The VSE Connector Server is configured via a set of job skeletons, which are
provided in ICCF library 59.

SKVCSCFG The main config member.
SKVCSLIB Define list of VSE libraries.
SKVCSPLG Define server plugins.
SKVCSSSL Define SSL parameters.
SKVCSSTJ A template for the server startup job.
SKVCSUSR Configure users and IP addresses.
SKVCSCAT To catalog the config members.

At this point in time we did not change anything here. The server is started with
the job STARTVCS, which is placed in the reader queue when installing VSE.
The server runs in dynamic class R by default.

10.3 Using VSE Connector Client as resource adapter
This section describes how to use the VSE Connector Client as a WebSphere
resource adapter.

A resource adapter defines the access to a specific Enterprise Information
System (EIS), like VSE, z/OS, or other vendor-specific back-end systems. This
allows WebSphere applications to just use resource adapters to connect to
remote platforms without the need to know about IP addresses, user IDs,
passwords, and so on. All system- and connection-specific information is
encapsulated by the resource adapter.

A resource adapter is given by a .rar file, which in fact is a .jar file that contains
special classes implementing an interface according to the J2EE connector
specification. The VSEConnector.jar file implements the Common Connector
Interface (CCI). In addition to that, the .rar file must contain a deployment
descriptor file, which describes the properties of the related back-end system.
This is an XML file called ra.xml in directory META-INF. This file defines
parameters needed to access the back-end system.

The following section shows the steps for deploying the VSE Connector Client
class library as a WebSphere resource adapter.

10.3.1 Defining a resource adapter
Copy the VSEConnector.jar file to VSEConnector.rar in order to deploy it. Do not
rename the original jar file, because in this case other connector-based

 Chapter 10. VSE Java-based connector to access VSAM data 227

applications would no longer be able to access it. You have to accomplish the
following steps:

1. Log on to the WebSphere admin console.

2. Select Resources and click Resource Adapters.

Click Install RAR to install the VSEConnector.rar file as a new resource
adapter. The file will be extracted into a WebSphere directory.

3. Enter the path name of the VSEConnector.rar file and click Next.

Enter the name and description of the new resource adapter. Also enter the
place-name of the two additional VSE Connector jar-files in the field
Classpath. Leave the other fields blank.

Click OK.

4. Click the new resource adapter to specify further properties.

228 WebSphere V5 for Linux on zSeries - Connectivity Handbook

5. Click J2C Connection Factories to create a new connection factory. While a
resource adapter defines the properties of a specific application on a
back-end system as a whole, like MQ on z/OS or the VSE Connector Server
on VSE, a connection factory defines the properties of one specific
connection to one single back-end system.

.

6. Click New to create a new connection factory. Then enter the properties of
the connection factory.

You may leave the other fields blank.

Then press OK.

7. Scroll down and click Custom Properties where you should see the
VSE-specific parameters as defined in the ra.xml file in VSEConnector.rar.

Note: You can freely choose the JNDI name here. However, a naming
convention in a production environment would call it, for example,
eis/vse270 to indicate a specific VSE back-end system. Further connection
factories, which go to other VSE systems, would similarly include their
names into their JNDI names.

 Chapter 10. VSE Java-based connector to access VSAM data 229

Here we specified the settings according to our VSE system.

At this moment we do not use SSL. So we only need the IP address or
symbolic name of the VSE system, a valid VSE, user ID and its password.
The port 2893 is the default port of the VSE Connector Server running on
VSE.

8. Save your changes.

.

The next section shows you how to reference this resource adapter in a servlet.

230 WebSphere V5 for Linux on zSeries - Connectivity Handbook

10.3.2 Related servlet code
The following code snippet is taken from the doGet() method of a servlet and
shows how to connect to VSE using the defined resource adapter.

Example 10-1 Access VSE data and functions from a servlet

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{

...
VSEConnectionSpec spec;

 VSESystem system;
 Context ctx;

 try
 {
 ctx = new InitialContext();

spec = new VSEConnectionSpec(ctx,"eis/VSEConnector");
system = new VSESystem(spec);
system.connect(); (1)

 }
 catch (NamingException e)
 {
 ...
 }
...
}

Calling the connect() method is not necessary in an application. The connection
is established implicitly when needed. But the connect() method can be used to
check the connection.

The next chapter shows how to define a JDBC provider using the VSE
Connector Client class library.

10.4 Using the VSE connector client as a JDBC provider
In the VSE connector implementation, the JDBC driver is contained in the same
jar file (VSEConnector.jar) as the VSE resource adapter. In general, this need
not to be the case. Figure 10-3 shows a JDBC data source that connects to the
VSE Connector Server (VCS). The VSE resource adapter is not used here.

 Chapter 10. VSE Java-based connector to access VSAM data 231

Figure 10-3 Access VSAM data via JDBC

Figure 10-3 shows a servlet that uses the VSAM JDBC provider, contained in the
VSE resource adapter, to access VSAM data on VSE in a relational way.

10.4.1 Defining a JDBC provider
To define a VSAM JDBC provider to WebSphere, you use the same class files as
for the above described resource adapter. However, the JNDI name is different.
Proceed as follows.

1. Log on to the admin console by entering any user ID. Click Resources →
JDBC Providers.

2. Click New to add a new JDBC provider.

Linux VSE

WebSphere

Servlet

JDBC data
source

VCS VSAM

VSAM

232 WebSphere V5 for Linux on zSeries - Connectivity Handbook

3. Create a user-defined JDBC provider.

4. Enter the properties for the JDBC provider. In the field Classpath enter the
three VSE Connector jar files. Remove any other entries.

 Chapter 10. VSE Java-based connector to access VSAM data 233

In the field Implementation Classname enter:

com.ibm.vse.jdbc.VsamJdbcConnectionPoolDataSource

It must be exactly this string, because it references the Java class, which
implements the JDBC data source. Then click OK.

5. Specify further properties. Click the JDBC provider name.

6. Click Data Sources.

7. Click New to create a new data source for this JDBC provider.

234 WebSphere V5 for Linux on zSeries - Connectivity Handbook

8. Specify the data source properties.

.

Click OK.

9. Specify further properties of the data source. Click the data source name.

Note: You can freely choose the JNDI name here. However, a naming
convention in a production environment would call it, for example,
jdbc/vsam/vse270 to indicate a specific VSE back-end system. Further
JDBC data sources, which go to other VSE systems, would similarly
include their names into their JNDI names.

 Chapter 10. VSE Java-based connector to access VSAM data 235

10.Click J2C Data Authentication Entries.

11.Add a new entry specifying your VSE user ID and password.

Go back to the data source properties and select this newly created
authentication entry from check box Component-managed Authentication Alias.
This VSE user ID is used by the JDBC driver to connect to VSE. If it is not
specified, the VSE Connector Server would reject the connection later, because
JDBC would try to connect without sending a user ID.

236 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Click Apply.

12.Scroll down and click Custom Properties to define database-specific
properties needed to access VSE.

13.Add the VSE server name. Leave the type field as String.

 Chapter 10. VSE Java-based connector to access VSAM data 237

14.Add the VSE Connector Server port number.

Important: It is important that you select type Integer from the drop-down
combo box. Otherwise the connection will not work, because the JDBC
driver expects this parameter as an integer value.

238 WebSphere V5 for Linux on zSeries - Connectivity Handbook

15.Indicate to not use SSL by specifying SSL=OFF, which is the default. For
details about how to define an SSL connection, see 10.7, “Configuring for
SSL secure connections” on page 262.

.

16.Now you should have a list similar to the following figure.

17.Save your changes and restart the WebSphere service.

 Chapter 10. VSE Java-based connector to access VSAM data 239

For details on defining a VSAM JDBC data source for SSL connections, refer to
10.7.12, “Configuring an SSL JDBC data source” on page 280.

The following section shows how to use this JDBC driver from a servlet to access
VSAM data.

10.4.2 Related servlet code
The following code snippets can be used in a servlet to retrieve VSAM data via
JDBC. First, you have to look up the JDBC data source via its JNDI name.

Example 10-2 Look up JDBC data source

try
{
 // Lookup a JDBC Connection
 Context ctx = new InitialContext();

DataSource ds = (DataSource)ctx.lookup("jdbc/vsamjdbc");
java.sql.Connection jdbcCon = ds.getConnection();

}
catch (Throwable t)
{
 ...
}

The next step is to retrieve the data records. The SQL query uses the
concatenated file IDs of the VSAM catalog and cluster, separated by a
backslash, and followed by the VSAM map name. The data fields are retrieved
by specifying their VSAM field names, which are defined in the VSAM map.

240 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Example 10-3 Retrieve VSAM records via JDBC

try
{
 // Create the statement
 java.sql.Statement stmt = jdbcCon.createStatement();

 // Submit the query
 java.sql.ResultSet rs = stmt.executeQuery(
 "SELECT * FROM VSESP.USER.CATALOG\\TRADER.COMPANY\\COMPANY_MAP");

 // Walk through the results
 while (rs.next())
 {
 String company = rs.getString("COMPANY");
 int share_price = rs.getInt("SHARE_PRICE");
 int unit_val_7 = rs.getInt("UNIT_VALUE_7DAYS");
 ...
 }

rs.close();
 stmt.close();
}
...

10.5 Setting up sample data for Trader
In order to access non-relational VSAM data in a relational way, for example via
JDBC, the internal record structure must be made known externally. Typically,
the data fields of a given VSAM record are only known by the application
program (for example COBOL or PL/I). Even VSAM has no information about the
internal structure of a record, except of the length and position of key fields.

Now there are a couple of ways to make this record structure, here called VSAM
map, available to any kind of VSE connector-based Java program:

� Extract the record layout from a given COBOL copy book.
� Import/export the record structure from an XML file.
� Get a given VSAM map from a VSE system.
� Define a map by hand.

VSE provides three functions that support VSAM data mapping:

� The VSE Navigator
� The VSAM map tool
� The IDCAMS command RECMAP

 Chapter 10. VSE Java-based connector to access VSAM data 241

To create the maps for Trader, we used the VSE Navigator, because we did not
have any COBOL copy books or other files from which we could create the maps
on VSE automatically.

10.5.1 Installing the VSE Navigator
The VSE Navigator is a Java-based system management tool that provides a
graphical user interface for VSE. The Java client is implemented on the basis of
the VSE Connector Client and thus connects to the VSE Connector Server on
VSE via TCP/IP.

The tool is not shipped as part of VSE. It can be downloaded from:

http://www-1.ibm.com/servers/eserver/zseries/os/vse/support/vseconn/

To install the VSE Navigator:

1. Download the Navigator zip file in binary and extract the containing files into
an empty directory. There are four files contained in the zip file:

– install.class - Contains the product code and install wizard.
– install.bat - Install batch file for Windows.
– install.cmd - Install batch file for OS/2 or Windows NT.
– install.sh - Install batch file for Unix/Linux.

2. Run the installation batch file appropriate for your platform and follow the
install wizard dialogs.

10.5.2 Installing the VSAM maptool
The VSAM maptool allows you to maintain VSAM maps by providing the
following basic functions:

� Extract a map from a given COBOL copy book.
� Import (receive) a given map from a given VSE system.
� Export a map to a VSE system (send it to VSE).
� Import a map from a XML file.
� Export a map to a XML file.

So it is especially interesting when you have big data structures with lots of fields,
which would make it too time consuming for generating maps manually.

The VSAM maptool can be downloaded from:

http://www-1.ibm.com/servers/eserver/zseries/os/vse/support/vseconn/

It is not shipped as part of VSE. To install the maptool:

1. Download the zip file and extract its contents in a new empty directory.

242 WebSphere V5 for Linux on zSeries - Connectivity Handbook

http://www-1.ibm.com/servers/eserver/zseries/os/vse/support/vseconn/
http://www-1.ibm.com/servers/eserver/zseries/os/vse/support/vseconn/

2. Start the tool by running the run.bat / run.sh file.

10.5.3 Creating the sample VSAM files
The ITSO trader CICS application works on two VSAM files that we defined on
VSE as follows. The first file represents the trader.company table.

Example 10-4 Definition of the trader.company file

* $$ JOB JNM=TRCOMP,CLASS=0,DISP=D,NTFY=YES
// JOB JSCH DEFINE FILE
// EXEC IDCAMS,SIZE=AUTO
 DEFINE CLUSTER (-
 NAME (TRADER.COMPANY) -
 CYLINDERS(2 2) -
 SHAREOPTIONS (1) -
 RECORDSIZE (80 80) -
 VOLUMES (DOSRES SYSWK1) -
 NOREUSE -
 INDEXED -
 FREESPACE (15 7) -
 KEYS (20 0) -
 NOCOMPRESSED -
 TO (99366)) -
 DATA (NAME (TRADER.COMPANY.@D@) -
 CONTROLINTERVALSIZE (4096)) -
 INDEX (NAME (TRADER.COMPANY.@I@)) -
 CATALOG (VSESP.USER.CATALOG)
 IF LASTCC NE 0 THEN CANCEL JOB
/*
// OPTION STDLABEL=ADD
// DLBL TRCOMPA,'TRADER.COMPANY',,VSAM, X
 CAT=VSESPUC
/*
// EXEC IESVCLUP,SIZE=AUTO
A TRADER.COMPANY TRCOMPA VSESPUC
/*
/&
* $$ EOJ

The second file represents the trader.customer table. It will initially contain no
data.

Example 10-5 Definition of the trader.customer file

* $$ JOB JNM=TRCUST,CLASS=0,DISP=D,NTFY=YES
// JOB JSCH DEFINE FILE
// EXEC IDCAMS,SIZE=AUTO

 Chapter 10. VSE Java-based connector to access VSAM data 243

 DEFINE CLUSTER (-
 NAME (TRADER.CUSTOMER) -
 CYLINDERS(2 2) -
 SHAREOPTIONS (1) -
 RECORDSIZE (90 90) -
 VOLUMES (DOSRES SYSWK1) -
 NOREUSE -
 INDEXED -
 FREESPACE (15 7) -
 KEYS (80 0) -
 NOCOMPRESSED -
 TO (99366)) -
 DATA (NAME (TRADER.CUSTOMER.@D@) -
 CONTROLINTERVALSIZE (4096)) -
 INDEX (NAME (TRADER.CUSTOMER.@I@)) -
 CATALOG (VSESP.USER.CATALOG)
 IF LASTCC NE 0 THEN CANCEL JOB
/*
// OPTION STDLABEL=ADD
// DLBL TRCUSTO,'TRADER.CUSTOMER',,VSAM, X
 CAT=VSESPUC
/*
// EXEC IESVCLUP,SIZE=AUTO A TRADER.CUSTOMER
TRCUSTO VSESPUC
/*
/&
* $$ EOJ

10.5.4 Creating the VSAM maps
Start the VSE Navigator and define your VSE host.

1. Click the Configure Hosts tool bar button.

244 WebSphere V5 for Linux on zSeries - Connectivity Handbook

2. Click New and enter the name of your host. The name must not contain
spaces, slashes, or backslashes.

.

3. Enter your VSE IP address and your default VSE user ID. We recommend
that you use an administrator type user ID, like SYSA. Then save and Close.

 Chapter 10. VSE Java-based connector to access VSAM data 245

We will not use SSL at this time, so just leave the other controls untouched.

4. Now connect to the VSE system by expanding the VSE host tree node and
then opening the VSAM tree node. You are prompted to enter your password.

246 WebSphere V5 for Linux on zSeries - Connectivity Handbook

.

5. Now proceed to the two VSAM files by expanding the VSAM user catalog tree
node. Then right-click the TRADER.COMPANY file and select menu choice
Create map definition.

 Chapter 10. VSE Java-based connector to access VSAM data 247

6. Enter the name of the map, for example COMPANY_MAP.

7. Then define the data fields as required by the DB2 table layout for
trader.company. Here is the DDL to define the table to DB2.

Example 10-6 Data layout for trader.company

create table trader.company (
company char(20) not null primary key,
share_price real,
unit_value_7days real,
unit_value_6days real,
unit_value_5days real,
unit_value_4days real,
unit_value_3days real,
unit_value_2days real,
unit_value_1days real,
comm_cost_sell int,
comm_cost_buy int) ;

248 WebSphere V5 for Linux on zSeries - Connectivity Handbook

The VSAM map definition looks like that shown in the following picture. For
each data field you have to specify the name, offset, length, and data type. All
real values are defined here as unsigned numbers.

10.5.5 Populating the sample VSAM files
For the Trader scenario, we have to populate only the trader.company file. The
trader.customer file is initially left empty.

There are a number of possibilities to put data into a VSAM file:

� With the old way using DITTO
� Using an application, like a COBOL program
� Using a REPRO job that uses SYSIPT to read the data from the job
� Using a simple Java program

Typically you would use the first two ways of filling a VSAM file with data when all
data fields are strings. If they are not, you may have some trouble changing the
VSAM records later in order to have the correct binary data in it.

In our case, only the first field (COMPANY) is a string field; all others are
integers. So we just wrote a simple Java program using the VSE JavaBeans to
add the data with the correct data types in the first run. For an API
documentation refer to the VSE Connector Client.

Example 10-7 Populate VSAM files with a simple Java program

String catalogID = "VSESP.USER.CATALOG";

 Chapter 10. VSE Java-based connector to access VSAM data 249

String clusterID = "TRADER.COMPANY";
String mapname = "COMPANY_MAP";

/* Setup data ... */
String[][] data = {
 {"Casey_Import_Export ","0079","0059","0063","0065","0070","0072", ...},
 {"Glass_and_Luget_Plc ","0019","0017","0022","0020","0016","0020", ...},
 {"Headworth_Electrical","0124","0141","0138","0137","0133","0133", ...},
 {"IBM ","0163","0157","0156","0159","0161","0160", ...}
};

/* Add data ... */
VSEVsamRecord record = new VSEVsamRecord(system, catalogID,

clusterID, mapname);
for (int i=0;i<data.length;i++)
{
 record.setKeyField(0, new String(data[i][0]));
 for (int k=1;k<11;k++)
 record.setField(k, new Integer((data[i][k])));
 record.add();
}

The advantage of such a Java program is that all data is transferred field by field
using the correct data type, as specified by the underlying VSAM map. No
manual post processing of the data is necessary afterwards.

The full source of the program is contained in “Sample Java program to populate
VSAM files on VSE” on page 322.

After populating the VSAM file, you can view, and optionally change, the data via
right-clicking the map and selecting Display VSAM data. A filter dialog box
allows you to select only a subset of all records in the file.

250 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Just click Display data to see all records.The display should then look like the
following figure.

Now define the VSAM map for the trader.customer file. The DDL looks like the
following figure.

 Chapter 10. VSE Java-based connector to access VSAM data 251

Example 10-8 Data layout for trader.customer

create table trader.customer (
customer char(60) not null,
company char(20) not null,
no_shares int,
primary key (customer, company));

The map definition will look like the following figure.

As said before, this file will be initially empty, so there is no step to populate it.

10.6 Installing an application in WebSphere
There are several ways to create an application for WebSphere:

� Using the Application Assembly Tool (AAT)
� Using the WebSphere Application Developer (WSAD)

The following sections show the main steps of creating an Enterprise Application
using the Application Assembly Tool, which comes with WebSphere. We did that
on Windows, so the resulting .ear file had then to be copied to Linux on zSeries.
At this point we assume that all files that belong to the application are available,
especially all class files are available.

252 WebSphere V5 for Linux on zSeries - Connectivity Handbook

The screen captures are taken from an example that comes with the VSE
Connector Client and are intended to show the principle of creating and
deploying WebSphere applications.

10.6.1 Setting up an EAR file in the Application Assembly Tool
Start the Application Assembly tool and follow these steps in order to create an
.ear file.

1. Create a new application.

2. Enter a display name and a description.

3. Create a Web module for the application.

 Chapter 10. VSE Java-based connector to access VSAM data 253

4. Enter the properties for the Web module. The context root specifies one part
of the URL, which you have to use to call this servlet from a Web browser. In
this example, the URL would start like:

http://computername/servlet/.....

The context root is then followed by the servlet’s mapping name, which is
specified below in step 12 on page 258.

5. Add files that belong to the application. Depending on the particular
application this can be class files, but also static HTML files, GIF or JPG
images, and so on.

254 WebSphere V5 for Linux on zSeries - Connectivity Handbook

6. In the dialog box enter the root directory of the application and press Enter to
display the subdirectories.

7. Enter the root directory and press Enter to display the files in all
subdirectories. Then expand the tree view in order to view the related files.

 Chapter 10. VSE Java-based connector to access VSAM data 255

8. Select the appropriate files and add them to the application.

9. Create Web components.

10.Enter properties for Web components. The servlet’s class name specifies the
servlet’s main class.

256 WebSphere V5 for Linux on zSeries - Connectivity Handbook

.

11.Create servlet mappings.

 Chapter 10. VSE Java-based connector to access VSAM data 257

12.Enter the servlet mapping properties. The URL pattern specifies how the
servlet can be called from a Web browser. In this example, the complete URL
to invoke the servlet would be:

http://computername/servlet/FlightOrderingServlet

13.Create resource references.

14.Enter the resource reference properties.

258 WebSphere V5 for Linux on zSeries - Connectivity Handbook

15.Enter your previously chosen JNDI name on the Bindings tab.

.

16.Save your application.

17.Close the Application Assembly Tool.

 Chapter 10. VSE Java-based connector to access VSAM data 259

Now you have to copy the .ear file into directory /installableApps below the
WebSphere installation directory. In our environment this was:

/opt/WebSphere/AppServer/installableApps

10.6.2 Deploying the EAR file in WebSphere Administrative Console
This section gives you an overview of the main steps to deploy a given .ear file to
WebSphere. The screen captures are taken from an example provided with the
VSE Connector Client. For details about deploying the Trader application, refer
to:

� Deploy the MQ part of Trader (8.3, “WebSphere MQ setup on z/OS backend”
on page 162).

� Deploy the DB2 part of Trader (7.3, “Customizing WebSphere Application
Server for DB2 Connect” on page 144).

� Deploy the CICS part of Trader (5.5, “Configuring WebSphere for CICS
connections” on page 105).

� Deploy the IMS part of Trader (9.5, “Deploying TraderIMS application in
WebSphere Application Server” on page 217).

To deploy an .ear file in the WebSphere Administrative Console, follow these
steps.

1. Log on to the WebSphere admin console.

2. Install a new application.

3. Enter the path name of the application’s .ear file.

260 WebSphere V5 for Linux on zSeries - Connectivity Handbook

4. Create bindings.

5. Enter deployment options. We recommend that you install the new
application into directory /installedApps/<computername>, which, in our case
was:

/opt/WebSphere/AppServer/installedApps/linux11

Also, we recommend that you enable class reloading.

6. Map resource references to resources. In this step it is important to review all
resource references and check if they really match with the JNDI names that

 Chapter 10. VSE Java-based connector to access VSAM data 261

you want to use in your servlet Java code. Here we show some of them as
being used in our scenario.

7. Proceed until the final panel, keeping defaults.

8. Click Finish.

9. Save your definitions.

10.Go back to the list of Enterprise Applications and start the new application.

10.7 Configuring for SSL secure connections
To set up SSL for secure connections between the WebSphere platform and a
VSE host, we used the IBM-provided tool Keyman/VSE to create RSA keys and
digital certificates. However, there are also other ways to do that. Refer to the
VSE/ESA e-business Connectors User’s Guide, SC33-6719, for details.

We did the following steps to set up SSL:

1. Download and install the Keyman/VSE tool.

262 WebSphere V5 for Linux on zSeries - Connectivity Handbook

2. Use Keyman/VSE to generate an RSA key and digital certificates to be used
during the SSL handshaking.

3. Store the RSA key, the root certificate and server certificate on VSE.

4. Store the root and server certificate in a keyring file on the WebSphere
platform.

5. Change your servlet code in order to support SSL.

6. Configure the VSE Connector Server for SSL.

The following sections describe each of these steps. We used SSL server
authentication, so there is no client certificate needed. We used self-signed
certificates, which are not signed by an official Certificate Authority (CA) like
Thawte or Verisign. So our certificates can only be used in an internal test
environment and would be not trusted outside.

For detailed information about SSL refer to the VSE/ESA e-business Connectors
User’s Guide, SC33-6719, or the VSE Connector Client.

10.7.1 Installing Keyman/VSE
Keyman/VSE is not shipped as part of VSE. It can be downloaded from:

http://www-1.ibm.com/servers/eserver/zseries/os/vse/support/vseconn/

To install Keyman/VSE:

1. Download the Keyman/VSE zip-file in binary and extract the containing files
into an empty directory. There are four files contained in the zip file:

– install.class - Contains the product code and install wizard.
– install.bat - Install batch file for Windows.
– install.cmd - Install batch file for OS/2® or Windows NT.
– install.sh - Install batch file for Unix/Linux.

2. Run the installation batch file appropriate for your platform and follow the
install wizard dialogs.

Notes: The tool is based on the VSE Connector Client, so at this point we
assume that you hvae downloaded and installed the VSE Connector Client
first from the same Web page. See 10.2, “Installing the VSE Java-based
connector” on page 226, for details.

Keyman/VSE requires a JDK 1.4 in order to access crypto-related classes
provided by the JDK.

 Chapter 10. VSE Java-based connector to access VSAM data 263

http://www-1.ibm.com/servers/eserver/zseries/os/vse/support/vseconn/

10.7.2 Generating keys and certificates
After starting the Keyman/VSE tool, you see the main window, which provides
tool bar buttons for generating RSA keys and certificates. Follow these steps to
generate the SSL keys and certificates.

To access the online help from the tool’s help menu, you have to define a Web
browser to the tool. Help is then displayed using this browser. Use the menu
option Help → Select help browser to define the help browser. The How to help
section explains all kinds of tasks in detail.

1. Configure your VSE host. Click the VSE host properties tool bar button to
set up your VSE host.

2. Now define your VSE settings as shown here.

264 WebSphere V5 for Linux on zSeries - Connectivity Handbook

3. Generate an RSA key pair. Click the Generate RSA key pair tool bar button.

4. Select key length 1024 and click the generate key button.

 Chapter 10. VSE Java-based connector to access VSAM data 265

.

5. The key is now displayed in the GUI.

6. Generate a self-signed root certificate. Click the Generate Root certificate
tool bar button.

266 WebSphere V5 for Linux on zSeries - Connectivity Handbook

7. Enter personal information to identify yourself as a Certificate Authority (CA)
and click Generate cert.

8. Generate a VSE server certificate request. Right-click the key and select
Create VSE server cert request.

9. Enter personal information to identify the VSE system.

 Chapter 10. VSE Java-based connector to access VSAM data 267

10.Copy the request into the clipboard. Right-click the request and select Copy
to clipboard.

11.Sign the request with your self-signed root certificate. Right-click the root
certificate and select Sign certificate request.

268 WebSphere V5 for Linux on zSeries - Connectivity Handbook

12.Paste the clipboard content into the text area and click Generate cert.

13.Delete the certificate request from the list by right-clicking it and selecting
Delete (or pressing the DEL key on your keyboard), and upload the three
remaining items (key, root cert, and server cert) to VSE.

 Chapter 10. VSE Java-based connector to access VSAM data 269

10.7.3 Uploading certificate items to VSE
Right-click each remaining item and select Upload to VSE. This box shows how
the RSA key is uploaded. You might change the VSE library or library member
name at this point, but the member type is of course preset.

On the VSE side you should see console messages similar to the ones shown in
Example 10-9.

Example 10-9 Catalog RSA key on VSE

BG 0000 // JOB CIALSRVR
 DATE 11/04/2003, CLOCK 23/07/53
BG 0000 CIALSRVR 01.05 B 07/22/03 20.45
BG 0000 Default password phrase will be used
BG 0000 SETPORT 6045
BG 0000 Waiting for PC to send rsa private key.
BG 0000 1024-bit RSA key written into CRYPTO .KEYRING .TRADER .PRVK
BG 0000 EOJ CIALSRVR MAX.RETURN CODE=0000
 DATE 11/04/2003, CLOCK 23/07/59, DURATION 00/00/06
BG 0001 1Q34I BG WAITING FOR WORK

Repeat this step for the root certificate and the server certificate.

Specify your local keyring file properties, that is, the name and location of the file,
the settings for the encryption of the certificate items in the file, and the keyring
file password. Click the Local file properties tool bar button or select Options →
Keyring file properties. Remember your keyring file password, you will need it
later when coding your servlet or defining your SSL connection factory or SSL
JDBC data source in WebSphere.

270 WebSphere V5 for Linux on zSeries - Connectivity Handbook

14.Store both certificates in the local keyring file. The root certificate is required
on the client side to be able to perform the SSL handshaking. The server
certificate is not required on the client side, but allows the client to verify the
received server certificate during the SSL handshake by comparing it with the
local copy.

15.Delete the key, which is not stored in the keyring file, then click the Save tool
bar button.

 Chapter 10. VSE Java-based connector to access VSAM data 271

The next step is to transfer the keyring file to the WebSphere platform so it can
be accessed by the servlet.

10.7.4 Transferring the keyring file to WebSphere
We used FTP to copy the keyring file into a new directory on Linux for zSeries
from where WebSphere can access it:

/opt/vse

This directory is referenced in the SSL Connection Factory properties; see
10.7.6, “Defining an SSL connection factory in WebSphere” on page 273.

10.7.5 Checking VSE keyring library
Keyman/VSE allows you to access the VSE keyring library by clicking the Show
keyring library tool bar button.

272 WebSphere V5 for Linux on zSeries - Connectivity Handbook

The VSE keyring library now contains these members: The VSE server
certificate (TRADER.CERT), the private key (TRADER.PRVK), and the
self-signed root certificate (TRADER.ROOT). You may view their properties by
right-clicking an item and selecting Settings.

:

10.7.6 Defining an SSL connection factory in WebSphere
To support an SSL connection to VSE, we created a second J2C connection
factory for the VSE resource adapter. Here, we specified the necessary SSL
properties.

1. Log on to the WebSphere admin console.

2. Click Resource Adapters.

3. Click resource adapter VSEConnector.

4. Click J2C Connection Factories.

5. Create a new connection factory for SSL.

6. Specify the properties of the new connection factory.

Note: You can freely choose the JNDI name here. However, a naming
convention in a production environment would call it, for example,
eis/vse270/ssl to indicate the SSL connection to a specific VSE back-end
system. Further connection factories, which go to other VSE systems,
would similarly include their names into their JNDI names.

 Chapter 10. VSE Java-based connector to access VSAM data 273

Click OK.

7. Select the connection factory to specify further properties.

8. Scroll down and click Custom Properties.

9. Edit the given parameters so that you get a list similar to the following.

Leave the list of cipher suites as it is provided by default. We set SSLVersion
to SSL, which means SSL V3.0. Specifying TLS would mean SSL V3.1
respectively TLS V1.0. We copied the keyring file to the directory /opt/vse,
which is reflected in the KeyringFile parameter.

274 WebSphere V5 for Linux on zSeries - Connectivity Handbook

10.Save your changes.

10.7.7 Adding SSL resource reference in EAR file
Start the Application Assembly tool and open your EAR file. Now add a new
resource reference for the SSL connection:

1. Specify general properties.

2. Specify the JNDI name for SSL.

3. Save the EAR file.

4. Copy the saved EAR file to your WebSphere platform into directory
installableApps.

5. Go back to the WebSphere admin console.

10.7.8 Redeploying the EAR file
In the WebSphere admin console:

1. Click Applications → Enterprise Applications.

2. Stop your application.

3. Select your application and click the Update button.

4. Specify ear file path name.

 Chapter 10. VSE Java-based connector to access VSAM data 275

5. In the next panel select override existing bindings.

6. Provide further options unless already shown.

276 WebSphere V5 for Linux on zSeries - Connectivity Handbook

7. Map resource references to resources.

.

8. Restart your application.

10.7.9 Configuring VSE Connector Server for SSL
The VSE Connector Server is configured through a set of config members. There
are job skeletons in ICCF library 59 that can be used to catalog the files. We
recommend that you copy the job skeletons into a separate ICCF library before
changing them. You need the following members to do the SSL setup:

� SKVCSCFG to enable SSL

Specify YES for parameter SSLENABLE.

 Chapter 10. VSE Java-based connector to access VSAM data 277

Example 10-10 Enable SSL for VSE Connector Server

...
; ***
; TCP/IP - SERVER SPECIFIC CONFIGURATIONS
; - SERVERPORT : THE TCP PORT WHERE THE SERVER IS LISTENING
; - MAXCLIENTS : THE MAXIMUM NUMBER OF CONCURRENT CLIENTS
; - SSLENABLE : YES/NO - USE SECURE SOCKET LAYER
; ***
 SERVERPORT = 2893
 MAXCLIENTS = 256
 SSLENABLE = YES
...

� SKVCSSSL to specify SSL properties

Specify the name of your private key and certificate members. We used
TRADER as the member name when uploading the key and certificates to
VSE. You do not need to change the list of cipher suites.

Example 10-11 Specify VSE Connector Server SSL properties

...
SSLVERSION = SSL30
KEYRING = CRYPTO.KEYRING
CERTNAME = TRADER
SESSIONTIMEOUT = 86440
AUTHENTICATION = SERVER
...

� SKVCSCAT to catalog the changes

Edit the job skeleton to catalog the two changed config members. Then
submit the catalog job and restart the VSE Connector Server.

Example 10-12 Catalog VSE Connector Server config members

* $$ JOB JNM=VCSCAT,DISP=D,CLASS=0
// JOB VCSCAT CATALOG VCS CONFIGURATION MEMBERS
// EXEC LIBR,PARM='MSHP'
ACCESS S=PRD2.CONFIG
CATALOG IESVCSRV.Z REPLACE=Y
* $$ SLI ICCF=(SKVCSCFG),LIB=(11)

Note: Now the server can only handle SSL connections. If you want to also
connect from other applications without using SSL, you have to start
another instance of the VSE Connector Server in a separate partition using
a different port number. If these are WebSphere applications, the new port
number must be referenced in the related connection factories.

278 WebSphere V5 for Linux on zSeries - Connectivity Handbook

/+
CATALOG IESSSLCF.Z REPLACE=Y
* $$ SLI ICCF=(SKVCSSSL),LIB=(11)
/+
/*
/&
* $$ EOJ

10.7.10 Restarting VSE Connector Server
The VSE Connector Server must be restarted in order to read the new
configuration members and activate SSL. First, stop the server using following
console command:

msg r1,data=shutdown

Then restart the server by releasing the STARTVCS job.

r rdr,startvcs

Check the startup messages if the server is running in SSL mode.

Example 10-13 Check VSE Connector Server startup messages

msg r1,data=status
AR 0015 1I40I READY
R1 0045 IESC1029I STATUS COMMAND
R1 0045 SERVER CONFIG FILE = DD:PRD2.CONFIG(IESVCSRV.Z)
R1 0045 CONFIGURATION INFORMATION:
R1 0045 MAX NUM. OF CLIENTS = 256
R1 0045 TCP/IP SERVER PORT = 2893
R1 0045 SSL ENABLED = YES
...

10.7.11 Changing your servlet code to support SSL
In the servlet code we just use the second J2C connection factory, which we
have defined to support SSL. So the only difference in the servlet is the different
JNDI name used when creating the initial context.

Example 10-14 Use an SSL connection in the servlet

...
Context ctx = new InitialContext();
VSEConnectionSpec spec = new VSEConnectionSpec(ctx, "eis/VSEConnector/ssl");
...

 Chapter 10. VSE Java-based connector to access VSAM data 279

10.7.12 Configuring an SSL JDBC data source
The definition of an SSL JDBC data source is very similar to defining a JDBC
data source without using SSL. So this section shows only such screen prints
that are different from those to define a JDBC data source without SSL. Refer to
Figure 10-3 on page 232. In the following steps we add a second JDBC data
source to the one already created.

1. Log on to the admin console by entering any user ID. Click Resources →
JDBC Providers.

2. Click New to add a new JDBC provider.

3. Create a user-defined JDBC provider.

4. Enter the properties for the JDBC provider. In the field Classpath enter the
three VSE Connector jar files. Remove any other entries.

In the field Implementation Classname enter:

com.ibm.vse.jdbc.VsamJdbcConnectionPoolDataSource

It must be exactly this string, because it references the Java class, which
implements the JDBC data source. Then click OK.

5. Specify further properties. Click the JDBC provider name.

6. Click Data Sources.

280 WebSphere V5 for Linux on zSeries - Connectivity Handbook

7. Click New to create a new data source for this JDBC provider.

8. Specify the data source properties.

.

Click OK.

9. Specify further properties of the data source. Click the data source name.

10.Select our previously created authentication entry from the check box
“Component-managed Authentication Alias”.

This VSE user ID is used by the JDBC driver to connect to VSE. If it is not
specified, the VSE Connector Server would reject the connection later,
because JDBC would try to connect without sending a user ID. Click Apply.

11.Scroll down and click Custom Properties to define database-specific
properties needed to access VSE.

12.Add the VSE server name as property serverName. Enter it mixed case
exactly as shown here. Leave the type field as String.

13.Add the VSE Connector Server port number as property portNumber. Enter it
mixed case exactly as shown here. Select type as Integer.

Note: You can freely choose the JNDI name here. However, a naming
convention in a production environment would call it, for example,
jdbc/vsam/vse270/ssl to indicate the SSL JDBC VSAM connection to a
specific VSE back-end system. Further connection factories, which go to
other VSE systems, would similarly include their names in their JNDI
names.

Note: It is important that you select type Integer from the drop-down
combo box. Otherwise the connection will not work, because the JDBC
driver expects this parameter as an integer value.

 Chapter 10. VSE Java-based connector to access VSAM data 281

14.Now indicate to use SSL by specifying SSLVersion=SSL, which means to use
SSL Version 3.0. Specifying TLS would mean using SSL V3.1, respectively
TLS V1.0. However, you should always use SSL V3.0 if not otherwise
needed. You should end up with a list similar to the following.

15.Save your changes and restart WebSphere.

10.7.13 Considerations on SSL key lengths
Depending on the RSA key length, only a subset of the cipher suites is
applicable. Also, some cipher suites can only be used with a specific SSL
version. The following table shows these relationships.

Example 10-15 Relationships

The cipher suite with hex code 62 is not supported by the Java-based connector.

RSA key len Cipher suite Encryption Hex code SSL version

512 bit SSL_RSA_WITH_NULL_MD5 None 01 SSL

512 bit SSL_RSA_WITH_NULL_SHA None 02 SSL

512 bit SSL_RSA_EXPORT_WITH_DES40_CBC_SHA 40-bit DES 08 SSL or TLS

1024 bit SSL_RSA_WITH_DES_CBC_SHA 56-bit DES 09 SSL or TLS

1024 bit SSL_RSA_WITH_3DES_EDE_CBC_SHA 168-bit TDES 0A SSL or TLS

Tip: in a production environment you should always use 1024-bit handshaking
together with the most secure cipher suite
SSL_RSA_WITH_3DES_EDE_CBC_SHA using triple-DES (TDES).

282 WebSphere V5 for Linux on zSeries - Connectivity Handbook

10.7.14 Considerations on different SSL scenarios
Until now, we considered SSL server authentication, because this is the easiest
way of setting up SSL. But there are other ways to set up SSL, which are more
complex to define.

Detailed information about all kinds of SSL setup can be found in the VSE/ESA
e-business Connectors User’s Guide, SC33-6719, and in the VSE Connector
Client. SSL setup for CICS Web Support (CWS) is described in the CICS
Enhancements Guide, GC34-5763.

This section tries to give you an overview of different SSL setup possibilities,
supported by the Java-based connector in VSE.

VSE provides three flavors of SSL setup:

� SSL server authentication

Here the server side sends its certificate to the client, who decides whether to
trust this certificate or not. The client side does not need any certificate.

This scenario is typically used for online banking, where the client uses a
Web browser to connect to a bank’s Web page. The bank server sends its
digital certificate, and the client decides whether to just accept it for this
session or to import it into the Web browser permanently. The client
authenticates itself using PIN and TAN numbers.

� SSL client authentication

Here both sides need to have a digital certificate. The server side sends its
certificate to the client and requests the client’s certificate for authentication.

This scenario is used in sensitive environments, with an even higher need for
security. Typically, both sides have copies of the counterpart’s certificate, so
that authentication can be done by simply comparing the received certificate
with the local copy.

� SSL client authentication with implicit logon

This is a special feature of zSeries operating systems, based on SSL client
authentication. Here, client certificates are mapped to mainframe user IDs,
which allows a client to sign on to a host without providing explicit logon
parameters, such as user ID and password. When the server side receives a
client certificate during the SSL handshaking process, it retrieves the user ID
and password from its security manager and signs the client on implicitly.

 Chapter 10. VSE Java-based connector to access VSAM data 283

10.8 Problem determination
This section gives you some hints of how to debug or trace a WebSphere
application, like a servlet, without a big development environment.

10.8.1 Activating stdout trace in WebSphere
You can use the System.out.println() method to generate trace output to
standard out. However, you have to explicitly specify the file where stdout goes
to. Otherwise no output will be written. At least this was the observation in our
test environment.

To specify stdout:

1. Open the WebSphere admin console.

2. Click Application Servers.

3. Click your server.

4. Click Logging and tracing.

5. Click JVM logs.

284 WebSphere V5 for Linux on zSeries - Connectivity Handbook

6. Here enter any file name for stdout and stder.

7. Save your changes to the main configuration.

8. Restart the WebSphere server. In our test environment the changes did not
become active otherwise.

10.8.2 Tracing a servlet
Sometimes you may want to change your existing servlet code and quickly apply
the changes to a running WebSphere environment. This is easy, because all
servlet classes are stored in the server machine's file system and can be
re-loaded dynamically (make sure you specified Enable class reloading, when
installing the enterprise application).

A very simple servlet development environment could look like:

� Edit a servlet's Java source code using any text editor you like.

� Use a simple batch file or script to compile the code and copy the resulting
class file to the right destination.

Example 10-16 Update the servlet class file in WebSphere

setlocal
set lib=d:\j2ee\lib
set
classpath=.;d:\vsecon\cci.jar;d:\vsecon\ibmjsse.jar;%lib%\j2ee.jar;%lib%\jaas.j
ar;%lib%\jta-spec1_0_1.jar;%classpath%
d:\jdk1.3.1\bin\javac com\ibm\vse\samples\MyServlet.java

 Chapter 10. VSE Java-based connector to access VSAM data 285

copy com\ibm\vse\samples\MyServlet.class
D:\was5\installedApps\jschmidb\VSEServlets.ear\VSEServlets.war\WEB-INF\classes\
com\ibm\vse\samples
pause
endlocal

A similar batch process can be set up with transferring the servlet’s class file
to a Linux platform using FTP, or do the whole batch job on Linux.

� After compiling the servlet code and copying the class file, you can
immediately run the updated servlet with a Web browser without stopping the
WebSphere service or even stopping the enterprise application.

286 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Chapter 11. VSE Java-based connector
to access DL/1 data

This chapter provides a description of VSE Java-based connector to access
DL/1 data on VSE.

We discuss the following topics:

� DL/1 database access overview

� Prerequisites for the DL/1 connector

� DL/1 example

More information about configuring DL/1 for access via the VSE JavaBeans and
defining the sample database can be found in the VSE/ESA e-Business
Connectors User’s Guide, SC33-6719.

11

© Copyright IBM Corp. 2004. All rights reserved. 287

11.1 DL/I database access overview
With VSE/ESA 2.7 the Java-based connector provides native access to DL/I, as
shown in Figure 11-1.

Figure 11-1 DL/1 database access overview

In previous VSE releases this was only possible via DB2 Stored Procedures.
This can be used in any kind of Java program, including WebSphere
applications, like applets, servlets and JSPs.

The following new VSE JavaBeans are now part of the VSE Connector Client
class library (VSEConnector.jar).

� VSEDli - Represents the DL/I subsystem on VSE/ESA
� VSEDliPsb - Represents a DL/I PSB with its coresponding PSB name
� VSEDliPcb - Represents a DL/I PCB that can be used to execute DL/I

On the host side, the VSE Connector Server has a plugin IESDLIPL that uses the
AIBTDLI interface introduced with VSE/ESA 2.5. This is an batch interface, but it
routes the DLI calls to a CICS system and executes the DL/I call in the DL/I
online nucleus.

For more information about the AIBTDLI interface and its features/restrictions,
see the VSE/ESA e-business Connectors User's Guide, SC33-6719.

Linux for zSeries
SuSE 7.2

VSE/ESA 2.7

Sample Java
Application

MQ

DL/1

VCC

SOAP

CTG

MQ

DB2

VCS

VSE Connector
Client

VSE Connector
Server

VSAM
Redirector

Server

VRC

AIBTDLI

288 WebSphere V5 for Linux on zSeries - Connectivity Handbook

11.1.1 Prerequisites for the DL/1 connector
The following prerequisites must be met in order to use the DL/I connector:

� The AIBTDLI interface must be installed.

� DL/I VSE 1.11 or later.

� APAR PQ39683 for DL/I must be applied.

� Your CICS/DLI system should have all PSBs defined in the DL/I online
nucleus DLZNUCxx and it should have an active MPS system.

� The DL/I task termination exit DLZBSEOT must be resident in the SVA.

11.1.2 The DL/I example
To run the IBM-provided DL/I example, which is included in the VSE Connector
Client, the following definitions are necessary:

� The sample database STDIDBP must be created; see job skeleton
SKDLISMP in ICCF library 59.

� The sample database STDIDBP must be defined in the CICS FCT.

The following code snippets show some major code parts of the DL/I example.

Access the DL/I subsystem
The first step accesses the DL/I subsystem (Example 11-1).

Example 11-1 Access the DL/I subsystem

...
VSEDli dli = new VSEDli(system);

/* Schedule the PSB */
psb = dli.getDliPsb("STBICLG");
psb.schedule();

/* get the first PCB */
pcb = psb.getVSEDliPcb(0);

byte[] ioarea;
String[] ssas;

List the segments
Example 11-2 shows/prints the contents of the IO area.

 Chapter 11. VSE Java-based connector to access DL/1 data 289

Example 11-2 List the DL/I segments

ssas = new String[1];
ssas[0] = "STPIITM ";

do {
/* Get the next segment */
ioarea = pcb.call("GN",null,ssas);
System.out.println(" Status = "+pcb.getStatus());

if (!pcb.getStatus().equals(" "))
break;

/* Print out the contents of the IOArea
01 STPIITM REDEFINES IOAREA.

02 ITNUMB PIC X(6).
02 ITDESC PIC X(25).
02 IQOH PIC X(6).
02 IQOR PIC X(6).
02 FILLER PIC X(6).
02 IUNIT PIC 9(6).
02 FILLER PIC X(105). */

System.out.println("IOArea:");
System.out.println(" ITNUMB = "+VSEDliPcb.getStringFromBuffer(ioarea,0,6));
System.out.println(" ITDESC = "+VSEDliPcb.getStringFromBuffer(ioarea,6,25));
System.out.println(" IQOH = "+VSEDliPcb.getStringFromBuffer(ioarea,31,6));
System.out.println(" IQOR = "+VSEDliPcb.getStringFromBuffer(ioarea,37,6));
System.out.println(" IUNIT = "+VSEDliPcb.getStringFromBuffer(ioarea,49,6));
}
while(true);

The example further shows how to add, update, or delete a DL/I segment.

Generated output from the DL/I example
When running the example, output similar to the Example 11-3 should be
produced.

Example 11-3 Output from the DL/I example

D:\vsecon\samples>java com.ibm.vse.samples.DliApiExample
Please enter your VSE IP address:
9.152.82.82
Please enter your VSE user ID:
jsch
Please enter password:
mypassw
Schedule the PSB

290 WebSphere V5 for Linux on zSeries - Connectivity Handbook

 Num PCBs: 1
 IO len: 168

Get a PCB
 DBDName = STDIDBL
 Processing Options: AP

List all DL/I segments
 Status =
 IOArea:
 ITNUMB = 000300
 ITDESC = RESISTORS
 IQOH = 000040
 IQOR = 000080
 IUNIT = 000002
 Status =
 IOArea:
 ITNUMB = 000500
 ITDESC = CAPACITORS
 IQOH = 000500
 IQOR = 000500
 IUNIT = 000001
 Status =
...
Add/update a segment
 Status = GE
 Segment not found, do an insert
 IOArea:
 ITNUMB = 000700
 ITDESC = INSERTED ITEM
 IQOH = 000001
 IQOR = 000002
 IUNIT = 000003
 Status =

Delete a segment
 Status =
 Do the delete
 IOArea:
 ITNUMB = 000700
 ITDESC = INSERTED ITEM
 IQOH = 000001
 IQOR = 000002
 IUNIT = 000003
 Status =

Terminate the PSB

 Chapter 11. VSE Java-based connector to access DL/1 data 291

On the VSE console the following output is produced.

Example 11-4 VSE console messages from DL/I example

R1 0118 DLZ143I MPS BATCH CONNECT REQUEST FOR PARTID=F2, APPLID=DBDCCICS
R1 0118 DLZ081I MPS BATCH DL/I PARTITION STARTED
F2 0105 DLZ103I R1 BPC STOPPED NORMALLY

292 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Chapter 12. VSE VSAM Redirector
connector

This chapter describes the VSE VSAM Redirector connector, which allows you to
redirect VSAM accesses to any database or file system on any Java-enabled
platform that can be reached via TCP/IP. This allows existing VSE programs,
which access VSAM data, to work with any data on remote platforms, such as
DB2 data on Linux for zSeries or z/OS.

We first show how to run an IBM-provided example, which redirects VSAM data
into an HTML file. Next we show the possibility of integrating the Redirector
connector in the Trader scenario where VSAM data is redirected into a DB2 for
z/OS database.

We describe the following topics:

� VSAM Redirector connector overview

� Client-server components

� Installing the Redirector server

� Testing the setup with the HtmlHandler

� Setup for Trader using the DB2 hanfler

12

© Copyright IBM Corp. 2004. All rights reserved. 293

12.1 VSAM Redirector connector overview
The VSAM Redirector connector makes use of a VSAM vendor exit
implementation, where VSAM requests can be intercepted and, instead of
accessing an underlying VSAM file, forwarded to another platform into any other
file system or database.

Figure 12-1 shows our VSAM Redirector connector scenario. A Trader COBOL
program accesses a VSAM file, which is redirected by the VSAM Redirector
Client (VRC) on VSE to the VSAM Redirector Server, running on Linux for
zSeries. The request is targeted into a remote DB2 database on z/OS (not
shown) via DB2 Connect on Linux.

Figure 12-1 VSAM Redirector connector overview

The VSAM Redirector connector can be used in the following ways:

� Redirect access to VSAM to a remote data store, for example a relational
database:

– Read from a VSAM file but write to a DB2 database.
– Read and write from and to a DB2 database, having just a dummy VSAM

file on VSE.

� Synchronize VSAM data with a remote database

Client with a
Web browser

Linux for zSeries
SuSE 7.2

VSE/ESA 2.7

CICS
(Trader)

MQ VSAM

Note:
Only the CTG
connection
accesses the
Trader
application

CICS
(SOAP Demo)

WebSphere
Application

Server
5.0.2

Trader
App.

SOAP

CTG

MQ

DB2

VCSVCC

VSAM
Redirector

Server

DB2
Connect VSAM

Redirector
Client

294 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Read and write from and to VSAM but propagate all write operations also to a
remote database. Other applications can access the DB2 data, which is
always in sync with the VSAM data.

A detailed description of all configuration parameters can be found in the book
VSE/ESA e-business Connectors User’s Guide, SC33-6719.

All connector components, online books and documentation can be downloaded
from:

http://www-1.ibm.com/servers/eserver/zseries/os/vse/support/vseconn/

12.2 Client-server components
The VSAM Redirector has a server and a client component. The client is part of
the VSE host side, so no installation is necessary. The server part is a
stand-alone Java application, which has to be installed on a remote
Java-enabled platform. This can be the system where the database runs, or a
middle-tier platform between VSE and the database.

There is a utility to access a DB2 or Oracle database in order to create tables
that are used to receive redirected VSAM data and to hold control information
about the VSAM data structure. This utility is part of the Redirector server
installation and can be started with the batch file create.bat, respectively
create.sh shell script. The utility uses JDBC to define the tables in the target
database, so it needs the related jar file, which implements the database-specific
JDBC driver. We recommend that you always use the original jar file that comes
with your database (DB2 or Oracle).

Figure 12-2 shows a more detailed picture of the data flow using the VSAM
Redirector connector.

Important: Make sure that your Redirector client and server parts always
have the same APAR level. If this is not the case and there were internal
protocol changes between the client and server, you might experience strange
effects, including hang situations.

 Chapter 12. VSE VSAM Redirector connector 295

http://www-1.ibm.com/servers/eserver/zseries/os/vse/support/vseconn/

.

Figure 12-2 VSAM Redirector scenario

A servlet uses the VSE Connector Client (VCC) as a Websphere resource
adapter to connect to the VSE Connector Server (VCS) on VSE to access a
VSAM file. This VSAM file is updated by a COBOL program. Because write
access to the VSAM file is redirected to the Redirector Server on Linux, all
updates are made synchronously in a DB2 table on z/OS. So you will always
have real-time data synchronization from VSAM to DB2.

One important point of configuring the Redirector is to decide upon the
redirection mode you want to use.

� Do you want to work with data that resides on another platform? In this case,
the VSAM file will be just a dummy file without any data. You always access
data on the other platform.

� Do you want to synchronize an existing VSAM file with any kind of data store
on another platform? In this case each initial VSAM request will result in both
a VSAM request and a redirected request. So especially write requests will be
performed on both sides: VSAM on VSE and any database on a remote
platform.

Refer to the VSE/ESA e-business Connectors User’s Guide, SC33-6719, for
detailed information of the Redirector configuration parameters.

Linux VSE

WebSphere

Redirector
Server

z/OS

Servlet VCC VCS

COBOL

VSAM

VSAM

DB2
DB2 Connect

DB2

296 WebSphere V5 for Linux on zSeries - Connectivity Handbook

12.3 Installing the Redirector server
The following sections describe how to download, install, configure, and start the
Redirector Server, which is independent of the redirection scenario. All
information about which file to be redirected and which parameters to use is
specified later when configuring the Redirector client.

12.3.1 Downloading the Redirector server
The VSAM Redirector server is shipped with VSE and can be downloaded from
either of the following:

� PRD1.BASE, member IESVSMRD.W

Download the member in binary, rename the file extension to zip, and open it
with any ZIP-tool, like winzip or pkzip. There are four files contained in the zip
file:

– install.class - Contains the product code and install wizard
– install.bat - Install batch file for Windows
– install.cmd - Install batch file for OS/2 or Windows NT
– install.sh - Install batch file for Unix/Linux

� The Internet

http://www-1.ibm.com/servers/eserver/zseries/os/vse/support/vseconn/

12.3.2 Installing the Redirector server
The Redirector server is installed by running the applicable install batch file for
your workstation. You get prompted with some standard install wizard dialogs.
There is a “silent install” option (/p), which can be used when there is no graphics
support. We added the /p option for the non-GUI mode installation, as shown in
Example 12-1.

Example 12-1 Use silent install for Redirector server on Linux for zSeries

#! /bin/sh
CLASSPATH=.:$CLASSPATH
java install /p

After installing the Redirector server we had to provide the run.sh and create.sh
scripts with the correct Linux file permissions:

chmod 744 run.sh

 Chapter 12. VSE VSAM Redirector connector 297

http://www-1.ibm.com/servers/eserver/zseries/os/vse/support/vseconn/

Running this script starts the Redirector server. The server accepts the following
commands:

status Shows the status of the server

stop x | all Stops client with number x (shown in status) or stops all
clients

quit Stops all clients and exits server

12.3.3 Configuring the Redirector server
Figure 12-3 shows a simplified overview of the involved Redirector components.
There are two points where configuration and implementation effort is necessary:

� Configuring the Redirector server and handler on the Linux for zSeries side
� Configuring the Redirector client on the VSE side

Figure 12-3 Redirector configuration and implementation

This section describes the configuration of the Redirector server. The
configuration of the Redirector client is described later in 12.4, “General setup
using the HtmlHandler” on page 300, and 12.5, “Special setup for Trader using
the DB2 handler” on page 309.

Configuring the Redirector server consists of two steps:

1. Setting up the Redirector server properties file. We did not change anything
here. Example 12-2 shows the default properties.

Linux

VSE

DB2 database

Handler

Redirector
Server

Redirector
Exit

COBOL
Program

VSAM

VSAM

Config
Phase

1

2

DB2

DB2

298 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Example 12-2 Setting up the Redirector server’s properties file

#VSAMRedirectorServer

#print messages (on) or do not print (off)
messages=on

#port where the RedirectorServer listens
listenport=2387

#number of maximum connections allowed
maxconnections=256

#codepage translater class
codepagetranslator=com.ibm.vse.server.DefaultTranslator

#enter the tracelevel, 0 for no trace, 1 is normal, 2 is extended tracing
tracelevel=2

2. Implementing your VSAM request handler, which defines the logic for
accessing the remote file system or database.

When using the IBM-provided HTML handler, you have to modify the Java
code to reflect the data layout of your redirected VSAM records. When using
the IBM-provided DB2 handler, there is normally no need to change any Java
code.

12.3.4 Starting the Redirector server
The Redirector server is started via the run.sh script. There is no GUI. The server
issues messages like those shown in Example 12-4 while starting up, and then
waits for connections.

The run.sh script needs the db2java.zip file, which implements the DB2-provided
JDBC driver, in its classpath. You should always use the db2java.zip file that
comes with your DB2 installation. We copied the file into the Redirector install
directory and modified the run.sh script as shown in Example 12-3.

Example 12-3 Modify run.sh scrip

export CLASSPATH=.:VsamRedir.jar:db2java.zip:$CLASSPATH
java com.ibm.vse.redirector.VSAMRedirectorServer

Note: In a production environment you should set messages = off and
tracelevel = 0.

 Chapter 12. VSE VSAM Redirector connector 299

Now the Redirector server can be started. You should see output similar to that
shown in Example 12-4.

Example 12-4 Starting the Redirector server

linux11:/opt/vseredir # ./run.sh
Licensed Materials - Property of IBM
(C) Copyright IBM Corp. 1998, 2000. All Rights Reserved.

US Government Users Restricted Rights -
Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

VSAMRedirectorServer starting...
Nov 10, 2003 9:08:35 AM - Listening socket created on port 2387
Nov 10, 2003 9:08:36 AM - Waiting for connections...
Enter 'quit' to stop the server

Now that the Redirector server is started on Linux, the next step is to get to the
VSE side and decide which redirection scenario to use. In a first step we tested
the Redirector setup and network connections with the IBM-provided simple
HTML handler example.

12.4 General setup using the HtmlHandler
This section shows how to set up and run the IBM-provided Redirector sample,
which redirects VSAM access into an HTML file on another platform. We will use
a simple IDCAMS REPRO job as a VSAM application, which writes to the target
HTML file.

Figure 12-4 shows the scenario of a REPRO job copying VSAM data from a
source file via the Redirector client (VRC) into an HTML file on a Windows PC.

300 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Figure 12-4 Redirector HTML handler scenario

Configuring the Redirector client consists of providing information of which
VSAM files will be redirected to which remote database or file system.

Setting up the Redirector client on VSE and testing the setup with a REPRO job
consists of the following steps:

� Step 1: Decide which VSAM source file to use.

� Step 2: Create a new VSAM file as the target of the REPRO operation.

� Step 3: Configure and activate the Redirector client exit via job skeleton
SKRDCFG in ICCF library 59, which allows you to specify all necessary
parameters. The job consists of several steps, which are explained below.

� Step 4: Modify the Java code of the IBM-provided HTML handler to reflect the
specific VSAM record layout.

� Step 5: Create the IDCAMS REPRO job.

� Step 6: Run the REPRO job.

� Step 7: Check the contents of the HTML file.

The following sections describe each step in detail.

12.4.1 Step 1: Decide on the VSAM source file
For our test we took the TRADER.COMPANY file as the source file.

Windows VSE

Redirector
Server

REPRO
Job

VSAM

srctarget

VRC

HTML

 Chapter 12. VSE VSAM Redirector connector 301

12.4.2 Step2: Create a new file as target file
Now we created a second VSAM file to be used as the target of the REPRO
operation. As we will use redirection mode OWNER=REDIRECTOR, this file is
never really accessed, but VSAM needs the control blocks.

Example 12-5 Define dummy target file for REPRO

* $$ JOB JNM=DEFCPY,CLASS=0,DISP=D,NTFY=YES
// JOB JSCH DEFINE FILE
// EXEC IDCAMS,SIZE=AUTO
 DEFINE CLUSTER (-
 NAME (TRADER.COMPANY.COPY) -
 CYLINDERS(2 2) -
 SHAREOPTIONS (1) -
 RECORDSIZE (80 80) -
 VOLUMES (DOSRES SYSWK1) -
 NOREUSE -
 INDEXED -
 FREESPACE (15 7) -
 KEYS (20 0) -
 NOCOMPRESSED -
 TO (99366)) -
 DATA (NAME (TRADER.COMPANY.COPY.@D@) -
 CONTROLINTERVALSIZE (4096)) -
 INDEX (NAME (TRADER.COMPANY.COPY.@I@)) -
 CATALOG (VSESP.USER.CATALOG)
 IF LASTCC NE 0 THEN CANCEL JOB
/*
// OPTION STDLABEL=ADD
// DLBL TRCOMC,'TRADER.COMPANY.COPY',,VSAM, X
 CAT=VSESPUC
/*
// EXEC IESVCLUP,SIZE=AUTO
A TRADER.COMPANY.COPY TRCOMC VSESPUC
/*
/&
* $$ EOJ

Notes: There must at least be one dummy record in the redirected file if it will
be opened for READ. You may add a record with DITTO or using the VSE
Navigator. In our case, the target file was only opened for WRITE. The target
VSAM file must have the same characteristics as the source file, otherwise it
will not work.

302 WebSphere V5 for Linux on zSeries - Connectivity Handbook

This file is now referenced in the next step, where the Redirector exit is
configured.

12.4.3 Step 3: Configure and activate Redirector client exit
The Redirector client setup is mainly done by modifying and submitting the job
SKRDCFG, which is contained in ICCF library 59. It consists of the following job
steps, which are all contained in the SKRDCFG job.

1. Assemble and link the Redirector config phase.

Example 12-6 Configure Redirector client

* $$ JOB JNM=RDCONFIG,CLASS=A,DISP=D
// JOB RDCONFIG GENERATE REDIRECTOR CONFIG PHASE
* **
* STEP 1: ASSEMBLE AND LINK THE CONFIG TABLE *
* **
// LIBDEF *,CATALOG=PRD2.CONFIG
// LIBDEF *,SEARCH=PRD1.BASE
// OPTION ERRS,SXREF,SYM,NODECK,CATAL,LISTX
 PHASE IESRDCFG,*,SVA
// EXEC ASMA90,SIZE=(ASMA90,64K),PARM='EXIT(LIBEXIT(EDECKXIT)),SIZE(MAXC
 -200K,ABOVE)'
IESRDCFG CSECT
IESRDCFG AMODE ANY
IESRDCFG RMODE ANY
*
 IESRDENT CATALOG='VSESP.USER.CATALOG', X
 CLUSTER='TRADER.COMPANY.COPY', X
 EXIT='IESREDIR', X
 OWNER=REDIRECTOR, X
 IP='9.12.6.182', X
 HANDLER='com.ibm.vse.htmlhandler.HtmlHandler', X
 OPTIONS=' '
*
END
/*
// IF $MRC GT 4 THEN
// GOTO NOLINK
// EXEC LNKEDT,PARM='MSHP'
/. NOLINK
/*
...

In this example, the redirection mode is set to REDIRECTOR, which means
that all requests are made against the redirected data location. The VSAM file
itself is just a dummy file. So the REPRO job will just copy the data from a

 Chapter 12. VSE VSAM Redirector connector 303

source file into the target HTML file. The OPTIONS string is empty, because
the HTML handler does not need any options. The referenced IP address
belongs to a Windows PC.

2. Load config phase IESRDCFG into the SVA.

Example 12-7 Load config phase into SVA

// LIBDEF *,SEARCH=PRD2.CONFIG
SET SDL
IESRDCFG,SVA
/*

3. Copy the IESVEX01 phase into PRD2.CONFIG as member IKQVEX01.

Example 12-8 Copy IESVEX01 phase into PRD2.CONFIG

// EXEC LIBR,PARM='MSHP'
 CONNECT S=PRD1.BASE:PRD2.CONFIG
 COPY IESVEX01.PHASE:IKQVEX01.PHASE REPLACE=YES
/*

4. Load IKQVEX01 into SVA. This step should be done only once.

Example 12-9 Load IDQVEX01 into SVA

// LIBDEF *,SEARCH=PRD2.CONFIG
SET SDL
IKQVEX01,SVA
/*

5. Load IESVRDANC phase into the SVA. This step should be done only once.

Example 12-10 Load IESVRDANC phase into the SVA

// LIBDEF *,SEARCH=PRD2.CONFIG
SET SDL
IESRDANC,SVA
/*

6. Register the current Redirector phase.

Example 12-11 Register Redirector phase

// LIBDEF *,SEARCH=PRD1.BASE
// EXEC IESRDLDA

Note: For an overview of the Redirector options please refer to the
VSE/ESA e-business connectors User’s Guide, SC33-6719.

304 WebSphere V5 for Linux on zSeries - Connectivity Handbook

/*

12.4.4 Step 4: Modify the HtmlHandler Java source
Before running the IBM-provided HTML handler example, we had to modify and
recompile the Java source of the handler to reflect the VSAM record layout.

1. Modify the IBM-provided sample HTML handler.

The sample implementation HtmlHandler.java is located in subdirectory
com/ibm/vse/htmlhandler. This Java program is called by the Redirector
server whenever it receives redirected VSAM data that is destined for this
handler. Because it reflects the structure of the received VSAM records, it has
to be changed in order to work with a specific record layout.

The first method that needs to be changed is open(). This method is called
when a Redirector client connected to the server and is sending a file open
request.

Example 12-12 Changed method open() in HtmlHandler

public void open(VSAMFileInfo fileInfo, String options)
throws VSAMRequestException
{
 this.finfo = fileInfo;

 try {
 // create the HTML file
 htmloutput = new BufferedWriter(
 new FileWriter(this.htmlfilename));

 // write the first part of HTML file
 htmloutput.write(
 "<html><head><title>Redirector sample</title>" +
 "</head><body>");
 htmloutput.write(
 "<h2>Output from redirected TRADER.COMPANY cluster:</h2>");
 htmloutput.write(
 "<table border><tr><th>Company</th><th>Share Price</th>” +
 “<th>Unit Value 7 Days</th><th>Unit Value 6 Days</th></tr>");
 }
 catch(Exception ex)
 {
 System.out.println("Error creating output file!" + ex);
 }
 ...
}

 Chapter 12. VSE VSAM Redirector connector 305

The second method that needs to be changed is the method request(). This
method is then called for each received VSAM record. The record data can
be retrieved from the VSAMRequestInfo instance. Here, we do not consider
all columns of the VSAM record. Let us just look at the first ones.

Example 12-13 Changed method request() in HtmlHandler

public void request(VSAMRequestInfo requestInfo,int stringID)
throws VSAMRequestException
{
 String company = "";
 int share_price = 0;
 int unit7 = 0;
 int unit6 = 0;
 String sout = null;

 if (requestInfo.isINSERT ())
 {
 company = requestInfo.getString(0, 20);
 share_price = requestInfo.getNumber(20, 4);
 unit7 = requestInfo.getNumber(24, 4);
 unit6 = requestInfo.getNumber(28, 4);

 // now output data to html file
 sout = "<tr><td>" + company + "</td><td>" + share_price + "</td><td>"
 + unit7 +"</td><td>" + unit6 + "</td></tr>";
 try {
 htmloutput.write(sout);
 htmloutput.newLine();
 }
 catch (Exception ex)
 {
 ...
 }
 }
 ...
}

2. Recompile the HtmlHandler.

We created a simple Windows batch file to recompile the handler. Put a
pause statement at its end so that it does not close the window immediately
when running it from the Windows Explorer. This will give you a chance to
view probable compile errors.

Example 12-14 Recompile the Htmlhandler

set classpath=.;VsamRedir.jar;%classpath%
javac com\ibm\vse\htmlhandler\HtmlHandler.java

306 WebSphere V5 for Linux on zSeries - Connectivity Handbook

pause

12.4.5 Step 5: Create a sample VSAM application
This job represents our VSAM application, which accesses the
TRADER.COMPANY file. Running the job just copies each record into an HTML
file on the Windows platform.

Example 12-15 Create sample VSAM application (REPRO job)

* $$ JOB JNM=REPRO,CLASS=A,DISP=D,NTFY=YES
// JOB JSCH COPY FILE
// DLBL COPYIN,'TRADER.COMPANY',,VSAM, X
 CAT=VSESPUC
// DLBL COPYOUT,'TRADER.COMPANY.COPY',,VSAM, X
 CAT=VSESPUC
// EXEC IDCAMS,SIZE=AUTO
 REPRO INFILE (COPYIN) -
 OUTFILE (COPYOUT) -
 NOREUSE
/*
/&
* $$ EOJ

12.4.6 Step 6: Run the REPRO job
On the VSE side, the job just runs like it would run without any Redirector
functionality.

Example 12-16 Running the REPRO job

BG 0001 1Q47I BG REPRO 01144 FROM (JSCH) , TIME=14:33:56
BG 0000 // JOB JSCH COPY FILE
 DATE 11/11/2003, CLOCK 14/33/56
BG 0000 EOJ JSCH MAX.RETURN CODE=0000
 DATE 11/11/2003, CLOCK 14/33/59, DURATION 00/00/03

On the Windows side, the server issues the messages shown in Example 12-17.

Example 12-17 Redirector server side when receiving data

C:\vseredir>java com.ibm.vse.redirector.VSAMRedirectorServer
Licensed Materials - Property of IBM
(C) Copyright IBM Corp. 1998, 2000. All Rights Reserved.

US Government Users Restricted Rights -
Use, duplication or disclosure restricted by

 Chapter 12. VSE VSAM Redirector connector 307

GSA ADP Schedule Contract with IBM Corp.

VSAMRedirectorServer starting...
Nov 11, 2003 9:37:38 AM - Listening socket created on port 2387
Enter 'quit' to stop the server
Nov 11, 2003 9:37:38 AM - Waiting for connections...
Nov 11, 2003 9:37:43 AM - Client connection request from 9.152.82.82
Nov 11, 2003 9:37:43 AM - Client has been accepted.
Nov 11, 2003 9:37:43 AM - Connection has been accepted from 9.152.82.82
Now receiving records:
....
Ready, 4 records received.
HTML file created: 'output.html'
Nov 11, 2003 9:37:45 AM - Connection has been terminated from 9.152.82.82
Nov 11, 2003 9:37:45 AM - Client has been disconnected.

12.4.7 Step 7: Check the HTML output file.
The generated HTML file looks like the panel in Figure 12-5.

Figure 12-5 Output from redirected trader.company file

It shows only these columns, which we have considered in the HTML handler.

The next chapter describes the use of the more complex DB2 handler and how to
redirect VSAM access into a DB2 database on z/OS via DB2 Connect on Linux
for zSeries.

308 WebSphere V5 for Linux on zSeries - Connectivity Handbook

12.5 Special setup for Trader using the DB2 handler
Setting up a DB2 handler for the Redirector involves some additional steps,
which were not necessary when using the simple HTML Handler. Basically, the
Redirector needs at least two tables in the DB2 database:

1. A map table, which contains the record structure of the redirected VSAM file
2. A data table, which receives the redirected VSAM data

The following section shows how to create these DB2 tables.

12.5.1 Providing VSAM map definition
Creating the DB2 tables should be done with the IBM-provided
CreateDB2Tables program, which is run using the create.sh script. The Java
source code is given in the directory com/ibm/vse/db2handler/create.

To create the map table, the tool needs an XML file containing the VSAM map
definitions of the cluster that will be redirected. You can write this XML file
yourself using a simple text editor. But when there is already a map definition on
the VSE host, you can use the VSE/ESA MapTool to download the VSAM map
into an XML file.

After starting the maptool, you can choose between several options. Select
Import map from VSAM map on VSE host and click Start.

Notes: The database server, against which the CreateDB2Tables program is
run, can be any DB/2 server, but it must be a UDB version, so VSE DB/2 is not
supported.

It is very important to map at least the KEY of the VSAM record to a database
field. The key field must be of type String.

Make sure that the VSE Connector Server is started on VSE in non-SSL
mode. The map tool needs a connection to the VSE Connector Server on VSE
in order to download the VSAM map.

 Chapter 12. VSE VSAM Redirector connector 309

Enter the required parameters or select them from a list by clicking the buttons to
the right of the text fields for Catalog, Cluster, or Map. Then click OK.

After connecting to the VSE system and downloading the map information, you
see the data fields in the above dialog box. To export the map to XML click
Export.

310 WebSphere V5 for Linux on zSeries - Connectivity Handbook

In the next box select XML file and click Export. A file dialog allows you to
choose a file name and a directory in which to store the XML file.

Now as the map XML file is created, you have to make some preparations in
order to run the IBM-provided Java program, which creates the two DB2 tables.

Note: An extra database column UNIQRBACNT is appended to the defined
fields. This column is defined to count the records in the table. It is used to
compute the VSAM RBA value that is returned to VSE VSAM on INSERT,
UPDATE, GET, POINT and DELETE requests. This ensures that each record
will have an unique RBA value.

 Chapter 12. VSE VSAM Redirector connector 311

12.5.2 Populating the sample VSAM files
For the Trader scenario, we have to populate only the trader.company file. The
trader.customer file is initially left empty.

Please refer to 10.5.5, “Populating the sample VSAM files” on page 249, for
details about several ways of populating the sample VSAM file. At this point we
assume that the four sample records are contained in the trader.company file.

12.5.3 Preparing for creating DB2 tables
Before you can run the create.sh file you have to make sure that db2java.zip,
which comes with DB2, is contained in your local classpath.

You should always use the db2java.zip file that comes with your DB2 installation.
We used the db2java.zip file from the DB2 Connect installation on Linux for
zSeries in /opt/IBM/db2/V8.1/java and copied it into the Redirector’s install
directory and modified the create.sh script to point directly to the file.

The xerces.jar file, which is needed for XML-related functions, was part of the
VSAM Redirector installation.

We modified the classpath in create.sh in order to access the two jar files, as
shown in Example 12-18.

Example 12-18 Modify create.sh script

export CLASSPATH=.:xerces.jar:db2java.zip:$CLASSPATH
java com.ibm.vse.db2handler.create.CreateDBTables

12.5.4 Creating DB2 tables
Running the create.sh file now prompts for the required information to access the
DB2 database. The ClassNotFoundException about the Oracle JDBC driver can
be ignored here, because we use DB2 and did not have any Oracle code
installed.

Example 12-19 shows the process for creating the tables in DB2. We ran this
script on Linux for zSeries, so that the DB URL points to the local DB2 Connect
installation on Linux. The tables are then created on DB2 on z/OS.

Example 12-19 Run create.sh sctript

linux11:/opt/vseredir # ./create.sh
...
*** Error while registering the JDBC drivers: ***
java.lang.ClassNotFoundException: oracle.jdbc.driver.OracleDriver

312 WebSphere V5 for Linux on zSeries - Connectivity Handbook

...
XML filename : trader.company.xml
DB url : jdbc:db2:trader
DB user : linux1
WARNING: Due to the internals of Java, password will be visible while entering!
DB password : dbpwd
DB table name : trader.company_redirected
map table name: trader.company_maps
map name : company_map
DB system, 1 = DB/2 ; 2 = Oracle : 1
Target database system is DB/2.
Importing XML file ... got 11 fields from XML file.
Connect to database...

Now the MapInfo table will be created with name 'trader.company_maps'.
...
Do you want to proceed (Yes/Skip/Exit)? yes
...
Now the data table will be created with name 'trader.company_redirected'.
...
Do you want to proceed (Yes/Skip/Exit)? yes
...
Please specify for wich access this database should be prepared.

 1 KSDS without AIX
 2 KSDS with AIX
 3 ESDS without AIX
 4 ESDS with AIX
 5 Exit

Please choose: 1

Please enter the name of the field wich maps the whole VSAM key.
This field must have the same offset and length of the VSAM key field.

Primary key field: COMPANY

SQL string to be sent to database:

CREATE TABLE trader.company_redirected (UNIQRBACNT INTEGER NOT NULL GENERATED
BY DEFAULT AS IDENTITY (START WITH 0, INCREMENT BY 1) , COMPANY CHARACTER
(20) NOT NULL , SHARE_PRICE INTEGER , UNIT_VALUE_7DAYS INTEGER ,
UNIT_VALUE_6DAYS INTEGER , UNIT_VALUE_5DAYS INTEGER , UNIT_VALUE_4DAYS
INTEGER , UNIT_VALUE_3DAYS INTEGER , UNIT_VALUE_2DAYS INTEGER ,
UNIT_VALUE_1DAYS INTEGER , COMM_COST_SELL INTEGER , COMM_COST_BUY INTEGER ,
PRIMARY KEY (COMPANY) , UNIQUE (UNIQRBACNT))

Press ENTER to continue.

 Chapter 12. VSE VSAM Redirector connector 313

Creating indexes for NON-UNIQUE fields.

Ready.
linux11:/opt/vseredir #

We had the problem that the table definition was incomplete after completing the
create tables step. The DB2 message was:

SQL0540N The definition of table "TRADER.COMPANY_REDIRECTED" is incomplete
because it lacks a primary index or a required unique index. SQLSTATE=57001

So we used the following statement to create an index for the UNIQRBACNT
field, which is used internally by the DB2 handler:

CREATE TYPE 2 UNIQUE INDEX TRADER.COMPANY_REDIR_X3 ON TRADER.COMPANY_REDIRECTED
(UNIQRBACNT)

This solved the problem.

After creating the DB/2 tables, the Linux part of the preparation is done.

12.5.5 Setting up the VSE side
On the VSE side you now have to set up the Redirector config phase for
redirecting the VSAM file TRADER.COMPANY using the DB2 handler.
Example 12-20 shows the relevant part of the SKRDCFG job that has to be
changed in order to redirect the file.

The HANDLER parameter now specifies the DB2 handler. The OPTIONS string
now contains relevant information to access the DB2 database. The IP address
belongs to our Linux for zSeries installation.

Example 12-20 Setup Redirector config phase for DB2 handler

*
IESRDENT CATALOG='VSESP.USER.CATALOG', X
 CLUSTER='TRADER.COMPANY.COPY', X
 EXIT='IESREDIR', X
 OWNER=REDIRECTOR, X
 IP='9.12.9.12', X
 HANDLER='com.ibm.vse.db2handler.DB2Handler', X
 OPTIONS='dburl=jdbc:db2:trader;dbuser=linux1; X
 dbpassword=dbpwd;dbtable=trader.company_redirected; X

Note: We recommend that you enter the name of the primary key field case
sensitive, exactly as it is defined in the XML file. Because we used the VSAM
map tool to create the XML file, all field names were created in uppercase
letters.

314 WebSphere V5 for Linux on zSeries - Connectivity Handbook

 maptable=trader.company_map;map=company_map'
*

Now we cataloged the config phase again by submitting the SKRDCFG job.
There is no need to modify the IBM-provided DB2 Handler Java code.

12.5.6 Testing the setup
For a quick test we can now run our original IDCAMS REPRO job to copy the
TRADER.COMPANY file into TRADER.COMPANY.COPY, which will result in
redirecting the copied VSAM data into the DB2 table trader.company_redirected
on DB2.

� Make sure that the changed SKRDCFG job has been submitted.
� Make sure that the Redirector server is started on Linux.
� Run the REPRO job on VSE.

You should get similar output in the Redirector server console as shown in
Example 12-21.

Example 12-21 Redirector server, receiving data from VSE

linux11:/opt/vseredir # ./run.sh
...
VSAMRedirectorServer starting...
Nov 20, 2003 4:09:59 PM - Listening socket created on port 2387
Nov 20, 2003 4:09:59 PM - Waiting for connections...
Enter 'quit' to stop the server
Nov 20, 2003 4:10:21 PM - Client connection request from 9.152.82.82
Nov 20, 2003 4:10:21 PM - Client has been accepted.
Nov 20, 2003 4:10:21 PM - Connection has been accepted from 9.152.82.82
.oO DefaultRequestHandler.initialize()
.oO DefaultRequestHandler.open()
*** Could not register a JDBC driver: ***
java.lang.ClassNotFoundException: oracle.jdbc.driver.OracleDriver
[trader.company_redirected] Configured for database system: IBM DB/2
[trader.company_redirected] **** Initialize BEGINS >>>>
[trader.company_redirected] Get DB connection...
[trader.company_redirected] Get map info from DB table...
[trader.company_redirected] **** getMapInfo BEGINS >>>>
[trader.company_redirected] --- Database query #0 ---
[trader.company_redirected] Retrieving mapping from trader.company_maps
(map=company_map)
[trader.company_redirected] Retrieved 11 fields.
[trader.company_redirected] Using database table: trader.company_redirected
[trader.company_redirected] VSAM cluster - Key position,length: 0 , 20
[trader.company_redirected] This is a KSDS cluster (KEY+ADR access).
[trader.company_redirected] Field used for KEY access: COMPANY

 Chapter 12. VSE VSAM Redirector connector 315

[trader.company_redirected] Prepare the statements...
[trader.company_redirected] Committing after each INSERT (Note: UPD+DEL is
auto-committed).
[trader.company_redirected] Set position to first record...
[trader.company_redirected] --- Database query #1 ---
[trader.company_redirected] Could not find any record, positioning is not
done.
[trader.company_redirected] **** Initialize READY >>>>
.oO DefaultRequestHandler.request(), STRID=1
__
[trader.company_redirected] RequestInfo:
INSERT
KEY:Y ADR:n | DIR:n SEQ:Y SKP:n | NUP:Y UPD:n NSP:n
FWD:Y BWD:n | KEQ:n KGE:Y GEN:n | LRD:n | keylen=(no key)
[trader.company_redirected] **** handleRequests BEGINS >>>>
[trader.company_redirected] INSERT request
[trader.company_redirected] **** perform_INSERT BEGINS >>>>
[trader.company_redirected] **** splitRecord BEGINS (VSAM record -> SQL
statement) >>>>
[trader.company_redirected] getString:COMPANY = 'Casey_Import_Export '
[trader.company_redirected] getInt:SHARE_PRICE = 79
[trader.company_redirected] getInt:UNIT_VALUE_7DAYS = 59
[trader.company_redirected] getInt:UNIT_VALUE_6DAYS = 63
[trader.company_redirected] getInt:UNIT_VALUE_5DAYS = 65
[trader.company_redirected] getInt:UNIT_VALUE_4DAYS = 70
[trader.company_redirected] getInt:UNIT_VALUE_3DAYS = 72
[trader.company_redirected] getInt:UNIT_VALUE_2DAYS = 78
[trader.company_redirected] getInt:UNIT_VALUE_1DAYS = 77
[trader.company_redirected] getInt:COMM_COST_SELL = 10
[trader.company_redirected] getInt:COMM_COST_BUY = 7
[trader.company_redirected] --- Database query #2 ---
[trader.company_redirected] --- Database query #3 ---
returning RBA: 0
.oO DefaultRequestHandler.finished(), STRID=1
...
.oO DefaultRequestHandler.close()
[trader.company_redirected] **** cleanup BEGINS >>>>
--
.oO DefaultRequestHandler.cleanup()
Nov 20, 2003 4:10:23 PM - Connection has been terminated from 9.152.82.82
Nov 20, 2003 4:10:23 PM - Client has been disconnected.

12.5.7 Checking the target DB2 table
You may now check the contents of the target DB2 table using native DB2
commands.

316 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Example 12-22 Check contents of target DB2 table

db2 => select * from trader.company_redirected

UNIQRBACNT COMPANY SHARE_PRICE UNIT_VALUE_7DAYS UNIT_VALUE_6DAYS ...
----------- -------------------- ----------- ---------------- ---------------- ...
 0 Casey_Import_Export 79 59 63 ...

1 Glass_and_Luget_Plc 19 17 22 ...
 2 Headworth_Electrical 124 141 138 ...
 3 IBM 163 157 156 ...

 4 record(s) selected.

db2 =>

The first table column, UNIQRBACNT, is used by the Redirector internally.

12.5.8 Trader scenario with redirected VSAM files
Now as we are redirecting the VSAM files, which are used by Trader, the
scenario looks as shown in Figure 12-6.

Figure 12-6 Trader scenario with redirected VSAM files

The servlet uses the MQ or CTG connector to call an online COBOL program on
VSE, which operates on the Trader VSAM files. All operations to the
trader.company file are redirected to the DB2 database running on z/OS.

Linux

WebSphere

Servlet

CICS

Trader COBOL
Progs.

MQ

CTG

VSAM

VSAMRedirector

DB2 Connect

VSE

z/OS

DB2 DB2

MQ

 Chapter 12. VSE VSAM Redirector connector 317

318 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Appendix A. VSE/ESA code samples

A

© Copyright IBM Corp. 2004. All rights reserved. 319

Sample Java SOAP client program
Following is the complete Java source code of the sample SOAP client program
used to test the SOAP connection to CICS. The source has been taken from the
Apache SOAP sample and has been slightly modified to work with the VSE
SOAP service.

Example: A-1 Sample SOAP client Java program

/*
 * The Apache Software License, Version 1.1
 *
 *
 * Copyright (c) 2000 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *
 * 4. The names "SOAP" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written
 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

320 WebSphere V5 for Linux on zSeries - Connectivity Handbook

 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation and was
 * originally based on software copyright (c) 2000, International
 * Business Machines, Inc., http://www.apache.org. For more
 * information on the Apache Software Foundation, please see
 * <http://www.apache.org/>.
 *
 * This sample file was changed to call the VSE/ESA SOAP service.
 */

import java.io.*;
import java.net.*;
import java.util.*;
import org.apache.soap.*;
import org.apache.soap.rpc.*;

public class GetQuote
{
 public static void main (String[] args) throws Exception
 {
 if (args.length != 2
 && (args.length != 3 || !args[0].startsWith ("-")))
 {
 System.err.println ("Usage: java " + GetQuote.class.getName () + "
[-encodingStyleURI] SOAP-router-URL symbol");
 System.exit (1);
 }

 // Process the arguments.
 int offset = 3 - args.length;
 String encodingStyleURI = args.length == 3
 ? args[0].substring(1)
 : Constants.NS_URI_SOAP_ENC;
 URL url = new URL (args[1 - offset]);
 String symbol = args[2 - offset];

 // Build the call.
 Call call = new Call ();
 call.setTargetObjectURI ("urn:iessoapd:getquote");
 call.setMethodName ("getQuote");

 Appendix A. VSE/ESA code samples 321

 call.setEncodingStyleURI(encodingStyleURI);
 Vector params = new Vector ();
 params.addElement (new Parameter("symbol", String.class, symbol,
null));
 call.setParams (params);

 // make the call: note that the action URI is empty because the
 // XML-SOAP rpc router does not need this. This may change in the
 // future.
 Response resp = call.invoke (/* router URL */ url, /* actionURI */ ""
);

 // Check the response.
 if (resp.generatedFault ()) {
 Fault fault = resp.getFault ();

 System.err.println("Generated fault: " + fault);
 } else {
 Parameter result = resp.getReturnValue ();
 System.out.println (result.getValue ());
 }
 }
}

You compile the program using a batch file like the one shown below.

Example: A-2 Compile Java SOAP client program

set CLASSPATH=soap.jar;%CLASSPATH%
javac GetQuote.java

You run the sample using following batch file. You will have to change the VSE
IP address to the one of your VSE system.

Example: A-3 Changing

set CLASSPATH=j2ee.jar;soap.jar;xerces.jar;mail.jar;activation.jar;.
java GetQuote http://9.164.155.95:1080/cics/CWBA/IESSOAPS IBM

Sample Java program to populate VSAM files on VSE
Following is the complete Java code of the program used to populate the
TRADER.COMPANY file on VSE.

322 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Example: A-4 Sample Java program to populate VSAM file

/***/
/* VSE Workdesk - VSE Connector Client */
/***/
/*
*/
/* MODULE NAME : PutData.java */
/*
*/
/* COPYRIGHT NOTICE: Copyright (C) 2003. IBM Corporation. */
/*
*/
/* This file is used to demonstrate how to utilize IBM Corporation's */
/* VSE/ESA Connector Framework Java classes. */
/*
*/
/* You have a royalty-free right to use, modify, reproduce and */
/* distribute this demonstration file (including any modified */
/* version), provided that you agree that IBM Corporation */
/* has no warranty, implied or otherwise, or liability */
/* for this demonstration file or any modified version. */
/* */
/* COMPILER : */
/* *
/* Java 1.1.6 or higher */
/*
*/
/**/
/*
*/
/* CHANGE ACTIVITY : */
/* */
/* */
/**/
package com.ibm.vse.samples;
import java.lang.*;
import java.net.*;
import java.io.*;
import java.util.*;

/* Import Common Connector Interface (CCI) classes */
import javax.resource.*;

/* Import VSE Connector classes */
import com.ibm.vse.connector.*;

public class PutData
{

 Appendix A. VSE/ESA code samples 323

public static void main(String argv[]) throws IOException, ResourceException
 {
 String catalogID = "VSESP.USER.CATALOG";
 String clusterID = "TRADER.COMPANY.COPY";
 String mapname = "COMPANY_MAP";

 VSEConnectionSpec spec;
 VSESystem system;
 byte[] inputArray;
 String ipAddr = "9.152.82.82";
 String userID = "jsch";
 String password = "mypassw";

 /* Prompt for user ID and password. */
 /* BufferedReader r = new BufferedReader(
 new InputStreamReader(System.in));
 System.out.println("Please enter your VSE IP address:");
 ipAddr = r.readLine();
 System.out.println("Please enter your VSE user ID:");
 userID = r.readLine();
 System.out.println("Please enter password:");
 password = r.readLine();
 */
 try {
 spec = new VSEConnectionSpec(InetAddress.getByName(ipAddr),
 2893,userID,password);
 system = new VSESystem(spec);
 }
 catch (UnknownHostException e)
 {
 System.out.println("Unknown host : " + e);
 return;
 }

 /* Setup data ... */
 String[][] data = {
 {"Casey_Import_Export
","0079","0059","0063","0065","0070","0072","0078","0077","010","007"},
 {"Glass_and_Luget_Plc
","0019","0017","0022","0020","0016","0020","0025","0022","002","002"},

{"Headworth_Electrical","0124","0141","0138","0137","0133","0133","0133","0131"
,"012","011"},
 {"IBM
","0163","0157","0156","0159","0161","0160","0162","0163","010","015"}
 };

 /* Add data ... */

324 WebSphere V5 for Linux on zSeries - Connectivity Handbook

 VSEVsamRecord record = new VSEVsamRecord(system, catalogID, clusterID,
mapname);
 for (int i=0;i<data.length;i++)
 {
 record.setKeyField(0, new String(data[i][0]));
 for (int k=1;k<11;k++)
 record.setField(k, new Integer((data[i][k])));
 record.add();
 }
 System.out.println("Records added to file.");
 }
}

You compile the program using a batch file like the one shown in the
Example A-5.

Example: A-5 Compile sample Java program

set CLASSPATH=.;c:\vsecon\cci.jar;c:\vsecon\ibmjsse.jar;
c:\vsecon\VSEConnector.jar;%CLASSPATH%
javac com\ibm\vse\samples\PutData.java
pause

IBM-provided SOAP service C program
This C program is shipped with VSE in sublibrary PRD1.BASE. It is also provided
with the VSE Connector Client, together with the compile and link jobs.

Example: A-6 IBM provided SOAP service C program

/**/
/* VSE/ESA VSE SOAP Service */
/**/
/* */
/* MODULE NAME : GetQuote.c */
/* */
/* RELEASE : VSE/ESA Version 2.7.0 */
/* */
/* COPYRIGHT NOTICE: Copyright (C) 2001. IBM Corporation. */
/* */
/* You have a royalty-free right to use, modify, reproduce and */
/* distribute this demonstration file (including any modified */
/* version), provided that you agree that IBM Corporation */
/* has no warranty, implied or otherwise, or liability */
/* for this demonstration file or any modified version. */
/* */
/* COMPILER : */

 Appendix A. VSE/ESA code samples 325

/* */
/* C Compiler */
/* */
/**/
 /* */
 /* CHANGE ACTIVITY : */
 /* */
 /* */
 /**/
 /* This is a sample SOAP service. */
 /* */
 /* It is an implementation of a service for the GetStockQuote sample*/
 /* that is provided by many SOAP projects like Apache SOAP. */
 /* This service expects a stock symbol as input value and will */
 /* return a fictitious value as the stock quote. */
 /* */
 /* In the client code you must only change the target URI to */
 /* "urn:iessoapd:getquote" and set the URL to call the IESSOAPS */
 /* service (e.g. http://9.164.123.45:1080/cics/CWBA/IESSOAPS). */
 /* The sample code in soapclnt.c is a SOAP client that can be used */
 /* to call this service. */
 /**/

#include <ctype.h>
#include <string.h>
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include "IESSOAPH.H"

 /*
 function to let the CICS program print debug info to the console
 */
void cicsprintf(char* fmt,...)
{
 va_list args;
 char text[256], text2[256];

 va_start(args,fmt);
 vsprintf(text,fmt,args);
 va_end(args);
 sprintf(text2, "SSRV: %s", text);

 EXEC CICS WRITE OPERATOR TEXT(text2) TEXTLENGTH(strlen(text2));
};

 /*
 gets the next input parameter,

326 WebSphere V5 for Linux on zSeries - Connectivity Handbook

 sets pName pPtr and pLen (valid until next call)
 */
int GetNextInParameter(char* inqueue,char** pName,
 char** pPtr,int* pLen)
{
 int resp, resp2;
 SOAP_PARAM_HDR* param;
 unsigned short len;

 *pName = NULL;
 *pPtr = NULL;
 *pLen = 0;

 EXEC CICS READQ TS QUEUE(inqueue)
 SET(param) LENGTH(len) NEXT
 RESP(resp) RESP2(resp2);

 if(resp!=DFHRESP(NORMAL))
 return 4; // no more params

 if(param->type==SOAP_TYPE_STRUCT)
 return 5; // invalid type (for this service)

 pName = (char)¶m->name;
 pPtr = (char)¶m[1];
 *pLen = param->length-sizeof(SOAP_PARAM_HDR);

 return(0);
};

// sets the next output parameter
int SetNextOutParameter(char* outqueue,
 char *typename, unsigned int type,
 char* name, char* ptr,int len)
{
 SOAP_PARAM_HDR* param;
 int resp,resp2;

 param = (SOAP_PARAM_HDR*)malloc(sizeof(SOAP_PARAM_HDR)+len);
 if(param==NULL)
 return(-1);

 memset(param->name,' ',sizeof(param->name));
 memcpy(param->name,name,strlen(name));
 memset(param->typename,' ',sizeof(param->typename));
 memcpy(param->typename,typename,strlen(typename));
 param->type = type;
 param->length = len + sizeof(SOAP_PARAM_HDR);

 Appendix A. VSE/ESA code samples 327

 memcpy(¶m[1],ptr,len);

 EXEC CICS WRITEQ TS QUEUE(outqueue)
 FROM(param) LENGTH(len+ sizeof(SOAP_PARAM_HDR))
 RESP(resp) RESP2(resp2);

 free(param);
 return(0);
};

 /*
 * this function is called if the requested
 * SOAP method is 'getQuote'
 */
int ProcessGetQuote(char* inqueue,char* outqueue)
{
 int rc,resp,resp2;
 char* name;
 char* data;
 int len;
 unsigned short slen;
 char symbol[9];
 char *quote;

 // first get the input parameters
 cicsprintf("method getQuote");

 // get the symbol name (first and only element that is expected
 rc = GetNextInParameter(inqueue, &name, &data, &len);
 if(rc != 0)
 return(rc);

 // check if the provided parameter is named 'symbol'
 if(strncmp(name, "symbol", 6) !=0)
 return(2); // invalid param name

 memset(symbol,' ',8);
 symbol[8] = '\0';
 if(len>8)
 len = 8;
 memcpy(symbol,data,len);

 // variable symbol now contains the symbol name
 cicsprintf("stock symbol = %s", symbol);

 // return a fictitious value as stock quote
 // special handling for value IBM
 if(strncmp(symbol, "IBM", 3) == 0)
 {

328 WebSphere V5 for Linux on zSeries - Connectivity Handbook

 quote = "80.10";
 }
 else
 {
 quote = "100.01";
 }

 // set the stock value as output with the name 'data'
 // and type string
 rc = SetNextOutParameter(outqueue,
 "string", SOAP_TYPE_STRING,
 "data", quote, strlen(quote));
 if(rc!=0)
 return 3;

 return 0;
};

int main()
{
 SOAP_PROG_PARAM* call;
 int i,rc;

 EXEC CICS ADDRESS EIB(dfheiptr);

 cicsprintf("SOAPSERVER called");

 EXEC CICS ADDRESS COMMAREA(call);

 cicsprintf("Method = %.16s",call->method);

 // check if the SOAP method name is 'getQuote'
 if(strncmp(call->method, "getQuote", 8) == 0)
 rc = ProcessGetQuote(call->inqueue, call->outqueue);
 else
 rc = 1;

 cicsprintf("rc = %d",rc);
 cicsprintf("SOAPSERVER finished");

 call->retcode = rc;

 return(rc);
}

 Appendix A. VSE/ESA code samples 329

IBM-provided include file for SOAP
This C header file is shipped with VSE in sublibrary PRD1.BASE.

Example: A-7 IBM provided include file for SOAP

/**
* VSE/ESA SOAP Interface *
**
* *
* SOURCE FILE : IESSOAPH.H *
* *
**
* *
* CONTENTS: SOAP Interface *
* *
**
* DESCRIPTIVE NAME : SOAP Interface *
* *
* COPYRIGHT NOTICE : LICENSED MATERIALS - PROPERTY OF IBM *
* "RESTRICTED MATERIALS OF IBM" *
* 5686-066 (C) Copyight IBM Corp. 2002. *
* *
* NOTES : *
* $Revision: 1.00$ *
* $Date: 21.02.2002$ *
* $Author: IFranzki$ *
**
* CHANGE ACTIVITY : *
* *
* FLAG REASON RELEASE DATE ORIGIN COMMENT *
* ---- -------- --- ------ ------ ----------------------------- *
***/

#ifndef _IESSOAPH_H
 #define _IESSOAPH_H

#include <stdio.h>
#include <stddef.h>

//***
// SOAP Server:
//
// The SOAP Server (IESSOAPS) is called from CICS (CWS) using the URL
// "http://<server>:<port>/CICS/CWBA/IESSOAPS" with HTTP method POST.
// The SOAP Server receives the XML SOAP Envelope, validates it and
// uses the URN to call the user program or the SOAP decoder (IESSOAPD)
// The URN must have the following format "urn:<decoder>Ý:<userprog>¨"
// The IBM-supplied decoder IESSOAPD converts the XML parameter tree

330 WebSphere V5 for Linux on zSeries - Connectivity Handbook

// into a series of structured data blocks and passes it to the
// user program via EXEC CICS LINK.
//
// SOAP Client:
//
// A SOAP Client program can either call the IBM suplied SOAP encoder
// IESSOAPE, or directly call the SOAP Client IESSOAPC. The SOAP
// decoder works similar as the SOAP Encoder, it converts the parameters
// from the user program into a XML tree and passes it to the SOAP
// client. The SOAP client establishes a HTTP Connection to the
// server and sends the XML SOAP Envelope.
//
//***

//***
// Interface between a user program and the encoder/decoder
//***

// Parameters are converted by the decoder/encoder into/from
// a control block structure which describe the parameter(s) and
// contains the data. Each parameter stats with a header
// (SOAP_PARAM_HDR). This header specifies the type of parameter.
// If the parameter has type SOAP_TYPE_STRUCT the data of the
// parameter contain one or more headers plus its data.
// The parameters are stored into a CICS TS QUEUE to pass them
// from the user program to the encoder/decoder and vice versa.
typedef _Packed struct tagSOAP_PARAM_HDR
 {
 char nameÝ16¨; // parameter name
 char typenameÝ16¨; // data type name
 unsigned int length; // length of block (inc. header)
 unsigned int type; // type (see SOAP_TYPE_xxx)
 }
 SOAP_PARAM_HDR;
typedef SOAP_PARAM_HDR* LPSOAP_PARAM_HDR;

// Values for type field in SOAP_PARAM_HDR
#define SOAP_TYPE_UNSPECIFIED 0 // unknown/unspecified type
#define SOAP_TYPE_PRIVATE 1 // private type
#define SOAP_TYPE_STRUCT 2 // hirachical structure
#define SOAP_TYPE_STRING 10 // String
#define SOAP_TYPE_INTEGER 11 // Integer (4 bytes)
#define SOAP_TYPE_SHORT 12 // Short (2 bytes)
#define SOAP_TYPE_BYTE 13 // Byte (1 byte)
#define SOAP_TYPE_BOOLEAN 14 // Boolean (1 byte)
#define SOAP_TYPE_BINARY 15 // Binary

//***
// Assembler DSECT of the above structure

 Appendix A. VSE/ESA code samples 331

//
// PARAMHDR DSECT SOAP_PARAM_HDR
// NAME DS CL16 PARAMETER NAME
// TYPENAME DS CL16 DATA TYPE NAME
// LENGTH DS F LENGTH OF BLOCK (INC. HEADER)
// TYPE DS F TYPE (SEE EQUs)
// TUNSPEC EQU 0 UNKNOWN/UNSPECIFIED
// TPRIVATE EQU 1 PRIVATE TYPE
// TSTRUCT EQU 2 HIRACHICAL STRUCTURE
// TSTRING EQU 10 STRING
// TINTEGER EQU 11 INTEGER (4 BYTES)
// TSHORT EQU 12 SHORT (2 BYTES)
// TBYTE EQU 13 BYTE (1 BYTE)
// TBOOLEAN EQU 14 BOOLEAN (1 BYTE)
// TBINARY EQU 15 BINARY
//
//***

//***
// Interface between the IBM supplied SOAP Encoder and the user program
//***

// The following COMMAREA is used when a user program is called by
// the IBM supplied SOAP Encoder (IESSOAPE). It specifies the
// method name, the names of the CICS TS QUEUE names for input
// and output parameter and the URL of the XML namespace which
// is used by the caller
typedef _Packed struct tagSOAP_PROG_PARAM
 {
 char methodÝ16¨; // (in) method name
 char inqueueÝ8¨; // (in) input params
 char outqueueÝ8¨; // (in) output params
 char namespaceurlÝ128¨; // (in/out) private namespace url
 int retcode; // (out) return code
 }
 SOAP_PROG_PARAM;
typedef SOAP_PROG_PARAM* LPSOAP_PROG_PARAM;

//***
// Assembler DSECT of the above structure
//
// PROGPARM DSECT SOAP_PROG_PARAM
// METHOD DS CL16 (IN) METHOD NAME
// INQUEUE DS CL8 (IN) INPUT QUEUE NAME
// OUTQUEUE DS CL8 (IN) OUTPUT QUEUE NAME
// NSURL DS CL128 (IN/OUT) PRIVATE NAMESPACE URL
// RETCODE DS F (OUT) RETURN CODE
//

332 WebSphere V5 for Linux on zSeries - Connectivity Handbook

//***

//***
// Interface between the SOAP Server and an encoder
//***

// The parameter area is used when the SOAP Server (IESSOAPS)
// calls the SOAP Encoder. The SOAP Encoder can either be the
// IBM-supplied encoder IESSOAPE, or a user written program.
typedef _Packed struct tagSOAP_ENC_PARAM
 {
 int action; // (in) see SOAP_ENC_ACTION_xxx
 void* userdata; // (out/in) user data
 // SOAP specific
 char* urn; // (in) urn
 int urnlen; // (in) length of the urn
 char* method; // (in) method name
 int methodlen;// (in) length of the method name
 // parameters
 struct _node* inparams; // (in) input xml tree
 struct _node* outparams; // (out) output xml tree
 }
 SOAP_ENC_PARAM;
typedef SOAP_ENC_PARAM* LPSOAP_ENC_PARAM;

// Values for the action field in SOAP_ENC_PARAM
#define SOAP_ENC_ACTION_INIT 0 // Initialize the encoder
#define SOAP_ENC_ACTION_CALL 1 // Process the method call
#define SOAP_ENC_ACTION_DONE 2 // Cleanup the Encoder

// Function prototype for the Encoder
typedef int (*SOAPEncoder)(LPSOAP_ENC_PARAM param);

//***
// Interface between a user program and the IBM suplied decoder
//***

// The following COMMAREA is used by a user program to call the
// IBM-supplied decoder (IESSOAPD)
typedef _Packed struct tagSOAP_DEC_PARAM
 {
 char urlÝ128¨; // (in) the servers url
 char methodÝ16¨; // (in) method name
 char urnÝ128¨; // (in) the urn
 char inqueueÝ8¨; // (in) input queue name
 char outqueueÝ8¨; // (in) output queue name
 char namespaceurlÝ128¨; // (in/out) namespace url
 // proxy

 Appendix A. VSE/ESA code samples 333

 int proxytype; // (in) proxy type (HTTP_TYPE_xxx)
 char proxyÝ128¨; // (in) proxy server
 int proxyport; // (in) port number
 char useridÝ16¨; // (in) userid for socks
 char passwordÝ16¨; // (in) password for socks 5
 // return code
 int retcode; // (out) rturn code
 }
 SOAP_DEC_PARAM;
typedef SOAP_DEC_PARAM* LPSOAP_DEC_PARAM;

//***
// Assembler DSECT of the above structure
//
// DECPARM DSECT SOAP_DEC_PARAM
// URL DS CL128 (IN) URL OF THE SERVER
// METHOD DS CL16 (IN) METHOD NAME
// URN DS CL128 (IN) THE URN
// INQUEUE DS CL8 (IN) INPUT QUEUE NAME
// OUTQUEUE DS CL8 (IN) OUTPUT QUEUE NAME
// NSURL DS CL128 (IN/OUT) PRIVATE NAMESPACE URL
// PROXYTYP DS F (IN) PROXY TYPE (SEE EQUS)
// PDIRECT EQU 0 DIRECT CONNECTION, NO PROXY/SOCKS
// PPROXY EQU 1 HTTP PROXY
// PSOCKS4 EQU 2 SOCKS V4
// PSOCKS5 EQU 3 SOCKS V5
// PROXY DS CL128 (IN) HOSTNAME OR IP OF THE PROXY SERVER
// PROXPORT DS F (IN) PORT NUMBER OF THE PROXY
// USERID DS CL16 (IN) USER NAME FOR SOCKS
// PASSWORD DS CL16 (IN) PASSWORD FOR SOCKS V5 ONLY
// RETCODE DS F (OUT) RETURN CODE
//
//***

//***
// Interface between a user program and the SOAP Client
//***

// The following control block contains infomations about
// the proxy or socks server that is used to connect to the server.
typedef struct __HTTP_PROXY
 {
 int proxytype; // (in) proxy type (HTTP_TYPE_xxx)
 char* proxy; // (in) proxy server name
 int proxylen; // (in) length of server name
 unsigned short proxyport; // (in) port of the proxy
 char* userid; // (in) userid for socks
 int useridlen; // (in) length of the userid

334 WebSphere V5 for Linux on zSeries - Connectivity Handbook

 char* password; // (in) password for socks 5
 int passwordlen; // (in) length of the password
 }
 HTTP_PROXY;
typedef HTTP_PROXY* LPHTTP_PROXY;

// Proxy types
#define HTTP_TYPE_DIRECT 0 // direct connection
#define HTTP_TYPE_PROXY 1 // connection through a proxy
#define HTTP_TYPE_SOCKS4 2 // connection through Socks V4
#define HTTP_TYPE_SOCKS5 3 // connection through Socks V5

// The following area is used by a user program or decoder
// to call the SOAP Client (IESSOAPC).
typedef _Packed struct tagSOAP_CLNT_PARAM
 {
 int action; // (in) action (see SOAP_CLNT_ACTION_xxx)
 void* userdata; // (in) user data
 // request info
 char* url; // (in) url of the server
 int urllen; // (in) length of the url
 char* urn; // (in) urn of the SOAP service
 int urnlen; // (in) length of the urn
 char* method; // (in) method name
 int methodlen; // (in) length of the method
 // parameters
 struct _node* inparams; // (in) input xml tree
 struct _node* outparams; // (out) output xml tree
 int isfault; // (out) <>0 if fault
 // proxy info
 HTTP_PROXY* proxy; // (in) proxy info (or NULL)
 }
 SOAP_CLNT_PARAM;
typedef SOAP_CLNT_PARAM* LPSOAP_CLNT_PARAM;

// SOAP Action codes
#define SOAP_CLNT_ACTION_INIT 0 // Initialize the Client
#define SOAP_CLNT_ACTION_CALL 1 // Process the method call
#define SOAP_CLNT_ACTION_DONE 2 // Cleanup the Client

// SOAP Error codes
#define SOAPERR_NO_ERROR 0 // No error
#define SOAPERR_INVALID_PARAM 1 // invalid param (e.g. NULL)
#define SOAPERR_NULL_POINTER 2 // unexpected null pointer
#define SOAPERR_INVALID_RESPONSE 3 // Invalod SOAP response
#define SOAPERR_INTERNAL_ERR 4 // internal or config error
#define SOAPERR_XML_SYNTAX_ERR 5 // syntax error in XML
#define SOAPERR_INVALID_URN 6 // invalid or no URN specified

 Appendix A. VSE/ESA code samples 335

#define SOAPERR_HTTP_ERROR 1000 // HTTP Erros starting here

// Entry point function. Executes a SOAP Call
typedef int (*SOAPClient)(LPSOAP_CLNT_PARAM lpCall);
#define SOAP_CLIENT_PHASE_NAME "IESSOAPC"

// Macros for fertching and releasing the SOAP Client Phase
#define FETCH_SOAP_CLIENT (SOAPClient)fetch(SOAP_CLIENT_PHASE_NAME)
#define RELEASE_SOAP_CLIENT(p) release((void(*)())p)

#endif

Code is in Linux 9.12.9.12 in /javacode/TestECI.java.

336 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Appendix B. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247042

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG247042.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
SG247042.zip Zipped code samples

B

© Copyright IBM Corp. 2004. All rights reserved. 337

ftp://www.redbooks.ibm.com/redbooks/SG247042
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
ftp://www.redbooks.ibm.com/redbooks/SG247042

System requirements for downloading the Web material
The examples are using WebSphere Studio-IE environment, so all requirements
that apply to WebSphere Studio-IE apply to our examples.

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.

There is a readme.txt file in each directory to describe the contents and usage.

Also, refer to 3.2, “Running Trader in WSAD.IE test environment” on page 45.

338 WebSphere V5 for Linux on zSeries - Connectivity Handbook

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 342. Note that some of the documents referenced here may be available
in softcopy only.

� e-business Connectivity for VSE/ESA, SG24-5950

� e-business Solutions for VSE/ESA, SG24-5662

� MQ for VSE/ESA, SG24-5647

� CICS Transaction Server for VSE/ESA: CICS Web Support , SG24-5997

� Getting Started with TCP/IP for VSE/ESA 1.4, SG24-5626

� WebSphere Version 5 Web Services Handbook, SG24-6891

� IBM WebSphere Application Server V5.0 System Management and
Configuration, SG24-6195

Other publications
These publications are also relevant as further information sources:

IMS
� IMS Connect Guide and Reference V2.1, SG18-7260

WebSphere
� WebSphere Studio Application Developer Integration Edition, 5.0.1,

SC09-7869

CICS
� CICS Transaction Gateway V5 The WebSphere Connector for CICS,

SG24-6133

� CICS Transaction Gateway V5.0: Unix Administration, SC34-6190

© Copyright IBM Corp. 2004. All rights reserved. 339

� CICS TS V2.2 External Interfaces Guide, SC34-6006

MQ
� MQSeries Primer, REDP-0021-00

VSE/ESA
� VSE/ESA e-business Connectors User’s Guide, SC33-6719

� CICS for VSE/ESA Enhancements Guide, GC34-5763

Other
� UNIX System Services Messages and Codes, SA22-7807

Online resources
These Web sites and URLs are also relevant as further information sources.

VSE/ESA
� VSE/ESA Internet page

http://www.ibm.com/servers/eserver/zseries/os/vse/

� VSE e-business connectors and utilities

http://www.ibm.com/servers/eserver/zseries/os/vse/support/vseconn/

� TCP/IP for VSE/ESA and more

http://www.ibm.com/servers/eserver/zseries/os/vse/support/tcpip/tcphome.htm

� TCP/IP for VSE/ESA 1.5 documentation

http://www.ibm.com/servers/eserver/zseries/os/vse/support/tcpip/tcp15.htm

Linux
� Linux DeveloperWorks site

http://www-136.ibm.com/developerworks/linux/

J2EE connector architecture
� Sun’s J2EE connector architecture

http://java.sun.com/j2ee/connector/

� Overview of the Common Client Interface (CCI)

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Connector5.html#79167

340 WebSphere V5 for Linux on zSeries - Connectivity Handbook

http://www.ibm.com/servers/eserver/zseries/os/vse/
http://www.ibm.com/servers/eserver/zseries/os/vse/support/vseconn/
http://www-136.ibm.com/developerworks/linux/
http://www.ibm.com/servers/eserver/zseries/os/vse/support/tcpip/tcp15.htm
http://www.ibm.com/servers/eserver/zseries/os/vse/support/tcpip/tcphome.htm
http://java.sun.com/j2ee/connector/
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Connector5.html#79167

Java
� Downloading IBM Java developer kits

http://www-106.ibm.com/developerworks/java/jdk/index.html

� Java products and APIs (Sun)

http://java.sun.com/products/

� Java 1.4.2 API documentation

http://java.sun.com/j2se/1.4.2/docs/api/

� Enterprise JavaBeans technology overview

http://java.sun.com/products/ejb/index.html

� Enterprise JavaBeans API documentation

http://java.sun.com/products/ejb/docs.html

� Java developerWorks® site

http://www-136.ibm.com/developerworks/java/

WebSphere MQ
� WebSphere MQ Internet page

http://www-3.ibm.com/software/integration/wmq/

� WebSphere developerworks site

http://www-136.ibm.com/developerworks/websphere/

DB2
� DB2 Server for VSE V7R1 Bookshelf

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/shelves/ARISBS20

� IBM Manuals for DB2 Information Management Products

http://www-3.ibm.com/software/data/db2/library/

� DB2 DeveloperWorks site:

http://www-136.ibm.com/developerworks/db2

IMS
� Description1

http://www.ibm.com/software/data/db2imstools/index.html

 Related publications 341

http://www-106.ibm.com/developerworks/java/jdk/index.html
http://java.sun.com/products/
http://java.sun.com/j2se/1.4.2/docs/api/
http://java.sun.com/products/ejb/index.html
http://java.sun.com/products/ejb/docs.html
http://www-136.ibm.com/developerworks/java/
http://www-3.ibm.com/software/integration/wmq/
http://www-136.ibm.com/developerworks/websphere/
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/shelves/ARISBS20
http://www-3.ibm.com/software/data/db2/library/
http://www-136.ibm.com/developerworks/db2
http://www.ibm.com/software/data/db2imstools/index.html

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

342 WebSphere V5 for Linux on zSeries - Connectivity Handbook

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

A
AAT 252
adapter 2
Application Assembly Tool 252
application contracts 5
application server 3
authentication 13
authorization 13

B
basic password 16

C
caller impersonation 16
CCI 5, 17
CICS

connectors 43, 83
SOAP connection 119, 122
transaction gateway 83

connection factory
for VSE 112
for z/OS 108

deployment to WAS 114
problem determination 116
setup

CICS for VSE 98
CICS for z/OS 96
CTG 86
WAS 105

testing the connections 103
CMP 147
commarea 18, 121
common client interface 2, 5, 17

enterprise application integration 17
configured identity 15
connection factory

CICS 48, 108, 112
IMS 48, 214
MQ 197
SSL 273
VSE 229

connection management 5

© Copyright IBM Corp. 2004. All rights reserved.
connection pooling 5
ConnectionEventListener 8
ConnectionFactory 7
ConnectionManager 7
managed environment 6
non-managed environment 8

connectors 2, 25
CICS transaction gateway 83
DB2 131
IMS 207
SOAP for CICS 119
VSE Java connectors 223
VSE VSAM redirector 293
WebSphere MQ 153

containers 4
container-managed 4
EJB container 4
servlet container 4

credentials 14
mapping 16

CTG 66, 83

D
datasources 50, 280
DB2

connectors 131
datasources 50, 145
DB2 Connect 132
tables 58, 63

DB2 Connect 132
setup 132
simple connection test 142

db2profile 144
deployment 19

descriptor 20
sample 21

resource adapter 22
Trader application 59

deployment and packaging 5, 19
deployment

descriptor 20
packaging

resource adapter 20

 343

E
EAI 17
EIS 1
enterprise application integration 17
ERP 2

G
global transactions 11

JTA transactions 11
transaction manager 11
xa_transaction 12
XAResource interfaces 11

I
IMS

connection factory 214
connectors 43, 207
deploy TraderIMS in WAS 217
IMS Connect 208

configuration 218
IMS Connector for Java 208

installation 209
problem determination 220
resource adapter 211
thread identity 222

J
J2C 1–2
J2EE connector architecture 1, 3

application contracts 5
common client interface 2
deployment and packaging 19
resource adapter 2
system contracts 3

JAAS 41
Java platform 2
javax.resource.cci.Connection 7
javax.resource.cci.ConnectionFactory 7
javax.resource.spi.ConnectionEventListener 12
javax.resource.spi.LocalTransaction interface 12
javax.transaction.xa.XAResource interface 11
JCA 1
JDBC

API 17
connector 43
driver 145
provider 145

JMS setup 51
JNDI 7, 41, 50, 197, 203, 206
JTA transactions 11

K
kerbv5 16
Kerebos 16
Keyman/VSE 263
keyring 272

L
LD_LIBRARY_PATH 144
local transactions 12

javax.resource.spi.LocalTransaction interface
12

M
managed environment 6
ManagedConnection 8
ManagedConnectionFactory 8
message listeners 197

N
non-managed environment 8

O
one-phase commit optimization 13

P
packaging 19

resource adapter 20
principal 13
principal mapping 16

R
RA 2
Redbooks Web site 342

Contact us xv
resource adapter 2–3, 20, 22

CICS 105, 109
IMS 208, 211
VSE 227

S
secure communications 13

344 WebSphere V5 for Linux on zSeries - Connectivity Handbook

secure socket layer 13, 262
security attributes 13
security management 13

authentication 16
authorization 16
component-managed 14
container-managed 14
resource principal 15
secure communication 16
security model overview 14

security principal 14
Simple Object Access Protocol 119
SOAP 119–120

client 127
for CICS 122
IBM provided include file 330
IBM provided service C program 325
on VSE 121
on z/OS 121
programs 129
sample Java code 320

SSL 13, 262
standard 2
startServer.sh 144
system contracts 3, 5

connection management 3
security management 3
transaction management 3

system functions 4
component-managed 4
container-managed 4

T
Trader applications 33

components 34
configuring DB2 tables 58
configuring the test environment 47
connectors overview 42
datastores 35
DB2 table definitions 63
dependencies 41
deployment in WAS 59

TraderCICS 114
TraderDB 149
TraderIMS 217
TraderMQ 196, 198

downloading application modules 45
front-end GUI 36

packaging 40
running in WSAD.IE 45, 56, 59
running the application 60
scenarios 31
troubleshooting 53
VSAM file definitions 65
web front-end architecture 38

Trader Connectors jar 41
Trader EJB jars 41
TraderLib.jar 40
TraderProcess 39
TraderProcessEJB 39
TraderServlet 39
TraderSuperServlet 39–40
transaction management 9

contract 10
global transactions 11
local transactions 12
local transactions versus one phase commit op-
timization 13
no support 11
one-phase commit optimization 13

transaction manager 11
troubleshooting 53

V
VSAM

files 65, 243, 249
populate with sample Java program 322

maps 244
maptool 242
redirector connector 293
VSE Java connectors 223

VSE 223
Java connectors 223

access DL/1 data 287
access VSAM data 241
connection factory 229, 273
connector client/server 225
deployment in WAS 252
installation 226
JDBC provider 231
problem determination 284
resource adapter 227
SSL JDBC datasource 280

navigator 242
VSAM redirector connector 293

 Index 345

W
WAS 67
WebSphere Application Server 67

installing WAS 72
installing WebSphere MQ Client 69
planning for WAS setup 68
starting WAS 78

WebSphere MQ 44
client 68–70
configure VSE for MQ 175
connection factory 197
connectors 153
deployment in WebSphere 196
MQ-CICS bridge 155
MQ-IMS Bridge 156
setup

MQ
on Linux 157
on VSE 168
on z/OS 162

MQ connector 196
troubleshooting 195

WSAD.IE 45, 47, 56, 59, 66, 208

X
xa_transaction 12
XAResource interfaces 11

346 WebSphere V5 for Linux on zSeries - Connectivity Handbook

W
ebSphere V5 for Linux on zSeries Connectivity Handbook

®

SG24-7042-00 ISBN 0738490342

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

WebSphere V5
for Linux on zSeries
Connectivity Handbook

WAS for Linux on
zSeries
implementation

J2EE Connector
architectures for
Linux on zSeries

Linux to z/OS and
VSE connection
scenarios

This IBM Redbook discusses Linux-based Java
applications connecting to z/OS and VSE backend
environments on zSeries. This book describes the
implementation and deployment of Websphere
Application Server, Java frontend applications, and
the J2EE connectors needed on Linux for zSeries to
connect to backend applications, such as CICS,
IMS, DB2 and MQ on zSeries. This book explains
the J2EE Connector architecture and provides the
following comprehensive connector scenarios for
connections to both z/OS and VSE backend
environments:

- CICS Transaction Gateway
- IMS Connect
- WebSphere MQ
- JDBC to DB2
- SOAP to CICS

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. J2EE connector architecture overview
	1.1 J2C overview
	1.1.1 Resource adapter
	1.1.2 Common client interface
	1.1.3 System contracts
	1.1.4 Application contracts
	1.1.5 Deployment and packaging protocols

	1.2 System contracts
	1.3 Connection management
	1.3.1 Connection pooling
	1.3.2 Managed access to the resource adapter
	1.3.3 Non-managed access to the resource adapter

	1.4 Transaction management
	1.4.1 Global transactions
	1.4.2 Local transactions
	1.4.3 One-phase commit optimization
	1.4.4 Local transactions versus one-phase commit optimization

	1.5 Security management
	1.5.1 Terminology
	1.5.2 Security model overview

	1.6 Common client interface
	1.6.1 Enterprise application integration

	1.7 Deployment and packaging
	1.7.1 Packaging of the resource adapter module
	1.7.2 Deployment descriptor
	1.7.3 Deploying the resource adapter

	Chapter 2. Introducing the connectors test environment
	2.1 System configurations
	2.1.1 Hardware
	2.1.2 Software

	2.2 Frontend environment
	2.3 Backend environments
	2.3.1 z/OS
	2.3.2 VSE

	2.4 Connector scenarios overview
	2.4.1 The Trader application scenarios

	Chapter 3. The Trader applications
	3.1 Introducing the Trader application
	3.1.1 Trader application components
	3.1.2 Trader datastores
	3.1.3 Trader frontend GUI
	3.1.4 Trader Web frontend architecture
	3.1.5 Packaging
	3.1.6 Dependencies
	3.1.7 Trader connector paths
	3.1.8 Downloading Trader application modules

	3.2 Running Trader in WSAD.IE test environment
	3.2.1 Configuring the test server in WSAD.IE
	3.2.2 Runing Trader application in WSAD.IE test environment
	3.2.3 Configuring DB2 tables in the test environment
	3.2.4 Running Trader application in WSAD.IE test environment

	3.3 Deploying Trader application
	3.3.1 Installing Trader application
	3.3.2 Running Trader application

	3.4 Trader DB2 table definitions
	3.5 Trader VSAM file definitions
	3.6 Trader CICS Transaction Gateway usage
	3.7 WebSphere Studio Integration Edition hints and tips

	Chapter 4. WebSphere Application Server setup
	4.1 Planning for WebSphere Application Server setup
	4.1.1 Space requirements for installation
	4.1.2 WebSphere MQ client for Linux on zSeries

	4.2 Installing WebSphere MQ Client for Linux on zSeries
	4.2.1 Verifying the MQ Client installation
	4.2.2 Testing the MQ installation

	4.3 Installing WebSphere Application Server
	4.3.1 Installing with the installation wizard GUI
	4.3.2 Getting started

	Chapter 5. CICS J2EE connectors
	5.1 Overview of the test environment
	5.1.1 CICS connection to z/OS
	5.1.2 CICS connection to VSE

	5.2 Setting up the CTG on Linux for zSeries
	5.2.1 Installing the CTG on Linux for zSeries
	5.2.2 Configuring the CTG on Linux for zSeries

	5.3 Setting up the CICS regions on z/OS and VSE
	5.3.1 Setting up the CICS TS for z/OS environment
	5.3.2 Setting up the CICS TS for VSE environment
	5.3.3 Testing the CTG to VSE CICS/TS connectivity

	5.4 Testing the connectivity from Linux for zSeries
	5.4.1 Testing the connections
	5.4.2 Creating a simple TestECI program on Linux for zSeries

	5.5 Configuring WebSphere for CICS connections
	5.5.1 Installing the resource adapter
	5.5.2 Configuring a J2C connection factory for z/OS
	5.5.3 Configuring a J2C connection factory for VSE
	5.5.4 Deploying the application in WebSphere
	5.5.5 Implementing application security in WebSphere

	5.6 Problem determination
	5.6.1 Common errors

	Chapter 6. Using SOAP to communicate with CICS
	6.1 SOAP overview
	6.1.1 SOAP on z/OS
	6.1.2 SOAP on VSE

	6.2 Configuring CICS on VSE for SOAP support
	6.2.1 Step 1: Specify TCP/IP=YES in CICS setup
	6.2.2 Step 2: Define the symbolic name of VSE to TCP/IP
	6.2.3 Step 3: Define the TCP/IP service
	6.2.4 Step 4: Activate the ASCII to EBCDIC converter

	6.3 Compiling the SOAP service on VSE
	6.4 Testing the SOAP communication
	6.4.1 Software prerequisites for the Java SOAP client
	6.4.2 Implementing a Java-based SOAP client
	6.4.3 Running the Java-based SOAP client

	6.5 Writing your own SOAP programs on VSE
	6.6 Considerations for using SOAP in WebSphere

	Chapter 7. DB2 connectors
	7.1 DB2 Connect scenario
	7.2 Installing DB2 Connect V8.1
	7.2.1 Simple connect to DB2 for z/OS
	7.2.2 Simple connect to DB2 for VSE

	7.3 Customizing WebSphere Application Server for DB2 Connect
	7.3.1 Updating the WebSphere Application Server startup script
	7.3.2 Configuring a WebSphere data source

	7.4 Deploying TraderDB in WebSphere Application Server

	Chapter 8. WebSphere MQ connectors
	8.1 Introducing the MQ environment
	8.1.1 MQ-CICS bridge
	8.1.2 MQ-IMS bridge

	8.2 WebSphere MQ setup on Linux for zSeries frontend
	8.3 WebSphere MQ setup on z/OS backend
	8.3.1 Configuring queues and channels on z/OS
	8.3.2 Configuring queues and channels on Linux for zSeries

	8.4 WebSphere MQ setup on VSE backend
	8.4.1 Configuring queues and channels on Linux for zSeries
	8.4.2 Defining MQ resources to Linux for zSeries
	8.4.3 Shell script to define the Linux-VSE connection

	8.5 Configuring VSE for MQ
	8.5.1 Defining the VSAM data files
	8.5.2 Defining the MQ files to CICS using RDO
	8.5.3 Defining MQ resources to VSE/ESA
	8.5.4 Defining MQ local queues on VSE
	8.5.5 MQ troubleshooting

	8.6 Configuring the MQ connector in WebSphere
	8.6.1 Defining a WebSphere MQ queue connection factory
	8.6.2 Defining WebSphere MQ queue destinations
	8.6.3 Defining message listeners
	8.6.4 Deploying TraderMQ application to WebSphere
	8.6.5 Defining resources for VSE in WebSphere

	Chapter 9. IMS J2EE connectors
	9.1 IMS connectors overview
	9.1.1 IMS Connect
	9.1.2 IMS Connector for Java

	9.2 Installing IMS Connector for Java
	9.3 Installing the IMS resource adapter in WebSphere Application Server
	9.4 Configuring IMS J2C connection factories
	9.5 Deploying TraderIMS application in WebSphere Application Server
	9.6 IMS Connect configuration
	9.7 Testing TraderIMS application
	9.8 Problem determination
	9.8.1 Common errors

	9.9 Thread identity support

	Chapter 10. VSE Java-based connector to access VSAM data
	10.1 VSE Java-based connectors overview
	10.1.1 Client-server components

	10.2 Installing the VSE Java-based connector
	10.2.1 Client
	10.2.2 Server

	10.3 Using VSE Connector Client as resource adapter
	10.3.1 Defining a resource adapter
	10.3.2 Related servlet code

	10.4 Using the VSE connector client as a JDBC provider
	10.4.1 Defining a JDBC provider
	10.4.2 Related servlet code

	10.5 Setting up sample data for Trader
	10.5.1 Installing the VSE Navigator
	10.5.2 Installing the VSAM maptool
	10.5.3 Creating the sample VSAM files
	10.5.4 Creating the VSAM maps
	10.5.5 Populating the sample VSAM files

	10.6 Installing an application in WebSphere
	10.6.1 Setting up an EAR file in the Application Assembly Tool
	10.6.2 Deploying the EAR file in WebSphere Administrative Console

	10.7 Configuring for SSL secure connections
	10.7.1 Installing Keyman/VSE
	10.7.2 Generating keys and certificates
	10.7.3 Uploading certificate items to VSE
	10.7.4 Transferring the keyring file to WebSphere
	10.7.5 Checking VSE keyring library
	10.7.6 Defining an SSL connection factory in WebSphere
	10.7.7 Adding SSL resource reference in EAR file
	10.7.8 Redeploying the EAR file
	10.7.9 Configuring VSE Connector Server for SSL
	10.7.10 Restarting VSE Connector Server
	10.7.11 Changing your servlet code to support SSL
	10.7.12 Configuring an SSL JDBC data source
	10.7.13 Considerations on SSL key lengths
	10.7.14 Considerations on different SSL scenarios

	10.8 Problem determination
	10.8.1 Activating stdout trace in WebSphere
	10.8.2 Tracing a servlet

	Chapter 11. VSE Java-based connector to access DL/1 data
	11.1 DL/I database access overview
	11.1.1 Prerequisites for the DL/1 connector
	11.1.2 The DL/I example

	Chapter 12. VSE VSAM Redirector connector
	12.1 VSAM Redirector connector overview
	12.2 Client-server components
	12.3 Installing the Redirector server
	12.3.1 Downloading the Redirector server
	12.3.2 Installing the Redirector server
	12.3.3 Configuring the Redirector server
	12.3.4 Starting the Redirector server

	12.4 General setup using the HtmlHandler
	12.4.1 Step 1: Decide on the VSAM source file
	12.4.2 Step2: Create a new file as target file
	12.4.3 Step 3: Configure and activate Redirector client exit
	12.4.4 Step 4: Modify the HtmlHandler Java source
	12.4.5 Step 5: Create a sample VSAM application
	12.4.6 Step 6: Run the REPRO job
	12.4.7 Step 7: Check the HTML output file.

	12.5 Special setup for Trader using the DB2 handler
	12.5.1 Providing VSAM map definition
	12.5.2 Populating the sample VSAM files
	12.5.3 Preparing for creating DB2 tables
	12.5.4 Creating DB2 tables
	12.5.5 Setting up the VSE side
	12.5.6 Testing the setup
	12.5.7 Checking the target DB2 table
	12.5.8 Trader scenario with redirected VSAM files

	Appendix A. VSE/ESA code samples
	Sample Java SOAP client program
	Sample Java program to populate VSAM files on VSE
	IBM-provided SOAP service C program
	IBM-provided include file for SOAP

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

