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Preface

DB2® UDB for z/OS® Version 8 (DB2 V8) introduces a large number of new features that 
provide for unmatched scalability, availability, performance, and manageability to reliably 
handle any information needed in SAP solutions. The objective of this IBM® Redbook is to 
identify the new features of DB2 V8 that are particularly beneficial to SAP and to describe 
how SAP applications can take advantage of these new features. While some of these 
features can be exploited transparently by the currently available versions of DB2, for some 
others the next technological release of SAP will be required. The redbook introduces the 
new features and provides real-life examples from SAP to demonstrate the usefulness of the 
new features for SAP and to show how SAP can exploit them. 

The considerations within this redbook apply to the whole spectrum of business solutions 
within the mySAP Business Suite, such as mySAP ERP and mySAP Supply Chain 
Management. These solutions share the common technical application platform SAP 
NetWeaver that includes the SAP Web Application Server and SAP Business Information 
Warehouse. 

While this redbook specifically investigates the new features of DB2 V8 in the context of SAP, 
the majority of the considerations also apply to other enterprise packaged applications. The 
reason for this it that from a database management perspective, these applications have 
many similarities, such as a strong usage of dynamic SQL and a large number of database 
objects. For a more general description of the new features of DB2 V8, see DB2 UDB for 
z/OS Version 8: Everything You Ever Wanted to Know,... and More, SG24-6079.

The redbook is structured such that it first discusses general architectural enhancements that 
are relevant to SAP. Then it elaborates on topics in the area of usability, availability, and 
scalability that affect SAP. After discussing business warehouse and performance topics, it 
provides details on new features that facilitate and enhance database administration. The 
redbook is completed by taking a look at the substantial improvements in system level backup 
and point in time recovery.
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International Technical Support Organization, San Jose Center.
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Tim Bohlsen is an SAP, DB2, and z/OS Specialist. He has worked in various locations 
worldwide with SAP on DB2 for z/OS customers during the last six years, as well as 
instructing for IBM Learning Services on this topic during this time. He has eight years 
experience with SAP and 17 years experience in the IT industry. Prior to working with SAP 
R/3, Tim was an MVS™ System Programmer in Australia for five years, specializing in large 
system performance and automation. He holds an Honours degree in Computer Engineering 
from Newcastle University.
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Chapter 1. Introduction

In this introductory chapter we describe the SAP and DB2 for z/OS partnership and the main 
functions that DB2 for OS/390 Version 5, DB2 UDB for OS/390 Version 6, and DB2 UDB for 
OS/390 and z/OS Version 7 have made available for the SAP solutions. We then introduce the 
DB2 UDB for z/OS Version 8 functions of interest for SAP.

1
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1.1  SAP and DB2 for z/OS partnership
In this section we briefly describe the SAP and DB2 partnership in regard to joint 
development and testing.

1.1.1  IBM and SAP cooperation
IBM and SAP have a long history of cooperation in supporting the large number of 
enterprises that use the SAP application suite with DB2 for z/OS database server today. The 
partnership is made possible by teamwork for development, integration, performance 
analysis, and customer service. Together, they achieve excellent SAP R/3 results on the z/OS 
platform. 

On December 7th, 1999, SAP and IBM jointly announced a closer partnership at the 
database level. A group of IBM DB2 experts are turning this announcement into reality at 
SAP. Right after the announcement, the first new SAP implementation on IBM DB2 systems 
was installed by IBM. In the database area, SAP's development has direct contact to IBM's 
DB2 development labs, and they are communicating permanently. IBM employees are 
working in SAP's development lab in Walldorf to constantly improve SAP on DB2. Additionally, 
SAP employees are located at IBM's development labs in IBM/SAP Integration and Support 
Centres to provide the best support possible to customers and extent the availability of the 
development support over a day, a principle known as following the sun. Additionally, SAP's 
Local and Regional Support is covered by SAP for every SAP combination that is released to 
customers. It is the goal of SAP to further utilize DB2 Universal Database™ as a development 
database. 

The main locations involved in this world-wide cooperation are shown in Figure 1-1.

Figure 1-1   The team effort in IBM and SAP labs

IBM Silicon Valley Lab:
DB2 Development
IBM/SAP Integr. & Support Center 

(ISIS)
IBM San Jose Lab:

Storage Solutions Dev.

IBM Toronto Lab:
DB2 Connect Dev.
DB2 Control Center Dev.
C/C++ Compiler Dev.

IBM Poughkeepsie Lab:
Performance Team
System Test Team
z/OS Development
OSA Development

IBM Raleigh Lab:
TCP/IP Dev.

IBM Böblingen Lab:
ICLI Development
System Test Team
Performance Team
Linux Development

SAP Walldorf Lab:
Joint SAP/IBM Platform Team
SAP Development

®

 

 

 

2 DB2 for z/OS V8 Features Benefitting SAP



 

The z/OS platform offers unmatched scalability, availability, performance, and manageability 
to reliably handle any information needed in an SAP R/3 solution using DB2 for z/OS as the 
database server. 

Figure 1-2   SAP and zSeries synergy

1.2  Description of functions up to DB2 V7
In this section we summarize the major DB2 SQL and system performance enhancements 
that benefit SAP R/3 made available by the DB2 for OS/390 V5, V6, and V7. This information 
confirms the DB2 commitment on supporting SAP across versions, and is included here to 
provide a base for comparison with the V8 enhancements.

More details are provided in the Redpaper SAP R/3 on DB2 for OS/390: DB2 Features That 
Benefit SAP, REDP0131, and its bibliography. 

1.2.1  SAP related enhancements in DB2 V5
The following list shows the DB2 for OS/390 V5 SQL and system features which are used by 
SAP R/3.

� Dynamic statements cache
� Statement level perf indicators
� 255-char columns as short strings
� Update of partitioning key column
� Alter Table to extend column length
� Data sharing scalability improvements
� Rename table
� ASCII tables
� Reduce impact of DBD locks
� Improve recover performance

SAP R/3 and zSeries: Combining strengths
SAP R/3 strengths

Comprehensive set of 
business applications

Integration of business 
processes

Information in real-time

International usability

zSeries strengths

Reliable, available and secure
Robust client/server support
Unmatched scalability through
Parallel Sysplex
Large data volumes
Integrated systems 
management
Competitive cost

Complete solution
SAP R/3 and zSeries

SAP R/3 on a proven
mission-critical 
commercial platform

Continuous data 
availability

Exceptional capacity

Best Total Cost of 
Ownership

Growth for your enterprise business application
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� Read stability
� Keep Update locks
� DDL concurrency: Create objects
� New client correlation identifiers
� Table/index growth monitor
� Streamline UPDATEs/DELETEs

We now briefly describe some of the most important features.

Native ASCII data storage
DB2 V5 introduces support for ASCII character data encoding in addition to the native 
EBCDIC encoding. By storing tables in ASCII format, SAP R/3 saves CPU time on the host by 
avoiding host variable conversions and column field procedures. Field procedures, previously 
used for collation or conversion of data, can degrade performance by as much as 30% for 
some transactions. SAP R/3 also saves CPU time on clients by not having to convert retrieved 
data.

Dynamic statement caching
Processing of dynamic SQL statements, used very frequently by SAP, requires two steps: 
prepare, then execute. Prepare is generally expensive: It includes parsing and syntax 
checking, catalog searches for tables and columns, authorization checking, access path 
optimization, and creation of the executable statement.

For repetitive dynamic SQL statements, the ability to cache them can significantly reduce the 
cost of running them. 

Dynamic statement caching is activated at two levels:

� The first level is global and permits the caching in the EDM pool of all the SQL dynamic 
statements submitted to DB2. This level is enabled by setting the CACHE DYNAMIC SQL 
field to yes in the installation panel DSNTIP4. The corresponding ZPARM parameter is 
CACHEDYN. No SQL changes are needed to benefit from this function.

� The second level applies to a package/plan and is set during the bind operation by using 
the KEEPDYNAMIC(YES) option. The storage used by the kept statements is controlled 
by setting the MAX KEPT DYN STMTS field of installation panel DSNTIPE. This function 
implies programming modifications.

SAP R/3 has modified its own code to maximize the benefits it can get from this function. An 
SQL statement must have a perfect match to be able to reuse the prepared statement in the 
global cache; SAP R/3 uses parameter markers (or host variables), therefore the cache hit 
ratio can be very high. Dynamic statement caching achieves very good savings for SAP R/3 
batch processes where a limited number of SQL statements get executed many times. 

ORDER BY clause
Originally, DB2 required that all columns referenced in an ORDER BY clause must also be 
named in the SELECT list of a query. 

DB2 V5 now allows you to specify columns in the ORDER BY clause that are not in the 
SELECT list, such as the following statement: 

SELECT name FROM q.staff.systables ORDER BY dept, years

You cannot use this enhancement of ORDER BY in conjunction with UNION, UNION ALL, 
GROUP BY, DISTINCT, and column functions such as MAX, MIN and SUM.

This enhancement is important for SAP R/3, which generates SQL statements.
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DSMAX increased from 10000 to 32767
Support has been added to permit allocation of data sets in excess of the 10,000 data set 
limit. This change is made in conjunction with changes introduced in OS/390 Version 2 
Release 6 and later releases. Together, they enable DB2 to dynamically allocate a much 
larger number of concurrent data sets.

DSMAX changes from the prior OS/390 limit of 10,000 data sets to the maximum of 32,767 
data sets. 

1.2.2  SAP related enhancements in DB2 V6
In this section we describe the DB2 V6 functions that are beneficial to SAP R/3 on OS/390. 
Many of those functions have been retrofitted into DB2 V5 by APARs/PTFs. 

The DB2 for OS/390 V6 SQL and system functions that address SAP R/3 requirements are: 

� Index access on small tables
� Snowflake scheme join
� Increased number of tables in join
� Deferred dataset creation
� Switching off logging
� Local predicates in join ON clause
� Accounting Class 3 enhancements
� Non-JCL API to DB2 Utilities
� 8 KB and 16 KB page table spaces
� COPY Utility consistent backup
� DB2 logging bottleneck relief
� Table self-reference on mass insert
� Index access 'IN non-correlated subquery'
� Triggers, UDFs, UDTs
� Suspend log write activity command
� Log shortage avoidance
� Changing partitioning key ranges
� DDL concurrency: Drop database 

We now briefly describe some of the most important features.

Index screening in RID list processing
Index screening predicates reference columns in the index, but are not part of the matching 
index columns. For example:

SELECT * FROM T WHERE C1 = 1 AND C3 > 4 AND C4 =6;

With an index on T (C1,C2,C3), C3 > 4 is an index screening predicate. It can be applied 
when accessing the index, but it is not a matching index predicate like C1 = 1. The value of 
MATCHCOLS in the PLAN_TABLE is 1. C4 = 6 is not an index screening predicate. Any 
column in the index that is not one of the matching columns for the query will be considered 
for index screening.

Prior to this enhancement, index screening was not used when RID list processing was 
involved. RID list processing is used by:

Note: The increase of DSMAX has limited value for SAP R/3. SAP does not recommend 
specifying a DSMAX larger than 6000 due to the impact on DBM1 virtual storage below the 
16 MB line.
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� List prefetch for single table access and hybrid join
� Index ANDing and ORing during multiple index access

DB2 allows index screening during RID list processing to filter out additional rows at index 
access time. 

SAP R/3 benefits naturally from this enhancement every time an application performs a list 
prefetch, or an index ANDing or ORing.

Unmatched column join for VARCHAR
Suppose you want to join two tables, but the data types or the length of the join columns do 
not match. DB2 can perform a join in that case, but there is a performance impact. Because of 
the mismatch on data type or column length, the join predicate is considered Stage 2. This 
means all qualifying rows of the inner table are passed back to the relational data system 
(RDS) component of DB2 for evaluation of the join predicate. If the join columns have the 
same data type and column length, the Data Manager (DM) component can deal with the join 
predicate at Stage 1.

These enhancements have been incorporated in DB2 for nested loop and merge scan joins. 
Hybrid join does not support this feature.

A problem that is not being addressed by this enhancement is the mismatch of attributes on 
local predicates. For example, the local predicate CHARCOL5 = ’ABCDEF’ is still stage 2 if 
the column length is smaller than the length of the literal.

All character strings in SAP R/3 are VARCHAR therefore SAP R/3 benefits naturally from this 
enhancement.

Outer join performance enhancements
DB2 V6 introduces a large number of outer join performance enhancements making outer 
join SQL statements perform very closely to a similar inner join statement.

In addition, the SQL syntax of the ON clause has been extended as well to allow you to 
“boldly” write SQL that you could not write before.

The benefits for SAP R/3 are in significantly improved performance for a large number of 
outer join queries, especially in DB2 V6.

Uncorrelated subquery: Indexable IN predicates
Before this enhancement, DB2 does not use a matching index when evaluating the IN 
predicate against the result set of a non-correlated subquery. The non-correlated IN subquery 
predicate is considered a stage 2 predicate. Consider the following coding:

UPDATE T1
SET SDATE = ’01/01/1999’ , STIME = ’20:38:35’
WHERE PROG IN (SELECT MASTER FROM T2 WHERE INCLUDE = ’TODAY’);

In this example:

� A unique clustering index exists on T1(PROG).
� An index exists on T2(INCLUDE, MASTER).

The non-correlated IN subquery predicate has become indexable and stage 1. The DB2 
optimizer evaluates if this transformation helps performance, based on the existence of an 
index on the column specified on the left hand side of the IN predicate and the selectivity on 
the IN subquery predicates. This enhancement can be used in SELECT, UPDATE, and 
DELETE statements.
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SAP R/3 benefits from this enhancement because these constructs are often used in SAP 
R/3 applications. Without this DB2 enhancement, a major performance degradation was 
detected. The only way to solve it was to rewrite the application logic, which was “curing” 
rather than “preventing” the problem.

16 terabyte tables
DB2 for OS/390 V6 greatly expands the capacity to store data in a single table space. DB2 
increases the limit for storing data in a single table space to 16 terabytes. This limit is up from 
1 terabyte in Version 5 and 64 gigabytes in prior releases. You can create tables that can be 
up to 16 terabytes in size, either in compressed or uncompressed format, assuming that 
sufficient disk space is available. Of particular interest to SAP R/3 is that each partition of a 
large table can be 4 gigabytes as opposed to 2 gigabytes in prior releases. This means that 
developing the partitioning key could be less complex in DB2 Version 6.

225 tables per query or view
In prior releases of DB2, the maximum number of base tables in a view was 15. In Version 6, 
the number of tables that a view can support is 225 (15X15). You can also specify 225 tables 
in SELECT, UPDATE, INSERT, and DELETE statements.

Some SAP R/3 applications are reaching the limit of 15-tables join. In the past, users 
developing ABAP programs had to be aware of the 15 table limit. Raising the table limit in an 
SQL statement from 15 to 225 tables will benefit SAP R/3.

Buffers and EDM pools in data spaces
Prior to DB2 V6, you allocate a buffer pool in either the DBM1 address space (virtual pool) or 
in a hiperspace (hiperpool).

The use of hiperpools helps to relieve the 2 GB addressability limitation of MVS address 
spaces. DB2 hiperpools reside in expanded storage only and may not contain changed 
pages. The total size of all hiperpools cannot exceed 8 GB.

DB2 V6 provides an option to define buffer and EDM pools in a data space. 

Data spaces exploit real storage larger than the 2 GB limit when the 64-bit machine becomes 
available.

When using data spaces, make sure they are completely backed by processor storage. You 
do not want to see any paging activity when having to get to the buffers in the data space.

Buffer pool in data space
Each data space can accommodate almost 2 GB of buffers and any single buffer pool can 
span multiple data spaces. However, no more than one buffer pool can be in a single data 
space. The sum of all data space buffers cannot exceed 8 million pages. This limit is 
independent of the buffer size.

A hiperspace is addressable in 4 KB blocks; in other words, it is page addressable; a data 
space is byte addressable. You cannot put a primary buffer pool into both a hiperpool and 
data space.

The benefits of using buffer pools in data spaces are to:

� Improve buffer pool hit ratio. Since you can store more pages in a data space, than in a 
virtual pool that resides in DBM1 address space, pages can stay longer in memory.

� Allow for more parallel processing to execute prefetch I/O streams for large queries.
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The main reason to choose a data space to store your virtual buffer pools is to provide relief 
for virtual storage constraints in the DBM1 address space and to provide greater 
opportunities for caching very large table spaces or indexes. If you are currently using 
hiperpools for read-intensive workloads and have not reached any DB2 virtual storage limit, 
there is no immediate benefit to moving to data spaces until processors are available that 
address more than 2 GB of real memory.

EDM Pool in data space
You can choose to have the part of your EDM pool that contains cached dynamic statements 
in a data space. By moving these “skeletons” of prepared dynamic SQL statements to a data 
space, you reduce the storage you require in the DBM1 address space.

If you specify YES for CACHE DYNAMIC SQL, DB2 will calculate a default value for the 
EDMPOOL DATA SPACE SIZE, automatically enabling the usage of a data space for cached 
dynamic statements.

Because SAP R/3 is primarily using dynamic SQL and this enhancement does allow for larger 
EDM pools, it will positively impact customers using dynamic statement caching.

Alter Index to redistribute partitions
A change to the partitioning index to shift data from one partition to another was a complex 
process. This process was resource intensive, especially if you only needed to modify a 
subset of the total number of partitions.

In DB2 V6, you now have the ability to alter indexes in order to change the partitioning key 
values. Access to data is only restricted when the ALTER INDEX command with the 
LIMITKEY parameter completes for the affected partition(s). There is a new restrictive state 
REORG Pending (REORP) that prevents access to these partitions until you do a REORG.

This function is especially useful for SAP R/3 where the data distribution will vary over time. 
Altering the key ranges without having to stop the entire table space will improve availability 
compared to the previous requirement.

Defer defining data sets
DB2 allows users the DEFINE NO option in the CREATE TABLESPACE and CREATE INDEX SQL 
statements to defer the creation of underlying VSAM data sets for the created DB2 table 
space or index space. The undefined table spaces or index spaces will still have a DB2 
catalog entry, but are considered as empty when accessed by SELECT or FETCH operation. An 
existing SQLCODE +100 (sqlcode100) is returned to any application which attempts to perform a 
read-only operation. 

Once the page set is marked with “undefined” status in the DB2 catalog (the SPACE column in 
SYSTABLEPART or SYSINDEXPART is set to -1), it is treated as an empty data set until the 
very first write operation occurs, either through SQL statements or certain DB2 Utilities 
(such as LOAD). At the first write, DB2 resets the “undefined” status in the catalog and 
creates the underlying VSAM data sets to allow the write operation. The “undefined” status 
stored in the DB2 catalog will not be modifiable by any DB2 ALTER command or any other 
third party utilities. DBAs and application package providers should consider using the 
DEFINE NO option if the DDL performance is critical. The DEFINE NO option provides better 
management relief on DD limits and data usabilities by deferring the VSAM DEFINE/OPEN 
until the very first write.

Deferring the definition of data sets is an enhancement that can be useful for customers who 
use only a subset of modules from the full suite of applications provided by SAP R/3 — for 
example, FI, CO, or SD. Currently, customers receive all application tables, regardless of 
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which applications they are actually going to use. This install method allows customers to add 
SAP R/3 modules easily after the initial install. On the other hand, it is possible for customers 
to have hundreds of empty tables for applications they will not use. These tables are perfect 
candidates to be defined using defer define. 

SET LOG SUSPEND/RESUME command
Users have requested a way of temporarily “freezing” updates to a DB2 subsystem while the 
logs and database can be copied (for example, by using Enterprise Storage Server® 
FlashCopy® or RVA SnapShot) for remote site recover or prior point in time recovery usage. 
This would allow them to recovery the DB2 subsystem to a point in time without experiencing 
an extended recovery outage, or without having to stop or quiesce the primary system.

Avoid using this function while long-running units of recovery are active. DB2 restart time is 
lengthened by long-running updates.

New options are added to the -SET LOG command to be able to SUSPEND and RESUME 
logging for a DB2 subsystem. When a SUSPEND request is issued, a system checkpoint will 
be taken (in a non-data sharing environment), any unwritten log buffers will be written to disk, 
the BSDS will be updated with the high written RBA, and the log-write latch is obtained to 
prevent any further log records from being created. This will prevent any further updates to 
the data base until update activity is resumed with a -SET LOG RESUME request. The scope 
for these commands is for single subsystems only, therefore the commands will have to be 
entered for each member when running in a data sharing environment.

For further details on how to use this command in conjunction with SAP R/3 database backup 
and recovery, see SAP note 83000 on the SAP Service Marketplace Web site.

Access path selection adjustment 
DB2 V6 introduced a new parameter, NPGTHRSH, which will cause the DB2 Optimizer to 
favor index access for tables whose statistics indicate less than a given number of pages. For 
a given table, if NPAGES is less than the NPGTHRSH value, index access for the table will be 
preferred over a table space scan. After the initial install of SAP R/3, there are many empty or 
small tables which could grow rapidly in size. There are also a number of tables in SAP R/3 
which are very volatile, meaning the number of rows can change very quickly and in large 
amounts. If a RUNSTATS is run on these tables when they are small, the DB2 optimizer would 
favor a table space scan, which would be inappropriate when the table grows.

Prior to this enhancement, SAP R/3 recommended that the database administrator run a 
catalog update changing the statistics for small tables. Now SAP R/3 recommends that the 
customer use the new DB2 V6 parameter set as NPGTHRSH = 10. See SAP note 192320 for 
more detail; you can view it on the SAP Service Marketplace Web site:

http://service.sap.com

1.2.3  SAP related enhancements in DB2 V7
In this section we describe the DB2 V7 functions that are beneficial to SAP R/3 on OS/390 
and z/OS:

� Lockout diagnostics
� Deadlocks at insert
� FETCH FIRST n ROWS ONLY
� Online REORG switch phase
� Report IRLM start parameters
� Evaluate uncommitted 
� Option on timeouts for utilities
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� Retained locks concern
� Simplify monitoring virtual storages usage
� Row level locking for catalog
� Statement ID for cached statements
� Real-time statistics
� Preformatting
� Business Warehouse joins

We now briefly describe some of the most important features.

Asynchronous INSERT preformatting
DB2 improves the performance of insert operations by asynchronously preformatting 
allocated but unformatted data pages. When a new page is used for an insert, that page is 
close to the end of the formatted pages, and allocated but unformatted space is available in 
the data set — DB2 preformats the next range of pages. 

With preformatting, an insert waits less often for a page to be formatted. When the 
preformatted space is used and DB2 needs to extend the table space, normal data set 
extending and preformatting occurs. 

UNION and UNION ALL operators
The scope in which UNION and UNION ALL operators can be specified has been expanded. 
The CREATE VIEW statement, the INSERT statement, the UPDATE statement, the 
DECLARE GLOBAL TEMPORARY TABLE, nested table expressions in a FROM clause, and 
the subquery predicate are changed to allow a fullselect where a subselect was used in 
previous releases. 

Now, you create a view by using UNION or UNION ALL to view the data as if it were in one 
table. If you use UNION ALL to combine the tables, the result consists of all the rows in the 
tables. If you use UNION, the result is the set of all the rows in the tables without duplicate 
rows. Whenever possible, the following optimizations are applied to the queries referencing 
such views, table expressions, or subqueries: 

� The joins in the queries are distributed to the subselects of the UNION ALL. 
� The query predicates are distributed to the subselects of the UNION ALL. 
� Aggregation in the queries is distributed to the subselects of UNION ALL. 
� Subselects that are not needed to answer the queries are eliminated. 

Example 1-1 illustrates creation of a view that is the UNION ALL of three fullselects, one for 
each month of the first quarter of 2000. The common names for the views are SNO, 
CHARGES, and DATE. 

Example 1-1   UNION ALL in VIEW

CREATE VIEW DSN8710.FIRSTQTR (SNO, CHARGES, DATE) AS 
        SELECT SNO, CHARGES, DATE 
        FROM MONTH1 
        WHERE DATE BETWEEN '01/01/2000' and '01/31/2000' 
         UNION All 
        SELECT SNO, CHARGES, DATE 
        FROM MONTH2 
        WHERE DATE BETWEEN '02/01/2000' and '02/29/2000' 
         UNION All 
        SELECT SNO, CHARGES, DATE 
        FROM MONTH3 
        WHERE DATE BETWEEN '03/01/2000' and '03/31/2000'; 
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You can use the INSERT statement in the same way you use fullselects. The UPDATE 
statement is also changed to support row-fullselect and scalar-fullselect, where row-select 
and scalar-subselect were previously supported in the SET assignment clause. In the 
DECLARE GLOBAL TEMPORARY TABLE statement, AS (subselect) DEFINITION ONLY is 
changed to AS (fullselect) DEFINITION ONLY. You now can use fullselect with a basic 
predicate, quantified predicate, EXISTS predicate, and IN predicate. 

SAP BW exploits UNION in views.

DB2 Restart Light
In data sharing environments, the new LIGHT(YES) parameter of the START DB2 command 
lets you restart a DB2 member in light mode. Restart Light mode means that a DB2 data 
sharing member restarts with a minimal storage footprint and then terminates normally after 
DB2 frees retained locks. 

Restart Light mode is intended for a cross-system restart in the event of an MVS system 
failure. The reduced storage requirement makes it possible to temporarily restart a DB2 data 
sharing member on a system that might not have enough resources to start and stop DB2 in 
normal mode. Releasing the locks with a minimum of disruption promotes faster recovery and 
data availability. For example, applications that are running on other DB2 members have 
quicker access to the data for which the failed member held incompatible locks. 

You can also use Restart Light mode in conjunction with the MVS Automatic Restart Manager 
(ARM). To have a DB2 data sharing member automatically restarted in light mode when 
system failure occurs, you must have an appropriately coded ARM policy. ARM does not 
restart the DB2 member again after a light restart is performed; the member terminates 
normally for the light restart. 

Online system parameters
In SAP environments utilizing DB2 in a 24x7x52 mode, the need has been growing for online 
update of the major DB2 system parameters. 

With DB2 V7 the new -SET SYSPARM command is introduced to dynamically reload the 
DSNZPARM load module. All parameters of the DSN6ARVP macro can be changed, and a 
large number of parameters from the DSN6SYSP and DSN6SPRM macros can be changed 
as well. 

Table 1-1 lists the DB2 subsystem online parameters that are of special interest to SAP, as 
currently available from the SAP 6.20 Installation Guide. Refer to this publication, or any 
current follow-on version, for recommendations on the values to specify for these parameters, 
since they are subject to change.

Table 1-1   DB2 subsystem parameters of special interest to SAP system

ZPARM Description ZPARM Description

CTHREAD Concurrent active threads EDMPOOL Environmental descriptor 
manager (EDM) pool size

EDMBFIT Large EDM better fit PARAMDEG Maximum degree of 
parallelism for a parallel group

MAXRBLK Storage needed for the RID 
pool

CONTSTOR Contract each thread’s 
working storage area

DSMAX Maximum number of open 
data sets

PCLOSEN Read only switch checkpoints 
for page set or partition

 

 

 

Chapter 1. Introduction 11



 

Checkpoint frequency in minutes
With DB2 V7, the checkpoint frequency parameter is enhanced to optionally allow you to 
specify a range of minutes instead of a number of log records. Both options are available at 
install time and can be changed dynamically through commands.

This feature is useful in environments where the logging rate varies. You can maximize 
system performance by specifying the checkpoint frequency in time to avoid the performance 
degradation due to many system checkpoints taken in a very short period of time because of 
high logging rate. We recommend that you set CHECKFREQ to a value between 10 and 15.

Long-running UR warning 
Prior to DB2 V7, the warning for long-running unit of recovery (UR) was based on the number 
of checkpoint cycles to complete before DB2 issues a warning message for an uncommitted 
UR. But the number of checkpoints depends on several factors that may not include the 
long-running job. 

With DB2 V7, the warning mechanism is additionally based on the number of log records 
written by an uncommitted UR. The purpose of this enhancement is to provide notification of 
a long-running UR that may result in a lengthy DB2 restart or a lengthy recovery situation for 
critical tables. The warning message is repeated each additional time the threshold is 
reached.

The value for written log records in the message is cumulative and indicates the number of 
log records written since the beginning of the UR. If statistics trace class 3 is active, an 
instrumentation facility component identifier (ICFID) 0313 is also written.

The UR log write check threshold is set in the DB2 parameter load module DSNZPARM 
(DSN6SYSP URLGWTH) at install time. The value may be modified using the -SET SYSPARM 
command. We recommend that you use URCHKTH = 1 and URLGWTH = 100. 

PCLOSET Read only switch time for page 
set or partition

DSSTIME Data set statistics reset 
interval time

STATIME Time interval between 
statistics collections

SYNCVAL Statistics alignment to the 
hour

STARJOIN Star join processing 
enablement

CHKFREQ Checkpoint frequency in time 
or number of log records

URCHKTH Checkpoint interval for 
message about uncommitted 
unit of recovery

URLGWTH Log records written interval for 
message about an 
uncommitted unit of
recovery 

TIMEOUT Idle thread timeout  UTIMOUT Number of timeout values for 
utilities to be idle

RETLWAIT lock time out in data sharing NUMLKUS Maximum locks a user can 
hold per page before 
escalation |

RELCURHL Release page or row lock on
which a WITH HOLD cursor is 
positioned

SEQCACH Sequential mode to read 
cached data from controller

CDSSRDEF Current degree special 
register for parallelism

ZPARM Description ZPARM Description 
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1.3  DB2 UDB for z/OS Version 8 overview
IBM DB2 UDB for z/OS Version 8 (DB2 V8 throughout this redbook) includes dozens of 
changes in SQL, improving family consistency in many cases, and leading the way in others. 
Many barriers that had been limiting our customers are now removed: using 64 bit memory, 
providing consistent table and column name lengths, allowing two-megabyte SQL 
statements, 4096 partitions, and three times the log space. These improvements include:

� Virtual storage constraints removal
� Unicode support
� Automated Prior Point in Time Recovery
� 64 bit DB2 Connect™ for Linux for zSeries
� Array fetch, insert
� Multiple DISTINCT clauses
� Lock contention on SAP cluster tables
� Use of index for backwards searches
� Transparent ROWID
� Create deferred index enhancement
� Longer table names
� Provide DSTATS functionality
� Convert column type
� Altering CLUSTER option
� Adding columns to an index
� Index-only access path for VARCHAR
� Changing number of partitions
� Partitioning nonclustering keys
� Control Center enhancement
� DRDA® performance

Key performance enhancements deliver better family consistency and run many times faster. 
Being able to make database changes without an outage, such as adding a partition, is a 
breakthrough for availability. Improvements in Java™ function, consistency, and integration 
with WebSphere® make z/OS a much better platform for Java. Expansions to security allow 
for row level granularity, helping with the security issues of Web related applications. Many of 
these enhancements also help in key vendor applications like PeopleSoft, SAP, and Siebel. 

In this section we introduce the main enhancements available to you in New Function Mode 
that are applicable to the SAP application. These enhancements are grouped into categories 
based on the area of impact to the SAP application. These categories correspond to the 
chapters in this redbook, and they are:

� Architecture
� Usability, availability, and scalability
� Business Information Warehouse
� Performance
� Tools and administration
� Backup and recovery

This list is not intended to be a comprehensive list of all DB2 V8 features. A more 
comprehensive overview of DB2 V8 features can be currently found in DB2 UDB for z/OS 
Version 8: Everything You Ever Wanted to Know, ... and More, SG24-6079. DB2 V8 standard 
documentation, recent information and more details can be found at the Web sites listed in 
“Related publications” on page 209.
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1.3.1  Architecture
In this section we consider some important enhancements to the DB2 architecture.

Unicode support
Architectural changes to DB2 V8 expand the DB2 catalog with full support for the Unicode 
catalog. This means that you can manage data from around the world. DB2 now converts any 
SQL statement to Unicode before parsing, and as a result, all characters parse correctly. DB2 
also supports hexadecimal string constants.

DB2 Connect and DRDA
As of SAP WebAS 6.40, SAP and DB2 V8 are planned to support only DRDA as the protocol 
between the application servers and database server. This has made necessary to support 
UNICODE and other future SAP enhancements.

Universal Driver for SQLJ and JDBC
Organizations increasingly require access to data residing in multiple sources in multiple 
platforms throughout the enterprise. More and more companies are buying applications 
rather than database management systems, as database selection is being driven by 
interoperability, price performance, and scalability of the server platform. This enhancement 
provides an open and consistent set of database protocols to access data on the UNIX, 
Windows®, and z/OS platforms. Tools and applications can be developed using a consistent 
set of interfaces regardless of the platform where the data resides. End users can integrate 
their desktop tools and other applications in a consistent manner with whatever databases (or 
multiple databases concurrently) are in the enterprise. The objective of this enhancement is 
to implement Version 3 of the Open Group DRDA Technical Standard. It eliminates the need 
for gateways, improves desktop performance, and provides a consistent set of database 
protocols accessing data from a z/OS server as well as UNIX and Windows servers.

Schema evolution
As 24x7 availability becomes more critical for applications, the need grows for allowing 
changes to database objects while minimizing the impact on availability. Online schema 
evolution allows for table, index, and table space attribute changes while maximizing 
application availability. For example, you can change column types and lengths, add columns 
to an index, add, rotate, or rebalance partitions, and specify which index (the partitioning 
index or the non-partitioning index) you want to use as the clustering index.

64 bit virtual storage 
This enhancement utilizes zSeries 64-bit architecture to support 64-bit virtual storage.

The zSeries 64-bit architecture allows DB2 UDB for z/OS to move various storage areas 
above the 2-GB bar:

� Buffer pool
� EDM pool
� Sort pool
� Bulk of the RID pool
� Compression dictionaries

A single large address space of up to 264 bytes (16 exabytes) replaces hiper spaces and data 
spaces. As a result, managing virtual storage becomes simpler, and the scalability, 
availability, and performance improve as your real storage requirements and number of 
concurrent users increase.
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Java
Starting with Web Application Server 6.30, the SAP Java database layer is ported to DB2 for 
z/OS. This means that every SAP Java application that is using the SAP Java database layer 
is able to run on DB2 for z/OS. SAP is porting every existing Java application to the new SAP 
Java database layer.

1.3.2  Usability, availability, and scalability
In this section we consider enhancements related to usability, availability, and scalability.

Partitioning
There are several partitioning enhancements included in DB2 V8 which are useful in SAP 
environments. These include the following:

More partitions
This enhancement increases the maximum number of partitions in a partitioned table space 
and index space past the current maximum of 254. The new maximum number of partitions is 
4096. The DSSIZE value determines the maximum number of partitions that is possible.

Partitioned secondary indexes
V8 introduces data partitioned secondary indexes to improve data availability during partition 
level utility operations (REORG PART, LOAD PART, RECOVER PART) and facilitate fancier 
partition level operations (roll on/off part, rotate part) introduced by Online Schema Evolution. 
The improved availability is accomplished by allowing the secondary indexes on partitioned 
tables to be partitioned according to the partitioning of the underlying data. There is no 
BUILD2 phase component to REORG SHRLEVEL CHANGE when all secondary indexes are 
so partitioned, nor is there contention between LOAD PART jobs executing on different 
partitions of a table space. Query-wise, a data partitioned secondary index is most useful 
when the query has predicates on both the secondary index column(s) and the partitioning 
index column(s).

Online partitioning changes
You can add a new partition to an existing partitioned table space and rotate partitions.

Separation of partitioning and clustering
Partitioning and clustering were bundled together in versions prior to V8. Now you can have a 
partition without an index and can cluster the data on any index. These changes may spare 
one index and reduce random I/O.

REORG utility enhancements
The REORG utility is enhanced to allow you to specify that only partitions placed in Reorg 
Pending state should be reorganized. You do not have to specify the partition number or the 
partition range. You can also specify that the rows in the table space or the partition ranges 
being reorganized should be evenly distributed for each partition range when they are 
reloaded. Thus, you do not have to execute an ALTER INDEX statement before executing the 
REORG utility. You can specify DISCARD with SHRLEVEL CHANGE. You can avoid the 
BUILD2 phase during online REORG by using the new data partitioned secondary indexes.

Create index dynamic statement invalidation
Create index will now invalidate the cached statements associated with the base table 
contained in the dynamic statement cache without draining active statements.
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Minimize impact of creating deferred indexes
Indexes created as deferred will be ignored by the DB2 optimizer.

Column type change
You can change the data type for columns. In V5 you could increase the size of varchar 
columns, but the changes in V8 allow you to extend numeric and character columns and to 
change between char and varchar.

LOB ROWID transparency
With the capability of hiding the ROWID column from DML and DDL as well, SAP can avoid 
the special code to handle ROWID and use the same code path of other platforms.

Longer table and column names
Architectural changes to DB2 V8 expand the DB2 catalog with support for long names. 
Support for longer string constants (up to 32,704 bytes), longer index keys (up to 2,000 
bytes), and longer predicates (up to 32,704 bytes) make DB2 UDB for z/OS compatible with 
other members of the DB2 family.

SQL statements 2 MB long
Complex SQL coding, SQL procedures, and generated SQL, as well as compatibility with 
other platform and conversions from other products, have required the extension of the SQL 
statements in DB2. DB2 V8 extends the limit on the size of an SQL statement to 2 MB. 

Multiple DISTINCT clauses in SQL statements
This enhancement allows the DISTINCT keyword to appear in multiple column functions with 
different expressions. For example, DB2 V8 now allows:

SELECT SUM(DISTINCT C1), AVG(DISTINCT C2) FROM T1 

1.3.3  Business Information Warehouse
Here we discuss some enhancements affecting the Business Information Warehouse.

More tables in join
In V7 the number of tables in the FROM clause of a SELECT statement can be 225 for a star 
join. However, the number of tables that can be joined in other types of join is 15. V8 allows 
225 tables to be joined in all types of joins.

Sparse index for star join
The star join implementation in DB2 UDB for z/OS has to deal with, potentially, a large 
number of work files, especially for a highly normalized star schema that can involve many 
snowflakes, and the cost of the sorting of these workfiles can be very expensive. DB2 V8 
extends the use of a sparse index (a dynamically built index pointing to a range of values) to 
the star join work files and adds a new optional function of data caching on star join workfiles. 
The decision to use the sparse index is done based on the estimation of the costs of the 
access paths available.

Common table expression and recursive SQL
DB2 V8 introduces the common table expression and recursive SQL function, which extends 
the expressiveness of SQL and lets users derive the query result through recursion. It is also 
a convenient way for users to express complex queries, as using common table expressions 
instead of views saves both users and the system the work of creating and dropping views.
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Materialized query tables
This enhancement provides a set of functions which allow DB2 applications to define, 
populate, and make use of materialized query tables. SAP BW will benefit from MQTs for 
queries against ODS objects.

1.3.4  Performance
In this section we discuss locking, RUNSTATS, and a number of other improvements.

Locking improvements
Reduced lock contention on volatile tables
Volatile (or cluster) tables, used primarily in the SAP application environment, are tables that 
contain groups (or clusters) of rows which logically belong together. Within each cluster, rows 
are meant to be accessed in the same sequence every time. Lock contention occurs when 
DB2 chooses different access paths for different applications operating on the same cluster 
table. In the absence of support for cluster tables in DB2, users have to either change 
system-wide parameters that will affect all tables, or change statistics for each such table to 
ease the lock contention.

Cluster tables are referred to as volatile tables in DB2. Adding a new keyword, VOLATILE, to 
the CREATE TABLE and ALTER TABLE statements signifies to DB2 which tables should be 
treated as volatile tables. For volatile tables, index access is chosen whenever possible, 
regardless of the efficiency of the available index(es). That is, a table scan is not chosen in 
preference to an inefficient index.

CF lock propagation reduction
This enhancement allows in a data sharing environment, parent L-locks to be granted locally 
without invoking global contention processing. Thereby, locking overhead due to false 
contention is reduced. As a result, DB2 data sharing performance is enhanced. Performance 
benefit varies depending on factors such as commit interval, thread reuse, number of tables 
accessed in a commit interval, if the SQL processing is read-only or update, etc.

Multi-row INSERT and FETCH
With this SQL enhancement, a single FETCH can be used to retrieve multiple rows of data, 
and an INSERT can insert one or more rows into a table. This reduces the number of times 
that the application and database must switch control, as well as reducing the number of 
network trips required for multiple fetch or insert operations for distributed requests. For some 
applications, this can help performance dramatically.

RUNSTATS improvements
Distribution statistics
This enhancement adds the new functionality of calculating the frequencies for non-indexed 
columns to RUNSTATS. The relevant catalog tables are updated with the specified number of 
highest frequencies and optionally with the specified number of lowest frequencies. The new 
functionality also optionally collects multicolumn cardinality for non-indexed column groups 
and update the catalog.

Fast cached SQL statement invalidation
This enhancement adds the new functionality of allowing the UPDATE NONE and REPORT 
NONE keywords to be used on the same RUNSTATS utility execution. This causes the utility 
to only invalidate statements in the dynamic statement cache without any data access or 
computation cost.
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Host variables impact on access paths
The enhancement allows for a REOPT(ONCE) hit as an alternative to REOPT(VARS).

Index only access for varchar
This enhancement removes the key padding associated with varchar index columns. This 
allows the use of these columns to satisfy the results of query that can use index only access.

Backward index scan
This enhancement provides the capability for backward index scans. This allows DB2 to avoid 
a sort and allows customers to define fewer indexes.

Local SQL cache issues and short prepare
This enhancement will reduce the cost of a short prepare. This will lower the cost of further 
reductions in MAXKEEPD.

Multiple IN values
This enhancement causes the DB2 optimizer to make a wiser choice when considering index 
usage on single table SQL queries that involve large numbers of IN list items.

DDF performance
Performance is improved as a result of several changes across the components involved in 
reducing the path length of the TCP/IP Receive, and several accounting enhancements.

1.3.5  Tools and administration
Here we describe enhancements to various tools and administration features.

Automatic space management
This feature is considered very valuable for all SAP implementations. It potentially eliminates 
one of the main causes of failures where growth has not been completely anticipated.

DSC statement ID in Explain
This enhancement allows the DB2 Explain to report the chosen access path of an SQL 
statement currently in the dynamic statement cache.

Long-running non-committing readers
This enhancement results in IFCID 313 records reporting the presence of long-running, 
non-committing, read-only units of recovery.

Lock escalation reporting
This enhancement results in IFCID 337 records reporting the fact that a lock escalation has 
occurred.

Transaction based DB2 accounting and workload management
This enhancement allows SAP to provide DB2 accounting and workload management at the 
granularity of SAP transactions, reports, batch jobs, and end users.

DB2 Control Center
Various new DB2 Control Center features allow enhanced functionality and better usability of 
the SAP CCMS functionality in the area of database administration.
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Migration changes
Migration is allowed exclusively from DB2 UDB for OS/390 and z/OS Version 7 subsystems. 
The migration SPE must have been applied and started. The migration process is changed 
and now consists of three distinct steps or phases:

1. Compatibility Mode (CM): This is the first phase, during which the user makes all the 
tests needed to make sure that all the applications run without problems with the new 
version. Fall back to V7 in case of problems is allowed.

2. Enable New Function Mode (ENFM): During this (possibly short) second phase, the user 
converts the DB2 catalog and directory to a new format by using on-line Reorg executions. 
No fallback to DB2 V7 is allowed once this phase is entered.

3. New Function Mode (NFM): This is the target third and final phase, where all new V8 
functions are available.

1.3.6  System level point in time backup and recovery
The system level point in time recovery enhancement provides the capability to recover the 
DB2 system to any point in time, irrespective of the presence of uncommitted units of work, in 
the shortest amount of time. This is accomplished by identifying the minimum number of 
objects that should be involved in the recovery process, which in turn reduces the time 
needed to restore the data and minimizing the amount of log data that need to be applied. 
For the larger DB2 systems with more than 30,000 tables, this enhancement significantly 
improves the data recovery time, which in turn results in considerably shorter system 
downtime. 

BACKUP and RESTORE SYSTEM
These two new utilities provide system level, point in time, and level of recovery. They activate 
new functionalities available with the new z/OS V1R5 DFSMShsms, which allow a much 
easier and less disruptive way for fast volume-level backup and recovery to be used for 
disaster recovery and system cloning.

CI size larger than 4 KB
DB2 V8 introduces the support for CI sizes of 8, 16, and 32 KB. This is valid for user defined 
and DB2 defined table spaces. The new CI sizes relieve some restrictions on backup, 
concurrent copy, and the use of striping, as well as provide the potential for reducing elapsed 
time for large table space scans.

More log data sets
The maximum number of active log data sets per log copy is increased from 31 to 93. The 
maximum number of archive log volumes recorded in the BSDS before there is a wrap 
around, and the first entry is overwritten is increased from 1,000 to 10,000 per log copy.

1.3.7  DB2 V8 enhancements implicit for all SAP versions
The enhancements listed in Table 1-2 are immediately available to all SAP releases for which 
SAP will certify DB2 V8. They do not require SAP code changes to exploit these functions.

Table 1-2   DB2 V8 enhancements that are immediately available to all SAP releases

Area Functions

Virtual storage 64-bit virtual storage. Thread storage enhancements

Partitioning Adding partitions. Rotating partitions. Separate clustering from partitioning
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Index creation 
enhancements

Invalidation of cached statements. Deferred indexes do not prevent table 
access

SQL language Multiple DISTINCT clauses

SAP BW Star join enhancements (sparse indexes, in-memory workfiles). Up to 225 
tables in FROM. Materialized query tables.

Locking Reduce lock contention on volatile tables. Allow updating the partitioning key 
without draining partitions. Lock holder inherits WLM priority by lock waiter 
if higher. 

Query optimization RUNSTATS collects more distribution statistics. Easy and inexpensive 
invalidation of cached statements. Bind option REOPT(ONCE). Index-only 
access path for varying-length columns. Multiple value IN lists.

Index access Support for backward index scan.

Dynamic statement 
caching

Reducing the short prepare costs.

Data sharing CF lock propagation reduction. CF request batching. Improved LPL 
recovery.

Space management Automatic space management.

System point in time 
back-up and recovery

Prior point in time recovery automation. Conditional Restart Enhancements.
Synchronizing log points. Suspend/resume through stored procedures.
Suspend database writes. CI size up to 32 KB. Forward log recovery.

Area Functions 
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Chapter 2. Architecture

In this chapter we discuss topics in which DB2 V8 has introduced changes affecting the 
underlying environment where an SAP system runs. Most of these topics involve major 
changes impacting the preparation and installation of an SAP system, and to a lesser degree 
its ongoing administration. However, in most cases they do not materially affect the actual 
operation and execution of the SAP system in question. That is, the functionality and behavior 
of the SAP application tasks executed by the end users are not affected by these new 
features; it is the SAP system that takes advantage of the DB2 new functions.

The chapter is structured in the following sections:

� Unicode
� DB2 Connect as SAP database connectivity
� Schema evolution
� 64-bit virtual storage
� Java

2
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2.1  Unicode
After a short introduction into Unicode, we show why DB2 V8 is now able to run an SAP 
UNICODE system and DB2 V7 is not. We describe the mapping of the data types and how we 
try to minimize the impact of Unicode regarding performance and space usage.

This section is structured as follows:

� SAP view of Unicode
� Increased length limits
� Data type mapping
� Performance and storage

2.1.1  Introduction to Unicode
Fundamentally, computers just deal with numbers. They store letters and other characters by 
assigning a number for each one. Before Unicode was invented, there were hundreds of 
different encoding systems for assigning these numbers. No single encoding system could 
contain enough characters. The European Union alone requires several different encodings 
to cover all its languages. Even for a single language like English, no single encoding was 
adequate for all the letters, punctuation, and technical symbols in common use.

These legacy encoding systems conflict with one another; that is, two encodings can use the 
same number for two different characters or use different numbers for the same character. 
Any given computer, especially any server, needs to support many different encodings; yet, 
whenever data is passed between different encodings or platforms, that data always runs the 
risk of corruption.

Unicode was invented to address this situation. It provides a unique number for every 
character, no matter what the platform, no matter what the program, no matter what the 
language. The Unicode Standard has been adopted by such industry leaders as Apple, HP, 
IBM, JustSystem, Microsoft®, Oracle, SAP, Sun, Sybase, and many others. Unicode is 
required by modern standards such as XML, Java, ECMAScript (JavaScript), LDAP 3.0, 
CORBA 3.0, WML, etc. It is the official way to implement ISO/IEC 10646. It is supported in 
many operating systems, all modern browsers, and many other products.

Incorporating Unicode into client-server or multitiered applications and Web sites offers 
significant cost savings over the use of legacy encoding systems. Unicode enables a single 
software product or a single Web site to be targeted across multiple platforms, languages, 
and countries without re-engineering. It allows data to be transported through many different 
systems without corruption. Even where the client applications still depend on legacy 
encodings, Unicode can be used as a lingua franca on the server and database side, so that 
the user's data can always be stored without corruption, no matter what the original encoding.

There are three different ways to encapsulate Unicode for use on a system: UTF-8, UTF-16, 
and UTF-32. Each of the UTFs can be useful in different environments. For systems that only 
offer 8-bit strings currently, but are multibyte enabled, UTF-8 may be the best choice. For 
systems that do not care about storage requirements, UTF-32 may be best. For systems such 
as Windows, Java, or ICU that use UTF-16 strings already, UTF-16 is the obvious choice. The 
XML specification requires that all conformant XML parsers accept both UTF-8 and UTF-16.

For more information on Unicode, refer to the Web sites:

http://www.unicode.org/unicode/uni2book/u2.html 
http://www.unicode.org/charts/ 
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2.1.2  SAP view of Unicode
To support the new environments, you need Unicode. SAP's Java strategy requires a 
Unicode-based database.

DB2 V8 provides the full Unicode functionality that is required by SAP; therefore, DB2 V8 is a 
prerequisite for an SAP Unicode installation. 

While each character of modern languages has a constant size of 2 bytes in the Unicode 
notations UTF-16 and UTF-32, the length of a character varies in UTF-8. It is essential that 
the size of characters is constant, when software is designed in English or German, tested in 
English or German, and the Software is expected to run in Japanese, Chinese, Korean, etc. 

UTF-16 vs. UTF-32 
� Supported characters:

The amount of supported characters are the same for UTF-16 and UTF-32. 

� Performance:

There is a claim that processing 4 byte Unicode data is faster than processing 16 bit   
Unicode data on some platforms. SAP has evaluated various platforms with both 16 bit 
and 32 bit Unicode. However, based on the fact that the UTF-32 data volume is twice as 
big as UTF-16 data, UTF-16 is superior to UTF-32 when performance is concerned. 

� Memory consumption:

When comparing non-Unicode systems and Unicode SAP systems, the main memory 
consumption of an application server is approximately (the size varies with the workload):

– 150% on 16 bit Unicode system and 
– 250% on 32 bit Unicode system 

SAP has 1 to 2 GB of memory requirement today on large systems. Therefore 16 bit 
Unicode data types have a clear advantage when memory consumption is a concern.

2.1.3  Increased length limits
DB2 UDB for z/OS V7 already supports Unicode. The reasons why DB2 V7 could not run 
SAP with Unicode are the following:

� Index width: The maximum width of an index is 255 bytes.

� Length of a character literal in the where-clause: The maximum length of a character 
literal is 255 bytes.

� Length of a character host variable in the where-clause: The maximum length of a 
character host variable is 255 bytes.

� Length of the statement text: The maximum length of an SQL statement is 32765 bytes.

All these numbers did not change with the introduction of Unicode in DB2 V7. What SAP now 
needs is, that the current limits are at least doubled. 

For example: There are more than 100 indexes within an SAP system that have character 
columns with an accumulated length of more than 127 characters. SAP is planning to use a 
UTF-16 character representation for DB2 for z/OS. This means, we have to multiply each 
character by 2 to get the length in bytes. To be able to define an index with more than 127 
characters in an SAP Unicode environment, we would require 256 or more bytes as maximum 
index length. These indexes cannot be defined in an SAP Unicode system running on DB2 V7 
because we would then exceed the maximum index width of 255 bytes. Because of this, an 
SAP installation would fail.
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If an ABAP program is using a character literal in the WHERE clause of an SQL statement 
and the length of the literal exceeds 127 characters, the ABAP wouldn’t work in an SAP 
Unicode system any more. This would result in a runtime error. The same happens if the 
length of a character host variable exceeds 127 characters and is used in the WHERE clause.

In an SAP Unicode system, every ABAP program that contains an SQL statement with a 
length greater than 16382 characters would fail in DB2 V7 because the maximum length of 
32765 bytes for an SQL statement is exceeded.

In DB2 V8, all these limits are lifted (more than doubled), so there is no limit preventing an 
SAP Unicode system from running.

The new DB2 V8 limits are as follows:

� The maximum width of an index is 2000 bytes.

� The maximum length of SQL statement text is 2097152 bytes.

� For a hexadecimal literal (X, GX, or UX), the number of hexadecimal digits must not 
exceed 32704 bytes.

� Any character string literal and host variables must be short enough so that its UTF-8 
representation requires no more than 32704 bytes.

� Any graphic string literal and host variable must be short enough so that its UTF-8 
representation requires no more than 32698 bytes.

Some limits are described as UTF-8 limits because the DB2 parser expects a UTF-8 
character representation of the SQL statement.

2.1.4  Data type mapping
DB2 V8 supports 2 Unicode types, UTF-8 and UTF-16. UTF-8 has a varying length character 
representation of one to six bytes. In case of SAP, a maximum of 3 bytes would be sufficient. 
UTF-16 has a fixed length character representation of 2 bytes (for every current modern 
language) or 4 bytes.

The reason why the DB2 for z/OS porting team has decided to use the UTF-16 character 
representation in the database is the fact that SAP has chosen to use UTF-16 for their 
application servers. If both the database server and the application server are using the same 
character representation, no conversion would be needed for:

� The SQL statement
� The character input variables (such as character values to be inserted)
� The character output variables (such as character values of columns in the select list)

Another reason against using UTF-8 is that the sorting order of UTF-16 and UTF-8 is 
different. For example: Suppose that an ABAP programmer wants to read a certain set of 
rows into an internal ABAP table. Furthermore, he wants the rows to be sorted. He does that 
with the ABAP statements listed in Example 2-1.

Example 2-1   ABAP program snippet

tables: db2jsinf.
data: t_db2jsinf like db2jsinf occurs 0 with header line,
      s_db2jsinf like db2jsinf.

select * into table t_db2jsinf from db2jsinf order by jobname.
loop at t_db2jsinf.
*check for the sort order
  if t_db2jsinf-jobname < s_db2jsinf-jobname.
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    write: / 'wrong sort order'.
    exit.
  endif.
  s_db2jsinf = t_db2jsinf.

.... program logic
endloop.

Using UTF-8, it is possible that the check fails because the application expects a different sort 
order than the one delivered by DB2 using UTF-8. This will not happen if SAP uses the 
UTF-16 character representation within the database.

Now, the DB2 for z/OS data types we have to deal with, if we use UTF-16, are the graphic 
data types. The mapping of the data types looks as follows:

� For character strings with a length of less than 13000 characters, SAP uses vargraphic.

� For character strings with a length between 13000 and 32700 characters, SAP uses 
dbclob.

The maximum length of a vargraphic column is 32704 bytes. SAP is using this artificial 
limit of 26000 bytes (13000 characters) to have a cushion big enough to define some other 
fields before reaching the maximum record limit of about 32 KB. 

� For character large objects, SAP uses dbclob.

A char ABAP type with a length between 13000 and 32704 characters is always defined as 
dbclob(32704). The reason why the maximum length of 32704 is used and not the real length 
(such as 15000) is to avoid data conversion (unload/reload) during an SAP upgrade. The 
length of a vargraphic field can be changed by issuing an ALTER statement. But if you want to 
change the length of a dbclob field, you have to unload and reload the data. A string data type 
has an arbitrary length between 0 and 512 M characters. Therefore, SAP is using always the 
maximum length — which is, by the way, the maximum length for LOB values that can be 
logged (1 GB).

This mapping for non-Unicode data types is summarized in Table 2-1.

Table 2-1   Mapping of ABAP character data types to DB2 data types (non-Unicode) 

This mapping for Unicode data types is summarized in Table 2-2.

Table 2-2   Mapping of ABAP character data types to DB2 data types (Unicode)

ABAP type ABAP length in chars DB2 type DB2 length in bytes

char 1 .. 32704 varchar 1 .. 32704

string 0 clob 1G

ABAP type ABAP length in chars DB2 type DB2 length in bytes

char 1 ..12999 vargraphic 1 .. 12999

char 13000 .. 32704 dbclob 32704

string 0 dbclob 512M
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Let us look at an example with a test table. The data dictionary definition of the columns for 
table ZPMTEST is listed in Table 2-3.

Table 2-3   Fields in table ZPMTEST

This results in the pseudo DDL statements listed in Example 2-2 (the underscores get 
replaced just before each statement gets issued).

Example 2-2   Pseudo DDL of a Unicode R/3 system

CREATE TABLESPACE ZPMTEST IN A100____ 
USING STOGROUP ___BTD PRIQTY 40
SECQTY 40 FREEPAGE 16 PCTFREE 20 
GBPCACHE CHANGED COMPRESS YES 
BUFFERPOOL BP2 LOCKSIZE ROW SEGSIZE 4 
LOCKMAX 1000000 CCSID UNICODE 
CREATE TABLE "ZPMTEST" 
("F1" VARGRAPHIC (000001) NOT NULL 
"F2" VARGRAPHIC (000255) , 
"F3" DBCLOB (512M) )
IN A100____.ZPMTEST

You can see that the table space is defined with CCSID UNICODE and that the types of the 
character columns are vargraphic and dbclob. Each graphical character can store exactly one 
UTF-16 character.

2.1.5  Performance and storage
Because of choosing UTF-16 as Unicode character representation, SAP has now doubled the 
size of all characters within an SAP database. This leads to the assumption that the size of 
disk space and possibly the buffer pools is doubled even if the vast majority of character data 
fits in a single-byte ASCII encoding. This sounds very bad in terms of storage and also for 
performance.

Indeed, the SAP application server needs approximately 70% more storage. But if we take 
into account that DB2 offers data compression and that the data is even compressed in the 
buffer pools, we believe that we will see much less degradation. When comparing newly 
installed systems, initial investigations show that SAP Unicode systems, which employ data 
compression, require approximately 20% more storage than a comparable SAP ASCII 
system with uncompressed data. Figure 2-1 shows values, from an SAP BW 3.0B system, 
normalized to a 100% ASCII uncompressed size. 

Field name Type Length

F1 CHAR 1

F2 CHAR 255

F3 STRING 0

Note: With Unicode data, SAP uses compression on all table spaces
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Figure 2-1   Storage comparison of SAP systems with ASCII and Unicode data

In Figure 2-1 above, the leftmost group of bars (DB) is based on the values in Table 2-4, 
measured after the installation of an SAP BW 3.0B system.

Table 2-4   DB group

In Figure 2-1 above, the group of bars in the middle (Binary) is based on the values in 
Table 2-5, measured out of the SAP cluster table RSRWBSTOR.

Table 2-5   Binary group

In Figure 2-1 above, the rightmost group of bars (Char) is based on the values in Table 2-6, 
measured out of the SAP table TODIR, containing a mix of INT and small VARCHAR 
columns.

Notation Compression Size in MB

ASCII No 7.1

ASCII Yes 6.5

UNICODE No 10.8

UNICODE Yes 8.5

Notation Compression Size in MB

ASCII No 134

ASCII Yes 64

UNICODE No 134

UNICODE Yes 64
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Table 2-6   Char group

If the data of the Unicode system is uncompressed, it requires about 50% more storage 
space than an SAP ASCII system. Figure 2-1 also shows that the storage space, which is 
consumed by numeric data, is not affected by Unicode. In addition, we gain performance due 
to the fact that DB2 for z/OS now has a Unicode parser and Unicode catalog. This means that 
no SQL statements coming from an SAP Unicode application server have to be translated to 
EBCDIC in order to be understood by the DB2 parser, as it was the case for DB2 V7. The 
conversion is done via algorithm, therefore it is fast. The compression benefits might even be 
larger for other SAP systems. A newly installed SAP BW 3.0B system is not large, and much 
of the space used is consumed by LOB tablespaces, which cannot be compressed. 
Moreover, SAP cluster tables should provide excellent compression ratios, because they 
store character data in a VARCHAR FOR BIT DATA field.

Other database management systems like Oracle are using CESU-8 (Compatibility Encoding 
Scheme of UTF-8 on an 8-bit base. CESU-8 has the same sorting order as UTF-16. Because 
of that, it can be used to map SAP character data. All ASCII characters with a codepoint 
between 0 and 127 (these are the normal printable characters: a...z, A...Z, 0...9 and some 
special characters) are represented in UTF-8 as one byte. With the assumption that most of 
the character data fits in the range from 0 to 127, UTF-8 looks ideal. But with compression in 
mind, we are sure to get similar results.

In Example 2-3 we show the hexadecimal representation of the character column ’version’ of 
the SAP table SVERS. There is only one value in the table, which is the string ’620’. In this 
example, ’sapbcm.svers’ is an ASCII table and ’sapbcu.svers’ is a Unicode table. The output 
values are marked in red, and appear lighter in the example. Because the ASCII characters 
are in the range of 0 - 127, the Unicode representation of UTF-16 of these characters is 
always 00xx, where xx is a number between 0 and 127.

Example 2-3   A quick look at SAP table SVERS — SPUFI output

Menu  Utilities  Compilers  Help                                            
 ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
 BROWSE    QPM1.OUT                                   Line 00000000 Col 001 080
********************************* Top of Data *********************************
---------+---------+---------+---------+---------+---------+---------+---------
 select hex(version) from sapbcm.svers with ur;                         0001000
---------+---------+---------+---------+---------+---------+---------+---------
                                                                               
---------+---------+---------+---------+---------+---------+---------+---------
363230                                                                         
DSNE610I NUMBER OF ROWS DISPLAYED IS 1                                         
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100                    
---------+---------+---------+---------+---------+---------+---------+---------
 select hex(version) from sapbcu.svers with ur;                         0002000
---------+---------+---------+---------+---------+---------+---------+---------
                                                                               
---------+---------+---------+---------+---------+---------+---------+---------
003600320030                                                                   
DSNE610I NUMBER OF ROWS DISPLAYED IS 1                                         

Notation Compression Size in MB

ASCII No 58

ASCII Yes 37

UNICODE No 80

UNICODE Yes 43
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DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100                    
---------+---------+---------+---------+---------+---------+---------+---------
---------+---------+---------+---------+---------+---------+---------+---------
DSNE617I COMMIT PERFORMED, SQLCODE IS 0                                        
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0                      
---------+---------+---------+---------+---------+---------+---------+---------
DSNE601I SQL STATEMENTS ASSUMED TO BE BETWEEN COLUMNS 1 AND 72                 
DSNE620I NUMBER OF SQL STATEMENTS PROCESSED IS 2                               
DSNE621I NUMBER OF INPUT RECORDS READ IS 2                                     
DSNE622I NUMBER OF OUTPUT RECORDS WRITTEN IS 25                                
******************************** Bottom of Data *******************************
Command ===>                                                  Scroll ===> PAGE
  F1=Help    F3=Exit    F5=Rfind  F12=Cancel 

2.2  DB2 Connect as SAP database connectivity
The new technology stack SAP NetWeaver requires several new features from the underlying 
database management system and the connectivity. After a high level introduction of SAP 
NetWeaver, we show the resultant requirements. We also show that DB2 Connect fulfills all 
these requirements and ICLI (the connectivity technology used so far) does not. DB2 Connect 
has been enhanced in a way that there is no functional disadvantage compared to ICLI. DB2 
Connect is the IBM strategic database connectivity. All new features and enhancements will 
be built in into DB2 Connect, whereas ICLI will consolidate. DB2 Connect will be a more 
stable and reliable solution than ICLI because DB2 Connect is a connectivity standard used 
by many more applications and users.

2.2.1  Introduction to SAP NetWeaver
The Enterprise Services Architecture is SAP's blueprint for building, delivering, and deploying 
business solutions based on Web services.

The technical foundation of the SAP Enterprise Services Architecture is the next generation 
of mySAP™ Technology, called SAP NetWeaver™. SAP NetWeaver, shown in Figure 2-2, is 
the integration and application platform meant to unify and align people, information, and 
business processes across technologies and organizations. It embraces Internet standards 
such as HTTP, XML, and Web Services. A key feature of SAP NetWeaver is complete 
interoperability with both Microsoft.NET and IBM WebSphere. 
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Figure 2-2   SAP NetWeaver flow

This architecture offers IT organizations the freedom of choice for the technology they prefer. 
Using SAP NetWeaver, they can weave their environments into a single, smooth fabric, and 
do so at a lower cost of ownership.

SAP solutions, such as mySAP™ Customer Relationship Management and SAP® xApps™, 
are already powered by SAP NetWeaver, inheriting its intrinsic virtues. In the future, all SAP 
solutions will be powered by the SAP NetWeaver platform. SAP NetWeaver technology 
enhances the scope of SAP solutions to manage the most critical business processes and 
adds value to every facet of the customer's organization.

The SAP NetWeaver product contains a variety of components that are synchronized in terms 
of the technology to provide customers a fully integrated development and runtime platform 
for their solutions:

� SAP Web Application Server (Web AS)
� SAP Business Information Warehouse (BW)
� SAP Exchange Infrastructure (XI)
� SAP Enterprise Portal (EP)
� SAP Master Data Management (MDM)
� SAP Mobile Infrastructure (MI)
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SAP solutions currently available, such as mySAP ERP, mySAP CRM, mySAP SCM, mySAP 
SRM, mySAP PLM, etc., continue to run on the SAP Web Application Server technology. With 
future updates, however, each component will be based on the technology provided by SAP 
NetWeaver, making use of integration features across solutions and processes.

2.2.2  Requirements of SAP NetWeaver
Today, DB2 for z/OS customers are forced to deploy workstation platforms to run all the 
components of SAP NetWeaver in their system landscape. While SAP Web Application 
Server and SAP Business Information Warehouse are already supported on zSeries, the 
other components, SAP Enterprise Portal, SAP Master Data Management, SAP Mobile 
Infrastructure and SAP Exchange Infrastructure, do not run on the zSeries platform yet.

In the future, the SAP NetWeaver infrastructure will fully support SAP solutions on zSeries, 
built around DB2 for z/OS in order to meet the highest availability and scalability 
requirements. However, the technology necessary for a seamless integration of SAP 
NetWeaver and IBM zSeries needs updates on platform components like the database and 
the operating system. 

The new SAP technology makes simultaneous use of Java and ABAP runtime environments, 
Unicode and non-Unicode implementations, and solutions that need large memory buffers, as 
depicted in Figure 2-3. The underlying platforms are required to support these technologies, 
and as a result, future SAP solutions on the zSeries platform require DB2 V8. Application 
server platforms are already accelerating the shift towards 64-bit platforms.

Figure 2-3   SAP Web Application Server 6.40 on zSeries
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DB2 V8 has been re-engineered with the requirements of upcoming high-end business 
environments in mind, leading to many fundamental changes in architecture and structure. 
The new DB2 version runs in 64-bit mode, utilizing the power of 64-bit zSeries hardware. 
Limits of the past due to 31-bit addressability are now resolved. With V8, DB2 has 
implemented more than 50 feature requests specifically to optimize for SAP solutions on 
zSeries. In Example 2-4 we show the supported configurations before DB2 V8.

Example 2-4   Supported configurations today

Database Server

Hardware: S/390 G5, G6 or zSeries (z800, z900, z990)
Operating system: OS/390 2.10 or z/OS 1.1 ff.
Database: DB2 V6 or V7

Application Server

zSeries hardware: S/390 G5, G6 or zSeries (z800, z900, z990)
Workstation hardware: IBM pSeries, SUN Sparc, Intel-based server
Operating system: OS/390 2.10 or z/OS 1.2 ff. (see SAP kernel)
Linux for zSeries SLES 7 ff. (requires zSeries hardware)
AIX 5.1 ff.
Solaris 8 ff.
Windows 2000 ff.
JDK: 1.3
SAP Kernel: SAP R/3 4.6 with OS/390 2.10 ff.
SAP Web AS 6.20 with z/OS 1.2 ff.
SAP J2EE: SAP J2EE 6.30 SP1 or SP 2 supported only on
AIX & Windows and DB2 V7 and DB2 Connect V8 SP 3

In Example 2-5 we show the configurations possible with DB2 V8.

Example 2-5   SAP NetWeaver configuration overview

Database Server

Hardware: zSeries (z800, z900, z990)
Operating system: z/OS 1.4 ff.
Database: DB2 V8 ff.
DB2 Connect V8 SP 5 ff.

Application Server

Hardware: zSeries (z800, z900, z990)
Workstation hardware: IBM pSeries, SUN Sparc, Intel-based server
Operating system: z/OS 1.4 ff.
Linux for zSeries SLES 8 ff.
AIX 5.1 ff.
Solaris 8 ff.
Windows 2000 (32 bit) ff.
Windows 2003 (32/64 bit) ff.
JDK: 1.4 ff.
SAP Kernel: SAP Web AS 6.40 ff.
SAP J2EE: SAP J2EE 6.30 or SP 3 ff.
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2.2.3  Necessary features of DB2 Connect
JDBC driver, Unicode enabled connectivity, XA support are mandatory features of DB2 
Connect to support SAP NetWeaver. These features are all available with DB2 Connect V8. 
They are not available with the traditional connectivity, ICLI.

� JDBC driver: The JDBC driver SAP is using to access DB2 for z/OS is part of DB2 
Connect. As of today, SAP is using the type 4 JDBC driver. This is a pure Java driver that 
needs no extra platform dependent libraries. As a result, this driver is platform 
independent and is used for every supported platform (see above).

� Unicode enabled connectivity: DB2 Connect offers a Unicode and a non-Unicode 
enabled application programming interface (API). The SAP database interface loads the 
DB2 Connect Common Client dynamically and calls the appropriate functions of the DB2 
Connect API. In a non-Unicode environment, the normal character API functions are 
called; whereas in a Unicode environment, the corresponding wide character API 
functions are called. For example, the corresponding Unicode function of SQLConnect is 
SQLConnectW. The Unicode enabled database interface (dbdb2slib) is a different 
executable than the non-Unicode database interface. But both have the same name.

� XA support: The SAP J2EE server has the option to support distributed transactions and 
therefore requires the two-phase commit support of the JDBC driver.

2.2.4  New DB2 features and DB2 Connect
SAP benefits from new DB2 features without changing the code. Three years ago the ICLI 
changed the API to the SAP database interface. The new ICLI API is ODBC level 3 compliant. 
Since DB2 Connect is supporting the same API, no changes in the SAP code are 
necessitated by the change to the new connectivity. ICLI has always supported multi-row 
operations on the network. Because of this, the SAP database interface called the ODBC 
multi-row API functions in order to tell the ICLI client how many rows were affected by the next 
FETCH or INSERT call. 

Exactly the same functions are necessary to tell DB2 Connect that the caller is now using 
multi-row operations. In addition to the multirow support on the network, DB2 Connect V8 
FixPak 4 exploits the new multi-row features of DB2 for z/OS V8. We do not expect 
performance improvements on the network provided by DB2 Connect over the ICLI 
connection, but, because of the capability of DB2 Connect to send multiple rows through the 
network with one call, we expect much better performance out of the multi-row operations 
FETCH and INSERT. ICLI does not support the multirow functions of DB2 for z/OS V8.

2.2.5  New DB2 Connect features for ICLI compatibility
ICLI was especially designed to support SAP applications. During the lifetime of ICLI, many 
powerful features for problem determination in a complex SAP system were introduced. To 
have no functional disadvantages when compared to ICLI, DB2 Connect has implemented all 
missing features as compared to ICLI. As a result, the SAP customer should see no 
difference by changing the connectivity from ICLI to DB2 Connect.

In this section we describe some new DB2 Connect features implemented to provide 
equivalent functionalities to ICLI:
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� DRDA Ping Service: The DRDA Ping Service provides the capability to measure latency 
performance. This feature is used in customer situations to easily check the latency of the 
network. IP Ping is not sufficient, because IP Ping might take a different route than the 
mainline application traffic, so it does not make sense to use it for evaluating application 
network performance. IP Ping for Windows does not differentiate turn-around times less 
than 10 ms, but reports them as <10. As SAP is targeting 1 ms latency, this is not good 
enough. The IP Ping unit of reporting is a millisecond, but a finer granulation is needed. 
The maximum message size of IP Ping is 8 KB (in both the NT and UNIX cases). DRDA 
Ping supports different request and response message sizes. The maximum message 
size is 40000 bytes (for both inbound and outbound).

� Network statistics: This feature provides the capability to monitor network performance 
in detail. Statistics are generated on the network performance between application servers 
and database servers. Several statistical values such as network turn-around time 
(request transmission time plus response transmission time) are measured. A snapshot is 
taken at defined time intervals. The default of the snapshot time interval is 300 seconds. 
The network statistics are collected at the granularity of an SAP application server. SAP 
CCMS is responsible to evaluate and store the network statistics for performance analysis 
and for historical trend analysis. Figure 2-4 displays the panel within the SAP transaction 
DB2 that allows you to start and stop collecting DB2 Connect-based network statistics.

Figure 2-4   DB2 Connect: network statistics and database ping

� Handling of TCP/IP error situations: Concerning SAP applications, it is important that 
the database connectivity is able to adequately handle the TCP/IP error situation 
ENOBUFS. This error indicates insufficient resources available in the system to complete 
a TCP/IP call. Both DB2 and DB2 Connect are enabled to handle temporary buffer 
shortages. They implement a retry mechanism to shield this problem from applications. 
This function prevents SAP work from being interrupted. 
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� Tracing feature: The DB2 Connect developers or supporter are normally not familiar with 
SAP traces. To analyze DB2 Connect problems at the customer side, a CLI trace is 
necessary. DB2 Connect provides the same tracing flexibility as the ICLI. DB2 Connect is 
capable to trace CLI calls at the granularity of an SAP application server or on the 
granularity of an SAP work process. 

� ABAP statement information passed through: There is a new CLI attribute, 
SQL_ATTR_PROGRAMID, that will be added to allow a CLI application to specify a user 
defined string that can be used to identify itself at the database server (DB2 V8). This new 
attribute can be set at the connection level by specifying the PROGRAMID as part of the 
CLI connection string or through the CLI API set SQLSetConnectAttr/SQLGetConnectAttr. 
Also, it can be set at the statement level through the SQLSetStmtAttr/SQLGetStmtAttr 
APIs. CLI will associate the current connection level PROGRAMID with a prepared 
statement if no statement level PROGRAMID is specified. Whenever a prepare request is 
sent to the server, CLI will ensure that the correct PROGRAMID is also set at the server 
for that statement. The database server will then associate the PROGRAMID with any 
statements added to the dynamic SQL statement cache. SAP is using this feature to pass 
the ABAP statement information to DB2 for z/OS. This information is available if you look 
in the dynamic statement cache monitor through the SAP transactions DB2 or ST04. By 
just clicking a button, you can navigate to the ABAP source program and line number 
where the SQL statement was issued. 

� Accounting information: DB2 Connect provides the C API function sqleseti to set client 
information specific to a connection (accounting string, transaction name, workstation 
name and client user ID). Starting with DB2 Connect V8 FixPak 4, DB2's correlation ID 
can be explicitly set through the new CLI attribute SQL_ATTR_INFO_PROGRAMNAME. 
This enables SAP to perform both DB2 accounting and to exploit WLM on the level of SAP 
end user IDs and SAP transactions/reports/batch jobs. Moreover, DB2 V8 introduces the 
feature to aggregate accounting records for certain DB2 identifiers. Also, it allows you to 
cut accounting records and to change the WLM enclave at commit boundaries.

2.2.6  Configuration of DB2 Connect and DDF for SAP
In this section we describe the necessary steps to install DB2 Connect to be used by SAP. 

Installation of DB2 Connect V8.1 
Before a customer starts an SAP Installation, SAP requires a successful installation of DB2 
Connect V8.1 Unlimited Edition or any other version of DB2 Connect that satisfies the DB2 
licensing conditions. For detailed documentation, see Quick Beginnings for DB2 Connect 
Enterprise Edition, GC09-4833, and IBM DB2 Connect User's Guide, SC09-4835.

The exact required FixPak level of DB2 Connect is kept up-to-date in SAP note 728743. 

It is also assumed that a 64 bit instance was created that can be checked with the db2level 
command, and must show a response similar to this:

DB21085I Instance "db2inst1" uses "64" bits ......

To check the database manager configuration, you can use the command db2 get dbm cfg, 
which must show a response similar to this:

Node type = Database Server with local and remote clients 

SAP environment variables for DB2 Connect
To run SAP using DB2 Connect, several parameters need to be set:
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� Set the SAP profile parameter dbs/db2/ssid (corresponding environment parameter: 
dbs_db2_ssid) to the DB2 Connect database name (that is, SGE1).

� Set the SAP profile parameter of the RACF® user dbs/db2/user (corresponding 
environment parameter: dbs_db2_user) to R3USER, for example. Set the SAP profile 
parameter of the RACF user password: dbs/db2/pw (corresponding environment 
parameter: dbs_db2_pw) to SAPR3SAP, for example. 

� Set the DB2 Connect environment parameter DB2CODEPAGE to 819 in a non-Unicode 
environment. 

Instead of putting the user/password in the SAP profile or in the environment, you can use a 
secure password storage. SAP provides a feature to use a secure password storage. The 
settings needed to use this feature are as follows:

� Set the environment parameter dbs_db2_user to your RACF user (myuser).

� Issue the UNIX command: unsetenv dbs_db2_pw (or the corresponding command it you 
are using Windows). These settings must be the same as in the environment when 
starting R/3.

� Create a password with the SAP utility dbdb2pwd:

– Issue the command: dbdb2pwd -create pwd to create a password.

In this example, pwd is the password of your RACF user.

– The passwords will be stored in /usr/sap/<SID>/SYS/global/dbdb2pwd.

– To change the password, issue the command: dbdb2pwd -create pwdnew

DB2 Connect configuration for SAP 
Binding the DBRMs 
For functional reasons and optimal performance, SAP needs specialized bind options to be 
used when binding the DB2 Connect DBRMs on DB2 for z/OS.

First connect to the DB2 subsystem using the following command: 

db2 connect to <database alias> user <user> using <pass word> 

Then, you need to run the following bind command and create a new collection, in this 
example, called SAPDRDA: 

db2 bind /usr/opt/db2_08_01/bnd/@ddcsmvs.lst ACTION REPLACE KEEPDYNAMIC YES GENERIC 
\"DEFER PREPARE\" REOPT ONCE COLLECTION SAPDRDA ISOLATION UR BLOCKING UNAMBIG 
RELEASE COMMIT GRANT PUBLIC SQLERROR CONTINUE messages ddcsmvs.msg 

The reason why you need to create a new collection is the following: 

The CLI packages require special handling since they are shared by the JDBC driver as well, 
therefore many bind options are blocked on the default NULLID collection. In order to override 
the default bind options, you must specify a different COLLECTION which will create a new 
set of packages with these options. The CurrentPackageSet keyword then must be set for CLI 
to use this new collection. 

The SAP database interface issues the SQLSetConnectAttr CLI call to be able to use the new 
collection using the Connection Attribute SQL_ATTR_CURRENT_PACKAGE_SET. 

db2cli.ini
Currently, we need to set the keyword in the db2cli.ini file as follows:

KEEPDYNAMIC=1 
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This is an undocumented parameter (as of FixPak 3) but it is currently necessary to be able to 
exploit dynamic statement caching on z/OS. This parameter will be documented with DB2 
Connect V8.1 FixPak 4, and SAP database interface will issue the following calls: 

SQLSetConnectAttr( hDbc, 
SQL_ATTR_KEEP_DYNAMIC, 
(SQLPOINTER) 1, 
SQL_IS_UINTEGER ); 

SQLSetConnectAttr( hDbc, 
SQL_ATTR_CURRENT_PACKAGE_SET, 
(SQLPOINTER) "SAPDRDA", 
SQL_NTS );

This will cause SAP to use the special collection (SAPDRDA in the example above) which 
was bound with KEEPDYNAMIC YES and to exploit dynamic statement caching for its 
connection. 

DB2 catalog statements
Each SAP database that you want to access needs to be catalogued in DB2 using the 
following set of commands. In the sample we assume that the DB2 SSID is SGE1, the remote 
z/OS host (which DDF is running on port 5111) is ihsap3, and the remote location (which can 
be queried on z/OS with DISPLAY DDF) is SGE1.

db2 catalog dcs database SGE1 as SGE1 PARMS \",,INTERRUPT_ENABLED\" 
db2 catalog tcpip node SGE1SAP3 remote IHSAP3 server 5111
db2 catalog database SGE1 at node SGE1SAP3 authentication server

The parameter value INTERRUPT_ENABLED is important because it enables the cancelling 
of DB2 threads on the z/OS host. Not setting this parameter has several negative effects. It 
prevents SAP from interrupting long-running transactions which have exceeded their 
maximum allowed runtime, and also prevents users from stopping a long-running transaction 
via an SAPGUI window. 

DB2CONNECT_IN_APP_PROCESS=NO
In order to enable network monitoring for SAP, we need to set the DB2 registry variable 
db2set DB2CONNECT_IN_APP_PROCESS to NO.

The following command shows which DB2 registry variables are currently set: 

db2set -all 

During runtime of an SAP work process, the SAP database interface sets this variable as an 
environment variable. This is done to compensate for the possibility that a customer has not 
set this variable in the DB2 registry and therefore cannot do any network monitoring. 

Enabling SQL Break 
To enable DB2 Connect to break running SQL statements, you must set the DB2 registry 
variable DB2CONNECT_DISCONNECT_ON_INTERRUPT with the command: 

db2set DB2CONNECT_DISCONNECT_ON_INTERRUPT=ON 

NUM_POOLAGENTS=0
As a default, DB2 Connect uses Connection Pooling. This has the side-effect that if you start 
and stop SAP, then the DB2 threads that were created on DB2 for z/OS stay active, although 
the remote application (SAP!) has long terminated. This happens because, as a default, DB2 
Connect uses connection pooling and keeps these threads open, so it can quickly re-use 
them for new DB2 Connect applications. Connection Pooling is usually only needed for 
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applications which do lots of connects/disconnects, which is something that SAP usually does 
NOT do. 

Furthermore, you cannot stop your DB2 for z/OS subsystem unless you have stopped the 
DB2 Connect instance completely and you have no easy means for detecting (on the z/OS 
side) if the active DB2 threads are working on behalf of “real” SAP work processes, or if they 
are just hanging around inactively for Connection Pooling purposes. So we recommend that 
you set the DB2 Connect parameter NUM_POOLAGENTS to disable DB2 Connect 
Connection Pooling: 

db2 update dbm cfg using NUM_POOLAGENTS 0 

You can use the following command to find out the current value of the Connection Pooling 
parameter for your instance:

db2 get dbm cfg | grep NUM_POOLAGENTS 

DB2 DDF ZPARMS for SAP
Each of the DB2 ZPARMs described in the following sections should be set to a value 
different from the default.

EXTSEC=YES 
If you specify YES, detailed reason codes are returned to a DRDA level 3 client when a DDF 
connection request fails because of security errors. Also, RACF users can change their 
passwords using the DRDA change password function. This support is only for DRDA 
requesters that have implemented support for changing passwords. 

We strongly recommend that you specify a value of YES. This allows properly enabled DRDA 
clients to determine the cause of security failures without requiring DB2 operator support. It 
also allows RACF users on properly enabled DB2 clients to change their passwords. 
Specifying NO returns generic error codes to the clients and prevents RACF users from 
changing their passwords. 

IDTHTOIN=0
The default of IDTHTOIN is 120 (seconds) in DB2 V8. For SAP, this parameter should be set 
to 0, which disables the cancellation of idle DBATs. As SAP work processes, and their 
corresponding DB2 DBATs are long-running, and some of them are possibly idle, it is 
important to disable the cancellation of idle DBATs, otherwise problems might be 
experienced. IDTHTOIN=0 is a requirement, because this ensures that idle DB2 threads are 
not automatically canceled by DB2. This parameter is only relevant if CMTSTAT is set to 
INACTIVE, which is the default in DB2 V8 and which is going to be recommended by SAP. 
Due to KEEPDYNAMIC(YES), DB2 DBATs will remain active and therefore will be susceptible 
to idle thread timeouts even if the transaction has ended (commit or rollback) before the 
dormant period began.

DDF=AUTO
It is a good idea to let DB2 automatically load DDF when it is launched. This facilitates the 
handling of the DDF address space.

Note: SAP recommends to use the db2radm tool to configure DB2 Connect and do the 
bind.
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CMTSTAT=INACTIVE
The parameter CMTSTAT should be kept at its default value, which is INACTIVE, in DB2 V8. 
Even with CMTSTAT=INACTIVE, the DB2 DBATs that serve SAP remain active at all times, 
because SAP uses dynamic statement caching (due to SAP packages being bound with 
KEEPDYNAMIC YES), which prevents DB2 DBATs from becoming inactive. By enabling 
thread reuse (CMTSTAT=INACTIVE), DB2 is able to cut accounting records and re-establish 
enclaves at transaction (commit or rollback) boundaries. See also 6.6.1, “Rollup accounting 
data for DDF and RRSAF” on page 170 and 6.6.2, “Writing accounting records with 
KEEPDYNAMIC(YES)” on page 172.

2.3  Schema evolution
In this section we introduce DB2 V8 online schema evolution as it applies to the SAP 
application. SAP customers are challenged by the need to apply upgrades, service packages, 
and customer developed changes in a minimally disruptive manner. 

2.3.1  Online schema changes
SAP upgrades and service packages are generally applied during a service outage and can 
alter the attributes of numerous SAP objects. The length of time required to implement these 
changes depends in large part on the speed with which the changes can be activated in the 
database. The ability to alter database objects without unloading and reloading the data can 
greatly reduce the outages associated with these changes.

Customer developed changes present a slightly different challenge. These changes can be 
generally grouped into the following three categories:

� Emergency changes
� Maintenance changes
� Project changes

Emergency changes fix an immediate problem with a critical business function for which no 
workaround exists. These changes are generally implemented into a running system 
irrespective of current workload or time of day. The ability to alter database objects directly 
can reduce the transient problems associated with emergency changes.

Maintenance changes fix and enhance the customer’s existing SAP implantation. These 
changes are generally batched together and implemented into a running system during 
periods of low intensity system activity. The ability to alter database objects directly can 
reduce the transient problems associated with maintenance changes.

Project changes are associated with the customer’s implementation of additional function 
onto an existing SAP implementation. These changes often required conversion and data 
loading and are generally applied during a service outage. The ability to alter database 
objects without unloading and reloading the data can greatly reduce the outages associated 
with these changes.

2.3.2  Online schema changes overview
Over the last versions of DB2, significant enhancements have already been implemented to 
reduce the window of application unavailability:

� Easier code maintenance is available with the introduction of DB2 data sharing. You can 
stop and start individual members (DB2 subsystems) to activate maintenance (PTFs) or a 
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new DB2 release, while applications continue to use the active members of the data 
sharing group.

� Another area in which much work has been accomplished is to have the data available as 
much as possible. Data requires maintenance every so often. DB2 utilities have come a 
long way across the last releases, for example, by introducing online REORG, inline copy 
and statistics, and online LOAD RESUME.

Schema maintenance
Starting in V8, DB2 takes on a new challenge, that is, to reduce the unavailability window 
when making changes to the data definition of DB2 objects (see Figure 2-5).

Figure 2-5   Online schema evolution

In the past, DB2 releases have implemented most DDL ALTER enhancements without 
actively addressing the problem of data unavailability while modifying object attributes. 

Many changes to table, table space, and index schemas (DDL) in today’s DB2 V7 require that 
SAP adhere to the following procedure to implement them:

1. Drop all dependent objects, such as tables, indexes, views, synonyms, and triggers.

2. Rename the table to QCM<table>.

3. Create the object with the new definition.

4. Reestablish authorization for the object.

5. Recreate all dependent objects, such as views and indexes, and their authorizations.

6. Copy the data from QCM<table> to <table>.

7. Test that all is OK.

Upgraded
subsystem

Original
table

definition

No access
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However, some schema changes can already be done without having to drop and recreate an 
object, or stopping and starting the object, such as adding a column to a table, renaming a 
table, altering the primary and secondary quantity of an object, or changing partition 
boundaries.

As 24x7 availability becomes more critical for applications, the need grows for allowing 
changes to database objects reflected in the catalog and the DBD while minimizing the 
impact upon availability. We call this Online Schema Evolution (or Online Schema Changes or 
Online Alter). In an ideal world, this enhancement would provide support for changes to all 
object attributes without losing availability. DB2 V8 lays the groundwork for allowing many 
changes, while implementing a reasonable subset of these changes.

The following schema changes, allowed in DB2 V8, are applicable to the SAP application and 
are currently supported by the SAP dbsl:

� Extend CHAR(n) column lengths.

� Change type within character data types (CHAR, VARCHAR).

� Change type within numeric data types (SMALLINT, INTEGER, FLOAT, REAL, FLOAT, 
DOUBLE, DECIMAL).

� Change type graphic data types (GRAPHIC, VARGRAPHIC).

� Allow column data type changes for columns that are referenced within a view.

� Allow these column changes for columns that are part of an index (pending).

The following schema changes are allowed in DB2 V8 and are applicable to the SAP 
application, but must be implemented using database tools:

� Drop the partitioning index (or create a table without one).
� Change the clustering index.
� Add a partition to the end of a table which extends the limit value.
� Support automatic rebalancing of partitions during REORG.
� Support REORG of parts in REORG Pending states.
� Loosen the restrictiveness of indexes in recover or Rebuild Pending states.
� Add a column to an existing index.

2.3.3  Data type changes
After a table column data type is changed through an ALTER statement, the new definition 
immediately applies for all data in the associated table. No existing data is converted to the 
new version format. As rows are retrieved, they are materialized in the new format indicated 
by the catalog. Likewise, when a data row is modified or inserted, the entire row is saved 
using the new catalog definition. 

When the object is reorganized, all rows are converted into the format of the latest version 
(see 2.3.5, “Versioning” on page 45). 

To support changing the column data type of a column in an existing table, the SET 
DATATYPE clause of the ALTER TABLE ALTER COLUMN was enhanced to support these 
additional changes. The command is shown in Figure 2-6.
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Figure 2-6   ALTER TABLE SET DATATYPE statement

A column data type may be altered if the data can be converted from the old type to the new 
without losing significance. This basically means that the new column definition has to allow 
for “larger” values than the current column definition. 

Impact on dependent objects
The ALTER TABLE SET DATATYPE has different implications for different types of objects 
affected by it.

Table spaces
When the ALTER completes, the table space is placed in an Advisory REORG Pending 
(AREO*) state. See 2.3.7, “New DBET states for online schema changes” on page 48 for this 
new database exception state. Access to a table can continue with rows containing columns 
in multiple version formats, but there is a performance degradation, since altered columns 
have to be converted to the new format when they are accessed, and the full row is always 
logged, until the table space is reorganized. To reduce the performance impact, it is 
recommended to schedule a REORG after issuing the ALTER statement that changes the 
data type of a column in a table.

Indexes
When the data type or length of a column is altered on a table and that column is defined for 
an index, the index is altered accordingly. If a change is made to a non-indexed column, it 
results in a new table (and table space) version but not a new index version. For more 
information on versioning, see 2.3.5, “Versioning” on page 45. If a table has multiple indexes, 
the change of a table column results in a new table version and a new index version for each 
index that contains the column. Indexes created on different tables in the same table space or 
unchanged columns in the same table are not affected.

All new keys inserted are in the new index format. Changed columns which are included as 
part of an index key affect availability of the index according to the column data type. Whether 
or not the index is immediately available after a column in the index has incurred a data type 
change depends on the data type of the column being changed.

� Immediate index availability: 

In DB2 V5, the ALTER TABLE statement was enhanced to provide the ability increase the 
length of VARCHAR columns. If an index on the altered table had a key containing altered 
columns, index versioning support allowed immediate access to the index. 

ALTER TABLE table-name

ALTER column name - SET DATATYPE data type

COLUMN

ADD COLUMN column definition
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With DB2 V8, this index versioning design is extended to support immediate access of 
indexes containing keys from all forms of fixed length or varying length character and 
graphic columns. 

Changes for character data type columns result in immediate index availability. This 
includes columns defined as CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC.

� Delayed index availability: 

In some cases, supporting immediate changes with index versioning would result in 
severely degraded performance. To avoid this, the index is placed into Rebuild Pending 
(RBDP) instead (for both COPY NO and COPY YES indexes). Availability to the index is 
delayed until the index is rebuilt. 

Changes for numeric data type columns are immediate with delayed index availability. This 
includes columns defined as SMALLINT, INTEGER, DECIMAL or NUMERIC, FLOAT, 
REAL, or DOUBLE. This poses a particular problem for SAP, given the integrated DWB 
and data dictionary. SAP cannot tolerate a change to an SAP object that causes an index 
to enter an RBDP state, and as of the 6.4 kernel level, these changes will not be allowed. 
The behavior under earlier kernels is for the activation to fail with an SQLCODE +610.

If an entire index is rebuilt from the data, all the keys are converted to the latest format. 
Utilities which may rebuild an entire index include:

� REBUILD INDEX
� REORG TABLESPACE
� LOAD REPLACE

If data type changes, reorganization of the entire index materializes all keys to the format of 
the latest version unless the index is in RBDP. In this state, access to the data is required to 
get the length of the key.

Scope of unavailability
To limit the scope of unavailability for dynamic SQL:

� Deletes are allowed for table rows, even if there are indexes in RBDP.

� Updates and inserts are allowed for table rows, even if their corresponding non-unique 
indexes are in RBDP state.

� Inserting or updating data rows that result in inserting keys into an index that is in RBDP 
state is disallowed for unique or unique-where-not-null indexes.

� For a select statement, DB2 does not choose an index in RBDP for an access path.

RUNSTATS
Some of the statistics get converted at the time of the ALTER (for instance, HIGH2KEY, 
LOW2KEY). Invalidation is done for distribution statistics in SYSCOLDISTSTATS and 
SYSCOLDIST, and DB2 sets the STATSTIME in SYSCOLUMNS to January 1, 0001, which 
signals the optimizer to ignore the distribution frequency statistics.

Cached dynamic statements
Cached dynamic statements referencing the changed table are invalidated. If auto-rebind is 
enabled, the plans and packages referencing the changed table space are automatically 
rebound during the next access if not manually rebound previously.

Views and check constraints
When a column is altered in a base table, the views that reference the column are 
immediately regenerated. If one of the views cannot be regenerated, then the ALTER TABLE 
statement fails on the first error encountered.
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A change to any column within a view invalidates all plans, packages, and dynamic cached 
statements which are dependent on that view.

When a column data type is altered, the precision and scale of the decimal arithmetic result 
needs to be recalculated. 

The value of the CURRENT PRECISION special register that is in effect for the ALTER 
TABLE is used to regenerate all the views affected by the altered column. Since a single 
CURRENT PRECISION setting is used for all the views, it is possible the ALTER TABLE can 
fail with an sqlcode -419 or complete with a precision calculated for view columns that does 
not work well for an application. In this case, the user has to DROP and CREATE the view in 
order to correct the problem.

If an ALTER TABLE fails because of a problem regenerating a view, the failing SQLCODE and 
tokens identifying which ALTER failed is returned and the entire ALTER TABLE statement 
fails.

If a check constraint is dependent on the column being altered, it is also “regenerated”. 
The regeneration may also fail in the case where different options are in use during the 
regeneration than the options in use at the time the check constraint was created. The options 
are the decimal point indicator and quote delimiter. The failing SQLCODE and tokens 
identifying which ALTER failed are returned.

2.3.4  Index changes
In DB2 V8, some index attributes can also be changed “in-flight” using an ALTER INDEX 
statement, without causing the index to become unavailable, as shown in Figure 2-7.

Figure 2-7   ALTER INDEX statement

Adding index columns
Columns can now be appended to the end of an existing index key with the ALTER INDEX 
statement. At the present time, SAP does not intend to take advantage of this capability.

Varying length index keys
In DB2 V8, varying length columns are optionally padded to their full length when they are 
part of an index key. When specifying NOT PADDED during the creation or altering of an 
index, padding does not occur and the keys are stored as true varying length keys. Varying 
length indexes are marked in the new SYSINDEXES column, PADDED, with a value of 'N'. 
NOT PADDED is the default for new V8 installations, while PADDED is the default when 
migrating from V7 for compatibility reasons. A new ZPARM, PADIX, can change the default.

 DESC
  ASC

NOT CLUSTER

CLUSTER

 PADDED

  NOT PADDED

ADD COLUMN ( column name  ) 

ALTER INDEX index- name   

 

 

 

44 DB2 for z/OS V8 Features Benefitting SAP



 

From an SAP perspective, we have always set the VARCHAR from Index parameter 
(RETVLCFK) to NO because SAP cannot handle varchar data padded with blanks. SAP pays 
a performance penalty because of this. With DB2 V8, the SAP application will be able to take 
advantage of index-only access for VARCHAR fields in indexes once the indexes have been 
converted to NOT PADDED. 

This conversion can be undertaken in a deliberate fashion that allows adequate time for 
testing and evaluation of the results. Indexes can be changed from PADDED to NOT 
PADDED using ALTER INDEX, as shown in the diagram in Figure 2-7. If the index has 
varying length columns, it is placed in Rebuild Pending state and a value of 'N' is placed in the 
PADDED column of SYSINDEXES. Once the index has been rebuilt, all the keys are varying 
length, and the pending state is reset.

Changing the table clustering
In V8, there are two enhancements related to clustering:

� Specifying the CLUSTER keyword for a secondary index in a partitioned table space. 
Historically, the partitioning index for partitioned tables also had to be the clustering index. 
These two attributes are now unbundled so that the clustering attribute can be assigned to 
a secondary index. 

� Changing the clustering order in a partitioned or non-partitioned table space without 
dropping the index. The clustering attribute of an index can be modified by using the 
CLUSTER and NOT CLUSTER options of ALTER INDEX. As before, only one clustering 
index is allowed for any table.

If no explicit clustering index is specified for a table, the REORG utility now recognizes the 
first index created on each table as the implicit clustering index when ordering data rows.

If explicit clustering for a table is removed (changed to NOT CLUSTER), that index is still used 
as the implicit clustering index until a new explicit clustering index is chosen.

When the clustering index is changed, new INSERTs are immediately placed using the new 
clustering order. Preexisting data rows are not affected until the next reorganization 
rearranges them all to be in clustering order.

2.3.5  Versioning
To support online schema evolution, DB2 has implemented a new architecture, called 
versioning, to track object definitions at different times during its life by using versions.

Altering existing objects may result in a new format for tables, table spaces, or indexes that 
indicate how the data should be stored and used. Since all the data for an object and its 
image copies cannot be changed immediately to match the format of the latest version, 
support for migrating the data over time in some cases is implemented by using versions of 
tables and indexes. This allows data access, index access, recovery to current, and recovery 
to a point in time while maximizing data availability.

Versioning existed before DB2 V8 for indexes (after an indexed VARCHAR column in a table 
had been enlarged). It was tracked using the IOFACTOR column of SYSINDEXES. In DB2 
V8, the first ALTER that creates a new index version switches to DB2 V8 versioning by setting 
the OLDEST_VERSION and CURRENT_VERSION columns to the existing versions in the 
index. And to support the table data type changes mentioned before, versioning in V8 is also 
implemented for tables and table spaces.
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Version-generating ALTER statements
The following statements result in a new version for the affected tables and/or indexes:

ALTER TABLE table-name ALTER COLUMN column-name SET DATA TYPE altered-data-type
ALTER INDEX index-name NOT PADDED
ALTER INDEX index-name PADDED
ALTER INDEX index-name ADD COLUMN column-name

Multiple ALTER COLUMN SET DATA TYPE statements in the same unit of work are included 
in one new schema version.

The following ALTER statements do not result in a new version:

ALTER TABLE table-name ADD PARTITION ENDING AT constant
ALTER TABLE table-name ALTER PARTITION n ENDING AT constant
ALTER TABLE table-name ALTER PARTITION ROTATE FIRST TO LAST
ALTER TABLE table-name ADD PARTITIONING KEY column-name
ALTER INDEX index-name NOT CLUSTER
ALTER INDEX index-name CLUSTER

The following cases also do not generate a new version:

� When the table space or index was created as DEFINE NO and contains no data

� When a varying character or varying graphic column length is extended (but it can create 
an index version)

� When an ALTER TABLE specifies the same data type and length, so the definition is not 
changed

� When an ALTER TABLE ADD COLUMN of a version 0 table is specified

Version limits
A table space can have up to 256 different active versions while an index can have up to 16 
different “active” versions (“active” versions include those within the pageset and all available 
image copies).

In regard to the range of active versions (which are all versions that exist for rows in the page 
set itself as well as the versions that exist in image copies registered in SYSCOPY) — if the 
maximum number of active versions is reached, the SQL statement fails with an SQLCODE 
-4702.

Unaltered objects remain at version 0 (zero).

Storing version information
The version information is stored in the DB2 catalog as well as inside the page set system 
pages.

Version information in the DB2 catalog
As can be seen in Figure 2-8, versioning information for an object is kept in the catalog tables 
SYSIBM.SYSTABLESPACE, SYSIBM.SYSTABLEPART, SYSIBM.SYSINDEXES, 
SYSIBM.SYSINDEXPART, SYSIBM.SYSTABLES, and SYSIBM.SYSCOPY.

In addition, the new catalog table SYSIBM.SYSOBDS, when there is more than one active 
version, contains one row for each OBD or index that can be recovered to an image copy that 
was made before the first version was generated for that OBD or index.
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Figure 2-8   Versioning information in the DB2 catalog

A table space starts out with all data in tables at version zero. When an ALTER creates a new 
version, it gets the next available number after the active table space CURRENT_VERSION. 
Once version 255 is reached, numbering starts again with version 1 if it can be reclaimed. A 
version of 0 indicates that a version-creating ALTER statement has never been issued for the 
corresponding table or table space.

Versioning information inside the page set
The version information relevant to the data is stored inside the page set. Storing the version 
information inside the page set makes the objects self-defining. System pages can be 
included in incremental image copies if the SYSTEMPAGES YES keyword is specified.

Reclaiming versions
For table spaces, and indexes defined as COPY YES, the MODIFY utility must be run to 
update OLDEST_VERSION for either SYSTABLEPART and SYSTABLESPACE, or 
SYSINDEXPART and SYSINDEXES. If there are COPY, REORG, or REPAIR VERSIONS 
SYSCOPY entries (ICTYPE of V) for the table space, MODIFY updates OLDEST_VERSION 
to be the lowest value of OLDEST_VERSION found from matching SYSCOPY rows. If no 
SYSCOPY rows remain for the object, MODIFY sets OLDEST_VERSION to the lowest 
version data row or key that exists in the active pageset. 

For indexes defined as COPY NO, a REORG, REBUILD, or LOAD utility that resets the entire 
index before adding keys updates OLDEST_VERSION in SYSIBM.SYSINDEXES to be the 
same as CURRENT_VERSION.

OLDEST_VERSION CURRENT_VERSION VERSION VERSION 0 
DATA

SYSTABLESPACE                X                   X

SYSTABLEPART                X

SYSTABLES X

SYSINDEXES                X                   X X
(data version)

SYSINDEXPART                X

SYSCOPY                X
SYSOBDS X

Oldest for pageset and 
all available copies - 
updated by utilities 
such as MODIFY and 
REORG

Used to allocate next 
number 

Note that versioning is tracked at table space and index level
Each table in a segmented table space will be assigned a different 
version number
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2.3.6  SAP usage considerations
As mentioned before, DB2 V8 takes the first steps to avoid outages due to schema changes. 
The SAP application imposes slightly more severe restrictions than DB2 V8, such as these:

� Data types must be compatible and lengths must be the same or longer.
� Numeric columns contained in indexes cannot be altered.

To minimize any performance degradation, schedule a REORG as soon as possible after 
ALTER.

Schedule RUNSTATS to repopulate the catalog with accurate column and index statistics.

2.3.7  New DBET states for online schema changes
In support of online schema changes, DB2 V8, besides using the existing RBDP state, 
introduces a new Database Exception Tables (DBET) state, Advisory REORG (AREO*). 
AREO* indicates that the table space, index, or partition identified should be reorganized for 
optimal performance.

The DISPLAY DATABASE command now shows the new DBET state AREO* for all objects.

2.3.8  Impact of online schema changes on user tasks
In this section we discuss the effects of online schema changes on the major tasks involved in 
using DB2.

Database design and implementation
Designing databases and objects for applications is more forgiving than in the past. The 
problem with underestimating the size of objects is lessened with the ability to change column 
data types without losing availability to the data. When designing applications, you can give 
more consideration to saving space and reducing the number of data sets up front without the 
fear of being locked in at a future point by initial schema decisions.

Up until DB2 V7, for an application that requires inserting time based data, a separate 
partition is often assigned to store the data for each month. The design usually leans toward 
allocating the maximum number of partitions allowed up front. This probably meant allocating 
254 partitions (with most of them initially with minimum space allocation) so that the 
application had a life span of about 20 years before running out of partitions. 

With DB2 V8, it is much easier to add partitions at a later date, so the plan may be to start out 
with 24 partitions, and then reevaluate partition needs within the next 12 to 18 months. This 
results in “managing” many fewer objects that today may be preallocated without being 
immediately used. The use of templates and LISTDEFs in your utilities, by dynamically 
adding new partitions and objects, will also contribute to the overall flexibility and 
manageability of the schema changes.

When designing an application that requires storing the data for only a certain amount of time, 
such as for legal reasons, consider a rolling partition design. Now that there is the ability to 
easily ROTATE and reuse partitions over time, it is easier to manage a limited number of 
partitions that are set up based upon dates.
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Operational considerations
The creation of new versions for objects can degrade performance of existing access paths. 
Schema changes should be planned to balance the trade-off between performance and 
availability expectations within a customer environment. Typically, the best time to make 
schema changes to minimize the poor performance impact is before a scheduled 
reorganization of an object. 

When rotating partitions of a partitioned table, consider the time needed to complete the DDL 
statement. The reset operation requires that the keys for these deleted rows must also be 
deleted from all non-partitioned indexes. Each NPI must be scanned to delete these keys; 
therefore, the process can take an extended amount of elapsed time to complete as each NPI 
is processed serially. This is also true when deleting rows from the partition.

Additional consideration must be given for the time needed to delete data rows if processing 
must be done a row at a time. Individual delete row processing is required for referential 
integrity relationships, when DATA CAPTURE is enabled, or when there are delete triggers.

Application programming
When making schema changes, applications are usually affected. Changes in the schema 
must be closely coordinated between database objects and applications to avoid “breaking” 
existing applications. For example, if a column is extended from CHAR(n) to CHAR(n+m), the 
processing application truncates the last m bytes if the application is not changed to handle 
the longer column.

2.3.9  Dynamic partitions
DB2 V8 has the ability to immediately add partitions, rotate partitions, and change the 
partitioning key values for table-controlled partitioned tables through the ALTER TABLE 
statement. Here we give a brief description of these enhancements.

Adding partitions
With DB2 V8, users are able to dynamically add partitions to a partitioned table. You can add 
partitions up to the maximum limit, which is determined by the parameters specified when the 
partitioned table was initially created. When you add a partition, the next available physical 
partition number is used. When objects are DB2 managed (STOGROUP defined), the next 
data set is allocated for the table space and each partitioned index. 

When objects are user managed (USING VCAT), these data sets must be predefined. The 
data sets for the data partition and all partitioned indexes must be defined using the VSAM 
access method services DEFINE command for the partition to be added (that is the value of 
the PARTITIONS column in SYSTABLESPACE plus one), before issuing the ALTER TABLE 
ADD PARTITION statement. Notice that no partition number is supplied on the ALTER TABLE 
ADD PARTITION statement. The part number is selected by DB2 based on the current 
number of partitions of the table.

The newly added partition is immediately available.

The table is quiesced, and all related plans, packages, and cached statements are 
invalidated. This is necessary, as the access path may be optimized to read only certain 
partitions. Automatic rebinds will occur (if allowed), but you may wish to issue rebinds 
manually.

Since you cannot specify attributes like PRIQTY, the values of the previous logical partition 
are used. Therefore you probably want to run an ALTER TABLESPACE statement afterwards 
to provide accurate space parameters, before starting to use the newly added partition.
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Rotating partitions
Rotating partitions allows old data to “roll off” while reusing the partition for new data with the 
ALTER TABLE ALTER PARTITION ROTATE FIRST TO LAST statement. In a typical case, 13 
partitions are used to continuously keep the last 12 months of data. When rotating, one can 
specify that all the data rows in the oldest (or logically first) partition is to be deleted, and then 
specify a new table space high boundary so that the partition essentially becomes the last 
logical partition in sequence ready to hold the data which is added. Because the data of the 
partition being rolled off is deleted, you may want to consider running an unload job before 
rotating the partition.

The partition that was rolled off is immediately available after the SQL statement is 
successfully executed. No REORG is necessary.

After using the new ALTER PARTITION ROTATE statement, the logical and physical order of 
the partitions is no longer the same. The DISPLAY command lists the status of table space 
partitions in a logical partition. Logical order is helpful when investigating ranges of partitions 
which are in REORP. It enables one to more easily see groupings of adjacent partitions that 
may be good candidates for reorganization. When used in conjunction with the new SCOPE 
PENDING keyword of REORG, a reasonable subset of partitions can be identified if one 
wants to reorganize REORP ranges in separate jobs.

Changing partition boundaries
In DB2 V6, the ability to modify limit keys for table partitions was introduced. The 
enhancement in DB2 V8 introduces the same capability for table-based partitioning with the 
ALTER TABLE ALTER PARTITION ENDING AT statement. The affected data partitions are 
placed into REORG Pending state (REORP) until they have been reorganized.

Rebalancing partitions
Rebalancing partitions is done by means of the REORG TABLESPACE utility. Specifying the 
REBALANCE option, when specifying a range of partitions to be reorganized, allows DB2 to 
set new partition boundaries for those partitions, so that all the rows that participate in the 
reorganization are evenly distributed across the reorganized partitions. (However, if the 
columns used in defining the partition boundaries have many duplicate values within the data 
rows, even balancing is not always possible.) 

Rebalancing is ideal when no skewing of data between partitions is required, or needs to be 
catered for. It has an advantage over changing the partition boundaries using the ALTER 
TABLE ALTER PARTITION...ENDING AT statement, in that the partitions involved in the 
rebalancing are not put into REORP status (as in the case of the ALTER TABLE ALTER 
PARTITION... ENDING AT statement).

You are allowed to specify REBALANCE with REORG TABLESPACE SHRLEVEL 
REFERENCE, but you cannot specify REBALANCE with REORG TABLESPACE SHRLEVEL 
CHANGE. Also, you cannot specify partitioned table spaces with LOB columns. Also, notice 
that when the clustering sequence does not match the partitioning sequence, REORG must 
be run twice; once to move rows to the right partition; and secondly to sort in clustering 
sequence. DB2 leaves the table space in AREO* (Advisory REORG Pending) state after the 
first REORG, indicating that a second one is recommended.

Upon completion, DB2 invalidates plans, packages, and the dynamic statement cache that 
reference the reorganized object. 

 

 

 

50 DB2 for z/OS V8 Features Benefitting SAP



 

2.4  64-bit virtual storage
In this section we discuss the support of 64-bit virtual storage in DB2 V8. SAP applications 
tend to rely on large amounts of virtual and real storage both on the application server tier 
and at the database backend. Therefore, the 64-bit virtual storage exploitation by DB2 V8 is 
capable of providing relief for existing virtual storage constraints and enhanced scalability. 
Since caching data in buffer pools contributes strongly to a well-performing DB2 system, the 
DB2 V8 support of larger buffer pools has the potential to yield significant performance 
improvements to SAP systems.

This section contains the following topics:

� Expansion of DB2 virtual storage
� Enlarged storage pools
� Storage monitoring
� Thread storage contraction

2.4.1  Expansion of DB2 virtual storage
OS/390 R10 and z/OS have provided the 64-bit real storage addressability needed to scale in 
real memory addressing. While OS/390 R10 has the ability to run in either 31-bit mode or 
64-bit mode on a zSeries, z/OS only runs in a 64-bit mode real storage environment. z/OS 1.2 
and later releases provide virtual storage exploitation of the addressing range above 2 GB. 

Basically, R10 has provided the initial z/Architecture™ real addressing support of up to 
128 GB of central storage. Also, z/OS 64-bit real storage support has provided significant and 
transparent reduction of paging overhead, now only to disk, and real storage constraint relief 
for workloads limited by the previous maximum support of 2 GB of real storage. The 
elimination of Expanded Storage support has been handled by z/OS with minimal customer 
impact while reducing memory management overhead. For more information on 64-bit real 
exploitation, see the z/OS migration Web site at:

http://www.ibm.com/servers/eserver/zseries/zos/installation/

In z/OS V1.2, IBM has delivered the initial 64-bit virtual storage management support. With 
the new z/OS 64-bit operating environment, now an application address space can have 2 to 
the power of 64 (or 2**64) virtual addresses with backing by real storage as needed. 
Figure 2-9 gives a pictorial representation of the evolution of the memory management from 
the 24-bit to the 31-bit to the 64-bit support. 

DB2 V8 allows existing 31-bit DB2 applications (including those written in Assembler, PL/I, 
COBOL, FORTRAN, C/C++ and Java), and future DB2 applications to transparently benefit 
from the DB2 64-bit virtual storage support. The benefit is derived from the efficiencies with 
the local availability of data made possible through 64-bit data addressability. DB2 z/OS V8, 
which exclusively runs in 64-bit mode, can only execute on IBM ~ zSeries hardware 
running z/OS V1R3 or later. DB2 V6 and V7 already support 64-bit real storage addressing 
for data space buffers, providing improved scalability and performance in a zSeries processor 
running in 64-bit real mode. Using 64-bit real provides a significant storage relief for most 
customers.
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Figure 2-9   Evolution of z/OS memory architecture

Over the years, virtual storage usage has grown dramatically in DB2's DBM1 address space. 
This storage growth has been fueled by larger workloads, new functions, faster CPUs, and 
larger real storage available on mainframe processors. The latter, in particular, has allowed 
customers to run workloads that in the past would have been limited by paging overhead. 
Hence, 64-bit virtual addressing largely improves the DB2 scalability.

2.4.2  Enlarged storage pools
DB2 V8 has made massive changes to its code and now provides a solution to the current 
virtual storage constraint by utilizing 64-bit virtual addressing to move the following data areas 
above the 2 GB bar (2**31) in the DBM1 address space:

� Buffer pools and buffer pool control blocks
� DSC and DBD portions of the EDM pool
� RIDLIST portion of the RID pool
� Compression dictionaries
� Sort pool
� Castout buffers

Materialized LOB values were in data spaces before DB2 V8, now they are above the bar. In 
addition, IRLM locks and a sizeable portion of the data set control blocks are moved from 
below the 16 MB line to 31-bit virtual storage. Furthermore, faster short prepares enable 
reducing MAXKEEPD, which lifts virtual and real storage constraints.

Larger buffer pools
With the very large and ever-cheaper main memories that are available on the current and 
upcoming z/Architecture machines (currently 10s of GB, moving towards 100s of GB), it is 
becoming feasible for customers to configure very large buffer pools to gain significant 

XA/ESA-31bit             z/Architecture-64bit             370 - 24bit             

Real 
Storage

     ESA 
Architecture

      370
Architecture

64-bit memory architecture 

        New  
z/Architecture 

Virtual Storage
Virtual StorageVirtual Storage

Expanded 
Storage

Central Storage
Virtual Storage

 

 

 

52 DB2 for z/OS V8 Features Benefitting SAP



 

performance advantages. However, due to DBM1 virtual storage constraints, before V8, DB2 
enforced maximum buffer pool sizes that were far less than the memory capacities of these 
machines:

� The total size of virtual pools is limited to 1.6 GB. However, in actual practice, customers 
typically cannot configure more than 1.0 GB due to DBM1 virtual storage constraints. 
VSAM control blocks and compression dictionaries are other sizeable contributors to the 
demands on DBM1.

� DB2 V7 limits the total size of hiperpools to 8 GB. This limit could be raised; however, 
hiperpools have several drawbacks which make them undesirable as a long term solution:

– They are only page addressable, not byte addressable, and therefore buffers must be 
moved into the virtual pool before they can be used.

– They can contain only clean pages.

– You cannot do I/O directly into or out of a hiperpool.

– The hiperpool page control blocks (HWBs) reside in the DBM1 address space and thus 
contribute to virtual storage constraints.

– Hiperpools require a fairly substantial virtual pool size for effective use. Typically, the 
hiperpool to virtual pool size is on the order of 2:1 to 5:1. Therefore, virtual pool size 
ultimately limits hiperpool size.

– A separate set of latches is used to manage hiperpool and virtual pool buffers, so as 
the frequency of page movement between virtual pools and hiperpools increases, the 
Least Recently Used (LRU) management of these pools increases, and latch 
contention issues can quickly arise.

Hiperpools were designed over a decade ago to exploit ESA and to make efficient use of 
large amounts of expanded storage. 

Data spaces provided a good short term solution by exploiting the 64-bit real memory support 
introduced in OS/390 V2R10. DB2 V6 and DB2 V7 could place buffer pools and statement 
caching in data spaces, thus freeing up space for other work in the DBM1 address space. A 
performance penalty was paid when such buffering was not 100% backed by real storage, 
though.

These were some of the advantages of data spaces over hiperpools:

� Read and write cache with direct I/O to data space 
� Byte addressability 
� Large buffer pool sizes (32 GB for 4 KB page size and 256 GB for 32 KB page size) 
� Excellent performance experienced with z900 and large processor storage 
� Performance dependent upon being in 64-bit REAL mode

With the z/Architecture processors running in 64-bit addressing mode and having no 
expanded storage (all storage is central), hiperpools have no reason to exist. 

The total size of data space virtual pools is limited to 32 GB (4 KB page size). This limit is 
imposed by a maximum of 8 million “page manipulation blocks” (PMBs) which reside in the 
DBM1 address space. Also, the lookaside pool resides in DBM1. Although data spaces 
provide a good short term solution for exploiting 64-bit real memory, they are undesirable as a 
long term solution, not only because of the size limitations, but also because of the overhead 
involved with copying buffers between the data spaces and the lookaside pool as they are 
accessed and updated. Data spaces have scalability issues, and the VSTOR limit of 2 GB for 
DBM1 address space remains the biggest constraint to achieving linear scalability (see 
Figure 2-10).
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Figure 2-10   Data spaces before DB2 V8

The use of 64-bit virtual addressing greatly increases the maximum buffer pool sizes. DB2 V8 
is 64-bit exclusive, and therefore always allocates the buffer pools above the 2 GB bar. This 
effectively eliminates the need for hiperpools and data space pools and simplifies DB2 
systems management and operations tasks. Therefore, hiperpools and data space pools are 
no longer supported in DB2 V8. As of DB2 V8, the terms buffer pool and virtual pool become 
synonymous.

Buffer pools can now scale to extremely large sizes, constrained only by the physical memory 
limits of the machine (64-bit allows for 16 exabites of addressability). System consolidation of 
identical SAP systems or by exploiting SAP MCOD (multiple components in one database) is 
facilitated as the buffer pools scale virtually unlimited. The recommendation still stands that 
buffer pools should not be over-allocated relative to the amount of real storage that is 
available. DB2 V8 issues the following warning messages when necessary:

� DSNB536I: This indicates that the total buffer pool virtual storage requirement exceeds 
the size of real storage of the z/OS image.

� DSNB610I: This indicates that a request to increase the size of the buffer pool will exceed 
two times the real storage, or the normal allocation of a buffer pool not previously used will 
cause an aggregate size which exceeds the real storage. Either request will then be 
limited to 8 MB (2000 pages for 4 KB, 1000 pages for 8 KB, 500 pages for 16 KB, and 250 
pages for 32 KB).

DB2 limits the total amount of storage that is allocated for of buffer pools to twice the amount 
of real storage size in the system image.

DB2 V8 increases the maximum buffer pool sizes to the limit of the architecture, 1 TB, 
however the effective maximum is given by the real storage available:

� Maximum size for a single buffer pool is 1 TB.
� Maximum size for summation of all active buffer pools is 1 TB.

Figure 2-11 shows sample buffer pool settings that exploit larger buffer pools.
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Figure 2-11   Buffer pools exploiting 64-bit virtual storage

When first migrating to V8, DB2 uses the following parameters to determine the size of the 
buffer pool:

� For data space pools and virtual pools with no corresponding hiperpool, the VPSIZE is 
used.

� For virtual pools with a corresponding hiperpool, VPSIZE + HPSIZE is used.

� VPSEQT, VPPSEQT, and VPXSEQT keep their previous values, even if the buffer pool 
size is determined by VPSIZE + HPSIZE.

DB2 V8 maintains the old V7 virtual pool and hiperpool definitions as they were at the time of 
migration to be used in case of fallback, and it adds new definitions of buffer pools for the 
catalog.

For newly installed V8 subsystems, as in prior releases, DB2 initially uses the buffer pool 
sizes that were specified during the installation process. Thereafter, the buffer pool attributes 
can be changed through the ALTER BUFFERPOOL command, and they are stored in the 
BSDS.

The buffer pool names (BP0, BP1, etc.) do not change. Neither do the page sizes: The 
options are still 4 KB, 8 KB, 16 KB, or 32 KB. The ALTER BUFFERPOOL command 
parameters that are no longer supported are VPTYPE, HPSIZE, HPSEQT, CASTOUT. If they 
are specified, just a warning message DSNB539I is issued. The other parameters remain 
unchanged besides new default values for DWQT and VDWQT. In DB2 V8 the default of the 
deferred write threshold (DWQT) of a buffer pool is 30% instead of 50%. The default of the 
vertical deferred write threshold (VDWQT) of a buffer pool is decreased from 10% to 5%.
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DB2 V8 adds the new optional keyword PGFIX to the ALTER BUFFERPOOL command. If it is 
set to YES, then the buffer pool is long-term fixed in real storage. Page buffers are fixed when 
they are first employed since the buffer pool is allocated or expanded. By saving CPU cycles, 
this results in a performance improvement. In case PGFIX is set to NO, which is the default 
value, z/OS can page out buffer pool pages. Page buffer are fixed and unfixed in real storage 
across each I/O and GBP operation. To avoid situations where long-term fixed buffer pools 
exceed the real storage capacity of the z/OS image, DB2 ensures that these buffer pools do 
not exceed 80% of this capacity.

EDM pool
In DB2 V8 the EDM pool always consists of three separate pools. A new dynamic statement 
cache is created above the 2 GB bar. If dynamic statement caching is activated before DB2 
V8, the statements are cached in the data space, if one is defined, or in the normal EDM pool 
if a data space is not defined. Now, cached statements are always cached in the EDM 
dynamic statement (DSC) cache pool above the 2 GB bar; see Figure 2-12. The DB2 ZPARM 
EDMSTMTC, which defaults to 102400 KB, specifies its size. As SAP relies heavily on 
dynamic statement caching, this approach ensures that there is always sufficient virtual 
storage available. Moreover, it facilitates the tuning of this pool, because no other objects 
compete with cached statements for storage in this pool.

Also, a new EDM DBD cache is created above the 2 GB bar. This gives the DBDs the needed 
space to grow and relieves contention with other objects in the EDM pool. The size of the 
EDM DBD cache is defined by the ZPARM EDMDBDC, which defaults to 102400 KB. Again, 
due to the large number of objects that comprise SAP systems, this feature particularly 
benefits SAP applications.

Plans and packages remain in the EDM “main pool” below the 2 GB bar. This does not pose a 
problem to SAP, as it exclusively employs dynamic SQL statements. Therefore, its plans and 
packages are miniscule. The ZPARM that controls the size of the EDM pool is, as before, 
EDMPOOL. The new default of EDMPOOL is 32768 KB.

The default values of these three pools are large enough so that they promise to be good 
initial values for SAP systems, which enhances DB2 usability for SAP customers.

Figure 2-12   DB2 V8 EDM pool
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RID pool
The RID pool has proven to be important for SAP system. The general recommendation is to 
initially set its size to 100 MB for DB2 subsystems that serve SAP rather than the default 
value of 4 MB (DB2 ZPARM MAXRBLK). 

DB2 V8 splits the RID pool into two parts. A small part of the RID pool remains below the 
2 GB bar and the majority (about 75%) is moved above; see Figure 2-13. The RID pool below 
the 2 GB bar stores the RID maps which are small in number, and the RID pool above the 
2 GB bar contains the RID lists which comprise the bulk of the RID pool storage. Therefore, 
the amount of storage that the RID pool requires below the 2 GB bar is small.

Because of the changes, there are some slight modifications in estimating the size for the RID 
pool. The same size RIDMAPs hold half as many RIDLISTs as in DB2 V6 or DB2 V7. The 
RIDMAP size is doubled to accommodate the same number of 8 byte RIDLISTs, and each 
RIDLIST now holds twice as many RIDs. Each RIDBLOCK is now 32 KB in size.

Here is the new RIDPOOL calculation:

� Each RIDMAP contains over 4000 RIDLISTs.

� Each RIDLIST contains 6400 RID entries.

� Each RIDMAP/RIDLIST combination can then contain over 26 million RIDs, versus 
roughly 13 million in previous DB2 versions.

Figure 2-13   DB2 V8 RID pool

Compression dictionaries
The compression dictionary for a compressed table space or partition is loaded into virtual 
storage for each compressed table space or partition as it is opened. Even for tablespaces 
not accessed frequently, it occupies a good chunk of storage while the data set is open. A 
compression dictionary can occupy up to 64 KB bytes of storage per data set (sixteen 4-KB 
pages); therefore, moving the dictionary above the 2 GB bar provides significant storage relief 
for many customers. Due to the thousands of objects that often are concurrently open at SAP 
systems, this is particularly relevant to SAP systems.
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For some customers, those who have a large number of compressed table spaces, the 
compression dictionaries can use up as much as 500 MB. This can further increase 
compression dictionary storage requirement for some systems, depending upon how many of 
these data sets contain compressed table spaces. DB2 V8 also implements support for 4096 
partitions for a single table or index, this is another driver for moving compression dictionaries 
above the 2 GB bar. With 4096 partitions, customers might choose to have a larger number of 
smaller partitions resulting in a corresponding increase in the total number of compression 
dictionaries in those partitioned database.

The compression dictionary is loaded above the bar after it is built. All references to the 
dictionary now use 64-bit pointers. Compression uses standard 64-bit hardware compression 
instructions. Standalone utilities still load the dictionary below the bar.

Sort pool
Sorting requires a large amount of virtual storage, as there can be multiple copies of the data 
being sorted at a given time. Two kinds of storage pools are used for DB2 sort to store various 
control structures and data records. One pool is an agent-related local storage pool, and the 
other is a global sort pool. To take advantage of the 64-bit addressability for a larger storage 
pool, some high level sort control structures remain in agent-related storage below the 2 GB 
bar, but these structures contain 64-bit pointers to areas in the global sort pool above the 2 
GB bar. The sort pool above the 2 GB bar contains sort tree nodes and data buffers. 
Therefore, it consumes less storage below the 2 GB bar and contributes to virtual storage 
constraint relief in this critical storage area.

LOB data
LOBs are now materialized, depending on the application requirements, above the 2 GB bar 
in DBM1 address space, and allocated in areas limited by the system parameters previously 
used for allocating data spaces:

� LOBVALA (the size per user): In DB2 V8, the default is raised to 10240 KB. The limit 
value remains to be 2097152 KB.

� LOBVALS (the size per system): The default is 2048 MB, the limit value is 51200 MB.

Data set control blocks
Each data set that DB2 opens prior to V8 requires some storage below the 16 MB line, which 
is critical storage. Due to the large number of objects in SAP systems, the amount of storage 
required for this purpose may add up significantly. Also, the maximum number of concurrently 
open data sets, which is governed by the DB2 ZPARM DSMAX, is restricted to 32767. This 
limit is imposed by system-generated DDNAMEs, which DB2 uses before DB2 V8.

DB2 V8 raises the maximum number of open data sets to 100000 with a new default value of 
10000. It generates its own DDNAMEs, so the dynamic allocation limit of 32767 no longer 
applies. With z/OS 1.5 and above, the data set control blocks no longer reside below the 16 
MB line, which provides more headroom below the 16 MB line. They are then located in 31 bit 
virtual storage. This enhancement ensures that the number of open data sets does not pose 
a storage problem. With z/OS 1.3 and 1.4, the data set control blocks still need to be below 
the 16 MB line.

The number of open data sets that are closed when DSMAX is approached is now the 
minimum of 3% of DSMAX and 300. This avoids bursts of data set close activity. Furthermore, 
if a large number of data sets are already open, data set open performance is substantially 
improved compared to previous DB2 releases.
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Other 64-bit virtual storage changes
Other changes have been made to complement the 64-bit virtual support. There are 64-bit 
serviceability enhancements such as the 64-bit dump formatter and continued IPCS support. 
The locks now reside above the 2 GB bar. The default for IRLM has changed in V2.2. It was 
PC=NO; now PC=YES is enforced, which matches SAP’s recommendation.

2.4.3  Storage monitoring
With DB2 V8 exploitation of 64-bit virtual storage, the following capabilities are possible:

� Buffer pool monitoring and tuning becomes simpler:

– Hiperpools and data space pools are eliminated, thus reducing complexity. There is 
now only one type of buffer pool. Dynamic statement caching pool and LOB data 
spaces have been eliminated.

– The ssnmDBM1 virtual storage constraints are no longer a key consideration in 
determining the optimum sizes for buffer pools.

� This may allow installations to increase the number of concurrent active threads 
(CTHREAD). ECSA allocation may need to be increased if CTHREAD is raised.

� A single DB2 subsystem is able to run larger workloads. This may cause some 
installations to defer going to a data sharing environment for capacity reasons (since data 
sharing is still required for the highest scalability and availability), or to consolidate the 
data sharing groups to fewer members.

� To handle the expected increases in workload, the maximum number of deferred write and 
castout engines are increased in order to decrease engine not available conditions.

You can use IFCIDs 0217 and 0225 to monitor ssnmDBM1 virtual storage usage above and 
below 2 GB.

VSTOR information is collected in SMF by RMF™ in record type 78-2. RMF can produce:

� Common storage summary and detail reports
� Private area summary and detail reports

The report are requested as follows:

� Specify S, either explicitly or by default: RMF produces summary reports.
� Specify D: RMF produces both summary reports and detail reports.

These are the available options:

� REPORTS(VSTOR(D)):

This produces a summary and detail report for common storage.

� REPORTS(VSTOR(D, ssnmDBM1)):

This produces a summary and detail report for common storage and a summary and 
detail report for the private area of the ssnmDBM1 address space.

� REPORTS(VSTOR(MYJOB)):

This produces a summary report for common storage and a summary report for the 
private area of the MYJOB address space.

More information on setting up and monitoring 64-bit is contained in the technical bulletin, 
z/OS Performance: Managing Processor Storage in an all “Real” Environment, available from:

http://www.ibm.com/support/techdocs 
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2.4.4  Thread storage contraction
Related to the exploitation of 64-bit virtual storage is a DB2 V8 enhancement in thread 
storage management. Since SAP uses long-running DB2 threads, the amount of storage that 
these threads acquire may accumulate notably unless freed storage segments are garbage 
collected on a regular basis. 

New storage contraction thresholds
Already before V8, DB2 provides the installation parameter CONTSTOR that allows you to 
turn on the periodic contraction of the working storage area of each thread. This helps in 
relieving storage constraints in the DBM1 address space. Before V8, two hidden ZPARMs are 
associated with CONTSTOR that govern when storage is contracted. However, the default 
values of these hidden ZPARMs are too high for SAP systems. To prevent thread storage from 
growing too large, SAP recommends setting CONTSTOR to YES and also setting the hidden 
ZPARM SPRMSTH to a smaller value (1 MB). 

DB2 V8 changes the thresholds that trigger thread storage contraction if storage contraction 
is activated. Storage is contracted for a thread after it has completed 10 transactions and 
when the storage that is consumed by a thread reaches 1 MB. This criteria matches the 
characteristics of SAP applications. For SAP applications, there is hence no need to 
manipulate the internal contraction thresholds of DB2 anymore. This results in less manual 
intervention and enhanced usability.

Reduced storage consumption by threads serving SAP
There are also improvements in the amount of storage that DB2 threads serving SAP typically 
consume. This is due to the fact that DDF threads in DB2 V8 require less user thread storage 
than DB2 V7 threads that use ICLI as database connectivity. As SAP recommends it, 
CONTSTOR is assumed to be YES in both cases. This improvement contributes to virtual 
storage constraints relief.

Short prepares from the global dynamic statement cache are faster in DB2 V8 (see 5.6, 
“Faster DSC short prepares” on page 142). This reduces the pressure on MAXKEEPD. 
A stronger reliance on the global statement cache means a smaller local statement cache, 
which is part of thread storage. As a net result the required thread storage is reduced even 
further.

2.5  Java
In this section we describe how the SAP Java applications are using DB2 for z/OS to store 
their data. 

2.5.1  SAP and Java
Starting with Web Application Server 6.30, shown in Figure 2-14, the SAP Java database 
layer is ported to DB2 for z/OS. This means that every SAP Java application that is using the 
SAP Java database layer is able to run on DB2 for z/OS. There is a big push within SAP to 
port every existing Java application to the new SAP Java database layer.
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Figure 2-14   SAP Web Application Server

Figure 2-14 shows the high level architecture of SAP Web Application Server 6.30. An SAP 
application is either written in ABAP or in Java. An ABAP application cannot use the Java 
stack, and a Java application cannot use the ABAP stack. At installation time the customer 
has the choice to install the J2EE engine (including the Java stack) as add-in to the ABAP 
engine (including the ABAP stack). This means that both the ABAP engine and the J2EE 
engine will be started if the customer starts SAP. It also means that an ABAP program is able 
to communicate with a Java program via the SAP Java Connector (JCO) and vice versa. If a 
customer installs the J2EE engine standalone, these features are not available without 
re-configuration of the J2EE engine. The ABAP stack and the Java stack are using different 
database layers to access the database. The SAP Java database layer supports only 
Unicode as encoding scheme; whereas there are both a Unicode version and a non-Unicode 
(ASCII) version of the ABAP stack.

2.5.2  The SAP Java components
The SAP Java persistence is based on Unicode. Therefore the minimum requirement is the 
JDBC driver db2jcc which is delivered with DB2 Connect and DB2 for z/OS V8. 

With Web Application Server 6.30, SAP delivers already a J2EE application server using the 
JDBC driver db2jcc and DB2 for z/OS V7. Because of the restrictions of DB2 V7 regarding 
Unicode, the J2EE server based on DB2 V7 has the same restrictions. These are:

� Maximum index length is 255 bytes
� Maximum statement length is 32K bytes
� Maximum character length in a statement predicate is 255 bytes

To circumvent the maximum index length of DB2 V7, the SAP Java database interface tries to 
use UTF-8 in case the index exceeds the DB2 V7 limit. There are no SAP applications in 6.30 
that cannot be handled by the SAP Java database interface. If customers want to write their 
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own applications, it is necessary to stay within the DB2 V7 limits. To circumvent the visible 
ROWID column if a table has LOB columns, the SAP Java database interface hides the 
ROWID from the application. The SAP Java database interface creates a projection view. In 
this view, all columns of the table are defined except the ROWID column. The view has 
exactly the same name as the original table. The table gets renamed in ’#<table name’.

With the Unicode enhancements in DB2 V8, all these restrictions are lifted. Eventually, 
defined UTF-8 columns will be converted to UTF-16. With DB2 V8, the SAP Java database 
interface make also use of the invisible ROWID column. After migration to V8, all unnecessary 
views will be dropped and the tables will be renamed to their original names.

2.5.3  Java and DB2 data type mapping
Table 2-7 shows the set of data types that are supported by the SAP Open SQL persistence 
framework. One of the main goals of Open SQL is portability across the database platforms 
supported by SAP. In order to achieve the portability goal, Open SQL only supports a subset 
of the JDBC types defined in java.sql.Types.

Table 2-7   Java and DB2 data types

Columns with numeric data types that are part of an index are not altered, because the index 
would be put in REORG Pending state.

SAP JDBC type DB2 for z/OS SAP supports online 
extension

VARCHAR(N) 1 <= N <= 127 VARGRAPHIC(N) CCSID 1200 Yes

LONGVARCHAR(N) 1 <= N <= 
1333

VARGRAPHIC(N) CCSID 1200 Yes

BINARY(N) 1 <= N <= 255 CHAR(N) FOR BIT DATA No

LONGVARBINARY(N) 1 <= N <= 
2000

VARCHAR(N) FOR BIT DATA Yes

SMALLINT SMALLINT Yes

INTEGER INTEGER Yes

BIGINT NUMERIC(19) No

DECIMAL (P,[S]) DECIMAL(P[,S]) Yes

REAL DOUBLE No

DOUBLE DOUBLE No

DATE DATE No

TIME TIME No

TIMESTAMP TIMESTAMP No

CLOB DBCLOB CCSID 1200 No, 1

BLOB BLOB No, 2

1- SAP always defines DBCLOB(512M), it would be Yes

2- SAP always defines BLOB(1G), it would be Yes
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2.5.4  Java dictionary
Similar to the DDIC functionality in ABAP, SAP’s aim is to provide a database dictionary for 
Java. This dictionary supports all database systems that are certified for SAP. Figure 2-15 
shows a sample Java dictionary panel.

Figure 2-15   Table definition in Java dictionary

When the table in Figure 2-15 is to be created, the SAP common JDBC layer submits the 
corresponding DDL statements. Example 2-6 displays the log entries that the JDBC layer 
generates when creating a database table.

Example 2-6   Creation of database table from Java dictionary

------------------ Starting deployment --------------------
...
Starting to execute deployment action Java Table
...
15:49:09 2003-10-08 db2-Info:  DatabaseMetaData encountered exception 
com.sap.dictionary.database.dbs.JddException.
Aktion: CREATE
CREATE TABLESPACE "TABLE"
IN "TMPXX8NX"
USING STOGROUP SAPBCUDB
PRIQTY 40
SECQTY 40
FREEPAGE 20
PCTFREE 16
GBPCACHE CHANGED
DEFINE YES
BUFFERPOOL BP2
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LOCKSIZE ROW
LOCKMAX 1000000
CLOSE YES
COMPRESS YES
MAXROWS 255
SEGSIZE 20
CCSID  UNICODE 
CREATE TABLE "TMP_TABLE"
(
"F1" VARGRAPHIC(5)  NOT NULL, 
"F2" CHAR(54) FOR BIT DATA  NOT NULL, 
"F3" DECIMAL(5,2) DEFAULT 0 NOT NULL
)
IN TMPXX8NX.TABLE
CCSID  UNICODE 
CREATE 
UNIQUE  INDEX 
"#TMP_TABLEN9I"
ON "TMP_TABLE" 
(
"F1" ASC
)
USING STOGROUP SAPBCUDB
PRIQTY 40
SECQTY 40
FREEPAGE 20
PCTFREE 16
GBPCACHE CHANGED
DEFINE YES
CLUSTER 
BUFFERPOOL BP2
CLOSE YES
DEFER YES
COPY YES
PIECESIZE 2097152 K
ALTER TABLE "TMP_TABLE" ADD PRIMARY KEY 
(
F1
)
Deployment action Java Table executed.
Deployment successful for Java Table
--------------- Deployment was successful -----------------

2.5.5  DB2 accounting and WLM 
In order for SAP to be able to provide transaction based DB2 accounting and workload 
management for its Java applications, it needs to be able set DB2 client identifiers using 
JDBC. 

The DB2 Java Universal Driver, which is the SAP JDBC driver of choice, implements the 
DRDA protocol like CLI. Therefore, DB2 treats CLI clients and Java Universal Driver clients 
uniformly. The DB2 client identifiers that are the basis of accounting data rollup can be altered 
at transaction boundaries.
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The Universal Driver extends the Connection interface from the JDBC standard to also 
provide the following methods, which set client identifier values:

� DB2Connection.setDB2ClientUser(String user)
� DB2Connection.setDB2ClientWorkstation(String name)
� DB2Connection.setDB2ClientApplicationInformation(String info)
� DB2Connection.setDB2ClientAccountingInformation(String info)

There are equivalent methods to query these identifiers. For more details on enhanced 
accounting capabilities and workload management support of DB2 V8, see 6.6, “SAP 
transaction-based DB2 accounting and workload management” on page 170.
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Chapter 3. Usability, availability, and 
scalability

In this chapter we describe the following topics:

� Partitioning
� Index creation enhancements
� Convert column type
� LOB ROWID transparency
� Multiple DISTINCT clauses in SQL statements

3
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3.1  Partitioning
In this section we describe enhancements that are introduced in DB2 V8 in the area of table 
partitioning. This will be of interest to many SAP users, where the high volume of data in 
particular tables requires the use of partitioning functionality. Most commonly, partitioning is 
considered as tables start to approach the size of 64 GB for the table space. Partitioning can 
improve the manageability of the data, through more effective REORG, data management, 
and backup/recovery strategies, as well as potentially improving performance of programs 
using this data.

DB2 V8 also introduces the concept of Data Partitioned Secondary Indexes, where 
secondary indexes on tables can also be partitioned into separate partitions, in this case 
corresponding to the set of rows in the corresponding table space partition.

SAP has allowed partitioning to be used in all releases, but explicit support within the inbuilt 
database administrative functions has been available from SAP Release 4.5. This support is 
provided by SAP transaction SE14. It allows almost all functions to be performed through the 
SAP interface, and reduces the need to manually deal with creating and executing data 
definition language (DDL).

The enhancements in partitioning features in DB2 V8 will be gradually implemented in the 
SAP SE14 transaction with the SAP releases starting in release WebAS 6.40.

3.1.1  Increases to table sizes
With DB2 V8, the maximum number of partitions has been increased from 254 to 4096, 
allowing more flexibility in choosing partitioning schemes. This increases the theoretical 
maximum size for a partitioned table to 16 - 128 TB, depending on the page size. A 32 KB 
page size table in a partitioned table space can grow to the maximum size of 128 TB. If SAP 
tables have a key structure of an existing or added index that allows a suitable partitioning 
scheme to be chosen, this results in improvements to the manageability of large objects.

Having maximum flexibility in DB2 V8 is particularly important for enterprise packages such 
as SAP, since the structure of the data storage schemas are fixed, and traditional means of 
adapting the data structures to suit the environment are often not possible.

3.1.2  Adding new partitions and rotating partitions
With DB2 for z/OS Version 7, it was possible to redistribute the data among partitions by 
altering the limit keys, and conducting reorganization utilities on the tables in question. 
However, it was not possible to change the number of partitions. DB2 V8 implements the 
ability to add a partition with the ALTER TABLE ADD PARTITION statement. Issuing this 
command results in DB2 creating a new partition at the end of the current partitions.

Rotating partitions allows old data to “roll off” while reusing the partition for new data with the 
ALTER TABLE ALTER PARTITION ROTATE FIRST TO LAST statement. A common case in an SAP 
system is where (n+1) partitions are used to continuously keep the last n periods of data. 
When rotating, one can specify that all the data rows in the oldest (or logically first) partition is 
to be deleted, probably after archiving activity has removed the data. Then you specify a new 
table space high boundary so that the partition essentially becomes the last logical partition in 
sequence ready to hold the data which is added. Because the data of the partition being 
rolled off is deleted, if long term retention of the data is required, you would certainly want to 
consider running an SAP Archiving process before rotating the partition, as any remaining 
rows will be deleted by the process. Confirmation of successful SAP archiving would be done 
by checking that no rows remain in the partition.
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The partition that was rolled off is immediately available after the SQL statement is 
successfully executed. No REORG is necessary.

After using the new ALTER TABLE ALTER PARTITION ROTATE FIRST TO LAST statement, the 
logical and physical order of the partitions is no longer the same. The display command lists 
the status of table space partitions in logical partition. Logical order is helpful when 
investigating ranges of partitions which are in REORP. It enables one to more easily see 
groupings of adjacent partitions that may be good candidates for reorganization. When used 
in conjunction with the new SCOPE PENDING keyword of REORG, a reasonable subset of 
partitions can be identified if one wants to reorganize REORP ranges in separate jobs.

The availability of these two additional ALTER statements allows for continuous availability, 
even where the growth of data requires adjustments to the storage layout used. For many 
SAP tables, the nature of growth of data may not be able to be determined in advance, or 
anticipated by the project team implementing the software. The enhancements to partition 
controls described here allow a more dynamic approach to data management, and can mean 
that unanticipated data growth in an SAP system is able to be addressed with minimal impact 
to users, greatly increasing availability. Previously, if a chosen partitioning scheme did not 
have the ability to handle the data volumes in a system, a significant amount of “downtime” 
may be needed to unload the data, and increase the number of partitions. Now, it is possible 
to increase the theoretical data capacity “on the fly” without any significant impact to 
availability.

The ability to rotate and “roll off” data in tables is also highly applicable to many SAP data 
types. With suitable planning, and involvement with the other employees planning SAP 
Archiving activities, a customer can implement an extremely efficient mechanism to deal with 
long term data growth. By designing the partitioning scheme to match the criteria for SAP 
Archiving, such as financial period or document numbering schemes, the execution of an 
SAP Archiving delete run can then be followed by the rotation of the partition to be usable for 
future data.

3.1.3  Data Partitioned Secondary Indexes
DB2 V8 introduces the ability to physically partition secondary indexes. The partitioning 
scheme introduced is the same as that of the table space. That is, there are as many index 
partitions in the secondary index as table space partitions, and the index keys in partition 'n' 
of the index reference only the data in partition 'n' of the table space. Such an index is called 
a Data Partitioned Secondary Index (DPSI).

You create a DPSI by specifying the new PARTITIONED keyword in the CREATE INDEX 
statement, shown in Figure 3-1, and defining keys on columns that do not coincide with the 
partitioning columns of the table. When defining a DPSI, the index cannot be created as 
UNIQUE or UNIQUE WHERE NOT NULL. This is to avoid having to search each part of the 
DPSI to make sure the key is unique.
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Figure 3-1   Syntax of CREATE INDEX statement

3.1.4  Separating clustering from partitioning
With DB2 V7, partitioning a table always involved defining a partitioning index, whose limit 
keys effectively determined which partition a particular record was placed in. This is referred 
to as index-controlled partitioning, and required that an index was created to address the 
partitioning scheme, and the actual limit key values to separate the data content of each 
partition were defined in the index creation.

The data model used in an SAP system means that every table is created with a clustering 
index based on the primary access path expected for the table. Many tables also have one or 
more additional secondary indexes created to service alternative access paths. For example, 
in an SAP R/3 Enterprise 4.7 system, 84% of the indexes that exist in the system are primary 
clustering indexes, and the remaining 16% are additional secondary indexes. As an SAP 
customer receives both the entire set of application code, and database schema (or 
metadata) from the one source, generally the system functions very well with no adjustments. 

In the case where performance or throughput may be enhanced through additional indexes 
being created, tools are supplied as part of the package to facilitate this action. This action is 
often performed where additional functions are coded and implemented by a customer, or the 
system is used in a manner not expected in the default setup of the supplied application. In 
many cases the SAP application is supplied with definition data in the SAP Data Dictionary for 
indexes which are not created by default. These may be then be created easily in the 
database, for cases where specific functionality that is not universally used by all SAP 
implementations takes place in an SAP system.

The result of these two design constraints of the DBMS and the application package (prior to 
DB2 V8) previously meant that the clustering and partitioning indexes were usually one and 
the same, and — as the primary clustering index is predominantly used as the access path for 
SQL statements — in most customer cases, this works well. The one remaining 
consideration, in this case, is where the key range of the primary clustering index does not 
lend itself to an efficient scheme of partitioning. For example, the primary key distribution may 
be very “lumpy”, and change activity is not evenly distributed, or concentrated unevenly 
across the key ranges. This results in added overhead in maintaining good data distribution, 
for example, with REORG PART utilities. Also, it can result in inefficient usage of the available 
underlying disk, if the chosen partitioning scheme is less than ideal.

CREATE                    INDEX index-name ON   table name ... 

UNIQUE

NOT CLUSTER
CLUSTER
PARTITIONED
NOT PADDED
PADDED

other options

(  PART integer
VALUES ...

)1

using block, etc.1
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3.1.5  Example case of an SAP table
An example of the separation of clustering and partitioning is shown in Figure 3-2 on page 71, 
where the table GLPCA is used. For this example, there is a column in the table which suits 
the purpose of partitioning to address size limitations, POPER. This column is the financial 
period of the records, and allows an even distribution of data, and a very structured roll-on 
roll-off process to be followed for long term data management. 

In this case, there is no index containing this column. Prior to DB2 V8, the database 
administrator would need to have created an additional index on the table to allow the 
partitioning to take place. The creation of the index would have all of the negative impacts 
associated with an additional index, such as additional disk requirements, performance 
penalty associated with change activities, etc. Presumably an index based on this column 
would have no dramatically positive performance impact for the set of SQL statements 
executed on the table, else it would have already been created.

In the example in Figure 3-2, the clustering index on column GL_SIRID remains, and is a 
Data Partitioned Secondary Index, or DPSI. There are a number of other indexes within an 
SAP system on table GLPCA, one of which is shown here, on column DOCNR. In this case it 
has been created as a non-Partitioned Secondary Index, but could be created as a DPSI, 
providing it is not defined as a unique index.

Figure 3-2   Example of partitioning SAP table GLPCA by posting period
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3.2  Index creation enhancements
In this section we discuss two enhancements concerning the creation of indexes, which are 
relevant for SAP systems:

� Invalidation of dynamically cached statements occurs.
� Deferred indexes do not prevent table access.

3.2.1  Invalidation of dynamically cached statements
Once an SQL statement encounters performance problems, a typical remedy is to create an 
appropriate index that the DB2 optimizer can choose to speed up the processing of this 
statement. However, if the statement is cached in the dynamic statement cache (DSC), the 
newly created index is ignored for this statement, prior to DB2 V8, in single subsystem 
environments. It keeps the access path that the DB2 optimizer has previously determined. 
The optimizer can consider the index for the statement only after that statement has been 
removed from DSC, either because it was displaced from DSC or because the database 
administrator explicitly invalidated it. 

While adding to operational complexity, there is a circumvention for this problem that 
addresses known indexes. The statements can be manually invalidated after a new index is 
created, for example, by running the RUNSTATS utility with the options UPDATE NONE 
REPORT NO in DB2 V8. For indexes, however, that are created as part of applying SAP 
maintenance, this is virtually impossible. These indexes are automatically created by SAP. 
Therefore, their existence is not obvious to the database administrator. The existing cached 
statements often cannot take advantage of the new indexes for a considerable amount of 
time. 

In data sharing environments, the creation of an index invalidates cached statements that 
refer to the base table of the new index already before DB2 V8. In this case, the cached 
statements are even quiesced, which means that they cannot continued to be used within 
active transactions.

DB2 V8 introduces analogous behavior for both data sharing and non-data sharing. If a new 
index is created, the affected cached statements are invalidated, but not quiesced. That 
means that statements that are used in active transactions can still be employed until these 
transactions complete. Indexes that are created with the option DEFER YES, which means 
that the index tree is not immediately built, also invalidate cached statements.

This new feature enhances the usability of DB2. It makes DB2 require less manual interaction 
and hence contributes to a less error-prone approach.
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In Figure 3-3 we show the dynamic statement cache statistics on a statement that refers to 
table TATOPA.

Figure 3-3   Invalidation of cached statements: Before index creation

The creation of a new index on table TATOPA invalidates the cached statement. As the 
statement is not part of active transactions, it is immediately removed from DSC. Figure 3-4 
demonstrates that it was removed from DSC.

Figure 3-4   Invalidation of cached statements: After index creation
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3.2.2  Deferred indexes do not prevent table access
Prior to V8, DB2 already allows you to create deferred indexes. Deferred indexes are indexes 
that are created using the DEFER YES clause. When creating a deferred index, the 
description of the index and its index space is added to the catalog, but it is not built. It is 
placed in Rebuild Pending status. The only exception to this is if the table on which the index 
is defined is empty. The advantage of deferring the creation of the index tree is that multiple 
indexes, which are defined on the same table, can be built in a single run rather than scanning 
the table multiple times. For example, SAP BW considerably makes use of deferring index 
creation.

The problem with deferred indexes is that, prior to DB2 V8, they block table access if the 
optimizer selects an access path that uses the deferred index for a given statement. The 
execution of the statement results in SQL code -904 and reason code 00C900AE, which 
indicates that an attempt was made to access an index that is in Rebuild Pending state.

With DB2 V8, the optimizer does not consider indexes in Rebuild Pending state during the 
dynamic prepare of a statement. It avoids indexes in advisory Rebuild Pending state for 
index-only access. To take advantage of deferred indexes as soon as possible, cached 
statements, which refer to the base table of a deferred index, are invalidated if the index is 
rebuilt and reset from Rebuild Pending state. 

This enhanced behavior improves the usability of creating deferred indexes. It eliminates the 
exposure of having the optimizer select an index that is not yet ready to be used. 

Figure 3-5 shows an example where a deferred index (TATOPA~1) is available that perfectly 
matches the predicate of a statement.

Figure 3-5   Index in Rebuild Pending state: Definition
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As Figure 3-6 indicates, the optimizer refrains from exploiting TATOPA~1, since this index is in 
Rebuild Pending state.

Figure 3-6   Index in Rebuild Pending state: Not selected by DB2 optimizer

3.3  Convert column type
In this section we describe the manner in which the SAP supports the alteration of data types 
within the SAP data dictionary environment. 

3.3.1  Supported column type changes
DB2 V8 only supports column type changes between compatible data types. This simply 
means that changes are not supported between the dissimilar field categories of numeric, 
character, and graphic. The following schema changes allowed in DB2 V8, are applicable to 
the SAP application and will be supported by SAP.

� Extend CHAR(n) column lengths

� Change type within character data types (CHAR, VARCHAR)

� Change type within numeric data types (SMALLINT, INTEGER, FLOAT, REAL, FLOAT, 
DOUBLE, DECIMAL)

� Change type graphic data types (GRAPHIC, VARGRAPHIC)

� Allow column data type changes for columns that are referenced within a view

� Allow column changes for columns which are part of an index definition (VARCHAR, 
CHAR, GRAPHIC, VARGRAPHIC)

The alteration of numeric column types (SMALLINT, INTEGER, FLOAT, REAL, FLOAT, 
DOUBLE, DECIMAL), which are part of an index definition, is not supported by SAP.
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Altering numeric columns contained in an index results in the index being placed into an 
RBDP (Rebuild Pending) state, making them unavailable for data access. This is particularly 
problematic for primary key indices enforcing a UNIQUE constraint, because unavailability of 
the primary index effectively prevents INSERT statements and UPDATE statements from 
changing key values.

Furthermore, online schema evolution is most valuable for large tables, meaning that the loss 
of indexes might cause severe performance degradation in the SAP environment. The 
following three examples demonstrate the successful execution of a numeric online schema 
change and an unsuccessful execution because of an index.

3.3.2  Table ZMAKT100I
Figure 3-7 shows the structure of table ZMAKT100I table. This table was created in the 
database and populated with approximately 500,000 rows.

Figure 3-7   SAP DDIC display of ZMAKT100I table

 

 

 

76 DB2 for z/OS V8 Features Benefitting SAP



 

3.3.3  Index ZMAKT100I~Z01
Figure 3-8 shows the structure of a secondary index on table ZMAKT100I.

Figure 3-8   SAP DDIC display of secondary index on table ZMAKT100I
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3.3.4  Example 1: ALTER NUMB4 to INT4 
This example consists of the use of the SE11 tool to change the data element for field 
NUMB4 from ZMARKI (INT2) to ZMARKI4 (INT4). 

SAP object change
Figure 3-9 shows the warning message following the save, giving an opportunity to abandon 
the change.

Figure 3-9   SE11 Change of data element with warning after save
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Figure 3-10 shows the SE11 display following the save of the change to the ZMAKT100I 
object.

Figure 3-10   SE11 Change of data element after continue
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SAP object activation
Figure 3-11 is the SE16 display of the record structure prior to change activation.

Figure 3-11   ZMAKT100I record display before activation
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Figure 3-12 shows the ZMAKT100I activation log.

Figure 3-12   ZMAKT100I activation log
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Figure 3-13 is the SE16 display of the record structure after change activation.

Figure 3-13   ZMAKT100I record display after activation
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DB2 object status after activation
Figure 3-14 shows the status of the objects in the DB2 subsystem before and after a REORG 
of the table space. The status of the table space after activation is AREO*, which is an 
Advisory REORG status. This status indicates that some ALTER statement has been issued 
against an object in the table space which has the potential to reduce performance. This 
status is a recommendation that the table space requires a REORG at the earliest convenient 
time and does not impact data availability.

Following the execution of a REORG, the AREO* status is reset.

Figure 3-14   DB2 status before and after REORG of table space

                Tablespace status after activation                                         
1.  Show AREO* Status

-R870 DISPLAY DB(U040XT3U) SPACE(*)  
                                                            
NAME     TYPE PART  STATUS   
         
ZMAKT10   TS          RW,AREO*                                           
ZMAK1Z6I   IX         RW                                                 
ZMAKT100   IX    RW                                                 

2. REORG  TABLESPACE (U040XT3U.ZMAKT10) UNLDDN (UNLD) WORKDDN(WORK) 

3. Show RW Status

-R870 DISPLAY DB(U040XT3U) SPACE(*)

NAME     TYPE PART  STATUS            

ZMAKT10   TS         RW                                                
ZMAK1Z6I   IX         RW                                                
ZMAKT100    IX         RW   
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3.3.5  Example 2: ALTER NUMB2 to INT4 
This example consists of the use of the SE11 tool to change the data element for field 
NUMB2 from ZMARKI (INT2) to ZMARKI4 (INT4).

SAP object change
Figure 3-15 shows the warning message following the save, giving an opportunity to abandon 
the change.

Figure 3-15   SE11 Change of data element with warning after save
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Figure 3-16 shows the SE11 display following the save of the change to the ZMAKT100I 
object.

Figure 3-16   SE11 Change of data element after continue
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SAP object activation failure
Figure 3-17 shows the behavior of the SAP 6.20 Kernel. The activate fails with a sqlcode of 
+610, a rollback is issued, and the DB2 database is unchanged. There is no means by which 
the required index rebuilds can be driven from the DDIC activation process, and rather than 
leave an index in Rebuild Pending state, a rollback occurs.

Figure 3-17   ZMAKT100I activation log

3.3.6  Effect of ALTER of column in primary key
Even though the SAP activation logic prevents column alteration when indexes are involved, it 
is useful to explore these effects. Figure 3-18 shows the effect of issuing an ALTER against 
the NUMBR column. This column is used in both the primary and secondary indexes of the 
ZMAKT100I table When we issue an ALTER, we see the same SQLCODE of +610. Notice 
that, although the table space is now in AREO* status, both the indexes are in Rebuild 
Pending (RBDP) status.
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In this example (see Figure 3-18), the primary index enforces a unique constraint and the 
RBDP state effectively prevents insert and key update SQL statements against the table.

Figure 3-18   DB2 Status after ALTER involving primary key

3.4  LOB ROWID transparency
In this section, we describe how SAP takes advantage of the ROWID transparent definition for 
LOBs introduced with DB2 V8.

3.4.1  SAP and LOBs
DB2 for z/OS supports LOBs starting with V6. SAP has been using LOBs since Web AS 6.10. 
If a table has at least one LOB column, you have to have an additional ROWID column. But 
you can only have one ROWID column per table regardless of how many LOB columns are 
defined for the table. SAP has its own active dictionary. This means that every database 
object defined in the SAP dictionary must have a corresponding entry in the DB2 catalog. The 
additional ROWID column is unknown to the dictionary. This causes additional special coding 
in every area where DDL is used.

For the convenience of an ABAP programmer, the ABAP processor provides an initial layout 
of a work area. The ABAP processor also checks if the work area and the SAP dictionary 
definition are compatible. In Example 3-1 we show an ABAP example where we access a 
table that consists of three columns: f1 char(1); f2 clob(1G); myrowid.

Example 3-1   ABAP example with LOB

Let’s assume a table lob_test is defined in the SAP dictionary as:
f1: type character with the length of 1
f2: type string

ABAP program snippet:

         Tablespace status after alter of column in primary key                 

1. ALTER TABLE SAPR3."ZMAKT100I"                
    ALTER "NUMBR" SET DATA TYPE INTEGER;  

DSNT404I SQLCODE = 610, WARNING:  A CREATE/ALTER ON OBJECT SAPR3.ZMAKT100I HAS PLACED 
OBJECT IN RBDP

2. Index status is now rebuild pending

-R870 DISPLAY DB(U040XT3U) SPACE(*)

NAME     TYPE PART  STATUS        
ZMAKT10     TS          RW,AREO*                                          
ZMAK1Z6I     IX          RW,RBDP                                           
ZMAKT100    IX          RW,RBDP       
                                       

3. REORG  TABLESPACE (U040XT3U.ZMAKT10) UNLDDN (UNLD) WORKDDN(WORK) 

-R870 DISPLAY DB(U040XT3U) SPACE(*)

NAME     TYPE PART  STATUS            
ZMAKT10    TS           RW                                                
ZMAK1Z6I    IX           RW                                                
ZMAKT100    IX           RW                                                
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data: begin of wa,
       f1(1) type c,
       f2    type string,
      end of wa.

select * into wa from lob_test
...
endselect.

In DB2, the additional ROWID column has to be defined because the dictionary type string is 
mapped to the CLOB data type. In Example 3-1 the ABAP processor generates a layout 
without ROWID. In the database interface, this layout is used as I/O area for the record to be 
fetched. Now, if SAP issues a select * from lob_test, DB2 will return the ROWID column as 
well. But the ROWID would not fit into the I/O area. The solution SAP has chosen is to change 
the statement text. The * gets replaced by the full select list known by the SAP dictionary (field 
list without ROWID column) in the database interface instead of changing each ABAP 
program individually. To hide the ROWID column from the application, a change had to be 
made in the database independent layer of SAP. A similar effort is needed for the SAP J2EE 
application server.

With the capability of hiding the ROWID column from DML and DDL as well, SAP can throw 
away this error-prone special code and use exactly the same code path used for all other 
database platforms. For SAP customers, this should result in a more robust environment.

The argument above is also valid for any application using LOBs. Prior to V8, these 
applications had to change their code in order to run on DB2 for z/OS; now, no code change 
is needed just because LOBs are being used. So the feature of hiding the ROWID makes 
much easier the porting of existing LOB applications to DB2 for z/OS.

3.5  Multiple DISTINCT clauses in SQL statements
In this section we describe the enhancement multiple DISTINCT clause within one subselect.

3.5.1  The SAP usage of DISTINCT
In the ABAP SQL syntax, it is allowed to specify multiple DISTINCTs on different columns in a 
subselect. Prior to DB2 V8, this statement caused an SQL error with SQLCODE -127 
(DISTINCT is specified more than once in a subselect) if the DISTINCT referred to different 
columns.

Let us look at the ABAP select statement in Example 3-2.

Example 3-2   ABAP select statement with two DISTINCTs

tables: db2jsinf.
data: cnt1 type i,
      cnt2 type i.
select count( distinct jobname ) count( distinct creator ) into (cnt1,cnt2) from db2jsinf.
....

The corresponding DB2 code is listed in Example 3-3.
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Example 3-3   Corresponding DB2 select statement

SELECT COUNT( DISTINCT  "JOBNAME" ) , COUNT( DISTINCT  "CREATOR" ) FROM "DB2JSINF"
FOR FETCH ONLY WITH UR

The only possibility to solve the problem with DB2 versions prior to V8 is to change the SAP 
application. Instead of one SQL statement, multiple SQL statements are necessary. In our 
case, we need two statements to get the same result. See Example 3-4.

Example 3-4   Solution with two ABAP SQL statements

select count( distinct jobname ) FROM db2jsinf.

select count( distinct creator ) FROM db2jsinf.

But there is an additional disadvantage besides the necessity of a code change. It is much 
more efficient to scan the table only once and build the two counters in parallel instead of 
scanning the table twice. Both problems are solved by DB2 V8 supporting multiple 
DISTINCTs on different columns in one subselect.
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Chapter 4. SAP Business Information 
Warehouse

In this chapter we describe DB2 V8 features that are particularly beneficial for SAP Business 
Information Warehouse (BW). SAP BW is a scalable data warehouse system that integrates 
and analyzes business information and supports decision processes. It is one of the corner 
blocks of SAP NetWeaver. In contrast to traditional SAP systems, the fundamental trait of 
SAP BW is OLAP (online analytical processing) with fairly complex queries. This is the reason 
why before V8 DB2 ubsystems needed to be tuned differently if they serve SAP BW systems 
rather than other SAP systems. 

Through transfer rules from external systems, operational data enters an SAP BW system 
and is stored in the persistent staging area of the system. After being consolidated and 
cleansed, data is transferred to ODS (operational data store) objects or to InfoCubes. ODS 
objects support reporting functionality only. InfoCubes, on the other hand, are the base for 
multi-dimensional analytical processing. They are implemented by sets of tables that form a 
star or snowflake schema. 

On a regular basis, large amounts of data are transferred from source systems to SAP BW 
systems. To cope with this data, SAP BW takes advantage of DB2's partitioning capabilities. 
Hence, the DB2 V8 enhancements in partitioning, that is the ability to rotate partitions, directly 
benefit SAP BW. These enhancements are described in 3.1, “Partitioning” on page 68.

This chapter covers the following topics:

� Star join enhancements
� Joins with up to 225 tables
� Common table expressions
� Materialized query tables

4
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4.1  Star join enhancements
SAP BW models InfoCubes with dimension tables surrounding a centralized fact table, which 
is typically very large and may contain billions of data rows. The data model is highly 
normalized and therefore encompasses many tables. The dimension tables contain a finite 
number of descriptions of the event occurrences that are stored in the fact table. This avoids 
maintaining redundant descriptive data in the fact table. There is a high correlation among 
dimensions, which leads to a sparse nature of data in the fact table. 

While the relationship between dimension tables and fact table is a parent-child relationship, 
SAP BW does not define foreign keys to manifest this. If dimensions consists of single tables, 
the schema is called a star schema. If they are made up of multiple tables, the schema 
resembles a snowflake and is therefore called a snowflake schema (see Figure 4-1). Unlike 
OLTP queries where a large number of short duration queries execute, OLAP queries involve 
a large number of tables and an immensely large volume of data to perform decision making 
tasks. Hence, OLAP queries are expected to run much longer than OLTP queries, but are less 
frequent.

Figure 4-1   Snowflake schema

DB2 tackles star or snowflake schemas with the described attributes using the star join 
access path. Efficient star join processing is crucial to satisfactory SAP BW performance. Star 
join access involves logical Cartesian joins of dimension tables and joining the cartesian 
product to the fact table. In more detail, the general approach is as follows:

� “Selectively” join from the outside-in: Purely doing a cartesian join of all dimension 
tables before accessing the fact table may not be efficient if the dimension tables do not 
have filtering predicates applied, or there is no available index on the fact table to support 
all dimensions. The optimizer should be able to determine which dimension tables should 
be accessed before the fact table to provide the greatest level of filtering of fact table rows.
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� Efficient “cartesian join” from the outside-in: A physical cartesian join generates a 
large number of resultant rows based on the cross product of the unrelated dimensions. A 
more efficient cartesian type process is required as the number and size of the dimension 
tables increase, to avoid an exponential growth in storage requirements. Index key 
feedback technique is useful for making cartesian joins efficient.

� Efficient “join back”, inside-out: The join back to dimension tables that are accessed 
after the fact table must also be efficient. Non-indexed or materialized dimensions present 
a challenge for excessive sort merge joins and workfile usage. To meet this challenge, 
DB2 V7 provided partial support with the introduction of sparse index on workfiles for the 
inside-out join phase only. DB2 V8 extends this further with controlled materialization and 
also in memory workfiles.

� Efficient access of the fact table: Due to the generation of arbitrary (or unrelated) key 
ranges from the cartesian process, the fact table must minimize unnecessary probes and 
provide the greatest level of matching index columns based on the pre-joined dimensions.

4.1.1  Sparse index in outside-in join phase
For an efficient cartesian process, DB2 employs a logical, rather than physical cartesian join 
of the dimension tables. Each dimension that the optimizer chooses to access before the fact 
table has all local predicates applied with the result sorted into join column order and is 
materialized into its own separate workfile. DB2 simulates a cartesian join by repositioning 
itself within each workfile during nested loop join processing to potentially join all possible 
combinations to the central fact table. Notice that the nested loop join is pushed down to Data 
Manager (stage 1) in this phase of star join processing. The sequence of this simulated 
cartesian join respects the column order of the selected fact table index. 

The sparseness of data within the fact table implies that a significant number of values of the 
cartesian product do not match any fact table records.To optimize execution time, DB2 avoids 
joining unnecessarily derived rows to the fact table. It accomplishes this by introducing an 
index key feedback loop to return the next highest key value whenever a not-found condition 
is encountered. A matching record in the fact table returns the record. A miss returns the next 
valid fact table key so that DB2 can reposition itself within the dimension workfiles, thus 
skipping composite rows with no possibility of obtaining a fact table match. Figure 4-2 
visualizes this process.
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Figure 4-2   Star join: index key feedback

This approach allows significant skipping in the cartesian join, but skipping the index keys is 
not free. As there are no indexes on workfiles used in the outside-in phase of star join 
processing, these workfiles are scanned sequentially. If a dimension table is not at a leading 
position within the cartesian product, it is likely that the workfile containing it is scanned 
repetitively. In this case, the cost of skipping workfile entries may grow significantly. 

DB2 V8 introduces sparse indexes on snowflake workfiles that are used during outside-in 
processing to overcome this problem. These sparse indexes reside in memory and consume 
up to 240 KB. If the total number of workfile entries is small enough, then all entries can be 
represented in the index. This provides a one-to-one relationship between index entries and 
workfile records. The index only becomes sparse if the number of index entries cannot be 
contained within the space allocated. The structure of a sparse index is flat rather than a 
b-tree structure of standard table indexes (see Figure 4-3). The index is probed through an 
equi-join predicate and a binary search of the index is utilized to find the target portion of the 
workfile. Then a sequential search of the identified workfile portion is performed to find the 
corresponding record. 

The benefit of these sparse indexes is that they allow fast access to arbitrary records of 
snowflake workfiles that are used in the outside-in phase of star join processing. This ability is 
important when considering the index key feedback mechanism to process the virtual 
cartesian product.
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Figure 4-3   Star join: Sparse index

4.1.2  In-memory workfiles
While the sparse indexes avoid sequential scans of the workfiles, they do not eliminate 
potentially large random I/O activity. Therefore, DB2 V8 goes one step further and additionally 
supports in-memory workfiles. The in-memory workfiles contain all the columns of a workfile 
that are necessary to satisfy a query. These columns are the join column and the selected 
columns. It is a dense index in the sense that it contains an entry for each workfile record. 

As the in-memory workfiles potentially save a large number of I/O operations against 
workfiles, they promise a considerable performance gain. Also, they may reduce contention of 
the workfile buffer pool, because they are cached in a separate storage pool. This is 
especially beneficial if concurrent sort operations are performed.

The new storage pool that is dedicated to holding in-memory workfiles is called star join pool. 
The DB2 ZPARM SJMXPOOL specifies its maximum size, which defaults to 20 MB. It resides 
above the 2 GB line and is only in effect when star join processing is enabled through ZPARM 
STARJOIN. When a query that exploits star join processing finishes, the allocated blocks in 
the star join pool to process the query are freed. 

The use of the star join pool is not compulsory. If it is not created, star join processing takes 
place without using in-memory workfiles. Also, if the allocation of space for a workfile in the 
star join pool fails, because SJMXPOOL is reached, then processing falls back to using the 
new sparse index. 

4.1.3  Sparse index during inside-out join phase
After joining the logical cartesian product of selective dimension tables to the fact table, the 
intermediate result (composite table) may still be large. The lack of indexes on workfiles used 
during the inside-out phase of star join processing makes the optimizer choose sort merge 
join to subsequently join the remaining dimension tables to the composite table. This may 
involve sorting the large composite table with excessive CPU and I/O consumption and 
increased parallelism overhead. Therefore, DB2 V7 introduced the support of sparse indexes 
on the snowflake workfiles of the inside-out phase. This allows the optimizer to consider 
nested loop join, which is more efficient in many cases.
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DB2 V8 provides further enhancements in the inside-out join phase by being able to select 
supporting nested loop join (rather than merge scan join) and in-memory workfiles in this 
phase (see Figure 4-4). These in-memory workfiles behave the same as the in-memory 
workfiles from the outside-in phase and also populate the star join pool. Moreover, DB2 V8 
accomplishes controlled materialization of snowflakes in this phase.

Figure 4-4   Star join: Inside-out join phase

4.1.4  Snowflake handling: Controlled materialization 
Prior to DB2 V8, all snowflakes were materialized. This provided the benefit of simplified 
access path selection by reducing the overall number of tables joined. 

For the inside-out join phase (post fact table), relatively small snowflakes, or snowflakes that 
provide adequate filtering, are good candidates to be materialized. With the introduction of 
in-memory workfiles and/or sparse index on workfiles, the snowflake, which may contain 
many tables, is resolved once and fact table rows are joined to a much smaller result set using 
an efficient join method that can take advantage of the in-memory or sparse index.

For large or non-filtering snowflakes, the materialization overhead may dominate the overall 
query time, and is therefore detrimental to query performance. For in-memory workfile and 
sparse index on workfile, the result must be sorted to allow a binary search to locate the 
target row. Sorting a large result can be expensive. If the memory is available for a very large 
result, the binary search for in-memory workfiles may result in multiple iterations to find the 
target row. If fallback occurs to sparse index, then the index may be too sparse, and therefore 
each locate in the workfile may still require a large sequential scan.

V8 introduces controlled materialization. The filtering of each snowflake is ranked, and only 
those snowflakes that provide adequate filtering compared to the base table size will be 
materialized.

Tip: APAR PQ61458 provides sparse indexes on the snowflake workfiles that are used in 
the inside-out join phase for DB2 V7.
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The choice not to materialize can overcome the sort and workfile allocation overhead, and 
rather than requiring an index to be built on the workfile, the indexes on the underlying 
snowflake tables can be used for efficient joins after the fact table.

Besides the star join enhancements already described, DB2 V8 provides an improved cost 
estimation algorithm that better estimates the filtering effect of dimensions. This results in a 
better table join sequence and can yield a significant performance improvement.

4.2  Joins with up to 225 tables
The nature of queries against BW InfoCubes is that they are highly complex and easily 
involve dozens of tables. The access path that the DB2 optimizer selects for these queries is 
typically star join. The general limit of 15 tables, which prior versions of DB2 imposed, is 
therefore too low. To overcome this problem, DB2 V6 and DB2 V7 already raised the limit to 
225 tables in the FROM clause if a query qualifies for star join processing. To completely get 
around the 15 table limit, customers can make use of the “hidden” ZPARM MXTBJOIN so that 
their queries can run. This parameter is hidden because, in general, there is a need for extra 
storage and processor time when dealing with these complex queries.

The reason the default limit on the number of tables joined has stayed at 15 is because there 
has been a risk that a large query could cause DB2 to consume extra amounts of resources 
(storage and CPU) when evaluating the cost of each possible join sequence.

In DB2 V8 the default limit is changed from 15 to 225 tables to be joined. This means that 
users can more easily join more than 15 tables. It also means that DB2 can join this many 
tables without restriction.

A number of enhancements have been implemented in DB2 V8 to reduce the amount of 
resources needed for the optimization process. This allows you to join more tables using less 
resources. A new functionality can recognize common query patterns (like star schema) and 
optimize large joins very efficiently.

The number of possible join permutations grows exponentially with the number of tables. To 
avoid excessive resource consumption during query optimization, DB2 V8 has enhanced the 
internal monitoring of how much storage and CPU is being consumed by the optimization 
process. If it exceeds certain thresholds, then curbs are put in place to force the optimization 
process to complete quickly. When excessive resources have been consumed by the 
optimization process, the goal changes — from selecting the “optimal” plan, to selecting a 
“reasonable” plan, in a minimal amount of time.

The resource threshold used is expressed in terms of storage (number of megabytes, 
MAX_OPT_STOR), CPU (number of seconds, MAX_OPT_CPU), and elapsed time (number 
of seconds, MAX_OPT_ELAP). The threshold is large enough so that most existing queries 
are not impacted, but small enough so that they prevent severe resource shortages. To guard 
against regressing existing queries, the threshold is only applied when the number of tables 
joined is greater than 15, the limit prior to DB2 V8. This limit can be changed through the 
hidden ZPARM TABLES_JOINED_THRESHOLD. SAP currently recommends to set this 
parameter to 10.

Tip: The ZPARM MXQBCE, which was introduced with DB2 V7, is still supported. If both 
MXQBCE and MAX_OPT_STOR/MAX_OPT_CPU/MAX_OPT_ELAP are set, DB2 V8 
employs the more restrictive value. To avoid confusion, you should only use one option.
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4.3  Common table expressions
DB2 V8 introduces common table expressions (CTEs), a new SQL feature that acts like a 
temporary view that is defined and used for the duration of a statement execution. There can 
be many CTEs in a single SQL statement, but each must have a unique name. Each CTE can 
be referenced many times in the statement, even by other CTEs, and all references to a CTE 
in a statement execution share the same result table. This differentiates them from regular 
views or nested table expressions (NTE), which are derived each time they are referenced. 
CTEs are introduced by the keyword WITH and occur at the beginning of the query. 

Figure 4-5 contains a sample SQL statement that makes use of a CTE. The first CTE in the 
statement is the query for table expression E, which determines employee number, last name, 
salary, and hiring decade for all employees of the EMPLOYEE table. The columns of the 
associated result table are those named in the SELECT statement. For all available decades, 
the CTE M determines the minimum salary paid to the employees that were hired during the 
appropriate decade.

Figure 4-5   Common table expression

For comparison, as shown in Figure 4-6, an NTE can be used to produce the same result set.

Figure 4-6   Nested table expression

SELECT EMPNO, LASTNAME, SALARY,
       SUBSTR(CHAR(HIREDATE,ISO),1,3) CONCAT '0 - 9'
         AS HIREDECADE
       FROM EMPLOYEE

SELECT HIREDECADE, MIN(SALARY)
       FROM 
       GROUP BY HIREDECADE

E

WITH
  E AS
    (
      
     
     
     
    ),
   M (HIREDECATE, MINIMUM_SALARY) AS
    (

    )
SELECT E.EMPNO, E.LASTNAME, E.HIREDECADE,
       E.SALARY, M.MINIMUM_SALARY
       FROM E INNER JOIN M
         ON E.HIREDECADE = M.HIREDECADE

SELECT E.EMPNO, E.LASTNAME, E.HIREDECADE, E.SALARY, M.MINIMUM_SALARY
       FROM
          (

           ) AS E 
  
         INNER JOIN  
           (
            

 

          ) AS M 

        ON E.HIREDECADE = M.HIREDECADE

SELECT EMPNO, LASTNAME,SALARY,
       SUBSTR(CHAR(HIREDATE,ISO),1,3) CONCAT '0 - 9'
         AS HIREDECADE
       FROM EMPLOYEE

SELECT S.HIREDECADE, MIN(S.SALARY) AS MINIMUM_SALARY
       FROM
         ( 
           SELECT SUBSTR(CHAR(HIREDATE,ISO),1,3)
                    CONCAT '0 - 9' AS HIREDECADE,
                  SALARY
                  FROM EMPLOYEE
         ) AS S
       GROUP BY S.HIREDECADE
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As the example shows, the column names of the CTE are specified in parentheses and follow 
the name of the CTE. This is the same technique as used in naming the columns of a view. 
The SELECT follows the common table expressions. Since it can refer to the CTEs, the SQL 
statement is more comprehensible compared to the use of NTEs.

The introduction of CTEs gives SAP BW on zSeries more flexibility, which is important in this 
fairly dynamic and complex field with challenging queries. Tasks for which SAP BW currently 
employs NTEs might be revisited in the future and solved by CTEs to take advantage of its 
benefits.

4.3.1  Recursive SQL
By means of CTEs, DB2 V8 introduces recursive SQL. Recursive SQL is very useful to 
retrieve data from tables that contain component breakdowns where each component is 
broken down into subcomponents and each subcomponent is broken down again into 
sub-subcomponents, etc. For example, BW InfoCubes support the definition of external 
hierarchies on columns of InfoCubes. External hierarchies span dimensions that allow 
multi-level grouping of data records.

Figure 4-7 shows a hierarchy that groups countries at different granularities. Hierarchy 
definitions are stored in single tables. To determine the countries in EMEA, for example, in a 
first run, the table first needs to be accessed to retrieve the subnodes Europe and Africa. 
Recursively, in a second run, the countries that are assigned to the nodes Europe and Africa 
are retrieved to establish the final result set.

Figure 4-7   SAP InfoCubes: External hierarchy

The described query could be satisfied using the recursive statement from Figure 4-8. 
Recursive SQL involves defining a CTE that references itself. The initialization SELECT is 
executed only once. It controls the starting point of the recursion. The iterative SELECT is 
executed for all qualifying records and then repetitively for all further records that qualify.

While SAP BW today employs a database-independent approach to hierarchy processing, 
DB2 V8 allows for an alternative approach that might be considered in the future. 
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Figure 4-8   Recursive SQL

4.4  Materialized query tables
The nature of queries in SAP BW is to access a significant amount of rows of very large fact 
tables, which may contain billions of rows, that are joined with several dimension tables. A 
typical query selects based on dimensions, aggregates on a few dimension columns, and 
applies column functions on the records of interest. Due to the large amount of data to be 
processed, these queries can take up a considerable elapsed time to process. In order to 
improve the performance and reduce the elapsed time of these queries, DB2 can exploit 
query parallelism. 

A complementary approach is to somehow save (precompute and materialize) the results of 
prior queries and reuse these common query results for subsequent queries. DB2 V8 allows 
you to materialize and save these results for later use and avoid recomputation of the same 
result set, thus potentially reducing the elapsed time from hours down to minutes or seconds. 
The materialized result sets reside in so-called materialized query tables (MQTs). If there are 
MQTs available that can be used to satisfy parts of a query, DB2 automatically rewrites the 
query. As a side-effect, the optimization of queries that reference tables on which MQTs are 
defined may increase due to the catalog accesses and processing during the automatic query 
rewrite phase.

SAP BW employs its own mechanism to precompute queries and materialize the result set. 
The result sets are stored in so-called aggregate tables. Aggregates are always associated 
with an InfoCube. Aggregates are computed by request or automatically after new data has 
been loaded. They are one of the corner blocks of SAP BW. As MQTs implement the same 
concept as aggregates and therefore would not add additional value, it does not make sense 
to exploit them for InfoCubes. However, aggregates cannot be defined for ODS objects. 
Hence, MQTs have the potential to accelerate ODS queries.

WITH 
  RECURSIVETABLE (NAME, ISLEAF) AS
    (

      SELECT ROOT.NAME, ROOT.ISLEAF
             FROM HIERARCHYTABLE ROOT
             WHERE ROOT.PARENT = 'EMEA'

      

      SELECT CHILD.NAME, CHILD.ISLEAF
             FROM RECURSIVETABLE PARENT, HIERARCHYTABLE CHILD
             WHERE PARENT.NAME = CHILD.PARENT
             AND   PARENT.ISLEAF = 'NO'
     )

  SELECT NAME
         FROM RECURSIVETABLE
         WHERE ISLEAF = 'YES' 

UNION ALL

Initialization Select

Iterative Select

Main Select
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The design and use of materialized query tables involves trade-off between conflicting design 
objectives. On one hand, MQTs that are specialized to a particular query or set of queries 
lead to the largest performance benefits. However, this approach can lead to a proliferation of 
MQTs, because many are needed to support a wide variety of queries. Then the maintenance 
costs of MQTs can become an issue. On the other hand, MQTs that are more generic and 
that support a larger number of queries often tend to provide less performance improvement. 
Since there are fewer MQTs, the costs of maintaining them are reduced.

The following steps are necessary to exploit MQTs:

� Creating MQTs
� Populating and maintaining an MQT
� Enable the MQT for query optimization

4.4.1  Creating MQTs
As we mentioned previously, a materialized query table contains pre-computed data. The 
pre-computed data is the result of a full select on existing tables. 

You can either:

� Create MQTs from scratch using CREATE TABLE statements.
� Change existing tables into an MQTs using ALTER TABLE statements.

Creating an MQT from scratch
The CREATE TABLE statement syntax has been enhanced to allow you to create an MQT. 
The new syntax is shown in Figure 4-9.

Figure 4-9   CREATE MQT: Syntax

CREATE  TABLE      table-name 

as-subquery-clause

as-subquery-clause :

(    column name    ) 
,

AS ( fullselect ) 

materialized-query-table-options

DEFINITION ONLY
copy-options

MAINTAINED BY SYSTEM

MAINTAINED BY USER

ENABLE QUERY OPTIMZATION

DISABLE QUERY OPTIMIZATION

DATA INITIALLY DEFERRED REFRESH DEFERRED

materialized-query-table-options :

(1)

(1) The same clause should not be specified more than once
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Creating an MQT is similar to creating a view. In both cases you specify a fullselect to define 
its contents. The difference is that a view is only a logical definition, while a materialized query 
table contains materialized data of the query result on disk. For this reason, an MQT is also 
called a materialized view. Example 4-1 shows a CREATE TABLE statement to create an 
MQT. The fullselect, together with the DATA INITIALLY DEFERRED and REFRESH 
DEFERRED clauses, defines the table as a materialized query table.

Example 4-1   Sample create of a materialized query table

CREATE TABLE TRANSCNT (ACCTID, LOCID, YEAR, CNT)
AS ( SELECT ACCTID, LOCID, YEAR, COUNT(*)

FROM TRANS
GROUP BY ACCTID, LOCID, YEAR )

DATA INITIALLY DEFERRED
REFRESH DEFERRED
MAINTAINED BY SYSTEM
ENABLE QUERY OPTIMIZATION;

The column names of an MQT can be explicitly specified or be derived from the fullselect 
associated with the table.

You have the option to disable a MQT from being considered for automatic query rewrite. If it 
is disabled, then there are fewer restrictions on the fullselect that defines an MQT.can be 
specified for it. 

Registering existing tables as MQT
Customers may have already used regular tables as a form of materialized query tables and 
implemented their own populating mechanisms. With DB2 V8, to take advantage of the 
automatic query rewrite for these tables, you can register these existing tables as materialized 
query tables. This can be achieved by using a new clause of the ALTER TABLE statement.

The statement in Example 4-2 registers a table TRANSCOUNT as a materialized query table 
with the associated subselect to DB2. The data in the table will remain the same as indicated 
by DATA INITIALLY DEFERRED, and will still be maintained by the user, as specified by the 
MAINTAINED BY USER clause. The user can continue to LOAD, INSERT, UPDATE, or 
DELETE data in the table TRANSCOUNT. ALTER TABLE can also change a materialized 
query table into a base table.

Example 4-2   Converting a base table into an MQT

ALTER TABLE TRANSCOUNT ADD MATERIALIZED QUERY
 (SELECT ACCTID, LOCID, YEAR, COUNT(*) as cnt

FROM TRANS
GROUP BY ACCTID, LOCID, YEAR) 

DATA INITIALLY DEFERRED
REFRESH DEFERRED
MAINTAINED BY USER;

The ALTER TABLE statement can be used to enable — which is the default — or to disable 
an existing materialized query table for consideration by automatic query rewrite. Altering a 
table to change it to an MQT with query optimization enabled makes the table immediately 
eligible for use in query rewrite. When altering a table this way, it is important to pay attention 
to the accuracy of the data in the table. If the contents of a table does not yet properly reflect 
the contents of corresponding source table, then the table should be altered to an MQT with 
query optimization disabled. In a subsequent step the table should be refreshed and enabled 
with query optimization.
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You can also switch materialized query table types between system-maintained and 
user-maintained with the ALTER TABLE statement.

4.4.2  Populating and maintaining an MQT
The time when a materialized query table is populated with the pre-computed data depends 
on the definition of DATA INITIALLY DEFERRED or REFRESH DEFERRED.

DATA INITIALLY DEFERRED means that when a MQT is created, the MQT is not populated 
by the result of the query. 

REFRESH DEFERRED means the data in the MQT is not refreshed immediately when its 
source tables are updated. However the data can be manually refreshed at any time, for 
example by using the REFRESH TABLE statement.

The MAINTAINED BY option indicates how the data in the MQT is to be refreshed:

� MAINTAINED BY SYSTEM, which is the default, indicates that the MQT is 
system-maintained. The only way to refresh the data in a system-maintained MQT is by 
using the REFRESH TABLE statement. A system-maintained MQT cannot be updated by 
using the LOAD utility, INSERT, UPDATE or DELETE SQL statements. Therefore, a 
system-maintained MQT is read-only. If a view or a cursor is defined on a 
system-maintained MQT, it becomes read-only.

� Alternatively, MAINTAINED BY USER can be specified to define a user-maintained MQT. 
A user-maintained MQT can be updated by the LOAD utility, INSERT, UPDATE or 
DELETE SQL statements, as well as the REFRESH TABLE statement. Therefore, a 
user-maintained MQT is updatable.

REFRESH TABLE
The REFRESH TABLE statement can be used to populate an MQT. See Example 4-3 for a 
sample REFRESH TABLE statement.

Example 4-3   Sample REFRESH TABLE statement

REFRESH TABLE mq_table;

The REFRESH TABLE statement:

1. Deletes all rows in the MQT using mass delete, if the tablespace was defined as 
segmented.

2. Executes the fullselect in the MQT definition to recalculate the data from the source tables 
that are specified in the fullselect with the isolation level for the materialized query table 
(as recorded in the catalog).

3. Inserts the calculated result into the MQT.

4. Updates the catalog for the refresh timestamp and cardinality of the MQT.

Important: With DB2 V8, all MQTs have to be defined as DATA INITIALLY DEFERRED 
and REFRESH DEFERRED. This means the user has to ensure that the data currency 
meets the user requirements to avoid using outdated data and that the user is responsible 
to keep the data in the MQT up to date.

Note: With DB2 UDB for Linux, UNIX, and Windows the REFRESH TABLE is only 
allowed on system-maintained tables.
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Even though the REFRESH TABLE statement involves delete and insert, it is a single commit 
scope. All changes made by the REFRESH TABLE statement are logged. 

The REFRESH TABLE statement is an explainable statement. The Explain output contains 
rows for INSERT with the fullselect in the MQT definition.

4.4.3  Automatic query rewrite using MQTs
A major advantage of MQTs is that the optimizer understands them. While applications 
always reference the source table, the optimizer takes a look at the original query during 
access path selection and determines whether the referenced tables can be replaced by an 
MQT to reduce the query cost. 

The process of recognizing when a materialized query table can be used in answering a 
query, deciding whether one or more MQTs should actually be used in answering a query, 
and rewriting the query accordingly, is done by a DB2 function called automatic query rewrite 
(AQR). 

Automatic query rewrite is based on the fact that the submitted query may share a number of 
common sub-operations specified in the fullselect of a materialized query table definition. 
Therefore, the result of the submitted query can be derived from or can directly use the result 
of one or more MQTs. In other words, the automatic query rewrite process analyzes the user 
query to see if it can take advantage of any of the existing MQTs, by “proving” that the 
contents of a materialized query table overlaps with the content of a query, and compensating 
for the non-overlapping parts. When such an overlap exists, the query and the MQT are said 
to match. After discovering a match, the query is rewritten to access the matched 
materialized query table instead of one or more source tables, originally specified in the 
query.

The automatic query rewrite process searches for matched MQTs that result in an access 
path with the lowest cost after rewrite. The costs of the rewritten query and the original query 
are compared and the one with the lowest cost is chosen. If the final query plan comes from a 
rewritten query, the PLAN_TABLE shows the name of the matched MQTs and the access 
path using them. For more information on the information about MQTs in the PLAN_TABLE, 
see 4.4.4, “Determining if query rewrite occurred” on page 105. No authorization on an MQT 
is required for it to be used in automatic query rewrite.

There are a number of options and settings that affect whether or not an MQT is considered 
by AQR. Some of these options and settings are considered in the following.

DDL options
You can specify the following options on the CREATE or ALTER TABLE statement that affect 
whether or not DB2 will consider an MQT during automatic query rewrite.

� ENABLE QUERY OPTIMIZATION, which is the default, specifies that the MQT can be 
exploited by automatic query rewrite. 

� When the DISABLE QUERY OPTIMIZATION clause is specified, the MQT is not 
considered by the automatic query rewrite process.

In addition, automatic query rewrite only considers a system-maintained MQT if a REFRESH 
TABLE has occurred. When using user-maintained MQTs, you may wish to create the MQT 
with the DISABLE QUERY OPTIMIZATION option, and ALTER it later to ENABLE QUERY 
OPTIMZATION, once the table has been (re)populated.
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Special registers
The new special registers CURRENT REFRESH AGE and CURRENT MAINTAINED TABLE 
TYPES FOR OPTIMIZATION also control whether or not an MQT can be considered by 
automatic query rewrite for a dynamically prepared query.

� CURRENT REFRESH AGE. The value in this special register represents a refresh age. 
The refresh age of an MQT is the time between the current timestamp and the time that 
the MQT was last refreshed using the REFRESH TABLE statement. The latter information 
is recorded in the REFRESH_TIME column of the SYSVIEWS system catalog table.

In DB2 V8, only CURRENT REFRESH AGE of 0 or ANY is supported:

– 0 means only MQTs that are kept current with the source tables are considered by 
automatic query rewrite. Since DB2 V8 does not support immediately refreshed MQTs, 
specifying 0 means that AQR will not consider any MQTs.

– ANY represents the maximum duration, meaning all MQTs are considered by 
automatic query rewrite. 

A subsystem default value for CURRENT REFRESH AGE can be specified in the 
CURRENT REFRESH AGE field on panel DSNTIP4 at installation time, DSNZPARM 
REFSHAGE.

� Besides the REFRESH TABLE statement, user-maintained MQTs can be updated using 
INSERT, UPDATE, or DELETE SQL statements, or through the LOAD utility. Therefore, 
the refresh age of a user-maintained MQT can no longer truly represent the freshness of 
data in the MQT. Hence, the new special register CURRENT MAINTAINED TABLE 
TYPES FOR OPTIMIZATION is used to determine which type of MQTs — 
system-maintained or user-maintained — are considered by automatic query rewrite. 

– ALL Indicates that all MQTs are considered by automatic query rewrite.

– NONE Indicates that no MQTs are considered.

– SYSTEM Indicates that (under the assumption that CURRENT REFRESH AGE is 
set to ANY), only system-maintained MQTs are considered.

– USER Indicates that (under the assumption that CURRENT REFRESH AGE is 
set to ANY), only user-maintained MQTs are considered.

A subsystem default value for CURRENT MAINTAINED TABLE TYPES FOR 
OPTIMIZATION can be specified in the CURRENT MAINT TYPES field on panel 
DSNTIP4 at installation time, DSNZPARM MAINTYPE.

MQTs created or altered with DISABLE QUERY OPTIMIZATION specified are not eligible for 
automatic query rewrite, thus, are not affected by the above special registers. If a 
system-maintained MQT has not been populated with data, then the MQT is not considered 
by automatic query rewrite. For a user-maintained MQT, the refresh timestamp in the system 
catalog table is not maintained.

4.4.4  Determining if query rewrite occurred
You can use the SQL EXPLAIN statement to determine if DB2 has rewritten a user query to 
use an MQT. When DB2 rewrites a query, the PLAN TABLE shows the name of the employed 
MQT in the TNAME column instead of the table you specified in the query. The value of the 
TABLE_TYPE column is set to “M”, which indicates that the table in the TNAME column is an 
MQT.

This information is also available in mini-plan performance trace record (IFCID 0022).
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Chapter 5. Performance

In this chapter we describe the following performance related enhancements:

� Early tests and general expectations
� Lock issues
� Multi-row fetch and insert
� Query optimization
� Support for backward index scan
� Faster DSC short prepares
� Data sharing enhancements

5
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5.1  Early tests and general expectations
The workload of large DB2 users has been growing tremendously in the last two decades. 
Complex and large systems have been reaching bottlenecks within the DB2 subsystem that 
limit the exploitation of the zSeries architecture. The major limit to be removed to allow 
continuous growth is related to the 2 GB virtual storage per address space in a 31-bit 
architecture, which in turn limits the utilization of the available larger real storage. Real 
storage usage has been growing at the rate of about 20 to 30% a year in line with the growth 
of threads and storage pools. With DB2 V7, the DBM1 address space size would not be able 
to scale performance and utilize the CPU speed and the 128 GB of real storage now available 
with the z990 machine, because it can prevent full CPU usage by limits in buffer pools and 
concurrent threads. 

A large amount of new code has therefore been introduced in DB2 V8 in order to align with 
the zArchitecture and start exploiting the 64-bit virtual addressing.

Extra code means larger module sizes and larger control blocks, which in turn imply an 
increase in real storage utilization. Some CPU time increase is also unavoidable to execute 
the extra code necessary for the 64 bit virtual support, the increase in size for names and 
keys, the increase in size and complexity of the SQL statements, and the Unicode catalog 
support.

The bottom line is that, in order to put DB2 in a position to continue growing beyond the 
current limits, there is a delta to be paid in real storage and CPU utilization. For estimates on 
the virtual and real storage requirements of DB2 subsystems that serve SAP systems, see 
the SAP documentation SAP on IBM DB2 UDB for z/OS: Database Administration Guide - 
SAP NetWeaver Version 6.40 or SAP note 717215 

Once positioned with the requirements (z/OS 1.3 or later, and zSeries machine) you will be 
able to continue to grow linearly and take advantage of the performance enhancements of 
DB2 V8.

In terms of expectations, the major performance enhancements can be associated to the 
following three groups: 

� 10 to 100 times possible performance improvements

– MQT
– More indexable predicates
– DSTATS

� 2 to 10 times possible performance improvements

– Star join work file index and in memory work file
– DBM1 virtual storage constraint relief
– Partition load/reorg/rebuild with dpsi

� Up to 2 times (more in distributed systems)

– Multi-row fetch, cursor update, cursor delete, insert

See 1.3, “DB2 UDB for z/OS Version 8 overview” on page 13 and related bibliography for a 
description of the foregoing functions.
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5.2  Lock issues
In this section we describe typical locking problems within an SAP system and show how the 
new features in DB2 V8 for z/OS will help to solve these problems.

Locking problems within an SAP system, especially if the system is under heavy load, can 
cause the unavailability of the system for every user. If this happens, the responsible support 
personnel have to resolve the problem in a very short time — the pressure on them is very 
high. On the other hand, these are the kind of problems that are not easy to find. So, what the 
support person usually does, is to find out who is blocking the system and just kill this 
process. This helps the system to run again, but it does not solve the problem. To see exactly 
what caused the locking problem, heavy traces are needed. Because these traces produce a 
large amount of output, it is very helpful to reproduce the lock situation in a small, controlled 
environment. Unfortunately, very often the lock situation cannot be reproduced easily and 
only occurs if the system is under heavy load. In this case, a heavy trace can affect the 
system badly and also produce large output, which is hard to analyze. 

You can attack these problems in two ways:

� By providing better tools to analyze locking problems
� By avoiding locking problems at all 

The second way is obviously much more attractive. DB2 for z/OS offers considerable help for 
an application such as SAP to avoid locking problems.

In general, avoiding or eliminating lock situations provides relief in many areas, such as 
these:

� The system is no longer unusable because a crucial resource is blocked.
� Better overall system performance is experienced.
� Better single transaction performance occurs.
� There are no abnormal endings of transactions because of timeouts.
� Administration is easier because the objects are not blocked.
� There are fewer complaints by end users.

5.2.1  Release locks at close
The SAP applications make extensively use of business objects such as documents. A single 
object can easily exceed the maximum record size (32 KB) of DB2. Because of this, SAP 
splits each object into pieces, orders them by a sequence number, and stores each piece in a 
database row. All rows together make up the business object. To rebuild the business object 
out of the database rows, SAP reads all rows belonging to one object in the order of the 
sequence number. The SAP database layer must ensure that it reads a consistent object. 

To read several rows consistently, the SAP database layer sets the isolation level to read 
stability (RS). DB2 takes a share lock for each row it returns. Unlike the isolation level, cursor 
stability (CS), the share locks stay if the cursor moves forward. The isolation RS guarantees 
that nobody can update a row that was read with RS until COMMIT. This is more than SAP 
needs. After reading the rows consistently, the SAP application doesn’t care about changes to 
these rows. 
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The combination of holding shared locks until COMMIT and not committing long-running 
batch programs very often causes lock contentions within an SAP system. The batch program 
reads rows with isolation level RS and runs for hours without issuing a COMMIT. Each 
transaction that tries to update such a row will fail with an SQLCODE -913 and REASON 
CODE 0C9008E (timeout).

With the exploitation of the release locks at close capability of DB2 V8, shared locks can be 
released at close cursor time. SAP exploits this feature starting with release 6.40 of WebAS. 
This kind of problem should not occur any more.

5.2.2  Reduce lock contention on volatile tables
A volatile table is a table whose contents can vary from zero to very large at run time. In an 
SAP system this kind of table is used, for instance, to store business data created during the 
day and cleaned up after the business day. 

Problem description and solution
DB2 often does a table space scan or non-matching index scan when the data access 
statistics indicate that a table is small, even though matching index access is possible. This 
becomes a problem if the table is small or empty when statistics are collected, but the table is 
large when it is queried. In that case, the statistics are not accurate and this can lead DB2 to 
pick an inefficient access path. Favoring index access may be desired for tables whose size 
can vary greatly.

So, the table starts with 0 records and gets filled during the day. If DB2 picks a table space 
scan as access path, you can see a dramatically increasing response time during the day. 
Running a RUNSTATS if the table is big enough would certainly help. But in an SAP system, it 
is a huge effort to watch each volatile table and check if the table is big enough and index 
access is needed. The installation of a hot package or a change in the customizing can easily 
change the number of volatile tables in the system.

Prior to V8, two methods could be used to address the challenge, but neither of them without 
deficiencies. Setting ZPARM NPGTHRSH to -1 practically disables cost based optimization. 
An index access is used for every statement. As the cost based optimization is one of the 
DB2 “jewels” this approach is strongly discouraged. Notice that setting NPGTHRSH to some 
positive value limits the number of tables for which the index access is preferred to those with 
NPAGES lower than the NPGTHRSH setting. Therefore, this ZPARM is intended to ensure 
the index access path on tables that fluctuate in their cardinality, but it does not cover all the 
volatile tables (those with NPAGES higher than the NPGTHRSH value). 

Another approach is to update the catalog statistics so that the required access path is likely 
to be selected, but this is both unreliable (there is no guarantee that the specific access path 
will be actually selected) and difficult to administer. Every RUNSTATS removes the updates 
(so the RUNSTATS must be avoided for these tables). Performing the updates creates 
contention with Prepare statements and DDL.

Attention: The SAP enqueue mechanism is not used when an ABAP program reads a 
business object. To read a business object consistently, SAP relies on the DB2 locking 
mechanism. SAP is using this enqueue mechanism to protect a business object that has 
been changed in the dialog process (the change has only been done in memory and then 
logged in a special table just before commit). The enqueue gets released by the 
asynchronous update process after the real database update of the business object has 
been performed.
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SAP is using NPGTHRSH to ensure that unknown tables that quickly change their sizes are 
also accessed via an index. From SAP's point of view, this is an ideal solution for accessing 
volatile tables. It is much better to get a little less performance than possible if there are only a 
few rows in the table and the best possible performance if there are millions of rows in the 
table, instead of being a bit faster when the table has just a few rows in it, but getting the worst 
possible access path with a horrible performance if there are millions of rows in the table. The 
volatile table enhancement in DB2 V8 provides a way to tell DB2 the special characteristic of 
the table. If an application accesses a table marked as volatile, DB2 is using the index 
whenever possible. Unfortunately, the volatile feature of DB2 V8 would not help in this case 
because it is only applicable if you know the volatile tables up-front. Therefore the volatile 
feature is not used by SAP to replace NPGTHRSH.

SAP stores logical business objects in SAP cluster tables.The size of a logical object can 
easily exceed 32 KB. Because of this, a logical object traditionally has to be stored in multiple 
records. These stored objects need to be accessed in a strictly prescribed way — for 
example, the first row in a multi-row object, followed by the second row, etc. This can be 
achieved only if the same access path is always used when accessing the tables, irrespective 
of the catalog statistics and other factors that influence the optimizer. In other words, these 
tables need to be accessed according to the following rules:

� If there is an index that has at least one matching column for given statement's predicates, 
a tablespace scan should be avoided.

� If more than one such index exists, choose the one with the largest number of matching 
columns.

� If there are still more than one qualifying, then choose the one that provides ordering (if 
applicable).

� No list prefetch nor sequential prefetch should be selected.

If this access pattern is not used major performance and contention problems (typically 
deadlocks) can be expected.

DB2 V8 addresses the problem by introducing a new table attribute, VOLATILE. If specified, 
the access path of any statement that includes that table is predetermined: it will be an index 
scan with as many matching columns as possible, with no prefetch and, if possible with no 
sort. A tablespace scan is used only if there is no index with at least one matching column.

The new attribute can be specified at table creation, but also, the existing tables can be 
altered to be VOLATILE. Although the name suggests differently, the main usage of the option 
is not for the tables with volatile cardinality (the existing ZPARM NPGTHRSH addresses that 
issue well enough), but for the multi-row object tables and queues. You can identify tables for 
which the VOLATILE attribute has been set by querying SYSIBM.SYSTABLES and looking for 
a 'Y' in the SPLIT_ROWS column.
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SAP volatile table example
In Figure 5-1 we show one example of a physical cluster table.

Figure 5-1   SAP definition of the physical table cluster DOKCLU
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Figure 5-2 shows the corresponding logical table.

Figure 5-2   Definition of the logical cluster table DOKTL based on table cluster DOKCLU

In Example 5-1 we show the SQL accessing the cluster table.

Example 5-1   Access to the cluster table

The following ABAP statement:

select * from doktl
where id = 'FU'
and   object = 'ADDRESS_INTO_PRINTFORM'
and   langu  = 'D'
and   typ    = 'T'
and   dokversion = 1.
  write: / doktl-line, doktl-doktext.
endselect.

gets converted to the following DB2 statement (ST05 output):

SQL Statement

  SELECT
    "ID" , "OBJECT" , "LANGU" , "TYP" , "DOKVERSION" , "PAGENO" , "TIMESTMP" ,
    "PAGELG" , "VARDATA"
  FROM
    "DOKCLU"
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  WHERE
    "ID" = ? AND "OBJECT" = ? AND "LANGU" = ? AND "TYP" = ? AND "DOKVERSION" = ?
  ORDER BY
    "ID" , "OBJECT" , "LANGU" , "TYP" , "DOKVERSION" ,
    "PAGENO" FOR FETCH ONLY WITH RS

Variable

A0(CH,2)  = FU
A1(CH,60) = ADDRESS_INTO_PRINTFORM
A2(CH,1)  = D
A3(CH,1)  = T
A4(NU,4)  = 0001

In Example 5-1, the SAP cluster interface returns 400 records from the logical table DOKTL 
back to the ABAP program, but it reads only 3 rows from the physical table cluster DOKCLU. 
The ABAP programmer always expects to read a consistent object. To ensure that, the SAP 
cluster interface reads the physical records always in the ascending order of the field 
‘pageno’. A reader of a logical object would get a corrupted object if a concurrent writer is able 
to overtake the reader. 

To avoid reading corrupted data, the SAP cluster interface updates a logical object in 
ascending order of the field ‘pageno’ (one update per record). In addition, the database 
dependent interface for DB2 sets the isolation level to RS. Taken together, this guarantees 
that the SAP cluster interface always reads consistent logical objects. But this solution only 
runs fine if the index of the table cluster is always used when the application reads a logical 
object. Using the table cluster index is the only way to force DB2 to read the logical object in 
ascending order beginning with pageno=0. If the index is not used for any reason, the danger 
of getting timeouts and deadlocks increases dramatically. Unfortunately, it turns out that this is 
sometimes the case at the customer side.

To get rid of lock contention on SAP cluster tables, SAP is using the two features of DB2 V8:

� Releasing lock at close (see 5.2.1, “Release locks at close” on page 109)
� Defining the table as volatile to always guarantee index access

DB2 V8 adds two new keywords to the CREATE TABLE and ALTER TABLE statements; 
VOLATILE (to force index access whenever possible) and NOT VOLATILE (to allow any type 
of access to be used). Notice that DB2 uses the CLUSTER keyword for other purposes.

� VOLATILE: Specifies that for SQL operations, index access is to be used on this table 
whenever possible. However, be aware that by specifying this keyword, list prefetch and 
certain other optimization techniques are disabled.

� NOT VOLATILE: Specifies that SQL access to this table will be based on the current 
statistics. This is the default.

� CARDINALITY: An optional keyword expressing the fact that the table can have frequently 
changing cardinality; it can have only a few rows at times, and thousands or millions of 
rows at other times. This keyword is allowed for DB2 family compatibility, but will serve no 
additional function in DB2 for z/OS.
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Explain
In Figure 5-3 we show a simple example of Explain for the SQL statement accessing the 
ZPMTEST table.

Figure 5-3   Explain output before the ALTER statement

We now issue the following ALTER statement:

ALTER TABLE ZPMTEST VOLATILE

The new Explain output is listed in Figure 5-4.
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Figure 5-4   Explain output after the ALTER statement

Once the cluster table is defined as volatile in DB2, access by index is selected by the 
optimizer.

5.2.3  Partition key update
Within the SAP ABAP language it is allowed to update any field even if it is part of the key. 
DB2 V7 already allows you to update the partitioning key. But DB2 V7 does not allow 
concurrency if an update of a partitioning key changes the partition to which the row belongs. 
If the update requires moving the data row from one partition to another, DB2 V7 tries to take 
exclusive control of the objects to perform the update by acquiring DRAIN locks. Because of 
this, no other application can access the range of partitions affected by the update of values 
in the partitioning key columns. Following is the list of objects on which DB2 V7 takes 
exclusive control to perform the update:

� The partition of the table space from which the row is moving, the partition of the table 
space to which the row is moving, and all partitions in between

� The partition of the partitioning index from which the partitioning key is moving, the 
partition of the partitioning index to which the partitioning key is moving, and all partitions 
in between

� Non-partitioning indexes defined on the table space

With the DB2 V8 capability of NOT taking exclusive control of the objects to perform the 
update, concurrency is allowed if an update of a partitioning key changes the partition to 
which the row belongs.
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5.3  Multi-row fetch and insert
In this section we describe the usage of multi-row fetch and multi-row insert in an SAP 
environment. Prior to DB2 V8, SAP already used multi-row operations, but only through the 
network, in order to save network trips. On the server side, SAP had to process row by row. 
With this new feature, SAP can reduce the number of DB2 calls dramatically. DB2 V8 itself 
benefits a lot. It is no longer necessary to go through the whole software stack for each row. 
The benefit is obvious. The usage of multi-row operations saves cross-memory trips and 
significantly reduces elapsed time and CPU cost on the server.

5.3.1  How SAP applications benefit from multi-row operations
SAP has been using multi-row operations since the first version of SAP R/3. The whole 
software stack down to the database interface supports multi-row operations. A simple 
change in the database layer is enough to exploit multi-row operations for every single SAP 
application. Because a multi-row operation for a single row has no disadvantages compared 
to the single-row operation, SAP is always using multi-row operations.

5.3.2  Implementation details
In general, a loop gets replaced by a single call on the server side.

The old code, needed prior to DB2 V8, is shown in Example 5-2. The DB2 call sequence of 
an ABAP INSERT operation is:

EXECUTE .... EXECUTE

The DB2 call sequence of an ABAP READ operation is:

: OPEN; FETCH ... FETCH; CLOSE

Example 5-2   Processing each record in a loop

for ( i = 0; i < row_count; i++ )
{

/* process single row */
/* insert case */
EXEC SQL EXECUTE S_0000 USING DESCRIPTOR :*db2da_p;
/* fetch case */
EXEC SQL FETCH C_0000 USING DESCRIPTOR :*db2da_p;

if ( SQLERROR and NOT SQLCODE == DUPLICATE_RECORD)
exit

}

In Example 5-3 we show the new code for DB2 V8.

Example 5-3   Eliminates the need for a loop

/* process multiple rows; nr is set to row_count*/
/* insert case */
EXEC SQL EXECUTE AS_0000 USING DESCRIPTOR :*db2da_p FOR :nr ROWS;
/* update case */
EXEC SQL FETCH NEXT ROWSET AC_0000 FOR :nr ROWS USING DESCRIPTOR :*db2da_p;

Attention: A duplicate record at insert is not treated as an error.
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5.3.3  ABAP SQL statements that benefit from multi-row operations
In this section we show examples of SQL statements that benefit from multi-row operations.

SELECT statements
In the following examples we show ABAP SELECT statements that cause multi-row 
FETCHes in DB2.

The row count for the select statement in Example 5-4 is: <buffer size> / record length. The 
buffer size is usually 32 KB. If the record length is 100 bytes, you will see multi-row fetches 
with a rowset size of about 32 records (row count=32).

Example 5-4   SELECT loop until ‘not found’ condition is reached

SELECT * FROM DB2JOB.
*process row
...

endselect.

The row count for the statement in Example 5-5 is the minimum of <buffer size> / record 
length and 100. 

Example 5-5   SELECT loop until 100 rows fetched or ‘not found’ condition is reached

SELECT * FROM DB2JOB UP TO 100 ROWS.
* process row
...

endselect.

If the row count is less than 100, the multi-fetch statement is repeated as often until 100 rows 
are fetched. In this case it is very likely that the last multi-row fetch has a row count less than 
<buffer size> / record. For example if <buffer size> / record = 30, you can see three multi-row 
fetch calls with a record count of 30 and one with a record count 10. You might see fewer calls 
if the result set of the SELECT statement has less than 100 rows.

With the ABAP SELECT statement shown in Example 5-6, you can lower the calculated row 
count. If the calculated row count is greater than PACKAGE SIZE, then the PACKAGE SIZE is 
used as the row count; otherwise, the row count does not change.

Example 5-6   SELECT into internal ABAP table

data: t_db2job like db2job occurs 0 with header line.
...
select *  into table t_db2job package size 10 from db2job order by jobname.
...
endselect.

Attention: All multi-row INSERT statements are prepared with the NOT ATOMIC attribute 
set. This is necessary to prevent the multi-row execute statement from failing after a 
duplicate record popped up. Because of this, SAP has to analyze all SQLCODES for 
serious SQL errors after the call, and report the most serious one to the SAP error handler.
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Example 5-7 shows the ABAP SELECT with a fully qualified primary key.

Example 5-7   SELECT a single row

select single * from db2job
where jobname = 'UPDATE_CATALOG'
and creator = 'SAPR3'
and type = 'B'
and cardno = 1.

This statement always returns 0 or 1 row. It causes a multi-fetch operation with a row count of 
1.

MODIFY statement
The ABAP MODIFY statement, shown in Example 5-8, is used very often within SAP 
applications. It is very convenient and used for modifying many records with one statement. 

Example 5-8   ABAP MODIFY statement

Assumption:

F1, ..., Fn are non key fields and K1, ..., Km are key fields of table T

ABAP snippet:

data: IT like T occurs 0 with header line.
* fill up the internal table IT
...
modify T from table IT.

The semantic of this statement is pretty simple. After a successful call, the content of the 
internal ABAP table must be found in the database table. This is implemented with insert and 
update operations. If the inserts returns with an SQLCODE -803 (duplicate key) this row gets 
updated. The insert and update statements have always the structure shown in Example 5-9.

Example 5-9   DB2 statements to emulate the ABAP MODIFY statement

INSERT statement for MODIFY:

INSERT INTO T ( "F1",...,"Fn","K1",....,"Km")
VALUES ( ?, ........, ? )

UPDATE statement for MODIFY:

UPDATE T SET F1 = ?, ..., Fn = ?
WHERE K1 = ?, ..., Km = ?

The row count for the multi-insert statement is calculated as in the multi-fetch case (see 
“SELECT statements” on page 118).
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Example of an ABAP MODIFY statement
Let us assume that a table T has only two columns F1 of type varchar(1) and F2 of type 
varchar(2) and there exists a unique index on F1. 

The table T has the contents listed in Table 5-1.

Table 5-1   Table T contents

The contents of the ABAP table are listed in Table 5-2.

Table 5-2   ABAP table IT contents

The MODIFY statement causes the following multi-row operations:

1. Multi-row insert with the whole ABAP table IT (row count = 5)

2. Single-row updates for all records that got an SQLCODE=-819 (duplicate key). These are 
rows 4 and 5.

After the modify, the table T contents are as shown in Table 5-3.

Table 5-3   Results after modify

F1 F2

1 a

2 b

3 c

4 y

5 z

F1 F2

4 d

5 e

6 f

7 g

8 h

F1 F2

1 a

2 b

3 c

4 d

5 e

6 f

7 g

8 h
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INSERT statement
The ABAP statement shown in Example 5-10 causes a multi-row INSERT statement in DB2 
V8.

Example 5-10   ABAP INSERT statement

data: IT like T occurs 0 with header line.
...
insert T from table IT accepting duplicate keys

The ABAP statement accepts duplicate keys and therefore we need the NOT ATOMIC 
attribute when the multi-row insert statement gets prepared. The row count for the multi-row 
insert statement is calculated as in the multi-row fetch case (see “SELECT statements” on 
page 118).

5.4  Query optimization 
In this section we describe several enhancements related to query optimization.

� RUNSTATS improvements: These improvements fall into two categories:

– SAP and distribution statistics: These statistics can be critical to the DB2 optimizer 
by choosing the most efficient method of servicing an SQL request in case of 
non-uniform distributions. The DSTATS tool has been widely available for some time 
now, and works with DB2 Version 5 and above. DB2 V8 effectively provides equivalent 
functions in the normal RUNSTATS utility.

– REPORT NO UPDATE NONE option: The parameter combination of REPORT NO 
and UPDATE NONE has been added to the RUNSTATS utility, and the usage of these 
two options will invoke the invalidation of DSC statements involving the object(s) in 
question.

� Host variables impact on SAP access paths: We describe a new feature of DB2 V8 that 
eliminates the disadvantages of REOPT(VARS) and still takes the host variables into 
account at access path selection.

� Index-only access path for varying-length columns: We describe the new option to 
create indexes that do not pad varying-length columns of data type VARCHAR and 
VARGRAPHIC. This allows the DB2 optimizer to consider index-only access for indexes 
that contain VARCHAR or VARGRAPHIC columns, which accelerates query execution 
time due to saved I/O operations against the corresponding table space. As SAP creates 
all character columns of tables using data type VARCHAR or VARGRAPHIC, this new 
feature potentially speeds up query execution in all areas.

� Multiple value IN lists and SAP: We describe a DB2 V8 enhancement to the handling of 
INLIST predicates involving multiple values in the INLIST. The SAP application makes 
extensive use of INLIST predicates in dynamic SQL.

5.4.1  SAP and distribution statistics
In this section we first introduce the concept of SAP client, and then we look at the statistics 
distribution issues.
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Effect of SAP Client concept on cardinality
One factor that is unique to the SAP application, is the concept of a “client”. In short, this 
allows a number of “virtual data” environment to exist within one SAP system, running in one 
instance of a DB2 DBMS. Each of these data environments are isolated from each other 
through the SAP programming model.

The concept of a client is effected through having a specific column on a large percentage of 
the tables in the system, which contains the 3-digit numeric client. This column is almost 
always called either MANDT or CLIENT. Generally, in a non-production system, multiple 
clients will exist and hence this column will have variable cardinality. However, in a production 
system, the situation is more complex, as the recommendation is to only run one client. 

This results in the cardinality of the leading column always being low, and most commonly this 
column is also used as the first column in the indexes associated with the table. Most 
commonly, the cardinality of the column will be 1-4 in a production system, with one value 
dominating the frequency distribution, this value being the 3-digit client number chosen by the 
customer.

The result of this application constraint is that the DB2 optimizer is often left with less 
information than is desirable to make an informed access path choice. However, the good 
news is that the design of the SAP database layout makes it rare that this has a major impact. 
The design of the database, in terms of table structure, primary and secondary index 
structure, is closely tied with the SQL coded in the accompanying programs, hence a high 
degree of affinity.

However, in some cases, it is possible to determine that the DB2 optimizer is in fact choosing 
a less than ideal access path. As SAP exclusively used Dynamic SQL, this means that once 
the “wrong” decision is made, it remains the path for all identical statements until the 
statement is re-prepared. If the impact of this wrong decision is having an impact on 
performance of the overall system, it may be possible that better statistical data could allow 
DB2 to make a more informed decision. This is particularly the case for in-lists and screening 
predicates, and these types of SQL constructs are commonly found in an SAP system.

Another frequently occurring issue for the optimizer is when multiple columns in a table exhibit 
correlation, that is, the value in one column exactly or closely follows or determines the likely 
values in another column. If this correlation can be determined by analyzing the data content 
of a table, the optimizer can use this information in making intelligent choices of how to 
access data to service certain SQL requests. A good example of this phenomenon is where a 
ZIP code effectively determines the State, even though the State also exists as another 
discrete column. 

Details of RUNSTATS improvements
When there is an asymmetrical distribution of data, not having distribution statistics on 
non-leading indexed columns and/or non-indexed columns can cause DB2 to make 
sub-optimal table join order and table join method decisions. In the case of an SAP system, 
as discussed in the previous section, the presence of a unique column in the form of SAP 
client (MANDT or CLIENT) as the first column makes this quite possible. This ultimately 
results in queries which perform inefficiently or do not complete.

A function to avoid this problem is provided by DSTATS (Distribution Statistics for DB2 for 
OS/390), a tool made available for use with Versions 5, 6, and 7. DSTATS is a standalone 
DB2 application program containing embedded dynamic and static SQL statements which 
builds the SYSCOLDIST catalog table entries previously not being collected by RUNSTATS. 
DSTATS is still available for download from:

ftp://www.redbooks.ibm.com/redbooks/dstats/ 
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With DB2 V8, equivalent and standard function is provided by RUNSTATS. It greatly improves 
the accuracy of the filter factors determined by DB2. More accurate filter factor computations 
should lead to better optimization choices. Thus the query performance improves with better 
filter factor information in the DB2 catalog. This enhancement is implemented only in 
RUNSTATS, and not in inline statistics.

The RUNSTATS enhancement provides the following functionalities:

� Frequency value distributions for non-indexed columns or groups of columns

� Cardinality values for groups of non-indexed columns

� LEAST frequently occurring values, along with MOST for both index and non-indexed 
column distributions

Figure 5-5 shows the syntax of the additional parameters for the RUNSTATS utility.

Figure 5-5   RUNSTATS Distribution Statistics

Collecting cardinality and distribution statistics
To enable the collection of cardinality and distribution statistics on non-indexed columns, a 
new dist-spec block is introduced. New keywords COLGROUP, MOST, LEAST, and BOTH are 
introduced in this block. In addition the existing keywords FREQVAL and COUNT are also 
used. Cardinality and distribution statistics are collected only on the columns explicitly 
specified. Cardinality and distribution statistics are not collected if you specify COLUMN ALL. 

For an SAP system, usually prior to proceeding down this path, you will have one or more 
specific problems you are addressing, and probably have some application knowledge that 
determines which columns about which you are attempting to influence the optimizer. 
Because of the huge number of objects in an SAP system, it is impractical to collect 
distribution statistics on all columns for table spaces and indexes, as the total number of 
columns is prohibitively large.

RUNSTATS - Distribution statistics and 
key correlation statistics blocks

dist-spec:
|-----------------------------------------------------------------------------------------------------------------------------------------------------|
    |--COLGROUP--|  |                                                         |---MOST---|    |
                                 |--FREQVAL COUNT ---- integer------|--------------|----|
                                                                                            |---BOTH---|
                                                                                            |---LEAST--|     

correlation-stats-spec: 
|---.-----------------------.--------------------------------------------------------------------------------------------------------------.-----|
     '--KEYCARD--'     |                                             .-----1------.                   .-----10-----           .---MOST--.     |
                                  '----FREQVAL---NUMCOLS-'--integer--'----COUNT-'--integer--'---------|--------------|----'
                                                                                                                                                |--BOTH---|  
                                                                                                                                                '--LEAST-.'    
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COLGROUP
When the keyword COLGROUP is specified, the set of columns specified with the COLUMN 
keyword is treated as a group. The cardinality values are collected on the column group. 
When COLGROUP is not specified, the columns are treated as individual columns and 
cardinality values are collected on the columns specified in the list.

FREQVAL
This controls the collection of frequent value statistics. These are collected either on the 
column group or on individual columns depending on whether COLGROUP is specified or 
not. If FREQVAL is specified, then it must be followed by the keyword COUNT.

COUNT integer
COUNT indicates the number of frequent values to be collected. Specifying an integer value 
of 20 means to collect 20 frequent values for the specified columns. No default value is 
assumed for COUNT. Although the syntax might suggest that the default value is 10, you have 
to explicitly specify COUNT 10. This can be optionally followed by the keyword MOST (which 
is the default), LEAST, or BOTH.

MOST
The most frequent values are collected when the keyword MOST is specified. 

LEAST
The least frequent values are collected when the keyword LEAST is specified. 

BOTH
The most frequent values and the least frequent values are collected when the keyword 
BOTH is specified.

Example
In Example 5-11, by specifying the COLGROUP keyword, the cardinality of the column group 
is collected for the specified group of columns (RELID, SRTFD, SRTF2) for the SAP table 
PCL2.

Example 5-11   Updating column distribution statistics 

RUNSTATS TABLESPACE A130X996.PCL2
  TABLE(SAPR3.PCL2)
  COLGROUP(RELID, SRTFD, SRTF2)

5.4.2  REPORT NO UPDATE NONE option
In certain situations, such as catalog statistics having been manually updated, or a new index 
created on a table, it is desired to allow SQL statements to use another access path. In 
general, most situations are the end product of investigations of performance problems, and 
quite often it will be desired to solve the problem as non-disruptively as possible. As SAP 
exclusively uses dynamic SQL for application related calls, this means the cached versions of 
the prepared statements will continue to take effect. Usage of the RUNSTATS utility in this 

Tip: When searching for more clues in addressing specific performance problems around 
specific SAP tables, it may be possible to run RUNSTATS, select a number of columns in 
the COLGROUP specification, a reasonable value such as 20 for COUNT, and additionally 
specify UPDATE NO. The statistics produced in report form may lead to a better 
understanding of the problem, and DB2’s rationale for its choices.
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way elegantly allows all DSC statements referencing the object in question to be invalidated. 
This is can be an improvement to other techniques such as ALTER to AUDIT NONE.

Example 5-12 illustrates an example of invoking the RUNSTATS utility specifically to 
invalidate DSC statements that use table MBEWH.

Example 5-12   Invalidating DSC STATS using RUNSTATS 

RUNSTATS TABLESPACE A040X998.MBEWH
REPORT NO
UPDATE NONE

SAP exploits this new way to invalidate statements from dynamic statement cache in 
transaction code ST04. In the cached statements statistics part of ST04, there is a button 
available that invalidates a selected SQL statement (see Figure 5-12). When pressing the 
button, SAP calls the stored procedure DSNUTILS to invoke the RUNSTATS utility with 
options REPORT NO UPDATE NONE on the table space of the first table that is referenced in 
the selected statement.

Figure 5-6   SAP transaction ST04: Invalidate SQL from DSC

5.4.3  Host variables impact on SAP access paths
Usage of host variables (parameter markers) in SAP is very pervasive. The reason for this is 
to maximize the benefits of the DB2 dynamic statement caching mechanism, by minimizing 
the number of “different” statements. However, this poses additional challenges to the 
optimizer, because it cannot use predicate values frequency distribution. In the absence of 
this data, DB2 prior to V8 uses defaults and it has proved to be wrong in cases where the 
values distribution is skewed.
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REOPT(ONCE) is a new bind option that tries to combine the benefits of REOPT(VARS) and 
dynamic statement caching. For an SQL statement with input host variables, the access path 
chosen by the optimizer during prepare time (before the values of host variables are 
available) may not always be optimal. The bind option REOPT(VARS) solves this problem by 
(re)-preparing the statement at run time when the input variable values are available, so that 
the optimizer can re-optimize the access path using the host variable values. However, for 
frequently called SQL statements that take very little time to execute, re-optimization using 
different input host variable values at each execution time is expensive, and it may affect the 
overall performance of applications. Other unwanted ramifications of REOPT(VARS) are 
increased locking contention (DBD locks) and no monitoring support. Both of these 
disadvantages are caused by KEEPDYNAMIC NO, which must be in effect when using 
REOPT(VARS). 

The idea of REOPT(ONCE) is to defer access path determination until the first execution. 
Statement preparation takes place only once using the first set of host variable values, no 
matter how many times the same statement is executed. The access path chosen based on 
the set of input variable values is stored in cache and used for all later executions. This 
solution is based on the assumption that the chosen set of host variable values at run time 
are better than the default ones chosen by optimizer at bind time.

SAP example of a problem situation and the solution
In our example problem, a calculation took about 40 hours which was considered totally 
unacceptable relative to the amount of data in the tables. The statement that caused the 
problem was a 3-table join. The tables are: AUFK, AFKO, and AFPO. The recommendation to 
solve this problem — using the ABAP hint ‘SUBSTITUTE VALUES’ — improved the response 
time to 2.5 hours. We now can get the same results if we are using the new bind option 
REOPT(ONCE), as shown in Example 5-13.

Example 5-13   Statement that caused the trouble

SELECT 
  T_01 . "AUFNR" 
FROM 
  ( ( "AUFK"T_00  INNER   JOIN  "AFKO"T_01  ON  T_01 . "MANDT" = :m AND 
  T_00 . "AUFNR" = T_01 . "AUFNR" )  LEFT   OUTER   JOIN  "AFPO"T_02  ON 
  T_02 . “MANDT" = :m AND  T_01 . "AUFNR" = T_02 . "AUFNR" ) 
WHERE 
  T_00 . "MANDT" = :m AND  T_01 . "MAUFNR" IN ( :h1 , :h2 , :h3 , :h4 , :h5 , :h6 )  FOR
  FETCH ONLY WITH UR 

Example 5-14 shows the related trace. 

Example 5-14   ST05 trace output of the calculation

Prepare with parameter markers:

   18.151 AUFK       PREPARE     0      0 SELECT WHERE  T_00 . "MANDT" = ? AND  T_01 . "MAUFNR" IN ( ? , ? , 
       18 AUFK       REOPEN      0      0 SELECT WHERE  T_00 . "MANDT" = '000' AND  T_01 . "MAUFNR" IN ( 
24.897.32 AUFK       FETCH       0      0 
       21 AUFK       REOPEN      0      0 SELECT WHERE  T_00 . "MANDT" = '000' AND  T_01 . "MAUFNR" IN ( 
24.900.13 AUFK       FETCH       0      0 

The SAP trace in Example 5-14 shows the problem. The FETCH took about 25 seconds and 
no row has been returned because of a “not found’ condition. This statement gets issued very 
often during the calculation. The prepare was done with parameter markers. The field 
MANDT is usually not selective at all.

In Example 5-15, the Explain output shows that, because DB2 is using defaults, the optimizer 
has chosen the wrong access path. 
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Example 5-15   ST05 Explain output of the highlighted statement — Wrong access path

|Access path of statement                                                       |
---------------------------------------------------------------------------------
|Explanation of query block number: 1   step: 1                                 |
|Query block type is SELECT                                                     |
|Performance appears to be good                                                 |
|Index is used. Index scan by matching index.                                   |
|Method:                                                                        |
|.          access new table.                                                   |
|.          data pages are read in advance                                      |
|.          pure sequential prefetch is used                                    |
|.          new table:                                                          |
|.                      SAPR3.AUFK                                              |
|.                      table space locked in mode:  N                          |
|.          Accesstype: by index.                                               |
|.                      Index: SAPR3.AUFK~0 (matching index)                    |
|.                      Index columns (ordered):                                |
|.                             MANDT                                            |
|.                             AUFNR                                            |
|.                      with 1   matching columns of 2  index columns.          |
|                                                                               |
|Explanation of query block number: 1   step: 2                                 |
|Query block type is SELECT                                                     |
|Performance appears to be good                                                 |
|Index is used. Index scan by matching index.                                   |
|Method:                                                                        |
|.          scan composite table and new table in order of join                 |
|.          column, and join matching rows (merge scan join).                   |
|.          1   columns are joined during merge scan join                       |
|.          new table:                                                          |
|.                      SAPR3.AFKO                                              |
|.                      table space locked in mode:   N                         |
|.          Accesstype: by an index, when the predicate contains the IN keyword.|
|.                      Index: SAPR3.AFKO~5 (matching index)                    |
|.                      Index columns (ordered):                                |
|.                             MANDT                                            |
|.                             MAUFNR                                           |
|.                             PRODNET                                          |
|.                      with 2   matching columns of 3  index columns.          |
|                                                                               |
|Explanation of query block number: 1   step: 3                                 |
|Query block type is SELECT                                                     |
|Performance appears to be good                                                 |
|Index is used. Index scan by matching index.                                   |
|Method:                                                                        |
|.          scan composite table and new table in order of join                 |
|.          column, and join matching rows (merge scan join).                   |
|.          1   columns are joined during merge scan join                       |
|.          new table:                                                          |
|.                      SAPR3.AFPO                                              |
|.                      table space locked in mode:   N                         |
|.          Accesstype: by index.                                               |
|.                      Index: SAPR3.AFPO~0 (matching index)                    |
|.                      Index columns (ordered):                                |
|.                             MANDT                                            |
|.                             AUFNR                                            |
|.                             POSNR                                            |
|.                      with 1   matching columns of 3  index columns.          |
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We now check what the access path should be.

The solution is an ABAP hint, which tell the SAP database interface to defer the prepare and 
to replace the parameter markers by real values. Now the DB2 optimizer can use the statistics 
to select the right access path, as shown in Example 5-16.

Example 5-16   ST05 trace output of the calculation, after implementing the ABAP hint

With values:

      880 AUFK       PREPARE     0      0 SELECT WHERE  T_00 . "MANDT" = '000' AND  T_01 . "MAUFNR" IN ( ' 
       18 AUFK       REOPEN      0      0 SELECT WHERE  T_00 . "MANDT" = '000' AND  T_01 . "MAUFNR" IN ( ' 
   13.910 AUFK       FETCH       0      0 
    4.600 AUFK       CLOSE       0      0 
      628 AUFK       PREPARE     0      0 SELECT WHERE  T_00 . "MANDT" = '000' AND  T_01 . "MAUFNR" IN ( ' 
       18 AUFK       REOPEN      0      0 SELECT WHERE  T_00 . "MANDT" = '000' AND  T_01 . "MAUFNR" IN ( ' 
   12.257 AUFK       FETCH       0      0 

The highlighted statements are the same as in Example 5-14. The response time is now 
about 2000 times better than before. Example 5-17 shows the good access path.

Example 5-17   ST05 Explain output of the highlighted statement — Right access path

|Access path of statement                                                       |
---------------------------------------------------------------------------------
|Explanation of query block number: 1   step: 1                                 |
|Query block type is SELECT                                                     |
|Performance appears to be good                                                 |
|Index is used. Index scan by matching index.                                   |
|Method:                                                                        |
|.          access new table.                                                   |
|.          unknown or no sequential prefetch is used                           |
|.          new table:                                                          |
|.                      SAPR3.AFKO                                              |
|.                      table space locked in mode:  N                          |
|.          Accesstype: by an index, when the predicate contains the IN keyword.|
|.                      Index: SAPR3.AFKO~5 (matching index)                    |
|.                      Index columns (ordered):                                |
|.                             MANDT                                            |
|.                             MAUFNR                                           |
|.                             PRODNET                                          |
|.                      with 2   matching columns of 3  index columns.          |
|                                                                               |
|Explanation of query block number: 1   step: 2                                 |
|Query block type is SELECT                                                     |
|Performance appears to be excellent                                            |
|Index-only access. Index scan by matching index.                               |
|Method:                                                                        |
|.          join each row of composite table, with matching rows                |
|.          of new table (nested loop Join).                                    |
|.          unknown or no sequential prefetch is used                           |
|.          new table:                                                          |
|.                      SAPR3.AUFK                                              |
|.                      table space locked in mode:   N                         |
|.          Accesstype: by index.                                               |
|.                      Index: SAPR3.AUFK~0 (matching index)                    |
|.                      Index columns (ordered):                                |
|.                             MANDT                                            |
|.                             AUFNR                                            |
|.                      with 2   matching columns of 2  index columns.          |
|.                      Access to index alone is sufficient to satisfy          |
|.                      the request. No further data must be accessed.          |
|                                                                               |
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|Explanation of query block number: 1   step: 3                                 |
|Query block type is SELECT                                                     |
|Performance appears to be good                                                 |
|Index-only access. Index scan by matching Index.                               |
|Method:                                                                        |
|.          join each row of composite table, with matching rows                |
|.          of new table (nested loop Join).                                    |
|.          unknown or no sequential prefetch is used                           |
|.          new table:                                                          |
|.                      SAPR3.AFPO                                              |
|.                      table space locked in mode:   N                         |
|.          Accesstype: by index.                                               |
|.                      Index: SAPR3.AFPO~0 (matching index)                    |
|.                      Index columns (ordered):                                |
|.                             MANDT                                            |
|.                             AUFNR                                            |
|.                             POSNR                                            |
|.                      with 2   matching columns of 3  index columns.          |
|.                      Access to index alone is sufficient to satisfy          |
|.                      the request. No further data must be accessed.          |

The disadvantage of this solution is that the statement has to be prepared every time the 
values are changing. With REOPT(ONCE) you get the same excellent access path. But 
REOPT(ONCE) is a much more elegant solution because there is no need to change the 
ABAP program; also, there is no additional cost for the prepare, and the dynamic statement 
cache is not affected badly because all other statements are replaced.

5.4.4  Index-only access path for varying-length columns
When possible, an index-only access path regularly provides optimal performance. However, 
up to DB2 V7, if the query includes variable character columns, the index-only access path is 
often disabled. The reason is the way the variable length columns are stored in the index: they 
are extended to their maximum length by padding. That prevents returning the column value 
directly from the index because the padded value (instead of the actual one) would be passed 
back to the calling application. Another example of incorrect output that would result from an 
index-only access path is the LENGTH function. The actual length of a varchar column is not 
necessarily its maximum length, and the maximum value is what the index-only access path 
would return. Therefore, there are enough reasons to discourage use of the system 
parameter RETVLCFK that allows index-only access even for variable length columns. 

In V7, DB2 has been enhanced to select index-only access if there is no danger to return 
wrong data. This will cover the case when a varchar field is involved in the WHERE clause 
(excluding LIKE predicates or any predicate that has the varchar column as input to a scalar 
function or in any Stage 2 predicate), and the column does not appear in the SELECT list, any 
scalar function, ORDER BY or GROUPBY clause, or in the HAVING clause.

Still, this leaves out many cases where an index-only access would significantly improve 
performance, but cannot be done. SAP extensively uses varchar columns: every character 
column, even with length 1, is defined as varchar. This is why the DB2 V8 index design 
enhancement that introduces non-padded indexes (where the column length is included in 
the index) is very beneficial to SAP. 

 

 

 

Chapter 5. Performance 129



 

Varying-length index keys
Prior to V8, the ZPARM RETVLCFK=YES enabled you to use VARCHAR columns of an index 
and still have index-only access. However, when columns in the SELECT list of the query are 
retrieved from the index when using index-only access, they are padded to the maximum 
length and the actual length of the variable length column is not provided. Rather, the length 
of the padded value is returned. Moreover, the LIKE predicate potentially yields the wrong 
result set. Example 5-18 demonstrates the problem. The query in the example returns the 
record that contains ‘A’ as value for SAMPLEC. The underscore character represents exactly 
one character though. Hence, this record must not qualify. 

Example 5-18   DB2 V7: Varying-length index keys and LIKE predicate

Table SAMPLET contains column SAMPLEC with type VARCHAR(2)
Value: ’A’

Index SAMPLEI column pads VARCHAR column to maximum length
Value ’A ’

Query with wrong result set:
SELECT * 
FROM SAMPLET
WHERE SAMPLEC LIKE ’A_’

Therefore, these “full length” variable length columns are not applicable to SAP. SAP does not 
pad varying-length data and always stores VARCHAR or VARGRAPHIC columns using the 
actual string length.

DB2 V8 supports true varying-length key columns in an index. Varying-length columns will no 
longer need to be padded to their maximum lengths. This will usually reduce the storage 
requirements for this type of index since only actual data is stored. Furthermore, this allows 
for index-only access to index key columns of varying-length in all cases, since the length of 
the variable length column is now stored in the index, and can potentially improve 
performance. Varying length indexes are marked in the new SYSIBM.SYSINDEXES column, 
PADDED, with a value of ‘N’.

Indexes can now be created or altered to contain true varying-length columns in the keys. The 
padding of both VARCHAR and VARGRAPHIC data to their maximum length can now be 
controlled. 

The new keywords NOT PADDED or PADDED on a CREATE and ALTER INDEX statement 
specify how varying-length columns will be stored in the index.

� NOT PADDED specifies that varying-length columns will not be padded to their maximum 
length in the index. If there exists at least one varying-length column within the key, length 
information will be stored with the key. For indexes comprised only of fixed length columns, 
there is no length information added to the key. The default on the CREATE INDEX 
statement, NOT PADDED for new V8 NFM installations, can be controlled through the new 
PADIX ZPARM. A sample create of a non-padded index is shown in Example 5-19.

Example 5-19   Create a NOT PADDED index

CREATE UNIQUE INDEX DSN8710.XDEPT1
ON DSN8710.DEPT (DEPTNO ASC)
NOT PADDED
USING STOGROUP DSN8G710
PRIQTY 512
SECQTY 64
ERASE NO
BUFFERPOOL BP3
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CLOSE YES
PIECESIZE 1 M;

� PADDED specifies that varying-length columns within the index are always padded with 
the default pad character to their maximum length. All indexes prior to DB2 V8 NFM are 
padded by default. Example 5-20 shows the CREATE INDEX statement for a padded 
index.

Example 5-20   Create a PADDED index

CREATE UNIQUE INDEX DSN8710.XDEPT1
ON DSN8710.DEPT (DEPTNO ASC)
PADDED
USING STOGROUP DSN8G710
PRIQTY 512
SECQTY 64
ERASE NO
BUFFERPOOL BP3
CLOSE YES
PIECESIZE 1 M;

� An index can be created or altered to NOT PADDED, even though the index key may not 
contain any varying-length columns. The index will be marked as “not padded”, which will 
allow for varying-length columns to be added in the future without the index being set to 
pending state.

You can continue to use existing indexes that contain padded varying-length columns. 
However, with DB2 V8, you now have the ability to convert padded indexes to varying-length 
indexes and also to convert varying-length indexes back to padded indexes.

Indexes from a prior release will not automatically convert to NOT PADDED, even if an ALTER 
TABLE ALTER COLUMN SET DATATYPE statement is executed and the altered column is 
part of an the index. You have to use the ALTER INDEX statement to change a PADDED 
index to NOT PADDED.

Altering a PADDED index to a NOT PADDED index can be done as shown in Example 5-21.

Example 5-21   Alter an index to NOT PADDED

ALTER INDEX DSN8710.XDEPT1 NOT PADDED;

After an index has been altered from PADDED to NOT PADDED or vice versa, the index will 
be marked as being in pending state, if there exists at least one varying-length column in the 
index. The pending state is Rebuild Pending (RBDP), except for non-partitioned secondary 
indexes that are put in page set Rebuild Pending state (PSRBD). A REBUILD of the index 
makes the index available again.

To take advantage of the performance improvement, you should convert the indexes of SAP 
systems, which have been created prior to V8, to NOT PADDED. New indexes should be 
created as NOT PADDED. The only downside to this definition is due to the extra 2 bytes 
added for each varchar column in a key, some extra CPU time in processing, and extra 
padding and unpadding at sort time.

 

 

 

Chapter 5. Performance 131



 

Example of index-only access
To illustrate index-only access with VARCHAR columns, let us consider a query on table 
VBDATA, which is central to SAP applications as it is employed for the SAP asynchronous 
update protocol. The table definition is displayed in Figure 5-7. The primary key index 
VBDATA~0 of table VBDATA contains the columns VBKEY, VKMODCNT and VBBLKNO. 
From SAP’s point of view, column VBKEY is of type character with length 32. As SAP maps 
its character data type to the DB2 data type VARCHAR, index VBDATA~0 is an index on 
varying length columns.

Figure 5-7   Index-only access: Definition of table VBDATA

The SQL statement that is shown in Figure 5-8 queries the data records that qualify 
according to a predicate on column VBKEY. All the columns that are requested are part of 
index VBDATA~0. The figure displays the access path for this statement as presented by the 
SAP built-in SQL Explain functionality. It demonstrates that the DB2 optimizer selects 
index-only access for the statement in face of the VARCHAR column VBKEY, which is part of 
the result set.
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Figure 5-8   Index-only access path with VARCHAR column

5.4.5  Multiple value IN lists and SAP 
The ABAP Open SQL construct FOR ALL ENTRIES results in an SQL statement with a 
potentially large number of keys contained in some internal table. When the internal table 
contains a single column, this result in SQL statements with large numbers of values in the 
INLISTs. Rather than sending these large INLISTs to the database for execution, the SAP 
dbsl divides large statements into multiple smaller SQL statements according to the values of 
the rsdb/min_in_blocking_factor and rsdb/max_in_blocking_factor parameters. These 
parameters normally are set to 6 and 35.

The DB2 memory commitments associated with the caching of SQL statements depend in 
part on the total number of unique SQL statements generated by the SAP application. The 
division of large INLISTs in this manner typically results in one or two SQL statements for any 
given OpenSQL statement containing a FOR ALL ENTRIES construct.

INLISTs derived from the OpenSQL IN predicate generally contain only a few values and are 
passed through the dbsl without modification.
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Optimization challenge associated with IN predicates
Traditionally the preparation of an SQL statement containing INLIST predicates and 
parameter markers results in an access path that assumes a uniform distribution. The 
optimizer estimates the filtering quality of the predicated using a filter factor of derived from 
the number of entries in the INLIST divided by the column cardinality. Even when distribution 
statistics are available SQL statements prepared with parameter markers are not able to take 
distribution into account.

Data distribution effects
There are situations within SAP in which INLIST predicates operate against columns of tables 
having non-uniform distribution characteristics. Common examples of this include:

� Status values for which an SQL statement is checking for some set of exceptional, low 
probability, conditions

� Hierarchy relationships within a single table where most records have no relevant parent 
record and therefore contain blanks

� Hierarchy relationships within multiple tables where different object types in one table have 
different numbers of related records in other tables

It is possible, with careful DB2 statistics adjustment, to improve these access paths and 
performance in general. This is neither a general nor good solution because such changes 
are difficult to maintain, and there is always the possibility of degrading the performance of 
some other query.

Size of the IN list
Prior to V8, as the number of INLIST items increases, the DB2 optimizer often tended to 
select a table scan over a matching index scan. This often resulted in poor performance as 
this is often not the optimal access path.

It is possible, with careful DB2 statistics adjustment, to improve these access paths and 
performance in general. This is neither a general nor good solution because such changes 
are difficulty to maintain and there is always the possibility of degrading the performance of 
some other query.

DB2 V8 enhancements
With DB2 V8 there are several enhancements targeted at improving optimization and access 
path selection for queries involving IN predicates. Several of these have been retrofitted back 
to DB2 Version 7 and are available in PTF form.

Select INLIST improvements (V7 APAR PQ68662)
The problem here is poor access path selection on a single table query with IN predicate on 
index columns. The optimizer struggles between I-scan and R-scan and as the number of 
entries in the INLIST increases the query will tend to select the R-scan. This enhancement 
improves the index scan cost model to more accurately reflect the chance that the needed 
index or data page may already be cached in the buffer pool when the last INLIST item is 
processed.
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RUNSTATS FREQVAL enhancements and REOPT(ONCE)
The optimization challenge associated with data distribution issues was addressed in part 
with the REOPT(VARS) capability introduced in DB2 Version 5. When an SQL statement is 
executed with REOPT(VARS) the SQL statement is re-optimized at each execution using the 
actual host variables. This re-optimization allows the optimizer to select an access path based 
on the distribution statistics stored in the DB2 catalog.

This is especially good for SQL statements of significant duration where the cost of a full 
prepare is offset by a significantly improved access path. It seems a rather expensive solution 
to the problem of poor access path selection on simple SQL statements. 

� ME21 Case Study:

Transaction ME21 has been reported to be slow. Figure 5-9 shows a STAT record for an 
execution of this transaction where performance is poor.

Figure 5-9   STAT Record for ME21 transaction

The STAT record shows that there is one dialog step that seems to have inefficient SQL — 
nearly 30 ms per select, and almost 10 ms per row (3606 ms for select / 496 rows = 7 ms 
per row). This is rather slow. Since “database rows” is much greater than “requests”, we 
use the per-row times to evaluate performance. Figure 5-10 shows an ST05 trace pointing 
to a select on table KSSK as being the problem.
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Figure 5-10   Poor performance from KSSK select with INLIST

When we examine the SQL statement in more detail, we can see that the SQL statement 
shown in Figure 5-11 originates from an ABAP program using the “for all entries” 
construct. The actual list when the program was executed only had a single value 
resulting. The kernel parameter rsdb/min_in_blocking_factor is set to 6, which results in 
the INLIST being padded to 6 values.

Figure 5-11   SQL Statement and Host Variables
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It does not look good — Figure 5-12 shows the execution plan, no index is used, and the 
entire table is scanned. 

Figure 5-12   Explain showing table scan

After using SE16 to verify that there was only one row satisfying the predicate in the table, 
we use the DB2 catalog browser or SE11 to check for indexes that are suitable for this 
query. The KSSK~N1 index consists of MANDT, CLINT and MAFID; this is an exact match 
and yet it is not used in favor of a table scan. 

Looking at the index cardinalities in Figure 5-13, we can see that the FULLKEYCARDF 
value for this index is 15. The DB2 optimizer has no information indicating that this index 
will provide much value as a filter. However, we know the result of our select returned one 
row, so we suspect the CLINT column has a skewed distribution.

Figure 5-13   Index cardinalities of KSSK Indexes
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From the COLCARDF value on the CLINT column of 9 values, we can see that there are 
very few unique values. For sites running SAP 4.5B and later, one can modify the ABAP 
source to use the hint (USE VALUES FOR OPTIMIZATION - REOPT(VARS)) which will 
cause the statement to re-optimized at execution, when the variables are passed to DB2. 
With this hint, the DB2 column distribution statistics can be used by the optimizer; thus 
DB2 will know that the program is searching for a value that seldom occurs, and will 
choose the KSSK~N1 index. RUNSTATS with FREQVAL must be run on KSSK for USE 
VALUES FOR OPTIMIZATION to be effective. This will solve the problem, but at some 
significant cost, as the re-optimization of the SQL statement for each execution will 
consume additional resources and in this case would require a repair to an SAP program.

Further analysis shows that, of the 9 values for CLINT, 8 values represent singleton rows, 
while the ninth value is a string of blanks and is in all remaining rows. The access pattern 
is such that the SAP transaction always issues the SQL statement with non-blank values 
in the INLIST and expects to retrieve 0 or 1 rows. REOPT(VARS) is overkill for a select 
returning a single row.

� ME21 Case Study DB2 V8 solution:

The REOPT(ONCE) capability is directly applicable to this case. Given the nature of the 
SQL access, a single re-optimization with values, would be sufficient to cause the proper 
index to be used. This is a better solution than REOPT(VARS), because it will reduce the 
cost of each successive execution of the statement. We can expect that at some future 
date, REOPT(ONCE) will become the default for SAP installations. 

Predicate pushdown for IN list predicates (V7 APAR PQ73454)
Performance problems have been observed with complex vendor generated queries involving 
IN list predicates and materialized views or table expressions. This performance problem was 
due to the large workfile that resulted from materialized view or table expression. If we allow 
qualified IN list predicates to be pushed down into the materialized view or table expression, 
the materialized result set becomes much smaller. This fix is activated by setting specification 
of a new DSNZPARM INLISTP to a value of 3 or more.

The following example demonstrates the effect of this change.

SELECT *
         FROM (
                 SELECT * FROM T1
                UNION
                 SELECT * FROM T2
              ) X(C1,C2)
        WHERE X.C1 IN ('AAA','CDC','QAZ');

The transformed query will be equivalent to the following coding:

SELECT *
         FROM (
                 SELECT * FROM T1 WHERE T1.C1 IN ('AAA','CDC','QAZ')
                UNION
                 SELECT * FROM T2 WHERE T2.C1 IN ('AAA','CDC','QAZ')
              ) X(C1,C2)
        WHERE X.C1 IN ('AAA','CDC','QAZ');

This transformation could result in an order of magnitude performance improvement in some 
cases, due to: 

� Filtering at the early level to reduce the intermediate workfile size
� Possible exploitation of indexes on T1 and/or T2

Overall query performance should improve after setting the INLISTP parameter.
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Correlated subquery transformation enhancement (V7 APAR PQ73749)
Performance problems have been observed with complex vendor generated queries involving 
IN list predicates in correlated subqueries. These IN list predicates are constructed in such a 
way that the elements are drawn in from a previously constructed table, that is, the size of the 
list for a constructed IN list predicate depends on the size of such a table. Allowing a 
correlated IN list predicate to be generated by the transitive closure process and by pulling 
the generated IN list predicate to the parent query block both will improve performance. The 
addition of the IN list predicate to the parent query block allows filtering to occur earlier and 
results in a reduction in the number of subquery executions. Additional performance 
improvements may be achieved if the IN list predicate on the parent query block allows a 
better access path as a consequence of indexability of the IN list predicate.

The following conditions must all be met in order for an IN list predicate to be generated from 
transitive closure and bubbled up from the subquery to its parent query block.

� Boolean term predicates, COL1 IN (Lit1, Lit2,...) and COL1 = COL2, both appear in the 
query.

� This subquery is on the RHS of a Boolean term predicate of type EXISTS, IN, or ANY.

� COL2 is correlated (to the parent query block or some ancestor of the parent query block).

� Parent query block in Inner Join, a single base table, or a view. This feature is disabled if 
the parent query block is an Outer Join.

� The subquery does not contain COUNT or COUNT_BIG.

An IN list predicate of more than one literal satisfying all of the above conditions will be 
generated in the parent query block and will not appear in the subquery. Other predicates that 
used to participate in transitive closure (including singleton IN list) will still be generated in the 
subquery as before; if these predicates can be bubbled up, then they will appear in both the 
parent query block and in the subquery.

Let us look at Example 5-22 in order to show the behavior prior to this enhancement. 

Example 5-22   IN list query before transformation

SELECT *
          FROM A
         WHERE (EXISTS (SELECT 1
                          FROM B,C
                         WHERE B1 = 5
                           AND B1 = C1
                           AND C1 = A.A1
                           AND B2 IN (10, 20)
                           AND B2 = A.A2
                       )
               ) ;

The SQL statement in Example 5-22 will generate the following three predicates within the 
EXISTS subquery:

C1 = 5
A.A1 = 5
A.A1 = B1

This enhancement, combined with an appropriate setting for the INLISTP DSNZPARM value, 
will cause a qualified IN list and equal predicates to be candidates for cross query block 
transitive closure process. This process, when conditions allow, will result in an IN list 
predicate being deduced by transitive closure and generated in the parent query block rather 
than in the subquery. 
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The predicates generated, at the parent query level, by this process are:

A.A1 = 5
A.A2 IN (10,20)

This is equivalent to the transformation of the query shown in Example 5-23.

Example 5-23   Transformed IN list query 

SELECT *
         FROM A
        WHERE
              A.A1 = 5
          AND A.A2 IN (10,20)
          AND (EXISTS (SELECT 1
                         FROM B,C
                        WHERE B1 = 5
                          AND B1 = C1
                          AND C1 = A.A1
                          AND B2 IN (10, 20)
                          AND B2 = A.A2
                      )
              ) ;

INLISTP installation parameter
It is evident that strategic placement of IN list predicates in an appropriate query block, 
whether pushing down or pulling out, is an extremely effective way to achieve the 
performance level for some queries. These optimizations are focused on popular vendor 
generated queries, so such performance improvement are expected to benefit a broad set of 
customers. The effectiveness of these optimizations have already been tested at the IBM 
Teraplex site, as well as at a customer site.

The reasons for proposing this system parameter INLISTP with respect to IN list predicate 
optimization are as follows:

� Allowing customer to tune the INLISTP value to their workload
� Prevention of SQLCODE -101
� Prevention of potential degradation in the access path for some queries

In DB2 V8, the default value for INLISTP will be stepped up to 50. The parameter INLISTP will 
remain as a hidden keyword installation parameter.

Notice that for the predicate pushdown optimization, the INLISTP value of 1 will have the 
same effect as the value of 0. This is because an IN list predicate of a single element is 
transformed into an equal predicate internally, and a qualified equal predicate is already being 
pushed down into a materialized view or a table expression. However, for the cross query 
block transitive closure optimization, the INLISTP value of would have a different effect than 
the value of 0. This is because no predicate has ever been considered for a cross query block 
transitive closure. For a positive INLISTP value, equal predicates, in addition to IN list 
predicates of more than 1 element, will also be considered as candidates to be pulled out to 
the parent query block position.

5.5  Support for backward index scan
In this section we discuss the capability of DB2 V8 to perform a backward index scan. SAP 
applications take advantage of this as they increasingly retrieve the most recently added 
record. The backward index scan accomplishes this in a well-performing way.
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With the enhancements introduced to support dynamic scrollable cursors, DB2 also provides 
the capability for backward index scans. This allows DB2 to avoid a sort and allows you to 
define fewer indexes. With this enhancement it is no longer necessary to create an ascending 
and descending index on the same table columns.

For example, if you create an ascending index (the default) on the ACCT_NUM, 
STATUS_DATE and STATUS_TIME columns of the ACCT_STAT table, DB2 can use this 
index for backward index scanning for the following SQL statement:

SELECT STATUS_DATE, STATUS
FROM ACCT_STAT
WHERE ACCT_NUM = :HV
ORDER BY STATUS_DATE DESC, STATUS_TIME DESC

DB2 can use the same index for forward index scan for the following SQL statement:

SELECT STATUS_DATE, STATUS
FROM ACCT_STAT
WHERE ACCT_NUM = :HV
ORDER BY STATUS_DATE ASC, STATUS_TIME ASC

This is true also for static scrollable cursors and non-scrollable cursors. In V7 you have to 
create two indexes for the situation described above, to avoid a sort for both queries.

To be able to use the backward index scan, you have to create the index on the same 
columns as the ORDER BY and the ordering must be exactly opposite of what is requested in 
the ORDER BY. 

Exploitation by SAP applications
Particularly in the SAP financial applications, there is an increasing number of situations 
where the most recent value needs to be returned for a given entity. This value was 
established in a different transaction scope. 

If you consider a given stock out of a stock portfolio and a table that holds the stock values 
over a certain period of time, the most recent value is requested. The table is very large and 
there already exists an index on the relevant columns, but in ascending order. This fits other 
statements. Due to the size of the table, it is not desirable to create an additional index.

Example 5-24 shows a scenario of a table and an ascending index defined on it where the 
most recent value of some account is requested.

Example 5-24   Fast retrieval of most recent value

Table ACCOUNTS contains the following columns:
MANDT
ACNUM_INT
BAL_TYPE
BAL_YEAR
BAL_MONTH
TURNOVER_CLASS
BALANCE

Index ACCOUNTS~0 is defined in ascending order
MANDT
ACNUM_INT
BAL_TYPE
BAL_YEAR
BAL_MONTH

The following query retrieves the most recent value of a given account:
SELECT BALANCE
FROM ACCOUNTS
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WHERE MANDT = :HV1
AND ACNUM_INT = :HV2
AND BAL_TYPE = :HV3

ORDER BY BAL_YEAR DESC, BAL_MONTH DESC
FETCH FIRST 1 ROW only

In V8 the DB2 optimizer is enabled to select index ACCOUNTS~0 for the access path of the 
query from Example 5-24. The index is traversed in the backward direction to directly retrieve 
the most recent value for the specified account.

5.6  Faster DSC short prepares
When global caching is active, DB2 maintains “skeleton” copies of each prepared statement 
in the EDM pool. This storage is not an issue for the short prepare focus. However, whenever 
a thread issues a prepare, this indicates that thread is going to need its own copy of the 
prepared statement, in order to execute the statement. When a thread finds a previously 
executed identical statement in the global cache, DB2 acquires storage and makes a copy of 
the statement for that thread. Prior to DB2 Version 8, this storage comes from a thread-based 
storage pool. So each thread that gets anything from the cache will have one of these pools. 

In a system with many long-running threads, such as an SAP system, these pools can get 
quite large and fragmented if left uncontrolled. The current design (prior to DB2 V8) 
“contracts” the pool quite frequently, almost at every commit, so that the value specified by 
ZPARM MAXKEEPD is adhered to. The contraction logic freed most of the unused space 
back to the OS, keeping the size to a minimum. This meant that when thread performed a 
prepare after a commit, DB2 most probably had to go back to the OS to GETMAIN a new 
piece of storage for the pool, so it had somewhere to put the statement. This effectively meant 
DB2 had to perform a GETMAIN and FREEMAIN pair for almost every prepare.

Measurements showed that this was the dominant cost of the short prepare path (although 
the FREEMAIN part really happens at commit). APAR PQ37895, closed not long ago, was 
aimed to reduce the number of contractions, while still keeping storage under control. This 
was somewhat successful, but DB2 still does many GETMAINs and FREEMAINs.

The new approach aims to virtually eliminate the cost of the OS level GETMAINs and 
FREEMAINs by going to a centralized storage approach. With this approach, DB2 will use 
some number of storage pools that are owned by the system, not a particular thread. To avoid 
latch contention, the new implementation uses a fixed number of pools. When a new piece of 
storage is needed, a hash function is used, to “randomly” assign a pool. The hash uses the 
statement identifier as input. Each of the pools is a “bestfit” pool and it extends its size as 
needed, in 1 MB chunks. With this approach, we rely on the best fit logic to keep the pools at 
a minimum size. With the thread-based storage model, further reductions in contractions will 
lead to some storage increase.

Example
Assume we have three threads. Sequentially, that is, at discrete different times, each one 
prepares and executes a statement that is 10K in size, then it commits, freeing the storage 
back to the pool. 

With the thread-based approach, at the end of the sequence, each thread will have 10 KB 
allocated for a total of 30 KB. With the centralized approach, the storage would get reused at 
each thread’s statement prepare, so there would be only ever be 10 KB allocated to the pool. 
If the three threads’ statement executions in fact do not occur at different times, there are still 
benefits. Assume, for example, that all three executed concurrently. The threads will have 
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used 30 KB in the centralized pool as well. But assume that after they all commit, one thread 
subsequently prepares and executes a statement that is between 10 KB and 30 KB in size. 
This could be satisfied from the existing centralized pool. But with the previously used 
thread-based pool, DB2 would need to GETMAIN a new 10 - 30 KB chunk to its unique pool.

The centralized approach may use as much storage as the thread-based approach in the 
worst case, but most likely the timing will be such that it will use much less. The major benefit 
is then the removal of the majority of OS calls to GETMAIN and FREEMAIN storage, and this 
benefit occurs regardless of the level of storage usage improvement.

Another benefit occurs in the case of short-running threads, which in fact occur frequently in 
an SAP system. When a thread that connects, prepares, and executes only a few statements, 
then ends, the centralized approach is clearly better. In this case the thread does not need to 
create its storage pool or GETMAIN any storage. The central pool is highly likely to already 
contain sufficient free storage with the normal ebb and flow of other activity to satisfy this 
small number of executed statements. 

The more centralized management of the available storage means that we can use the 
available storage to the best advantage among all threads. Idle threads will also not be 
holding storage that they are not using, leading to more efficient usage of storage resources, 
and reduced induced overhead in a busy running SAP system.

5.7  Data sharing enhancements
In this section we describe data sharing enhancements of DB2 V8 that are of particular 
interest to your SAP system performance.

This section contains the following:

� SAP and data sharing
� CF lock propagation reduction
� CF request batching
� Improved LPL recovery

5.7.1  SAP and data sharing
SAP fully embraces the DB2 data sharing capabilities. It supports all variations of data 
sharing topologies. For scalability reasons, SAP instances may run DB2 in data sharing 
mode. To ensure continuous availability, SAP systems exploiting data sharing are also very 
common. The SAP application server is capable to fail over to a secondary DB2 member if it 
detects problems with the connection to the member to which it is currently connected. 
Moreover, the SAP critical asynchronous update protocol tables can be configured such that 
an affinity between SAP application server and DB2 member is established for the access to 
these tables. The latest SAP application server allows you to define up to 10 DB2 members 
per application server and obeys to customer-defined rules that control the relative 
precedence of each member. 

The ABAP infrastructure also takes data sharing into consideration. For example, ABAP 
batch scheduling groups have recently been introduced that effectively allow you to define an 
affinity between a batch job and a subset of DB2 members. Moreover, some SAP applications 
from the banking sector are designed in a data sharing-aware way that aims at minimizing 
global lock contention 
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The SAP support for data sharing is also central to automated SAP solutions that are based 
on IBM Tivoli® System Automation. The IBM Redbook, SAP on DB2 UDB for OS/390 and 
z/OS: High Availability Solution Using System Automation, SG24-6836, elaborates on the 
solution that is based on Tivoli System Automation for z/OS. The Redpaper, mySAP Business 
Suite Managed by IBM Tivoli System Automation for Linux, REDP-3717, discusses the 
solution with Tivoli System Automation for Linux. 

The panel in Figure 5-14 is available from the SAP transactions DB2 or ST04. It indicates the 
data sharing topology of an SAP system and shows to which DB2 member individual SAP 
work processes are currently connected. This information is also summarized per SAP 
application server and per DB2 member.

Figure 5-14   Data sharing topology

5.7.2  CF lock propagation reduction
DB2 V8 remaps parent IX L-locks from XES-X to XES-S locks. Data sharing locking 
performance benefits, because parent IX and IS L-locks are now both mapped to XES-S 
locks and are therefore compatible and can now be granted locally by the XES (cross-system 
extended services) component of z/OS. DB2 does no longer need to wait for global lock 
contention processing to determine that a new parent IX or IS lock is compatible with existing 
parent IX or IS locks.

This enhancement reduces data sharing overhead by reducing global lock contention 
processing. It is not uncommon for parent L-Locks to cause global contention. On page set 
open (an initial open or open after a pseudo close) DB2 normally tries to open the page set in 
RW. To do this, DB2 must ask for an X or IX page set L-Lock. If any other DB2 member 
already has the data set open, global lock contention occurs prior to DB2 V8.

The purpose of this enhancement is to avoid the cost of global contention processing 
whenever possible. It also improves availability due to a reduction in retained locks following a 
subsystem failure. Figure 5-15 shows the subsystem activity panel of the SAP integrated 
database performance monitor (SAP transaction code ST04). It includes the global and false 
contention rate. In the following section we explain this enhancement in more detail.
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Figure 5-15   ST04 database performance monitor: subsystem activity

Data sharing locking revisited
DB2 data sharing uses two types of locks, physical and logical:

� Physical locks (P-locks):

Briefly, physical locks are used to track the “level of interest” that DB2 data sharing 
members have in a particular page set or partition. 

There are two kinds of P-locks, page set and page:

– Page set physical locks:

Page set P-locks are used to track inter-DB2 read-write interest, thereby determining 
when a page set has to become GBP (group buffer pool)-dependent.

When a DB2 member requires access to a page set or partition, a page set P-lock is 
taken. This lock is always propagated to the lock table on the coupling facility and is 
owned by the member. No matter how many times the resource is accessed through 
the member, there is always only one page set P-lock for that resource for a particular 
member. This lock has different modes depending on the level of interest (read or 
write) that the member has in the resource.

The first member to acquire a page set P-lock on a resource takes the most restrictive 
mode of lock possible. This is an S page set P-lock for read interest and an X page set 
P-lock for write interest. An X page set P-lock indicates that the member is the only 
member with interest (read or write) in the resource. Once another member becomes 
interested in the resource, the page set P-lock mode can be negotiated, that is, it can 
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be made less restrictive if the existing page set P-lock is incompatible with the new 
page set P-lock request. The negotiation always allows the new page set P-lock 
request to be granted, except when there is a retained X page set P-lock. A retained 
P-lock cannot be negotiated. Retained locks are locks that must be kept to protect 
possibly uncommitted data left by a failed DB2 member. Page set P-lock negotiation 
signifies the start of GBP dependence for the resource.

Although it may seem strange that a lock mode can be negotiated, remember that 
page set P-locks do not serialize access to a resource, they are used to track which 
members have interest in a resource and for determining when a resource must 
become GBP-dependent.

Page set P-locks are released when a page set or partition data set is closed. The 
mode of page set P-locks is downgraded from R/W to R/O when the page set or 
partition is not updated within an installation-specified time period or number of 
checkpoints. When page set P-locks are released or downgraded, GBP dependency is 
reevaluated.

– Page physical locks:

Page P-locks are used to ensure the physical consistency of a page across members 
of a data sharing group in much the same manner as latches do in a non-data sharing 
environment. A page P-lock protects the page while the structure is being modified. 
Page P-locks are used not only when row locking is in effect, but are also used in other 
ways, for example, when changes are being made to GBP-dependent space map 
pages or row level locking is being used. Page physical locks are also used to read and 
update index pages.

� Logical locks (L-locks):

Logical locks are also referred to as transaction locks. L-locks are used to serialize access 
to data to ensure data consistency.

L-locks are owned by a transaction, and the lock duration is controlled by the transaction. 
For example, the lock is generally held from the time the application issues an update until 
the time it issues a commit. The locks are controlled locally per member by each 
member′s IRLM.

P-locks and L-locks work independently of each other, although the same processes are used 
to manage and maintain both. The lock information for all these locks is stored in the same 
places (the IRLM, XES, and the coupling facility).

Explicit hierarchical locking
Conceptually, all locks taken in a data sharing environment are global locks, that is, they are 
effective group-wide, even though all locks do not have to be propagated to the lock structure 
in the coupling facility.

DB2 data sharing has introduced the concept of explicit hierarchical locking, to reduce the 
number of locks that must be propagated to the coupling facility.

Within IRLM, a hierarchy exists between certain types of L-locks, where a parent L-lock is the 
lock on a page set; and a child L-lock is the lock held on either the table, data page, or row 
within that page set.

By using explicit hierarchical locking, DB2 is able to reduce the number of locks that must be 
propagated to the lock structure in the coupling facility. The number of locks that are 
propagated to the lock structure for a page set or partition is determined by the number of 
DB2 members interested in the page set and whether their interest is read or write. Wherever 
possible, locks are granted locally and not propagated to the coupling facility.
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If a lock has already been propagated to XES protecting a particular resource for this 
member, a subsequent lock requests for the same lock does not have to be sent to XES by 
the same member for the same resource. They can be serviced locally. In addition, a parent 
L-lock is propagated only if it is more restrictive than the current state that XES knows about 
for this resource from this member.

SAP specifies release commit on the bind parameter. In SAP environments, parent L-locks 
are therefore released when the transaction commits. Child L-locks are propagated to the lock 
table in the coupling facility only when there is inter-DB2 read-write interest for the page set.

Child locks (page and row locks) are propagated to XES and the coupling facility based on 
inter-DB2 interest on the parent (table space or partition) lock. If all the table space locks are 
IS, then no child locks are propagated. However, if there is an IX lock on the table space or 
partition, which indicates read/write interest, then all the child locks must be propagated. 

Lock contention
Figure 5-16 presents a logical overview of how the IRLMs in a data sharing group cooperate 
to maintain data integrity for a page set where both DB2 members have interest in the page 
set.

Figure 5-16   Global locking

Consider transaction TX1 on DB2A, which needs an X lock on page P1. IRLM passes this 
lock request to XES and the lock is granted. Now, transaction TX2 on DB2B needs an S lock 
on page P1. IRLM passes this lock request through XES to the coupling facility. As 
transaction TX1 already has an X lock for page P1, transaction TX2 must be suspended.

Transaction TX1 now updates page P1 and commits. The IRLM releases the X lock and 
passes an unlock request through XES to the coupling facility. The S lock is now granted and 
transaction TX2 can be un-suspended to continue its work.

Now, let us have a closer look at the various reasons why a transaction may be suspended. 
Lock information is held in three different components:

� IRLM
� XES
� Lock structure on the coupling facility

Lock contention
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The types of lock granularity supported by each component differ. IRLM contains the most 
detailed lock information; whereas XES and the lock table on the coupling facility recognize 
only two types of locks — S and X. Each IRLM lock maps to a particular XES lock. IS and S 
map to XES-S locks; while U, IX, SIX and X map to XES-X locks.

Lock contention occurs when a task is requesting a lock for a resource and the lock may 
already be held by another task. In data sharing, the other task could be running in the same 
DB2 subsystem or running in another DB2 member. For this discussion we are only 
concerned about global contention, when the contention is across DB2 members.

In data sharing, three types of global contention can occur. These are listed in order of 
increasing time needed for their resolution:

� False contention:

False contention occurs when the hashing algorithm for the lock table provides the same 
hash value for two different resources. The different resources then share that one lock 
table entry.

False contention can occur only when the lock table entry is managed by a global lock 
manager or when the lock request causes global management to be initiated, that is, there 
is inter-DB2 R/W interest in the page set. The XES requesting the lock needs to know the 
owning resource name to resolve this apparent contention. That information already 
resides in the XES that is the global lock manager for the lock table entry. If the global lock 
manager is not the requesting XES, communication between XES components is needed 
to resolve the false contention. At SAP installations, false contention should be below 
1.5% 

In our example, false contention would occur if transaction TX2 were to request a lock for a 
different resource, say page P2, and the lock request hashed to the same lock table entry 
in the coupling facility. 

Transaction TX2 must be suspended while the XES who is the global lock manager for the 
lock table entry, determines that the lock can be granted.

� XES contention:

The z/OS XES component is aware of only two lock modes, share and exclusive. IRLM 
locking supports many additional lock modes. When the z/OS XES component detects a 
contention because of incompatible lock modes for the same resource, that contention is 
not necessarily a real contention by IRLM standards. For example, the IRLM finds the 
IX-mode to be compatible with the IS-mode. For the XES component, however, these are 
not IX-mode and IS-mode, but X-mode and S-mode, which are incompatible. To see if a 
real contention exists, XES must give control to the IRLM contention exit associated with 
the global lock manager. The IRLM contention exit must determine if the contention is real 
or not, that is, if the locks are incompatible. If the contention is not real, it is called “XES 
contention” and the requested lock can be granted.

In our example, XES contention would occur if transaction TX1 held an IX lock on page P1 
and transaction TX2 was requesting an IX lock on page P1. Both of these lock requests 
are passed to XES as X locks. XES sees these lock requests as not compatible however 
IRLM knows they are compatible.

Transaction TX2 must be suspended while the XES who is the global lock manager for the 
lock table entry, must defer to IRLM to decide if the lock request can be granted.

� Real contention:

Real contention is caused by normal IRLM lock incompatibility between two members. For 
example, two transactions may try to update the same resource at the same time. DB2 PM 
reports real contentions as IRLM contentions.
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This is the example we have just explained. Transaction TX2 is requesting a lock which is 
not compatible with a lock already help by transaction TX1. Transaction TX2 must be 
suspended while XES defers to IRLM who cannot grant the lock. 

Resolving contention
Contentions require additional XES and XCF services if the requesting member is not global 
lock manager, that is, the owner of the lock registered in the lock table entry.

Information about locks that IRLM passes to XES is stored in XES. When contention occurs 
(false, XES, or real contention), one of the XES instances is assigned to be the global lock 
manager to resolve the contention. This resolution involves all of the other XESs in the group 
that have locks which have been assigned to the lock table entry, passing their lock 
information to the global lock manager XES. This global lock manager XES can then drive 
resolution of the contention.

When any contention occurs, execution of the requester′s SQL statement is suspended until 
the contention is resolved. If the contention is real, the requester remains suspended until the 
incompatible lock is released. 

Therefore, any contention can adversely impact performance. The SQL is suspended while 
the contention is resolved and extra CPU is consumed resolving the contention.

The enhancement
In DB2 V8, parent IX L-locks is remapped to XES-S locks, rather than XES-X locks. This 
allows parent IX L-locks to be granted locally by XES when only IS or IX L-locks are held on 
the object.

To ensure that parent IX L-locks remain incompatible with parent S L-locks, S table and table 
space locks are remapped to XES-X locks. This means that additional global contention 
processing is done to verify that a page set S L-lock is compatible with another page set S 
L-lock, but gross S- or X-locks are requested extremely rarely for SAP applications. The major 
reason is lock escalation and the goal is to avoid lock escalation at all. Table 5-4 summarizes 
the new mapping of IRLM locks to XES locks.

Table 5-4   Mapping of IRLM locks to XES locks

The majority of cases involve intent gross locks only:

� IS-IS: A member wants to execute some read-only SQL against a page set and there are 
a number of other members who currently have some read-only SQL active against the 
same page set.

� IS-IX: A member wants to execute some update SQL against a page set and there are a 
number of other members who currently have some read-only SQL active against the 
same page set.

IRLM lock XES lock with DB2 V8 XES lock prior to DB2 V8

IS S S

S X S

U X X

IX S X

SIX X X

X X X
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� IX-IX: A member wants to execute some update SQL against a page set and there are a 
number of other members who currently have some update SQL active against the same 
page set.

Hence, global contention processing is reduced by this enhancement. Parent lock contention 
with parent S L-locks is less frequent than checking for contention with parent IS and IX 
L-locks.

Child-L lock propagation with DB2 V8
Another impact of this change is that child L-locks are no longer propagated to the lock 
structure of the coupling facility based on the parent L-lock. Instead, child L-locks are 
propagated based on the held state of the page set P-lock. If the page set P-lock is 
negotiated from X to SIX or IX, then child L-locks are propagated.

It can happen that some child L-locks are acquired before the page set P-lock is obtained. In 
this case already acquired child L-locks are automatically propagated. This situation can 
occur, because DB2 always acquires locks before accessing the data. DB2 acquires the page 
set L-lock before opening the page set to read the data. This can also happen during DB2 
restart.

An implication of this change is that child L-locks are propagated for longer than they are 
needed, however this should not be a concern. There will be a short period from the point in 
time when there is no inter-system read/write interest until the page set becomes 
non-GBP-dependent, that is, before the page set P-lock reverts to X. During this time, child 
L-locks are propagated unnecessarily.

Another consequence of this enhancement is that, since child L-lock propagation is no longer 
dependent upon the parent L-lock, parent L-locks are no longer held in retained state 
following a system failure. This means for example that a page set IX L-lock is no longer held 
as a retained X-lock after a system failure. This can provide an important availability benefit in 
a data sharing environment. Because there is no retained X-lock on the page set anymore, 
most of the data in the page set remains available to applications running on other members. 
Only the rows with retained X-lock will be unavailable for SAP systems, which use row-level 
locking.

Benefits of less lock propagation to the coupling facility
Data sharing locking performance benefits largely, because this enhancement allows IX and 
IS parent L-locks, which are by far the most often used gross locks at SAP installations, to be 
granted locally. Global lock contention processing does not need to be invoked to determine 
that the new IX or IS lock is compatible with existing IX or IS locks.

Prior to DB2 V8, the best data sharing performance is achieved by using the bind option 
RELEASE(DEALLOCATE) to reduce XES messaging for page set L-locks. This is no longer 
true with DB2 V8. With respect to data sharing, RELEASE(COMMIT) now yields equivalent 
performance as RELEASE(DEALLOCATE). This means that SAP applications, which 
uniformly employ RELEASE(COMMIT), directly take advantage of this enhancement.

Additionally, the ability to grant IX and IS locks locally implies less thrashing on changing 
inter-system interest levels for parent locks, which reduces both IRLM SRB time and XCF 
messaging. When DB2 decides to propagate its locks to the coupling facility for a given page 
set, DB2 needs to collect and propagate all the locks that it currently owns for that page set to 
the coupling facility. This can cause some overhead, particularly when a page set is not used 
often enough for constant lock propagation. Page set P-locks are long duration locks and tend 
to be more static than L-locks. Therefore, it is more likely that lock propagation continues 
longer, which avoids situations where DB2 members have to propagate all locally held locks 
for a given page set to the coupling facility.

 

 

 

150 DB2 for z/OS V8 Features Benefitting SAP



 

Since page set IX L-locks are not held as a retained X-lock after a system failure anymore, 
availability in data sharing environments is further improved.

Coexistence and enablement
Since the new locking protocol cannot coexist with the old one, the new protocol only takes 
effect after the first group-wide shutdown when the data sharing group is in New Function 
Mode. No other changes are required to take advantage of this enhancement

If you recover the catalog and directory to a point in time prior to New Function Enable Mode, 
a group-wide shutdown is required. On the next restart, whether it be on V7 or V8, the new 
locking protocol is disabled.

5.7.3  CF request batching
Prior to V8, DB2 allows multiple pages to be registered to the coupling facility with a single 
command. z/OS 1.4 and CF level 12 introduce two new “batch” processes to:

� Write And Register Multiple (WARM) pages of a GBP with a single command.

� Read multiple pages from a GBP for castout processing with a single CF read request. 
The actual command is called Read For Castout Multiple (RFCOM).

DB2 V 8 exploits these new CF commands to reduce the amount of traffic to and from the 
coupling facility for write operations to GBP and for read operations from GBP for castout 
processing, thus reducing the data sharing overhead for many workloads. As mentioned, SAP 
applications try to minimize the data sharing overhead in different areas. CF request batching 
potentially reduces data sharing overhead where these efforts do not apply, Hence, the most 
benefit is expected for workloads which update large numbers of pages belonging to 
GBP-dependent objects. 

The following subsections explain how CF request batching benefits write operations to 
GBPs, GBP castout processing and index page splits. Besides these advantages, CF request 
batching improves DB2 commit processing performance in case any remaining changed 
pages must be synchronously written to the GBP during commit processing. For 
GPBCAHE(ALL) page sets, DB2 is now able to more efficiently write prefetched pages into 
the group buffer pool as it reads them from disk (Figure 5-17).

Figure 5-17   Data sharing: Inter-DB2 buffer pool coherency
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Inter-DB2 buffer pool coherency
SAP applications — as any other application — can access data from any DB2 subsystem in 
a data sharing group. Many subsystems can potentially read and write the same data. To 
prevent inconsistencies, DB2 uses special data sharing locking and caching mechanisms to 
ensure data consistency. Figure 5-17 on page 151 provides a brief overview of how shared 
data is updated and how DB2 protects the consistency of data.

Suppose that an application issues an UPDATE statement from DB2A and that the data does 
not reside in the member’s buffer pool or in the group buffer pool. In this instance, DB2A must 
retrieve the data from disk and get the appropriate locks to prevent another DB2 from 
updating the same record at the same time.

Because no other DB2 subsystem shares the table at this time, DB2 does not need to use 
data sharing integrity mechanisms to process DB2A’s update.

Next, suppose another application, running on DB2B, needs to update that same data page. 
DB2 knows that inter-DB2 interest exists, so DB2A writes the changed data page to the GBP. 
DB2B then retrieves the data page from the GBP. 

After DB2B updates the data, it moves a copy of the data page into the GBP, and the data 
page is invalidated in DB2A’s buffer pool. Cross-invalidation occurs from the GBP.

When DB2A needs to read the data, the data page in its own buffer pool is invalid. Therefore, 
it reads the latest copy from the GBP.

Prior to V8, DB2 already allows you to register multiple pages to the CF in a single command. 
If DB2 V8 runs on z/OS 1.4 or higher and the CF level is at least 12, DB2 is enabled to write 
multiple pages to a GBP in a single operation. This reduces the amount of traffic to the CF 
and hence improves performance. In the above example, if DB2B not only updates a single 
page but a large number of pages, DB2 now uses CF request batching to write the changed 
pages to GBP in fewer operations. 

Castout processing
To reduce restart time after an unplanned outage, DB2 periodically writes changed pages 
from the GBP to disk. This process is called castout. 

There is no physical connection between GBPs and disk, so the castout process involves 
reading the pages from a GBP into a group member′s private buffer, which is not part of the 
member′s buffer pool storage, and writing the page from the private buffer to disk.

Castout is triggered when:

� A GBP checkpoint is taken.
� The GBP castout threshold is reached.
� The class castout threshold is reached.
� GBP dependency is removed for a page set.

Within a group buffer pool, there are a number of castout classes; the number of classes is an 
internal value set by DB2. Page sets using the GBP are mapped to a specific castout class. 
DB2 preferably has only one data set assigned to a particular castout class, although it is 
possible to have more than one data set mapped into the same castout class, depending on 
how many data sets are using the group buffer pool concurrently.
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Castout classes are used to limit the number of changed pages a data set can have in a GBP 
at any one time, thereby limiting the amount of I/O to the data set at castout time. Large 
amounts of I/O could cause disk contention. This limitation is achieved through the use of the 
castout class threshold. The default of the castout class threshold parameter is 10, which 
means that castout is initiated for a particular class when 10% of the GBP contains pages for 
that class or, if only one data set is assigned to that class, when 10 percent of the GBP 
contains pages for that data set. The castout class threshold applies to all castout classes. 
You can change the castout class threshold by using the ALTER GROUPBUFFERPOOL 
command.

Data sets have a GBP castout owner assigned to them. The group buffer pool castout owner 
is the first member to express write interest in the data set. After castout ownership is 
assigned, subsequent updating DB2 subsystems become backup owners. One of the backup 
owners becomes the castout owner when the original castout owner no longer has read-write 
interest in the page set or partition. At castout time the castout owner is responsible for 
performing the actual castout process for all changed pages for the data set.

Castout processing predominantly involves reading multiple pages from a GBP. Therefore, CF 
request batching is well-suited to yield performance benefits that should make castout 
processing less disruptive. 

Batched index page splits
In previous versions of DB2, page splits of indexes with inter-DB2 read/write interest require 
up to five synchronous log writes and up to five separate write operations to GBP. The five 
separate writes are to ensure that when a leaf page split occurs, the index pages involved are 
written out in the correct order. This prevents other members from seeing a reference to an 
index page that doesn’t yet exist in the group buffer pool.

This can cause significant overhead for GBP-dependent indexes, resulting in additional 
synchronous GBP writes, and even more important, in high wait times for synchronous log 
I/O.

In V8, DB2 accumulates the index page split updates and processes them as a single entity. 
This reduces log writes and coupling facility traffic. The write operations of the accumulated 
updates to the coupling facility employ CF request batching.

SAP applications that heavily insert data in tables with GBP-dependent indexes see the most 
benefit of this enhancement. However, applications that exploit the SAP capabilities to avoid 
GBP-dependency at all are not affected.

5.7.4  Improved LPL recovery
Prior to V8, pages that DB2 puts into the logical page list (LPL) need to be recovered 
manually. Issuing the START DATABASE command with the SPACENAME option 
accomplishes this. It drains the entire page set or partition though even if only a single page is 
in LPL. The complete page set or partition is unavailable for the duration of the LPL recovery 
process. 

DB2 V8 recovers LPL pages without draining page sets or partitions. It only locks the LPL 
pages during the recovery process, leaving the remaining pages in the page set or partition 
accessible to applications. This significantly improves system performance and enhances 
data availability. Instead of draining, DB2 makes a write claim on the affected page set or 
partition so that the intact pages can still be accessed.
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Also, DB2 V8 adds automatic recovery of LPL pages, which does not drain page sets or 
partitions either. When pages are added to the LPL, DB2 issues message DSNB250E, which 
is enhanced to indicate the reason why the pages are added to the LPL. DB2 then attempts 
automatic recovery, except in cases where the recovery cannot succeed. These cases are:

� Disk I/O error
� During DB2 restart
� GBP structure failure
� GBP loss of connectivity

If automatic LPL recovery completes successfully, DB2 deletes the pages from the LPL and 
issues message DSNI021I, which indicates completion.

The improved LPL recovery contributes to enhanced availability characteristics of SAP 
systems that run on DB2 V8. The recovery process is automated where possible, to make it 
faster and less disruptive.
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Chapter 6. Tools and administration

In this chapter we describe the following features:

� Automatic Space Management
� DSC statement ID in Explain
� Long-running non-committing readers
� Lock escalation alert
� SAP and DB2 Control Center
� SAP transaction-based DB2 accounting and workload management

6
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6.1  Automatic Space Management
In this section we describe the new space management features introduced in DB2 V8. For 
an SAP implementation, these features are extremely valuable for continuous availability, as 
they provide adaptability when data growth patterns are not predictable, or do not follow those 
expected.

The new Automatic Space Management feature introduced in DB2 V8 is considered highly 
valuable for all SAP implementations. It will potentially eliminate one of the main causes of 
failures where growth has not been completely anticipated. As discussed in this section, 
administrative tasks still remain, but reducing or eliminating a cause of failure is a major step 
forward. We cover the following topics:

� Why the new features are important in an SAP system
� How these features work

6.1.1  Challenges of data management of an SAP system 
After the initial SAP installation activities, the database will have a well defined layout, with a 
large number of DB2 objects, and a set of data inserted throughout these tables. The actual 
layout will be quite similar for most customers, but will vary according to the versions of the 
mySAP component and DB2 for z/OS.

What happens to this system after the initial installation will vary, depending on a number of 
factors, which include:

� The role of the system, for example, development, testing, or production

� The mySAP component, and the choice of available functionality used by the customer. 
Usually most customers use less than the complete set of possible features

� The amount of customer specific data loaded into the system

� Activity taking place in the system that results in significant changes to the database 
content

Differences between customers
One of the greatest challenges in administering SAP systems is that every customer varies in 
the usage of the supplied package. In some cases these differences are great, such as the 
difference between a customer who installs SAP Enterprise and implements an HR/Payroll 
system, and another customer who implements a Sales and Distribution system. Even 
customers implementing the same or a very similar set of SAP modules will make choices in 
the implementation process that result in a different subset of database objects being actively 
utilized, both in terms of data volumes and activity on this data.

Usually the supplied mySAP component has rules for the generation of the database layout 
that cater for most “average” customers, but in reality there is no such thing as an absolutely 
average customer. Invariably, everyone is at least slightly different from the average.

Impact on database administration (DBA) function
If a database object, either in the form of a table space, tables pace part, or index reaches the 
maximum number of extents permitted, usually the following message is issued on the 
system console:

DSNP007I csect – EXTEND FAILED FOR
data-set-name. RC=00D70014
CONNECTION-ID=xxxxxxxx,
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CORRELATION-ID=yyyyyyyyyyyy,
LUW-ID=logical-unit-of-work-id =token

The unit of work issuing the SQL statement resulting in a space request will abend, and 
subsequently repeating any work trying to add data to this object will similarly fail until the 
issue is resolved.

This situation can potentially be avoided through the correct “pre-sizing” of the objects to be 
used in an SAP system; however, it is not always possible anticipate future space 
requirements. If these failures do occur, they are generally either during SAP system 
implementation, or after the system “goes live”.

Issues arising during SAP system implementation
Typically, at some point in the process of implementing a mySAP component, there is a 
phase, or a number of phases, where a customer will perform activities normally referred to 
as “data loads”. This is where data from other systems is placed into the new SAP system, 
using a number of means available to perform the transfer. The various techniques for loading 
data vary in their time to implement, and runtime efficiency, but eventually all lead to rows 
being inserted and/or modified in a table or series of tables. Due to the complex and highly 
integrated nature of SAP, it is sometime difficult to know ahead of time what database objects 
will carry the new data.

In the situation where many different types of data loads are to be performed over a period of 
time, and these are occurring into a newly installed system, it can be very frustrating to 
iteratively deal with out-of-space conditions. Where the out-of-space conditions occur due to 
the maximum number of extents being reached (255), this would have been avoided had 
suitable values been chosen for PRIQTY and SECQTY of the database object. It may be 
possible to anticipate the size of the major tables which will have data inserted into them. 

However, in an SAP system, it is quite often the case that it is not the well known large tables 
in the system that cause the most angst during data loads, but in fact, it is usually the small to 
medium size tables. This can happen due to the size estimates provided in the SAP system 
“out of the box” not being adequate to handle the data expected in every customer. One 
solution would of course be to size every table to cater for all possible customers, but this 
would result in an inordinately large database, most of which would be free space. An equal 
or greater amount of work would subsequently be required to resize the objects to their actual 
required space, and subsequently REORG to remove the excess space.

The provision of the new Automatic Space Management function fundamentally addresses 
this issue by allowing a more adaptive scheme to take place when table spaces and indexes 
have more data placed in them than anticipated. It should be noted that this solution 
addresses the problem of failures associated with reaching the maximum permitted number 
of extents, particularly where this results in a data set size at the time of failure that is less 
than the theoretical maximum of the value DSSIZE for table spaces or PIECESIZE for 
indexes.

As such, here are a few issues that are not within the scope of this enhancement:

� There may be a situation in which the database object will have sufficient data inserted 
into it that it would also receive a failure when it reaches the DSSIZE or PIECESIZE limit.

This is probably very rare in the case of an SAP system. When loading data into an empty 
system, in most cases the major tables that will have data loaded into them are well known 
to those programmers and teams performing the loads. In these cases, as part of their 
normal practice, the teams should have alerted those responsible for the DBA function to 
those tables in question, and the anticipated number of records involved. In many cases 
these tables may be partitioned to address size limitations.
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� The database object in question may, after the data loading activity, still have a large 
number of extents, while not having reached the maximum. 

There may be some performance and administrative benefits that result in the subsequent 
resizing of the object, through altering the PRIQTY and SECQTY and subsequently 
REORG on the table space or index. This is considered to be much less of an issue than 
actually suffering space related failures, as they can be addressed in a timely manner 
while allowing the implementation process to continue.

� No space is available on the disk where DFSMS routines require the data set extents to be 
placed.

If a growing data set is extending, and the VSAM Access Method Services routines are 
not able to find sufficient space on the disk volumes allowed, it is possible that an extend 
failure will occur before 255 extents are reached. Also, if the remaining disk space is in 
small, fragmented pieces, it is possible that 255 extents will be reached earlier due to 
numerous small extents being taken to fulfill space requirements.

Often the actual process of a company beginning to use their SAP system happens during a 
specific changeover time, where the existing systems have data moved into the new system 
prior to its usage by the company’s users. Quite often this action is taken over a short period 
of time, due to the unavailability of any system to the users while the changeover occurs. As 
such, these “go-live” times involve the actual running of the data load jobs in a very short time. 
Any significant unforeseen problems during this time can delay the start of usage of the new 
SAP system, and may result in a significant business issue, such as lost sales opportunities, 
etc.

Issues arising after SAP goes live
After an SAP system begins its normal operations, usually after the aforementioned go-live 
actions, it is usual that a consolidation time takes place, where the system is now being used 
by the company’s staff. While the system is being actively used, the technical staff are able to 
start analyzing the data about the actual usage and performance of the system. Additionally, 
the DBA staff have the first chance to see how the user’s activity impacts the content of the 
DBMS, and how this compares to what was anticipated.

It is normal immediately after the go-live to find a significant number of database objects 
needing REORG, either because the underlying data set has reached a non-trivial number of 
extents, or statistics indicate that data within the space is disorganized enough to be causing 
performance impacts.

After this “cleanup phase”, ongoing administrative tasks involve monitoring, among other 
things, the number of extents and relative organization of data within objects. As DB2 
captured statistics indicate objects crossing customer determined thresholds (extents and 
disorganization indicators), action is normally taken to REORG the objects in question. The 
function of DB2 Real Time Statistics (RTS) introduced in DB2 for OS/390 and z/OS Version 7 
aids this task considerably by providing the data upon which these decisions are made in real 
time.

SAP has an “extent monitor” built into the administrative transaction DB02. This provides user 
customizable thresholds, above which the table space or index will appear on the SAP extent 
monitor transaction. The administrator is then able to take appropriate action as objects grow, 
and REORG them at a time appropriate to the system availability considerations. By setting 
the thresholds to appropriate levels, this allows the database administrator a certain “buffer” 
when planning future administrative actions, minimizing the possibility of unexpected outages 
due to space related issues.
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SAP also provides a job which issues DB2 catalog queries to determine which tables and 
indexes are sufficiently disorganized to the point where performance is probably less than 
ideal. Using a similar mechanism to that described for data set extents, the administrator can 
then schedule a task to build the JCL to reorganize these objects, and run the jobs when 
appropriate to the customer’s workload.

6.1.2  Automatic space management functions
Automatic Space Management is enabled with the new DSNZPARM of MGEXTSZ, which can 
be set to either YES or NO, and the default is NO. That is, after moving to DB2 V8, the new 
functionality is disabled initially, and space management occurs as it previously did in DB2 
Version 7.

When enabled by setting MGEXTSZ, in certain situations, DB2 will automatically adapt the 
size of each subsequent secondary allocation requested. It does this in such a way that it 
follows a sliding scale that guarantees the object will reach its theoretical maximum data set 
size (DSSIZE) prior to reaching the maximum number of extents allowed for a VSAM data set 
of 255.

New defaults TSQTY and IXQTY
APAR PQ53067 for DB2 V6 and V7 introduced the new DSNZPARM parameters TSQTY and 
IXQTY, allowing the administrator to override the default allocation values for primary and 
secondary quantities for the cases where these are not specified in the object creation DDL.

� The actual value applied by DB2 for default PRIQTY will be determined by the applicable 
ZPARMs, TSQTY or IXQTY, which were introduced with APAR PQ53067. The ZPARMs 
TSQTY and IXQTY will now have global scope. 

� TSQTY will apply to non-LOB table spaces. For LOB table spaces, a 10x multiplier will be 
applied to TSQTY to provide the default value for PRIQTY. 

� IXQTY will apply to indexes. ZPARMs TSQTY and IXQTY will continue to have a default 
value of 0 (zero), but this value will indicate a new default value of 720 KB (1 cylinder) is to 
be applied. 

� If TSQTY is set to 0, then 1 cylinder will be the default PRIQTY space allocation for 
non-LOB table spaces and 10 cylinders will be the default PRIQTY space allocation for 
LOB table spaces. 

� If IXQTY is set to 0 then 1 cylinder will be the default PRIQTY space allocation for indexes. 

The user can provide override values for TSQTY and IXQTY ZPARMs to avoid wasting 
excessive disk space. For example on a development subsystem, TSQTY and IXQTY may be 
set to 48 KB for track allocation. The use of the default for PRIQTY will be recorded in the 
associated PQTY column as -1 in the SYSIBM.SYSTABLEPART or 
SYSIBM.SYSINDEXPART catalog table.

Implementation details
The main objective of Automatic Space Management is to avoid the situation where a DB2 
managed page set reaches the VSAM maximum extent limit of 255 before it can reach the 
maximum data set size, which may be less than 1 GB, 2 GB, 4 GB, 8 GB, 16 GB, 32 GB, or 
64 GB. The actual secondary allocation quantity applied will not be reflected in the Catalog, 
and will not exceed DSSSIZE or PIECESIZE. For an index, the user specified PIECESIZE, 
which limits data set size, and can start as low as 256 KB. It allows for a managed DB2 page 
set to reach the maximum page set size before running out of extents. This will help to reduce 
the number of out-of-space conditions, improve user productivity, and additionally avoid the 
performance penalty associated with small extent sizes.
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Two sliding scales can be used, one for 32 GB and 64 GB data sets, and one for the rest (less 
than 1 GB, 1 GB, 2 GB, 4 GB, 8 GB, 16 GB). Maximum data set size can be determined 
based on DSSIZE, LARGE and PIECESIZE specification for the object. Both sliding scales 
will allocate an increasing secondary quantity size up to 127 extents and a constant number 
thereafter. The constant is 559 cylinders for the 32 GB and 64 GB data sets, and 127 
cylinders for the rest.

The effect of using MGEXTSZ=YES is illustrated in Figure 6-1, where after the number of 
extents has exceeded the SECQTY value for the table space or index (in cylinders), the size 
of each subsequent extent is gradually increased, until the object reaches 127 extents. A 
fixed secondary extent, depending on the maximum possible data set size, is then allocated 
for extent numbers 128-255.

Figure 6-1   Increasing secondary allocation with sliding scale

This approach of sliding the secondary quantity minimizes the potential for wasted space by 
increasing the extents size slowly at first, and it also avoids very large secondary allocations 
from extents 128-255, which will most likely cause fragmentation where multiple extents have 
to be used to satisfy a data set extension. The solution will address new data sets that will be 
allocated, and also existing data sets requiring additional extents. Therefore, in the case of an 
already installed SAP system, after upgrading to DB2 V8, and enabling the new ZPARM, the 
full benefits of this enhancement can be realized immediately.

When MGEXTSZ is enabled, if the SECQTY value specified by the user is greater the 0, the 
actual secondary allocation quantity will be the maximum of the calculated quantity size using 
sliding scale methodology, and the SECQTY value specified by the user. When a page set 
spills onto a secondary data set, the actual secondary allocation quantity will be determined 
as described and applied, and the progression will continue. Prior to DB2 V8, the PRIQTY 
would have been used.
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127/559 Cylinder 
fixed increments
once 127 extents 

reached or exceeded

SECQTY

EXTENT NUMBER

PRIQTY
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6.1.3  Scenarios and benefits of Automatic Space Management
One of the major benefits of automatic space Management is preventing disruptions to all 
users, based on the unexpected activity against one or more database tables in an SAP 
system. Most often this will occur in situations such as data loads prior to the productive 
usage of the SAP system, or implementation of additional functions within the SAP 
application. It is possible, but much more unlikely, that out-of-space conditions will occur 
during normal operations. In this case, the growth would be expected to have some steady 
rate. Normal monitoring of data set extents across all objects would normally catch this 
growth, and corrective action taken prior to objects reaching 255 extents.

Because the MGEXTSZ ZPARM can be enabled and disabled, it is possible that it could be 
set to YES only during known periods of growth. This would be particularly useful before the 
first execution of loading data into the SAP system for a new functional area. In this way it 
would prevent what commonly occurs in this situation, where the loads run until one object 
reaches 255 extents. The load process abends, possibly requiring a non-trivial time to back 
out, depending on how it is written in regard to commit frequency. The database object then 
needs to be resized through ALTER commends and subsequent REORG utility execution. 
The data loads then continue, and often this is just long enough until the next space related 
error happens, and the above steps are repeated. Typically in an SAP system, this can occur 
with indexes on tables, as there are many indexes, and frequently their default allocation 
results in growth to 255 extents very quickly.

In this situation, where the application knowledgeable personnel are unable to 
comprehensively specify which database objects are expected to receive what volume of 
data, this new DB2 functionality will remove this frustration. It should be stressed again that 
subsequent action will most likely need to take place after the data load phase completion, 
with table spaces and indexes that are in a non-trivial number of extents and/or disorganized 
being REORGed. But this can happen in a much more controlled and less time critical 
manner.

Finally, while it may be possible to deactivate the new MGEXTSZ parameter at times where 
no exceptional activity is expected, it is highly recommended that the parameter is active (that 
is set to YES) at all times. The benefit of reducing user impact due to out-of-space conditions 
greatly outweighs the slight possibility of using additional space unnecessarily. The algorithm 
used ensures that while objects are in small numbers of extents, the potential wasted space is 
small. And with good practices in place to detect objects growing into larger numbers of 
extents, and subsequently addressing them, the best of all worlds is achieved.

Tip: If SECQTY is specified by the user as 0 to indicate “do not extend”, this will always be 
honored. So for certain circumstances, especially DSNDB07 workfiles, where users 
deliberately set SECQTY=0 to prevent data set extension, this will remain the case even 
with the MGEXTSZ parameter enabled.

Tip: While the activation of the new MGEXTSZ DSNZPARM has to be considered in terms 
of the benefits and drawbacks discussed in this section, we feel that all SAP 
implementations would benefit from “turning it on, and leaving it on” !
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An illustration of the difference possible with the new function is shown in Figure 6-2, where 
an index has been defined with PRIQTY = 25 cyls, and SECQTY = 10 cyls. Notice that while 
this is displayed as a small index allocation, in many customer situations the allocation may 
be even smaller than this. With the Automatic Space Management function, the result will still 
be that the data set can grow to 4 GB, but will come closer to the 255 extent limit in doing so, 
while never reaching it. 

This in contrasted with what would happen if MGEXTSZ was set to NO. In this case, the data 
set size would reach 2565 cylinders, at which point subsequent activity requiring more space 
would fail, as the object is at the maximum VSAM limit of 255 extents. These failures occur 
despite the fact the DSSIZE parameter of the object indicates it should be able to grow to 
4 GB or ~22,000 cylinders.

In the example in Figure 6-2, the secondary extent allocations will all be 10 cylinders until the 
10th extent is allocated. At this point, the 11th extent would be allocated at 11 cylinders, the 
12th at 12 cylinders, and so on. When the 127th extent is reached, the subsequent allocation 
from that point onwards would be 127 cylinders, until the 4 GB data set size limit is reached.

Figure 6-2   Example of small index scenario

Final Size
255 Extents
2565 Cyls
(179 MB)

With MGEXTSZ=NO

With MGEXTSZ=YES

Final Size
238 Extents
22K Cyls
(4GB)

Example 1 
Index defined with
PRIQTY: 25 Cyls
SECQTY:         10  Cyls
DSSIZE:   4  GB
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6.2  DSC statement ID in Explain
In this section we describe a DB2 V8 enhancement to the Explain function necessary to 
support the REOPT(ONCE), REOPT(ALWAYS), and RUNSTATS enhancements.

Prior to DB2 V8, the EXPLAIN statement has always shown the access path that a query 
would use, if a PREPARE or BIND were executed against the database in the current state. 
The ability of the RUNSTATS utility to invalidate cached statements meant that, under certain 
circumstances, SQL statements currently executing in the DB2 subsystem could be using a 
different access path than that indicated by an Explain. While not ideal, this was acceptable 
because support personnel were aware of utility executions and the ST04 dynamic statement 
cache provided information related to RUNSTATS invalidation and current use within the SAP 
environment.

The introduction of REOPT(VARS) further complicates things in that an EXPLAIN against an 
SQL statement in the DSC will now report an access path that may or may not reflect the path 
being used. Again, this is hardly ideal, but was acceptable because the parameter values 
could be captured from an ST05 SQL trace and an EXPLAIN executed with literals replacing 
parameter markers in the SQL statement.

DB2 V8 introduces REOPT(ONCE), which causes the selection of the access path for an 
SQL statement after the first set of execution host variables are known. The path will then be 
fixed for all subsequent executions. The DB2 V7 function of Explain is no longer sufficient 
because it is now impossible to determine, with any accuracy, the access path being used by 
an executing SQL statement or any statement that is already extant in the Dynamic 
Statement Cache.

6.2.1  Description of the enhancement
DB2 V8 enhances the DB2 Explain to allow an Explain to be executed against any SQL 
statement based on that statements STMTID or STMTTOKEN. This will allow the 
determination of the actual access path being taken for any executing SQL statement 
currently resident in the Dynamic Statement Cache. This is a significant improvement over 
pre-DB2 V8 capabilities and will remove the uncertainties associated with the use of 
EXPLAIN in an SAP environment. Figure 6-3 shows the syntax of the DB2 V8 EXPLAIN 
STMTCACHE statement.

Figure 6-3   DB2 V8 EXPLAIN STMTCACHE syntax diagram

6.2.2  New parameters and plan table changes
The DB2 V8 EXPLAIN statement includes two new keyword parameters for the STMTCACHE 
option and some changes to the structure and contents of the PLAN table.

 EXPLAIN  STMTCACHE  STMTID  id-host-variable
 integer-constant

 STMTTOKEN  token-host-variable
 string-constant
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STMTCACHE STMTID
The STMTID parameter takes either a host variable or an integer constant. This statement 
identifier uniquely identifies a statement cached in the Dynamic Statement Cache. The 
unique value for a particular SQL statement can be obtained from IFCID 316 or 124 and is 
also available in some diagnostic IFCID trace records such as 172, 196, and 337 
(Example 6-1). 

Example 6-1   STMID parameter

SID = 124;
EXEC SQL EXPLAIN STMTCACHE STMTID :SID;

STMTCACHE STMTTOKEN
The STMTTOKEN parameter takes either a host variable or a string constant. This statement 
token string is associated with the cached statement by the application program that originally 
prepares and inserts the statement into the cache. The application does this by using the 
RRSAF SET_ID function or by using the sqlseti API from a remotely-connected program 
(Example 6-2). 

Example 6-2   STMTTOKEN parameter

EXEC SQL EXPLAIN STMTCACHE STMTTOKEN ‘SELECTTEMP’

Plan table changes
Each row inserted into the plan table, statement table, or function table by the Explain 
statement will contain the statement token in the newly defined STMTTOKEN column. The 
QUERYN column takes the value of the unique statement identifier from the statement cache. 
The PROGNAME column has the value DSNDCACH for all rows inserted resulting from an 
EXPLAIN of a statement from the cache.

6.3  Long-running non-committing readers
In an SAP system, it sometimes happens that a long-running read-only batch program never 
commits. The corresponding DB2 thread does not do any updates to the database, but it still 
holds some S-locks (share locks). If the batch program issues an SQL statement that needs 
to be prepared, S-locks on the catalog pages for prepares are required. For each table space, 
the batch program uses an intent lock. If the batch program reads with the isolation level CS 
or RS, S-locks on data rows are required. These locks reduce overall concurrency and, more 
importantly, the active claim (due to non-committing) blocks the online Reorg switch phase 
(this may take hours) from establishing its drain. 

It is important to be able to identify such programs and inform the DB2 administrator so that 
he can react accordingly and allow DB2 online Reorgs to run smoothly. Very often, these 
long-running non-committing batch programs are the problem. DB2 V7 is already able to 
identify long-running units of recovery (such as non-committing, updating batch programs). 
With this enhancement, DB2 V8 is also now able to identify long-running non-committing 
readers. Now all information is available to help the DB2 administrator to decide when to run a 
DB2 Reorg.

If the long-running ZPARM LRDRTHLD option is enabled, DB2 issues IFCID 313 records 
which allow you to identify long-running non-committing readers. SAP shows this information 
in the transaction DB2. The parameter is set by the LONG-RUNNING READER 
THRESHOLD option in the DSNTIPE install panel. Example 6-4 shows an example of the 
transaction DB2. 
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Figure 6-4   SAP transaction DB2 showing long-running not-committing readers 

6.4  Lock escalation alert
In this section we introduce the new IFCID 337 record that reports lock escalations. We also 
describe why this new record is useful in SAP environments and how it can be exploited in 
database administration.

6.4.1  DB2 lock management for SAP applications
Some SAP applications tend to accumulate a large number of locks, because they perform 
massive updates or deletes and do not commit often. To accommodate for this, SAP gives 
specific recommendations on different DB2 parameters that control DB2 locking behavior, for 
example, NUMLKUS and IRLMRWT. They are summarized in SAP on IBM DB2 UDB for 
OS/390 and z/OS: Database Administration Guide — SAP Web Application Server.

One of the tuning recommendations is to allow lock escalating by setting LOCKMAX to 
1000000. The DB2 ZPARM NUMLKTS specifies the maximum number of locks that a single 
DB2 thread can hold on a table space. At table space level, this parameter can be overridden 
by the LOCKMAX clause of CREATE TABLESPACE or ALTER TABLESPACE. This eases 
some difficulties that are caused by a large number of locks being held, such as increased 
CPU consumption or hitting the limit on the number of locks that a single DB2 thread can hold 
(ZPARM NUMLKUS), which terminates the offending DB2 transaction.

However, a lock escalation prevents access to the table space or partition for which the row 
level locks were escalated until the gross-lock holding transaction commits or rolls back. This 
limits overall concurrency and might cause deadlocks. Therefore, it should occur only 
sporadically. 

If you can identify the applications that cause lock escalation, you can implement remedial 
actions. These actions allow you to either solve the underlying problem or to fine-tune the 
settings to prevent lock escalations in the future. They include:

� Increasing the commit frequency

� Determining an optimal value of LOCKMAX that takes the particular workload into 
consideration
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6.4.2  IFCID 337 reports lock escalations
DB2 V8 introduces IFCID 337, which alerts you when lock escalations occur. IFCID 337 is 
part of Statistics trace class 3 and Performance trace class 6. Before V8, database 
administrators had to rely on DB2 message DSNI031I, which reports lock escalations in the 
z/OS log. When analyzing performance problems, it is better to capture all DB2 performance 
related information in a single place, though. By using a DB2 performance monitoring tool 
that supports IFCID 337 as part of its exception processing apparatus, you can now also 
monitor lock escalations through online performance monitors. 

The information in IFCID 337 includes the following details:

� Object on which lock escalation was triggered
� Lock state after escalation
� Number of lower-level locks that were released by escalation
� DSC statement ID of the statement that triggered lock escalation
� DB2 client information (correlation ID, workstation name, transaction name, client user ID)

The statement ID from the dynamic statement cache is crucial in analyzing lock escalations, 
because it allows you to identify both the escalating SQL statement and the ABAP code 
location that originates the statement. Using the statement ID, IFCID 317 can be used to get 
hold of the complete statement text. The IFCID 316 record on cached statements contains 
field QW0316US that hosts a client provided identification string. SAP assigns to this field the 
ABAP report name and the position within the report where the SQL statement of the IFCID 
316 record was initially prepared. Hence, IFCID 337 enables to pinpoint the ABAP source 
code position of the statement that caused lock escalation. This in turn allows you to assess 
whether the commit frequency of the report can be enhanced without impairing data integrity. 
It might also help in finding an optimal LOCKMAX value for the involved table spaces or table 
space partitions. 

6.5  SAP and DB2 Control Center
DB2 Universal Database (UDB) Control Center is a database administration tool that you can 
use to administer your DB2 Universal Database environment, which includes DB2 UDB for 
z/OS. DB2 UDB Control Center is an integrated part of DB2 UDB for Linux, UNIX, and 
Windows. It ships a set of stored procedures that must be installed at each DB2 UDB for z/OS 
subsystems that you want to work with using DB2 UDB Control Center. DB2 UDB Control 
Center and its stored procedures are included in the DB2 Management Clients package, a 
no-charge feature of DB2 UDB for z/OS. In this section we introduce new features of DB2 
UDB Control Center that were recently added and that are beneficial to SAP applications. The 
new features are mainly stored procedures that are invoked from within the SAP CCMS 
functionality. They apply to general database administration tasks though and could be 
integrated in any application. 

Besides the stored procedures that are described in more detail in this section, DB2 Control 
Center also introduced the cloning wizard. The Control Center cloning wizard assists in 
performing system clones of entire DB2 subsystems, for example, to create a quality 
assurance system out of a production system. The cloning wizard is described in the redbook 
SAP on DB2 for OS/390 and z/OS: Multiple Components in One Database (MCOD), 
SG24-6914. 

DB2 V8 also includes new and enhanced stored procedures that aim at facilitating database 
administration. The stored procedure DSNUTILU executes DB2 utilities and accepts input 
parameters in Unicode. DSNACCOR is enhanced to provide better recommendations on the 
objects that require maintenance.
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In this section we describe the following topics:

� Stored procedures and batch programs for database administration
� Stored procedures for data set manipulation
� Stored procedures for submitting JCL jobs and UNIX commands

6.5.1  Stored procedures and batch programs for database administration
Control Center has been enhanced to cope with the requirements that are posed by SAP 
systems, such as the ability to handle a large number of database objects. 

The following new Control Center stored procedures and batch programs deal with DB2 
database administration. They generally support DB2 V6, V7, and V8.

Parallel utility execution stored procedure (DSNACCMO)
The stored procedure DSNACCMO allows you to invoke a utility on multiple objects in 
parallel. It is able to determine the optimal parallel degree that performs the given task in the 
shortest overall utility execution time. The maximum parallel degree can be restricted by the 
means of a stored procedure parameter. DSNACCMO fits SAP very well, because a common 
task at SAP installations is to process a large number of objects. It facilitates this exercise 
tremendously and automatically optimizes its execution. DSNACCMO is well-suited to be 
exploited by the SAP-integrated database administration tool (SAP transaction code DB13).

Parallel utility batch program (DSNACCMB)
The batch program DSNACCMB is the batch interface of the stored procedure DSNACCMO. 
It provides similar functions to the stored procedure DSNACCMO.

Object maintenance batch program (DSNACCOB)
The batch program DSNACCOB automates object maintenance by running utilities like 
COPY, MODIFY RECOVERY, REORG, RUNSTATS MODIFY STATISTICS, and STOSPACE 
on objects for which maintenance actions are recommended. Similar to the stored procedure 
DSNACCOR, which is shipped as part of DB2, DSNACCOB gives policy-based 
recommendations that are deduced from DB2's real-time statistics. In contrast to 
DSNACCOR, it also exploits the recommendations and runs utilities on the recommended 
objects. APAR PQ75973 provides DSNACCOB for DB2 V7 and DB2 V8.

DB2 command submission stored procedure (DSNACCMD)
The stored procedure DSNACCMD executes DB2 commands on the connected DB2 
subsystem. This stored procedure appeals to SAP, because it lessens the dependency on the 
external program rfcoscol. SAP systems use the rfcoscol executable to issue DB2 
commands by means of IFI. If rfcoscol is not operational, DB2 commands cannot be 
submitted from the SAP system.

Other stored procedures
SAP applications can exploit the stored procedure DSNACCSS to query the SSID of the DB2 
subsystem to which it is currently connected. They may use DSNACCSI to find out the host 
name of the connected DB2 subsystem. This information is relevant to SAP instances that 
exploit DB2 data sharing. 

Attention: DB2 V8 deprecates the support for DB2-managed stored procedures. 
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6.5.2  Stored procedures for data set manipulation
Control Center also provides stored procedures that enable applications to remotely 
manipulate z/OS data sets. SAP applications accomplish data set manipulation as part of the 
CCMS functionality and during system installation or upgrade. The stored procedures that 
manipulate data sets are described in the following sections. They generally support DB2 V6, 
V7, and V8.

Stored procedure to create or write to a data set (DSNACCDS)
The stored procedure DSNACCDS creates a data set member or a data set of type PS 
(physical sequential data set), PDS (partitioned data set) and PDSE (partitioned data set 
extended) and writes data to it. It either appends or replaces an existing data set or data set 
member. Moreover, it creates a new GDS (generation data set) for an existing GDG 
(generation data group). The amount of space that it allocates is minimal. Due to a JCL 
limitation, DSNACCDS only creates or writes to data sets with LRECL set to 80.

Stored procedure to rename a data set (DSNACCDR)
The stored procedure DSNACCDR renames a data set of type PS, PDS or PDSE, or a data 
set member. 

Stored procedure to delete a data set (DSNACCDD)
The stored procedure DSNACCDD deletes a data set member, or a data set of type PS, PDS 
or PDSE, or a GDS. 

Stored procedure to check if data set exists (DSNACCDE)
The stored procedure DSNACCDE checks if a non-VSAM data set exists. It accomplishes this 
by querying the ICF (Integrated Catalog Facility) catalog of z/OS. Also, it checks if a data set 
member exists. 

Stored procedure to query data set properties (DSNACCDL)
The stored procedure DSNACCDL lists data sets, data set members, VSAM clusters, 
generation data sets or GDGs. It provides attributes on these objects, such as the primary 
extent size. This stored procedure allows SAP to stop using IDCAMS LISTCAT jobs to find 
out data set sizes and properties. This information is displayed in the SAP tables and indexes 
space monitor (SAP transaction code DB02). SAP systems today rely on submitting IDCAMS 
LISTCAT jobs through FTP. They parse the output of these jobs to determine the relevant 
information, which is a cumbersome approach that is also complex to set up. DSNACCDL 
yields the following data set attributes:

� Creation date
� Type of data set
� Volume name
� Primary extent size
� Secondary extent size
� Unit (track, block, cylinder)
� Extents in use
� Actual disk usage in bytes

For VSAM data sets, it additionally provides the high-allocated RBA and the high-used RBA.
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6.5.3  Stored procedures for submitting JCL jobs and UNIX commands
The Control Center stored procedures introduced so far are well-suited to replace database 
administration tasks that SAP currently realizes by generating JCL jobs and submitting them 
by means of FTP. They are optimized, easier to handle, and can be directly called by simple 
SQL calls. However, it is advantageous to completely abolish FTP-based JCL submission, 
which is cumbersome. Moreover, SAP today allows you to issue UNIX commands in UNIX 
System Services by submitting a JCL job that in turn invokes the UNIX command. This fairly 
indirect and error-prone way of issuing UNIX commands should also be replaced with a more 
elegant solution. Each level of indirection that is removed enhances quality and results in 
faster processing. 

Control Center offers stored procedures that allow you to submit JCL jobs and to issue UNIX 
commands. They support DB2 V8 only. This enables SAP to dispose of FTP. Figure 6-5 
visualizes the general concept of these stored procedures.

Figure 6-5   Submitting JCL and UNIX commands through Control Center stored procedure

Stored procedure to submit a JCL job (DSNACCJS)
The stored procedure DSNACCJS submits a JCL job for batch execution. It returns the ID that 
JES assigns to the job. The text of the job is passed to DSNACCJS through a global 
temporary table. 

Stored procedure to fetch output of a JCL job (DSNACCJF)
The stored procedure DSNACCJF fetches the spool output files of a specified JCL job. It 
inserts the lines of the output listings into a result set table.

Stored procedure to cancel a JCL job (DSNACCJP)
The stored procedure DSNACCJP purges or cancels a specified job. It returns related 
console messages.

Stored procedure to retrieve JCL job status (DSNACCJQ)
The stored procedure DSNACCJQ allows you to inquire the status of a JCL job. Depending 
on the requested mode, it returns related console messages or a status value. The returned 
status values indicate if a job is currently in the input queue, is active or is in the output queue. 
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Stored procedure to issue a UNIX command (DSNACCUC)
Finally, the stored procedure DSNACCUC issues UNIX commands in UNIX System Services. 
The commands are executed in the UNIX environment of the user that DSNACCUC runs 
under. It returns the output in a result set table.

6.6  SAP transaction-based DB2 accounting and workload 
management

In this section we describe the DB2 V8 enhancements that allow SAP to provide DB2 
accounting and workload management on the granularity of individual SAP transactions and 
SAP end users. As other enterprise packaged applications, SAP anonymizes the identity of 
its individual programs and end users to DB2. DB2 performs all requests from SAP under the 
same user ID. Hence, the work that is performed within DB2 is hard to be differentiated.

Before DB2 V8, SAP already made use of the DB2 client identifiers like workstation name and 
transaction name to identify the static properties of an SAP system. These identifiers are set 
when SAP establishes connections; this is accomplished when SAP creates work processes, 
and the connections are not changed during the lifetime of SAP work processes and DB2 
threads. Among the characteristics that SAP passes to DB2 are application server name and 
work process type such as dialog, batch or spool. These characteristics are exploited to 
analyze performance problems — most of the DB2 client identifiers are part of the IFC 
correlation header — and to ensure basic workload management (WLM) support. For 
example, WLM can be exploited to assign different priorities to dialog work and to batch work. 

DB2 V8 provides significant enhancements in the area of accounting and support for 
workload management. Briefly, these enhancements allow SAP to support DB2 accounting 
and workload management at the granularity of individual SAP transactions, reports, batch 
jobs and end users. This enables IT departments to charge back the costs that a specific 
department generated in DB2 to this department. Moreover, by means of WLM a higher 
priority can be assigned to an important SAP transaction or batch job.

This section contains the following topics:

� Rollup accounting data for DDF and RRSAF
� Writing accounting records with KEEPDYNAMIC(YES)
� WLM support for DB2 client identifiers end user ID and workstation name
� Lock waiter inherits WLM priority by lock holder
� New DDF terminology
� New DDF-related default values
� RRSAF function SET_CLIENT_ID
� Automatic dropping of declared temporary tables
� Opportunity for SAP

6.6.1  Rollup accounting data for DDF and RRSAF
When using inactive DDF connections, DB2 cuts an accounting record on every COMMIT or 
ROLLBACK (6.6.3, “Other DDF and RRSAF enhancements” on page 173 describes the new 
term inactive connection). In high volume OLTP environments, this may generate a large 
number of accounting records. This can become a problem that compromises the ability to do 
charge-back or performance monitoring and tuning. RRS Attach may encounter similar 
problems if a workload generates many accounting records.

In V8, the collection of DB2 accounting data is enhanced to optionally accumulate accounting 
data for DDF and RRSAF threads. This reduces the amount of accounting records that are 
externalized, which improves overall system throughput.
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A new installation option is added to activate the new behavior. The DB2 installation tracing 
panel DSNTIPN contains a new field “DDF/RRSAF ACCUM” (see Figure 6-6). This sets the 
new DSNZPARM parameter ACCUMACC.

Figure 6-6   DB2 installation panel DSNTIPN

The new field specifies whether DB2 accounting data should be accumulated by a 
concatenated client identifier for DDF and RRSAF. If a value between 2 and 65535 is 
specified, then DB2 writes an accounting record every 'n' occurrences of the concatenated 
client identifier, where 'n' is the number specified for this parameter. The default value is 10. A 
concatenated client identifier is identified by the concatenation of the following three fields:

� End user ID (IFCID field QWHCEUID, 16 bytes)
� Transaction name (IFCID field QWHCEUTX, 32 bytes)
� Workstation name (IFCID field QWHCEUWN, 18 bytes)

To ensure maximum rollup flexibility, the new DB2 ZPARM ACCUMUID allows you to specify a 
subset of these fields. On panel DSNTIPN this parameter is called “AGGREGATION FIELDS” 
(see Figure 6-1). The fields that do not belong to the specified subset are ignored during the 
rollup process. For example, if ACCUMUID is set to rollup accounting data with respect to end 
user ID and transaction name, and two accounting records differ in workstation name, they 
end up in the same accounting bucket.

If data accumulation is activated, then, when a database transaction commits or rolls back, 
instead of immediately writing an accounting record at that time, DB2 adds the accounting 
values to that bucket in virtual storage that accumulates the accounting data of the 
transaction’s concatenated client identifier. If there is no bucket yet for this concatenated client 
identifier, then a new bucket is created. Separate rollup buckets are created for DDF AND 
RRSAF.

 
DSNTIPN         INSTALL DB2 - TRACING PARAMETERS 

===> 

Enter data below: 

1  AUDIT TRACE        ===> NO  Audit classes to start. NO,YES,list 
2  TRACE AUTO START   ===> NO  Global classes to start. YES,NO,list 
3  TRACE SIZE         ===> 64K Trace table size in bytes.  4K-396K 
4  SMF ACCOUNTING     ===> 1   Accounting classes to start. NO,YES,list 
5  SMF STATISTICS     ===> YES Statistics classes to start. NO,YES,list 
6  STATISTICS TIME    ===> 30  Time interval in minutes.  1-1440 
7  STATISTICS SYNC    ===> NO  Synchronization within the hour. NO,0-59 
8  DATASET STATS TIME ===> 5   Time interval in minutes.  1-1440 
9  MONITOR TRACE      ===> NO  Monitor classes to start. NO,YES,list 

10  MONITOR SIZE       ===> 8K  Default monitor buffer size.  8K-1M 
11  UNICODE IFCIDS     ===> NO  Include UNICODE data when writing IFCIDS 
12  DDF/RRSAF ACCUM    ===> 10 Rollup accting for DDF/RRSAF. NO,2-64K 
13  AGGREGATION FIELDS ===> 0   Rollup accting aggregation fields 

PRESS:  ENTER to continue   RETURN to exit   HELP for more information 
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There are certain cases where detailed accounting data for the DDF and RRSAF threads is 
desired, such as detailed performance monitoring. Both ACCUMACC and ACCUMUID can 
be dynamically altered to activate or deactivate accounting data accumulation on the fly.

DB2 externalizes the accumulated accounting data of a concatenated client identifier on any 
of the following events:

� The number of occurrences for this concatenated client identifier reaches the threshold as 
specified by ACCUMACC.

� An internal threshold on the number of accounting buckets is reached.

� An internal threshold on the timestamp of the last update to the bucket is reached.

� Accounting interval is set to commit for RRSAF threads.

The DB2 client identifiers that are the basis of accounting data rollup can be altered at 
transaction boundaries. CLI clients employ the routine sqleseti to establish values for these 
identifiers. Like CLI, the DB2 Java Universal Driver implements the DRDA protocol. 
Therefore, DB2 treats CLI clients and Java Universal Driver clients uniformly. The Universal 
Driver extends the Connection interface from the JDBC standard to also provide the following 
methods, which set client identifier values:

� DB2Connection.setDB2ClientUser(String user)
� DB2Connection.setDB2ClientWorkstation(String name)
� DB2Connection.setDB2ClientApplicationInformation(String info)

RRSAF allows you to set client identifiers by employing the functions SIGNON, 
AUTH_SIGNON and CONTEXT_SIGNON at connection boundaries and SET_CLIENT_ID at 
transaction boundaries.

6.6.2  Writing accounting records with KEEPDYNAMIC(YES)
If the DB2 ZPARM CMTSTAT is set to INACTIVE (new default for DB2 V8), DB2 writes an 
accounting record when a transaction completes and the thread qualifies to become inactive. 
Using KEEPDYNAMIC(YES) as bind option keeps DDF threads always active. As a 
consequence accounting records were not cut at transaction boundaries. Likewise, DDF did 
not reestablish WLM enclaves at transaction boundaries. As SAP exploits dynamic statement 
caching, it is desirable that the bind option KEEPDYNAMIC(YES) does not interfere with the 
collection of accounting data with transaction scope.

DB2 V8 tolerates KEEPDYNAMIC(YES) by cutting accounting records at transaction 
boundaries. although KEEPDYNAMIC(YES) still prevents DDF threads from becoming 
inactive. That is, a DDF thread pretends to be eligible for inactivation if the only reason why it 
cannot become inactive is the presence of cached dynamic SQL statements due to 
KEEPDYNAMIC(YES). DDF then writes accounting records and completes the WLM enclave 
as if KEEPDYNAMYIC(YES) is not specified. When a new request arrives from the client 
system, a new enclave is created and a new accounting interval is started.

This new behavior is supported for DRDA clients. DB2 for z/OS clients that use the DB2 
private protocol are not affected by this change. As in V7, the presence of held cursors or 

Note: The correlation header of an accounting record rollup block (IFI record QWHC) 
reports the last thread that added accounting data to this rollup block. This information may 
be valuable in some cases, for example if all accounting records of a rollup block were 
generated for a single batch job.
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declared temporary tables keeps the threads active and does not allow accounting intervals 
or WLM enclaves to complete. 

6.6.3  Other DDF and RRSAF enhancements
In this section we discuss some other DDF and RRSAF enhancements.

New DDF terminology
DB2 V8 uses the term “inactive DBAT” (database access thread) instead of “type 1-inactive 
thread”. It also introduces the term “inactive connection” instead of “type 2-inactive thread”. 
These terms are much more descriptive of the actual status of the threads and connections, 
bring the terminology more in line with DB2 UDB on other platforms.

WLM support for fields end user ID and workstation name
DDF provides WLM support for a number of DB2 fields and client identifiers. For example, 
you can define WLM classification rules for DDF threads on the basis of DB2 correlation ID, 
accounting string, transaction name or the thread’s primary authorization ID. DDF passes 
these DB2 fields to certain WLM qualifiers. The field transaction name for example is passed 
to the WLM qualifier PC.

DB2 V8 introduces WLM support in DDF for the client identifiers end user ID and workstation 
name. This enhances the flexibility to ensure adequate workload management capabilities 
that match the needs of demanding applications like SAP. DDF assigns both client identifiers 
to the WLM qualifier subsystem parameter (SPM). It maps the client identifier field to the first 
16 bytes of SPM. The following 18 bytes of SPM contain the workstation name. Figure 6-7 
shows sample WLM classification rules that take advantage of the enhanced WLM 
exploitation. 

Figure 6-7   WLM classification rule exploiting SPM for DDF

Attention: APAR OA04555 provides support for qualifier SPM concerning subsystem type 
DDF in the WLM Administrative Application.

  
Subsystem-Type  Xref  Notes  Options  Help 

-------------------------------------------------------------------------- 
   |                  Create Rules for the Subsystem Type        Row 1 to 5 of 5 
   | 
   |  Subsystem Type . . . . . . . . DDF    (Required) 
   |  Description  . . . . . . . . . Distributed DB2 
   |  Fold qualifier names?  . . . . Y  (Y or N) 
   | 
   |  Enter one or more action codes: A=After  B=Before  C=Copy  D=Delete 
   |  M=Move I=Insert rule IS=Insert Sub-rule  R=Repeat 
   | 
   |            -------Qualifier-------------            -------Class-------- 
   |  Action    Type       Name     Start                Service     Report 
   |                                           DEFAULTS: SAPMED  ________ 
   |   ____  1 CI PR1*  ___ SAPMED  ________ 

|   ____  2 SPM  JOHN* ___ SAPHIGH ________ 
|   ____  2 SPM  CIO* ___ SAPCRIT ________ 

   |   ____  2    CI  DIA* _4_ SAPDMED ________ 
   |   ____  2 CI BTC*  _4_ SAPHIGH  ________ 
   | ****************************** BOTTOM OF DATA ***************************** 
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A related enhancement is that DB2 V8 exploits the full length of 143 bytes of the WLM 
qualifier accounting information (AI) for its accounting string.

Lock waiter inherits WLM priority by lock holder
Assume that a transaction executes with a low WLM priority and makes updates to the 
database. This means that it must acquire X-locks on the pages that it modifies and that these 
X-locks are held until the transaction reaches a commit point. If such a transaction acquires 
an X-lock on a row that another transaction is interested in, this transaction is forced to wait 
until the first transaction commits. If the lock waiter performs very important work and is thus 
assigned a high WLM priority, it would be desirable if it is not slowed down by other 
transactions that execute in a low priority service class. It would be better if the waiting 
transaction could temporarily assign its own priority to the transaction that holds the lock until 
this transaction frees the locked resource. 

The WLM component of z/OS 1.4 provides a set of APIs that can be used to accomplish this. 
This service is called WLM enqueue management. In z/OS 1.4, this support is limited to 
transactions running on a single system. 

DB2 V8 exploits WLM enqueue management. When a transaction has spent roughly half of 
the lock timeout value waiting for a lock, then the WLM priority of the transaction, which holds 
the lock, is increased to the priority of the lock waiter if the latter priority is higher. If the lock 
holding transaction completes, it resumes its original service class. In case multiple 
transactions hold a common lock, this procedure is applied to all of these transactions.

New default values for DDF and RRSAF related ZPARMs
There are new default values for some installation parameters in DB2 V8 that are related to 
DDF and RRSAF. Table 6-1 lists the new default values.

Table 6-1   New default values for DDF and RRSAF related ZPARM

Add DDF accounting string to RRSAF
As part of the V7 maintenance stream, DB2 introduced the RRSAF function 
SET_CLIENT_ID. SET_CLIENT_ID sets client identifiers that are passed to DB2 when the 
next SQL request is processed. It enables an inexpensive way of producing accounting data 
with transaction scope. In V7 it allows RRSAF applications to set the fields accounting token, 
end user ID, transaction name, and workstation name. 

DB2 ZPARM Description New default Old default

MAXDBAT Max. number of 
concurrent DBATs

200 64

CONDBAT Max. number of DDF 
connections

10000 64

CMTSTAT Inactivate thread after 
commit or rollback

INACTIVE ACTIVE

IDTHTOIN Idle time of active 
thread before it is 
canceled

120 0

CTHREAD Max. number of 
concurrent allied 
threads

200 64

IDBACK Max. number of batch 
connections

50 20
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DB2 V8 adds the accounting string to the set of client identifiers that can be exploited using 
SET_CLIENT_ID and the RRSAF signon routines. It is placed in the DDF accounting trace 
records in IFI field QMDASQLI. This ensures consistent behavior across local and remote 
clients. It is optional to set the accounting string. If it is not specified, no accounting string is 
associated with the connection. 

6.6.4  Automatic dropping of declared temporary tables
If an application creates a declared global temporary table to temporarily store data, it is up to 
the application to ensure that this table is dropped when it is not needed anymore. Otherwise 
it survives until the end of the application process. 

Furthermore, stored procedures employ declared temporary tables to pass result sets to the 
calling application. Therefore, the declared temporary tables cannot be dropped by the stored 
procedure. On the other hand, the calling application does not need to know the name of the 
declared temporary table to fetch the passed result sets. If a declared temporary table 
persists when a transaction completes, DDF is not able write an accounting record. 

DB2 V8 provides relief in this area. It allows you to automatically drop declared temporary 
tables on commit. The DDL statement DECLARE GLOBAL TEMPORARY TABLE now 
supports the new clause ON COMMIT DROP TABLE, which is mutually exclusive with ON 
COMMIT DELETE ROWS and ON COMMIT PRESERVE ROWS. If it is employed to declare 
a temporary table, the table is implicitly dropped at commit and does not prevent accounting 
records to be written.

6.6.5  Opportunity for SAP
SAP employs the bind option KEEPDYNAMIC(YES) to fully benefit from dynamic statement 
caching. As the work dispatcher within the SAP application server pools the work requests 
from end users and distributes them across the invariable number of work processes, SAP 
does not benefit from connection pooling at the database level. Therefore, it always uses DB2 
threads. 

Before DB2 V8, this behavior of SAP makes DB2 generate only a single accounting record 
when an SAP work process finally terminates the connection to DB2, which allows the DB2 
thread to terminate. This accounting record contains information for thousands of separate 
transactions and is therefore useless. Also, the priority of the WLM enclave that hosts the 
DB2 thread is fixed for the lifetime of the thread. Accounting intervals need to contain single 
transactions to provide better granularity, which allows a more accurate monitoring of 
transaction activity. 

By running with inactive thread support, which is the default behavior in DB2 V8, SAP is 
enabled to exploit accounting data and workload management capabilities at the granularity 
of individual database transactions. Since SAP still relies on dynamic statement caching, the 
DB2 threads that serve SAP systems remain always active. Hence, there is still a one-to-one 
relationship between SAP work process and DB2 thread. DB2 V8 is capable of writing 
accounting records at commit or rollback if KEEPDYNAMIC(YES) SQL sections are present; 
transaction level accounting data and SAP are no longer mutually exclusive. 

To prevent potentially large volumes of accounting records, DB2 offers the accumulation of 
accounting data. As long as there are no held cursors or declared temporary tables active, 
accounting intervals are completed when transactions complete. To control the life span of 

Tip: APAR PQ67681 makes SET_CLIENT_ID available in DB2 V7.
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declared temporary tables, DB2 equips application and stored procedure developers with 
implicit dropping of declared temporary tables at transaction end. Held cursors interconnect 
related database transactions. Hence, it should not pose a problem if such transactions share 
an accounting interval. 

SAP can pass fairly granular information that is the basis of the generated accounting data 
and the basis of workload management to DB2. The following SAP identifiers appear to be 
valuable:

� The name of the end user that called an SAP transaction code or ABAP program
� The name of the ABAP program that issues the SQL requests of a database transaction
� The SAP transaction code that the end user called
� The name of the SAP batch job that issues the SQL requests of a database transaction

If SAP passes these identifiers to DB2 at transaction boundaries, then accounting and 
workload management can be accomplished based on SAP identifiers.
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Chapter 7. System point in time back-up and 
recovery

DB2 V8 provides enhanced backup and recover capabilities at the DB2 subsystem or data 
sharing group level. The purpose is to provide an easier and less disruptive way to make fast 
volume level backups of an entire DB2 subsystem or data sharing group with minimal 
disruption, and recover a subsystem or data sharing group to any point in time, regardless of 
whether you have uncommitted units of work. SAP exploits these new recovery functions.

Two new utilities provide the vehicle for system level point in time recovery (PITR):

� The BACKUP SYSTEM utility provides fast volume-level copies of DB2 databases and 
logs.

� The RESTORE SYSTEM utility recovers a DB2 system to an arbitrary point in time. 
RESTORE SYSTEM automatically handles any creates, drops, and LOG NO events that 
might have occurred between the backup and the recovery point in time.

As a further enhancement to taking system-level backups, the SET LOG SUSPEND 
command now quiesces 32 KB page writes (for page sets that are not defined with 32 KB CI 
size) and data set extensions avoiding integrity exposures.

The BACKUP SYSTEM and RESTORE SYSTEM utilities rely on new DFSMShsm™ 
services, and SMS constructs in z/OS V1R5 that automatically keep track of which volumes 
need to be copied.

7
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7.1  The need for PITR
In this section we discuss some of the fundamental requirements of an SAP system that drive 
backup and recovery requirements that are challenging to address, and sometimes quite 
different from other DB2 applications.

� We discuss the concept of the entire database as a unit of consistency.

� We outline some scenarios that can occur in an SAP production system that drive different 
recovery requirements.

� We discuss what many customers have put into place prior to DB2 V8, and how the new 
features impact existing and new SAP customers on this platform.

7.1.1  SAP application fundamentals
SAP is designed to run on a variety of DBMS and operating system platforms. This requires 
the application itself to perform tasks over and above the lowest common denominator of the 
platforms supported. In some cases these tasks overlap with features available in some 
DBMS platforms.

Backup and recovery implications
One of the fundamental designs of the SAP application is the concept of Referential Integrity 
(RI) being handled exclusively by the application software, as opposed to being handled by 
the DBMS. RI is, broadly speaking, the logical relationship of the content of tables in the 
system, such as checking if a record actually exists in another table with a foreign key 
relationship. The ultimate result of this design in DB2 terms is that the entire DB2 subsystem, 
including all objects in it, are considered as one single entity in terms of recovery purposes. 
This is particularly the case for what is called prior point in time recovery, or PPIT, as all 
database objects must simultaneously be recovered to the exact point of time chosen in the 
past to guarantee consistency.

Disruptions to users, online or batch, during any process fosters the perception that the 
system does not perform well, and the requirement for near 7x24 availability makes it 
desirable to have a fast, non-disruptive backup methodology. Currently, if the data integrity of 
an SAP system is compromised, for whatever reason, the time and effort required to recover 
the entire subsystem or data sharing group to a point in time prior to the corruption is 
prohibitive. This demands a fast, reliable process to recover a subsystem or data sharing 
group to an arbitrary point in time.

Operational reality in an SAP environment
In general terms, backup and recovery requirements can be explained in the two general 
categories described in Figure 7-1. The stark reality of an SAP implementation is that the 
most likely recovery scenario will be driven by causes not related to DB2 for z/OS or the 
underlying technical platform. Because of the high degree of integration of the SAP 
application, procedural or operational errors may result in the desire to “back out” the actions 
in question. Often there is no corresponding function available to do this automatically, and it 
quickly can become a problem that is passed to the DBA and SAP system administrators to 
resolve. In many of these cases, however, the solution is difficult, as DB2 has not reported 
any error, and, as it has simply performed the workload imposed upon it, sees the database 
and its contents as being entirely consistent and error free.

In many cases other activities occurred at the same time as the action that causes the error, 
and it is desired that these activities are preserved in the system. It is in this case that the 
highly integrated nature of SAP, and the presence of effective RI rules not being known to the 
DBMS, becomes the second side of a two-edged sword.
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Figure 7-1   Breakdown of major causes of recovery actions

To clarify the failure type definitions, it is useful to look at which recovery scenarios will be 
used most commonly for the situation. The information in Figure 7-2 indicates that there are 
two major courses of action:

� For a technical failure, the most common action is to recover to current. This action may 
be achieved through a number of different methods. The recovery to a prior time as a 
results of technical failure generally happens to achieve a faster recovery. It may also 
happen if recovery to current for objects is not possible, due to missing Image Copies, for 
instance.

� For an application failure, recovery methods available to the DBA and SAP Basis staff are 
generally limited to recovery of everything to a prior point in time. The most effective 
solution to the problem is to run a “Compensating Unit of Work”, if possible. In the case of 
transport induced errors, it may be possible to resolve the problem through importing 
transports of the correct versions of the object in question, again if possible. In the 
absence of “programmatic” solutions to the problem, recovery to a prior point in time may 
be considered.

� If recovery to a prior point in time is requested for an application failure, it is important to 
consider that all work subsequent to the chosen point in time will be regressed due to the 
recovery.

Recovering selected objects instead of the entire database is something that can only be 
done in extreme circumstances, and requires a full knowledge of the requirements and 
consequences. This will typically happen in conjunction with appropriate assistance from SAP 
support staff.

Technical failure

� Typically failure caused by 
hardware or system software 
fault.

� Causes Include:

� Media failure

� System or subsystem crash

� Software bug

Application failure

� All DATA is consistent from DB2 
and “SAP Basis” viewpoint.

� Causes include:
� Transport induced error

� Introduction and execution of 
bad code

� Incorrect usage of application 
component

� Deleting data through SAP 
actions causing DB2 drops 
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Figure 7-2   Recovery options for different failure types

7.1.2  Past, present, and future for backup and recovery
Prior to DB2 V8, it is necessary to back up an SAP system with a combination of the DB2 
COPY utility and some form of volume dump methodology. The DB2 COPY is taken primarily 
as a means of correcting errors with one or a limited set of database objects, and most 
commonly this recovery takes place to ‘CURRENT’. Managing thousands of image copies is 
complex, but required to allow the ability to recover individual objects, as opposed to the 
entire database.

The volume dump methodology prior to DB2 V8 required use of the SET LOG SUSPEND 
command to stop all write activity while the copy relationship was being established, causing 
a disruption in service. After the copy was complete, the data had to be dumped off to tape so 
that it could be available at some point in the future in case recovery was required.

Recovering a system meant restoring the volume backups from tape to the DB2 source data 
volumes if a volume dump strategy was employed, identifying which objects had been 
changed with some kind of log scanning process, creating recovery JCL for all objects 
identified as requiring recovery, and recovering each object to the same point in time. At best 
this process was time consuming, labor intensive, and very prone to error.

DB2 V8 uses DFSMShsm functionality to simplify and improve the performance and reliability 
of the backup and recovery process. The BACKUP SYSTEM and RESTORE SYSTEM 
utilities encapsulate all tasks previously required to perform each function into one utility 
statement each. The new Copy Poolconstruct and Copy Poolbackup storage group types in 
DFSMShsm V1R5 make use of fast replication support. A full system Copy Poolbackup can 
also be used for cloning and disaster recovery.
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7.2  DFSMShsm fast replication support
The DB2 V8 BACKUP SYSTEM and RESTORE SYSTEM utilities work with DFSMShsm to 
take advantage of the new fast replication support in z/OS V1R5. DFSMShsm introduces the 
new Copy Pool construct and SMS Copy Pool backup storage group type in support of this 
new functionality. DFSMShsm manages the fast replication backups, and recovery can be 
performed at the volume or Copy Pool level but not at the data set level. The following 
requirements must be met to take advantage of this new functionality:

� z/OS V1R5 or above
� SMS managed DB2 data sets
� Disk control units that support ESS FlashCopy
� Copy Pools for data and logs
� Backup storage groups for each source storage group in a Copy Pool

In this section we describe the new fast replication support with DFSMShsm V1R5 that works 
with DB2 V8 to provide for a simple, fast, and reliable mechanism to create system level 
backups and provide for system level point in time recovery. We describe the new 
DFSMShsm Copy Pool and SMS Copy Pool target backup storage group type and the 
commands used to make this functionality possible.

7.2.1  The Copy Pool construct
A Copy Pool is a set of SMS pool storage groups that can be processed by fast replication 
operations as one unit with one command. For DB2, only two types of Copy Pools are valid:

� A database Copy Pool, containing all database objects, including DB2 catalog and 
directory, and all user data

� A log Copy Pool, containing all active logs and BSDS data sets.

The ISMF has been enhanced to support these SMS enhancements.

A Copy Pool can contain up to 256 pool storage groups to be processed for fast replication 
operations, and each pool storage group must be associated with a new type of storage 
group called the Copy Pool Backup Storage Group. A pool storage group can have only one 
Copy Pool backup storage group associated, and many pool storage groups can be 
associated with the same Copy Pool backup storage group. So in a Copy Pool backup storage 
group, we can have different versions of different pool storage groups all together. The BSDS 
keeps control of the copies we have. Each Copy Pool has a VERSIONS attribute that 
specifies how many versions should be maintained on disk, with a default of 2 and a 
maximum of 85. In the BSDS, only up to 50 versions are allowed.

Volumes to be copied are evaluated at processing time rather than at definition time so that 
changes to the Copy Pool after definition are reflected in future processing. The Copy Pool 
backup storage group must contain enough volumes for a unique one to one relationship with 
the volumes in the pool storage group. The Copy Pools must follow a strict naming convention 
of the form DSN$locn-name$cp-type, where:

� DSN is the unique DB2 product identifier.

� $ is a required delimiter.

� locn-name is the DB2 location name.

� $ is a required delimiter.

� cp-type is the Copy Pool type; DB for database, LG for logs.
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For example, DB2 DB1P would have Copy Pools named DSN$DB1P$DB and 
DSN$DB1P$LG.

The BACKUP SYSTEM utility requires that at least a database Copy Pool exists to take a 
data-only backup. If you plan to take full system backups (database, logs, BSDS) you must 
define the log Copy Pool as well. It is recommended that you create separate ICF catalogs for 
each Copy Pool. The RESTORE SYSTEM utility only uses the database Copy Pool. 

An individual storage group may be contained in as many as 50 Copy Pools. DFSMShsm can 
keep up to 85 backup versions for each Copy Pool. Keeping at least two versions is 
recommended because, before a new copy is created, the oldest one is invalidated and the 
target volumes are overwritten. If that backup fails, there is no way to recover the backup that 
was invalidated. It is recommended that if n backups are required, n+1 should be kept.

7.2.2  Copy Pool backup storage group type
The new Copy Pool backup storage group is used to contain backup target volumes for 
DFSMShsm fast replication operations. An eligible target volume must have the same track 
form as the source volume, be the exact size of the source volume, reside in the same LSS as 
the source volume, not be a primary or secondary volume in an XRC or PPRC volume pair, 
and not be in another FlashCopy relationship. The current requirement is that all backup 
storage group volumes be on the same LSS as the source volumes; this requirement might 
be lifted, depending on the 2105 model F20 and 800 controller, and the z/OS 1.5 
maintenance level.

The Copy Pool backup storage group cannot be accessed by ACS routines as SMS will 
prevent new data set allocations to this type of storage group. There must be a sufficient 
number of volumes in the backup target storage group to satisfy the number of backup 
versions specified for a source storage group. For example, if a system has 10 source 
volumes and the VERSIONS attribute has been specified as 2, the backup storage group 
must have at least 20 volumes to satisfy 2 backup versions of 10 volumes each. 

SMS provides a new storage group attribute to associate a source storage group to a backup 
target storage group. Notice that SMS does not verify that extend and overflow storage 
groups that are associated with main source pool storage groups have been included in a 
Copy Pool definition. They must be included in the storage group list for appropriate Copy 
Pools and they also must be associated to back up target storage groups.

Figure 7-3 illustrates the Copy Pool structure and the relationship between source and 
backup target storage groups.
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Figure 7-3   Copy Pool structure

In the illustration, the Copy Pool contains three source storage groups, two with source data 
(SrcSG1, SrcSG2), and an extend storage group (EX1). Two Copy Pool backup target storage 
groups (CPB1, CPB2) are associated with the source storage groups.

7.2.3  DFSMShsm commands
The following DFSMShsm commands are used to support the new fast replication operations 
include in z/OS V1R5.

FRBACKUP 
This command is used to create a fast replication backup version for each volume in a 
specified Copy Pool. DB2 will take care of issuing this command and any necessary 
parameters under the covers when running the BACKUP SYSTEM utility. FRBACKUP 
PREPARE should be used to validate the fast replication environment and reduce the elapsed 
time of the actual Copy Pool backup. 

With FRBACKUP, DFSMShsm invokes the DFSMSdss™ COPY FULL function. The 
operation is considered successful after the fast replication relationship for each source 
volume is made with a target volume. If any relationship fails, the entire function fails, but 
processing continues to identify any other relationship failures. The errors are then reported, 
already established relationships are withdrawn, and the version is marked invalid. 

An optional TOKEN parameter, which can be up to 40 bytes long, can be specified to identify 
the version. Use the WITHDRAW keyword to withdraw outstanding copy relationships. 
DFSMShsm can process up to 64 concurrent invocations of DFSMSdss with 15 being the 
default. Example 7-1 shows the FRBACKUP syntax.

CopyPool
Name: CPName
Versions: 2

Storage Group Storage Group

Storage Group

LSSbLSSa

Storage Group

Storage Group

Name: SrcSG1
CopyPool Backup Name: CPB1

Type: Pool
Name: SrcSG2
CopyPool Backup Name: CPB2

Type: Pool
Name: EX1
CopyPool Backup Name: CPB2

Type: Extend

Name: CPB1
CopyPool Backup Name: N/A

Type: CopyPool Backup
Name: CPB2
CopyPool Backup Name: N/A

Type: CopyPool Backup

CopyPool
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Example 7-1   FRBACKUP syntax

>>-FRBACKUP COPYPOOL(cpname)-----------------------------------------><
|-EXECUTE-----------------------------|
| |-TOKEN(token)-| |-NOVTOCENQ-|
| |
|-PREPARE-----------------------------|
|-WITHDRAW----------------------------|
|-VERIFY(Y|N)-|

FRRECOV 
This command is used to recover a target volume or pool of volumes back to the source 
volume or pool of volumes from the managed backup versions. DB2 will take care of issuing 
this command and any necessary parameters under the covers when running the RESTORE 
SYSTEM utility.

Use FRRECOV TOVOLUME(volser) FROMCOPYPOOL(cpname) to re-attempt a failed 
volume recovery. The FROMCOPYPOOL is an optional keyword that must be used if the 
volume being recovered resides within a storage group that is shared by multiple Copy Pools. 

Use the FRRECOV COPYPOOL(cpname) VERIFY(Y) to prevent starting a recovery before 
an in progress backup is completed.

If a version other than the current version is to be recovered, then use either the 
GENERATION, VERSION, DATE or TOKEN keywords. There is no option to perform a 
recovery at the storage group level. Like FRBACKUP, DFSMShsm can process up to 64 
concurrent invocations of DFSMSdss with 15 being the default. Example 7-2 shows the 
FRRECOV syntax.

Example 7-2   FRRECOV syntax

>>-FRRECOV-------------------------------------------->
|-TOVOLUME(volser)-------------------|
| |-FROMCOPY(cpname)-|
| |
|--COPYPOOL(cpname)------------------|
|-VERIFY(Y|N)-|
>-----------------------------------------------><
|-GENERATION(gennum)-----|
|-VERSION(vernum)--------|
|-DATE(date)-------------|
|-TOKEN(token)-----------|

FRDELETE 
This command is used to delete one or more unneeded backup versions. Normal processing 
will replace old backups with new versions. If the number of Copy Pool versions is decreased, 
the next time FRBACKUP COPYPOOL is issued, the unneeded versions will be deleted and 
the volumes will be released for reuse. You can use the VERSIONS or TOKEN keywords to 
identify a specific backup version to be deleted. Use the FRDELETE command to free 
volumes when a Copy Pool is no longer needed. Example 7-3 shows the FRDELETE syntax.

Example 7-3   FRDELETE syntax

>>-FRDELETE COPYPOOL(cpname)--------------------------><
|-VERSIONS(...)-|
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Additional commands
Use the LIST COPYPOOL command to ensure that you do not invalidate the last valid backup 
version which would prevent any fast replication recovery.

Use the QUERY COPYPOOL command to inquire about the status of a copy relationship. 
This command reports the percent of completion of a copy for each volume queried, or that 
there is no copy relationship.

7.2.4  Preparing for DFSMShsm fast replication
Your storage systems administrator needs to define database and log Copy Pools and 
associated source and backup storage groups in order to use fast replication operations. The 
database Copy Pool should contain all volumes that contain the DB2 catalog and directory, 
and all user data. The “log” Copy Pool should contain active logs and the BSDS.

Use FRBACKUP PREPARE to validate the fast replication environment. DFSMShsm will 
allocate backup versions with an empty TOKEN value and the required number of volumes for 
each of the versions specified in the Copy Pool definition. This TOKEN value is used by DB2 
in the recovery process. In our example above, 2 versions of 10 backup target volumes each, 
or 20 backup volumes, would be allocated. This will ensure that there are sufficient target 
volumes and will move the target volume selection process outside of the fast replication 
window. If you don't use the PREPARE keyword prior to taking backups, only copy pool 
backup volumes for the backup in progress will be allocated.

The following steps should be used to define the necessary Copy Pool, source storage group, 
and backup storage group structures for fast replication support:

� Start to define your Copy Pool definitions by selecting option P, Specify Storage Groups for 
Copies, from the ISMF Primary Option Menu as shown in Figure 7-4.

Figure 7-4   Select option ‘P’, Copy Pool 

ISMF PRIMARY OPTION MENU - z/OS DFSMS V1 R5                   
Enter Selection or Command ===> P                                              
                                                                               
Select one of the following options and press Enter:                           
0  ISMF Profile              - Specify ISMF User Profile                       
1  Data Set                  - Perform Functions Against Data Sets             
2  Volume                    - Perform Functions Against Volumes               
3  Management Class          - Specify Data Set Backup and Migration Criteria  
4  Data Class                - Specify Data Set Allocation Parameters          
5  Storage Class             - Specify Data Set Performance and Availability   
6  Storage Group             - Specify Volume Names and Free Space Thresholds  
7  Automatic Class Selection - Specify ACS Routines and Test Criteria          
8  Control Data Set          - Specify System Names and Default Criteria       
9  Aggregate Group           - Specify Data Set Recovery Parameters            
10 Library Management        - Specify Library and Drive Configurations        
11 Enhanced ACS Management   - Perform Enhanced Test/Configuration Management  
C  Data Collection           - Process Data Collection Function                
L  List                      - Perform Functions Against Saved ISMF Lists      
P  Copy Pool                 - Specify Pool Storage Groups for Copies          
R  Removable Media Manager   - Perform Functions Against Removable Media       
X  Exit                      - Terminate ISMF                                  
Use HELP Command for Help; Use END Command or X to Exit. 
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� Enter the database Copy Pool name using the required form of DSN$locn-name$DB and 
select option 3, Define a Copy Pool, as shown in Figure 7-5.

Figure 7-5   Define the “database” Copy Pool

� Enter the storage group name and number of backup versions for DFSMShsm to manage. 
Notice that DFSMShsm is asked to manage up to 15 Copy Pool backup versions on disk, 
as shown in Figure 7-6.

Figure 7-6   Define the source storage group to the “database” Copy Pool

� If you wish to take full system backups, enter the log Copy Pool name using the required 
form of DSN$locn-name$LG and select option 3, as shown in Figure 7-7.

COPY POOL APPLICATION SELECTION                         
Command ===>                                                                   
                                                                               
To perform Copy Pool Operations, Specify:                                      
  CDS Name . . . . 'SMSCTL.SCDS'                                               
                                (1 to 44 character data set name or 'Active' ) 
  Copy Pool Name   DSN$P870$DB                   (For Copy Pool List, fully  
                                         or partially specified or * for all)  
                                                                               
Select one of the following options  :                                         
  3  1. List    - Generate a list of Copy Pools                                
     2. Display - Display a Copy Pool                                          
     3. Define  - Define a Copy Pool                                           
     4. Alter   - Alter a Copy Pool                                            
                                                                               
If List Option is chosen,                                                      
   Enter "/" to select option      Respecify View Criteria                     
                                   Respecify Sort Criteria 

COPY POOL DEFINE                  Page 1 of 3    
Command ===>                                                                   
                                                                               
SCDS Name  . . : SMSCTL.SCDS                                                   
Copy Pool Name : DSN$P870$DB                                                   
                                                                               
To DEFINE Copy Pool, Specify:                                                  
  Description ==> COPY POOL FOR P870                                           
              ==>                                                              
  Number of Recoverable DASD Fast                                              
   Replicate Backup Versions  . . . . 15       (1 to 85 or blank) 
  Storage Group Names:  (specify 1 to 256 names)                               
   ==> P87VCAT                                                                 
   ==>                                                                         
   ==> 
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Figure 7-7   Define the “log” Copy Pool

� Enter the storage group name and number of backup versions for DFSMShsm to manage, 
as shown in Figure 7-8.

Figure 7-8   Define the source storage group to the “log” Copy Pool

� Connect the source storage groups with their associated backup storage groups using 
option 6, Specify Volume Names and Free Space Thresholds, as shown in Figure 7-9.

COPY POOL APPLICATION SELECTION                         
 Command ===>                                                                   
                                                                                
 To perform Copy Pool Operations, Specify:                                      
   CDS Name . . . . 'SMSCTL.SCDS'                                               
                                 (1 to 44 character data set name or 'Active' ) 
   Copy Pool Name   DSN$P870$LG                   (For Copy Pool List, fully  
                                          or partially specified or * for all)  
                                                                                
 Select one of the following options  :                                         
   3  1. List    - Generate a list of Copy Pools                                
      2. Display - Display a Copy Pool                                          
      3. Define  - Define a Copy Pool                                           
      4. Alter   - Alter a Copy Pool                                            
                                                                                
 If List Option is chosen,                                                      
    Enter "/" to select option      Respecify View Criteria                     
                                    Respecify Sort Criteria 

COPY POOL DEFINE                  Page 1 of 3    
Command ===>                                                                   
                                                                               
SCDS Name  . . : SMSCTL.SCDS                                                   
Copy Pool Name : DSN$P870$LG                                                   
                                                                               
To DEFINE Copy Pool, Specify:                                                  
  Description ==> COPY POOL FOR P870 BSDS + LOG DATASETS                       
              ==>                                                              
  Number of Recoverable DASD Fast                                              
   Replicate Backup Versions  . . . .15       (1 to 85 or blank)               
  Storage Group Names:  (specify 1 to 256 names)                               
   ==> DSNP870                                                                 
   ==>  
   ==>

 

 

 

Chapter 7. System point in time back-up and recovery 187



 

Figure 7-9   Select the Storage Group

� Enter the source storage group name and select option 3, Alter a Storage Group, to 
associate the storage groups, as shown in Figure 7-10.

Figure 7-10   Alter by Storage Group Name

� Enter a description, the backup Copy Pool name in the Copy Pool Backup SG Name field, 
and ‘Y’ in the SMS Alter Storage Group Status field, as shown in Figure 7-11.

ISMF PRIMARY OPTION MENU - z/OS DFSMS V1 R5                   
Enter Selection or Command ===> 6                                              
                                                                               
Select one of the following options and press Enter:                           
0  ISMF Profile              - Specify ISMF User Profile                       
1  Data Set                  - Perform Functions Against Data Sets             
2  Volume                    - Perform Functions Against Volumes               
3  Management Class          - Specify Data Set Backup and Migration Criteria  
4  Data Class                - Specify Data Set Allocation Parameters          
5  Storage Class             - Specify Data Set Performance and Availability   
6  Storage Group             - Specify Volume Names and Free Space Thresholds  
7  Automatic Class Selection - Specify ACS Routines and Test Criteria          
8  Control Data Set          - Specify System Names and Default Criteria       
9  Aggregate Group           - Specify Data Set Recovery Parameters            
10 Library Management        - Specify Library and Drive Configurations        
11 Enhanced ACS Management   - Perform Enhanced Test/Configuration Management  
C  Data Collection           - Process Data Collection Function                
L  List                      - Perform Functions Against Saved ISMF Lists      
P  Copy Pool                 - Specify Pool Storage Groups for Copies          
R  Removable Media Manager   - Perform Functions Against Removable Media       
X  Exit                      - Terminate ISMF                                  
Use HELP Command for Help; Use END Command or X to Exit. 

STORAGE GROUP APPLICATION SELECTION                     
Command ===>                                                                   
                                                                               
To perform Storage Group Operations, Specify:                                  
  CDS Name  . . . . . . 'SMSCTL.SCDS'                                          
                               (1 to 44 character data set name or 'Active' )  
  Storage Group Name    P87VCAT           (For Storage Group List, fully or    
                                          partially specified or * for all)    
  Storage Group Type                      (VIO, POOL, DUMMY, COPY POOL BACKUP, 
                                          OBJECT, OBJECT BACKUP, or TAPE)      
                                                                               
Select one of the following options  :                                         
  3  1. List    - Generate a list of Storage Groups                            
     2. Define  - Define a Storage Group                                       
     3. Alter   - Alter a Storage Group                                        
     4. Volume  - Display, Define, Alter or Delete Volume Information          
                                                                               
If List Option is chosen,                                                      
   Enter "/" to select option      Respecify View Criteria                     
                                   Respecify Sort Criteria    
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Figure 7-11   Associating source and target storage groups

Associate source storage group P87VCAT with Copy Pool backup P87VCATP and set SMS 
Storage Group Status to ‘Y’. Do the same with the log storage groups.

Be sure to validate the backup environment each time it is changed — for example, when 
volumes in a source or backup storage group change, when the number of versions to 
maintain changes, or when the storage groups defined to a Copy Pool have changed. Be 
aware of how and when your system configuration has changed before you use a Copy Pool 
(with RESTORE SYSTEM or outside of DB2) to restore a system.

7.3  The PITR DB2 functions
In this section we describe how the BACKUP SYSTEM and RESTORE SYSTEM utilities work 
together with SMS to provide for a simple, fast, and reliable system level point in time 
recovery, and additionally, how to restore a system to a full system backup. We also include a 
short description of other changes to support this functionality.

7.3.1  Suspend database writes
Prior to DB2 V8, it was possible to have a recovery point in the middle of a 32 KB page write 
or data set extend while taking a SPLIT MIRROR type system backup. DB2 Version 8 has 
enhanced the SET LOG SUSPEND/SET LOG RESUME commands to quiesce 32 KB page 
writes and data set extends during SPLIT MIRROR processing. When the SET LOG 
SUSPEND command is issued, DB2 waits for any in-progress 32 KB database writes and 
data set extends to complete, and quiesces any additional writes or data set extends as long 
as the command is in effect. The SET LOG RESUME command resumes these activities. 
This helps guard against the possibility of partial page writes taking place during SPLIT 
MIRROR backup processing.

POOL STORAGE GROUP ALTER                              
Command ===>                                                                   
                                                                               
SCDS Name . . . . . : SMSCTL.SCDS                                              
Storage Group Name  : P87VCAT                                                  
To ALTER Storage Group, Specify:                                               
 Description ==> FOR P870 CONNECT P87VCATP TO P87VCAT                              
             ==>                                                               
 Auto Migrate . . N  (Y, N, I or P)   Migrate Sys/Sys Group Name . .           
 Auto Backup  . . N  (Y or N)         Backup Sys/Sys Group Name  . .           
 Auto Dump  . . . N  (Y or N)         Dump Sys/Sys Group Name  . . .           
 Overflow . . . . N  (Y or N)         Extend SG Name . . . . . . . .           
                                      Copy Pool Backup SG Name . . . P87VCATP  
 Dump Class . . .                     (1 to 8 characters)                      
 Dump Class . . .                     Dump Class . . .                         
 Dump Class . . .                     Dump Class . . .                         
 Allocation/migration Threshold: High . . 85  (1-99)      Low  . .     (0-99)  
 Guaranteed Backup Frequency  . . . . . .           (1 to 9999 or NOLIMIT)     
                                                                               
 ALTER     SMS Storage Group Status . . . Y   (Y or N) 
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7.3.2  CI size up to 32 KB
DB2 table spaces and index spaces are defined as VSAM linear data sets. Up to DB2 V7, 
every page set has been allocated in control intervals of 4 KB, even though VSAM allows CI 
sizes multiple of 4 up to 32 KB for linear data sets, and DB2 has chained the CIs up to the 
required page size.

DB2 V8 introduces support for CI sizes of 8, 16, and 32 KB, activated by the default of the 
new DSVCI ZPARM in panel DSNTIP7. This is valid for user defined and DB2 defined table 
spaces. Index spaces only use 4 KB pages. If you decide to activate the new CI sizes (once 
you are in New Function Mode), all new table space page sets will be allocated by DB2 with a 
CI corresponding to the page size. The page sets already existing at the time of migrating will 
be later converted by the execution of Loads or Reorgs. The DB2 install procedure will also 
prepare the correct JCL for the (user) defined DB2 catalog table spaces, and will convert 
them to the new page size during the ENFM phase.

The new CI sizes reduce integrity exposures, relieve some restrictions on concurrent copy 
and the use of striping, and provide the potential for reducing elapsed time for table space 
scans.

7.3.3  Forward log recovery
In the event the integrity of an SAP instance is compromised, often it is not enough to restore 
a system to a prior backup. The amount of data that would be lost could represent many 
hours of work, especially if the time between backups is very long and the corruption occurred 
close to the time the next backup was scheduled. In versions prior to DB2 V8, it is too 
disruptive to the business, in terms of outage, staff, and probability of error, to restore an SAP 
DB2 instance to a point in time other than that at which a backup was taken.

DB2 V8 provides a fast, easy, minimally disruptive way to create volume-level backups and a 
fast, reliable way to recover to an arbitrary point in time with the new BACKUP SYSTEM and 
RESTORE SYSTEM utilities. As mentioned in the previous section, DB2 uses technology that 
is new with DFSMShsm V1R5 to accomplish this. The new DFSMShsm Copy Pool and SMS 
Copy Pool backup target storage group provide for this functionality. In order to take 
advantage of this functionality, the following conditions must be met:

� All DB2 data sets must be SMS managed.

� You are running z/OS V1R5.

� Your disk control units support ESS FlashCopy.

� You have defined a Copy Pool for your “database” data. You will also need a Copy Pool for 
your “log” data if you plan to take full system backups. Be sure to follow the DB2 naming 
conventions for each type of Copy Pool.

� You have defined a Copy Pool backup storage group for each source storage group in the 
Copy Pools.

Once everything is in place, creating backups or restoring a system to an arbitrary point in 
time can be accomplished with one utility statement. When using RESTORE SYSTEM with 
the LOGONLY keyword, it is assumed that you have already restored the “database” volumes 
by another volume copy means.

The BACKUP SYSTEM utility
The BACKUP SYSTEM utility invokes new fast replication services in DFSMShsm V1R5 to 
take volume level copies: 
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� BACKUP SYSTEM DATA ONLY, copies only the “database” portion of a system (DB2 
catalog, directory, and user data)

� BACKUP SYSTEM FULL (default), copies the entire DB2 subsystem and includes the 
“database” and “log” (active logs and BSDS) portions of a subsystem or data sharing 
group

These copies are taken without DB2 having to take any quiesce points and can be used to 
restore a subsystem or data sharing group to a prior point in time, even when there is 
uncommitted data.

Database only backups can be taken by using the DATA ONLY keywords. This tells the utility 
to copy only the “database” Copy Pool. Full system backups are the default and can be 
explicitly specified with the FULL keyword. Both types of backups can be used for point in 
time recovery with the RESTORE SYSTEM utility because it only uses the “database” Copy 
Pool to restore the data prior to applying logs. A full system backup can also be used to 
restore a system to the time the backup was taken, for disaster recovery, or for cloning 
purposes. In a full system backup, the “database” Copy Pool is copied first and the “log” Copy 
Pool is copied second, so that normal DB2 restart recovery processing can be used to restore 
data consistency when restoring to a full backup.

During backup, DB2 records a recovery based “log” point (RBLP) in the header page of 
DBD01. The RBLP is identified as the most recent system checkpoint prior to a backup log 
point, and the point at which DB2 starts scanning logs during a RESTORE SYSTEM recovery 
operation. DB2 updates its BSDS with backup version information and can keep track of up to 
50 backup versions. In the case of data sharing, the submitting member records the backup 
version in its BSDS and also in the SCA. Figure 7-12 illustrates what happens during backup.

Figure 7-12   BACKUP SYSTEM utility execution for DSNDB0G
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One BACKUP SYSTEM utility has been run, and a full system backup has been taken for 
DSNDB0G. The information is recorded in the DB2 BSDS, the header page of DBD01, and 
DFSMShsm. DB2 only records up to 50 backup versions in the BSDS. However, DFSMShsm 
is able to manage up to 85 backup versions on disk, but you must have enough backup target 
storage group volumes to satisfy the number of versions you want to keep. If you wish to keep 
more than the maximum 85 versions, you must dump them off to tape before they are 
invalidated by subsequent backup attempts.

Figure 7-13 illustrates what happens during the BACKUP SYSTEM FULL process. The BSDS 
is updated with COPY1 version information at RBA1, the RBLP in DBD01 is updated with the 
most recent system checkpoint RBA or LRSN prior to backup RBA1 at u2. DFSMShsm 
records COPY1 and RBA1 and keeps track of the DB and LG Copy Pool copies.

Figure 7-13   Two BACKUP SYSTEM FULL, and one DATA ONLY are taken 

Figure 7-13 also illustrates what happens as more BACKUP SYSTEM copies are taken.

Three BACKUP SYSTEM backups have been taken for DSNDB0G. Two full system backups 
and one data only backup The second backup is also a full system backup and the same 
sequence of events occurs, but the third backup is a data only backup. Notice that the same 
information is recorded in the BSDS and the header page of DBD01. DFSMShsm records the 
same copy version information but only takes a copy of the DB Copy Pool.

In general, the BACKUP SYSTEM utility performs the following steps: 

� Takes a new exclusive lock to ensure that no other backup utility can execute. If data 
sharing, it takes a global lock.
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� Suspends 32 KB page writes for objects created prior to NFM and not migrated 
afterwards. You can avoid the write suspension by REORGing these objects. If data 
sharing, all members are notified.

� Suspends data set creation (create table space, index, etc.), deletion (drop table space, 
index, etc.), renames (online REORG fast switch), and extensions. If data sharing, all 
members are notified.

� Suspends system checkpoints. If data sharing, all members are notified.

� Prevents data sets from pseudo close. If data sharing, all members are notified.

� Records the RBLP RBA or LRSN in the header page of DBD01 and writes the page to 
disk. If data sharing, the system checkpoint prior to the lowest LRSN of all active members 
is used.

� Invokes DFSMShsm to take a FlashCopy of the “database” Copy Pool.

� Updates the BSDS with the system backup information. If data sharing, only the BSDS for 
the submitting member is updated.

� Invokes DFSMShsm to take a FlashCopy of the “log” Copy Pool if it is a full system 
backup.

� Resumes all suspend activities above. If data sharing, notifies all members.

� Releases the exclusive lock. If data sharing, notifies all members.

� Issues an informational message indicating the backup is complete.

The syntax of the utility statement for a full system backup of “database” and “log” Copy Pools 
is:

BACKUP SYSTEM FULL (FULL is the default and can be omitted)

The syntax of the utility statement for a backup of only the “database” Copy Pool is:

BACKUP SYSTEM DATA ONLY 

An example of the output you would see from a full system backup is shown in Figure 7-14. 
Notice that the “database” Copy Pool is copied first and the “log” Copy Pool is copied second.

Figure 7-14   BACKUP SYSTEM utility output

DSNUGUTC -  BACKUP SYSTEM                                          
DSNU1600I   DSNUVBBD - BACKUP SYSTEM UTILITY FOR DATA STARTING,                
                       COPYPOOL = DSN$P870$DB                                  
                       TOKEN = X'D7F8F7F0BA140298CDE3D14200120CDAC090'.        
DSNU1614I   DSNUVBBD - BACKUP SYSTEM UTILITY FOR DATA COMPLETED SUCCESSFULLY,  
                       COPYPOOL = DSN$P870$DB                                  
                       TOKEN = X'D7F8F7F0BA140298CDE3D14200120CDAC090'         
                       ELAPSED TIME = 00:00:03.                                
DSNU1600I   DSNUVBBD - BACKUP SYSTEM UTILITY FOR LOGS STARTING,                
                       COPYPOOL = DSN$P870$LG                                  
                       TOKEN = X'D7F8F7F0BA140298CDE3D14200120CDAC090'.        
DSNU1614I   DSNUVBBD - BACKUP SYSTEM UTILITY FOR LOGS COMPLETED SUCCESSFULLY,  
                       COPYPOOL = DSN$P870$LG                                  
                       TOKEN = X'D7F8F7F0BA140298CDE3D14200120CDAC090'         
                       ELAPSED TIME = 00:00:05.                                
DSNU1602I   DSNUVBBD - BACKUP SYSTEM UTILITY COMPLETED, ELAPSED TIME = 00:00:08
DSNU010I    DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0 
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Both types of backups can be used for system recovery to an arbitrary point in time.

You need SYSCTRL or SYSADM authorization to run this utility, and it is compatible with all 
other utilities, but only one BACKUP SYSTEM utility can be running at a time. The utility can 
be displayed or terminated only if the commands are entered on the subsystem on which the 
utility was submitted. The utility can be terminated, but termination checking takes place only 
before the “database” Copy Pool is copied, and, if DATA ONLY is not specified, before the 
“log” Copy Pool is processed. The utility can be restarted, but it starts the backup at the 
beginning. Once the number of existing backups on disk matches the number specified in the 
Copy Pool VERSIONS attribute and a new backup is started, DFSMShsm marks the oldest 
maintained backup invalid before it starts copying the Copy Pool(s) for the new backup. If the 
utility is not successful and is restarted, the version marked invalid will continue to be written 
to until a successful backup completes.

If BACKUP SYSTEM is not supported by your installation, volume level backups can be taken 
by using the SET LOG SUSPEND/SET LOG RESUME commands in conjunction with 
another type of volume backup solution. If you are using z/OS V1R5, Copy Pools can be used 
to simplify the task.

The RESTORE SYSTEM utility
Use the RESTORE SYSTEM utility only when you want to recover a subsystem or data 
sharing group to an arbitrary point in time. The utility restores only the “database” Copy Pool 
of a data only or full system backup, and then applies logs until it reaches a point in the log 
equal to the log truncation point specified in a point in time conditional restart control record 
(SYSPITR CRCR) created with DSNJU003. You cannot explicitly name the backup to use for 
recovery. That is implicitly determined by the log truncation point used to create the SYSPITR 
CRCR.

The RESTORE SYSTEM utility uses the RBLP stored in the header page of DBD01 and 
updated by the BACKUP SYSTEM utility as the log scan starting point. The log apply phase 
uses Fast Log Apply to recover objects in parallel. DB2 handles table space and index space 
creates, drops and extends, and marks objects that have had LOG NO events as RECP (table 
spaces and indices with the COPY YES attribute) or RBDP (indices with COPY NO attribute). 
An informational message will be issued to let the user know if there are any objects that 
need additional recovery.

If you want to restore a system to the point at which a full backup was taken, do not use the 
RESTORE SYSTEM utility. Use HSM FRRECOV COPYPOOL(cpname) GEN(gen) to restore 
both “database” and “log” Copy Pools. Then start DB2, which will use normal restart recovery 
processing to back out in-flight URs.

When the utility is used with the LOGONLY keyword, DB2 skips the call to DFSMShsm, 
assumes the data was restored by another method, and executes only the log apply phase.

You must run the RESTORE SYSTEM utility with install SYSADM authority and NFM must be 
enabled.

The syntax of the RESTORE SYSTEM utility is simply:

RESTORE SYSTEM

Figure 7-15 shows an example of the output you should see from a successful execution of 
the RESTORE SYSTEM utility.
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Figure 7-15   RESTORE SYSTEM utility output

Figure 7-16 illustrates what occurs during a system level point in time recovery with the 
RESTORE SYSTEM utility. DB2 recognizes the log truncation point in the SYSPITR CRCR, 
checks the BSDS to determine which backup to use, calls DFSMShsm to restore the correct 
“database” Copy Pool version, gets the RBLP from DBD01, then scans the logs and applies 
log records until reaching the log truncation point.

Figure 7-16   Recovering to an arbitrary point in time using the RESTORE SYSTEM utility.

In general, to restore a system to a prior point in time with the RESTORE SYSTEM utility, use 
the following steps:

DSNU000I    DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = RESTORE              
DSNU1044I   DSNUGTIS - PROCESSING SYSIN AS EBCDIC                              
DSNU050I    DSNUGUTC -  RESTORE SYSTEM                                         
DSNU1606I   DSNUVBRD - RESTORE SYSTEM UTILITY STARTING,                        
                       COPYPOOL = DSN$P870$DB                                  
                       TOKEN = X'D7F8F7F0BA140298CDE3D14200120CDAC090'.        
DSNU1627I   DSNUVBRD - RESTORE SYSTEM PRE-LOG APPLY COMPLETED SUCCESSFULLY,    
                       COPYPOOL = DSN$P870$DB                                  
                       TOKEN = X'D7F8F7F0BA140298CDE3D14200120CDAC090'         
                       ELAPSED TIME = 00:00:04.                                
DSNU1604I -P870 DSNUVARL - RESTORE SYSTEM PHASE LOG APPLY STARTED AT LOG POINT = 
X'00120CDAC090'.
DSNU1628I   DSNUVBRD - RESTORE SYSTEM PHASE LOG APPLY COMPLETED, ELAPSED TIME = 00:04:54.   
DSNU010I    DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0 

RESTORE SYSTEM 

u1      u2         u3        u4         u5         u6          u7         u8         u9          u10          u11

RBLP:
RBA1

RBLP:
RBAh

RBLP:
RBAn

COPY1
RBA1

COPY3
RBAn

COPY2
RBAh

BSDS

SYSPITR=RBAk

DB2 DBs

Log Apply 

RECOVER 
COPYPOOL(DSN$DSNDB0G$DB') 
token(RBAh)

'copy target' SG1

DFSMShsm

COPY3COPY2COPY1 LOG2LOG1

'copy target' SG2 

TOKEN COPY
RBA1 COPY1

RBAh COPY2

RBAn COPY3

RBAh
is returned

RBAk

SYSPITR=RBAk

logscan
RESTORE 
SYSTEM

DBD01 page set

RBLP Logscan 
start point

RBA1 U2
RBAh U6
RBAn U10
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� Stop DB2. If data sharing, stop all members.

� Use DSNJU003 to create a SYSPITR CRCR specifying the point to which you wish to 
recover the system. If data sharing, create a SYSPITR CRCR for each member.

� If data sharing, delete all coupling facility structures.

� Start DB2. If data sharing, start all members of the data sharing group.

� DB2 will enter into system recover-pending mode, access(maint), and will bypass recovery 
except for indoubt URs.

� Execute the RESTORE SYSTEM utility. The utility must be completed on the original 
submitting member.

– Restores the most recent “database” Copy Pool version that was taken prior to the log 
truncation point.

– Performs log apply function.

� If a method other than the BACKUP SYSTEM utility was used to copy the system, restore 
the data manually and use RESTORE SYSTEM LOGONLY.

– This option can be used with z/OS V1R3 and above.

– Backs up data with another volume dump solution and uses SET LOG 
SUSPEND/RESUME.

– Performs log apply function only.

� Recycle DB2 to reset system recovery-pending status. If data sharing, stop all members.

� Display and terminate any active utilities.

� Display restricted objects and recover objects in RECP status and rebuild objects in RBDP 
status.

The SET LOG SUSPEND/RESUME commands can be used with other volume backup 
solutions if BACKUP SYSTEM isn’t available. DFSMShsm Copy Pools can be used to simplify 
the backup process if you are on z/OS V1R5. The SET LOG SUSPEND command is more 
disruptive than the BACKUP SYSTEM utility because it halts all update activity on a 
subsystem. Update activity is resumed only when the SET LOG RESUME command is 
issued. If data sharing is active, both commands must be entered on all active members of 
the data sharing group. The SET LOG SUSPEND command updates the RBLP in DBD01 so 
that recovery with RESTORE SYSTEM LOGONLY is possible.

Other changes to support system level point in time recovery
Stand alone utilities have been changed to reflect the new functions.

DSNJU003 Change Log Inventory
A new option has been added to DSNJU003, Change Log Inventory, to allow you to create a 
new type of conditional restart control record to truncate logs for a system point in time 
recovery in preparation for running the RESTORE SYSTEM utility. The syntax of the option is:

CRESTART CREATE SYSPITR=log-point

The log-point is the RBA or LRSN (for data sharing) to which you want to recover the system. 
The SYSPITR option can not be specified with any other option and is only allowed after NFM 
is enabled. When DB2 is started with a SYSPITR CRCR, the system starts in system 
recovery-pending mode and only the RESTORE SYSTEM utility can be run. Most DB2 
commands will work, with the exception of START DATABASE and TERM UTIL. A DIS UTIL 
command will display only the status of the RESTORE SYSTEM utility. Data is unavailable 
until the utility completes successfully and DB2 is recycled. DB2 must be recycled after 
recovery is complete to reset recovery-pending status.
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If data sharing is active, each member that has been active after the log truncation point must 
have a SYSPITR CRCR created with the same log truncation point and must be started prior 
to recovery. The RESTORE SYSTEM utility cannot be run until all members have been 
started.

DSNJU004 Print Log Map
DSNJU004 Print Log Map has been enhanced to show SYSPITR CRCR information if it is 
present and system backup information. Figure 7-17 illustrates the changes.

Figure 7-17   DSNJU004 output

SET LOG SUSPEND/RESUME
The SET LOG SUSPEND and SET LOG RESUME commands have been enhanced to 
quiesce 32 KB page writes and data set extends.

23:47:48 OCTOBER 08, 2003
**** ACTIVE CRCR RECORD ****
CRCR IDENTIFIER  0001
     USE COUNT   0
     RECORD STATUS
         CRCR ACTIVE
         CRCR NOT USED
     PROCESSING STATUS
         FORWARD = YES
         BACKOUT = YES
     SYSPITR SYSTEM LEVEL RECOVERY MODE RESTART
     STARTRBA                        NOT SPECIFIED
     ENDRBA                          NOT SPECIFIED
     ENDLRSN                         BA245C6867D9  <------SYSPITR
     EARLIEST REQUESTED RBA          000000000000
     FIRST LOG RECORD RBA            000000000000
     ORIGINAL CHECKPOINT RBA         000000000000
     NEW CHECKPOINT RBA (CHKPTRBA)   00001022BE2E
     END CHECKPOINT RBA              00001023AF66
     CRCR CREATED             23:47:18 OCTOBER 08, 2003
     TIME OF CHECKPOINT       23:41:28 OCTOBER 08, 2003
     RESTART PROGRESS                 STARTED     ENDED
                                      =======     =====
        CURRENT STATUS REBUILD          NO         NO
        FORWARD RECOVERY PHASE          NO         NO
        BACKOUT RECOVERY PHASE          NO         NO

                    BACKUP SYSTEM UTILITY HISTORY
                          SUBSYSTEM ID DJ1G
                      23:47:49 OCTOBER 08, 2003
            START STCK                            DATA COMPLETE   
DATA/LOG
COMPLETE
     DATA               LOG             RBLP          LRSN         DATE
LTIME    LOCATION NAME
----------------  ----------------  ------------  ------------
--------------------  ----------------
BA2458B70E2AC5AE  0000000000000000  BA245635C2B2  BA245635C2B2  
2003/10/08
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DSN1LOGP
DSN1LOGP has been enhanced to print a system event type log record, subtype=8, which is 
generated when a system goes into system recover-pending mode. 

DSN1PRNT
DSN1PRNT has been enhanced to print the RBLP stored in the header page of DBD01.

7.4  Scenario 1: Restoring to a prior backup
This section describes the steps necessary to restore a DB2 subsystem or data sharing 
group to a point at which a volume level backup was taken.

The following two examples describe how to restore a system to a prior backup. Case 1 uses 
the BACKUP SYSTEM utility to take a volume level back. Case 2 uses an alternative method 
to take a full system backup. When restoring a system to the point in time at which a backup 
was taken, you must back up and restore both “database” and “log” Copy Pools or volumes.

7.4.1  Case 1: Restore a system using BACKUP SYSTEM
� Start DB2. In data sharing environments, start all dormant members.

� Execute BACKUP SYSTEM FULL utility to backup both “data” and “log” Copy Pools.

� Stop DB2. If data sharing, stop all members of the data sharing group.

� Restore all “data” and “log” volumes from the desired backup. 

– FRRECOV COPYPOOL(DSN$locn$DB) VERIFY(Y) to restore the database Copy 
Pool

– FRRECOV COPYPOOL(DSN$locn$LG) VERIFY(Y) to restore the log Copy Pool.

� If data sharing, delete coupling facility structures.

� Restart DB2. If data sharing, restart all dormant members.

� If data sharing, execute GRECP/LPL recovery. This recovers changed data that was 
stored in the coupling facility at the time of the backup.

7.4.2  Case 2: Restore a system using SET LOG SUSPEND
� Start DB2. If data sharing, start all dormant members.

� Take a volume level backup of “data” and “log” data sets. If using z/OS V1R5, use Copy 
Pools to simplify the process:

– Execute SET LOG SUSPEND. If data sharing, execute on all active members.

– Take backups of “data” and “log” volumes. If at z/OS V1R5 use DFSMS Copy Pool 
constructs to simplify the backup process.

– Execute SET LOG RESUME. If data sharing, execute on all active members.

� Stop DB2. If data sharing, stop all active members.

� Restore all “data” and “log” volumes from the desired backup, as noted above.

� If data sharing, delete all coupling facility structures.

� Restart DB2. If data sharing, restart all dormant members.

� If data sharing, execute GRECP/LPL recovery. This recovers changed data that was 
stored in the coupling facility at the time of the backup.
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7.5  Scenario 2: Restore to a prior arbitrary point in time 
This section describes the steps necessary to restore a DB2 subsystem and data sharing 
group to an arbitrary point in time, given in two examples.

7.5.1  Case 1: Arbitrary PITR using the BACKUP and RESTORE SYSTEM
In the following exercise we created and populated a table with “good” and “bad” data, took a 
data-only backup, then restored the system to a log point established somewhere between 
the “good” and “bad” DML. We also wanted to see if DB2 could handle recreating objects 
during forward log recovery, so we created an additional table space and table that should be 
recreated in the log apply phase.

� Start DB2. If data sharing, start all dormant members.

� Execute DDL to create a database, table space, and two tables each with one index.

� Execute BACKUP SYSTEM DATAONLY.

� Execute DML to insert rows into one table, then update some of the rows.

� Use the LOAD utility with the LOG NO attribute to load the second table.

� Create another table space, table, and index in an existing database.

� Use SET LOG SUSPEND/SET LOG RESUME to establish log truncation point logpoint1, 
the point to which you want to recover. If non-data sharing use the RBA, if data sharing, 
use the lowest LRSN among active members.

� Execute DML to insert rows into one of the tables, and to update and/or delete some rows.

� Stop DB2. If data sharing, stop all active members.

� Use DSNJU003 to create a SYSPITR CRCR record (CRESTART CREATE 
SYSPITR=logpoint1). This is the log truncation point established above. If data sharing, 
create a SYSPITR record for each member active member.

� If data sharing, delete all coupling facility structures.

� Restart DB2. DB2 will start in system recovery-pending mode. If data sharing, restart all 
members.

� Execute the RESTORE SYSTEM utility. If data sharing, the utility can only be executed on 
one member. If the utility terminates and must be restarted it can only be restarted on the 
member on which it was originally executed.

� After the utility ends successfully, stop DB2. If data sharing, stop all active members. This 
will reset system recovery-pending status.

� Restart DB2. If data sharing, start all members.

� Execute the display command to check for active utilities or restricted objects. Terminate 
any active utilities. Recover any objects in RECP or RBDP status. from the second table.

– -DIS UTIL(*) and terminate any active utilities. 

– -DIS DB(DSNDB01) SP(*) 

– -DIS DB(DSNDB06) SP(*) LIMIT(*)

– -DIS DB(*) SP(*) LIMIT(*) RESTRICT

� Validate that recovery was successful.
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7.5.2  Case 2: Arbitrary PITR
The methodology for this type of point in time recovery is essentially the same as above. The 
only difference is in the way the system is backed up and the data is restored to the volumes. 
This methodology could be used if one of the requirements for BACKUP SYSTEM and 
RESTORE SYSTEM is not in place. 

Following the same steps as above: 

� Start DB2. If data sharing, start all dormant members.

� Execute DDL to create a database, table space, and two tables each with one index.

� Take a system backup:

– Execute SET LOG SUSPEND to stop update activity.

– Take backups of “data” volumes using existing volume copy or split mirror solutions. If 
on z/OS V1R5 you can use Copy Pools to simplify the process.

– Execute SET LOG RESUME to resume update activity.

� Execute DML to insert rows into one table, then update some of the rows.

� Use the LOAD utility with the LOG NO attribute to load the second table.

� Create another table space, table and index in an existing database.

� Use SET LOG SUSPEND/SET LOG RESUME to establish log truncation point logpoint1, 
the point to which you want to recover. If non-data sharing use the RBA, if data sharing, 
use the lowest LRSN among active members.

� Execute DML to insert rows into one of the tables, and to update and/or delete some rows.

� Stop DB2. If data sharing, stop all active members.

� Use DSNJU003 to create a SYSPITR CRCR record (CRESTART CREATE 
SYSPITR=logpoint1). This is the log truncation point established above. If data sharing, 
create a SYSPITR record for each member active member.

� Restore only the “data” volumes using an existing volume copy process, or if on z/OS 
V1R5 you can use Copy Pools to simplify the process.

� If data sharing, delete all coupling facility structures.

� Restart DB2. DB2 will start in system recovery-pending mode. If data sharing, restart all 
members.

� Execute the RESTORE SYSTEM utility with the LOGONLY keyword. If data sharing, the 
utility only needs to be executed on one member. If the utility terminates and must be 
restarted it can only be restarted on the member on which it was originally executed.

� After the utility ends successfully, stop DB2. If data sharing, stop all active members. This 
will reset system recovery-pending status.

� Restart DB2. If data sharing, restart all members.

� Execute the display command to check for active utilities or restricted objects. Terminate 
any active utilities. Recover any objects in RECP or RBDP status.

– -DIS UTIL(*) and terminate any active utilities. 

– -DIS DB(DSNDB01) SP(*) 

– -DIS DB(DSNDB06) SP(*) LIMIT(*)

– -DIS DB(*) SP(*) LIMIT(*) RESTRICT

� Validate that recovery was successful.
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Appendix A. DB2 V8 changes to installation 
defaults

In this appendix we provide a summary of the changes in the default values introduced by 
DB2 V8 for installation parameters.

A
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A.1  New installation default values
In this appendix we describe the changes that have taken place to the default values of 
several buffer pool settings in DB2 V8. The new values are the result of tuning work done by 
the DB2 Development Performance Department in SVL, and considerations related to a more 
general applicability of those values.

A.1.1  New buffer pool threshold values
For the ALTER BUFFERPOOL statement the initial default for the deferred write thresholds 
are:

� DWQT — bufferpool deferred write threshold as percentage of the total virtual pool size.

The new value is 30%. Decreased from the old value of 50%.

� VDWQT — bufferpool vertical deferred write threshold as percentage of the total virtual 
pool size

The new value is 5%. Decreased from the old value of 10%.

For the ALTER GROUPBUFFERPOOL statement the initial default for the deferred write 
thresholds are:

� CLASST — threshold for the class castout to disk as percentage of the size of the data 
entries in the group pool.

The new value is 30%. Decreased from the old value of 50%.

� GBPOOLT — threshold for the class castout as percentage of the size percentage of the 
total virtual pool size

The new value is 5%. Decreased from the old value of 10%.

� GBPCHKPT — default for the GBP checkpoint interval in minutes.

The new value is 4. Decreased from the old value of 8.

A.1.2  Changes to default parameter values 
Table A-1 summarizes the old and new ZPARM default values.

Table A-1   Changed ZPARM default settings

Macro Parameter New value Old value Panel Description

DSN6ARV BLKSIZE 24576 28672 DSNTIPA Archive log block size

DSN6FAC CMTSTAT INACTIVE ACTIVE DSNTIPR DDF threads

DSN6FAC IDTHTOIN 120 0 DSNTIPB Idle thread timeout

DSN6FAC TCPKPALV 120 sec. ENABLE DSNTIP5 TCP/IP keepalive

DSN6SPRC SPRMCTH 10 50 hidden Commit points until thread storage 
pool contraction

DSN6SPRC SPRMINT 120 180 DSNTIPC DDF idle thread interval timeout

DSN6SPRC SPRMSTHR 1048576 2097152 hidden Threshold size for thread storage 
pool contractions

DSN6SPRC SPRMTIS 135168 24576 hidden Initial CT long duration

DSN6SPRC SPRMTXS 65536 32768 hidden Allocation pool extension factor
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DSN6SPRC TRSTHOLD 3 1 row DSNTIPC Trigger workfile usage threshold

DSN6SPRM AUTHCACH 3072 1024 DSNTIPP Cache for plan authorization

DSN6SPRM CACHEDYN YES NO DSNTIP8 Cache for dynamic SQL

DSN6SPRM DSMAX 10000 3000 DSNTIPR Maximum open data sets

DSN6SPRM EDMDBDC 102400 KB 5000 KB DSNTIPC EDM DBD cache

DSN6SPRM EDMPOOL 32768 KB 7312 KB DSNTIPC EDM pool size

DSN6SPRM EDMSTMTC 102400 KB 5000 KB DSNTIPC EDM statement cache

DSN6SYSP ACCUMACC 10 NO DSNTIPN New with V8
Accounting accumulation for DDF

DSN6SYSP CHKFR 500000 50000 DSNTIPL Checkpoint log records frequency

DSN6SYSP CONDBAT 10000 64 DSNTIPE Max number of remote connected
users 

DSN6SYSP CTHREAD 200 70 DSNTIPE Max number of users

DSN6SYSP IDBACK 50 20 DSNTIPE Max number of batch connections

DSN6SYSP IDFORE 50 40 DSNTIPE Max number of TSO connections

DSN6SYSP LOBVALA 10240 KB 2048 KB DSNTIP7 Storage value by user

DSN6SYSP LOGAPSTG 100 MB 0 DSNTIPP Storage for log apply

DSN6SYSP MAXDBAT 200 64 DSNTIPE Max number of remote active 
users

DSN6SYSP NUMTABLE 20 10 DSNTIPD Number of tables, used in CLISTs

DSN6SYSP SMFSTST YES(1,3.4.5.6) YES(1,3,4,5) DSNTIPN SMF classes for STATISTICS

DSN6SYSP SYSPLOGD 10 NO DSNTIPN BACKODUR multiplier

DSN6SYSP EXTSEQ YES NO DSNTIPR Extended security

Macro Parameter New value Old value Panel Description 
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ronyms

 

ACS access control system

AIX® Advanced Interactive eXecutive 
from IBM

APAR authorized program analysis report

AQR automatic query re-write

AR access register

ARM automatic restart manager

ART access register translation

ASCII American Standard Code for 
Information Interchange

ATS Advanced Technical Support

BLOB binary large object

BSDS bootstrap data set

CCA client configuration assistant

CCMS Computer Center Management 
System

CCSID coded character set identifier

CD compact disk

CEC central electronics complex

CF coupling facility

CFCC coupling facility control code

CFRM coupling facility resource 
management

CLI call level interface

CLOB character large object

CLP command line processor

CM compatibility mode

CPU central processing unit

CRLF carriage return and line feed

CSA common storage area

CTT created temporary table

DAD document access definition

DASD direct access storage device

DAT dynamic address translation

DB database

DB2 PM DB2 performance monitor

DBA database administrator

DBAT database access thread

DBCLOB double byte character large object

DBD database descriptor

DBET database exception tables states

Abbreviations and ac 
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DBID database identifier

DBMS database management system

DBRM database request module

DCL data control language

DDCS distributed database connection 
services

DDF distributed data facility

DDIC data dictionary

DDL data definition language

DLL dynamic link library

DLL dynamic load library

DML data manipulation language

DNS domain name server

DPSI data partitioned secondary index

DRDA distributed relational database 
architecture

DSC dynamic statement cache, local or 
global

DTT declared temporary tables

EA extended addressability

EBCDIC extended binary coded decimal 
interchange code

ECS enhanced catalog sharing

ECSA extended common storage area

EDM environment descriptor manager

ENFM enabling new function mode

ERP enterprise resource planning

ESA Enterprise Systems Architecture

ESS Enterprise Storage Server

ETR external throughput rate, an 
elapsed time measure, focuses on 
system capacity

FTP File Transfer Program

GB gigabyte (1,073,741,824 bytes)

GBP group buffer pool

GRS global resource serialization

GUI graphical user interface

HA Host adapter

HFS Hierarchical File System

HLQ high-level qualifier

HPJ high performance Java

HSC homogeneous system copy
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I/O input/output

IBM International Business Machines 
Corporation

ICF integrated catalog facility

ICF integrated coupling facility

ICLI Integrated Call Level Interface

ICMF internal coupling migration facility

ID identifier

IFCID instrumentation facility component 
identifier

IFI instrumentation facility interface

IMG Implementation Guide

IMIG incremental migration

IPLA IBM Program Licence Agreement

IRLM internal resource lock manager

IRWW IBM Relational Warehouse 
Workload

ISICC IBM SAP International Competence 
Center

ISOBID indexspace object identifier

ISPF interactive system productivity 
facility

ISV independent software vendor

IT information technology

ITR internal throughput rate, a 
processor time measure, focuses 
on processor capacity

ITSO International Technical Support 
Organization

IVP installation verification process

IX index

JCL job control language

JDBC Java Database Connectivity

JFS journaled file systems

JIT Just in time (Java compiler)

JNI Java Native Interface

JVM Java Virtual Machine

KB kilobyte (1,024 bytes)

LCU logical control unit

LOB large object

LPAR logical partition

LPL logical page list

LRECL logical record length

LRSN log record sequence number

LSS logical subsystem

LVM logical volume manager

MB megabyte (1,048,576 bytes)

MCOD Multiple Components in One 
Database

MQT materialized query table

MSM Multidimensional Storage Manager

NFM new function mode

NPI non-partitioning index

NVS Non-Volatile Storage

OBID object identifier

ODB object descriptor in DBD

ODBC Open Data Base Connectivity

OLAP online analytical processing

OLTP online transaction processing

OS operating system

OS/390 Operating System/390®

PAV Parallel Access Volume

PDS partitioned data set

PIB parallel index build

PITR point in time recovery

PPT prior point in time

PSID pageset identifier

PSP preventive service planning

PTF program temporary fix

PUNC possibly uncommitted

QBIC® query by image content

QMF™ Query Management Facility

RACF Resource Access Control Facility

RACF Resource Access Control Facility

RBA relative byte address

RBLP recovery based log point

RECFM record format

RID record identifier

ROT rule of thumb

RR repeatable read 

RRS resource recovery services

RRSAF resource recovery services attach 
facility

RS read stability

RSM Real Storage Manager

RTS real time statistics

RVA RAMAC® Virtual Array

SAP Systems, Applications, Products in 
Data Processing

SAP AG SAP Aktiengesell
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SAP APO SAP Advanced Planner And 
Optimizer

SAP BW SAP Business Information 
Warehouse

SAP CRM SAP Customer Relationship 
Management

SAP SEM SAP Strategic Enterprise 
Management

SAP WAS SAP Web Application Server

SDK software developers kit

SDM system data mover

SG storage group

SMIT System Management Interface Tool

SMS Storage Management Subsystem

SPE small program enhancement

SQL Structured Query Language

SVL IBM Silicon Valley Laboratory

TB table

TCB task control block

TMS transport management system

TS tablespace

UDB Universal Database

UR unit of recovery

USS UNIX system services

USS UNIX System Services

VSAM Virtual Storage Access Method

WARM Write and Register Multiple

WAS WebSphere Application Service

WLM Workload Manager

WSAD WebSphere Studio Application 
Developer

XML eXtensible Markup Language
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Related publications

The publications listed in this section are considered particularly suitable for a more detailed 
discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” on page 210. 
Notice that some of the documents referenced here may be available in softcopy only. 

� SAP on DB2 for z/OS and OS/390: DB2 System Cloning, SG24-6287

� SAP R/3 on DB2 for OS/390: Database Availability Considerations, SG24-5690

� SAP on DB2 for OS/390 and z/OS: High Availability Solution Using System Automation, 
SG24-6836

� SAP in DB2 for OS/390 and z/OS: Multiple Components in One Database (MCOD), 
SG24-6914

� mySAP Business Suite Managed by IBM Tivoli System Automation for Linux, REDP-3717

� DB2 for z/OS and OS/390 Version 7 Selected Performance Topics, SG24-6884

� DB2 for z/OS and OS/390 Version 7 Performance Topics, SG24-6129

� DB2 UDB Server for OS/390 Version 6 Technical Update, SG24-6108

� DB2 UDB for OS/390 Version 6 Performance Topics, SG24-5351

� DB2 for OS/390 Version 5 Performance Topics, SG24-2213

� DB2 UDB for z/OS Version 8 Technical Preview, SG24-6871

� DB2 UDB for z/OS Version 8: Everything You Ever Wanted to Know , ... and More, 
SG24-6079

Other publications
These publications are also relevant as further information sources:

� SAP on IBM DB2 UDB for OS/390 and z/OS: Database Administration Guide - SAP Web 
Application Server Release 6.20

� SAP Web Application Server 6.20 on UNIX: IBM DB2 Universal Database for OS/390 and 
z/OS - Installation Guide

� SAP on IBM DB2 UDB for z/OS: Database Administration Guide - SAP NetWeaver 
Version 6.40

The above manuals, and all other SAP manuals, are available from the SAP service Web 
site, accessible only if you are a registered user:

service.sap.com/instguides

� Evolution of Star Join Optimization - DB2 UDB for z/OS and OS/390, July 2002, 
whitepaper published by Yewich, Lawson and Associates, Inc., authors: Terry Purcell, 
Gene Fuh, Yun Wang, Yoitchi Tsuji, Eva Hu.
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Online resources
These Web sites and URLs are also relevant as further information sources:

� DB2 Connect Web site:

http://ibm.com/software/data/db2/db2connect/ 

� DB2 for z/OS Version 8:

http://www.ibm.com/software/data/db2/os390/db2zosv8.html 

You must be registered as an SAP Service Marketplace user to access the following 
resources. The registration requires an SAP installation or customer number. To register, go 
to:

http://service.sap.com

� SAP Service Marketplace quick link MCOD:

http://service.sap.com/mcod

� SAP Service Marketplace quick link INSTGUIDES:

http://service.sap.com/instguides

� SAP Service Marketplace quick link PATCHES:

http://service.sap.com/patches

� SAP Service Marketplace quick link QUICKSIZER:

http://service.sap.com/quicksizer

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft 
publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at 
this Web site: 

ibm.com/redbooks

Help from IBM
IBM Support and downloads:

ibm.com/support

IBM Global Services:

ibm.com/services
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