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Preface

RedHat OpenShift container platform is one of the leading enterprise-grade container 
orchestration platforms. It is designed for rapid deployment of web applications, databases, 
and microservices. 

Categorized as a container orchestration Platform as a Service (PaaS), it is based on open 
industry standards, such as the Container Runtime Interface - Open (CRI-O) and Kubernetes. 
OpenShift allow developers to focus on the code, while the platform manages the complex IT 
operations and processes. 

Although open-source, community-driven container orchestration platforms are available, 
such as OKD and Kubernetes, this IBM® Redpaper® publication focuses on Red Hat 
OpenShift. It describes the basic concepts of OpenShift persistent storage architecture and 
its integration into IBM Cloud® Paks. The deployment of the IBM block storage CSI driver also 
is discussed.

This publication also describes the concepts, technology and current working practices for 
installing the Container Storage Interface (CSI) plug-in for Kubernetes to use IBM Enterprise 
Storage platforms for persistent storage coupled with Red Hat OpenShift Container Platform 
(OCP).

This publication also provides an overview of containers, Kubernetes, and Openshift for 
context (it is expected that the reader has a working knowledge of these underlying 
technologies). It also includes architectural examples of the orchestration platform will be 
given.

This paper serves as a guide about how to deploy the CSI driver for block storage by using 
the DS8000® and Spectrum Virtualize platforms as persistent storage in a Red Hat 
OpenShift platform.

The publication is intended for storage administrators, IT architects, OpenShift technical 
specialists and anyone who wants to integrate IBM Enterprise storage on OpenShift 
V4.3/4.4/4.5 on IBM Power, IBM Z®, and x86 systems.

This paper complements documentation that is available at IBM Documentation. 

Note: OpenShift and the CSI driver are under continuous development, with frequent code 
updates. Contents of this IBM Redpaper publication might not reflect the latest updates, 
but the information provided still provides a helpful basis and reference for upcoming 
OpenShift and CSI driver versions.
© Copyright IBM Corp. 2021. vii
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Chapter 1. Introduction and concepts

This chapter defines the scope of this publication. It reviews the concepts of containers, 
container orchestration, and the challenges around managing persistent data storage for 
container orchestration platforms and environments.

This chapter includes the following topics:

� 1.1, “Overview of containers, orchestration, and OpenShift” on page 2
� 1.2, “Container persistent data challenges” on page 4
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1.1  Overview of containers, orchestration, and OpenShift

Containers are self-contained, packaged, executable units of software that hold all of their 
required libraries and dependencies. These components are packaged in a way that they can 
be run in many environments or platform architectures, such as IBM Power, IBM Z, and x86 
based systems.

Containers use functions and features in the Linux kernel that were initially available decades 
ago in FeeBSD and in AIX® Workload Partitions (WPARs) in 2007. The modern container era 
started in 2013 with the introduction of Docker for x86 based systems.

In contrast to virtual machines (VMs) or logical partitions (LPARs), containers virtualize the 
operating system (normally Linux) rather than virtualizing the underlying hardware. Each 
container includes only the application, libraries, and run times on which it is dependent. 
Removing the need to include the guest operating system is what makes containers so 
lightweight, fast, and portable. 

Figure 1-1 shows the infrastructure component stack comparisons between VMs and 
containers.

Figure 1-1   Virtual Machine Stack compared to Container Stack

Containers offer the advantage that they do not need to include an operating system image, 
which requires less physical resources than VM. As such, containers are a better fit for cloud 
deployment and applications that require horizontal scaling to meet demands and economies 
of scale. 

Because containers package all their dependencies, their software generally can be written 
once and run without needing to be reconfigured across multiple platforms. These 
characteristics make containers an ideal fit for modern development methodologies, such as 
DevOps. They are key for emerging computing architectures that are server-independent and 
combine evolving paradigms, such as serverless computing and microservices, which allows 
for new application functions to be continuously added and deployed in small increments.
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As adoption of containers increased, a requirement for suitable management of container 
environments grew, and container orchestration platforms emerged. As with VMs, containers 
and bare metal servers. They also benefit from a comprehensive orchestration tool to 
manage and automate areas, such as application deployment, scaling, and health of the 
environment. The most commonly used of these orchestration platforms is Kubernetes (K8s).

Kubernetes was released by Google in 2015. It was formed off an internal engineering 
platform that Google uses. Along with the initial release, Google partnered with IBM, Red Hat, 
Intel, Docker, and Cisco, among others, to form the Cloud Native Computing Foundation 
(CNCF) and seeded Kubernetes there. Full operational control of Kubernetes was handed 
over to the CNCF in 2018 and it is the second-most-worked on open source project after 
Linux.

Within the environment, the container orchestrator manages the provisioning of containers 
from a container registry: redundancy at a hardware and container level (otherwise known as 
ReplicaSets), health monitoring, resource allocation, scaling, load balancing, and moving 
containers between physical hosts.

Red Hat OpenShift Container Platform (OCP) is built upon Kubernetes and can be a fully 
fledged enterprise application platform. It augments Kubernetes with numerous cluster, 
developer, application, and platform services, such as automation, cloud-native apps, 
independent software vendor (ISV) services, Continuous Integration/Continuous Delivery 
(CI/CD) pipelines, charge back tools, and full stack logging.

Because OCP is based on Kubernetes, its fundamental base architecture is the same. The 
platform includes a control plane that consists of at least three master nodes, and a workload 
environment that contains two or more worker nodes. All nodes within the control plane are 
master nodes; therefore, the term master and control plane are used interchangeably to 
describe them. Figure 1-2 shows master and worker nodes.

Figure 1-2   Kubernetes Master and Worker Node overview
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The control plane makes global decisions about the platform, such as scheduling, detecting, 
and responding to cluster events. The master nodes in the cluster run the following 
Kubernetes services:

� Application programming interface (API) Server 

This service serves the front end for the control plane, and validates and configures the 
data in pods, services, and replication controllers.

� etcd 

This service is the key value store that is used as the backing store for all cluster data and 
is essential to the function of Kubernetes. Because Kubernetes is stateful in nature, the 
performance and backing up of etcd data is vital.

� Controller Manager Service

Controllers run as a single process on each node, but perform several roles and can be 
summarized by using the following categories:

– Node Controller: Notices and responds when nodes go down.

– Replication Controller: Responsible for maintaining the correct number of pods and 
replicas for every object.

– Endpoint Controller: Populates endpoint objects, such as services and pods.

– Service Account Controller: Creates accounts and API tokens for namespaces.

For more information about OCP architecture as it pertains to a deployment with IBM storage 
and Container Storage Interface (CSI), see Chapter 3, “Container Storage Interface 
architectural overview” on page 19.

To learn more about containers and container orchestration, this web page.

1.2  Container persistent data challenges

When containers are created because of their ephemeral, self-contained, portable nature, 
they are not tied to persistent storage unless defined in the container’s StorageClass 
property.

By default, when a container is created from its master image, an ephemeral read/write layer 
is created that handles all written data and is ephemeral. When the container stops, whether 
intentionally terminated, unintentionally terminated, or because the underlying pod failed, that 
read/write data layer disappears along with the container. That is, any writes that are 
performed to the container are limited to that container’s lifetime. Even if a container is 
restarted by the orchestrator, the storage that is written to the ephemeral layer in the old 
container is lost.

Not all storage for containers can be ephemeral and the nature of some applications (for 
example, databases) need some persistent storage for work that is done by non-trivial 
containers, or the ability to share some data or files between a pod or ReplicaSet of 
containers. A pod is the smallest workload entity in Kubernetes and it can consist of one or 
more containers. A ReplicaSet ensures that a specific number of the same pod replicas of the 
pod are running at any time.

Two constructs can be used: volumes and persistent volumes.
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The fundamental difference between a volume and a persistent volume is that a volume exists 
for the lifetime of the pod. If the pod persists, the volume also persists. When the pod ceases 
to exist, its volumes also cease to exist. 

Multiple volumes and classes of volume can be used by a pod simultaneously, but volumes 
always are managed as non-persistent data that is bound to the lifecycle of the pod.

Persistent volumes are pieces of storage that were provisioned by the system administrator, 
or are dynamically provisioned by using a Storage Class and can be defined to persist longer 
than the lifecycle of any pod.

Kubernetes treats persistent volumes as a cluster resource, just as it treats a node as a 
cluster resource; that is, a resource that is available for something to call and use and lifecycle 
independent of any individual pod that uses the persistent volume.

Generally, when designing a deployment of OCP, the only requirement that exists for 
ephemeral storage for workloads that are normally locally assigned in the Worker nodes. 

Use cases for allocating persistent block storage are database applications, such as IBM 
DB2®, MySQL, or Continuous Integration, and Continuous Delivery (CI/CD) products, such 
as Jenkins.

The main challenge with data volumes in a containerized environment is the mode of the 
storage volume:

� ReadWriteOnce (RWO)

The volume can be mounted as read/write by a single pod.

� ReadOnlyMany (ROX)

The volume can be mounted as read-only by many pods.

� ReadWriteMany (RWX)

The volume can be mounted as read/write by many pods.

Persistent volumes in Kubernetes are allocated by a persistent volume claim (PVC), which 
chooses the volume mode. Although a volume can be mounted in multiple ways, it can be 
mounted in one mode at any time only.

When volumes are created, mounted, and then claimed by way of CSI, they can be set to 
ReadWriteOnce mode only.

1.2.1  Container Storage Interface

Previously, in Kubernetes, all storage device drivers and volume plug-ins were kept “in-tree”; 
therefore, their code was inherent to the core Kubernetes code. When a vendor wanted to 
add support for a new storage system or fix a bug in a plug-in for Kubernetes, they had to 
follow the Kubernetes release cycle. The Kubernetes project also wanted to reduce 
third-party code, which caused potential reliability or security issues in the core Kubernetes 
code.

Note: It is a good practice for any persistent storage to be assigned outside of the node so 
that if a physical hardware encounters a failure, persistent volumes are still available when 
a pod is restarted elsewhere.
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The fundamental benefit of the CSI driver is that it allows Kubernetes to dynamically provision 
storage to bind to persistent volumes for use by stateful containers. Otherwise, storage was 
allocated before the environment, volumes were created, and then, claims were made by 
persistent volumes to bind those volumes. The autonomy that CSI brings allows greater 
response, scalability, and management of the platform as a whole, including better use of the 
underlying infrastructure.

In addition to dynamic provisioning, the CSI driver brings such capabilities as snapshot of 
volumes to then be attached to a new ReplicaSet, dynamic de-provisioning, and the ability to 
define thinly or thickly provisioned volumes.

The CSI was designed with the objectives of being an open specification for exposing block 
and file storage systems to container orchestration systems, Kubernetes being one of them. 
The CSI is maintained on GitHub.

All CSI drivers can perform the following tasks by way of the defined CSI API:

� Dynamically provision or deprovision a volume
� Enable local storage device mapping; for example, lvm, device mapper
� Attach or detach a volume from a node
� Mount or unmount a volume from a node
� Consumption of block and mountable volumes (the latter for CSI file drivers)
� Create or delete a snapshot
� Provision a new volume from a snapshot

IBM features the following written CSI driver families:

� IBM block storage CSI driver, which is used by Kubernetes for persistent volumes, 
dynamic provisioning of block storage, and volume snapshots. 

This driver supports the following storage systems:

– IBM DS8000 family
– IBM FlashSystem A9000/R family
– IBM Spectrum® Virtualize based block-storage

� IBM Spectrum Scale CSI driver, for file-based storage. 

For more information about the IBM Spectrum Scale CSI driver, see this IBM Documentation 
web page.

CSI consists of two objects within Kubernetes: the CSI Operator and the CSI Driver. An 
Operator is a Kubernetes software extension that uses custom resources that are outside 
core Kubernetes. It also interfaces with the API server and acts as a custom controller.

Two methods are available to install the CSI driver in OpenShift (depending on platform): the 
OpenShift CLI and the OpenShift Web Console. 

After the CSI driver is installed and running, relevant storage classes, constructs, and secrets 
must be created to use CSI, as described in 4.1, “IBM block storage Container Storage 
Interface” on page 46.

Note: This IBM Redpaper publication describes the block storage driver. For convenience, 
the IBM CSI block storage driver is referred to as the CSI driver here.
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1.2.2  OpenShift Container Storage

Red Hat OpenShift Container Storage (OCS) is a software-defined storage orchestration 
platform for container environments (see Figure 1-3). OCS can be integrated into OCP from 
V4.5 onwards, as discussed in 2.3, “IBM and Red Hat Storage architecture for OpenShift and 
IBM Cloud Paks” on page 15.

Figure 1-3   OpenShift Container Storage Platform serving OCP

OCS uses a technology stack that consists of Red Hat Ceph Storage, Rook.io as a storage 
operator, and NooBaa as a storage gateway behind which storage systems are knitted into a 
fabric design. OCS now uses CSI so that it can serve storage to platforms from pre-allocated 
storage and dynamically provision from storage subsystems that can use a CSI Driver, such 
as the IBM DS8000 family.

OCS is now packaged as an operator, and is available through the OCP Service catalog to 
allow an easy deployment and simplify management. OCS can be deployed by using two 
methods: an internal storage cluster and an external storage cluster. The platform provides 
the following types of storage services, which are exposed through storage classes:

� Block Storage: Primarily for database, logging, and monitoring workloads

� Shared and distributed file: For CI/CD tools, messaging, and data aggregation workloads

� Object Storage: Provides a lightweight S3 API Endpoint by way of NooBaa for abstraction 
of storage and retrieval from multiple object stores, which is ideal for cloud-native 
workloads or archival and backup data

The OCS platform uses the same stateful, declarative nature of Kubernetes. It codifies 
administrative tasks and custom resources, which makes automation of tasks and resources 
easier. Administrators can define the wanted state of the cluster and OCS operators can 
ensure that the cluster is in that state or approaching it while minimizing manual intervention.

For general-purpose persistent storage or dynamic provision requirements, OCS is suitable 
for consideration of workloads, such as data science and data analytics, artificial intelligence, 
machine learning, and Internet of Things workloads.
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At the time of this writing, OpenShift Container Storage can be deployed on the following 
technologies:

� x86 Bare Metal using Red Hat Enterprise Linux
� Red Hat Virtualization Platform
� Red Hat OpenStack Platform
� VMware vSphere
� Amazon Web Services
� Google Cloud Platform (GCP): in technology preview
� Microsoft Azure: in technology preview

1.2.3  OCS deployment approaches

The core tenet of Red Hat OpenShift as a suite of platforms is flexibility. This tenet is evident 
by the fact that OCS can run as an internal service within an OCP deployment, or as an 
external deployment that can serve multiple OCP or Kubernetes based platforms.

Internal approach
OCS can be deployed entirely within an OCP deployment. This deployment brings the benefit 
of operator-based deployment and management within OCP. The following deployments are 
available, based on the requirements of your platform:

� Simple deployment

In a simple deployment, OCS runs its services alongside application workloads that are 
managed by OCP. A simple deployment is best suited when the following conditions are 
applicable to your OCP deployment:

– Storage requirements are unclear and the following storage factors are difficult to 
project:

• Growth
• Consumption
• Performance

– Infrastructure has the room to run OCS services alongside OCP management or 
application workloads that are intermixing on the same nodes.

– Creating your platform by using a fixed “building-block” design method of the bare 
metal or virtualized infrastructure.

– Local direct-attach storage devices (DASD) are available within the node infrastructure.

For OCS services to run alongside OCP application workloads, local storage devices or 
portable storage devices must be made available. The internal, simple deployment uses 
only CSI Block provisioned storage if OCS manages a separate, externally based Ceph 
cluster.

� Optimized deployment

In an optimized deployment, OCS services run on dedicated infrastructure where the OCP 
management and the application workloads do not run on OCS nodes. The OCS nodes 
are still managed by the OCP deployment.

The optimized approach is best suited when the following conditions exist:

– Storage requirements are clear and are predictable to project growth, consumption, 
and performance.

– Dedicated infrastructure is available on which to run OCS services.

– Infrastructure is available in a well-suited “building-block” approach and can use a 
common node size in a cloud or on-premises data center.
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– A farm is in place, or an as-a-service (aaS) model is available to provision OCS nodes 
rapidly with little to no manual intervention.

The internal, optimized deployment uses locally attached storage to the OCS nodes. It 
also uses only CSI Block provisioned storage if it manages a separate, externally based 
Ceph cluster.

External approach
An external deployment of OCS makes available the Ceph storage service running outside 
your OCP deployment as storage classes to OCP. An external deployment must be 
considered when the following conditions exist:

� A significant storage need (600+ storage devices or persistent volumes)

� An environment with multiple OCP deployments that can use storage services from a 
common external cluster

� An organization that has a separate team or department responsible for managing storage 
services and separation of duties is still wanted

A single OCS deployment might be considered for use in a multi-tenancy model for higher 
usage and economies of scale of infrastructure. Also, when a clear exists need for separation 
of resource consumption from OCP workload platforms or nodes.

OpenShift storage node types
In the same manner as an OCP deployment, OCS nodes run the container run times and 
services, which ensures that containers are running, and pod separation and maintenance of 
management network communications occurs. The following types of OCS nodes are 
available:

� Master

Master nodes run the Kubernetes API, watch and schedule pods, maintain node count 
and health, and control the interaction with underlying infrastructure providers.

� Infrastructure (Infra)

Infra nodes run the cluster level infrastructure services, such as logging and metrics, 
metering, registering containers, and routing for the cluster. Infrastructure nodes are 
optional. If no dedicated infra nodes exist, their services run across the available master 
nodes. Infra nodes are recommended when running OCS in cloud or virtualized 
environments.

� Worker

In an internal deployment mode, a minimum of three worker nodes are required to run 
OCS as a workload within an OCP deployment, ideally where the nodes are spread 
across racks or Availability Zones (AZs) to ensure availability of the platform. Worker 
nodes are required for an internal deployment only. These worker nodes also require 
internal storage for OCS to manage and serve OCP or predefined portable block storage 
volumes.
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Chapter 2. OpenShift Container Storage and 
IBM Cloud Paks

This chapter discusses IBM Cloud Paks®, storage solutions for IBM Cloud Paks, and the 
importance of the IBM Container Storage Interface (CSI) driver.

This chapter includes the following topics:

� 2.1, “IBM Cloud Paks” on page 12

� 2.2, “IBM Storage Suite for Cloud Paks” on page 13

� 2.3, “IBM and Red Hat Storage architecture for OpenShift and IBM Cloud Paks” on 
page 15

� 2.4, “IBM DS8000 family and Red Hat Storage architecture for OpenShift and IBM Cloud 
Paks” on page 16

� 2.5, “IBM Cloud Pak storage requirements” on page 18
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2.1  IBM Cloud Paks

IBM Cloud Paks are the heart of the full-stack, multi-cloud application architecture. These IBM 
Cloud Paks provides an open, faster, reliable way to build, move, and manage containerized 
applications on the cloud. 

As shown in Figure 2-1, IBM Cloud Paks provide the industry's rich catalog of IBM and open 
source software containers and feature run times, along with orchestration capabilities for 
automated deployment with enterprise-grade configurations.

Figure 2-1   IBM Cloud Paks

The following IBM Cloud Pak types are available:

� IBM Cloud Pak® for Applications

This IBM Cloud Pak can accelerate building cloud-native applications by using built-in 
developer tools and processes, including support for microservices functions and 
serverless computing. 

� IBM Cloud Pak for Data

By using this Pak, you can provision data and artificial intelligence (AI) services in minutes 
on-premises, instead of taking weeks.

� IBM Cloud Pak for Integration

By using this Pak, enterprises can integrate across multiple clouds with a container-based 
platform that can be deployed across any on-premises or Kubernetes cloud environment. 
Applications, services, and data can be easily connected with the correct mix of 
integration styles, which spans API lifecycle management, application integration, 
enterprise messaging, Event Streams, and high-speed data transfer.

� IBM Cloud Pak for Automation

This pre-integrated set of essential software enables you to easily design, build, and run 
intelligent automation applications at scale. With low-code tools for business users and 
real-time performance visibility for business managers, it is a flexible package with simple, 
consistent licensing.
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� IBM Cloud Pak for Multicloud Management

To mitigate some of the complexity of a hybrid multicloud architecture, IBM Cloud Pak for 
Multicloud Management provides consistent visibility, automation, and governance across 
a range of multicloud management capabilities, such as cost and asset management, 
infrastructure management, application management, multi-cluster management, edge 
management, and integration with existing tools and processes.

� IBM Cloud Pak for Security

Your security data is frequently spread across different tools, clouds, and on-premises IT 
environments. This issue creates gaps that allow threats to be missed that often are 
solved by undertaking costly, complex integrations. 

IBM Cloud Pak for Security provides an open security platform to help more quickly 
integrate your security tools to generate deeper insights into threats across hybrid, 
multicloud environments, by using an infrastructure-independent common operating 
environment that runs anywhere. 

The platform helps you to find and respond to threats and risks, all while leaving your data 
where it is. Therefore, you can uncover hidden threats, make more informed, risk-based 
decisions, and respond to incidents faster.

The main goal of this IBM Cloud Pak is to help organizations detect, investigate, and 
respond to cybersecurity threats faster. Also, it helps to speed up your move to the cloud 
by facilitating the integration of their security tools to generate more in-depth insights into 
threats across hybrid, multicloud environments, by using an infrastructure-independent 
standard operating environment that runs anywhere.

All of these IBM Cloud Paks run on top of a Kubernetes-based orchestration platform that 
enables high availability, scalability, and ongoing maintenance for enterprise applications from 
a trusted source. 

The software solutions run on a client’s choice of infrastructure, including the following 
platforms:

� IBM Power Systems
� IBM Z, and x86
� IBM DS8000 family
� IBM Spectrum Virtualize family
� IBM FlashSystem
� IBM Spectrum Scale
� IBM Cloud Object Storage
� IBM Spectrum Protect Plus

IBM Cloud Paks consist of software packages, executables, and code templates, which are 
essentially IBM software-defined products. IBM Cloud Paks are sets of middleware tools, and 
different IBM Cloud Paks group software defined products for dedicated use cases.

2.2  IBM Storage Suite for Cloud Paks

IBM Storage Suite for IBM Cloud Paks is a complete, software-defined storage solution that 
helps build powerful, agile, and secure storage for hybrid multicloud environments.

It is not only about satisfying the basic storage requirements for deploying and running IBM 
Cloud Paks solutions. It is also about ensuring that container and application data is resilient, 
secure, and adaptable to grow as needs evolve.
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Regardless of the state of application development and in which ever IBM Cloud Pak 
environment that is built (that is, Cloud Pak for Applications, Data, Integration, Automation, 
Multicloud Management, or Security), IBM Storage Suite for IBM Cloud Paks covers all 
possibilities, as shown in Figure 2-2.

Figure 2-2   IBM Storage Suite for Cloud Paks in context of the overall IBM offering

IBM Storage Suite for IBM Cloud Paks information includes the following benefits:

� Provides enterprise backup and restore capabilities that support virtual machine (VM) and 
container environments

� Is modular, flexible, and easy to use with consistent data storage services

� Is licensed and priced to align with IBM Cloud Paks

� Is tested with Kubernetes and Red Hat OpenShift

As shown in Figure 2-2, IBM Storage Suite for Cloud Paks is complemented by the IBM 
Storage hardware offerings that comprise:

� IBM FlashSystem
� IBM DS8000 family
� IBM Elastic Storage® Server
� IBM Spectrum Virtualize Family and IBM SAN Volume Controller
� IBM Cloud Object Storage System
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2.3  IBM and Red Hat Storage architecture for OpenShift and 
IBM Cloud Paks

The IBM Storage Suite for Cloud Paks supports the following storage options (the numbers in 
this list correlate to the numbers that are shown in Figure 2-3 on page 15:

1. IBM Spectrum Scale, as a high-performance parallel file system for AI and Data Lake use 
cases, provides ReadWriteOnce (RWO) and ReadWriteMany (RWX) storage through the 
IBM Spectrum Scale CSI driver

2. IBM Spectrum Virtualize for Public Cloud, which provides RWO storage through the IBM 
Block Storage CSI driver

3. IBM Spectrum Virtualize for Public Cloud, which provides RWO storage as backing 
storage for Red Hat OpenShift Container Storage (OCS). OCS also provides RWO and 
RWX block or file system storage through the OCS CSI driver and Object Storage.

4. IBM Cloud Object Storage and Red Hat Ceph storage, which provides Object Storage to 
OCS. That storage is made available through Object Bucket Claims to OpenShift 
applications that require Object Storage. The data access is facilitated by using the S3 API 
to the Object Storage http and https endpoint addresses and the associated credentials 
(Access Key and Secret Access Key).

5. IBM Cloud Object Storage and Red Hat Ceph can directly provide Object Storage to 
containerized applications. 

Options 2 and 3 can be used by the software-only IBM Spectrum Virtualize for Public 
Cloud product and by the IBM Block Storage products, namely the IBM DS8000 family, 
IBM Spectrum Virtualize family, and IBM FlashSystem.

Figure 2-3   IBM and Red Hat storage options for OpenShift and IBM Cloud Paks
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2.4  IBM DS8000 family and Red Hat Storage architecture for 
OpenShift and IBM Cloud Paks

The IBM Block Storage CSI driver supports block storage access to container applications. 
This support satisfies the storage requirements for applications, such as those applications 
that are included in the IBM Cloud Paks that require ReadWriteOnce (RWO) storage (see 
path 1 in Figure 2-4).

Figure 2-4   IBM Block Storage and Red Hat OpenShift Container Storage 

Some applications that are included in the IBM Cloud Paks require ReadWriteMany (RWX) 
storage. For maximum reuse of block storage assets while keeping separation between Cloud 
infrastructure and Storage infrastructure where required, Red Hat OpenShift Container 
Storage (OCS) can be built with IBM Block Storage as backing storage (see path 2 in 
Figure 2-4) rather than server built-in disks.
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That scenario requires OCS 4.5 or later or OpenShift on top of VMware, as shown in 
Figure 2-5.

Figure 2-5   OCS on top of IBM Block Storage: CSI driver and VMware OpenShift driver

When Red Hat OpenShift Container Storage 4.5 and later versions are used, it is supported 
to select a CSI storage class as backing storage for OCS when the OCS storage cluster 
(Option A in Figure 2-5). That storage class can originate from the IBM Block Storage CSI 
driver so that PVCs that are backed by IBM Block storage serve as the data store for the 
storage components that are part of OCS.

For OCS versions 4.4 and earlier, the only supported option to use external block storage was 
through VMware VMFS data stores along with the VMware storage driver, only applying to 
scenarios where OpenShift is installed on top of VMware. The VMFS data stores are backed 
by IBM Block Storage.

At the time of this writing, OCS 4.5 supported only triple replication, which delivers only 
one-third usable capacity of the used IBM Block Storage backing storage capacity. 
Considering that the backing Block Storage is also protected with some data redundancy 
scheme (replication or distributed RAID/Erasure Coding), the overall storage efficiency of the 
solution is suboptimal.

An alternative, more storage-efficient approach is to use IBM Spectrum Scale to support 
RWX workload and use IBM Block storage volumes in shared access mode as backing 
storage for IBM Spectrum Scale (see Option 1 in Figure 2-3 on page 15).
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2.5  IBM Cloud Pak storage requirements

As listed in Table 2-1, as part of the IBM Cloud Paks, the applications feature varying storage 
requirements. At the time of this writing, all IBM Cloud Paks are available for X86, but not all 
are available for OpenShift 4.x on IBM Power and IBM Z. After they become available, it is 
likely that the storage requirements are identical to those requirements for x86.

IBM Block Storage is recommended as backing storage for all IBM Cloud Paks, except IBM 
Cloud Pak for Data, which focuses on RWX storage. A potential combination of IBM 
OpenShift Container Storage or IBM Spectrum Scale as described in 2.4, “IBM DS8000 
family and Red Hat Storage architecture for OpenShift and IBM Cloud Paks” can use IBM 
Block Storage as backing storage.

Table 2-1   IBM Cloud Pak Storage Access Mode Requirements

For more information about access mode requirements that are listed in Table 2-1, see the 
“Related publications” in section “IBM Knowledge Center Cloud Pak documentation” on 
page 136.

IBM Cloud Pak name ReadWriteOnce required? ReadWriteMany required?

IBM Cloud Pak for Applications Yes (Primarily) Yes (Few applications: 
CoreReady Workspaces and 
Codewind, Mobile Foundation)

IBM Cloud Pak for Data Yes (Few applications: DB/2 
partially, MongoDB, Informix®)

Yes (Primarily)

IBM Cloud Pak for Integration Yes Yes

IBM Cloud Pak for Automation Yes Yes

IBM Cloud Pak for Multicloud 
Management

Yes Yes

IBM Cloud Pak for Security Yes No
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Chapter 3. Container Storage Interface 
architectural overview

This chapter describes the architecture of the Kubernetes Container Storage Interface (CSI) 
and the IBM CSI driver for block storage systems. 

Some relevant concepts in Kubernetes and OpenShift are introduced first because they help 
to understand the separation of duties and give the needed understanding for deploying the 
driver.

If you are familiar with the Kubernetes architecture and components, you might start with 3.2, 
“Kubernetes Container Storage Interface” on page 36, which describes the driver’s integration 
into the platform.

Kubernetes and OpenShift, and IBM’s block storage CSI driver, are open source projects, and 
every implementation detail also can be found on the internet. For more information about 
online resources, see “Related publications” on page 135.

This chapter includes the following topics:

� 3.1, “Kubernetes” on page 20
� 3.2, “Kubernetes Container Storage Interface” on page 36
� 3.3, “IBM block storage CSI driver” on page 41
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3.1  Kubernetes

This section describes some of the most relevant concepts of Kubernetes to help the reader 
understand the IBM block storage for CSI driver and how it integrates “upwards” into an 
OpenShift environment, and “downwards” with IBM’s block storage products. These concepts 
and how the respective components work together give a basic understanding about how the 
driver is deployed and configured, and help with troubleshooting.

3.1.1  Kubernetes platform

Over the second half of the 2010s, Kubernetes evolved as the leading container orchestration 
system in the industry. All relevant cloud providers offer a Kubernetes or OpenShift service. 
The success of the platform seems to justify referring to it as the “operating system” of a 
cloud. As with a traditional operating system, it manages resources, which it presents in a 
consumable way to application developers who then build and run their applications on the 
platform.

The following basic design principles supported the success of the platform:

� Containerize everything

All types of programs or workloads, whether internal to the platform or user applications, 
are put into containers. These containers are self-contained pieces with all of their 
dependencies packed into one binary object; that is, the image. Kubernetes orchestrates 
containers; the platform organizes containers in a way to make them run “somewhere” in a 
cluster and provides all needed connectivity, be it among each other, to the network, 
storage, or other back-end systems.

� The Twelve-Factor App (for more information, see this website)

An application design methodology that leads to applications that can easily be deployed, 
scaled, and most importantly be automatically managed. Kubernetes’ internal 
components follow that principle, and user workloads following that principle also are a 
perfect fit to run on the platform. This method is a powerful driver for the development of 
applications that can be containerized.

� Declarative approach

This paradigm is most contrary to the procedural approach to which “traditional” system 
managers and administrators are accustomed. The platform (and what the platform 
manages) is not managed by using some commands, which then “do something” until they 
come to an end, be it success or failure. 

Instead, Kubernetes holds objects in its internal databases and watches these for 
changes. Users, administrators, internal and external processes interact with these 
database objects. After the platform detects a change, it does its best to have the 
real-world status meet the wanted status of the objects in the database. For example, a 
command for deploying an application (or the IBM block storage CSI driver) might return 
immediately and report success, although the platform is still busy combining all of the 
required pieces.
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3.1.2  Control plane

Regarding Kubernetes as the operating system of a cloud, the kernel of this operating system 
is Kubernetes’ control plane. The core components can be found here, which let the platform 
manage itself. Also, founder here is the entry point to the platform.

The significant elements of the control plane are shown in Figure 3-1.

Figure 3-1   Kubernetes components overview

The control plane includes the following components:

� API server (apiserver)

This component forms the front end of the control plane and the central point for all 
communication within the control plane. It offers a RESTful web service that all 
components in the cluster can use. Any component that must access the platform also 
must interact with the API server. This component features GUIs that are included with 
OpenShift, or command-line clients (such as the kubectl command), or user applications 
that want to interact with Kubernetes objects.

� etcd

The distributed and reliable key-value store that forms the foundational Kubernetes object 
database is called etcd. Anything that must be stored is stored in the etcd cluster, which is 
at the core of the control plane. Protection of this database is vital for the cluster. If it is 
lost, the cluster is gone. 

For each object the platform can manage, a representation of it exists in the etcd 
database. Ensure that etcd is backed up or protected by etcd snapshots. For more 
information about etcd backup, see this web page.

The configuration information of the OpenShift Cluster is stored in this database.

� Scheduler

This component makes the ultimate decision about where to run specific workloads. It 
considers the requirements for a workload and the available machines with their 
characteristics and allocates the best fit.
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� Controller-manager

This component can be seen as the workhorse in Kubernetes. It contains the built-in 
controllers, which are the processes that watch for changes on the database objects and 
perform the necessary action to have real-world status meet the wanted status in the 
objects. These built-in controllers include the following examples:

– Node controller: This controller acts on changes to the machines that are forming the 
cluster. It registers new machines that are joining, or starts recovery actions if it detects 
a machine failure.

– Workload controller: This class of controllers implements the workload controllers that 
are described in 3.1.5, “Workload controllers” on page 24.

– Endpoints controller: This controller is responsible for the connection between 
applications in the cluster and the network.

� The cloud-controller-manager 

This component often is under the responsibility of a cloud provider. It forms the interface 
to the underlying cloud infrastructure that differs between different providers, such as 
Amazon Web Services or the IBM Cloud.

The control plane components are containerized applications, as shown in Figure 3-1 on 
page 21.

It is good practice to use separate infrastructure or compute nodes for the control plane for 
high availability, security, and reliability reasons. For example, in the IBM Cloud Kubernetes 
cluster offering, the control plane of customer clusters is not accessible for customers 
themselves. Instead, it is managed by IBM and running on separate infrastructure. Access is 
possible through the API server only.

3.1.3  Nodes

Nodes are Kubernetes’ abstraction of real computers, be it virtual or physical machines. As 
shown Figure 3-1 on page 21, a node consists of the characteristic entities that are running 
on the operating system of a machine:

� kubelet 

This agent runs on every machine in the cluster. It interacts with the API server and the 
controllers in the control plane to fulfill its central tasks; that is, starting, stopping, 
monitoring, and deleting containerized workloads on the machine. This agent also 
includes setting up the running environment for such workloads.

� kube-proxy 

An application often is useless if it cannot provide its service over the network, or use 
other services within or outside the cluster. The kube-proxy on each node handles 
establishing network connectivity for the workloads that are running on the node.

� Container runtime 

The container runtime on a node can be considered as the motor of the platform. It loads 
the container images as the kubelet specifies them and runs them. Kubernetes can work 
with arbitrary run times if they fulfill the Kubernetes Container Runtime Interface (CRI); for 
example, Docker, CRI-O, containerd, or Kata containers.

Note: These components run under the operating system’s control on a machine. The 
kubelet and kube-proxy communicate with the platform through the apiserver, which in turn 
consists of a set of containers that are placed on the control plane nodes.
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To build pools of nodes, the node objects in the Kubernetes database can be labeled (which 
also is possible for other objects). By using label selectors, specific sets of nodes can be 
specified, which, for example, can run a certain workload. Another possibility to characterize 
distinguished nodes is to add annotations.

3.1.4  pods

pods are the smallest possible workload entity in Kubernetes. A pod can consist of one or 
many containers. At first consideration, this proposition seems to be confusing because 
Kubernetes is a container orchestrator. However, a pod is the complete workload that is 
scheduled to a node for execution, as shown in Figure 3-2. Kubernetes ensures that all 
containers that belong to the same pod are also scheduled to the same node.

Figure 3-2   Kubernetes pod

Also, all containers in a pod share the Linux network- and Inter-Process-Communication 
(IPC) namespace. Therefore, all containers in a pod are bound to the same network 
interfaces and addresses, and they can communicate directly through IPC mechanisms, such 
message queues, semaphores, or shared memory segments. 

A pod can be configured so that its containers share process namespaces so that they can 
see themselves in the same process hierarchy. A running container resembles a process in 
the operating system. Its main program has process ID (PID 1) if looking at it from within the 
container. Also, processes that are in the container spawns are visible in the container as 
children of PID 1. However, if containers share the process namespace, they also see each 
other as processes with individual PIDs.

pods are volatile in a sense that they do not maintain state between instantiations. Whatever 
data a pod produces internally is lost and unrecoverable after it ends. Whenever a pod is 
scheduled and starting, it begins at “day zero” again. Persistent storage must be provided 
externally, and the CSI driver is one of the possibilities to provide it.

No start, stop, or pause commands are available for pods. They can be created (run) or 
deleted only. This fact reinforces the declarative approach in Kubernetes; that is, it is the 
database object “pod” that is created, and the platform alone does what is needed to have 
that wanted set of containers run somewhere in the environment. The “create pod” API call 
returns when the creation of the database object is queued, which does not mean that the 
wanted workload is running.
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Sidecars
The CSI design uses so-called sidecar containers, which are also relevant during the 
deployment of the IBM block storage CSI driver. (The name of the pattern stems from the 
metaphor of mounting a sidecar to a motorcycle; that is, the main application. In the context of 
the CSI driver architecture, we see this pattern applied.)

The sidecar pattern is a well-known design pattern in microservices development, and one of 
the simplest patterns that motivate the concept of pods. It assumes that a containerized main 
application provides the wanted basic service. Also, one or more “sidecar” containers exist 
that extend or improve the application container. 

For example, imagine an application container that makes available an HTTP-based API. 
Assume that we want to extend the application with an HTTPS endpoint for secure 
communication. To do so, we add a sidecar container that handles the added protocol and 
forwards its incoming requests to the main application container. 

The sidecar does not need to know about the specific information of the main application, and 
vice versa (the main application container does not need any modifications to handle HTTPS 
requests). Both of the containers are arranged in the same pod so they can directly 
communicate with each other without exposing any of their internal, potentially unsecured, 
communication.

3.1.5  Workload controllers

Creating and running single pods might seem enough for simple use cases, but the real 
power of the platform is found in its workload controllers. These controllers help describe 
specific characteristic workloads and let the platform enforce respective behavior.

One important aspect about the workload controllers is that they take complete ownership of 
the pods they start and delete. This behavior might confuse a Kubernetes novice. If an 
administrator deletes a pod that is controlled by a workload controller, the pod immediately is 
re-created according to the type of controller. This process can occur in parallel to the ending 
of the deleted pod. 

However, turning around that principle helps fix erroring pods. It is often safe to delete or 
rewrite an erroring pod, or in the worst case, delete all pods that are managed by the same 
controller because they are re-created from their initial state.

In the following sections, we cover the basic controllers as they are used in the context of the 
CSI driver.

ReplicaSet and deployment controller
In this section, we described use cases for ReplicaSets and deployment controllers.

ReplicaSet
The typical use case for a ReplicaSet (an object controlled by the ReplicaSet controller) is a 
workload in which multiple instances of the same pod must run in parallel. A ReplicaSet is 
used when the workload is characterized by the following conditions: 

� The pod instances do not need to be distinguished, which means that they all provide the 
same service independently of each other.

� The pods do not maintain state.
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The first condition means that no pods with a special role exist; for example, one 
distinguished leader and several secondary instances. 

The second condition means that none of the instances must preserve information between 
restarts. the ReplicaSet workload is a number of pods where the count of pods can be 
increased or decreased without affecting the application’s function or internal application 
status.

A typical use case for this type of workload is a media streaming service, which can be scaled 
up or down according to a request rate. The IBM block storage CSI operator is such a 
workload.

Deployment controller
The deployment controller’s most important feature is to add a lifecycle concept to the 
ReplicaSet. It is for this reason that the use of deployments for the depicted use case is 
favored. 

The deployment can be viewed as a workload controller that rolls out ReplicaSets. By doing 
so, it can roll out a new version of a pod and roll back a failing deployment. The deployment 
controller can implement different roll out strategies, such as scaling down the number of 
pods in an active ReplicaSet, while in parallel scaling up the number of pods in a ReplicaSet 
with a new pod version.

In our example, my-app is our application for which we have a container image my-app, which 
is tagged at version 1.3.3. Our application pod needs only to have this single container image 
run. 

We want to scale our application to have two replicas active, and we do this in a deployment 
in which we also specify an update strategy of Rolling Upgrade. 

After the my-app deployment object is created in the platform, the deployment controller 
detects no respective ReplicaSet exists and creates one, giving it a unique name with my-app- 
as a prefix. 

The ReplicaSet controller then discovers no respective pods exist for that ReplicaSet, and 
create pods, again with unique names that are prefixed with the ReplicaSet name. 

The scheduler then looks for nodes that can fulfill the respective resource requirements of the 
application. Eventually, the kubelet on the wanted nodes spin up the pods by enabling the 
container runtime start containers. 
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Figure 3-3 shows the final situation: two pods were created: one on node worker-0, the other 
on worker-3. Both pods run the same image in their respective containers.

Figure 3-3   After Deployment is created

Assume that we built a new release of our application so a new my-app image is available, 
which is tagged as version 1.3.4. To deploy the new version, it is sufficient to update the 
image reference in the my-app deployment object for our new release. 

The deployment controller then detects the change and starts the upgrade according to the 
Rolling Update strategy. It creates a ReplicaSet with the new image reference, and scales it 
up while it scales down the old one, which ends the pods. 

Figure 3-4 shows an intermediate situation, where the ReplicaSet with version 1.3.3 that is 
scaled down to one replica, and the new ReplicaSet with version 1.3.4 that is scaled up to one 
replica.

Figure 3-4   Updated Deployment in progress
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The decision about where the new pods are placed is made exclusively by the scheduler that 
is based on the current use of the cluster. Therefore, it might happen that one of our 
application pods are on a different worker than before (as shown in Figure 3-4 on page 26), or 
the scheduler decides for the same worker again. The latter case is illustrated in Figure 3-5, 
which shows the final state after updating our image version in the deployment. The new pod, 
with our release 1.3.4, is worker-0, where we also released a 1.3.3 image running earlier.

Figure 3-5   New release of “my-app” is deployed

DaemonSet
A DaemonSet workload is characterized as a pod, which runs on all (or a distinguished set of) 
nodes. Therefore, whenever a new node enters the cluster, a pod is placed there. When a 
node exits from the cluster, the respective pod is not restarted elsewhere, as was the case 
with other workload controllers (see Figure 3-6 and Figure 3-7 on page 28).

Figure 3-6   DaemonSet before worker-3 joins the cluster
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Figure 3-7   DaemonSet after worker-3 has joined the cluster

A typical use case for a DaemonSet is a monitoring application that monitors activity on all 
nodes that are in the cluster. Logging collections on nodes is also a popular pattern for a 
DaemonSet. We see the node component of the IBM block storage CSI driver being deployed 
in a DaemonSet.

StatefulSet
A StatefulSet can be a complementing concept to the ReplicaSet. It manages a specific 
number of pods that are running the same code. However, a StatefulSet features the following 
set of conditions:

� The pod instances must be identifiable
� The distinguished pods maintain individual state across instantiations

Identifiable pods means that the pods, although running the same application, can have 
different roles. For example, a leader might be among them. The etcd cluster that is described 
in “Control plane” is an example for that use case. 

If a pod from an etcd cluster is rescheduled to another node, its database also must go there 
and it must preserve the state it had on the former node.

Distinguishing the pods might also be an application requirement. While in a DaemonSet or a 
ReplicaSet, the different pod instances do not know each other, and the StatefulSet allows 
the different instances to identify and communicate with each other.

Our example that is shown in Figure 3-8 on page 29 shows a deployed StatefulSet with three 
pods. Our specification also states that each of the distinct pod instances requires 10 GB of 
persistent storage to keep its state. We use symbolic names for the provisioned storage parts 
in our figures; in reality, they look a bit more cryptic. The pod names appear as shown.

We assume that the pods in the StatefulSet were deployed to the workers nodes worker-0, 
worker-2, and worker-3. On worker-1, other pods might be running that are out of the scope 
of our StatefulSet. 

We also assume that node worker-2 quits the cluster for whatever reason, be it an operating 
system upgrade, hardware defect, or network issue. The platform notices the loss of that 
node and deletes the pod objects that were scheduled to the node. 
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Then, the StatefulSet controller can discover that one of the wanted replicas is missing, and it 
creates the pod again. 

Figure 3-8   StatefulSet with three pod instances deployed to three nodes

The newly created pod then proceeds with the normal scheduling process in Kubernetes, 
which can result in placing the pod onto node worker-1, as shown in Figure 3-9.

Figure 3-9   Pod and storage rescheduled in a StatefulSet after worker-2 quits the clusters

In contrast to the ReplicaSet or DaemonSet, the StatefulSet controller manages the following 
special circumstances:

� The exact pod instance that was lost (here, my-app-1) must be rescheduled.

� The data that the pod uses must “move with the pod” to the node where the pod is not 
running.
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When discussing the CSI driver in “Kubernetes Container Storage Interface” on page 36, we 
return the respective challenges for the implementation of a persistent storage concept in a 
highly dynamic environment.

The users of persistent storage that is provisioned with the CSI driver are typical candidates 
for StatefulSet workloads. 

3.1.6  Persistent storage

As shown in section “pods” on page 23, pods do not keep their state when they are restarted 
because the platform decides to reschedule them, or an administrator or user deletes and 
starts them again. 

This principle does not allow designing stateful applications that require to maintain state, or 
to share persistent data among multiple pods. Kubernetes solves this problem with its 
concept of persistent storage. 

Several objects and controllers come together to fulfill the need for storage. The architecture 
might seem confusingly complicated at first, but it is useful. Some evolution occurred over the 
Kubernetes releases. We now have a robust design with clear separation of duties as the 
implementation of the CSI driver demonstrates.

The concepts around persistent storage are shown in Figure 3-10. The storage-related 
aspects are shown on the left side of the figure; the application, or pod-related entities, are 
shown on the right side.

Figure 3-10   Persistent storage overview

Volumes
At pod level, volumes are the objects providing persistent storage. The containers within the 
pod use volumes by mounting them into their file system hierarchy. These volumes are shown 
as the smaller orange disks that are shown in Figure 3-10. They are close to the containers. 
However, although these volumes are the object of an application’s requirement, Kubernetes 
adds some wrapping concepts around these mountable volumes as described next.
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PersistentVolumeClaims
Kubernetes manages volumes with persistent storage through PersistentVolumeClaim (PVC) 
objects. This kind of object describes the characteristics of a specific piece of storage from an 
application’s perspective. PVCs offer an abstraction of storage that is usable for pods. They 
are created together with the respective pods that want to use the respective storage, and 
their characteristics are determined by the application:

� Size of the storage: How much space does the pod need on the volume?

� Access mode of the storage: Does it need to be read or written by one or many pods at the 
same time?

� Volume mode: Does this volume contain a file system or is it a block device?

In Figure 3-10 on page 30, we see the light green disk symbols close to the pod. Although 
PVC describes storage from a pod’s perspective, PVCs also can exist independently of any 
pod because the storage is persistent. The data in that storage exists independently of the 
fact that it is actively used. This situation of having PVCs without pods referring to them is 
normal.

Consider the following points:

� A PVC can be referred from an arbitrary number of different pods. Therefore, zero or more 
instances, either active at the same point in time for ROX or RWX access, or different pods 
can refer to the same PVC at different points in time for RWO access. For example, the 
same PVC can be used by one pod for data generation, while another pod can use the 
generated data later for analysis.

� A pod can refer to a specific PVC that does not exist. This aspect is confusing about 
Kubernetes: A pod referring to a non-existent PVC can successfully be created without 
issues. The respective CLI call immediately returns successfully after the pod object exists 
in the Kubernetes database. However, the pod cannot start until the PVC exists and is 
bound to a PersistentVolume, what we describe next.

PersistentVolumes
A PersistentVolume (PV) object (in our Figure 3-10 on page 30 the darker green disk symbols 
on the left) describes some real, available piece of persistent storage. In contrast to the PVC, 
the PV describes how a storage provider, or a storage back-end, looks at persistent storage.

At this point, often the question arises as why two different concepts exist that essentially 
describe the same thing. The answer can be found in the declarative paradigm of the 
platform. 

A PV declares something a storage provider can offer, while a PVC declares something a 
storage consumer wants. We can leave it to the platform that takes the responsibility to bring 
the things together. This functional separation allows an application developer to define the 
PVCs for the application independently of the details of the underlying available storage.

However, a storage administrator does not need to “mount”, or “assign” storage specifically to 
any application. Both roles (application developer and storage administrator) can work fully 
decoupled in their respective domains, and let the platform put the pieces together.

How does the platform match PVs and PVCs? PV and PVC must provide the same access 
mode, the PVC's size requirement must be less or equal to the PV provided size, and the 
volume mode must be compatible. If the platform finds a matching PV for a newly created 
PVC, or vice versa, a PV appears that satisfies the demands of a PVC, and both PV and PVC 
are bound to each other. 
Chapter 3. Container Storage Interface architectural overview 31



The double-ended arrows that are shown in Figure 3-10 on page 30 between pv and pvc 
objects illustrate this concept. Bound and unbound PVs and PVCs are visible in Figure 3-10 
on page 30, which is a natural state that we explain next.

Dynamic volume provisioning
In the simplest case, a storage administrator creates some consumable pieces of storage on 
the storage back-end systems and makes them available for the platform by creating 
respective PV definitions. Applications can then claim or allocate these pieces through PVCs. 
However, this approach has the following flaws:

� Our storage administrator must create the storage pieces on the back-end system and 
then translate the “real” objects into their Kubernetes PV representation, which is a 
possibly error prone process.

� The storage pieces our administrator provides must fit the possible demands in the PVCs. 
They should fit the largest possible PVC size; however, small PVCs produce much wasted 
storage space if only larger PVs are available.

� Although sufficient storage is available on the back-end system, PVCs can remain 
unsatisfied \because the platform ran out of PVs of the needed size.

To overcome these drawbacks, Kubernetes introduced the concept of dynamic volume 
provisioning. With dynamic provisioning, the platform \ takes the role of our storage 
administrator. However, instead of creating PVs in advance for a demand that might not exist, 
the platform watches the creation of PVCs and follows up by creating PVs.

StorageClass
When we look at dynamic volume provisioning, we observe that some automation must take 
over the storage administrator’s role. Such an automation is limited to distinct storage 
back-ends. This issue leads to the concept of a storage provisioner. A provisioner is some 
code that can allocate storage on a specific backend. Kubernetes provides an abstraction of 
such a provisioner in StorageClasses.

StorageClasses put together a reference to the provisioner plug-in (the code), and 
parameters that the plug-in needs to perform its operations. The storage administrator’s role 
is no longer to preallocate storage and create PVs. Instead, the role is to define the available 
StorageClasses and to preallocate some capacity; for example, in a dedicated storage pool 
that is on the storage. 

It is left to the application developer to specify the StorageClass in the PVC for the application 
pods. The light green double-sided arrow that is shown in Figure 3-10 on page 30 connects 
pvc-1 with the storage back-end and shows how a StorageClass works for dynamic 
provisioning.

Now that we have dynamic volume provisioning and StorageClasses, binding PVCs and PVs 
can be done by completing the following steps:

1. A user deploys an application that specifies pods and PVCs. The PVCs reference a 
StorageClass that the storage administrator provided and advertised to the users.

2. The platform detects new PVCs that include no matching PVs in their StorageClass and 
starts the StorageClass’ provisioner.

3. The provisioner allocates a matching piece of storage on the back-end and creates a 
respective PV for it.

4. The platform now finds matching PVs for the PVCs and binds them.
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This simple model does not cover the aspects of capacity management. However, this issue 
is out of scope here. The common solution is to monitor the storage back-end systems for 
their capacity and alert the storage administrators if capacity is running short. Also, the 
storage provisioning is out of scope here. 

For more information, see Chapter 4, “OpenShift and Container Storage Interface 
deployment” on page 45.

Volume snapshots
In addition to creating and managing persistent storage for stateful pods, Kubernetes also 
allows snapshots to be taken of volumes that are in use by a pod. This data, which represents 
a state at a specific point, can then be used as initial content for new volumes. A typical use 
case for this scenario can be database backups; for example, when preparing a bigger 
modification, such as a schema migration. Having a snapshot can serve the development and 
verification of the migration, and allows roll back if failures occur.

Similar to PVCs and PVs, Kubernetes is separating the concepts into an application-driven 
view and a storage administration view. The respective objects are:

� VolumeSnapshots

These are the analogy to PVCs. Applications can make use of VolumeSnapshots, without 
the need to understand the underlying storage backend’s details.

� VolumeSnapshotContent 

This is the analogy to PVs. The storage backend “knows” how to map 
VolumeSnapshotContent objects to the respective available options on the backend.

As with the PVC/PV case, VolumeSnapshots and VolumeSnapshotContent belong to each 
other, although the “binding” term moved to a “ready to use” property. After a 
VolumeSnapshot includes a corresponding VolumeSnapshotContent, it can be used for the 
creation of new PVCs that refers to the VolumeSnapshot object as data source. Therefore, its 
bound PV’s initial content consists of the respective VolumeSnapshotContent.

VolumeSnapshots are available for Cloud Storage Interface drivers and the IBM block storage 
CSI driver only. It is an optional capability, which the IBM CSI driver supports starting with 
version 1.3 on OCP 4.4 or Kubernetes 1.17.

Similar to PVs and PVCs, a storage administrator can pre-provision VolumeSnapshotContent 
objects by taking snapshot of volumes on the storage system. A VolumeSnapshotContent 
object can be created dynamically by specifying the PVC from which to take it.

3.1.7  Application configuration

Although we covered the aspects of the stateless nature of pods and how persistent data is 
being made available for them, how to effectively bring configuration information to pods is 
important. 

Because we expect one or more pods to implement a meaningful application from more or 
less generally usable container images, we do not want to have to place the required 
configuration information into these images. 

Think of such things as, for example, parameters that are different for production, test, or 
development releases of an application, or access tokens or other external references to 
back-end systems. Not only is it inefficient to include this information into images, it is overkill 
to use persistent storage for these information bits. 
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Kubernetes offers two handy concepts for configuration information. These concepts are 
described next.

ConfigMaps
With ConfigMaps, Kubernetes offers an effective way to pass configuration information to 
applications. These are simple key or value stores within the Kubernetes objects database 
that keep information together. Pods then can refer to ConfigMaps for setting up individual 
attributes. ConfigMaps are useful for the following purposes:

� Setting environment variables for containers in pods.

� Providing entry call parameters for containers.

� Providing configuration file content that can be used by containers.

Containers can also use the Kubernetes API programmatically to access data in a 
ConfigMap.

Secrets
Although ConfigMap content is a good fit for any clear text information, it should not be used 
for information that is confidential. It is for this reason that Kubernetes offers Secrets.

Small pieces of confidential information (for example, usernames, login passwords, or API 
tokens) can be stored in Secrets. This information can be stored encrypted. Often, users do 
not want to have such information in clear text in a pod specification or part of container 
images. 

Instead, a container can mount a Secret to some point in its file system hierarchy and then 
access the data through a file in this file system. A second possibility is to pass data from 
Secrets to container environment variables. Eventually, a special use case for Secrets is 
image pull secrets, which are the access credentials the kubelet passes to the container 
runtime so it can pull container images from protected image registries that require 
authentication.

3.1.8  Extension points in Kubernetes: The operator pattern

One of Kubernetes’ strengths is its extensibility. By design, it offers various extension points 
which, according to the respective use case, allow flexible extensions to the platform. Such 
extensions can be more commands for the CLI, specific authentication or authentication for 
API requests, or more resources the platform can manage. 

We concentrate on one specific way of extending the platform because it is the foundation of 
the value that is added with OpenShift, and the principle that is behind the CSI driver in 
general and the IBM block storage CSI driver in particular. 

This method is the operator pattern. Its building blocks are CustomResources, their 
definitions and controllers, and the embracing concept of a Kubernetes operator.

Custom resources
Kubernetes allows to extend its API with arbitrary resources. These resources are collections 
of user-defined objects in the Kubernetes database. Such Custom Resources (CR) can, as 
with the built-in pod resource (for example) be managed by the platform. 
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Custom resource objects can be added to or deleted from collections on the CLI, or 
programmatically from within the environment. The only issue left to the CR designer is to 
make its structure known to Kubernetes so it can suitably handle these objects. 

A common way to do this is by using a CustomResourceDefinition (CRD). CRDs are 
resources that are managed by Kubernetes. To add own objects to Kubernetes, a user writes 
a CRD and hands it over to Kubernetes. From that moment on, the platform also can manage 
these objects.

Just having a collection of new objects in a CR is useful, but often the intention of new 
resources is to make some use of them. As with the built-in pod, resources feature the 
semantic of letting a set of containers run somewhere in the cluster. We expect CRs to also 
include some semantic aspect. It is here where resource controllers come into play.

Figure 3-11 show how controllers fit into Kubernetes’ programming model. A controller 
declares its interest in the changes (add, update, and delete) of resources (regardless if 
built-in or CRs) with informers. It also provides suitable code that acts on these events. These 
actions can then by themselves change other resources, which is done through calls to the 
apiserver. These changes to resources occur in the etcd database and create events, which 
in turn helps their controllers to take action, and so on.

Figure 3-11   Basic principle of a resource controller

This illustration can also explain, why creating only a pod with a valid pod specification 
through the CLI immediately returns successfully, although at that point it is unclear if this pod 
can find a node in the cluster on which to run. 

Several other controllers are available in the platform that watch for the creation of pod 
objects and take actions. However, these actions might fail or timeout. For example, the 
scheduler might not find a node with sufficient memory available. Because the scheduler 
cannot know whether this is a temporary problem, it postpones the decision, which leaves the 
pod in a “Pending” state.

Operators
We described the internal mechanics of the platform in a high-level overview, and discussed 
how Kubernetes helps us define CRs, and how controllers for CRs work. Putting the pieces 
together brings us to the operator pattern. An operator is a CRD and a controller for the 
defined CRs. However, the question arises as to why an operator is needed.
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The driving force is automation: Imagine a scenario in which an application developer creates 
an application and now wants to deploy it in the cluster. The application can consist of several 
back-end pods that must cooperate on some shared storage, and some other pods that 
implement a user front-end. 

One possible way of deploying the application can be to manually create the respective pod 
specifications and then manually start the CLI to create them individually. Alternatively, a 
deployment for the front end, and a StatefulSet for the backend can be a more effective way. 
However, what if another version of the application is needed in a test version, or must be 
deployed into a development environment?

It is here that the operator comes into play. Instead of manually deploying the application with 
its varying parameters and sizing in different versions, a CRD can be set up for the application 
as a whole. This CRD describes the mandatory and optional deployment parameters for an 
application. Creating a respective controller, which performs all the steps our developer 
completes manually, enables the application to deploy automatically.

This pattern of a CRD together with a controller implementing the operational behavior for 
that type of resource is what Kubernetes calls an operator. The basic idea is that an operator 
performs the actions that a human operator does in an automated fashion. The OpenShift 
platform uses the operator pattern extensively to provide value regarding the operations of 
Kubernetes clusters.

3.2  Kubernetes Container Storage Interface

With Kubernetes 1.13, the CSI officially became a part of Kubernetes. Its primary goal is to 
decouple the implementation of container storage back-ends from the main Kubernetes code 
base. 

Before CSI, the support for many storage back-end plug-ins required integration with the 
Kubernetes. That is, even a bug fix in a plug-in’s code required rebuilds of the entire platform. 
These plug-ins are often called “in-tree” because they are part of the entire Kubernetes code 
tree.

CSI aims at overcoming this limitation. By the design of an interface between storage 
back-end providers and the Kubernetes platform, development can advance in a decoupled 
manner. 

New storage back-ends can be implemented and tested independently from the Kubernetes 
platform, so can the CSI pieces on Kubernetes side. The CSI specification was developed 
with arbitrary container orchestrators in mind. Therefore, it is general enough to be used by 
other platforms, such as Cloud Foundry.

Together with the CSI specification in terms of the functions that a storage driver must 
implement come some valuable assets. One is a deployment proposal, which is a description 
of how the deployment of a CSI driver for a specific storage backend can be structured. The 
other is a set of containers that can be readily used to support simple integration with the 
Kubernetes platform, notably the Kubernetes side of CSI. This combination of assets 
underpins the intention to provide a general container orchestrator solution. 

For more information, see the following GitHub resources:

� Design proposal on CSI 
� CSI specification 
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3.2.1  Volume lifecycle

This section gives a short introduction to creating volumes and volume-to-node attachment.

Creating PVCs
One of the significant advantages of the CSI driver is its ability to dynamically provision 
volumes. A storage administrator no longer needs to pre-provisioned pieces of storage on the 
back-end system that might not fit the demand and do not leave much unused capacity 
behind. Next, we describe how the CSI driver implements this dynamic provisioning.

The starting point is that a PVC is created from the deployment of an application into the 
cluster. For dynamic provisioning (in addition to its size, volume and access mode), we know 
a StorageClass is required (in our example, it refers to a CSI driver). The StorageClass also 
contains the storage pool information and the Secrets. After such a PVC is created in the 
cluster, the following workflow is triggered:

1. Kubernetes’ persistent volume controller detects the creation of a PVC object and 
because it is not bound to a PV, the controller first tries to find a matching unbound PV.

2. Not having found a PV lets the controller check if the PVC provided a StorageClass. If so, 
it delegates PV provisioning to the respective provisioner plug-in that is in the 
StorageClass.

3. The provisioner allocates a suitable piece of storage on the back-end and creates a PV 
object from it in the database. As a side task, it also annotates the PVC with the PV’s 
name.

4. The persistent volume controller detects that a PV was created and because the new PV 
includes a reference to the requesting claim in it, the controller can bind PV and PVC.

When the requested PVC is in a “Bound” state, the respective volume can be accessed by a 
requesting pod. Once again, all of these operations (PVC creation, PV creation, and pod 
creation) occur asynchronously and potentially independently from each other.

Volume: Node attachment
Volume attachment, which means making a storage volume accessible on a node so that 
pods can use them, is a complex task. The attach/detach controller is the Kubernetes 
instance that is managing these aspects. It watches events on many resources: pods, nodes, 
PVCs, PVs, VolumeAttachments, and on CSI objects. 

Pod updates are the most prominent triggering events. The scheduler that is placing pods 
onto nodes is a number one source for these events. The attach and detach controller is a 
central instance and must know about all the defined volumes, nodes, and pods and their 
relationships in the cluster. It interfaces with all storage plug-ins in-tree and external storage 
providers where CSI is considered one of them.

What happens if a pod is placed on a node and its volumes must be attached to the node? 
Consider the following points:

� Pod updates or additions with a changed node attribute let the attach/detach controller 
internally create a tuple (pod, volume, or node) for each volume that the pod uses. The 
controller maintains a private “desiredWorld” structure. It also holds a private 
“actualWorld” structure, where it records the assignments.

� Periodically, a reconciler loop in the controller scans the desiredWorld and the actualWorld 
to transform statuses into wanted statuses. 
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First, it triggers detachments for all (pod, volume, and node) bindings that are found in 
actualWorld but not in desiredWorld. Then, it triggers attachments for all (pod, volume, and 
node) bindings in desiredWorld but not in actualWorld.

� The respective attachment or detachment operations are implemented in the storage 
plug-ins for the volumes in question. These operations run in asynchronous threads or 
processes. Therefore, the attachment or detachment controller also must manage timing 
conditions or multiple repetitions of the same request. For example, it does not trigger 
attachment for a volume if an attach operation is in progress.

� Looking at attachment of a volume, the storage plug-in creates a VolumeAttachment 
object and waits for the attachment plug-in to mark the volume as attached to the node.

� After it is attached, the attachment or detachment controller no longer sees a difference 
between the desiredWorld and actualWorld status. The volume is now ready to be used by 
the pod on the targeted node.

Similarly, if a node quits the cluster or a pod ends, the desiredWorld status is updated by 
removing the respective references for the node or pod. Instead of attaching volumes, the 
storage plug-in runs detach operations.

3.2.2  CSI driver deployment

In this section, we review the main CSI driver building blocks, CSI controller, and CSI node 
(see Figure 3-12.

Figure 3-12   CSI components

CSI controller
The CSI controller’s main responsibility is to provision and deprovision storage on the 
back-end systems. The CSI controller pod contains some sidecars, which are responsible for 
the communication with the Kubernetes API server, while they communicate with the 
controller container through gRPC calls that are laid down in CSI specification, namely the 
Controller service.

Next, we describe the major calls to the controller, and leave it up to the reader to consult the 
documentation for more information.
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CreateVolume and DeleteVolume
These calls are often are made by the external-provisioner. As we saw in “Volume lifecycle” 
on page 37 after a PVC that is referring to a StorageClass for the CSI driver is created, the 
Kubernetes in-tree volume controller looks for a suitable PV, which generally does not exist 
yet. 

However, if a PVC’s StorageClass refers to a CSI-managed volume, the respective plug-in 
contacts the external-provisioner, which calls CreateVolume(). The CSI Controller then cuts 
an appropriate piece of storage from the back-end, and with successful return from 
CreateVolume(), the respective PV object in the platform is created by the 
external-provisioner.

This process eventually allows the Kubernetes’ volume controller to bind the new PV with the 
PVC when it runs through its reconciliation loop. A DeleteVolume() is available to have the 
CSI controller delete the provisioned storage and the external-provisioner delete the 
respective PV.

At this point, we have not yet discussed the origin of volume content. In addition to 
provisioning a pure volume without any content, two other options are available: If the 
backend and driver support it, a volume can be created from another, existing volume, which 
ends up in creating a clone, and, a volume can be created from a VolumeSnapshot. 

For more information about CSI volume cloning and CSI volume snapshots, see this Red Hat 
documentation web page.

CreateSnapshot and DeleteSnapshot
The calls that deal with VolumeSnapshots do not differ much from the respective 
CreateVolume or DeleteVolume calls. They start respective procedures on the storage 
backend to create or remove snapshots from volumes on the storage backend.

ControllerPublishVolume and ControllerUnpublishVolume
After the Kubernetes scheduler decides to place a pod onto a specific node, the pod’s 
volumes also must be made accessible by that compute node. The need to attach a volume is 
expressed in VolumeAttachment objects that are watched for changes by the 
external-attacher sidecar in the CSI Controller pod. If a VolumeAttachment appears or its 
node reference changes, it starts the respective calls against the CSI controller.

CSI node
The CSI node containers often run on each compute node (or at least those nodes where the 
respective storage backend can be used), which makes a perfect case for deploying them in a 
Kubernetes DaemonSet. 

A CSI nodes main task is to bring the volumes from the storage backend and the respective 
storage driver of the node operating system together. This process often includes mounting 
the storage volume to some mount point in the node operating system. After it is assured that 
the mount point is available, and the correct volume is mounted there, and the container 
runtime can finally mount the volume into the consuming container’s file system hierarchy. 
However, this last step is out of the scope of this publication.

In Figure 3-12 on page 38, we see a node-driver-registrar sidecar that is collocated with the 
CSI node container in the CSI node pod. This sidecar allows the CSI node container to 
register with the kubelet on the node by providing the reference to the endpoint where its 
gRPC functions can be called. 
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After the connection is established through a UNIX Domain Socket, node-driver-registrar 
generally no longer plays a role. However, the CSI node container does not communicate with 
the kubelet other than by responding to the gRPC calls.

NodeStageVolume and UnstageVolume
For specific types of storage, it might be necessary to perform preparatory steps before some 
back-end volume can be made accessible on a node. The optional NodeStageVolume calls 
enable this accessibility. For example, in the IBM CSI node case, the NodeStageVolume call 
ensures that a volume that is intended to be mounted in NodePublishVolume is seen as a 
multipath device by the operating system.

NodePublishVolume and UnpublishVolume
The NodePublishVolume is the final step in provisioning a volume from a CSI-managed 
storage backend to a node from where standard Kubernetes mechanisms can present it to a 
pod’s containers. These mechanisms and all other CSI Node procedures are directly called 
from the kubelet. The kubelet is the instance on a compute node that is responsible for taking 
pod specifications and bringing the respective containers to life on the container runtime.

This task can be accomplished successfully only if all of the requested volumes for a pod are 
available on the node so that they can be mounted by the containers. The CSI Controller’s 
ControllerPublishVolume procedure is doing what must be done to make a volume available 
on a node from the storage system’s perspective. Now, with the NodePublishVolume, the loop 
is closing; that is, the node accesses the dynamically provisioned and attached storage.

CSI identity services
The CSI architecture is built on a plug-in pattern. Stubs are available in the platform that are 
complemented with concrete implementations, the CSI controller, and the CSI node. 
However, the platform needs information about the implemented features of these 
components. Therefore, the CSI components must offer some identity services. Some are 
common for both controller and node, and some are needed for node or controller only.

Common identity services
These services must be implemented by the controller and the node component. They 
provide information for the platform on the respective component. Their task is to identify the 
component in the platform (GetpluginInfo), and its capabilities (GetpluginCapabilities). In 
addition, a Probe function gives a success response after it is called so that the platform 
knows that the component is ready to communicate.

Component identity services
To determine the specific capabilities of the components, they provide a 
ControllerGetCapabilites, which is a NodeGetCapabilities call that informs about special 
features the component supports. For example, the ability to provision volumes from a 
snapshot is one of the possible controller capabilities.

An important information call is available on the node component: NodeGetInfo. This call is 
used to create a unique node identification for the CSI environment. As the IBM block storage 
CSI driver shows, this call encodes the node name and identifies the storage backend and 
how it can be reached. This information is important for the controller that must provision 
storage for a specific node on a specific backend.
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3.3  IBM block storage CSI driver

Thus far, we covered the common CSI driver concept and how it integrates with Kubernetes 
as the container orchestrator of our choice. We also know of the CSI that governs the 
communication between the Kubernetes-provided sidecars and the storage vendor-provided 
CSI Controller and CSI Node component. 

In this section, we review the IBM block storage CSI driver’s specific parts. We see that it not 
only comprises the expected controller and node component, it also includes an operator. 
Because the IBM block storage CSI driver is an open source effort, see this web page for 
more information about the code.

3.3.1  IBM CSI Operator

In the “Extension points in Kubernetes: The operator pattern” on page 34, we explained the 
operator pattern. Here, we describe the CSI Operator that plays a central role in IBM block 
storage CSI driver deployments. For more information about its source code, see this web 
page. 

IBMBlockCSI resource
As described in “Extension points in Kubernetes: The operator pattern” on page 34, the 
operator pattern generally brings together custom resources and a controller. For the IBM CSI 
Operator, this kind of resource is called IBMBlockCSI. If we consider a single instance of a 
IBMBlockCSI, we get a basic impression of what the CSI Operator is doing. An IBMBlockCSI 
object contains the following major parts:

� Controller specification

This specification details two important aspects of the IBM block storage CSI driver’s 
controller component: the container image that runs the controller code, and a node 
selection expression that further specifies the type of nodes onto which the controller pod 
can be scheduled.

� Node specification

Similar to the controller specification, the node specification details the image to use and a 
node selection criteria. However, although node specification is about the CSI node 
component, the node selector in this specification helps find the suitable Kubernetes 
nodes where to run the CSI node.

� Sidecar specifications 

The CSI controller and node use the community-provided sidecars. An IBMBlockCSI 
object also specifies which container images are used for these sidecars.

From these specifications, we can derive the controller’s tasks: It watches the IBMBlockCSI 
resources and creates the respective workload controllers for the deployment of a 
IBMBlockCSI driver installation. Because the image specifications (their repository paths and 
image tags) can be declared in the IBMBlockCSI resource, upgrading the driver can also be 
done in a declarative style; that is, an administrator then modifies the image references in the 
resource, which the CSI Operator picks up and triggers new deployments of whatever is 
needed for the declared version.

The operator is deployed to the cluster through a Deployment workload controller. This 
process can be done through the OpenShift GUI or on the command line. 
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After the operator is established in the cluster, an administrator then creates a suitable 
IBMBlockCSI object that specifies the wanted controller and node references. The operator 
triggers all necessary steps to deploy the IBM block storage CSI driver with all its components 
into the environment.

Final steps for an administrator include defining StorageClasses that further specify how to 
access the storage backend, from which storage pool to provision appropriate volumes, and 
so on. The volumes can then be dynamically created on the back-end by creating PVCs for 
applications in the defined StorageClasses.

3.3.2  IBM CSI controller

The IBM CSI Controller can provision storage on three different IBM block storage provider 
families: DS8000, Spectrum Virtualize products (such as IBM SAN Volume Controller), and 
the A9000/R family of products. Although these different back-ends require different adoption 
layers, the gRPC calls on the “CSI-side” are the same, and only the StorageClass of a PVC 
determine which back-end to contact.

As of this writing, the IBM Controller component is implemented in Python. It consists of the 
set of gRPC calls that are required by the CSI Controller and CSI Identity service, but then 
uses different open source Python modules to communicate with the back-end storage 
systems (the pyds8k module for the IBM DS8000 family, the pysvc module for IBM Storwize® 
and IBM FlashSystem, and the pyxcli module for IBM XIV/IBM FlashSystem A9000/R 
back-ends). 

A thin intermediate layer forms the connection between CSI functions and the back-end 
modules. For more information about these modules, see this web page.

3.3.3  IBM CSI node

Most of the functions the IBM CSI Node implements is described in “CSI node” on page 39. 
The IBM CSI Node driver supports the NodePublishVolume and NodeUnpublishVolume calls. 
After they started, the NodePublishVolume() function checks if the access for the wanted 
volume is valid, if the device node can be accessed, and if it appears as a multipath device in 
the compute node operating system.

Another task also is accomplished by the IBM CSI node on its first invocation on a node. It 
generates a unique identifier for the node to make itself visible and addressable for the IBM 
CSI controller. This identifier is called nodeid, and the Kubernetes Node object is annotated 
with it, as shown in Example 3-1. 

Example 3-1   Nodeid example

$ oc describe node worker-0 | egrep -a -A1 -i nodeid
csi.volume.kubernetes.io/nodeid: 
{"block.csi.ibm.com":"worker-0;iqn.1994-05.com.redhat:7c9b3e4fee9;c05076fff280987c
:c05076fff2809e40"}

The oc command is the OpenShift command line client, and its describe operation gives a 
summary of the node information in the etcd database. By using the egrep command, the 
nodeid annotation can be filtered out.

The IBM block storage CSI driver provisions “file system” and “block” volumes, as described 
in “Creating a PersistentVolumeClaim” on page 80. The name of the product refers to the 
block storage nature of the storage back-end systems, not the driver’s capabilities. 
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3.3.4  CSI driver storage back-end communication

The instances that are communicating with the storage back-ends are distinct Python 
modules for each of the three supported storage families. As with all the other components of 
the IBM block storage CSI driver, these modules are open source.

For more information, see the following resources:

� pyds8k (IBM DS8000) 
� pyxcli (IBM XIV, IBM FlashSystem A9000/R) 
� pysvc (IBM Spectrum Virtualize) 

These client modules can be used standalone in Python programs. This ability allows users to 
examine the interaction with a storage backend, aside from the Kubernetes environment for 
troubleshooting.
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Chapter 4. OpenShift and Container Storage 
Interface deployment

This chapter describes a proven process for an OpenShift setup and the deployment of the 
IBM Container Storage Interface (CSI). The following environments are discussed:

� OpenShift Version 4.3 on IBM Power
� OpenShift Version 4.4 on IBM Z
� OpenShift Version 4.5 on x86

This chapter shows step-by-step CSI implementation examples that use the OpenShift 
Command-line Interface for IBM Power and IBM Z. It includes the following topics:

� 4.1, “IBM block storage Container Storage Interface” on page 46

� 4.2, “Installing Red Hat OpenShift Container Platform in an IBM Power Systems PowerVM 
environment” on page 52

� 4.3, “CSI deployment on IBM Power by using the command-line interface” on page 72

� 4.4, “CSI and OpenShift on IBM Z” on page 87

� 4.5, “CSI deployment on Z by using the command-line interface” on page 91

� 4.6, “Installing the CSI driver by using the OpenShift web console on x86” on page 95

� 4.7, “Updating the CSI driver” on page 110
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4.1  IBM block storage Container Storage Interface

The examples in this chapter are based on the IBM block storage CSI driver version 1.3.0. For 
more information, see this IBM Documentation web page.

4.1.1  CSI configuration overview

CSI consists of two objects within Kubernetes: the CSI operator and the CSI driver. An 
operator is a Kubernetes software extension, which uses custom resources that are outside 
of core Kubernetes. It also interfaces with the API Server and acts as a custom Controller. 
Although CSI consists of two elements, the Operator downloads the driver concurrently.

The CSI driver can be installed in OpenShift by using two methods (the choice depends on 
the server platform): the OpenShift Web Console or the OpenShift CLI. After the CSI driver is 
installed and running, relevant storage classes, constructs, and secrets must be created to 
use CSI. This section gives describes the needed configuration files.

Creating an array secret
Within Kubernetes, sensitive information, such as passwords, OAuth tokens, and ssh keys 
are stored within secrets. These secrets can then be used in a safe manner rather than 
placing information into a manifest or yaml file, pod definition, or container image.

For more information about designing Kubernetes secrets, see Chapter 3, “Container Storage 
Interface architectural overview” on page 19 and this GitHub web page.

A storage system secret must be created to store the storage credentials (username and 
password) and the address of the storage system that is used by the CSI driver, as shown in 
Example 4-1.

Example 4-1   Array secret file

kind: Secret
apiVersion : v1
metadata:

name: itso-secret
namespace: itsons

type: Opaque
stringData:

management_address: 9.9.9.9  # Array management address
username: itso-user  # Array username

data:
password: Fjw95ndf0nf= # base64 array password

Important: If the storage service account password is changed, ensure that the 
passwords in the corresponding secrets are changed, especially when LDAP is used on 
the storage system.
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Creating CSI storage classes
A StorageClass manifest must be created to define the storage system pool name, reference 
the storage Secret, and set parameters such as space efficiency and file system type (see 
Example 4-2).

Example 4-2   CSI StorageClass.yaml

kind: StorageClass
apiVersion : storage.k8s.io/v1
metadata:

name: itso-storageclass
provisioner: block.csi.ibm.com
parameters:

SpaceEfficiency: thin # Optional. Values standard\thin. Default is standard.
pool: itso-storageclass

csi.storage.k8s.io/provisioner-secret-name: itso-secret
csi.storage.k8s.io/provisioner-secret-namespace : itsons
csi.storage.k8s.io/controller-public-secret-name: itso-secret
csi.storage.k8s.io/controller-public-secret-namespace: itsons

# csi.storage.k8s.io/fstype : xfs # Optional. Values ext4\xfs. Default is ext4
volume_name_prefix: itsoPVC # Optional. DS8000 maxlength = 5, all others = 20.

Consider the following points:

� The pool value should be the name of the pool on the storage system.

On IBM DS8000 systems, pool should be the pool ID of the extent pool and not the pool 
name.

� The csi.storage.k8s.io/fstype value is optional. Values can be ext4 or xfs, with ext4 
being the default

� The volume_name_prefix value is optional:

– For IBM DS8000, the maximum length is five characters.
– For all other IBM Storage systems, the maximum length is 20 characters.

Defining several StorageClasses is common where users need PersistentVolumes with 
differing properties, such as performance, standard or thin provisioning, or block or file type 
volumes for different types of containers. An OpenShift storage administrator must offer 
various PersistentVolumes that differ than only in size without having to allowing users to 
know how these volumes are provisioned.

The StorageClass defines only the provisioner, provisioning type (thin or standard), file 
system type, and an optional volume prefix.

Creating a PersistentVolumeClaim 
A PersistentVolumeClaim (PVC) yaml file must be created to bind PVs that the CSI driver 
creates. The PVC defines the required parameters for creating a volume on the storage 
subsystem by using the information that is held in the StorageClass. Combined, they have all 
of the information the storage subsystem needs to create and map the volume.
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Example 4-3 shows a basic PVC that provisions a 10 GB volume by using the 
itso-storageclass that is shown in Example 4-2 on page 47.

Example 4-3   PVC 10 GB raw block volume yaml

kind: PersistentVolumeClaim
apiVersion: v1
metadata:

name: itso-pvc-raw-block
spec:

volumeMode: Block
accessModes:
- ReadWriteOnce
resources:

requests:
storage: 10Gi

storageClassName: itso-storageclass

A PVC can also be created from a volume snapshot. An example of a volume snapshot is 
shown in Example 4-4 where datasource: name: itso-snapshot is the referenced 
VolumeSnapshot Kubernetes resource that refers to the PV that is used as the source volume 
for the snapshot.

Example 4-4   PVC created by using volume itso-snapshot as a source

kind: PersistentVolumeClaim
apiVersion: v1
metadata:

name: its-pvc-from-snap
spec:

volumeMode: Block
accessModes:
- ReadWriteOnce
resources:

requests:
storage: 10Gi

storageClassName: itso-storageclass
datasource:

name: itso-snapshot
kind: VolumeSnapshot
apiGroup: snapshot.storage.k8s.io

Creating a StatefulSet
A StatefulSet is a workload API object that must be defined to manage stateful applications.

The StatefulSet manages the deployment of a set of pods and any required scaling. It also 
provides assurance about the ordering and uniqueness of the pods in the StatefulSet.

The StatefulSet manages pods that are based on an identical container spec. Compared to a 
Deployment (see this web page), a StatefulSet maintains a persistent ID for each of their 
pods. The pods are created from the same spec, but are not interchangeable. Each pod 
includes a persistent ID that remains, even if the pod must be rescheduled.
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Because of the nature of this persistence, persistent volumes are key to maintaining the 
integrity of the pods that are within the StatefulSet. Although individual pods that are in a 
StatefulSet are prone to failure, the persistent ID makes it easy to match volumes to the new 
rescheduled pods that replace failed ones.

Stateful sets are used when considering container applications that require one or more of 
the following characteristics:

� Stable, persistent storage
� Stable, unique network identifiers
� Ordered, automatic rolling updates
� Ordered, graceful deployment
� Ordered scaling

StatefulSets can include volumes with file systems, raw block volumes, or a combination of 
both. When defining the StatefulSet (see Example 4-5), ensure that you define volumes 
according to the PVC type.

Example 4-5   Creating a StatefulSet by using raw block storage

kind: StatefulSet
apiVersion: app/v1
metadata:

name: itso-statefulset-raw-block
spec:

selector:
matchLabels:

app: itso-statefulset
serviceName: itso-statefulset
replicas: 1
template:

metadata:
labels:

app: itso-statefulset
spec:

containers:
- name: itso-container

image: registry.access.redhat.com/ubi8/ubi:latest
command: [ “/bin/sh”, “-c”, “--” ]
args: [ :”while true; do sleep 30; done;” ]
volumeDevices:

- name: itso-volume-raw-block
devicePath: “/dev/block”

volumes:
- name: itso-volume-raw-block

persistentVolumeClaim:
claimName: itso-pvc-raw-block

Note: Deleting or scaling down a StatefulSet to zero does not delete the associated 
volumes. This arrangement is to ensure data integrity, which is a general request other 
than purging data that is on ephemeral volumes.
Chapter 4. OpenShift and Container Storage Interface deployment 49



Example 4-6 shows a StatefulSet that is similar to Example 4-5 on page 49, but includes 
mounting a file system volume that is called itso-volume-file-system onto mount point /dat, 
which was created by using the PVC itso-pvc-file-system.

Example 4-6   StatefulSet that uses raw block storage and mounting file system volume

kind: StatefulSet
apiVersion: app/v1
metadata:

name: itso-statefulset-raw-block
spec:

selector:
matchLabels:

app: itso-statefulset
serviceName: itso-statefulset
replicas: 1
template:

metadata:
labels:

app: itso-statefulset
spec:

containers:
- name: itso-container

image: registry.access.redhat.com/ubi8/ubi:latest
command: [ “/bin/sh”, “-c”, “--” ]
args: [ :”while true; do sleep 30; done;” ]
volumeMounts:

- name: itso-volume-file-system
mountPath: “/data”

volumeDevices:
- name: itso-volume-raw-block

devicePath: “/dev/block”
volumes:
- name: itso-volume-file-system

persistentVolumeClaim : itso-pvc-file-system
claimName: itso-pvc-file-system

- name: itso-volume-raw-block
persistentVolumeClaim:

claimName: itso-pvc-raw-block

Creating volume snapshots
Since the introduction of OpenShift 4.4 and Kubernetes 1.17, volume snapshots are 
available. By using the CSI driver, platforms can run IBM FlashCopy® commands on the 
connected storage subsystems.

For more information about volume snapshot support for a specific OCP version, see this web 
page.

To enable creating and deleting snapshots on the storage subsystem, a 
VolumeSnapShotClass yaml file must be created to define the behavior in a policy. 
Example 4-7 on page 51 shows an example that uses the storage subsystem array secret 
and secret namespace (as shown in Example 4-1 on page 46).
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Example 4-7   VolumeSnapshotClass block storage snapshot

apiVersion: snapshot.storage.k8s.io/v1beta1
kind: VolumeSnapshotClass
metadata:

name: itso-snapshotclass
driver : block.csi.ibm.com
deletionPolicy: Delete
parameters:

csi.storage.k8s.io/snapshotter-secret-name: itso-secret
csi.storage.k8s.io/snapshotter-secret-namespace: itsons
snapshot_name_prefix: itsoSnap # Optional.

After the policy is defined in the VolumeSnapshotClass yaml file, a snapshot can be 
performed by defining a VolumeSnapshot yaml file, as shown in Example 4-8.

Example 4-8   Creating a volume snapshot

apiVersion: snapshot.storage.k8s.io/v1beta1
kind: VolumeSnapshot
metadata:

name: itso-snapshot
spec:

volumeSnapshotClassName: itso-snapshotclass
source:

persistentVolumeclaimName: itso-pvc-raw-block

Note: The VolumeSnapshotClass deletionPolicy property determines what happens to the 
VolumeSnapshotContent when the VolumeSnapshot bound object is deleted. This 
property can be Delete or Retain and this field is a required. 

If Retain is specified, the underlying snapshot and VolumeSnapshotContent remain when 
the bound VolumeSnapshot object is deleted.
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4.2  Installing Red Hat OpenShift Container Platform in an IBM 
Power Systems PowerVM environment

This section describes installing Red Hat OpenShift Container Platform (OCP) in an IBM 
Power Systems PowerVM® environment.

At the time of this writing, the latest IBM CSI block-storage driver version 1.3 supports Red 
Hat OCP 4.3 on the IBM Power Systems platform, which is the versions that we used for our 
installation.

Figure 4-1 shows our IBM PowerVM LPAR server lab environment that we used for our Red 
Hat OCP installation.

Figure 4-1   IBM Power Systems server lab environment

Red Hat OpenShift supports a PowerVM LPAR environment that was created by the 
PowerVM administrator where each LPAR is treated as a static resource as though it were a 
bare metal resource. For more information, see this Red Hat web page (log in required).

The persistent storage was provided to our Red Hat OpenShift worker nodes from an 
attached IBM Spectrum Virtualize-based storage system by way of the IBM block storage CSI 
driver. 

We chose a high-performance Fibre Channel (FC) storage N_port ID virtualization (NPIV) 
attachment for our worker nodes as IBM Virtual I/O Server (VIOS) client partitions. The IBM 
block storage CSI driver also supports iSCSI attachment when physical Ethernet cards or 
virtual Ethernet ports are used that are backed by SR-IOV dedicated VFs or virtualized by 
VIOS using vNIC technology in the worker nodes.
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As a test environment, we used only a single physical server that hosted all OpenShift cluster 
nodes. For a production environment from an availability perspective, separate physical 
servers were used for hosting the redundant cluster nodes.

4.2.1  Red Hat OCP 4.3 on Power installation overview

The Red Hat OCP on Power installation comprises the following major steps, which we 
describe in the subsequent sections:

� Requirements planning
� Preparation of a RHEL bastion node
� Downloading the installation files
� Creating an installation configuration file
� Network services configuration (DNS HTTP Server, load balancer, and HTTP Server)
� Preparing the image files for booting the cluster nodes
� Creating the Kubernetes manifest and ignition files
� Creating the RHCOS cluster nodes by using the bootstrap process
� Completing and verifying a successful Red Hat OpenShift cluster installation

Requirements planning
Red Hat OCP on Power requires a user-provisioned infrastructure (UPI) because a Red Hat 
OCP installer-provisioned infrastructure (IPI) is not supported on the IBM Power Systems 
platform as of this writing.

According to the minimum installation requirements, we created the following IBM PowerVM 
Virtual I/O Server (VIOS) client partitions on our IBM Power Systems server (ppc64le with 
POWER8® or later):

� 1x bastion node (installed with RHEL 8.2):

– 1x CPU
– 4 GB RAM
– 200 GB boot volume

� 1x (temporary) bootstrap node:

– 1x CPU
– 16 GB RAM
– 200 GB (minimum required: 120 GB) boot volume

� 3x master nodes (OpenShift cluster control plane):

– 1x CPU
– 16 GB RAM
– 200 GB (minimum required: 120 GB) boot volume

� 2x worker nodes (OpenShift cluster compute nodes):

– 1x CPU
– 8 GB RAM
– 200 GB (minimum required: 120 GB) boot volume

Consider the following points regarding the installation requirements:

� The worker nodes were configured with the minimum of 8 GB RAM. We later noticed a 
high memory usage that was driven by the Prometheus monitoring service, even with no 
user workload running. Therefore, we suggest configuring the worker nodes with at least 
16 GB RAM.

� Red Hat CoreOS (RHCOS) is the required operating system for Red Hat OCP on Power 
for the master and the compute (worker) nodes.
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� RHCOS as an immutable container host is self-managed in its configuration. This point 
pertains to the container orchestrator (cri-o), its authorized registries, and to over-the-air 
updates by the Red Hat OCP cluster machine configuration operator.

� IBM Power Systems dynamic LPAR (DLPAR) operations or storage multipathing is not 
supported on the OCP 4.3 RHCOS cluster nodes. For more information, see this Red Hat 
web page.

In addition to the hardware requirements network services, such as a DNS server, a HTTP 
Server and network load balancer also are required for a Red Hat OCP cluster installation, 
which we also describe in the following sections.

For more information, see the official Red Hat OCP on Power installation documentation at 
this web page.

Preparing an RHEL bastion node
As a bastion node to be used for installing the Red Hat OCP cluster from and optionally for its 
later management by way of the OpenShift Client (oc), we prepared a Red Hat Enterprise 
Linux (RHEL) 8.2 partition on our IBM Power Systems server.

In addition to the basic RHEL 8.2 installation on our bastion node, we installed utilities, such 
as GNU tar, vim (to allow for syntax highlighting in YAML configuration files), wget (for 
downloading installation files), and the Apache HTTP Server to serve the RAW image and 
ignition files to create the OCP cluster nodes (bootstrap, masters, and workers).

The Red Hat OCP installation files often are downloaded from this Red Hat OpenShift Cluster 
Manager web page (a registered Red Hat account is required to log in). This web page offers 
only the latest OCP version for download.

Because of the IBM CSI block-storage driver release compatibility with Red Hat OCP on 
Power, we used a prior version of Red Hat OCP on Power that we downloaded from this web 
page.

We used the Red Hat OpenShift Cluster Manager website that is shown in Figure 4-2 on 
page 55 for only downloading the required pull-secret for the installation. This secret is 
associated with the user’s Red Hat account and enables access to Red Hat container 
registries, such as Quay.io.

Note: Red Hat registration and subscription of the bastion node is not required; however, a 
later registration for OCP cluster subscription is needed after the expiration of a 60-day trial 
license.
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Figure 4-2   Red Hat OpenShift Cluster Manager website, reduced output for better readability

Downloading Red Hat OpenShift installation files
We prepared the OCP on Power installation by following step 1 that is shown in Figure 4-2 by 
downloading the required OCP installation files (installer, OpenShift client [oc], and RHEL 
CoreOS [RHCOS] ISO and RAW image files) to our bastion node, as shown in Example 4-9.

Example 4-9   Downloading the installation files

[root@i7PFE7 OCP_install]# wget --no-check-certificate 
https://mirror.openshift.com/pub/openshift-v4/ppc64le/clients/ocp/latest-4.3/openshift-install-linux.tar.gz
[root@i7PFE7 OCP_install]# wget --no-check-certificate 
https://mirror.openshift.com/pub/openshift-v4/ppc64le/clients/ocp/latest-4.3/openshift-client-linux.tar.gz
[root@i7PFE7 OCP_install]# wget --no-check-certificate 
https://mirror.openshift.com/pub/openshift-v4/ppc64le/dependencies/rhcos/4.3/latest/rhcos-installer.ppc64le
.iso
[root@i7PFE7 OCP_install]# wget --no-check-certificate 
https://mirror.openshift.com/pub/openshift-v4/ppc64le/dependencies/rhcos/4.3/latest/rhcos-metal.ppc64le.raw
.gz
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From the Red Hat OpenShift Cluster Manager web page (see Figure 4-2 on page 55), we 
download the pull-secret text file to our local PC and transfer it by using Secure Copy to the 
bastion node.

By using the tar xvf <filename> command, we extract the OpenShift installation program 
and move it to a directory in the /usr/local/bin path.

We also extract the OpenShift client (oc, and kubectl) and move it to a location in our 
/usr/local/bin path.

By using the oc version command, we perform a quick check for the use of the OpenShift 
client:

[root@i7PFE7 OCP_install]# oc version
Client Version: 4.3.40

Creating an SSH key pair
We generate an SSH public/private key to be used for SSH access by using the core user to 
the master nodes for debugging and disaster recovery purposes, as shown in Example 4-10.

Example 4-10   SSH key pair

[root@i7PFE7 ~]# ssh-keygen -t rsa -b 4096 -N '' -f ~/.ssh/id_rsa
Generating public/private rsa key pair.
Created directory '/root/.ssh'.
Your identification has been saved in /root/.ssh/id_rsa.
Your public key has been saved in /root/.ssh/id_rsa.pub.

The generated SSH public key also must be provided to the OpenShift installation program.

Creating an installation configuration file
We copy the sample install-config.yaml file that is provided by Red Hat on the OCP 
installation web page into our previously created installation directory (/OPC_install) on the 
bastion node that is holding the unique assets for each OpenShift cluster installation. 

The customized install-config.yaml file for our specific environment includes the 
downloaded pull-secret and ssh-key that were copied as text into the file. The changes are 
highlighted in blue in Example 4-11.

Example 4-11   Configuration example, example is truncated for better readability

[root@i7PFE7 OCP_install]# cat install-config.yaml
apiVersion: v1
baseDomain: sle.kelsterbach.de.ibm.com
compute:
- hyperthreading: Enabled
  name: worker
  replicas: 0
controlPlane:
  hyperthreading: Enabled
  name: master
  replicas: 3
metadata:
  name: ocp-ats
networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
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    hostPrefix: 23
  networkType: OpenShiftSDN
  serviceNetwork:
  - 172.30.0.0/16
platform:
  none: {}
fips: false
pullSecret: '{"auths":{"cloud.openshift.com":{"auth": ...}'
sshKey: 'ssh-rsa ...'

We suggest creating a backup of the install-config.yaml file because it is deleted 
automatically after installation.

Configuring the DNS server
A DNS server configuration is required to resolve Red Hat OCP cluster records, such as 
<component>.<cluster_name>.<base_domain>.

For more information about the required DNS server configuration. see the Red Hat OCP on 
Power installation documentation that is available at this web page.

Figure 4-3 shows the required DNS configuration (from the example of our Windows DNS 
Manager) for our new Red Hat OCP on Power cluster environment.

Figure 4-3   DNS-Manager

Figure 4-4 shows the DNS configuration of the ocp-ats/_tcp tree.

Figure 4-4   DNS ocp-ats/_tcp information
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The following steps show the configuration on our bastion node for name resolution with our 
previously configured existing DNS server:

1. Install dnsmasq as a lightweight DNS forwarder and of the bind-utils package with DNS 
query utilities, such as nslookup:

[root@i7PFE7 etc]# ibm-yum.sh install dnsmasq
[root@i7PFE7 etc]# ibm-yum.sh install bind-utils

2. Create the following dnsmasq configuration files to point to our DNS server:

[root@i7PFE7 dnsmasq.d]# cat /etc/NetworkManager/conf.d/ocp-ats.conf
[main]
dns=dnsmasq

[root@i7PFE7 dnsmasq.d]# cat /etc/NetworkManager/dnsmasq.d/01-ocp-ats.conf
server=/.ocp-ats.sle.kelsterbach.de.ibm.com/10.11.15.151

3. Restart NetworkManager to make the changes effective and to verify the new DNS 
resolution:

[root@i7PFE7 dnsmasq.d]# systemctl reload NetworkManager

We verify the DNS resolution by running ping and nslookup against our DNS registration for 
the Kubernetes API server, as shown in Example 4-12.

Example 4-12   DNS Verification

[root@i7PFE7 ~]# ping api.ocp-ats.sle.kelsterbach.de.ibm.com
PING i8rhel.ocp-ats.sle.kelsterbach.de.ibm.com (10.11.12.124) 56(84) bytes of data.
64 bytes from i7pfe7.mainz.de.ibm.com (10.11.12.124): icmp_seq=1 ttl=64 time=0.020 ms
64 bytes from i7pfe7.mainz.de.ibm.com (10.11.12.124): icmp_seq=2 ttl=64 time=0.007 ms
64 bytes from i7pfe7.mainz.de.ibm.com (10.11.12.124): icmp_seq=3 ttl=64 time=0.011 ms

--- i8rhel.ocp-ats.sle.kelsterbach.de.ibm.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 33ms
rtt min/avg/max/mdev = 0.007/0.012/0.020/0.006 ms

[root@i7PFE7 ~]# nslookup api.ocp-ats.sle.kelsterbach.de.ibm.com
Server:         127.0.0.1
Address:        127.0.0.1#53

Non-authoritative answer:
api.ocp-ats.sle.kelsterbach.de.ibm.com  canonical name = 
i8rhel.ocp-ats.sle.kelsterbach.de.ibm.com.
Name:   i8rhel.ocp-ats.sle.kelsterbach.de.ibm.com
Address: 10.11.12.124

Configuring the load balancer
A Red Hat OCP cluster requires a load balancer for the Kubernetes API server and machine 
configuration server that is running on the master nodes and for application HTTP/HTTPs 
ingress traffic on the worker nodes.

The following steps show the installation and configuration of a load balancer on our bastion 
node:

1. Install HAproxy as the load balancer for our test environment:

[root@i7PFE7 dnsmasq.d]# ibm-yum.sh install haproxy
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For configuring the HAProxy, we referred to the OpenShift installation experience example 
that is available at this web page.

2. To make available the HAProxy statistics by using its GUI., add a “listen stats” section to 
the haproxy.cfg configuration file with specifying port 9000 for the HAProxy GUI. The 
needed changes are marked in blue in Example 4-13.

Example 4-13   Configuration file haproxy.cfg

[root@i7PFE7 haproxy]# cat /etc/haproxy/haproxy.cfg
listen ingress-http

    bind *:80
    mode tcp

    server worker0 10.11.12.83:80 check
    server worker1 10.11.12.84:80 check
    
listen ingress-https

    bind *:443
    mode tcp

    server worker0 10.11.12.83:443 check
    server worker1 10.11.12.84:443 check
    
listen api

    bind *:6443
    mode tcp

    server bootstrap 10.11.12.80:6443 check
    server master0 10.11.12.81:6443 check
    server master1 10.11.12.82:6443 check
    server master2 10.11.12.55:6443 check

listen api-int

    bind *:22623
    mode tcp

    server bootstrap 10.11.12.80:22623 check
    server master0 10.11.12.81:22623 check
    server master1 10.11.12.82:22623 check
    server master2 10.11.12.55:22623 check

listen stats
    bind :9000
    mode http
    stats enable
    stats uri /
    monitor-uri /healthz
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On our bastion node, we display the used network ports by using the ss command and can 
confirm that the wanted port 8080 for our HTTP Server is unused, as shown in Example 4-14.

Example 4-14   Sockets information list, check that port 8080 is unused

[root@i7PFE7 haproxy]# ss -tulnp
Netid     State      Recv-Q     Send-Q         Local Address:Port          Peer Address:Port
udp       UNCONN     0          0                    0.0.0.0:42679              0.0.0.0:*        users:(("dnsmasq",pid=278736,fd=14))
udp       UNCONN     0          0                  127.0.0.1:53                 0.0.0.0:*        users:(("dnsmasq",pid=278736,fd=4))
udp       UNCONN     0          0                  127.0.0.1:323                0.0.0.0:*        users:(("chronyd",pid=1295,fd=5))
udp       UNCONN     0          0                      [::1]:323                   [::]:*        users:(("chronyd",pid=1295,fd=6))
tcp       LISTEN     0          32                 127.0.0.1:53                 0.0.0.0:*        users:(("dnsmasq",pid=278736,fd=5))
tcp       LISTEN     0          128                  0.0.0.0:22                 0.0.0.0:*        users:(("sshd",pid=1342,fd=5))
tcp       LISTEN     0          128                     [::]:22                    [::]:*        users:(("sshd",pid=1342,fd=7))

Port 80 is used by our HAProxy load balancer; therefore, we modify the HTTP listening port 
from 80 to 8080 by modifying the /etc/httpd/conf/httpd.conf file:

[root@i7PFE7 haproxy]# vi /etc/httpd/conf/httpd.conf
...
Listen 8080
...

Starting the HTTP Server
As shown in Example 4-15, we use several systemctl commands to start our Apache HTTP 
Server, check its status to confirm it is active, and enable it to automatically start at system 
start

Example 4-15   Starting and enabling HTTP Server (some output lines omitted for readability)

[root@i7PFE7 ~]# systemctl start httpd
[root@i7PFE7 ~]# systemctl status httpd
...

Active: active (running) since Thu 2020-10-15 12:43:03 CEST; 
...

Nov 22 03:11:02 i7PFE7 httpd[1277]: Server configured, listening on: port 8080
...
[root@i7PFE7 ~]# systemctl enable httpd

Starting the load balancer (HAProxy)
In our test environment, we changed the SELinux Boolean configuration for HAProxy to serve 
on any port and disabled the firewall:

[root@i7PFE7 haproxy]# setsebool -P haproxy_connect_any on
[root@i7PFE7 haproxy]# systemctl stop firewalld
[root@i7PFE7 haproxy]# systemctl disable firewalld

Note: For a production environment, disabling the firewall is not suitable; therefore, we 
suggest to specifically add the network ports that are used by HAProxy to the SELinux 
firewall configuration by using the firewall-cmd according to the example from the 
referenced OpenShift installation experience website.
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To make our changes to the HAProxy configuration effective, we restart HAProxy, verify that is 
active, and enable its automatic start at system start by using the systemctl commands, as 
shown in Example 4-16.

Example 4-16   Starting and enabling the proxy server (some output lines are omitted for brevity)

[root@i7PFE7 ~]# systemctl start haproxy
[root@i7PFE7 ~]# systemctl status haproxy
haproxy.service - HAProxy Load Balancer

   Loaded: loaded (/usr/lib/systemd/system/haproxy.service; enabled; vendor preset: 
disabled)
   Active: active (running) since Fri 2020-10-16 15:44:38 CEST;
 Main PID: 36323 (haproxy)
    Tasks: 2 (limit: 22150)
   Memory: 28.3M
   CGroup: /system.slice/haproxy.service
           ••36323 /usr/sbin/haproxy -Ws -f /etc/haproxy/haproxy.cfg -p /run/haproxy.pid
           ••36324 /usr/sbin/haproxy -Ws -f /etc/haproxy/haproxy.cfg -p /run/haproxy.pid

...
Oct 16 15:44:38 i7PFE7 systemd[1]: Started HAProxy Load Balancer.

[root@i7PFE7 ~]# systemctl enable haproxy

By using a web browser that is pointing to the IP address and listening port 9000 of our 
HAProxy server, we check whether the HAProxy GUI responds on port 9000, as shown in 
Figure 4-5.

Figure 4-5   HAProxy GUI information
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Similarly, we point our web browser to the IP address of our Apache HTTP Server that uses 
port 8080 to verify that our HTTP Server is serving on port 8080, as shown in Figure 4-6.

Figure 4-6   Apache test page

Preparing the image files for starting the cluster nodes
We transfer the RHCOS ISO image file rhcos-installer.ppc64le.iso to our VIOS media 
repository that is hosted by the default directory /var/vio/VMLibrary for initial start and 
RHCOS installation of the cluster nodes.

For each cluster node (that is, 1 bootstrap, 3 masters, and 2 worker nodes), our LPAR 
configuration includes a virtual SCSI client adapter that is paired with a virtual SCSI server 
adapter on VIOS for hosting the ISO image. That image is loaded into a file-backed optical 
device by using the VIOS loadopt command.

Our Apache HTTP Server’s root directory is /var/www/html, as configured in the 
/etc/httpd/conf/httpd.conf configuration file. Also, we upload the RHCOS RAW image to 
the Apache HTTP Server’s root document directory:

[root@i7PFE7 OCP_install]# cp rhcos-metal.ppc64le.raw.gz /var/www/html
[root@i7PFE7 OCP_install]# ls -l /var/www/html
total 853480
-rw-r--r--. 1 root root 873960908 Oct 14 14:41 rhcos-metal.ppc64le.raw.gz

We verified from a browser pointing to the Apache HTTP Server 
(http://10.11.12.124:8080/rhcos-metal.ppc64le.raw.gz) that the raw image file is 
accessible.

Creating the Kubernetes manifest and ignition files
Within the installation directory of our bastion node, we proceed with creating the Kubernetes 
manifest files:

[root@i7PFE7 OCP_install]# OpenShift-install create manifests 
--dir=/OCP_install
INFO Consuming Install Config from target directory
WARNING Making control-plane schedulable by setting MastersSchedulable to true 
for Scheduler cluster settings
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In accordance with the official Red Hat OCP on Power installation instructions, we modify the 
/OCP_install/manifests/cluster-scheduler-02-config.yml manifest file to set 
“mastersSchedulable: false” to prevent Pods from being scheduled on the control plane 
(master) nodes:

[root@i7PFE7 OCP_install]# sed -i 's/mastersSchedulable: 
true/mastersSchedulable: false/g' manifests/cluster-scheduler-02-config.yml

We proceed with creating the Kubernetes ignition files that are used for creation of the cluster 
nodes:

[root@i7PFE7 OCP_install]# OpenShift-install create ignition-configs 
--dir=/OCP_install
INFO Consuming Master Machines from target directory
INFO Consuming Worker Machines from target directory
INFO Consuming Common Manifests from target directory
INFO Consuming OpenShift Manifests from target directory
INFO Consuming OpenShift Install (Manifests) from target directory

The ignition files are copied to the Apache HTTP Server's root directory:

[root@i7PFE7 OCP_install]# ls *.ign
bootstrap.ign  master.ign  worker.ign
[root@i7PFE7 OCP_install]# cp *.ign /var/www/html

Read permission is added to the ignition files for “others”:

[root@i7PFE7 OCP_install]# chmod 644 /var/www/html/*.ign

We also verified from a browser pointing to our HTTP Server 
(http://10.11.12.124:8080/bootstrap.ign) that the files are accessible.

Creating the RHCOS nodes by using the bootstrap process
We activate our bootstrap node from the HMC command line by using the booting into 
System Management Services (SMS) mode:

chsysstate -r lpar -m Server-9119-MME-SN103E855 -o on -f default -b sms -n 
i8Bootstrap

In SMS, we select the installation device to be the DVD drive of the virtual SCSI adapter (with 
the mapped ISO image) and exit SMS, as shown in Example 4-17.

Example 4-17   System Management Services Interface

Version FW860.81 (SC860_215)
 SMS (c) Copyright IBM Corp. 2000,2016 All rights reserved.
-------------------------------------------------------------------------------
 Main Menu
 1.   Select Language
 2.   Setup Remote IPL (Initial Program Load)
 3.   I/O Device Information
 4.   Select Console
 5.   Select Boot Options

 -------------------------------------------------------------------------------
 Navigation Keys:

 X = eXit System Management Services
 -------------------------------------------------------------------------------
Type menu item number and press Enter or select Navigation key:5
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We continue to select the following SMS menu options:

 1.   Select Install/Boot Device
 2.   CD/DVD
 1.   SCSI
 1.          U9119.MME.103E855-V17-C40-T1   /vdevice/v-scsi@30000028
 1.        -      SCSI CD-ROM
        ( loc=U9119.MME.103E855-V17-C40-T1-L8100000000000000 )
 2.   Normal Mode Boot
 1.   Yes

On the partition console that displays the Linux boot loader (GRUB) menu with “Install RHEL 
CoreOS”, we select e within the 60 seconds time-out limit and add the Kernel boot 
parameters that are specific to each node regarding the IP address and ignition file, as 
described next for the bootstrap node.

Kernel boot parameters added for the bootstrap node, as shown in Figure 4-7:

coreos.inst.install_dev=sda 
coreos.inst.image_url=http://10.11.12.124:8080/rhcos-metal.ppc64le.raw.gz 
coreos.inst.ignition_url=http://10.11.12.124:8080/bootstrap.ign 
ip=10.11.12.80::10.11.12.1:255.255.240.0:::none nameserver=10.11.15.151

Figure 4-7   Bootstrap information
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After adding the kernel boot parameters, we press Ctrl-x to start the RHCOS installation. A 
disk image is written to the node’s boot volume, as shown in Figure 4-8, and the node is 
automatically restarted.

Figure 4-8   Bootstrap progress

When the partition restarts, we enter SMS by selecting 1 to change the boot list to the 
partition’s hard disk drive with the installed RHCOS.

After the bootstrap node is completed, it restarts and we can ssh to log into it without a 
password by using the core user. This user uses the previously provided ssh key pair; for 
example, to display some logs. 

The first ssh connection to the bootstrap node is shown in Example 4-18.

Example 4-18   ssh to the bootstrap node

[root@i7PFE7 html]# ssh core@10.11.12.80
The authenticity of host '10.11.12.80 (10.11.12.80)' can't be established.
ECDSA key fingerprint is SHA256:t8YEzAReBTp59fZqWkX7ymimTFtOC9KYdisUcuuuFuw.
Are you sure you want to continue connecting (yes/no/[fingerprint])? y
Please type 'yes', 'no' or the fingerprint: yes
Warning: Permanently added '10.11.12.80' (ECDSA) to the list of known hosts.
Red Hat Enterprise Linux CoreOS 45.82.202007151158-0
  Part of OpenShift 4.5, RHCOS is a Kubernetes native operating system
  managed by the Machine Config Operator (`clusteroperator/machine-config`).

WARNING: Direct SSH access to machines is not recommended; instead,
make configuration changes via `machineconfig` objects:
  
https://docs.openshift.com/container-platform/4.5/architecture/architecture-rhcos.
html

---
This is the bootstrap node; it will be destroyed when the master is fully up.
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The primary services are release-image.service followed by bootkube.service. To 
watch their status, run e.g.

  journalctl -b -f -u release-image.service -u bootkube.service

In our HAProxy load balancer GUI, we can see that the bootstrap node is responding to 
requests because its line is marked in green, as shown in Figure 4-9.

Figure 4-9   Bootstrap information

After the bootstrap node becomes operational, we also start our three master and two worker 
nodes by booting into SMS from the HMC command line, as shown in Example 4-19.

Example 4-19   HMC commands

chsysstate -r lpar -m Server-9119-MME-SN103E855 -o on -f default -b sms -n i8Master1
chsysstate -r lpar -m Server-9119-MME-SN103E855 -o on -f default -b sms -n i8Master2
chsysstate -r lpar -m Server-9119-MME-SN103E855 -o on -f default -b sms -n i8Master3
chsysstate -r lpar -m Server-9119-MME-SN103E855 -o on -f default -b sms -n i8Worker1
chsysstate -r lpar -m Server-9119-MME-SN103E855 -o on -f default -b sms -n i8Worker2

Form the console of each of the five nodes, we select their respective virtual SCSI adapter 
with the mapped RHCOS ISO image as the install/boot device and add the Kernel 
parameters specific for each node:

� For master1:

coreos.inst.install_dev=sda 
coreos.inst.image_url=http://10.11.12.124:8080/rhcos-metal.ppc64le.raw.gz 
coreos.inst.ignition_url=http://10.11.12.124:8080/master.ign 
ip=10.11.12.81::10.11.12.1:255.255.240.0:::none nameserver=10.11.15.151

� For master2:

coreos.inst.install_dev=sda 
coreos.inst.image_url=http://10.11.12.124:8080/rhcos-metal.ppc64le.raw.gz 
coreos.inst.ignition_url=http://10.11.12.124:8080/master.ign 
ip=10.11.12.82::10.11.12.1:255.255.240.0:::none nameserver=10.11.15.151
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� For master3:

coreos.inst.install_dev=sda 
coreos.inst.image_url=http://10.11.12.124:8080/rhcos-metal.ppc64le.raw.gz 
coreos.inst.ignition_url=http://10.11.12.124:8080/master.ign 
ip=10.11.12.55::10.11.12.1:255.255.240.0:::none nameserver=10.11.15.151

� For worker1:

coreos.inst.install_dev=sda 
coreos.inst.image_url=http://10.11.12.124:8080/rhcos-metal.ppc64le.raw.gz 
coreos.inst.ignition_url=http://10.11.12.124:8080/worker.ign 
ip=10.11.12.83::10.11.12.1:255.255.240.0:::none nameserver=10.11.15.151

� For worker2:

coreos.inst.install_dev=sda 
coreos.inst.image_url=http://10.11.12.124:8080/rhcos-metal.ppc64le.raw.gz 
coreos.inst.ignition_url=http://10.11.12.124:8080/worker.ign 
ip=10.11.12.84::10.11.12.1:255.255.240.0:::none nameserver=10.11.15.151

For each of the worker and master node, we press Ctrl-x to start the installer, which reaches 
out to our HTTP Server and to quay.io to download container images and build the etcd 
cluster. The requests are handled by our HAProxy load balancer and the Kubernetes API 
server in the background.

As we saw for installing the bootstrap node, each node automatically reboots after writing the 
disk image.

If a node does not reboot from the installed disk, change the boot order by using SMS to the 
disk so it does not restart from the DVD ISO image.

Completing and verifying the Red Hat OpenShift cluster installation
The bootstrap process can be monitored after starting the installer.

Monitoring the bootstrap cluster installation progress
We run the following OpenShift-install command and watch for the message about the API 
service being “up”. We also watch for the bootstrap status completion message, as shown 
and highlighted in Example 4-20. 

Example 4-20   OpenShift wait for bootstrap competition

[root@i7PFE7 OCP_install]# OpenShift-install wait-for bootstrap-complete 
--log-level=debug
DEBUG OpenShift Installer 4.3.40
DEBUG Built from commit 43f11cfb64edafaed1941327526efd373a829b63
INFO Waiting up to 30m0s for the Kubernetes API at 
https://api.ocp-ats.sle.kelsterbach.de.ibm.com:6443...
DEBUG Still waiting for the Kubernetes API: Get 
https://api.ocp-ats.sle.kelsterbach.de.ibm.com:6443/version?timeout=32s: EOF
DEBUG Still waiting for the Kubernetes API: the server could not find the 
requested resource
...

Note: You must create the bootstrap and control plane (master) machines now. If the 
control plane machines are not made schedulable, you must also create at least two 
compute (worker) machines before you install the cluster.
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DEBUG Still waiting for the Kubernetes API: the server could not find the 
requested resource
DEBUG Still waiting for the Kubernetes API: Get 
https://api.ocp-ats.sle.kelsterbach.de.ibm.com:6443/version?timeout=32s: EOF
INFO API v1.16.2+853223d up
INFO Waiting up to 30m0s for bootstrapping to complete...
DEBUG Bootstrap status: complete
INFO It is now safe to remove the bootstrap resources

If the bootstrap process failed, the installation logs can gathered for more analysis:

[root@i7PFE7 OCP_install]# OpenShift-install gather bootstrap 
--dir=/OCP_install --bootstrap 10.11.12.80 --master 10.11.12.81 --master 
10.11.12.82 --master 10.11.12.55

With the bootstrap status complete, we can power down the bootstrap node, which is not 
required for setting up the worker nodes:

[root@i7PFE7 ~]# ssh core@10.11.12.80 sudo poweroff

Checking the login to the new cluster
We check the login to our new OCP cluster with the default system by setting the 
authentication for the cluster administrator kubeadmin to use the OpenShift client by exporting 
the cluster's “kubeconfig” file:

[root@i7PFE7 OCP_install]# export KUBECONFIG=/OCP_install/auth/kubeconfig

The oc command whoami shows the current user:

[root@i7PFE7 OCP_install]# oc whoami
system:admin

Approving all pending certificate requests
By using the oc get nodes command, we can display which nodes joined the cluster, as 
shown in Example 4-21.

Example 4-21   cluster node information

[root@i7PFE7 OCP_install]# oc get nodes
NAME                                           STATUS   ROLES    AGE     VERSION
i8master1.ocp-ats.sle.kelsterbach.de.ibm.com   Ready    master   6m54s   v1.16.2+853223d
i8master2.ocp-ats.sle.kelsterbach.de.ibm.com   Ready    master   6m47s   v1.16.2+853223d
i8master3.ocp-ats.sle.kelsterbach.de.ibm.com   Ready    master   6m47s   v1.16.2+853223d
i8worker1.ocp-ats.sle.kelsterbach.de.ibm.com   Ready    worker   7m1s    v1.16.2+853223d
i8worker2.ocp-ats.sle.kelsterbach.de.ibm.com   Ready    worker   6m19s   v1.16.2+853223d

Note: This statement can also be added to the.bashrc file in the user’s home directory so 
that it is automatically set for each login session.

Note: If worker nodes were missing from the cluster, we review and approve any pending 
certificate signing requests by using the oc get csr command.
68 Using the IBM Block Storage CSI Driver in a Red Hat OpenShift Environment



Example 4-22 shows the approval process.

Example 4-22   Approval of a node certificate

[root@i7PFE7 OCP_install]# oc get csr
NAME        AGE     SIGNERNAME                                    REQUESTOR                                                                   
CONDITION
csr-9kpz9   13m     kubernetes.io/kube-apiserver-client-kubelet   
system:serviceaccount:OpenShift-machine-config-operator:node-bootstrapper   Approved,Issued
csr-cd2ss   13m     kubernetes.io/kube-apiserver-client-kubelet   
system:serviceaccount:OpenShift-machine-config-operator:node-bootstrapper   Approved,Issued
csr-llsw4   13m     kubernetes.io/kubelet-serving                 
system:node:i8master2.ocp-ats.sle.kelsterbach.de.ibm.com                    Approved,Issued
csr-r8lvk   13m     kubernetes.io/kube-apiserver-client-kubelet   
system:serviceaccount:OpenShift-machine-config-operator:node-bootstrapper   Approved,Issued
csr-sm4d9   13m     kubernetes.io/kubelet-serving                 
system:node:i8master1.ocp-ats.sle.kelsterbach.de.ibm.com                    Approved,Issued
csr-v789z   2m34s   kubernetes.io/kube-apiserver-client-kubelet   
system:serviceaccount:OpenShift-machine-config-operator:node-bootstrapper   Pending
csr-wm6rt   13m     kubernetes.io/kubelet-serving                 
system:node:i8master3.ocp-ats.sle.kelsterbach.de.ibm.com                    Approved,Issued
csr-xj25d   2m42s   kubernetes.io/kube-apiserver-client-kubelet   
system:serviceaccount:OpenShift-machine-config-operator:node-bootstrapper   Pending

[root@i7PFE7 OCP_install]# oc get csr -o go-template='{{range .items}}{{if not 
.status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
certificatesigningrequest.certificates.k8s.io/csr-v789z approved
certificatesigningrequest.certificates.k8s.io/csr-xj25d approved

The certification approval that is shown in Example 4-22 on page 69 might need to be 
repeated if worker nodes joined the cluster but did not yet reach “Ready” status.

Example 4-23   MTU parameter setting (command for the first master node only is shown)

# ssh to a node or worker
[root@i7PFE7 ~]# ssh core@i8master1

# run command 
[core@i8master1 ~]$ if lsmod | grep -q 'ibmveth'; then
      sudo sysctl -w net.ipv4.route.min_pmtu=1450;
      sudo sysctl -w net.ipv4.ip_no_pmtu_disc=1;
      echo 'net.ipv4.route.min_pmtu = 1450' | sudo tee --append /etc/sysctl.d/88-sysctl.conf > /dev/null;
      echo 'net.ipv4.ip_no_pmtu_disc = 1' | sudo tee --append /etc/sysctl.d/88-sysctl.conf > /dev/null;
fi

# check the result
[core@i8master1 ~]$ if [[ -f /etc/sysctl.d/88-sysctl.conf ]]; then cat /etc/sysctl.d/88-sysctl.conf; fi
net.ipv4.route.min_pmtu = 1450
net.ipv4.ip_no_pmtu_disc = 1

PowerVM users: To prevent packet drops in a PowerVM inter-partition VLAN and SEA 
network environment, run the if lsmod ... fi command (see Example 4-23) immediately 
after bootstrapping completes. Running this command changes the kernel parameters with 
the \MTU settings on each master and worker node that we accessed by using ssh as core 
user.
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We can watch the remaining steps of the cluster installation by using the OpenShift-install 
wait-for install-complete command, as shown in Example 4-24.

Example 4-24   Wait for the installation to complete

[root@i7PFE7 OCP_install]# OpenShift-install wait-for install-complete 
--log-level=debug
DEBUG OpenShift Installer 4.3.40
DEBUG Built from commit 43f11cfb64edafaed1941327526efd373a829b63
DEBUG Fetching Install Config...
DEBUG Loading Install Config...
DEBUG   Loading SSH Key...
DEBUG   Loading Base Domain...
DEBUG     Loading Platform...
DEBUG   Loading Cluster Name...
DEBUG     Loading Base Domain...
DEBUG     Loading Platform...
DEBUG   Loading Pull Secret...
DEBUG   Loading Platform...
DEBUG Using Install Config loaded from state file
DEBUG Reusing previously-fetched Install Config
INFO Waiting up to 30m0s for the cluster at 
https://api.ocp-ats.sle.kelsterbach.de.ibm.com:6443 to initialize...
DEBUG Still waiting for the cluster to initialize: Multiple errors are preventing 
progress:
* Could not update oauthclient "console" (292 of 498): the server is down or not 
responding
...
DEBUG Still waiting for the cluster to initialize: Working towards 4.3.40: 81% 
complete
DEBUG Still waiting for the cluster to initialize: Working towards 4.3.40: 96% 
complete
DEBUG Still waiting for the cluster to initialize: Working towards 4.3.40: 97% 
complete
DEBUG Still waiting for the cluster to initialize: Working towards 4.3.40: 99% 
complete
DEBUG Still waiting for the cluster to initialize: Working towards 4.3.40: 99% 
complete, waiting on marketplace, monitoring
DEBUG Still waiting for the cluster to initialize: Working towards 4.3.40: 100% 
complete
DEBUG Cluster is initialized
INFO Waiting up to 10m0s for the OpenShift-console route to be created...
DEBUG Route found in OpenShift-console namespace: console
DEBUG Route found in OpenShift-console namespace: downloads
DEBUG OpenShift console route is created
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export 
KUBECONFIG=/OCP_install/auth/kubeconfig'
INFO Access the OpenShift web-console here: 
https://console-openshift-console.apps.ocp-ats.sle.kelsterbach.de.ibm.com
INFO Login to the console with user: kubeadmin, password: pCjrI-7qn79-VgAgB-BvIqV

Note: The web console URL can also be displayed by using the oc whoami 
--show-console command.
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We verify that all cluster operators are in available state by running the oc get co (where co is 
the short name for clusteroperators) command, as shown in Example 4-25.

Example 4-25   Cluster operator availability

[root@i7PFE7 ~]# oc get clusteroperators
NAME                                       VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE
authentication                             4.3.40    True        False         False      8m15s
cloud-credential                           4.3.40    True        False         False      22m
cluster-autoscaler                         4.3.40    True        False         False      5m50s
console                                    4.3.40    True        False         False      5m57s
dns                                        4.3.40    True        False         False      19m
image-registry                             4.3.40    True        False         False      16m
ingress                                    4.3.40    True        False         False      13m
insights                                   4.3.40    True        False         False      16m
kube-apiserver                             4.3.40    True        False         False      18m
kube-controller-manager                    4.3.40    True        False         False      18m
kube-scheduler                             4.3.40    True        False         False      18m
machine-api                                4.3.40    True        False         False      16m
machine-config                             4.3.40    True        False         False      19m
marketplace                                4.3.40    True        False         False      3m20s
monitoring                                 4.3.40    True        False         False      4s
network                                    4.3.40    True        False         False      21m
node-tuning                                4.3.40    True        False         False      17m
OpenShift-apiserver                        4.3.40    True        False         False      8m13s
OpenShift-controller-manager               4.3.40    True        False         False      18m
OpenShift-samples                          4.3.40    True        False         False      5m42s
operator-lifecycle-manager                 4.3.40    True        False         False      17m
operator-lifecycle-manager-catalog         4.3.40    True        False         False      17m
operator-lifecycle-manager-packageserver   4.3.40    True        False         False      16m
service-ca                                 4.3.40    True        False         False      21m
service-catalog-apiserver                  4.3.40    True        False         False      17m
service-catalog-controller-manager         4.3.40    True        False         False      17m
storage                                    4.3.40    True        False         False      15m

Figure 4-10 shows the web console of our new Red Hat OCP cluster, which displays the 
dashboards view after logging in with the kubeadmin user.

Figure 4-10   New Red Hat OCP cluster
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To more information about installing the IBM CSI driver for an IBM Power Systems Red Hat 
OCP cluster for provisioning persistent storage from IBM Spectrum Virtualize-based SAN 
block storage systems for stateful containerized applications, see 4.3, “CSI deployment on 
IBM Power by using the command-line interface”.

4.3  CSI deployment on IBM Power by using the command-line 
interface

This section describes the installation of the IBM block storage CSI driver on IBM Power using 
Red Hat OpenShift version 4.3 and IBM block storage CSI driver 1.3.0. You should always 
check the supported operating system and the supported driver version before beginning the 
installation of the CSI driver as shown in Appendix B, “Container Storage Interface support 
matrix” on page 131. The examples for worker nodes that are used in this section use Red 
Hat Core OS (RHCOS).

This section describes the following steps:

1. Configuring the storage system

2. Configuring the multipath driver on the worker nodes

3. Installing the driver using CLI

4. Configuring the CSI driver using the CLI:

a. Creating an array secret
b. Creating storage classes
c. Creating a PersistentVolumeClaim (PVC)
d. Creating a StatefulSet

Before beginning the installation of the CSI driver, you should verify that you comply with the 
prerequisites that are listed in the section Compatibility and requirements of the CSI 1.3 
documentation that is available at this IBM Documentation web page.

That section describes the needed open ports on the Red Hat Core OS firewall, and 
packages.

Note: For building and deploying your own applications following the Red Hat OCP cluster 
installation, a local image registry still must be configured on persistent ReadWriteMany 
(RWX) storage; for example, provided by OpenShift Container Storage, object storage, or 
NFS.
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4.3.1  Configuring the storage system

The OpenShift environment setup for our example uses two IBM Power worker nodes: 
i8Worker1 and i8Worker2. The FC worldwide ports names can be retrieved by using the 
Hardware Management Console (HMC) of the Power Systems server. In our configuration, a 
FlashSystem 9110 is used, as shown in Example 4-26.

Example 4-26   Spectrum Virtualize command to create the IBM Power hosts

superuser>mkhost -fcwwpn C05076082D8201AA:C05076082D8201AC -iogrp 0 -name 
i8Worker1 -protocol scsi -site 1 -type generic
Host, id [7], successfully created

superuser>mkhost -fcwwpn C05076082D8201AE:C05076082D8201B0 -iogrp 0 -name 
i8Worker2 -protocol scsi -site 1 -type generic
Host, id [8], successfully created

The created hosts can be seen in the FlashSystem 9110 GUI, as shown in Figure 4-11.

Figure 4-11   Storage System list of IBM Power workers

The SAN configuration must be updated and the worker nodes must be zoned to the storage 
system.

4.3.2  Configuring the multipath driver on the worker nodes

Before beginning the installation of the CSI driver, the multipath configuration for the IBM 
storage on the OpenShift Container Platform worker nodes must be created and activated. 
The CSI documentation lists a configuration file that must be saved as 99-ibm-attach.yaml 
on the OpenShift bastion node. The file content is available at this IBM Documentation web 
page.

Example 4-27 lists the first 10 lines of the 99-ibm-attach.yaml file.

Example 4-27   First 10 lines of the 99-ibm-attach.yaml file

[root@i7PFE7 OCP_install]$ head 99-ibm-attach.yaml
apiVersion: machineconfiguration.OpenShift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.OpenShift.io/role: worker

Note: The 99-ibm-attach.yaml configuration file overrides any files that exist on your 
system. Use this file only if the files are not created.

If one or more files were created, edit this yaml file as necessary.
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  name: 99-ibm-attach
spec:
  config:
    ignition:
      version: 2.2.0

A new multipath configuration is created for the worker nodes by using the oc apply 
command, as shown in Example 4-28. The machine configuration shows if the yaml file was 
applied.

Example 4-28   Creation of the multipath configuration

[root@i7PFE7 OCP_install]$ oc apply -f 99-ibm-attach.yaml
machineconfig.machineconfiguration.OpenShift.io/99-ibm-attach created

# Checking the Kubernetes "machineconfig" custom resource to see whether the yaml 
file was accepted:

[root@i7PFE7 OCP_install]$ oc get machineconfig | egrep "NAME|99-ibm-attach"
NAME          GENERATEDBYCONTROLLER  IGNITIONVERSION   CREATED
99-ibm-attach                        2.2.0             15s

The next steps are to check the configuration file on the worker nodes and to check the status 
of the multipath daemon for one node, as shown in Example 4-29.

Example 4-29   Checking the multipath configuration 

# check the multipath configuration
# the output is truncated to the FlashSystem 9100 entry:
[root@i7PFE7 ~]# ssh core@i8Worker1 sudo cat /etc/multipath.conf
devices {
    device {
        vendor "IBM"
        product "2145"
        path_checker tur
        features "1 queue_if_no_path"
        path_grouping_policy group_by_prio
        path_selector "service-time 0" # Used by Red Hat 7.x
        prio alua
        rr_min_io_rq 1
        rr_weight uniform
        no_path_retry "5"
        dev_loss_tmo 120
        failback immediate
   }
}

# check the status of the multipath deamon
# the output is truncated to show the status only
[root@i7PFE7 ~]#  ssh core@i8Worker1 sudo systemctl status multipathd
? multipathd.service - Device-Mapper Multipath Device Controller
   Loaded: loaded (/usr/lib/systemd/system/multipathd.service; enabled; vendor 
preset: enabled)
   Active: active (running) since Thu 2020-11-12 10:17:23 UTC; 5min ago
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The status is active (running); therefore, the multipath configuration was successfully enabled 
on the worker nodes.

4.3.3  Installing the driver by using CLI

This section describes the CSI operator and the CSI driver installation by using the CLI. The 
operator for IBM block storage CSI driver can be installed directly from GitHub. Installing the 
CSI driver is part of the operator installation process. 

Complete the following high-level steps to install the operator and driver by using GitHub 
through a command-line interface. It is always good practice to install a driver in a dedicated 
namespace and never to use the default namespace:

� Create a namespace for the CSI driver
� Download the manifest from GitHub and update the required fields.
� Install the CSI operator
� Install the CSI driver

These steps are described next.

Creating a dedicated namespace for the CSI driver
The dedicated namespace that we use for our installation example of the CSI driver is 
ibm-block-csi. 

Example 4-30 shows the creation of the namespace and how to change the environment to 
the newly generated namespace.

Example 4-30   Dedicated namespace for the CSI driver installation

[root@i7PFE7 OCP_install]# kubectl create ns ibm-block-csi
namespace/ibm-block-csi created

[root@i7PFE7 OCP_install]# oc project ibm-block-csi
Now using project "ibm-block-csi" on sever 
"https://api.ocp-ats.sle.kelsterbach.de.ibm.com:6443".

Installing the CSI operator
Complete the following steps:

1. Download the manifest from GitHub and update the required fields. You can download the 
CSI operator and driver from GitHub, as shown in Example 4-31. Listing the first lines of 
the file shows the driver name ibmblockcsis.csi.ibm.com.

Example 4-31   Preparing the CSI operator installation

[root@i7PFE7 OCP_install]# curl 
https://raw.githubusercontent.com/IBM/ibm-block-csi-operator/v1.3.0/deploy/install
er/generated/ibm-block-csi-operator.yaml > ibm-block-csi-operator.yaml
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100 93893  100 93893    0     0   189k      0 --:--:-- --:--:-- --:--:--  189k

Note: Do not install the CSI operator and driver in the default namespace. You must 
create a dedicated namespace for the CSI operator and driver.
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[root@i7PFE7 OCP_install]# ls -l
total 404
-rw-r--r--. 1 root root  93893 Nov  2 15:08 ibm-block-csi-operator.yaml

[root@i7PFE7 OCP_install]# head -10 ibm-block-csi-operator.yaml
# Code generated by update-installer.sh. DO NOT EDIT.

apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
  name: ibmblockcsis.csi.ibm.com
spec:
  group: csi.ibm.com
  names:
    kind: IBMBlockCSI
[root@i7PFE7 OCP_install]#

The ibm-block-csi-operator.yaml file contains the default namespace, which must be 
changed to the previously created dedicated namespace for the CSI driver. Replace every 
line that includes “namespace: default” with “namespace: ibm-block-csi”.

2. Install the CSI operator and check that the operator is running, as shown in Example 4-32.

Example 4-32   CSI operator installation

[root@i7PFE7]# kubectl -n ibm-block-csi apply -f ibm-block-csi-operator.yaml
customresourcedefinition.apiextensions.k8s.io/ibmblockcsis.csi.ibm.com created
deployment.apps/ibm-block-csi-operator created
clusterrole.rbac.authorization.k8s.io/ibm-block-csi-operator created
clusterrolebinding.rbac.authorization.k8s.io/ibm-block-csi-operator created
serviceaccount/ibm-block-csi-operator created

# Verifying that the CSI operator is running in its pod:

[root@i7PFE7]# kubectl get pod -l app.kubernetes.io/name=ibm-block-csi-operator -n 
ibm-block-csi
NAME                                     READY   STATUS    RESTARTS   AGE
ibm-block-csi-operator-bdfb89bdd-c76gm   1/1     Running   0          2m18s

Installing the CSI driver
Install the IBM block storage CSI driver by creating an IBMBlockCSI custom resource. 
Complete the following steps:

1. Download the manifest from GitHub for the IBM Power architecture and update the 
required fields. You can download the CSI operator and driver from GitHub, as shown in 
Example 4-33. Listing the first lines of the file shows the driver name ibm-block-csi.

Example 4-33   Preparing the CSI driver installation

[root@i7PFE7 OCP_install]# curl 
https://raw.githubusercontent.com/IBM/ibm-block-csi-operator/v1.3.0/deploy/crds/cs
i.ibm.com_v1_ibmblockcsi_cr_ocp.yaml > csi.ibm.com_v1_ibmblockcsi_cr.yaml
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  2211  100  2211    0     0   6263      0 --:--:-- --:--:-- --:--:--  6245

[root@i7PFE7 OCP_install]# ls -l
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-rw-r--r--. 1 root root 2211 Nov 24 23:15 csi.ibm.com_v1_ibmblockcsi_cr.yaml

[root@i7PFE7 OCP_install]# head csi.ibm.com_v1_ibmblockcsi_cr.yaml
apiVersion: csi.ibm.com/v1
kind: IBMBlockCSI
metadata:
  name: ibm-block-csi
  namespace: default

The csi.ibm.com_v1_ibmblockcsi_cr.yaml file contains the default namespace that must 
be changed to the previously created dedicated namespace for the CSI driver. Replace 
every line that contains “namespace: default” with “namespace: ibm-block-csi”.

2. Install the CSI driver and check the operator and driver status, as shown in Example 4-34.

Example 4-34   CSI driver installation

[root@i7PFE7 OCP_install]# kubectl -n ibm-block-csi apply -f csi.ibm.com_v1_ibmblockcsi_cr.yaml
ibmblockcsi.csi.ibm.com/ibm-block-csi created

[root@i7PFE7 OCP_install]# oc get all
NAME                                         READY   STATUS    RESTARTS   AGE
pod/ibm-block-csi-controller-0               5/5     Running   0          1d
pod/ibm-block-csi-node-9rp6n                 3/3     Running   24         1d
pod/ibm-block-csi-node-k7fmh                 3/3     Running   24         1d
pod/ibm-block-csi-operator-bdfb89bdd-hrzgn   1/1     Running   0          1d

NAME                                DESIRED   CURRENT   READY   UP-TO-DATE   AVAILABLE   NODE SELECTOR AGE
daemonset.apps/ibm-block-csi-node   2         2         2       2            2           <none>          1d

NAME                                     READY   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/ibm-block-csi-operator   1/1     1            1 1d

NAME                                               DESIRED   CURRENT   READY   AGE
replicaset.apps/ibm-block-csi-operator-bdfb89bdd   1         1         1 1d

NAME                                        READY   AGE
statefulset.apps/ibm-block-csi-controller   1/1     1d

For issues with a CSI driver pod not reaching a running status, its logs can displayed for 
further analysis by using the oc logs <pod_name> -c <container_name> command. If you 
encounter an error message, such as “spec.drivers[0].nodeID: Invalid value: 
"<value>": must be 128 characters or less”, you must change your worker node setup. 

The nodeID contains the iSCSI qualified name and all the WWPNs of the FC ports. This 
string can exceed the 128 character size limit for the nodeID.

In our test environment, the nodeID exceeded the 128 characters; therefore, we reduced the 
length by removing the IQN and retained all of the WWPNs. 

We safely removed the IQN part of the nodeID by keeping all our WWPNs because we did not 
use iSCSI. To remove the IQN, we renamed the /etc/iscsi/initiatorname.iscsi file on all 
worker nodes and then restarted them. Then, the changed length of the nodeID was fewer 
than 128 characters.

Important: The current CSI driver nodeID is limited to 128 characters. The CSI driver 
installation fails if the nodeID exceeds this limitation.
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For more information about the worker node, run the oc describe node command. 
Example 4-35 shows how to use the command to list the nodeID.

Example 4-35   Node detail information (shown in blue)

[root@i7PFE7 ~]# oc describe node i8worker1 | egrep -a -A1 -i nodeid
Annotations:        csi.volume.kubernetes.io/nodeid:
                      
{"block.csi.ibm.com":"i8worker1.ocp-ats.sle.kelsterbach.de.ibm.com;;c05076082d8201a2:c05076082d8
201a4:c05076082d8201aa:c05076082d8201ac"}

4.3.4  Configuring the CSI driver by using the CLI

After the CSI operator and CSI driver are installed and running, the relevant storage classes 
and secrets must be created. You must create an array secret and storage classes to run 
stateful applications by using IBM block storage systems.

Creating an array secret
Create a storage system secret to define the storage system credentials (user name and 
password) and address.

Create an array secret file by using a template that is available at this IBM Documentation 
web page.

Example 4-36 shows the example file FS9110-secret.yaml with the correct storage system 
address and access credentials. You can run the base64 command to create an encrypted 
password:

[root@i7PFE7 ~]# echo -n "<clear_text_password>" | base64
PGNsZWFyX3RleHRfcGFzc3dvcmQ+

Example 4-36   Array secret file

kind: Secret
apiVersion: v1
metadata:
  name:  fs9110-secret
  namespace: ibm-block-csi
type: Opaque
stringData:
  management_address: 10.11.22.238  # Array management addresses
  username: superuser                          # Array username
data:
  password: RG9Ob3REZWNvZGU=                   # base64 array password

Example 4-37 shows the command that is used to create the array secret.

Example 4-37   Creating the array secret

[root@i7PFE7 OCP_install]# kubectl apply -f FS9110-secret.yaml
secret/fs9110-secret created

Important: When your storage system password is changed, be sure to also change the 
passwords in the corresponding secrets. Otherwise, the passwords are not synchronized 
and a PersistentVolumeClaim cannot be created.
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Figure 4-12 shows the newly created secret in the OpenShift GUI.

Figure 4-12   OpenShift GUI array secrets list

Creating storage classes
Create a storage class for each storage service class to be used as defined by a pool name, 
secret reference, space efficiency, and file system type.

Create a storage class yaml file by using a template that is available at this IBM 
Documentation web page.

The following space efficiency parameters for SpaceEfficiency for the IBM Spectrum 
Virtualize Family are available:

� Thick (default)
� Thin
� Compressed
� Deduplicated

Example 4-38 shows the example file FS9110-storageclass-thin.yaml with the correct 
storage system address, access credentials, and the space efficiency parameter thin.

Example 4-38   Storage class file

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
  name: fs9110-storageclass-thin
provisioner: block.csi.ibm.com
parameters:
  SpaceEfficiency: thin   # Optional.
  pool: Legacy_0

  csi.storage.k8s.io/provisioner-secret-name: fs9110-secret
  csi.storage.k8s.io/provisioner-secret-namespace: ibm-block-csi
  csi.storage.k8s.io/controller-publish-secret-name: fs9110-secret
  csi.storage.k8s.io/controller-publish-secret-namespace: ibm-block-csi

  csi.storage.k8s.io/fstype: xfs # Optional. Values ext4\xfs. The default is ext4.
  volume_name_prefix: ocp-ats   # Optional.
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Example 4-39 shows the command used to create the storage class.

Example 4-39   Creating the storage class

[root@i7PFE7 OCP_install]# kubectl apply -f FS9110-storageclass-thin.yaml
storageclass.storage.k8s.io/fs9110-storageclass-thin created

Figure 4-13 shows a list of the available storage classes in the OpenShift GUI, including the 
storage class that is shown in Example 4-39.

Figure 4-13   OpenShift GUI storage classes list

Creating a PersistentVolumeClaim
Before creating the PVC, we create a namespace for the user workload. A user workload 
does not run in the CSI operator and driver namespace.

The dedicated namespace that is used for the volume and workload examples is fs9110. 

Example 4-40 shows creating a new namespace, including automatically changing the user’s 
environment.

Example 4-40   New namespace for the CSI driver workload examples

[root@i7PFE7 ~]# oc new-project fs9110 --description="FS9110 CSI Driver Testing"
Now using project "fs9110" on server 
"https://api.ocp-ats.sle.kelsterbach.de.ibm.com:6443".

The IBM block storage CSI driver supports the use of file system and raw block volume 
persistent volume claims. By default, a PVC is for a file system type volume. The file system 
type to be used, such as the default ext4 file system or optionally an xfs file system, is 
specified within the created storage class, as shown in Example 4-38 on page 79. 

If you prefer to use raw block volumes instead, you must define the type as Block in the PVC 
file’s volumeMode specification.

Create a PersistentVolumeClaim file by using a template that is available at this IBM 
Documentation web page.

Note: Create a namespace for the user workload. You can use an existing namespace, 
which is different from the default or CSI driver namespace.
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Example 4-41 shows the example file FS9110-secret.yaml with the correct storage class.

Example 4-41   PersistentVolumeClaim file

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: fs9110-pvc-filesystem
spec:
  volumeMode: Filesystem
  accessModes:
  - ReadWriteOnce
  resources:
    requests:
      storage: 1Gi
  storageClassName: fs9110-storageclass-thin

Example 4-42 shows the command that is used to create the PVC.

Example 4-42   Creating the PersistentVolumeClaim

[root@i7PFE7 OCP_install]# kubectl apply -f fs9110-pvc-filesystem.yaml
persistentvolumeclaim/fs9110-pvc-filesystem created

Figure 4-14 shows the newly created PVC and the corresponding Persistent Volume (PV).

Figure 4-14   OpenShift GUI PVC and corresponding PV

The PVC is bound to a volume (as shown in the GUI in Figure 4-14) and can be checked in 
the command line, as shown in Example 4-43.

Example 4-43   Checking the PVC and its PV, output information is truncated for better readability

[root@i7PFE7 ~]# oc get pvc
NAME                    STATUS   VOLUME                                     CAPACITY   ACCESS MODES   STORAGECLASS               AGE
fs9110-pvc-filesystem   Bound    pvc-be213821-a3da-46d5-98a9-475e86427e1f   1Gi        RWO            fs9110-storageclass-thin   10m

[root@i7PFE7 ~]# oc get pv
NAME                                     CAPACITY ACCESS MODES STATUS CLAIM                        STORAGECLASS             REASON AGE
pvc-be213821-a3da-46d5-98a9-475e86427e1f 1Gi      RWO          Bound  fs9110/fs9110-pvc-filesystem fs9110-storageclass-thin        10m
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The storage system volume name is preceded with ocp-ats as defined in the storage class 
that is used and shown in Figure 4-15.

Figure 4-15   FlashSystem 9110 volume created by OpenShift

Creating a StatefulSet
A Kubernetes StatefulSet is the workload API object that is used to manage stateful 
applications, similar to Deployments, which are used for stateless applications. They provide 
a persistent pod identifier that is maintained across pod rescheduling so that new pods that 
are replacing failed pods easily can be matched to the persistent storage volumes. 

For more information, see this web page.

StatefulSets can include volumes with file systems, raw block volume systems, or both. 
Create a StatefulSet file by using a template that is available at this IBM Documentation web 
page.

This template uses an PVC because the example is configured for one replica only. If you 
want to create two or more replicas of your StatefulSet, the volume description must be 
replaced by using a volume claim template that enables each replica to be provisioned with its 
own volume. This change is necessary because a single volume cannot be attached to 
multiple pods by using the IBM block storage CSI driver.

Example 4-44 shows the following example file with the volume claim template and the 
OpenShift universal base image (UBI):

fs9110-statefulset-file-system-volumeClaimTemplates.yaml 

Example 4-44   StatefulSet file

kind: StatefulSet
apiVersion: apps/v1
metadata:
  name: fs9110-statefulset-filesystem
spec:
  selector:
    matchLabels:
      app: fs9110-statefulset
  serviceName: fs9110-statefulset
  replicas: 3
  template:
    metadata:

Note: If you delete the PVC, the PV and the corresponding volume on the storage system 
are deleted.
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      labels:
        app: fs9110-statefulset
    spec:
      containers:
      - name: fs9110-container
        image: registry.access.redhat.com/ubi8/ubi:latest
        command: [ "/bin/sh", "-c", "--" ]
        args: [ "while true; do sleep 30; done;" ]
        volumeMounts:
          - name: fs9110-volume-filesystem
            mountPath: "/data"
  volumeClaimTemplates:
  - metadata:
      name: fs9110-volume-filesystem
    spec:
      accessModes: [ "ReadWriteOnce" ]
      storageClassName: "fs9110-storageclass-thin"
      resources:
        requests:
          storage: 2Gi

Example 4-45 shows the command that is used to create the StatefulSet.

Example 4-45   Creating the StatefulSet

[root@i7PFE7]# kubectl apply -f fs9110-statefulset-file-system-volumeClaimTemplates.yaml
statefulset.apps/fs9110-statefulset-filesystem created

# check the created pods

[root@i7PFE7 OCP_install]# oc get pod
NAME                              READY   STATUS              RESTARTS   AGE
fs9110-statefulset-filesystem-0   1/1     Running             0          26s
fs9110-statefulset-filesystem-1   1/1     Running             0          20s
fs9110-statefulset-filesystem-2   0/1     ContainerCreating   0          10s

Figure 4-16 shows the new created StatefulSet and the corresponding number of pods.

Figure 4-16   OpenShift GUI Stateful Sets
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The PVC is bound to a volume (as shown in the GUI that is shown in Figure 4-16 on page 83) 
and can be checked in the command line as shown in Example 4-43.

Example 4-46   Checking the StatefulSets PVCs and PVs, some columns are omitted for better readability

[root@i7PFE7 OCP_install]# oc get pvc
NAME                                                       STATUS   VOLUME                                     CAPACITY   ACCESS MODES
fs9110-pvc-filesystem                                      Bound    pvc-be213821-a3da-46d5-98a9-475e86427e1f   1Gi        RWO
fs9110-volume-filesystem-fs9110-statefulset-filesystem-0   Bound    pvc-86bc5740-6218-4d01-be78-e8e0d8b9bf53   2Gi        RWO
fs9110-volume-filesystem-fs9110-statefulset-filesystem-1   Bound    pvc-29e1788a-0a26-43b7-9034-c35ced964718   2Gi        RWO
fs9110-volume-filesystem-fs9110-statefulset-filesystem-2   Bound    pvc-deea50ac-931e-4d4a-a76f-68e7f9c3960c   2Gi        RWO

[root@i7PFE7 OCP_install]# oc get pv
NAME                                       CAPACITY   ACCESS MODES   CLAIM 
pvc-be213821-a3da-46d5-98a9-475e86427e1f   1Gi        RWO            fs9110/fs9110-pvc-filesystem 
pvc-86bc5740-6218-4d01-be78-e8e0d8b9bf53   2Gi        RWO            fs9110/fs9110-volume-filesystem-fs9110-statefulset-filesystem-0
pvc-29e1788a-0a26-43b7-9034-c35ced964718   2Gi        RWO            fs9110/fs9110-volume-filesystem-fs9110-statefulset-filesystem-1
pvc-deea50ac-931e-4d4a-a76f-68e7f9c3960c   2Gi        RWO            fs9110/fs9110-volume-filesystem-fs9110-statefulset-filesystem-2

The storage system volume name is preceded with ocp-ats as defined in the storage class 
used and shown in Figure 4-15. The three volumes of the StatefulSet are mapped to a host.

Figure 4-17   FlashSystem 9110 volumes created by the StatefulSet

The number of pods of a StatefulSet can be scaled up and down. The example StatefulSet 
was created with three replicas. When scaling down to two replicas, one pod is ended. When 
the number is scaled up again, the previously used volume is reused. Before scaling down, 
some data is written to the pods. 

Example 4-47 on page 84 shows writing to the pods and scaling down.

Example 4-47   Scaling replicas down

# write data to the pods
[root@i7PFE7 ~]# oc exec -it fs9110-statefulset-filesystem-0 -- touch /data/fs9110-statefulset-filesystem-0
[root@i7PFE7 ~]# oc exec -it fs9110-statefulset-filesystem-1 -- touch /data/fs9110-statefulset-filesystem-1
[root@i7PFE7 ~]# oc exec -it fs9110-statefulset-filesystem-2 -- touch /data/fs9110-statefulset-filesystem-2

# check the data
[root@i7PFE7 ~]# oc exec -it fs9110-statefulset-filesystem-0 -- ls -l /data
-rw-r--r--. 1 1000570000 1000570000 0 Nov 25 18:13 fs9110-statefulset-filesystem-0
[root@i7PFE7 ~]# oc exec -it fs9110-statefulset-filesystem-1 -- ls -l /data
-rw-rw-rw-. 1 1000570000 1000570000 0 Nov 25 18:13 fs9110-statefulset-filesystem-1
[root@i7PFE7 ~]# oc exec -it fs9110-statefulset-filesystem-2 -- ls -l /data
-rw-r--r--. 1 1000570000 1000570000 0 Nov 25 18:14 fs9110-statefulset-filesystem-2
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# Set the number of replicas to two:
[root@i7PFE7 ~]# oc edit statefulset fs9110-statefulset-filesystem

...
spec:
 podManagementPolicy: OrderedReady
 replicas: 2
...

statefulset.apps/fs9110-statefulset-filesystem edited

# check on pod changes
[root@i7PFE7 OCP_install]# oc get pod
NAME                              READY   STATUS        RESTARTS   AGE
fs9110-statefulset-filesystem-0   1/1     Running       0          26m
fs9110-statefulset-filesystem-1   1/1     Running       0          25m
fs9110-statefulset-filesystem-2   1/1     Terminating   0          25m

One pod was ended. One volume of the three StatefulSet volumes is now unmapped from the 
host, as shown in Figure 4-18.

Figure 4-18   FlashSystem 9110 one StatefulSet volume is now unmapped from the host.

When scaling up the StatefulSet replicas, this unmapped volume is reused. The node that is 
using this volume is not deterministic and therefore, the volume must be unmapped and are 
mapped to the worker node, which starts the next StatefulSet pod. 

IBM Spectrum Virtualize-based storage systems have vdiskprotection enabled by default 
for pools that are created with software version 8.3.1 and up. The vdiskprotection prevents 
unmapping of the volume from the host if it experienced recent I/O activity and the volume is 
still mapped to the host. 

The StatefulSet requires a volume in an unmapped state; otherwise, the volume provisioning 
fails. Therefore, the vdiskprotectionenabled parameter of an IBM Spectrum Virtualize-based 
storage pool is set to off to assure correct unmapping by OpenShift.

Note: The pool with disabled VDisk protection disabled is now exposed to a higher risk on 
deletion errors.
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The number of pods of a StatefulSet can be scaled up and down. Example 4-47 on page 84 
shows scaling our StatefulSet’s replicas down by one from three to two.

Example 4-48 shows scaling our StatefulSet’s replicas up by three from two to five. The third 
replica now uses the previously used FlashSystem 9110 volume. We can verify this use by 
reviewing the file system of the third pod, as shown in Example 4-48.

Example 4-48   Scaling replicas up

# Set the number of replicas to five:
[root@i7PFE7 ~]# oc edit statefulset fs9110-statefulset-filesystem

    ...
    spec:
      podManagementPolicy: OrderedReady
      replicas:5
    ...

statefulset.apps/fs9110-statefulset-filesystem edited

# check on pod changes
[root@i7PFE7 OCP_install]# oc get pod
NAME                              READY   STATUS    RESTARTS   AGE
fs9110-statefulset-filesystem-0   1/1     Running   0          61m
fs9110-statefulset-filesystem-1   1/1     Running   0          61m
fs9110-statefulset-filesystem-2   1/1     Running   0          64s
fs9110-statefulset-filesystem-3   1/1     Running   0          43s
fs9110-statefulset-filesystem-4   1/1     Running   0          28s

# check the data, look at the third pod reusing its previously generated data
[root@i7PFE7 ~]# oc exec -it fs9110-statefulset-filesystem-0 -- ls -l /data
-rw-r--r--. 1 1000570000 1000570000 0 Nov 25 18:13 fs9110-statefulset-filesystem-0
[root@i7PFE7 ~]# oc exec -it fs9110-statefulset-filesystem-1 -- ls -l /data
-rw-rw-rw-. 1 1000570000 1000570000 0 Nov 25 18:13 fs9110-statefulset-filesystem-1
[root@i7PFE7 ~]# oc exec -it fs9110-statefulset-filesystem-2 -- ls -l /data
-rw-rw-r--. 1 1000570000 1000570000 0 Nov 25 18:14 fs9110-statefulset-filesystem-2
[root@i7PFE7 ~]# oc exec -it fs9110-statefulset-filesystem-3 -- ls -l /data

[root@i7PFE7 ~]# oc exec -it fs9110-statefulset-filesystem-3 -- ls -l /data
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The re-mapped volume and the two other volumes are shown in the IBM FlashSystem 9110 
GUI, as shown in Figure 4-19.

Figure 4-19   FlashSystem 9110 one unmapped StatefulSet volume is now mapped again to the host

4.4  CSI and OpenShift on IBM Z

The Red Hat OpenShift on IBM Z Installation Guide, REDP-5605, publication includes more 
information that is needed to create an OpenShift cluster that is based on z/VM® RHCOS 
guests. 

To use the IBM block storage CSI driver on IBM Z, some extra settings and adjustments are 
required. We include more information here that is not included in the Installation Guide 
publication.

For more information about Linux on Z and LinuxONE, see this IBM Documentation web 
page. Regarding the CSI driver, the sections on Device Drivers, Features and Commands for 
the Red Hat distributions are most valuable.

4.4.1  Enabling FCP adapters

After an OpenShift cluster is up a running on z/VM instances, one special hurdle must be 
overcome: The concept of how IBM mainframes deal with I/O devices. 

For the IBM block storage CSI driver’s purpose, we use the SCSI-over-FibreChannel device 
driver that implements the FC Protocol (FCP) over virtualized adapters. These devices are 
called FCP devices or FCP adapters. For more information, see this IBM Documentation web 
page.

Administrators of z/VM Linux guests are familiar with the necessity of activating the devices 
that are configured for the z/VM guest in the operating system. The FCP devices are no 
exception. They appear on the Channel Command Word (CCW) bus, which describes the 
data structure that is used for addressing devices in IBM Z systems. 

Administrators assign (attach) devices to the z/VM guests on their virtualized CCW bus, and 
the operating system on the guest can then address each device through its bus-id on the 
bus. These relationships are described next.
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To use a device that is attached to the z/VM guest, it must be made available for the operating 
system specifically. This process occurs in two steps: 

1. The cio_ignore kernel parameter, or running the cio_ignore command in the running 
Linux operating system, determines the z/VM guest devices that can be “seen” by the 
operating system. 

2. The operating system can then enable a device by using the chccwdev command. For the 
Linux kernel, this process results in a hot-plug event, and the device driver is connected 
with device. An administrator of a “traditional” Linux installation on a z/VM guest can use 
specific configuration files that control the process of “un-ignoring” the guest devices, and 
their enablement for the kernel.

However, in the OpenShift context, where the nodes are running Red Hat CoreOS (RHCOS), 
the situation is different. All nodes run the same base operating system image, and they are 
only distinguishable by their IP address and host name. A consequence of this principle is 
that the platform does not provide any means of a traditional Configuration Management 
Database (CMDB). 

Detailed information does not need to be maintained about every installed operating system 
instance from which individual nodes with individual software stacks are recreated. The 
bus-id information for the z/VM devices for each guest is a typical piece of information that is 
included in such a CMDB.

Next, we describe how to set up the FCP adapters on RHCOS on IBM Z nodes. 

The node is configured to use a Direct Access Storage Device (DASD), which is a standard 
IBM Z disk device, as operating system disk. It has several other DASDs attached, which are 
not used and it includes two attached FCP adapters that provide access to our CSI storage 
backend (which is a DS8000 family member). Some volumes are assigned for the node, but 
we do not use the DASDs.

Our first step is to make the bus IDs of the FCP adapters visible to RHCOS. We pass their 
bus IDs as kernel parameters for the worker nodes. This process is done in the worker’s 
param file, which is applied during node installation. The cio_ignore line in Example 4-49 is 
important. On our z/VM guest, we have two FCP adapters available: one with id 0.0.1923, the 
other with 0.0.1963; therefore, we “un-ignore” them.

Example 4-49   A worker’s kernel parameters file

$ cat worker-0.param 

rd.neednet=1 coreos.inst=yes 
coreos.inst.install_dev=dasda 
coreos.inst.image_url=http://172.18.142.30:8088/coreos-s390/rhcos-4.4.9-s390x-dasd
.s390x.raw.gz
coreos.inst.ignition_url=http://172.18.142.30:8088/clusters/zvm/worker.ign
ip=172.18.142.35::172.18.0.1:255.254.0.0:worker-0::none 
nameserver=172.18.142.30
rd.znet=qeth,0.0.bdf0,0.0.bdf1,0.0.bdf2,layer2=1,portno=0 
cio_ignore=all,!condev,!0.0.1923,!0.0.1963,!0.0.6689,!0.0.668a 
rd.dasd=0.0.6688
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After the worker node is installed with this param file, we ssh to the node as user core and 
review our available devices, as shown in Example 4-50.

Example 4-50   Available devices on z/VM guest

[core@worker-0 ~]$ lszdev
TYPE         ID                          ON   PERS  NAMES
dasd-eckd    0.0.6688                    yes  no    dasda
dasd-eckd    0.0.6689                    no   no    
dasd-eckd    0.0.668a                    no   no    
zfcp-host    0.0.1923                    no   no    
zfcp-host    0.0.1963                    no   no    
qeth         0.0.bdf0:0.0.bdf1:0.0.bdf2  yes  no    encbdf0
generic-ccw  0.0.0009                    yes  no    

We can see our FCP adapters on 0.0.1923 and 0.0.1963, but they are still offline. The DASD 
on 0.0.6688 is the system disk. Other DASDs also are configured on the system, but they are 
not activated. To see all available devices, you can also review /sys/bus/ccw/devices, as 
shown in Example 4-51.

Example 4-51   Available devices listing in /sys/bus/ccw/devices

[core@worker-0 devices]$ ls -l 
total 0
lrwxrwxrwx. 1 root root 0 Nov  4 09:16 0.0.0009 -> ../../../devices/css0/0.0.0007/0.0.0009
lrwxrwxrwx. 1 root root 0 Nov  4 09:16 0.0.1923 -> ../../../devices/css0/0.0.0004/0.0.1923
lrwxrwxrwx. 1 root root 0 Nov  4 09:16 0.0.1963 -> ../../../devices/css0/0.0.0005/0.0.1963
lrwxrwxrwx. 1 root root 0 Nov  4 09:16 0.0.6688 -> ../../../devices/css0/0.0.0000/0.0.6688
lrwxrwxrwx. 1 root root 0 Nov  4 09:16 0.0.6689 -> ../../../devices/css0/0.0.0001/0.0.6689
lrwxrwxrwx. 1 root root 0 Nov  4 09:16 0.0.668a -> ../../../devices/css0/0.0.0002/0.0.668a
lrwxrwxrwx. 1 root root 0 Nov  4 09:16 0.0.bdf0 -> ../../../devices/css0/0.0.0008/0.0.bdf0
lrwxrwxrwx. 1 root root 0 Nov  4 09:16 0.0.bdf1 -> ../../../devices/css0/0.0.0009/0.0.bdf1
lrwxrwxrwx. 1 root root 0 Nov  4 09:16 0.0.bdf2 -> ../../../devices/css0/0.0.000a/0.0.bdf2

We can use the chccwdev command, or we can write to the online file in the driver’s 
/sys/bus/ccw/devices directory to activate FCP devices temporarily, at first. Example 4-52 
shows both possibilities.

Example 4-52   Activation of FCP adapters (two variants)

[core@worker-0 devices]$ echo 1 | sudo tee /sys/bus/ccw/devices/0.0.1923/online
1
[core@worker-0 devices]$ lszdev
TYPE         ID                                              ON   PERS  NAMES
dasd-eckd    0.0.6688                                        yes  no    dasda
dasd-eckd    0.0.6689                                        no   no    
dasd-eckd    0.0.668a                                        no   no    
zfcp-host    0.0.1923                                        yes  no    
zfcp-host    0.0.1963                                        no   no    
zfcp-lun     0.0.1923:0x500507630910d435:0x408240f100000000  yes  no    sda sg0
zfcp-lun     0.0.1923:0x500507630910d435:0x408340f100000000  yes  no    sdb sg1
zfcp-lun     0.0.1923:0x500507630910d435:0x408440f100000000  yes  no    sdc sg2
zfcp-lun     0.0.1923:0x500507630910d435:0x408540f100000000  yes  no    sdd sg3
qeth         0.0.bdf0:0.0.bdf1:0.0.bdf2                      yes  no    encbdf0
generic-ccw  0.0.0009                                        yes  no    
[core@worker-0 devices]$ sudo chccwdev -e 0.0.1963
Setting device 0.0.1963 online
Done
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[core@worker-0 devices]$ lszdev
TYPE         ID                                              ON   PERS  NAMES
dasd-eckd    0.0.6688                                        yes  no    dasda
dasd-eckd    0.0.6689                                        no   no    
dasd-eckd    0.0.668a                                        no   no    
zfcp-host    0.0.1923                                        yes  no    
zfcp-host    0.0.1963                                        yes  no    
zfcp-lun     0.0.1923:0x500507630910d435:0x408240f100000000  yes  no    sda sg0
zfcp-lun     0.0.1923:0x500507630910d435:0x408340f100000000  yes  no    sdb sg1
zfcp-lun     0.0.1923:0x500507630910d435:0x408440f100000000  yes  no    sdc sg2
zfcp-lun     0.0.1923:0x500507630910d435:0x408540f100000000  yes  no    sdd sg3
zfcp-lun     0.0.1963:0x500507630914d435:0x408240f100000000  yes  no    sde sg4
zfcp-lun     0.0.1963:0x500507630914d435:0x408340f100000000  yes  no    sdf sg5
zfcp-lun     0.0.1963:0x500507630914d435:0x408440f100000000  yes  no    sdg sg6
zfcp-lun     0.0.1963:0x500507630914d435:0x408540f100000000  yes  no    sdh sg7
qeth         0.0.bdf0:0.0.bdf1:0.0.bdf2                      yes  no    encbdf0
generic-ccw  0.0.0009                                        yes  no    

After the FCP adapters are enabled, we now can see all pre-configured logical units identified 
with their Logical Unit Number (LUN)1, which is reachable through them. Reviewing the 
highlighted line in the Example 4-52 on page 89, we can see this information for a specific 
LUN in the second column. The colon-separated values are the adapter’s bus-id, its 
worldwide port name (WWPN), and the LUN.

However, what was done so far is not persistent. After the node reboots, it has the FCP 
adapter available, but it is not active. We make the activation permanent by creating a 
/etc/zfcp.conf file. 

As of this writing, the implementation requires fully specified lines with the CCW bus-id, 
WWPN, and LUN. We are interested in activating the adapter in general, regardless of the 
existing LUNs because they are created dynamically later. Therefore, we use a dummy LUN 
entry: the well-known REPORT LUN ID, as shown in Example 4-53.

Example 4-53   Persistent activation of FCP adapters using a dummy REPORT LUN entry

[core@worker-0 ~]$ cat /etc/zfcp.conf
0.0.1923 0x500507630910d435 0xc101000000000000
0.0.1963 0x500507630914d435 0xc101000000000000

Although our nodes survive reboots with these settings, we must reconfigure them if they are 
reinstalled.

It is possible (but out of scope of this book) to supply a MachineConfig object that sets all 
available adapters online, regardless of their bus_id. The MachineConfig’s ignition file 
definition creates a systemd unit that activates all visible adapters (cio_ignore kernel 
parameter). A second unit that handles FCP devices creates /etc/zfcp.conf, as shown 
Example 4-53. This second unit is triggered only if /etc/zfcp.conf does not exist.

1  Following common practice, we use the LUN acronym as synonym for the logical unit itself.
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4.5  CSI deployment on Z by using the command-line interface

The IBM block storage CSI driver installation is described in its respective users guide. Here, 
we want to give some examples and helpful tips for Kubernetes novices.

The deployment of the driver can be structured into four main steps and one optional step:

1. Deploying of the IBM CSI Operator. The operator can be seen as the launch pad for the 
driver installation.

2. Creating an IBMBlockCSI resource. The IBMBlockCSI object tells the IBM CSI Operator 
how a release of the IBM CSI driver is to be installed in the cluster.

3. Creating a StorageClass for CSI provisioned volumes. Other storage parameters, such as 
the storage pool from which to create volumes, or a reference to the secret to use for 
accessing the backend, is tied together in this StorageClass.

4. Creating a secret holding for the access information for the storage backend. This secret 
holds the management address, user name, and password that are needed to access the 
storage backend.

5. If VolumeSnapshots are used, a VolumeSnapshot Class and optionally a other secret is 
needed. This requirement is similar to the StorageClass and describes how to use the 
storage backend for VolumeSnapshots.

4.5.1  Deploying the operator

Common practice in Kubernetes and OpenShift is to create Kubernetes resources from yaml 
files. First step is to download the yaml manifest for the IBM CSI operator. For our example, 
we follow the instructions that are available are found at this IBM Documentation web page. 

Examples were taken on a Linux bastion host with the OpenShift Client (oc) installed and 
working that uses a Kubernetes admin user.

After downloading the operator manifest from GitHub to ibm-block-csi-operator.yaml, we 
noticed that some namespace objects in the manifest must be changed to the namespace we 
choose for the operator and driver components - ibm-csi-operator. This change affects the 
namespace for the deployment, the ServiceAccount, and the reference to the ServiceAccount 
in the ClusterRoleBinding, (see Example 4-54).

Example 4-54   Namespace changes (lines are omitted for brevity)

...

---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: ibm-block-csi-operator
  namespace: ibm-csi-operator
  labels:
    product: ibm-block-csi-driver
    csi: ibm
    app.kubernetes.io/name: ibm-block-csi-operator
    app.kubernetes.io/instance: ibm-block-csi-operator
    app.kubernetes.io/managed-by: ibm-block-csi-operator

...
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subjects:
- kind: ServiceAccount
  name: ibm-block-csi-operator
  namespace: ibm-csi-operator
roleRef:
  kind: ClusterRole
  name: ibm-block-csi-operator
  apiGroup: rbac.authorization.k8s.io

...

apiVersion: v1
kind: ServiceAccount
metadata:
  name: ibm-block-csi-operator
  namespace: ibm-csi-operator
  labels:
    product: ibm-block-csi-driver
    csi: ibm

With these updates, the IBM CSI operator is deployed by applying the manifest as the User 
Guide tells us: oc apply -f ibm-block-csi-operator.yaml.

After a few seconds, we see the specified deployment and a ReplicaSet are created; then, the 
respective operator pod comes up (see Example 4-55). 

Example 4-55   Verifying successful deployment

$ oc get all --selector=app.kubernetes.io/instance=ibm-block-csi-operator
NAME                                         READY   STATUS    RESTARTS   AGE
pod/ibm-block-csi-operator-bdfb89bdd-56wg4   1/1     Running   0          8h

NAME                                     READY   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/ibm-block-csi-operator   1/1     1            1           29d

NAME                                               DESIRED   CURRENT   READY   AGE
replicaset.apps/ibm-block-csi-operator-bdfb89bdd   1         1         1       29d
$ oc get crd ibmblockcsis.csi.ibm.com
NAME                       CREATED AT
ibmblockcsis.csi.ibm.com   2020-10-07T09:03:23Z

4.5.2  Deploying the driver

The operator we installed is responsible for the deployment of the driver throughout the 
cluster. As described in 3.1.8, “Extension points in Kubernetes: The operator pattern” on 
page 34, the operator is implementing a controller for the IBMBlockCSI CustomResource 
(CR) type. The CustomResourceDefinition (CRD) for that type of resources is part of the 
application manifest. Therefore, to install the driver, we must create only a respective 
IBMBlockCSI CR in the cluster. The operator installs the driver pieces to where they belong.

As the User Guide explains, we must download the correct version of the CR. Confirm that 
you downloaded the correct version. Deploy the driver by using oc apply -f 
csi.ibm.com_v1_ibmblockcsi_cr_amd64.yaml.
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It takes some time until all parts and pieces are installed. However, after the deployment 
completes, the situation is similar to what is shown in Example 4-56.

Example 4-56   Check successful driver deployment

$ oc get all --selector=app.kubernetes.io/instance=ibm-block-csi
NAME                             READY   STATUS    RESTARTS   AGE
pod/ibm-block-csi-controller-0   5/5     Running   0          8h
pod/ibm-block-csi-node-97qzw     3/3     Running   0          8h
pod/ibm-block-csi-node-gj9lk     3/3     Running   0          30h
pod/ibm-block-csi-node-jwqds     3/3     Running   5          30h

NAME                                DESIRED   CURRENT   READY   UP-TO-DATE   
AVAILABLE   NODE SELECTOR   AGE
daemonset.apps/ibm-block-csi-node   3         3         3       3            3           
<none>          30h

NAME                                        READY   AGE
statefulset.apps/ibm-block-csi-controller   1/1     30h

A StatefulSet for the controller part and a DaemonSet for the node parts are available. Check 
that all pods are in status Running, and that they do not accumulate restarts. If the latter is the 
case, something is wrong with the deployment. For more information about debugging, see 
Chapter 5, “Maintenance and troubleshooting” on page 113.

4.5.3  Configuring the storage backend

To provision storage on the backends, our configuration must answer the following questions 
for the platform:

� Which backend should be used to provision storage?
� How can the backend be accessed?

To answer these questions, we must create a StorageClass that ties the required information 
together. It contains a reference to the provisioner to use the IBM block storage CSI driver, 
and a reference to the access information for the backend; that is, a Secret object.

The yaml file that is shown in Example 4-57 on page 94 specifies a StorageClass for our 
purposes. Because we want to access a DS8000 family member, the ds8k naming is used.
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Example 4-57   StorageClass specification

$ cat ds8k-storage-class.yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: ds8k-csi
parameters:
  SpaceEfficiency: thin
  csi.storage.k8s.io/controller-publish-secret-name: ds8k-secret
  csi.storage.k8s.io/controller-publish-secret-namespace: ibm-csi-operator
  csi.storage.k8s.io/provisioner-secret-name: ds8k-secret
  csi.storage.k8s.io/provisioner-secret-namespace: ibm-csi-operator
  pool: P4
provisioner: block.csi.ibm.com
reclaimPolicy: Delete
volumeBindingMode: Immediate

The answers to our questions can be found in the following file:

� The provisioner is block.csi.ibm.com.

� Access to the backend for the controller-publish service is stored in Secret ds8k-secret in 
namespace ibm-csi-operator.

� Access to the backend for the provisioning service is stored in the same Secret.

Again, a simple oc apply -f ds8k-storage-class.yaml enables the platform to create the 
respective StorageClass. The remaining process creates the Secret that we specified. This 
process can be done on the command line, as shown in Example 4-58.

Example 4-58   Creating Secret 

$ oc create secret generic ds8k-secret \
  --from-literal=management_address=back-end-address(es) \
  --from-literal=username=back-end-username \
  --from-literal=password=back-end-password \
  --dry-run -o yaml > secret.yaml
$ oc apply -f secret.yaml

With these items set up, the driver is ready to dynamically provision storage on the back-end, 
and make it available for the application Pods throughout the cluster.
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4.6  Installing the CSI driver by using the OpenShift web 
console on x86

In this section, we provide an example deployment and installation of the IBM block storage 
CSI driver that uses the OpenShift web console on x86 architecture. For more information 
about installing the IBM block storage CSI driver, see the following resources:

� GitHub 
� IBM Documentation 

The demonstration environment that used in this section is based on the architecture shown 
that is in Figure 4-20.

Figure 4-20   OpenShift Cluster architecture overview

The master nodes, also known as the control plane, are configured unschedulable. That is, 
the masterSchedulable setting in the scheduler’s configuration of the OpenShift cluster is set 
to false. The command that is shown in Example 4-59 configures this setting.

Example 4-59   Setting control plane to unschedulable

oc patch schedulers.config.OpenShift.io cluster -p 
'{"spec":{"mastersSchedulable":false}}' --type=merge
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The decision to set the control plane as unschedulable is a best practice for performance and 
security reasons. In our demo environment, it also allows us to showcase the decision that 
must be made before configuring the IBM block storage CSI driver. 

We show a bare metal OpenShift cluster that is attached to the storage subsystems with FC 
adapters. Therefore, all nodes that have the IBM block storage CSI driver pods that are 
running on them need a physical adapter installed with connectivity to the storage subsystem. 

The use of an iSCSI connection to the storage subsystem eliminates the adapter 
requirement, but it imposes the same considerations as for FC with regard to throughput and 
load.

You can run the command that is shown in Example 4-60 to interactively configure the 
schedulability of the master nodes.

Example 4-60   Interactive configuration of control plane schedulability

oc edit schedulers.config.OpenShift.io cluster

All worker nodes are schedulable and can have an IBM block storage CSI driver running on 
them.

Even with the use of FC communication to the storage backend an IP connectivity is needed 
for the communication between the OpenShift cluster and the respective storage subsystems. 
Administrative tasks, such as LUN creation and LUN masking, are done by using IP. Do not 
forget to provide both communication channels, IP and FC, if you plan to use the IBM block 
storage CSI driver.

4.6.1  Fullfilling installation prerequisites

In comparison to the command-line installation method or the deployment on other platforms, 
the installation of the IBM block storage CSI driver on x86 platform needs only little 
preparations and customizations. Opening firewall ports or installing more packages is not 
required on the CoreOS systems.

OpenShift project for the IBM block storage CSI driver deployment
We follow the OpenShift best practices and create a dedicated project for the deployment of 
the IBM block storage CSI driver. As example project name ibm-block-csi-driver is chosen. 
A new project can be created with the CLI, as shown in Example 4-61.

Example 4-61   Creating a new OpenShift project with the CLI

[root@ocp4-helpernode ~]# oc new-project ibm-block-csi-driver
Now using project "ibm-block-csi-driver" on server 
"https://api.openshift.sle.kelsterbach.de.ibm.com:6443".

You can add applications to this project with the 'new-app' command. For example, 
try:

    oc new-app ruby~https://github.com/sclorg/ruby-ex.git

to build a new example application in Python. Or use kubectl to deploy a simple 
Kubernetes application:
    kubectl create deployment hello-node 
--image=gcr.io/hello-minikube-zero-install/hello-node
96 Using the IBM Block Storage CSI Driver in a Red Hat OpenShift Environment



As an alternative to the CLI way of creating an OpenShift project, the GUI can be used as 
shown in Figure 4-21.

Figure 4-21   Creating an OpenShift project with the GUI

Preparing CoreOS for Fibre Channel and iSCSI configurations
One of the key features of CoreOS is the controlled immutability. Management is performed 
remotely from the OpenShift Container Platform cluster. When you set up your RHCOS 
machines, you can modify only a few system settings. This controlled immutability allows 
OpenShift Container Platform to store the latest state of RHCOS systems in the cluster so 
that it always can create machines and perform updates that are based on the latest RHCOS 
configurations.

To enable the storage system support and suitable multipathing configuration, we use the 
mechanism of a machine configuration. The yaml file that is shown in Example 4-62 provides 
the necessary changes to the OpenShift cluster to introduce the needed storage subsystem 
configuration for multipathing. It also enables the multipathing daemon, and optionally 
enables and starts the iSCSI subsystem. 

Example 4-62   99-ibm-attach.yaml

apiVersion: machineconfiguration.OpenShift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.OpenShift.io/role: worker
  name: 99-ibm-attach
spec:
  config:
    ignition:
      version: 2.2.0
    storage:
      files:
        - path: /etc/multipath.conf
          mode: 384
          filesystem: root
          contents:
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            source: 
data:,defaults%20%7B%0A%20%20%20%20path_checker%20tur%0A%20%20%20%20path_selector%20%22round-robin%200%22%0A%20%20%
20%20rr_weight%20uniform%0A%20%20%20%20prio%20const%0A%20%20%20%20rr_min_io_rq%201%20%20%20%20%20%20%20%20%20%20%20%2

0%20%20%20%0A%20%20%20%20polling_interval%2030%0A%20%20%20%20path_grouping_policy%20multibus%0A%20%20%20%20find_multi

paths%20yes%0A%20%20%20%20no_path_retry%20fail%0A%20%20%20%20user_friendly_names%20yes%0A%20%20%20%20failback%20immed

iate%0A%20%20%20%20checker_timeout%2010%0A%20%20%20%20fast_io_fail_tmo%20off%0A%7D%0A%0Adevices%20%7B%0A%20%20%20%20d

evice%20%7B%0A%20%20%20%20%20%20%20%20path_checker%20tur%0A%20%20%20%20%20%20%20%20product%20%22FlashSystem%22%0A%20%

20%20%20%20%20%20%20vendor%20%22IBM%22%0A%20%20%20%20%20%20%20%20rr_weight%20uniform%0A%20%20%20%20%20%20%20%20rr_min

_io_rq%204%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%0A%20%20%20%20%20%20%20%20path_grouping_policy%20multibus%0A%

20%20%20%20%20%20%20%20path_selector%20%22round-robin%200%22%0A%20%20%20%20%20%20%20%20no_path_retry%20fail%0A%20%20%

20%20%20%20%20%20failback%20immediate%0A%20%20%20%20%7D%0A%20%20%20%20device%20%7B%0A%20%20%20%20%20%20%20%20path_che

cker%20tur%0A%20%20%20%20%20%20%20%20product%20%22FlashSystem-9840%22%0A%20%20%20%20%20%20%20%20vendor%20%22IBM%22%0A

%20%20%20%20%20%20%20%20fast_io_fail_tmo%20off%0A%20%20%20%20%20%20%20%20rr_weight%20uniform%0A%20%20%20%20%20%20%20%

20rr_min_io_rq%201000%20%20%20%20%20%20%20%20%20%20%20%20%0A%20%20%20%20%20%20%20%20path_grouping_policy%20multibus%0

A%20%20%20%20%20%20%20%20path_selector%20%22round-robin%200%22%0A%20%20%20%20%20%20%20%20no_path_retry%20fail%0A%20%2

0%20%20%20%20%20%20failback%20immediate%0A%20%20%20%20%7D%0A%20%20%20%20device%20%7B%0A%20%20%20%20%20%20%20%20vendor

%20%22IBM%22%0A%20%20%20%20%20%20%20%20product%20%222145%22%0A%20%20%20%20%20%20%20%20path_checker%20tur%0A%20%20%20%

20%20%20%20%20features%20%221%20queue_if_no_path%22%0A%20%20%20%20%20%20%20%20path_grouping_policy%20group_by_prio%0A

%20%20%20%20%20%20%20%20path_selector%20%22service-time%200%22%20%23%20Used%20by%20Red%20Hat%207.x%0A%20%20%20%20%20%

20%20%20prio%20alua%0A%20%20%20%20%20%20%20%20rr_min_io_rq%201%0A%20%20%20%20%20%20%20%20rr_weight%20uniform%20%0A%20

%20%20%20%20%20%20%20no_path_retry%20%225%22%0A%20%20%20%20%20%20%20%20dev_loss_tmo%20120%0A%20%20%20%20%20%20%20%20f

ailback%20immediate%0A%20%20%20%7D%0A%7D%0A

            verification: {}
        - path: /etc/udev/rules.d/99-ibm-2145.rules
          mode: 420
          filesystem: root
          contents:
            source: 
data:,%23%20Set%20SCSI%20command%20timeout%20to%20120s%20%28default%20%3D%3D%2030%20or%2060%29%20for%20IBM%202145%2
0devices%0ASUBSYSTEM%3D%3D%22block%22%2C%20ACTION%3D%3D%22add%22%2C%20ENV%7BID_VENDOR%7D%3D%3D%22IBM%22%2CENV%7BID_MO

DEL%7D%3D%3D%222145%22%2C%20RUN%2B%3D%22/bin/sh%20-c%20%27echo%20120%20%3E/sys/block/%25k/device/timeout%27%22%0A

            verification: {}
    systemd:
      units:
      - name: multipathd.service
        enabled: true
      # Uncomment the following lines if this MachineConfig will be used with 
iSCSI connectivity
      - name: iscsid.service
        enabled: true

Because the yaml syntax can be easily compromised by copy and paste activities and are 
prone to random changes while transitioning between different file formats and platforms, 
check that the file still includes the correct syntax. A valid source is available at this GitHub 
web page.

You can apply the machine configuration to your cluster by using several methods. For 
example, you can download or copy and paste the file and then, run the oc apply command, 
as shown in Example 4-63.

Example 4-63   oc apply command

oc apply -f 99-ibm-attach.yaml
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You can also use the OpenShift web console to directly apply the machine configuration. 
Complete the following steps:

1. Click Import YAML \ in the upper right corner of the OpenShift web console to open the 
needed window, as shown in Figure 4-22.

Figure 4-22   Using the OpenShift web console to apply the machine configuration

2. Paste the contents of the 99-ibm-atach.yaml file into the OpenShift web console and click 
Create to apply the changes to the machine configuration of your OpenShift cluster, as 
shown in Figure 4-23.

Figure 4-23   Applying the machine configuration in the OpenShift web console
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3. After these preparations are complete, the installation of the IBM block storage CSI driver 
can be started. In the OperatorHub, choose IBM block storage CSI driver for installation, 
as shown in Figure 4-24.

Figure 4-24   Choosing the IBM block CSI driver

At the time of the writing, the code that is delivered through the three individual items is the 
same. Expect a diversified offering in the future to allow for up-stream access to the 
community version of the code or similar. For this example, we choose the middle icon for 
installation.

4. Click the middle icon and then, verify the information that is displayed (see Figure 4-25).

Figure 4-25   Installing the IBM block CSI driver with the web GUI
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5. Click Install to finalize and start the installation. The next window allows you to choose an 
Installation Mode, a target Namespace, an Update Channel, and an Approval Strategy, as 
shown in Figure 4-26.

Figure 4-26   Creating an Operator Subscription in the web GUI

Following the preparations that are described this chapter, the acceptance of the default 
values leads to a successful IBM block CSI driver deployment.

6. Click Subscribe to start the installation. The successful installation presents you with the 
overview that is shown in Figure 4-27.

Figure 4-27   Successful IBM block CSI driver installation
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7. An instance of the IBM block storage CSI driver must be created. Click Create 
IBMBlockCSI in the Operator for IBM block storage CSI driver view, as shown in 
Figure 4-28. You might need to choose the IBM block storage CSI driver tab in the 
overview if you do not see it.

Figure 4-28   Creating an IBMBlockCSI instance

The Create IBMBlocKCSI overview displays an overview of the instance to be created. The 
yaml is prepared and can be left unchanged (see Figure 4-29).

Figure 4-29   Creating an “IBMBlockCSI” instance
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After some time, the process is finished and displays a successful result with the state as 
Running, as shown in Figure 4-30.

Figure 4-30   BM block CSI is running

The IBM block CSI installation is now complete. The next step is configuring the IBM block 
CSI. In the next section, we describe creating an array secret, storage class, and persistent 
volume claim (PVC).

Creating an array secret
The array secret is used to define the storage system credentials, user name and password, 
and the storage subsystem address to the OpenShift cluster. The array secret is created with 
the GUI.

On the left side of the OpenShift web GUI, browse to Workloads → Secrets to start the array 
secret creation process, as shown in Figure 4-31. Click Create and choose Key/Value Secret 
to start the array secret creation process.

Figure 4-31   Secrets as part of the Workloads web GUI window
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Enter the information for management_address, username, and password into the secret by 
entering the values and using Add Key/Value to create the other entries, as shown in 
Figure 4-32. Click Create to create the secret.

Figure 4-32   Creating the array secret

Creating a storage class
The storage class is used to define the storage system pool name, secret reference, 
SpaceEfficiency type, and the fstype setting to the OpenShift cluster.
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Complete the following steps:

1. Browse to Storage → Storage Classes of the OpenShift web GUI and click Create 
Storage Class to create a storage class. Click Edit YAML to manually enter the yaml file, 
as shown in Figure 4-33. 

Figure 4-33   Creating a storage class with the OpenShift web GUI

2. Use the example YAML file that is shown in Example 4-64 as an example for the settings 
that are needed in the environment. The storage class name is set to a descriptive value 
that allows for easy identification of the storage in the OpenShift environment. The storage 
pool on the storage subsystem is selected and the respective secret and namespace 
values are selected.

The optional selection of the file system and the volume name prefix are used.

Example 4-64   Storage class example yaml file

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
  name: v7000lower-sc
provisioner: block.csi.ibm.com
parameters:
  SpaceEfficiency: thin   # Optional.
  pool: ProtecTIER_UserData

  csi.storage.k8s.io/provisioner-secret-name: v7000lower-secret
  csi.storage.k8s.io/provisioner-secret-namespace: ibm-block-csi-driver
  csi.storage.k8s.io/controller-publish-secret-name: v7000lower-secret
  csi.storage.k8s.io/controller-publish-secret-namespace: ibm-block-csi-driver

  csi.storage.k8s.io/fstype: xfs   # Optional. Values ext4\xfs. The default is 
ext4.
  volume_name_prefix: red  # Optional.

3. Click Create to apply the yaml and create the storage class.
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Sample storage usage
With the creation of the storage class, the preparation for storage provisioning in the 
OpenShift cluster is finished. The storage can now be used.

The next example describes the process of accessing storage with the IBM block storage CSI 
driver.

To follow the process of storage allocation, a PVC is manually created and assigned to an 
example pod. If you configure your deployments to a storage class instead of a PVC, the 
process occurs automatically.

Complete the following steps:

1. Browse to Home → Projects and create an example project by clicking Create Project, 
as shown in Figure 4-34.

Figure 4-34   Create example project
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2. From within the project context of the newly created example-project, click Storage → 
Persistent Volume Claims and then, click Create Persistent Volume Claim to create a 
PVC. Enter example values as shown in Figure 4-35.

Figure 4-35   Create example PVC

3. Cross-check the LUN creation process with the PVC overview. The OpenShift PVC 
overview shows that the two newly created PVCs are bound to a PV from the storage 
class (see Figure 4-36).

Figure 4-36   OpenShift PVC overview for the example-project
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In comparison to the overview that is shown Figure 4-36, we see the LUNs that were 
created on the storage subsystem. The LUNs are not yet mapped to a host, as shown in 
Figure 4-37.

Figure 4-37   Storage subsystem overview with LUNs that are not yet mapped

4. To use the storage and have the IBM block storage CSI map the LUNs to the hosts, a 
workload (for example, a pod), is needed. Create an example workload by using the YAML 
statement that is shown in Example 4-65.

Example 4-65   Example pod to use storage

apiVersion: v1
kind: Pod
metadata:
  name: my-site
spec:
    containers:
    - name: mysql
      image: mysql
      volumeMounts:
      - mountPath: /var/lib/mysql
        name: db-data
        subPath: mysql 
    - name: php
      image: php
      volumeMounts:
      - mountPath: /var/www/html
        name: www-data
        subPath: html 
    volumes:
    - name: db-data
      persistentVolumeClaim:
        claimName: example-claim1
    - name: www-data
      persistentVolumeClaim:
        claimName: example-claim2
    nodeSelector:
      csi: blockcsi
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5. Browse to Home → Projects and click your example project to ensure that the correct 
project context is entered. Then, click the + icon that is in the upper right corner of the 
window to enter and deploy the example (see Figure 4-38 on page 109). Paste the 
example or create your own and click Create to start the deployment.

Figure 4-38   Deploy example workload; node selectors are used

With the pod created, you can monitor the LUN state and see that the LUNs change from 
Host Mappings no to Host Mappings yes, as shown in Figure 4-39 on page 109.

Figure 4-39   Host Mappings occurred

Note: Our example is modified by using nodeSelector statements. Remove those 
statements or use them to your advantage in your own environment.
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4.7  Updating the CSI driver

The CSI driver can be updated from a previous version by using one of the following methods:

� Use a subscription (as of this writing, x86 only)
� Uninstall the driver and then, install the newer version if no subscription exists

For more information, see this IBM Documentation web page.

4.7.1  Updating the CSI driver by using a subscription

This example shows the x86 environment as discussed in 4.6, “Installing the CSI driver by 
using the OpenShift web console on x86” on page 95. You can use Operators → Installed 
Operators → Operator for IBM block storage CSI driver in the GUI to check and change 
the subscription, as shown Figure 4-40. 

Figure 4-40   Operator Details CSI subscription, automatic mode

Determine whether the installed CSI driver includes an automatic or manual subscription 
type: 

� If the subscription type is manual, you must confirm the update. 

� If the subscription type is automatic, the CSI driver is automatically updated after it is 
available. 
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4.7.2  Updating the CSI driver manually

Determine whether the installed CSI driver does not use a subscription, as shown in 
Example 4-66. This example shows the IBM Power environment as discussed in 4.3, “CSI 
deployment on IBM Power by using the command-line interface” on page 72.

Example 4-66   Check, if a subscription exists for the CSI driver

[root@i7PFE7 ~]# # change to the CSI driver project
[root@i7PFE7 ~]# oc project ibm-block-csi
Now using project "ibm-block-csi" on server 
"https://api.ocp-ats.sle.kelsterbach.de.ibm.com:6443".

[root@i7PFE7 ~]# # check on CSI driver subscription
[root@i7PFE7 ~]# oc get subscription
No resources found in ibm-block-csi namespace.

Example 4-66 on page 111 also shows that the current CSI driver does not have a 
subscription. Therefore, the upgrade must be done by uninstalling and reinstalling the new 
version. These processes are described next.

Uninstalling the CSI driver
Complete the following steps to uninstall the CSI driver by using the installation files:

1. Delete the IBMBlockCSI custom resource:

kubectl delete -f csi.ibm.com_v1_ibmblockcsi_cr.yaml

2. Delete the operator:

kubectl delete -f ibm-block-csi-operator.yaml

Installing the new CSI driver version
For more information about installing the CSI driver, see 4.3, “CSI deployment on IBM Power 
by using the command-line interface” on page 72.
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Chapter 5. Maintenance and troubleshooting

In this chapter, we provide maintenance and troubleshooting tips and suggestions.

This chapter includes the following topics:

� 5.1, “General hints” on page 114
� 5.2, “Studying the good case” on page 114
� 5.3, “CSI operator issues” on page 117
� 5.4, “CSI driver CustomResource issues” on page 118
� 5.5, “CSI driver snapshot feature” on page 119
� 5.6, “CSI driver operation issues” on page 120
� 5.7, “Searching the CSI related log entries” on page 124
� 5.8, “Changing the CSI driver subscription by using the CLI” on page 125
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5.1  General hints

Because Kubernetes follows a declarative paradigm, it might take some time until changes 
are picked up by the responsible controllers and propagated through the platform.

Consider the following points:

� All CSI driver parts are deployed through workload controllers. It is safe to delete pods that 
exhibit unusual behavior. Sometimes, this method is the simplest and most effective fix.

� Occasionally, timing issues or deadlocks can occur that also often can be solved easily by 
deleting single pods.

� If fixing an error does not yield immediate effects, controllers that are detecting errors on 
their managed entities put exponential time backoffs for retries. It can take a long time until 
a controller performs a reconciliation on erroring components. Deleting erroring 
components can speed up recovery.

� Configuration changes (for example, CSI secrets) are not necessarily detected by running 
pods. At times, they must be deleted and restarted to use their new configuration.

� Setting up logging is can be done. However, logs are available by using oc logs if a pod 
can start.

� Erroring pods can be inspected by using oc describe, which shows the latest events.

� It might be helpful to oc exec into running pods to get more information.

� Also, oc debug can help debug pods.

5.2  Studying the good case

Because it is difficult to anticipate every possible failure scenario, we demonstrate a “perfect” 
case from the command-line perspective as a guideline for where to dig deeper if anything 
goes wrong.

The starting point is a simple application: An image that waits for 10000 seconds and then 
exits and is redeployed. However, to use the CSI driver, we mount a file system at 
/tmp/csi-vol, which we provision on a DS8000 backend by using the IBM block storage CSI 
driver. We start with our application manifest demo-deploy.yaml, as shown in Example 5-1.

Example 5-1   Simple application manifest

$ cat demo-deploy.yaml 
apiVersion: apps/v1
kind: Deployment
metadata:
  name: csi-demo-02
spec:
  replicas: 1
  selector:
    matchLabels:
      app: csi-demo-02
  template:
    metadata:
      labels:
        app: csi-demo-02
    spec:
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      containers:
      - name: shell
        image: registry.access.redhat.com/ubi7/ubi:latest
        command:
        - "bin/bash"
        - "-c"
        - "sleep 10000"
        volumeMounts:
        - name: csi-vol
          mountPath: "/tmp/csi-vol"
      volumes:
      - name: csi-vol
        persistentVolumeClaim:
          claimName: csi-claim-002
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: csi-claim-002
spec:
  storageClassName: "ds8k-csi"
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 1Gi

This application manifest contains two objects: A Deployment that is called csi-demo-002 for 
our application, and a PersistentVolumeClaim csi-claim-002, which refers to the 
StorageClass for our DS8000 backend. We deploy our application by using oc apply -f 
demo-deploy.yaml and wait for some time until we check the progress and success.

We start with the expected Deployment for our application as shown in Example 5-2.

Example 5-2   Listing Deployment for the application

$ oc get deployment.apps/csi-demo-02
NAME          READY   UP-TO-DATE   AVAILABLE   AGE
csi-demo-02   1/1     1            1           89m

The READY, UP-TO-DATE and AVAILABLE column show us that all required ReplicaSets are 
deployed, current, and that their pods are alive. We check the ReplicaSet and notice its name, 
which refers to the controlling Deployment, as shown in Example 5-3.

Example 5-3   Listing Replicaset and pod for the application

$ oc get all --selector=app=csi-demo-02
NAME                              READY   STATUS    RESTARTS   AGE
pod/csi-demo-02-f6cc59d78-xtqw4   1/1     Running   1          4h6m

NAME                                    DESIRED   CURRENT   READY   AGE
replicaset.apps/csi-demo-02-f6cc59d78   1         1         1       4h6m

We see that the ReplicaSet wants one pod to be running, and this one pod is also READY to 
serve requests. It is in status Running, and we see it was restarted once. 
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However, that issue does not concern us because we know it end after 10000 seconds. 
Because it existed for 4 hours and 6 minutes, it exited and was then restarted by the 
controlling ReplicaSet after approximately 2 hours and 47 minutes, or 10000 seconds.

By seeing the pod in the Running state, we assume that the Persistent Volume Claim (PVC) 
for our pod is bound to an accessible Persistent Volume (PV). To be sure, we check the PVC 
and PV status, as shown in Example 5-4.

Example 5-4   Listing PVC and PV

$ oc get pvc csi-claim-002
NAME            STATUS   VOLUME                                     CAPACITY   ACCESS MODES   
STORAGECLASS   AGE
csi-claim-002   Bound    pvc-e1c0274c-6a20-428c-919e-4548f21a4b4f   1Gi        RWO            
ds8k-csi       90m
$ oc get pv pvc-e1c0274c-6a20-428c-919e-4548f21a4b4f
NAME                                       CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS   
CLAIM                            STORAGECLASS   REASON   AGE
pvc-e1c0274c-6a20-428c-919e-4548f21a4b4f   1Gi        RWO            Delete           Bound    
ibm-csi-operator/csi-claim-002   ds8k-csi                90m

In section 3.2.1, “Volume lifecycle” on page 37, we discussed the concept of 
VolumeAttachment objects. These objects track the relation between volumes and nodes 
where they are needed. Our PV must be mounted on the node where the pod was scheduled. 
Reviewing all VolumeAttachments gives us the information that we need, as shown in 
Example 5-5.

Example 5-5   Listing all VolumeAttachments

$ oc get volumeattachment
NAME                                                                   ATTACHER            
PV                                         NODE       ATTACHED   AGE
csi-509e1b6a3252892b2beee5b2eababd96079423c601cea65b70b1006182f78003   
block.csi.ibm.com   pvc-e1c0274c-6a20-428c-919e-4548f21a4b4f   worker-0   true       
90m

We see that the PV should be attached to node worker-0, and the attachment occurred. 
Because we have a single VolumeAttachment in our namespace, we can determine the 
correct one. In practical environments, we grep the output for the PV name. As an 
administrator, we can also check the situation on the node by debugging it, as shown in 
Example 5-6. A new pod with the name <node>-debug is created (a process that takes several 
minutes). 

Example 5-6   Accessing a node for debugging

$ oc debug node/worker-0
Starting pod/worker-0-debug ...
To use host binaries, run `chroot /host`
Pod IP: 172.18.142.35

# Open a second command windows and check on the new created debug container.
# This may take some minutes until the “sh-4.2” command prompt will be shown.

sh-4.2# cat /host/proc/mounts | grep pvc-e1c0274c-6a20-428c-919e-4548f21a4b4f
/dev/mapper/mpathg 
/host/var/lib/kubelet/pods/9efce832-94bc-4aaa-a5ff-0103acdaa81e/volumes/kubernetes
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.io~csi/pvc-e1c0274c-6a20-428c-919e-4548f21a4b4f/mount ext4 rw,seclabel,relatime 0 
0

We see the device mapper /dev/mapper/mpathg device, which is the provisioned multipath 
LUN on our DS8000, is mounted to the node operating system under a kubelet-related path. 
This device is mapped to /host/var/lib/kubelet/pods in the debug environment.

Finally, we examine our pod to verify that the file system that is mounted on the node is also 
available in our pod on the expected path, as shown in Example 5-7.

Example 5-7   Running commands in a running pod

$ oc exec -it pod/csi-demo-02-f6cc59d78-xtqw4 /bin/bash
bash-4.2$ df /tmp/csi-vol 
Filesystem         1K-blocks  Used Available Use% Mounted on
/dev/mapper/mpathg    999320  2564    980372   1% /tmp/csi-vol
bash-4.2$ cd /tmp/csi-vol/
bash-4.2$ ls -ltr
total 16
drwxrws---. 2 root 1000570000 16384 Nov  5 08:31 lost+found
bash-4.2$ date > .touched
bash-4.2$ cat /tmp/csi-vol/.touched
Thu Nov  5 08:43:35 UTC 2020
bash-4.2$ exit

Problems can occur. However, now that we know which parts must come together, we can 
systematically debug any issues. However, we first want to ensure that the driver is suitably 
deployed in the cluster.

5.3  CSI operator issues

How to deploy the CSI operator is explained in the respective User Guide. Installation from 
OpenShift’s Operator Hub on the OpenShift Console is straightforward, and installation from 
the CLI on platforms that do not support a GUI-based installation also are not too complicated 
by following the tips that are provided in 4.3, “CSI deployment on IBM Power by using the 
command-line interface” on page 72. On successful installation, we find the assets that 
belong to the operator by selecting those assets that are labeled with 
app.kubernetes.io/instance=ibm-block-csi-operator, as shown in Example 5-8.

Example 5-8   Successfully deployed operator

$ oc get all --selector=app.kubernetes.io/instance=ibm-block-csi-operator
NAME                                         READY   STATUS    RESTARTS   AGE
pod/ibm-block-csi-operator-bdfb89bdd-56wg4   1/1     Running   0          3h3m

NAME                                     READY   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/ibm-block-csi-operator   1/1     1            1           29d

NAME                                               DESIRED   CURRENT   READY   AGE
replicaset.apps/ibm-block-csi-operator-bdfb89bdd   1         1         1       29d

We then expect the operator pod to be ready and running, and not showing a fast-growing 
restart count.
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As starting point for more debugging, we might perform the following tasks:

� Get more information about the status and recent events regarding the pod:

oc describe pod/ibm-block-csi-operator-bdfb89bdd-56wg4

� Gather logs from the operator pod:

oc logs pod/ibm-block-csi-operator-bdfb89bdd-56wg4

More examinations depend on the findings from these commands.

5.4  CSI driver CustomResource issues

As we explained in Chapter 4, “OpenShift and Container Storage Interface deployment” on 
page 45, the CSI driver components are deployed by the operator. To do so, we create a 
CustomResource type of IBMBlockCSI. From this resource, the operator creates a 
StatefulSet for the CSI controller component, and a DaemonSet for the CSI node component. 

The operator labels all resources that belong to that specific IBMBlockCSI CR with its name 
so that we can easily find them. Example 5-9 shows the output after a successful installation.

Example 5-9   Checking driver installation from specific IBMBlockCSI

# first switch to the CSi driver namespace 
$ oc project ibm-block-csi
Now using project "ibm-block-csi"

$ oc get ibmblockcsi
NAME            AGE
ibm-block-csi   27h
$ oc get all --selector=app.kubernetes.io/instance=ibm-block-csi
NAME                             READY   STATUS    RESTARTS   AGE
pod/ibm-block-csi-controller-0   5/5     Running   0          5h9m
pod/ibm-block-csi-node-97qzw     3/3     Running   0          5h21m
pod/ibm-block-csi-node-gj9lk     3/3     Running   0          27h
pod/ibm-block-csi-node-jwqds     3/3     Running   5          27h

NAME                                DESIRED   CURRENT   READY   UP-TO-DATE   
AVAILABLE   NODE SELECTOR   AGE
daemonset.apps/ibm-block-csi-node   3         3         3       3            3           
<none>          27h

NAME                                        READY   AGE
statefulset.apps/ibm-block-csi-controller   1/1     27h

Issues with the CSI Controller or CSI Node deployment can then be tracked by reviewing the 
respective pod’s status and logs.
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5.5  CSI driver snapshot feature

You can use the oc command to check whether the CSI driver supports the snapshot feature, 
as shown in Example 5-10. The snapshot feature is highlighted in red in the example.

Example 5-10   Listing all pod resources in the namespace that include the label csi

[root@i7PFE7]# # change to project of the CSI driver, in this exampe ibm-block-csi
[root@i7PFE7 OCP_install]# oc project ibm-block-csi
Now using project "ibm-block-csi" on server "https://api.ocp-ats.sle.kelsterbach.de.ibm.com:6443".

[root@i7PFE7]# oc get all -l csi -o wide
NAME                                         READY   STATUS    RESTARTS   AGE   IP             NODE                                           
NOMINATED NODE   READINESS GATES
pod/ibm-block-csi-controller-0               5/5     Running   0          24h   10.128.0.207   
i8worker1.ocp-ats.sle.kelsterbach.de.ibm.com   <none>           <none>
pod/ibm-block-csi-node-6cb6q                 3/3     Running   0          24h   9.155.112.84   
i8worker2.ocp-ats.sle.kelsterbach.de.ibm.com   <none>           <none>
pod/ibm-block-csi-node-mxv9n                 3/3     Running   0          24h   9.155.112.83   
i8worker1.ocp-ats.sle.kelsterbach.de.ibm.com   <none>           <none>
pod/ibm-block-csi-operator-bdfb89bdd-hrzgn   1/1     Running   0          33d   10.128.0.11    
i8worker1.ocp-ats.sle.kelsterbach.de.ibm.com   <none>           <none>

NAME                                DESIRED   CURRENT   READY   UP-TO-DATE   AVAILABLE   NODE SELECTOR   
AGE   CONTAINERS                                                IMAGES                                                                                                                                                                                          
SELECTOR
daemonset.apps/ibm-block-csi-node   2         2         2       2            2           <none>          
24h   ibm-block-csi-node,node-driver-registrar,liveness-probe   ibmcom/ibm-block-csi-driver-node:1                                                                 
.3.0,registry.redhat.io/openshift4/ose-csi-driver-registrar:v4.3,registry.redhat.io/openshift4/ose-csi-live
nessprobe:v4.4   app.kubernetes.io/component=csi-node

NAME                                     READY   UP-TO-DATE   AVAILABLE   AGE   CONTAINERS               
IMAGES                                SELECTOR
deployment.apps/ibm-block-csi-operator   1/1     1            1           43d   ibm-block-csi-operator   
ibmcom/ibm-block-csi-operator:1.3.0   app.kubernetes.io/name=ibm-block-csi-operator

NAME                                               DESIRED   CURRENT   READY   AGE   CONTAINERS               
IMAGES                                SELECTOR
replicaset.apps/ibm-block-csi-operator-bdfb89bdd   1         1         1       43d   ibm-block-csi-operator   
ibmcom/ibm-block-csi-operator:1.3.0   app.kubernetes.io/name=ibm-block-csi-operator,pod-templ                                                                 
ate-hash=bdfb89bdd

NAME                                        READY   AGE   CONTAINERS                                                                             
IMAGES
statefulset.apps/ibm-block-csi-controller   1/1     24h   
ibm-block-csi-controller,csi-provisioner,csi-attacher,csi-snapshotter,liveness-probe   
ibmcom/ibm-block-csi-driver-controller:1.3.0,registry.redh                                                                 
at.io/openshift4/ose-csi-external-provisioner-rhel7:v4.4,registry.redhat.io/openshift4/ose-csi-external-att
acher:v4.4,registry.redhat.io/openshift4/ose-csi-external-snapshotter-rhel7:v4.4,registry.redhat                                                                 
.io/openshift4/ose-csi-livenessprobe:v4.4
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Another option to check the snapshot support of the CSI driver is to check a snapshot image 
in the CSI operator, as shown in Example 5-11. The snapshot image is highlighted in red in 
the example.

Example 5-11   Listing the csi operator POD images

[root@i7PFE7]# # change to project of the CSI driver, in this exampe ibm-block-csi
[root@i7PFE7 OCP_install]# oc project ibm-block-csi
Now using project "ibm-block-csi" on server "https://api.ocp-ats.sle.kelsterbach.de.ibm.com:6443".

[root@i7PFE7]# # get the POD name of ibm-block-csi-controller
[root@i7PFE7 OCP_install]# oc get pods | grep ibm-block-csi-controller
ibm-block-csi-controller-0               5/5     Running   0          25h

[root@i7PFE7]# oc get pod ibm-block-csi-controller-0 -o jsonpath="{..image}" | tr -s '[[:space:]]' '\n' | 
sort -u | grep snapshot
registry.redhat.io/openshift4/ose-csi-external-snapshotter-rhel7:v4.4

5.6  CSI driver operation issues

In this section, we assume that the IBM CSI Operator was successfully deployed, and that the 
CSI driver installation with a IBMBlockCSI CR finished successfully. Now, we review common 
issues regarding the driver configuration and typical symptoms that are used daily.

5.6.1  Configuration issues

The following prerequisites must be met so that the CSI driver works correctly:

� IBM CSI Operator is deployed and running.

� A valid IBMBlockCSI CR was created and successfully deployed.

� The storage backend access information is a secret.

� A StorageClass for provisioning volumes and an optional VolumeSnapshotClass are 
defined.

The first two points were discussed in “CSI operator issues”. 

To check the configuration, we start with the last point, as shown in Example 5-12. Does a 
correct StorageClass (or VolumeSnapshotClass respectively) exist?

Example 5-12   Inspection of a StorageClass for CSI provisioned volumes (shortened)

$ oc get StorageClass
NAME       PROVISIONER         RECLAIMPOLICY   VOLUMEBINDINGMODE   
ALLOWVOLUMEEXPANSION   AGE
ds8k-csi   block.csi.ibm.com   Delete          Immediate           false                  
8d
$ oc get StorageClass/ds8k-csi -o yaml
...
parameters:
  SpaceEfficiency: thin
  csi.storage.k8s.io/controller-publish-secret-name: ds8k-secret
  csi.storage.k8s.io/controller-publish-secret-namespace: ibm-csi-operator
  csi.storage.k8s.io/provisioner-secret-name: ds8k-secret
  csi.storage.k8s.io/provisioner-secret-namespace: ibm-csi-operator
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  pool: P4
provisioner: block.csi.ibm.com
...

Check the values for the references to the secrets. Notably, if they exist in the specific 
namespace. Use the command that is shown in Example 5-13. Regarding the namespace (-n 
option) and the secret name, it is best to paste the values from the StorageClass to ensure 
that no typos exist. VolumeSnapshotClasses contains respective references and checking or 
fixing them follows the same principles that we show in Example 5-13.

Example 5-13   Verification of a secret reference

$ oc -n ibm-csi-operator get secret/ds8k-secret
NAME          TYPE     DATA   AGE
ds8k-secret   Opaque   3      3d5h

If the references are accurate, issues might exist with the keys and values in the secret. 
Example 5-14 shows how to list its content.

Example 5-14   Content of a secret (shortened, modified)

$ oc get secret/ds8k-secret -o yaml
apiVersion: v1
data:
  management_address: ZHM4ay1********
  password: eU5**********Fo=
  username: bW***********=
kind: Secret
metadata:
...

The keys in the data field provide the access information for the storage backend. These 
values are base64 encoded, which can be decoded by using echo "Y3NpLXVzZXIK" | base64 
-d, as an example. If the values are correct, the secret can safely be deleted and recreated on 
the GUI, or on the CLI. Example 5-15 shows this process on the CLI.

Example 5-15   Creating a Secret on the CLI

$ oc create secret generic secret-name \
  --from-literal=management_address=back-end-address \
  --from-literal=username=back-end-user \
  --from-literal=password=back-end-password \
  --dry-run -o yaml > secret.yaml
$ oc apply -f ./secret.yaml

The use of the --dry-run option allows us to create a yaml file that can be inspected before it 
is applied. After a new secret is provided, the CSI controller pod is restarted sop that it ends 
any connections that might still use the older access information and fail:

oc delete pod/ibm-block-csi-controller-0

Linux for System z considerations
As described in Chapter 4, “OpenShift and Container Storage Interface deployment” on 
page 45, some specifics exist regarding the FCP devices. 
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A common symptom if the FCP adapters are not active on a node is that a so-called nodeid is 
not being created. This issue leads to a CSI node pod, which is continuously restarting and 
put into Error status, as shown in Example 5-16.

Example 5-16   Pod restarting on a node after fresh installation

[schaefm@t8360030 block-csi]$ oc get all
NAME                                         READY   STATUS    RESTARTS   AGE
pod/ibm-block-csi-controller-0               5/5     Running   0          3m14s
pod/ibm-block-csi-node-dntqc                 3/3     Running   0          3m14s
pod/ibm-block-csi-node-gj9lk                 3/3     Running   1          3m14s
pod/ibm-block-csi-node-jwqds                 3/3     Running   0          3m14s
pod/ibm-block-csi-operator-bdfb89bdd-6gr8l   1/1     Running   0          28d

NAME                                DESIRED   CURRENT   READY   UP-TO-DATE   
AVAILABLE   NODE SELECTOR   AGE
daemonset.apps/ibm-block-csi-node   3         3         3       3            3           
<none>          3m15s

NAME                                     READY   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/ibm-block-csi-operator   1/1     1            1           28d

NAME                                               DESIRED   CURRENT   READY   AGE
replicaset.apps/ibm-block-csi-operator-bdfb89bdd   1         1         1       28d

NAME                                        READY   AGE
statefulset.apps/ibm-block-csi-controller   1/1     3m15s

To verify whether this issue is the case, check the pod’s logs, as shown in Example 5-17.

Example 5-17   Checking CSI node pod logs

$ oc logs pod/ibm-block-csi-node-gj9lk -c ibm-block-csi-node
...
2020-11-04 10:06:02,11410 DEBUG [210] [-] (node.go:594) - >>>> NodeGetInfo: called 
with args {XXX_NoUnkeyedLiteral:{} XXX_unrecognized:[] XXX_sizecache:0}
2020-11-04 10:06:02,11410 DEBUG [210] [-] (node.go:605) - <<<< NodeGetInfo
2020-11-04 10:06:02,11410 ERROR [210] [-] (driver.go:83) - GRPC error: rpc error: 
code = Internal desc = Unsupported connectivity type : {fc}

The CSI node cannot provide any information about its Fibre Channel connectivity. Therefore, 
the node annotation csi.volume.kubernetes.io/nodeid is missing for that node, as shown in 
Example 5-18.

Example 5-18   Check nodeid annotation for a Node

$ oc describe pod/ibm-block-csi-node-gj9lk | grep Node:
Node:         worker-0/172.18.142.35
$ oc describe node/worker-0 | grep 'kubernetes.io/nodeid'
Showing no result

This issue can be solved by following the instructions that are provided in 4.4, “CSI and 
OpenShift on IBM Z” on page 87. After the adapters are active, the CSI node pod can start 
and annotate the node object correctly.
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5.6.2  PVC not binding

A common symptom is that the PVC that we created does not bind to PVs. In that case, we 
observe a PVC that stays in Pending state for a longer time, and no corresponding PV is 
appearing. Another issue can be that a newly created pod stays in Pending state for an 
unexpectedly long time. We review the pod’s events by using oc describe pod/pod-name 
because we see some of its volumes do no mount. 

Consider the following hints for debugging the issue:

� Give the platform a bit more time because it might be under stress.

� Check CSI controller logs to confirm whether the controller allocated the requested 
storage on the backend:

– Does it determine the right back-end type for the new volume: DS8K, XIV, or IBM SAN 
Volume Controller?

– Are management addresses correct and can the controller log in to the backend?

– Does the backend refuse to create the volume?

� Check the storage system:

– Are the worker nodes correctly configured on the storage system?
– Is its capacity sufficient?
– Does the request reach to the back-end?
– Are volumes created?

5.6.3  Volume not mounting

An issue can occur in which the CSI controller successfully created the PV on the backend 
and the PVC and PV are bound. However, a pod that uses the PVC does not start. Instead, it 
stays in the Pending state and possibly goes into the Error state after some time. 

Consider the following debugging hints:

� Check VolumeAttachment objects:

– Does VolumeAttachment for the PV on the targeted node exist?
– Are other VolumeAttachments for the same PV active, but on a different node?
– Is a terminating pod on a node possibly not finishing?

� Check the targeted node of the VolumeAttachment.

� Check the storage system:

– Are the worker nodes correctly configured on the storage system?

– Is the volume mounted to a worker? 

– Check the note about IBM FlashSystem vdiskprotectionenabled that is discussed 
in “Creating a StatefulSet” on page 82.
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5.7  Searching the CSI related log entries

Example 5-19 shows the steps to list the CSI operator log information.

Example 5-19   Listing the CSI operator log information only

[root@i7PFE7 ~]# # select the CSI project
[root@i7PFE7 ~]# oc project ibm-block-csi
Now using project "ibm-block-csi" on server "https://api.ocp-ats.sle.kelsterbach.de.ibm.com:6443".
[root@i7PFE7 ~]# oc get all
NAME                                         READY   STATUS    RESTARTS   AGE
pod/ibm-block-csi-controller-0               5/5     Running   0          2d

. . .

[root@i7PFE7 ~]# oc logs pod/ibm-block-csi-controller-0
Error from server (BadRequest): a container name must be specified for pod ibm-block-csi-controller-0, choose one of: 
[ibm-block-csi-controller csi-provisioner csi-attacher csi-snapshotter liveness-probe]

[root@i7PFE7 ~]# oc logs pod/ibm-block-csi-controller-0 -c ibm-block-csi-controller
/opt/app-root/lib/python3.6/site-packages/cryptography/hazmat/bindings/openssl/binding.py:177: CryptographyDeprecationWarning: OpenSSL 
version 1.0.2 is no longer supported by the OpenSSL project, please upgrade. The next version of cryptography will drop support for it.
  utils.CryptographyDeprecationWarning,
2020-11-29 15:37:53,369 DEBUG   [140735520723024] [MainThread] (csi_controller_server.py:start_server:649) - Listening for connections on 
endpoint address: unix:///var/lib/csi/sockets/pluginproxy/csi.sock
2020-11-29 15:37:53,370 DEBUG   [140735520723024] [MainThread] (csi_controller_server.py:start_server:652) - Controller Server running ...
2020-11-29 15:37:53,487 INFO    [140735430783408] [ThreadPoolExecutor-0_0] (csi_controller_server.py:GetPluginInfo:558) - GetPluginInfo

. . .

[root@i7PFE7 ~]#

Example 5-20 shows the steps to collect the CSI driver log information.

Example 5-20   Listing the CSI driver log information

[root@i7PFE7 ~]# # select the CSI project
[root@i7PFE7 ~]# oc project ibm-block-csi
Now using project "ibm-block-csi" on server "https://api.ocp-ats.sle.kelsterbach.de.ibm.com:6443".

[root@i7PFE7 ~]# # create a directory to store the collected log information
[root@i7PFE7 ~]# mkdir logs

[root@i7PFE7 ~]# # collect csi-controller logs
[root@i7PFE7 ~]# oc logs ibm-block-csi-controller-0  --all-containers > logs/ibm-block-csi-controller

[root@i7PFE7 ~]# # collect csi-node logs, first get the nodes and then gather all nodes information
[root@i7PFE7 ~]# nodepods=`oc get pod -l app.kubernetes.io/component=csi-node 
--output=jsonpath={.items..metadata.name}`
[root@i7PFE7 ~]# for nodepod in $nodepods; do oc logs --all-containers $nodepod > logs/$nodepod; done

[root@i7PFE7 ~]# # collect csi-operator log, first get the operator and the collect its log information
[root@i7PFE7 ~]# oc get pod -l app.kubernetes.io/instance=ibm-block-csi-operator
NAME                                      READY   STATUS    RESTARTS   AGE
ibm-block-csi-operator-74c99d777c-fsj4j   1/1     Running   0          80m

[root@i7PFE7 ~]# oc logs ibm-block-csi-operator-74c99d777c-fsj4j > logs/operator

[root@i7PFE7 ~]# # describe details of all csi component 
[root@i7PFE7 ~]# oc describe all -l csi  > logs/describe_csi

[root@i7PFE7 ~]# # describe details of PVC with issues, get unbound PVCs of your namespace/project
[root@i7PFE7 ~]# oc get pvc --no-headers -n fs9110 | grep -v Bound
fs9110-child-3  Pending  fs9110-storageclass-child   5m12s

[root@i7PFE7 ~]# oc describe pvc fs9110-child-3 -n fs9110 > logs/pvc_not_bounded
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[root@i7PFE7 ~]# # describe details of PODs with issues, get not running PODs of your namespace/project
[root@i7PFE7 ~]# oc get pod --no-headers -n fs9110 | grep -v Running
hello-node-854bb954fd-r49kp       0/1   ImagePullBackOff   0     143m
[root@i7PFE7 ~]# oc describe pod hello-node-854bb954fd-r49kp -n fs9110 > logs/pod_not_running

[root@i7PFE7 ~]# # list the created log files
[root@i7PFE7 ~]# ls -l logs

-rw-r--r--. 1 root root   36631 Dec 18 11:45 describe_csi
-rw-r--r--. 1 root root 6130625 Dec 18 10:38 ibm-block-csi-controller
-rw-r--r--. 1 root root   65318 Dec 18 11:09 ibm-block-csi-node-8wh99
-rw-r--r--. 1 root root   53769 Dec 18 11:09 ibm-block-csi-node-chd4q
-rw-r--r--. 1 root root    7331 Dec 18 11:12 operator
-rw-r--r--. 1 root root    2980 Dec 18 11:20 pod_not_running
-rw-r--r--. 1 root root    1712 Dec 18 11:15 pvc_not_bounded

5.8  Changing the CSI driver subscription by using the CLI

You can set the upgrade mode of the CSI driver to automatic or manual by using the oc edit 
command: 

# oc edit subscriptions ibm-block-csi-operator

Figure 5-1 shows the line to be edited. Change the installPlanAproval value to automatic or 
manual, depending on your needs. 

Figure 5-1   Editing the CSI driver installation plan approval

After the changes are saved, the new value is automatically applied.
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Appendix A. Terminology

This appendix provides a list of terms and acronyms and their definitions that are used with 
OpenShift and the IBM CSI driver.

A
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Term and acronyms

Block Volume

A volume that will appear as a block device inside the container.

Cephs

Cephs is an open-source software storage platform. Software defined storage (SDS) that 
implements object storage on a distributed computer cluster, and provides interfaces for 
object-, block-, and file-level storage.

Container

This is a technology for packaging an application along with its runtime dependencies.

CRI-O

The Container Runtime Interface (CRI) is a plug-in interface that gives kubelets the ability 
to use different Open Container Initiative (OCI) compliant container runtimes. The CRI-O 
project allows you to run containers directly from Kubernetes. Each CRI-O version is 
compatible with the Kubernetes version that has the same version number. CRI-O is the 
default in OpenShift runtime interface.

CSI

Container Storage Interface (CSI): an industry standard API to create and use storage 
services.

CO

A Container Orchestration system (CO) manages containers automatically. Kubernetes is 
an open source Container Orchestration system. RPCs Remote Procedure Calls (RPCs) 
are used for the communication.

Docker

Docker is a software technology providing containers, promoted by the company Docker, 
Inc. Docker provides an additional layer of abstraction and automation of the operating 
system level virtualization on Windows and Linux.

etcd

etcd is a consistent and highly-available key value store used as Kubernetes' store for all 
cluster data.

gRPC

gRPC is a Remote Procedure Call (RPC) platform developed by Goggle.

Kubernetes

Kubernetes (commonly referred to as K8s) is an open source container orchestration 
system for automating deployment, scaling and management of containerized applications 
that was originally designed by Google and donated to the Cloud Native Computing 
Foundation. It aims to provide a platform for automating deployment, scaling, and 
operations of application containers across clusters of hosts.

kubelet

The Kubernetes kubelet is an agent running on every machine in the cluster. It interacts 
with the API server and the controllers in the control plane to fulfil its central tasks: 
starting, stopping, monitoring and deleting containerized workloads on the machine.
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kube-proxy

The Kubernetes network proxy runs on each node. It reflects services as defined in the 
Kubernetes API on each node and can do simple TCP, UDP, and SCTP stream forwarding 
or round robin TCP, UDP, and SCTP forwarding across a set of back-ends. Service cluster 
IPs and ports are currently found through Docker-links-compatible environment variables 
specifying ports opened by the service proxy.

Mounted Volume

A volume that appear as a directory inside the container. It will be mounted using the 
specified file system type. 

Node

Nodes are Kubernetes’ abstraction of real computer. Kubernetes runs your workload by 
placing containers into Pods to run on nodes. A node may be a virtual or physical 
machine, depending on the cluster. Each node contains the services necessary to run 
Pods, managed by the control plane.

oc

OpenShift CLI (OC) contains commands for managing your applications, as well as lower 
level tools to interact with each component of your system. You can download and unpack 
the Command Line Interface (CLI) from the Red Hat Customer Portal for use on Linux, 
Mac OS X, and Windows clients. 

OCP

Red Hat OpenShift container platform (OCP). An application platform with full stack 
automation.

OCS

Red Hat OpenShift Container Storage (OCS)

OpenShift

OpenShift is developed by Red Hat is an open source development platform. It enables 
developers to develop and deploy their applications on cloud infrastructure. It is very 
helpful in developing cloud-enabled services by using the cloud development Platform as 
a Service (PaaS).

Plug-in

A plug-in also called “plug-in implementation”, is a google remote procedure call (gRPC) 
endpoint that implements the CSI Services.

POD

PODs are the smallest deployable units of computing that can be created and managed in 
Kubernetes and consists of one or more containers.

PV

PersistentVolume (PV).

PVC

A Persistent Volume Claim (PVC) object describes the characteristics of a piece of storage 
from an application’s point of view. PVCs offer an abstraction of storage.
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quay.io

Quay.io is a container image repository. It includes features for building images and 
scanning for security vulnerabilities It is available as a standalone component or in 
conjunction with OpenShift.

ROX

This is the storage volume mode ReadOnlyMany (ROX): the volume can be mounted as 
read-only by many pods.

RPC

Remote Procedure Call (RPC).

RWO

This is the storage volume mode ReadWriteOnce (RWO): the volume can be mounted as 
read-write by a single pod).

RWX

This is the storage volume mode ReadWriteMany (RWX): the volume can be mounted as 
read-write by many pods.

Sidecars

Sidecar containers extend and enhance a container. They exist in the same pod as the 
container sharing storage and network with it.

StorageClass

A StorageClass describes the options an administrator can chose to provide storage to 
OCP. Different classes might map to quality-of-service levels, or to backup policies, or to 
arbitrary policies determined by the cluster administrators. Storage classes are 
transparent for Kubernetes. 

SP

A Storage Provider (SP) is the vendor of a CSI plug-in implementation.

SpectrumScale

IBM SpectrumScale is a cluster file system that provides concurrent access to a single file 
system or set of file systems from multiple nodes. The nodes can be SAN attached, 
network attached, a mixture of SAN attached and network attached, or in a shared nothing 
cluster configuration.

Volume

A volume is a unit of storage inside of a CO-managed container. It will be made available 
via the CSI.

Workload

A workload is an application running on Kubernetes which you run inside a set of Pods. 
Your workload can be a single component or several that work together.

Yaml

Yaml is a human readable data serialization language, typically used for systems 
configuration files.
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Appendix B. Container Storage Interface 
support matrix

This appendix provides information about the IBM Container Storage Interface (CSI) driver 
compatibility and requirements. The supported Red Hat OpenShift access modes for 
persistent storage are also listed.

This matrix reflects the supported environment at the time of this writing.

This appendix includes the following topics:

� “IBM block storage CSI driver compatibility and requirements” on page 132
� “Red Hat OpenShift access modes for persistent storage” on page 133
� “Red Hat OpenShift CSI volume snapshot support” on page 133

B
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IBM block storage CSI driver compatibility and requirements

More information about IBM block storage CSI driver compatibility and requirements are listed 
in the IBM block storage CSI driver documentation, which is available at this IBM 
Documentation web page.

This information specifies the compatibility and requirements of version 1.3.0 of IBM block 
storage CSI driver for the following topics:

� Supported storage systems

IBM block storage CSI driver 1.3.0 supports different IBM storage systems as listed in 
Table B-1.

Table B-1   CSI driver supported storage systems

� Supported operating systems

The operating systems that are required for deployment of the IBM block storage CSI 
driver are listed in Table B-2.

Table B-2   CSI driver supported operating systems

� Supported orchestration platforms

The orchestration platforms that are suitable for deployment of the IBM block storage CSI 
driver are listed in Table B-3.

Table B-3   CSI driver supported orchestration platforms

Storage system Microcode version

IBM FlashSystem A9000/R 12.x

IBM Spectrum Virtualize Family 7.x, 8.x

IBM Spectrum Virtualize as software only 7.x, 8.x

IBM DS8000 Family  8.x and higher with same API interface

Operating system Microcode version

Red Hat Enterprise Linux 
(RHEL) 7.x

x86

Red Hat CoreOS (RHCOS) x86, IBM Z

Red Hat CoreOS (RHCOS) � IBM Power
� IBM Power architecture is supported on Spectrum 

Virtualize Family storage systems only

Orchestration platform Version Architecture

Kubernetes 1.17 x86

Kubernetes 1.18 x86

Red Hat OpenShift 4.3 IBM Z
IBM Power with Spectrum 
Virtualize Family storage systems

Red Hat OpenShift 4.4 x86, IBM Z

Red Hat OpenShift 4.5 x86,
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For more information about the release notes and user guide, see this IBM Documentation 
web page.

Always check this web page for the most current CSI driver updates and new compatibility 
and requirement information.

Red Hat OpenShift access modes for persistent storage

A PersistentVolume can be mounted on a host having one of the access modes that are listed 
in Table B-4.

Table B-4   Access modes

This paper describes the attachment for Fibre Channel (FC) attached storage. Therefore, the 
information that is listed in Table B-5 is reduced to the FC support. OpenShift Container 
Platform versions 4.3, 4.4, and 4.5 support the same access mode, as shown in Table B-5.

Table B-5   Supported access modes for PersistentVolumes

ReadWriteOnce (RWO) volumes cannot be mounted on multiple nodes. If a node fails, the 
volume is still assigned to the failed node and cannot be mounted on another node. To make 
the volume available to another node, you might need to recover or delete the failed node.

For more information, see the OpenShift documentation that is available at this web page.

Red Hat OpenShift CSI volume snapshot support

CSI volume snapshot is an Red Hat OpenShift Container Platform Technology Preview 
feature only. For more information, see this web page.

Access mode CLI abbreviation Volume can be mounted as

ReadWriteOnce RWO Read-write by a single node

ReadOnlyMany ROX Read-only by many nodes

ReadWriteMany RWX Read/write by many nodes

Volume plug-in ReadWriteOnce ReadOnlyMany ReadWriteMany

Fibre Channel Yes Yes No
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Related publications

The publications that are listed in this section are considered particularly suitable for a more 
detailed discussion of the topics that are covered in this paper.

IBM Redbooks

The following IBM Redbooks publications provide more information about the topic in this 
document. Note that some publications that are referenced in this list might be available in 
softcopy only:

� IBM Spectrum Scale CSI Driver for Container Persistent Storage, REDP-5589
� Red Hat OpenShift V4.3 on IBM Power Systems Reference Guide, REDP-5599
� Red Hat OpenShift on IBM Z Installation Guide, REDP-5605

You can search for, view, download, or order these documents and other Redbooks, 
Redpapers, Web Docs, draft, and additional materials, at the following website: 

ibm.com/redbooks

Other publications

The following publications are also relevant as further information sources:

� OpenShift OKD on IBM LinuxONE, Installation Guide, REDP-5561

� IBM Storage for Red Hat OpenShift Container Platform V3.11 Blueprint Version 1 Release 
1, REDP-5564

� IBM Storage for Red Hat OpenShift Blueprint Version 1 Release 4, REDP-5565

� Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1, SG24-8459

Online resources

The following websites are also relevant as further information sources:

� IBM block storage CSI driver documentation:

https://www.ibm.com/support/knowledgecenter/SSRQ8T/landing/IBM_block_storage_CS
I_driver_welcome_page.html

� OpenShift Container Platform 4.5 Documentation:

https://docs.openshift.com/container-platform/4.5/welcome/index.html
Other platforms, like platform 4.4, can be selected on above page.

� OpenShift Container Platform 4.5 Documentation on persistent storage:

https://docs.openshift.com/container-platform/4.5/storage/understanding-persist
ent-storage.html

� Kubernetes concepts:

https://kubernetes.io/docs/concepts
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� Container Storage Interface (CSI) Specification:

https://github.com/container-storage-interface/spec

� Container Storage Interface (CSI) (industry standard definition):

https://github.com/container-storage-interface/spec/blob/master/spec.md

� IBM CSI driver source code:

https://github.com/IBM/ibm-block-csi-driver

� IBM CSI operator source code:

https://github.com/IBM/ibm-block-csi-operator

� Open source distributed key-value store etcd project and IBM detailed information:

https://github.com/etcd-io/etcd
https://www.ibm.com/cloud/learn/etcd:

� Kubernetes StatefulSet description:

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset

� How to edit MTU in OpenShift 4 install: 

https://access.redhat.com/solutions/5092381

IBM Knowledge Center Cloud Pak documentation

These websites give information on the IBM Cloud Paks:

� Cloud Pak for Applications:

– Storage requirements (primarily ReadWRiteOnce (RWO)):

https://www.ibm.com/support/knowledgecenter/SSCSJL_4.3.x/install-prerequisit
es.html#storage-access-mode

– CodeReady Workspaces and Codewind (ReadWriteMany (RWX) example):

https://www.ibm.com/support/knowledgecenter/SSCSJL_4.2.x/docs/ref/general/in
stallation/installing-codeready-and-codewind.html

– Mobile Foundation:

https://www.ibm.com/support/knowledgecenter/SSCSJL_4.2.x/install-prerequisit
es-mf.htm

� Cloud Pak for Data (RWO and RWX):

– Storage requirements:

https://www.ibm.com/support/knowledgecenter/en/SSQNUZ_3.0.1/cpd/plan/storage
_considerations.html

– Informix (RWO example):

https://www.ibm.com/support/knowledgecenter/en/SSQNUZ_3.0.1/svc-ifx/svc_ifx_
configure_task.html

– Watson AIOps (RWO example):

https://www.ibm.com/support/knowledgecenter/en/SSQNUZ_3.0.1/svc-aiops/aiops-
prereqs.html#aiops-prereqs__storage
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� Cloud Pak for Integration storage requirements (RWX and RWO):

https://www.ibm.com/support/knowledgecenter/en/SSGT7J_20.3/install/sysreqs.html
#icip_sysreqs__file

� Cloud Pak for Automation (RWX and RWO):

https://www.ibm.com/support/knowledgecenter/SSYHZ8_20.0.x/com.ibm.dba.install/o
p_topics/tsk_plan_storage.html

Business Automation Workflow and Workstream Service (RWX Example):

https://www.ibm.com/support/knowledgecenter/SSYHZ8_20.0.x/com.ibm.dba.install/o
p_topics/tsk_bawprep_storage.html

� Cloud Pak for Multicloud Management (RWX and RWO):

https://www.ibm.com/support/knowledgecenter/SSFC4F_2.1.0/install/prep.html#stor
age

� Ansible Tower (RWO): 
https://www.ibm.com/support/knowledgecenter/SSFC4F_2.1.0/install/ansible_tower.
html

� Cloud Automation Manager Managed Services (RWX): 
https://www.ibm.com/support/knowledgecenter/SSFC4F_2.1.0/install/infra_mgmt_con
fig.html

� Cloud Pak for Security (RWO):

https://www.ibm.com/support/knowledgecenter/SSTDPP_1.4.0/platform/docs/security
-pak/persistent_storage.html

Help from IBM

IBM Support and downloads:

ibm.com/support

IBM Global Services:

ibm.com/services
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