Anzeige
Fauna Marin GmbH Mrutzek Meeresaquaristik S&L Naturverlag Kölle Zoo Aquaristik Aqua Medic

Conus bullatus Bubble Cone

Conus bullatusis commonly referred to as Bubble Cone. Difficulty in the aquarium: Not suitable for aquarium keeping. Toxicity: Highly toxic.


Profilbild Urheber Scott & Jeanette Johnson, Kwajalein Unterwater

Conus bullatus,Bubble cone, 64mm


Courtesy of the author Scott & Jeanette Johnson, Kwajalein Unterwater . Please visit www.underwaterkwaj.com for more information.

Uploaded by Muelly.

Image detail


Profile

lexID:
12916 
AphiaID:
215495 
Scientific:
Conus bullatus 
German:
Blasen-Kegel 
English:
Bubble Cone 
Category:
Snails 
Family tree:
Animalia (Kingdom) > Mollusca (Phylum) > Gastropoda (Class) > Neogastropoda (Order) > Conidae (Family) > Conus (Genus) > bullatus (Species) 
Initial determination:
Linnaeus, 1758 
Occurrence:
China, East Africa, Hawaii, Indian Ocean, Indo Pacific, Marquesas Islands, Marschall Islands, Mauritius, Mozambique, New Caledonia, Philippines, South-Pazific, Thailand, Zanzibar 
Sea depth:
- 240 Meter 
Size:
1.57" - 3.15" (4,5cm - 8cm) 
Temperature:
°F - 73.4 °F (°C - 23°C) 
Food:
Carnivore, Fish (little fishes), Predatory 
Difficulty:
Not suitable for aquarium keeping 
Offspring:
None 
Toxicity:
Highly toxic 
CITES:
Not evaluated 
Red List:
Least concern (LC)  
Related species at
Catalog of Life:
 
More related species
in this lexicon:
 
Author:
Publisher:
Meerwasser-Lexikon.de
Created:
Last edit:
2020-04-22 18:30:42 

Toxicity


Conus bullatus is (very) poisonous and the poison can kill you under circumstances!!!
If you want to keep Conus bullatus, inform yourself about the poison and its effects before buying. Keep a note with the telephone number of the poison emergency call and all necessary information about the animal next to your aquarium so that you can be helped quickly in an emergency.
The telephone numbers of the poison emergency call can be found here:
[overview_and_url_DE]
Overview Worldwide: eapcct.org

This message appears for poisonous, very poisonous and also animals whose poison can kill you immediately. Every human reacts differently to poisons. Please therefore weigh the risk for yourself AND your environment very carefully, and never act lightly!

Info

Conus bullatus Linnaeus, 1758

Like all species within the genus Conus, these snails are predatory and venomous. Diet: other molluscs and fishes.

The colour of the shell is white, clouded with orange-red and chestnut, forming two ill-defined bands. The thin shell is inflated and grooved below, refer to the name Bubble Cone.

Synonymised names:
Conus (Textilia) bullatus Linnaeus, 1758· accepted, alternate representation
Conus bullatus pongo Coomans, Moolenbeek & Wils, 1982 (synonym of Conus bullatus)
Conus bullatus var. articulata Dautzenberg, 1937 (invalid: junior homonym of Conus articulatus G.B. Sowerby II, 1873)
Conus nubecula Gmelin, 1791
Cucullus laganum Röding, 1798
Cucullus parvus Röding, 1798
Textilia bullata (Linnaeus, 1758)
Textilia bullata f. pongo Shikama & Oishi, 1977 (not available: established at infrasubspecific rank)

Direct children (2):
Subspecies Conus bullatus pongo Coomans, Moolenbeek & Wils, 1982 accepted as Conus bullatus Linnaeus, 1758 (synonym of Conus bullatus)
Variety Conus bullatus var. articulata Dautzenberg, 1937 accepted as Conus bullatus Linnaeus, 1758 (invalid: junior homonym of Conus articulatus G.B. Sowerby II, 1873)

The genus Conus, which belongs to the family Conidae, is a group of predatory snails.
Between 800 to 1000 different cone snails live in our oceans and are carnivorous.
"Slow as a snail" is a bknown exclamation, how can the slow moving cone snails capture carnivorous food animals?

The venom of cone snails is so potent that it can instantly paralyze and eventually kill prey

These snails detect prey in their environment using an appendage called a siphon. While some species have an eyestalk, the siphon is a more sensitive method of locating prey and also performs additional respiratory functions. The prey that each Conus species hunts varies greatly. Some feed on worms (vermivores), others on mollusks (molluscivores), and the species most toxic to humans feed on fish (piscivores).

The venom of the cone snail is a complex mixture of compounds that cause paralysis through several neuromuscular blocking steps. The combinations of peptides that make up the venom vary from species to species, and it is estimated that each cone snail contains over 100,000 different bioactive compounds in its venom. The complexity of this venom and the different target pathways have prevented the production of an effective antitoxin.

The cone snail's habitats primarily include tropical waters, such as the Red Sea, Caribbean Sea, Indian Ocean, and Pacific Ocean. Despite their preference for tropical environments, cone snails also live in warm deep-sea waters off the coast of Florida. They generally live in the deep sea near reefs and hunt mainly at night. During the day, they bury themselves in the sand and primarily encounter humans only when provoked. Various sources report mortality rates ranging from 15% to 75%, but it remains to be noted that cone snail poisoning is a preventable cause of death that all deep-sea divers should be aware of.

Because of the rarity of cone snail poisoning and the lack of data, it is uncertain whether death is due to respiratory toxicity, cardiovascular toxicity, or a combination of both. The effects of poisoning depend on the specific peptides in the venom and are therefore largely unpredictable. These venoms have a variety of neuromuscular effects- via glutamate, adrenergic (chi-conotoxin), serotonin, and cholinergic pathways.

There are several "conotoxins" in species-specific combinations in snail venom. These toxins have a variety of neuromuscular effects via glutamate, adrenergic (chi-conotoxin), serotonin, and cholinergic pathways. Some conotoxins exert their effects on sodium (delta-conotoxin), potassium, and calcium ion channels. In addition, there are other less well-known targets, such as toxins that act on hormone receptors and simulate the effects of oxytocin and vasopressin (conopressins). Another major component of cone snail venom is various alpha-conotoxins. These toxins act specifically on nicotinic receptors responsible for skeletal muscle contraction. This mechanism is similar to that of botulinum toxin in that they act on the same signaling pathway. Alpha-conotoxins block nicotinic receptors, resulting in paralysis that can also affect the diaphragm. Because of the wide range of molecular targets and the different toxins of each Conus species, it is virtually impossible to produce an effective antidote.

The most important action following cone snail intoxication is urgent hospital treatment and ensuring that the patient's airway, breathing, and circulation remain intact. Once the patient arrives at the hospital, mechanical ventilation and supportive therapies are initiated. During transport, some additional methods may be used to prevent spread of the toxin. Pressure immobilization involves bandaging the limb, starting at the distal end (fingers or toes) and moving toward the axial joints. This technique was suggested to prevent further injury after poisoning. The bandage should be tight, but not so tight as to interfere with blood flow. Frequent examinations should ensure that the most distal parts (i.e., fingers, toes) remain pink. It is recommended that these dressings be removed for 90 seconds and reapplied every 10 minutes, but this should not affect the speed of transport to a hospital in any way.

Other reports suggest that hot water (40 to 50 degrees Celsius) may be effective for pain relief after cone snail intoxication. More reports are needed before this becomes standard treatment, but at this time they are based mainly on anecdotal data.
Source:
https://www.ncbi.nlm.nih.gov/books/NBK470586/

Scientific paper

  1. Pruning nature: Biodiversity-derived discovery of novel sodium channel blocking conotoxins from Conus bullatus, Mandë Holford; Min-Min Zhang; K. Hanumae Gowd; Layla Azam; Brad R. Green; Maren Watkins; John-Paul Ownby; Doju Yoshikami; Grzegorz Bulaj; Baldomero M. Olivera, 2009

External links

  1. National Library of Medicine (en). Abgerufen am 07.08.2020.
  2. Wikipedia (de). Abgerufen am 07.08.2020.
  3. Wikipedia (en). Abgerufen am 07.08.2020.
  4. World Register of Marine Species (WoRMS) (en). Abgerufen am 07.08.2020.

Pictures

Commonly


Husbandry know-how of owners

0 husbandary tips from our users available
Show all and discuss