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Zusammenfassung 

Artenschutzgenetik, Artbildungsprozesse und Biogeographie afrikanischer Libellen 

 

Die Erhaltung der Biodiversität ist eines der wichtigsten Ziele im Naturschutz. Die 

Einbeziehung verschiedener Forschungsdisziplinen ermöglicht die Betrachtung ihrer 

Entstehung auf unterschiedlichen Ebenen – von Populationen bis hin zu Arten und deren 

biogeografischer Geschichte. Im modernen Artenschutz werden dafür zunehmend auch 

molekulargenetische Methoden in die Untersuchungen mit einbezogen, da sich mit ihrer Hilfe 

wichtige Informationen über den Entstehungsprozess der biologischen Vielfalt herleiten 

lassen. Mit der vorliegenden Arbeit werden Studien auf den Gebieten der Populationsgenetik, 

Artbildung und Phylogeographie an afrikanischen Libellen, insbesondere in der Gattung 

Trithemis vorgestellt.  

Hierfür wurden zunächst neue Marker-Systeme und Methoden entwickelt und getestet. 

Mikrosatelliten sind auf Populationsebene eines der besten Marker-Systeme. Daher wurde im 

Rahmen dieser Arbeit ein Protokoll zur Isolierung von Mikrosatelliten entwickelt und im 

Anschluss an vier verschiedenen Libellenarten erfolgreich angewandt, um Fragen bezüglich 

ihres Fortpflanzungsverhaltens (Anax imperator und A. parthenope), ihrer Parthenogenese 

(Ischnura hastata), ihrer genetischen Diversität (Orthetrum coerulescens) und ihrer 

Populationsstruktur (Trithemis arteriosa) zu untersuchen.  

Für umfassende populationsgenetische und phylogenetische Studien wurden außerdem 

neue Sequenzmarker ausgewählt (ND1, COI, 16S, ITS I - II sowie eine Mikrosatelliten-

flankierende Region) und auf ihre Aussagekraft für das Erkennen von Populationsstrukturen 

sowie die Auflösung von Verwandtschaftsverhältnissen untersucht. Desweiteren wurden zwei 

unterschiedliche Methoden auf ihre Anwendbarkeit hinsichtlich einer gesicherten 

Identifizierung und Entdeckung neuer Arten überprüft: zum einen das auf Merkmalen 

basierende Barcoding (CAOS-barcoding) und zum anderen der sogenannte Taxonomische 

Zirkel, durch dessen analytischen Überprüfungsprozess die Hypothese einer Artentdeckung 

bestätigt oder verworfen werden kann. 

Der geografische Schwerpunkt dieser Arbeit liegt auf Namibia, einem der trockensten 

Länder des afrikanischen Kontinents. Libellen sind aufgrund ihres komplexen aquatisch-

terrestrischen Lebenszyklus an Gewässer gebunden und werden daher in Gebieten mit 

wüstenähnlichem Klima nicht unbedingt erwartet. Dennoch konnten einige Arten 
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Überlebensstrategien entwickeln, die es ihnen ermöglichen, sich auch an sehr trockene 

Gebiete anzupassen. Um zu untersuchen, wie sich das (Über-)Leben eines wasser-assoziierten 

Organismus in der Wüste auf dessen genetische Diversität und Verhalten auswirkt, wurde 

eine populationsgenetische Studie an der Segellibelle Trithemis arteriosa durchgeführt. Mit 

Hilfe des neu entwickelten Mikrosatelliten-Systems, zwei nicht-kodierenden nukleären und 

einem mitochondrialen Sequenzmarker (ITS I - II; TartR04; ND1) wurden zwölf Standorte in 

Namibia und Kenia untersucht. Die Ergebnisse der nukleären Marker zeigten hohe genetische 

Diversitäten und Genfluss zwischen allen untersuchten Standorten an. Die Analyse des 

mitochondrialen Markers ließ jedoch eine Strukturierung der Populationen mit fast 

ausschließlich privaten Haplotypen erkennen. Die sich widersprechenden Ergebnisse weisen 

auf eine geschlechterspezifische Ausbreitung hin. Während die Weibchen standorttreu sind 

und dabei Energie für Fortpflanzung und Eiablage sparen, zeigen die Männchen hohe 

Migrationsraten in Abhängigkeit von der Gewässerstabilität. Diese Studie liefert erstmalig 

Einblicke in die Verhaltens- und Ausbreitungsstrategien eines in der Wüste lebenden und an 

Gewässer gebundenen Insekts.  

Die populationsgenetische Studie an Trithemis stictica, einer Libellenart mit hohen 

Habitatansprüchen, lässt ein anderes Biodiversitätsmuster erkennen. Aufgrund ihres stenöken 

Verhaltens konnte diese Art nur zwei regional begrenzte Populationen in Namibia etablieren. 

Zusätzlich zu den Standorten in Namibia wurden Proben aus dem gesamten 

Verbreitungsgebiet der Art im südlichen Afrika miteinbezogen und mit Hilfe von vier 

Sequenzmarkern (ND1, COI, 16S und ITS I - II) genetisch untersucht. Die Analysen aller vier 

Marker zeigen übereinstimmend eine klare genetische Aufspaltung der Individuen in drei 

Gruppen. Die Überprüfung und anschließende Bestätigung der Entdeckung zweier neuer 

Libellen-Arten (T. morrisoni und T. palustris) erfolgte durch eine vergleichende Analyse der 

Teildisziplinen Morphologie, Ökologie, Geografie und Genetik mit Hilfe des Taxonomischen 

Zirkels. Morphologisch konnten Unterschiede zwischen T. stictica und den neuen Arten T. 

morrisoni und T. palustris aufgedeckt werden. T. stictica ist im südlichen Afrika weit 

verbreitet, wohingegen die beiden neuen Arten regional begrenzt an den Flussläufen des 

Okavango und Sambesi vorkommen, wo sie unterschiedliche ökologische Nischen besetzen. 

Mit Hilfe des neu entwickelten, auf Merkmalen basierenden CAOS-Barcodings wurde eine 

Merkmals-Matrix erstellt, welche eine sichere Identifizierung zweier neuer Arten bestätigt. 

Da sich diese jedoch morphologisch nicht voneinander unterscheiden lassen, handelt es sich 

hierbei um die beiden ersten kryptischen Libellen-Arten. Die Zuordnung eines bestimmten 

Speziationsmodelles ist schwierig. Allerdings scheint ein Habitat-Shift, also die Anpassung an 
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unterschiedliche ökologische Nischen, als Hauptursache der Aufspaltung der Arten am 

wahrscheinlichsten zu sein. Diese erfolgte vor ungefähr 0,7 - 2,4 Millionen Jahren, induziert 

durch die einschneidenden Umweltveränderungen Afrikas in jener Zeit (Regenwald-

fragmentierung und Wüsten-Entstehung). 

Der Einfluss dieser Umweltveränderungen in Afrika auf historische 

Artbildungsprozesse wurde in einer weiteren Studie an der besonders artenreichen Gattung 

Trithemis untersucht. Molekulargenetische Analysen dreier Sequenzmarker (ND1, 16S und 

ITS I - II) wurden mit ökologischen, geographischen und morphologischen Daten verglichen, 

um daraus Rückschlüsse auf die phylogeographische Historie der Gattung zu ziehen. Arten 

der Gattung Trithemis kommen an fast allen Gewässertypen Afrikas vor und zeigen hierbei 

eine große Bandbreite verschiedener Ausbreitungsmöglichkeiten und ökologischer 

Ansprüche. Morphologisch lässt sich die Gattung in zwei Gruppen aufteilen, und zwar in rote 

und blaue bzw. dunkle Arten. Durch die Anwendung der molekularen Uhr wird eine 

Entstehung der Gattung vor ca. 6 - 9 Millionen Jahren angenommen. Die Ergebnisse zeigen, 

dass durch drastische klimatische Veränderungen die Artbildung hauptsächlich allopatrisch 

stattgefunden und an Trockenheit angepasste Arten bevorteilt hat. Im Verlauf des Pliozäns 

kam es zu einer sehr schnellen Radiation resultierend unter anderem in der Bildung dreier 

Kladen blau/dunkler Arten mit einer gruppenspezifischen Habitat-Anpassung an (i) Gewässer 

im Flachland, (ii) Gewässer in Gebirgsregionen und (iii) in sumpfigen Gebieten. Die roten 

Arten sind demgegenüber besonders gut an das vorherrschende trockene Klima angepasst und 

heute wie damals über den ganzen afrikanischen Kontinent hinweg verbreitet.  

 

Schlüsselwörter: Artenschutzgenetik, Artbildung, Biogeographie, Libellen 
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Summary 

Conservation genetics, Speciation and Biogeography in African Dragonflies 

 

Conservation biology aims to study the biological diversity and to protect species, their 

habitats and ecosystems. It integrates a variety of disciplines providing different kinds of 

information from populations to species and their biogeography. The addition of molecular 

techniques is an important new component which effectively contributes to all disciplines to 

allow a better understanding of the processes of diversification in nature. The thesis covers a 

wide range of aspects from population genetics to speciation processes and phylogeographic 

analyses in African odonates (dragonflies and damselflies) with focus on the genus Trithemis.  

In the context of the different aims of this thesis new marker systems and methods 

were developed. For conservation genetic studies microsatellites are the state-of-the-art 

method. Therefore a protocol for the isolation of microsatellite systems was developed and 

successfully applied on four different odonate species to address different questions 

concerning mating strategies (Anax imperator and A. parthenope), parthenogenesis (Ischnura 

hastata), conservation (Orthetrum coerulescens) and population genetic structures (Trithemis 

arteriosa). 

For comprehensive population genetic and phylogenetic analyses new sequence 

markers (ND1, COI, 16S, ITS I - II and a microsatellite flanking region) were chosen and 

analysed concerning their ability to identify population structures and to resolve phylogenetic 

relationships. Furthermore two different approaches were tested in regard to their suitability 

for unambiguously identifying and discovering new species: on the one hand the newly 

developed character-based barcoding (CAOS barcoding) which gives the possibility to 

integrate traditional with genetic diagnostic characters and on the other hand the taxonomic 

circle, an analytical approach to test first discovery hypotheses. 

The geographical focus of this thesis is Namibia which is one of the most arid 

countries in Africa. Odonates as freshwater-associated organism with a complex life cycle 

composed of an aquatic larval and a terrestrial adult stage would not be expected to inhabit 

desert regions. Nevertheless many species have evolved survival strategies for arid conditions. 

To examine the genetic and behavioural consequences of a freshwater-associated organism 

living in desert regions the genetic diversity, population structure and dispersal behaviour of 

the dragonfly species Trithemis arteriosa was studied. Twelve populations from Namibia and 
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Kenya were analysed using nine microsatellite loci, two non-coding nuclear fragments (ITS  

I - II; microsatellite flanking region TartR04) and the mtDNA fragment ND1. The nuclear 

markers revealed a high allelic and haplotype diversity in all populations with high levels of 

gene flow. In contrast, ND1 sequence analyses showed sub-structuring and exhibited, except 

of two main haplotypes, only private haplotypes. The conflicting patterns of nuclear markers 

versus a mitochondrial sequence marker can be explained by a male-biased dispersal. Females 

might be philopatric to save energy for mating and oviposition, while males disperse 

dependent on the environmental stability of the habitat. This study gives first direct insights 

into the dispersal behaviour of a desert inhabiting, strongly water dependent flying insect.  

A different pattern of biodiversity was observed by analysing the population genetic 

structure of a species with high habitat specificities. Trithemis stictica occurred only at two 

regions in Namibia. Samples from its whole distributional range in Southern Africa were 

included and analysed with four different sequence markers (ND1, COI, 16S and ITS I - II). 

Genetic results surprisingly unravelled three highly distinct but morphological cryptic clades. 

A corroborative approach applying the taxonomic circle by combining molecular data with 

ecological, morphological and geographical information supported the hypothesis of two new 

species. T. stictica is distributed throughout sub-Saharan Africa and the two new species 

coexist in the same geographical range, the Okavango and Zambezi floodplains, where they 

occupy different habitats. All characters of the different analysed disciplines were 

incorporated in an elaborated character-based barcoding matrix which allows a better 

identification of the two new species. Significant morphological differences were found 

between T. stictica and the two new species, T. morrisoni and T. palustris, while between the 

latter two no such differences were observed. All evidence confirmed the hypothesis of the 

discovery of the first cryptic odonate species. Molecular clock analyses date back the time of 

their divergence approximately 0.7 - 2.4 million years ago. Environmental changes during this 

time period with increasing aridity and habitat fragmentation might have forced the 

divergence of the two species. Assigning a specific mode of speciation is difficult, but a 

historical habitat shift might be a promising explanation for their divergence since both 

species occur in different ecological niches.  

In a comparative phylogenetic analysis of the species-rich genus Trithemis we aimed 

to study the influence of historical environmental changes on speciation events. We combined 

molecular analyses of three target genes (ND1, 16S and ITS I - II) with ecological, 

geographical and morphological data to reconstruct the biogeographical history of the genus. 

The species occupy most freshwater habitats on the African continent, from deserts to forests, 
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from cool permanent streams to warm temporary pools. They differ in their dispersal capacity 

and ecological requirements and can be divided into two colour groups (red and blue/dark 

species). Molecular clock analyses estimate the time of the genus origin 6 - 9 million years 

ago. At this time the drastic climatic fluctuations with increasing aridification and forest 

fragmentation forced speciation mainly in form of allopatry and favoured dry-adapted open-

land species. During a rapid radiation in the Pliocene three distinct clades of dark species 

evolved different habitat adaptations by colonizing (i) lowland streams, (ii) highland streams 

and (iii) swampy habitats to deal with the changing environmental conditions. The red-

coloured species developed special adaptations to the arid climate and were therefore able to 

expand their ranges. Today the group of red species harbours the most widespread species of 

this genus. 

 

Keywords: Conservation genetics, Speciation, Biogeography, Odonata 
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1. General Introduction 

This thesis covers a variety of different aspects in conservation biology ranging from 

population genetics to speciation processes and phylogeography in African dragonflies. By 

using dragonflies as a model system the presented studies analyse ecological, evolutionary as 

well as biogeographical questions to give insights into behavioural traits and speciation 

processes of African insects. In this context new marker systems are developed and applied at 

three different levels (population, species and genus) with a focus on the species-rich genus 

Trithemis. Due to the different goals of the presented studies, I will initially provide an 

overview of modern conservation biology and biodiversity research and its important different 

disciplines population genetics, species diversification and phylogenetics. 

 

1.1. Conserving the biodiversity of life 

 

The Earth’s biodiversity is of inestimable value for all living organisms. The benefit for 

humans from nature’s diversity covers a vast range of aspects from inspiration to scientific 

and economic interests (e.g. Avise et al. 2008; Wake & Vredenburg 2008). However, species 

extinction rates are rising. E.O. Wilson (1993) estimates a loss of the world´s remaining 

species at 0.25% per year. The effects of global warming and growing human impact are 

accelerating the extinction rate and its current magnitude is comparable to the five great mass 

extinctions revealed in geological records. Therefore the loss of today’s diversity is also 

called the “sixth mass extinction” (Wake & Vredenburg 2008). Many species, especially 

insects or rainforest species, are not even discovered yet (Dunn 2005; Samways 2007). The 

increasing understanding of the importance and value of biodiversity has led to crisis 

disciplines like conservation biology. Conservation biology has the aim to study and protect 

biodiversity with its species, habitats and ecosystems by integrating different scientific fields 

from classical ecology to geography and genetics. The expansion of genomic technologies in 

conservation biology greatly improves decision-making (e.g. DeSalle & Amato 2004; 

Schwartz et al. 2007). In combination with traditional ecological approaches the newly 

developed high-throughput methods allow a fast assessment and analysis of complex study 

systems.  

For the evaluation of biodiversity several programs were organised such as the “World 

Atlas of Biodiversity” of the World Conservation Monitoring Centre (see www.unep-
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wcmc.org). Also monitoring projects like the African-wide BIOTA network (Biodiversity 

Transect Analyses in Africa, BMBF) have become more important. For such approaches a 

rapid assessment and identification of species is the most important precondition (Schwartz et 

al. 2007). One promising method is DNA-barcoding which uses a standardised DNA region 

for taxon assignment and can accelerate and simplify species identification (Hebert et al. 

2003). The international initiative of the Consortium for the Barcode of Life (CBOL) 

established a worldwide database (BOLD) with sequences of the proposed standard 

mitochondrial gene cytochrome c oxidase 1 (COI) for animals and included 37,000 species 

records by the end of 2008 (http://barcoding.si.edu). However, the barcoding initiative based 

on sequences alone has limitations and problems in undescribed or cryptic species as well as 

in species groups which show only low variability in COI (DeSalle et al. 2005; Hickerson et 

al. 2006; Rubinoff 2006). 

For the definition of conservation units different approaches are suggested. One 

method is to assign individuals to molecular operational taxonomic units (MOTU`s) 

according to their genetic similarity without designation of its taxonomic rank (Blaxter et al. 

2005). This method enables the inclusion of groups with taxonomic uncertainties. Another 

way to identify conservation or evolutionary significant units is combining ecological and 

genetic aspects and thereby defining a population, species or region of high conservation 

value (Moritz 1994; Vogler & DeSalle 1994). By analysing species composition, genetic 

diversities and interactions between populations the status of a population will be assessed. A 

special example of regions with high conservation value are the so-called biodiversity 

hotspots. Here the level of biodiversity is above average by also harbouring many endemic 

species. These regions like e.g. the Eastern Arc Mountains of Tanzania exist worldwide and 

are of highest conservation interest (Burgess et al. 2007). 

 

1.2. Evolution of diversity 

 

For the application of appropriate conservation strategies it is not only important to identify 

and assess diversity, but also to understand the patterns and processes underlying species 

diversification (Bowen 1999). Here the different levels from population to species and 

phylogeography provide crucial information about the evolution of diversity. The use of 

genetic tools allows the expansion of traditional approaches for a deeper understanding of the 

complexity of the underlying processes. 
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Population level 
Population genetics enable the quantification of important factors such as effective population 

size, inbreeding, migration and gene flow (Hartl 2000; DeSalle & Amato 2004). This provides 

specific and comparable quantifications of processes that affect endangered populations. 

Additionally it adds an important new level to biodiversity research, the genetic diversity 

(Avise et al. 2008). Preservation of genetic diversity is the fundamental level for conserving 

the diversity of life. High genetic diversity gives a population the ability to adapt to changes 

in their environment and to avoid inbreeding depression (Hartl 2000; Frankham et al. 2002). 

Since “isolation by distance” and reduced gene flow can promote speciation, a basic step for 

understanding diversification is also to analyse the intraspecific dispersal abilities and the 

population structure (Wright 1943). 

The population genetic parameters can be analysed with a variety of modern 

techniques like microsatellites or sequence markers. The varying mutation rates of the 

different marker systems provide the possibility of analyses at different geographical scales. 

Today, due to high variabilities between individuals and populations, microsatellites are the 

state-of-the-art method not only in population genetics but also in analyses of paternity, 

mating systems and sexual selection (Goldstein & Schlötterer 1999). For conservation 

concerns the application of these sensitive markers facilitates the rapid detection of 

environmental changes and could also be used in long-term monitoring of important 

population sites (Ridley 1996; Hartl 2000).  

 

Species level 
Situated at the interface to population genetics are problems of defining species boundaries, 

subspecies and cryptic species (Bickford et al. 2007). A species is the basic taxonomic unit of 

biological classification and its definition has long been discussed (reviewed in De Queiroz 

2007). Different concepts were proposed of which the “biological species concept” is the 

most widely accepted (Ridley 1996). According to this, a species is defined as a group of 

organisms capable of interbreeding and producing fertile offspring. Other species concepts 

focus on morphological similarities (morphological species concept), genetic or phylogenetic 

similarities (genetic or evolutionary species concept) or the ability of individuals to recognise 

each other as possible mating partners (recognition species concept)(De Queiroz 2007). 

While delineating and identifying species is crucial for the assessment of biodiversity, 

understanding the mechanisms and forces which promote speciation are of additional 

importance for conservation. The three main modes of speciation are allopatric, parapatric and 
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sympatric speciation (Coyne & Orr 2004). Allopatric speciation is defined by reproductive 

isolation through geographical barriers (for overview see Gavrilets 2003). Parapatric 

speciation is a speciation mode where geographical variation ultimately leads to the splitting 

of a subdivided population into reproductively isolated units (Gavrilets et al. 2000). The most 

controversially discussed mode of speciation is sympatric speciation (Bolnick & Fitzpatrick 

2007). Driven by various internal traits, selection occurs within or between populations with a 

broad geographical overlap. Although mating is generally possible, gene flow is interrupted. 

In contrast to allopatric speciation, verifying the two other modes of speciation is often 

difficult in empirical case studies (Fitzpatrick et al. 2008). Regardless of the mode of 

speciation, revealing the underlying mechanisms is of great importance for understanding the 

development of diversity. Despite intensive research in this complex area, many mechanisms 

still remain unclear (Bolnick & Fitzpatrick 2007).  

Furthermore, many aspects concerning the evolutionary processes underlying cryptic 

speciation are still unresolved (Bickford et al. 2007). Cryptic species are genetically distinct 

species which were erroneously classified under one species name because of their high 

morphological similarity (Bickford et al. 2007). Uncovering and incorporating cryptic species 

in the global biodiversity assessment is of particular importance for conservation. Even 

though cryptic species have previously been discovered, the establishment of DNA barcoding 

increases the recognition of “new”, formerly undetected species enormously (e.g. Hebert et al. 

2004; Hajibabaei et al. 2006). This also leads to discussions about species definitions and 

delineations and highlights the importance of further integrative research at the species level 

(DeSalle 2006; Vogler 2006; Waugh 2007). 

 

Phylogenetic level 
The aims of phylogenetic research are to reconstruct the evolutionary history and to study the 

patterns of relationships among organisms (e.g. Mayr 1963; Wägele 2001). Understanding 

how species evolve and adapt to changing environmental situations is of great importance for 

future conservation management (Dobzhansky 1973; Avise & Ayala 2007). Historic events 

are often not obvious and only fossils remain as relicts of the past. However fossils linking 

different groups of organisms are often missing or have not yet been discovered. Since the 

introduction of molecular methods, analysing the relationships among different species, 

families or even phyla has become much easier. By combining palaeontology with molecular 

analyses phylogenetic trees can be calibrated and substitution rates for prominent genes can 

be estimated (e.g. Donoghue & Benton 2007; Whitfield & Lockhart 2007). Comprehensive 
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biogeographical analyses which combine the geographical history of islands and continents 

with genealogy and distributional data help to reconstruct past speciation events and to 

understand the processes of evolution in general (Cox & Moore 2005). 

Another important aspect of phylogenetic research is taxonomy. Our knowledge of the 

systematic system is traditionally based on morphological characters. Incorporating molecular 

data has recently led to several revisions, especially in groups of high morphological 

resemblance (Monaghan et al. 2005; Vogler & Monaghan 2007). Taxonomic research based 

on DNA could therefore help to discover and delineate species which is crucial for assessing 

biodiversity and conservation management. 

 

 

1.3. Conservation, Speciation and Biogeography in African Dragonflies 

 

Dragonflies as a model system 
Odonates are considered to be the earliest flying insects with an age of 250-200 million years 

(Grimaldi & Engel 2005). They constitute approximately 6,000 described species and have a 

worldwide distribution (Kalkman et al. 2008). The insect order is divided into two main 

suborders, Zygoptera and Anisoptera, known as damselflies and dragonflies, and a third 

suborder, the Anisozygoptera, which harbours only two relict species (Askew 1988).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1 The complex life cycle of odonates from mating to oviposition, larval stage and emergence. 
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Odonates are associated with freshwater habitats by their complex life cycle composed of an 

aquatic larval and terrestrial adult stage (Figure 1). Both larvae and adults show a more-or-

less strong selection in habitat choice concerning e.g. the substrate, water quality and flow as 

well as structural characteristics of the surrounding vegetation. 

While odonate species in general are highly mobile organisms, their different 

ecological requirements are often linked with their dispersal capacities (Corbet 1999). The 

range from extremely good to poor dispersers offers insights into different degrees of 

vicariance and dispersal. Altogether, their habitat sensitivity makes them good indicator 

organisms for evaluating environmental changes in the long term (biogeography) and in the 

short term (conservation) of all kinds of freshwater systems (e.g. Samways 1993; Corbet 

1999; Clausnitzer 2003; Samways 2007; Cordoba-Aguilar 2008).  

The genital morphology of odonates is unique in the animal kingdom. The females 

have sperm-storage organs and the males primary (sperm production) and secondary (sperm 

transfer) genitalia. With these peculiar morphologies, odonates evolved a very special mating 

system and a variety of different reproductive strategies. The pioneering studies of Waage 

(1979; 1984) and Parker (1970) demonstrated the mechanisms of sperm displacement for the 

first time. Since then, studies analysing the evolution of the reproductive system in the context 

of sexual selection, sperm competition and female choice have changed our understanding of 

mating systems in general (e.g. Fincke & Hadrys 2001; Cordoba-Aguilar et al. 2003; Cordero 

Rivera et al. 2004). Reproduction is the basic unit of evolution. In odonates, habitat as well as 

sexual selection are involved in reproductive behaviour and mate recognition and could 

therefore promote speciation (McPeek & Gavrilets 2006; Svensson et al. 2006). With the 

introduction of molecular methods, paternity studies in odonates can give additional insights 

into mating strategies and provide, through the combination of behaviour, population genetics 

and speciation processes, crucial information for conservation and evolution (e.g. Hadrys et 

al. 1993). The combination of their unique reproductive system and complex life cycle makes 

odonates excellent model organisms for many evolutionary questions concerning speciation 

processes and phylogenetic questions. 
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Figure 2 From mating to emergence 
Left, a copulation wheel of Orthetrum chrysostigma, a widespread species in Africa. In the middle the 
aquatic larval stage and right an exuvia, both examples show species of the family Aeshnidea which 
harbor the largest dragonfly species. 
 

 

Africa, Namibia and its Odonates 
The African continent forms a large continuous landmass which is, in comparison to other 

continents, virtually uninterrupted by mountain chains or large waterbodies (Griffiths 1993). 

The most significant barrier is the Sahara, separating the Afrotropics from the Palearctic. 

Africa has only been moderately affected by tectonic changes in the past, but the climate is 

characterised by extreme variability from the mid-Tertiary onwards (Morley 2000). The 

closure of the Tethys Sea (20-10 Mya) and the central African uplift resulted in an increasing 

aridity with the development of the Sahara and a savannah dominated landscape. The 

formerly uninterrupted rainforest belt in the equatorial region got fragmented. Today it 

comprises the East African coastal rainforests and the West and Central African rainforests 

(Guinea-Congolian).  

The geographical focus of the studies presented here is Namibia and the floodplains of 

its surrounding countries, the Upper Zambezi and the Okavango river systems. Namibia is the 

most arid country of the Afrotropical region (i.e. south of the Sahara). It possesses two 

deserts, the Namib Desert at the Atlantic west coast and the Kalahari Desert shared with 

Botswana in the east (Mendelsohn et al. 2002). Most of the landscape is characterised by 

desert, semi-desert and savannah. The only perennial rivers are located along the northern and 

southern borders of the country. Natural permanent surface water in the interior parts of 

Namibia only occurs at widely separated springs around mountains and in the ephemeral river 

courses. Water is therefore one of the most relevant and limited resources in Namibia. 
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In comparison to other tropical regions, the Afrotropical odonate fauna is relatively poor with 

approximately 850 described species. Its composition is similar to that of the Holarctic, with 

few families and a large proportion of Coenagrionidae and Libellulidae (Dijkstra 2003). This 

may be explained by the unstable climatic history of the continent, which favoured species 

capable of colonising recent or temporary habitats. As a consequence of changing climate and 

rainforest reduction, the ‘old’ African fauna is now generally rare and restricted to stable, but 

isolated areas (Kalkman et al. 2008). On the other hand, the recently distributed species 

inhabit all kinds of different habitats in forests and savannahs with a remarkable speciation in 

a few genera (e.g. Pseudagrion, Orthetrum and Trithemis). The highest odonate diversity, as 

well as the greatest number of regional restricted species, is found in the Guineo-Congolian 

forest, which stretches from Senegal to western Kenya (Dijkstra & Clausnitzer 2006). The 

highest amount of endemism is found in coastal East Africa, with the Eastern Arc Mountains, 

the Ethiopian highlands and South Africa as well as on Madagascar (Kalkman et al. 2008). 

Odonates as freshwater-associated organisms would be expected to be absent or 

poorly represented in desert environments. Nevertheless, deserts do contain wetlands which 

are colonised by a number of aquatic animal groups, including dragonflies and damselflies 

(Suhling et al. 2003). Springs in mountainous regions provide permanent water bodies and 

episodic rainfall may establish ephemeral (or temporary) rivers or ponds. Additional water 

resources occur along the course of the normally dry ephemeral rivers at rare places where 

 

Figure 3 Map of Namibia 
showing the major ephemeral 
rivers and the geological relief 
from central to south Namibia. 
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groundwater surfaces, dependent on geology or topography (Suhling et al. 2006). Odonates 

are excellent flyers which enables them to cover long distances and colonise even the most 

isolated habitats (Corbet 1999). Although there are a few desert endemic odonates the 

majority of species inhabiting deserts or dry savannah regions are widespread in Africa. In 

Namibia 126 different odonate species are described (Suhling & Martens 2007).  

 

 

The genus Trithemis 
Besides three more technical related studies in other odonate species, this thesis mainly 

focuses on the dragonfly genus Trithemis (Odonata, Libellulidea). Trithemis provides an 

excellent example of a very successful genus on the African continent that dominates modern 

odonate communities. Harbouring 40 recognised species, it is one of the most speciose 

odonate genera in Africa with a continent wide distribution, including two endemic 

Madagascan and five Asian species (Pinhey 1970; Dijkstra 2007). It occupies most freshwater 

habitats, from deserts to forests, and from cool permanent streams to warm temporary pools. 

The species differ in their dispersal capacity and show wide ranges of habitat preferences 

from generalists to specialists. Morphologically the genus can be divided in two colour-

groups (see Figure 4). Species from warmer (i.e. exposed, stagnant, lowland) habitats are 

mostly red-coloured, while those from cooler (shaded, flowing, highland) habitats are 

generally blue or blackish.  

 

 

 

 

 

 

 
Figure 4 Four different Trithemis species representing the two different colour groups in this genus. 

 

 

 
       Trithemis festiva             Trithemis hecate    Trithemis annulata        Trithemis arteriosa 
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2. The aims of the thesis 

The thesis aims to address a variety of questions concerning (i) population and conservation 

genetics, (ii) speciation, (iii) phylogeny and phylogeography in African dragonflies. Despite 

of their high suitability as model organisms studies on odonates are still underrepresented. 

Especially knowledge about biodiversity patterns in afrotropical regions is still limited and 

mostly concentrates on vertebrates. By using the highly successful genus Trithemis the 

presented studies add new approaches to conservation genetics and biodiversity research by 

applying novel techniques and markers. In the following I will briefly introduce the topics and 

summarise and discuss the main results of the publications and manuscripts upon which this 

cumulative dissertation is based (see 6.1- 6.9). 

 

2.1. New markers – new approaches 

An important aim of this thesis is to develop marker systems and approaches in conservation 

genetics which allow efficiently analysing population structure, phylogenetic relationships 

and identifying and unambiguously discover new species. 

 
Microsatellite systems 
Microsatellites are state-of-the-art technique in conservation genetics. Due to their high 

variability microsatellites provides a powerful tool to analyse mating systems, paternity issues 

and population genetic patterns. Most microsatellite primers are species specific or only 

applicable in closely related species because of the high variability of the microsatellite 

flanking regions. Therefore a protocol was developed and established for the isolation of 

microsatellites. Four odonate species were chosen to analyse different aspects of paternity, 

mating systems and population genetics.  

In order to study and compare the mating system of the two closely related sister 

species Anax imperator and Anax parthenope (Aeshnidae) a microsatellite system was 

developed for both species (Hadrys et al. 2007a). Despite of their close relationship they 

developed different traits of sperm competition and are therefore an interesting model system 

to study sperm precedence mechanisms in the context of female choice (see also 6.1).  

In strong contrast the damselfly Ischnura hastata (Coenagrionidae) is the only known 

odonate species which exhibits parthenogenesis. In North and South America, the Caribbean 

and Galapagos Islands the species have normal bisexual populations, but at the Azores Islands 

only female populations were found. With help of a microsatellite system the genetic 



The aims of the thesis 

19 

diversities within and among bisexual and parthenogenetic populations as well as the origin 

and type of parthenogenesis can be analysed (Carballa et al. 2007). 

For the endangered European species Orthetrum coerulescens a panel of 

microsatellites was developed to analyse and monitor the effects of environmental changes 

and human impact on this species (Hadrys et al. 2007b). With its very special habitat 

requirements, occurring only at small riverine habitats, it is already a red-list species (see also 

6.3).  

Finally, for population genetic analysis in an African-wide distributed dragonfly 

species a microsatellite system for Trithemis arteriosa was developed (Giere & Hadrys 2006). 

As indicator species for perennial water bodies, the application of microsatellites in T. 

arteriosa could add crucial information for targeting the protection of dragonfly habitats in 

Africa (see also 6.4 & 6.5). 

 

Population genetic marker 
Because microsatellite analyses are highly dependent on sample sizes the application of 

additional marker systems might be a good solution to independently revise the results. The 

aim is therefore to test other marker sets for their applicability in population genetics, 

covering both the nuclear and the mitochondrial genome. Two different non-coding nuclear 

sequence markers are applied, the ribosomal ITSI and II regions and a microsatellite flanking 

region. While ITS was used for population genetics in other species groups before, in this 

thesis the suitability of a microsatellite flanking region as a sequence marker was tested for 

the first time. In addition two different mitochondrial markers were chosen, the NADH 

dehydrogenase subunit 1 (ND1) and the cytochrome c oxidase I (COI). The comparison of 

mtDNA and nuclear markers allows comprehensive analyses on maternally as well as bi-

parentally inherited markers at different levels of sensitivity (see 6.5 & 6.6).  

 

Approaches for species discovery and identification 
Since the use of molecular genetic methods in population analyses and taxonomic research the 

number of new, formerly undetected species highly increases. The discovery of new species 

based solely on DNA, like in the traditional DNA barcoding approach, is mostly insufficient 

and often ill-suited. The need for an analytical discovery process increases in cases where 

traditional taxonomy fails to identify species. In this thesis two different approaches are tested 

to unambiguously discover new species (see 6.6). 
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While DNA barcoding as suggested by Hebert et al. (2003) only relies on genetic 

distances between species, the newly established method by Rach et al. (2008), the character-

based DNA barcoding, is based on diagnostic characters in a molecular dataset. It therefore 

allows the incorporation of classical taxonomic characters. In this thesis the new method is 

applied for the first time, incorporating also characters of different sources (morphology, 

geography, ecology and genetic data) to test its applicability in the discovery of new species. 

An analytical approach for identifying new species and verifying discovery hypotheses is the 

“taxonomic circle” (DeSalle et al. 2005) The taxonomic circle describes the interaction of 

different datasets (morphology, reproductive isolation, geography, ecology, genetics). A 

species status can only be confirmed if at least two disciplines support the species hypothesis 

and could therefore be based on different species concepts. In this thesis the taxonomic circle 

was applied to prove the discovery of cryptic species. 

 

2.2. Population genetic structure and diversity in a desert-inhabiting dragonfly 

 

Water dependent species inhabiting desert regions seem to be a general contradiction. 

Nevertheless many species have evolved strategies to survive under arid conditions. Desert 

inhabiting odonates are mostly opportunistic in their habitat preferences and are therefore able 

to colonise nearly every freshwater habitat. This study aims to analyse the behavioural and 

genetic consequences of a water-associated insect species in desert regions. Therefore the 

population genetic structures and genetic diversities of the African-wide distributed dragonfly 

species Trithemis arteriosa of eight Namibian population sites were examined. In addition 

four sites from Kenya were included in the analyses to compare the genetic patterns of an arid 

and a tropical region. Inhabiting only open perennial water habitats with emergent vegetation 

the species provides a good model system to gain first insights into the consequences and 

adaptive value of a strongly water-associated insect in desert regions (see 6.5). 

 

 

2.3. Cryptic speciation in the genus Trithemis 

 

Trithemis stictica was chosen as model organism to perform a population genetic study of a 

species with highly specialised habitat requirements. In Namibia this species was found in 

only two regions, the Naukluft Mountains and the Okavango and Zambezi Rivers (shared 

with its adjacent countries Botswana and Zambia). To cover the whole distributional range of 
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T. stictica samples from South Africa, Kenya, Tanzania, Botswana, Zambia and Ethiopia were 

included. First results of the sequence marker ND1 surprisingly revealed three distinct genetic 

groups. Although all individuals were previously identified as T. stictica, the three groups 

clearly differ genetically at the species-level. 

 

Discovery of the first cryptic odonate species 
Based on the above described results the aim of the first study in this species complex is to 

prove the hypothesis of two new cryptic species in the genus Trithemis (see 6.6). Therefore a 

comprehensive morphological analysis was done to find phenotypic differences and potential 

reproductive barriers between the three clades. In addition the genetic distances between 

closely related Trithemis species were evaluated by including already described species of this 

genus. In an integrative approach using morphological, ecological, geographical and genetic 

data the above described taxonomic circle was applied. Furthermore a character-based 

barcode matrix was established by incorporating characters of the different analysed 

disciplines to test the applicability of such a comprehensive barcode to discover and delineate 

species (Damm et al. 2009b).  

 

Species description 
According to the results of the first study all evidence supports the discovery of two new and 

cryptic Trithemis species. For the introduction of new species to the scientific community a 

species description is required which delimits the new entity from described species of a 

given genus. The second study (see 6.7) in this species complex aims to describe holotypes of 

each sex of the two new species, T. morrisoni and T. palustris, and discuss the morphological 

variations. To point out the differences between T. morrisoni, T. palustris and T. stictica, a re-

description of T. stictica was performed. By considering the relevant published information 

about varieties, sub-species and species the differences between the three species are 

discussed (Damm & Hadrys 2009c). 

 

Speciation processes 
The third study (see 6.8) in this species complex aims to examine the reasons for the 

divergences of the three Trithemis species resulting in two cryptic and regionally sympatric 

species. The underlying speciation processes were analysed by studying genetic diversities, 

population genetic parameters between the analysed population sites of each species, their 

morphological variation and ecological niche separation. The time of divergence was 
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estimated via molecular clock analyses and different modes of speciation are discussed in the 

biogeographical context (Damm & Hadrys 2009a). Furthermore this case study of 

diversification allows to investigate two different speciation processes in closely related sister 

species and the first discovery of a cryptic speciation process in odonates. 

 

 

2.4. Phylogeographic analyses of the genus Trithemis 

 

Only little is known about how the severe climatic changes in Africa’s history with an 

enormous decrease in water resources affected macro-invertebrates. With their aquatic and 

terrestrial life stages, odonates are interesting model systems for studying the effects of a 

changing environment and increasing aridity during the Pliocene and Pleistocene. 

This study (see 6.9) aims to analyse the phylogenetic relationships within the genus 

Trithemis in the context of the historic climatic shifts in Africa. With its successful radiation 

and widespread distribution, it provides an excellent study system concerning these questions. 

With the help of three different sequence markers covering different evolutionary timescales, 

the time of origin of this genus and the time of the major radiation was estimated via 

molecular clock analyses. Morphological, ecological and geographical data are mapped on the 

phylogenetic tree to analyse the direction of speciation (from forest to savannah or vice versa) 

as well as the influence of habitat fragmentation and climatic shifts on species divergences. 

 

 

3. Summary of Results and Discussion 

3.1. New markers – new approaches 

(Giere & Hadrys 2006; Carballa et al. 2007; Hadrys et al. 2007a; Hadrys et al. 2007b; Damm & 

Hadrys 2009a; Damm & Hadrys 2009b; Damm et al. 2009b) 

 

In the different studies of this thesis several new marker systems and methods were 

successfully applied. In the first four, more technical related studies a new method for the 

isolation of microsatellite loci was developed and applied to all four odonate species 

(Trithemis arteriosa, Orthetrum coerulescens, Ischnura hastata and Anax imperator). 

Analyses of allele frequencies, Hardy-Weinberg-Equilibrium (HWE) and linkage 

disequilibrium revealed the applicability of the isolated microsatellite loci of each species. 
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Ultimately, a panel of twelve microsatellite loci for A. imperator and A. parthenope could be 

used for paternity studies and comparative analyses of their sperm precedence patterns (6.1). 

Nine microsatellite loci for I. hastata (6.2) and O. coerulescens (6.3) are now available for 

further analyses of parthenogenesis and for monitoring studies in conservation genetics. The 

ten developed microsatellites for T. arteriosa were successfully used to analyse the population 

genetic structure of a desert inhabiting dragonfly (see 3.2, 6.4 & 6.5). 

This population genetic study (3.2 & 6.5) also showed the applicability of the different 

tested markers. The mitochondrial marker ND1 revealed a high variability between and within 

the analysed populations and is therefore a suitable marker in population genetic studies in 

odonates. Also COI showed high genetic variation within analysed populations of different 

species (see 3.3 & 6.6). While the ITS I - II regions did not show enough genetic variability 

the microsatellite flanking region of a microsatellite locus (TartR04) isolated for T. arteriosa 

turned out to be a useful nuclear sequence marker. With newly developed statistical 

approaches haplotypes could be defined and therefore allow a direct comparison of the results 

with both microsatellites and mtDNA. Its application further enables the revision of 

microsatellite results and could unravel sex-specific behavioural traits when compared to 

mtDNA (3.2 & 6.5) 

The presented study in 3.3 and 6.6 shows that both the taxonomic circle and the 

character-based barcoding approach are able to unambiguously discover new species also in 

extreme examples where both new entities are morphologically cryptic and regionally 

sympatric as in the described case study of the two cryptic Trithemis species. 

 

3.2. Population genetic structure and diversity in a desert-inhabiting dragonfly 

(Damm & Hadrys 2009b and references therein) 

 

The first assessment of the population structure of a desert inhabiting dragonfly species 

revealed contrasting patterns between the analysed mtDNA (ND1) and the two nuclear 

markers (microsatellites and TartR04). While all three markers showed high genetic 

variability within the populations a high structuring between the populations was only 

observed with the mtDNA. According to the different modes of inheritance of nuclear and 

mitochondrial genes these contrasting patterns suggest sex-biased dispersal (see 6.5). 

The mtDNA sequences revealed 90% private haplotypes which demonstrates a 

restriction in gene flow at the maternal lineage while the bi-parentally inherited markers 

showed high levels of gene flow by sharing most of the haplotypes. This pattern therefore 
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indicates male-biased dispersal. Such a mating system, where males disperse to actively 

search new territories and females are philopatric to save energy for foraging, mating and 

oviposition, might be evolved as a special adaptation to the challenging habitat conditions in 

arid regions. 

Furthermore the genetic diversity patterns of the three markers clearly indicate high 

genetic variability at population sites with stable habitat conditions. Localities which are 

affected by drought or human impact show lower genetic diversities at least in the mtDNA. 

High genetic diversity was found in the northern Namibian populations where sufficient 

rainfall allowed the establishment of stable permanent water bodies and therefore large 

populations. MtDNA variability was low in the southern Namibian populations as well as the 

Kenyan populations which are influenced through periodically recurring times of drought and 

habitat disturbance through humans or larger animals. In general, all three marker sets show 

surprisingly higher genetic diversities in the arid Namibia than in the more tropical Kenya. 

This indicates that opportunistic odonate species in Namibia - despite of the problems of heat 

and rare water resources - are able to establish large and viable populations at habitats with a 

long-term stability. In Kenya species diversity in general is higher, which increases 

interspecific competition and in addition predation through fish might be more common than 

in Namibia.  

By combining the distribution of genetic diversities with the population genetic 

structure another interesting pattern was observed. The highest differences of genetic 

diversities and substructures between mtDNA and nuclear DNA were found in populations 

which are affected by habitat instability. This leads to the conclusion of an increasing 

migration of the males in times of weak habitat conditions. If the habitat is stable like in North 

Namibia males are not forced to search for new territories.  

This study demonstrates that T. arteriosa, a key species for permanent water bodies, is 

able to establish viable populations also in desert regions. The genetic diversities of the 

analysed populations highly correlate with the stability of water resources. Their dispersal 

potential allows long distance migration also covering large, not inhabitable areas. The 

combination of both mtDNA and nuclear markers revealed asymmetric philopatry with a 

male-based dispersal, the first case of male-based dispersal in a dragonfly species. This life-

history trait might have been evolved due to the special requirements of desert inhabiting 

dragonfly species.  
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3.3. Cryptic speciation in Trithemis species complex 

(Damm & Hadrys 2009a; Damm & Hadrys 2009c; Damm et al. 2009b and references therein) 

 

While the above described population genetic study was able to reveal special behavioural 

traits by the application of genetic markers, the discovery of a cryptic speciation process in 

the genus Trithemis highlights the importance of including genetic data into taxonomic 

research. The two new species have only been discovered through the initially applied 

population genetic analyses (see 6.6). 

T. stictica was found in Namibia, South Africa, Kenya, Tanzania and Ethiopia, but is 

absent in the region of the Zambezi and Okavango floodplains where population sites were 

inhabited by the two new species T. morrisoni and T. palustris. T. stictica could be 

distinguished from the latter two through differences in morphology (structure of the 

secondary genitalia and eye colouration), geography and genetic data, but the new species are 

difficult to delineate using only traditional characters.  

The application of the taxonomic circle as an analytical process to discover new 

species proved to be a promising tool for modern taxonomic research. The five important 

components of the circle (morphology, ecology, geography, reproductive isolation and 

genetics) covering the different species concepts were tested and results showed that four 

components (reproductive isolation, high genetic differences, size differences and the 

occupation of different habitats) confirm the hypothesis of two new Trithemis species. 

After applying the newly developed character-based DNA barcoding the different 

diagnostic characters concerning genetics, morphology, geography and ecology were 

incorporated into an elaborative data matrix. The incorporation of traditional characters 

allows the discrimination of the two species by not only genetic data but also morphology 

(size) and ecology (habitat) and therefore adds crucial information to conservation 

management. Such a comprehensive database can provide both rapid species identification 

and discovery (see 6.6). 

After confirming the species discovery hypothesis a species description of T. 

morrisoni and T. palustris was done with a detailed delineation of males and females of all 

three species (see 6.7).  

This species complex is the first example of morphologically cryptic species in 

odonates and further allows studying two different speciation processes in closely related 

species (see 6.8). Molecular clock analyses dates the split between T. stictica and the ancestor 
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of T. morrisoni and T. palustris to the Pliocene 3.5 Mya. This is the time of the major climate 

changes on the African continent with increasing aridity, rainforest fragmentation, river 

connection changes and desiccation of rivers and lakes. The Okavango and Zambezi 

floodplains were directly affected by aridification and are currently surrounded by dry 

savannahs and the Kalahari Desert. The increasing aridity might have forced a range shift in 

T. stictica and only populations which were able to adapt to these changing conditions 

survived, therefore suggesting allopatric speciation. 

The divergence of T. morrisoni and T. palustris occurred in the Pleistocene 1-2.4 Mya. 

Assigning one of the main modes of speciation to this case study is a difficult task. Regarding 

the historical geography of the species distributional range and the high recent dispersal 

potential and migration rates of both species, a real allopatric speciation seems to be very 

unlikely. Several criteria for a potential sympatric speciation were analysed and results 

confirmed the criteria of (i) largely overlapping ranges, (ii) complete reproductive isolation, 

(iii) the sister species status and (iv) a recent panmictic distribution of T. morrisoni and T. 

palustris. Nevertheless, parapatric speciation might also be possible. While T. morrisoni and 

T. palustris inhabit different ecological niches, speciation was likely accompanied or even 

caused by a historical habitat shift. Excluding times of restricted or interrupted gene flow in 

the past is not easy to verify and therefore a proposed alternative model of “divergence-with-

gene-flow” might be a promising explanation for the speciation of the two new species. 

With the discovery of the first two cryptic dragonfly species this study highlights the 

importance of analysing the processes underlying diversifications and furthermore suggests 

that cryptic speciation in odonates might occur more often than previously thought.  

 

 

3.4. Phylogeographic analyses of the genus Trithemis 

(Damm et al. 2009a and references therein) 

 

An integration of genetic, morphologic, geographic and ecological data like in the study of the 

speciation processes of the cryptic Trithemis species allows a deeper understanding of 

speciation processes also at the genus level. The first comprehensive phylogenetic analysis of 

an African dragonfly genus dates its origin to the late Miocene (6-9 Mya) with both molecular 

clock analyses and fossil records (see 6.9). The majority of species divergences took place in 

a very short timeframe in the Pliocene approximately 4-5 Mya, where most of the extant 

species evolved. The topology of the phylogenetic trees revealed by analyses of three 
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sequence markers (ND1, 16S and ITS I&II) showed very short branches at the time of the 

major divergence which leads to the assumption of a rapid radiation in the Pliocene, the time 

in which the African continent was influenced by severe climatic changes with increasing 

aridity. 

The most basal Trithemis species are best adapted to arid environments and therefore 

the suggested primary habitat of this genus might be open savannah. While the red species 

seem to be evolved in a very short time period without close sister-species groups, the blue 

and dark species cluster together in three highly supported clades. By mapping their 

ecological requirements onto the tree three differing strategies of adaptation to deal with 

environmental changes and increasing competition were found. In one clade the species 

moved back into forested habitats with ecological progression towards forest by stepwise 

occupation of, adaptation to and speciation in increasingly closed habitats. The species of the 

second clade favour elevated open habitats in the highlands from the Cape of South Africa to 

Kenya. The species of the third clade occupied lowland habitats of ‘mixed’ flow, like 

channels in swamps and calm stretches and by-waters of streams across the Congo-Zambezi 

watershed. All red Trithemis species inhabit exclusively open savannah habitats and 

developed special adaptations to the arid climate. In the time of savannah expansions they 

were able to expand their ranges and are today the most widespread species of this genus. 

Colouration therefore seems to be an indicator for ecological requirements rather than 

displaying phylogenetic relationships. The red colour is found in species inhabiting open 

habitats, while the dark species mostly occur at cooler or forested habitats. The open land dark 

species developed a reflective waxy body coating called pruinosity, which reflects light to 

avoid extreme exposure of the sun.  

While many species got extinct in the changeable climatic past, the genus Trithemis 

might have had a selection advantage. It profited from the unoccupied habitats due to 

savannah expansions which finally resulted in the evolution of a great variety of different 

niche adaptations and mainly forced speciation in form of allopatry. 

In sum, the changes of climate and environment benefitted dry-adapted open-land 

species. The great success of the genus seems to be related to their savannah origin (which 

favoured opportunistic species with great dispersal ability) and to their high adaptive 

potential. Until today Trithemis species often dominate the odonate communities at a great 

variety of different freshwater habitats in Africa.  
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4. Conclusions 

This thesis presents a variety of new insights into adaptations, life history traits, speciation 

processes and biogeography of African dragonflies at each analysed level. The newly applied 

markers and approaches provide useful tools in conservation genetics and species discovery. 

The studies demonstrate the importance of applying molecular techniques to conservation 

biology, modern taxonomy, biodiversity research, speciation analyses and phylogeography. 

The continuing development of new informative molecular markers, computer-based 

algorithms and high throughput detection methods allows analyses on different evolutionary 

timescales and a fast assessment of biodiversity and conservation patterns. Hereby the recent 

focus is on the increasing integration of traditional and molecular disciplines. In particular, the 

combination of ecological, morphological, behavioural and genetic information allows 

comprehensive analyses for ecological and evolutionary questions.  

Studies of species populations need the traditional ecological background. But without 

the use of genetic markers certain aspects such as gene flow and migration rates are very 

difficult to observe, particularly in species with high dispersal abilities like odonates. Analysis 

of species interactions with different environments is essential when preserving species and/or 

ecosystems of high conservation value. Different ecological conditions could lead to 

differences in dispersal behaviour and may result in changes of the population structure.  

For the assessment of biodiversity, genetic markers provide rapid identification tools 

for species, but their success is sometimes limited, e.g. in species discovery. Therefore, DNA-

based species discovery should always be supported by independent evidence gained from 

other disciplines. The increasing number of (sometimes questionable) cryptic species shows 

that a convincing framework is needed, which integrates the most important aspects of the 

different species concepts. The taxonomic circle applied in this thesis represents an analytic 

approach to prove a species discovery hypothesis. Here at least two of the five components of 

the circle (morphology, geography, ecology, reproductive isolation, genetics) have to 

corroborate the hypothesis of a new species. This framework provides the possibility of 

species discovery in a convincing way, although certain aspects such as sample size, the 

applied genetic marker and the geographical range of the sampling have to be considered in 

the decision making process.  

The integration of multiple disciplines also greatly enhances the DNA barcoding 

potential. While DNA barcoding is a promising tool for assessing biodiversity, the discussions 
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surrounding the barcoding initiative suggest that the procedure should possibly be revised. 

The character-based barcoding applied here allows the establishment of a comprehensive 

database which includes genetics (the barcode fragment COI and any other marker), 

morphology, geography and ecology of the query species. Such a barcode is able to provide 

both rapid species identification and discovery, as shown here in Trithemis.  

Nevertheless, when applying molecular methods, the choice of the genetic marker and 

algorithm for the analyses is of particular importance to every analysed level. The application 

of multiple markers (mitochondrial and nuclear) and different algorithms is a good and 

conservative way to avoid misleading assignments and conclusions. Applying nuclear and 

mitochondrial markers also allows supporting evolutionary hypotheses independent of the 

mode of inheritance. In population genetic studies, sequence markers as well as 

microsatellites provide the possibility to analyse population structures on two different scales. 

While mtDNA data give important information about the geographical distribution on a large 

scale, microsatellites are irreplaceable for genetic diversity assessments and long-term 

monitoring of specific population sites. Results of fine-scale analyses using microsatellites 

should be integrated into conservation management due to their usefulness as rapid detectors 

of habitat changes. Nevertheless, microsatellite analyses are highly dependent on sample 

sizes. But often sufficient sample sizes are difficult to obtain e.g. of endangered species or at 

localities with a low species abundance. The integration of a second non-coding nuclear 

marker system, like the here applied microsatellite flanking region, offers the possibility to 

independently verify the results of the microsatellites. Furthermore the application of different 

marker sets could provide additional insights into special life history traits if the results of 

nuclear and mtDNA are contradictory. In the case of T. arteriosa, we were able to reveal a 

potential male-biased dispersal as a consequence of the extreme climate in Namibia.  

 Understanding the processes of speciation is one major task in evolutionary 

biology. Because of its complexity many mechanism remain unclear and often a specific 

mode of speciation could not be assigned. This is also shown in the detection of the first 

cryptic species in odonates which also highlights that speciation without accompanied 

phenotypic changes can also occur in animal groups which were previously not considered to 

evolve cryptic species. The first comprehensive phylogenetic study of a dragonfly genus in 

Africa allowed us to reconstruct the biogeographical history of the genus and the speciation 

processes of the African dragonflies in general. The understanding of macro- and 

microevolutionary processes lying behind species adaptation and diversification is of great 

importance to analyse and estimate current speciation potential.  
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The integration of biogeography, morphology, genetics and ecology could assist us to 

evaluate how changes in major environmental parameters like climate and geology influenced 

the evolution of species in the past and which consequences we might expect for the future. In 

conclusion, the incorporation of different disciplines at any kind of level from population to 

phyla is of particular importance to understand the processes governing biodiversity and can 

help to rapidly detect the consequences of prospective environmental changes. 
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Abstract 
 
Odonates were the first group of organisms where sperm competition and last male sperm 

precedence have been identified. With the development of 10 microsatellites for the emperor 

dragonfly Anax imperator, the function and priority patterns of the multiple sperm storage 

organs of females can be studied and compared between species in natural populations. In 

addition, two microsatellite loci developed for the sister species Anax parthenope, are also 

highly polymorphic in A. imperator. For the presented 12 microsatellite loci, the number of 

alleles per locus ranged from two to 24. Observed heterozygosity ranged from 0.07 to 0.88. 

 

 

Keywords: Aeshnidae, Odonata, microsatellites, sperm competition, cryptic female choice, 

sexual selection 
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Since the discovery of sperm competition, odonates (dragonflies and damselflies) have been 

paradigms for studies about the evolution of mating systems (Waage 1979). In recent years, 

there is a fast-growing body of evidence that not only males, but also females, could bias the 

outcome of sperm competition by cryptic female choice (e.g. Cordero Rivera et al. 2004). The 

methodological progress to obtain direct measures of paternity under natural conditions via 

microsatellites opens the potential to determine the mechanism of sperm handling by females 

(Fincke & Hadrys 2001). We seek to develop microsatellites for the Aeshnid species Anax 

imperator in order to study the sperm precedence mechanism and to compare it with the sister 

species Anax parthenope (Hadrys et al. 1993; Siva-Jothy & Hadrys 1998; Fincke & Hadrys 

2001). Despite their close relationship, both species differ widely in their mating system traits 

related to sperm competition. 

Tissue samples of 92 A. imperator individuals were collected in Namibia, France and 

Germany by noninvasive sampling (Hadrys et al. 2005). Genomic DNA was isolated using a 

modified phenol-chloroform extraction protocol (Hadrys et al. 1993). The microsatellite loci 

for A. imperator were detected and isolated using the slightly modified enrichment technique 

of Fischer & Bachmann (1998). Briefly, DNA was digested using the three restriction 

enzymes, RsaI, HaeIII and AluI (Gene Craft). Two oligo adapters (Edwards et al. 1996) were 

ligated to the digested DNA fragments followed by the hybridization to two biotinylated 

probes (GA)10 and (AC)10. Ligated DNA fragments containing potential repeat motifs were 

bound to streptavidincoated magnetic beads and isolated using a magnet. Furthermore, a 

polymerase chain reaction (PCR) with the microsatellite-enriched eluate as template was 

employed in order to increase the template quantity. Hereby, 2.5 pmol of one adapter was 

used as a primer in a final reaction volume of 50μL 1× PCR buffer (Invitrogen), containing 

1.5 mM MgCl, 0.8 mM of each dNTP, 0.5 U Taq DNA polymerase (Invitrogen). PCR cycling 

conditions were as follows: 94° C for 5 min, 35 cycles of 94° C for 1 min, 56° C for 1 min, 

72° C for 2 min and a final elongation for 5 min. The enrichment process with the magnetic 

beads and PCR amplification were repeated once. The resulting PCR products were ligated 

into pGEM-T vectors (Promega) and transformed into competent Escherichia coli cells 

(TOP10; Invitrogen). Plasmids from positive clones were amplified using T7 and SP6 

primers. Ninety-four of the resulting amplification products were subjected to Southern blot 

analyses with the two 3′ biotin-labelled probes (GA)10 and (AC)10. Thirty-six products were 

selected for sequence analyses on a MegaBace 500 using ET Terminator Mix (Amersham). 

Seventeen sequences contained a repeat motif of more than six repeat units for which 

fluorescence-labelled primers for microsatellite typing were designed. Initial PCRs were 
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performed in a 25 μL reaction volume containing 5–10 ng template DNA, 1× PCR buffer 

(Invitrogen), 2 mM MgCl, 5 pmol of each primer, 0.1 mM of each dNTP and 0.5 U Taq DNA 

polymerase (Invitrogen). PCR cycling conditions were as follows: 93° C for 3 min, followed 

by 35 cycles of 30 s at 93° C, 20 s at primer-specific annealing temperatures (Table 1), 40 s at 

72° C and a final elongation of 2 min at 65° C. Automated genotyping was performed on an 

ABI 310 automated sequencer. The GENESCAN-500 ROX Size Standard from Applied 

Biosystems was used to determine the allele sizes. Data analysis was performed using 

GENESCAN (Applied Biosystems). GENEPOP 3.4 (Raymond & Rousset 1995) was used to 

estimate expected and observed heterozygosities, to test for deviations from Hardy–Weinberg 

equilibrium (HWE) and for linkage disequilibrium (LD) using default values for the Markov 

chain parameters. 

Initial assessment revealed that seven of the 17 loci amplified and genotyped were 

either monomorphic or showed no distinct amplification products. Two additional 

microsatellite loci, originally derived from the sister species A. parthenope (Ap7/8-E201 and 

Ap7/8-E202 in Table 1), showed successful cross-species amplification for A. imperator. 

These loci were detected and isolated following the RAMS protocol by Ender et al. (1996). 

Table 1 summarizes the genotyping results for all 12 loci. Most loci show a high genetic 

variability exhibiting 2 to 24 alleles in the genotyped individuals. 

Genotype frequencies, tested multiple times for conformance to HW expectations, 

revealed significant deviations from HWE for five of the 12 loci. However, in separate 

population tests across Europe and Africa, only locus AiL04 showed significant heterozygote 

deficiencies in the majority of the 14 analysed populations, suggesting a rather population-

specific pattern than the presence of null alleles. Significant LD was detected for a single 

pairwise comparison (AiB03 vs. AiL04; P = 0.037). The developed panel of microsatellites 

for A. imperator will be an essential tool to study the potential of females influencing sperm 

precedence patterns. Furthermore, initial tests between populations and species indicating 

their potential for population-level as well as cross-species studies. 
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Table 1 Characteristics of 12 polymorphic microsatellite loci in the dragonfly Anax imperator (Ai). Shown are GenBank Accession numbers, locus 
name, primer sequence, primer specific annealing temperature (°C), allele size range (bp), repeat motif, number of alleles per locus (NA), expected 
(HE) and observed (HO) heterozygosity rates. Significant departure from Hardy-Weinberg equilibrium is indicated by asterix when P = 0.05. Note 
that the loci Ap E202 and Ap E201 originally derived from microsatellite screening in the sister species Anax parthenope. 

 

Accession 
nos 

Locus Primer sequence (5’ – 3’) Ta Allelsize 
range 

Repeat motif NA Nind. He Ho 

DQ793120 Ap 
E202 

f-19mer: HEX-TCTCGCACTGACCATTGTG 
r-18mer: CTTCTTCCCAACGAAAGC 

60°C 156bp-178bp (TC)2TT 
(TC)11(AC)8 

10 90 0.76 0.70 

DQ793121 Ap 
E201 

f-17mer: FAM-GCTGCAGGATCGAACTG 
r-20mer: AGTAGGGAGAACATAATCCC 

64°C 78bp-94bp (CA)3CTTA 
(CA)7 

8 14 0.77 0.71 

DQ793122 AiB03 f-20mer: HEX-GGAGAATTTCCGAATTTGAG 
r-20mer: GCTCGAGAGCGTTTATAAGG 

52°C 217bp-293bp (AG)20 24 80 0.91 0.85 

DQ793123 AiG03 f-20mer: FAM-CTTACGCGTGGACTCACTGC 
r-19mer: GAAGTCCCCTCTTCCACTG 

56°C 220bp-256bp (TA)3(TG)9 7 14 0.62 0.50 

DQ793124 AiH04 f-20mer: FAM-TATGCGTCGACTCGATCACT 
r-23mer: TGCCTCTCAATAATTGTTTGTTT 

57°C 117bp-125bp (TC)9 6 56 0.80 0.77 

DQ793125 AiI04 f-21-mer:HEX-TTTTGCATGAGAATCCAGCTT 
r-20-mer:TTCCGAAGGAATATAGA 

57°C 166bp-180bp (GT)8GC 
GT(GC)5 

8 58 0.84 0.85 

DQ793126 AiJ04 f-20-mer: FAM-TGGCTAATTGGGACTTCTGG 
r-20-mer:TCCGTTCCCACACGTTTAAT 

57°C 240bp-244bp (GT)2(GA)2 
C(AG)7 

3 16 0.53 0.25*** 

DQ793127 AiK04 f-24-mer:HEX-GACTTCAAGAATTAACTCCACCAA 
r-26-mer:TTTTATGAATAGGTGACAATTCAGTG 

57°C 184bp-190bp (AC)7TA 
(CA)2(TA)7 

2 27 0.50 0.85* 

DQ793128 AiL04 f-20-mer:FAM-CGTGCACGGTAACTCTCTCC 
r-20-mer:TCAGGGTTAAAAGCACTCGT 

57°C 214bp-260bp (CA)6(TACA)3(C
A)5(TA)7 

15 37 0.90 0.60*** 

DQ793129 AiM04 f-20-mer:HEX-GATGGCGATAATAGCCCAAG 
r-20mer:GCCACTGAATAGCACTGCAC 

57°C 213bp-223bp (AC)10 6 38 0.84 0.45*** 

DQ793130 AiN04 f-20mer:FAM-AGAGTGAGTCCGTTGGGTTG 
r-20mer: GATCACGCGACGATAGGTTT 

57°C 169bp-179bp (GA)11 6 57 0.79 0.88 

DQ793131 AiP04 f-21mer:FAM-CGAAACAGTTGGACCTGAACG 
r-20mer:AGGGGCAACTATTCCAAACA 

57°C 223bp-231bp (GA)9 5 68 0.61 0.50* 
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Abstract 
 

The Citrine Forktail Ischnura hastata is an american damselfly species, widely distributed, 

with only-female populations also found at the Azores islands. Here we report the 

development of nine microsatellite loci for this species. The number of alleles per locus 

ranged from six to 11, with an observed heterozygosity ranging from 0.245 to 0.737. Eight of 

the nine loci successfully amplified in a sample of parthenogenetic females from the Azores. 

The developed microsatellite system will be an useful tool to investigate population structure, 

as well as the number of clones, the type of parthenogenesis and the origin of the 

parthenogenetic populations of this species. 

 

 

Keywords: Odonata, damselflies, Ischnura hastata, microsatellites, parthenogenesis 
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The Citrine Forktail Ischnura hastata is a damselfly species, widely distributed in North and 

South America, the Caribbean and Galapagos islands (Dunkle 1990). As generally known for 

Odonata (damselflies and dragonflies), only bisexual populations have been described for the 

above regions. At the Azores islands, however, all populations found exclusively consist of 

female individuals. This is the first case of parthenogenesis described in this insect order 

(Cordero et al. 2005). Here we report on the development of a microsatellite system to study 

the genetic diversity within and among bisexual and parthenogenetic populations, and to 

further explore the origin and type of parthenogenesis in I.hastata. 

Genomic DNA was extracted from thoracic muscle following a CTAB-based protocol, 

modified from Doyle and Doyle (1987). Microsatellite loci were isolated using the modified 

enrichment technique of Fischer and Bachmann (1998). DNA was digested with two 

restriction enzymes (AluI and RsaI) and ligated to two oligo adapters (Oligo A: 5’- 

CTCTTGCTTACGCGTGGACTA- 3’ and Oligo B: 5’- TAGTCCACGCGTAAGCAA-

GAGCACA- 3’) (Edwards et al. 1996). Two 3’-biotinylated oligo probes [(GA)10 and (AC)10] 

were hybridized to the digested DNA. DNA fragments containing the potential repeat motifs 

were selectively retained using streptavidine-coated magnetic beads (Promega). The 

microsatellite enriched eluate was used as a template in a polymerase chain reaction (PCR) 

with 10 pmol of the Oligo A adapter as a primer and containing in a final volume of 50 μL 1x 

buffer (Invitrogen), 1.5 mM MgCl2 (Invitrogen), 0.8 mM of each dNTP and 2.5 U of 

TaqDNA polymerase (Invitrogen). PCR cycling conditions were 94 ºC for 5 min, 40 cycles at 

94 ºC for 1 min, 56 ºC for 1 min, 72 ºC for 2 min and a final elongation step of 72 ºC for 5 

min. The enrichment process with the magnetic beads and the subsequent PCR were repeated 

once, according to Giere and Hadrys (2006). The enriched library was ligated into pGEM-T 

vectors (Promega) and transformed into competent Escherichia coli cells (TOP10) according 

to Sambrook et al. (1989). A total of 211 positive clones were selected for PCR amplification 

using T7 and Sp6 primers. Seventy-six products were sequenced on a MegaBACE 500 using 

ET Terminator Mix from Amersham. Eight sequences revealed no repeat motifs, and eighteen 

were excluded from further analysis due to either too small or too complex repeat units. 

Ultimately, 16 sequences that contained a repeat motif of more than six repeats were used for 

primer design using Primer3 (Rozen & Skaletsky 2000). Each of the forward-primers was 

labelled with a fluorescent dye (HEX™ or 6-FAM™) for microsatellite typing. PCR was 

performed in a 25 μL reaction volume containing 1μL DNA (5-10 ng of genomic DNA), 1x 

buffer (Invitrogen), 2 mM MgCl2 (Invitrogen), 5 pmol of each primer, 0.1 mM of each dNTP 

and 0.75 U of TaqDNA polymerase (Invitrogen). PCR cycling conditions were 93 °C for 3 
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min followed by 35 cycles 93 ºC for 30 s, 25 s at primer-specific annealing temperatures 

(Table 1), 30 s at 72 ºC and a final elongation step of 72 ºC for 5 min. Automated genotyping 

was performed on a MegaBACE 500 automated DNA sequencer. 

 

 
Table 1: Characteristics of nine microsatellite loci for the coenagrionid damselfly Ischnura hastata 
(Ihas). Listed are GenBank Accession numbers, locus name, primer sequence, primer specific 
annealing temperature (ºC), allele size range (bp) and repeat motif.  
 

 

The ET-550 Size Standard (Amersham Biosciences) was used to determine allele sizes. Data 

analysis was performed using the GENETIC PROFILER, version 1.2 (Amersham 

Biosciences). GENEPOP version 3.4 (Raymond & Rousset 1995) was used to estimate 

observed (HO) and expected (HE) heterozygosity, deviations from Hardy-Weinberg 

equilibrium (HWE) and to test for linkage disequilibrium (LD). 

A total of 63 individuals of Ischnura hastata (representing two bisexual populations 

from Florida (n=27) and Mexico (n=37)) were genotyped for each locus. Of the 16 loci tested, 

two appeared to be monomorphic, one was not suitable as it produced dubious amplification 

patterns, and four primer pairs did not amplify any product. Nine loci were polymorphic, 

showing a high genetic variability. The results of the genotyping are summarized in Table 2. 

Accession 
nos Locus Primer (5'-3') 

Ta 
(ºC) 

Allele size 
range (bp) 

Repeat 
motif 

EF088818 Ihas01 f-20-mer: FAM-TGTGCACGCTACCCTATCTA 53 155-167 (TC)9 
  r-20-mer: CTGTCGCTCTTCTGTGATTG    
EF088819 Ihas05 f-20-mer: HEX-TCACAACACTTCCTCCTCCT 53 213-229 (CT)8 
  r-20-mer: GAAATCTCAAGGGGGAAAAT    
EF088820 Ihas08 f-20-mer: FAM-CCACCTTTATTGCCTTTCAC 58 186-202 (AG)9 
  r-20-mer: CGATCGGACACTTCAAATCT    
EF088821 Ihas09 f-20-mer: FAM-CTTCGAAATGATTCGACCTC 60 175-199 (CT)11 
  r-21-mer: GGAAGTCGAGGTGTAAAAGGT    
EF088822 Ihas10 f-20-mer: FAM-GCTGCACTACAAAGCCATCT 60 157-173 (CT)9 
  r-20-mer: AATAGGAAGGGGACCTCAAC    
EF088823 Ihas11 f-19-mer: FAM-TCCAGGAAAAGCCATTAGG 58 165-187 (TG)7 
  r-20-mer: CTTCCACTCCTTCCACACTC    
EF088824 Ihas13 f-20-mer: HEX-CAGTCACCGTCAACTGTTTG 58 245-265 (AC)7A 
  r-20-mer: TTAGTTGCCGGAGAAGAGTC   (AC) 
EF088825 Ihas15 f-20-mer: HEX-ACAACTCTCGATGACACACG 58 221-233 (CT)9 
  r-20-mer: GATGTATGAAGGGCTCCAAG    
EF088826 Ihas16 f-24-mer: HEX-TCTACCCACCCTCTATATTCCTGA 50.8 167-187 (TC)14 
   r-19-mer: CCCCCGTACAGTCCCTACC    



6.2   Isolation of microsatellite loci in Ischnura hastata 

46 

Table 2. Genotyping results for the samples of I. hastata from North America. Listed are: locus name, 
allele size range (bp), number of alleles per locus (NA), number of individuals genotyped (Nind), 
expected (HE) and observed (HO) heterozygosity rates and P value of the departure from Hardy-
Weinberg equilibrium. 
 

*Indicates significant heterozygote deficiency (P<0.05) 

 

The number of alleles per locus ranged from six to 11, with an overall number of 80 alleles. 

The observed heterozygosity ranged from 0.245 to 0.737. Deviation from HWE was detected 

for loci Ihas01, Ihas08, Ihas09 and Ihas13. However, when populations were treated 

separately, only loci Ihas01 and Ihas09 in Mexico population and locus Ihas10 in Florida 

population revealed significant heterozygote deficiencies. No LD was detected between any 

pair of loci. 

The developed microsatellite system was further tested in a sample of parthenogenetic 

females from the Azores. Eight of the nine loci were checked up to now, and all show 

successful amplification products in these samples. However, the results of the genotyping 

revealed a significant lower genetic variability compared with the sexual populations. Of the 8 

loci tested, five were polymorphic and three were monomorphic. The overall number of 

alleles was 13, and the number of alleles per locus ranged from one in the monomorphic loci 

to 2 for the polymorphic loci. Observed heterozygosities ranged from 0 to 1 (Table 3). Only 

one clone (eight-locus genotype) was detected among the parthenogenetic individuals, which 

can be due either to a low clonal variability of the parthenogenetic populations, or to a small 

sample size. Increasing the number of parthenogenetic individuals genotyped could lead to the 

detection of more clonal copies at these populations. 

In summary, the developed microsatellite system for I. hastata will be an essential tool 

to study the genetic structure of bisexual and parthenogenetic populations, to determine the 

number of clones and to detect the type and origin of parthenogenesis in the Azorean 

populations of this species. 

 

 

Locus NA Nind HE HO P value 

Ihas01 6 53 0.409 0.245 0.0077* 
Ihas05 8 61 0.757 0.623 0.0535 
Ihas08 9 39 0.848 0.692 0.0020* 
Ihas09 10 52 0.788 0.673 0.0399* 
Ihas10 8 38 0.795 0.684 0.1417 
Ihas11 11 19 0.906 0.737 0.0025* 
Ihas13 10 52 0.813 0.712 0.3997 
Ihas15 7 38 0.702 0.658 0.3552 
Ihas16 11 60 0.658 0.667 0.3172 
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Table 3 Genotyping results for the parthenogenetic female samples of Ischnura hastata. Listed are 
locus name, allele size range (bp), number of alleles per locus (NA), number of individuals genotyped 
(Nind), expected (HE) and observed (HO) heterozygosity rates and P value of the departure from Hardy-
Weinberg equilibrium. 
 

Locus 
Allele size range 

(bp) NA Nind HE HO P value 
Ihas01 159 1 20  0  
Ihas05 221-225 2 78 0.503 1 0.0000* 
Ihas08 192-194 2 18 0.514 1 0.00002* 
Ihas09 187-191 2 18 0.514 1 0.00001* 
Ihas10 159 1 11  0  
Ihas11 165-171 2 17 0.515 1 0.0001* 
Ihas13 245-251 2 28 0.509 1 0.0000* 
Ihas15 233 1 21  0  

*Indicates significant heterozygote deficiency (P<0.05) 
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Abstract 

 

Odonates (dragonflies and damselflies) are important indicators for monitoring anthropogenic 

impacts on freshwater ecosystems. We developed a panel of microsatellite loci for the keeled 

skimmer Orthetrum coerulescens, a libellulid dragonfly inhabiting small streams. By using 

two different isolation techniques, nine microsatellite loci have been isolated. Screening of 

209 individuals resulted in an overall number of 88 alleles, ranging from three to 19 alleles 

per locus. The observed heterozygosity ranged from 0.37 to 0.83. One locus showed 

significant deviation from Hardy–Weinberg equilibrium. 

 

 

Keywords: dragonflies, long-term monitoring, microsatellites, Odonata, Orthetrum 

coerulescens 
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Odonates restricted to riverine habitats are especially prone to environmental changes (Corbet 

1999). Dredging, canalization, siltation of streambeds and pesticide pollution are common 

threads to larvae and imagos. A species especially affected by dredging of their breeding 

habitat, is the keeled skimmer, Orthetrum coerulescens. Populations of this species are often 

established along irrigation ditches, as those are the only viable breeding habitats left in 

developed landscapes. Our objective was to develop a panel of microsatellite loci for 

O. coerulescens, which will prove useful to detect and monitor the impact of environmental 

changes on this species. 

Tissue samples of 209 O. coerulescens individuals were collected at several breeding 

sites in southern France, Germany and Italy by nondestructive sampling (Fincke & Hadrys 

2001). Genomic DNA was isolated from single legs following a protocol by Hadrys et al. 

(1992). Seven microsatellite loci (Ocoe A03; Ocoe E04; Ocoe F04; Ocoe G04; Ocoe H04; 

Ocoe J04; Ocoe K04) were isolated with the slightly modified enrichment technique from 

Fischer & Bachmann (1998). DNA was digested with three restriction enzymes (RsaI; HaeIII; 

AluI) and ligated to two oligo adapters (Oligo A 5′-CTCTTGCTTACGCGTGGACTA-3′ and 

Oligo B 5′-TAGTCCACGCGTAAGCAAGAGCAAGAGCACA-3′) using a T4-Ligase 

(Edwards et al. 1996). The digested DNA was hybridized with two 3-biotinylated oligo 

probes (GA)10 and (AC)10. DNA fragments containing the potential repeat motifs were 

selectively retained using a biotin-streptavidin reaction with magnetic beads (Streptavidin 

MagneSphere Paramagnetic Particles; Promega). Polymerase chain reactions (PCR) were 

carried out on a GeneAmp 2700 (Applied Biosystems) to increase the quantity of the resulting 

microsatellite- enriched eluate by using 2.5 pmol Oligo A adapter as a primer. PCRs were 

performed in a total volume of 50- μL buffer (Invitrogen), containing 1.5 mm MgCl2, 0.8 mm 

of each dNTP and 0.5 U Taq DNA polymerase (Invitrogen) with the following cycling 

conditions: 94 °C for 5 min, 35 cycles at 94 °C for 1 min, 56 °C for 1 min, 72 °C for 2 min 

and a final elongation for 5 min. The biotin–streptavidin reaction and PCR were repeated 

once. After purification with a gene cleaning kit (GeneClean, Qbiogen) the enriched library 

was ligated into pCRII-TOPO vectors (Invitrogen) and transformed into competent 

Escherichia coli cells (TOP10; Invitrogen). A total of 64 positive clones were subjected to 

PCR amplification using T7 and SP6 primers. Twelve amplification products with a size 

range from 500 to 1000 bp were subsequently sequenced on an Amersham Bioscience 

MegaBACE 500 sequencer. Primers for seven loci were designed using the software primer 3 

(Rozen & Skaletsky 2000) by labelling each of the forward-primers with a fluorescent dye 

(HEX or FAM). 
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Two loci (OrAB; OrM2) have been isolated using the randomly amplified 

microsatellites (RAMs) technique as described in detail by Ender et al. (1996) and Hadrys et 

al. 2005. Briefly, genomic DNA was subjected to random amplified polymorphic DNA 

(RAPD)-PCR using 71 random 10-mer primers (Kits A, B, C, F; Operon Technologies). 

PCRs were performed in a total volume of 25 μL containing 0.5 ng template DNA, 2 mm 

MgCl2, 5 pmol random primer, 0.35 U Taq polymerase (Silverstar), 0.25 mm each dNTP, 1× 

buffer (Eurogentec). The amplification conditions were 2 min at 90 °C followed by 40 cycles 

20 s at 92 °C, 15 s at 38 °C, a ramp of 0.5 °C/s, 15 s at 72 °C followed by 2 min at 72 °C (e.g. 

Hadrys et al. 1992). RAPD profiles were blotted onto positively charged nylon membranes 

and hybridized overnight to four digoxigenin-labelled oligonucleotides (GA)10, (GT)10, 

(CA)10 and (ATT)10. Twenty-six RAPD fragments of sizes 200–1000 bp with a strong 

hybridization signal were re-amplified in a second PCR step using the same PCR conditions 

and primers as before. Re-amplification of 11 fragments either failed or resulted in multiple 

banding patterns. Consequently they were excluded from further analyses. Cloned directly 

into the pGEM-T Vector (Promega) were 10–20 ng of each of the 15 remaining amplification 

products. Plasmids were grown in transformed JM109 E. coli cells and sequenced following 

Ender et al. (1996). From the 15 clones sequenced, eight included microsatellite motifs of 

more than six repeat units length. Primers were designed and fluorescent dye-labelled as 

described above. 

Polymorphism at the overall 15 potential microsatellite loci was assayed in 209 

individuals. Amplification for microsatellite typing was carried out in a total reaction volume 

of 25 μL containing 1× PCR buffer (Invitrogen) and using 0.5 ng DNA as template, 0.5 U Taq 

DNA polymerase (Invitrogen), 2 mm MgCl2, 5 pmol primer, 0.1 mm dNTPs and 1 μg bovine 

serum albumin (BSA). PCR cycling conditions were as follows: an initial denaturation of 3 

min at 93 °C followed by 35 amplification cycles (30 s/92 °C; 35 s/primer-specific annealing 

temperatures; 30 s/72 °C) and a 5-min final elongation at 72 °C. Microsatellite genotyping 

was performed using an ABI PRISM 310 automated DNA sequencer. Observed and expected 

heterozygosities, deviations from Hardy–Weinberg equilibrium (HWE) and test for linkage 

disequilibrium (LD) was calculated using genepop version 3.4 (Raymond & Rousset 1995). 
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Table 1 Characteristics of nine microsatellite loci isolated from Orthetrum coerulescens. Given are the locus name and 
GenBank Accession numbers; primer sequence; annealing temperature (Ta); allele sizes in bp; the core motive; number of 
alleles per locus (NA); observed heterozygosity (Ho); expected heterozygosity (He); the number of individuals analysed (Nind). 
Significant departure from Hardy-Weinberg equilibrium is indicated by asterisk when P = 0.05. 

 
Locus name 
Access. nos. 

Primer sequences (5’-3’) Ta 
(C°) 

MgCl2 
(mM) 

Allele size 
range (bp) 

Repeat 
motiv 

NA HE HO Nind 

Ocoe E04 F: FAM-CTGTGAGCCTAGAGGATGGT 57 2,5 220-228 (TG)7 7 0,41 0,37 205 
DQ786767 R: CACTAACTTTTTCCCCTGGT         
Ocoe F04 F: HEX-AAAAATTCGAAATGCCGTTA 57 2,5 202-242 (AG)3T 19 0,86 0,77 209 
DQ786768 R: CTTGGCGTGACCTCACTAAT    (GA)11     
Ocoe G04 F FAM-ACACAATCTGCGTTAGTTCG 54 3,0 245-275 (CT)10 16 0,75 0,83 206 
DQ786769 R: TTGTCACCGTTTTATTGCAG         
Ocoe H04 F: HEX-TGGTCCTTGAGTTGACCATA 57 3,0 228-238 (AC)6 7 0,65 0,66 206 
DQ786770 R: TCCTTCTGGTTGGGGTATTA         
Ocoe J04 F: HEX-TAAAGTGGAGGTGAAGCACA 54 2,5 275-295 (CT)8 11 0,65 0,5 202 
DQ786771 R: AAAAGAGTCGACAAAGG         
OrAB F: HEX-AGCGAGAAGTCGTTCG 52 2,5 151-159 (CT)10 7 0,56 0,6 202 
DQ786772 R: CGTCATCGTTATATCACCG          
OrM2 F: FAM-TTTTGCCCTTCTCTGC 52 2,0 227-243 (CA)7 14 0,85 0,77 176 
DQ786773 R: GGTGAGAGTCCGATAACG         
OcoeA03 F: FAM-AAGAGCGCCAAAGAGAAGTA 57 2.5 206-212 (TG)8 3 0,68 0,69 23 
DQ846696 R: GGGTCTCAAATAATTACCATTT         
OcoeK04 F: FAM-CAAAGATAATGATGGTGTGTG 55 2.5 139-147 (TG)9 4 0,73 0,62* 23 
DQ846697 R: GGGAATCGATCTCTTGCTTA         
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Six out of the 15 loci appeared to be either monomorphic or showed no clear 

amplification product. Nine loci were polymorphic with the number of alleles per locus 

ranging from three to 19. Characteristics of the nine microsatellites are shown in Table 1. 

Expected and observed heterozygosities ranged from 0.41 to 0.86 and from 0.37 to 0.83, 

respectively. Deviation from HWE was only detected for locus Ocoe K04. No LD was 

detected after Bonferroni correction for multiple comparisons. Cross-species amplification 

and genotyping of all loci in 10 more species of the genus Orthetrum revealed promising 

results for six of the nine microsatellites tested (Table 2). In sum, with both isolation 

protocols used in this study polymorphic microsatellites have been detected. The main 

difference between the two techniques used is the amount of genomic DNA in the first steps 

of the protocol. While the enrichment protocol needs a high amount of genomic DNA for 

construction of the library, the RAMs protocol needs only 5–10 ng per reaction. The 

microsatellites described here show high levels of variation making them suitable to estimate 

allelic and genetic diversities among and within populations over years and individuals. 

 

 

Table 2 Results of cross-species amplification with Orthetrum coerulescens microsatellite marker for 
10 Orthetrum species. Shown are the loci (E04-OrM2) with successful amplification and genotyping 
results (below listed as allele sizes) in at least one of the tested species. 
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Species E04 F04 G04 J04 OrAB OrM2 

O. brachiale 210/222 212 245 - 150/152 229 
O. crysostigma - 214 245 283/285 152 223/231 
O. julia 210/222 206/212 249/252 - - 209 
O. caffrum 224 214 243/247 277 153 217/223 
O. hintzi - 208/210 243/245 283/291 152 233 
O. ictomeralis cinctifrons 224/227 210 253/255 - 154 235 
O. machadoi 222 - 243/247 - 152 - 
O. robustrum 222 214 245/247 - 152 - 
O. stemale kalai - - 243 - - - 
O. trinacria - - 253/255 - - - 
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Abstract 

 

One of the most widely distributed dragonfly species in Africa is the red-veined-dropwing 

Trithemis arteriosa. It is an indicator for permanent water bodies, which are freshwater 

ecosystems of high environmental value especially in arid regions. For studies to determine 

population structures, assess species viability and monitor environmental changes, a panel of 

ten polymorphic microsatellite loci was developed. The number of alleles per locus ranged 

from four to 12, with an observed heterozygosity ranging from 0.149 to 0.843.  

 

Keywords: conservation genetics, dragonflies, microsatellites, Odonata, Trithemis arteriosa 
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Despite the increasing importance of odonates (damselflies and dragonflies) as key taxa for 

identifying driving factors controlling biodiversity and defining conservation units of 

freshwater ecosystems, only three microsatellite systems - exclusively for damselflies - have 

yet been developed. (Fincke & Hadrys 2001, Hadrys et al. 2005, Watts et al. 2004, Keat et al. 

2005). We here report on the development of the first microsatellite system for a dragonfly 

species. 

The red-veined-dropwing Trithemis arteriosa is one of the most widely distributed 

dragonfly species in Africa. Its distribution ranges from the semi-arid to tropical and humid 

regions (Pinhey 1970). It is an indicator species for perennial water bodies like reedy pools, 

streams or swamps, freshwater resources of high environmental and socioeconomic value. 

The application of sensitive genetic methods offers the potential of fast detection of 

environmental changes in these important wetlands areas. 

Our objective was to develop a panel of polymorphic microsatellite markers for T. 

arteriosa to study and monitor the genetic diversity within and among populations. Therefore, 

research sites were chosen along different environmental and geographical gradients across 

Namibia and Kenya. 

Microsatellite loci were isolated using a modified enrichment technique described in 

Fischer & Bachmann (1998). Genomic DNA was extracted with a phenol-chloroform-

extraction protocol (Hadrys et al. 1992). DNA was digested with the two restriction enzymes 

ALU I and RSA I. DNA fragment size ranged from 500 to 1200 bp. The fragments were 

ligated to two oligo adapters (Oligo A: 5` CTC TTG CTT ACG CGT GGA CTA 3` and Oligo 

B: 5` TAG TCC ACG CGT AAG CAA GAG CAC A 3` (Edwards et al. 1996). Two 

3`biotinylated oligo probes [(GA)10 and (GT)10] were hybridized to the digested DNA. 

Fragments with the potential repeat motifs were isolated using streptavidin-coated magnetic 

beads (Promega). The microsatellite enriched eluate was used as a template in a polymerase 

chain reaction (PCR) with 2.5 pmol of the Oligo A adapter as a primer and containing in a 

final volume of 50 µl 1x Buffer (Invitrogen), 1.5 mM MgCl, 0.8 mM of each dNTP, 0.5 U 

Taq DNA Polymerase (Invitrogen). PCR cycling conditions were 94 °C for 5 min, 35 cycles 

of 94 °C 1 min, 56 °C 1 min, 72 °C 2 min and a final elongation for 5 min. The enrichment 

process with the magnetic beads and the PCR was repeated. PCR-products were ligated into 

pCR®II-TOPO® vectors (Invitrogen) and transformed into competent Escherichia coli cells 

(TOP10). Colonies with inserts were amplified using T7 and SP6 primers. A total of 180 

positive clones were chosen for PCR amplification. Eighty of the amplification products (size 
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range from 500 to 1000 bp) were selected for a Southern Blot analyses with the biotin-

labelled probes (GA)10 and (GT)10. Twenty products with a strong hybridization signal were 

sequenced on a MegaBACE500 using ET Terminator Mix from Amersham. All products 

contained microsatellite sequences and were used for primer design. Each of the forward-

primers was labelled with a fluorescent dye (HEX™ or FAM™) for microsatellite typing. 

PCR was performed in a 25 µl reaction volume containing 1 µl DNA (5-10 ng genomic 

DNA), 1 x Buffer (Invitrogen), 2 mM MgCl, 5 pmol of each primer, 0.1 mM of each dNTP 

and 0.5 U Taq DNA polymerase (Invitrogen). PCR cycling conditions were: 93 °C for 3 min, 

followed by 35 cycles of 30 s at 93 °C, 20 s primer specific annealing temperatures (Table 1), 

40 s 72 °C and a final elongation of 2 min. Automated genotyping was performed on a 

MegaBACE500 automated sequencer. The ET-550 Size Standard (Amersham) was used to 

determine the allele sizes. Data analysis was performed using the Genetic Profiler, version 1.2 

(Amersham Bioscience). GENEPOP 3.4 (Raymond & Rousset 1995) was used to estimate 

expected (HE) and observed (HO) heterozygosity deviations from Hardy-Weinberg 

equilibrium and to test for linkage disequilibrium. 

A total of 122 individuals of T. arteriosa (representing 12 populations in Namibia and 

Kenya) were genotyped for each locus. Seven out of the 20 loci appeared to be monomorphic, 

three primer pairs did not amplify any product, but ten loci were polymorphic. Table 1 

summarizes the results of the genotyping. All loci show a high genetic variability. The 

number of alleles per locus ranged from 4 to 12 with an overall number of 90 alleles. The 

observed heterozygosity ranged from 0.149 to 0.843. Genotype frequencies were tested 

multiple times for conformance to Hardy-Weinberg expectations and revealed always 

significant deviations from Hardy-Weinberg equilibrium (HWE) for seven of the loci. 

However, when population sites were tested separately, only locus TartM04 reveals 

significant heterozygote deficiencies in the majority of the 12 populations, which is possibly 

due to null alleles. The other loci displayed heterozygote deficiencies only in one up to three 

populations. Significant linkage disequilibrium was only detected for the pair TartL04 and 

TartS04 (p ≤ 0.03) across all populations and within populations for the pair TartM04 and 

TartQ04 (p ≤ 0.01) in one Kenyan population. Although our preliminary analyses revealed a 

similar high level of allelic and genetic diversity in Kenyan and Namibian populations, 10 out 

of 12 populations show private alleles suggesting possible processes of genetic drift and/or 

isolation. In sum, the developed microsatellite system will be useful for a variety of 

population genetic studies in Trithemis arteriosa for monitoring freshwater ecosystems. 
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Table 1 Characterisation of ten polymorphic microsatellite loci for the libellulid dragonfly Trithemis arteriosa. Shown are GenBank Accession nos., locus 
name, primer sequence, annealing temperature (°C), allele size range (bp), repeat motif, number of alleles per locus (NA), expected (HE) and observed (HO) 
heterozygosity rates and P-value of the departure from Hardy-Weinberg equilibrium. 

GenBank 
Accession nos.

Locus Primer (5’ – 3’) Ta 
(°C) 

Allele size 
range (bp) 

Repeat NA He Ho P-value 

DQ406677 Tart B04 f-20-mer: HEX-CCGAAAGTCTCTGAGGCAAC 
r-22-mer: GGAAAAATATCCCTTGCAGTCA 

57°C 250-258 (CA)3T(CA)2 
(CA)6 

4 0.482 0.730 0.000 

DQ406678 Tart C04 f-20-mer: FAM-TTTGCCTCAGAGAATGTTCC 
r-20-mer: AGGTTTCGCGGATCATTAAA 

57°C 218-226 (CA)8 5 0.629 0.879 0.023 

DQ406679 Tart I04 f-21-mer: FAM-TTTTCAGGAGGAGGGTTTAAT 
r-21-mer: CCTAGGATGTAGCGAAACAAA 

57°C 155-177 (CT)9 12 0.801 0.545 0.000 

DQ406680 Tart L04 f-20-mer: FAM-AGATAGGTGCAGAAGGAACG 
r-20-mer: TCCAAAGAGGCCATTTACTC 

55°C 184-192 (CT)8 6 0.293 0.259 0.243 

DQ406681 Tart M04 f-20-mer: HEX-GCCAAATGACCACCTACTTT 
r-20-mer: CACTTCTTTGGAAAACACGA 

55°C 250-272 (GT)7(TAA)5 8 0.790 0.376 0.000 

DQ406682 Tart N04 f-20-mer: FAM-TGATGAACAATGGAAAGGTG 
r-20-mer: CAAAAGGCGAAAAAGTCTGT 

55°C 199-211 (GT)7AT(GT)5 12 0.731 0.719 0.042 

DQ406683 Tart P04 f-19-mer: FAM-AGAAAATCCGGCTGAAAAG 
r-22-mer: TTTCTTTCATTTCAGGTGAGTG 

55°C 284-312 (AC)8 12 0.621 0.533 0.097 

DQ406684 Tart Q04 f-20-mer: HEX-CGCTTTCTCTTTCTCTCCTG 
r-20-mer: AAATCGACCAGAAAGAGTCG 

55°C 233-273 (GT)8 12 0.774 0.610 0.000 

DQ406685 Tart R04 f-20-mer: FAM-TCCAGAGTTTCGTCATTTCA 
r-20-mer: ATCGAAACCATGGTCGTTTA 

55°C 294-300 (AT)3C(AT)3G 
(CA)7 

7 0.245 0.149 0.000 

DQ406686 Tart S04 f-20-mer: HEX-TTCATTTCATTGGTGCCATA 
r-20-mer: GACTCTTCGATGCGAGTGTA 

55°C 253-271 (GT)8 12 0.838 0.843 0.052 
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Abstract 

 

Water-dependent species inhabiting desert regions seems to be a contradiction in terms. 

Nevertheless many species have evolved survival strategies for arid conditions. In Odonates 

(dragonflies and damselflies), both larvae and adults need very different and complex water 

associated habitats. The present study investigates the genetic diversity, population structure 

and dispersal behaviour of a desert inhabiting dragonfly species, the Red-veined Dropwing 

(Trithemis arteriosa). Eight populations from the arid Namibia and four population sites in 

the more tropical Kenya were analysed using nine microsatellite loci, two non-coding nuclear 

fragments and the mtDNA fragment ND1. Microsatellite analyses as well as the nuclear 

fragment reveal a high allelic diversity in all populations and with nearly no genetic sub-

structuring. In contrast, ND1 sequence analyses show sub-structuring and exhibits, except of 

two main haplotypes, only private haplotypes. The conflicting patterns of nuclear markers 

versus a mitochondrial sequence marker can be explained by a male-biased dispersal in this 

species. Results indicate that migration of male is dependent on the environmental stability of 

the habitat, but females are philopatric. This life history trait would allow females to save 

energy for mating and oviposition, a possible adaptation to the demanding environment of 

desert regions. Both results give first direct insights into the dispersal behaviour and pathways 

of a desert inhabiting, strongly water dependent flying insect. 

 

 

Keywords: dragonflies, desert regions, microsatellites, mtDNA, non-coding nuclear marker, 

dispersal pathways, sex-biased dispersal 
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Introduction 

 

Dispersal is one of the key processes allowing for the survival of species in fragmented 

landscapes and extreme environmental conditions, but also the “decision” to disperse can 

have far reaching consequences for the fitness of individuals like e.g. founding new 

populations (Clobert et al. 2001). Considering potential benefits as well as the substantial 

risks associated with dispersal it is highly plausible that dispersal might be depending on 

actual environmental conditions (Bowler & Benton 2005; Gros et al. 2008). Analyzing the 

population structure of key taxa in extreme environments could therefore help to understand 

the dispersal strategies by taking into account the stability of habitat situations. We here 

analyzed the genetic diversities and population structure of a desert-inhabiting dragonfly to 

investigate the dispersal strategies of a water-associated insect in desert environments. 

Desert regions are one of the most challenging environments for living organisms. 

With no more than 100 - 500 mm precipitation per annum water is the most limited resource 

in desert and semi-desert regions (Shmida 1985). Despite of these extreme conditions several 

species have evolved strategies for survival like adaptations for water conservation or heat 

tolerance (e.g. Ward 2009). Namibia is one of the most arid countries in the world. Most of 

the landscape is characterised by desert, semi-desert or dried savannah with only three 

permanent rivers at the borders of the country (Mendelsohn et al. 2002). Although water is the 

most limited resource, episodic rainfall may establish temporary rivers or ponds and in 

mountainous regions, small springs and streams provide permanent natural water bodies 

(Curtis et al. 1998). Besides the three permanent rivers all other rivers are ephemeral and are 

dry throughout most of the year (Mendelsohn et al. 2002). The only exception are several rare 

but permanent water ponds along the river course resulting from resurgence of underground 

water dependent on geology or topology (Martens & Dumont 1983; Jacobsen et al. 1995). 

Nevertheless, water resources are rare and sometimes separated by large uninhabitable 

areas. Studies of genetic diversity, population structures and dynamics for desert inhabiting 

species are limited and mainly focus on mammals or other terrestrial organisms (e.g. Hurtado 

et al. 2004; Lorenzen et al. 2008; Sole et al. 2008). So far only less is known about the 

genetic consequences of the limited availability of water bodies for freshwater associated 

organism living in desert regions. 

Odonates (dragonflies and damselflies) are highly dependent on water bodies with a 

complex life cycle composed of an aquatic larval and a terrestrial imago stage. They are 

highly mobile insects with the Anisoptera (dragonflies) in particular have the power to fly 
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over long distances. But the dispersal potential of both dragonflies and damselflies species 

differs significantly in correlation with specific habitat preferences (Corbet 1999). While 

some are migratory species and dispersed across whole continents (e.g. Anax junius or 

Libellula quadrimaculata), others are dependent on highly specialised habitats (e.g. 

Megaloprepus caerulatus or Trithemis hartwigi) (Fincke & Hadrys 2001; Freeland et al. 

2003; Artiss 2004; Dijkstra 2007; Groeneveld et al. 2007). 

In arid regions some species groups evolved real desert endemics like in reptiles or 

mammals (Griffin 1998; Simmons et al. 1998), but the majority of the desert-inhabiting 

odonates are widely distributed across the African continent. They have evolved ecological 

strategies enabling them to survive under arid conditions (Suhling et al. 2003; Johansson & 

Suhling 2004). Most of them are more or less opportunistic in habitat preferences and a short 

larval development enables some species to breed also in ephemeral water bodies during the 

rainy season (Suhling et al. 2005; Suhling & Martens 2007). For Namibia 126 of an estimated 

850 afrotropical odonate species have been identified with the highest species diversity in the 

more humid and tropical parts of Namibia in the North (Dijkstra 2003; Suhling et al. 2006). 

Here perennial and running waters allow more tropical species to inhabit the region. In the 

arid parts of Namibia species diversity is poor and, in contrast to other animal groups, no 

endemic dragonfly species has been identified up to date. 

To investigate the dispersal strategies and genetic effects of dealing with rare water 

resources as water dependent species in desert regions, the population structure of the Red-

veined Dropwing Trithemis arteriosa (Burmeister 1839; Libellulidae) was analysed. Its 

distribution ranges from the semi-arid to tropical and humid regions across the African 

continent (Pinhey 1970). T. arteriosa occurs only at perennial waters with emergent 

vegetation (Suhling et al. 2006) for which it can be regarded as valuable bioindicator species 

(Clausnitzer 2003). In Namibia population sizes differ widely depending on the stability of 

the habitat and water resource. As a consequence of the dry climate, Namibia’s freshwater 

systems are particularly threatened by both aridification and the impact of human activities 

(overuse of water, water pollution, extraction of groundwater for irrigation) (Barnard 1998). 

Therefore the application of sensitive genetic methods to monitor indicator species may be a 

powerful tool for rapidly assessing environmental changes in these important wetland areas. 

Identification of dispersal pathways may further help to identify population sites of high 

conservation value. 

In order to explore the population structures and genetic diversities of T. arteriosa in 

Namibia three different genetic marker systems were used; microsatellites, mtDNA and 
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nuclear sequence markers. For additional comparative analyses we also include populations 

from the more tropical Kenya. This way we will gain first insights into the genetic 

consequences of a strongly water-associated insect inhabiting desert landscapes. 

 

 

Materials and methods 

 

Study sites and sample collection 

Samples of adult T. arteriosa individuals (n=129), representing twelve distinct geographical 

populations in Namibia and Kenya (see Table 1, Figure 1), were collected and stored in 75% 

ethanol. All sampled individuals are males, because females mostly stay apart from the 

waterside and are often difficult to identify (Corbet 1999; Suhling & Martens 2007). Due to 

the species habitat preferences all study sites are permanent water bodies, but abundances of 

T. arteriosa differ as a consequence of type and quality of the habitats. The most northern 

population site is located in the Baynes Mountains. Here the species established a medium 

sized population at a natural spring. The sites Palmwag and Ongongo are located in North-

West Namibia. These populations were found at small ponds inside a dry riverbed, where 

T. arteriosa was able to establish quite large populations. Waterberg is situated in the 

Northeast where T. arteriosa was found at an artificial stream in a low abundance. The 

population site Rehoboth is located at the artificial lake Oanob which provides water for the 

urban area around Rehoboth in South-central of Namibia. Despite of this rather atypical 

habitat, T. arteriosa established a medium-sized population. The population sites Tsauchab 

and Neuras are both located south of the great central Namibian escarpment. While Tsauchab 

is again a permanent spring in a dry ephemeral river course with a high abundance of T. 

arteriosa, the Neuras population is influence by human disturbance and only a small number 

of individuals were found. The most southern population site is located at a natural spring in 

the dry Fish River bed with again a higher population size (see Figure 1). 

For a comparative analysis, four population sites in the more tropical region of Kenya 

were added to the study. Although Kenya possesses arid regions, it contains many more 

natural and permanent water resources than Namibia, for example the small, natural Lake 

Chala in the South of Kenya. The other population sites (Pemba River, Mzima Springs and 

Nairobi National Park) are permanent rivers and streams with riverine vegetation (Figure 1). 

Although water stability is higher than in Namibia, these localities are often used as watering 
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places by mammals such as elephants or hippos and T. arteriosa established populations of 

medium size. 

All samples were collected using a non-destructive method (Hadrys et al. 1993). The 

samples were stored at 4°C in ≥70% ethanol for consecutive DNA extraction. Extraction of 

total genomic DNA was carried out using a modified phenol-chloroform protocol (Hadrys et 

al. 1992) and stored at -20°C. 

 

 

Table 1 Sampling locations with abbreviations and geographical coordinates as well as number of 
analysed individuals (n) of the red-veined dropwing, Trithemis arteriosa from Namibia and Kenya.  
 

Country Abbrev. Locality Latitude Longitude n 
Namibia BayMt Baynes Mountains 17.231 S 12.805 E 8 
 Palm Palmwag 19.887 S 13.937 E 19 
 Ong Ongongo 19.140 S 13.820 E 10 
 Wb Waterberg 20.483 S 17.235 E 9 
 Reho Rehoboth 23.301 S 17.031 E 11 
 Neur Neuras 24.463 S 16.228 E 11 
 Tsau Tsauchab 24.503 S 16.115 E 16 
 FishR Fishriver 24.498 S 17.863 E 9 
Kenya Pem Pemba River 04.183 S 39.400 E 12 
 Mzi Mzima Springs 02.967 S 38.017 E 8 
 NNP Nairobi National Park 01.400 S 36.900 E 8 
 LCh Lake Chala 03.317 S 37.700 E 8 

 

 
Genetic analyses 

For genetic analyses four different markers were chosen, the mitochondrial gene ND1 

(NADH dehydrogenase subunit 1), ITS I-II (internal transcribed spacer region I and II 

including the intermediate 5.8S), a non-coding nuclear fragment TartR04 (microsatellite 

flanking region) and a set of nine microsatellite loci (Giere & Hadrys 2006).  

A 610 bp fragment of ND1 was amplified and sequenced according to Rach et al. 

(2008). The ITS I-II region was amplified with primers based on known insect sequences 

from GenBank. The forward primer (ITS-Odo fw: 5`CGT AGG TGA ACC TGC AGA AG 

3`) is located within the 18S rDNA and the reverse primer (ITS-Odo rev: 5`CTC ACC TGC 

TCT GAG GTC G 3`) within the 28S rDNA region. Amplification was successful under the 

following conditions: Initial denaturation for 3 min by 95°C, 35 cycles of 95°C for 30 sec, 

60°C for 40 sec and 30 sec at 72°C and a final extension at 72°C for 3 min. The final volume 

of 25 μl contained 1× amplification buffer (Invitrogen), 2.5 mM MgCl2, 0.1 mM dNTPs, 

5 pmol each primer, and 0.75 U Taq DNA polymerase (Invitrogen). For amplification of a 
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301bp fragment of TartR04, primers and PCR regime as described in Giere & Hadrys (2006) 

were used. 

Purified PCR products were sequenced in both directions on an automated sequencer 

(MegaBACE500; Amersham Bioscience) using the ET Terminator Mix from Amersham 

Bioscience following the manufacturer’s protocol. DNA sequences of both directions were 

assembled and edited using SeqmanII (version 5.03; DNAStar, Inc). Consensus sequences 

were aligned using Clustal X version 1.8 (Thompson et al. 1997). To reconstruct the gametic 

phases in heterozygote individuals for the nuclear markers, the Bayesian statistical method 

implemented in the program PHASE version 2.1 (Stephens et al. 2001) was used. Ten 

independent runs were conducted to infer the best reconstructed haplotypes with a posterior 

probability greater than 95% as suggested by the authors. Haplotype definition for ND1 and 

calculations of variable nucleotide positions were performed with Quickalign (Müller & 

Müller 2003). Sequences of each haplotype are available in GenBank under Accession nos 

FJ471463-FJ471481 (ND1), XXX (ITS) and XXX (TartR04). 

In addition nine microsatellite loci described in Giere & Hadrys (2006) were used for 

genotyping. Amplified fragments were analysed on a MegaBACE500 (Amersham 

Bioscience) automated sequencer. Allele sizes were determined using the internal size 

standard ET-550 (Amersham Bioscience). Data analyses were performed using the Genetic 

Profiler software (version 1.2; Amersham Bioscience). MICRO-CHECKER version 2.2.3 (Van 

Oosterhout et al. 2004) was used to test for null alleles and allelic dropout using 1000 Monte 

Carlo simulations and a Bonferroni corrected 95% confidence interval. 

 

Statistical analyses 

Genetic diversity. The genetic variation among mtDNA and nuclear sequences was quantified 

as haplotype diversity (h) and nucleotide diversity (π) and estimated using DNASP version 4.0 

(Rozas et al. 2003). For the microsatellites single locus statistics including number of alleles, 

allele frequencies and allelic richness were calculated using FSTAT version 2.9.3.2 (Goudet 

2001). Observed (HO) and expected (HE) heterozygosities were calculated using GENEPOP 

version 4.0 (Rousset 2008). Deviations from Hardy-Weinberg equilibrium (HWE) and 

linkage disequilibrium were tested using the Markov chain method implemented in GENEPOP. 

Associated probability values were corrected for multiple comparisons using a Bonferroni 

adjustment for a significance level of 0.05 (Rice 1989). The entire dataset and the individual 

locality were tested for selective neutrality using Tajima`s D (Tajima 1989) and Fu`s Fs (Fu 

1997) using ND1 and nuclear sequences. If Tajima`s D and Fu`s Fs are found to be 
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significantly negative, it would suggest the presence of selection or the occurrence of 

population growth.  

 

Population structure. ARLEQUIN version 3.0 (Excoffier et al. 2005) was used for all markers to 

estimate genetic differentiation between populations (Fst) and to conduct exact tests of 

population differentiation (Raymond & Rousset 1995). Hierarchical structuring of genetic 

variation was determined using analysis of molecular variance (AMOVA, Excoffier et al. 

1992) as implemented in ARLEQUIN. AMOVA estimates the amount of genetic variation 

attributable to genetic differentiation among predefined groups (ΦCT and θCT for mtDNA and 

nuclear markers, respectively), among localities within groups (ΦSC and θSC), and among 

localities relative to the total sample (ΦST and θST). Analysing the distribution of variation five 

different groups of localities were compared as described in Table 3. 

Statistical parsimony haplotypes networks were constructed for ND1 and nuclear 

sequences using the 95% parsimony criterion as implemented in the TCS version 1.13 

program (Templeton et al. 1992; Clement et al. 2000). Such genealogical network provides a 

better representation of gene genealogies at the population level and allows to resolve also 

relationships at the lower intraspecific level.  

For the microsatellites the population structure was estimated with the model-based 

Bayesian approach implemented in STRUCTURE version 2.1 (Pritchard et al. 2000). Ignoring 

prior population notation, individuals were placed into K populations, which were genetic 

clusters with distinctive allele frequencies. Individuals were assigned probabilistically to 

populations, with membership coefficients summing to 1 across clusters. To provide the 

correct estimation of K, the ΔK statistic was used (Evanno et al. 2005). Runs with values of K 

from one to twelve, corresponding to the numbers of sampled populations, were repeated 20 

times. Using the admixture model with correlated frequencies, runs had a burn-in period of 

105 steps followed by 106 Markov chain Monte Carlo replicates.  

Mantel test was performed to test for a correlation between geographic and genetic 

distance and as well as Fst-values using the program IBDWS version 2.6 (Rousset 1997; 

Jensen et al. 2005). Default settings were used, including 1000 randomizations. 
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Figure 1 Sampling localities in Namibia and Kenya (left) with a detailed map of Namibia (right) 
illustrating the ephemeral river catchments and the geological relief. N= numbers of individuals for 
each population. Pie charts display the haplotypes frequencies of ND1 and TartR04 found for each 
analysed population of T. arteriosa. 
 

 

 

Results 

 

Genetic variation 

ND1. Sequences of a 481-bp fragment of ND1 were obtained from all 129 individuals. Across 

the whole data set, 20 variable sites were identified resulting in 19 different haplotypes. No 

deletions or insertions were observed. Two common haplotypes (ART1 and ART2) were 

found in 69 % of all individuals. Haplotype ART1 occurred in all and haplotype ART2 in 10 

(except of Tsauchab and Mzima Springs) of the analysed populations. The other 16 

haplotypes were private for one specific population (see Figure 2a). Nucleotide sequence 
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diversity (π) ranged from 0 to 0.99% (Table 2). The populations Tsauchab and Mzima Springs 

exhibit only ART1 and therefore π and haplotype diversity (h) are zero (Table 2). The highest 

π was observed for Ongongo (0.99%) followed by the populations of Waterberg (0.97%) and 

Nairobi National Park (0.97%). The highest h was found in Ongongo (0.94) followed by 

Palmwag (0.81) and Waterberg (0.79). Both tests for selective neutrality (Fu`s Fs and 

Tajima`s D) were not significantly different from 0 in any analysed population suggesting 

selective neutrality of the observed nucleotide polymorphism. Only population Pemba had a 

significant negative D (-1.94, p=0.009), which might be caused by a recent population 

expansion. 

 

ITS I-II. This region revealed a 600 bp fragment with only low genetic variability. In total, 

two positions with gaps and two positions with substitutions were found which occur in more 

than one sequenced individual. In addition at five positions single substitutions were found. 

This low variability showed also no indication of geographical correlation. Therefore this 

marker is not suitable for population genetic analyses in the studied species and was leaved 

out for further analyses. 

 

TartR04. In contrast to ITS I-II, the 301 bp fragment of the nuclear microsatellite flanking 

region TartR04 showed 16 polymorphic site and nine gaps. Two gaps are single deletions and 

the other seven gaps resulted of a seven bp long insertion in five individuals occurring in 

different population. Using the program PHASE 2.1 (Stephens et al. 2001) 29 haplotypes 

(including gaps and polymorphic sites) could be inferred with a posterior probability of 95%. 

One haplotype (R04-1) occurred in all populations, followed by a second (R04-4) which was 

present in nine out of the twelve populations (except of Mzima Springs, Neuras and Lake 

Chala). 13 haplotypes were shared by at least two populations, while 16 haplotypes were 

private (Figure 2b). Nucleotide (π) and haplotype diversity (h) ranged from 0.1 to 0.89% and 

0.29 to 0.91, respectively with the highest value of both π and h found for Nairobi National 

Park (0.89%, 0.86) and Fish River (0.77%; 0.91) (Table 2). Test for selective neutrality 

revealed significant negative Fs values for three populations, Tsauchab (-4.60 p<0.001), 

Waterberg (-2.51 p=0.02) and Lake Chala (-2.47, p=0.006).  

 

Microsatellites. In total 85 alleles were scored for the twelve analysed populations and the 

number of alleles per locus ranged from four to twelve. Allelic diversity ranged from 3.22 to 

5.56 averaged for the nine loci. Allelic richness, which is based on the smallest sample size, 
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ranged from 3.06 to 4.0 per population and locus (Table 2). The number of alleles found in 

populations ranged from 29 in Mzima to 50 in Palmwag. The highest number of private 

alleles was three and occurred in the Namibian populations Tsauchab, Neuras and Rehoboth 

as well as in the Kenyan population Pemba River. Observed heterozygosities across all loci 

ranged from 0.48 to 0.65 (Table 2). 

Eight of the nine loci showed no evidence for null alleles. For the locus TartM04 the 

null alleles test observed a significant value in six populations and deviations from the Hardy-

Weinberg equilibrium in eight populations (P<0.01). Consequently this locus was excluded 

from further analyses. Furthermore, three populations (Lake Chala, Waterberg and Tsauchab) 

showed a significant deviation from Hardy-Weinberg equilibrium (p<0.01) indicating a 

heterozygote excess. For all combinations of pairs no significant linkage disequilibrium was 

found. When linkage disequilibrium was tested for single populations only at Lake Chala, two 

locus combinations (P04/N04, P=0.034 and S04/N04, P=0.02) showed a significant value. 

 

Population structure 

Two parsimony networks illustrate the genealogical relationships between the haplotypes of 

ND1 and TartR04 (Figure 3a and b). For ND1 two haplogroups can be defined. Haplogroup I 

includes the most common haplotype ART1 in its central position and nine other haplotypes 

are separated from ART1 by only one to three mutation steps. Haplogroup II includes nine 

haplotypes separated by one to three mutation steps with haplotype ART2 in its central 

position. Both haplogroups contain population sites from North and South Namibia as well as 

Kenya. 

The haplotype network of TartR04 is dominated by one common haplotype (R04-1) 

occurring in all populations. 19 further haplotypes are separated from R04-1 by one to two 

mutation steps. A second haplotype (R04-4) separated by three mutations steps from the most 

common haplotype was found in nine of the twelve populations and is connected with four 

further haplotypes separated by one to two mutation steps to R04-4. One group of five 

haplotypes is separated by at least eight mutations steps from the R04-1. This group contains 

individuals which have the seven bp insert as described above. Different from ND1 13 

haplotypes of TartR04 are shared by at least two populations.  
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Table 2 Mitochondrial DNA (ND1), nuclear sequence marker (TartR04) and nuclear microsatellite diversity in twelve T. arteriosa populations: Number of 
haplotypes; nucleotide diversity in % (π); haplotype diversity (h); standard deviation (SD); Tajima`s D (D); Fu`s Fs (Fs); number of alleles (n); number of 
alleles per locus (A/locus); allelic richness corrected for sample size (AR); observed heterozygosities (Ho); expected heterozygosities (He). Significant values 
are marked with an asterisk. 
 

 ND1 TartR04 Microsatellites 
Locality Haplotypes 

Total/ 
Private 

% 
π ± SD 

h ± SD D Fs Haplotypes 
Total/ 
Private 

% 
π ± SD 

h± SD D Fs n 
Total/ 
Private 

A/ 
locus 

ARc Ho He 

BayMt 3 / 1 0.73 ± 0.3 0.46 ± 0.2 0.04 2.95 6 / 2 0.66 ± 0.1 0.78 ± 0.07   39 / 1 3.89 3.61 0.64 0.66 
Palm 5 / 2 0.79 ± 0.13 0.81 ± 0.05 1.45 2.16 6 / 0 0.45 ± 0.08 0.57 ± 0.09 0.86 -0.67 50 / 1 5.56 3.50 0.5 0.59 
Ong 7 / 4 0.99 ± 0.21 0.94 ± 0.07 0.38 -1.33 7 / 4 0.53 ± 0.12 0.57 ± 0.1 -0.46 0.11 38 / 2 4.22 3.44 0.49 0.61 
Wb 4 / 2 0.97 ± 0.1 0.79 ± 0.11 1.70 2.03 6 / 1 0.33 ± 0.1 0.56 ± 0.13 -0.47 -2.51* 39 / 2 4.33 3.56 0.48* 0.60 
Reho 5 / 3 0.47 ± 0.18 0.62 ± 0.16 -0.66 -0.07 6 / 2 0.36 ± 0.1 0.50 ± 0.12 -0.99 0.31 46 / 3 5.11 4.00 0.65 0.74 
Neur 4 / 2 0.78 ± 0.17 0.71 ± 0.12 0.75 2.12 2 / 0 0.1 ± 0.04 0.29 ± 0.12 0.02 0.46 40 / 3 4.44 3.54 0.62 0.62 
Tsau 1 / 0 0 0 0 0 9 / 2 0.43 ± 0.09 0.62± 0.11 -0.96 -4.60* 46 / 3 5.11 3.77 0.55* 0.65 
FishR 3 / 1 0.94 ± 0.15 0.68 ± 0.12 2.27 3.71 12 / 3 0.77 ± 0.07 0.91 ± 0.04 0.16 -2.44 35 / 0 3.89 3.23 0.52 0.61 
Pem 2 / 0 0.24 ± 0.19 0.17 ± 0.13 -1.94* 2.76 6 / 1 0.60 ± 0.1 0.81 ± 0.10 0.38 -0.62 48 / 3 5.33 3.84 0.55 0.65 
Mzi 1 / 0 0 0 0 0 1 / 0 0 0 0 0 29 / 1 3.22 3.22 0.56 0.55 
NNP 2 / 0 0.97 ± 0.45 0.67 ± 0.31 0 2.88 6 / 1 0.89 ± 0.1 0.86 ± 0.07 0.51 0.87 35 / 1 3.89 3.06 0.48 0.67 
LCh 3 / 1 0.84 ± 0.24 0.73 ± 0.15 0.94 2.47 5 / 0 0.30 ± 0.1 0.58 ± 0.16 -1.38 -2.47* 39 / 1 4.33 3.69 0.58* 0.66 
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Table 3 Distribution of genetic variance via hierarchical AMOVA. For nuclear and mitochondrial markers (ND1, TartR04 and microsatellites) 
five different groupings were tested. Kenya (represented by the populations Pem, Mzi, NNP, LCh), Namibia North (BayMt, Palm, Ong, Wb) 
and Namibia South (Reho, Neur, Tsau, FishR). For abbreviations see Table 1. Significant P- values are displayed with * P< 0.05, ** P< 0.001 
and *** P< 0.0001. 
 

 ND1 TartR04 Microsatellites 

Source of variation Variation Fixation Variation Fixation Variation Fixation 

Model 1 (without grouping)       
among populations 20.03% FST = 0.200*** 7.07% FST = 0.07*** 3.02%  
within populations 79.97%  92.93%  96.98% FST = 0.030*** 

Model 2 (Namibia) (Kenya)       
Among groups -1.9% FCT = -0.018  -1.71% FCT = -0.017  -0.02% FCT = -0.000  
Among populations within groups 21.05% FSC = 0.205** 7.76% FSC = 0.076*** 3.03% FSC = 0.030*** 
Within populations 80.85% FST = 0.191** 93.95% FST = 0.061*** 96.99% FST = 0.030*** 

Model 3 (Namibia North) 
(Namibia South) (Kenya) 

      

Among groups 5.87% FCT = 0.058 -1.88% FCT = -0.019 -0.09% FCT = -0.001 
Among populations within groups 15.44% FSC = 0.154 8.44% FSC = 0.083*** 3.08% FSC = 0.031*** 
Within populations 78.58% FST = 0.213 93.44% FST = 0.066*** 97.01% FST = 0.030*** 
Model 4 (Namibia South, Kenya) 
(Namibia North) 

      

Among groups 12.38% FCT = 0.123* -0.77% FCT = -0.008 -0.1% FCT = -0.001 
Among populations within groups 12.5% FSC = 0.142*** 7.51% FSC = 0.074*** 3.07% FSC = 0.031*** 
Within populations 75.12% FST = 0.248*** 93.27% FST = 0.067*** 97.03% FST = 0.030*** 
Model 5 (Namibia North, Kenya) 
(Namibia South) 

      

Among groups 0.62% FCT = 0.006 -1.46% FCT = -0.014 -0.05 FCT = -0.001 
Among populations within groups 19.66% FSC = 0.198*** 7.89% FSC = 0.078*** 3.04 FSC = 0.030*** 
Within populations 79.71% FST = 0.203** 93.57% FST = 0.064*** 97.01 FST = 0.030*** 
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By means of AMOVA a significant overall ΦST- and θST-value was detected when comparing 
genetic variation among all populations for all three markers (ND1: 0.200**; TartR04: 
0.07*** and microsatellites 0.03***) (Table 3). Hierarchical analysis of AMOVA revealed 
for all markers the highest variation within rather than among populations for all models 
tested (ND1: 75.12 to 80.85%; TartR04: 92.93 to 93.57%; microsatellites: 96.98 to 97.03%). 
The variation among and within populations in the different defined groups as well as within 
the populations showed nearly no differences for TartR04 and the microsatellites. This 
resulted in the same level of significant θSC– and θST-values (TartR04: 0.061 to 0.083***; 
microsatellites: 0.030 to 0.031***) while the θCT-values are not significant. In contrast to that 
the variation in ND1 among groups varied between -1.9 to 12.38 % with Model 4 (Kenya & 
Namibia South / Namibia North) showing also a significant ΦCT-value (0.123, P=0.001) 
indicating a sub-structuring between these two groups. Here also the ΦST-value was the 
highest (0.248, P<0.0001). For the other models the ΦST- value ranged from 0.191 to 0.213 
indicating a substructure within the populations of each group. 

Pairwise Φ comparisons (ND1) varied widely. Of the 66 population comparisons, 20 
showed significant ΦST-values after Bonferroni corrections (values ranging from 0.012 to 
0.758). While some of the high values might have been caused by low nucleotide diversities 
(Tsauchab and Mzima Springs) the main significant ΦST-values were found between northern 
Namibian populations and Kenya. Pairwise θST comparisons for TartR04 showed 25 
significant pairwise comparisons out of 66 (values ranging from 0.075 to 0.364). Here two 
populations (Fish River and Baynes Mountains) showed the majority of the significant θST-
values to nearly all other populations. For the microsatellites pairwise θST comparisons 
showed 27 significant θST-values, which were slightly higher than in the AMOVA analyses 
(ranging from 0.019 to 0.103). The highest θST-value was found between Fish River and Lake 
Chala with 0.103 (P<0.0001). The most significant values were found between northern and 
southern populations of Namibia and again between Fish River and the other populations. 

According to the found structuring between northern Namibian populations to 
southern Namibian and Kenyan populations in ΦST and θST, the exact test of population 
differentiation was analysed (i) for population comparison and (ii) for groups of populations 
(North Namibia vs. South Nambia vs. Kenya). Microsatellites revealed no significant 
differentiation for both population and group comparison. ND1 and TartR04 showed the same 
pattern of population pairwise differentiation as revealed by ΦST- and θST-values. Testing the 
differentiation of the three predefined groups, both markers showed a significant 
differentiation between North Namibia and South Namibia as well as Kenya while the latter 
were not significant different. 
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Figure 2 Mutational haplotype networks of (a) ND1 and (b) TartR04 sequences based on statistical parsimony. Shown are the genealogical relationships 
between the haplotypes in twelve populations of T. arteriosa. Haplotypes considered to be ancestral are depicted as rectangles, all other haplotypes as circles. 
Missing mutational steps connecting haplotypes are represented by small non-coloured dots. Haplotypes connected by a single line differ in one mutational 
step. The size of the rectangle and circles correlates with haplotype frequency within each network. The different colours represent different populations. 
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The model-based clustering method implemented in STRUCTURE (Pritchard et al. 2000), which 

assigns all individuals to K clusters without predefined populations was run for (i) all 

populations separately and (ii) for five predefined groups according to exact population 

differentiation results of ND1 and TartR04 (North Namibia, South Namibia, Kenya and the 

two highly differentiated populations Fish River and Baynes Mountains). This was done to 

allow higher sample sizes for each geographical region. For both approaches K=3 produced 

the highest value of ΔK. Nevertheless, a high degree of overlap among individuals from 

different populations and regions were found indicating high gene flow between the 

populations. 

Mantel tests for the three marker showed no significant correlation between 

geographic and genetic distances (ND1: r= -0.0897, one-sided p= 0.7410; TartR04: r= 0.0470, 

one-sided p= 0.6510; microsatellites: Nei`s distances: r= 0.1274, P= 0.1880; θST: r=0.0142, 

P=0.4440).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Bayesian analysis of the nuclear genetic structure of T. arteriosa populations based on eight 
microsatellite loci. Each vertical bar represents an individual and is partitioned into one to three 
coloured segments indicating the individual membership in the three genetic groups found by 
STRUCTURE. Regional origin of the individuals is indicated by regarding the two populations Fish 
River and Baynes Mountains separately according to their high θST-values to the other populations. 
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Discussion 

 

A basic requirement to understand the evolution of life history traits and patterns of 

biodiversity, both within and among ecosystems, is to follow population structures and 

dispersal strategies of selected key taxa. Estimates of gene flow and genetic diversity are 

therefore a sine qua non. The application of the two nuclear markers revealed highly similar 

results of the population structure of the desert inhabiting dragonfly T. arteriosa and indicates 

high levels of gene flow between populations. In contrast to that the mtDNA marker ND1 

showed nearly exclusive private haplotypes in each population indicating reduced gene flow 

between populations. 

 

Genetic diversity 

The ribosomal ITS I-II was successfully used in population genetic studies before (e.g. 

Gomez-Zurita & Vogler 2003; Bower et al. 2009), but for the dragonfly species analysed here 

only low genetic diversity was found. Nevertheless, the other three marker systems showed a 

high genetic diversity within T. arteriosa. With up to seven (ND1) and twelve (TartR04) 

haplotypes and fifty alleles, high nucleotide and haplotype diversities were found in nearly all 

populations. Interestingly, in ND1 the highest sequence diversities were found in the northern 

Namibian populations (Palmwag, Ongongo and Waterberg), while in the microsatellites and 

TartR04 no pronounced difference could be observed. The number of ND1 haplotypes was 

lowest in the Kenyan populations, in which for TartR04 only two private haplotypes were 

found. The high mtDNA and nuclear diversities in the northern part of Namibia lead to the 

assumption that these populations have been in Hardy-Weinberg equilibrium (HWE) for a 

long time period. In contrast, lower mtDNA diversities in the southern populations of 

Namibia, but the comparably same amount of TartR04 haplotypes and the high number of 

private alleles suggest a past population decrease as a cause of more instable habitat 

conditions. 

The Namibian Tsauchab population exhibits only one mtDNA haplotype although the 

number of analysed individuals was high. In contrast, a high number of microsatellite alleles 

(n = 46) and TartR04 haplotypes (nine including two private) was found. The loss of mtDNA 

diversity might be a response to climatic fluctuations resulting in a desiccation of water 

resources and a repeated decline in population size at this population site. This is also 

supported by a significant Fu`s Fs value (-4.60, p<0.001) in TartR04 indicating a recent 

bottleneck or population expansion (Tajima 1989; Fu 1997). The population Mzima in Kenya 
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exhibited in all three markers a low genetic diversity which might have been caused by a 

recent population decline. The two populations Fish River (most southern) and Baynes 

Mountains (most northern) have a high TartR04 haplotype diversity and show different 

haplotype frequencies (ND1 and TartR04) in comparison to the other populations. This might 

be caused through additional genetic input from populations of the adjacent countries South 

Africa and Angola. 

When comparing genetic diversities of T. arteriosa in the dry country Namibia and the 

more tropical Kenya, lower diversities in the more demanding habitats of Namibia with 

isolation and reduced water resources are expected. Interestingly, our study revealed rather 

the opposite. The populations in Namibia have in comparison to Kenya a higher number of 

private haplotypes or alleles in all three markers. The four Kenyan populations exhibit only 

the two most common haplotypes in ND1 and most of the haplotypes of TartR04 are shared 

with the southern Namibian populations. This could be caused by several reasons. Both Lake 

Chala (in TartR04) and Pemba (in ND1) showed a significant negative Tajima D or Fu`s Fs. 

A population decline might therefore reduce the genetic diversities and most common 

haplotypes are favoured. Due to the more stable habitats the Kenyan populations might be 

more influenced by a higher amount of predators for the larvae (e.g. fish, frogs), interspecific 

competition, mammals or human habitat disturbance which resulted in smaller population 

sizes. In Namibia the two populations Neuras and Waterberg with the most human influence 

have also only a small population size which indeed resulted in lower genetic diversities. 

 

Population differentiation 

Results of population structure analyses revealed different patterns when comparing mtDNA 

and nuclear markers. Nuclear markers showed nearly no population substructure which 

suggest a high level of gene flow between the analysed populations. With geographical 

distances of up to 2600 km (south Namibia – Kenya) the dispersal ability of T. arteriosa 

seems to be very high. Only the two populations Baynes Mountains and Fish River showed a 

higher differentiation to the other populations indicated by pairwise θST–values. AMOVA 

analyses of TartR04 and the microsatellites revealed that the great majority of variability 

(around 95%) was found within populations. The TCS-network of TartR04 and the 

STRUCTURE analyses in the microsatellites showed no geographical correlation of haplotypes 

or allele frequencies and nearly half of the TartR04 haplotypes are shared by at least two 

populations (see Figure 3b). In contrast, ND1 exhibited only private haplotypes (except of the 

two main haplotypes) and a population substructure between North and South Namibia was 
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found in AMOVA, pairwise ΦST and the exact test of population differentiation (see Table 3). 

But the majority of ND1 variability was found within populations due to the high amount of 

private haplotypes. 

The restricted gene flow between the North and the South of Namibia can be 

explained by some remarkable geographic structures. While north-west Namibia is more or 

less plain, central Namibia consists of a plateau with a height ranging from 900 to 1300 m 

above sea level. Here also some of Namibia’s mountains are situated with altitudes up to 2000 

m. These highlands are potential barriers for flying insects, even if they are excellent flyers 

like dragonflies. Here the populations Tsauchab and Neuras are situated (within Naukluft 

Mountains). Rehoboth and Fish River are also situated south of the main central escarpment. 

The partly great canyon of the ephemeral Fish River has, in contrast to the other river 

catchments, a north-south direction and originates at the southern Namibian border at Orange 

River. Migration might therefore be southwards along the Fish River Canyon in the direction 

of South Africa. While the populations Ongongo and Palmwag are stable, the southern 

Namibian population are more effected by drought through periodical absence of rain in the 

rainy season (Mendelsohn et al. 2002). 

Interestingly the Kenyan populations are rather more similar to the southern Namibian 

populations than to the northern supported by both ND1 and TartR04. The migration of T. 

arteriosa from Kenya to Namibia might follow the coastline of southern Africa with the 

coastal wind and enter Namibia from South Africa. The northern Namibian populations have 

genetic exchange rather with the populations from Angola and Zambia. Individuals of 

populations inbetween Namibia and Kenya as well as of South Africa had to be included to 

answer this question more clearly, but preliminary analyses of other species (Orthetrum 

crysostigma and Orthetrum julia, unpublished data) revealed the same picture. 

 

Contrasting patterns via sex-biased dispersal? 

Although comparisons of mtDNA, nuclear sequence markers and microsatellites are 

complicated because of their different characteristics (allelic variation at specific loci versus 

mtDNA sequence variation) similar patterns of genetic differentiation are expected if gender-

based dispersal can be excluded (Bos et al. 2008; Lukoschek et al. 2008). In T. arteriosa, 

mtDNA revealed, except of the two main haplotypes, only private haplotypes in each locality. 

In contrast, microsatellites alleles and nuclear haplotypes were shared between populations of 

all analysed regions indicating no genetic differentiation. Because microsatellite analyses 

require high sample sizes to assure that the genetic diversity of a population is covered (e.g. 
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Waples 1998), the non-coding nuclear sequence marker TartR04 was included which 

confirmed microsatellite results. 

One reason for the different population structure could be the fourfold-reduced 

effective population size of the only maternal inherited mtDNA in comparison to the diploid/ 

bi-parentally inherited nuclear markers (Birky et al. 1989). Thus, theoretically mtDNA may 

show higher levels of differentiation at a mutation-drift equilibrium compared to 

microsatellites, although mutation rates for microsatellites are higher. But due to the random 

mating assumption this generalisation is also discussed to be incomplete in natural 

populations (Chesser & Baker 1996). The existence of a high number of mtDNA haplotypes 

in T. arteriosa in general would suggest that at least some of these haplotypes are shared with 

other populations in the context of the high gene flow revealed by nuclear markers. 

Therefore a second, highly promising explanation for the incongruence of mtDNA and 

nuclear data is sex-biased dispersal behaviour. Male-biased dispersal could homogenize allele 

frequencies among populations at biparentally (nuclear), but not maternally (mitochondrial) 

inherited genetic markers (e.g. Prugnolle & de Meeus 2002). Therefore, sex-specific dispersal 

can lead to incongruent results of analyses on population structures when comparing nuclear 

with mitochondrial markers. Male-biased based dispersal is well studied in different 

vertebrate species like e.g. mammals (e.g. Mesa et al. 2000), birds (e.g. Gibbs et al. 2000; 

Dallimer et al. 2002), and fishes (e.g. Cano et al. 2008). Three main categories of differential 

migration between sexes could be classified: (i) the resource competition hypothesis 

(Greenwood 1980), (ii) the local mate competition hypothesis (Perrin & Mazalov 2000) and 

(iii) the inbreeding avoidance hypothesis (Pusey 1987; Perrin & Mazalov 2000). 

In dragonflies it is well known that in the majority of species females stay away from 

the waterside and arrive only for mating and oviposition, while male dragonflies compete for 

mating opportunities at the water (e.g. Corbet 1999; Suhling & Martens 2007). Competition in 

large populations with spatial limitations leads to evasion to new water resources and 

therefore dispersal (Perrin & Mazalov 2000). Also the costs for dispersal might differ in 

genders resulting in the dispersal of only one sex (Gros et al. 2008). For females, staying at 

the breeding sides and saving energy for mating and oviposition is of special importance 

when one regards their exhausting habitat conditions in an arid region such as Namibia. Such 

a mating system, where males disperse to search for new territories and mating partners and 

females are philopatric, has many advantages under challenging habitat conditions. This is 

also described in some well studies desert-inhabiting fruit flies (Markow & Castrezana 2000). 

Sex-biased dispersal is therefore a promising explanation for the different dispersal patterns in 
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T. arteriosa. Because of their high mobility, dispersal patterns in dragonflies are difficult to 

assess and without genetic information often impossible (Holland et al. 2006). To date, only 

one study has addressed sex-biased dispersal in odonates by comparing different damselfly 

species based on the capture-mark-recapture (CMR) method (Beirinckx et al. 2006). However 

CMR in general has many limitations and for migration estimates over long distances it is 

unfeasible. 

Nevertheless, migration rates of males in T. arteriosa seem to be correlated with the 

environmental situation of the habitat at the specific localities. While smaller population sites 

(Neuras, Waterberg, Mzima Springs) exhibit a lower genetic diversity and share most of their 

nuclear haplotypes with other populations, the populations with a long-term stable history 

have a higher genetic diversity and a higher amount of private nuclear haplotypes and alleles 

(Ongongo, Fish River, Baynes Mountains, Rehoboth). Therefore a decrease of food and/or 

mating resources might have led to dispersal, which in fact is male-biased facultative 

migration. This picture is best seen in the Tsauchab population where only the most common 

ND1 haplotype was found. Here recurrent drying of the water resource leads to a nearly 

complete migration of the males. While females do not migrate and stay at their breeding 

sites, the maternal inherited haplotypes in ND1 stay private for the specific locality and in 

founder event this resulted in the occurrence of a low amount of maternal lineages as shown 

for the Tsauchab population. 

 

Conservation implications 

One major problem in population genetic studies is the availability of enough samples to 

correctly evaluate population structures. This is especially true for endangered species or 

species in extreme environmental situations where sometimes only small and/or isolated 

populations could be established. But for conservation management analysing patterns of 

dispersal and genetic diversities are of high importance particularly in these species groups. 

The application of mtDNA and microsatellites in population genetic studies have proved to be 

powerful (e.g. Avise et al. 1987; Goldstein & Schlötterer 1999). But especially microsatellite 

analyses are highly dependent on the number of analysed individuals of a given population. In 

our study the use of a third marker system, a non-coding nuclear sequence marker, resulted in 

congruent patterns to the microsatellites and was able to verify the preliminary results (Zhang 

& Hewitt 2003). While the ribosomal ITS I-II reveals only little intraspecific variation, a 

microsatellites flanking region might be very promising marker in population genetic studies. 

Although sample sizes are small in some populations due to low species abundance, the 
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observed patterns in genetic diversity were rather correlated with the stability of water 

resources than with sample size (Tsauchab, Pemba River, Ongongo). Also merging 

populations of geographical regions did not change the overall picture. So using non-coding 

nuclear region as a complement to mtDNA or/and microsatellites might allow to reconstruct 

population genetic structure also in smaller sample sizes. 

By applying the three different marker systems we could show that a desert-inhabiting 

species dependent on perennial waters is able to establish viable populations with high genetic 

diversities despite of their isolated situation. The Namibian environment requires populations 

to deal with heat and rare, mostly ephemeral water resources. In the desert, dispersal ability is 

of high importance as populations are always at risk of a spatial or total desiccation of water 

resources either by human impact or natural causes. While some species are obligatory 

migrants, others may disperse for foraging, reproduction or seasonally induced reasons. For 

conservation management, knowledge about the dispersal behaviour and pathways of a 

species is of great importance. In T. arteriosa, a key species for permanent water bodies, 

genetic analyses indicate a male-biased dispersal which seems to be dependent on the stability 

of the habitat. While for females philopatry seems to be a fitness-advantage, males are forced 

to migrate in times of drought or habitat disturbance to search for other suitable habitats. 

Regarding the differences of genetic variability in species with sex-biased dispersal including 

both mtDNA and nuclear markers is important for conservation genetic studies. While nuclear 

markers might show a high genetic diversity the maternal lineage could be impoverished (like 

shown for Tsauchab and the Kenyan populations). 

Overall the results provide crucial information about dragonflies in the desert. The 

combined analyses of two different nuclear markers with mtDNA revealed a larger-scale 

picture of population dynamics in T. arteriosa by not only identifying high gene flow between 

populations but also environmental dependent sex biased dispersal. 
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Supplementary data 
 
Table S1 Haplotype frequencies from the 19 ND1 haplotypes found in twelve analysed populations of 
T. arteriosa in Namibia and Kenya. 

 

 BayMt Palm Ong Wb Reho Tsau Neur FishR LCh NNP Mzi Pem 

ART 1 0.125 0.312 0.111 0.375 0.636 1 0.5 0.5 0.333 0.833 1 0.917 
ART 2 0.75 0.25 0.111 0.375 0.091 - 0.3 0.125 0.5 0.167 - 0.083 
ART 3 - 0.125 - - - - - - - - - - 
ART 4 - 0.25 0.111 - - - - - - - - - 
ART 5 - 0.062 - - - - - - - - - - 
ART 6 - - - 0.125 - - - - - - - - 
ART 7 - - - 0.125 - - - - - - - - 
ART 8 0.125 - - - - - - - - - - - 
ART 9 - - 0.111 - - - - - - - - - 
ART 10 - - 0.222 - - - - - - - - - 
ART 11 - - 0.111 - - - - - - - - - 
ART 12 - - 0.222 - - - - - - - - - 
ART 13 - - - - - - - 0.375 - - - - 
ART 14 - - - - 0.091 - - - - - - - 
ART 15 - - - - 0.091 - - - - - - - 
ART 16 - - - - 0.091 - - - - - - - 
ART 17 - - - - - - 0.1 - - - - - 
ART 18 - - - - - - 0.1 - - - - - 
ART 19 - - - - - - - - 0.167 - - - 
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Table S2 Haplotype frequencies from the 29 TartR04 haplotypes found in twelve analysed 
populations of T. arteriosa in Namibia and Kenya. 

  BayMt Palm Ong Wb Reho Neur Tsau FishR Pem Mzi NNP LCh 

R04_1 0.312 0.647 0.654 0.667 0.708 0.833 0.615 0.250 0.357 1.000 0.333 0.667 
R04_2 - 0.088 - 0.056 - - - 0.042 - - - - 
R04_3 - 0.059 0.077 - - - - 0.167 - - - - 
R04_4 0.375 0.088 0.039 0.056 0.042 - 0.039 0.125 0.286 - 0.167 - 
R04_5 0.125 0.088 - 0.111 - - - 0.042 - - - - 
R04_6 - 0.029 - - - - 0.039 0.042 - - - - 
R04_7 - - 0.039 - - - - - - - - - 
R04_8 - - 0.077 - - - - - - - - - 
R04_9 - - 0.039 - - - - - - - - - 
R04_10 - - 0.077 - - - - - - - - - 
R04_11 - - - - - - - 0.083 - - - - 
R04_12 - - - - - - - 0.042 - - - 0.083 
R04_13 - - - - - - - 0.042 - - - - 
R04_14 - - - - 0.083 - 0.039 0.083 0.071 - - - 
R04_15 - - - - - - - 0.042 - - - - 
R04_16 - - - - - - - 0.042 - - 0.167 - 
R04_17 0.063 - - - - - 0.077 - - - - 0.083 
R04_18 - - - - - - 0.039 - 0.071 - - 0.083 
R04_19 - - - - - - 0.039 - - - - - 
R04_20 - - - - - - 0.039 - - - - - 
R04_21 - - - 0.056 0.042 - 0.077 - 0.071 - 0.083 - 
R04_22 - - - 0.056 - - - - - - - - 
R04_23 - - - - - - - - 0.143 - - - 
R04_24 - - - - - - - - - - 0.167 - 
R04_25 - - - - - 0.167 - - - - 0.083 0.083 
R04_26 0.063 - - - - - - - - - - - 
R04_27 0.063 - - - - - - - - - - - 
R04_28 - - - - 0.042 - - - - - - - 
R04_29 - - - - 0.083 - - - - - - - 
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Table S3 Pairwise population Fst-values for (a) ND1 sequences, (b) TartR04 and (c) eight 
microsatellite loci. Significant Fst-values based on 10000 permutations are displayed in bold. 

BayMt Palm Ong Wb Reho Neur Tsau FishR Pem Mzi NNP LCh 
(a) BayMt * 
 Palm 0,239 * 
 Ong 0,041 0,125 * 
 Wb 0,008 0,012 -0,012 * 
 Reho 0,432 -0,005 0,290 0,139 * 
 Neur 0,212 -0,056 0,115 -0,029 -0,027 * 
 Tsau 0,758 0,225 0,598 0,504 0,131 0,277 * 
 FishR 0,024 0,028 0,021 -0,085 0,156 -0,012 0,522 * 
 Pem 0,584 0,077 0,423 0,289 -0,040 0,075 0,013 0,307 * 
 Mzi 0,617 0,100 0,427 0,311 -0,004 0,114 0,000 0,330 -0,093 * 
 NNP 0,395 -0,056 0,232 0,079 -0,130 -0,084 0,153 0,098 -0,103 -0,034 * 
 LCh -0,133 0,134 -0,022 -0,085 0,331 0,097 0,726 -0,067 0,509 0,546 0,280 * 
 

 BayMt Palm Ong Wb Reho Neur Tsau FishR Pem Mzi NNP LCh 
(b) BayMt * 
 Palm 0,112 * 
 Ong 0,140 -0,004 * 
 Wb 0,113 -0,032 -0,009 * 
 Reho 0,169 0,004 -0,002 -0,014 * 
 Neur 0,279 0,050 0,041 0,037 0,000 * 
 Tsau 0,112 0,000 -0,004 -0,018 -0,012 0,048 * 
 FishR 0,027 0,093 0,099 0,099 0,133 0,225 0,086 * 
 Pem -0,022 0,082 0,093 0,078 0,108 0,228 0,058 0,009 * 
 Mzi 0,364 0,095 0,091 0,097 0,069 0,063 0,103 0,293 0,318 * 
 NNP 0,013 0,086 0,089 0,075 0,114 0,210 0,059 0,004 -0,013 0,324 * 
 LCh 0,131 -0,008 -0,017 -0,024 -0,016 -0,001 -0,036 0,093 0,079 0,113 0,066 * 
 

   BayMt Palm Ong Wb Reho Neur Tsau FishR Pem Mzi NNP LCh 
(c) BayMt * 
 Palm 0,029 * 
 Ong 0,038 0,029 * 
 Wb 0,039 0,030 0,051 * 
 Reho -0,003 0,050 0,032 0,019 * 
 Neur 0,020 0,029 0,032 0,029 0,020 * 
 Tsau 0,027 0,019 0,035 -0,008 0,019 0,022 * 
 FishR 0,049 0,061 0,019 0,064 0,054 0,052 0,023 * 
 Pem 0,016 0,020 0,038 -0,001 -0,006 -0,006 -0,001 0,044 * 
 Mzi 0,028 0,047 0,049 0,030 0,001 0,001 0,021 0,077 -0,012 * 
 NNP 0,037 0,020 0,052 0,021 0,049 0,049 -0,017 0,030 0,012 0,036 * 
 LCh 0,046 0,038 0,054 0,031 0,028 0,028 0,047 0,103 0,029 0,070 0,055 * 
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Abstract 

 

Modern taxonomy requires an analytical approach incorporating all lines of evidence into 

decision-making. Such an approach can enhance both, species identification and species 

discovery. The character-based DNA barcode method provides a molecular dataset that can be 

incorporated into classical taxonomic datasets. This way the discovery and delineation of a 

new species can include not only a descriptive organismal but also an analytical molecular 

taxonomical framework. We here illustrate such a corroborative framework in a dragonfly 

model system to unravel the existence of two new, but visually cryptic species. 

In the African dragonfly genus Trithemis three highly distinct genetic clusters can be 

detected which cannot be identified by using classical taxonomic characters. In order to test 

the hypothesis of two new species, DNA-barcodes from different sequence markers (ND1 and 

COI) were combined with morphological, ecological and biogeographic datasets. 

Phylogenetic analyses and incorporation of all datasets into a scheme called taxonomic circle 

highly supports the species discovery hypothesis of two new species. 

According to this case study we suggest that an analytical approach to modern 

taxonomy which integrates datasets from different disciplines will increase the ease and 

reliability of both species discovery and species assignment. 

 

 

Keywords: character-based barcoding; Odonata; new (cryptic) species; taxonomic circle; 

integrative approach; conservation genetics 
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Introduction 

 

“It is clear to us that genomic information should be an active component of modern 

taxonomy, but DNA should not be the sole source of information retrieval” (DeSalle et al. 

2005). The use of DNA sequence data in taxonomy dates back almost three decades ago (e.g. 

Fox et al. 1980; Paquin & Hedin 2004; Cardoso & Vogler 2005). It is widely accepted that a 

species identification system based on DNA sequences can be a rapid, reliable and consistent 

method, which is especially important for crisis disciplines like conservation biology and 

biodiversity research (Vogler & DeSalle 1994; DeSalle & Birstein 1996; Goldstein & DeSalle 

2000; DeSalle et al. 2005; DeSalle 2006; Vogler & Monaghan 2007). The recent introduction 

of DNA barcoding, as a fast identification method for assessing biodiversity of known 

species, has created excitement about a new, powerful tool for taxonomy (e.g. Hebert & 

Gregory 2005; Vences et al. 2005; Clare et al. 2007; Pfenninger et al. 2007). However, 

problems arise when new, unidentified species are discovered, in other words, when 

specimens come from the major part of biodiversity that has not been described yet (DeSalle 

2006; Rubinoff 2006). DNA barcoding studies have mainly been focusing on distance-based 

methods to identify and delimitate species (e.g. Hebert et al. 2003). This however can proof 

difficult for various reasons. For example, substitution rates of mtDNA vary between different 

groups of species resulting in a broad overlap of intra- and interspecific distances (Will & 

Rubinoff 2004; Hickerson et al. 2006). Consequently Hebert et al. (2004b) proposed a 

threshold of 3% mtDNA distances and the 10x rule to delimitate species. Such thresholds may 

work for some animal groups but not for all, resulting in the discovery of a number of 

equivocal cryptic species and more criticism about DNA barcoding in species discovery 

(Hebert et al. 2004a; Lefebure et al. 2006). 

As a fruitful site effect of this discussion a hot debate arouse about the importance of 

defining and outlining new ways to modernize taxonomy (Savolainen et al. 2005; Rubinoff et 

al. 2006; Vogler & Monaghan 2007; Cardoso et al. 2009). Researchers agree that ideally in 

modern taxonomy all disciplines should interact in species discovery and it should be possible 

to use the different data sets to test, corroborate, refine and revise species delimitation via a 

feedback loop (Vogler & Monaghan 2007) or a taxonomic circle (DeSalle et al. 2005). This 

however proves difficult when genetic distances are combined with taxonomy. 

A recently applied new technique, the character-based DNA barcode method, 

characterizes species through a unique combination of diagnostic characters rather than 

genetic distances (DeSalle et al. 2005; Rach et al. 2008). This way species boundaries can be 
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defined by a diagnostic set of characters which can be increased to any level of resolution by 

applying multiple genes (Rach et al. 2008). Another advantage of character-based barcoding 

is the fact that DNA characters can be combined with characters from other disciplines, e.g. 

ecology, morphology, geography and behaviour which allows to establish a comprehensive 

database to test new species hypotheses based on an analytical rather than descriptive 

approach. 

An analytical discovery process is especially important when traditional taxonomy 

fails to identify a species but genetic evidence is obvious, i.e. in the discovery of “cryptic 

species”. The taxonomic circle introduced by DeSalle et al. (2005) describes a way in which 

different datasets can interact to discover new species. In this scheme a genetically, 

morphologically or geographically discovered entity can only be raised to species status when 

at least two disciplines support the species discovery hypothesis. The advantage of this 

corroborative approach is the reliability on at least two different datasets of qualitatively 

different characters. Although this scheme displays the evolutionary process in a highly 

oversimplified way, it demonstrates that species discovery could be based on the biological 

and evolutionary species concepts. 

In a case study on odonates (dragonflies and damselflies) we apply the scheme of a 

taxonomic circle to prove the discovery of the first two “cryptic” species. Odonates are highly 

mobile organisms and their complex life cycle - aquatic larval stages and terrestrial adults - 

and species-specific habitat requirements make them excellent indicators for assessing 

biodiversity and wetland health (Corbet 1999; Stoks et al. 2005; Hadrys et al. 2006; 

Groeneveld et al. 2007). Their complex reproductive system and behaviour is unique in the 

animal kingdom and has made them model organisms for a variety of evolutionary studies 

(Waage 1979; Hadrys et al. 1993; Hadrys et al. 2005; Turgeon et al. 2005; Cordoba-Aguilar 

2008). Despite the lead of odonate research in the insect orders, the expected head start for 

integrating genetic tools into modern conservation and taxonomical research did not occur. 

The specificities that make odonates particularly valuable for biodiversity assessment on the 

one hand also make them technically difficult to study on the other hand. 

Despite a variety of phylogenetic and population genetic studies and an estimated high 

number of still undescribed species, so far species discovery is based solely on classical 

taxonomic descriptions and no cryptic odonate species is discovered yet (Misof et al. 2000; 

Weekers et al. 2001; Stoks et al. 2005; Hadrys et al. 2006; Hasegawa & Kasuya 2006). We 

here report the first species discovery hypothesis in odonates based on genetic evidence using 

ND1 (NADH dehydrogenase 1) and COI (cytochrome c oxidase subunit I) DNA sequence 
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marker and incorporation of morphology, ecology and biogeography. In the libellulid 

dragonfly Trithemis stictica, only the integration of all datasets into one character-based 

matrix ultimately allows both, species discovery and species assignment in a straightforward 

manner. Such a “total evidence” barcode can be of direct importance to conservation 

management. 

 

 

Material and methods 

 

Field studies and geography 

The genus Trithemis (Libellulidae) is worldwide distributed and includes 40 described species 

(Pinhey 1970). These species show a great variety of habitat specificities ranging from habitat 

generalists dispersed throughout Africa, to regionally restricted specialists. Trithemis stictica 

(Burmeister 1839) is a generalist and a common species in Sub-Saharan Africa. It inhabits 

swamps, pools or streams in open and forested areas and depends on permanent waterbodies 

with a high degree of vegetation (Pinhey 1970). In Namibia, one of the most arid countries in 

the world such waterbodies are rare. From 133 monitored localities, T. stictica was only found 

in two regionally restricted areas, the Naukluft Mountain region in western-central Namibia 

and the Caprivi Stripe, with the Okavango and Kwando River in the north-eastern corner. 

Between 2000 and 2006, 108 samples of T. stictica were collected from 14 localities in 

Namibia, Botswana (Okavango Delta), Zambia (Zambezi River), South Africa (Western 

Cape, Royal Natal Park), Tanzania (East Usambara Mountains), Kenya (Kiboko River, 

Nairobi National Park) and Ethiopia (Ambo) to broadly cover its geographical distribution 

(see Table 1 and Figure 1). Habitat parameters were mapped for each location. For 

comparative phylogenetic analyses five closely to distantly related Trithemis species were 

also sampled and included into the study. 
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Table 1 Population sites (country, locality, abbreviation) and number 
(n) of analysed individuals of T. stictica (Clade 1, 2 and 3) as well as 
five other Trithemis species. 
 

Species Country Locality Abbr. n 
T. stictica Namibia Naukluft Nauk 8 
 Namibia Zebra River Zebra 9 
 Namibia Popa Falls Popa 32 
 Namibia Andara And 3 
 Namibia Rundu Rund 4 
 Namibia Kwando River Kwan 7 
 Botswana Okavango Delta Bot 11 
 Zambia Zambezi River Zam 17 
 Kenya Kiboko River KR Ken 5 
 Kenya Nairobi NP NNP Ken 1 
 Tanzania East Usambara Mt. Tanz 5 
 South Africa Western Cape WC SA 2 
 South Africa Royal Natal Park RN SA 3 
 Ethiopia Ambo  Eth 1 
T. annulata Namibia Rehoboth  2 
 Namibia Popa Falls  3 
T. furva Ethiopia Nekemte  3 
 South Africa Wakkerstrom  2 
T. grouti Liberia Gola Forest   2 
 Liberia Lorma Nat. Forest  3 
T. nuptialis Congo Lingomo   1 
 Congo Lukomete  1 
T. kirbyi Namibia Tsaobis  3 
 Namibia Waterberg  2 

 

 

DNA extraction and Sequencing 

Total genomic DNA was isolated from leg tissue using a modified phenol-chloroform 

extraction (Hadrys et al. 1992). For initial population genetic analyses the mitochondrial 

marker ND1 was used. A 610 bp fragment was amplified using the primer pair P 850 fw and 

P 851 rev (Abraham et al. 2001). The amplification product includes the tRNALeu and a 3` 

partial fragment of the 16S rDNA fragment and the ND1 gene region. The PCR thermal 

regime was performed as described in Rach et al. (2008). A second marker, the suggested 

universal barcode region COI, was used on a subset of individuals covering the previously 

identified genetic clades (five individuals of each clade). Here a 630 bp fragment was 

amplified using universal primers (Hebert et al. 2003). PCR conditions were as follows: 3 min 

initial denaturation at 95° C, followed by 35 cycles of 95° C for 30 s, 50° C for 40 s and 72° C 

for 40 s, and 2 min extension at 72° C. PCR was carried out in a total volume of 25 µl, 

containing 1X amplification buffer (Invitrogen), 2.5 mM MgCl2, 0.1 mM dNTPs, 7.5 pmol 

each primer, and 0.75 U Taq DNA polymerase (Invitrogen). 
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Cycle sequencing of purified PCR-products was done using the ET Terminator Mix 

from Amersham Bioscience and sequenced on an automated sequencer (MegaBACE 1000; 

Amersham Bioscience). Sequences were assembled and edited using Seqman II (vers. 5.03; 

DNAStar, Inc). Consensus sequences were aligned by means of MUSCLE 3.6 (Edgar 2004). 

Sequences of each haplotype of all species were deposited into GenBank under accession 

numbers FJ358436-FJ358482. 

 

 

Figure 1 Map of the analysed sample sites of T. stictica (C1= clade 1), T. spec. nov. (C2= 
clade 2) and T. spec. nov. (C3= Clade 3). The true T. stictica is distributed across Southern 
Africa with five different countries included in this study (N: Namibia; SA: South Africa; 
T: Tanzania; K: Kenya; E: Ethiopia), while T. spec. nov. (C2) and (C3) are restricted to the 
Caprivi region, at the borders between Namibia (N), Botswana (B) and Zambia (Z). 

 

 

Genetic distance and phylogenetic analysis 

Number of haplotypes and variable nucleotide positions were calculated using Quickalign 

(Müller & Müller 2003). Pairwise genetic distances for ND1 and COI were calculated using 

the Kimura-2-Parameter distance model implemented in PAUP vers. 4.0b10 (Swofford 2002). 

For estimation of gene flow between populations Fst-values were computed in ARLEQUIN vers. 

3.1 (Excoffier et al. 2005) and tested for significance by permuting haplotypes between 

samples (10,000 replicates). 

For phylogenetic analyses two different tree building methods, Bayesian (BA) and 

Maximum Parsimony (MP) were compared. Using the Akaike Information Criterion in 
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Modeltest 3.7 (Posada & Crandall 1998) the TrN+I model for ND1 was selected and the GTR 

model for COI for BA performed with MrBAYES vers. 3.1.2 (Huelsenbeck & Ronquist 

2001). The most appropriate parameters for among site variation, base frequencies and 

discrete gamma distribution were employed and Marcov-Chain Monte-Carlo posterior 

probabilities determined. The Marcov-Chain Monte-Carlo search was performed with four 

chains for 1,500,000 generations and trees were sampled every 750th generation. MP analyses 

were performed as implemented in PAUP vers. 4.0b10 (Swofford 2002). Here, a heuristic 

search for each marker was employed using TBR branch swapping and random addition of 

taxa for 100 replicates. Bootstrap values were calculated based on 1,000 replicates 

(Felsenstein 1985). 

 

Character-based barcode analysis  

The identification of diagnostic characters within ND1 and COI sequences was performed in 

two steps. First, for pairwise comparisons of T. grouti, T. nuptialis and the three genetic T. 

stictica clades, the numbers of nucleotide substitutions distinguishing all individuals of one 

species or clade from the others were listed for each species pair. Nucleotide substitutions 

occurring only in single individuals of a species were ignored and only pure diagnostic 

characters mentioned (see Rach et al. 2008)  

Second, employing the CAOS algorithm (Sarkar et al. 2002; Rach et al. 2008) a 

search for species specific combinations of character states for both markers was performed 

for the whole dataset (including the five Trithemis species and the three clades). Here, the 

most variable sites distinguishing between the species were chosen and the character states at 

these nucleotide positions were listed. This way, unique combinations of character states, 

“character-based DNA barcodes”, were achieved. For a detailed description of character-

based DNA barcoding using CAOS see Rach et al. (2008). 

 

Morphological analyses 

A total of 43 male specimens from Namibia (Zebra River, Kwando, Andara and Popa Falls), 

Botswana, Zambia, Kenya, Tanzania and South Africa were examined using a stereoscopic 

microscope, a scanning electron microscope (SEM) and a stage micrometer. Statistical tests 

were performed using SAS to test for Normality (Shapiro-Wilk test) and to analyse 

significance of morphological differences between the genetic entities (Wilcoxon test). 

With the SEM (ETEC-AUTOSCAN) the secondary copulatory apparatus (SCA) of 

selected individuals of each locality were dissected, including the penis located in the inner 
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part of the SCA. The specimens, previously preserved in 80% ethanol, were dried under 

vacuum, sputter coated with gold and examined in the vacuum chamber of the SEM. 

 

 

Results 

 

Genetic distance patterns 

The alignment of the ND1 marker contains sequences of all 108 individuals of T. stictica. The 

fragment of 496 bp harbours 62 variable and 60 parsimony informative sites. One deletion 

occurs at position 126 in the region of the tRNALeu in 73 sequences (all from the Caprivi 

region which includes Popa Falls, Andara, Kwando, Rundu, Zambia and Botswana). In total, 

26 haplotypes were identified with no haplotype shared by all localities. Genetic distances 

range from 0% to 9.0% (Table 2) with very high values between three groups of individuals 

resulting in three separate haplotype clades without intermediate haplotypes (Figure 2). The 

alignment of the COI marker contains 630 bp, including 67 variable and 59 parsimony 

informative sites. Nine different haplotypes were found and genetic distances range from 0 to 

8.3% (Table 2). The individuals group together in the same three distinct clades as in ND1. 

 

 

Table 2 Sequence divergence (in %) based on the Kimura-2-parameter of ND1 (above) and COI 
(below) of the three clades (C1=clade 1, C2=clade 2, C3=clade 3) of T. stictica and four Trithemis 
species. 

 

ND1 
C1 

(T. stictica) 
C2 

(T. spec. nov)
C3 

(T. spec. nov) T. grouti 
T. 

nuptialis 
T. 

annulata  T. furva  
C1 (T. stictica)        
C2 (T. spec. nov) 9.0       
C3 (T. spec. nov) 8.5 5.0      
T. grouti 6.8 8.1 8.1     
T. nuptialis 2.2 7.6 8.7 7.0    
T. annulata 10.6 6.5 7.3 10.0 9.4   
T. furva 9.1 8.0 8.3 10.2 8.3 8.3  

 COI 
C1  

(T. stictica) 
C2  

(T. spec. nov)
C3  

(T. spec. nov) T. grouti 
T. 

nuptialis 
T. 

annulata T. furva 
C1 (T. stictica)        
C2 (T. spec. nov) 7.9       
C3 (T. spec. nov) 8.3 5.7      
T. grouti 3.3 8.9 8.9     
T. nuptialis 3.3 9.5 9.3 1.0    
T. annulata 9.1 10.6 11.4 8.1 8.5   
T. furva 9.7 10.1 10.4 10.1 10.6 9.3   



6.6   Integrative species discovery approach 

100 

All localities, except for one, could be assigned to one of the three clades. The first 

genetic clade consists of localities separated by long distances, South Africa, Ethiopia, 

Tanzania, Kenya and two sites in central Namibia, the Naukluft and Zebra River region (red 

dots in Figure 1). The second clade contains regionally restricted individuals from the Caprivi 

region, the localities Okavango Delta in Botswana, Kwando River, Rundu and a part of the 

Popa Falls individuals in Namibia (yellow in Figure 1). The remaining Popa Falls individuals 

belong to the third clade together with individuals of the sites Zambezi River (Zambia) and 

Andara, again all from the Caprivi region (blue in Figure 1). Genetic distances between the 

clades are very high. Between the first and the second clade it is 9.0% in ND1 and 7.9% in 

COI and between the first and third clade it is 8.5% in ND1 and 8.3% in COI. The regionally 

restricted clades 2 and 3 with individuals of the Caprivi region are separated by 5.0% in ND1 

and 5.7% in COI (see Table 2). In contrast genetic distance within clades is low and ranges 

from 0 to 1%. At one site in the Caprivi region, Popa Falls, individuals of clade 2 and 3 occur 

sympatrically. Interspecific genetic distances between the five known Trithemis species 

included in this study range from 1.9 to 10.6% in ND1 and 1.0 to 11.4% in COI (Table 2). 

Here e.g. the genetic distances between clade 1 and the known species T. nuptialis (2.2% in 

ND1, 3.3% in COI) and T. grouti (6.8% in ND1, 3.3% in COI) is lower than to clade 2 and 3. 

Comparisons of Fst-values reveal high genetic substructuring between the populations, 

but without geographical correlation. Grouping individuals according to their genetic clade, 

the Fst-values between these groups range from 0.906 to 0.960 in ND1 and from 0.921 to 

0.984 in COI. These high levels of Fst-values suggested that there is no gene flow neither 

between the population sites of the Caprivi region (clades 2 and 3) nor between the Caprivi 

region and clade 1 (Namibia Naukluft, Kenya, Tanzania, South Africa and Ethiopia). 

 

Phylogenetic analyses 

For both markers (ND1 and COI) Maximum Parsimony (MP) and Bayesian analyses (BA) 

reveal the same topology, which mirrors the picture from the distance analyses, where 

individuals are grouped into three clusters (Figure 2). 
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Figure 2 Maximum Parsimony tree (ND1) of all individuals sampled under the species name of T. 
stictica. Included are posterior probabilities and bootstrap values. A clustering of the individuals into 
three separate clades is highly supported. Clade 1 consists of individuals of the real T. stictica, and 
Clade 2 and Clade 3 are the putative new species. Locality abbreviations are congruent with table 1. 
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In order to position the genetic clades of T. stictica in a phylogenetic tree, MP and BA 

analyses of the three clades together with two closely and three more distantly related 

Trithemis species were performed. The resulting trees show a clear separation of clade 1 (red) 

from clade 2 and 3 (yellow and blue, Figure 3). Clade 1 groups together with T. grouti and T. 

nuptialis, which is congruent with the classical taxonomic position of T. stictica (Pinhey 

1970). Based on this tree topology clade 1 is identified as the originally described T. stictica. 

A sister group (sister species) relationship between the putative new species (clade 2 and 3) is 

highly supported (PP=1.00; 100% bootstrap). 
 

 
 

Figure 3 Bayesian tree of selected Trithemis species based on a concatenated matrix of COI and ND1. 
Posterior probabilities and bootstrap values are included. For the different species at least two 
individuals were incorporated as well as the two most common haplotypes of each newly found clade. 
T. stictica groups together with T. nuptialis and T. grouti, while T. spec. nov. (C2) and T. spec. nov. 
(C3) form two separate sister taxa. 
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Character-based DNA barcodes 

Table 3 (a) lists the barcodes, i.e. species-specific nucleotide positions (pure diagnostic 

barcode characters), for the three Trithemis clades and two closely related species. The three 

clades are distinguishable by unambiguous barcodes. Clade 1 and clade 2 can be distinguished 

by 26 variable nucleotide positions (vnp’s) in ND1 and 43 in COI, clade 1 and clade 3 by 27 

positions in ND1 and 43 in COI and clade 2 and 3 by 13 positions in ND1 and 28 in COI. In 

contrast to this high number of vnp’s, only four positions vary in ND1 and 19 in COI to 

distinguish T. nuptialis from clade 1. The comparison of clade 1 and T. grouti revealed 21 

(ND1) and 20 (COI) different positions. Interestingly the vnp´s between clade 2 and 3 are 

nearly the same as between T. grouti and T. nuptialis, with around 30 variable positions in 

ND1 and 50 in COI. 

For establishing character-based barcodes for all Trithemis species studied, 13 

nucleotide positions of ND1 and 15 of COI were chosen. The particular nucleotide positions 

revealed the highest numbers of diagnostic characters (Table 3b). Regarding only these 

chosen positions, all species could be distinguished by at least four diagnostic characters in 

both markers. 

 

 

Table 3 (a) Total number of pure diagnostic characters discriminating all 
individuals from a specific clade or species from each other in a pairwise 
comparison listed for T. stictica (C1=clade 1), the two putative new species 
T. spec. nov (C2=clade 2), T. spec. nov. (C3=clade 3) and two closely related 
sister species based on ND1 (422bp) and COI (630bp) sequences. 

 
(a)   
Pairwise comparison ND1 COI 
T. stictica (C1) / T. spec. nov. (C2) 26 43 
T. stictica (C1) / T. spec. nov. (C3) 27 43 
T. stictica (C1) / T. nuptialis 4 19 
T. stictica (C1) / T. grouti 21 20 
T. spec. nov. (C2)/ T. spec. nov. (C3) 13 28 
T. spec. nov. (C2) / T. nuptialis 32 51 
T. spec. nov. (C2) / T. grouti 30 49 
T. spec. nov. (C3) / T. nuptialis 28 52 
T. spec. nov. (C3) / T. grouti 30 50 
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Table 3 (b) Character-based DNA barcodes for seven Trithemis species, including T. stictica and T. 
spec. nov. (C2 & 3) for ND1 and COI. Shown are diagnostic character states at 13 selected nucleotide 
positions for ND1 and 16 for COI which are different in at least four positions per species combination. 

 

 

Morphological analyses 

Originally all individuals collected in the field for population genetic studies were identified 

as T. stictica. After re-examination of selected 43 specimens slightly different colouration 

patterns of the abdomen and the thorax were found. These differences are not correlated to the 

genetic clades. Two phenotypic traits could be identified, however, which unambiguously 

separate individuals from different genetic groups: (i) eye colour and (ii) colouration of the 

base of the wings. All individuals of the two clades from the Caprivi region have two-

coloured eyes and a yellow wingbase, where the specimens from clade 1 have single-coloured 

eyes and a clear wingbase (Damm & Hadrys 2009). 

Less unambiguous, but still significant differences were obtained from more detailed 

measurements of different morphological traits (details see Table 4). Most important, SEM 

analyses of the secondary genitalia revealed differences in penis morphology. The shape of 

the two cornuti, located at the distal penis segment, is significantly different in two groups of 

individuals. The cornuti of all individuals from clade 1 (Kenya, Tanzania, South Africa, 

Ethiopia, Zebra River and Naukluft) are curved and at the end pointed as it is described for 

the holotype of the true T. stictica (Pinhey 1970). In contrast, the cornuti of clade 2 and 3 

consistently have a different shape. The only difference so far between clade 2 and 3 is body 

(b)  
ND1 Nucleotide positions 
Species  101 132 135 152 185 191 245 287 290 326 342 355 419   
T. stictica (C1) G A G A T A C A T A T C T   
T. spec. nov. (C2) C G A A G T T A C G T C T   
T. spec. nov. (C3)  T G A A G T T G T A C C T   
T. grouti  A A T A T A T G T A T C C   
T. nuptialis G A G G G A T A T A T T T   
T. annulata T G A A C T T A T A T T T   
T. furva T T A A C C G T T T C T G   
                
COI Nucleotide positions 
 Species 45 144 162 180 279 288 294 297 330 333 360 393 396 454 459
T. stictica (C1) C C A C T A A T T G T A A A T 
T. spec. nov. (C2) C G A A A A T T T T C A A C T 
T. spec. nov. (C3) A G A A G G C T T G T G A C T 
T. grouti A G G C T A A T T G T A A T C 
T. nuptialis C G G C T A A C C G T A A A T 
T. annulata A T T C A A A T T A T A C A T 
T. furva A A A T T A A A T T A T T T T 
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size. Abdomen and segment four are significantly shorter in clade 3 compared to clade 1 and 

2. In sum, while the true T. stictica could be identified and delimitated morphologically from 

the other two clades by eye through wing colouration and penis structure, the differences 

between the putative new species (clade 2 and 3) are, except of slight size differences, cryptic 

Table 4). 

 

Ecological pattern 

Mapping the habitats of the sampled sites onto the phylogenetic trees reveals that the three 

genetic clades differ in their habitat preferences. Habitat sites of T. stictica (clade 1) were 

well-vegetated ponds, streams and rivers sometimes with a high degree of shade (Naukluft 

populations and all localities outside of Namibia). Individuals of clade 2 were exclusively 

found along the quite floating areas of the Okavango River, at the smaller Kwando River and 

in the Okavango Delta (see Figure 1). The waterbodies are open and the surrounding bank 

vegetation is dominated by grassland and reed. Most of the gallery forest along the Okavango 

is deforested. Clade 3 was discovered at two sites within the Nature Reserve Popa Falls 

(Okavango River, including Andara) and at the Zambezi River near Victoria Falls (Zambia). 

These sites have a mostly intact gallery forest along the river with higher trees and shady 

areas. Here the water flows very fast with rapids in-between. Interestingly, at one site in the 

Caprivi region, Popa Falls, a highly heterogeneous landscape, clade 2 and 3 occurred 

sympatrically. The flight season of all three species is between August/September and 

April/May and the two clades at Popa Falls were caught in the same season at the same time. 
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Table 4 Summary of diagnostic characters used in the taxonomic circle to proof the discovery of two new species. Shown are the diagnostic characters 
discriminating the true T. stictica from the two newly discovered T. spec. nov (Clade 2) and (Clade 3). Sequence divergence (Seq. div., %), number of 
variable nucleotide positions distinguishing all individuals of one species from all individuals of the others (diagnostics), significant morphological traits 
(length of hindwing (HW), length of the base of hindwing (Bs Hw), length of abdomen (AbdL), length of abdomen segment 4 (S4), distal penis segment 
(Cornuti)), Fst- values, and a simplified description of differences in ecological and biogeographical patterns (details see text). 
 

 

  DNA Morphology Reproductive Isolation  Ecology Geography 
 Seq. div. diagnostics Size parameters Cornuti shape Fst    
 ND1 CO1 ND1 CO1 Hw Bs Hw AbdL S4 differences ND1 COI    
               
T. stictica / 
 Clade 2 

9.0 7.9 26 43 * ** - - significant 0.960 0.984 T. stictica open 
habitat 

widespread 

               
T. stictica /  
Clade 3 

8.5 8.3 27 43 *** *** *** *** significant 0.944 0.966 Clade 2 swamp-
like 

habitats 

Caprivi region 

               
Clade 2 /  
Clade 3 

5.0 5.7 13 28 - - ** ** weak 0.906 0.921 Clade 3 fast 
running 
water 

Caprivi region 
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Discussion 

 

Application of DNA sequence data in taxonomy has come to a point where procedures need 

to be developed, which integrate genetic information into the classical taxonomic system. 

Particularly DNA-based taxonomy needs a corroborative framework. The fact that in 

morphology-based species delineation quantitative parameters have rarely been applied 

highlights the difficulty of obtaining quantitative appropriate characters in traditional 

taxonomy and also reflects the problem of subjectivity in current species descriptions 

(Cracraft 1992; Vogler 2006; Vogler & Monaghan 2007; Cardoso et al. 2009). While 

taxonomy by definition assesses the distribution of character variation, Vogler & Monaghan 

(2007) point out that neither the kind of variation nor the underlying biological process are of 

primary importance and therefore any kind of character is valuable for taxonomic 

classification. Here it would clearly be helpful to formalize processes that incorporate 

different sets of characters. 

Our application of the taxonomic circle (DeSalle et al. 2005) to a case study in 

dragonflies suggests that this simple scheme is able to provide a framework for the discovery 

of new species. Our analyses of 108 T. stictica individuals combine genetic data with 

morphology, ecology and geography and lead to the discovery of two new species that have 

phenotypically been cum grano salis “cryptic”. 

 

The taxonomic circle 

The genetic data provided the immediate and most obvious dataset suggesting the existence of 

two new Trithemis species. None of the other disciplines alone would have discovered the 

new species. This highlights the importance of DNA analyses for the discovery of new 

species, particularly at the level of so-called “cryptic species”. On the other hand DNA 

approaches alone can hardly fullfil a species concept in a satisfying way. The taxonomic 

circle suggested by DeSalle et al. (2005) captures in a simplified way the components of such 

a modern taxonomic system: hypothesis testing, corroboration, reciprocal illumination and 

revision. In this scheme at least two of the five components of the circle (DNA, morphology, 

reproduction, ecology and geography) have to support the hypothesis of a new species. Any 

two of the five disciplines are sufficient to determine a species boundary and revise the 

species discovery hypothesis. In the case study presented here initially a DNA-based 

hypothesis is postulated and tested against the classical taxonomic components (see Figure 4). 

After testing the multiple DNA-based profiles of the new species against morphology, 
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ecology and geography we could leave the taxonomic circle, confirm our hypothesis, and also 

bridge gaps to both the biological and evolutionary species concept. 

The initial molecular study started with one species (T. stictica) which revealed three 

genetic clusters. Therefore we analysed two different hypotheses with the help of the 

taxonomic circle (as displayed in Figure 4). In the first hypothesis we analysed if the two 

clades (2 and 3) from the Caprivi region can be delimitated from T. stictica. Fixed differences 

in morphology (eye and wing colouration, cornuti), geography and ecology corroborate the 

hypothesis of two separate entities. In the second hypothesis we tested if clade 2 and 3 can be 

raised to species status. A separate species status is supported by DNA (e.g. genetic isolation), 

morphology (fixed size differences) and ecology (niche separation). Thus, with three 

components supporting the hypothesis we must accept the hypothesis of two separated 

species. In sum, the significant genetic isolation of the two lineages, the ecological niche shift, 

the fixed size differences and the most likely reproductive isolation provide substantial 

corroborative evidence to support the hypothesis of two new sympatric Trithemis species in 

the Caprivi region (Figure 4b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Taxonomic circles demonstrating an integrative species discovery approach. In this scheme a 
new taxon could be delineate if at least two disciplines corroborate and verify the hypothesis of a new 
taxon, which is indicated by an exclamation mark at the interior traversal line. In both circles species 
discovery hypothesis is based on DNA- evidence a) First hypothesis tests the distinctiveness of T. 
stictica and the two new clades. Here all components of the circle corroborate the hypothesis of new 
species. In b), based on multiple DNA evidence, the hypothesis is tested if the two clades, T. spec. nov 
(C2) and (C3) are separate species. Here ecology and reproductive isolation corroborate the hypothesis 
of two new species in the genus Trithemis, while morphological characters differ only weakly. 
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In the above case study the taxonomic circle proved to be a valuable tool for the 

discovery of new species in one of the hardest of all possible cases, in sympatric and “cryptic 

species”. In general, some aspects still need to be discussed. The here chosen components of 

the circle may work for most animal groups, but problems arise e.g. in microbial species due 

to the lack of geographical and morphological information for corroboration (DeSalle et al. 

2005). In such problematic cases other components like additional gene regions or more 

ecological information could be incorporated to support or refute a species hypothesis. In 

addition, the quality of hypothesis testing relies on additional aspects like sample size, the 

chosen genetic marker and the geographical range for the sampling regime. Morphological as 

well as genetic variation also occur intraspecifically and are often correlated to geography. 

The optimal way would be to cover the whole distributional range of a hypothetical species. 

In most cases this will not always be possible, but highlights the importance of the integration 

of different disciplines in decision making. Often DNA data will suggest a separation, which 

then leads to more intensive and specific investigation at different organismal levels. 

Subsequently the taxonomic circle presents a practical framework which requires more than 

one line of evidence to support a species hypothesis. It provides sufficient strictness for 

species discovery by serving the bridge between traditional morphological and modern 

molecular approaches. We suppose that the Trithemis case study is just one example out of 

many yet undiscovered examples for the presence of valid species that at the organismal level 

are easily overlooked. 

 

Advantages of character-based DNA barcoding 

In this case study traditional DNA barcoding methods would have also discovered the two 

new Trithemis species. Sequence divergences between the relevant groups are in concordance 

with those of taxonomically well described Trithemis species and  the 3% cut-off value and 

the 10x rule are fulfilled (Hebert et al. 2003; Hebert et al. 2004b). In many cases, however, 

distance methods relying on DNA data alone are ill suited for species delineation. The main 

reason is that substitution rates of mtDNA vary largely between different groups of species 

resulting in a broad overlap of intra- and interspecific distances (Will & Rubinoff 2004). In 

dragonflies a universal genetic distance cut-off value would not be applicable, since there are 

several examples in which intrapopulation variation exceeds divergences between species 

(Cordero Rivera et al. 2004; Svensson et al. 2006). Thus it seems understandable that “DNA 

barcoding” in general got criticized to fail in new animal species discovery (Hickerson et al. 

2006). 
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The introduction of character-based DNA barcoding (Sarkar et al. 2002; Rach et al. 

2008) seems to be a promising complement that avoids the problem of subjective distance 

thresholds. In the Trithemis study character-based DNA barcoding distinguished all three 

clades easily through the presence of diagnostic characters or specific combinations of 

character states. The established character-based DNA barcodes for all Trithemis species 

(using 13 character states of the ND1 and 15 of the COI sequences) represents unique and 

unambiguous combinations of character states for each species. In some cases the use of a 

single barcode marker may not be enough. For example in a former study the species pair 

Aeshna grandis and Aeshna cyanea differ only at one single position in ND1 (Rach et al. 

2008). Here the application and combination of a second barcode marker, e.g. COI, is helpful 

(Rach et al. 2009, submitted). Another example is the genus Calopteryx, where several 

species show very low genetic distances and exhibit very few diagnostic character states 

(Rach et al. 2008), although the three sister species (Calopteryx virgo, C. splendens and C. 

haemorrhoidalis) can clearly be discriminated by morphology (Misof et al. 2000; Dumont et 

al. 2005). Such examples highlight the overall advantage of character-based barcoding, 

particularly the possibility to expand the DNA based barcodes with characters from other 

disciplines. 

A character-based database can also contribute more directly to conservation biology, 

since in conservation management information about genetics, ecology and geography is 

equally important. In the here described Trithemis species complex the two new clades were 

hidden for a long time because the previously described habitat preferences of T. stictica 

(Pinhey 1970) seem to perfectly fit the habitats of the Caprivi region with its rivers Okavango, 

Kwando and Zambezi. Here the genetic data fueled the discovery of the new species and 

resolved differences in habitat choice. We can now map ecological characters to each of the 

three species. 

While the character-based DNA barcode consists of fixed characters for each species 

the most critical parameters when establishing a barcode are sample size and the number of 

CAs (characteristic attributes). With the increasing number of analysed individuals the level 

of confidence of a CA to be fixed in a species also increases. Although there will be no 

absolute certainty for a given CA to be fixed, the reliability of a barcode increases with each 

independent CA added (Rach et al. 2008). In endangered or rare species with small 

population sizes, like in e.g. the rainforest damselfly Megaloprepus caerulatus (Fincke & 

Hadrys 2001), high sample sizes are not easy to obtain. Nevertheless, a DNA barcode of a 

single individual is still useful and provides important information for this species within a 
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group of interest. Incorporating characters from other disciplines will then increase the 

reliability in species identification. Criticism for the integrated approach may arise because 

the establishment of such a database might not be fast enough for conservation concerns. But 

DNA based identification will allow the first and quick decision and the background 

knowledge of non-DNA data can later on complement the database. Thus, DNA based 

information can be associated with biological information to incorporate also the evolutionary 

and taxonomically background (Vogler & Monaghan 2007). 

Independent of the form, a reliable and fast method for species identification is needed 

for any kind of conservation management and biodiversity program. We suggest the 

integration of distinct DNA characters and traditional information like morphology, ecology 

and geography in a comprehensive barcode database which is all character based and allows 

fast species identification and discovery. 

 

Cryptic speciation in dragonflies 

The results of our study unravelled two new dragonfly species which at the organismal level 

appeared to be “cryptic” species. To our knowledge this is the first detection of speciation in 

dragonflies distributed in the same region without obvious reproductive barriers. 

Odonates in general are not supposed to evolve “cryptic” species. Their ways to 

communicate are not based on invisible mechanism (e.g. smells or sounds) which are believed 

to be a major driving force for cryptic speciation. Nevertheless, their unique reproductive 

system and fast reaction to environmental change can promote speciation processes without 

accompanying morphological changes (Kirkpatrick & Ravigne 2002; McPeek & Gavrilets 

2006; Svensson et al. 2006). Their complex reproductive system and a variety of sperm 

competition mechanism may allow the fast evolution of reproductive barriers via strong 

sexual selection (Waage 1979; Arnqvist et al. 2000; Cordoba-Aguilar et al. 2003; Cordero 

Rivera et al. 2004). Furthermore their fast reaction to environmental changes allows fast 

ecological shifts. In the presented study no immediately obvious differences in morphology 

were found between the two new Trithemis species and without the tests against all other 

datasets the species would have remained undetected. This example shows how important it is 

to combine different disciplines to determine species boundaries in modern taxonomy. A 

modern taxonomic system can be derived from both, quantitative data and expert opinion. 

Integration of datasets from different disciplines into one character based matrix ultimately 

allows species discovery and species assignment in a more straightforward way. 
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Abstract 

 

During the course of a population genetic study of Trithemis stictica that included sites in 

Namibia, Kenya, Tanzania, Ethiopia, Botswana and Zambia, two undescribed libellulid 

species were discovered in the Okavango and Upper Zambezi Floodplains. These were both 

previously identified as T. stictica. We describe the two species, T. morrisoni sp. nov. 

(holotype ♂: Namibia, Nature Reserve Popa Falls, Okavango River at the rapids, 18°07´S, 

21°40´E; iv 2007, leg. K.-D.B. Dijkstra; dep. in the National Museum of Namibia, Windhoek) 

and T. palustris sp. nov. (holotype ♂: Botswana, Okavango Delta, Moremi Game Reserve, 

19°15´S, 23°20´E; ii 2007, leg J. Kipping; dep. in the National Museum of Namibia, 

Windhoek) and compare them with T. stictica. 

 

Keywords: Odonata, dragonfly, Anisoptera, Trithemis, taxonomy, Africa, new species, 

genetics. 
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Introduction 

 

The genus Trithemis Brauer is predominately distributed throughout Africa, including its 

islands, with a small number of species in Asia (Pinhey 1970). Altogether about 40 species 

are recognised. The species of the genus show a wide variety of habitat preferences, ranging 

from generalists to range-restricted specialists. Pinhey (1970) revised the genus, concentrating 

on the African species. Most of his material is kept in the Natural History Museum of 

Zimbabwe in Bulawayo (NMBZ). Additional taxonomic work was published by Clausnitzer 

(2001) and by Dijkstra (2007) who recently revisited Pinhey's collection. 

Between 2001 and 2005 a field project mapping the odonates of Namibia was 

conducted (Suhling et al. 2006). Distribution patterns and dispersal strategies of several key 

species were studied with population genetic analyses (Hadrys et al. 2006; Dijkstra et al. 

2007; SD, HH unpubl.). At the same time other associated projects provided insights in 

distribution patterns of the genus in neighbouring countries, e.g. from Botswana with the vast 

Okavango Delta swamps and its surroundings (Kipping 2003, in press). For population 

genetic studies, samples of T. stictica (Burmeister, 1839) were collected from 15 localities in 

Namibia, Botswana, Zambia, South Africa, Kenya, Tanzania and Ethiopia (Figure 1). While 

other Trithemis species occur throughout Namibia, T. stictica was exclusively found at 

isolated springs in the Naukluft Mountains and in the region of the Caprivi Strip with its 

surrounding river systems in Botswana and Zambia (Kipping in press; Suhling & Martens 

2007). In other sub-Saharan African countries the species is common and inhabits swamps, 

pools or streams in open areas (Pinhey 1970). 

The population genetic study discovered three distinct and completely reproductively 

and genetically isolated clades within what had been called T. stictica (SD, HH unpubl.). The 

genetic distances of four genetic markers between the clades are unequivocal at the species 

level. In a phylogenetic tree comparing several species of the genus Trithemis, the two newly 

discovered species are sister species, but are more distantly related to T. stictica. Molecular 

clock analyses suggest that the split between the two new species occurred about one million 

years ago (SD, HH unpubl.). Because the discovery of new species based solely on genetic 

data is controversial and in some cases clearly arguable (e.g. DeSalle et al. 2005; Hickerson et 

al. 2006), we took an integrative approach to species delimitation which includes 

morphological, ecological, geographical, and genetic characters (SD, HH unpubl.). In this 

analysis all evidence leads to the recognition of two new species. Since the phenotypes of the 

three species are very similar, they were first identified in the field as T. stictica. However, 
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detailed morphological analyses revealed significant differences. Here we describe the two 

new species T. morrisoni sp. nov. and T. palustris sp. nov. and their morphological 

differences with T. stictica. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Distribution map of three Trithemis species — T. morrisoni sp. nov. (●), T. palustris sp. nov. 
(■) and T. stictica (▲). (+) displays all records of the T. stictica group (one of the three above species) 
which were not identified so far. Sites of analysed populations – 1: Ethiopia; 2: Nairobi NP, Kenya; 3: 
Kiboko River, Kenya; 4: Usambara Mt., Tanzania; 5: Royal Natal Park, RSA; 6: Western Cape, RSA; 
7: Naukluft Mt. Tsams Ost, Namibia; 8: Naukluft Mt. Naukluft River, Namibia; 9: Naukluft Mt. Zebra 
River, Namibia; 10: Omatako River, Namibia; 11: Andara, Namibia; 12: Popa Falls, Namibia; 13: 
Kwando River, Namibia; 14: Okavango Delta, Botswana; 15: Zambezi River, Zambia. 
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Material and methods 

 

Of 106 genetically analysed specimens, 43 males from Kenya, Tanzania, South Africa, 

Namibia, Botswana, and Zambia covering the three genetic groups were selected for 

morphological analyses. We examined the external appearance of the specimens: patterns of 

thorax and abdomen, wing venation, shape of secondary genitalia and appendices, 

pubescence, coloration of Pt, frons, vertex, eyes and patch of Hw, and we measured 11 

phenotypic characters, e.g. the length of the Hw, abdomen and Pt of the Fw with a 

stereomicroscope, and analysed the male secondary genitalia with a scanning electron 

microscope (SEM). Statistical tests were performed using SAS, first to test for Normality 

(Shapiro-Wilk test) and then to analyse the significance of morphological differences between 

the genetic groups (Wilcoxon test). Additionally we examined seven females representative of 

each new species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Colour plate I Male of Trithemis morrisoni sp. nov. — Bovu Island in Zambesi 
River, Zambia, 18 February 2006. Photo by Jens Kipping. 
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Trithemis morrisoni sp. nov. 

(Figures 1, 2a-d, Plate I) 
 

Trithemis stictica (Burmeister). — Pinhey (1970: 127-128, figures. 47, in part, notes on 

Victoria Falls dwarf series); — Kipping (2003); — Martens et al. (2003: in part). 

Trithemis sp. nov. — Kipping (in press); — Kipping & Suhling (in press); — Suhling et al. 

(in press); — Suhling & Martens (2007: 233-234, in part). 

 

Etymology 

 

Named after the poet James Douglas Morrison and his passion for deserts and the hidden 

mysteries of nature.  

 

Specimens studied 

 

Total number of adult specimens examined: 12 ♂, 7 ♀. — Holotype ♂: Namibia, Nature 

Reserve Popa Falls, Okavango River at the rapids (18°07´S, 21°40´E), iv 2007, leg. K.-D.B. 

Dijkstra, K. Schütte, V.J. Kalkman; — Paratypes: 3 ♂: same data as holotype, iv 2003, leg. 

S. Damm; 2 ♂: ii 2004, leg. F. Suhling; 3 ♂: Namibia, near Catholic Mission Station Andara, 

Okavango River (18°01´S, 21°30´E), ii 2004, leg. F. Suhling; 3 ♂, 7 ♀: Zambia, Bovu Island, 

Zambezi River (17°29´S, 25°20´E), ii 2007, leg J. Kipping. The holotype will be deposited in 

the National Museum of Namibia, Windhoek. Paratypes will stay at University of Veterinary 

Medicine Hannover, ITZ, Ecology & Evolution, Germany. 

 

Description of holotype male 

 

Head: Labium yellow with a broad black band in the middle extending onto the posterior lobe 

and the anterior margins of the lateral lobes. Face yellow. Postclypeus with two central, 

separated black comma-shaped streaks. Frons and vertex metallic steel-blue. Antennae black. 

Labrum black with two lateral yellow spots. Occipital triangle black with two yellow 

posterior spots. Back of the head black with four yellow spots. Eyes bicoloured; brownish-red 

on the upperside and yellow-grey on the underside.  
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Thorax: Prothorax black with the anterior collar yellow. Median lobe with two yellow 

markings. Synthorax showing a light blue pruinosity and more ventrally with less pruinosity, 

where it becomes yellow and black. Metepimera yellow with only little pruinosity. Legs 

black, with the inner side of the fore femora yellow. — Wings: venation blackish. Pt brown 

between blackish veins. Cells at the base of the Fw and Hw amber (up to 2 mm from body). 

Hw with amber patch starting at the triangle and including the anal loop. In Fw 10½-11½ Ax, 

in Hw 8 Ax, in Fw 13 Px, in Hw 11 Px. Fw triangle of 2, Hw triangle of 1, subtriangle of 3 

cells; supratriangle uncrossed. 

Abdomen: Abdomen slender, narrowest at S4 and widest at S8. S1-3 black with broad yellow 

streaks and ventrally with little blue pruinosity. S4-8 black with sharp yellow streaks on each 

side. S9 black without any yellow. Dorsum of S10 with a yellow spot in the middle. 

Appendages black. Anterior lamina and hamule black with pale brown bristles; secondary 

genitalia surrounded by white hair; for details see Figures 2a-b. Penis of holotype not 

examined. 

Measurements [mm]: Entire length 32.4, abdomen length (excl. appendages) 20.4, Fw 

length 25.9, Hw length 25.5, Pt (Fw) 3.2, appendages 1.5 mm, S4 3.4 mm. 

 

Variation in males 

 

There is little size variation between males (n = 12): abdomen length 19.9-22.5 mm; Fw 

length 25.8-26.5 mm; Hw length 23.2-26.8 mm; Pt (Fw) length 3.2-3.7 mm; appendages 1.3-

1.6 mm; S4 3.3-3.5 mm. The colour of Pt varied between light and dark brown, with the inner 

side always a slightly lighter brown. All specimens have the amber patch on Hw except for 

one specimen from the Zambezi River, where only a trace of amber was found. Two 

specimens from the Zambezi River show a small yellow spot on S9. The comma-shaped 

streaks on the postclypeus are absent in five Popa Falls males and in the Zambian specimens. 

The coloration of thorax and abdomen varied between dark brown and black. In two 

specimens from the Zambezi River and in five from Popa Falls the yellow is ivory. 
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Description of female  

 

Described is paratype Tmor140H; 140 is locality code for Bovu Island, specimen H. 

Head: Labium yellow with a broad black band in the middle, extending onto the posterior 

lobe and the anterior margins of the lateral lobes. Face yellow. Postclypeus without any 

markings. Frons and vertex metallic steel-blue/green. Antennae black. Labrum black with two 

elliptical lateral yellow spots. Occipital triangle black with two yellow posterior spots. Back 

of the head black with four yellow spots. Eyes bicoloured; brownish-red on the upperside and 

yellow-grey on the underside. 

Thorax: Prothorax black with a little yellow. Synthorax generally has a black and yellow 

pattern, with black on the anterior side of mesepimera, metepisterna and metepimera and 

yellow on the posterior side. Mesepisterna with a central black band and metepisterna with an 

additional hook-shaped black streak on the ventral side. Legs black, with the inner side of the 

fore femora yellow. Ventral side black with three yellow spots posteriorly. — Wings: clear 

with blackish venation. Base of the wings amber including the first cell directly at the body in 

Fw and Hw. Pt brown between black veins. A trace of amber in the Hw, extends from the 

triangle, expanding to three cells width and up to and including the anal loop. In Fw 9½-10½ 

Ax, in Hw 8 Ax, in Fw 12 Px, in Hw 12 Px. Fw triangle of 2, Hw triangle of 1, subtriangle of 

2 cells; supratriangle uncrossed. 

Abdomen: Abdomen narrowest at S4 and widest at S7, where 2mm wide. S1-3 with yellow 

and black pattern like in male. S4-8 black with sharp yellow streaks on each side. S9 with a 

yellow spot at each side. S10 with a short yellow band in the middle.  

Measurements [mm]: Entire length 31.6, abdomen length (excl. appendages) 20.5, Fw 

length 26.3, Hw length 25.0, Pt (Fw) 3.2, S7 2.0 mm. 

 

Variation in females 

 

The size of females (n = 7) varies only little: abdomen length 20.2-21.5 mm; Fw length 25.3-

26.5 mm; Hw length 25.0-26.7 mm; Pt (Fw) length 3.2-3.5 mm; S7 1.8-2.1 mm broad. Two 

specimens have the central amber patch on the Hw, the others not. The basal amber of the 

wings varies between half to the whole first cell directly at the thorax. Fw with 9½-11½ Ax.  
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Trithemis palustris sp. nov. 

(Figures 1, 2a-c, e, Plate II, III) 
 

Trithemis stictica (Burmeister). — Pinhey (1970: 126, 128, in part, notes on a Botswana 

series); — Kipping (2003); — Martens et al. (2003: in part) 

Trithemis sp. nov. — Kipping (in press); — Kipping & Suhling (in press); — Suhling et al. 

(in press) — Suhling & Martens (2007: 233-234, in part). 

 

Etymology 

 

The adjective 'palustris' refers to its habitat, the swampy regions of the Okavango Delta and 

Kwando River. 

Colour plate II Male of Trithemis palustris sp. 
nov. — Okavango Delta, Third Bridge campsite in 
Moremi Game Reserve, Botswana (type locality), 
31 January 2006. Photo by Jens Kipping. 
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Specimens studied 

 

Total number of adult specimens examined: 11 ♂, 7 ♀. — Holotype ♂: Botswana, Okavango 

Delta, Moremi Game Reserve, Third Bridge (19°15´S, 23°20´E), ii 2007, leg J. Kipping; 

Paratypes: 2 ♂: Namibia, Nature Reserve Popa Falls, Okavango River at the rapids, iv 2003, 

leg. S. Damm; 4 ♂: Namibia, Mudumu National Park, Kwando River (18°30´S, 23°32´E), iv 

2004, leg. F. Suhling. 1 ♂: Namibia, Omatako River, near Rundu (18°00´S, 20°35´E), iv 

2004, leg. F. Suhling; 3 ♂, 7 ♀: same as holotype, leg J. Kipping. The holotype will be 

deposited in the National Museum of Namibia, Windhoek. Paratypes will stay at University 

of Veterinary Medicine Hannover, ITZ, Ecology & Evolution, Germany. 

 

Description of holotype male 

 

Head: Labium yellow with a broad black band in the middle also covering the posterior lobe 

and expanding onto anterior margins of lateral lobes. Face creamy yellow, postclypeus with 

two central, separated black streaks reaching the lower border. Labrum black with two 

elliptical lateral yellow spots. Frons metallic steel-blue. Antennae black. Occipital triangle 

black with two yellow posterior spots. Back of the head black with four yellow spots. Eyes 

with two colours; the upper part brownish red and the lower part grey.  

Thorax: Prothorax black with anterior collar yellow. Median lobe with two yellow markings. 

Synthorax black and yellow dorsally, with light blue pruinosity. Metepimera yellow and black 

with little pruinosity. Legs black, with the inner side of the fore femora beige. — Wings: 

venation blackish. Pt brown between blackish veins. Base of the wings slightly yellow/amber. 

A light amber patch on Hw starting at the triangle covering only a few cells in the direction of 

the anal loop. In Fw 10 ½ Ax, in Hw 8 Ax, in Fw 14 Px, in Hw 12 Px. Fw triangle of 2, Hw 

triangle of 1, subtriangle of 3 cells; supratriangle uncrossed.  

Abdomen: Abdomen slender, narrowest at S4 and widest at S8. S1-3 black with yellow 

pattern and ventrally with some blue pruinosity. S4-8 black with sharp yellow spots on each 

side. S9 black without any yellow. Dorsum of S10 with a yellow spot. Appendages black. 

Anterior lamina and hamule black with pale brown bristles and white hair around secondary 

genitalia. For details see Figures 2a-b. Penis of holotype not examined. 

Measurements [mm]: Entire length 34.5, abdomen length (excl. appendages) 23.9, Fw 

length 27.0, Hw length 26.5, Pt (Fw) 3.2, appendages 1.5 mm, S4 3.8 mm. 
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Variation in males 

 

Size variation in males (n = 11): abdomen length 22.7-23.8 mm; Fw length 26.5-27.8 mm; 

Hw length 25.5-27.0 mm; Pt (Fw) length 3.2-3.5 mm; appendages 1.5-1.6 mm; S4 3.7-4.0 

mm. Colour of Pt is light brown in the Kwando River specimens, but dark brown in the 

others. The inner side is a slightly lighter brown. The amber patch on the Hw is absent in two 

specimens of the Okavango Delta, present in the Popa Falls males and only a trace of amber 

was found in the other specimens. The coloration of thorax and abdomen varied between dark 

brown and black. 

 

Description of female  

 

Described is paratype Tpal141F; 141: locality code Moremi Game Reserve, specimen F. 

Head: Labium yellow with a broad black band in the middle extending onto the posterior 

lobe and the anterior margins of the lateral lobes. Face yellow. Postclypeus with two central 

comma-shaped streaks extending to the lower margins of the postclypeus. Frons and vertex 

metallic steel-blue/green. Antennae black. Labrum black with two elliptical lateral yellow 

spots. Occipital triangle black with two yellow posterior spots. Back of the head black with 

four yellow spots. Eyes with two colours; the upper part brown-red and the lower part grey.  

Thorax: Prothorax black with yellow pattern. Synthorax yellow with black markings. 

Mesepisterna with a black streak in the middle; mesepimera, metepisterna and metepimera 

with a black streak on the anterior margin. Metepisterna additionally with a hook-shaped 

black streak ventrally. Legs black with the fore femora yellow on the inner side. Ventral side 

black with three yellow spots posteriorly. — Wings: venation blackish and Pt brown between 

black veins. Bases of the wings amber including half of the first cell directly at the thorax in 

Fw and Hw. Wing tips of Fw and Hw brownish, which also includes Pt. In Fw 10½-11½ Ax, 

in Hw 8 Ax, in Fw 13 Px, in Hw 13 Px. Fw triangle of 2, Hw triangle of 1, subtriangle of 3 

cells; supratriangle uncrossed.  

Abdomen: S4-10 thicker than in males, narrowest at S4; S7 1.7 mm broad. S1-3 with yellow 

and black pattern like in males. S4-8 are black with sharp yellow streaks on each side. S10 

with a short yellow dorsal band in the middle.  

Measurements [mm]: Entire length 33.8, abdomen length (excl. appendages) 24.5, Fw 

length 27.5, Hw length 26.3, Pt (Fw) 3.2, S7 1.5 mm. 
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Variation in females 

 

Size variation in females (n = 7): abdomen length 23.5-24.0 mm; Fw length 26.0-27.8 mm; 

Hw length 25.3-26.9 mm; Pt (Fw) length 3.1-3.5 mm; S7 1.4-1.7 mm broad. Most obvious is 

the variation in intensity and size of the infuscated area of the wing tips. The brownish 

coloration reaches up to the distal end of Pt in two specimens, in which the coloration is very 

intensive, and also three costal cells distal of the nodus are brownish. One specimen lacks 

darkened tips, and another has only a trace of brown at the extreme tip. Number of Fw Ax 

varied from 9½ to 11½ Ax.  

 

 

 

 

 

 
Colour plate III Female of Trithemis palustris sp. nov. — Okavango Delta, Third Bridge 
campsite in Moremi Game Reserve, Botswana (type locality), 1 February 2006. Photo by Jens 
Kipping. 
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Figure 2 Male characters of Trithemis morrisoni, T. palustris and T. stictica — (a) 
thorax and S1-3, secondary genitalia only sketched, (b) secondary genitalia, (c) first 
two segments of the penis, including the distal segment and the lateral view of the 
“cornuti”; all in left lateral view of T. palustris but pattern and structure are the same 
in all three species; (d-f) comparison of the paired hook-shaped extension of the 
hood, the “cornuti”, of T. morrisoni (d), T. palustris (e) and T. stictica (f). 
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Trithemis stictica (Burmeister, 1839) 

(Figures 1, 2a-c, f) 
 

Libellula stictica Burmeister, 1839: 850 (loc. typ. "Port natal" = Durban, RSA). 

Trithemis stictica (Burmeister). — Brauer (1868). 

Trithemis parasticta Pinhey, 1956: 35-37, figure 8a (loc. typ. Lake Chila, Abercorn, Zambia); 

— Lieftinck (1969: 52-53, "a very near ally to T. stictica", comparison of both species); — 

Pinhey (1970: 125, 129, "only a minor largish, dark variety", synonymy). 

Trithemis stictica dwarfs, forms, subspecies — Pinhey (1970: 129, equatorial subspecies). 

 

Specimens studied 

 

Total number of adult specimens: 20 ♂. — 3 ♂: Namibia, Namib Naukluft Reserve, Tsaris 

Mountains, Zebra River (24°35´S, 16°20´E), iii 2003, leg. S. Damm; 2 ♂: Namibia, Namib 

Naukluft Reserve, Naukluft Mountains, Tsams Ost (24°15´S, 16°06´E) iv 2004, leg. F. 

Suhling; 4 ♂: Tanzania, East Usambara Mountains (5°05´S, 38°37´E), x 2002, leg. V. 

Clausnitzer; 1 ♂: Kenya, Nairobi National Park (1°25´S, 36°55´E), ix 2002, leg. V. 

Clausnitzer; - 5 ♂: Kenya, Kiboko River (2°15´S, 37°32´E), ix 2002, leg. V. Clausnitzer; 3 ♂: 

South Africa, Royal Natal Park (28°41´S, 28°48´E), 2001, leg. J. Ott; 2 ♂: RSA, Western 

Cape, Hawekwas Mts, Bains Kloof (33°55´S, 19°09´E), i 2006, leg. K.-D. B. Dijkstra. 

 

Redescription of male 

 

Described is reference male Tst 118D; 118: locality code Zebra River, Namibia, specimen D. 

Head: Labium yellow with a broad black band in the middle, covering the posterior lobe and 

expanding to the anterior margins of lateral lobes. Labrum black with two yellow lateral 

spots. Frons and vertex steely blue. Face creamy yellow. Postclypeus with two central, 

separated, black comma-shaped streaks. Antennae black. Occipital triangle black with two 

yellow posterior spots. Back of the head black with four yellow spots. Upperside of eyes light 

red grading to light grey on the underside: the colours thus not sharply demarcated. 

Thorax: Prothorax black with slight yellow markings. Synthorax except ventrally with blue 

pruinosity. Ventral side with yellow and black patterns. Metepimera with less pruinosity. 

Here yellow with the anterior side black. Legs black with the inner side of fore femora light 
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brown. — Wings: clear with dark brown venation. Pt brown, grading to light brown on 

proximal side, between dark brown veins. Light amber area starting at the triangle and 

covering the anal loop of Hw. In Fw 9½ - 10½ Ax, in Hw 8 Ax, in Fw 13 Px, in Hw 12 Px. 

Fw triangle of 2, Hw triangle of 1, subtriangle of 2 cells; supratriangle uncrossed. 

Abdomen: Slender with S4 narrowest. S1 black dorsally and yellow ventrally. S2 black with 

two short yellow streaks. S3 black with yellow pattern. S4-8 black with a single row of yellow 

streaks on each side. S9 with a yellow spot on each side. S10 black with a central dorsal 

yellow line. Appendages dark brown. Hamule and anterior lamina black and coated on outer 

side with short thick setae and brown bristles (Figures 2a-b). 

Measurements [mm]: Entire length 33.5, abdomen length (excl. appendages) 23.5, Fw 

length 28.2, Hw length 26.3, Pt (Fw) 3.3, appendages 1.5 mm, S4 3.8 mm. 

 

Variation in males 

 

Size variation in males (n = 20): abdomen length 22.1-24.8 mm; Fw length 27.8-30.5 mm; 

Hw length 26.5-29.5 mm; Pt (Fw) length 3.2-3.8 mm; appendages 1.2-1.7 mm; S4 3.6-4.0 

mm. The colour of the Pt is brown in most of the specimens, but dark brown in the Tanzanian 

males, with the proximal side slightly lighter brown. The amber patch on Hw present in all 

specimens but varying in intensity. The coloration of thorax and abdomen is black and bright 

yellow in the South African, Tanzanian and Kenyan specimens, but brown with creamy 

yellow in the Namibian ones. Yellow spot on S9 is present in four of the Namibian males, but 

absent in the others. 

 

 

Table 1 Statistical significance of Wilcoxon test (p-value) of the different morphological length 
parameters of males of Trithemis morrisoni, T. palustris and T. stictica. Bs: width of Hw base; A: 
length of accessory genitalia along the hamules; B: length of genital lobe; C: length of the anterior 
lamina; D: length of the hook of the hamule; E: width of the hamule. 

 Hw Pt Hw Bs Hw Abd App S4 A B C D E 

stictica/palustris 0.01 0.15 0.01 0.76 0.14 0.69 0.15 0.35 0.21 0.16 0.91 
stictica/morrisoni 0.00 0.11 0.00 0.00 0.02 0.00 0.00 0.33 0.10 0.08 0.87 
morrisoni/palustris 0.21 0.68 0.75 0.01 0.36 0.01 0.09 0.94 0.76 0.06 1.0 
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Diagnostic characters of the three taxa 

 

Male morphology 

The most obvious character that distinguishes Trithemis morrisoni sp. nov. and T. palustris 

sp. nov. from T. stictica is the eye coloration (see Plates, III, IV). The eyes of T. morrisoni 

and T. palustris are red-brown on the upper- and grey-blue on the underside. In mature males 

of T. palustris the red-brown coloration can change to bluish but a brown tinge is always left 

(Colour plate II). In contrast, the eyes of T. stictica show no colour separation. A second 

character is the amber base of the wings that both new species have, but is absent in T. 

stictica. 

The trait with the most evidence for speciation is the morphology of the penis. SEM 

revealed a different shape of the “cornuti” (terminology by Pinhey 1970), the paired hook-

shaped extensions of the hood of the distal segment of the penis (Figures 2d-f). In T. stictica 

the “cornuti” are curved rods which are pointed at the end, as illustrated by Pinhey (1970). 

The “cornuti” of T. morrisoni and T. palustris are broad in the middle and only the tip is 

narrower. This character is readily visible with stereomicroscopy. All 23 examined males of 

T. morrisoni and T. palustris show this difference with T. stictica. Between the two new 

species only slight individual variation in the “cornuti” was found (Figures 2d, e). 

Statistical analyses (Wilcoxon test) of the length of the hind wing, abdomen and S4 

show significant differences between the three species. In T. stictica the hind wings are 

significantly longer than in the two new species. In T. morrisoni the length of abdomen and 

S4 are significantly shorter than in T. stictica and T. palustris (Table 1). These size 

differences between the two new species are significantly correlated with the distinct genetic 

patterns (SD, HH unpubl.). Together with the fact that no overlap was observed between the 

species, these characters are valuable morphological characters for the populations studied 

here. Whether other populations might show overlaps cannot be decided yet. 

All analysed individuals show the same colour pattern on thorax and abdomen, and 

similar external secondary genitalia as described for T. stictica (Figures 2a, b). Nevertheless, 

specimens from different geographical regions show slight differences in coloration. 

Specimens from Kenya, Tanzania and South Africa are black with yellow markings under the 

blue pruinosity, while those from Namibia appear dark brown with beige-yellow markings. 

This is, however, not congruent with the genetic results and can be regarded as regional 

intraspecific colour variation. In addition, some traits were found in a few specimens of each 

species. The yellow spot on S9 was found in some T. morrisoni and T. stictica, but not in T. 
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palustris. The markings on the postclypeus were absent in half of the specimens of T. 

morrisoni, but present in all T. palustris and T. stictica males. In T. palustris these comma-

shaped streaks reach to the anterior border of the postclypeus while in T. morrisoni and T. 

stictica only small and short commas were found. A summary of the male characters is given 

in Table 2. 

 

Table 2 Comparison of morphological characters of males of Trithemis morrisoni, T. palustris and T. 
stictica. All measurements in [mm]. p-values are shown in Table 1. 

 morrisoni (n = 12) palustris (n = 11) stictica (n = 20) 

Range  Okavango River and 
Zambezi River 
(Namibia, Zambia) 

Okavango River and 
Delta, Kwando River 
(Botswana, Namibia) 

Eastern to southern Africa  

Abd length  19.9-22.5 22.7-23.8 22.1-24.8 
Hw length 23.2-26.8 25.5-27.0 26.5-29.5 
Pt length 3.2-3.7 3.2-3.5 3.2-3.8 
Cerci length 1.3-1.6 1.5 1.2-1.7 
S4 length 3.3-3.5 3.7-4.0 3.6-4.0 
Wing base width 1.4-1.7 1.3-1.6 1.3-1.8 
Eyes  Bicoloured Bicoloured Unicoloured 
Wing base Amber Amber Clear 
“Cornuti” of penis Broader in the middle Broader in the middle As described by Pinhey (1970) 

 

 

Female morphology 

The size difference between T. morrisoni and T. palustris was also found in the analysed 

females (Table 3). T. morrisoni females sampled in Zambia, are very small and have a similar 

size to males. The females of T. palustris sampled in the Okavango Delta in Botswana are 

significantly larger (Table 3). One other character is notable: the coloration of the wings. Six 

of the seven T. palustris females from Botswana have yellow-brownish tips of the fore and 

hind wings, which are missing in T. morrisoni. Some characters were found to be species-

specific in the females, but not in males. All analysed females of T. morrisoni have the yellow 

spot on S9, which is missing in T. palustris. However, some field-collected females of T. 

palustris do have this spot on S9 (J. Kipping pers. comm.). Therefore this difference has to be 

confirmed by additional sampling. The comma-shaped streaks on the postclypeus were only 

found in T. palustris, and furthermore T. morrisoni showed a broad S7, which is narrower in 

T. palustris (Table 3). 
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Table 3 Morphological characters of the analysed females of T. morrisoni and T. palustris including 
the p-values of the statistical tests. All measurements in mm. 

 

 

Habitat and distribution 

Both new species were thus far only found in the region of the Okavango and Zambezi 

Rivers, including the Okavango Delta, and the Omatako and Kwando Rivers. T. morrisoni 

was collected at Andara and Popa Falls (Okavango River) and at Bovu Island (Zambezi 

River), while T. palustris was found at Rundu (Omatako River), the Okavango Delta, the 

Kwando River and also at Popa Falls (Figure 1). T. morrisoni occurred at river sections with 

rapidly flowing water and intact gallery forest (e.g. at Popa Falls) and seemed to need at least 

some fast flowing side-channels of larger rivers to occur. It was absent from large and calm 

rivers like the Zambezi east of Lake Kariba. The main habitat of T. palustris appeared to be 

open habitats at slow flowing sections of rivers or swamps. In the Okavango Delta it was 

locally the most common anisopteran odonate and preferred little channels and calm rivers 

with swampy margins and connected floodplains. Exuviae were found at almost stagnant 

sections of rivers and in the nearby floodplains. It was absent from temporary flooded pans 

and pools. Tenerals were found in large numbers in patchy gallery forest (Kipping 2006). T. 

stictica was not found in the same region although its preference for open swamps, rivers and 

pools (Pinhey 1970) seems to fit. In general T. stictica is distributed in the whole of sub-

Saharan Africa (Figure 1). The Odonata Database of Africa (ODA) (J. Kipping pers. comm.) 

contains 537 records of this species. The westernmost records come from Sierra Leona and 

Liberia; in the north it occurs in Sudan, the Ethiopian highlands and Somalia. It is scarce in 

the mountainous parts of Central Africa and most records come from the southern countries of 

Zambia, Zimbabwe and South Africa. It prefers higher elevation than other members of the 

genus. Mean elevation of all records of T. stictica is 1,052 m a.s.l. (n = 537). 

 

 morrisoni (n = 7) palustris (n = 7) p-values 
Locality Zambezi River (Zambia) Okavango Delta (Botswana)  
Abd length  20.2 – 21.5 23.5 – 24.0 0.02 
Hw length 25.0 – 26.7 25.3 – 26.9 0.48 
Pt length 3.2 – 3.5 3.1 – 3.5 0.70 
Wing base width 1.4 – 1.6 1.5 – 1.6 0.23 
S7 1.8 – 2.1 1.4 – 1.7 0.03 
Colour eye underside  Yellow Grey  
Postclypeus Without black streaks With black streaks  
Wing tip Clear Brownish  
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Discussion 

 

In his monograph on the genus Trithemis, Pinhey (1970) described T. stictica as a “variable 

species.” He studied specimens from a wide range of localities and described several regional 

“forms” but none of these can be clearly assigned to either of the new species. Consequently 

the genetic characteristic of none of Pinhey’s varieties is known. He mentioned a form, 

possibly a subspecies, in the Okavango region with creamy or ivory faces instead of the 

normal yellow. We can confirm this variation in our specimens from the Okavango region, 

but all other analysed specimens from Namibia also show ivory instead of yellow. We regard 

this variation as a phenotypic rather than a diagnostic character correlated with genealogy. 

However, Pinhey also noted the amber base of the wings in his Okavango specimens. This 

character indeed distinguishes T. stictica from T. morrisoni and T. palustris. Pinhey also 

described a “dwarf series” from Victoria Falls. These specimens are relatively small and show 

only two rows of cells in the fore wing discoidal field. T. morrisoni males and females from 

the Zambezi River near Victoria Falls are also smaller, but all have the normal three rows of 

cells. Pinhey described two females of a possible Equatorial subspecies with saffronated 

wings and an entirely black labrum, but these features were not found in any of the analysed 

specimens. 

Additionally, Pinhey mentioned several other variable traits in his specimens of T. 

stictica, like the yellow spot on S9, postclypeus with or without comma-shaped streaks, amber 

patch centrally on the hind wing absent or present, and occasionally infuscated wing tips in 

the females. We found these traits in some of our specimens, but they are not species-specific. 

The yellow spot on S9 is absent in T. palustris, but was also not always present in T. stictica 

and T. morrisoni. The amber patch is present in most specimens of the three species, but not 

all. We found the darkened wing apices in six out of seven analysed females of T. palustris. 

The status of T. parasticta was discussed by Pinhey (1956, 1970) and Lieftinck 

(1969). Pinhey (1956) described T. parasticta as a near ally of T. stictica, but larger and 

without the central amber patch in the hind wings. While Lieftinck (1969) confirmed its 

species status by comparing specimens from Lake Bangweulu with Pinhey's original 

description, Pinhey (1970) himself finally regarded parasticta merely as a larger form of T. 

stictica. We compared the diagnosis of T. parasticta by Lieftinck (1969) with the two new 

species but none of the listed traits were found. The thoracic pubescence is white as in T. 

stictica and the pterostigma has nearly the same length in all analysed individuals. Also the 

base of the hind wings varies only slightly in length and is smaller in T. morrisoni and T. 
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palustris than in T. stictica. The superior appendages are wholly black and the yellow or 

amber antenodal patch on the hind wings generally exists in all three species, but varies in 

intensity and is absent only in some specimens. This variation is common to all three 

examined groups. We conclude that none of Pinhey's forms or subspecies, including 

parasticta, is one of the new species, except his possible (but unnamed) Okavango sub-

species, which may have included both new species. 

The genetic and morphological results support the separation of the two new species 

from T. stictica in the Okavango and Upper Zambezi Floodplains (Rach et al. 2008; SD, HH 

unpubl.). There are various characters to distinguish T. morrisoni and T. palustris from T. 

stictica, like the amber base of the wings, the dichromatic eyes and the structure of the penis. 

The latter is clearly most important due to its potential as a reproductive barrier. In addition a 

high sequence divergence between T. stictica and the two new species in four different 

markers (9.0% and 8.5% in ND1, 8% and 8.3% in COI, 4.5% and 4.3% in 16S and 2.0% and 

2.1% in ITS, respectively) clearly separates them at the species level (SD, HH unpubl.). 

The two new species cannot be identified easily in the field. However, genetic 

analyses clearly separate them into distinct species. We analysed 73 specimens from different 

sites using four genetic markers. Each sample clearly falls into only one of the two species. 

The sequence divergence between the two species is clearly at the species level with 5% in 

ND1, 5.7% in COI, 1% in 16S and 2.1% in ITS I&II (SD, HH unpubl.). A phylogenetic 

analysis of the genus using 37 of 40 known species corroborates the results (SD, K.-D.B. 

Dijkstra, HH unpubl.). Here genetic distances between other closely related species are even 

lower than between T. morrisoni and T. palustris, e.g. T. donaldsoni and T. dejouxi with 3.5% 

in ND1 or T. grouti and T. aenea with 0.6% in 16S. These levels of genetic distances were 

also found between other distinct odonate species, e.g. in the genera Pseudagrion, Calopteryx 

and Enallagma with the same used markers (Misof et al. 2000; Weekers et al. 2001; Turgeon 

& McPeek 2002; Dijkstra et al. 2007). In comparison with the study of Samraoui et al. (2003) 

who describe a new “cryptic” species of Lestes based on ITS I sequences only, we could 

confirm our hypothesis with four, independently inherited sequence markers. Although both 

species occur in the same geographical region they show high genetic distances indicative of 

complete reproductive isolation. The initial examination of female morphology shows that 

more distinguishing features may be identified in that sex, and more female samples would 

complement our analyses. 

Interestingly, the two new species have maintained distinct genetic patterns despite a 

similar morphology and geographical distribution. The range of both is the Okavango and 
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Upper Zambezi Floodplains. Nevertheless, within this region, the occupied sites differ: T. 

morrisoni was found near fast flowing water and rapids within intact gallery forest, e.g. Popa 

Falls and the Zambezi River near Victoria Falls. T. palustris was found in open areas in 

swamps and along slow-flowing river sections, e.g. Okavango Delta and Kwando River. The 

area around Popa Falls, where both species occur, provides both habitats. Because the habitat 

conditions differ especially for the larvae, morphological analyses of them may be a good 

next step. More data on the distribution and ecology of the two new species are necessary, but 

because they seem to occupy different ecological niches, speciation of T. morrisoni and T. 

palustris was most likely induced by a habitat shift (SD, HH unpubl.). 
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Abstract 

 

Speciation processes provide a major challenge to evolutionary biology, and understanding 

the underlying mechanism is of basic importance for conserving the diversity of life. The 

complexity of the processes behind speciation events and the different used criteria or 

definitions often causes problems by classifying case studies into the three major modes of 

speciation. A recently discovered species complex of three African dragonfly species in the 

genus Trithemis provides an interesting model system to analyse their divergence by 

combining biogeographical as well as population genetic parameter. The newly detected 

species, T. morrisoni and T. palustris, coexist in the same geographical range in the region of 

the Okavango River and the Zambezi River (Caprivi region), while T. stictica, which formerly 

included the two new species, is distributed throughout sub-Saharan Africa and absent in the 

Caprivi region. To study the underlying speciation processes we analysed different 

mitochondrial (ND1, COI and 16S) and nuclear markers (ITS I and II) and compared the 

population genetic data to morphological and ecological traits. Our results show that despite a 

clear geographical overlap, the two new species have been completely genetically isolated for 

approximately 2.4- 0.7 million years. Our data suggest that two different speciation 

mechanisms have driven the divergence of the three closely related species. While T. stictica 

evolved through allopatry, the other two species most likely evolved nonallopatric as a result 

of a habitat shift. To our knowledge this is the first example for cryptic speciation in 

dragonflies. 

 

 

Keywords: Speciation processes, cryptic species, Odonates, sympatric speciation, Trithemis 
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Introduction 

 

Species divergence is of great interest to evolutionary biologists and intensive research on a 

broad spectrum of aspects of speciation has been conducted. Theoretical and empirical studies 

have aimed towards an understanding of the different modes of speciation, from sympatric to 

parapatric and allopatric speciation (e.g. Avise et al. 1998; Barraclough & Vogler 2000; 

Barluenga et al. 2006). The complexity of the mechanisms and processes behind speciation 

events and the difficulties in diagnosing empirical studies still challenges us. Classifying 

individual case studies into the taxonomic system of 'modes of speciation' often causes 

problems and is sometimes even impossible. Part of the problem is the use of different 

definitions and criteria for diagnosing case studies. While allopatric speciation as the basic 

mode of reproductive isolation through biogeographical barriers seems to be well defined and 

understood, parapatric speciation and especially sympatric speciation are more difficult to 

prove and consequently to verify in empirical studies. Here several definitions, conceptually 

either biogeographical or population genetic based, are alive in the literature (e.g. see 

overview Fitzpatrick et al. 2008). The biogeographical concepts of sympatric speciation 

define that the new species have to evolve in the same geographical range and species must be 

able to move between e.g. different habitats without geographical isolation (e.g. Ridley 1996; 

Berlocher & Feder 2002; Coyne & Orr 2004). The population genetic definitions are more 

precise and require an initial panmictic population with high gene flow (i.e. m=0.5) and the 

mating probability of two individuals should depend on their genotypes only (e.g. Johnson & 

Gullberg 1998; Gavrilets 2003). In that context also the problem of the regarded geographical 

scale becomes apparent and terms like “microalloptry” were introduced to define the 

speciation processes of populations which occur allopatric on a very small biogeographical 

scale, like e.g. in diverging host/habitat adaptations (Berlocher & Feder 2002; Fitzpatrick et 

al. 2008). 

In the biogeographical concepts excluding allopatry might be possible in studies where 

species occur in the same geographical range, but demonstrating continuous gene flow during 

the time of divergence is nearly impossible in empirical studies. Most cases which fail to 

satisfy the precise conditions of sympatric speciation but are clear cases of nonallopatry fall 

into the broad category of “divergence-with-gene-flow” (Gavrilets 2003; Bolnick & 

Fitzpatrick 2007; Niemiller et al. 2008). This model integrates all processes in which 

population divergences with continuous gene flow as well as alternating periods of gene flow 

with periods of complete isolation could occur by only strictly excluding allopatric speciation 
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(Bolnick & Fitzpatrick 2007; Niemiller et al. 2008). Nevertheless, a corroborative approach, 

combining ecology, phylogeography, population genetics and behaviour might be a way when 

attempting to understand the biological processes affecting divergence in nature. 

The evolution of cryptic species adds an additional evolutionary arena when analysing 

speciation processes. Here speciation takes place without the evolution of morphological 

different characters. With the increasing number of population genetic studies cryptic species 

are found in many animal groups across nearly all biogeographical regions. However, 

questions concerning the evolutionary and ecologically processes leading to genetic 

divergence in the absence of morphological differentiation often remain unresolved 

(Pfenninger 2007, Bickford 2007). 

Odonates – dragonflies and damselflies – are not supposed to evolve real 

morphological cryptic species because of its complex mating system with the 'lock and key' 

mechanism, where the fit of genitalia is thought to be strong evidence for distinction between 

species. Their complex morphology is abundantly supplied with taxonomic characters, like 

wing venation, thoracic patterning or colour variation. In cases of similar morphological 

appearance at least differences in the genital morphology were found (Pilgrim 2002). In 

combination with a complex life cycle (aquatic larvae and terrestrial adults), a striking 

diversity of different biogeographical ranges, habitat specificities, colour patterns and 

behaviour (Corbet 1999), speciation processes in odonates are assumed to evolve in allopatry 

(Stoks et al. 2005; Turgeon et al. 2005; Dijkstra & Clausnitzer 2006; Kalkman et al. 2008). 

In this ancient group of insects the discovery of a cryptic species complex in the 

African libellulid genus Trithemis constitutes a highly interesting and special case in 

speciation. The species complex of three closely related Trithemis species was only recently 

discovered via population genetic analyses (Damm & Hadrys 2009). Two new species (T. 

palustris and T. morrisoni) were previously hidden inside a third species, T. stictica. While T. 

stictica can be distinguished morphologically from T. palustris and T. morrisoni by 

differences in genital morphology and colour patterns, the latter two stay cryptic. Both new 

species have thus far only been found alongside the big river systems Okavango and Zambezi, 

where they occur in the same geographical range. 

This case study of diversification allows to analyse two different speciation processes 

in three closely related sister species. In addition our Trithemis model demonstrates an 

example of a cryptic speciation process in an insect order that is not expected to evolve 

cryptic species and might therefore provide new insights into the divergence of odonates. We 

analysed a set of four sequence markers with different substitution rates and origins (ND1, 



6.8   Cryptic speciation via habitat shift 

142 

16S, COI and ITSI-II) and combine biogeographical with population genetic data of the 

whole species complex. To reconstruct the speciation processes governing the divergence of 

the three species we discuss the possibility to classify our two different speciation processes 

into the taxonomic system of modes of speciation by regarding their various definitions. 

 

Methods 

 

Field sampling 

A total of 108 samples of T. stictica, T. palustris and T. morrisoni were collected from 12 

different localities in Namibia, Botswana (Okavango Delta), Zambia (Zambezi River), South 

Africa (Western Cape), Tanzania (East Usambara Mountains), Kenya (Kiboko River) and 

Ethiopia (Ambo) (see Table 1a and Figure 1). All samples were initially identified as T. 

stictica and cover the distributional range of this species. First genetic analyses discovered the 

existence of two more species (T. palustris and T. morrisoni) which are regionally restricted 

to the Okavango and Zambezi floodplains (Damm & Hadrys 2009; Damm et al. 2009). At all 

other localities T. palustris and T. morrisoni were not found. For phylogenetic analyses nine 

other Trithemis species were integrated (see Table 1b). Tissue samples were collected and 

stored in 70% Ethanol. 

 

 

Table 1a Population sites (country and locality), used abbreviations, number (n) of individuals, 
number of haplotypes (No H), haplotype diversity (h) and nucleotide diversity (π) of ND1 and 16S for 
T. stictica, T. morrisoni and T. palustris. 

Species Country Locality Abbrev. n No H 
ND1 / 
16S 

h 
ND1 / 16S 

π (10-3) 
ND1 / 16S 

T. stictica Namibia Naukluft TstNauk 8 2 / 2 0.25 / 0.25 0.6 / 0.6 
 Namibia Zebra River TstZebra 9 1 / 2 0 / 0.22 0 / 0.4 
 Kenya Kiboko River TstKen 5 2 / 2 0.33 / 0.33 1.0 / 1.0 
 Tanzania East Usambara Mts. TstTans 5 2 / 2 0.4 / 0.4 1.0 / 1.1 
 South Africa Western Cape TstSA 5 2 / 3 0.67 / 0.83 8.0 / 3.36 
 Ethiopia Ambo TstEth 1 1 / 1 - - 
T. morrisoni Namibia Popa Falls TmorPopa 21 3 / 6 0.35 / 0.80  1.3 / 4.16 
 Namibia Andara TmorAnd 3 2 / 3 0.67 / 1 2.7 / 4.03 
 Zambia Bovu Island TmorZam 17 5 / 3 0.79 / 0.62 2.2 / 1.5 
T. palustris Namibia Rundu TpalRund 3 2 / 2 0.67 / 0.67 2.7 / 1.3 
 Namibia Kwando River TpalKwan 8 4 / 2 0.64 / 0.53 3.6 / 1.1 
 Namibia Popa Falls TpalPopa 10 5 / 3 0.72 / 0.46 2.2 / 4.8 
 Botswana Okavango Delta TpalBot 11 8 / 4 0.93 / 0.71 3.7 / 1.8 
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Table 1b Population sites (country and locality), used abbreviations and number (n) of individuals for 
nine additionally included Trithemis species. 

Species Country Locality n
T. kirbyi Namibia Tsaobis/ Waterberg 5 
T. arteriosa Namibia Tsauchab/ Waterberg 5 
T. annulata Namibia Rehoboth/ Popa Falls 5 
T. donaldsoni Namibia Rehoboth/ Van-Bach-Dam 5 
T. hecate Namibia Popa Falls 5 
T. furva Ethiopia/South Africa Nekemte/ Wakkerstrom 5 
T. grouti Liberia Gola Forest/ Lorma Nat. Forest 5 
T. nuptialis Congo Lingomo/ Lukomete 2 
T. werneri Namibia Kunene  2 

 

 

DNA extraction and amplification 

DNA was isolated from a single leg of each individual using a modified phenol-chloroform 

extraction (Hadrys et al. 1992) and stored in TE-buffer at -20°C. In addition to previously 

amplified ND1 (all 108 individuals) and COI gene regions (five individuals of each species) 

(Damm et al. 2009), we isolated the mitochondrial 16S rDNA and the nuclear ITS I - II region 

(Internal spacer regions I and II) including the intermediate 5.8S region. For amplification of 

a 570 bp fragment of the 16S region, primers described in Simon et al. (1994) were used. The 

PCR thermal regime was as follows: 5 min initial denaturation at 93°C, followed by 35 cycles 

of 93°C for 20 s, 52°C for 30 s, 72°C for 40 s, and 2 min final extension at 72 °C. PCR 

reactions were carried out in a total volume of 25 μl, containing 1× amplification buffer 

(Invitrogen), 2.5 mM MgCl2, 0.1 mM dNTPs, 5 pmol each primer, and 0.75 U Taq DNA 

polymerase (Invitrogen). For the nuclear ITS region, primers were designed based on known 

insect sequences from GenBank. The forward primer (ITS-Odo fw : 5`CGT AGG TGA ACC 

TGC AGA AG 3`) lies within the 18S rDNA and the reverse primer (ITS-Odo rev: 5`CTC 

ACC TGC TCT GAG GTC G 3`) within the 28S rDNA region. Amplification was successful 

under following conditions: initial denaturation for 3 min at 95°C, 35 cycles of 95°C for 30 

sec, 54°C for 40 sec and 30 sec at 72°C and a final extension at 72°C for 3 min. The final 

volume of 25 μl contained 1× amplification buffer (Invitrogen), 2.5 mM MgCl2, 0.1 mM 

dNTPs, 5 pmol of each primer, and 0.75 U Taq DNA polymerase (Invitrogen). Sequences of 

the 16S rDNA and the ITS regions (including 5.8S) are available under GenBank Accession 

numbers XXX (submitted and will be included). 

Purified PCR-products were sequenced in both directions using the ET Terminator 

Mix (Amersham Bioscience). Sequencing reactions were carried out in 7.5 µl volumes 
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containing 7.5 pmol primer, 5-10 ng template, 1.5 µl ET Terminator mix and 0.5 µl Buffer 

(Amersham Bioscience). Cycle sequencing was performed according to the manufacturer’s 

protocol. Sequencing reactions were purified and subsequently sequenced on an automated 

sequencer (MegaBACE 1000; Amersham Bioscience). 

After sequencing, both strands were assembled and edited using Seqman II (version 

5.03; DNAStar, Inc). Multiple sequence alignments were done using MUSCLE (version 3.6; 

(Edgar 2004)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Overview of Southern Africa with the analysed countries displayed in blue. Shown are the 
samples sites of the three Trithemis species T. stictica (green dots), T. palustris (red dots) and T. 
morrisoni (blue dots). Area of detail: the population sites of T. palustris and T. morrisoni in the 
Caprivi region. 
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Sequence Analyses 

Sequences from ND1 and COI (GenBank accession nos: FJ358442- FJ358475) of a recent 

study, which firstly discovered the new species T. palustris and T. morrisoni (Damm et al. 

2009) were included in the analyses. Here the 108 ND1 sequences covering the three species 

were used for all analyses, while COI (five individuals for each species) were used to analyse 

sequence divergences and molecular clock analyses. This way, four genetic markers 

comprising different substitution rates and origins could be applied. 

Sequence divergence between individuals and species were calculated using the 

Kimura-2-parameter substitution model via PAUP (version 4.0b10; (Swofford 2002)). 

Estimates of haplotype diversity (h) and nucleotide diversity (π) were carried out using DNASP 

version 4.0 (Rozas et al. 2003). Genetic differentiation (Fst) (Weir & Cockerham 1984) based 

on the average number of pairwise nucleotide differences within and between T. stictica, T. 

palustris and T. morrisoni was computed in ARLEQUIN version 3.0 (Excoffier et al. 2005) with 

significance determined by 10,000 bootstrap replicates. 

Based on statistical parsimony, a mutational network for the two mitochondrial 

markers (ND1 and 16S) sequenced for all 108 individuals was generated using TCS version 

1.21 (Clement et al. 2000) and relationships between the haplotypes of T. stictica, T. palustris 

and T. morrisoni were estimated. Individual sequences were collapsed to haplotypes and the 

frequency of each haplotype was incorporated into the analyses. Ancestral haplotypes were 

calculated by predictions of coalescent theory (Clement et al. 2000). 

Phylogenetic relationships of species were inferred by Bayesian and Maximum 

Parsimony algorithms. For Bayesian analyses, the TrN+I model for ND1 and the HKY+I+G 

model for ITS and 16S were applied, which were previously selected using Modeltest version 

3.7 (Posada & Crandall 1998) as the best fitting evolutionary nucleotide substitution model 

under the Akaike Information Criterion. The model parameters were employed in the 

phylogenetic analysis using MrBAYES version 3.1.2 (Huelsenbeck & Ronquist 2001). 

Marcov-Chain Monte-Carlo posterior probabilities were determined for each gene partition 

and for a concatenated matrix. For each analysis the most appropriate parameters for among 

site variation, base frequencies and discrete gamma distribution were employed. The Marcov-

Chain Monte-Carlo search was performed with four chains for 1,500,000 generations and 

trees were sampled every 750th generation. Maximum Parsimony (MP) analyses were 

performed as implemented in PAUP version 4.0b10 (Swofford 2002). A heuristic search for 

each marker and a combined dataset was performed with TBR branch swapping and random 

addition of taxa for 1000 replicates. Reliability of the parsimony analysis was assessed by 
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bootstrap sampling (Felsenstein 1985) of 1000 replicates. For detailed analyses of the species 

complex T. stictica, T. palustris and T. morrisoni, a combined dataset including all analysed 

individuals were used. T. furva served as an outgroup. Phylogenetic analyses of the nine 

Trithemis species and T. stictica, T. palustris and T. morrisoni were performed using ND1 and 

16S sequences. Crocothemis erythrea (Libellulidae) served as an outgroup. 

In order to test the suitability of a molecular clock to evaluate the time of divergence 

between the three species, ML analyses with the appropriate evolution model was performed 

with and without clock enforcement. The Shimodaira-Hasegawa (Shimodaira & Hasegawa 

1999; Goldman et al. 2000) and the Kishino-Hasegawa (Kishino & Hasegawa 1989) tests 

were used to investigate whether the topologies of the two ML trees were significantly 

different. The genetic distances of ND1, COI and 16S were then used for comparisons and 

molecular divergence time estimates. The dating calculations were based on the mutation 

rates of 2.3% for ND1 and COI, and 1.4% for 16S as proposed for insect mitochondria 

(Brower 1994) and as applied in several other odonate studies (Turgeon et al. 2005; Stoks & 

McPeek 2006). 

 

 

Results 

 

Sequence variation 

An alignment of 496 bp of the 16S fragment, containing 108 sequences from T. stictica, T. 

palustris and T. morrisoni exhibited 28 variable and 26 parsimony informative sites. In total, 

17 different haplotypes were found with no haplotype shared by the three species. T. stictica 

is represented by five, T. palustris by four and T. morrisoni by eight haplotypes. In total 26 

different haplotypes were identified for ND1, again with no shared haplotypes by the three 

species. T. stictica is represented by 5, T. palustris by 13 and T. morrisoni by 8 haplotypes. 

For COI nine species specific haplotyes were found. 

Details of genetic diversity (number of haplotypes [NoH], haplotype diversity [h] and 

nucleotide diversity [π]) measured for each population site of the three species for 16S and 

ND1 are shown in Table 1. For T. stictica both markers show a low level of genetic diversity 

within all populations (except of South Africa). In the South African population, the highest 

number of haplotypes was found and also the highest h and π. In contrast to T. stictica, the 

genetic diversity in the populations of T. palustris and T. morrisoni was quite high. 
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For the nuclear ITS region, 98 samples were successfully sequenced and the alignment 

included 633 bp showing gaps at 13 positions, 26 variable and 25 parsimony informative 

sites. The pure ITS regions were substantially more variable than the 5.8S gene co-amplified 

in the sequences. ITS I (65% of the variable sites, 92 % of the gaps) and ITS II (35% variable 

sites, 8% of the gaps) exhibit all gaps and variable positions. 

 

 

Table 2 Mean intra- and interspecific sequence divergences based on the Kimura-2-parameter (in %) 
of the analysed sequence markers ND1, COI, 16S and ITS of T. stictica, T. palustris and  
T. morrisoni. 

 T. stictica T. palustris T. morrisoni 
 ND1 COI 16S ITS ND1 COI 16S ITS ND1 COI 16S ITS 
T. stictica 0.4  0.2 0.1 0.3         
T. palustris 9.0 7.9 4.3 1.1 0.3 0.1 0.3 0.1     
T. morrisoni 8.5 8.3 4.5 1.5 5.0 5.7 1.0 1.3 0.5 0.1 0.3 0.3 

 

 

Sequence divergence 

Intraspecific sequence divergence of T. stictica was low and varied between 0 to 1% in ND1, 

0 to 0.4% in 16S and 0 to 0.7% in ITS, although the geographical distances between 

populations ranges from 20 to 3200 km. The highest level of sequence divergence was found 

between the South African and all the remaining T. stictica populations (1% in ND1; 0.4% in 

16S and 0.7% in ITS). Between the populations of T. palustris, the sequence divergence 

ranged from 0.2 to 0.4% in ND1, 0.1 to 0.5% in 16S and 0 to 0.2% in ITS. The sequence 

divergence between the T. morrisoni populations ranged from 0.2 to 0.9% in ND1, 0.2 to 

0.4% in 16S and 0.2 to 0.5% in ITS. 

The two newly discovered species in the Caprivi region showed high sequence 

divergences when compared to populations of T. stictica, ranging from 7.5 to 9.2% in ND1, 

4.0 to 4.7% in 16S and 0.9 to 1.6% in ITS (with geographical distances ranging 850 km to 

3000 km). Although the farthest geographical distances between populations of T. palustris 

and T. morrisoni measures up to only 420 km, sequence divergence between them ranged 

between 4.8 to 5.2% in ND1, 1.0 to 1.2% in 16S and 1.1 to 1.4% in ITS. At the population 

site Popa Falls, where both species occur in sympatry, the sequence divergence is at the same 

high level, with 4.9% in ND1, 1.0% in 16S and 1.1% in ITS. Mean sequence divergences 

between the three species are summarized in Table 2. 
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Sequence divergences between all 12 Trithemis species included in this study varied 

from 2.2 to 18.4% in ND1, from 1.2 to 11.7% in 16S and from 0.9 to 10.5% in ITS. 

Interestingly T. stictica showed a lower sequence divergence to T. nuptialis (2.2 % in ND1 

and 1.2 % in 16S) and T. grouti (6.5 % in ND1 and 1.9 % in 16S) than to its putative “sister” 

species T. palustris (9.0 % in ND1 and 4.3 % in 16S) and T. morrisoni (8.5 % in ND1 and 4.5 

% in 16S). For ITS the sequence divergence between the five species is at the same level 

(around 1%). 

 

Table 3 Fst-values calculated between species-specific groups of all individuals of T. stictica,  
T. palustris and T. morrisoni for ND1 and 16S. P-value for all comparisons are < 0.001. 

 T. stictica T. palustris T. morrisoni 
 ND1 16S ND1 16S ND1 16S 

T. stictica 0 0     
T. palustris 0.960 0.950 0 0   
T. morrisoni 0.944 0.944 0.906 0.691 0 0 

 

 

Gene flow 

Estimates of gene flow between the three species revealed an interruption of gene flow 

between T. stictica and the two new species in 16S and ND1 (Fst-values equal or higher than 

0.944 (p< 0.001); see Table 3) (Cockerham & Weir 1993). Between T. palustris and T. 

morrisoni gene flow is also interrupted (Fst- values between were 0.906 (p< 0.01) in ND1 and 

0.691 (p< 0.01) in 16S). Comparing the populations without considering its species origin, 

complete genetic isolation between each population of each species was found (see Table 4a 

and b). Popa Falls, the sympatric population site of T. palustris and T. morrisoni, showed Fst-

values (0.912 in ND1 and 0.622 in 16S [p= 0.000, respectively]), which indicates interrupted 

gene flow although both species share the same population site. Intraspecific population 

comparison showed only slight sub-structuring between some populations in all three species 

(see Table 4a and b). 

 

Haplotype networks 

The TCS- network of ND1 revealed three separate genealogical clades representing the three 

species (Figure 2a). The mutational steps separating the species were 23 (T. palustris - T. 

morrisoni), 43 (T. stictica – T. palustris) and 39 (T. stictica – T. morrisoni). The majority of 

haplotypes within each clade are closely connected and were shared by different populations. 

T. palustris exhibited thirteen different haplotypes dominated by seven haplotypes in the 
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Botswana population and five at Popa Falls. In T. stictica only two haplotypes in the 

Namibian populations, one in Kenya and two in South Africa were found while T. morrisoni 

exhibited eight different haplotypes with five haplotypes at the population in Zambia (Figure 

2a). 

The 16S TCS-network is in concordance with the ND1 network but revealed two 

distinct clades, with T. palustris and T. morrisoni grouping together in one network (Figure 

2b). Within this network, two subclades, one consisting of T. palustris, the other one of T. 

morrisoni, could clearly be identified with at least four mutational steps and no shared 

haplotypes between them. Here, contrary to ND1, T. palustris showed a lower number of 

haplotypes (four) as T. morrisoni (eight). In T. morrisoni the clade is dominated by six 

haplotypes at Popa Falls. The second network included all T. stictica individuals. This 

network is separated by at least 22 mutation steps from T. palustris and T. morrisoni. 

 

 
Figure 2 Haplotype networks for two mitochondrial genes. Mutational haplotype network from a) 
ND1 and b) 16S based on statistical parsimony displays the genealogical relationship between the 
different haplotypes in the analysed populations of T. stictica, T. palustris and T. morrisoni. 
Haplotypes considered to be ancestral are depicted as rectangles, all other haplotypes as circles. 
Missing mutational steps connecting haplotypes are represented by small non-coloured circles. 
Haplotypes connected by a single line differ in one mutational step. The size of the rectangle and 
circles correlates with haplotype frequency within each network. The different colours represent the 
different populations. 
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Table 4 Pairwise Fst- values analysed between the populations of T. stictica, T. palustris and T. morrisoni. (a) is based on the ND1 sequences and (b) is 
based on 16S sequences. Significant Fst- values based on 10000 permutations are displayed in bold (p< 0.05). 
 
(a) ND1 

  TstSA TstTans TstKen TstNauk TstZebra TmorPopa TmorAnd TmorZam TpalPopa TpalKwan TpalRund TpalBot 
TstSA 0.000              
TstTans 0.449 0.000             
TstKen 0.426 0.111 0.000            
TstNauk 0.502 0.663 0.775 0.000           
TstZebra 0.552 0.841 0.919 0.038 0.000               
TmorPopa 0.926 0.949 0.946 0.952 0.957 0.000        
TmorAnd 0.919 0.981 0.980 0.987 0.993 -0.166 0.000       
TmorZam 0.898 0.929 0.924 0.935 0.942 0.177 0.079 0.000         
TpalPopa 0.956 0.986 0.986 0.989 0.993 0.912 0.965 0.889 0.000    
TpalKwan 0.935 0.970 0.968 0.975 0.981 0.899 0.929 0.874 0.061 0.000   
TpalRund 0.922 0.982 0.980 0.987 0.994 0.893 0.941 0.858 0.351 0.076 0.000  
TpalBot 0.950 0.976 0.975 0.980 0.984 0.907 0.946 0.886 0.062 -0.033 0.068 0.000 

 
(b) 16S 

  TstSA TstTans TstKen TstNauk TstZebra TmorPopa TmorAnd TmorZam TpalPopa TpalKwan TpalRund TpalBot 
TstSA 0,000              
TstTans 0,393 0,000             
TstKen 0,381 -0,242 0,000            
TstNauk 0,250 0,348 0,455 0,000           
TstZebra 0,309 0,545 0,636 0,004 0,000               
TmorPopa 0,907 0,920 0,916 0,926 0,931 0,000        
TmorAnd 0,916 0,956 0,949 0,967 0,974 -0,020 0,000       
TmorZam 0,956 0,967 0,966 0,971 0,973 0,143 0,083 0,000         
TpalPopa 0,894 0,922 0,913 0,933 0,942 0,622 0,460 0,662 0,000    
TpalKwan 0,935 0,971 0,971 0,981 0,985 0,643 0,765 0,860 0,068 0,000   
TpalRund 0,955 0,973 0,974 0,979 0,982 0,671 0,832 0,863 0,116 -0,085 0,000  
TpalBot 0,947 0,962 0,961 0,968 0,972 0,678 0,799 0,841 0,093 0,294 0,221 0,000 
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Figure 3 Bayesian tree of a concatenated matrix using ND1, 16S and ITS sequences from T. stictica, 
T. palustris and T. morrisoni. Bayesian posterior probabilities and bootstrap values of the MP analyses 
are included for the main nodes. Trithemis furva was used as an outgroup. 



6.8   Cryptic speciation via habitat shift 

152 

Phylogenetic analyses 

A Bayesian phylogenetic tree of 16S, ND1 and ITS sequences including all individuals from 

T. stictica, T. palustris and T. morrisoni shows three main clades clearly separating the three 

species (supported by 100% bootstrap and a posterior probability of 1.00; see Figure 3). 

Within the T. stictica clade, the geographical regions South Africa, East Africa and Namibia 

formed small subclades. South African samples were separated from Tanzanian, Kenyan and 

the Namibian populations with high support (posterior probabilities of 1.00 and 0.98). 

Individuals of T. palustris and T. morrisoni formed two sister clades. In the species specific 

clades little sub-structuring was observed with no population specific subclade. Topology of 

the Maximum Parsimony tree was identical with respect to the relevant nodes (data not 

shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4 Bayesian tree showing the relationship of 16S and ND1 sequences from different Trithemis 
species. C. erythrea is included as outgroup. Bayesian posterior probabilities and MP bootstrap values 
are included. The three species of main interest are displayed in red. 
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A Bayesian tree based on 16S and ND1 sequences of all 12 Trithemis species showed 

a clear separation of T. stictica from T. palustris and T. morrisoni (see Figure 4). T. stictica 

turned out to be the sister species of T. grouti and T. nuptialis (supported by 1.00 posterior 

probabilities (PP) and 100% bootstrap) while T. palustris and T. morrisoni form a separate 

highly supported monophyletic clade (PP=0.98; 97%). The split of T. palustris and T. 

morrisoni from the clade of T. stictica, T. grouti and T. nuptialis is also confirmed by high 

support values (PP=1.00; 79%). 

 

 

Table 5 Divergence time estimates between the species calculated for ND1, COI and 16S (Pliocene: 
5.33-1.8 MYA; Pleistocene: 1.8 MYA – 11500 YA; new analyses dated back the beginning of 
Pleistocene 2.58 MYA ago [Gradstein & Ogg 2004]). 

 

 

Molecular Clock 

The Shimodaira-Hasegawa and Kishino-Hasegawa tests, conducted to compare ML trees 

reconstructed with and without molecular clock enforced, showed no significant difference 

for the three mitochondrial markers (ND1: p = 0.64 and p = 0.96, respectively; 16S: p = 0.19 

and p = 0.46, respectively; COI: p = 0.54 and p = 0. 87, respectively). Therefore the molecular 

clock was not rejected and the time since divergence was estimated. Using the mutation rate 

of 2.3% per million years similar estimates were obtained for ND1 and COI. Genetic 

distances of 9% and 7.9% between T. stictica and T. palustris could be translated to 

approximately 3.9 to 3.4 million years divergence time (Table 5). Genetic distances of 8.5% 

and 8.3% between T. stictica and T. morrisoni were translated into a divergence time of 3.7 to 

3.6 million years. Thus both species diverged from T. stictica at nearly the same time in the 

geological time period Pliocene. The divergence of T. palustris and T. morrisoni was also 

dated in the Pliocene (2.4 to 2.2 million years ago), based on the genetic distances of 5% in 

ND1 and 5.7% in COI. 

Calculations for the 16S region dated the divergence of T. morrisoni and T. palustris 

from T. stictica with genetic distances of 4.3% and 4.5%, respectively, 3.1 – 3.2 million years 

ago, which is also in the Pliocene. This is in concordance with ND1 and CO1. A younger 

Pairs of taxa ND1 COI 16S Geological era 
T. stictica / T. palustris 3.9 3.4 3.1 Pliocene 
T. stictica / T. morrisoni 3.7 3.6 3.2 Pliocene 
T. palustris / T. morrisoni 2.2 2.4 0.7 Pliocene / Pleistocene 
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speciation event was calculated for T. palustris and T. morrisoni with 700,000 years ago 

(Pleistocene) (Table 5). 

 

 

Discussion 

 

The divergence of T. stictica, T. palustris and T. morrisoni constitutes a special case of 

speciation. The three closely related sister species show highly similar morphology, but the 

mechanisms of speciation underlying their divergence seem to be rather different. While T. 

stictica do not co-occur with the latter two and finally evolved some morphological 

differences, T. palustris and T. morrisoni are still cryptic species and are distributed in the 

same geographical area with overlapping ranges and at least one sympatric population site. In 

the following we discuss the mechanisms of their divergence with respect to the 

biogeographical history and population genetic patterns of the three species. We will critically 

examine the possibility to assign one of the three major modes to our speciation processes. 

 

Species divergence in allopatry 

Estimation of divergence times dates back the split of T. stictica and the ancestor of T. 

palustris and T. morrisoni to the Pliocene 3.5 mya with high genetic distances in all four 

markers (up to 9%). The phylogenetic tree displays T. stictica on a separate branch with T. 

grouti and T. nuptialis between T. stictica and the two new species. This provides evidence 

for a hypothetical unknown ancestor of T. palustris and T. morrisoni which form a separate 

monophyletic clade. 

Comparisons of morphology show only slight differences in the secondary genitalia as 

well as in eye and wing colouration between T. stictica and the other two species (Damm & 

Hadrys 2009; Damm et al. 2009). In Odonates, the complex species-specific shape of the male 

and female genitalia prevents interspecific copulation. Therefore the different shape of the 

distal segment in T. stictica provides a reproductive barrier to T. palustris and T. morrisoni. 

Hybridization in form of interspecific reproduction and therefore gene flow between species 

can be ruled out, which is also supported by the high Fst-values (with values up to 0.96), high 

genetic distances and the absence of intermediate haplotypes. 

The sample sites included in this study covers the whole distributional range of T. 

stictica, from South Africa to Kenya. Interestingly, T. stictica is widely distributed throughout 

sub-Saharan Africa, but absent in the Okavango and Zambezi floodplains. Its habitat 
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specificities (dependant on permanent waterbodies with a high degree of vegetation) seem to 

fit to this region, but the distributional range of T. stictica in Namibia or savannah regions in 

general is restricted. In Namibia, the Naukluft Mountains are the only region where the 

species have been found. Between all the population sites, with up to 3000 km geographical 

distances inbetween, high gene flow was estimated. With regard to its high dispersal potential 

colonizing also two isolated sites in Namibia T. stictica might be expected to occur at the 

Okavango and Zambezi floodplains. Nevertheless, T. palustris and T. morrisoni seem to have 

a selection advantage in this region resulting in a displacement of T. stictica. 

During the mid-Pliocene the global climate changed to a cooler and drier period. 

Aridification and a decrease of the tropical forest belt in Africa resulted in the extinction of 

many tropical species worldwide (Plana 2004; Sepulchre et al. 2006). Before these changes in 

climate, the distribution of T. stictica most likely covered the area of the major drainage 

systems in southern Africa including the Okavango and Zambezi Rivers. Adapted to a tropical 

regions, the adequate habitat for T. stictica disappeared while aridification started, and the 

species distribution was restricted to areas with more optimal habitats. In these refugia, 

isolation promotes speciation by decreased gene flow and genetic drift (Gavrilets 2003). It 

seems very plausible that the recent common ancestor of T. palustris and T. morrisoni 

evolved by allopatry because of the island-like situation of the Okavango and Zambezi Rivers 

surrounded by savannah and deserts. Apparently, there was no selective pressure to evolve 

more differences in morphology, because the distribution of T. stictica did not reach the 

Okavango and Zambezi Rivers and the differences in the genital structure might have evolved 

through genetic drift. 

 

Non-allopatric species divergence 

While the above described species divergence was most likely caused through geographical or 

environmental induced barriers the reasons for the speciation of T. palustris and T. morrisoni 

are more difficult to ascertain. The two cryptic species were only recently discovered via 

genetic markers and molecular clock analyses dates back the split between them around 0.7 to 

2.4 mya. At a broad scale both species occupy the same geographical region and sympatric 

speciation might be a possible mode underlying their divergence. But in contrast to allopatric 

speciation, the causes of sympatric speciation are often difficult to demonstrate in nature 

(Berlocher & Feder 2002; Gavrilets 2003; Bolnick 2004; Barluenga et al. 2006; Schliewen et 

al. 2006; Bolnick & Fitzpatrick 2007). Only a very limited number of studies exist, which are 

accepted empirical examples for sympatric speciation like in cichlid fish, birds, phytophagous 
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insects or palm trees (Schliewen et al. 1994; Berlocher & Feder 2002; Savolainen et al. 2006; 

Seehausen 2006; Friesen et al. 2007). All these examples fulfil the four biogegraphical criteria 

delineated by Coyne & Orr (2004) for identifying cases of sympatric speciation. 

For analysing the speciation process between T. morrisoni and T. palustris, we first 

discuss these four criteria of Coyne & Orr (2004) to prove the possibility of a sympatric 

speciation. 1. Largely or complete overlapping ranges. The recent distribution of both species 

is regionally restricted to the Okavango and Zambezi floodplains where their ranges overlap 

(Figure 1). They share the population site Popa Falls, situated in the centre of the 

distributional range of both species. No geographic barrier lies between the analysed 

population sites and although the farthest distance between population sites is 420 km, no 

significant intraspecific sub-structuring was found in T. morrisoni or T. palustris. This 

indicates high gene flow between populations within each species, supported by shared 

haplotypes and low genetic distances. Also the high level of π and h confirm the high gene 

flow estimates between the populations of each species (Papadopoulou et al. 2008). 2. 

Reproductive isolation. Genetic structure analyses revealed complete reproductive isolation 

between the two species (Fst- values based on 16S and ND1 [0.691 and 0.906, with p < 0.01, 

respectively]), also at the shared population site Popa Falls (Fst-value of 0.912 (p< 0.01) in 

ND1). High genetic distances in all analysed markers and no shared or intermediate 

haplotypes indicate complete genetic isolation without hybridization. 3. Species should be 

sister species. The phylogenetic analyses of T. stictica, T. palustris and T. morrisoni including 

(i) all analysed individuals of each species and (ii) twelve additional Trithemis species clearly 

indicate that T. palustris and T. morrisoni are sister species (supported by 100% bootstrap and 

1.0 posterior probabilities; see Figure 3 & 4). Additional evidence for their close relation is 

based on their similar morphology. While both species are phenotypically nearly 

indistinguishable all other species in this genus show a great variety of distinct phenotypes. T. 

palustris and T. morrisoni differ only slightly in size, and share the same morphological traits 

distinguishing them from T. stictica (two coloured eyes, amber wing base, the different shape 

in genital morphology). 4. An historical allopatric phase is very unlikely. Molecular clock 

estimates date back the split of the two species to the Pleistocene (2.4 – 0.7 mya). The genetic 

distances of the protein coding genes ND1 and COI between T. palustris and T. morrisoni are 

quite similar (5.0 and 5.7%, respectively) and lower in the more conservative 16S rDNA 

(1%). These estimates predict the split between the two species at a time where the great 

tectonic uplifting was completed (Sepulchre et al. 2006). The Palaeo-middle and upper 

Zambezi were already united and the big drainage systems had nearly established their present 
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courses (Goudie 2005). The approximate age of the Okavango Delta is 2.5 million years 

(Tiercelin & Lezzar 2002). Since this time no geographic barrier was formed in the Caprivi 

region which could have been responsible for the divergence of the species into allopatric 

populations. 

While the first three criteria are more or less good to verify the last criterion seems to 

be the most difficult one to prove when trying to apply the criteria to case studies in general. 

Completed speciation events occurred in the past and the biogeographical situation at that 

time usually remains unknown. In our study ruling out an historical allopatric phase of T. 

palustris and T. morrisoni is difficult and highly dependent of the regarded geographical 

scale. Nevertheless, the four criteria relate only to the biogeographical concept of sympatric 

speciation (Fitzpatrick et al. 2008). 

Additional important factors driving divergence in sympatry can be found in 

population genetic or ecological parameters. In general the ancestral population had to be 

panmictic, but like rejecting an allopatric phase, this condition is difficult to test for the past. 

Fitzpatrick et al. (2008) suggested the approach to evaluate the recent population structure of 

the sister species. If the sympatric sister species are still panmictic, it may be reasonable to 

infer that they also descended from a single panmictic population. Population structure 

analyses of T. palustris and T. morrisoni revealed high gene flow between the analysed 

populations of each species with high genetic diversity but low genetic distances which 

demonstrate their high dispersal potential and therefore support a nonallopatric speciation. 

However, so far only one sympatric population site (Popa Falls) was found although 

all populations are connected with each other demonstrated by high gene flow. This highlights 

the most significant trait distinguishing the two species, the ecological differences. The 

habitat of T. morrisoni is characterised by fast flowing water often with rapids and a 

bordering gallery forest. In contrast, T. palustris inhabits slow flowing waters and swamp-like 

regions with a more or less open landscape. While Popa Falls provides both habitats, the 

others are only be inhabited by only one of the two species. Consequently reproductive 

isolation might be caused by diverging habitat requirements of T. palustris and T. morrisoni 

resulting in a shift in habitat specificity. Nevertheless, the sister species status, the similar 

morphology and the overlapping and regional restricted geographical distribution leads to the 

assumption of a common ancestor distributed at the Okavango and Zambezi floodplains and 

suggests a nonallopatric speciation caused by an adaptive radiation. 

One reason for adaptation to different habitats may be the availability of new 

ecological niches (Gavrilets & Vose 2007) which is also described, e.g. in the odonate genus 
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Enallagma (Brown et al. 2000; Turgeon et al. 2005). During the severe environmental 

changes in the Plio/Pleistocene a variety of different habitats were developed at the Caprivi 

region (Andersson et al. 2003). This divers but regionally restricted freshwater environment 

opened up the possibility of a local adaptation to fast running waters with vegetation (T. 

morrisoni) on one hand, and slow flowing waters in an open habitat (T. palustris) on the other 

hand. Competition for various ecological resources like food or mating and oviposition sites 

as well as larval habitats might have driven adaptation to different habitats. In sympatry 

disruptive selection may act on the populations by frequency-dependent competition among 

ecologically heterogeneous individuals (Dieckmann & Doebeli 1999; Kirkpatrick & Ravigne 

2002). Since competition among similar phenotypes is particularly strong, rare phenotypes 

could have gained an advantage. Due to the evolution of divergent habitat preferences, 

assortative mating and resulting reproductive isolation occurred as a by-product (Bolnick & 

Fitzpatrick 2007). 

Although some criteria for sympatric speciation could be confirmed it stays difficult to 

assure this mode of speciation. Considering the diverse landscape of the distributional range 

of the two cryptic species parapatric speciation also seems to be possible. In parapatric 

speciation, populations share a spatial restricted border where only limited gene flow occur 

resulting in differentiation up to subdivided populations or even reproductively isolated 

species (Gavrilets et al. 2000; Gavrilets 2003). T. palustris and T. morrisoni share today the 

same geographically restricted area with a high diversity of different habitats which could be 

the cause of a secondary range expansion of formerly only bordering populations. 

 

Cryptic speciation 

Interestingly the speciation of T. palustris and T. morrisoni was not accompanied by 

morphological changes although their estimated time of divergence was dated at least 0.7 

mya. In dragonflies species-specific habitat preferences are often closely connected with 

reproductive traits (Corbet 1999). At their specific habitats sexual selection has a strong 

influence in premating isolation which could therefore promote speciation (Svensson et al. 

2006). Thus adaptation to different habitats may have played the major role in the speciation 

of T. palustris and T. morrisoni and because of their niche separation no constraints exist in 

changing morphology. Slight variations in these reproductive traits can lead to assortative 

mating and reproductive isolation. However, differences in habitat preferences or 

reproductive behaviour are assumed to be accompanied or preceded by distinct other changes 

in phenotypes. For example, in the genus Calopteryx the three European Calopteryx species 
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often occur in sympatry, but their phenotypes are clearly distinct (Misof et al. 2000). In our 

example no distinct phenotypes including the genital morphology in the adults occurred 

despite distinct genetic differences which prove reproductive isolation. Their occurrence at 

habitats with different flow rates of the river sections may have evolved morphological 

differences in the larvae. But in general most speciation studies in odonates, also in a regional 

restricted area like islands, revealed speciation processes which are accompanied with 

morphological changes (Jordan et al. 2003; Kalkman et al. 2008). We therefore could 

demonstrate here the first example of a cryptic speciation in two dragonfly species which are 

in the biogeographical context regionally sympatric. 

 

 

Conclusions 

 

In the case study presented here we find different mechanisms of speciation in three closely 

related dragonfly species. While one speciation event occurred most likely as a cause of 

allopatry and was moderately accompanied by morphological changes, the speciation of T. 

palustris and T. morrisoni could not be assigned easily to one of the major modes and the two 

species are morphologically cryptic. Our example highlights the difficulties by 'simply' 

mapping the traditional geographical modes onto processes of speciation which are often of 

higher complexity. In addition some conditions and criteria for nonallopatric speciation are 

often impossible to demonstrate in case studies. For the divergence of T. morrisoni and T. 

palustris allopatric speciation could most likely be excluded because of the high migration 

capacity of the two species which are found in the same regional restricted area. The 

speciation processes underlying their divergence might be the more promising mechanism of 

divergence-with-gene-flow. This mechanism may be, as suggested by Fitzpatrick et al. 

(2008), the most common process of divergence in nature. By integrating periods of gene 

flow with periods of interruption in genetic exchange this model displays the complexity of 

nonallopatric speciation and thereby focusing more on the reasons of speciation, in our case 

the diverging habitat preferences. 

The adaptation of T. palustris and T. morrisoni to different habitats could be caused by 

internal factors like increasing food or mating competition as well as by more external factors 

like the opened opportunity of new ecological niches through environmental changes. In sum 

all factors have caused a historical habitat shift resulting in two new and cryptic dragonfly 

species which have most probable occurred without a clear allopatric phase. 
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Although we cannot clearly assign one of the three major speciation modes to our case 

study, the Trithemis example in general highlights the importance of integrating different 

disciplines into speciation research. The combination of molecular genetic analyses, 

ecological traits, and biogeographic information detected the hidden speciation processes. 

Additionally we could demonstrate that in odonates, despite of their high morphological 

diversity and their complex genital structure and mating behaviour, cryptic speciation is 

possible and might be more common than previously thought. 
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Supplementary material 
S1 Genetic distances of the ITS region between the population of T. stictica, T. palustris and T. morrisoni 

  TstSA TstTans TstKen TstNauk TstZebra TmorPopa TmorAnd TmorZam TpalPopa TpalKwan TpalRund TpalBot 
TstSA 0.000            
TstTans 0.002 0.003           
TstKen 0.003 0.003 0.004          
TstNauk 0.003 0.004 0.004 0.003         
TstZebra 0.003 0.004 0.004 0.002 0.003        
TmorPopa 0.012 0.013 0.014 0.015 0.015 0.005       
TmorAnd 0.012 0.015 0.015 0.016 0.016 0.004 0.002      
TmorZam 0.013 0.015 0.015 0.016 0.016 0.005 0.003 0.003     
TpalPopa 0.009 0.009 0.009 0.012 0.012 0.011 0.013 0.013 0.001    
TpalKwan 0.008 0.009 0.009 0.011 0.011 0.012 0.014 0.014 0.001 0.000   
TpalRund 0.008 0.009 0.009 0.011 0.011 0.012 0.014 0.014 0.001 0.000 0.000  
TpalBot 0.010 0.011 0.011 0.013 0.013 0.011 0.014 0.014 0.002 0.002 0.002 0.002 

 
 
S2 Genetic distances of the 16S rDNA region between the population of T. stictica, T. palustris and T. morrisoni 

  TstSA TstTans TstKen TstNauk TstZebra TmorPopa TmorAnd TmorZam TpalPopa TpalKwan TpalRund TpalBot 
TstSA 0.003            
TstTans 0.003 0.001           
TstKen 0.004 0.001 0.001          
TstNauk 0.002 0.001 0.001 0.001         
TstZebra 0.002 0.002 0.002 0.001 0.000        
TmorPopa 0.045 0.046 0.046 0.047 0.047 0.004       
TmorAnd 0.044 0.045 0.045 0.046 0.046 0.004 0.004      
TmorZam 0.043 0.044 0.043 0.045 0.045 0.004 0.003 0.002     
TpalPopa 0.042 0.043 0.043 0.044 0.044 0.008 0.009 0.008 0.005    
TpalKwan 0.040 0.041 0.041 0.042 0.042 0.010 0.012 0.011 0.004 0.001   
TpalRund 0.041 0.041 0.041 0.043 0.043 0.010 0.011 0.010 0.003 0.001 0.001  
TpalBot 0.042 0.043 0.043 0.044 0.044 0.010 0.011 0.010 0.004 0.002 0.002 0.002 
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S3 Genetic distances of the ND1 region between the population of T. stictica, T. palustris and T. morrisoni 

  TstSA TstTans TstKen TstNauk TstZebra TmorPopa TmorAnd TmorZam TpalPopa TpalKwan TpalRund TpalBot 
TstSA 0.008            
TstTans 0.009 0.001           
TstKen 0.010 0.001 0.001          
TstNauk 0.010 0.002 0.003 0.001         
TstZebra 0.010 0.003 0.004 0.000 0.000        
TmorPopa 0.075 0.085 0.086 0.086 0.087 0.009       
TmorAnd 0.075 0.085 0.086 0.086 0.087 0.002 0.003      
TmorZam 0.077 0.087 0.088 0.088 0.088 0.007 0.007 0.008     
TpalPopa 0.082 0.092 0.093 0.093 0.093 0.049 0.049 0.052 0.002    
TpalKwan 0.080 0.090 0.091 0.092 0.092 0.050 0.050 0.052 0.003 0.004   
TpalRund 0.079 0.089 0.090 0.090 0.091 0.048 0.048 0.050 0.003 0.004 0.003  
TpalBot 0.080 0.090 0.091 0.091 0.092 0.049 0.049 0.051 0.003 0.004 0.004 0.004 
 
S4 Interspecific comparison of 16S genetic distances in the genus Trithemis  

  C. 
erythrea T. kirbyi T. donald-

sonii T. furva T. grouti T. 
nuptialis

T. 
arteriosa 

T. 
annulata 

T. 
hecate 

T. 
werneri 

T. 
stictica 

T. 
palustris 

T. 
morrisoni 

C. erythrea              
T. kirbyi 0.124             
T. donaldsonii 0.107 0.090            
T. furva 0.092 0.087 0.043           
T. grouti  0.104 0.097 0.046 0.055          
T. nuptialis 0.151 0.117 0.055 0.069 0.015         
T. arteriosa 0.094 0.087 0.039 0.026 0.048 0.062        
T. annulata 0.104 0.080 0.039 0.039 0.050 0.063 0.021       
T. hecate 0.116 0.092 0.068 0.062 0.082 0.088 0.048 0.043      
T. werneri 0.099 0.083 0.055 0.041 0.057 0.072 0.046 0.052 0.078     
T. stictica 0.099 0.092 0.050 0.055 0.019 0.012 0.046 0.048 0.080 0.057    
T. palustris 0.114 0.090 0.043 0.048 0.043 0.056 0.030 0.028 0.059 0.052 0.043   
T. morrisoni 0.114 0.094 0.043 0.046 0.048 0.060 0.032 0.032 0.064 0.052 0.048 0.011  
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S5 Interspecific comparison of ND1 genetic distances in the genus Trithemis  

 
C. 
erythrea T. kirbyi 

T. 
donaldsonii 

T. 
furva 

T. 
grouti  

T. 
nuptialis 

T. 
arteriosa 

T. 
annulata 

T. 
hecate 

T. 
werneri 

T. 
stictica 

T. 
palustris

T. 
morrisoni 

C. erythrea              
T. kirbyi 0.222             
T. donaldsonii 0.213 0.168            
T. furvaA 0.209 0.148 0.133           
T. grouti  0.245 0.165 0.139 0.102          
T. nuptialis 0.229 0.162 0.145 0.083 0.067         
T. arteriosa 0.233 0.148 0.118 0.080 0.086 0.091        
T. annulata 0.215 0.165 0.121 0.091 0.106 0.106 0.074       
T. hecate 0.222 0.169 0.136 0.122 0.139 0.145 0.114 0.127      
T. werneri 0.223 0.175 0.113 0.105 0.122 0.116 0.083 0.106 0.128     
T. stictica 0.239 0.184 0.145 0.091 0.065 0.022 0.097 0.118 0.148 0.125    
T. palustris 0.242 0.163 0.126 0.080 0.078 0.083 0.074 0.076 0.128 0.110 0.086   
T. morrisoni 0.213 0.154 0.126 0.080 0.080 0.075 0.071 0.074 0.105 0.094 0.081 0.049  

 
S6 Interspecific comparison of ITS genetic distances in the genus Trithemis  

  T. kirbyi 
T. 
donaldsonii T. furva T. grouti 

T. 
nuptialis 

T. 
arteriosa 

T. 
annulata 

T. 
hecate T. werneri T. stictica 

T. 
palustris 

T. 
morrisoni 

T. kirbyi             
T.donaldsonii 0.076            
T. furva 0.082 0.050           
T. grouti  0.072 0.024 0.036          
T. nuptialis 0.067 0.024 0.036 0.012         
T. arteriosa 0.078 0.032 0.030 0.016 0.020        
T. annulata 0.091 0.051 0.057 0.038 0.042 0.032       
T. hecate 0.102 0.063 0.061 0.052 0.057 0.057 0.069      
T. werneri 0.105 0.057 0.078 0.061 0.061 0.065 0.076 0.087     
T. stictica 0.070 0.024 0.036 0.010 0.010 0.020 0.042 0.057 0.057    
T. palustris 0.067 0.020 0.032 0.011 0.009 0.016 0.038 0.052 0.057 0.010   
T. morrisoni 0.067 0.030 0.040 0.018 0.010 0.026 0.044 0.063 0.067 0.014 0.010   
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Abstract 

 

In the last few million years, tropical Africa has experienced pronounced climatic shifts with 

progressive aridification. Such changes will have a great impact on freshwater biota, such as 

Odonata. With about forty species, Trithemis dominates dragonfly communities across Africa, 

from rain-pools to streams, deserts to rainforests, and lowlands to highlands. Red-bodied 

species tend to favour exposed, standing and often temporary waters, have strong dispersal 

capacities, and some of the largest geographic ranges in the genus. Those in cooler habitats, 

like forest streams, are generally dark-bodied and more sedentary. We combined molecular 

analyses of ND1, 16S and ITS (ITSI, 5.8S and ITSII) with morphological, ecological and 

geographical data for 81% of known Trithemis species, including three Asian and two 

Madagascan endemics. Using molecular clock analyses, the genus’s origin was estimated 6-9 

Mya, with multiple lineages arising suddenly around 4 Mya. The basal species mostly favour 

open stagnant habitats: their rise coincides with savannah expansion in the late Miocene. The 

adaptation of red species to more ephemeral conditions leads to large ranges and limited 

radiation within those lineages. By contrast, three clades of dark species radiated in the Plio-

Pleistocene, each within distinct ecological confines: (1) lowland streams, (2) highland 

streams, and (3) swampy habitats on alternating sides of the Congo-Zambezi watershed; 

together giving rise to the majority of species diversity in the genus. During Trithemis 

evolution, multiple shifts from open to forested habitats and from standing to running waters 

occurred. Allopatry by habitat fragmentation appears the dominant force in speciation, but 

possibly genetic divergence across habitat gradients was also involved. The study 

demonstrates the importance of combining ecological and phylogenetic data to understand the 

origin of biological diversity under great environmental change. 

 

 

Keywords: Odonata, Trithemis, rapid radiation, Africa, molecular phylogeny, 

environmental changes 
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Introduction 

 

Comparative phylogenetic and phylogeographic studies provide sophisticated insights into the 

evolutionary consequences of environmental change during the volatile Pliocene and 

Pleistocene periods (Avise and Walker, 1998; Avise, 2000; Hewitt, 2004). Our understanding 

of these processes largely relies on studies from the Northern Hemisphere. Here the recurrent 

formation of perennial ice over vast areas during glacial maxima caused the contraction of 

entire biotas into southern refugia, with subsequent expansion and recolonization at each 

interglacial (reviewed in Hewitt, 2000; Hewitt, 2004). These glacial cycles are expected to be 

promoters for high speciation rates. Molecular clock estimates dates the origin of extant 

species in many insect and other species group broadly back in this time period (Brower, 

1994; Klicka and Zink, 1997; Avise, 2000; Knowles, 2000; Ribera et al., 2004). In tropical 

regions most cases of species divergence were also estimated to have taken place in the 

Pliocene (e.g. Hewitt, 2000; Moritz et al., 2000; Bell et al., 2007; de Paula et al., 2007). 

The African continent experienced pronounced climatic shifts with the tendency to 

aridification especially in the last 5 million years. Alternating drier and wetter periods from 

the beginning of the Miocene resulted in major changes in the distribution and composition of 

the vegetation (Morley, 2000). The rainforest belt, which covered central Africa almost 

entirely 30 Mya (million years ago), decreased dramatically as savannahs expanded (Morley, 

2000; Jacobs, 2004; Sepulchre et al., 2006). Different speciation models are proposed to 

explain the high diversification during these periods (reviewed in Moritz et al., 2000). The 

refugia model suggests speciation in allopatry, with forest species restricted to refuges 

separated by dry habitat, or vice versa. The riverine model suggests that large rivers are 

barriers for gene flow. In the gradient model, abrupt environmental transitions, e.g. between 

forest and savannah, force adaptive divergence and consequent speciation. Although the 

world’s highest level of biodiversity resides in the tropics, especially in rainforests, we only 

begin to understand the evolution of this diversity in its historical complexity. While 

rainforest fragments and their borders have been discussed as centres of speciation (Fjeldsa 

and Lovett, 1997; Moritz et al., 2000; Schilthuizen, 2000), the primary direction of speciation, 

from forest to open habitat or vice versa, is still debated (Steppan et al., 2004). 

While several studies deal with the radiation of terrestrial animals like squirrels, 

guenons, cobras, frogs and birds (Fjeldsa and Lovett, 1997; Steppan et al., 2004; Tosi et al., 

2005; Wuester et al., 2007; Blackburn, 2008), far less is known about the consequences of the 

climatic shifts for the freshwater fauna. Aridification should directly affect the aquatic fauna, 
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leading to isolation and extinction (Daniels et al., 2006; Seehausen, 2006; Katongo et al., 

2007; Koch et al., 2007). Amphibious insects like Odonata, Ephemeroptera and Plecoptera 

require aquatic larval and terrestrial adult habitats. Thus climatic change affects them both 

above and below the surface. All odonates (dragonflies and damselflies) are associated with 

freshwater, although their habitat requirements range from opportunistic to often highly 

specialized. Vulnerability to alterations of both aquatic and terrestrial habitats makes them a 

suitable model to study the effects of the changing environment and increasing aridity during 

the Plio-Pleistocene. 

With about 850 extant species, the Afrotropical odonate fauna is poor compared to the 

American and Asian tropics (Dijkstra and Clausnitzer, 2006). Africa’s unstable climatic 

history is suggested to have lead to the demise of much of the original fauna, with rather few 

relicts remaining in some isolated stable areas, but also to the recent rise of a speciose but 

rather homogeneous fauna (Clausnitzer, 2003; Dijkstra, 2007; Kalkman et al., 2008). Indeed, 

libellulid dragonflies and coenagrionid damselflies, the two odonate families best adapted to 

unstable habitats, are notably dominant in tropical Africa (Dijkstra and Clausnitzer, 2006). To 

learn more about the possible impact of climatic shifts on the evolution and diversity of 

freshwater organisms in Africa, we analyzed the phylogeny of the libellulid genus Trithemis, 

which dominates present-day odonate communities across Africa. Aside from about 40 

continental African species (a few classified in probably synonymous genera), the genus 

includes five Asian and two Madagascan endemic species (Pinhey, 1970; Dijkstra, 2007). The 

species occupy most freshwater habitats in tropical Africa and Asia, from cool permanent 

streams to warm temporary pools, from desert to rainforest, and from lowlands to highlands. 

In association with such different habitat preferences, they differ in their dispersal capacities 

and coloration: species of open, often temporary, habitats are often bright red and disperse 

well, while those of more sheltered permanent conditions tend to be dark-bodied and probably 

more sedentary. 

To understand the processes of speciation and coexistence that have led to this 

diversification we combine phylogenetic information with morphological, ecological and 

geographical data. By means of molecular clock analyses we intend to estimate the origin of 

the genus and timing of its main radiation. We investigate (1) whether speciation is associated 

with past environmental change, (2) what role habitat fragmentation and shifts may have had 

in species divergence and coexistence, and (3) if the direction of the speciation is from forest 

to non-forest habitats or vice versa. 

 



6.9   Phylogeographic analyses of the genus Trithemis 

 171

Material and methods 

 

Specimens examined 

A total of 164 individuals of 38 species (81% of those thought to belong to Trithemis) were 

analyzed and 92 individuals covering all species were selected for the final alignment. 

Porpacithemis trithemoides (= Anectothemis apicalis) was included as ingroup taxon because 

it is suspected to belong in Trithemis. The individuals were collected in twelve different 

countries and at least 25 localities (Table 1). Two individuals of Pantala flavescens were used 

as outgroup, because phylogenetic studies of the Libellulidae showed that it is closely related 

to Trithemis (Ware et al., 2007; Pilgrim and Von Dohlen, 2008). 

 

Choice of the sequence markers 

To date the emergence of species, the choice of a genetic marker is crucial. The set of 

characters has to provide high parsimony-informative phylogenetic signals but the misleading 

effects of homoplasy or convergence have to be low (Collins et al., 2005). Only one possible 

Trithemis fossil, T. pseudodistanti, has been described (Nel, 1991), which was dated at an age 

of 11.2-7.1 Myr. Three molecular markers were chosen: (1, 2) Two mitochondrial genes; the 

NADH-dehydrogenase subunit 1 (ND1) and 16S rDNA, which show different evolutionary 

rates. Mitochondrial protein coding genes (like ND1) evolve up to three times faster than 12S 

and 16S (Knowlton and Weigt, 1998) and provide a good resolution for recently diverged 

species. In contrast, 16S is more appropriate for analyzing earlier speciation processes. (3) 

The nuclear internal transcribed spacer region I and II including the 5.8S region in between 

(here simply named ITS). This fragment was successfully used for phylogenetic analyses in 

Libellulidae before (Hovmoller and Johansson, 2004). The three regions itself have different 

substitution rates: ITS I is highly variable, ITS II variable and 5.8S highly conserved due to 

the typical proofreading mechanisms of nuclear genes. With ND1, 16S and ITS a wide range 

of substitution patterns was covered to overcome difficulties with resolution and polytomy. 
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Table 1 Localities and number of the examined individuals in this study. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    
Species Country Locality n 
T. aconita Liberia Gola & North Lorma Forests 5 
T. adelpha Philippines Mindanao 2 
T. aequalis Botswana Okavango Delta 3 
T. aenea Cameroon Akonolinga 2 
T. africana Liberia Gola Forest 2 
T. annulata Namibia Rehoboth 10 
T. arteriosa Namibia Tsauchab 10 
T. aurora China Hong Kong 2 
T. basitincta Liberia Gola Forest 2 
T. bifida Ghana Fume 2 
T. sp. nov. near bifida Cameroon Nkoélon 2 
T. bredoi  Ghana Bamboi 2 
T. brydeni Botswana Okavango Delta 1 
T. dichroa Congo-Kinshasa / Ghana Lokutu / Nakpanduri 5 
T. donaldsoni Namibia Rehoboth 10 
T. dejouxi Ghana Nakpanduri 5 
T. dorsalis South Africa Wakkerstroom 3 
T. ellenbeckii Ethiopia Ambo 2 
T. festiva China Hong Kong 2 
T. furva South Africa / Ethiopia Wakkerstroom / Nekemte 10 
T. grouti Liberia Gola Forest 8 
T. hartwigi Cameroon Nkoélon 2 
T. hecate Namibia Popa Falls, Otavi 3 
T. imitata Liberia / Ghana Gola Forest / Tamale-Kintampo 5 
T. kalula Nigeria Afundu River 1 
T. kirbyi Namibia Tsaobis 10 
T. monardi Botswana Boro River 3 
T. morrisoni Namibia Popa Falls 10 
T. nuptialis Congo-Kinshasa Lukomete, Lingomo 3 
T. palustris Namibia Kwando 10 
T. persephone Madagascar  3 
T. pluvialis South Africa Western Cape 3 
T. pruinata Ghana Agumatsa  2 
T. selika Madagascar  3 
T. stictica Kenya Kiboko River 10 
T. tropicana Cameroon Akonolinga 3 
T. werneri Namibia Kunene 2 
Porpacithemis 
trithemoides 

Congo-Kinshasa Lukomete 1 

Pantala flavescens Namibia Tsaobis, Swakop River 2 
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DNA extraction, amplification and sequencing 

DNA was extracted from single legs using a modified phenol-chloroform extraction (Hadrys 

et al., 1992) and stored at -20°C. The ND1 fragment was amplified and sequenced with the 

primer pair P 850 fw and P 851 rev described in Abraham et al. (2001). The PCR product 

contained 610 bp and included a 5` partial fragment of the 16S rDNA fragment, the tRNALeu 

and a 3` partial fragment the ND1 gene region. The PCR regime consisted of 30 cycles 95°C 

for 30 s, 48°C for 30 s, 72°C for 1 min, an initial denaturation for 2 min at 95°C and a final 

extension of 6 min at 72°C. The reaction mixtures contained 2.5 mM MgCl2, 1x Buffer 

(Invitrogen), 10 pmol of each primer, 0.1 mM dNTP, 0.75 U Taq DNA polymerase 

(Invitrogen) and 1-10 ng DNA template in a final volume of 25 µl. For 16S a 570 bp fragment 

was amplified with primers described in Simon et al. (1994). The PCR thermal regime was as 

follows: 5 min initial denaturation at 93°C, followed by 35 cycles of 93°C for 20 s, 52°C for 

30 s, 72°C for 40 s, and 2 min extension at 72°C. PCR was carried out in a total volume of 

25 μl, containing 1× amplification buffer (Invitrogen), 2.5 mM MgCl2, 0.1 mM dNTPs, 

5 pmol each primer, and 0.75 U Taq DNA polymerase (Invitrogen). For the nuclear ITS 

region, primers were designed based on known insect sequences from GenBank. The forward 

primer (ITS-Odo fw : 5`CGT AGG TGA ACC TGC AGA AG 3`) is located within the 18S 

rDNA and the reverse primer (ITS-Odo rev: 5`CTC ACC TGC TCT GAG GTC G 3`) within 

the 28S rDNA region. Amplification was successful under the following conditions: Initial 

denaturation for 3 min by 95°C, 35 cycles of 95°C for 30 sec, 60°C for 40 sec and 30 sec at 

72°C and a final extension at 72°C for 3 min. The final volume of 25 μl contained 1× 

amplification buffer (Invitrogen), 2.5 mM MgCl2, 0.1 mM dNTPs, 5 pmol each primer, and 

0.75 U Taq DNA polymerase (Invitrogen). 

The amplified products were purified by ethanol precipitation. The sequencing 

reactions were carried out using the ABI PRISM BigDye Terminator Cycle Sequencing 

Ready Reaction Kit and subsequently purified using Sephadex columns (Sigma). 

Bidirectional sequencing was conducted with PCR primers on an ABI PRISM 310 Genetic 

Analyzer according to manufacturers` protocol (Applied Biosystems). 

 

Phylogenetic analyses 

Sequences were assembled and edited using Seqman II (vers. 5.03; DNAStar, Inc). Multiple 

sequence alignments were done with MUSCLE vers. 3.6 (Edgar, 2004) and manually edited 

using Quickalign (Müller and Müller, 2003). Because of its high nucleotide and length 

variation, the final ITS sequence alignment was obtained in two steps. First, with the help of 
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an interim alignment done with ClustalX (Thompson et al., 1997), the software Pfold 

(Knudsen and Hein, 2003) inferred a consensus secondary structure based on the KH-99 

algorithm (Knudsen and Hein, 1999). Second, the consensus structure was used as input 

constraint for a secondary structure analysis in RNAsalsa (Stocsits et al., 2008). Here an 

alignment was obtained by searching for potential nucleotide interactions in the sequences 

while taking into account thermodynamic interactions and compensatory/consistent 

substitutions. 

Phylogenetic reconstructions were conducted using Maximum Parsimony (MP) and 

Bayesian analysis (BA) for each single gene and for a combined dataset. Parsimony analyses 

were performed in PAUP vers. 4.0b10* (Swofford, 2002) using heuristic searches (10,000 

stepwise random additions with TBR branch-swapping) and clade support was estimated via 

1000 bootstrap (BS) pseudo-replicates with 10 random additions (Felsenstein, 1985). All 

characters were unordered and weighted equally and gaps were treated as fifth state. For BA, 

the best fitting nucleotide substitution model was selected for each data partition according to 

the Akaike Information Criterion (AIC) in Modeltest 3.7 (Posada and Crandall, 1998). BA 

was performed in MrBayes 3.1.2 (Ronquist and Huelsenbeck, 2003) and was run with 

3,000,000 generations each and four Marcov chains with default heating values. Two 

independent runs were performed and trees were sampled every 1000 generations. At 

completion, the runs were checked for convergence between each run and for the initial burn-

in period determined by examining each of the run parameters for convergence. The initial 

50,000 generations (50 trees) were discarded as burn-in. The remaining trees were used to 

calculate the consensus topology and the posterior probabilities (PP) for nodal support. In the 

combined analyses, the data of the three markers were partitioned and parameters unlinked to 

allow the assignment of the appropriate model for each gene partition. 

 

Molecular clock analyses 

In order to test the applicability of a molecular clock to evaluate the time of divergence 

between the species, Maximum Likelihood (ML) analyses with the appropriate evolution 

model were performed for ND1 and 16S with and without clock enforced. The Shimodaira-

Hasegawa (Shimodaira and Hasegawa, 1999; Goldman et al., 2000) and the Kishino-

Hasegawa tests (Kishino and Hasegawa, 1989) were used to investigate if the topologies of 

the two ML trees were significantly different. The genetic distances of ND1 and 16S were 

then used for comparisons and for molecular divergence time estimates. The dating 

calculations were based on the mutation rates of 2.3% for ND1 and 1.4% for 16S as proposed 
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for insect mitochondria (Brower, 1994) and applied in several other odonate studies 

(e.g.Turgeon et al., 2005; Stoks and McPeek, 2006). 

In addition we performed ML for the combined dataset of ND1 and 16S with and 

without molecular clock enforced. The tree obtained with clock enforced including branch 

length was used as a fixed input tree for divergence time estimation using r8s vers. 1.7 

(Sanderson, 2003). The absolute age of the basal Trithemis node was set to 10, according to 

the approximate mean age of 10 Mya of the only Trithemis fossil (Nel 1991). 

 

Morphological, ecological and distributional data 

With the purpose of investigating their development in Trithemis evolution, the following 

characters were recorded, based principally on the extensive field experience of the second 

author: (1) predominant body colour of mature adult male, including the development of 

pruinosity, a supra-cuticular layer of waxy scales that develops independently of underlying 

coloration, (2) permanence and flow of preferred water bodies, (3) openness and altitude of 

habitat surrounding these water bodies, (4) approximate distribution range. Categories, 

definitions and details per species are provided in Figure 4. 

 

 

Results 

 

Molecular analyses 

A final alignment of 1565 bp fragment was obtained containing the following three gene 

regions: a 425 bp fragment of ND1, a 475 bp portion of the 16S rDNA and the ITS I and II 

with their intermediate 5.8S (665 bp). 93 sequences of ND1 were analyzed covering the 39 

species and shows 196 variable and 186 parsimony informative sites with two gaps in the 

tRNALeu fragment. The HKY+I+G model was chosen as the best fitting evolutionary model as 

suggested by Modeltest. The 16S fragment, which was analyzed for the same 93 individuals, 

revealed 125 variable sites with 118 parsimony informative characters. Here the TVM+I+G 

model was applied. The amplification of the ITS region failed for one species, T. africana, 

and thus the final alignment contained sequences of 91 individuals of 36 species. The 

alignment consisted of 292 bp of ITS I, 140 bp of 5.8S and 232 bp of ITS II. In total, the 

length of the sequences varied between 544 bp and 604 bp with maximal 121 gaps (73 gaps in 

ITS I, 48 in ITS II). No gap was found in the 5.8S region. The alignment showed 295 variable 

positions with 277 parsimony informative sites. 
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Pairwise genetic distances (corrected by the respective evolutionary model determined 

by Modeltest) were found to be highest in ND1 (ranging from 0.5% to 20.1%), followed by 

the ITS region (ranging from 0.7% to 14.5%) and lowest in 16S (0.4% to 9.3%). 

  

3.2. Phylogenetic relationships 

MP and BA were performed separately for ND1, 16S and the ITS regions. Phylogenetic 

relationships at some nodes could not be resolved clearly, because of low support values in 

each dataset. Therefore the single locus analyses are not presented here. Two combined 

datasets were used for comparative phylogenetic analyses: (1) the two mitochondrial markers, 

ND1 and 16S, and (2) all three markers, with ITS data lacking for T. africana only. 

MP for the mtDNA dataset revealed 496 most parsimonious trees [length, 1105; 

consistency index (CI) 0.422; retention index (RI) 0.819]. For the combined dataset 64 most 

parsimonious trees were found [length, 2678; CI 0.438; RI 0.805]. BA of the mtDNA dataset 

reached a final average standard deviation of split frequencies at 0.007 after 3.000.000 

generations suggesting that the chains had reached convergence. For the combined dataset a 

value of 0.008 was reached after the same generation time. 

Tree topologies were highly similar for both datasets and for MP and BA. Slight 

differences were mainly found between MP and BA at a few nodes resulting from a lower 

resolution in MP. Figure 1 shows a BA tree for the combined dataset. Three species (brydeni, 

kirbyi and hecate) were consistently placed at the base of the tree. Four additional species 

were found near the base (werneri, bredoi, persephone, festiva), but the relationships of each 

could not be resolved because they appeared in different clades in MP and BA and support 

values were low. Porpacithemis trithemoides appeared most closely related to T. festiva and 

was placed in all analyses within the genus, suggesting it belongs to Trithemis. 

Three monophyletic clades were found congruent in all analyses. Species of these 

clades are, except of one (pluvialis), dark coloured. The most basal of these clades was the 

basitincta-group supported by 66% BS and 1.0 PP and consisting of eight species (aconita, 

donaldsoni, dejouxi, basitincta, bifida, sp. nov. near bifida, africana and tropicana). Within 

this clade, four groups were found (tropicana/africana; bifida/sp. nov./basitincta; aconita; 

donaldsoni/dejouxi). The dorsalis-group formed a clade of six species (dorsalis, ellenbeckii, 

pruinata, furva, pluvialis and dichroa) supported by 81% BS and 1.0 PP. Pluvialis and 

dichroa were closely related, while the other four species formed a separate group. The 

stictica-group contained seven species (nuptialis, aequalis, aenea, stictica, grouti, palustris 

and morrisoni) supported by 99% BS and 1.0 PP in the combined dataset. Two recently 
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described species, T. palustris and T. morrisoni (Damm and Hadrys, 2009) formed a separate 

group within this clade. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Bayesian tree topology obtained from the combined dataset of ND1, 16S and the 
ITS regions (including 5.8S). Shown is the 50% majority-rule consensus phylogram including 
posterior probabilities and bootstrap support (above 50) for the congruent nodes. Red species 
are marked red. 
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A fourth group of species was identified by the mtDNA and combined dataset in the 

BA including four red species (imitata, monardi, arteriosa, hartwigi). The species pair 

annulata and selika, also red coloured, are placed basal of these four species (and kalula) and 

the stictica-group. The exact position of the red kalula remained unclear, but MP and BA of 

the combined datasets indicated a close relation to the other red species. Neither the Asian 

endemics (adelpha, aurora, festiva) nor the Madagascan ones (selika and persephone) formed 

monophyletic clades, although the sister-species status of aurora and adelpha was confirmed. 

While selika was placed near the other red African species, the position of persephone 

remained unresolved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Frequencies of the estimated divergence time in a species pairwise comparison 
based on sequence distances for the two mitochondrial sequence markers (a) ND1 and (b) 
16S. All 4278 comparisons were assigned to time ranges of 0.5 million years and their 
frequencies calculated. 
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Molecular clock analyses 

The Kishino-Hasegawa and Shimodaira-Hasegawa tests were conducted to compare ML trees 

reconstructed with and without molecular clock enforced. No significant difference in each 

mitochondrial marker (ND1: p = 0.63 and p = 0.32, respectively; 16S: p = 0.66 and p = 0.33, 

respectively) or in the combined dataset (p = 0.764 and p = 0.388, respectively) was found. 

Therefore the molecular clock was not rejected and divergence times were estimated. Using 

the mutation rate of 2.3% per million years for ND1 a wide time range of speciation events 

was found. The lowest sequence divergence between two species, 0.5% to 1.2%, corresponds 

with a Pleistocene age, 0.2 to 0.5 Mya. The great majority of observed pairwise sequence 

divergences ranged between 7% and 13%, suggesting a concentration of speciation events in 

the Pliocene, 3.0 to 5.6 Mya (Figure 2a). The genus’s origin might be in late Miocene 8.7 

Mya, as indicated by the highest sequence divergence found, between brydeni and kalula 

(20.1%). 

Genetic distances of 0.4% to 1.1% between nearest sister species in the 16S region 

corresponded with their divergence 0.28 to 0.78 Mya, which is in concordance with ND1. 

Also comparable were the most frequent pairwise genetic distances in 16S: these were found 

in the middle of the range (3.5% to 6%), i.e. with most divergences between 2.5 and 4.3 Mya 

(Figure 2b). The highest sequence divergence was found between kirbyi and persephone 

(9.3%), which again suggests an origin in the late Miocene, 6.6 million years ago. 

Tree topology of ML analysis of the combined dataset of ND1 and 16S showed the 

same topology as the BA tree (Figure 1) and the likelihood ratio test between molecular 

clocks enforced vs. not enforced showed no significant differences. Therefore the tree 

including branch lengths was used to obtain an ultrametric tree with absolute calibration of 

the basal Trithemis node set to 10 Mya and which showed similar divergence dates between 

species and clades as the calculated divergence date estimates according to the mutation rates 

used above (Figure 3). 
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Figure 3 Ultrametric tree obtained from ND1 and 16S sequences based on Maximum 
likelihood branch lengths. The time was calibrated in r8s using a fixed node age of 10 Mya 
for the basal Trithemis node according to a fossil record. The grey fields indicate relatively 
drier (pale) and wetter (dark) periods relevant to Trithemis evolution (see discussion).  
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Morphology, ecology and distribution 

Figure 4 presents a conservative estimate of the evolutionary history of the genus. The most 

notable features are: (1) one colour type predominates in some clades, but red and dark 

coloration both evolved multiple times, (2) species of open and slow-flowing to temporary 

habitats predominate, especially basally, but adaptation to forest and/or fast-flowing water 

evolved multiple times, and (3) the origin and main radiation lie in the continental 

Afrotropics, with multiple invasions of Eurasia and Madagascar. Full details are discussed 

below. 

 

 

Discussion 

 

Diversity and phylogeny of the genus Trithemis 

The position of the two most basal species, T. brydeni and T. kirbyi, and the monophyly of 

three terminal clades were consistent in all analyses. The latter three are also well-defined 

morphologically (Pinhey 1970 and unpublished data) and conform to the basitincta-, dorsalis- 

and stictica-groups. They radiated in parallel within Africa, each within notably distinct 

ecological and geographic contexts, together giving rise to an estimated 55% of Trithemis 

species. The three not only contributed most to the genus’s present diversity, but also 

independently invaded forest habitats. In contrast to these consistent results, the placement of 

three dark (rather basal) species and twelve red species was problematic, probably owing to 

rapid basal radiation. This possibility is discussed below, followed by separate discussions of 

the basal species, the red species, and the three monophyletic radiations. 

 

Rapid radiation in the Pliocene 

Molecular clock estimates calculated with insect mitochondria mutation rates (Brower, 1994) 

dated the origin of the genus Trithemis in the late Miocene, approximately 6-9 Mya. This is 

congruent with the Trithemis fossil record (Nel 1991) which was dated back 7.1-11.2 Mya. 

The main radiation is thought to have occurred in the Pliocene, 2.5-5.6 Mya, with ongoing 

speciation up to the Pleistocene. Pairwise comparisons of estimated divergence times 

demonstrate clear concentrations of divergences 3.0-5.6 Mya in ND1 and 2.5-4.3 Mya in 16S 

(Figure 2). Also in the ultrametric tree the major clades separate in a relatively short period 

around 4 Mya (Figure 3). The short branch lengths where the major clades diverged suggest a 

fast diversification. Short basal branches are a frequent problem in phylogenetic 
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reconstructions, especially in ancient radiations (Whitfield and Lockhart, 2007). Because 81% 

of the recognized Trithemis species were studied and the missing species are regionally 

restricted, insufficient sampling of extant taxa is unlikely to account for the short branches. 

Another explanation is the choice of genetic markers, but the three used have previously 

resolved the phylogenies of odonate genera successfully (Misof et al., 2000; Hovmoller and 

Johansson, 2004; Hadrys et al., 2006; Groeneveld et al., 2007). All three, moreover, reveal 

similar topologies and branch lengths. Thus we conclude that the difficulty in resolving basal 

relationships was caused by rapid radiation, possibly in response to sudden environmental 

change (see below). 

 

Basal lineages 

The two most basal species are neither close to each other nor to other Trithemis species. The 

dark T. brydeni is local in the open Okavango and Bangweulu swamps. Genetic distances 

between it and other Trithemis species are mostly greater than between P. flavescens (the 

outgroup) and the others. With the more distantly related libellulid Crocothemis erythraea as 

outgroup, T. brydeni came out more basally than P. flavescens, while all other Trithemis 

species stay monophyletic. Therefore a generic reassessment of this taxon is warranted. Of all 

Trithemis species, the red T. kirbyi is best adapted to temporary pools, with rapid larval 

development and strong adult dispersal (Suhling et al., 2005). Consequently, it ranges 

throughout Africa, also deep into deserts, and to Madagascar, southern Europe, Arabia and 

India. 

While these two species seem to date from before the main Trithemis radiation, around 

5.0-7.5 Mya, three dark species without close affinities are also rather basal. T. hecate is local 

in open, possibly ephemeral, swamps throughout Africa and Madagascar. T. festiva is 

restricted to open streams from Turkey to Indonesia. P. trithemoides was the only sampled 

member of a complex of three or four diminutive species found mainly in central Africa, 

possibly in rainforest streams, variably placed in Anectothemis, Congothemis, Porpacithemis 

and/or Lokithemis on account of their simplified wing venation. Finding the species firmly 

inside the Trithemis radiation offers another demonstration of the fallibility of venation to 

define libellulid genera (Dijkstra and Vick, 2006; Pilgrim and Von Dohlen, 2008) and all four 

genera must probably be subsumed in Trithemis. 
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Red lineages 

Figure 4 Strict consensus of trees in figure 1 and 3, showing ecological characters on branches 
(ordered, optimized manually), as well as distribution and adult coloration. Internal nodes with either 
low BS (<50) or PP (<0.5) support have been collapsed. Name-giver of groups are asterisked. Colour 
of species names indicates that of adult, being red (red), pruinose red (violet), dark with no or black 
pruinosity (black), dark with blue-grey pruinosity on thorax and abdomen base (dark grey), or dark 
and entirely pruinose (pale grey). Codes behind the name provide an approximation of range: 
widespread in Africa and extending to Eurasia and/or Madagascar (>am, >m); confined to Asia (A); 
centred on central African forest, especially Congo Basin (C); eastern and southern Africa (E); 
endemic to Ethiopian highlands (Eth); endemic to Madagascar (M); centred on northern savannahs 
(N); restricted to Philippines (Ph); endemic to Príncipe (Pr); centred on western African forest (W); 
centred on ‘Zambezian’ swamps from Katanga to Botswana (Z). Colour of branches denotes 
(inferred) habitat preferences, unless not known (black): Water body - preference for strong flow, 
especially streams and rapids (blue), weak flow like calm rivers or stagnant section in streams 
(violet), standing waters (red) or standing waters with tolerance for temporary conditions (orange). 
Landscape - main occurrence in forest shade (dark green), within forest but in sun (pale green), 
patchy habitats, i.e. shaded in rather open and exposed in more closed environments (orange), 
exposed habitats (red) and open habitats in cooler climes, like higher altitudes or Cape region 
(violet). 
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Owing to the variable support of most clades containing red species, the exact number 

and position of independent red lineages remain unclear, but between four and nine appear to 

have given rise to the twelve red species studied. In the latter extreme case, each lineage 

evolved just a single species, with the exception of three pairs of species well-separated by 

range or ecology (see below). Eight out of twelve species cope in temporary water bodies. 

Together with the two more basal species, T. kirbyi and T. hecate, these are all Trithemis 

species tolerant to such conditions. Among them are two of Africa’s most widespread and 

numerous odonates, T. annulata and T. arteriosa, which dominate open freshwater in Africa, 

Madagascar, and adjacent Eurasia. Two sister-pairs originated within Africa 1.0-1.5 Mya: T. 

imitata and T. monardi inhabit open habitats north and south of the central forest belt. T. 

hartwigi, known from only five sites in central Africa, uniquely favours open pools within 

rainforest. Its sister-species T. arteriosa rarely penetrates dense forest and T. hartwigi may 

have diverged in open enclaves within the forest matrix. T. adelpha is the Philippine 

counterpart of T. aurora, one of Asia’s most ubiquitous dragonflies, but their separation was 

estimated at only 0.3-0.4 Mya. The two differ little and are often treated as synonymous. The 

four remaining species (T. bredoi, T. kalula, T. persephone, and T. werneri) have no clear 

affinities within the genus and inhabit flowing water, mostly calm and open, like savannah 

rivers. The Madagascar endemic T. persephone diverged 3-4 Mya and, atypically for a red 

species, inhabits forested streams. Perhaps it was pushed into this habitat by the arrival of 

another endemic, T. selika, that diverged from its probable sister-species T. annulata 2.6-2.9 

Mya. 

 

Lowland radiation (basitincta-group) 

All species inhabit running waters, mainly in lowlands, varying in degrees of exposure. 

Dijkstra & Clausnitzer (2006) hypothesized the group’s stepwise occupation of, adaptation to, 

and speciation in increasingly closed habitats. Indeed the most basal lineage (represented by 

T. dejouxi and T. donaldsoni) inhabits exposed savannah rivers, the next (T. aconita) favours 

half-open streams on the forest-savannah transition, while the remaining lineages inhabit 

forest streams with varying degrees of shading. Each lineage is divided into geographically 

separated species, suggesting speciation in allopatry. The distribution of, and genetic distance 

between, T. dejouxi and T. donaldsoni is similar to those of T. imitata and T. monardi (see 

above). Judging from their slight genetic difference, the split of T. africana and T. tropicana 

in forest west and east of the Dahomey Gap respectively, only occurred in the past 0.7 Mya. 

By morphology, T. congolica from the Congo Basin and T. nigra from the volcanic island of 
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Príncipe are sister-species of T. aconita. Neither was sampled, but their separation would have 

occurred after T. aconita separated from the other basitincta-group species, about 3 Mya. 

 

Highland radiation (dorsalis-group) 

This group includes two clades, one with two species (T. dichroa, T. pluvialis) and the other 

with the remaining four: T. dorsalis, T. ellenbeckii, T. furva, and T. pruinata. While most 

species favour open streams at higher altitude, T. dichroa and T. pruinata inhabit shaded 

lowland streams, often in forest. The highland species show broadly overlapping ranges, 

mainly in the uplands from the Cape to Kenya. Most widespread, T. furva extends to 

Madagascar, Cameroon and Ethiopia; its relative T. ellenbeckii is restricted to the Ethiopian 

highlands. The habitat shift of T. dichroa and T. pruinata may result from an adaptation to 

cooler microhabitats in a highland area of origin, which allowed them to occupy shaded 

lowland streams. Both species diverged from their highland sister-species T. pluvialis and T. 

furva about 0.6-1.4 Mya and now occur throughout the central and western African forest. 

Morphologically these sister-pairs are almost identical, but T. pluvialis is unique within a 

clade of dark species to have reversed to (or very possibly retained) red coloration. 

 

Swamp radiation (stictica-group) 

The species occupy rather open habitats of ‘mixed’ flow, like channels in swamps and calm 

stretches and by-waters of streams, although they may prefer stronger current (T. morrisoni), 

a cooler microclimate (T. stictica) or more cover (T. aenea, T. nuptialis). With the exception 

of the widespread T. stictica, the distribution of the lineages alternates across the Congo-

Zambezi watershed. While T. aenea, T. grouti and T. nuptialis occur mainly in the Guineo-

Congolian forests, three other species are concentrated in the ‘Zambezian’ swamps to the 

south: T. aequalis is confined to the Okavango and Bangweulu swamps, while the species-

pair T. palustris-morrisoni is sympatric in the Okavango and adjacent Zambezi system. The 

latter species were only separated from T. stictica after a marked genetic distance was found, 

and may differ subtly in habitat (Damm and Hadrys, 2009). Neither is proven to overlap with 

T. stictica, which ranges in open and often elevated habitats from the Cape to Madagascar, 

Ethiopia and across western Africa. Judging from their morphology, two localized species, T. 

anomala (Zambia-Katanga border region) and T. fumosa (Congo), belong in this group too. 

Although the group’s radiation started around 3.3 (16S) or 3.9 Mya (ND1), the genetic 

distance in the most recent split (T. aenea-aequalis) is nil (16S) or equivalent to only 0.3 Mya 

(ND1). 
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Evolutionary implications 

 

Ecology and coloration 

Based on the above and Figure 4, Trithemis species of open habitats predominate and a shift 

towards more shaded habitats occurred on numerous occasions. The more basal species 

inhabit standing or slow-flowing water, with several shifts occurring to stronger currents. 

Depending on the phylogenetic reconstruction and the assumed ancestral state, red vs. dark 

coloration developed or disappeared at least three times, but probably more often. The 

evolution of the extent and density of pruinosity is even more complex (Figure 4). This 

evolutionary flexibility in ecology and coloration may be related, as the exposure of dark 

pigmentation to sunlight raises the body temperature, which is counteracted by reflective 

pruinosity (Corbet, 1999). Indeed of fourteen studied red species, nine favour standing (often 

temporary) water and twelve inhabit open habitats. In contrast, only three of 24 dark species 

favour such waters, while thirteen dark species prefer half-open or closed habitats, such as 

forest. Moreover, while the three dark lineages each produced between six and eleven species, 

the red lineages each gave rise to only one or two, indicating different ‘evolutionary 

potentials’ (see below). 

 

Distribution and speciation 

The mode and location of speciation events can only be inferred from current distributions. 

However, most Trithemis species have large ranges and presumably good dispersal capacities. 

For example, eight species invaded Madagascar independently, while there were between five 

and seven dispersal events to Asia (two species not sampled). Nonetheless, of the well-

supported sister-species relationships found, (1) five involve pairs of allopatric species 

(aenea-aequalis, africana-tropicana, aurora-adelpha, donaldsoni-dejouxi, and monardi-

imitata), (2) three show narrow geographic overlap, but distinct habitat preferences 

(arteriosa-hartwigi, dichroa-pluvialis, and furva-pruinata), and (3) only one pair (morrisoni-

palustris) is broadly sympatric within different habitats. Allopatry in regions of suitable 

habitat, separated by uninhabitable regions, may be the primary mode of speciation in these 

examples (followed by some secondary overlap) and the genus in general. Nonetheless, 

divergent selection across ecological gradients (e.g. on the forest-savannah transition) is also a 

potential force for speciation (Smith et al., 1997; Moritz et al., 2000; Schilthuizen, 2000). This 

gradient model may have operated in the invasion of increasingly shaded habitats in the 
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basitincta-group, the two shifts from high- to lowland in the furva-group, and the alternation 

between open swamp and forest in the stictica-group. 

 

Biogeographical hypothesis 

The African Neogene (<23 Mya) was characterized by climatic vicissitudes with a trend 

towards increasing aridity. During the early Miocene rainforest stretched between coasts and 

to northern Ethiopia, but savannah began expanding 16 Mya and became widespread 8 Mya 

(Lovett, 1993; Vbra, 1993; Morley, 2000; Jacobs, 2004; Sepulchre et al., 2006). At the end of 

the Miocene (5 Mya) rainforest was limited and much of Africa’s Paleogene diversity was 

eliminated (Plana, 2004). While the evolution of Trithemis appears to have begun in this 

period of savannah bloom, the major lineages originated afterwards, in the relatively wet early 

Pliocene (3.5-5 Mya). While aridification generally disadvantages water-dependent species, it 

favours adaptations to exposed and temporary conditions, as seen in most red and basal 

Trithemis species. While the genus may have arisen in the savannah-expansion of the late 

Miocene, populations in open areas possibly became isolated by forest-expansion in the early 

Pliocene, with subsequent allopatric speciation giving rise to the many poorly-resolved 

lineages. Adaptation to temporary conditions dictates good dispersal ability and as forests 

shrank again and open habitats coalesced after 3.5 Mya, the species expanded to establish 

largely overlapping ranges (e.g. T. annulata and T. arteriosa). Without isolating mechanisms, 

these lineages did not radiate further, with the exception of a few allopatric species-pairs (see 

below). 

By contrast, the three dark lineages were ecologically more constrained and therefore 

could radiate excessively under pressure of the changes in the next 3.5 Mya. Pronounced 

drying occurred 3.5, 3.2 and 3.0 Mya and especially 2.5-2.8 Mya with the onset of the first 

northern hemisphere glaciation (Morley, 2000), with further step-like increases in aridity 1.7-

1.8 and 1.0 Mya (deMenocal, 1995). The highland radiation (dorsalis-group) coincided with 

the major Pliocene and early Pleistocene uplift that created the Great Rift Valley and the 

Congo Basin (Plana, 2004). The lowland shift of T. dichroa and T. pruinata may have been 

triggered by the expansion of forest in a wetter interlude 1.0-1.5 Mya, offering access to 

suitable new habitat in the form of shaded streams. At the same time the retreat of open 

habitats could separate the pairs T. arteriosa-hartwigi, T. monardi-imitata and T. donaldsoni-

dejouxi. There was a strong increase of climatic variability 0.8 Mya and perhaps the 

separation of forest species like T. africana and T. tropicana occurred at this time. 
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Conclusions and outlook 

 

The present-day diversity and dominance of Trithemis result from its species’ flexible 

responses to the climatic fluctuations in Africa since the late Miocene. Today the genus 

occupies a great variety of habitats, displaying its high adaptation potential. Its success seems 

to be related to the origin of extensive savannah, which favoured opportunistic species and 

their dispersal ability. Less mobile species of more stable habitats (e.g. permanent water, 

rainforest) either became extinct under these conditions or were restricted to pockets of 

optimal habitat (e.g. Fjeldsa and Lovett, 1997; Hadrys et al., 2006; Burgess et al., 2007; 

Fjeldsa and Bowie, 2008). It has been suggested that the ecological constraints of ancestral 

adaptations dictate the direction of radiations (McPeek, 1995; Richardson, 2001). In this 

genus too, groups with more restrictive adaptations radiated within distinct ecological 

confines. Nonetheless, Trithemis straddled ecological barriers in different directions multiple 

times. Most shifts occurred from open to forested habitats and from standing to running 

waters. Phylogenetic analysis of related genera must provide further insight into the ancestral 

habitat, but in general this is thought to be forest streams in Odonata (Kalkman et al., 2008). 

Thus the repeated re-invasion of these habitats via different ecological routes in Trithemis is 

exemplary of the rise of a ‘modern’ freshwater fauna in, and under influence of, Africa’s 

changing environment (Dijkstra, 2007). This is one of several recent studies revealing 

explosive African radiations in the Plio-Pleistocene (e.g. Gaubert and Begg, 2007; Van Daele 

et al., 2007; Dubey et al., 2008; Koblmueller et al., 2008). It demonstrates the importance of 

combining ecological and phylogenetic data to understand the origin of biological diversity 

under great environmental change. Such studies will be crucial to guide conservation efforts 

by anticipating ecological and evolutionary responses to future change. 
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