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Abstract 

The aim of this thesis is to analyse the asparagus disease “purple spot” and to develop a 

forecasting model, called SIMSTEM (Simulation of Stemphylium), to be used as a tool 

in integrated pest management. For this purpose, the exact identification of the pathogen 

at an early stage is essential. 

Although the fungal species Stemphylium vesicarium has been identified as the causal 

pathogen of purple spot worldwide, the closely related species Stemphylium botryosum 

has also been detected in Germany, Japan, and Greece. Due to phenotypical similarities, 

morphological differentiation between the species is very difficult, and therefore a suita-

ble alternative method to distinguish these species was needed. A molecular- and genet-

ics-based method to differentiate S. vesicarium and S. botryosum was developed to iden-

tify the causal agent of purple spot in Germany. The most significant difference between 

the species was a 3 kb intron present in the cytochrome b region of S. botryosum that was 

absent in S. vesicarium. Besides qualitative analysis by the PCR reaction, the frequencies 

of the species were directly detected from infected asparagus samples via qPCR. In all 

232 German samples collected between 2010 and 2014, only S. vesicarium was identified. 

The life cycle of S. vesicarium can be divided into the monocyclic (ascospores) and pol-

ycyclic (conidia) phases, which were both modelled using biological data from field and 

laboratory trials. Spore flight, germination, and germ tube length were measured sepa-

rately for both phases. In addition, we modelled the number of lesions formed by conidia, 

as a measure of disease efficiency, and the mycelium growth. 

Yearly ascospore flight was monitored by spore traps. In 2014 to 2016, ascospores flew 

from March to July, but were mostly released in early May. The cumulative percentage 

of trapped ascospores was modelled by a logistic, Gompertz and Chapman Richards func-

tion depending on the daily temperature sum (base 5 °C) and daily rain amount (RA > 0.0 

and 0.2 mm). The best fit was obtained for the Chapman Richards function with RA > 0.0 

mm. Yearly conidial flight was also measured with spore traps. In the years 2013 to 2015, 

conidial flight began in mid-July, but only after mid-August to early September the num-

ber of trapped conidia was very pronounced. The cumulative percentage of trapped co-

nidia was modelled by a logistic function depending on the daily temperature sum (base 

0 °C) and daily rain amount (RA > 0.2 mm). When both phases were compared, a gap 

from June to July was observed, during which the fungus released no or very few spores.  
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The germination of ascospores, depending on leaf wetness duration and temperature, was 

investigated in trials on water agar. A fitted Chapman Richards function with a tempera-

ture-dependent capacity and rate described germination adequately with an optimal tem-

perature of 31.04 °C. The conidial germination data were modelled by a generalised beta-

modified Chapman Richards function with a clearly lower optimum temperature of 

23.3 °C. Considering the rapid germination rate and the wide temperature range of both 

phases, germ tube length was introduced as an additional factor for lesion development, 

resulting in a more specific growth-limiting factor for forecasting. The optimal tempera-

ture of germ tube length for ascospores (30.4 °C) was modelled by a generalised beta-

linear function while that for conidia (28.7 °C) was modelled by a generalised beta-power 

function. 

To include the factor host plant, the number of lesions was recorded on green asparagus 

spears after inoculation of conidia from two strains. This measure of disease efficiency 

was modelled by a generalised beta function with an optimum temperature of 21.9 °C and 

the narrowest optimum temperature range of all model parts. After a lesion is formed, the 

spread of the fungus in plant tissue depend on mycelium growth. The mycelium growth 

of four strains in a petri dish experiment was modelled by a generalised beta function with 

an optimum temperature of 24.7 °C. 

All modelled aspects of both phases were combined in the algorithm of SIMSTEM, which 

is currently in the testing phase (2018). The model algorithm was developed by the Cen-

tral Institute for Decision Support Systems in Crop Protection (ZEPP) and integrated into 

the agricultural internet platform for the integrated plant production ISIP (www.isip.de). 

The model can be used flexibly, because it can forecast the beginning of the epidemic, 

the time of the first treatment, and the disease progression (as a proportion of the diseased 

leaf area), and can signal periods with high disease pressure via a traffic light system. 

SIMSTEM uses area-specific weather data, and all model rates are calculated using 

hourly weather parameters of temperature (in °C), relative humidity (in %), and rainfall 

(in mm). In Germany, the later-occurring polycyclic phase has emerged as clearly more 

important for forecasting and control. Ascospore flight is often completed before the end 

of harvest, and treatment with fungicides against the monocyclic phase may be irrelevant 

in many production sites in Germany. However, the monocyclic phase may also be a 

critical factor in some seasons, such as in the cases of earlier harvest ends and non-har-

vested young plants. 
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Zusammenfassung 

Ziel dieser Arbeit ist die Beschreibung und Modellierung der Spargellaubkrankheit ‘Pur-

ple Spot‘ zur Neuentwicklung eines Prognosemodells, Simulation von Stemphylium 

(SIMSTEM), als Werkzeug des integrierten Pflanzenschutzes. Zu diesem Zweck ist zu-

dem die Identifizierung des Erregers im Vorfeld wesentlich. 

Obwohl weltweit der Pilz Stemphylium vesicarium als Erreger identifiziert wurde, ist in 

Deutschland, Japan und Griechenland die eng verwandte Art S. botryosum beschrieben 

worden. Die morphologische Differenzierung dieser Arten ist aufgrund phänotypischer 

Ähnlichkeiten sehr schwierig und die Entwicklung einer geeigneten Alternative zur Un-

terscheidung war wesentlich. Um den in Deutschland vorherrschenden Erreger der Spar-

gellaubkrankheit zu identifizieren, wurde zunächst eine molekulargenetische Differenzie-

rungsmethode entwickelt. Der bedeutendste Unterschied war ein 3 kb Intron in der 

Cytochrom b Region, welches in S. botryosum jedoch nicht in S. vesicarium nachgewie-

sen werden konnte. Neben der qualitativen Analyse (PCR-Reaktion) wurde zudem die 

Häufigkeit beider Arten mit Hilfe einer qPCR direkt aus infizierten Spargelproben ermit-

telt. In allen 232 deutschen Proben, die von 2010 bis 2014 gesammelt wurden, konnte 

dabei ausschließlich S. vesicarium identifiziert werden. 

Der Lebenszyklus von S. vesicarium ist in die mono- (Askosporen) und die polyzyklische 

(Konidien) Phase geteilt, welche mittels biologischer Daten aus Feld- und Laborversu-

chen modelliert werden konnten. Sporenflug, Keimung und Keimschlauchlänge wurden 

für beide Phasen separat gemessen. Modelliert wurden zudem die von Konidien gebildete 

Läsionensanzahl als Maß für die Krankheitseffizienz und das Myzelwachstum. 

Der jährliche Askosporenflug wurde durch Sporenfallen ermittelt. Askosporen flogen in 

2014 - 2016 von März bis Juli, die meisten waren bereits bis Anfang Mai freigesetzt. Der 

kumulative Prozentsatz wurde in Abhängigkeit der täglichen Temperatursumme (Basis 

5 °C) und der täglichen Regenmenge (RA > 0,0 und 0,2 mm) durch die logistische, Gom-

pertz und Chapman Richards Funktion modelliert. Die beste Anpassung gelang mittels 

Chapman Richards Funktion bei RA > 0,0 mm. Der Konidienflug wurde mit Sporenfallen 

ermittelt. In 2013 - 2015 begannen Flugereignisse ab Mitte Juli, aber erst nach Mitte Au-

gust Anfang September, war der Konidienflug ausgeprägt. Der kumulative Prozentsatz 

gefangener Konidien wurde, abhängig von täglicher Temperatur- (Basis 0 °C) und Re-

genmenge (RA > 0,2 mm), mit einer logistischen Funktion modelliert. Zwischen den 
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Flugperioden, von Juni bis Juli, bestand eine Lücke, in der der Pilz keine bis wenig Sporen 

freisetzte. 

Die Keimung von Ascosporen wurde, abhängig von der Blattnässedauer und der Tempe-

ratur, in Versuchen auf Wasser-Agar untersucht. Eine Chapman Richards Funktion mit 

temperaturabhängiger Kapazität und Rate beschreibt die Keimung adäquat, mit einem 

Temperaturoptimum von 31,04 °C. Die Keimungsdaten der Konidien wurden dagegen 

mit einer verallgemeinerten Beta-modifizierten Chapman Richards Funktion modelliert, 

mit einem Optimum von 23,3 °C. Aufgrund der rapiden Keimung und des weiten Tem-

peraturbereichs in beiden Phasen, wurde die Keimschlauchlänge als zusätzlicher Faktor 

für die Läsionsentwicklung herangezogen, was in einem spezifischeren, wachstumsbe-

grenzenden Faktor für die Prognose resultierte. Die optimale Temperatur der Keim-

schlauchlänge für Ascosporen (30,4 °C), wurde durch eine verallgemeinerte Beta-linear 

Funktion und für Konidien (28,7 °C) durch eine Beta-Power Funktion ermittelt. 

Um den Faktor Wirtspflanze einzuschließen, wurde als Maß für die Krankheitseffizienz 

die Anzahl der Läsionen von Konidien für zwei Stämme an grünen Spargelstangen un-

tersucht und durch eine verallgemeinerte Beta Funktion mit einem Optimum bei 21,9 °C 

beschrieben. Das Ergebnis zeigte das engste Temperaturoptimum aller Modellteile. Im 

Pflanzengewebe ist die Ausbreitung des Pilzes vom Myzelwachstum abhängig. Das My-

zelwachstum von 4 Stämmen wurde durch eine verallgemeinerte Beta Funktion mit Daten 

aus einem Petrischalen-Experiment modelliert und hat sein Optimum bei 24,7 °C. 

Alle Aspekte beider Phasen sind im SIMSTEM Algorithmus enthalten. Dieser wurde von 

der Zentralstelle der Länder für EDV-gestützte Entscheidungshilfen und Programme im 

Pflanzenschutz (ZEPP) entwickelt und im Internetauftritt des Informationssystems für 

Integrierte Pflanzenproduktion (www.isip.de) integriert. Das Modell ist flexibel nutzbar, 

da Epidemiebeginn, Erstbehandlung und Krankheitsfortschritt prognostiziert werden 

können und die Signalisierung von Perioden mit hohem Krankheitsdruck über ein Am-

pelsystem möglich sind. SIMSTEM nutzt standortspezifische Wetterdaten und die Mo-

delraten werden mit den stündlichen Werten der Temperatur (in °C), relativer Feuchte (in 

%) und Niederschlag (in mm) berechnet. Die spätere polyzyklische Phase ist in Deutsch-

land für die Prognose und Kontrolle weitaus bedeutender. Der Askosporenflug ist oft be-

reits vor dem Ernteende abgeschlossen und Fungizidbehandlungen gegen die monocyc-

lische Phase können irrelevant sein. Diese Phase kann jedoch in einigen Jahren bedeutend 

sein, zum Beispiel bei früherem Ernteende und in nicht geernteten Jungpflanzenanlagen. 
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1. Introduction  

The genus Asparagus includes 300 species distributed over three subgenera, Asparagus, 

Protasparagus, and Myrsiphyllum (Clifford and Conran 1987; Tomassoli et al. 2012). 

Modern taxonomic studies classify the genus Asparagus into the family Asparagaceae 

and the order Asparagales (Chase et al. 2009). Asparagus officinalis L. is economically 

the most important species worldwide (Tomassoli et al. 2012). It is perennial, dioecious, 

and occasionally occurs as hermaphrodite individuals (Lee et al. 1996; Ainsworth 2000). 

In 2009, asparagus was reported to be cultivated in 62 countries with a yield of 760,000 t 

per year. The total cropland area devoted to asparagus is 195,000 ha, 35.5 % of which is 

in Asia, 34 % in North and South America, and 29 % in Europe (Benson 2009). In 2014, 

the German crop area was reported to be 25,335.7 ha (20,122 ha in yield) with a harvest 

volume of 114,090.1 t (StBA (Statistisches Bundesamt) 2015). Asparagus was initially 

used for medical purposes before it was eaten as food; today, it is recognized for its wealth 

of vitamins, minerals, and fibre content (Amaro-López et al. 1998; Sun and Powers 2007). 

While green asparagus is highly popular in the USA, white asparagus is in demand in 

Western Europe (Benson 2009). White and green asparagus can be obtained from the 

same plant, although some varieties are more suited to specific cultivation methods 

(Feller et al. 2012). 

Asparagus presents four plant parts: the storage roots, the fibrous roots, the rhizome, and 

the shoots. If the shoots are not cut after harvest, they form lateral shoots from which 

phylloclades emerge (Weinheimer 2008). During the summer, the phylloclades produce 

assimilates, which are moved to subterranean storage organs. Under German cultivation 

conditions, the shoots begin to mature in the autumn. Maturation induction is triggered 

under Central European conditions by a temperature impulse and under tropical condi-

tions by water deficiency (Krug 1996; 1998; 1999a; 1999b). After the winter repose, the 

buds begin to sprout once more. Shoot growth begins on a larger scale when the threshold 

temperature of 12 °C is exceeded near the crown (Hartmann 1989; Vogel 1996). 

In asparagus production, yield quantity and quality determine economic success. The 

highest revenues can be achieved in Germany with a quality grade of 16-26 mm in diam-

eter (Weinheimer 2008). Wilson et al. (2008) explained that asparagus yield is the result 

of a complex sequence of physiological processes influenced by the environment and 

management in both the current and previous years. Yield depends on the ability of the 
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storage roots to accumulate carbohydrates, which are produced by fern activity in the 

season before spear harvest and, possibly, the preceding years (Paschold et al. 2002). 

Studies on asparagus physiology have shown a close relationship between the amount of 

root-stored carbohydrates and spear yield (Robb 1984; Wilson et al. 1999). The capacity 

for aged fern to produce carbohydrates is severely reduced (Dufault 1995; 1999; Dufault 

and Ward 2005). Premature defoliation of fern also decreases the photosynthetic potential 

of the crop (Cunnington and Irvine 2005). 

Alleopathic residues (Yang 1982), acidic soils (Hodupp 1983), soil compaction, winter 

crown injury (Putnam and Lacy 1977), and excessive spear cutting pressure (Shelton and 

Lacy 1980) can contribute to asparagus decline. Biotic factors, such as insects and weeds, 

can also lead to poor stand and decline (Damicone et al. 1987; Putnam and Lacy 1977). 

The common asparagus beetle Crioceris asparagi (Linnaeus) and the twelve-spotted as-

paragus beetle Crioceris duodecimpunctata (Linnaeus) are leaf beetles that feed exclu-

sively on asparagus (LeSage et al. 2008). The asparagus fly (Platyparea poecilopterais), 

along with the asparagus beetle, is the most important insect pest of asparagus in Germany 

(Crüger 1991). The asparagus miner (Ophiomyia simplex Loew), a putative vector of 

pathogenic Fusarium spp, may also occur (Bishop et al. 2004). In addition, the aphid 

Brachycorynella asparagi (Mordvilko) causes a characteristic severe distortion of the ter-

minal bud of asparagus ferns called rosetting, which shortens internodes and leaves and 

turns the latter blue-green (Stoetzel 1990). Aphids are also able to spread viruses in as-

paragus (Hein 1969; Greiner 1980). 

To date, nine viruses have been associated with asparagus (Tomassoli et al. 2012). The 

two most important viruses, which were first described in Germany, asparagus virus 1 

(AV1) (Hein 1960) and asparagus virus 2 (AV2) (Hein 1963), occur only in asparagus, 

as does asparagus virus 3 (AV3) (Fujisawa 1986). Tobacco streak virus (Paludan 1964), 

cucumber mosaic virus (Weissenfels and Schmelzer 1976), tobacco mosaic virus (Facci-

oli 1965), and three nepoviruses (Posnette 1969) are also associated with asparagus. 

Besides insects and viruses, diseases are predominantly responsible for damage to aspar-

agus (Elmer 1996). Grey mould (Botrytis cinerea) can infect shoot tissue and, if not con-

trolled, cause considerable losses by instigating premature shoot death. Grey mould can 

also be isolated from stem bases (Blok and Bollen 1995). Asparagus rust, which is caused 

by Puccinia asparagi DC., in Lam. & DC., was originally described in France in 1805 

and appeared in New Jersey, North America, in 1896 (Halstead 1898). The symptoms of 
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this disease in mature stems are elongated lesions that contain small, orange-red pustules 

arranged in concentric rings (Cheah and Davis 2002). Fusarium stem and crown rot 

(Johnston et al. 1979) was first noted in 1908 (Stone and Chapman 1908). Over the years, 

this disease has been termed dwarf asparagus (Cook 1923), wilt and root rot (Cohen and 

Heald 1941), seedling blight (Grogan and Kimble 1959), and crown rot complex (Endo 

and Burkholder 1971). Depending on the respective site conditions, Fusarium oxysporum 

(Schlecht) f. sp. asparagi (S. I. Cohen) and Fusarium proliferatum (Matsushima) Niren-

berg could occur frequently (Cohen and Heald 1941; Blok and Bollen 1995; Elmer 1996; 

Gossmann et al. 2001; 2005; 2008; Logrieco et al. 1998; Weber et al. 2006). Numerous 

fungi of the genus Fusarium are able to form mycotoxins from type B fumonisins, which, 

in addition to a reduction in yield, cause a qualitative impairment in the crop (Logrieco et 

al. 1998; Seefelder et al. 2002). 

Purple spot or Stemphylium leaf spot is a significant disease in all asparagus-growing 

regions worldwide (Suzui 1973; Menzies 1980; Lacy 1982; Blancard et al. 1984; Falloon 

et al. 1984; Gindrat et al. 1984) and a serious problem in Germany (Menzinger and Weber 

1990). Due to the premature defoliation of fern in the autumn and the resulting reduction 

in photosynthetic potential, significant yield loss may result from purple spot (Menzies et 

al. 1992).  

The genus Stemphylium was described for the first time in asparagus with the type species 

‘Stemphylium botryosum W. ad Asparagum’ in 1833 (Wallroth 1833). It has since been 

morphologically analysed and described in detail by Wiltshire (1938) and Simmons 

(1967; 1969). The teleomorph form of S. botryosum was later taxonomically rewritten 

and altered from Pleospora herbarum (Pers) Rabenhorst to Pleospora tarda (Simmons 

1985). The fungus described as Helmisporium vesicarium (Wallroth 1833) is now known 

as S. vesicarium and has been supplemented by the teleomorphic form Pleospora allii 

(Simmons 1969). According to the Amsterdam Declaration on Fungal Nomenclature 

(Hawksworth et al. 2011), the dual nomenclature was changed to ‘one fungus, one name’. 

The name of the anamorph is applicable for species belonging to the genus Stemphylium, 

whereas the name of the teleomorph Pleospora is suppressed (Wijayawardene et al. 2014; 

Rossman et al. 2015). Following these conventions, S. vesicarium is used for each form 

of the fungus in this study. 
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Stemphylium is a genus of plant pathogens and saprophytes in the Ascomycota family of 

Pleosporaceae (Inderbitzin et al. 2009). Stemphylium species are dematiaceous hyphomy-

cetes with muriform, septate, and usually pigmented conidia produced by conidiophores, 

which proliferate percurrently. The percurrently proliferating conidiophore is the key 

morphological feature that distinguishes this genus from other genera with muriform co-

nidia, such as Ulocladium and Alternaria (Simmons 1967). Unlike Alternaria sp., the 

conidia of Stemphylium are not formed in chains (Inderbitzin et al. 2009). About 30-110 

species are known to belong to the genus Stemphylium (Câmara et al. 2002; Inderbitzin 

et al. 2009; Farr and Rossman 2015). Most of these species are saprophytes that grow on 

cellulose materials and dead plants (Simmons 1969; Ellis 1971). Fifteen genera and 24 

species have been described as host plants for Stemphylium species (Farr and Rossman 

2015). 

Resistance and environmental problems caused by the massive use of chemicals to main-

tain crops resulted in sharp criticism in the 1960s (Carson 1962) and led to the promotion 

and development of alternative pest control strategies (Perkins 1982). The integrated pest 

management (IPM) concept is based on the economical use of plant protection products, 

the benefits of utilising natural enemies, and their threat by plant protection measures. 

IPM includes a wide range of alternative pest control measures, such as crop rotation, 

undersowing, planting of resistant varieties, adjustment of cultivation times to the infes-

tation pressure, and mechanical methods (Dent and Elliott 1995; Burth and Freier 1996). 

An alternative approach to reduce fungicides treatments is the use of forecasting models. 

In other arable and fruit tree cultures, beneficial experiences have been achieved by adopt-

ing computer-assisted decision support systems (Kleinhenz and Jörg 1998; Jörg et al. 

1999). In the former German Democratic Republic, simulation models were used to con-

trol plant diseases, for instance, to regulate the nationwide use of fungicides (Gutsche and 

Kluge 1983). Decision support systems can be useful for forecasting the date of exceeding 

control thresholds and, thus, the date of fungicide application. Using mathematical mod-

els, the time requirement for field elevations can be minimised (Racca et al. 2002). The 

effects of temperature and leaf wetness duration on the infection and growth of fungal 

plant diseases can be modelled to forecast infection periods (Lalancette et al. 1988; 

Carisse and Kushalappa 1990; Montesinos and Vilardell 1992; Montesinos et al. 1995b; 

Broome et al. 1996). The model Forecasting Alternaria solani on Tomatoes (FAST), for 

instance, was developed to identify favourable environment conditions for early blight 
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and to provide a schedule for efficient fungicide applications (Madden et al. 1978). Brown 

spot of pear forecasting (BSPcast) was subsequently derived from FAST by adapting the 

model to the aetiology and epidemiology of S. vesicarium on pear (Montesinos and Vi-

lardell 1992; Montesinos et al. 1995a; Montesinos et al. 1995b; Llorente et al. 2000; 

Llorente et al. 2011). The tomato disease forecasting (TOM-CAST) model was also de-

rived from FAST as a weather-timed fungicide spray forecasting model for tomato an-

thracnose, Septoria leaf spot, and late blight (Pitblado 1992). TOM-CAST was later tested 

in order to reduce fungicide spray application in the control of purple spot in asparagus 

(Meyer et al. 2000; Eichhorn et al. 2010); however, BSPcast and TOM-CAST are not 

sufficiently adapted to the pathogen S. vesicarium or the host asparagus. Furthermore, the 

number of fungicide applications administered in practice is currently lower than that 

recommended by these two models. 

The integrated control of purple spot by a new forecast model, called SIMSTEM (Simu-

lation of Stemphylium), requires the exact identification of the pathogen and more detailed 

information regarding the pathogen’s biology in asparagus. 

 

The objectives of this study, therefore, are: 

(i) to develop a molecular- and genetics-based method to distinguish S. vesicar-

ium from S. botryosum; 

(ii) to analyse infected German asparagus samples to identify the prevalent causal 

agent of purple spot in Germany; 

(iii) to describe and model the monocyclic phase of S. vesicarium in asparagus 

based on biological data from ascospores collected in laboratory and field tri-

als; 

(iv) to describe and model the polycyclic phase of S. vesicarium in asparagus 

based on biological data from conidia gathered in laboratory and field trials; 

and 

(v) to relate the monocyclic and polycyclic phases in the revised forecasting 

model SIMSTEM and complete its implementation in www.isip.de. 
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2. Differentiation of Stemphylium vesicarium from Stem-

phylium botryosum as causal agent of the purple spot 

disease on asparagus in Germany 

2.1. Abstract  

The purple spot disease of asparagus is the most important disease in German asparagus 

growing regions. Two different Stemphylium species, S. vesicarium and the closely re-

lated species S. botryosum, are described as causal pathogens. Because of the strong phe-

notypical similarities, the morphological differentiation is very difficult. Therefore, the 

development of a suitable alternative to distinguish these species is an important need. 

The aim of this study was to develop a molecular and genetic based differentiation method 

for S. vesicarium and S. botryosum, and to analyze asparagus samples from Germany with 

this method to identify the prevalent causal agent of the purple spot disease in Germany. 

The sequences of three different DNA-markers were compared to get the most appropri-

ate basis. Additionally, to the commonly used ITS regions, parts of the protein-coding 

genes gapdh (glyceraldehyde-3-phosphate-dehydrogenase) and cytochrome b were ana-

lysed. The most significant difference between the two species was a 3 kb intron present 

in the S. botryosum cytochrome b region but not in S. vesicarium. This difference showed 

to be suitable for the distinction of these two Stemphylium species by a simple PCR-reac-

tion. In addition to the qualitative analysis, the frequencies of these species were detected 

directly from asparagus field samples with the help of qPCR. In all German samples col-

lected in 2010, 2011, 2013 and 2014 only S. vesicarium could be identified. 

 

Keywords: Stemphylium vesicarium, Stemphylium botryosum, Purple spot disease, As-

paragus, Species identification 

2.2. Introduction 

The purple spot disease or Stemphylium leaf spot of asparagus (Asparagus officinalis) has 

become a significant problem in all asparagus growing regions worldwide (Suzui 1973; 

Menzies 1980; Lacy 1982; Blancard et al. 1984; Falloon et al. 1984; Gindrat et al. 1984), 
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and become a serious problem in Germany in the late 80s (Menzinger and Weber 1990). 

Due to the premature defoliation of fern in autumn and the resulting reduced photosyn-

thetic potential, up to 52 % yield loss can be caused (Bansal et al. 1992). Stemphylium 

Wallr. is a genus of filamentous ascomycetes with S. botryosum Wallr. (Teleomorph: 

Pleospora tarda E.G. Simmons) as the type species. The most important morphological 

characteristic to distinguish Stemphylium from the closely related genera Ulocladium and 

Alternaria is the pre-currently proliferating conidiophore (Simmons 1969). There are 

more than 30 recognizable species known for the genus Stemphylium (Câmara et al. 

2002). 

S. vesicarium (Wallr.) E.G. Simmons (Teleomorph: Pleospora allii), which is also known 

to cause the brown spot disease of pears, was identified also as causal agent of the purple 

spot disease of asparagus in the USA (Michigan (Hausbeck et al. 1997; Meyer et al. 

2000), California (Falloon et al. 1987) and Washington (Johnson and Lunden 1984)), 

Australia (Cunnington and Irvine 2005), South Africa (Thompson and Uys 1992) and 

New Zealand (Bansal et al. 1992). The closely related species S. botryosum was detected 

in asparagus samples from Germany (Leuprecht 1988; Neubauer 1998), Japan (Suzui 

1973) and Greece (Elena 1996). For many years, the identification of Stemphylium spe-

cies was mainly based on morphological characteristics, such as conidial shape, size, 

length/width ratio, color, ornamentation and septation (Simmons 1967; 1969; 1985). 

Many of these characters overlap among related species, making determinations on spe-

cies level difficult and in some cases incorrect (Cunnington and Irvine 2005; Shenoy et 

al. 2007; Wang et al. 2010). However, S. botryosum seems to be highly variable on plant 

material and in pure culture. Stemphylium species are also known to show high conidial 

variability at different temperatures and on different substrates (Leach and Aragaki 1970; 

Leuprecht 1990). With durations of 3 months to form fertile ascospores for S. vesicarium 

and 8 months for S. botryosum (Simmons 1985; Chaisrisook et al. 1995b), this morpho-

logical characteristic is not suitable for rapid species identification. As the two species, 

may differ in etiology, the identification of the causal agent is crucial for the development 

of a suitable pest management. 

Sequences of the internal transcribed spacers (ITS) of the nuclear ribosomal DNA and 

protein coding genes, for example gapdh, are important molecular markers in phyloge-

netic analyses of fungi (White et al. 1990; Begerow et al. 2010; Schoch et al. 2012). Be-

sides the monophyly of the genus Stemphylium, taxonomic relations could be verified 
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using ITS regions and gapdh gene sequences (Câmara et al. 2002; Inderbitzin et al. 2009; 

Köhl et al. 2009; Wang et al. 2010) 

Furthermore, considerably large amounts of sequence data are available of the mitochon-

drial coded cytochrome b gene (cyt b), which was frequently analysed in regard to QoI 

resistance (Grasso et al. 2006; Sierotzki et al. 2007; Stammler et al. 2013). Due to this 

fact, the resolving power of this region as taxonomic marker could be verified for many 

agronomic important fungi. Besides the relatedness within the order Uredinales (Grasso 

et al. 2006), species identifications in the genera Monilinia and Phyllosticta (Miessner 

and Stammler 2010; Stammler et al. 2013) were done using cyt b sequences. 

The aim of this study was: (i) to develop a molecular and genetic based differentiation 

method for S. vesicarium from S. botryosum, and (ii) to analyze asparagus samples from 

Germany with this method to identify the prevalent causal agent of the purple spot disease 

in Germany. The sequences of three molecular markers (ITS, gapdh and cyt b) were used 

to distinguish the two described causal agents (S. vesicarium and S. botryosum) of the 

purple spot disease of asparagus. In addition, we developed a method based on sequence 

aberrations in the cyt b gene, suitable for quantification of both pathogens in field sam-

ples. 

2.3. Materials and methods 

2.3.1. Origin of isolates 

Four S. vesicarium and five S. botryosum isolates were obtained from international culture 

collections. Strain 224 is the type of S. botryosum, which was also used in the analyses of 

Köhl et al. (2009). Another eight Stemphylium isolates provided by Zapf et al. (2011) and 

two Stemphylium isolates provided by A. Wichura / R. Weber (Agricultural Chamber of 

Lower Saxony), which were all isolated from asparagus, were also analysed. Details of 

the used isolates are given in Table 2.1. Isolates of related Stemphylium species, like S. 

herbarum, S. alfalfa, S. sedicola and S. tomatonis, were not included as these species are 

from different hosts and assumed to be identical (synonymous) to S. vesicarium (Câmara 

et al. 2002; Inderbitzin et al. 2009; Köhl et al. 2009).  
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2.3.2. Analyses of the DNA marker regions 

Fungal mycelium (~25 mg) from 14 days old cultures grown on potato dextrose agar 

(PDA) was used for DNA and RNA extraction using the Nucleospin® Plant II Kit and 

Nucleospin® RNA Kit (Machery and Nagel, Düren, Germany), respectively. According 

to the manufacturer’s instructions, reverse transcription of the RNA for the cDNA syn-

thesis was made with the Verso cDNA kit (Thermo, Ulm, Germany). PCR reactions were 

carried out for sequence analyses. Primers KES 1968 (5′-GCACCGACCACAAAAATC-

3′) and KES 1969 (5′-GGGCCGTCAACGACCTTC-3′) were used for amplification of 

gapdh according to Câmara et al. (2002). For the ITS region primer sequences of White 

et al. (1990) ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′) and modified ITS4 (5′-

TCCTCCGCTTATTGATATGCTTAA-3′), were used. The following reaction condi-

tions were used for both the gapdh and ITS regions. Phusion MasterMix 2 × (Thermo, 

Ulm, Germany) with an initial heating step for 30 s at 98 °C followed by 35 cycles of 5 s 

at 98 °C, 5 s at 64 °C, 10 s at 72 °C and 1 min at 72 °C for final elongation. With the help 

of the Sanger method, the PCR products were sequenced. Alignments of these DNA se-

quences and database sequences were done to identify the different Stemphylium spp. The 

partial cyt b gene was amplified using the primers KES 183 (5′CGATAGCTGCAGGAG-

TTTGC-3′) and KES 184 (5′-GCTTCAGCATTTTTCTTCATAGTT-3′). PCR was per-

formed using 2 × HotStart-IT FideliTaq Mastermix (USB, Staufen, Germany) with an 

initial heating step of 1 min at 95 °C, followed by 35 cycles of 15 s at 95 °C, 30 s at 52 °C, 

10 min at 68 °C and the final elongation for 5 min at 68 °C. PCR products were sequenced 

by primer walking sequencing. Alignments of DNA and corresponding cDNA sequences 

were used for the identification of the exon/intron structure of the amplified cyt b gene. 

2.3.3. Molecular genetic species identification 

The pre-assigned species assignment was checked using sequences of the ITS region and 

the partial gapdh gene. Sequences were aligned by using the Lasergene Programms 

(DNASTAR, Madison, USA). ITS and gapdh sequences of strains identified as S. vesi-

carium (ITS: AF442803; AF229484; gapdh: AF443902, AY278821.1) and S. botryosum 

(ITS: AF442782, KC584238; gapdh: AF443879; AF443881), obtained from Genbank, 

were used in this analysis in addition to the 19 Stemphylium isolates sequenced in this 

study.  
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Table 2.1 Stemphylium Isolates investigated in this study 

Isolate ID Country Host Origin Stemphylium spp    

    Primary After sequencing   

143 BE Allium cepa MUCL 3822 S. vesicarium S. vesicarium   

144 US Seaweed MUCL 41719 S. botryosum S. vesicarium   

145 BE Barley MUCL 20440 S. botryosum S. vesicarium   

146 DE Lupinus spp. DSM 62928 S. botryosum S. vesicarium   

147 BE Beta spp. MUCL 51851 S. botryosum S. vesicarium   

148 NL Allium cepa CBS 486.92 S. vesicarium S. vesicarium   

149 NL Allium cepa CBS 311.92 S. vesicarium S. vesicarium   

221 DE Asparagus Stem 12-21 Stemphylium sp. S. vesicarium   

222 DE Asparagus Stem 12-29 Stemphylium sp. S. vesicarium   

223 JP Asparagus NBRC 31381 S. vesicarium S. vesicarium Species identification 

224 (T) CA Medicago sativa MUCL 11717 S. botryosum S. botryosum   

110 DE Asparagus Stembo 1 S. botryosum S. vesicarium   

111 DE Asparagus Stembo 2 S. botryosum S. vesicarium   

112 DE Asparagus Stembo 3 S. botryosum S. vesicarium   

113 DE Asparagus Stembo 4 S. botryosum S. vesicarium   

114 DE Asparagus Stembo 5 S. botryosum S. vesicarium   

115 DE Asparagus Stembo 6 S. botryosum S. vesicarium   

116 DE Asparagus Stembo 7 S. botryosum S. vesicarium   

117 DE Asparagus Stembo 9 S. botryosum S. vesicarium   

150 DE Pear St.sp.24.7.13.P4-K1 S. vesicarium S. vesicarium Validation of  

152 DE Asparagus St.sp.25.9.13.D S. vesicarium S. vesicarium differentiation methods 

154 DE Asparagus St.sp.25.9.13.C S. vesicarium S. vesicarium 
 

155 DE Allium cepa St.sp.3.9.13.ZW S. vesicarium S. vesicarium   

156 DE Asparagus St.sp.25.9.13.F S. vesicarium S. vesicarium   

159 DE Asparagus St.sp.25.9.13.A S. vesicarium S. vesicarium   

160 IT Pear BASF SE S. vesicarium S. vesicarium   

161 IT Pear BASF SE S. vesicarium S. vesicarium   

162 IT Pear BASF SE S. vesicarium S. vesicarium   

163 IT Pear BASF SE S. vesicarium S. vesicarium   

164 IT Pear BASF SE S. vesicarium S. vesicarium   

165 IT Pear BASF SE S. vesicarium S. vesicarium   

Stembo 1-9 Isolate provided by Zapf et al. 2011; Stem12-21 and Stem 12-29 provided by A. Wichura / R. Weber 

MUCL BCCM/MUCL fungi and yeasts catalogue, CBS Centraalbureau voor Schimmelcultures, DSM Deutsche Sammlung von 
Mikroorganismen und Zellkulturen, NBRC Nite Biological Resource Center 

 

2.3.4. Species-specific identification of Stemphylium spp. 

With the sequence information from the study above, a primer pair for the qualitative 

differentiation of S. vesicarium and S. botryosum KES 1999 (5′GAC-

CGTCGGCCATATAAAGGGTCG-3′) and 2000 (5′-AACCGTCTCCGTC-

TATCAATCCT GCT-3′) was selected, which amplify the cyt b gene of the two species 

but generated products of different, species-specific length. Reaction conditions with an 
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initial heating step for 30 s at 98 °C followed by 35 cycles of 10 s at 98 °C, 5 s at 72 °C 

and 1 min at 72 °C with 2 × PhusionMastermix were used. 

2.3.5. qPCR based differentiation of S. vesicarium and S. botryosum 

Quantitative detection of S. vesicarium and S. botryosum was achieved by real-time PCR 

by coupling allele-specific primers with a 5′Nuclease Assay. A 214 bp fragment specific 

for S. vesicarium was amplified with the primers KES 1995 (5′AGGGTCGCTACAGA 

CTGGGTCACT-3′), KES 1 9 9 7 (5′-GCACTCATA AGGTTAGTAATAACTGTAGC-

3′) and the double-dye probe 5′FAM-CTGCTTAATGTACAGGCGAAAC-BHQ1-3′. 

For the amplification of S. botryosum (215 bp), the primers KES 1995 and KES 1998 (5′-

CAGCTATTACTTCGCCTTTTTAACTGTAGCA-3′) and the previous mentioned dou-

ble-dye probe were used. The reactions were performed on a Rotor-Gene Q (Qiagen, Hil-

den, Germany) with Takyon qPCR MasterMix Plus dTTP No Rox reagents (Eurogentec, 

Köln, Germany) under the following conditions: 3 min at 95 °C and 40 cycles at 95 °C 

for 10 s and 60 °C for 45 s. The received Ct-values of the S. vesicarium reaction and the 

S. botryosum reaction were used to calculate the relative allele frequencies based on the 

method described by Germer et al. (2000). 

2.3.6. Validation of the developed differentiation methods 

To validate the developed differentiation methods (qualitative PCR and quantitative 

qPCR) six S. vesicarium strains isolated from pears and six isolates provided by 

H. Bohlen-Janßen (Agricultural Chamber of Lower Saxony) were used. Details of these 

isolates are given in Table 2.1.  

2.3.7. Monitoring of Asparagus fields  

Samples of infested asparagus fields were taken all over Germany in the years 2010, 2011, 

2013 and 2014 at different stages of epidemiological development. 
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2.4. Results 

2.4.1. Species identification 

PCR with primer pair KES 1968 and KES 1969 for the gapdh gene resulted in an ampli-

fication product of 850 bp. Amplification of the ITS region with primer pair KES 1806 

and KES 1816 resulted in a product of 558 bp. For the identification at species level, the 

gapdh gene and the ITS region of the reference strains, ordered from different interna-

tional culture collections or received from Zapf et al. (2011), were sequenced and com-

pared to database sequences of S. vesicarium (ITS: AF442803 (T); AF229484; gapdh: 

AF443902 (T), AY278821.1) and S. botryosum (ITS: AF442782 (T), KC584238; gapdh: 

AF443879; AF443881 (T)). The sequences were compared with sequences from type 

material (T). All strains except strain 224 were found to be identical with the S. vesicar-

ium sequences in both regions, even though four of them (Table 2.1) were preliminary 

classified as S. botryosum. Strain 224 and the published S. botryosum sequences were 

identical in their gapdh and ITS sequence. Comparing S. vesicarium and S. botryosum, 

six single substitutions in the ITS region and 24 in the amplified gapdh region were found. 

Identical sequences were found in strains of the same species originating from different 

hosts and different countries. 

2.4.2. Cyt b of S. vesicarium and S. botryosum 

With the primer pair KES 183 and KES 184, the cyt b region could be amplified with 

DNA and cDNA, respectively. The cDNA fragments showed identical sizes of 550 bp for 

both Stemphylium species. While the DNA fragments showed a length of 3 kb for S. ves-

icarium (KJ934233) and 6 kb for S. botryosum (KJ934234). The discrepancy between the 

DNA and cDNA fragments indicated intron regions which are removed during the splic-

ing process. Alignments of the DNA and cDNA sequences revealed two introns (1323 bp 

and 1252 bp) for S. vesicarium. The same introns plus an additional intron of 2931 bp 

were found in S. botryosum (Fig. 2.1). 

2.4.3. Differentiation of S. vesicarium from S. botryosum 

Due to the large size differences in the cyt b gene it was possible to differentiate S. vesi-

carium and S. botryosum via fragment length comparisons. 
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A simple PCR-reaction with the primer pair KES 1999 and KES 2000 showed fragments 

of 420 bp for S. vesicarium and 3350 bp for S. botryosum (Fig. 2.2). When using a mixture 

(1:1) of the DNA of S. vesicarium and S. botryosum only the short fragment of S. vesi-

carium was amplified. Therefore, only pure cultures can be analysed with this method. 

Cross reactions could be excluded using DNA extracts from other fungal pathogens such 

as Alternaria alternata and Botrytis cinerea (for A. solani, A. brassicae data not shown). 

Additionally, DNA of Puccinia triticina was used as a related species of P. asparagi 

which is causing the rust disease on asparagus. 

To quantify the two Stemphylium species directly from asparagus samples, a specific 

qPCR assay was developed using the cyt b gene as a suitable basis. The identical forward 

primer KES 1995 and probe in combination with the species specific reverse primers KES 

1997 and KES 1998 were used to determine the abundances of S. vesicarium (KES 1997) 

and S. botryosum (KES 1998). The calculation of the frequency was done with the for-

mula based on Germer et al. (2000). Each DNA was analysed in two separate PCR reac-

tions, each with a primer pair specific to one or the other Stemphylium species. Theoreti-

cally, only the fragment of the matching species would be amplified. In practice, the 

mismatching fragment was amplified as well, but in a much less quantity. A delay of eight 

cycles could be observed between mismatched and correct amplification. To test the sen-

sitivity of this assay, the following parameters were determined. With a serial dilution of 

the DNA of both organisms, the linearity (regression line which gives information about 

the proportionality of the Ct-value to the amount of DNA) and the PCR efficiency could 

be investigated. The efficiency of the PCR reactions was calculated and found to be very 

similar (S. vesicarium: 99 %, S. botryosum: 97 %), which makes the reactions comparable 

and suitable for the quantification of S. vesicarium and S. botryosum. The detection and 

the quantification limit (0.001 ng/μg) was also defined by determining the lowest amount 

of target DNA that the tested assay can detect and quantify, respectively. The latter was 

accomplished by using a serial dilution of a 1:1 mixture of S. vesicarium and S. botryosum 

DNA. To exclude cross reactions with other fungal pathogens, DNA of A. alternata, 

A. solani, A. brassicae, B. cinerea and P. triticina were analysed. None of these organ-

isms could be detected with the developed qPCR assay. 
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2.4.4. Analysed asparagus samples 

With the qPCR method above, 15 samples from 2014, 87 samples from 2013, 90 isolates 

from 2011 and 40 samples from 2010 were analysed. All tested samples and isolates were 

from asparagus growing regions in Germany (Fig. 2.3). 

S. vesicarium could be identified with a frequency of 98-100 %. There was no evidence 

for S. botryosum to be the causal agent of the purple spot disease in Germany in the years 

of sampling. 

2.5. Discussion 

In this study a cost-efficient alternative, with which large quantities of asparagus samples 

can be analysed, was used and the causal agent of the purple spot disease was developed 

based on differences in the intron-exon structure of the cyt b gene. Characteristic substi-

tutions in the ITS region and the gapdh gene, which were preliminary defined by Câmara 

et al. (2002), could also be verified. Based on these two loci S. vesicarium and S. botry-

osum could be placed into two distinct clusters, in which S. vesicarium showed identical 

sequences with S. herbarum and S. alfalfa. Even a four locus phylogeny made by Inder-

bitzin et al. (2009), could not differentiate between these three Stemphylium species as 

well as S. tomatonis and S. sedicola. Therefore, the separating into single species could 

not be supported by phylogenetic analyses and should be regarded as synonymous 

(Câmara et al. 2002; Inderbitzin et al. 2009; Köhl et al. 2009). So far, cyt b was not se-

quenced for S. herbarum, S. alfalfa, S. tomatonis and S. sedicola and therefore it is not 

Figure 2.1 Intron-exon organization of the cyt b gene (partial) of S. vesicarium and S. botryosum 
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known if there are differences in the sequence. Further analyses regarding cyt b sequences 

of these five closely related or even synonymous Stemphylium species could provide a 

further step on the clarification of the taxonomic relationship. 

All used reference strains, except strain 224 were identified as S. vesicarium even though 

some of them were initially classified as S. botryosum. 

 

 

 

 

 

 

 

 

 

 

 

 

The location of this gene on mitochondrial DNA (mtDNA) and the resulting high copy 

number gives it an advantage and reduces the detection limit for the development of reli-

able PCR assays (Stammler et al. 2013). Based on the development of resistances against 

QoI fungicides, the cyt b sequences of many different plant pathogenic fungi have been 

analysed. The cyt b region is intraspecific very conserved but shows interspecific differ-

ences. These differences relate to the base sequence as well as the location of non-coding 

regions (Grasso et al. 2006; Sierotzki et al. 2007; Stammler et al. 2013). Referring to this, 

the species-specific presence or absence of intronregions could be shown for other fungal 

pathogens such as Monillinia spp. and Phyllosticta spp. (Miessner and Stammler 2010; 

Stammler et al. 2013). 

The Stemphylium species could be qualitatively differentiated in a single PCR reaction 

with one primer pair. In addition to this qualitative differentiation it was possible to create 

a quantitative method with the help of qPCR to estimate the frequencies of the two Stem-

phylium species directly from asparagus material. With this Taqman based assay aspara-

gus samples and Stemphylium isolates from Germany were analysed and the frequencies 

Figure 2.2 Principle of the qualitative differentiation of the Stemphylium spp.. 1: S. vesicarium, 2: S. botryosum, 3: 

1:1 Mixture of S. vesicarium and S. botryosum, 4: A. alternata, 5: B. cinerea, 6: P. triticina, 7: NTC, M: 1 kb DNA 

Ladder 
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were determined. Only S. vesicarium could be identified in every sample. There was no 

hint for S. botryosum as causal agent of the purple spot disease. 

So far, only S. botryosum had been described as the causal agent in Germany, a descrip-

tion based on morphological characteristics (Leuprecht 1988; 1990; Neubauer 1997; 

1998; Zapf et al. 2011). Although a misidentification of German isolates was supposed 

by Falloon et al. (1987), there was no clear proof for a high abundance of S. vesicarium 

in Germany until now. Due to the results of this study the prevalent pathogen of asparagus 

leaf spot in Germany could be identified as S. vesicarium. 
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Figure 2.3 Distribution of analysed asparagus samples and Stemphylium-isolates 
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3. Modelling some aspects of the monocyclic phase of 

Stemphylium vesicarium, the pathogen causing purple 

spot on asparagus (Asparagus officinalis L.)  

3.1. Abstract 

The monocyclic phase of Stemphylium vesicarium is part of its life cycle and a possible 

factor for forecasting and the integrated control of purple spot on asparagus. The purpose 

of the study was to model the flight, germination and germ tube growth of ascospores as 

basis for the development of a forecasting system. During 2014-2016, the flight period 

was determined by spore traps. The ascospores flew between March and early July, but 

most were released in early May. The cumulative percentage of trapped ascospores 

depending on the daily summed temperature (base 5 °C) on rainy days starting from 

February 1st was described best by a Chapman Richards function. The germination and 

germ tube length of ascospores depending on leaf wetness duration and temperature were 

investigated in laboratory trials. Ascospores germinated rapidly in a wide temperature 

range. The fitted Chapman Richards function with a temperature-dependent capacity and 

rate described germination adequately with a calculated optimal temperature of 31.04 °C. 

The germ tube length was modelled by a combined generalised beta-linear function and 

it was optimal at 30.4 °C with a narrow temperature range of 25-35 °C for values close to 

the optimum length. Therefore, the infection process is restricted more severely by the 

germ tube length than by germination. The ascospore flight is often finished before the 

end of the harvest, so fungicide treatments during the monocyclic phase might be 

ineffective in many production sites in Germany. The situation could be different for 

shorter harvest periods and in non-harvested young plants. 

 

Keywords: Asparagus, Pleospora allii, Purple spot, SIMSTEM, Stemphylium vesicarium 

3.2. Introduction 

Purple spot or Stemphylium leaf spot disease of asparagus (Asparagus officinalis L.) is 

caused by Stemphylium vesicarium (Wallr.) E.G. Simmons 1969 and is an important 
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disease that affects asparagus production in Germany (Menzinger and Weber 1990) and 

other countries worldwide (Suzui 1973; Menzies 1980; Lacy 1982; Blancard et al. 1984; 

Falloon et al. 1984; Gindrat et al. 1984; Thompson and Uys 1992; Cunnington and Irvine 

2005). Based on morphological characteristics (Simmons 1967; 1969; 1985), the causal 

pathogen of asparagus purple spot was first identified in Germany as Stemphylium 

botryosum (Wallroth) (Leuprecht 1988; Neubauer 1997; Zapf et al. 2011), but the main 

pathogen was found to be S. vesicarium very recently using molecular methods (Graf et 

al. 2016). 

In winter, the saprophytic fungus survives as pseudothecia on plant debris (Falloon et al. 

1984). Depending on the weather conditions, ascospores are released and can cause 

primary infections, which usually occur at the base of young plants. Conidia develop on 

primary infections, which lead to secondary infections in late summer to autumn (Falloon 

and Tate 1986). Due to the premature defoliation of the ferns in the autumn, the 

photosynthetic potential may be reduced and severe yield losses can occur (Menzies et 

al. 1992).  

Beside the weather conditions, the crop cultivation methods are influencing the ascospore 

flight. Removing ferns from the previous year (Falloon et al. 1984) and burying asparagus 

debris physically can reduce the ascospore flight but pseudothecia are not decomposed 

after burial for 10-14 weeks (Johnson 1990). This aspect for inhibiting the release of 

ascospores is not taken into consideration in this study.  

The seasonal course of ascospores in asparagus is already known. In New Zealand, the 

ascospores fly mainly from September to January, with only a few from February to April 

(Menzies et al. 1992). This flight pattern corresponds to the spring to summer seasons in 

the southern hemisphere. Spring to early summer was also the time observed for 

ascospore release in Davis, California, USA (Falloon and Tate 1986). In Michigan, USA, 

the highest daily ascospore concentrations were detected in June during three years with 

the highest peak on 5th June (Granke and Hausbeck 2012). Detailed information about the 

release of S. vesicarium ascospores in Europe is known only in other horticultural crops. 

Thus, in Spain, ascospores flew in garlic fields from February to March (Prados-Ligero 

et al. 2003). Ascospore flight sourcing from pear leaf litter in Italy were found from 

December to April (Rossi et al. 2008). Thus, an important part of the monocyclic life 

cycle is already clear from previous studies, but other biological data required to model 

the disease’s progression, such as germination data for asparagus strains, are missing. 
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The effects of temperature and the leaf wetness duration on the infection and growth of 

fungal plant diseases can be modelled to forecast infection periods (Lalancette et al. 1988; 

Carisse and Kushalappa 1990; Broome et al. 1996; Montesinos and Vilardell 1992; 

Montesinos et al. 1995b). For example, the FAST model is a system for forecasting 

Alternaria solani on tomato plants (Madden et al. 1978). Subsequently, BSPcast was 

derived from FAST by adapting it to the aetiology and epidemiology of S. vesicarium on 

pear plants (Montesinos and Vilardell 1992; Montesinos et al. 1995a; Montesinos et al. 

1995b; Llorente et al. 2000; Llorente et al. 2011). The TOM-CAST model was also 

derived from FAST as a weather-timed fungicide spray forecasting system for tomato 

anthracnose, Septoria leaf spot and late blight (Pitblado 1992). TOM-CAST was later 

tested to reduce the application of sprays in the control of purple spot in asparagus (Meyer 

et al. 2000; Eichhorn et al. 2010).  

A new forecast model for the integrated control of purple spot requires more detailed 

information of the pathogen’s biology because the existing models, BSPcast and TOM-

CAST, are not sufficiently adapted to the pathosystem S. vesicarium - asparagus. 

Therefore, the aim of this study was to determine and mathematically describe the period 

of ascospore flight in the field as well as how the biological processes comprising 

ascospore germination and ascospore germ tube growth depend on the temperature and 

leaf wetness duration, measured in a controlled environment. 

3.3. Materials and methods 

3.3.1. Effects of temperature and rain amount on ascospore flight  

The ascospore flights of S. vesicarium were measured by spore traps at Hannover-Ahlem 

in 2014 and 2015, at Fuhrberg (25 km north of Hannover) in 2015 and at Schifferstadt in 

2016 (17 km south-west of Manheim). The reservoir of a trap-frame, which comprised a 

heavy water gutter and a wire grid, was filled with plant debris including pseudothecia up 

to two-thirds of the height. The debris was collected during the spring of each year for all 

the test locations in the same asparagus plantation in Fuhrberg. At least three microscope 

slides (traps) were coated with Vaseline and placed horizontally in the wire grid with the 

adhesive side down and above the plant debris. An area of 10 cm2 (2.60 cm  3.85 cm) 

was marked on each slide. Evaluations were performed weekly, or rarely after rain 

periods, by using a Leica DM2000 microscope at 200 magnification (Leica N Plan 
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20/040 506096 lens  Leica HC Plan 10/22 507807). Spores were counted on three 

tracks in the longitudinal direction on the slides and the average value for the three slides 

was then calculated. The number of spores per observation date was related to an area of 

0.42 cm2 according to the objective lens, the ocular and the length of the tracks. Spore 

catches were compared in each year and region with interpolated weather data obtained 

from meteorological stations and radar measurements from the German Meteorological 

Service (DWD), as described by Racca et al. (2010), which were provided by 

www.isip.de. Based on the methods used previously for similar diseases (Rossi et al. 

2003; 2005; 2008), all of the data were used to model the cumulative percentage of 

trapped ascospores depending to the summed mean daily temperature Tmean (base 5 °C) 

starting from February 1st, together with the daily rain amount RA (either RA > 0.0 mm 

or RA > 0.2 mm). The summed temperature SumT was then calculated as follows:  

 

SumT(day) = SumT(day–1) + (Tmean –5)   if Tmean ≥ 5° C and RA > 0.2 mm 

SumT(day) = SumT(day–1)     Otherwise 

 

The cumulative percentage of trapped ascospores was modelled with a logistic, Gompertz 

(Gompertz 1828) and Chapman Richards function (von Bertalanffy 1957; Richards 

1959): 

 

logistic:   𝑦(𝑆𝑢𝑚𝑇) = 1/(1 + (1−𝑦0𝑦0 ) ∗ 𝑒𝑥𝑝(−(𝑟𝐿𝐴 ∗ 𝑆𝑢𝑚𝑇))) [3.1] 

Gompertz:  𝑦(𝑆𝑢𝑚𝑇) = 𝑒𝑥𝑝⁡(𝑙𝑛(𝑦0) ∗ 𝑒𝑥𝑝(−(𝑟𝐺𝐴 ∗ 𝑆𝑢𝑚𝑇)))  [3.2] 

Chapman:  𝑦(𝑆𝑢𝑚𝑇) ⁡= ⁡ (1 − 𝑒𝑥𝑝(−𝑟𝐶𝐴 ∗ 𝑆𝑢𝑚𝑇))𝑚,   [3.3] 

 

where: 

y(SumT) = cumulative percentage of trapped ascospores depending on the summed 

temperature SumT 

y0 = y(SumT = 0) = cumulative percentage of trapped ascospores at SumT = 0 

rLA, rGA, rCA = rate parameters for the logistic, Gompertz, and Chapman Richards function, 

respectively 

SumT  = summed temperature (base 5 °C) and rainfall combination (RA > 0.0 or 0.2 mm) 

m = shape parameter. 



 
 

21 

 
 

3.3.2. Effects of temperature and wetness duration on germination and germ tube 

length 

The germination percentage (%) and the germ tube length (µm) were measured for 

ascospores at 5, 10, 15, 20, 25 and 30 °C after 1, 3, 6, 12 and 24 h with a Leica DM2000 

microscope at 200 magnification and an ocular micrometre. The time steps represented 

the leaf wetness duration simulated on water agar. The ascospores were obtained from 

asparagus material with pseudothecia from the previous season, which were collected in 

the spring and frozen immediately at −22 °C. The asparagus material was defrosted under 

warm water, where the upper loose overlying epidermis was removed with tweezers and 

the pseudothecia were squeezed with a needle. The broken pseudothecia were then diluted 

in 25 ml of distilled water and 1000 µl of this suspension was transferred onto water agar 

plates (15 g agar per litre), before spreading with a disposable bacterial cell spreader 

(Roth®, AY19.1) with slight pressure on the surface. For each temperature, four 

replicates of 100 spores were prepared for germination and four replicates of 25 spores 

for determining the germ tube length. 

At each of the six temperatures, the influence of leaf wetness duration (WD) on ascospore 

germination (GA) was modelled with a Chapman Richards function (von Bertalanffy 

1957; Richards 1959): 

 

   𝐺𝐴(𝑊𝐷) = ⁡𝐺𝐴𝑚𝑎𝑥 ∗ [(1 − 𝑒𝑥𝑝(−𝑟𝐺𝐴 ∗ 𝑊𝐷)]𝑚,  [3.4] 

 

where: 

GA(WD) = percentage germinated ascospores (in %) depending on the leaf wetness 

duration WD (in h) 

GAmax = maximum germination percentage (in %) 

rGA = rate parameter (in h−1) 

m = shape parameter of the Chapman Richards function. 

 

To model the combined influence of the leaf wetness duration (WD) and temperature (T) 

on ascospore germination (GA), the three parameters in the Chapman Richards function 

were treated as linear functions of the temperature: GAmax(T) = ak + bk*T, rGA(T) = ar + 

br*T and m(T) = am + bm*T. In a stepwise manner ar and bm were eliminated as they were 
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not significantly different from 0. Thus, the following function was fitted to the 

germination data:  

 𝐺𝐴(𝑊𝐷, 𝑇) = (𝑎𝑘 + 𝑏𝑘 ∗ 𝑇) ∗ (1 − 𝑒𝑥𝑝(−(𝑏𝑟 ∗ 𝑇) ∗ 𝑊𝐷))𝑎𝑚 , [3.5] 

 

where: 

GA(WD, T) = percentage germinated ascospores (in %) depending on the leaf wetness 

duration WD (in h) and temperature T (in °C) 

ak = intercept of the linear temperature function GAmax(T) 

bk = slope of the linear temperature function GAmax(T) 

br = proportionality factor for the temperature function rGA(T) 

am = shape parameter of the Chapman Richards function. 

 

At each of the six temperatures, the effect of the leaf wetness duration WD on the germ 

tube length of ascospores LA (in µm) was modelled with a linear function that passed 

through the origin: 

 

        𝐿𝐴(𝑊𝐷) = 𝑏𝐿𝐴 ∗ 𝑊𝐷,   [3.6] 

 

where: 

LA(WD) = germ tube length (in µm) depending on the leaf wetness duration WD (in h) 

bLA = slope (in µm h−1). 

 

In the second step, the resulting parameter values for bLA were expressed as a temperature 

function, i.e. a generalised beta function (Hau 1988) as modified by Bassanezi et al. 

(1998): 

 

𝑏𝐿𝐴(𝑇) = 𝑏𝐿𝐴𝑜𝑝𝑡 (⁡ 𝑇−𝑇𝑚𝑖𝑛𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛)𝑛∗⁡𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛𝑇𝑚𝑎𝑥−𝑇𝑜𝑝𝑡 ∗ ⁡( 𝑇𝑚𝑎𝑥−𝑇𝑇𝑚𝑎𝑥−𝑇𝑜𝑝𝑡)𝑛,  [3.7] 

 

where: 

bLA(T)  = slope depending on temperature T (in °C) 

bLAopt = slope at Topt 
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Tmax = maximal temperature (in °C) 

Tmin = minimal temperature (in °C) 

Topt = optimal temperature (in °C) 

n = shape parameter of the beta function. 

According to the results obtained by Montesinos et al. (1995b), the cardinal temperatures 

Tmin and Tmax were fixed at 0 °C and 35 °C, respectively. 

 

In the final step, the two models were combined to describe the dependence of the germ 

tube length of ascospores LA on the leaf wetness duration WD and temperature T, as 

follows: 

 

    𝐿𝐴(𝑊𝐷, 𝑇) = 𝑏𝐿𝐴(𝑇) ∗ 𝑊𝐷    [3.8] 

 

The three parameters in Eq. 3.8 (Topt, n and bLAopt) were estimated simultaneously. 

3.3.3. Statistical software 

Data preparation and statistical modelling were performed with Microsoft Excel 2016 ™, 

XLSTAT Version 2016.05.33324 (Copyright Addinsoft 1995-2016) and SigmaPlot for 

Windows Version 13.0 (Copyright Systat Software, Inc. 2014). The nonlinear functions 

were fitted to the data by nonlinear regression using the Levenberg-Marquardt algorithm. 

3.4. Results 

3.4.1. Effects of temperature and rain amount on ascospore flight 

In the three years considered, ascospore flights occurred between March and early July, 

but most ascospores were released in early May (Fig. 3.1). There were large differences 

in the total amounts of ascospores trapped in Hannover-Ahlem (185.7 spores per 

0.42 cm2) and Fuhrberg (104.1 spores per 0.42 cm2) during 2015. At both sites, there was 

a high release peak in the week before 1st May. The earliest flight and largest total amount 

of ascospores (537 spores per 0.42 cm2) occurred at Hannover-Ahlem in 2014. 
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Different growth functions (Eqs. 3.1-3.3) were tested to model the cumulative number of 

trapped ascospores depending on the amount of rain and temperature. The best fit (Table 

3.1) was obtained using the summed mean daily temperature (base 5 °C) as the 
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Figure 3.1 Weekly trapped ascospores [per 0.42 cm2] of S. vesicarium with daily mean temperature [in °C] and daily 

rainfall [in mm] from March 1st at (a) Hannover-Ahlem 2014, (b) Hannover-Ahlem 2015, (c) Fuhrberg 2015 and (d) 

Schifferstadt 2016 
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independent variable only on days when the amount of rain exceeded 0.0 mm starting 

from 1st February. All three tested functions showed a similar good fit, but the best result 

was achieved with a Chapman Richards function (P < 0.0001; R2 = 0.93). At a SumT 

value of 200 degree-days, about 50 % of all ascospores were trapped and 90 % of all 

ascospores were trapped at 400 degree-days (Fig. 3.2). Ascospore flights started at about 

100 degree-days. The equivalent dates were 21st March for Hannover-Ahlem in 2014, 19th 

April for Hannover-Ahlem in 2015 and Fuhrberg in 2015 and 6th April for Schifferstadt 

in 2016. Due to the rapid increase of the model, the 95 % prediction band was broad, e.g. 

from 27 to 75 for 200 degree-days. 

 

 R2 Parameter Estimate Standard error P 

logistic 
Base 5 C; RA > 0.0 

0.915 rLA 0.017 0.002 <0.0001 

 y0 0.032 0.011 0.006 

logistic 
Base 5 C; RA > 0.2 

0.864 rLA 0.036 0.005 <0.0001 

 y0 0.044 0.017 0.013 

Gompertz 
Base 5 C; RA > 0.0 

0.924 rGA 0.011 0.001 <0.0001 

 y0 0.003 0.003 0.414 

Gompertz 
Base 5 C; RA > 0.2 

0.868 rGA 0.023 0.003 <0.0001 

 y0 0.012 0.011 0.306 

Chapman 
Base 5 C; RA > 0.0 

0.925 rCA 0.010 0.001 <0.0001 

 m 4.290 1.102 <0.001 

Chapman 
Base 5 C; RA > 0.2 

0.867 rCA 0.019 0.003 <0.0001 

 m 2.888 0.867 0.001 

 

 

 

 

 

Table 3.1 Estimated parameter values for the logistic, Gompertz, and Chapman Richards functions (Eq. 3.1-3.3) for 

the cumulative percentage of trapped ascospores of S. vesicarium (rLA, rGA, and rCA = rate parameters for the logistic, 

Gompertz, and Chapman Richards function, respectively; y0 = y-intercept; m = shape parameter of the Chapman 

Richards function; n = 81). 
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3.4.2. Effects of temperature and wetness duration on germination 

The dependence of germination on the temperature and leaf wetness was modelled using 

the data obtained from laboratory experiments. The shape of the germination curve 

changed with the temperature, where the curve at 5 °C looks S-shaped, but the curves at 

higher temperatures resemble monomolecular functions without points of inflection 

(Fig. 3.3). At each temperature level, the effect of the leaf wetness duration was described 

by a Chapman Richards function (Eq. 3.4) with R2 ≥ 0.96 (Table 3.2). The estimated 

values of rGA and m at temperatures of 10 °C and 15 °C were not statistically significantly 

different from 0, because P-values were > 0.05 (Table 3.2). The high values of rGA and m 

at 20 °C were influenced by the strong increase in germination observed between the first 

and third hour of the leaf wetness duration (Fig. 3.3). The Gmax values roughly increased 

from 5 °C to 30 °C (Table 3.2). Excluding the extraordinary parameter values at 20 °C 

for a moment (Table 3.2), an increase in the temperature caused a weakly increasing trend 

in the values of rGA and a decreasing trend in the values of m. 

For simplicity, the three parameters in the Chapman Richards function were treated as 

linear functions of the temperature. As ar and bm were not significantly different from 0, 

they were eliminated in a stepwise manner. Therefore, the ascospore germination (GA) 

was modelled by function 5 (R2 = 0.90; Table 3.3). The result was a Chapman Richards 
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Figure 3.2 Cumulative percentage of trapped ascospores of S. vesicarium [in %] that is modelled by a Chapman Rich-

ards function (Eq. 3.3) depending on SumT (Base 5 °C and RA > 0.0) from February 1st (points = data, line = fitted Eq. 

3.3 with parameter values from Table 3.1 and dotted line = lower and upper confidence limit (95 %)) 
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function for WD where GAmax and rGA were temperature dependent, while am was 

constant. This specific adaptation was made because various other models, like a 

generalized beta-Chapman Richards function, had led to worse results. The optimum 

temperature, calculated as the intersection point at 100 %, was 31.04 °C (not shown in 

Fig. 3.4). The surface of the three-dimensional graph described the data reasonably well, 

although the germination percentage after 24 h was underestimated at low temperatures. 
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Figure 3.3 Germination of ascospores of S. vesicarium GA [in %] depending on the leaf wetness duration WD for 

different temperature levels (points = data, line = fitted Eq. 3.4 with parameter values from Table 3.2) 
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Table 3.2 Estimated parameter values for the Chapman Richards function (Eq. 3.4) for the germination of ascospores 

of S. vesicarium GA (in %) depending on leaf wetness duration WD for temperatures of 5, 10, 15, 20, 25, and 30 C 

(GAmax = maximum germination of ascospores (in %); rGA = rate parameter (h–1); m = shape parameter). 

Temperature R2 Parameter Estimate Std. Error P 

5 C 0.99 GAmax 86.803 2.253 <0.0001 

  rGA 0.216 0.024 0.003 

  m 2.852 0.439 0.007 

10 C 0.96 GAmax 83.252 9.582 0.003 

  rGA 0.196 0.121 0.204 

  m 1.175 0.642 0.165 

15 C 0.97 GAmax 84.371 5.823 0.001 

  rGA 0.348 0.149 0.102 

  m 1.620 0.818 0.142 

20 C 0.99 GAmax 93.044 0.906 <0.0001 

  rGA 1.573 0.122 0.001 

  m 10.827 1.974 0.012 

25 C 0.99 GAmax 99.508 0.416 <0.0001 

  rGA 0.544 0.049 0.002 

  m 0.420 0.034 0.001 

30 C 0.99 GAmax 98.730 0.168 <0.0001 

  rGA 0.453 0.008 <0.0001 

  m 0.796 0.013 <0.0001 

 

Table 3.3 Estimated parameter values for the modified function (Eq. 3.5) for the germination of ascospores of S. vesi-

carium GA (in %) depending on the temperature T and leaf wetness duration WD (ak and bk = parameters of the linear 

temperature function GAmax(T); br = proportionality factor for the temperature function rGA(T); am = shape parameter of 

the Chapman Richards function). 

R2 Parameter Estimate Std. Error P 

0.90 ak 71.906 7.091 <0.0001 

 bk 0.905 0.310 0.007 

 br 0.039 0.011 0.001 

 am 2.110 0.800 0.014 
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3.4.3. Effects of temperature and wetness duration on germ tube length 

At each temperature level, the germ tubes grew in a linear manner depending on the WD 

(Fig. 3.5), and thus the length was modelled as a linear function of WD (Eq. 3.6). The 

highest slope (27.07 µm h−1) for the germ tube length occurred at 25 °C and the lowest 

(3.27 µm h−1) at 5 °C (Table 3.4). In addition to the linear function, an exponential 

adjustment was also tested, which led to a much worse fit. 

The relationship between the slope values and temperature T could be described by a 

generalised beta function (Eq. 3.7) where R2 = 0.96 (Fig. 3.6), with an estimated optimal 

temperature at 30.23 °C (Table 3.5). The combination of the generalised beta and linear 

function (Eq. 3.8) with the parameter values estimated for WD and T (Table 3.6) described 

the data very well (Fig. 3.7). The temperature range with high germ tube growth varied 

between 25-35 °C, with an estimated optimal temperature of 30.42 °C. 
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Figure 3.4 Modelled germination of ascospores of S. vesicarium GA [in %] depending on temperature T and the leaf 

wetness duration WD (points = data, surface = fitted Eq. 3.5 with parameter values of Table 3.3) 
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Figure 3.5 Germ tube length of ascospores of S. vesicarium LA [in µm] depending on the leaf wetness duration WD 

for temperature levels of 5, 10, 15, 20, 25 and 30 °C (points = data and line = fitted linear Eq. 3.6 with parameter values 

of Table 3.4) 
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Table 3.4 Estimated slope bLA parameter values (in µm h–1) for the linear function (Eq. 3.6) for the germ tube length 

of ascospores of S. vesicarium depending on the leaf wetness duration WD at temperatures 5 °C, 10 °C, 15 °C, 20 °C, 

25 °C, and 30 C 

Temperature R2 bLA Std. Error P 

5 °C 0.97 3.272 0.191 <0.0001 

10 °C 0.99 6.743 0.273 <0.0001 

15 °C 0.99 12.107 0.482 <0.0001 

20 °C 0.99 14.039 0.382 <0.0001 

25 °C 0.99 27.070 0.930 <0.0001 

30 °C 0.99 26.576 0.882 <0.0001 

 

Table 3.5 Estimated parameter values for the generalized beta function (Eq. 3.7)* for the slope bLA of the germ tube 

length (in µm h–1) of ascospores of S. vesicarium depending on the temperature T (bLAopt = slope of germ tube length at 

Topt; Topt = optimal temperature (in C); n = shape parameter). 

R2 Parameter Estimate Std. Error P 

0.96 bLAopt 27.28 2.882 0.001 

 Topt 30.23 4.333 0.002 

 n 0.284 0.513 0.610 

* fixed values: Tmin = 0 °C, Tmax = 35 °C 
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Figure 3.6 Modelled bLA(T) of the germ tube length of ascospores of S. vesicarium depending on temperature T (points 

= estimated data for bLA from Table 3.4 and line = fitted Eq. 3.7 with parameter values from Table 3.5) 
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Table 3.6 Estimated parameter values for the generalized beta-linear function (Eq. 3.8)* for the germ tube length of 

ascospores of S. vesicarium LA (in µm h–1) depending on the temperature T and leaf wetness WD (bLAopt = slope of germ 

tube length (in μm) at Topt; Topt = optimal temperature (in °C); n = shape parameter) 

R2 Parameter Estimate Std. Error P 

0.97 bLAopt 27.376 1.091 <0.0001 

 Topt 30.420 1.231 <0.0001 

 n 0.266 0.113 0.024 

* fixed values: Tmin = 0 °C, Tmax = 35 °C 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

3.5. Discussion 

Similar to other fungal pathogens, S. vesicarium must pass through several life phases 

until asparagus can be colonised and purple spot develops. The understanding of the 

seasonal course of ascospore flights is essential to avoid the occurrence and development 

of purple spot. In the three years of observations in this study, the ascospore flights 

occurred between March and June, and mostly after rain periods. The majority of the 

ascospores were released by early May. Despite climatic differences, the periods of 
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Figure 3.7 Modelled germ tube length of ascospores of S. vesicarium LA [in µm] depending on temperature T and the 

leaf wetness duration WD (points = data and surface = fitted Eq. 3.8 with parameter values from Table 3.6) 
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ascospore flights are roughly comparable with those reported previously (Falloon and 

Tate 1986; Menzies et al. 1992; Prados-Ligero et al. 2003; Rossi et al. 2008; Granke and 

Hausbeck 2012). In our trials, we stopped the measurements of ascospore release after 

several periods without spore catches and by carefully verifying that all of the 

pseudothecia were already empty. Thus, no later ascospore releases were possible from 

these pseudothecia. 

In Hannover-Ahlem, a larger amount of ascospores was trapped during 2014 (Fig. 3.1a), 

which may have been a consequence of favourable conditions for the formation of sexual 

organs and the spreading of spores, particularly as the source and quantity of debris were 

equal to those in other years. Humidity is a decisive factor for the development of 

pseudothecia, as reported for S. vesicarium on pear (Llorente and Montesinos 2004) and 

garlic (Prados-Ligero et al. 1998), as well as for other related fungi (Gadoury et al. 1984; 

Trapero-Casas and Kaiser 1992). During winter, pseudothecia only developed at high 

relative humidity (> 96 %) and the optimum temperature for maturation was between 

10 C and 15 °C according to Llorente et al. (2006). In pear, the dynamics of pseudothecia 

maturation in the field were determined previously and the relationship between the 

proportion of mature pseudothecia and cumulative degree-days was modelled and 

validated (Llorente and Montesinos 2004). According to this model, ascospores mature 

from January to May, which agrees with our observations. The conditions for the 

maturation of pseudothecia (Llorente and Montesinos 2004; Llorente et al. 2006) were 

achieved in all years and regions for ascospore flight measurements. Similar to other 

fungi, the key factor that affects the release of mature ascospores is rain (Llorente and 

Montesinos 2006; Llorente et al. 2008). However, we found that it was dry from 1st March 

to 1st May during 2014 in Hannover-Ahlem, especially compared with the trials in 2015. 

The number of pseudothecia was not counted in the traps and thus the influence of the 

source material cannot be excluded, which is a reason why a relative view of the data is 

more meaningful, especially for modelling. 

The accumulated ascospore flight was described best (R2 = 0.93) by a Chapman Richards 

function (Eq. 3.3), depending on the sum of daily temperatures with a base of 5 °C 

summed on rainy days (RA > 0.0) only. This will allow us to calculate the daily ascospore 

flight potential in a future forecast model. 

After release, ascospores must land on a suitable host to start the infection process. 

Infection by S. vesicarium depends on the temperature, leaf wetness, rainfall and vapour 
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pressure deficit (Montesinos and Vilardell 1992; Granke and Hausbeck 2010), while the 

relative humidity plays a role in the absence of rainfall (Prados-Ligero et al. 2003). As 

key components of the infection process, we modelled the dependence on the leaf wetness 

duration WD and temperature T for germination and the growth of the germ tube from 

ascospores. The fitted Chapman Richards function with a temperature-dependent 

germination capacity and rate (Eq. 3.5) exhibited a rapid increase in the first hours and a 

wide temperature range with a warm optimum above 30 °C (Fig. 3.4), which differs from 

the descriptions of these processes on other hosts in previous studies. The rapid 

germination of ascospores is known on pear plants, but with a significantly lower 

optimum temperature of 18.9 °C (Llorente et al. 2006). Rossi et al. (2006) found that 

strains isolated from pear plants exhibited maximum germination after incubation for 48 h 

in water at 21-23 °C. Few ascospores germinated below 15 °C and at 30-35 °C. At 100 % 

relative humidity, germination decreased by about one-third and no germination was 

observed below 80 % (Rossi et al. 2006).  

Instead of using a linear temperature function (temperature range 5-30 °C) for the 

germination capacity in the Chapman Richards function, we also tested a generalised beta 

function with cardinal temperatures of 0 C and 35 °C, where we estimated an optimum 

temperature close to 25 °C, but the shape parameter was not significantly different from 

0 and the R2 value was lower than for the linear function. Thus, the linear-Chapman 

Richards function could be used in the future forecast model in a temperature range from 

5 C to 30 °C. Above Topt (31.04 °C), the model should decrease linearly to reach a value 

of 0 at 35 °C. Thus, the temperature dependence is described by a triangular function. 

This reflects the biological fact that an optimal temperature Topt for germination exists 

and temperatures above Topt have a damaging effect. 

The germ tube length (Fig. 3.7) was modelled by a beta-linear function (Eq. 3.8) with a 

rather narrow optimum range around the optimal temperature of 30.4 °C. While 

germination has taken place in a very wide temperature range (Fig. 3.4), germ tube length 

was much more restricted, especially at low temperature levels (Fig. 3.7). Thus, germ 

tube length is a more limiting factor for infection and thus it could be more useful in a 

forecast model. There are no previous reports of ascospore germination on asparagus 

strains. To the best of our knowledge, no studies have investigated the influence of the 

leaf wetness duration and the temperature on the germ tube length of ascospores of S. 

vesicarium.  
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A maximum temperature of 35 °C was assumed for the germination (Fig. 3.4) and the 

germ tube growth (Fig. 3.6 and 3.7) based on disease severity data obtained for S. 

vesicarium on pear leaves and fruit (Montesinos et al. 1995b), and the mycelium growth 

of pear isolates (Montesinos and Vilardell 1992). Few germination between 30 C and 

35 °C is known for ascospores on pear (Rossi et al. 2006). Thus, it may be appropriate to 

examine additional high temperatures for both phases to determine the exact upper 

cardinal temperature. On the other hand, the high temperature optima (around 30 °C) that 

we found for both models play a subordinate role in Germany at the time of ascospore 

release. During the flights of ascospores until early July, the mean daytime temperatures 

were mostly below 20 °C (Fig. 3.1). In summary, the fixed maximum temperature of 

35 °C is justifiable, even if the drop from 30 °C to 35 °C of the germination (Fig. 3.4) and 

the germ tube growth (Fig. 3.7) is drastic. Overall, the monocyclic phase can be roughly 

assigned into the mesophilic growth range, which is typically between 0 °C and 35 °C 

with an optimal temperature between 25 °C and 30 °C (Dix and Webster 1995). 

 

 

 

 

 

 

 

 

 

 

 

 

 

During the experiments, we made observations related to further possible increases in the 

spread of the disease in asparagus. Similar to the results obtained for pear by Llorente et 

al. (2012), we observed that conidia formed directly on the asparagus debris, including 

directly on pseudothecia (Fig. 3.8). Johnson (1990) previously reported that conidial 

infections from overwintered asparagus debris produced typical primary infections on 

asparagus. During the monocycle phase, the extent of conidia formation directly on plant 

Figure 3.8 Conidia of S. vesicarium formed directly on pseudothecia on plant debris 
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residues and on pseudothecia as well as their effects on disease development have not 

been investigated. 

Persistent moisture from dew seems to be an additional catalyst of the infection process, 

regardless of rainfall. The fine phylloclades form a very large surface for the attachment 

of moisture. Studies have shown that longer periods of dew or fog supported greater rates 

of infection by Stemphylium on Trifolium and Medicago (Bradley et al. 2003). A long 

duration of leaf wetness due to dew also occurs in the morning on asparagus, and the 

foliage also remains wet for several hours after overhead irrigation. 

Understanding the monocyclic phase of S. vesicarium may explain parts of the early 

seasonal phase of purple spot. The flights of ascospores are often finished before the 

majority of asparagus fields have been harvested, so the control of the monocyclic phase 

of S. vesicarium with fungicides might be ineffective in Germany. Indeed, the influence 

of ascospore infection on epidemics in the field might be more severe when the harvest 

ends earlier or even in non-harvested young plantings. Finally, it is necessary to obtain 

data related to the more important polycyclic phase of S. vesicarium in asparagus to obtain 

comprehensive biological background data. 

The modelled parts of the monocyclic phase of S. vesicarium have been integrated in the 

new forecast model SIMSTEM. Later versions of SIMSTEM will also include elements 

of the polycyclic phase. This model forecasts the beginning of the epidemics and the 

disease progression (proportional to the diseased leaf area). However, cultivation 

methods, like the choice of varieties, the plant’s age, the end of harvest, and the selection 

of machines and fungicides, can have a major impact on the disease progression and thus 

on the accuracy of the model. As described in the introduction, the removal (Falloon et 

al. 1984) or burying of plant debris from the previous year is also influencing the 

occurrence of purple spot in the following season (Johnson 1990). Wounding of spears 

caused by sand can lead to more lesions and shorter wetting duration needed for the 

development of lesions (Lacy 1982; Johnson and Lunden 1986). Therefore, the 

SIMSTEM model cannot be seen as the only strategy to control purple spot, but it forms 

an essential computer-based tool for decision-support. 

SIMSTEM uses area-specific weather data obtained from standard meteorological sta-

tions (provided by the German Meteorological Service or the Regional Plant Protection 

Offices) or simulated data (Racca et al. 2010). All of the modelled rates are calculated 

using hourly weather parameters for temperature (°C), relative humidity (%) and rainfall 
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(mm). The model’s algorithm was developed by the Central Institute for Decision Support 

Systems in Crop Protection (ZEPP), and it will be available via the agricultural internet 

platform for integrated plant production (ISIP; www.isip.de), although it is currently in 

the test phase (2018). Strategies for the integrated management of purple spot on aspara-

gus SIMSTEM model are currently in development. 
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4. Modelling the effects of temperature and wetness on the 

polycyclic phase of Stemphylium vesicarium, the patho-

gen causing purple spot on asparagus (Asparagus offici-

nalis L.) 

4.1. Abstract 

The polycyclic phase of Stemphylium vesicarium is the key factor for the forecast and 

integrated control of purple spot on asparagus. The annual dynamics of airborne conidia 

were determined under field conditions by conidia traps. From 2013 to 2015, conidia 

became airborne at the earliest at mid-July, but the number trapped was considerably en-

hanced only after mid-August, early September. The cumulative percentage of trapped 

conidia was best described using a logistic function depending on the daily temperature 

sum (base 0 °C) accumulated only on days with > 0.2 mm of rainfall (R2 = 0.81). The 

germination of conidia was modelled by a generalized beta-modified Chapman Richards 

function, and the germ tube length was modelled by a generalized beta-power function. 

Conidia germinated in a wide temperature range, with an optimum at 23.3 °C, whereas 

germ tube length had a narrow nearly optimum temperature range around 28.7 °C, which 

indicates that infection by conidia is more restricted by germ tube growth than by germi-

nation. The effect of temperature on the number of lesions produced by two strains on 

green asparagus spears had the narrowest optimum range (optimum at 21.9 °C) of all parts 

of the polycyclic phase. In plant tissue, the spread of the fungus depends on the mycelium 

growth. The mycelium growth of the four strains, which was modelled with data from a 

petri dish experiment, had an optimum temperature at 24.7 °C. 

 

Keywords: Asparagus, Forecast, Purple spot, SIMSTEM, Stemphylium vesicarium  

4.2. Introduction 

Purple spot is an important fungal disease of asparagus caused by Stemphylium vesicar-

ium (Wallr.) E.G. Simmons 1969, which affects asparagus-growing areas worldwide (Su-

zui 1973; Menzies 1980; Lacy 1982; Blancard et al. 1984; Falloon et al. 1984; Gindrat et 
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al. 1984; Thompson and Uys 1992; Cunnington and Irvine 2005), including Germany 

(Menzinger and Weber 1990). Over the winter, S. vesicarium produces ascospores in 

pseudothecia on plant debris, which are released from spring to early summer and present 

the primary inoculum source. The secondary inoculum (conidia) of S. vesicarium lead to 

infections in asparagus plantings during the summer to autumn (Falloon et al. 1984; 

Falloon and Tate 1986) and may induce premature defoliation of fern, which can cause 

yield losses up to 52 % during the next harvest season (Menzies et al. 1992). 

The annual dynamics of airborne conidia of S. vesicarium has already been described in 

the literature. In asparagus fields in Michigan, only small amounts of conidia became 

airborne before July, slowly started rising in July, but significant amounts were measured 

in mid-August and September (Hausbeck et al. 1997; Granke and Hausbeck 2010). In 

pear cultivation, S. vesicarium is also of great economic importance and various biologi-

cal processes of the fungus have already been described (Llorente et al. 2012). The annual 

conidia flight in pear happened from April to November, but 90 % of the conidia became 

airborne between July and September (Rossi et al. 2005; Llorente and Montesinos 2006; 

Llorente et al. 2008). This aspect of the polycyclic phase of S. vesicarium is known, but 

information about other biological processes of the conidia life cycle in asparagus is lack-

ing.  

Decision support systems can be useful for forecasting the date of exceeding control 

thresholds and of fungicide application. Using mathematical models, the time require-

ment for field elevations can be minimized (Racca et al. 2002). The model FAST, for 

instance, is a forecast system for Alternaria solani on tomato (Madden et al. 1978). Later, 

BSPcast was derived from FAST by adapting it to the aetiology and epidemiology of 

S. vesicarium on pear (Montesinos and Vilardell 1992; Montesinos et al. 1995a; Montes-

inos et al. 1995b; Llorente et al. 2000; Llorente et al. 2011). The model TOM-CAST was 

also derived from FAST as a weather-timed fungicide spray forecast for tomato anthrac-

nose, Septoria leaf spot and late blight (Pitblado 1992), and its potential to reduce spray 

applications for the control of purple spot of asparagus was also tested (Meyer et al. 2000; 

Eichhorn et al. 2010). 

The integrated control of purple spot by a new forecast model requires more detailed 

information of the pathogen’s biology because the existing models, BSPcast and TOM-

CAST, are not sufficiently adapted to either the pathogen S. vesicarium or to the host 

asparagus. Important aspects of the monocyclic phase have been already modelled, and 
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the secondary polycyclic phase of purple spot seems to be more important for the model-

ling of the disease than the monocyclic phase (Bohlen-Janssen et al. 2018a). The aim of 

this study was to determine and mathematically describe the effect of temperature on five 

aspects of the polycyclic phase of S. vesicarium on asparagus as a base of a future forecast 

model. These aspects are the annual dynamics of airborne conidia, conidia germination, 

conidia germ tube growth, number of lesions as a measure of the disease efficiency, and 

mycelium growth.  

4.3. Materials and methods 

4.3.1. Spore traps and cumulative percentage of trapped conidia 

The annual dynamics of airborne conidia of S. vesicarium was measured by spore traps 

in 12 m long double-rowed untreated (no fungicide treatments) experimental plots, with 

up to 2.20 m high fully developed plants, at Fuhrberg (25 km north of Hannover) in 2013, 

2014 and 2015 and at Hannover-Ahlem in 2014 and 2015. Hannover is located in Lower 

Saxony in the Northern part of Germany. At Fuhrberg in 2013, a field with variety 'Back-

lim', planted in 2012, was used as a location for conidia catches. At Fuhrberg in 2014, the 

experiment was carried out in a plot with the variety 'Gijnlim', planted in 2009, and in 

2015, with the variety 'Cumulus', planted in 2014. 'Gijnlim' was the variety of the fields 

at Hannover in both years, and in each case, asparagus was planted in the previous year. 

From early July to mid-October, two spore traps, microscopic slides with a marked area 

of 10 cm2 (2.60 × 3.85 cm) coated with vaseline, were regularly checked at each of the 

five location-years. Traps were horizontally plugged in a self-built stand with the adhe-

sive side up, 10 cm above the ground, directly under the asparagus plants in the middle 

of one row of the untreated plots. Evaluation was done weekly or sometimes after rain 

periods, with a Leica DM2000 microscope at 200× magnification (Leica N Plan 20×/040 

506096 lens × Leica HC Plan 10×/22 507807). The species differentiation based on co-

nidial morphology (Wiltshire 1938; Simmons 1967; 1969; 1985) is difficult and in some 

cases incorrect (Cunnington and Irvine 2005; Shenoy et al. 2007; Wang et al. 2010). 

However, based on clear results from Graf et al. (2016), we assumed that only S. vesicar-

ium occurs in German asparagus plantings. Spores were counted on three tracks in the 

longitudinal direction of the slide, and then the average value was calculated. The indi-

cated number of spores per trap corresponds to 0.42 cm2. Spore catches were matched 
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with weather data for each year and region. Interpolated weather data from meteorologi-

cal stations and radar measurements of the German Meteorological Service (DWD) were 

provided by www.isip.de as described by Racca et al. (2010). 

To forecast the airborne conidia, correlations between the spore catch (transformed in % 

of the total number of conidia) and weather parameters were made following the methods 

used by other authors for similar diseases (Rossi et al. 2003; 2005; 2008). For the analyses 

of trapped conidia, the spore data were accumulated over time and expressed relative to 

the maximum. The data were modelled depending on the sum of daily mean temperatures 

Tmean (either Tbase 0 °C or 5 °C) combined with the daily rain amount RA (either RA > 

0 mm or RA > 0.2 mm) starting from the 1st of May. Then the temperature sum SumT was 

calculated as follows: 

 

SumT(day) = SumT(day − 1) + (Tmean − Tbase)    if Tmean ≥ Tbase °C and RA > 0 or 

0.2 mm 

SumT(day) = SumT(day − 1) + 0   Otherwise 

 

The cumulative percentage of trapped conidia was modelled with logistic, Gompertz 

(Gompertz 1828) and Chapman Richards functions (von Bertalanffy 1957; Richards 

1959): 

 

Logistic:  ⁡𝑦(𝑆𝑢𝑚𝑇) = 1/(1 + ((1−𝑦0)𝑦0 ) ∗ exp(−(𝑟𝐿𝐶 ∗ 𝑆𝑢𝑚𝑇))) [4.1] 

Gompertz:  ⁡𝑦(𝑆𝑢𝑚𝑇) = 𝑒𝑥𝑝⁡(𝑙𝑛(𝑦0) ∗ 𝑒𝑥𝑝(−(𝑟𝐺𝐶 ∗ 𝑆𝑢𝑚𝑇)))      [4.2] 

Chapman:  𝑦(𝑆𝑢𝑚𝑇) ⁡= ⁡ (1 − 𝑒𝑥𝑝(−𝑟𝐶𝐶 ∗ 𝑆𝑢𝑚𝑇))𝑚,              [4.3] 

 

where: 

y(SumT) = cumulative percentage of trapped conidia depending on SumT 

y0 = y(SumT = 0) = cumulative percentage of trapped conidia at SumT = 0 

rLC, rGC, rCC = rate parameters for the logistic, Gompertz and Chapman Richards function, 

respectively  

SumT = Temperature sum (Base 0 °C or 5 °C) and rainfall combination (RA > 0 or 

0.2 mm) 

m = shape parameter. 
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4.3.2. Germination and germ tube length 

The germination (in %) at 5 °C, 10 °C, 15 °C, 20 °C, 25 °C and 30 °C and germ tube 

length (in µm) at 15 °C, 20 °C, 25 °C and 30 °C of pure cultures St.sp.25.09.13.A and F 

were measured after 1, 3, 6, 12 and 24 h of leaf wetness with Leica DM2000 microscope 

at 200× magnifications and an ocular micrometre. Both strains had been identified as 

S. vesicarium by Graf et al. (2016). The strains were cultured on V8-medium (100 ml of 

V-8 juice, 2 g of CaCO3, 16 g of agar per L) for 5 d in the dark and at 21 °C. To stimulate 

sporulation, the strains were exposed to UV-light for 30 min daily for another 9-15 d 

(Leach 1962; 1967). To create a spore suspension, the cultures were washed off with at 

least 25 ml of sterile deionized water. A volume of 1000 µl of this suspension was placed 

on water agar plates (15 g agar per L) and spread with disposable bacterial cell spreaders 

(Roth®, AY19.1) under slight pressure on the surface. For each temperature, four repli-

cations of 100 spores for germination and four replications of 25 spores of the germ tube 

length were considered. The dependence of the germination of the conidia (GC) on leaf 

wetness duration (WD) was modelled by the Chapman Richards function (von Bertalanffy 

1957; Richards 1959):  

 

   𝐺𝐶(𝑊𝐷) = 𝐺𝐶𝑚𝑎𝑥 ∗ (1 − exp(−𝑟𝐺𝐶 ∗ 𝑊𝐷))𝑚   [4.4] 

 

where: 

GC(WD) = germinated conidia (in %) depending on leaf wetness duration WD (in h) 

GCmax = maximum germination (in %) 

rGC = rate parameter (in h−1) 

m = shape parameter. 

 

The maximal germination GCmax depending on temperature T was modelled with a gen-

eralised beta function (Hau 1988), as modified by Bassanezi et al. (1998). 

 

𝐺𝐶𝑚𝑎𝑥(𝑇) = 𝐺𝐶𝑜𝑝𝑡 (⁡ 𝑇−𝑇𝑚𝑖𝑛𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛)𝑛∗⁡𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛𝑇𝑚𝑎𝑥−𝑇𝑜𝑝𝑡 ∗ ⁡( 𝑇𝑚𝑎𝑥−𝑇𝑇𝑚𝑎𝑥−𝑇𝑜𝑝𝑡)𝑛  [4.5] 

 

GCmax(T) = maximal germination depending on temperature T (in °C) 

GCopt = germination at Topt 
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Tmax = maximal temperature (in °C) 

Tmin = minimal temperature (in °C) 

Topt = optimal temperature (in °C) 

n = shape parameter 

As cardinal temperatures 0 °C for Tmin and 35 °C for Tmax were chosen based on the results 

obtained by Montesinos et al. (1995b). GCopt was fixed at 100 as the maximal germination 

was nearly 100 %. 

 

In the final step, the two models (Eq. 4.4 and 4.5) were combined to describe germination 

in dependence on leaf wetness duration WD and temperature T. The rate parameter rGC of 

the Chapman Richards function (Eq. 4.4) was assumed to be a linear function of temper-

ature (rGC(T) = ar + brT) to describe the interactions between temperature and leaf wetness 

duration: 

 𝐺𝐶(𝑊𝐷, 𝑇) = 𝐺𝐶𝑚𝑎𝑥(𝑇) ∗ (1 − exp(−(𝑎𝑟 + 𝑏𝑟 ∗ 𝑇) ∗ 𝑊𝐷))𝑚  [4.6] 

 

where: 

GC(WD, T) = germinated conidia (in %) depending on leaf wetness duration WD (in h) 

and Temperature T (in °C) 

GCmax(T) = maximal germination depending on temperature T (in °C) 

ar = intercept of the linear temperature function of rGC(T) 

br  = slope parameter of the linear temperature function of rGC(T) 

m = shape parameter. 

 

The effect of leaf wetness duration WD on the germ tube length of conidia LC (in µm) 

was modelled with a power function: 

  𝐿𝐶(𝑊𝐷) = 𝑎 ∗ 𝑊𝐷𝑑     [4.7] 

 

where: 

LC(WD) = germ tube length (in µm) depending on leaf wetness duration WD (in h) 

a = scaling factor of the power function 

d = exponent of the power function. 
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The effect of temperature T on the scaling factor a was modelled again with a generalised 

beta function (Hau 1988; Bassanezi et al. 1998) as in Eq. 4.5. For the germ tube length, 

GCmax(T) is replaced by a(T) and GCopt by aopt. Again, the cardinal temperatures 

Tmin = 0 °C and Tmax = 35 °C were chosen (Montesinos et al. 1995b). In the final step, the 

two models were combined to reach the dependence on leaf wetness duration WD and 

temperature T. 

 𝐿𝐶(𝑊𝐷, 𝑇) = 𝑎(𝑇) ∗ 𝑊𝐷𝑑    [4.8] 

 

4.3.3. Number of lesions as a measure for disease efficiency 

The number of lesions appearing after artificial inoculation with the two strains 

St.sp.25.09.13.A and F were counted at temperature levels 10 °C, 15 °C, 20 °C, 25 °C 

and 30 °C. For each strain and temperature level, 7-8 green asparagus spears (approximate 

1-1.5 cm in spear diameter; 18-19 cm in length) were placed close together (touching) on 

a 1 cm high wire frame in a plastic humidity chamber until the entire area (19 × 9 cm) 

was filled out. Below the wire frame, a 0.5 cm high water reservoir was filled in to guar-

antee high air humidity. A volume of 2 ml of a spore suspension with 5 × 104 spores per 

mL was sprayed on top of the spears, and after 5 d, the lesions per total area were counted. 

This trial was performed without light. For each strain, the number of lesions of the dif-

ferent temperature levels was expressed in percentage of the highest number at 20 °C. 

The number of lesions L (in %), depending on temperature T, was modelled again with a 

generalized beta function (Hau 1988; Bassanezi et al. 1998) as described in Eq. 4.5. In 

this case, GCmax(T) is replaced by L and GCopt by Lopt. Again, the cardinal temperatures 

Tmin = 0 °C and Tmax = 35 °C were chosen (Montesinos et al. 1995b), and Lopt was fixed 

at 100 %. 

4.3.4. Mycelium growth 

The optimum temperature curves for mycelium growth of the four strains 

St.sp.25.09.13.A, C, D and F were obtained. They all had been identified as S. vesicarium 

by Graf et al. (2016). 8-mm pieces from pure cultures were gouged by hand cork borers, 

(Roth® 0581.1) and transferred centrally with a needle on water agar. The radial growth 

of 2 × 15 plates of each fungal strain at temperature levels of 10 °C, 15 °C, 21 °C, 25 °C, 
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and 30 °C was measured after 9 d. For each strain, the radial growth of the different 

temperature levels was expressed in percentage of the highest growth (at 25 °C). The 

radial mycelium growth MG, depending on temperature T, was modelled again with a 

generalized beta function (Hau 1988; Bassanezi et al. 1998) as in Eq. 4.5. For the myce-

lium growth, GCmax(T) is replaced by MG, and GCopt by MGopt. MGopt was fixed at 100; 

again, the cardinal temperatures Tmin = 0 °C and Tmax = 35 °C were chosen (Montesinos 

et al. 1995b). 

4.3.5. Statistical software 

Data preparation and statistical modelling was done with software Microsoft Excel 

2016™, XLSTAT Version 2016.05.33324 (Copyright Addinsoft 1995-2016) and Sig-

maPlot for Windows Version 13.0 (Copyright Systat Software, Inc. 2014). The nonlinear 

functions were fitted to the data by nonlinear regression using the Levenberg-Marquardt 

algorithm. 

4.4. Results 

4.4.1. Spore traps and cumulative percentage of trapped conidia 

From 2013 to 2015, the dynamics of airborne conidia began at mid-July at the earliest, 

but only after mid-August, early September, the number of conidia trapped was consid-

erably enhanced (Fig. 4.1). At Fuhrberg, the amount of trapped conidia was extremely 

low until September in all 3 years (Fig. 4.1a, b, d). In Hannover-Ahlem 2015 (Fig. 4.1e), 

there was only one week before September with more than 100 spores per 0.42 cm2. The 

spore flight in Hannover-Ahlem 2014 (Fig. 4c), however, was much earlier and more 

pronounced than in all other cases. Here 102 spores per 0.42 cm2 were already counted 

until the end of July, and spores were caught at all four sampling dates in August. In the 

first and second sampling period of August, over 500 spores per 0.42 cm2 were trapped. 
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Figure 4.1 Weekly trapped S. vesicarium conidia [per 0.42 cm2] illustrated with daily temperature [in °C], daily 

rainfall [in mm], and irrigation amount [in mm] at Fuhrberg 2013 (a), Fuhrberg 2014 (b), Hannover-Ahlem 2014 

(c), Fuhrberg 2015 (d) and Hannover-Ahlem 2015 (e) 
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For the mathematical description of the airborne conidia, the best fit was obtained using 

a logistic function (Eq. 4.1) and as an independent variable the sum of the mean daily 

temperature base 0 °C only on days with RA above 0.2 mm starting from the 1st of May. 

The variation of the base temperature and RA values in calculating SumT did not make 

any significant difference (Table 4.1). We have tested further combinations between 0 °C 

and 5 °C, each at RA over 0 mm and 0.2 mm, however, all attempts did not lead to a better 

fit of the model. The results of the Gompertz (Eq. 4.2) and the Chapman Richards func-

tions (Eq. 4.3) were not listed separately for each temperature and rain combinations be-

cause the AIC values were higher (Spiess and Neumeyer 2010) and the R2 values were 

lower (not significant) or equal, compared to the results of the logistic function. For all 

three functions, the SumT combination of 0.0 °C and 0.2 mm resulted in the best R2 and 

AIC values. 

The cumulative percentage of trapped conidia visibly starts at SumT of 600 degree-days 

(Fig. 4.2) which corresponds to the 1st of August for Fuhrberg 2013; the 20th of July for 

Fuhrberg 2014; the 24th of July for Hannover-Ahlem 2014; the 4th of August for Fuhrberg 

2015; and the 24th of July for Hannover-Ahlem. Thus, it can be expected that conidia 

became airborne between July 20th and August 4th in the experimental years. A SumT 

value of 800 degree-days corresponds to approximately 10 % and of 1000 degree-days to 

approximately 50 % of the total number of conidia trapped. 

 

Table 4.1 Estimated parameter values of the logistic function (Eq. 4.1) for the cumulative percentage of trapped S. 

vesicarium conidia (in %) (y0 = y-intercept; rLC = rate parameter of the logistic function, n = 82) 

 R2 AIC Parameter Estimate Standard error P 

SumT (Basis 0 °C and RA > 0.0 mm) 
0.79 -305.29 y0 <0.001 <0.001 0.557 

  rLC 0.010 0.001 <0.001 

SumT (Basis 0 °C and RA > 0.2 mm) 
0.81 -312.23 y0 <0.001 <0.001 0.5322 

  rLC 0.012 0.002 <0.0001 

SumT (Basis 5 °C and RA > 0.0 mm) 
0.79 -303.49 y0 <0.001 <0.001 0.555 

  rLC 0.015 0.002 <0.0001 

SumT (Basis 5 °C and RA > 0.2 mm) 
0.80 -309.27 y0 <0.001 <0.000 0.525 

  rLC 0.017 0.002 <0.001 
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4.4.2. Germination 

The shape of the germination curves changed with temperature. At 5 °C, for instance, the 

curve was S-shaped, whereas at higher temperatures, the curves resembled graphs of 

monomolecular functions without a point of inflection (Fig. 4.3). At 10 °C, 80 % of the 

conidia germinated after 6 h, whereas at 20 °C, 25 °C and 30 °C over 90 % of the conidia 

germinated after only 3 h of leaf wetness. For each temperature level (Fig. 4.3), the effect 

of the leaf wetness duration was described by the Chapman Richards function (Eq. 4.4) 

with R2 values ≥ 0.99. At 20 °C, the value of parameter m was especially high (Table 4.2), 

which can be explained by the large increase in the germination between 1 and 3 h 

(Fig. 4.3). Based on the obtained model curves (Fig. 4.3) and values of the parameter rGA 

and m (Table 4.2), we can conclude that there are interactions between temperature and 

leaf wetness duration. 
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Figure 4.2 Cumulative percentage of trapped S. vesicarium conidia [in %] depending on SumT (base 0 °C and RA > 

0.2 mm) starting on 1st May (points = data; line = fitted Eq. 4.1 with parameter values from Table 4.1; dotted line = 

lower and upper confidence limits (95 %)) 
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Table 4.2 Estimated parameter values of the Chapman Richards function (Eq. 4.4) of the mean germination value of 

conidia of two S. vesicarium strains GC (in %) depending on leaf wetness duration WD at temperature levels of 5 °C, 

10 °C, 15 °C, 20 °C, 25 °C and 30 °C (GCmax = maximum germination (in %); rGC = rate parameter; m = shape 

parameter) 

Temperature R2 Parameter Estimate Std. Error P 

5 °C 0.99 GCmax 79.750 2.863 0.000 

  rGC 0.227 0.030 0.005 

  m 6.228 1.656 0.033 

10 °C 0.99 GCmax 90.963 1.092 <0.0001 

  rGC 0.573 0.049 0.001 

  m 3.740 0.594 0.008 

15 °C 0.99 GCmax 95.753 1.241 <0.0001 

  rGC 0.962 0.086 0.002 

  m 5.716 1.237 0.019 

20 °C 0.99 GCmax 98.588 0.205 <0.0001 

  rGC 1.978 0.060 <0.0001 

  m 14.012 0.944 0.001 

25 °C 0.99 GCmax 96.946 0.672 <0.0001 

  rGC 1.537 0.141 0.002 

  m 5.414 0.895 0.009 

30 °C 0.99 GCmax 97.919 0.148 <0.0001 

  rGC 1.964 0.099 0.000 

  m 5.761 0.616 0.003 

 

The parameter values of Gmax estimated for the six temperatures follow an optimum tem-

perature curve. Therefore, a generalized beta function (Eq. 4.5) was used to describe the 

effect of temperature on Gmax. As the estimated values of the rate parameter rGC had an 

increasing trend with temperature (Table 4.2), we assumed that the rate parameter is a 

linear function of temperature, rGC(T) = ar + brT. The shape parameter m, however, was 

treated as a constant due to the absence of a clear trend of the estimated m values with 

temperature alterations (Table 4.2). Thus, the Chapman Richards function (Eq. 4.6) with 

temperature-dependent capacity and rate was fitted simultaneously to all six germination 

curves. This function describes the influence of temperature and leaf wetness duration on 

conidia germination very well (R2 = 0.99). The optimal temperature of germination is 

23.3 °C (Table 4.3). The temperature range with high germination rate is rather broad 

(Fig. 4.4) which is reflected in the low value estimated for parameter n (Bassanezi et al. 

1998). 
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Figure 4.3 Germination of conidia of S. vesicarium GC [in %] depending on leaf wetness duration WD at temperature 

levels of 5 °C, 10 °C, 15 °C, 20 °C, 25 °C, and 30 °C (triangles = data of St.sp.25.9.13.A; points = data of 

St.sp.25.9.13.F; line = fitted Eq. 4.4 with parameter values from Table 4.2) 
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Table 4.3 Estimated parameter values of the modified generalized beta-Chapman Richards function (Eq. 4.6)* for the 

mean germination value of conidia of two S. vesicarium strains GC (in %) depending on temperature T and leaf wetness 

duration WD (Topt = optimal temperature (in °C); n = shape parameter of the beta function; ar = intercept of the linear 

temperature function of rGC(T); br = slope parameter of the linear temperature function of rGC(T); m = shape parameter 

of the Chapman Richards function) 

R2 Parameter Estimate Std. Error P 

0.99 Topt 23.344 1.264 <0.0001 

 n 0.105 0.029 0.001 

 ar -0.144 0.024 <0.0001 

 br 0.078 0.007 <0.0001 

 m 6.554 1.220 <0.0001 

* fixed values: Tmin = 0 °C, Tmax = 35 °C  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.3. Germ tube length 

For each of the four temperature levels, the germ tube of the conidia did not grow linearly, 

but with an increasing rate over time (Fig. 4.5). Accordingly, the power function (Eq. 4.7) 

resulted in a high goodness of fit with R2 values ≥ 0.99 (Table 4.4). The highest germ tube 

length was observed at 25 °C and 30 °C (Fig. 4.5). From 15 °C to 30 °C the estimated 
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Figure 4.4 Modelled germination of conidia of S. vesicarium GC [in %] depending on temperature T and leaf wetness 

duration WD (points = mean value of two strains; surface = fitted Eq. 4.6 with parameter values from Table 4.3) 
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values of parameter d remained almost constant (Table 4.4). For parameter a, we assumed 

that the effect of temperature can be described by a generalized beta function (Eq. 4.5). 

Thus, the combined generalized beta-power function (Eq. 4.8) was simultaneously fitted 

to the germ tube data at the four temperature levels, resulting in the estimated parameter 

values presented in Table 4.5. The combined effect of WD and T is well described (R2 = 

0.99) as shown in the 3D-graph (Fig. 4.6). The estimated optimal temperature of the germ 

tube length is 28.7 °C and the shape parameter n is 0.56, i.e. considerably higher than that 

for the germination (Table 4.3). 

 

Table 4.4 Estimated parameter values of a power function (Eq. 4.7) of the mean germ tube length value of conidia of 

two S. vesicarium strains LC (in µm) depending on leaf wetness duration WD for temperature levels of 15 °C, 20 °C, 

25 °C and 30 °C (a = scaling factor of the power function; d = exponent) 

Temperature R2 Parameter Estimate Std. Error P 

15 °C 0.99 a 5.003 1.476 0.043 
  d 1.381 0.096 0.001 

20 °C 0.99 a 13.807 3.365 0.026 

  d 1.261 0.080 0.001 

25 °C 0.99 a 11.169 0.899 0.001 

  d 1.425 0.026 <0.0001 

30 °C 0.99 a 14.313 2.666 0.013 
  d 1.375 0.061 0.000 
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Table 4.5 Estimated parameter values of the generalized beta-power function (Eq. 4.8)* for the mean germ tube length 

value of conidia of two S. vesicarium strains LC (in µm) depending on temperature T and leaf wetness duration WD 

(aopt = scaling factor of the power function at Topt; Topt = optimal temperature (in °C); n = shape parameter of the 

generalized beta function; d = exponent of the power function) 

R2 Parameter Estimate Std. Error P 

0.99 aopt 14.777 1.574 <0.0001 

 Topt 28.677 0.353 <0.0001 

 n 0.564 0.075 <0.0001 

 d 1.369 0.035 <0.0001 

* fixed values: Tmin = 0 °C and Tmax = 35 °C  
 
 

 

 

 

 

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20 22 24

G
e
rm

 t
u
b
e
 l
e

n
g
th

L
C

 [
in

 µ
m

]

Leaf wetness duration WD [in h]

15 °C

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20 22 24

G
e
rm

 t
u
b
e
 l
e

n
g
th

 L
C

[i
n

 µ
m

]

Leaf wetness duration WD [in h]

20 °C

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20 22 24

G
e
rm

 t
u
b
e
 l
e
n
g
th

 L
C

[i
n
 µ

m
]

Leaf wetness duration WD [in h]

25 °C

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20 22 24

G
e
rm

 t
u
b
e
 l
e

n
g
th

 L
C

[i
n

 µ
m

]

Leaf wetness duration WD [in h]

30 °C

Figure 4.5 Germ tube length of conidia of S. vesicarium LC [in µm] depending on leaf wetness duration WD for 

temperature levels of 15 °C, 20 °C, 25 °C, and 30 °C (triangles = data of St.sp.25.9.13.A; points = data of 

St.sp.25.9.13.F; line = fitted Eq. 4.7 with parameter values from Table 4.4) 
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4.4.4. Number of lesions as a measure for disease efficiency 

For both strains, the highest absolute number of lesions was observed at 20 °C, but the 

number of lesions of strain St.sp.25.09.13.F reached only 75.24 % of the number of le-

sions of St.sp.25.9.13.A. The generalized beta function (Eq. 4.5) was fitted to the relative 

lesion number (in % of the maximum values at 20 °C) resulting in an optimum tempera-

ture of 21.89 °C for the mean values of both strains (Table 4.6). The highest formation of 

lesions was in the range from 20 °C to 25 °C (Fig. 4.7). The mean value of parameter n 

was rather high (4.5), which led to an extremely narrow optimum range for temperature 

(Bassanezi et al. 1998). The duration of the incubation period was 4 d at 20 °C. 

 

 

 

 

 

 

0

200

400

600

800

1000

1200

16
18

20
22

24
26

28
30

0

5

10

15

20

G
er

m
 tu

be
 le

ng
th

 L
C

 [i
n 

µm
]

Temperature T [in °C]

Leaf wetness duration W
D [in h]

Figure 4.6 Modelled germ tube length of conidia of S. vesicarium LC [in µm] depending on temperature T and leaf 

wetness duration WD (points = mean value of two strains; surface = fitted Eq. 4.8 with parameter values from Table 4.5) 
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Table 4.6 Estimated parameter values of the generalized beta function (Eq. 4.5)* for number of lesions L (in %) of 2 

different S. vesicarium strains depending on temperature T (Topt = optimal temperature (in °C); n = shape parameter) 

 R2 Parameter Estimate Std. Error P 

St.sp.25.9.13.A 0.97 Topt 22.296 0.399 <0.0001 

  n 5.316 0.894 0.002 

St.sp.25.9.13.F 0.95 Topt 21.478 0.523 <0.0001 

  n 3.485 0.577 0.002 

MV (2 strains) 0.94 Topt 21.89 0.374 <0.0001 

  n 4.537 0.630 <0.0001 

* fixed values: Tmin = 0 °C, Tmax = 35 °C, Lopt = 100 % 

4.4.5. Mycelium growth 

The highest radial growth for all four strains was observed at 25 °C, although the absolute 

mycelium growth differed among the strains. The growth of St.sp.25.09.13.F was most 

vigorous (2.98 cm) after 9 d at 25 °C. The strains St.sp.25.09.13.A and D reached only 

83.9 % and 85.9 % of the growth of St.sp.25.09.13.F, whereas strain St.sp.25.09.13.C had 

a significantly lower growth with a relative value of only 71.5 %. The estimated optimum 

temperature of the generalized beta function (Eq. 4.5) for the mycelium growth of the 

four strains is 24.7 °C (Table 4.7). Strain St.sp.25.9.13.A has a clearly higher optimal 

temperature (26.0 °C) than those of the other three strains tested (Table 4.7, Fig. 4.8). The 
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value of parameter n for the mean values of all strains was 2.0, resulting in a wider optimal 

range than that for the number of lesions, but narrower than that for germination and germ 

tube length. 

 

Table 4.7 Estimated parameter values of the generalized beta function (Eq. 4.5)* for the mycelium growth MG of 4 

different S. vesicarium strains relative to the maximum (in %) depending on temperature T (Topt = optimal temperature 

(in °C); n = shape parameter) 

 R2 Parameter Estimate Std. Error P 

St.sp.25.9.13.A 0.93 Topt 25.965 0.524 <0.0001 

  n 2.920 0.619 0.005 

St.sp.25.9.13.C 0.94 Topt 24.031 0.619 <0.0001 

  n 1.985 0.374 0.003 

St.sp.25.9.13.D 0.93 Topt 23.990 0.666 <0.0001 

  n 2.093 0.428 0.005 

St.sp.25.9.13.F 0.98 Topt 24.352 0.395 <0.0001 

  n 1.964 0.243 0.001 

MV (4 strains) 0.90 Topt 24.726 0.349 <0.0001 

  n 2.028 0.231 <0.0001 

* fixed values: Tmin = 0 °C, Tmax = 35 °C, MGopt = 100 % 
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Figure 4.8 Modelled mycelium growth MG of four different S. vesicarium strains [in %] depending on temperature T 

(points = data; line = fitted Eq. 4.5 with parameter values from Table 4.7; MV = mean value) 
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4.5. Discussion and conclusions 

Our data of seasonal dynamics of airborne conidia from 2013 to 2015 are in accordance 

with previous findings (Hausbeck et al. 1997; Rossi et al. 2005; Llorente and Montesinos 

2006; Llorente et al. 2008; Granke and Hausbeck 2010). In this study, the daily rain 

amount was an important factor for inducing conidia becoming airborne. A logistic func-

tion (Eq. 4.1) was most suitable to model the cumulative percentage of trapped conidia. 

The SumT value of 600 degree-days can be seen as the point when the number of airborne 

conidia clearly increases. Over the five locations, the value of 600 degree-days was 

reached within a range of 16 calendar days, with a mean value on the 27th of July. In 

Germany, this date is approximately 1 month after the so called Johannis-sprout, which 

is often used as the date of harvest end. The term derives from the fact that this sprout 

usually starts after the 24th of June (Otto 2009). The 27th of July could, for example, be 

set in a forecast model as an important initial point for conidia flight. 

As known from pear orchards, several species of Stemphylium coexist with S. vesicarium, 

where only S. vesicarium isolates were pathogenic on pear. By morphological methods, 

it is not possible to distinguish pathogenic spores from saprophytic strains or pathogenic 

strains from other hosts (Puig et al. 2015). Therefore, it cannot be said whether all our 

conidia counted direct under the microscope are from the pathogenic population or 

whether these conidia are from saprophyte isolates or other hosts. The determination of 

the prevalent species in German asparagus plantings has already been carried out, but the 

coexistence of different Stemphylium species could not be confirmed with the method 

used by Graf et al. (2016). On the other hand, it is known that isolates of the species 

S. vesicarium, S. herbarum, S. alfalfa, S. tomatonis and S. sedicola cannot be separated 

into single species by phylogenetic analyses and they should be regarded as synonymous 

(Câmara et al. 2002; Inderbitzin et al. 2009; Köhl et al. 2009). So far, cyt b was not se-

quenced for S. herbarum, S. alfalfa, S. tomatonis and S. sedicola and therefore it is not 

known if there are differences in the sequence (Graf et al. 2016).  

On plant surface, conidia germinate under favourable conditions, specifically dependent 

on temperature and leaf wetness duration. The germination of conidia from pear occurred 

only when the relative humidity was within the range 98-100 % but was exceedingly 

rapid, reaching 50 % after only 1 h of exposure to temperatures between 20 °C and 30 °C, 

with an optimal temperature of 23 °C (Montesinos and Vilardell 1992). Our tested aspar-

agus strains behaved similarly on water agar, which imitates permanent leaf wetness, with 
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a fast germination of 40 % after 1 h of exposure (Fig. 4.4) and an estimated optimum at 

23.34 °C (Table 4.3). The Chapman Richards function with two parameters (Eq. 4.4) was 

sufficiently flexible to describe the germination in dependence of leaf wetness duration, 

although the temperature affected the shape of the germination curves (Fig. 4.3). The 

generalized beta-Chapman Richards function (Eq. 4.6) with temperature-dependent rate, 

rGC(T) = ar + brT, fits well (Table 4.3) and reflects the interaction between temperature 

and leaf wetness duration. 

As germination was extremely fast, the growth of the germ tube was considered to be an 

additional factor for infection. According to Bassanezi et al. (1998), a lower shape pa-

rameter results in a broader temperature range for high values. Thus, the germ tube length 

has a narrower nearly optimum temperature range than the germination and can be con-

sidered the limiting factor for the infection process. The estimated optimum temperature 

for germ tube length was 28.7 °C, which was considerably higher than the one required 

for germination (23.3 °C). Comparable data for the germ tube length of conidia of S. ves-

icarium strains are not available in the literature. Germ tube length data from S. botryosum 

strains sourcing from lentil are similar, modelled by a Gompertz function with an opti-

mum at 27.5 °C (Ahmad 2014). This value is only 1.18 °C (4.11 %) lower than our esti-

mated optimal temperature and is therefore comparable. 

The chosen maximum temperature of 35 °C is probably not always appropriate, because 

the decline from 30 °C to 35 °C in the model parts germination and germ tube length is 

very rapid (Fig. 4.9). We had also estimated the cardinal temperatures in the nonlinear 

regression analyses, but the results were unrealistically high for Tmax. The maximum tem-

perature of 35 °C was chosen based on the disease severity data of S. vesicarium on pear 

leaves and fruits (Montesinos et al. 1995b) and mycelium growth of pear isolates (Mon-

tesinos and Vilardell 1992). On the other hand, low germination at 35 °C had already 

been described for S. vesicarium (Montesinos and Vilardell 1992). For these reasons, it 

may be useful to examine additionally data at temperatures above 35 °C for all leaf wet-

ness durations to estimate more exactly the upper cardinal temperature. On the other hand, 

in the regions of German asparagus cultivation, such high temperatures (above 35 °C) are 

only achieved in exceptional cases and therefore are not relevant for a future forecast 

model. The exact identification of Tmin is also not important for the polycyclic phase and 

the forecast model, since such low temperatures do not occur in summer. 
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Similar to the estimated temperature optimum (21.9 °C) for the relative number of lesions 

in this study (Table 4.6), Montesinos et al. (1995b) reported temperature optima of 

22.6 °C and 21.1 °C for infections on pear fruits and leaves. Menzies et al. (1991) found 

that the optimum temperature range for infections on leaves by an asparagus isolate from 

France was between 25 °C and 30 °C. 

 

 

The number of lesions has the narrowest nearly optimal temperature range of all model 

parts (Fig. 4.9) and the lowest optimal temperature and can therefore be regarded as the 

most limiting factor in this study. However, one should have in mind that the incubation 

period is four days at 20 °C and therefore after five days at 10 °C the incubation period 

was not yet completely finished and the number of possible lesions was certainly under-

estimated (Fig. 4.7). Thus, for very low and high temperatures, the numbers counted after 

five days are lower than those expected after the real end of the incubation period. The 

assumption of the narrowest optimal temperature range must therefore be considered with 

caution. 

After the infection is established, the development of lesions in the plant tissue depends 

on the mycelium growth. Basic research of biological parameters from isolates of pear 

showed maximum rates of radial mycelium growth within the range of 5-35 °C and an 

optimum at 21 °C (Montesinos and Vilardell 1992). Our estimated temperature optimum 

for MG was higher by 3.7 °C (Table 4.7), and this difference is one of the reasons de-
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Figure 4.9 Comparison of the effect of temperature T on the four observed parts of the polycyclic phase of S. vesicarium 
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manding a more specific description of the disease on asparagus. One of the four investi-

gated strains had even a higher temperature optimum, indicating the wide variability in 

the growth of the various strains. 

A comparison of all temperature curves (Fig. 4.9) shows that the curve peaks are close 

together (> 20 °C) with a mean optimal temperature of 24.3 °C. All model parts of the 

polycyclic phase indicate that S. vesicarium can most likely be categorized into the group 

of mesophiles, as most other fungi. The mesophilic growth range is typically between 

0 °C and 35 °C with an optimal temperature between 25 °C and 30 °C (Dix and Webster 

1995). The optimum temperature of the number of lesions is clearly lower than this opti-

mum range but fits well into the described growth range.  

There are other factors that may favour the progress of disease in asparagus. In 2013, 

lesions were sometimes found on only one side of the asparagus base. It seems that sand 

was blasted on the spears by strong wind 10-14 days earlier. Wounding of spears caused 

by sand has already been reported in the literature to lead to more lesions and shorter 

wetting duration needed for the development of lesions (Lacy 1982; Johnson and Lunden 

1986). The persistent moisture by dew seems to be another catalyst for infections, regard-

less of rainfall. The fine phylloclades form a huge surface that is utilized for the attach-

ment of moisture. An earlier study showed that longer periods of dew or fog contributed 

to greater rates of infection by Stemphylium on trifolium and medicago (Bradley et al. 

2003). In asparagus, long leaf wetness duration by dew happens in the morning.  

All model parts of the polycyclic phase were connected with the existing model parts 

from the monocyclic phase (Bohlen-Janssen et al. 2018a) in the algorithm of the new 

forecast model SIMSTEM. The model forecasts the beginning of the epidemic and the 

disease progression (as a proportion of the diseased leaf area). SIMSTEM uses area-spe-

cific weather data either from standard meteorological stations (provided by the German 

Meteorological Service or by the Regional Plant Protection Offices) or simulated data 

(Racca et al. 2010). All model rates are calculated using hourly weather parameters: tem-

perature (in °C), relative humidity (in %), and rainfall (in mm). The model algorithm is 

developed by the Central Institute for Decision Support Systems in Crop Protection 

(ZEPP) and will be available on the agricultural internet platform for integrated plant 

production ISIP (www.isip.de), which is currently in the test phase (2018). The strategy 

for the integrated disease management of purple spot on asparagus using the SIMSTEM 

model is currently in development. 
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5. SIMSTEM - a model to forecast the epidemic of purple 

spot (Stemphylium vesicarium) on asparagus (Aspara-

gus officinalis L.).  

5.1. Abstract  

SIMSTEM is a new computer based forecast model for epidemics of purple spot in as-

paragus, caused by Stemphylium vesicarium. Aspects of the monocyclic and polycyclic 

phases of S. vesicarium were implemented in one algorithm. Using disease data of several 

years, a first validation was carried out. The model can be used flexibly because it can 

forecast the beginning of the epidemic, the first treatment, the disease progression (as a 

proportion of the diseased leaf area), and signal periods with high risk disease pressure 

indicating the need for fungicide treatments via a traffic light system. SIMSTEM will be 

available for consultation and interested producers after a test phase under www.ISIP.de 

with a user-friendly in- and output.  

 

Keywords: Asparagus, Forecast, Purple spot, SIMSTEM, Stemphylium vesicarium 

5.2. Introduction 

Purple spot or Stemphylium leaf spot disease of asparagus (Asparagus officinalis L.), 

caused by Stemphylium vesicarium (Wallr.) E.G. Simmons 1969, is an important fungal 

disease in the asparagus production of Germany (Menzinger and Weber 1990) and of 

several other regions worldwide (Suzui 1973; Menzies 1980; Lacy 1982; Blancard et al. 

1984; Falloon et al. 1984; Gindrat et al. 1984; Thompson and Uys 1992; Cunnington and 

Irvine 2005). Managing epidemics of S. vesicarium in asparagus, including the proper 

time and frequency of fungicide application, is of significant interest for growers, phyto-

sanitary services and consultants. 

The Integrated Pest Management (IPM) concept is based on the economical use of plant 

protection products, the benefit of natural enemies and their threat by plant protection 

measures, and includes a wide range of alternative pest control measures (Dent and Elliott 
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1995; Burth and Freier 1996). Beneficial experiences were achieved with computer-as-

sisted decision support systems (Kleinhenz and Jörg 1998; Jörg et al. 1999). These sys-

tems can be useful for forecasting the date of exceeding a control threshold and, thus, the 

date of fungicide application. With mathematical models, the time requirement for field 

evaluations can be minimised (Racca et al. 2002). The effects of temperature and leaf 

wetness duration on the infection and growth of fungal plant diseases can be modelled to 

forecast infection periods (Lalancette et al. 1988; Carisse and Kushalappa 1990; Broome 

et al. 1996; Montesinos and Vilardell 1992; Montesinos et al. 1995b). The model FAST, 

for instance, is a forecast system for Alternaria solani on tomato (Madden et al. 1978). 

Later BSPcast was derived from FAST by adapting it to the aetiology and epidemiology 

of S. vesicarium on pear (Montesinos and Vilardell 1992; Montesinos et al. 1995a; Mon-

tesinos et al. 1995b; Llorente et al. 2000; Llorente et al. 2011). From FAST also the model 

TOM-CAST was derived as a weather timed fungicide spray forecast for tomato anthrac-

nose, Septoria leaf spots and late blight (Pitblado 1992).  

FAST uses hours of leaf wetness and the average temperature during wet periods, the 

mean air temperature, hours of relative humidity over 90 % and the total rainfall (Madden 

et al. 1978). The success of control measures of S. vesicarium on pear with the model 

FAST is similar to a 7-day application, with a reduction of fungicide applications of 28 % 

(Montesinos and Vilardell 1992). The model BSPcast is based on an empirical model 

(Montesinos and Vilardell 1992) and quantifies the effect of daily wetness duration and 

mean temperature during wetness periods on brown spot disease severity on leaves and 

fruits (Montesinos et al. 1995b). The efficiency of BSPcast in pear was similar to a fixed 

spray schedule (7 and 15-day protection period) and reduced fungicide use on average by 

30 % (Llorente et al. 2000). BSPcast was later modified by including a daily infection 

risk, instead of a 3-day cumulative risk, and by considering the effect of relative humidity 

during interrupted wetness periods (Llorente et al. 2011).  

TOM-CAST does not include the rain model of FAST but uses the duration of leaf wet-

ness and the average air temperature during wet periods to calculate a daily severity value 

(DSV) for the disease (Pitblado 1992). TOM-CAST was later also tested to reduce the 

spray applications in the control of purple spot of asparagus (Meyer et al. 2000; Eichhorn 

et al. 2010). A 60 % reduction in the number of fungicide applications was achieved when 

compared with a standard variant with weekly treatments (up to ten) (Meyer et al. 2000). 
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But tested under practical conditions in Northern Germany, where only four or five fun-

gicidal treatments are common, the use of TOM-CAST was not beneficial anymore 

(Wichura, unpublished data). 

Our theoretical comparison of TOM-CAST and BSPcast showed a significantly more 

sensitive reaction and a better agreement with own empirical experiences of the model 

BSPcast at low temperatures. Nevertheless, the number of fungicide applications is today 

already lower than recommended by these two models and the new development of a 

forecast model is more efficient than the adaptation of an existing model, because 

BSPcast and TOM-CAST are not sufficiently adapted to the pathosystem S. vesicarium-

Asparagus. In our previous papers, the biology of purple spot on asparagus was investi-

gated and important components of the primary and the secondary life cycle were mod-

elled using field observations and laboratory trials (Bohlen-Janssen et al. 2018a; Bohlen-

Janssen et al. 2018b). Based on this information, an epidemiological simulation model 

for Stemphylium vesicarium, called SIMSTEM, is created to forecast the epidemiological 

development of this important disease. So, the aim of this study is to connect the mono-

cyclic and polycyclic phases in the forecast model SIMSTEM and to implement it on the 

agricultural internet platform for integrated plant production ISIP (www.isip.de). 

5.3. Materials and methods  

5.3.1. Model description 

The modelling approach to simulate the daily disease progression is an H-L-I-R epidemic 

model consisting of the four state variables H(ealthy) - L(atent) - I(nfectious) - R(emoved) 

and three rate parameters (β, ω and µ) (Madden et al. 2007). In this version of the SIM-

STEM model, the crop growth is not considered. Thus, the four daily difference equations 

for the simulation, starting with k = 0 on June 1, are: 

 

   𝐻𝑘 = 𝐻𝑘−1 − 𝛽𝑘−1 ∗ 𝐻𝑘−1 ∗ 𝐼𝑘−1     

   𝐿𝑘 = 𝐿𝑘−1 + 𝛽𝑘−1 ∗ 𝐻𝑘−1 ∗ 𝐼𝑘−1 − 𝜔 ∗ 𝐿𝑘−1   

   𝐼𝑘 = 𝐼𝑘−1 + 𝜔 ∗ 𝐿𝑘−1 − µ ∗ 𝐼𝑘−1    

   𝑅𝑘 = 𝑅𝑘−1 + µ ∗ 𝐼𝑘−1      
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Two of the rate parameters, ω and µ, are assumed to be fixed while the third one, β, is 

changing from day to day. The parameter ω (= 0.25) is the inverse of the mean latent 

period which was fixed at four days independent from the temperature variation during 

the season (Bohlen-Janssen et al. 2018b). The parameter µ is the inverse of the mean 

infectious period, but no information on its duration is available. As the fungus can sur-

vive as saprophyte also on dead plant residuals (Simmons 1969; Ellis 1971) and can spor-

ulate for long time (Bohlen-Janssen et al. 2018b), the infectious period was taken as 120 

days, the mean of the duration of a yearly epidemic from June/July till September/Octo-

ber). Thus, a value of 1/120 was assumed for µ. The time-varying rate βk is the daily 

infection probability which is calculated using various partial models from Bohlen-

Janssen et al. (2018a; 2018b) as explained below. 

From the four state variables, two additional states can be calculated: the daily total dis-

ease 𝑌𝑘 = 𝐿𝑘 + 𝐼𝑘 + 𝑅𝑘 and the visible disease 𝑉𝑘 = 𝐼𝑘 + 𝑅𝑘. 
For simplicity, the value for H at day 0 was taken as 1-0.001. The simulation is started 

with an initial value of L0 = 0.0, I0 = 0.001 and R0 = 0.0. 

 

Modelling the daily infection probability βk  

 

For the calculation of the infection probability β, the ascospores and the conidia are con-

sidered separately:  

 

- in the monocyclic phase with ascospores: 

 𝛽𝐴 = 𝐴𝑆𝐶𝐴𝑉𝑘 ∗ min⁡(𝐴𝑆𝐶𝐺𝐸𝑅𝑘; 𝐴𝑆𝐶𝐺𝑇𝐿𝑘) ∗ ⁡𝑀𝐺𝑘 

 

- in the polycyclic phase with conidia: 

 𝛽𝐶 =⁡𝐶𝑂𝑁𝐴𝑉𝑘 ∗ min⁡(𝐶𝑂𝑁𝐺𝐸𝑅𝑘;⁡𝐶𝑂𝑁𝐺𝑇𝐿𝑘) ∗ 𝑀𝐺𝑘 

 

Both are calculated parallel and in the normal case, there is no overlap (Bohlen-Janssen 

et al. 2018a; Bohlen-Janssen et al. 2018b). When the ascospore discharge is over and βA 

ends, only βC is calculated. In the case of an overlap, the maximum value counts. The 
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infection probabilities, 𝛽𝐴 or 𝛽𝐶 ,⁡depend on the availability of spores, 𝐴𝑆𝐶𝐴𝑉𝑘 ⁡or 𝐶𝑂𝑁𝐴𝑉𝑘, 

the germination rate of spores, 𝐴𝑆𝐶𝐺𝐸𝑅𝑘 or 𝐶𝑂𝑁𝐺𝐸𝑅𝑘, the germ tube length of spores, 𝐴𝑆𝐶𝐺𝑇𝐿𝑘 or 𝐶𝑂𝑁𝐺𝑇𝐿𝑘, and on the mycelium growth, MGk; which is the same for both 

spores. The daily value is obtained at the end of the infection period (AIP and CIP) on the 

corresponding day. In case of two or more infection periods on the same day, the maxi-

mum value is chosen for the daily value (Schmitt et al. 2016).  

 

Available ascospore 𝐴𝑆𝐶𝐴𝑉𝑘  

 

Since the pseudothecia remain close in dry periods and the ascospores are ejected only 

after rainfall (Prados-Ligero et al. 1998; Trail 2007), the available flying ascospores on a 

day of infection were calculated as the difference of 𝐴𝑆𝐶𝐹𝐿𝑌𝑘  interrupted by dry periods.  

 𝐴𝑆𝐶𝐴𝑉𝑘 =⁡𝐴𝑆𝐶𝐹𝐿𝑌𝑘 − 𝐴𝑆𝐶𝐹𝐿𝑌𝑘−𝑑𝑝 

 

Where:  

ASCAVk = daily amount of flying ascospores available for the infection 

ASCFLYk = ascospore fly rate on the actual day (k) 

ASCFLYk-dp = ascospore fly rate after the previous infection day 

dp  = dry period (in days) 

 

The daily amount of flying ascospores available for infection was calculated using a 

Chapman Richards function (Richards 1959) with parameter values derived by Bohlen-

Janssen et al. (2018a) as follows: 

 𝐴𝑆𝐶𝐹𝐿𝑌𝑘⁡ =⁡ [1 − 𝑒𝑥𝑝(−0.01 ∗ 𝑆𝑢𝑚𝑇𝑘)]4.25 

 

Where:   

SumTk = sum of daily mean values of temperature (base T = 5 °C, only on day with RA > 

0 mm), reached on day k starting from the 1st of February 
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Ascospore infection period (AIP) 

 

The period in hours (h), in which ejected and flying ascospores can successfully infect 

begins with an hour of rainfall (RA) > 0.0 mm (ascospore ejection from the pseudothecia) 

and ends with the ending of a dew period (in h) after the rainfall. Dew periods beginning 

without rainfall are not considered for a successful infection as no spores are ejected. The 

hours are accumulated as long as there is a continuous leaf wetness. So, more than 24 

hours of leaf wetness are possible. 

 

Ascospore germination 𝐴𝑆𝐶𝐺𝐸𝑅𝑘    

 

The combined effect of temperature (TWD) and leaf wetness duration (WD) on 𝐴𝑆𝐶𝐺𝐸𝑅𝑘 ⁡was calculated using a Chapman Richards function with temperature depending 

capacity and rate, and parameter values were derived by Bohlen-Janssen et al. (2018a) as 

follows: 

 𝐴𝑆𝐶𝐺𝐸𝑅𝑘 = (71.906 + 0.905 ∗ 𝑇𝑊𝐷) ∗ [1 − exp⁡(−(0.039 ∗ 𝑇𝑊𝐷) ∗ 𝑊𝐷)]⁡2.11⁡   

 

Where:  

TWD = mean temperature during the leaf wetness period (in °C) 

WD = leaf wetness duration (in h) 

 

Ascospore germ tube length 𝐴𝑆𝐶𝐺𝑇𝐿𝑘  

 

The effect of the temperature (TWD) and the leaf wetness duration (WD) on 𝐴𝑆𝐶𝐺𝑇𝐿𝑘 was 

modelled with a combined beta-linear function and parameter values were derived by 

Bohlen-Janssen et al. (2018a) as follows: 

 𝐴𝑆𝐶𝐺𝑇𝐿𝑘 = 27.376 ∗ [(⁡ 𝑇𝑊𝐷−𝑇𝑚𝑖𝑛30.42⁡−𝑇𝑚𝑖𝑛)0.266⁡∗⁡30.42⁡−𝑇𝑚𝑖𝑛𝑇𝑚𝑎𝑥−30.42⁡ ∗ ⁡( 𝑇𝑚𝑎𝑥−𝑇𝑊𝐷𝑇𝑚𝑎𝑥−30.42⁡)0.266] ∗ 𝑊𝐷  

  

Where:  

TWD = mean temperature during the wetness period (in °C) 
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WD = leaf wetness duration (in h) 

Following the results from Montesinos et al. (1995b), the cardinal temperatures Tmin and 

Tmax were fixed at 0 °C and 35 °C, respectively.  

 

Available conidia 𝐶𝑂𝑁𝐴𝑉𝑘   

 

As the purple spot lesions produce always conidia (in contrast to ascospores) and the 

fungus can also survive saprophytically on plant residue, the daily 𝐶𝑂𝑁𝐴𝑉𝑘  was calculated 

with the logistic model of the trapped conidia according Bohlen-Janssen et al. (2018b): 

 𝐶𝑂𝑁𝐴𝑉𝑘 =⁡ 11+1−0.001⁡0.001⁡ ∗𝑒𝑥𝑝[−(0.012⁡∗𝑆𝑢𝑚𝑇𝑘)]     

 

Where:   

SumTk = sum of daily mean values of temperature (base T = 0 °C, only on day with RA > 

0.2 mm), reached on day k starting from the 1st of May 

 

Conidia infection period CIP 

 

The CIP was calculated as described for the ascospore infection period AIP beginning 

with an hour of rainfall (RA) > 0.2 mm. 

 

Conidia germination 𝐶𝑂𝑁𝐺𝐸𝑅𝑘  

 

The effect of temperature (TWD) and leaf wetness duration (WD) on 𝐶𝑂𝑁𝐺𝐸𝑅𝑘 was calcu-

lated using a combination of a generalized beta function (Bassanezi et al. 1998) with a 

modified Chapman Richards function with an additional parameter (Payandeh et al. 1980) 

and all parameter values were derived by Bohlen-Janssen et al. (2018b) as follows:  

 

𝐶𝑂𝑁𝐺𝐸𝑅𝑘 = 100 ∗⁡[(⁡ 𝑇𝑊𝐷 − 𝑇𝑚𝑖𝑛23.344− 𝑇𝑚𝑖𝑛)0.105⁡∗⁡23.344−𝑇𝑚𝑖𝑛𝑇𝑚𝑎𝑥−23.344 ∗ ⁡( 𝑇𝑚𝑎𝑥 − 𝑇𝑊𝐷𝑇𝑚𝑎𝑥 − 23.344)0.105⁡] ∗ 

[1 − 𝑒𝑥𝑝(−(−0.144+ 0.078 ∗ 𝑇𝑊𝐷) ∗ 𝑊𝐷)]6.554     
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Where:   

TWD = mean temperature during the dew period (in °C) 

WD = leaf wetness duration (in h) 

The cardinal temperatures Tmin and Tmax were fixed at 0 °C and 35 °C, respectively (Mon-

tesinos et al. 1995b).  

 

Conidia germ tube length 𝐶𝑂𝑁𝐺𝑇𝐿𝑘  

 

The effect of the temperature (TWD) and the leaf wetness duration (WD) on the germ tube 

length of conidia (𝐶𝑂𝑁𝐺𝑇𝐿𝑘) was modelled with a combined beta-power function and all 

parameter values were derived by Bohlen-Janssen et al. (2018b) as follows: 

 𝐶𝑂𝑁𝐺𝑇𝐿𝑘 = 14.777⁡ ∗ [(⁡𝑇𝑊𝐷−𝑇𝑚𝑖𝑛28.68−𝑇𝑚𝑖𝑛)0.564∗⁡28.68−𝑇𝑚𝑖𝑛𝑇𝑚𝑎𝑥−28.68 ∗⁡(𝑇𝑚𝑎𝑥−𝑇𝑊𝐷𝑇𝑚𝑎𝑥−28.68)0.564] ∗ 𝑊𝐷1.369   

 

Where:   

TWD = mean temperature during the dew period (in °C) 

WD = leaf wetness duration (in h) 

Following the results from Montesinos et al. (1995b), the cardinal temperatures Tmin and 

Tmax were fixed at 0 °C and 35 °C, respectively.  

 

Mycelium growth MGk 

 

For the monocyclic and polycyclic phases, the mycelium growth (MGk) was modelled 

using a generalized beta function according to Bohlen-Janssen et al. (2018b) as follows: 

 

𝑀𝐺𝑘 = 100 ∗ (⁡ 𝑇 − 𝑇𝑚𝑖𝑛24.726⁡ − 𝑇𝑚𝑖𝑛)𝑛∗⁡24.726⁡−𝑇𝑚𝑖𝑛𝑇𝑚𝑎𝑥−24.726⁡ ∗ ⁡( 𝑇𝑚𝑎𝑥 − 𝑇𝑇𝑚𝑎𝑥 − 24.726⁡)2.028 

 

Where:  

T = actual hourly temperature (in °C) 
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The cardinal temperatures Tmin and Tmax were fixed at 0 °C and 35 °C, respectively Mon-

tesinos et al. (1995b). Mycelium growth is used as an indirect measurement of the grow-

ing of lesions after infection. The daily value of MGk is the mean value of the hourly-

calculated MG for the last 24 hours. 

5.3.2. Model validation 

A first model validation was done by using disease severity (DS) data of seven years (nine 

trials), made available by the Plant Protection Service of The Chamber of Agriculture 

Lower Saxony around Hannover region. The assessed DS are mean values of untreated 

plots in randomised fungicide trials. Location, trial year, variety, weather station and trial 

symbols are listed in Table 5.1. For the subjective validation, the simulated visible disease 

proportions (V) were compared with the data recorded in the field. The simulation is con-

sidered as correct when the simulated value of V lies within the confidence interval of the 

assessed DS. Overestimation is given when the simulated value overrides the upper con-

fidence limit, underestimation when the simulated value is below the lower confidence 

limit (Racca et al. 2010; Racca et al. 2011). 

The statistical validation was done with two parametric tests (regression analysis, hypoth-

esis test) and one non-parametric test (Kolmogorov-Smirnov) (Racca et al. 2011). 

Table 5.1 Locations, years, varieties and weather stations used for the model validation 

Location Year Variety Weather station Symbol for Fig. 5.3 to 5.5 

Buchholz 2006 Gijnlim Bergen A 

Buchholz 2008 Gijnlim Bergen B 

Burgwedel/Fuhrberg 2009 Gijnlim Hannover C 

Langförden 2010 Steiniva Cloppenburg D 

Burgwedel/Fuhrberg 2011 Gijnlim Hannover E 

Burgwedel/Fuhrberg 2012 Gijnlim Hannover F 

Hannover Ahlem 2014a Gijnlim Hannover G1 

Burgwedel/Fuhrberg 2014b Gijnlim Hannover G2 

Burgwedel/Fuhrberg 2014c Gijnlim Hannover G3 

     

5.3.3. Weather data 

Standard meteorological parameters were used: temperature (T), relative humidity (RH) 

and rainfall (RA) recorded from a weather station. Area specific interpolated weather data 

(T, RH) from meteorological stations and radar measurements (RA) provided from the 

German Meteorological Service (DWD) via www.isip.de, as described by Racca et al. 
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(2010), were also used as input parameters for the model. To apply the model with non-

recorded data of leaf wetness duration (WD) and to avoid mismatch of measurements 

from different sensors, the leaf wetness was simulated through the vapor deficit pressure 

calculated with relative humidity (RH) and temperature (Prenger and Ling 2001).  

5.3.4. Statistical software 

Data preparation and statistical modelling was done with software Microsoft Excel 2016 

™, XLSTAT Version 2016.05.33324 (Copyright Addinsoft 1995-2016) and SigmaPlot 

for Windows Version 13.0 (Copyright Systat Software, Inc. 2014). 

5.4. Results 

5.4.1. Model output  

As an example, the daily values of βA and βC for the weather station Hannover in the 

period between the 1st of June and the 31st of October 2014 are displayed (Fig. 5.1). Over-

all, the ascospore infection probability βA is only relevant up to mid-June and the most 

severe disease development is outside of the ascospore season, in which only βc plays a 

role. 
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Figure 5.1 Values of infection probabilities βA and βC for the weather station Hannover in the period between 1st of 

June and 31st of October, 2014 



 
 

72 

 
 

The final model output of the different disease categories using the daily values of βA and 

βC from Fig. 5.1 is illustrated in Fig. 5.2. The total-, visible- and infectious disease pro-

portion are only less in June, slowly rising from mid-July to September. From the 1st of 

September, this three proportions increases visibly. 

Figure 5.2 SIMSTEM model output of the different disease categories. Weather station Hannover, 2014, period be-

tween the 1st of June and the 31st of October. L = latent disease proportion; I = infectious disease proportion; R = 

removed disease proportion; Y = total disease proportion; V = visible disease proportion 

5.4.2. Subjective validation 

For the validation, only the simulated visible disease proportion V was considered in re-

lation to the assessed disease severity DS. Compared to the 46 assessment data, 40 simu-

lated disease proportions (87 %) were classified as correct. Only in three cases (6.5 %), 

the disease proportion was underestimated and in three cases (6.5 %) overestimated (Fig. 

5.3 to 5.5). The majority of the simulated V lines was within the confidence interval of 

the assessed DS (Fig. 5.3 to 5.5). There were some exceptions at the locations A, F and 

G1. The overestimations in A at the 15th and at the 29th of August are the two first time 

points of DS. In F, the third time-point (at the 24th of August) was overestimated in com-

parison to the DS value. In location G1, the epidemic after August 5 was clearly underes-

timated.  
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Figure 5.3 Assessed disease severity (DS) compared with visible disease proportion simulated by the SIMSTEM model 

(line = simulated V, point = assessed DS value with 95 % confidence interval). See Table 5.1 for the location A, B, C 

and years 
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Figure 5.4 Assessed disease severity (DS) compared with visible disease proportion simulated by the SIMSTEM model 

(line = simulated V, point = assessed DS value with 95 % confidence interval). See Table 5.1 for the location D, E, F 

and years 
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Figure 5.5 Assessed disease severity (DS) compared with visible disease proportion simulated by the SIMSTEM model 

(line = simulated V, point = assessed DS value with 95 % confidence interval). See Table 5.1 for the location G1, G2, 

G3 and years 
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5.4.3. Statistical validation 

The statistical validation with two parametric tests (regression analysis, hypothesis test, 

Table 5.2, Fig. 5.6) and one non-parametric test (Kolmogorov-Smirnov, Table 5.3) gave 

different results. For the linear regression (Fig. 5.6), the slope value of 0.697 (Table 5.2; 

R2 = 0.71) shows that the model is significantly underestimating the observations, while 

the intercept is very close to 0. The high number of non-significant cases of the Kolmo-

gorov-Smirnov test (Table 5.3; n.s. = 75.8) means that the model was considered a statis-

tically accurate simulator of the field data (Teng 1981).  

The pronounced underestimation of the model occurred only in trial G1 (Fig. 5.5). In 

contrast to the other trials, the asparagus was not harvested in this trial so that the plants 

were longer exposed to infections resulting in higher disease severities. When the data of 

this extraordinary trial are left out the regression analysis, R2 increased to 0.89 and the 

slope was 0.97, which is not different from 1. Consequently, the model can be considered 

as a statistically accurate simulator of the field data. 
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Figure 5.6 Validation of the SIMSTEM model using regression analysis 
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Table 5.2 Validation of the SIMSTEM model. Hypotheses test of regression parameters: For the intercept, the hypoth-

eses are H0, that the intercept = 0 and H1, that the intercept ≠ 0. For the slope, the hypotheses are H0, that the slope = 1 

and H1, that the slope ≠ 1 (Teng 1981) 

Source Value Standard Error P R2 

Intercept 0.019 0.015 0.217 0.71 

Slope 0.697 0.066 < 0.001  

 

Table 5.3 Validation of the SIMSTEM model with non-parametric Kolmogorov-Smirnov test, shares (in %) of the 

significance (p < 0.05)  

Location Year Observation n.s. s. 

Buchholz 2006 6 89.3 10.7 

Buchholz 2008 5 32.9 67.1 

Burgwedel/Fuhrberg 2009 3 99.6 0.4 

Langförden 2010 6 32.9 67.1 

Burgwedel/Fuhrberg 2011 5 81.9 18.1 

Burgwedel/Fuhrberg 2012 4 51.8 48.2 

Hannover Ahlem 2014a 7 93.8 6.2 

Burgwedel/Fuhrberg 2014b 5 100.0 0.0 

Burgwedel/Fuhrberg 2014c 5 100.0 0.0 

All All 46 75.8 24.2 

 

5.4.4. Applying SIMSTEM in practice  

SIMSTEM can be used in different ways. First of all, to estimate the beginning of the 

epidemic. A possible hypothetical threshold for the first appearance of symptoms in the 

asparagus field could be derived by comparing the assessed data in the very early phase 

(from 0 to 0.05 DS) with the simulated V by means of box plot analysis (Fig. 5.7). The 

threshold for the disease appearance was assessed at the lower quartile of the V (0.006), 

in this case 82 % of the assessed DS (disease appearance) were simulated correctly. The 

equivalent date for V = 0.006 is for the average of all seven simulated curves the 15th of 

July. By practical experiences, this date is appropriate when plant debris were buried and 

plants were cut until mid-June.  

Again, considering a hypothetical threshold for the first treatment, an assessed DS from 

0.05 to 0.1 of simulated V could be chosen between the lower quartile (0.044) and the 

median (0.079) of V by box plot analysis (Fig. 5.8). The equivalent date for V = 0.044 is 

the 18th of August. The dates of the first appearance and the first treatment fit also to the 

interpolated DS data of all nine trials. 
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Figure 5.7 Hypothetical threshold for the simulation of the disease appearance in the fields, comparison of assessed 

DS data (0-0.05 DS) with simulated V 

 

 

Figure 5.8 Hypothetical threshold for the simulation of the date of the first treatment, comparison of assessed DS data 

(0.05-0.1 DS) with simulated V 

 

For the practical use by advisors and farmers, it was important to identify not only the 

disease expressed as DS, but also the most favourable infection period or periods with 

high disease pressure (Gutsche and Kluge 1996; Racca and Jörg 2007). This information 

could be useful after the first treatment, when little is known about the fungicide efficacy. 

The following treatments can be timed depending on the disease pressure after the first 

treatment (Racca et al. 2007; Racca and Tschöpe 2011). To develop a traffic light system, 
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all simulated disease proportion data V (Fig. 5.3 to Fig. 5.5) were first logit transformed. 

Since the field assessment are done partly every week with an interval of 7 days, a mean 

of the last seven days was calculated to simulate relative disease increase (rL). Then, a 

simple box plot analysis of rL was used to determine two risk thresholds based on the 

median and the upper quartile (Fig. 5.9). Low disease risk: rL <0.042; medium disease 

risk: from 0.042 ≤ rL <0.071; high disease risk: rL > 0.071. 

 

 

Figure 5.9 Boxplot analysis of the relative disease increase rL data to determine two risk thresholds for the traffic light 

system based on the median and the upper quartile 

 

In practice, users of SIMSTEM will be warned of infection periods, based on regional 

weather data, by means of the traffic light system. For example, red light stands for a 

forecasted high-risk period. The user is therefore given the opportunity to treat asparagus 

plants with protective fungicides, at the right time, before imminent infection periods. In 

Fig. 5.10 to 5.13, four examples of simulating the disease proportion V and the relative 

disease increase rL are illustrated with the three risk classes. In Fig. 5.10, weather station 

Bergen, year 2006, three high disease pressure periods were simulated. The first from the 

23rd to the 27th of June, the second from the 3rd to the 11th of August and the third, three 

weeks long period, from the 21st of August to the 10th of September. Apart from the high-

risk periods, there was one separate medium risk period from the 15th to the 20th of July. 

The influence of rL on V is less clearly visible in Fig. 5.10 in contrast to the three further 

examples (Fig. 5.11 to 5.13). In Bergen 2008 (Fig. 5.11) there were three high disease 
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pressure periods. A first short period from the 25th to the 28th of July, the second period 

from the 14th to the 18th of August and the third period from the 24th to the 30th of August. 

 

The signalization of relevant risk periods for weather station Hannover 2009 was only 

sporadic (Fig. 5.12). Only two small periods with a high infection risk, at 20th of July and 

from the 29th to the 31st of July, and medium risk in September, were calculated. 
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Figure 5.10 Simulation of disease proportion V and relative disease increase rL for the weather station Bergen, year 

2006 
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Figure 5.11 Simulation of disease proportion V and relative disease increase rL for the weather station Bergen, year 

2008 
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Against all other examples, in Hannover 2014, five high-risk periods were determined 

(Fig. 5.13). The first from the 13th to the 19th of July, the second from the 28th of July to 

the 5th of August, the third from the 9th to the 13th of August, the fourth from the 6th to the 

16th of September and a fifth late period from the 19th of September to the 7th of October. 

As the second and the third period and also the fourth and the fifth period are close to-

gether, they can be considered as only two long periods. So, three main periods with high 

infection risk were simulated in Hannover 2014. 
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Figure 5.13 Simulation of disease proportion V and relative disease increase rL for the weather station Hannover, year 

2014 
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Figure 5.12 Simulation of disease proportion V and relative disease increase rL for the weather station Hannover, year 

2009 
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5.5. Discussion 

In contrast to the BSPcast and TOM-CAST models, SIMSTEM was adapted to the biol-

ogy of S. vesicarium in asparagus (Bohlen-Janssen et al. 2018a; Bohlen-Janssen et al. 

2018b). Moreover, the consideration of the germ tube length as a factor for the infection 

process was new for S. vesicarium, and SIMSTEM considers the monocyclic phase too 

(Bohlen-Janssen et al. 2018a; Bohlen-Janssen et al. 2018b). Therefore, the SIMSTEM 

algorithm is more complex than that of BSPcast and TOM-CAST. Contrary to the treat-

ment suggestions by the TOM-CAST model (Pitblado 1992), SIMSTEM uses three risk 

classifications instead of a certain summarised DSV (S)-value (cumulated by daily DSV 

values from 0 to 4, depending on the daily mean temperature and leaf wetness duration) 

with a reset of the DSV values after a fungicide treatment.  

The date of the first appearance, and especially the proposed initial treatment, is a con-

siderable gain in information. However, the calculated dates are not generally applicable. 

Taking into account the hypothetical treatment start date (18th of August), only up to two 

treatments with protective fungicides are theoretically necessary for all high-risk periods 

(Figs. 5.10 to 5.13). This finding would mean a saving on fungicide applications and 

operating expenses against a strategy of fewer treatments. The late simulated treatment 

date is an important theoretical approach; however, repeated trials are needed to test 

whether the combat of S. vesicarium from mid-August would be sufficient in praxis with-

out having yield losses in the following year. The first appearance and the number of 

treatments are dependent on the date of the harvest’s end, and the number of treatments 

also depends on the duration of the selected fungicide. Various internal infestation tests 

point out that fungicide treatments starting in mid-August are too late for short-harvested 

or not harvested young plantings in Northern Germany (Wichura, unpublished data). Fur-

thermore, the latest final treatment recommendation is in Lower Saxony, Germany, cur-

rently at the beginning of September, since natural maturity occurs from then on. There-

fore, the mathematically derived initial treatment date is partly too late because the initial 

treatment date was calculated for fully harvested asparagus plantings. Otherwise, the V 

data have clearly demonstrated how late a value of 0.044 (4.4 % disease proportion) is 

reached in such cultivated asparagus plantings. 

Considering the date of the first appearance (15th of July), up to one treatment against the 

high-risk periods (Figs. 5.10 to 5.13) can be additionally saved. Based on practical expe-

rience, the risk of the first appearance depends on the date of the start of the growing 
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season. From the perspective of the integrated pest management concept, no treatment 

recommendation should be made before the 15th of July for asparagus plantings in Ger-

many, in which debris were well buried, and plants were cut until about the 24th of June. 

Otherwise, in young and uncut or short-harvested plantings, infestation can already be 

measured in June. The plan to ensure more flexibility for the entire forecaster is to include 

a biofix date in the input mask of SIMSTEM to fix the exact start date of plant growth for 

each separate asparagus field.  

A simple reduction of the number of treatments is not the primary aim of this work; rather, 

its focus is especially on the fungicide treatments’ correct time placement, which was 

achieved in SIMSTEM by developing the traffic light system. This more conservative 

treatment strategy, which we recommend, settled between the current practice and the 

projected start date of treatment. By simulating the disease risk for Bergen in 2006 and 

2008, and Hannover in 2009 and 2014, it was demonstrated that only up to three main 

periods with high infection risk were signalised (Figs. 5.10 to 5.13). Longer periods, such 

as during September in Bergen in 2006 (Fig. 5.10), must be treated several times, since 

coatings can be washed off by rain, and the duration of action of the fungicides can be 

insufficient. Provided that only up to these three periods, and four in Bergen 2006, were 

classified as being relevant for action, SIMSTEM will need partly fewer fungicide treat-

ments against purple spot, as previously common in practice in Germany. It will also 

require fewer than the number treatments recommended by the BSPcast and TOM-CAST 

models, since their suggestions are equivalent to a seven- to 15-day treatment (Llorente 

et al. 2000; Meyer et al. 2000). Compared to the inaccurate treatment strategy in practice, 

with SIMSTEM it is now possible to forecast the exact time point of treatment. Also, the 

treatment suggestions via the traffic light system will later depend on the biofix date. To 

combat the medium risk periods, similarly frequent applications, as recommended by 

BSPcast and TOM-CAST, would be necessary. In Hannover in 2009, application could 

be kept to a minimum (Fig. 5.12) because high- and medium risk-periods were determined 

in a few cases.  

The T and WD dependent factors’ lesion growth and spore formation are possible model 

parts that have not yet been elaborated, and which might contribute to an improvement of 

SIMSTEM. Extended investigation and modelling of plant development, incorporated 
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into an ontogenetic model, would also be useful. Here, the natural senescence of aspara-

gus plants in autumn can be taken into account. In addition, varietal differences in their 

growth could be incorporated. 

Based on observations during this work, fields with a higher basic infestation risk cannot 

be ruled out. For a separate consideration of these risk fields, the initial condition of the 

model can be varied, for example, 0.001 as normal risk and 0.005 as high risk. This ap-

proach can be used to evaluate particularly sensitive areas, such as young plantings or 

susceptible varieties, which would lead to a more sensitive approach to the disease. A 

further option for an extension of the model is the calculation of fungicidal efficiency as 

a flexible resultant factor on β. 

The SIMSTEM model will be available on the agricultural internet platform for integrated 

plant production ISIP (www.isip.de) after the currently running test phase. SIMSTEM 

has a special Java-based in- and output mask, which will enable its operation on different 

types of mobile devices in addition to use on a desktop. The model can be used flexibly 

because it can forecast the beginning of the epidemic, the first treatment, the disease pro-

gression (as a proportion of the diseased leaf area), and signal periods with high disease 

pressure via a traffic light system. A first validation was promising. Resulting from the 

ongoing evaluation phase, further adjustments may be made in the future. 
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6. General discussion 

The objectives of this study were: 

(i) to develop a molecular- and genetics-based method to distinguish S. vesicar-

ium from S. botryosum; 

(ii) to analyse infected German asparagus samples to identify the prevalent causal 

agent of purple spot in Germany; 

(iii) to describe and model the monocyclic phase of S. vesicarium in asparagus 

based on biological data from ascospores gathered in laboratory and field tri-

als; 

(iv) to describe and model the polycyclic phase of S. vesicarium in asparagus 

based on biological data from conidia collected in laboratory and field trials; 

and 

(v) to relate the monocyclic and polycyclic phases in the revised forecasting 

model SIMSTEM and complete its implementation in www.isip.de. 

 

Before engaging in an extensive literature review and proceeding to the modelling efforts, 

the identification of the proper pathogen was essential. Considerable previous research 

has been devoted to the morphological description of Stemphylium sp. The drawings, 

shapes, and length-width ratios (Wiltshire 1938; Neergaard 1945; Simmons 1967; 1969; 

1985; Ellis 1971; Singh 1977; Câmara et al. 2002; Inderbitzin et al. 2009; Puig et al. 2015) 

have been helpful in some instances; however, even when taken together, they are insuf-

ficiently specific to identify all of our samples taken from asparagus. Today, a simple 

PCR reaction can distinguish S. vesicarium from S. botryosum; identification can also be 

performed directly from infected asparagus samples with the help of qPCR (Graf et al. 

2016). These new options lead to significant time savings and safe distinctions between 

both species in practice. The high workload with fungal cultures, which was previously 

necessary for morphological identification, can also be reduced. 

In the past, S. botryosum was detected in asparagus samples from Germany (Leuprecht 

1988; Menzinger and Weber 1990), Japan (Suzui 1973), and Greece (Elena 1996). While 

the former result from Germany may indicate an evolution in Stemphylium over time, 

improper identification is more likely, justifiable by the clear result in Graf et al. (2016). 
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Furthermore, Menzinger's and Weber’s (1990) images of S. botryosum conidia, originat-

ing from Germany, seem to match better to S. vesicarium (Wiltshire 1938; Simmons 

1967; 1969).  

The presence of S. botryosum in asparagus from Japan (Suzui 1973) has been questioned 

(Singh 1977; Falloon et al. 1987), and this strain (NBRC 31381/MAFF 305562), which 

was previously thought to be S. botryosum (Suzui 1973), was re-identified as S. herbarum 

by Kurose et al. (2015). In contrast to this finding, Graf et al. (2016) recently identified 

the strain as S. vesicarium. The description of S. herbarum in asparagus is atypical; nev-

ertheless, the four-locus phylogeny, proposed by Inderbitzin et al. (2009) and used by 

Kurose et al. (2015), is generally unable to differentiate between S. vesicarium, S. herba-

rum, S. alfalfa, S. tomatonis, and S. sedicola (Inderbitzin et al. 2009). As the cytochrome b 

region of S. herbarum, S. alfalfa, S. tomatonis, and S. sedicola has not yet been sequenced, 

it is not known whether the sequence of this region can help to differentiate between these 

species (Graf et al. 2016). 

In the history of purple spot pathogen identification, the description of S. botryosum in 

Grecian asparagus is the most interesting. Elena (1996) described the conidia as variously 

subspherical, oblong, or broadly ovoid, measuring 19-29 µm × 14-23 µm and with an 

L/W-ratio of 1.2:1.4 (1.2). This small L/W-ratio matches the forms of S. botryosum and 

S. globuliferum (Simmons 1967; 1969). Therefore, either the strain of interest is an S. 

vesicarium strain with an atypically small L/W-ratio or the occurrence of S. botryosum in 

asparagus in Greece cannot yet be conclusively disproven. 

In addition to the pathogen identification, it was important to model the essential parts of 

the monocyclic and polycyclic phases of S. vesicarium to develop a new forecast model 

in asparagus. The first point of investigation was the annual spore flight of the fungus in 

asparagus plantings. From the outset of the investigation, it was known that S. vesicarium 

presents two different spore types, namely ascospores and conidia, with different season-

ality (Falloon and Tate 1986; Hausbeck et al. 1997). The cumulative percentage of 

trapped ascospores, which was modelled by a Chapman Richards function depending on 

SumT (base 5 °C and RA > 0.0), resulted in a better adjustment (R2 = 0.93) than that 

provided by the cumulative percentage of trapped conidia modelled by a logistic function 

(R2 = 0.81) depending on SumT (base 0 °C and RA > 0.2). This is explainable by the larger 

scatter of the conidial data than that of the ascospore data (Bohlen-Janssen et al. 2018a; 
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Bohlen-Janssen et al. 2018b). Both models were best adapted to the data and are already 

used by SIMSTEM. 

Ascospore flight in asparagus is often completed before harvesting ends, and a gap can 

exist from June to July, during which the fungus releases no or few spores (Bohlen-

Janssen et al. 2018a; Bohlen-Janssen et al. 2018b). Furthermore, the illustration of both 

the infection probability and the model output clarifies more clearly that, in the normal 

case, only the conidia infection probability βC is responsible for the height of the disease 

proportion and the loss of an active photosynthesis area (Chapter 5, Fig. 5.1 and 5.2) as 

well as yield losses in the next harvest season (Menzies et al. 1992). 

These findings raise the following question: “how can the disease develop?”, although 

asparagus plants could often not be infected during the measured ascospore discharge in 

spring (Bohlen-Janssen et al. 2018a), and conidia could consequently not really be formed 

on primary lesions. Field observations are partly contradictory because primary infec-

tions, according to Falloon and Tate (1986), could be partially observed in the described 

gap. To properly diagnose other possible sources of purple spot infections in Germany, it 

is necessary to understand the asparagus production cycle. Once the asparagus plants are 

completely dead, before the onset of winter, plant debris is crushed into small pieces and 

mixed into the soil (Brückner et al. 2008). Before and during harvest, asparagus producers 

work with black and white foils to influence the beginning, duration, and amount of har-

vest (Brückner et al. 2008). During this time, the plant debris lies flat and partly dry be-

neath the foil, so the discharge of ripe ascospores cannot have yet occurred. After the 

harvesting of white asparagus, the foils are removed. The plant debris then lies partially 

freely on the soil surface, where, shortly after the harvest, rain may induce an extra asco-

spore flight. This is an assumption based on the field observations in the present project; 

it still has to be demonstrated because our experiments were not designed to answer this 

particular question. Previous research has proven that pseudothecia in the upper soil layer 

do not decompose for up to three months (Johnson 1990; Srivastava et al. 1996); the long 

viability of pseudothecia would support the above-mentioned theory of ascospore flight 

after foil removal. Likewise, during mechanical tillage, the plant debris that is buried with 

mature ascospores may also be brought to the surface of the soil.  

Another theoretical approach is that new sprouting spears, which grow through crown-

overlying debris and old dead spears, can be infected directly by ascospores produced 

within this material and not by airborne ascospores. This can also be explained by the 
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long durability of the plant debris and ascospores in the soil (Johnson 1990; Srivastava et 

al. 1996). In this particular case, no ascospores would be detectable on our constructed 

ascospore traps. As a result of these considerations, we conclude that additional ways in 

which ascospore infections occur should be investigated in future research to further un-

derstand the disease and optimise the current forecasting model. 

The general influx of ascospores and conidia of other hosts from the area around the as-

paragus plantation provides an additional possibility for infections and thus the spread 

and development of purple spot. S. vesicarium is known to be a pathogen of pear (Ponti 

et al. 1982), onion (Shishkoff and Lorbeer 1989), garlic (Aveling 1992), luzerne (Irwin 

and Bray 1991), alfalfa (Chaisrisook et al. 1995a), and various herbs (Rossi et al. 2005b; 

Köhl et al. 2009); it is also associated with blossom-end rot in apple (Weber and Dralle 

2013). Fifteen genera and 24 species have been identified as hosts for Stemphylium spe-

cies (Farr and Rossman 2015). The wide host range and high degree of differentiation in 

host specificity among isolates of S. vesicarium, for pathogenicity and virulence, have 

been covered extensively in the literature (Bansal et al. 1992; Montesinos et al. 1995a; 

Basallote-Ureba et al. 1999; Singh et al. 1999). Early experiments did not prove the path-

ogenicity of foreign isolates in asparagus (Falloon et al. 1987). Later, necrosis and leaf 

spots were detected on asparagus after inoculation by conidia from garlic and onion iso-

lates; conidia then developed on the lesions (Basallote-Ureba et al. 1999). In a preliminary 

experiment (unpublished), lesions were induced on green asparagus spears from apple, 

pear, and onion isolates; however, conidial formation on these lesions was not observed. 

Therefore, Koch's postulates (Koch 1912) on proof of the change of the host were not 

completely fulfilled; however, the formation of lesions and the findings of Basallote-

Ureba et al. (1999) demonstrate the importance of further consideration. 

Apart from spore flight, several biological processes, which naturally follow after the 

landing of the spore on the host, were modelled. The primary challenge during the mod-

elling process was the adaptation of the germination data for both phases because clear 

interactions between temperature and leaf wetness duration could be observed (as can be 

seen when comparing the single curves in Fig. 3.3 and Fig. 4.3). The shapes of the curves 

differed with increasing temperature, which means that flexible models must be devel-

oped. The behaviour of the two spore types was consequently and successfully modelled 

using different combined functions (Eq. 3.5 and Eq. 4.6). The optimal temperature for 
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ascospores was 31.04 °C, while that for conidia was 23.34 °C, i.e., the optimal tempera-

ture of ascospore germination is significantly higher than that of conidial germination. 

Both spore types of S. vesicarium germinated rapidly, and the effect of temperature on 

germination was less after 24 h (Figs. 3.4, Fig. 4.4). The adaptation of the conidia germi-

nation data was more accurate (R2 = 0.99) than the adaptation of the ascospore germina-

tion data (R2 = 0.90).  

The next step in the modelling process was the mathematical adaptation of the germ tube 

length data. Reasons to examine the germ tube length for both phases included the ex-

tremely rapid germination of ascospores and conidia, and the low or non-existent temper-

ature dependence of the germination after 24 h. An unsuccessful experiment, which 

should have revealed the disease severity of conidia on six-week-old plants, firmly sup-

ported the use of germ tube length as a factor for the infection process. The germ tube 

length had to be adapted differently for each phase (Eq. 3.8 and Eq. 4.8) because the spore 

types do not behave identically. The selected adjustments fit the biological data well (R2 

> 0.97) (Fig. 3.7 and Fig. 4.6). In this case, the optimum temperature for ascospores was 

30.42 °C, while that for conidia was 28.68 °C, i.e., the optimal temperatures for both 

spore types are relatively high and similar (Table 3.6 and Table 4.5). However, such high 

temperatures were not achieved at times of ascospore release in spring to early summer 

(Fig. 3.1), this must also be taken into account when interpreting the ascospore germina-

tion data. 

A comparison of the two graphs of the germ tube length (Fig. 3.7 and Fig. 4.6) revealed 

that conidial germ tubes are roughly 1.75 times longer than ascospore germ tubes after 

24 h of leaf wetness. Due to the different shapes of the two adjustments (Eq. 3.8 and Eq. 

4.8), this does not apply to the first hours of leaf wetness. The germ tubes of ascospores 

grew 1.85 times faster (27.4 µm/h) than those of conidia (14.8 µm/h) after the first hour 

of wetness. Only after 5 h of leaf wetness did the speed of conidial germ tube growth 

exceed that of ascospore germ tube growth. Longer germ tubes can be interpreted as 

higher disease pressure during the infection process because stomata or wounds can be 

reached faster.  

Both life cycle phases of S. vesicarium were successfully implemented in the algorithm 

of SIMSTEM. The current SIMSTEM version has demonstrated its applicability to inten-

sively harvested asparagus plantings, and the first validation was successful. Neverthe-

less, there are two main points that would significantly improve the model and increase 
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its practical relevance. On the one hand, it is crucial that the epidemic can be calculated 

accurately even for plantings with earlier plant growth, for example, if plants were shorter 

or not harvested. The sooner the harvest ends and the plants are growing with green parts 

above the soil surface, the longer these plants are exposed to infection by the spores of 

the fungus. There is also a higher risk for ascospore infections in unharvested young 

plantings. In the future, a higher flexibility of the model should be ensured by means of a 

biofix, which allows one to enter a field-specific start date for the beginning of plant 

growth in the input mask of SIMSTEM. On the other hand, an ontogenetic model, which 

describes seasonal plant growth from the biofix date onward, might have a significant 

influence on the calculation of the H-L-I-R epidemic model. The consideration of the 

natural senescence and a variety difference in plant growth would be a further improve-

ment of the model.  

In addition to the mentioned application possibilities, the use of SIMSTEM offers another 

advantage. Today, when an infection period begins, producers are increasingly chal-

lenged to treat all of their fields in time, reinforced by the increasing size of horticulture 

farms in Germany (Hauschild et al. 2013), which also applies to asparagus producers. As 

SIMSTEM provides area-specific forecasts of the infection risk by interpolated weather 

data, the fields can be assessed separately. For example, local rains may affect only some 

fields; therefore, treating all fields simultaneously within one specific interval may be 

unnecessary. If this information is known to producers, then machines and employees 

could be deployed more efficiently. SIMSTEM can currently only forecast periods of 

high-risk disease pressure three days in advance. As a result, the success of treatments 

still strongly depends on the speed of fungicide application. Given this consideration, and 

besides the correct time of application, state-of-the-art application technology remains the 

decisive factor for disease control. 

 

In summary, all the objectives of this work were achieved. A new differentiation method 

for S. vesicarium and S. botryosum was developed as an important basis for the modelling 

process. The most significant difference between the species is a 3-kb intron, which is 

present in the cytochrome b region of S. botryosum and absent in the cytochrome b region 

of S. vesicarium. The frequency of the species was detected from infected asparagus sam-

ples, which identified S. vesicarium exclusively. Data from spore flight, germination, 
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germ tube length, the number of lesions, and mycelium growth suitably provided mathe-

matical descriptions of both phases of purple spot. Both phases were then combined in 

the algorithm of the new forecasting model SIMSTEM; however, of these two phases, 

the polycyclic phase was more important. SIMSTEM is a new IPM tool that optimises 

the time point of fungicide application to combat purple spot in asparagus; it will be avail-

able on the agricultural internet platform for integrated plant production ISIP 

(www.isip.de) after its testing phase is completed. 
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