
Diss. ETH No. 13682

Separation of variables for the eight-vertex SOS model with

antiperiodic boundary conditions

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY

ZURICH

for the degree of

Doctor of Mathematics

presented by
ANKE SCHORR

Dipl. Phys. ETH

born September 2, 1972 in Saarbrücken,

Bundesrepublik Deutschland

accepted on the recommendation of

Prof. Dr. Giovanni Felder, Examiner

Dr. Benjamin Enriquez, Chargé de recherches, Co-Examiner



1

To my parents

Seite Leer /

Blank leaf



2

Abstract

This work deals on the one hand with how to use the representation theory of a quantum

group ( [14]) to investigate a statistical mechanical model and on the other hand with how

to solve the statistical mechanical model by Sklyanin's method of separation of variables.

[47]. More concretely, we use the elliptic quantum group ET^{sl2) established by Felder

in [29, 25] to investigate the SOS eight-vertex model established by Date, Jimbo, Miwa

and Okado [10] with antiperiodic boundary conditions which are the reason that Bethe

ansatz fails and we have to use Sklyanin's method of separation of variables [47].
The SOS eight-vertex model is a face-model version of Baxter's original eight-vertex
model [3]. It is related to the elliptic quantum group ETjTt{sl2), since we rediscover

its Boltzmann weights We(c,b,a,d\z) by a suitably discretized version of the R-matrix

Re(z,\) defining ET>J](sl2)- This relation reads

Re(z, X = —2r)d)e[c — d] <g> e[b — c] =

2_] We(c, b,a,d\z) e[b — a] <8> e[a — d].
a

The antiperiodic boundary conditions of the model are fixed by considering a special

family of transfer matrices Tsos,e{z, Ao) depending on the parameter zeC which are

twisted traces of the defining L-operator of the model (M(C, V2®n),Lsos,e{z, A)) (cf.
Definition 4.21) over the auxiliary space of the quantum group, twisted by the matrix

K — [ ) .
The L-operator is built out of a representation of ET>ri(sl2) which is an

n-fold shifted tensor product of fundamental representations of ET<n(sl2).
The (finite) partition function of the model is then to be computed out of this transfer

matrix to yield ZM = Tv2m{TSosAzi Ao))M-
To find common eigenvalues and eigenvectors of the family of antiperiodic transfer matri¬

ces of the SOS eight-vertex model we use Sklyanin's method of separation of variables [45].
This method reduces the problem of finding those entities, which involves solving a non¬

linear multidimensional difference equation, to solving n so-called separated equations
which are one-dimensional linear difference equations (cf. Definition 4.52). The system
of separated equations emerges by evaluating the family of transfer matrices TauXje(z, Xq)
of Sklyanin's [46, 44] auxiliary representation, generalized to the elliptic case, called

(M(C,V2®n), L%UXte(z, X)) (Definition 4.33) of ET>v(sl2) at n points. The equivalence of

solving this eigenvalue problem instead of the original one is due to the fact that the

auxiliary representation and the representation of ET>r)(sl2) which defines the SOS eight-
vertex model are isomorphic (Theorem 4.44).
Let us now briefly state the content of this work: In the second chapter - after the in¬

troduction -, we briefly present the results on the elliptic Gaudin model by Enriquez,
Feigin and Rubtsov [16], i.e. we state the solutions of this model obtained by separation
of variables. (This serves as an insight into the separation of variables method as well as

describing a model that can be seen as a limiting case of the eight-vertex SOS model.)
In the chapter 4, we deal with the eight-vertex SOS model. We first define the basic

notions of the eight-vertex SOS model more heuristically. Then, we describe the ba¬

sic representation theory of ET^(sl2). In the next section, we describe the eight-vertex
SOS model in terms of the representation theory of ET>v(sl2) involving the definition of

(M(C, V2®n),Lsos,e{z-> A)) and the commutative family of antiperiodic transfer matri¬

ces. We propose the auxiliary representation (M(C, V2®71), L^ux e(z, A)) and the emerging
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family of auxiliary transfer matrices in the fourth section. In the fifth section, we describe

the isomorphism between (M{C,V2®n),LSOs,e{ziA)) and (M(^V2®n),L^ux>e(z,A)). In

the final section, we state our main results on the description of the common eigenvalues
and eigenvectors of the family of transfer matrices with antiperiodic boundary conditions

of the eight-vertex SOS model in terms of the common eigenvalues and eigenvectors of

the auxiliary transfer matrices (Proposition 4.54 and Theorem 4.55).
In chapter 5, we treat the simplest non-trivial example of the SOS eight-vertex model,

namely n = 3, to clarify the notions defined in the preceding chapter.
We deal with another problem in Appendixl, a problem frequently treated in Sklyanin's

papers on separation of variables [47, 46]. There he discusses separation of variables of

the XXX model [20, 21, 37], which is related to the representation theory of the Yan-

gian [52] 3^(s£2)- Solving this model involves a procedure analogous to the one for the

SOS eight-vertex model: a main problem consists in finding an auxiliary representation

(C2,LauXtr(z)) which is isomorphic to the representation (C2,Lxxx{z)) which comes

along with the XXX model. Here, we propose a version of obtaining the isomorphism
which differs from what Sklyanin did in [47, 46] and is in analogy to the isomorphism we

proposed in the SOS eight-vertex case. Of course, the results agree with what Sklyanin
states in [46, 44].
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Zusammenfassung
Diese Arbeit befasst sich zum einen damit, wie man Darstellungstheorie von Quanten¬

gruppen ([13]) auf Modelle der statistischen Mechanik anwenden kann, zum anderen

damit, wie man ein entsprechendes Modell aus der statistischen Mechanik mit Sklyanins
Methode der Separation der Variablen [47] löst. Konkreter benutzen wir die elliptische

Quantengruppe ETjTj(sl2), wie sie von Felder [29, 25] konstruiert wurde, um das SOS

Acht-Vertex-Modell in der Gestalt von Date, Jimbo, Miwa und Okade [10] mit an¬

tiperiodischen Randbedingungen zu betrachten, die die Ursache für das Versagen des

Bethe-Ansatzes sind und uns dazu anleiten, Sklyanins Methode der Separation der Vari¬

ablen zu benutzen [47].
Das SOS Acht-Vertex-Modell ist eine Version von Baxters ursprünglichem Acht-Vertex-

Modell [3] als "face"-Modell. Es steht mit der elliptischen Quantengruppe in Zusam¬

menhang, was wir an der folgenden Relation erkennen, die die Boltzmann-Gewichte des

Modells We(c,b,a,d\z) mit der geeignet diskretisierten R-Matrix der elliptischen Quan¬

tengruppe Re(z, X) verbindet:

Re(z, X = -2r]d)e[c - d] (g> e[b - c] =

2_j We(c, b, a, d\z) e[b — a] ® e[a — d].
a

Die antiperiodischen Randbedingungen des Modells werden dadurch fixiert, dass man eine

spezielle Familie von Transfermatrizen Tsos,e{z, Ao) betrachtet, die von einem Parameter

zéC abhängen, und getwistete Spuren über den auxiliären Raum der Quantengruppe
des L-Operators zum SOS Acht-Vertex-Modell (M(C, V2m),LSos,e(z, A)) sind (s. Defi¬

nition 4.21), mit Twistmatrix K = I j .
Der L-Operator besteht aus dem n-fachen

verschobenen Tensorprodukt von fundamentalen Darstellungen von ET>ri(sl2).
Die (endliche) Partitionsfunktion des SOS Acht-Vertex-Modells mit antiperiodischen

Randbedingungen ist durch die Transfermatrix gegeben als Zm = Tï2M(Tsos,e(zi ^o))M
Um Eigenwerte und Eigenvektoren der beschriebenen Transfermatrix zu finden, benutzen

wir Sklyanins Methode der Separation der Variablen [47]. Mit Hilfe dieser Methode

gelingt es uns, das Problem, das ursprünglich das Lösen einer nichtlinearen multidi-

mensionalen Differenzengleichung beinhaltet, auf das Lösen eines Systems von n eindi¬

mensionalen Differenzengleichungen, den sogenannten separierten Gleichungen (s. Def¬

inition 4.52), zurückzuführen. Dieses Gleichungssystem kommt durch das Auswerten

der Familie von auxiliären Transfermatrizen Taux>e(z, Xq) an n generischen Punkten zus¬

tande. Diese sind Transfermatrizen von Sklyanins auxiliärer Darstellung [46, 44], genannt

(M{C,V2®n),L^uxfi{z, A)) (Definition 4.33) ,
die hier auf den elliptischen Fall ETjr,(sl2)

erweitert wird. Die Äquivalenz, die es uns erlaubt, statt des ursprünglichen Problems

das System separierter Gleichungen zu lösen, beruht darauf, dass die Darstellung von

ET,r){sl2) zum SOS Acht-Vertex-Modell und die auxiliäre Darstellung isomorph sind (The¬
orem 4.44).
Wir möchten nun kurz eine Inhaltsübersicht geben: Das zweite Kapitel, nach der Einfüh¬

rung, enthält ein Resume der Resultate von Enriquez, Feigin und Rubtsov zum elliptis¬
chen Gaudin-Modell [16], d.h. wir geben die Lösungen dieses Modells an, die die Autoren

durch Separation der Variablen erhalten. (Dies dient der Einsicht in diese Methode wie

auch der Entwicklung eines Modells, das als Grenzfall des SOS Acht-Vertex-Modells

aufgefasst werden kann.)
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In Kapitel 4 behandeln wir das SOS Acht-Vertex-Modell. Zunächst beschreiben wir die

Grundbegriffe des Modells auf heuristische Art. Dann folgt eine kurze Einführung in die

Darstellungstheorie von ET:V{sh)i soweit wir sie benötigen. Im nächsten Abschnitt wird

das SOS Acht-Vertex-Modell dann darstellungstheoretisch formuliert, was die Definition

von (M(C,V2®n),Lsos,e(z, A)) und der kommutativen Familie antiperiodischer Trans¬

fermatrizen umfasst. Wir stellen die auxiliäre Darstellung (M(C, V2®n),L^ua. e(z, A))
und die kommutative Familie auxiliärer Transfermatrizen, die daraus hervorgeht, in

Abschnitt 4 vor. Im fünften Abschnitt konstruieren wir den Isomorphismus zwischen

(M(C,V2®n),LsosAziX)) und {M{C,V2®n),LSOs,e(z'X))- Im letzten Abschnitt for¬

mulieren wir unsere Hauptresultate zur Beschreibung der gemeinsamen Eigenwerte und

Eigenvektoren der Familie von Transfermatrizen der SOS Acht-Vertex-Modells mit an¬

tiperiodischen Randbedingungen mit Hilfe der gemeinsamen Eigenwerte und Eigenvek¬
toren der Familie von auxiliären Transfermatrizen mit antiperiodischen Randbedingungen
(Proposition 4.54 und Proposition 4.55).
In Kapitel 5 behandeln wir das einfachste nicht-triviale Beispiel, n = 3, um das im

vorhergehenden Kapitel Hergeleitete zu illustrieren.

In Appendix 1 streifen wir ein weiteres Problem, das in Sklyanins Artikeln [46, 44]
über die Separation der Variablen oft behandelt wird. Dort erklärt er die Separation
der Variablen für die XXX-Kette [20, 21, 37], ein Problem, das mit der Darstellungs¬
theorie des Yangian [52] y{sl2) verbunden werden kann. Die Lösung dieses Modells

erfordert ein Vorgehen, das in Analogie zu demjenigen beim SOS Acht-Vertex-Modell

betrachtet werden kann: Ein Hauptproblem ist es, eine auxiliäre Darstellung des Yan¬

gian (C2,Laux,r(z)) [46, 44] zu finden, die isomorph au derjenigen zur XXX-Kette

(C2 ,Lxxx(z)) ist. Hier konstruieren wir den dazugehörigen Isomorphismus auf eine

Art, die sich von der Herleitung Sklyanins in [46, 44] unterscheidet und in Analogie zu

unserem Vorgehen beim SOS Acht-Vertex-Modell steht. Die erhaltenen Resultate stim¬

men selbstverständlich mit denen Sklyanins in [46, 44] überein.
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1 Introduction

In the introduction we will briefly present the main themes pursued throughout the the¬

sis. First, we will discuss the main notions of statistical mechanics we will be using in the

sequel. These include for example the transfer matrix, vertex models and interaction-

round-a-face models, the Bethe ansatz - in its appearance before quantum groups were

discovered -, the star-triangle-relation and the Yang-Baxter-equation. The main points

presented here can of course be found in Baxter's book [3], where we always cite the cor¬

responding pages, as well as in an abbreviated version also in some newer talks, e.g. [40].
At the end of the section, we will also present the model treated in the thesis: the eight-
vertex model and its interaction-round-a-face (IRF) or - what is an equivalent notion -

its solid-on-solid (SOS) version.

In the second section, we will briefly point out some general facts about quantum groups

or Drinfeld-Jimbo quantum affine algebras and the quantum inverse scattering method

(cf. e.g. [14, 23, 22, 47]). Since the main object of the thesis, with regard to quantum

groups, is the elliptic quantum group ETAsh) ([29], [25]), we will also discuss its struc¬

ture.

After this, we will briefly expose the connection between quantum groups and the solv¬

ing of the aforementioned models of statistical mechanics, i.e. how some notions that we

discussed there can be suitably translated into the language of representation theory of

quantum groups (to achieve a certain unification in treatment). This topic relies on the

so-called Quantum Inverse Scattering Method (QISM) developed by the Faddeev school.

The last part will be devoted to two different realizations of the Bethe ansatz, especially
the separation of variables, also an integral part of the QISM.

1.1 The SOS eight-vertex model

1.1.1 Basic notions

We first have to ask what a model of statistical mechanics is. As we understand it

here, a model of statistical mechanics is a description of a system consisting of infinitely

many atoms at the sites of an infinite lattice aL + ibTL C C in a two-dimensional plane
that interact via their spins or a finite lattice IcC, with some boundary conditions

concerning the rows and columns of the lattice. For simplicity, let us suppose that to

each edge of the lattice we attach a variable a, e.g. denoting a spin, which can only take

values a G {—1,1}- Solving the model usually implies the computation of (some of) the

following quantities:

a) The partition function (infinite or finite respectively) of the system

Z = ^exp(-E(s)/A;T) or ZM = ^exp(-.E7(s)/fcT)
s s

where the sum is taken over all possible states s of the spins on the infinite lattice

or of a finite lattice with M rows and N columns with some boundary conditions

w.r.t. the columns (cf. figure below). E(s) is the energy of the system depending on
the lattice configuration (cf. below) and a possible external field, k is Boltzmann's

constant and T the temperature.
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b) The free energy of the system which is given by

F = -kTlnZoiF = lim ( -kT^- \n(ZM) J ,

corresponding to whether we start with the infinite lattice or a finite lattice with

some boundary conditions.

c) Other physically interesting quantities such as the specific heat and the magneti¬
zation.

In order to understand how one usually calculates these quantities, let us start with a

two-dimensional finite lattice L C C, a part of which is given in the figure below. One

way of approaching this lattice is by means of a vertex model.

We state that the lattice consists of horizontal and vertical edges and an arrow is attached

to each edge. An intersection of a horizontal and a vertical line is indicated by a vertex

v. A possible physical interpretation is given in [3], p. 127 (though the physical interpre¬
tations of course differ by what combinations of arrows are allowed at each vertex), for

the six-vertex model describing the hydrogen bonding of ice: At each vertex there is an

oxygen atom surrounded by four hydrogen ions which are placed at the edges. The atom

and each ion are attached by a hydrogen bonding. Thus, of every four ions surrounding
an atom two are near the corresponding atom, signified by an arrow pointing towards the

atom, and two are farther away from the atom, denoted by an arrow pointing away from

the atom. (In this case, there also exists a 'non-physical' interpetation of the arrangement
of arrows - cf. [3] p.165 -, namely the following problem: In how many different ways

can the lattice be colored by three different colors if the colors of two adjacent faces are

to be different?) An assignment of arrows to a (finite) lattice is called a configuration of

the lattice. If we look at the finite lattice drawn above, we can see that by imposing pe¬

riodical toroidal boundary conditions we can think of the part as representing an infinite

lattice aZ + ibZ C C Note that we could also impose antiperiodical boundary conditions

w.r.t. rows as we will always do later on.

Let us now turn to the interaction of the edges - with arrows - on the lattice. We admit

only nearest-neighbour interactions and interactions of any edge with an external field

H. How can we describe the interactions? All types of interactions occurring between

nearest-neighbour edges can be specified by looking at a vertex with some values of the

surrounding edges attached to it. To every combination of arrows around a vertex a

corresponding weight w(a,b,c,d) exists that describes the statistical occurrence of the

vertex configuration in question, where a, b, c, d are the variables attaches to the sur¬

rounding edges of a given vertex. If we classify all allowed combinations of spins at a

vertex with their corresponding weights, we obtain the interactions. Depending on the

model in question, there are a different number of allowed vertex interactions. For the

eight-vertex model, the allowed combinations of the arrows are drawn below, according
to the rule that an even number of arrows has to be pointing in and out of the vertex.
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w(-u,u,u,-u) w(-u,-u,u,u) w(u,-u,u,-u) w(u,u,u,u)

M XX *

w(u,u,-u,-u) w(u,-u,-u,u) w(-u,u,-u,u) w(-u,-u,-u,-u)

fy+- -m -

w(a,b,c,d)

Let us now turn to the quantities we want to calculate: First, the partition function,
which is the sum indicated above, where we sum over all possible lattice configurations.
To simplify calculations, one usually introduces the transfer matrix T. If we have A?"

columns drawn in our finite lattice and impose periodic or antiperiodic boundary con¬

ditions concerning the rows in this lattice, this is a 2N x 2^ matrix, i.e. in general
T G End ((C2)®w). Its entries are the - not yet normalized - probabilities with which

one (of the 2^ possible) configuration of a row change into any of the 2^ possible con¬

figurations on the next row. If our finite lattice has M rows, the finite partition function

is then given by

ZM = Tr2jvT ,

If we can suitably perform the limit M —> oo, we may do so obtaining the partition
function. As we perceive by the above formula of the partition function, it proves useful

to diagonalize the transfer matrix, since by the cyclicity of the trace, we get in the easiest,

periodic, case that Zm = Z)î=i ^' >
wnere the Az îot i = 1,... ,2N are the eigenvalues

of the transfer matrix. In this case, we also find the free energy

where Ai is the largest eigenvalue of the matrix. (For a neat explanation of this and the

appearance of the transfer matrix, cf. e.g. [3], pp. 32.)
The second way of approaching the lattice is by means of the SOS or face [34] or IRF

model. Here, instead of on the vertices the dynamical variable is put onto a face of the

lattice, face F in the first figure. We call this variable height and adjacent heights are to

differ by plus or minus one. The weights describing the interaction, commonly denoted

as Boltzmann weights, then indicate an interaction between faces in the manner shown

in the figure below.

w(a,c,c,b)

Assignment of a

Boltzmann weight to four faces

If we want to calculate the partition function we can do so by using the row-to-row-

transfer matrix (cf. [3], pp. 370), visualized in the figure below.

Row-to-row transfer

matrix for an SOS model
bl b2 bn +/-M

al a2
. . .

an +/-al

zl z2 z(n-l) zn
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The row-to-row transfer matrix of a face-model is still a 2N x 2N matrix, provided a

height to each face that differs from its neighbouring height by plus or minus one to each

face. Each entry is of the form

n

JJw(&j,a,,aî+i,&î+i),
j=i

where an+i = ±a\ and bn+\ = ±b\ according to whether we chose periodic or antiperi¬
odic boundary conditions on the rows. An element of the above form tells how a given

assignment of faces (0,1,0,2,... ,an, an+i — ±a{) in the lower row changes into the assign¬
ment (&i,... ,bn, bn+i — ±61) in the upper row. The statements on the diagonalization
of the transfer matrix remain the same as for the vertex models. Note that for SOS

models the common notion of the corner transfer matrix also exists which, as the name

suggests, provides a method of calculating a transfer matrix for quadrants of the lattice

(cf. [3] pp. 363-401). Since we will not need it here, we will not pursue it further.

1.1.2 Two different approaches solving models of statistical mechanics

In chapter 8 of his book on statistical mechanics, Baxter proposed a method of finding
common eigenvalues and eigenvectors of a family of transfer matrices of the six-vertex

model (cf. [3], pp. 133 - 140), which involves an ansatz using a vector parametrized by
a set of parameters (w\,... ,wm). The vector has to obey certain recursive relations.

In order to yield an eigenvector, the set of parameters has to obey a set of equations,

corresponding to the cancellation of some "unwanted" terms which, if they do not cancel,

prevent the vector emerging from the recursion relations from being linear dependent on

the vector one started with. This idea goes back to Bethe and is known as the Bethe

ansatz [8], the set of equations the parameters are to obey is known as the Bethe ansatz

equations.

In the chapter 9 of the same book [3], Baxter suggested a different, fairly general treat¬

ment as to when a family of transfer matrices of a model of statistical mechanics can be

diagonalized - and hence the solving of the model seems feasible (cf. [3], pp. 180 - 200).
This "program", formulated on p. 184 of [3], involves the following: The first step is to

find a commuting family T(u) of transfer matrices, where the variable u G C is obtained

by a reparametrization of the original weights, cf. [3], p. 184 or p. 212, for the eight-
vertex model. The transfer matrix, i.e. all of its entries, is an entire function of u. The

next step is finding a matrix Q(u) with non-zero determinant, also an entire function of

u, commuting with T(u) for all values of u, obeying the so-called Baxter equation (cf. [3],
p. 183) for all u

A(u) = ($(r? - u)Q(u + 2t/) + $(77 + u)Q(u - 2rfj) /Q(u),

where every appearing parameter is obtained as a consequence of the reparametrization
of the Boltzmann weights and rf = 77

— Tri in Baxter's notation. The matrix equation can

be understood for every diagonal entry of the matrix Q(u), cf. pp. 182 in [3]. $(«) is

an entire scalar function and A(u) stands for the (diagonal) matrix of eigenvalues of the

transfer matrix.

If we consider Baxter's equation as an equation of matrix elements, and hence functions,
every appearing function is an entire function of u. Thus, if we consider Q(u) with
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zeroes (w\,... ,wm), we obtain m conditions forcing the residues of the above equation
to vanish. They read

$(r)-wl)
_

Q(wl - 2rj')

<S>(-n + Wl)
~

Q(wt + 2rj>)

for all % = 1,... ,
to and are precisely the Bethe ansatz equations, though deduced in

quite another context.

In Baxter's treatment the matrices Q(u) and V(u) have to commute with still another

matrix S, but since we will not need this operator here we will not go into details.

After the presentation of this program, Baxter proposes some conditions that must be

satisfied in order to achieve certain of the above-mentioned steps. For the family of

local transfer matrices that later on appeared as R-matrices of a vertex model, Ul in the

language of Baxter (cf. [3], p.188), to be commutative it has to obey what later became

known as the Yang-Baxter-relation (here formulated in weights according to [3], p. 187),
which are illustrated in the figure below

Y^ w(m, a, c, m')w'(n, c, b, n")w"(n", m", n', ml) =
c,m" ,n"

YJ w"(n, m, n", m")w'(m", a, m, n')w(n", c, b, n')
c,m" ,n"

For the row-to-row transfer matrices of an SOS-model to be commutative, the Boltzmann

weights have to obey the (generalized) star-triangle-relation

Y2 wia, 6> c> a")w'(a", c, 6', a')w"(c, b, b", b')
c

= J2 w"(a", a, c, a')w'(a, b, b", c)w(c, b", b', a'),
c

where w,w',w" are different Boltzmann weights. It is visualized by the figure below.
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In order to have the operator Q(u) obey Baxter's equation, Baxter also formulated a

condition on the columns of this operator, named "Propagation through a vertex" (cf. [3],
pp. 192 - 194). But since so far there has not been a consistent treatment of the operator

Q(u), cf. [46] and [41], but only explicit examples -

e.g. [3],pp. 215 - 222 - and since we

will not need it in the sequel, we consider it sufficient to state the condition.

1.1.3 The eight-vertex-model and the SOS eight-vertex model

The eight-vertex model can be described by its weights, hence its i?-matrix. The R-

matrix was given by Baxter in [3] and reads (cf. [27] in comparison to [3], p. 213)

R8v(z)

with

/ a8V(z) 0 0 hv(z) \

0 d8V(z) c&v(z) 0

0 c8V(z) d8V(z) 0

\ b8V(z) 0 0 a8V(z) J

a8V(z)

b8V(z)

c8V(z)

d8v(z)

eo(z)Ô0(2V)

90(z-2rl)9o(Oy

0i(z)9o(2ri)

e1(z-27])e0(0),

e0(z)e1(2r])

01(3-277)00(0)'

0l(*)0i(2»7)

90(z -2t7)0o(0)"

It is an element of End (C2 ), where we identified the following basis elements of

the standard tensor product basis of C2®2 (1, 0, 0, 0)r = e[l] ® e[l],(0, 1, 0, 0)r =

e[l] <8> e[-l], (0, 0, 1, 0)T = e[-l] ® e[l], (0,0, 0, if = e[-l] ® e[-l]. 9x(z) is the odd

Jacobi theta function and 9q(z) — ie~m^zJrï'9\(z). Compared to Baxter's notation, the

notation in [27] was changed according to: Q(iu) = 6q(u), H(iu) = 9\(u) were fixed, the

variables of Baxter's were changed to A = 2?7 and | = z + r\ and there was a division of

Baxter's weights by ip<è(\(X - v))H(\(X - v)).
This model can be transformed to the R-matrix of the elliptic quantum group ET^n(sl2)
(cf. Definition 4.6) by a so-called vertex-IRF transformation (cf. [4], [27]).
Before we go into details, let us briefly mention the origin of the vertex-IRF transfer

matrix as given in [4], section 3. There, Baxter relates the eight-vertex model to a

generalized ice-type model, here generalized refers to the transformed model being a face-

model and ice-type refers to the fact that there are only six allowed vertices after the

transformation, by the following transformation, which we can explain by the following
figure attaching labels to edges and faces around a vertex

b

(b,o,a,n) arrows of eight-vertex model

(l,r,m,m') heights of eight-vertex SOS
model
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and by the following equation relating weights w.r.t. the vertices to Boltzmann weights

w.r.t. to the faces:

Y^R8v(a,b,c,d)$w(b)zm>j>(d) =^2w(m,m',l,l')§m%m,(a)zmj(c),
b,d m

where the values of the labels attached to the faces are to differ by one, i.e. \l — l'\ =

\m' — l'\ = |m—m'\ = \m—l\ = 1 and a, b, c,d G {—1,1}. This equation is to be understood

in the following manner: The entities $z,j±i(±l),2z,2±i(±l) and W(m,m',1,1') for all

allowed combinations of these values are unknowns which, if they can be determined,

determine the vertex-IRF transformation (cf. [4], pp. 27). A possible solution in terms

of Boltzmann weights can be found in [11].
In the case treated in the thesis, we may formulate the vertex-IRF transformation as

follows.

Proposition [27]:
Let S(z, X) be the matrix

Then

(I ® S(w, X))(S(z, X - 2nh{2)) ® I)Re(z -w,X) =

R8V(z - w)(S(z, A) ® I)(I ® S(w, X - 2-qh^)),

where I is the identity matrix on C2.

For the notation, we refer to chapter 3 of the thesis.

In paper [27], it is shown how this transformation corresponds to a vertex-IRF transfor¬

mation.

This decribes that, while working with the elliptic i2-matrix we in fact describe an SOS-

version of the eight-vertex model, where we get to the actual eight-vertex model by the

transformation given above.

There is also another way of conceiving that we work with a SOS-model. If we consider

the Boltzmann weights given in Definition 4.21 and rewrite the Yang-Baxter-relation
4.7 of the elliptic R-matrix in terms of the thus defined Boltzmann weights, this exactly

yields the star-triangle- relation as was shown in [27], p. 8.

In the periodic case - i.e. a\ = an+\ and b\ = bn+i in the row-to-row transfer matrix -,

Felder and Varchenko in [27] explicitly showed that by means of the above IRF-vertex-

transformation one also can map the periodic transfer matrix of the SOS eight-vertex
model to the periodic transfer matrix of Baxter's eight-vertex model.

This is not done here, in the antiperiodic case. Thus, we are really dealing with the

row-to-row transfer matrix of the SOS eight-vertex model with antiperiodic boundary

conditions.

The paragraph above merely points out how this model has been obtained from Baxter's

original model.

1.2 Quantum groups, the QISM and different forms of the Bethe Ansatz

The notion of a quantum group was developed by Drinfeld [14] under the influence of the

quantum inverse scattering method (QISM) developed by Faddeev, Sklyanin, [21, 22, 23,
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37] to which we will turn later on.

In what follows we will restrict ourselves to simple simply connected complex Lie algebras
and Lie groups.

The name of a quantum group came up by the following construction. If we take the

category of (Lie) groups G and, by means of a functor, map it to the category of (smooth)
functions on G, # : G —> Fun (G) — A, we obtain the category of associative commuta¬

tive unital algebras which has the property of being a category of Hopf algebras, which

will be explained below.

Now, if we take the right hand side of the functorial mapping to be the category of as¬

sociative unital, not necessarily commutative, Hopf algebras, then the left-hand side is

called the category of quantum groups, i.e. every element of it is a quantum group, [14],
p.800.
Let us now briefly turn to the attributes of a Hopf algebra. A noncommutative Hopf

algebra is a septuple (A, m, A, i, e, S, 5"). Here, A is the actual algebra, m : A <8> A —> A

is the multiplication, A : A —>• A ® A is the comultiplication, e : A —> C is the counit,

S : A —y A is the antipode and S' : A —y A is the skew antipode with SS' = Id, Id

being the identity function on A, and i : C —y A, c —» c- Id. (Actually, this picture can be

enriched by introducing the notion of a quasi-Hopf algebra, where we add an eighth term

<ß : H ® H <g> H —Y H <g> H <g> H to the septuple, with ((idoA)oA) = 0_1((AoId) o A)<p,
which means that coassociativity - or the consistency diagram shown below - is obeyed

up to conjugation only.) These notions and the properties that they are to fulfill are in¬

troduced and discussed in every standard volume on quantum groups and Hopf algebras

(e.g. [39]), so we will not go into further detail. Let us just write down the commutative

diagram the comultiplication A has to satisfy in order to ensure the coassociativity of

the algebra as an example.

A A©A®A

/^Id®A
A®A^

Now, we will trace the steps towards solutions of the Yang-Baxter-equation in the quan¬

tum group setting. Since this is a rather complicated process, we can only present it in

a superficial manner. A thorough exposition can be found in [13].
The first notion to mention is the notion of a Poisson-Lie group Go (plus additional com¬

patibility conditions on the Poisson, Lie, Hopf structures, cf. [14], p.801, 802). It is a Lie

group Go whose algebra of functions Fun (Go) = Ao is endowed with a Poisson bracket

[,]: Aq ® Aq -^ Ao. Thus, Aq is a Poisson Hopf algebra. There exists the notion of

quantizing/deforming the Poisson-Lie group, which means obtaining a deformation A of

Ao as a free C[[/i]]-module, where h is the parameter of the deformation. (A Poisson-Lie

group and a Poisson-Lie Hopf algebra are equivalent by the above mentioned functor.)
The next step is the notion of a Lie-bialgebra, a Lie algebra which is also a Lie coalgebra,
i.e. endowed with the structures of comultiplication A and counit e. These strucutures

have to satisfy some commutative consistency diagrams, the diagram of coassociativity
shown above and another diagram involving the counit.

It can be shown (cf. [14], Theorem 1) that the category of connected and simply-connected
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complex Poisson-Lie groups is equivalent to the category of finite dimensional complex

Lie bialgebras described by (g,S\g), where ô\g G g <8> 9 is a co-Poisson-structure obtained

by a canonical procedure (cf. [14], p.802).
There exists a construction (cf. [14], p.803/4) to parametrize Lie bialgebras involving as

parameters X, a projective curve over C, ui, a rational differential on X, and g, a simple

simply connected Lie algebra.
A special case of Lie bialgebras are quasitriangular Lie-bialgebras, given by (g,r), where

g is a Lie bialgebra and r G g ® g satisfies the classical Yang-Baxter-equation

In [7], Belavin and Drinfeld showed that under a certain regularity condition there exist

solutions using the parametrized construction of Lie bialgebras mentioned above in terms

of rational, trigonometrical and elliptic functions, which correspond to possible choices

of X and lo.

From this expression we derive the notion of a quasitriangular Hopf-algebra. A Hopf

algebra (A, R G A ® A) is called coboundary if it obeys

(a o A)(a) = RA(a)R~l for all a G A

and Ra(R) = 1, where a : A<g>A —y A®A, a(x®y) = y®x. (A,R) is called quasitriangular,

if additionally (A ® Id)(R) = Rl3R23 and (Id ® A)R = R13R12 on A ® A ® A, where

R = VV a% ® bj and R13 = ^ az ® 1 ® 6j for example. (The other terms are constructed

similarly.) The two conditions imply that a quasitriangular (A,R) satisfies the quantum

Yang-Baxter-relation

R12Rl3R23 = R23R13R12.

If (A, R — l+hr+... ) is a quasitriangular quantized universal enveloping algebra of a Lie

bialgebra g
- this quantization can be understood by means of the correspondence of Lie

bialgebras and Poisson-Lie groups -, it can be shown that its classical limit, i.e. the limit

h —y 0 of the deformation parameter h, is a quasitriangular Lie bialgebra (g, r E g <S> g).
Well known examples of quantized bialgebras are the Yangians y(a), where a is a simple
Lie algebra, corresponding to the rational solutions of the quantum Yang-Baxter-relation,
and the trigonometric solution to the Yang-Baxter-equation obtained by the quantum

double construction [42] (cf. [14], p. 814 and 816).
The Yangian, which we will need in the first appendix, originally constructed by Yang [52],
is obtained by quantizing the bialgebra a[u], a being a simple Lie algebra. This bialgebra
has a pseudotriangular structure, what means: r £ (g ® g), but can be developed by

means of an additional shift operator into a power series whose coefficients are in (g®g).
The treatment involving the shift operator can be transferred to the quantum case to

yield a shifted Yang-Baxter-equation (cf. Proposition 6.3)

R{-12\z - w)R^Xz)RM(w) = rM(w)rM(z)rM(z - w).

Concerning pseudotriangular Hopf algebras quantizing elliptic solutions to the classical

Yang-Baxter-equation, early attempts have been made by Sklyanin (cf. [43], Sklyanin's

elliptic algebra) and Cherednik [9]. So far, we have not yet pointed out the connection

between the elliptic quantum group ET^(sh) and a possible Hopf algebra structure. This
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work was achieved by Enriquez and Felder in [17] using the work of Babelon, Bernard and

Billey [2]: In [18, 19], Enriquez and Rubtsov constructed a quantized universal enveloping

algebra with quasi-Hopf properties as the quantization of a higher genus Manin pair [15]
- the Manin pair is also a typical method of obtaining a Lie bialgebra -

,
whereas Felder

in [29] developed the notion of ET^(sl2) using dynamic RLL-relations (cf. Definition 4.8).
In particular Felder's elliptic R-matrix Re(z, A) (Definition 4.6) containing an additional

complex parameter A, obeys the dynamical Yang-Baxter-relation (Proposition 4.7), which

heavily depends on the (shifted) parameter A. The idea of [2] used by Felder and Enriquez

consists introduces a family of twists F\ G A ® A - obeying a condition called "shifted

cocycle" condition in order to be admissible ([2], p.2) - such that after conjugating the

original R-matrix obeying the dynamical Yang-Baxter-equation one obtains a new R-

matrix obeying the Yang-Baxter-equation:

Rdybe(X) = F^ RybeF\.

In their paper [17], the authors construct such a family of twists, thus constructing an

R-matrix obeying the Yang-Baxter-equation and establishing a correspondence between

Felder's construction and the one of Enriquez and Rubtsov.

1.2.1 The connection between quantum groups and statistical mechanics

The following two parts of the section are devoted to aspects of the QISM. There are

some reviews on this subject which we cited before [21, 22, 23, 47, 37]. In the first part we

will briefly explain how the language of QISM is related to the language of Hopf algebras
shown in the preceding part. In particular, we will show how to obtain the RLL-relations

(cf. Proposition 4.4 and 6.4). We will also show how to obtain and understand com¬

muting families of transfer matrices, a problem which already emerged in the section on

statistical mechanics. These also have the property of relating to the consistency condi¬

tion of the first chapter, the Yang-Baxter-equation. We will conclude with a comment

on how different Lie bialgebras as solutions to the classical Yang-Baxter-equation and

pseudotriangular Hopf algebras are attached to different models of statistical mechanics.

Let us start with the re-interpretation of the coboundary and quasitriangularity condi¬

tion stated above. To this end, instead of the category of quasi- or pseudotriangular

Hopf algebras A we consider the category of representations of quasi- or pseudotrian¬

gular Hopf algebras (as an algebra) Rep^ [14], p. 812. Let us suppose two represen¬

tations of A: p\ : A —y End (Vi), p2 : A -» End (V2). Then, by the comultiplication

property of A we obtain a new representation p = p\ ® p2 : A —> End (Vi ® V2) by

A A- A®A p±%2 End (Vi® V2). If we now suppose that p : A -» Mat(n, C) ( Mat(n, C)

being the n x n matrices with complex entries) then we obtain for its matrix elements

tl3 G A* - if we use the above property yielded by comultiplication - for the coboundary
relation

RpT{DTm = T^T^RP,

where Rp = (p® p)(R), T^ = I <g> T and T^ =T®I with I being the identity matrix

in Mat(n, C). (In the case ofnxn matrices, the space Cn is also sometimes referred to

as the auxiliary space.) Now, the L-operator of the RLL-relation, under the condition

that (A, R) is pseudotriangular, can be identified with the operator T mentioned above
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(cf. [14], p.813).
This is where QISM starts. Let us set n = 2 for Mat(n, C), since this is the case in

question for the rest of the thesis, although, in principle, we could take any other integer.
Let us first state two basic facts concerning the method: as objects the QISM uses the

pseudotriangular (quasi-)Hopf algebras obtained by quantizing the pseudotriangular Lie

bialgebras that solved the classical Yang-Baxter equation. One principle of QISM is bor¬

rowed from quantum mechanics, cf. [47], p. 68. The commutative algebra of observables

of an, as yet unspecified, physical system should be part of a larger algebra A whose

(irreducible) representations describe possible states of the system in question, cf. [47].
Now, the larger algebra is to be generated by generators Tv(u), i,j = 1,2, being entries

of a 2 x 2 matrix T(u), obviously an element of Mat(2, C), where u G C is called the

spectral parameter. (Note that there is no restriction concerning the objects Tv(u) or a

representations p(Tv(u)) = Ll3(u) respectively. They can be chosen as elements of some

suitable space of functions or as matrices in Mat(n, C) for some n G N. Note also that

by the comultiplication property, we can inductively build new representations of given

representations.) This matrix T(u) is subject to the structure relation of the algebra,
which is exactly the RLL-relation we deduced above, by means of identification of T and

L as indicated. Thus, we see that the above pattern of a coboundary Hopf algebra is

indeed reproduced. Since we are working with a pseudotriangular Hopf algebra, we also

know that the Yang-Baxter-equation (with spectral parameters u, v) is satisfied. This

establishes a connection to the section on statistical mechanics, where the Yang-Baxter-

equation emerged as a consistency condition of the local transfer matrices: An R-matrix

satisfying the Yang-Baxter-equation is connected to a solvable model of statistical me¬

chanics by means of identifying it with the local transfer matrix called TJ% in Baxter's

language. The second link to the chapter on statistical mechanics can be seen by the

following: By taking the trace of the auxiliary space of the RLL relation, we see that this

way we obtain commuting operators t(u) = TrauxT(u), where Traua; denotes the trace on

the auxiliary space, called transfer matrices. (Indeed, as we will see in the fourth and

sixth chapter, this is not the only way of obtaining a family of commuting operators, but

we should rather call this the case of periodic boundary conditions.) Hence, we get a

commutative subalgebra of A.

What remains to be done is to find the spectrum of the commuting family of transfer

matrices, i.e. the set of common eigenvalues. This also corresponds to what we aimed at

in the statistical mechanics setting, namely to find eigenvalues and eigenvectors to the

transfer matrix in order to diagonalize it, and thus solve the corresponding model.

The steps mentioned here - take an i?-matrix, find representations of the generators

Tt](u), where i,j = 1,2, of the algebra given by the i?-matrix, construct the transfer

matrix family, find the common spectrum of the family and compute the usual physically

interesting quantities - represent the QISM program as formulated in [47].
Let us mention the connection of some models of statistical mechanics to Lie bialgebras

being the solutions of the classical Yang-Baxter-equation [7] or to pseudotriangular Hopf

algebras being their quantization. The Gaudin model is related [32] to the mentioned Lie

bialgebras. The elliptic Gaudin model, presented in chapter 2 of the thesis, is connected

to the elliptic solution of the classical Yang-Baxter-relation, what can be seen by study¬

ing the structure of the operator Se(z) as presented in Proposition 2.17, which involves

the operators ee(z),fe(z) and He(z). By looking at the commutation relations of those

operators given in Proposition 2.9, we can recover the elliptic classical r-matrix which
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solves the, modified, classical Yang-Baxter-equation. There also exist rational [31] and

trigonometric versions of the Gaudin model. The operators Sr(z) and St(z) are con¬

structed in a completely analoguous way.

As for the pseudotriangular Hopf algebras, the XXX magnetic chain was connected to

the representation theory of the Yangian y(sl2) in [44, 37, 20, 21]. The representation

theory of the elliptic quantum group ETyll(sh) is related to the eight-vertex SOS model,
as will be shown in the sequel.

1.2.2 The method of separation of variables

So far, we have not yet studied the problem of how to find common eigenvectors and

eigenvalues to the commuting family of transfer matrices from the point of view of quan¬

tum groups.

If we recall the section on statistical mechanics, we see that there were two different

settings of how to obtain eigenvectors of the transfer matrix depending on a set of pa¬

rameters that had to obey the Bethe ansatz equations: one recursive approach and one

that consisted of solving a system of difference equations that had to obey some regular¬

ity conditions.

In some sense in the quantum group setting the two different forms of Bethe ansatz are

reproduced: the first is known as the algebraic Bethe ansatz, the second approach is

known as the functional Bethe ansatz or the method of separation of variables and will

be used in the following.
The algebraic Bethe ansatz, cf. e.g. [23], relies on the notion of a (finite-dimensional,
irreducible) highest weight representation of a quantum group

- for the elliptic quantum

group ET^(sh) (cf. Definition 4.16) and for the Yangian y(sl2) (cf. [47], p. 76) - which is

in fact quite reminiscent of a highest weight representation of a Lie algebra (cf. Chapter

2). We can use the algebraic Bethe ansatz to obtain the common spectrum of the transfer

matrices, if the highest weight vector Vh.w. £ V, if the representation of the generators
of the quantum group are mappings A —y End (V), is a common eigenvector of the

family of commuting transfer matrices, which is the case for the quantum models studied

here with periodic boundary conditions, e.g. [27]. Out of the highest weight vector, we

construct the possible Bethe eigenvector Bm(z, w\,... , wm) = YlTLi Lu(z — wijvh.w. and

act on it by an element of the family of transfer matrices. We can then show inductively
that the Bethe vector is indeed an eigenvector if the Bethe ansatz equations are satisfied,
which leads to a cancellation of those terms not linearly dependent on the Bethe eigen¬
vector. The Bethe ansatz equations for the parameters w\,... ,wm thus obtained show

the same structure as the ones obtained in the section on Baxter's approaches.
This type of Bethe ansatz obviously fails if the highest weight vector is not an eigen¬
vector of the commuting family of transfer matrices in question; in other words, if we

cannot suitably build up a highest weight representation for the case in question. Then,
we can use the functional Bethe ansatz, also known as the method of separation of vari¬

ables. Separation of variables in general reduces a possibly non-linear multidimensional

problem, here a difference or differential equation, to a system of some number of one-

dimensional, thus easier to study, problems: the system of separated equations. Thus,
if we want to use separation of variables, we first have to show that solving the original

problem - an eigenvalue problem of a family of transfer matrices - can be suitably related

to another eigenvalue problem of a related family of transfer matrices which is reducible
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to solving n one-dimensional difference or differential equations. In the cases treated

here, this is achieved by finding a representation of the corresponding quantum group,

the elliptic quantum group ETjT](sl2) in chapter 4, and the Yangian y(sl2) [46, 44] in

chapter 6, which is isomorphic (cf. Theorem 4.44 and Proposition 6.20) to the repre¬

sentation which we obtained the original commuting transfer matrices from. These new

representations yield families of transfer matrices that can be shown to generically split

up into a certain number separated difference equations which have to be solved. As it

turns out, the separated difference equations in both cases (cf. p.72, and [44], p. 23) show

the same structure as Baxter's equation and, due to conditions posed on the eigenvalues
and eigenfunctions, the condition of vanishing residues also holds true. Thus, the Bethe

ansatz equations also emerge in this case (cf. p. 72).
Let us briefly discuss the problem of finding a complete set of common eigenvectors and

eigenvalues of the transfer matrix. This is easier to study by the method of separation of

variables, since once we have established that solving the system of separated equations
is equivalent to studying the original problem, it is easier to describe what a complete
set of solutions to these differential or difference equations is, than to deduce that the

set of solutions found by algebraic Bethe ansatz is complete.
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2 The elliptic Gaudin Hamiltonian

2.1 Introduction

The work on the elliptic Gaudin Hamiltonian described in this section, has been achieved

by Enriquez, Feigin and Rubtsov [16]. It was carried out by them also in the context of

the geometric Langlands correspondence [6] (for the general Langlands correspondence,
cf. [38]) connected to the Lie group GL2 and a rational curve X over C More specifically,
Frenkel [31] showed by a very intricate discussion that the separation of variables estab¬

lished by Sklyanin [45] can be interpreted as constructing an equivalence between two

different approaches realizing the geometric Langland's correspondence [6, 12]. Frenkel

showed how to obtain the equivalence in the case of genus zero, i.e. involving a rational

curve, using separation of variables for the rational Gaudin model [44]. Enriquez, Feigin
and Frenkel established this correspondence in the case of genus one, hence an elliptic

curve, using the elliptic version of the Gaudin model.

We will not pursue the Langlands program further here - though there exist attempts of

a quantized version [49], a problem already raised in [31] -, but rather use [16] as a model

where we can see how the separation of variables works and what can furthermore be

seen as a limit, by Proposition 4.51, of the eight-vertex SOS model that will be discussed

afterwards.

2.2 The setting corresponding to s^iC)

Synopsis:

Here, we develop the basic representation theoretical notions concerning s^ which we will

need in the sequel. We first define a Verma module of the Lie algebra sl2 (Proposition

2.2) and show that it contains a finite dimensional irreducible quotient (Corollary 2.3).
Then, we define the finite-dimensional irreducible quotient of a tensor product of Verma

modules of sfa (Proposition 2.4). Finally, we define the space V[0] (Definition 2.6) which

is a subspace of the finite-dimensional irreducible quotient of a tensor product of Verma

modules of s^ defined in Proposition 2.4. This space will be the space which the solutions

of the elliptic Gaudin model will be elements of.

Definition 2.1 Let e,f,g be the generators of the Lie algebra 5/2(C). They obey the

commutation relations

[e,f] = h, (D

[h,e] = 2e, (2)

[h,f] = ~2f. (3)

oposition 2.2 A representation of the Lie algebra 5/2(C) on <C[t] is defined by

d2
.

d
e -^ -t—7T + A—-

dt2 dt
(4)

f -» t (5)
d

h -y -2t— + A,
at

(6)

ere A G C. This representation is called a Verma module V\ of highest weight A.
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Proof:

The proof is straightforward by checking the defining commutation relations.

Corollary 2.3 If A EN, the quotient C[t]/iA+1C[t] is an irreducible finite dimensional

sub-module with highest weight vector v\ = 1 G Ker(e).

Proof:

We have to show that iA+1C[t] is an invariant subspace of e, f, h. If A G N, we find a

term tA+1 G C[t]. The only thing to check is that etK+l = 0, since by applying / and h

to an element of this subspace or by applying e to an element tl, I > A + 1 we stay in it.

etA+1 = -A(A + 1) + A(A + l)tA = 0.

A highest weight vector also has to obey ei>A = 0 which is obvious here, since v\ is a

constant. The weight of da is by hv& = Ai>a equal to A.

Proposition 2.4 The tensor product of n Verma modules of highest weight EILi ^i ~

denoted by V — ®"_1Vai is given by the operators

e
M

d2
.

d
-* -V^+VïT. (7)

dt2 dt
%

pW
fw -> *,, (8)

h® -+ -2U-1- + K.. (9)
u,tl

acting on C[*i,... ,in]/(E^i^+1C[ti,.-- >*n])- The generators eW,/«,/iW for i =

1,... ,n obey the commutation relations

[e«,/W] = 6l3hW, (10)

[/jW,eü)] = ^2e«, (11)

[fc« /Ü)] = -^2/W. (12)

Definition 2.5 (iî°) For the Verma module ®"=1Va,, we may define the following op¬

erator H° = Y^=1 /i«.

Definition 2.6 (V[0]) Let ®=1Vai be the Verma module defined above. Then we define
the space V[0] cC[tu... ,t„]/(E"=1^+1C[*i,... ,*„]) as

V[0] = {f(tU... ,tn)EC[tU... ,in]/(Er=l^+1C[il,--- ,*n])|

H°f(t1,...,tn) = 0}.

Due to the action of h^ = —2tl-^- + A%, the space is equivalently described by

n

V[0] = {/(ti, . . . ,tn) E C[h, . . . ,in]/(]T ifl+1C[ii, • • • ,tn}) I
1=1

f(cti,...ctl,... ,ctn) =cs"=i"2i7(ii,... ,tn)},

n A,i.e. it consists of complex polynomials that are homogeneous of degree m = X)[=i
t/ie variables t\,... ,tn.

in
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2.3 The setting corresponding to the elliptic Gaudin Hamiltonian

Synopsis:

Here, we first define the needed elliptic functions which are basic for this chapter and

also the chapter on the elliptic quantum group ET^(sh) (Definition 2.7). With the help

of these functions, we write down the operators ee(z), fe(z),he(z) and its commutation

relations (Definition 2.8 and Proposition 2.9) which are the ones of a generalized elliptic

r-matrix algebra (cf. Defintition 2.10). We will need these operators in the following
section to formulate the Gaudin eigenvalue problem.

Definition 2.7 (Basic notions)

a) Let t E C, Im(r) > 0. If we define the lattice T = Z + tZ, the elliptic curve ET is

correspondingly defined by ET = C/T .

b) Let 9(z) = 9(z,t) = £neZe(n+^2Te2(n+2)(*+D be the odd Jacobi Theta func¬

tion.

Its transformation properties are given by

9(z + 1) = -9(z), 9(z + r)= e~2mz9(z).

We also need two other functions to be defined by means of Theta functions: -jn^r
transforming like

9'(z + 1) 9'(z) 9'(z + r) 9'(z) .

9(z + l) 9(z)' 9(z + t) 9(z)
*"'

and its derivative p(z) — (-jfQ)' which transforms as

p(z + l) = p(z + T) = p(z).

In what folllows, we always consider the tensor product V = ®"=1Vaj5 A, g N, i =

1,... ,n.

Definition 2.8 Let the n points (zx,... ,zn) G (ET)n — diag be the projections of

(z\,... ,zn) G Cn — diag ,i = 1,... ,n on the elliptic curve ET. Let X E C be some

parameter and z E C a complex coordinate. Let

i=i
9(X)9(z - zt

__

A 9(X-z + Zl)9'(0) (l)

1=1

n

9(X)B(Z - Zy)
(14)

i=i

Remark:

We may define
q(x)6U-z )

~ a\{z ~ zt) Note that a\(z) has the transformation prop¬

erties:

ax(z + \)=ax(z), ax(z + r) = e2mX.
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Proposition 2.9 The operators defined above obey the following commutation relations:

if z ^ w

[eeW'/eH] = 9%nzW-t)°]){~he{z) +he{w)) +

d_e(x + z-w)m ^ (t)

W 0(A)0(z-u;) jj^
' (1 '

r, / n / m 0(A-Z + lijW(O) .

,

„,9'(z — w) d
. . . ,_„,

w"-«-)i - +/(w^T^ (18)

If z = w
,
the relations are given by

n

[ee(z),fe(z)\ = -tie(z)-p(X)^^\ (20)
i=i

[M*),ee(*)] = -2e'e(z) + 2(^ + -^)ee(z), (21)

[he(z),fe(z)] = 2f'e(z)+2(e-^ + ^)fe(z). (22)

Proof:

The proof is straightforward and uses the fact that two theta functions are equal if their

residues, zeroes and transformation properties under z—y-z + l,z—y-z + \ coincide.

Remark:

Note that by defining

He(z) = He(z, X) = X-he(z) - ~
, (23)

we may rewrite the above commutation relations in order to deal more effectively with

the Bethe ansatz (cf. the Appendix). This yields

[ee(z)'/e(")] = e%nzW-l)0) {~2He{z) + 2J?eH)

^9(X + z-W)9<(0) f, (t)
+W 9(X)9(z~w) })^h

' {^>

[HeW.eeH] = -

9(X)9(Z-W)
e*{z) + -0(z^jee{W)' ^

^'^H] =

fl(A)g(*-ti,) UZ)-W^)UW)- (26)
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Definition 2.10 (Elliptic r-matrix) The elliptic r-matrix is given by

fi>(z-w) °
...

°...... 0 \

r(z — w, A) =
n

P-(z-w) g(A+g-w)g'(o) n
u e\z w) a(x-,,Af>(M u

6{z-w)B{\)

U
9(z-w)B(X) e \z w) u

V 0 0 0 ei(z-w) J

Remark:

Note that analogously to the quantum case, Proposition 4.3, a classical elliptic r-matrix

can be defined that satisfies the modified classical Yang-Baxter relation, cf. [28]. There,

the structure of the elliptic r-matrix is also described in more detail.

2.4 The elliptic Gaudin eigenvalue problem

Synopsis:

First, we define the Gaudin Hamiltonians HI in Definition 2.11.

Consider n atoms on the elliptic curve ET = C/T, each at a site z%. To each atom we

attach a representation of «/2(C), a Verma module V\t, with highest weight Aj G N corre¬

sponding to its spin. The ith atom is interacting with the other ones by the Hamiltonian

These operators commute (Proposition 2.12). Thus it is feasible to treat the problem of

finding common eigenvectors as noted below Proposition 2.12.

Out of these Hamiltonians, we then develop the operator Se(z) (Definition 2.15) which

also commutes with the Hamiltonians (Lemma 2.16). Thus, it is sensible to study its

eigenvalue problem. Here, we restrict ourselves onto the space V[0], thus imposing a

condition on possible eigenvalues (Corollary 2.14).
We reformulate the operator Se(z) in terms of the operators ee(z), fe(z), he(z) in Propo¬
sition 2.17. This reformulation allows us to perform the separation of variables in the

next section, since this method is formulated for these operators (cf. the first lines of the

next section).

Definition 2.11 (HI)

-"e - n
d\
+ 2^,^=1 1^2 d{zl-zJ)

n n +
9(A)

e J

I
9(\+z%-z,)9'(0) f(i)Ji)\ ,9r,+
e(\)9&-z,) r'eKJ>) (27)

The n Hamiltonians thus obtained are called the elliptic Gaudin Hamiltonians.

Proposition 2.12 The elliptic Gaudin Hamiltonians commute with each other and with

H°.

[HI,Hi] = 0, for all 1,j = l,... ,n, (28)

[Hl,H°] = 0. (29)

Proof:

The proof of this proposition is straightforward.
Remark:
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The fact that the elliptic Gaudin commute allows for their simultaneous diagonalization,

since an eigenvector of one Hamiltonian is an eigenvector of every Hamiltonian.

We now turn to the problem of how to find eigenvalues - corresponding to possible energy

levels of the atoms on the elliptic curve - and eigenvectors of the Hamiltonians, hence

possible solutions (p,t, ip) of the equations

H\\p(X,ti,... ,tn) = plip(X,ti,... ,tn), for i = 1,... ,7i. (30)

To find a complete set of eigenvectors for a certain given set (//i,... , ßn) will be our aim

in this chapter.

Lemma 2.13 // restricted on the space V[0],

n

Y,Hl^(X,h,...,tn) = 0. (31)
i=i

Proof:

This is done by a straightforward calculation.

Corollary 2.14 While working on V[0],

n

£> = 0. (32)
2=1

Remark:

Note that since we made the restriction of working on V[0], possible eigenfunctions

V>(A, t\,... , tn) are to be homogeneous of degree m = X)I=i ~t m the variables (t\,... , tn)
and polynomial in the variables (t\,... ,tn). The dependence on A is dictated by the trans¬

formation behaviour of the operators Hle with respect to this variable.

Since the elliptic Gaudin Hamiltonians can be simultaneously diagonalized, we may in¬

stead of them investigate the following operator.

Definition 2.15 Let z E ET be a coordinate on the elliptic curve ET.

n ni ( _

\
n

se(z) = Y, Hi7jjhri + £ *>(* ~ *)cW +^ ^33)
,=i

a^z z%>
,=i

where H£ is given by

m=it+m>=i{kW^yh{i)hij)

Remark:

The eigenvalue problem now reads as follows: We want to determine a complete set of

eigenvectors ip(X,ti,... ,tn) to a given set (p,c,\i\,... ,/j,n) of

Se(z)iJ) = qe(z)Tp, with (34)

A 9'(z-z%) A,(A, + 2)
Qe(z) =

1^^0(z_z) + 7 P(z-*))+f*c (35)
i=i

^ %>

where \xc corresponds to the value of H£ on ip(X, t\,... , tn).
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Lemma 2.16 The following identities holde true

a) [Se(z),Se(w)} = 0,

b) [Se(z),H°} = 0,

c) [Se{z),&] = Q

d) jT/i/j(A,ti, ,tn) solves the elliptic Gaudin eigenvalue problem ,
it can be written

7/;(A,ti, ,tn) = ecXf(h, ,tn) (36)

Proof:

a) The proof is given m [26]

b) H° and H\ commute by Lemma 2 12, H° and cW by a short calculation Proving

the commutativity of H° and H% is straightforward

c) The calculation is straightforward

d) This is a corollary of c) Since the operators Se (z) and
^ commute, they can be

digonahzed simultaneously The eigenfunctions of the
-^

to the eigenvalue c G C

correspond to ecA

Remark:

Due to the first part of Lemma 2 16 possible eigenvectors ip are indeed independent of

the variable z E ET

In order to use the operators and relations developed in the first part of this chapter to

solve the eigenvalue problem, we need the following

1,
, , .

( d 1.
x2

Proposition 2.17

Se(z) = ^(ee(z)fe(z) + fe(z)ee(z)) + (^
-

^he(z)j (37)

Proof:

Se(z) is a meromorphic doubly periodic function with at most double poles at the points

z = Zj Expanding Se(z) into a Laurent series at z = z% for all i = 1, ,n up to the

constant term, we see that the difference of the left and the right hand side vanishes

This is due to the fact that the difference yields a differential operator whose coefficients

are regular elliptic functions vanishing at least at one point, thus vanishing everywhere

by Liouville's Theorem

2.5 Separation of variables for the elliptic Gaudin Hamiltonian

Synopsis:

Here, we first write down how to obtain out of the separated variables the variables we

used for the tensor product of Verma modules of s/2, 1 e the "old" variables (Proposition
2 18)
To show that this transformation of variables is indeed useful, we reformulate the operator
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Se(z) in the separated variables (Proposition 2.23) and especially this operator evaluated

at the n points - sites of the atoms - (z\,... , zn). By this evaluation, we obtain the

system of separated equations (Proposition 2.21, Definition 2.22) which all show the same

structure of a second order differential equation solvable by Lamé's method (cf. [51]).
That the solution of this system of differential equations is equivalent to solving the

eigenvalue problem for Se(z) while restricted on V[0] is shown in Proposition 2.24.

The main idea of this paragraph relies on the following identity (cf. [16], [44]):

Afff^HMO)
_

Iff=1fl(*-y,)
/e(z) -

^ 9(X)9(z-Zl)
*> " C •

U:=iO(z~zi)
• (38)

The variables (C,y±,... ,yn) are called separated variables.

Proposition 2.18 Let (z\,... ,zn) E (ET)n — diag .
The mapping

Il%8{zi-yj)
U =

CU^=iO(zï-zJ)9'(0) ' (39)

n

\ = -Y,(zt-yt) (40)
i=i

defines a bisection between

{(h,... ,tn,X)\Y^tt^0} and

i=i

{(yi,...,yn,C)ESn(ET)xC/0}.

Proof:

Note that the identity for A is obtained by looking at the transformation properties
z —y z + t of

"9(X-z + Zy)9'(0) n^i^-yj)
^ 9(X)9(z-Zy)

*

K=i0(z - zy)

The transformation of the left hand side yields a factor e2niX whereas the right hand side

yields e~2m^=^~y'+z')
.
The y3 for j = 1,... ,n are in Sn(ET).

Corollary 2.19 Note the following properties of the transformation:

hi ^E;=i(-z,+yj))uu9^)
'

cw = £<£• (42)
i=i

dVj ~i %j ~z*) dti dx

They are obtained by studying the map of Proposition 2.18.
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Lemma 2.20 On V[0] we get

Se(z) = (fe(z)ee(z) - \h'e(z) + (A - \he(z))2^ . (44)

Proof:

Note that if on V[0], the last commutation relation of Proposition 2.9 reduces to [ee(z), fe(z)] =
—h'e(z). If we put this into the definition of Se(z) of Proposition 2.15, we obtain the

desired result.

Proposition 2.21 ([16])

Proof:

First note that

d2
_

d d "9>(y3-zy) d

.,2 a„.
U\ + Z_> fi/,, _

v\)t*dy2 dy3
dX

j^_0(y3-z^
dt.

A , ^
à d2 A%,-2,) d d

dty dX2 ^ 0(y3-zy) ldUdX
1=1

"

1=1

n

E,9'(y3
— zl)9'(y3 — z{) d 9. v^/^'(% ~~ zi)\2 &

hlJ °(Vj - *)%j - *i) Utl^~dtl +

hi 9^ ~ ^ ^

Then, we have by our representation of 5/2 (C)

1 f)
n

A

1=1
%

1=1

Thus, we get

(üe(z)) \z=y3-{dX2+^ e(z-zy) tldtydx 2^^e(z-zy)dx
t=i i=i

A A,A, 9'(z - zy)9'(z - zi)

Jw* 4 0(z-zy)9(z-zl)

^Ay9'(z-Zy)^r9'(z-Zy) Ô
"

ff (Z - ZAff (Z - Zl) Q Ô
'

hi 2 0(*-*) ^xQ(z-zA ldt, f^x e(z - zy)9(z - Zl) lldtydtt

i=i

= ai?+g-(*-«)*•«:-E^fcoää
A A,A; fl'fo - aQg'faj - Zi)

^ 4 %,-*)%,-*!)

<92 v^>
. 9'(y1—zl) d v^

. .

A.

9y; ^ %j " zi) dVo t=ï 2
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A A,A; 9'(y3 - Zy)9'(y3 - zj) 1
,

+

^ 4 0(j/3-*)%,-*) +2M%j-

This yields the desired result.

Definition 2.22 (Separated differential equations) Then differential operators thus

obtained all show the same structure and define the separated differential equation

( d ^9>(t- zt)K\2
M M ,.,

\jrhiW^zi)-2)
«(*)

=

««(*)«(*)•

Proposition 2.23

wj-l,=ic r* ^ + ^=in;=1«(Z-Z))x ö(E3n=12/3-Er=i^)

x UU,^&) {SM - £3U cW*>(ifc - **)) > (46)

where Se(y3) for j = 1,... ,n is calculated in Proposition 2.21.

Proof:
n

First, we notice that Se (z) = Se(z) — 2_^c-%'p(z — z%) has only simple poles on the

i=i

fundamental domain F = {x + yr\ x,y G [0,1)} at the points z = zt,i = 1,... ,n. Thus,
n

S®(z) JT 0(2 — Zj) is an elliptic polynomial in Gn(e^>=i^) (cf. Appendix B) which can

i=i

be calculated by interpolating the n known values of it at the points z = y3, j = 1,... ,n

to yield

which expression is in turn useful to calculate S^(z) and Se(z). Se(z) as defined in
n

Definition 2.15 transforms doubly periodic on V - due to "S^H\ — 0 - and so does its

i=i

expression in this Proposition. Both expressions also coincide at the residues and the n

points z = y3, j = 1,... ,n.

Remark:

We will need this expression in the sequel, cf. Chapter 4.

Let us now proceed in formulating a proposition on the strucuture of possible eigenfunc¬
tions in the terms of the new variables (C, y\,... , yn).

Proposition 2.24 A function if)(X,t\,... ,tn), homogeneous of degree m = YH=i if *n

the variables (t\,... ,tn), is a solution of the partial differential equation Se(z)tft = qe(z)ip

for z E C if and only if

V>(A,*!,... ,tn) = Cmu(yi,... ,yn) (47)

and

-Q- -J2 '2LJ^~Zk">j u^---yn) = 1e(y3)u(yi,...yn) (48)
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for j = 1,... ,n.

Hence, u(yu ... , yn) = 117=1 v(yt).

Proof:

Let us first describe how to obtain ip(X,ti,... ,tn) = Cmu(yi,... ,yn). By using the

fact that [Se(z),C-J^j] — 0, we see that we can simultaneously diagonalize both op¬

erators. The eigenfunction of C-^q to the eigenvalue a E C is given by Ca. Fur¬

ther note that by the homogeneity property of ip and the definition of (ti,... ,tn) in

terms of (yu ... ,yn) we get V(XT=i(?/« - *i), Cfi(yi,... , yn), • •
, Cfn(yi,... , yn)) =

C?mV'(Er=i(^ -Zy),fi(yx,... ,yn),... ,fn(yx,... ,yn)).
That it suffices for a function u(yi,... ,yn) in order to be a solution of Se(z)Cmu =

qe(z)Cmu to be a solution of Se(y3)u = qe(y3)u for j — 1,... ,n is seen by the fact

that Yl-i(Se(z) — qe(z))u(yi,... ,yn) E ®n(x)> cf. tne Appendix, vanishing at n generic

points y3 for j = 1,... , n, thus vanishing everywhere. That u(yi,... , yn) = ]X=i v(Vi)
can be seen by the structure of the separated differential equation at y = yt. For all

j = 1,... ,n the corresponding differential operators depend only on one variable y3.

2.6 Solutions of the elliptic Gaudin eigenvalue problem

Synopsis:

Here, we show how to obtain solutions iß E V[0] of (Se(z) — qe(z))ip = 0 by studying
solutions of the system of separated equations.
We study a non-degenerate (Proposition 2.26) and a degenrate case (Proposition 2.27),
where degenerate means that poles of the separated equations can be zeroes of the solu¬

tions of these equations.

Proposition 2.28 shows how to construct out of the solutions of the separated equations

solutions of the eigenvalue problem of Se(z) that can also be formulated in terms of the

operator fe(z) which was the main ingredient in introducing separation of variables.

In the last part of this section, we will explain how to understand completeness of the

solutions which we gave in Proposition 2.28.

2.6.1 The structure of the solutions

Remark:

Here, we will look at possible solutions to the elliptic eigenvalue problem as obtained by

Proposition 2.24.

First, note that the critical exponents of the separated differential equation of Proposition
2.22 are given by 0 and Aj + 1 at every z% for all i = 1,... ,

n.

In the following two propositions, we will indicate how to write down two different kinds

of solutions to the separated equations by Bethe ansatz. Then we will show how to obtain

out of these solutions solutions to

Se(z)ip(X,t1,... ,tm) = qe(z)ip(X,t1,... ,tm).
The last theorem will be on the completeness of the Bethe solutions.

Definition 2.25 (Bethe solution) A solution ip(X,ti,... ,tn) to

Se(z)ip(X, ti,... ,tn)= qe(z)xb(X, ti,... , tm)
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is called a Bethe solution if it is of the form

in

iP(X,tu... ,tn) = ecXHfe(wy)vI, (49)
«=i

where vj is a singular element of the Verma module, i.e. it vanishes by the action of

YÜ=i e^ The value of m EN must be chosen as to ensure that ip(X,ti,... ,tn) E V[0].

Remark :

We start with the ansatz which Hermite used to solve Lamé's differential equation

(cf. [51]). i.e. with a function v(y) E ®m(x)> where m — E"=i ^-i- ^y the Appendix,
such a function can be written as

m

v(y) = ecyj\9(y-wk).
i=i

Proposition 2.26 Let v(y) E @m(x) for some x G F* &e given such that zt ^ Wk for
all i = 1,... ,n and k — 1,... ,

m. This function is a solution to the elliptic Schrödinger

equation

^-Ëy^y-^)j v(y) = qe(y)

if and only if its parameters Wk for all k = 1,... ,777, obey the Bethe Ansatz equations

n

Qi
m

9'

^2/Al—(wk-zl)-2 ^2 j(wk-w3) =2c. (50)
i=i j=i,j^k

Proof:

Note first that Wk ^ wi for all k / I for k, I = 1,... , m, since the only solution of the dif¬

ferential equation vanishing with its derivative at a regular point is the trivial solution.

If we write down the first and second derivative of v(y), they read v'(y) = cv(y) +
£ö'(y - w3)UT=i,k^0(y - wk) and v"(y) = c2v(y) + 2cZT=lêj(y ~ k)v(y) +

Eti nv-Vk) UT=i,^k %->C2/+EÎT=i ET=i,^k 9'(y-wk)9(y-Wj) Ui=i,i^ 8{V-
wi)ecy. Evaluated at a zero Wk, we obtain

m

y
v"(wk) = 2cv'(wk) + 2 ^T jiwk- w3)v'(wk).

j=l,jj^k

If we instead look at the separated differential equation, we notice that it yields v" (y) =

X7=i ^î0-(y — Zy)v'(y) + r(y)v(y), where r(y) is a regular function at the Wk for all

k = 1,... ,777,. Evaluated at Wk, this expression yields

n

9'
v"(wk) = ^At —(TJJfc -Zy)v'(wk).

1=1

Since v'(wk) ^ 0 for all k — 1,... ,
m the comparison of the two identities for v"(wk) for

k = 1,... ,777 yields the Bethe Ansatz equations.
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That this is indeed the proof, we perceive by the following two arguments: A solution

of the differential equation in &m(x) obeys the Bethe Ansatz equation by construction.

On the other hand any set of parameters (w\,... ,wn, c) gives rise to a function v(y) =
ecy IlfcLi &(y ~ wk) G 6m(x)i which in turn obeys the differential equation. This can be

checked by comparing zeroes of v(y) and residues.

Proposition 2.27 Let I Ç {1,... ,77} be given. Let wk = zx for all 1 E I and wk 7^ zt if

i<£l.
Then a solution v(y) E ©m(x) for some % G T* of the differential equation

( d A A,. 9
n

A 9' V
Efflfe"^ v(y) = Qe(y)

\dy U
2 e

with the property that it vanishes at Zy for 1 E I up to order At + 1 is given by

>(y) = ecyl[9(y-wy)l[9(y-zy)
i=i i&l

K+l

where m'= m—Y^yei(Ay-\-l) and the parameters (wi,... ,wmi,c) are to obey the modified
Bethe Ansatz equations

n

„ 9'
m'

0'

^Ay— (wk - Zy) -2^--(wk -w3) = 2c

Aï — 2 otherwise

9
i=i 3=1

for k = 1,... ,777' with

Ä, = / A* for % t 7>

Proof:

First, we may show that v(y) — Y[ieI9(y — z%)~~ '~1v(y) E ©m(x)> as the characteristic

exponents of the differential equation were shown to be 0 and Aj + 1 at z% for all 1 =

1,... ,77, where v(y) is a solution to the above differential equation.

By a straightforward calculation, v(y) obeys the alterated differential equation

n
V

2

or, by setting Ay = At ifi ^ I and Az = —Az — 2 if 1 E I, it obeys

\'d^~^~2~ë^v~Zlkn v(y) = qe(y)v(y)-

Starting with this differential equation, we get by writing v(y) = ecy 111=1 &(y — Wy) an el¬

liptic polynomial solution to the differential equation we started with. This solution reads

v(y) = eC2/II=i% - wt)U3ei0(y ~ ^)'K+l = eCy I\?=i 0(V ~ Wy)\[3eI9(y - zt)^1 E

®m(x) which vanishes at the z% for i G I up to order Ax + 1.



35

Since v(y) = ecy ni=i Q(y ~ wi) contains the unknown parameters (w\,... , wmi, c) and

obeys the alterated differential equation indicated above, we may - by the same way as

with the preceding proposition - obtain the Bethe Ansatz equations these parameters are

to obey. They read

71

„ 9'
m'

$'

^2K-ßiwk -Zy) -2^—(wk -w3) = 2c

1=1 3=1

for k = 1,... ,777'.
Remark:

Let us now look at the solution of Se(z) which are obtained by a product of solutions we

found in Proposition 2.26 and 2.27.

Proposition 2.28 Let vq = 1 be the highest vector of the Verma module and let fe(z)
be the operator defined at the beginning.

a) The first kind of solutions with wk 7^ zz for all i = 1,... ,77 and k = 1,... ,777

obtained by Proposition 2.26 yields

m

ip(X,h,... ,tm) =a(zi,... ,zn,wi,... ,uim,c)ecXY\_fe(wj)v0
3=1

as a Bethe solution of Se(z)ip(X,ti,... ,tm) = qe(z)tp(X, t\,... ,tm).

b) The second kind of solutions with wk = zt for alii E I for some fixed I Ç {1,... ,77}
obtained by Proposition 2.27 yields the Bethe solution

V>(A,*i,... ,tm) =

a(zu... ,zn,Wl,... ,wm,c)e^U']iife(^)Uka(fik))Ak+lvo.

Proof:

For the proof, we need the following facts given throughout the preceding section: fe(z) =

cU%9-zi)Vl) >
fel) = Res z=M*) and A = £?=i(y* " *.) ßy Proposition 2.15, the

function ip(X, t\,... ,tn) could be written in terms of the new variables as CmW^_1v(yl),
where v(yt) solved the corresponding differential equation Se(yl)v(yl) = qe(yi)v(yi)-
Let us show how to obtain with these results the first identity written in the proposition.

The second one is then obtained similarly.

n m I m

Cml[v(yy) = Cmll [e^l[9(yy
i=i i=i \ 3=1

n

9(w3 -yj(_irnecE^ec(Er=1(^)) JT CHIPI yi,.9(w3 -Zy)) =

3=1 \ z=l 6(W3 Zl> J

m

a(zi,... ,zn,w1,... ,wm,c)ecXY\_fe(w3)n =iß(X,t1,... ,tn).
3=1

Remark:

Note that only Ylkei(f^)Ak+lvo with 1 = 0 has a nontrivial projection on the Verma

module, in our realisation C[*i,... , tn]/(J2Z=i tfl+1C[ti,... , tn]).
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2.6.2 Completeness of the Bethe eigenvectors

Let us first give the necessary definitions to understand the theorem and then write down

the theorem.

Definition 2.29 (H(x)) Let x G T* 6e given. Then 1-i(x) is the following space of
functions

H(x) = {</>: A —> <p(X) E V[0] | 4> meromorphic in A,

4>(X + l) =X(1^(A), 0(A + r) =x(r)e-^=1^w0(A)}.

Remark:

Since the operators ee(z),fe(z), ^ — \he(z) preserve the space ri(x), so do Se(z) and

HI for i = 1,... ,
n. Thus, it is sensible to look for solutions of Hle(f)(X) — p,y(f>(X) for all

i = 1,... ,n which are of the form <îj(A) G %(x)-

Definition 2.30 (£(x)) Let x G T* be given. Then

E(x) = {(/Jc, Ml, • • • ,Pn) G Cn+1 I there exists a nontrivial (ß(X) G H.(x)
with H14>(X) = /j^(A), Hce<f>(X) = ßc<p(X)}.

Theorem 2.31 Let x G T* be fixed. Let a ET* be given by the property a(l) = — 1 and

a(r) = -1.

Then (p,c, ß\,... , p,n) G S(x) */ and onh «/ YH=i M« = 0 and the separated problem

Eyâtï"^) v(y) = qe(y)v(y)
i=i

admits a nontrivial solution v(y) E Qm(cmx)-
To this solution, there corresponds a Bethe eigenvector (cf. Proposition 2.28).

Proof of the Theorem:

Let us first look at the if-direction. Let us suppose that to the set of eigenvalues
(HcPi,... ,pn) there exists a nontrivial function <f>(X) E H(x) which solves Hle(f>(X) =

Py(j)(X) for i = 1,... ,?7 and H£cf>(X) = p,c(j)(X). Thus, we can write 4>(X,ti,... ,tn) =

£mi+...+mn=m </V...mjA) Ü, (*.)"** In particular, since 0(A) G H(X), </»(A) G V[0]. Thus,

<ß(X,tu ...,tn) = Cv(yi, ...,yn) = £m, 0mi,...,mn(Er=i(y,-^)) ^C^lZl%^\))n
It remains to be shown that v(y\,... ,vn) is indeed an elliptic polynomial in the y% for

all i = 1,... ,77.. ((ß(X) was only required to be meromorphic in A.) To this end, we

first have to show that v(y\,... ,yn) is holomorphic in the yz, i — 1,... ,77 and then that

v(yi,... ,yn) as a function of each y% for i = 1,... ,
77 is indeed an element of Qm(o-mx)-

For the first hypothesis it is sufficient to show that the coefficients 4>m1...mnÇïuyl=i(yi~zi))
are not singular at A = Y^-iiv^ ~ zî) = 0' as this is the only possible pole for the

4'mi...mn(Yl=i(yi~ zi)) d to the strucuture of the differential equation Hze4>(X) = p,y4>(X)
they obey. This is proven by the following argument: As v(y%,... ,yn) solves the sep¬

arated equations for i = 1,... ,77, it may only have poles that occur in these equa¬

tions, i.e. at the points z% for i = 1,... ,77. For a generic choice of the y\,... ,yn,

Er=i Vi. ~ E^fc,j=i z3 Ï zk, thus avoiding a pole at £)"=1(yt - z%) = 0.
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The second hypothesis can be shown by a straightforward calculation for every function

y% -> v(yi,... ,yt,... , '</„), where i = 1, „ .

, n, by the fact that Cmv(yu ... ,%,... , yn) =

Cm Et 0mi,...,m„(Er=i(^ ~ zi)) nt(n»J=1 fl'fz-zO and tnat we know the character of

every <^mi,...,m,l(X)r=i(y« ~~ 2;*))- Now, by Propositions 2.24, 2.26 and 2.27, we see that a

Bethe solution corresponding to v(y\,... ,yn) indeed exists.

Let us conversely suppose that we have a Bethe solution given, i.e. by Proposition
2.28 a solution of the separated equation v(y) E @m(o~mx)- The Bethe solution is a

nontrivial solution of the n + 1 eigenvalue problems, so we only have to check that it

is in H,(x). Let us write the Bethe solution as a polynomial in the ty, i — 1,... ,n.

V(Mi,... ,tn) = e^U%i(E:=i%%fe^)^)T[iei<l+1- It is meromorphic in the

variable A and an element of V[0]. Note that the character o~mx of v(yt) for i = 1,... ,
n

can be calculated directly. Thus, by a straightforward calculation we can show that

V>(Mi,... ,tn)E%(x).
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3 Introduction to the difference case

In the following two chapters, we want to study the eigenvalue problem arising with the

SOS eight-vertex model of statistical mechanics studied by Baxter [4], Andrews, Baxter

and Forrester [1] and Date et al. [11] with antiperiodic boundary conditions.

More explicitly, in the first chapter we aim at finding common eigenvalues and eigen¬
vectors of a commuting family of operators depending on a complex parameter called

antiperiodic transfer matrices of the SOS model. This notion and other notions we need

in order to understand the model - Boltzmann weights, transfer matrices, partition func¬

tion - will be described quite heuristically in the first section if this chapter.
The most complex part we need to know to understand the SOS model as treated here

is some of the representation theory of the elliptic quantum group ET>T](sl2) as described

in [25], since the SOS model comes along with a certain finite-dimensional irreducible

representation of ET^(sl2). Since the exposition of the representation theory as we will

need it involves a lot of previous definitions, we will deal with it in the second section of

the chapter.
In the second section, we will make precise our statements on the notions of the SOS

model which we introduced in the first section by connecting these with the representa¬

tion theory of Er^(sl2).
In the third section, we define our main tool enabling us to study the antiperiodic SOS

model, the so-called auxiliary representation of ET^(sl2) (cf. Proposition 4.33). This

representation is a generalization of Sklyanin's ideas to the elliptic case [46, 44]. We

need this representation to perform separation of variables, a method we have to choose

since we cannot treat the antiperiodic SOS model by conventional algebraic Bethe ansatz

(ABA), as described in the general introduction. This is so, as the notion of a highest

weight representation, necessary for the ABA, cannot be suitably used in this context.

(Contrary to the periodic SOS case, where a solution in the context of representation

theory of the elliptic quantum group has been found by Felder and Varchenko [27].) To

achieve separation of variables, we first need to know that the two involved representa¬

tions of the elliptic quantum group, the auxiliary representation and the representation
of the SOS model, are in fact isomorphic. What this means and how the isomorphism is

constructed will be shown in the fifth section of this chapter.
The use of the method of separation of variables will be visible in the fourth section,
where we will discuss the results on possible common eigenvalues and eigenvectors of the

antiperiodic SOS model. We obtain these results by studying the eigenvalue problem of

a family of transfer matrices of the auxiliary representation. Studying the latter transfer

matrices is an advantage compared to studying the antiperiodic SOS transfer matrices,
since solving the original eigenvalue problem of the SOS transfer matrices involves solving
a nonlinear difference equation in n variables, whereas solving the eigenvalue problem for

the auxiliary transfer matrices consists in solving 77 structurally identical linear differ¬

ence equations in one (so-called separated) variable per equation. These linear difference

equations are called the separated equations.
The fourth section closes with two theorems (4.54 and 4.55): the first one on possible

common eigenvalues of the family of antiperiodic SOS transfer matrices, the second one

on possible common eigenfunctions of the family of antiperiodic SOS transfer matrices.

The last section of the first chapter connects to the preceding one on the elliptic Gaudin

model. In Proposition 4.59, we show that the operator Se(z) of Proposition 2.23, there
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described in the separated variables (y\,... , yn, C) E {Sn(ET) X C/0} can be seen as a

limit of the auxiliary transfer matrix of the SOS eight-vertex model which is also natu¬

rally formulated in the separated variables appearing in the quantum case.

In the second chapter, we try to elucidate the structure of the objects abstractly given

in the first chapter. Thus, we perform a calculation for the simplest nontrivial case of

the SOS model (n=3). We explicitly compute the isomorphism and give an eigenvector

with corresponding eigenvalue.
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4 The SOS eight-vertex model

4.1 Basic notions of the SOS eight-vertex model

Synopsis:
In this section, we aim at introducing the basic notions of the eight-vertex SOS model,

without using the representation theory of the elliptic quantum group ET^(sl2). This

enables us to do two things: on the one hand we will see what problem we finally want to

solve in a none too complicated manner, on the other hand we are reassured in the section

where we will describe the SOS model in terms of representation theory to rediscover the

notions we already introduced here.

In the first definition, we will define the Boltzmann weights of the eight-vertex SOS

model. In the second definition we will define the row-to-row transfer matrix of the SOS

model with antiperiodic boundary conditions in analogy to [4, 27]. In the third definition

we will pose the common eigenvalue problem of the family of transfer matrices of the

SOS model with antiperiodic boundary conditions, which is the problem we finally want

to solve.

Definition 4.1 (Boltzmann weights [11]) The Boltzmann weights of the eight-vertex

SOS model are given by

We(d+l,d + 2,d + l,d\z) =

We(d+l,d,d + l,d\z) =

(z + 2n),

9(z - 2nd)9(2n)

We(d+l,d,d-l,d\z)

We(d-l,d,d + l,d\z)

We(d

We(d-1,

l,d,d — l,d\z)

-2,d-l,d\z)

9(2nd)

9(z)9(2n(d - I))

6(2nd)
'

9(z)9(2n(d + l))
9 (2nd)

B(2nd + z)B(2n)
9 (2nd)

9(z + 2n).

Remark:

These Boltzmann weights were obtained in [11], p. 210, as a solution to the vertex-

IRF transformation, from the eight-vertex model towards an SOS model, established by
Baxter in [4], solving the equation of the vertex-IRF transformation which was given in

the introduction. They correspond to not yet normalized transition probabilities between

four adjacent faces from the values attached to a face (called the height) of the upper

two faces to those of the lower two faces. The heights of adjacent faces are to differ by

plus or minus one. E.g. the Boltzmann weight We(d — 1, d, d, d + 1) corresponds to the

combination of faces

d-1

d+1
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That these Boltzmann weights obey the star-triangle-relation, the condition which is

necessary to ensure commutativity of the transfer matrices, will be obtained later on as

a corollary.

Definition 4.2 (Row-to-row transfer matrix of the antiperiodic SOS model)
Let us consider a lattice consisting of n rows of faces with antiperiodic boundary condi¬

tions, i.e. the height of the n + Ith face is the opposite of the height of the first face.
The row-to-row transfer matrix is much easier to define if we describe its action onto an

antiperiodic path, i.e. an entity with n + 1 entries, where each entry corresponds to the

height of the corresponding face. Such a path looks like \a\,... ,al,... , an,an+\ =
—a\ > .

Then, the transfer matrix describes with what probabilities a fixed path, i.e. a fixed as¬

signment of heights attached to a row of faces, changes into any other possible path, i.e.

into any other possible assignment of heights to the subsequent row of faces. The proba¬
bilities are given by products of Boltzmann weights, as a probability of how the heights of

two faces on the one row change into the heights of two faces in the subsequent rows are

described by the Boltzmann weights (cf. above). Thus, the transfer matrix reads

Tsos,e(z)\a\,... ,an+i = -ax >=

£&i, ,bn,bn+1=~b1U^=iW(ay+1,ay,bl,by+i\z)\b1,... ,bn+1 = -&!>.

It is a matrix on the space of antiperiodic paths. The parameter z E C comes about by the

definition of the Boltzmann weights. Thus, we rather obtain a family of transfer matrices

depending on this parameter.

Remark:

This treatment is made rigorous in the third section of this chapter. There, we e.g. show

that the set of antiperiodic paths defines a basis of a 2n— dimensional vector space.

This row-to-row transfer matrix corresponds by its structure to the ones obtained in [27]
and [4], p. 28. The only difference is the presence of antiperiodic boundary conditions

instead of periodic ones, or - as we formulated it here -b\ — —6n+i instead of b\ = 6n+i-

Definition 4.3 (Common eigenvalue problem) A solution to the common eigen¬

value problem of the family of transfer matrices is given by a pair

( E3 a^< >anlai'- >arMan+l = -«l >-,£SOs(z))
0,1, ,a,n

which solves

TSOS,e{z)Y^ai, ,anao.i, ,an K, • •

, an+l
= -«1 > =

eSOs(z)(J2au anaai, ,an [al> • •

. an+l = ~0-\ >)

The formula J2ai anaai, ,aJai;- • •

j an+i = —0,1 > indicates a linear combination

of antiperiodic paths, hence attachments of heights to faces, each attachment with the

antiperiodic boundary conditions preserved. In the sequel, we restrict the eigenvalues we

are looking for to be elliptic polynomials (cf. Appendix 2). This makes sense since ....

Remark:

Why it is sensible to study this problem was emphasized in the introduction of the

thesis. To further stress its importance, we will give a heuristic definition of the partition
function in terms of the above defined transfer matrix



42

Definition 4.4 (Partition function) The partition function of the SOS model is in

terms of its row-to-row transfer matrix given by

ZsosMz) = tr {TlhsM) ,

where the trace is taken over the space of antiperiodic paths where which row-to-row

transfer matrix is an endomorphism of. The intepretation is the following: the partition

function Zsos,N describes the sum over all possible attachments of heights to faces, i.e.

over all antiperiodic paths, of (normalized) probabilities of the following events: we start

with a given attachment of heights to the n faces (the antiperiodic boundary conditions

understood) and after M row-to-row transitions we are to return to the same attachment

of heights to faces which we started with.

Remark:

This can be visualized by the following picture for the simplest case ?7 = 2 and M = 2.

W3 W4

By the partition function Zsos,2 we would obtain a sum of all products of n x M = 4

Boltzmann weights Wl W2 W3 • W4 depending on allowed - i.e. 02 = o\ ± 1 with

0 = a,b - attachements of heights to faces.

Being in possession of the common eigenvalues and eigenvectors of the family of antiperi¬
odic SOS transfer matrices enables us to compute the above partition function of the

model as well as other physical interesting quantities as for example the magnetization.

4.2 The setting corresponding to the SOS eight-vertex model

Synopsis:
In this section, we will present the basic representation theoretical notions concerning

ET,n(sh) which we will need in the sequel. First, we define some notation (Definition 4.5)
and the notion of a diagonalizable %—module (Definition 4.5). The latter will be needed

to define a representation. Then we introduce the R-matrix of the elliptic quantum group

(Definition 4.6), which gives us the basic structure of this quantum group. The R-matrix

is very important as for the representations of ET>ri(sl2) (Definition 4.8), as it defines

relations every representation has to obey, the RLL-relations. Then, we give some exam¬

ples of representations (Proposition 4.10). The examples are mostly finite dimensional

irreducible representations, because these are the ones that can be used to construct

representations corresponding to (higher dimensional analogues of) the eight-vertex SOS

model. The construction of the representation corresponding to the eight-vertex SOS

model also heavily relies on the fact that we can build shifted tensor products of repre¬

sentations of ET^(sl2) to obtain new representations of ET^(sl2) (Proposition 4.9).
We then continue with a slight generalization of the notion of a representation: the func¬

tional representation and its operator algebra (Definition 4.12 and Definition 4.14). For a

functional representation the diagonalizable 'H-module is replaced by a suitable space of

functions. We introduce the notion of the quantum determinant (Definition 4.15) which
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will be needed in the sequel as we can replace any of the four entries of the L-operator

(cf. introduction) of a given representation of ETjV(sl2) by the quantum determinant to

equivalently describe this representation.

We proceed by introducing the notion of a highest weight representation of Er^(sl2)
(Definition 4.16). We discuss this notion for the following reason: we want to show that

the representation of Er^(sl2) to be attached to the eight-vertex SOS model is isomorphic

to the auxiliary representation. We then state a theorem on the shifted tensor product

of finite-dimensional irreducible highest weight representations (Proposition 4.18). Fi¬

nally, we give a Theorem [25] stating that finite-dimensional irreducible highest weight

representations of ET^(sl2) are isomorphic if their highest weights coincide (Proposition

4.19).

4.2.1 Introduction

Remark:

The functions appearing in this chapter correspond to the ones defined in the chapter on

the differential elliptic Gaudin model.

Definition 4.5 (Basic notions)

a) Let % = Ch be the one-dimensional Lie algebra generated by one generator h. Let

Vy, i = 1,.. ,77 be modules over %.

Vy is called a diagonalizable H-module ifVy is the direct sum of finite dimensional

eigenspaces Vy[p] of h which are labeled by the eigenvalues p, of h: Vr = ®^Vy[p].
We can for example take V = C2 and split it into two disjoint subspaces V[l] =

{ae[l] | a E C} and V[— 1] = {a:e[— 1] | a G C} by identifying

"=(J _1).«[1] = (ï).«»«'«[-1i = (î)-
b) Let Vy,i = 1,... ,n be diagonalizable 'H-modules. We may consider their tensor

product Vi ® ... ® Vn. For X E End(Vy) we denote by X^> E End(Vi ® ...®Vn)
the operator

iW = 1®...® X ®...®1.

tth place

If X E End(Vy ® V3), we define X^ E End(V\ ® ...®Vn) analogously.

c) Let v E Vi®.. .®Vn .
We may define hSl> E End(V\®.. -®Vn) by the above notation.

Let X = X(h^\ ...

, hSn>) be a function taking values in End(Vi ® ... ® Vn). If
h^v = ptv for all i — 1,... ,n, then X(h^,... ,h^)v = X(p,\,... ,pn)v .

d) Let V be a diagonalizable ri-module and I the identity matrix on it. Let A G

End (V®J). Then we can define A^^+l-n) E End (V®n) by

A(n-j+i...n) = l8_gI 0 Am
s

v
'

first j copies of V
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Definition 4.6 (R-matrix) Let V — V[—1]©V[1] be a two-dimensional complex vector

space.

Let the elliptic R-matrix Re E End(V ® V) depending on the z, X G C be defined by

Re(z,X) =

( 9(z + 2n) 0 0 0 \
n 6(z)6(\+2V) e{z-X)9(2r]) n

u
0(A) 0(A)

u

n 9(X+z)9(2V) 6(z)0(\-2ri) n

U
0(A) 0(A)

U

\ 0 0 0 9(z + 2n) J

(51)

where 9(z) = B(z, r) with the two parameters r, n E C, Im(r) > 0.

We identified e[l] ® e[l] = (10 0 0)T , e[l] ® e[-l] = (0 1 0 0)T , e[-l] ® e[l] = (0010)T
and e[-l] ® e[-l] = (0001)T.

Proposition 4.7 (QDYBE) The elliptic R-matrix obeys the dynamical quantum Yang-
Baxter equation

Ä(12) (z-WjX- 2nh^)RW (z, X)RW (w,X- 2nh^)
= RW(w, X)RW(z, X - 2nhW)RW(z -w,X), (52)

where the notation is as defined above. This relation is defined on End(V®3).

4.2.2 Representations, functional representations, operator algebras

Remark:

We now looking at representations of the elliptic quantum group ETjV(sl2). This will be

done in two different ways. The first definition will deal with diagonalizable K-modules,

the second one will be a slight generalization.

Definition 4.8 (Representation [25]) A representation of the elliptic quantum group

ET^(sl2) is a pair (W,Le), where W is a diagonalizable H-module W = ®fj,ecW[p] and

Le = Le(z,X) E End(V ® W) is a linear map commuting with h^ + h^ meromorphic

in z, X E C called the L-operator.
The L-operator obeys the relation

Ri12) (z-w,X- 2t7/7)41) (z, A)42)K A - 2nh^ )

= L® (w, A)41} (z, X - 2nh^)R^ (z -w,X). (53)

This relation is called the dynamical RLL-relation.

Remark:

The L-operator is usually written in the form
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where ae(z, X),be(z, A), ce(z, A), de(z, X) G End(TV) are meromorphic in z, X E C and obey
the dynamical ßLL-relation, which explicitly yields the following sixteen conditions:

ae(z, X)ae(w, X-2n

9(z — w + 2n)ae(z, X)be(w, X — 2n

B(z — w + 2n)be(z, X)ae(w, X + 2rj

be(z,X)be(w,X + 2n

9(z — w + 2n)ce(w, X)ae(z, X — 2n

ß(z — w, A — 2nh)ce(z, X)be(w, A — 2n

— a(z — w, X)de(w, X)ae(z, X + 2n

ß(z — w, X — 2nh)de(z, X)ae(w, X + 2t?

= ß(z — w, X)de(w, X)ae(z, X + 2n

9(z-w + 2n)de(w, X)be(z, X + 2n

9(z — w + 2n)ae(w, X)ce(z, X — 2n

a(z — w, 2nh — A)ce(2;, X)be(w, A — 2rj

= a(z — w, X)be(w, X)ce(z, X + 2??

a(z — w,2nh — X)de(z, X)ae(w, X + 2n

= ß(z — w, X)be(w, X)ce(z, X + 2n

9(z-w + 2n)be(w, X)de(z, X + 2n

ce(z,X)ce(w,X - 2?7

9(z — w + 2n)ce(z, X)de(w, X — 2n

9(z — w + 2n)de(z, X)ce(w, X + 2n

de(z, X)de(w, X + 2n

= ae(w,X)ae(z, X-2rj),
= be(w,X)ae(z,X + 2n)a(z — w,X)

+ae(w, X)be(z, X - 2n)ß(z - w, -A),

= be(w, X)ae(z, X + 2n)ß(z — w,X)

+ae(w, X)be(z, X — 2n)a(z — w, —A),

= be(w,X)be(z,X + 2n),

= ß(z — w, X — 2nh)ce(z, X)ae(w, X — 2n)

+a(z — w, X — 2nh)ae(z, X)ce(w, X — 2n),

+ a(z — w, X — 2nh)ae(z, X)de(w, X — 2n)

-t- ß(z ~w,-X)ce(w,X)be(z,X-2n),

+ a(z — w, X — 2rjh)be(z, X)ce(w, X + 2n)

+ a(z — w,
—X)ce(w, X)be(z, X — 2n),

= ß(z — w, X — 2nh)de(z, X)be(w, X + 2n)

+a(z — w, X — 2nh)be(z, X)de(w, X + 277),

= a(z — w, 2nh — X)ce(z, X)ae(w, X — 2n)

+ß(z — w, 2nh — X)ae(z, X)ce(w, X — 277),

+ ß(z — w, 2nh — X)ae(z, X)de(w, X — 2rj)

+ ß(z — w, —X)ae(w, X)de(z, X — 2n),

+ ß(z — w, 2nh — X)be(z, X)ce(w, X + 2n)

+ a(z — w,—X)ae(w,X)de(z,X — 2n),

— a(z — w,2nh — X)de(z, X)be(w, X + 2n)

+ß(z - w, 2nh - X)be(z, X)de(w, X + 277),
= ce(w,X)ce(z,X-2n),

= a(z — w, X)de(w, X)ce(z, X + 2n)

+ß(z - w, -X)ce(w, X)de(z, A - 277),

= ß(z -w,X)de(w, X)ce(z, X + 2n) +

a(z — w, —X)ce(w, X)de(z, X — 2n),

= de(w,X)de(z,X + 2n),

where a(z, X) ë(Xj
and p{z, A) ^ .

Proposition 4.9 (Shifted tensor product [25]) Let two representations of the ellip¬
tic quantum group ETjT1(sl2) (Wi,LijË(z, A)) and (W2,L2>e(z,X)) be given.

A new representation is given by the following tensor product of the two representations:

(Wi ® W2, L$ (z, X - 2nh(2))L{2f (z, A)).
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Remark:

The explicit L-operator of the tensor product is given by

«iS,>> A) = aS(*, A - 2nh^)afl(z, A) + b^(z, X - 2^)^% A),

*£§,«(*'A) = <#&> A - 2rlh{2])b{2% A) + &$(*, A - 2nh^)dfl(z, A),

41,e(^ A) = cïï(^> A - 2r//i(2))42(s, A) + dg(*, A - 2^(2))^(z, A),

<*?«§,«(*. A) = £% A - 2^(2))42fe A) + d$(*, A - 2nhW)d%(z, A).

Proposition 4.10 (Examples [25])

a) (W = V, Le = Re(z — zq, A)), where zq G C, 75 called the fundamental representation

of ET:Tj(sl2).

b) Let Va &e an infinite dimensional complex vector space with basis ek,k E N. We

define an action of h by f(h)ek = f(A — 2k)ek for f(h) E Endiyjy).
The pair (W — Va,L = L^,e(z — Zq)) is a representation of ET>v(sl2), called the

evaluation Verma module VX.,e(^o) of ET<r](sl2) L^e(z — zq,X) is defined as follows

in terms of

aA)e(A, z), &A,e(A, z), cA,e(A, z), d^e(X, z):

,, ,
9(z-z0 + (A + l- 2k)n)9(X + 2kn)

o,A,e(X,z- z0)ek
= —— ek,

, ,. ,
9(-X + z-z0 + (A-2k-l)n)9(2n)

0A,e(A, z - z0)ek
= —-r ek+i,

,, ,
9(X + z-z0-v-(A- 2k)n)9(2kv)

c\,e(X,z- z0)ek
= —— efc_i,

, ,. , 9(zo-z + (-A + 2k)n + r,)9(X-2(A-k)n)
OA,e(A, Z - Z0)ek =

qTj-; ek.

c) If A = n + (m + lT)/2n,l,m,n G N, the representation (V/v,LA,e) has a finite
dimensional irreducible quotient module of dimension n + 1. This representation

will be denoted WA,e(^o)-

d) If A = 1, this finite dimensional quotient module is isomorphic to the fundamental

representation mentioned above.

Remark:

The notion of a representation of ET>ri(sl2) may be further generalized to the notion of a

functional representation of ETjV(sl2).
To be able to understand its definition, we first need to define a suitable space of functions.

Definition 4.11 (T^)
•^n — {f{xi-> 1 xn, A) " Cn+1 —y C I / holomorphic in xt for 1 = 1,... ,77 and f

meromorphic in A}.

Definition 4.12 (Functional Representation [25]) Let T^ be the complex vector space

of all complex valued functions meromorphic in X EC and holomorphic in p E C (instead

of xi).
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A functional representation of ETiV(sl2) is a pair (W,Le) where W Ç T^ and L =

Le(z,p,X) = Le(z,X) is a function holomorphic in z,p EC and meromorphic in X E C:

It acts as a difference operator on V ® W, commutes with h ® 1 + 1 ® h and obeys the

elliptical RLL-relations.

The operator h, the weight, acts by multiplication by the continuous variable p E C :

hv(X,p) — pv(X,p), where v(X,p) eW.

Proposition 4.13 (Examples [25])

a) (W = Ti,L^e(z — zq)) defines a functional representation of ET)TI(sl2) depending

on two parameters A, zq G C. It is called the universal evaluation module V^e(zo).
l{e(z — zq) is defined as follows

i- i x m w > x 9(z-z0 + prj + r])9(X- (p- A)t?)
(aA,e(z,X,h)v)(z,X,p)

= — v(X-2n,p),

r ( , M w , > d(-X + z-z0+pn- n)9((p + A)?7)
(bA,e(z,X,h)v)(z,X,p)

= —r X

xv(X + 2n,p-2),

/_ / x 7N w > x

9(X + z- z0- pn-n)6((A- p)n)

(cKe(z,x,h)v)(z,x,p) =
^

y
^-^x

xtj(A — 2n,p + 2),

(3 i \ u\ \i \ \
6(z - z0 - pn + n)9(X - (p + A)n)

(dA>e(z,X,h)v)(z,X,p)
= — v(X + 2n,p),

where v(X, p) E J-'.

b) If we restrict !F^ to Tr — {v E J7 \ v = v(p), p E {A — 2k\k E Z}} C T\ and set

v(X,A — 2k) = ek, ek defining the basis of an infinite dimensional complex vector

space, the functional representation (Tr, L^Re(z — zq)) the is the evaluation Verma

module of ET^(sl2) VA>e(zo).
The L-operator LARe(z — zq) looks the same as the operator defined in a), but its

action is restricted onto Tr.

Proof:

a) The proof mainly consists in checking the .RLL-relations (cf. [25]).

b) This part is done by comparison.

Remark:

Since the entries of the functional L-operator act as difference operators on the elements

v(p,X) E W Ç J7^, we can write them down this way. The set of entries of the functional

L-operator written down as difference operators plus the operator h are called the oper¬

ator algebra of the functional representation.

Since any representation of £JTj^(sZ2) can also be conceived as a suitably restricted func¬

tional representation, we see that this way we also obtain the operator algebra of a given

representation of ET^(sl2).
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Definition 4.14 (Operator Algebra [25])

a) Let us suppose a functional representation (W Ç !F^,L^(z,X)) as given by

âe(z, X)v(p, X) = ae(z, X, h)(T-2vv(p, A)), be(z, X)v(p, X) = be(z, X, h)(T+2r>v(p, A)),

ce(z,X)v(p,X) = ce(z,X,h)(Tfr)v(p,X)),de(z,X)v(p,X) = de(z,X,h)(T+2T>v(p,X)),
where every operator is an element of End (W), and hv(p,X) = pv(p,X), where the

oe(z,X,h), o = a,b,c,d are difference operators in the weight h whose coefficients
are functions meromorphic in the complex variable X and holomorphic in all h and

zEC.

Then its operator algebra is the algebra generated by the operators

h,de(X,z),be(X,z),ce(X,z),de(X,z) E End(W).

b) If we have a functional representation involving several complex continuous weights

pi, ..
, pn G C given in terms of the functional L-operator Le(z, hP->, ...

, hSn\X),
each of whose entries oe(z, hP-',... , hSn', A), o = a,b, c, d, acts as a difference oper¬

ator on a (sub-)space (of) J7^ of all functions meromorphic in the complex variable

X and holomorphic in the complex variables p±,... ,pn and z, its operator algebra
is generated by the operators öe(z,h^l\... ,/i(n),A) = oe(z,h^\... ,/*("),A)T+2w\
where p E {—1,1}, for o = a,b,c,d - where oe(z, h^1',...

,
h^n\ X) are to be differ¬

ence operators in the pt whose coefficients are functions meromorphic in X and

holomorphic in all other variables - and the operators h^l\ i = 1,... ,n, with

h^v(X,pi,... ,pn) = pyv(X,px,... ,pn).

Proposition 4.15 (Quantum determinant [25])

a) The following element of the operator algebra is a central element:

Dete(z, X) = Dete(z, X) =

fl(A)
9{\-2r,h) (a^z - 2v)de(z) - ce(z - 2n)be(z)) . (55)

It is denoted the quantum determinant. Dete(z,X) G End (W).

b) Let (Wi,Li^e(z,X)) and (W2,L2>e(z,X)) two finite dimensional irreducible represen¬

tations of ETiV(sl2) with quantum determinant Det\fi(z,X) — Derle(z,X)ly/x and

Det2,e(z,X) = Det 2e(^, A)Iwi respectively, where Iwz denotes the identity matrix

on Wy and Devie(z,X) is a function not depending on the weights of the correpond-

ing representation for i — 1,2.

Then the quantum determinant of (W\®W2, L\ J (z, X—2nh2)L2 e (z, A)) is given by

Dete(z,X) = Detrle(z,X) Detr2 e(z, X)lwi®w2; where Iwi®w2 denotes the identity
matrix on W\ ® W2-

Proof:

This is shown by commuting the quantum determinant with all generators of the opera¬

tor algebra of the corresponding (functional) representation ETjV(sl2).
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4.2.3 Highest weight representations

Remark:

To deal with the Gaudin eigenvalue problem in the differential case, we needed the notion

of a highest weight representation of sfa A similar notion can be defined for the elliptic

quantum group ETjr)(sl2).

Definition 4.16 (Highest weight) A representation (W,Le(z,X)) of the elliptic quan¬

tum group ETtri(sl2) is a highest weight representation if it has the following properties:

W contains a nontrivial element VhmVJm E W such that

ce(z, X)vh.w. = 0 for all z, A, f(h)vh.m. = f(w)vh,w., (56)

ae(z, X)vh,w. = A^hw(z, X)vh,w,, de(z, X)vh.w. = A~hw(z, X)vh.w,

for some to G C and A^hw(z,X),A~thw(z,X) E End (W).

The triple (to, A~~h w (z, X),A+h w (z, A)) is called the highest weight of the highest weight

representation (W, Le(z, X)).

Remark:

The previous notion can be generalized to functional highest weight representations of

ET7](sl2). The corresponding highest weight triple structurally stays the same, whereas

Vh.w. = Vh.wXfJ; A) G W Ç Ti vh.w. ^ 0.

Proposition 4.17 (Examples)

a) The representation Va^O^o) is a highest weight representation with highest weight

(A> Kh.w.^ A) = e(z - zo + Ar/ + 77), A-^>, A) = 9(z - z0 - An + «)^f^).

b) The representation V^6(zq) is a highest weight representation with highest weight

(A,AtA.wiz,X) = 9(z-z0 + An + n),A-h,wiz,X)=9(z-z0-An + n)e-^^

c) For A E N the representation WA,e(zo) is a finite dimensional irreducible high¬
est weight representation with highest weight (A, A+h w

(z, X) = 6(z — zq + A77 +

77), A-^(z, X) = 9(z - z0 - An + r?)^^).
Proof:

The proposition is proven the following way

a) We choose Vh.w. = eç, E V\. Then cA,e(z)vhM. = 0. The highest weight triple is

obtained by checking f(h), aA:e(z), dA,e(z) on Vh.w.-

b) We choose Vh.w. — V(A,X) = v(X)o~a,h E Ti Then CA,e(z)vh.w. = 0. The highest

weight triple is obtained by checking f (h), aA,e(z), dA,e(z) on VhmW_.

c) The calculation is that of the first item remembering the restricted range of defini¬

tion of WA,e(zo). The irreducibility is shown in [25].

Remark:

By the next proposition, we see that a tensor product of finite-dimensional highest weight

representations is again a highest-weight representation.
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Proposition 4.18 ([25]) Let (zi,... ,zn) G Cn - diag. Let Az E N for all i = 1,... ,77.

Then the tensor product ofn irreducible, finite dimensional,highest weight representations

®HiWAl,e(zy) is again a finite dimensional irreducible highest weight representation with

highest weight

n n n

(£A,AW*'A) = IIAJi»,(*-*'A-2ï* E ÄÖ))'
1=1 1=1 3=1+1

n n

A-^(*,A)=nAew*-^A-2?? e h(3))) (")
i=l .7=1+1

and highest weight vector ®=1Vh w >t
E <8>"=iVa,, where the highest weight functions

A+h w j(z, X),A~h w >%(z, X) are described m Proposition 4.17.

Proof ([25]):
The statement is proven analogously to the statements of Proposition 4.17, the highest

weight vector being H=1 <^ijAi.
Remark:

The following theorem is a very important result for our purposes, as will be seen in

Proposition 4.44.

Proposition 4.19 (Isomorphism Theorem [25]) Two finite dimensional irreducible

highest weight representations of ET>r](sl2) are isomorphic if their highest weights coincide.

Proof:

The proof is given in [25].

4.3 The eigenvalue problem corresponding to the SOS eight-vertex
model

Synopsis:
In this chapter, the emphasis is on introducing two notions: the representation corre-

ponding to the eight-vertex SOS model (Definition 4.21) and the family of commuting
transfer matrices of the eight-vertex SOS model with antiperiodic boundary conditions

(Definition 4.26).
First, we define how to obtain the Boltzmann weights corresponding to the ones of the

eight-vertex SOS model [10] by means of the elliptic R-matrix (Definition 4.21 a)). Then

we describe the representation that comes along with the SOS model (Definition 4.21

b)), consisting of a tensor product of 77 shifted fundamental representations of ETjT)(sl2).
After this, we want to define the family of commuting transfer matrices of the SOS

model with antiperiodic boundary conditions. To ensure commutativity we have to

choose Ao = Vzi,=ihi- Note that we can properly define this notion only if 77 is odd

due to possible poles of the transfer matrix if Ao = 0 which can only occur if 77 is even.

We furthermore want the transfer matrix to act on a space of antiperiodic paths Pn.

So, we first have to define the notion of an antiperiodic path (Definition 4.25 a)), show

that the antiperiodic paths thus defined form a basis of a space of antiperiodic paths

isomorphic to the space which an SOS transfer matrix naturally acts on and describe

the isomorphism (Definition 4.25 b) and c)). We then show that a transfer matrix of the

SOS model with antiperiodic boundary conditions is indeed well-defined on the space Pn
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(Proposition 4.26).
In Definition 4.30, we explicitly pose the common eigenvalue problem of the family of

commuting transfer matrices of the SOS model with antiperiodic boundary conditions.

The last proposition of the section shows that the family of SOS transfer matrices is

indeed commutative.

Note that in what concerns the notions heuristically defined in the first sectio of this

section, they coincide with what we define by representation theory in this chapter.

4.3.1 The SOS model in terms of the representation theory of Er^(sl2)

Remark:

First, we want to redefine the basic notions describing the SOS model, i.e. its Boltzmann

weights and transfer matrix.

In the first subsection, we show how the Boltzmann weights of the model emerge out of

the elliptic R-matrix and how to thus attach a representation of ET^(sl2) to the SOS

model. (In a second subsection, we show that the attached representation is a highest

weight representation and compute its highest weight.)
Note that we are treating here the simplest case of the SOS model, i.e. the case built

out of fundamental representations of ETi7](sl2) only. It is called of order n if it involves

a tensor product of fundamental representations of ET^(sl2), i.e. (V®n,R^(z,X —

2n YH=2 h^)) ® <8>-R(0n)(z, A)). The fundamental representations involve 77 weights ht,
where h% E {—1,1}.
As we will see by Proposition 4.31 we also have to discretize the value of the parameter

A to be a function of the weights, Ao = n Y^=i h-i-

If we extended the models to include tensor products of higher (finite) dimensional rep¬

resentations of ET}T](sl2) we would obtain the SOS models of [11], as stated in [27].

Definition 4.20 (Weights) We can attach n weights h% G {—1,1} for i = 1,... ,77 to

a given element of the tensor product basis of V®n, e\o~\\ ®... ® e[an], where ay E {—1,1}
for i = 1,... ,77 by setting

K e[a{\ ® ... ® e[at] ® ... ® e[an] = o% e[o\] ® ... ® e[ay] ® ... ® e[an]

fori = l,... ,77.

Now, we can define the basic notions of the SOS model.

Definition 4.21 (Boltzmann Weights, L-operator)

a) The Boltzmann weights We(c, b, a, d\z) of the SOS model are defined by the following

formula

Re(z,X = —2nd) e[c — d] ® e[b — c] =

Y,aWe(c,b,a,d\z)e[b - a] ® e[a - d], (58)

where the terms c — d,b — c,b — a,a
— d E {—1,1} and z E C. The expressions

e[a — b) ® e[c — d] are to be considered as the standard tensor product basis ofV®V.
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Written down explicitly the Boltzmann weights read

We(d + l,d + 2,d + l, d\z) = 9(z + 2n)

B(z- 2nd)9(2n)
We(d+l,d,d + l,d\z) = -

We(d + l,d,d-l,d\z) =

We(d-l,d,d + l,d\z) =

We(d-l,d,d-l,d\z) =

9 (2nd)

9(z)9(2n(d - 1))

9(2nd)

9(z)6(2n(d + l))
9 (2nd)

9(2nd + z)9(2n)
9 (2nd)

We(d - 1, d - 2, d - 1, d\z) = 9(z + 2n).

The Boltzmann weights thus defined coincide with the ones obtained by Date et

al. [19] for the eight-vertex SOS-model as we defined it in Definition J^.l.

b) The L-operator of the SOS model is given by

n

LSos,e(z,zi,... ,zn,X) = R^V (z - zi, X - 2n^2hy)
1=2

n

Lf2) (z ~z2,X-2nYJK)... R^n) (z - zn, A), (59)
i=3

where (zu ...

, zn) E Cn - diag. LSOs,e(z, zl,... , zn, A) G End (V®("+1)).

Remark:

The Boltzmann weights defined above translate the dynamical Yang-Baxter-relation of

Proposition 4.7 into the star-triangle-relation mentioned in the (general) introduction, as

was shown in [27]. For what follows the definition of the operator Lgos,e(z, z\,... ,zn,X)
will be useful. To understand this definition, we must define the following space of

functions:

Definition 4.22 (M(C,V®n))

M(C, Vm) = {/ : C ->• Vm, X -> /(A) | / meromorphic in A}.

Definition 4.23 (LSos,e(z,zi,... ,zn,X))

f ( ^ _
( dsOS,e(z,zlT-- ,zn,X) b_soS,e(z,Zi,... , Zn, X)

SOsA ' 1"-- '^'Aj-

^ csosAz^r,... ,zn,X) dSosAz,zx,... ,zn,X)

(60)

0
= LSOS,e(z, Zi, . . .

, Zn, X) ( Ao T+2v

The so-defined operator is a matrix on V with entries in End (M(C, V®")).
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4.3.2 The representation attached to the SOS model as a highest-weight
representation

Remark:

Here, we show that the representation which we attached to the SOS model in Definition

4.21 b) is a highest weight representation in the sense of Definition 4.16

Proposition 4.24 Let (z±,... ,zn) G Cn — diag. Then the representation of ET^(sl2)
attached to the SOS model, namely (V®n,Lsos,e(z,zi,... ,zn,X) — Re (z — Z\,X —

2r\ X^r=2 h%)Re iz ~~ z2i A — 2t7 ^r=3 hi)... RÏ (z — zn, A)), is a finite-dimensional irre¬

ducible highest weight representation with highest weight

L a+os(z, a)=n *(* - zr+2"), ^sos^ a)=n ßtz - *) 9{X0~(x)) (6i)

Proof:

This proposition is a corollary of Proposition 4.18 with A, G N set to A, = 1 for i =

1,... ,77.

4.3.3 The family of transfer matrices of the SOS model with antiperiodic

boundary conditions

We proceed by showing how the antiperiodic boundary conditions appear. Then, we turn

to the definition of an antiperiodic path and show that the space of antiperiodic paths is

isomorphic to V®n. Then, we define the family of antiperiodic SOS transfer matrices by

representation theory and show that it is an endomorphism of the path space. Finally,
we pose the common eigenvalue problem.

By the next proposition the definition of the Boltzmann weights will be confirmed if we

compare the transfer matrix of the SOS model with antiperiodic boundary conditions as

given here with the one given in Definition 4.2.

In order to make sense of the definition of the SOS transfer matrix, we first need to define

two special bases of the complex vector space V®n.

Lemma 4.25 (Pn,ICA)

a) Let us consider n+1 numbers a,\,... ,an+i G § subject to the conditions \at—at+i\ =

1, i = 1,... n. We define the vector

|ai,... , an+1 >= e[ai - a2] ® .. ® e[an - an+i]6x,2r,an+1

For every fixed a± G |, this defines a basis of V®n.

b) Let us consider n+1 numbers a\,... , an+i G f subject to the conditions \ay—at+i\ =

1, i = 1,... and an+i = —a\. If we consider the vectors

K, • • •

, an+i >= e[ai - a2] ® ® e[an + ai}5\ _27?ai

for all possible a\,... ,an,an+i, we obtain a basis of V®n, called the basis of an¬

tiperiodic paths Pn.
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c) To each element of the standard tensor product basis {e[a\\ ® ... ® e[an]\ay E

{—1,1} for all i = 1,... ,n} ofV®n, we can attach an antiperiodic path \a\,... ,an >

by means of the isomorphism Iqa ' V®n —y Pn, Ica^[o~i]®- -®e[cn] = lai> • • •
j On+i =

1
i,—l n

—a± >, where a% = -(— \_,°~3 + /_, aj) for all i = 1,... ,77 + 1.

7=1 3=%

Remark:

It is helpful to consider the vector \a\,... , an+i > as a path in f as is shown below for

(even) 77 = 8 and (odd) n = 7.

n=7

-3/2 --

-5/2

-7/2 --

Here, the axis labelled with an a indicates possible values of the at,i = 1,... ,
77 + 1.

In case of n being even, a± and an+i differ by an even integer or zero. If n is odd, the a\

and an+i differ by an odd integer.
Proof:

First let us remark that V®n is of dimension 2n since V is two-dimensional. We may

attach to it a basis e[al] ® ... ® e[an], where a1 E {—1,1}, i = 1,... ,
77.

a) Let us now start with a fixed ai £ |. By the condition |ai — 02! = 1, we get

two possible values of 02 : a2 = ai ± 1. From there, we get by |o2 — 03) = 1

four possible values of 03. Iterating this procedure another 77 — 1 times, we see

that we have 2n possible different combinations of (ai,... ,an+i) subject to the

conditions \at — al+\\ = 1, i = 1,.... Due to these conditions, we can attach to

each combination a vector e[a{[ ®...® e[an], where o~% E {—1,1}, i = 1,... ,
n. This

construnction works for every a\ E §.

b) Let us again start with some fixed a\ G | and construct the 2n vectors |ai,... , an+i >

as shown in the first part of the lemma. To implement the additional condi¬

tion a,\ = —an+i, we have to readjust the value of a\ to à,\ = a±

a,y — a,,
ai+a„

ai+a2n+1 and

— ,i = 2,... ,77 + 1. This then implies that än+i = —à\. We can do

this for all of the 2n vectors of fixed 01, hence we get a basis of V®71. Especially, if

a\ = an+\, we set a\ = 0 = ±an+i. Note that to the vector |äi,... , ön+i = —öi >

we still relate the same vector e^1] ® ... e[o~n] as to the vector |ai,... , an+i >,

since a% — al+i =d% — a%+\,i = 1,... ,77.
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c) The construction of the isomorphism is a corollary of the construction of the basis

of antiperiodic paths Pn. Let us check that oi = —an±i: by definition of the a%,

al = \ E"=l °3 and an+l = ~\ Ej=l a3-

Definition 4.26 (Antiperiodic SOS transfer matrix) The transfer matrix of the

SOS model with antiperiodic boundary conditions is given by

Tsos,e(ziz^--- >znAo) = EMe{-l,l} <r(0) K^Lsos,e(z, 21, • ,zn,Xo)

= bsos,e{z,zi,--- ,zn,Xo) + csos,e(z,zi,... ,zn,XQ), (62)

where X E C is fixed to Ao = n YH=i ^ and the matrix K is given by

0 1
K"

1 0

Proposition 4.27 The previous definition of Tsos,e(z,z\,... ,zn) defines the row-to-

row transfer matrix of the eight-vertex SOS model (cf. the figure in the introduction

1.1.2) as we defined it in Definition 4-2, where \a\,... , an, an+i =
—«l > corresponds to

the height configuration of a row with antiperiodic boundary conditions,

Tsos,e(z,zi,... ,zn,A0)|ai,... ,-a\ >=

E ( IIwe(ai-t-i,al,6l,&l+i|z) ||6i,... ,&n-t-i = ~h > (63)
&i,— A>+i=-6i Vi=i /

Thus, Tsos,e(z,zi,... ,zn,Xo) G End (Pn). This coincides with Definition 4-2.

Proof:

Let us first note that A0 = n J2=i hi = YÜ=iai ~ ai+i)" = (al ~ an+i)?? = -277an+i by

the definition of the weights ht. This agrees with the fixing of A for an antiperiodic path:

à\,-2r]an+i
Furthermore, e*[b — a] is defined as the dual basis element to e[b — a]: e*[b — a]e[b — a] = 1.

With the above conventions, the action of the antiperiodic SOS transfer matrix on a path

is given by

Tsos,e(z,zi,... ,zn)\ai,... ,an+i = -ay >=

n

YJtrV^Rfl\z-zl,X-2nYJh^)...
jj, i=2

R^ (z-zn, X)T-2vßö-2Van+1,\e[ai - o2] ® • ® e[an - an+1] =

£ e^*[p}K^R^(z -

^i, A - 2r?f>«)... R^{z - zn, X)
fi i=2

e^[p] ® e[ai - a2] ® .. ® e[an - an+1}5-2rian+i+2nß,x =

£ e(0)*K+1 - bn+l]K^R^(z -zuX-2r,J2 h{%)) • • • R{0n)(z - zn, X)
bn+l 1=2

e(0) [an+l - bn+i\ ® e[ai - a2] ® ... ® e[an - an+i}5_2van+1+2V(an+1-bn+i)A
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J2 e(°>[an+1 - bn+1)K^R^(z -

21, A - 27?5>«)
bn+i,bn 1=2

We(an+i,an,bn,bn+i\z - zn)e^[an - bn] ® e[ai - a2] ® ... ® e[bn - bn+i] =
n

= ^2 (II WeK+i, ai, &j, 6î+i[2 - 2î))e(0)*[an+i - 6n+i]iY(0)5A _2j?6„+1

bi,— ,bn+i 2=1

e(°)[ai - &i] ® e[6i - 62] ® ... e[6„ - 6n+i] =
n

E (II we(ai+i,ay, by, by+i\z - zl))öx,-2Vbn+1
bi,.--,bn+i 1=1

e(0)*[an+i - 6n+i]e(0)[6i - ax] ® e[bx -b2]®... e[bn - bn+1] =
n

6i,...,6n+i i=l

if 6n_|_i = —6n is obeyed.

Corollary 4.28 Since Tsos,e(z,zi,... ,zn,Xo) E End (Pn), by means of the isomor¬

phism Ica ' V®n —y Pn, we can define

Tsos,e(z> zu... ,zn, A0) = IcATsos,e(z, zx,... , zn, X0)ICA G End (V®n).

everywhere
Remark:

Let us now proceed to the common eigenvalue problem we want to solve. It is of course

completely similar to the one obtained in Definition 4.3.

Definition 4.29 Let esos(z) be an elliptic polynomial, an element of ®n(x) with some

character x G T*, as defined in the Appendix, and ^2a a a0lj...)an

|ai,... ,an, an+\ — —a\ >E Pn, where every aai ,.an
E C. We are looking for a pair

(esos(z), ^2 cta1,...,an\a,1,...,an,an+i = -a1>)
ai,... ,a„

obeying

Tsos,e(z,zi,... ,zn,X0) ^ aair..)an|ai,... ,an+i =-ai > (64)
ai,... ,an

= csos(z) ^2 aai,...,an\ai,... ,an+i = -ai >,

ai,. . ,an

where Y^ai,...,an a<n, -,an\aU , «n+l = -ai >G Pn-

Remark:

The periodic case of the SOS model may be treated by algebraic Bethe ansatz as shown

by Felder and Varchenko in [27].
To ensure that the solutions thus obtained are indeed common solutions of a commuting
family of transfer matrices we need the following lemmas.
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Lemma 4.30 Let (W,Le(z,X)) be a representation or functional representation of

ETiV(sl2), with

r iy x}_( ae(z,X) be(z,X) \ ( T^ 0 \

Le^X>-{ce(z,X) de(z,X) ){ 0 T^i )•

Let X E C be fixed to Ao = nh. Then, the family of transfer matrices defined by

fLe (z, A0) = be(z, Ao) + ce(z, A0) = tr{0)K^Le(z, A0) for z E C (65)

is commutative. K is given by K =

Proof:

This is shown by using the elliptic RLL relations.

We have to check that

[fLe (z, A0), fLe (w, A0)] = 0 for all z,wEC.

Proposition 4.31 (Commutativity of the SOS transfer matrices) The transfer

matrices of the antiperiodic SOS model commute, i.e.

[Tsos,e{z,zi,... ,zn,X0),fsos,e{w,zi,... ,zn,X0)] = 0 (66)

for all z, w G C,

«/Ao = YÜ=iVhf

4.4 Generalizing Sklyanin's results: The auxiliary representation

Synopsis:
In this section, we introduce the so-called auxiliary representation of ETyV(sl2). It is our

main tool in order to achieve the solution of the eigenvalue problem of the SOS transfer

matrix with antiperiodic boundary conditions. The origin of this construction will be

described in the remark below. First, we give the definition of the auxiliary representa¬

tion and show that it is indeed a functional representation of the elliptic quantum group.

Then, we define the corresponding family of transfer matrices, denoted the auxiliary
transfer matrices with antiperiodic boundary conditions or just the antiperiodic auxil¬

iary transfer matrices. At last, we construct an isomorphism Ipc that allows to write

the auxiliary transfer matrices on "non-functional spaces" and show that the family of

transfer matrices is commutative. Thus, it makes sense to treat the common eigenvalue

problem of the auxiliary transfer matrices, also denoted the auxiliary eigenvalue problem.
In the next section, we will show that the auxiliary representation is isomorphic to the

representation attached to the SOS model (cf. Theorem 4.21 b)). This was already sug¬

gested by Proposition 4.19. Also, the family of SOS transfer matrices with antiperiodic

boundary conditions will be connected by an isomorphism to the family of antiperiodic

auxiliary transfer matrices (cf. Corollary 4.51). This will enable us to perform the sep¬

aration of variables. By the construction of the two isomorphisms, the following section

will in a sense complete the one which we just began.
Remark:

In [46, 44] Sklyanin achieved the solution of the XXX model as described in [20, 21, 37]

0 1

1 0
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with various, including periodic and antiperiodic, boundary conditions. To achieve this,
the main tool he uses is the auxiliary representation of the Yangian 3^(s^2) (cf. Appendix

1). The auxiliary representation he uses is shown to be isomorphic to the representation
of y(sl2) attached to the XXX model and also the corresponding transfer matrices can

be connected by the isomorphism. Thus, the common eigenvalue problem of the XXX

transfer matrices, i.e. the solution of the XXX model, is connected to solving the com¬

mon eigenvalue problem of the family of auxiliary transfer matrices. At this point he can

use the main advantage of the auxiliary representation: its transfer matrix evaluated at

n (ausgezeichnet) points yields a system of n difference equations, the separated equa¬

tions, which are one-dimensional problems. They yield Bethe ansatz type equations in

the course of their solution. By a suitable interpolation, we can out of their solution find

the common eigenvalue of the auxiliary transfer matrices and by the knowledge of the

isomorphism also of the original eigenvalue problem of the XXX transfer matrices.

Here, we generalize Sklyanin's ideas to the case of UT:7?(sZ2). The succession of the steps

will be the following: introduction of the auxiliary representation and the commuting

family of auxiliary transfer matrices in this section, construction of the isomorphism re¬

lating the original SOS and the auxiliary transfer matrix in section 4.5, describing the

original and the auxiliary common eigenvalue problem as well as the system of separated

equations emerging from the auxiliary eigenvalue problem in section 4.6.

To be able to define the auxiliary representation, which we describe here as the operator

algebra of a functional representation of LVi7?(sZ2), we first have to define the spaces of

functions on which this representation will act.

4.4.1 Introducing the auxiliary representation

Definition 4.32 (Fn° ,T^,T^ ,TmFD) Let (zi,... ,zn) E (ET)n - diag and At G N

for % = !,... ,?7.

Let Si = {—Zy - Ayn, —Zy - Ay-q + 2n,... , —Zy + A^} for i = 1,... , n, where Si n Si — 0

for i t^ j and all i,j = 1,... ,
n.

Let D = {(xi,... ,xn)\xi E Sy for all i = 1,... , n}. With these definitions understood,
we can define the following spaces of functions.

a) Tn° = {f(xi,... ,xn,X): Cn+1 -> C | / G T*, X is restricted to A0 = Yh=i xi + <*},

b) Tn = {f(xi,... ,xn) : Cn —y C | / holomorphic in Xy for i = 1,... ,77},

c) T^ =Tj'{/ G T\f(xi,... ,xn) =0 for all (xx,... ,xn) E D},

d) J=^ = Tn°/{f E Tn° I f(xu ...,xn)=0for all (Xl,...,xn)E D},

e) TD = Tn I {/ G Fn I f(xi,... , xn) = 0 for all (xx,... , xn) G D}.

Remark:

The following operator algebra, denoted the operator algebra of the auxiliary representa¬

tion, will be our main tool in solving the SOS 8-vertex model by separation of variables.

Proposition 4.33 Let (z\,... ,zn) E Cn— diag. Let Ai G N for all i = 1,... ,n. Let Sy

for i = 1,... ,n be defined as above and Sy fl S3 = 0 for all j ^ i for i,j = l,...,n. Let
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(xi,... ,xn) ED.

Let

Av(z) = H9(z + Zl + A,tj) and A+C(z) = f[d(z + zt- A,n). (67)
i=i i=i

Let the difference operators T^ E End(Fp),i = 1,... , n, and T" G End(Fp) be given by

A±e(z)(T^f)(X,Xl,...,xn) = A±e(z)f(X,Xl,...,Xy±2n,...,xn), (68)

{Txf){\xi,... ,xn) = f(X + a,xx,... ,Xy,... ,xn), (69)

where a G C .

n

Let s = /J(—^i — Zy).
i=i

With the above conventions, the operators

0*aux ,e{Z, Z\ ,
. . . ,2njA,Ai,... jAtiJ — 0,aUx,e\Z, Z\ ,

. . . , 2^^, A, Ai, . . . ,A.n)l^
2V

= n^+^)e(A+E-i(;frZi+At??)TA^, (r0)

Oa-urc^t2! ^1) • • 5-^tï.) A, Ai j
. . . ,An) = Oav,x,e (,2, Zl, . . . , 2n , A, Ai, . . . jA^Ji^

"

g(A-(z + sO) A gÇs + a;,)

X A+e(xl)T+2"T+2^, (71)

Cauxte[zi zl> • •

-, zrti A, Ai,. . .

j An) = Ca-ua^e^, £i,. . . j #nj A, Ai, . . , , A^ji^

y, 6(+\ + z + xt + 2s) A g(z + gj)

h, 0(A) J-1-
,
0(^-2;,)

X

x A-e(zt)T-2"T-2", (72)

ße*aux,e(z,^i,--- ,zn,A,Ai,... ,An) = Detaux>e(z, z\,... ,z„,Ai,... ,A„)
n

= JJ 9{z - z, + AzV)6(z -zz- AlV - 2jj) . (73)
2=1

define an operator algebra obeying the elliptic RLL-relations.

Note that the operator

0^auxte\Z, Z\, . . . ,Zn, A, A.\, • •
, AnJ — o,aux>e\Z, Z\, . . .

, Zn, À, Ai, .. . , AnJx^
is defined implicitly by Proposition 4-15 and that all appearing operators are elements of

End (F^).

Proof:

Let us check the second of the RLL-relations as an example. It reads:

9(z — w + 2n)ae(z, X)be(z, A — 2t?) = a(z — w, X)be(w, X)ae(z, X + 2n)

+ß(z - w, -X)ae(w, X)be(z, X-2n).

The remaining relations can be checked by similar means, where the relation

de(z, X)de(w, X + 2n) = de(w, X)de(z, X + 2n) can be deduced by the preceding relations.

Concerning the relation we want to prove, we first can argue
- since bn>e(z, X) consists of

terms (bn>e(z,X))y = ^f^ Tî^i £^A-e(xî)T+2î?T+2" acting as a difference
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operator in the variable x% only - that it suffices to check the following 77 sums:

0 J(z + x3)9(w + x3
- X + 2rj)

_

9(w - X + x3)9(z + x3 + 2rj)
ä{z_w + Zr])

e{x)9{x_2r])
-

ë(Â)
X

9(z-w) 9(2n)9(z - w + X) 9(w + x3)9(z + x3-X + 2n)
X

9(X)
+

0(A) 0(A)0(A - 2t?)

for all j = 1,... ,
n. Note that the missing factors of the operators anfi(z, X) and bn>e(z, X)

are left invariant by the action of the difference operators.

We can formally write the sum as fi(z,X) = /2(^, A) + fs(z, A). Let us first check the

transformation properties of each of the summands fy(z, A), i = 1,2,3, under A —y X + 1

and A —y X + r. If the first transformation is performed, we obtain fz(z, A +1) = —f%(z, X)
for « = 1,2, 3. The second transformation yields ft(z, X + r) = e-T+2m(\+w+x,) ftfa Aj
for 7 = 1,2,3.

The residues of the sum can be taken at values A = 0 and A = 2n. The first calclation

reduces to

„,
9(2n)9(z-w)9(w + x1)9(z + x1 + 2n)

9(z - w)9(w + x3)9(z + x3+ 277) -
-A-U-± >

8(2n)
= °'

whereas the second one yields

6(z - w + 2n)9(z + x3)9(w + x3)
_

9(z - w + 2n)9(w + x3)9(z + x3)

9(2n)
~

0(2?7)2
"

Both equations are obviously true.

The only zero at A = w + x3 + 2n leads to

0 = -9(z - W)9(2n)9(z + x0+ 2n) +
^)9(z + x3+2n)9(W +x3)9(z - W)

9(w + x3)

which is also a true statement. By the coincidence of transformation behaviour, residues

and zeroes of the left and right hand side of the sum, the equality of both sides is proven.

This proves the correctness of the indicated RLL relation.

Note that to show that every operator oauxfi(z,z\,... ,zn,X,A\,... ,A„) for o = a,b,c,
Det is an element of Fp, it suffices to show that by each operator a function belonging
to Fq = {/ G T* \f(x\,... , xn) = 0 for all (x\,... , xn) E D} is mapped onto another

function FöauXie G ^0A.
For the operators dauxfi(z, z\,... , zn, A, Ai,... , An) and the quantum determinant this is

easily shown since the action of those operators does not change the value of (x\,... , xn) G

D once it is fixed.

Let us show that also the operators baUx,e(z, z\,... ,zn,X, A\,... , An) and

caux,e(z, z\,... ,zn,X,A1,... , An) define functions F-bauxe (xx,... ,xn,X),

Fcaux,e(xi, ,xn,X) which are elements of Fq. To this end, let f(x\,... ,xn,X)
E Fq be a function vanishing at every (x\,... , xn) G D, i.e. x% E {—z% — Ayr), —z% — Ayin +

277,... ,
—Zy + Atn} for every 7 = 1,... ,77. Then consider the function

Fbaux.ixi> î^A) = baux>e(z,zi,... ,zn,X,A1,... ,An)f(xi,... ,xn,X)

9(X-(z
+

Xy)) ^j 9(z + x3)
_

V^ V{*~ \z -TXy)) yr
1=1

0W Ä^^.)
x

XK,e(x^2vT^2vf(xi, ...,Xy + 2n,xn,X + 27?)) .
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The only possible cases to get a function .Fg (xi,... , a;n, A) that does not vanish at a

point in D is when at least one of the x% has the value x% = —z% + Aj7?, as in this case

Fi (x\,... , xn, X) involves f(x\,... , —zl + Ayfj + 2n,... , xn), hence it has to be eval¬

uated outside D, where we do not know about its value. But in this case, xt — —zl + Aln,
the coefficient A~e(xî) = 9(xz + zl — A%n) Y\^=i3^z9(xl + z3

— A3n) vanishes, thus mak¬

ing sure that F~bau^e (xu... , xn, X) vanishes. Hence, Flaux^ (xu ...

, xn, X) E F$, since it

vanishes at every (xi,... ,xn) ED.
The same argument can be applied to the function F5auxe(xi,... ,xn,X), where the criti¬

cal cases occur when at least one of the x% takes the value xz = —z% — Ayn which is exactly
the value at which the coefficient A+e(xz) vanishes.

Corollary 4.34 For n = 1, the operators äauxfi(z,zi,X,A),baUx,e(z,zi,X,A),
Caux,e(z,z\,X,A),daux,e(z,z\,X,A) E End(Fp) as entries of an L-operator are equal to

the universal evaluation module VAR(zi).

Proof:

If for n = 1 we replace z + n by z, the operators of Proposition 4.12 reduce to

_

9(z -zi+ si)0(A -xi+ Air?) rr_2rj
aaux,e\Z, Zl, A) —

P(\\ A '

t ,
„

,x 9(X-z + zx- hi)9(hx + Ait?) ai+2w^+2^
uaux,e\Z,Zi, A) —

±Xl J.^ ,

- /

„ u
9(X + z-zx- hi)9(-hi + Ait?)^_2t?^_2??

caux,e\Z,Zl, A)
—

lXl 1^ ,

7 ,

^
0(z -zi- /ti)0(A -h1- AX7?) ^+2V

o,aux,e\Z, Z\, A)
—

ûl\\ A '

f(—)v(ß) = f(~(xi + zi))v(p) = f(p)v(p), where v(p) E Tr.

If we keep in mind the definition of h\ given by the last equation and compare with the

defintion of the universal evalution module, we get the desired result up to a normalizing
factor.

4.4.2 The auxiliary transfer matrix

Remark:

Let us now define the auxiliary transfer matrix and the isomorphism enabling us to

compare it to the transfer matrix of the antiperiodic SOS model.

Definition 4.35 (Auxiliary Transfer Matrix) Let

(Fjj,LauX}f,(z, z\,... , zn, X, Ai,... , An))

be the representation of Proposition 4-12.
Let X E C be fixed to Ao = Y^n=i(^ + zî)-
Then the auxiliary transfer matrix is given by

J-aux,e\Z, Z\, . . .

, Zn, aq, Ai, . . .

, AnJ =

tr^K^Laux>e(z,zi,... ,zn,X0,Ai,... ,An)
— \Oaux,e ~r Caux^e)yZ, Zl, . . .

, Zn, Aq, Ai, . . .
, AnJ.
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Remark:

The explicit form of the transfer matrix as an operator on FD° is given by

-Laux,e[Z, Zi, . . .
, Zn, Aq) =

t ^^r0- fÔ'(* - * + M)T-2^ + f[e(z-zi- A^T^T^) .

i=i
^ °> \i=i i=i J

The auxiliary representation we will need to treat the eigenvalue problem of the antiperi¬
odic SOS-model is the one with Ai =

...
= An = 1. Hence D = {(xi,... ,xn) \x% E

{—Zy — 7?
— z% + 7?} for all i = 1,... , 77}.

Let us denote the auxiliary representation in this case

("/£), I>aux,e\Zi Z\, . . . , Zn, A, 1, . . .

, 1JJ = [J-p, FauXje\Z, Z\, . . .

, Zn, X)j.
In this case we can establish the following proposition.

Proposition 4.36 (Ifc) Let Ai = ...

= An = 1.

a) For every a G C a basis of FD° is given by the 2n equivalence classes of func¬
tions [fai...an] = [Il?=i £ct,-z%+<tiV] where a% E {-1,1} for all i = 1,... ,n. Here,

by [niLi^a;,,-2l+CTt7j] we mean an equivalence class which has a value 1 at (—zi +

ain,... , —zn + crn7?) and vanishes everywhere else on D. Note that since every¬

where outside D it has to obey no restrictions, a representatn can be chosen as a

meromorphic function of its variables.

Aa ^

b) The function Ipc ' ^d -> V ,lFc([fin. .<rn]) = e[<7i] ® ... ® e[an] defines an

isomorphism between T^ and V®n for every a E C

c) The function IFc Tb -»• M(C,y®n),IFC([./V..cxJ) = e[ax] ®...® e[an] defines
an isomorphism between Fp and M(C, V®n).

Proof:

a) A specific element [u(xi,... ,xn)] E FD° is characterized by its values on the 2n

different points in D, since Aq can be calculated out of these and every equivalence
class of functions only depends on the values on D. It thus can be written as

[u(xi,... ,xn,X$)] =Ea1e{-i,i},I=i'"(-^i+ criT7'--- ,-zn+o-nT],X%)[flTl...lTn], where

[/0-1...0-J is an equivalence class of functions characterized by the property that is

one at exactly one point of D, namely at (—z\ + a\n,... — zn + ann) and zero

at the other points of D. It can be written [/^...o-J = [111=1 $c,,-zt+<7,7>] where

at E {—1,1} for all i = 1,... ,77.

b) This is so since every element of V®n can be written as

Er=i,<r,e{-i,i} «*!,...,<r„e[(Ti] ® • • ® e[o-n]
xa

and every element in FD° as

Lj=ll(r,6{-l,l} u<ri,... ,cr„ (Xq )[fcr1...an\-

c) This is so since every element of M(C, V®n) can be written as

E|Lilffle{-i,i} u<n,- ,°n (A)e[cri] ® ... ® e[an]
and every element in Fp as

Ei=l,0-1e{-l,l}'"'0-l,-.o"n(A)ucri...o-n]-
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Remark:

a) By means of the above isomorphism Ifc, we can define

Taux,e\zi Zl, , Zn, Ao) = lFcTaux,e(z, Zi, . . .

, Zn, Xq)Ifc.

It is an element of End (V®n).

b) Let I2 be the identity matrix on V.

By means of the above isomorphism Ifc, we can define

Laux,e(z> ZU , Zn, A) = (I2 ® lFc)Laux,e(z, ZU . . . ,Zn, A)(I2 ® 1^).

It is a matrix on V with entries in End (M(C, F®n)).

Corollary 4.37 (M(C, V),Re(z - zu A)) = (M(C,V),L^ux>e(z,zi,X)).

Proof:

We can use Corollary 4.34 and 4.36 and the fact that both operators act on M(C, V).

Proposition 4.38 (Commutativity of the auxiliary transfer matrices) The aux¬

iliary transfer matrices commmute, i.e.

[Taux,e(z,Zi,. . .

, Zn, A0), TauXje(z, Z\, . . . ,Zn,Xo)]=0 (74)

for all z,w E C,

«/Ao = YH=ixi + Zi).

Proof:

This is proven by using Lemma 4.30.

Definition 4.39 (Auxiliary eigenvalue problem) A solution to the auxiliary eigen¬
value problem

Taux,e(z,zi,... ,zn,X0)u(xi,... ,xn) = e(z)u(xi,... ,xn),

is by definition a pair (e(z),u(x\,. . ,xn)) where u(xi,... ,xn) is a function on the lat¬

tice D, and e(z) is an elliptic polynomial, as defined in Appendix 2.

Solving the auxiliary eigenvalue problem is considerably simpler than solving the actual

eigenvalue problem of the SOS model, since the auxiliary problem can be split into solving
n linear difference equations, each of them involving the variable Xy - which appeared in

the definition of the auxiliary representation - for i = 1,... ,77 only.

4.4.3 Establishing the isomorphism between the SOS and the auxiliary rep¬

resentation abstractly

Remark:

Keeping in mind Proposition 4.19 which we stated in the section on highest weight
representations we are now able to state the isomorphism of the representation attached

to the SOS model and the auxiliary representation abstractly. Note that an explicit
construction will be given in the next section.
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Lemma 4.40 Let (FD,LauXje(z,Zi,... ,zn,Ai,... ,A„)) be the auxiliary representation

defined in Proposition 4-12 with Aï G N for all i = 1,... ,
n.

Then (FD,LaUx,e(z,zi,... ,zn,Ax,... ,An)) is isomorphic to ®H=iWAl,e(zy).

Proof:

We have to compare the highest weights of both representations, if for the auxiliary rep¬

resentation z is shifted to z + n.

If we choose the highest weight vector of the auxiliary representation to be the following,

inr=l ^,+A.n-zJ 6 FD, where by [Ui=i 5Xi&aiV-z,] we denote the equivalence class of

functions in Fd which is one at (—z\ + Air?,... ,

—zn + An7?) and zero everywhere else on

D, we obtain the same triple as the one of ®HiWAt,e(zy)
Remark:

The following proposition is important as it abstractly establishes the isomorphism be¬

tween the two representations we will need for the separation of variables. However, we

are not going to need it in the sequel, since the isomorphism between the two represen¬

tations will be constructed explicitly.

Proposition 4.41 If we set A% = 1 for i = 1,... ,n in the auxiliary representation, the

representation attached to the SOS model in Proposition 4- , namely (y®n, ®==lRe (z —

Zy, X — 2r)Yii=l_|_i hS°')), and the corresponding auxiliary representation, which was called

(FD,Lauxfi(z,Zi,... ,zn,X)) before, are isomorphic.

Proof:

The proposition is a corollary of Lemma 4.40.

4.5 The isomorphism establishing separation of variables for the SOS

model

Synopsis:
In this section, we develop the isomorphism between the auxiliary representation with

Aï = 1 for i = 1,... ,n and the representation of the SOS model. This isomorphism was

already motivated by our discussion of highest weight representations of ETj11(sl2) in the

first section of this chapter.
Since the isomorphism relies on an inductive procedure, we first show how to relate an

auxiliary representation of 77 weights to a (shifted) tensor product of a fundamental rep¬

resentation and an auxiliary representation of n — 1 weights (Proposition 4.43). We then

show how to relate the representation of the SOS model and the auxiliary representa¬
tion with Aj = 1 for i = 1,... ,?7 by using the isomorphism shown in Proposition 4.43

(Theorem 4.44). Then we show that we can use the isomorphism shown in Theorem 4.44

to relate the family of transfer matrices of the SOS model with antiperiodic boundary
conditions and the family of auxiliary transfer matrices. This is a nontrivial proof since,
even if the isomorphism of Theorem 4.44 is valid for every A G C, it is not evident that

the restriction to Ao = t? YH=i hi is left invariant by it. This is shown by the lemmas

preceding Corollary 4.51.

Remark:
In the case of the elliptic Gaudin magnet we were able to construct an isomorphism
between the old weights of the Verma module of the Lie algebra sZ2 and the addi¬

tional parameter A, {(ti,... , tn, A)| YÜ=i *i 7^ 0}i and some new weights {7/1,... ,yn,C E

Sn(ET) X C*} as shown in Proposition 2.7.

This isomorphism diagonalized the operator fe(z), i.e. the new weights corresponded to

its zeroes.

In analogy to the differential case, we will now construct an isomorphism between the rep¬

resentation associated to the SOS model (M(C, V®n),Lsos,e(z,zi,... ,zn,X)) and the
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auxiliary representation (M(C, V®n),L^ux e(z, ,z\,... ,zn,X)), which was already sug¬

gested by Proposition 4.41.

The isomorphism is constructed in a way as to diagonalize äsos,e(z, z\,... ,zn,X).
Remark (Auxiliary Representation Ai = ...

= An = 1):
By the definitions of Proposition 4.33, let the operator algebra of the auxiliary functional

representation be given by the following operators

ä (zzi z X) -

T\C(z
z

l,lx)e{X + ^=l{~^+V)T-^
Caux,e(Z, Z\, ... ,Zn,A) — \_\_"{z Zy -+- 7? -\- Xy) ——

±x ,

-

_

^ 0(A ~(Z- Zy + Xy+ 7?)) A 9(Z-Z3 +Xj +7?)
bauxAz,zi,...,Zn,x) - 2.

0{x) Jl=io(Xi_Zt + Zj_Xj)
n

H9(xy-Zy + z3-n)T^T+2\
3=1

_

. ..

_

^0(A+(^-^ + ^ + t?)-2E"=i^)
Caux,e{Z, Zi, . . . ,Zn,A) —

/ _,

1=1

n

0(A)

9(z - z3 + x3 + 7?)Il
at

'I
J

\
Il^ ~Z* + Z3+V) TT^T-\

*-}9(xl-Zy +
z3-x3)LL 3 u x xi i

3^i
> >'

3=1
3=1

n

T>etauXje(z,zi,... ,zn,X) = J\_9(z-Zy-2n)9(z-Zy + 2n).
i=i

The operator daUx,e(z, z\,... ,zn,X) is defined implicitly by means of the quantum deter¬

minant. The values of the weights are restricted to D — {(—zi + x\,... ,
—zn + xn)\xy E

{-n,n}, i = l,... ,n}.
Remark:

a) Note that this expression coincides with the one given in Proposition 4.33 with

—Zy + Xy —y Xy, z + 7? —y z, for all i = 1,... ,
n.

b) Note that one can write dauxfi (z, z\,... ,zn, A), bauxfi(z,zi,... ,zn,X),
caUx,e(z' zi,... ,zn,X), dauxfi(z, z\,... ,zn,X) as an L-operator

t i \\ I aaux,e\zizli • • •

, zn, a) baUx^e\Z, Zi, . . .

, Zn, A) \

\ C-aux,e\Z, Zi, . . .

, Zn, A) d,aux^e[Z, Z\, . . .

, Zn, A) J

This operator acts as a matrix on V with entries in M(C, V®n).

c) By Proposition 4.41, the representation (FD,Lauxfi(z,z\,... ,zn,X)) is isomorphic
to the tensor product representation (V®n, ®^=1R^ (z — z%, X — 2t? Y%=t+i hi))-

The next two theorems will show this isomorphism explicitly.

Definition 4.42 (An,e(zi,... ,zn, X),An>e(zi,... ,zn,X))

a) Let 7re = 7re(2;i - 2t?) = 117=2 ^i ~ z% ~ %rj). Let h = £7=2 ^ and /(A, ft) =

9~(\+2ri) '
"^ ^n_1 ^e ^e îdentity matrix on V®(n~l\ Then An,e(zi, , zn, X) E
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End (V®n) C End (M(C,V®n)) is given by

An,e{zi, . . .
, Zn, A) =

( ln-1 0

V a~1(z1 - 2t?, X)c(zi - 2t?, A + 2t?) 7re/(A, ft)a"1(zi - 2t?, A)

where we put oaux<e(z, z2, • •
, zn, X) = o(z, A) for o = a,b, c, d.

b) An,e(zi,... ,zn,X)E End (V®n) C End (M(C, V®71)) is given by

An,e\zlt •

) Zn, X) = A2e [Zn—l, Zn, A) . . .
X

An-i+1 n), >>. ,{l n)( À)

•^y,e \Zn-i+l, ,zn, A) . . .

s\n^e \z\, . . . ,Zn,A),

where we used the notation defined at the beginning of the chapter.

Proposition 4.43 Let ft = Y^=2X^- Then

(I2 ® An\)R{el)(z -Zi,X- 2h)L^x2,e n\z, Z2, . . .

, Zn, A)(I2 ® An,e) =

(75)

(76)

= C(01 n)

where we put An,e(zi,- ,zn,X) = An,,

(z,zi,... ,zn,X),

Remark:

If we write down the above identity for each entry of LauX,e (z,... , A) separately, we

get

A-}M](z-ziA-2h)ä^2x/\z,Z2,
+bW (z-zuX- 2h)^en\z, z2,.-., zn, X))An,e = ä^g/Xz, zi,.

A^Me\z -ZUX- 2h)b^g/\z, Z2,

+bP(z -Zi,X- 2h)d^g/\z, Z2,..., Zn, X))An,e = b^g/\z, Zl, .

AnïetâHz -Zi,X- 2h)a^g/\z,Z2,
+<#> (Z -Zi,X- 2h)c^g/\z, Z2,..., Zn, X))An,e = ^g/\z, ZU .

Klei^ (Z-ZI,X- 2h)b^gx^ (Z, Z2,

+d£Hz-zi,X-2h)d^gx/\z,Z2,...,zn,X))An,e = d^g/\z,zi,.

• ,zn,X)

,zn, A),

,zn,X)

, Zn, a),

• ,zn,X)

, zn, X),

,zn,X)

, Zn, a),

where we put An,e(zi,... ,zn,X) = An,e-
Proof:

Throughout the proof, we will write Ae instead of An,e(zi, ,zn,X), since n stays fixed.

We have to check that the L-operator of the tensor product Re(z — zi,X — 2nh) ®

LaUX e(z, Z2, ,zn,X) = L®(z, zi,... ,zn,X) coincides with the L-operator

(h ® ~Ân,e)L^UXie(z, Zi, . . .

, Zn, A) (I2 ® Ai.e)-1-
For the sake of simplicity we put oaux>e(z,Z2,. . ,zn,X) = o(z, X) for o = a,b,c,d and

/(ft, A) = e^i^+2v)^ Also' if an °Perator °(ZA), e.g a%UXje(z,zi,... ,zn,X), can be

split into a part depending on A and one independent of this parameter, let us denote

the A-independent part by ot(z).
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Let us first check a^(z, zi,... ,zn,X). First note that with the operator a l(z, A), defined

by a~l (z, X)t£ n(a(z, A)) = In-i, the inverse of An>e reads

4-1 =
( I-1 °

n'e V -^e_1/(A, h)~1c(zi -2n,X + 2n) TV~lf(X, h)~la(zi -2n,X + 2n)

We then obtain

^n.e5®!2»2!'--- .Zn,A)Ai,

ln-1 0

-tiTVCA, /i)_1c(zi - 2)?, A + 2t?) wë1f(X, h^aizi - 2??, A + 2rç)

0(z-*! +277)0(2, A) 0 \
2

e(2v)e(z-z1-X+2yh) , -^ 9(z-zi)e(\-2r,h+2y) , ,-. T\ 'X

6(\~2vh) clz.AJ e(\-2Vh) ayz,A) J

ln-1 0

a-1^! -2tj,A)c(zi - 2n, A + 277) 7re/(A,7j)a'-1(zi - 277, A)

ln-1 0

-ir-1f{\, h)-1^! - 277, A + 2t;) ^/(A, /i)"1«^! - 2?), A + 2t?)

9(z -zi+ 2r,)a(z, A) 0 \
„„

ä21(z) nef(X - 27,, h) e(z-zie\{%%h+2v) a(z, X)a^ (zi - 277, A - 2„) J T> ~

(z - zi + 277)0(2, A) 0 \
2t)

»21 (*) ZT(A^T1 ^'"^Ky-^a^i " 277, A + 277)0(2, \)a~Hz1 -2V,X- 2n) ) TA

with

- , x 0(27?)0(^-zi-A + 27?ft)
Ö21(Z) =

0(Ä-2^)
C(Z,A) +

0(2:-^i)0(A-27?ft + 27?) _x

g _

. a(z, X)a l(zi
- 2t?, A - 2n)c(zx - 2n, A)

and

O2i(*0 = (^e/(A, ft))"1 (-0(z - zi + 2t/)c(«i - 2r?, A + 2n)a(z, A)

9(2n)6(z-zi-X + 2nh) .

n , oW ,.
~

0(A-2r?ft)
^ -

2r?' A + 2??)C(^' A)+

e{z~Zle(xt~2^
+ 2ri)a^ -2^X + 2^> A)«_1 (*i ~ 2??>A - 2??)c^ -2^ A))

which by the first RLL relation and the ninth relation, where z' = Z\
— 2n,w' = z and

A' = A + 2t?, can be simplified to

021(2) = 0.

We still have to compare the following entry of the matrix

f(X-2t],h) 9(z-z{)9(X-2nh + 2n) , , ,
.

,, ,,

022(2) = -

/(A fe)
~

6{x _ 2A
-*(*i -277,A + 277)a(z,A)a-1(zi

- 2t?, A - 2t?) =

0(A + 2t?)0(A - 277/1) 9(z - zi)9{X - 277/1 + 277) r ^
6{X - 77 £" x3 + Y.%2 ^jV + 2r?)

aT(z)
—

0(A - 277/1 + 2t?)0(A) 6{\ - 277/1)
w

6{X + 2t?)
'"

, A. 77',
-ttr(z).

(z-zx^A-E^^+E^x A,77)

0(A)



since xi = —n and Ai = 1.

If we rewrite this as a matrix, we get

A^1a^{z,Zi,... ,ZnX)Ae =

9(2-2x)oT(2)
e(A)

°
\„-2v

0 0(2-21)oT(2)a(A-^;(^^A^) ;
^

If we compare this to the operator d^ux e(z, zi,... , zn, A), we notice that both operators
coincide.
Let us next calculate the conjugation of the operator b^(z,zi,... ,zn,X) = ai(z,X — 2h) ®
baux,e(z>z2,--- , zn,X) + bx(z,X - 2h) ®d^UXfi(z,Z2,... ,zn,X):

-4n,1e^(2,21,--. ,Z„,X)An,e =

1 0

-(îre/(A,/i)-1)c(2i-277,A + 277) (7re/(A, /i)-1o(2i - 2t?, A + 277)
|X

P+2n
0(2-21+277)6(2, A) 0

6(2V)B(z-z1-\+2vh) ,, y.
e(z-z1)e{\-2r,h+2ri)h(

^ ï\
X

0(Ä=2t7M dl,z>X) e(X-2vh) 0(2, Aj
I

1 0

a_1(2x -277,A)c(zx - 277, A + 277) 7re/(A,/i)a_1(zx - 277, A)

1 0

-(7re/(A,/i)-1)c(2i-277,A + 277) (7re/(A, /i)"1o(2i - 2t?, A + 2n)
|X

0(2 - 21 + 277)6(2, A) 0

021(2) 7re/(A + 277, h + 277) 8C*"*^(ia"y"^
&(*, A)«-1 (21 - 27?, A + 2t?)

(2 - 21 + 277)6(2) 0

m*) /(A+/{zïFv) -~tl{XlT+2v) a^ - ^ A+2^fc(z- A)fl"1^1 ~ 2^ A+2^)

with

~ 0(2t?)0(z - zi - A + 2t?ai)
j(h^z) =

0(T32^ d{z'X)

9(z-zi)9(X-2nh + 2n)1/
,, i, „ , „ v , „ , ^+-

g(A _ 2 ^ -6(^ AJa"1^! -

2r?, A + 2r?)C(*i - 2r?, A + 4t?),

and

621(2) = TT"1 (/(A, h))"1 (-0(2 - 21 + 277)c(2i - 277, A + 277)6(2, A)

0(277)0(2 - zx - A + 277/1)

+

0(A - 277/1)

0(z-2x)0(A-277/1 + 277)

-a(z! -277,A + 27?)d(z,A)

a(zx -277, A + 277)6(2, A)o_1(zx - 277, A + 277)c(zx - 277, A + 4t?) J0(A - 277/1)

This can be simplified as follows

, ,s -i,,/, tNN 1 Ö(A - 277/1 + 277) ( 0(2 - 2x+2?7)0(A-277/1) , , w/ ,,M«) =*. ^/(A,,))-A__^__^i (-1 g(A_j;2?j) ^^-277^ + 277)6(2^)

0(277)0(2 - 2x + 277 - (A - 277/1 + 277))

0(A - 277ft, + 277)
-a(zi -2?7,A + 277)d(2,A)

.
0(z - zx + 2?7)0(A + 477),,

,
.

, „ , , , 0(zx - 2 + AW277) .

,+( - öT^T^) 6^'A + 2r>MZl ~2ri'x + 4r>)
-

0(a + 2t7)
(z' X + v)b(-zi " 2v'A) )

a": {zx - 277, A + 27?)c(zx - 277, A + 477)) ,
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where we used the second RLL relation with z' = z\ — 2n, w' = z, X' = X + 2t?,

= .-(/(A,^e%^]%^^)<-(., A +w - *,, A)

+a(z, A + 2t?)ô(zi - 2t?, A)a-1(zi - 2t?, A + 2t?)c(^i - 2t?, A + 4t?)) ,

where we used the tenth RLL relation with z' = z\ — 2n, w' = z, X' = X + 2t?,

(-d(zi - 2n, X)a(zi,X + 2n) + b(zx - 2n, X)c(zx,X + 2??)) a~1(zi, A),

where we used the fifth RLL relation with z' = z\ — 2n, w' = z\ — 2n, X = X + An,

_l9(X-2nh + 2n)(flx ^_, 9(z - zx - X)9(2n) 9(X - 2nh)
~ *'

6(X-2nh)
{nA'n))

9(X + 2n) 0(A)

xDetaux,e(z> z2,--- , zn)a(z, X + 2n)a~1 (zx, A),

where we used Proposition 6.5,

0(A-z + zi)0(-2n) . . ,,
,-A-/,/

=

^~ ^aT(z)a^(zi) J] 9(zx - z3 + 2t?),

where we used the definition of /(A, h),Det^ux e(z, z2,... , zn) and 7re. If we compare

this to the term of baux>e(z, zt,... , zn, X) = Ifc^wx^(z, zx,... ,zn,X)

IpQ which is proportional to TXl VTX v and take into account that xi = —t?, we perceive
that b2\(z) = (b^uxfi)i(z,zi,... ,zn,X), where (baUX,e)i(z,zi,. ,zn,X) is the ith Sum¬

mand of the operator b^ux e(z, z\,... ,zn,X).
Let us now check bn(z) and the corresponding term of b^ux e(z, z\,... ,zn, A).

bn(z)=9(z~zi + 2n)b(z,X),

whereas the corresponding expression of b^ux e(z,zi,... ,zn,X) is given by

t-i^c \ r \t
-A0(A-2 + Zj) -A- / 0(z - Zj

+
Xj + 7?)

IFc(baux,e)n(z,Zl,... ,Z„)IFC =}_^ flm
" H (^ —^ t|X

0(A) ^7jJ=2 y°(x' -Zt+Zj -X})

y^0(A-2 + 2t) -pr
/ 0(Z - 2j + X, + T?)

n

110/^ t~ ^
(-z - ^1 + 2r})e{xl - zz + zi - 7?)

= /Jc0(2 - ^i + 277)6(^, A)Ifc-

=2
» ^t

-

2» + 21 - 7))
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Let us finally check 622 (z) which is to coincide with

J=2

0(A - Z + 2Tj)

-^|- f 6(Z - Z3 + X3 + 7?)
EP^A

—

/{ -T ^? TT

0(A) J-1 \9(Xy-Zy+Z3-X3)

3+1,3=2
x j j/

TT 0(*f - Z, + Z,
- 7?) ^-;i)^-^+^l-^)>) T+2^+277.

Ü
3

V öfe -Zy + zi+n) J A **

J—-^

It reads

/(A + 27?,ft + 2r?)0(A-27?/7. + 2T7)
M-) =

^ e(A_2^}
a(zi - 27?, A + 2t?)6(z, A) x

xa^i-27?,A + 27?) = ^±M0(z-zi)^
+ 2

*(A + 4,!>
.

.x

0(A + 4??) 0(A + 2t? - V
=1 »j

- 2t? + £ 2 A^)

x

ö(a-e;=i^+e;=2a,t?)
_

0(A + 2t?)
-aT(zi - 2n)b(z, X)aT (zx - 2rj) =

frC(-^-^)E"(APp,> n ;.'-*p'+">,ix
71

x n 0(x, - z,+z, -

^-/^^^ifi^^^^^^i
H J //0(zi-27?-z:î+a;î + 27? + 7?)

A ** y i?c'

j—^

where we used the definition of b^ux>e(z, z2,... ,zn,X) = 6(z, A). By our calculation

&22(«) = (^,e)22(z,Zi,... ,Zn,A).
Since (b^ux^)i2(z, zx, .

, zn, X) = 0 = 612(z), we obtain b^ux>e(z, zx,... , zn, X)
= Ae 0^(z, Zi,... , zn, X)Ae.

Finally, we have to check that c%UXfi(z, zx,... , zn, X) = «4~1c§(z, zx,... ,zn, X)Ae, where

c|(z,zi,... ,zn,A) = ci(z,X-2nh)®a<%ux>e(z,Z2,... ,zn,X)+

di(z,X-2nh)®c^UX}e(z,z2,... ,zn,X) :

Ae C(g)(,Z, Z\, . . . ,Zn,A)Ae,—

1 0

-7T~1(f(X, ft))"1c(zi - 2r?, A + 2r?) tt-1(/(A, ft))"1^ - 2r?, A + 2t?)
/ 0(2-2l)0(A-27)fc-27j) / .s 0(277)0(A-277fe+2-2l) / xs

\

0(A-277o) C\Z,A) ö(A-2t?/i) a{Z,A) t-2t?x

\ 0 0(z-zi + 2t?)c(z,A) J x

1 0

a-1(zi -2t?,A)c(zi - 2t?, A + 2t?) 7re/(A,ft)a-1(zi - 2??, A)
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with

and

{ -K~l(f(X,h))-lc(zi-2n,X + 2n) 7r~l(f(X,h))-1a(zi-2n,X + 2rl) J
*

cn(z) vre/(A - 2n,h)e^%^z-Zl)a(z,X)a^(zi - 2t?, A - 2t?) \
T_2,

=

c2i(z) nef(X-2n,h-2n)9(z-zi + 2n)c(z,X)a-1(zi-2n,X-2n) ) A

cii(z) ci2(z) A
T-2r,

C2l(z) C22(z) J X

„
,

,
9(z-zi)9(X-2nh-2n) .

A.

H2")%-thrzila{z-Ma~i{zi - 2,,a -2,)*1 - 2,-A)'

C2i(z) = 9(z — zi + 2n)c(z, X)a~l(zi —2n,X — 2n)c(zi — 2n, A),

. . 0(z - zi)0(A - 2r?ft - 2r?) .

A.

^Z) = -

J(X~2ni) A<Z^ +

0{2"]%2xhrzi)a^ x)a~^ - ^ * -2^ - ^^

r\ t/\ n
,J(2n)9(X~2iTh + z-zx) x

ci2(z) =7Te/(A-27?,ft)
0(A-2 h)

aizA)a L(zx-2n,X-2n),

i ( 9(z - zx)9(X - 2nh + 2r?)
C2i(z) = (7re/(A,ft))-1 (- 0(A-27?ft + 47?)

°{Zl ~2^X + 2??)c^A)

-9(2^x-Vhl~41+4ri)c{zi ~2n-x+27iHz'A)a"{zi -2/?'A -2r?)c(zi -^A)

+0(z - zi + 2??)a(zi - 2??, A + 2n)c(z, X)a~l (zx - 2t?, A - 2t?)c(zi - 2??, A)) ,

c22(z) = /(A~^'^~2T?) (0(z - zi + 27?)a(zi - 2??, A + 2t?)c(z, X)a~1 (zx - 2t?, A - 2t?)

0(27?)0(A-27?ft + z-zi+47?) , n , n
.

, AN ,. „ ,
„A

-

l

9(X-2Vh + An)
C{ZI

~

2T?'A + 2T?)a(z'A)a_ (*x
" 2r?' A

~

2X]))

Now let us check that all of the four operators correspond to its counterpart, the operator

(Co«z,e)v(«>*i.--- >^,A), for i,j = 1,2.

The simplest calculation is the simplification of c2i (z), yielding

C2i(2) = (7re/(A, h))-l9J*~^~±2à (-0(2 - 2i)c(2, A + 2t7)c(zx - 277, A)

J^0{X-2nh +

z^
+ ^c{zi -277,A + 277)o(2,A)a-1(^ -277,A-277)c(zx -277.A)

+
9{Z~ 0(t-tiA+"2T

+ 47?)a(gl -^^ + 2^,^-^^ -277,A-277)c(21 -277.A)) =

(7Te/(A, h))"1 g^I^^j (-9(2 - *1)C(*, A + 277)0(21 - 277, A)-

0(2v)9(X-2vh + 2V + z-z1 + 2v) r ,,„w ,s

g(A_2??/i + 2??)
c(*!

- 277, A + 277)0(2, A)

0(2 - zx + 2?7)0(A - 2t?/i + 477)

0(A - 277/1 + 2?;)
a(zx -2t?,A + 277)c(2,A) j a_1(2x - 277, A - 2t7)c(zx -2r7,A) = 0,
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where for the first line we use the thirteenth relation and for the last equality we

need the fifth relation with w' = z,z' = zx — 2n, X' = X + 2r?. This coincides with

(Caux,e)2l(z,ZX,... ,Zn,A).

The operator Ifc(c^ux e)i2(z, zx,... ,zn, X)Ipç is given by the expression proportional to

lXl ol caux^e(z,zx,... ,zn,X) :

^..,.).,t^=">+'^ -^ ngf^wn»-*-+<«****

with xx = n.

Let us compare this to

e{x-2t:rzi) nC;-irC-> -

*> -2m=

xn9(A
-

'%
' ~*' ftAïC-%+1)«* - *+^+"»•

J—2

This coincides with the coefficient of lFc((^ux,e)i2(z)Ipç.
The operator (c^ e)n(z, zx,... , zn, A) reads

c x

" e(A + z-z,+3:t+77-2E;=2^-2Ji) / JL 0(2-2,+gj+77)
^o(^,..)iiwi,0=e m ^ n=2 e{Xi_Zi+2j_Xj)

JJ 0(xt -zl + z3+ 77)) f ^-^i+xi + 77)
_Zx + gl+ /) T-2"TA-2" =

/=2 y Vö(x1-2t+2x -zi) /z1=n

" 0(A + 2-z,+a:1+7j-2EJn=2^ -2si) ( JL 0(z - Zj + x3 + r,)

n «*> -«+*+d) (^fT^ö(- - -+-+"0 T^2"

The simplification of cxx(z) yields

,
. f9(z-zi)9(X-2nh-2n) , ,,

.

, „ ,

Cll(2) = p—fePd—-«•x)«"i-2'»

+g(2,WA-2^+.-,L)^ A)c(zi] A _^ a-i{zu A _ 4„

— where we use the fifth relation with z' = zx — 2t?, w' = zi, A = A — 2t? —

= 9(z - zi + 2n)a(zi,X)c(z, X - 2n)a~l(zi,X - An)

— where we use the ninth relation with w' = zx, z' — z, A' = A —

0(z - zi + 2t?)0(A - 2t;)0(A - E^2 x, + E,n=a n) ^ alx n ^

"

^ 0(2 - 2, + X, + 77)
_ + + )}

K*l -*.+*.+ «?)
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This is equivalent to (c^ux e)n(z).
The operator (c%uxe)22 (z) reads

T , c , , ,r_!
A 0(A+Z-ZI+XI+77-2E;=2^-2^l) ( A 0(2-ZJ+X,+77)

iFo(4ux,e)22(z)iFC=g m ^n=2 0(,I_;l+zJ-„)

"

9(X + z-zl+xl+r,-2J2"=2Xj + 2t?) / "

0(2 - 2, + x, + 77)

Ö(Z ~Zl) Z7v\ ca«^,e(2,22,-.. ,2n,A+27)).
0(AJ

If we use the definition of /(A, h) the operator C22(z) simplifies to

0(A + 2r?) (9(z-zi + 2n)9(X-2nh + An)
, > , 0 w ^

~wr {—0(A-27?ft+27?)—a{zi ~2^x+2v)c{z>A)

0(2t?)0(A -2nh + z-zx+ An)
c(zx - 2n, X + 2??)a(z, A) j a_1(zi - 2t?, A - 2t?)

0(A - 2nh + 2t?)

where the fifth relation with z' = zx — 2n, w' = z, A' = A + 2t? is used —

Ö(A + 2t?)^^
_w_ , , 0^w„ 0m ,, _i

0(A)

0(A + 2t?)

0(z - 2:1)0(2;, A + 27?)a(zi
-

2t?, A)a_1(zi
- 2t?, A - 2t?)

0(z-zi)c(z,A + 2??) = (c^ )22(z,zi,... ,zn,A),
0(A)

what coincides with the coefficient of what was calculated before. Since all possible

operators (c^ux e)i3(z,zx,... ,zn,X),i,j — 1,2, coincide, we conclude that the operator

caux,e\Zi zl, • • •

, zn, AJ = An^eC^\Z, Z\, . . .

, Zn, AjAn^.
Since the determinant is multiplicative by Lemma 4.15 b) and the determinant determines

the operator daux,e(z, zx,... , zn, A), this concludes the proof.

Theorem 4.44 Let Lsos,e(z,zx,. . ,zn,X) be the operator defined at the beginning of
the section. Then

(I2 ®Anfi(zi,... ,zn,A)_1Lso5,e(z;,zi,... ,zn,X)(I2 ® An,e(zi,... ,zn,X))
= Laux>e(z,zi,... ,zn,X). (77)

Proof of the Theorem:

The proof is by induction using Proposition 4.43 and the fact that L^ux e(z,zx,X) =

Re (z — zx, A). We are going to prove the hypothesis for each entry of the L-operator

Lsos,e(zizi,--- ,zn,X) separately.
The first hypothesis of the induction we have to prove, the case 77 = 2, is given by the



74

four identities - where we put A2,e(zi, z2, A) = „42j6 ~

äaux,e(z,zl,z2A) = (A2^){12)äSOS,e(z, ZU Z2, A) (A2,e){12)
= (^2,e)(12) Mz -

Zi, A - 2x2) ®ae(z-Z2, X)

+ be(z - zi, A - 2z2) ® ce(z - z2, A)) Tp2r?(^2,e)(12)
= (^e)(12) (ae(z-zi,X-2x2)®ü^e(z,Z2,X)
+ be(z-Zi,X-2x2)®C^UXje(z,Z2,X)') (Ä2,e){l2),

bCaux^(z,ZX,Z2,X) = (A2^1%soS,e(z,X)(A2,e)[12)
= (^2",e)(12) (ae(z ~Zi,X- 2x2) ® be(z - Z2, X)

+ be(z - zi, A - 2x2) ® de(z - z2, A)) T+2V2,e)(12)
= (^e)(12) [ae(z-zi,X-2x2)®b^UXfi(z,Z2,X)
+ be(z-Zi,X-2x2)®d^UXje(z,Z2,X)^ (A2,e)(12),

^aux,e{z,zUz2,^) = (^)(12)CSOS,ep, *1, 22, A) (*42,e)(12)
= (-42~,e)(12) (ce(z ~zi,X- 2x2) ® ae(z - Z2, A)

de(z - zi, A - 2z2) ® ce(z - z2, A)) T~2n(A2,e){12)

= (^2,e)(12) (ce(« - ^1, A - 2X2) ® 0^(2, Z2, A)

+ de(z-zi,A-2a;2)®4ia;ie(z,Z2,A)) (^,e)(12),

dLx,e(2»2l.«2,A) = (^e)(12)rfsOS)e(«,2l,«2,A)(^2le)(12)
= (^e)(12) (Ce(^ - «I, A - 22;2) ® be(Z - Z2, X)

+ de(z - zi, A - 2ar2) ® de(z - z2, A)) TA"2??(^l2,e)(12)
= M2",e)(12) (ce(z -ZU\- 2x2) ® b^ux,e(z, Z2, A)

+ de(z-zi,A-2x2)®<Ç (z,z2,A)) (A2,e){12),

where we used the definition of the entries of Lsos,e(z, zx, z2, A) by means of the tensor

product, the identity of RaUX,e(z, zi, X) with Re(z — zx,X), the fact that by definition

^4.2,e(zi, z2, A) = A2,e(zi, z2, A) and Proposition 4.43.

Let us now assume that the corresponding identities for 77 are valid, i.e. the following
four statements hold true:

(A(^;e-{n+1)))~l(z2,... ,Zn+i,X)5S0S,e(z,Z2,... ,Zn+l,X) X

xAn2;e-{n+1)](z2,... ,zn+i,A) =o%ux>e(z,z2,... ,Zn+i,X),

for o = a,b, c, d.

We now want to prove the following four identities:

(•^n+l?e+ )_1(2l: • • •

) 2n+l, A)Ö505,e(z, ZX, Z2, . . .
, zn+X, X) X

xAi+i?e+1)(^l' • •
. zn+l, A) = Oaux,e(zi zl, , zn+l A),
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for o = a,b,c,d.
Let us piove one identity, e.g. the one involving the operators bsos,e(z, zx,... , zn+i, X)
and b~eUX(z, zi,... ,zn+i,A). The other three identities are proven in exactly the same

fashion.

Ve (z zi z , ! X) - (A-1 )^ (n+1))
"aux,e\/ii'ili

• •

,Zn+l,A)

—

l-/i(n+l),e'1

n+1

ae(z-zi,X-2^2x3) ®b^ux^(z,z2,... ,zn+i,A)+
7=2

n+1 \

bc(z-zi,)X-2^x3)®d^ux>e(z,z2,. - ,znfi,A) (A(n+i))e)(1 (n+1)),
7=2 J

what is obtained by Proposition 4.43 and by An+ite(zi, , zn+i, A) =

An+i,e and equals by our previous assumptions

= (^+l.e)(1 ^(^i)^ n+1)(z2,...,Zn+l,X)

n+1

ae(z - ZXA - 2 ^2 X3) ® ^Lr,^2' 22, ... , «n+1, A)+

7=2

n+1

6e(z - zi, X - 2 Y^ x3) ® 3%UXfi(z, z2,... , zn+i, A)
J=2

42e"+1)(z2)... ,Zn+l,A)(A+l,e)(1 n+1)
=

(Ain+l),e){1 {n+1))(zi,...,Zn+i,X)

n+1

ae(z- zx,X-2Yxj) ®&5-05,ep,z2,... ,zn+x,X)+
3=2

n+1 \

be(z- zi,X-2Yx3)®dsos,e(z,Z2,... ,zn+i,X) T^2v
3=2 J

AI (n+1))/
AN

A(n+l),e (*!>•• An+lAJ,

where we used the definition of the entries of Lsos,e(z, z2,... , zn+i, A),

= (^n+l,e)(1 "+1)Pl,--. ,Zn+i,A)6505,eP,2l,... , Zn+X, A)i4^+"e+1) (zi, . . . ,Zn+l,A),

where we used the definition of the tensor product of (L^+fe)

7= (01 n+1)/ .

, _

^SOS,e [Z,ZX,. . .
, Zn+1, A)

—

n+1

401)(z-zi,A-2^a;p402Sif1)(z,z2,...,zn+i,A).
3 =2

Thus, the identity involving b^os.el«, zi,... , zn+i, A) and b^UXfi(z, zx,... , zn+x,X) is shown.

Since the other relations can be shown similarly, this completes the proof.
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Remark:

The following corollary is very important since it involves the transfer matrix of the SOS

model with antiperiodic boundary conditions and connects it to the auxiliary antiperi¬
odic transfer matrix.

We will need it in the next section.

Corollary 4.45 For all X E C for which the following identity is defined,

(An!e)^ n) {hoS,e(z, ZX, . . .
, Zn ,A) + CSOS,e(z, ZX, . . .

, Zn, A)) X

x^n,e = [f)aux,e\zizl, > zn A) + caux,e\Z) zlt • • •

, zn, X) J

where An,e pi,... ,zn,X) = An,e

Proof:

The Corollary is easily proven while looking at the proof of Theorem 4.44, where we

explicitly proved that

pL"1^1 n)(zi,... ,zn,A)W,e(z,zi,... ,zn,X)An\en\zi,... ,zn,X) =

°aux,e\Z, zl, • ,Zn,A)

and

(^n,l)(1 n)(zi,--- ,zn,X)cSos,e(z,zi,... ,zn,X)An\en\zi,... ,zn,A) =

caux,e\Z, Zl, • ,Zn,A).

Remark:

To show that

Proposition 4.46

Pl"1^1 n)^o5,e(z,zi, ..,zn,Xo)An)en)
= T^UXje(z,zi,... ,zn,X0) (78)

is obeyed for Ao = EILi xi-> 1-e f°r the restriction of A to a function of the set (xx,... , xn)
we need four more lemmas. They show that every operator used in the isomorphism,
1-6- t>aux,e\Z, ZX, . . .

, Zn, A), Caux>eyZ, ZX, . . .

, Zn, a), An\ZX, . . .
, Zn, a) S.T1Q. J\.n\ZX, . . . ,Zn,A),

preserves functions of A while restricted to Ao- These functions are either elements of

Fp° or M(C, V®n)\x=x0 ^ V®n and are fixed to a specific value (X$)c of Xg.

Xa
Lemma 4.47 Let a E C. Let u(xx,... ,xn, Aq) E Fd° .

Then

(baux,e(z, Zl, . . .

, Zn, Aq )u(xX, .. ,Xn,XQj) EFD ,

\caux,e\Z, Z\, . . .

, Zn, Xq )U{XX, . . .
, Xn, Aq )) E ir£, .

Proof:

By definition, bauXte(z,zx, . ,zn, X%) acts on u(xi, .. ,xn,X%) as u(x[,... ,x'n,X% + 2n),
where EILi < = EILi xi + ^- Hence, A£ = EIU ^ + 2t? + a = EI=i < + « = (A?)'.
Hence, (baUx,e(z,zx,... ,zn, X%)u(xi,... ,xn,X%)) E FD°.
The proof concerning cauxfi(z, z\,.. ,zn, A") is analogous, switching +2t? to —2t?.
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Lemma 4.48 Let a G C. Let ax E {—1,1} for ail i = 1,... ,
n. Let Xg = Er=i ^V + et,

i.e. Xg e[ax] ® ...® e[an] = p/ Er=i °» + °i)e[0'i] ® • • ® e[cr«]-
Lei u(Âg;)e[ffi] ® ... ® e[an] e M(C, ^®n) miA Â£ acting as n E?=i ^ + a = (Xg)c G C

Tften,

A^epi,... , zn, Ao>((AoT)e[ai] ® ... ® e[an] = û((Xgf)e[a'i] ®...® e[a'n}.

Proof:

Let An!e(zi,... , zn, Xg) be given by

-4n,epl, • • • , Zn Ao ) =

In-1 0

a"1 (zi - 2t?, XopcPi - 2t?, Xg + 2t?) 7ref(Xg, tya"1 (zx - 2t?, Ä?)

with the notation of the definition of An^(zi,... ,zn, Aq ) understood.

We can either choose a vector u(Xg)e[n] ® e[cr2] ® ... ® e[an] or 7j(Aq )e[—n] ® e[<72] ®
... ® e[an]- In the first case Aq acts as (Aq)c = t? + vY2=2°~ii m *ne second case as

(Aq)c = —7? + 7? Er=2 ai- ket us see now *ne operator An,e(zi, , zn, Xq) acts on each

of these vectors.

Let us first look at the case o~i = —1 corresponding to (Ag)c = —7? + ??Er=2 °~i-

V-i
_

0

a-l(zi-2n,Xg)c(zi-2n,Xg + 2n) iref(Xg, h)a-l(zi - 2t?, Xg)

0

7i(Äo )e[cr2] ® ... ® e[o-n]

0

7ref(Xg, h)a'l(zi - 2t?, Xg)U(Xg)e[a2] ® • • • ® e[an]

As we want it to be, the non-zero entry of the vector is a function restricted to (A")c =

—V + V EIL2 ctj + a, since every operator Aq is evaluated on the same vector e[—n] ®

e[a2] ® ... ® e[an].
Let us now turn to the case with <ti = 1 or (Aq )c = 7? + Eî=2 airl-- ^ reads

~

ln~X ° Ï
x

a~l(zi - 2t?, Xg)c(zi - 2t?, Xg + 2n) iref(Xg, ft)a"1(zi - 2r?, Xg) J

u(Xg)e[a2] ®...® e[an] \
=

o ;

u(Xg)e[a2} ® ® e[an]

(a"1 (zi - 2t?, Xg)c(zi - 2t?, Xg + 2ri)u(\g)e[a2] ® ... ® e[an])

The upper entry of the vector shows the right behaviour, since evaluating Aq on e[n) ®

e[u2] ® ... ® e[an] yields (Aq )c = 7? + EI=2 CJ*7? + a- ^ tnus remains to check the lower

entry.

By the definition of cauxfi(z, zx,... ,zn,X) and IFc, caUx,e(z, zx,... , zn, X) maps a vector

e[a2]®. • .®e[an] to vectors of the form e[a2]®.. .®e[an) with Er=2 °~'i = XT=2 ai+<2- Thus,

Aq in u(Xg) should obtain a value equal to —r? + EI=2 &[ + a = —n + E"=2 o"i + 2t? + a =

^+Er=2^+«=w)c
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The same applies to the coefficient olcaux>e(zx — 2n, z2,... ,zn, Aq+2??), since here we have

to evaluate (Xg+2n)e[-n]®e[a2]®-. .®e[an] resulting in (-??+EI=2 cri7?+a)+2?? = (Aq)c.
Finally, the value of Aq in the operator a-1 pi — 2t?, Aq ) is automatically correct, since it

is evaluated on the vector shifted by c(zx — 2n, Xg) which we called e[—n\®e[a2\®... e[a'n].
Thus, we see that in both cases, hence generally, a function u(X) which was fixed to a spe¬

cific value (Aq )c on the hyperplane Aq = Er=i ft*7? + cc is mapped by An,e(zx, , zn,Xg)
to a function il (A) with A = (Aq )c.

Lemma 4.49 Let a E C. Let Xg be defined as in Lemma 4-4$-
Let u((Xg)c)e[ax] ® ... ® e[an] E M(C, (C2)^1), where (Xgf = 7? E?=i ox + a and art E

{—1,1} for all i = 1,... ,?7. Then,

An,e(zx,... , zn, Xg)u((Xgf)e[ai] ®...® e[an] = ü((Xg))e[a[} ®...® e[a'n\).

Proof:

The proof is by induction. The proof of the case 77 = 2 is a corollary of the preceding
lemma.

Let us now assume that the statement for fixed n — 1 G N holds true, i.e. that

(An-iJ2-n\z2,... ,Zn,Xg')u((Xg'f)e[a2]®.

H(^)C)e[a'2]
e[o-nJ =

<8> e\a'J

with Aq = 7? EIL2 hy + a and (Aq )c = 7? EI=2 ^ + a- Let us *nen Prove the statement

for 77.

By definition, Anfi pi,... ,zn,Xg) = A^j, (z2,... ,zn,Xg)An\e(zx,... ,zn,Xg). Thus,

withX£ = 7?Er=ift* + «

An,e(zi,... ,zn, Xg)u((Xgf)e[ax] ®...® e[an] =

Ati^, ...,zn, \g)(AnYHzi, - - , zn, Xg)u((Xgf)e[ax] ®...® e[an]) =

Ati%2, ...,zn, ~Xg)u((Xgf = Xg)e[a'x] ®...® e[a'n]

with (Aq )c = EI=i nat + et = n EI=i &[ + a by the preceding lemma. Now, we can

either obtain a vector tj((Aq )C)e[??] <8> ep2] <8> ... <8> e[a'n], which will be treated in the

first case, or ü((Xg)C)e[—7?] ® e[a'2] ® ... ® e[a'n], which will be treated in the second

case. Since A^Z'il (z2,... , zn, Aq ) does not affect the value of ax, in the first case Xg —

V + Er=2 hy + a = EIU K + (a + 7?) = Xa0^' and (Xgf = n + E?=2 a[ + a = (A^')c.
In the second case, Xg = -17 + EIL2 hi + a = EIL2 K+(a-n) = X^~n' and (Xg)c =

-ri+iz:=2<+^ = (K-ri')c-
Hence, in the first case, we can apply our assumption with a! = a + 7?, to get

42A^(z2, ...,zn, ~Xrv')n((Xt+r)'f)e[n] ® (e[a'2] ®...® e[a'n]) =

Û((X«+ri'f)e[rl]®(e[o-ï}®...®e[aiï)

with (X^'f = (A?)c.
In the second case, we get with a' = a — t?

4-5 (z2, , zn, Xa0-V'M(K~V'f)4-ri} ® (e[a'2] ® ... ® e[a'n]) =

û((XrV'f)e[-v]®(e[^}®...®e[a'n])
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with(A^')c = (A0-)c
Thus, in both cases A stays restricted after the action of An,e(zx,... , zn, Xg) to (Aq )c =

7? Eî=i °~i- + a- This completes the proof.

Lemma 4.50 Let a E C and Xg = EI=i n^ + a-

Let u((Ao")c)e[cri] <g>... ® e[an] E M(C, V®n), where a% E {-1,1} for all i = 1,... ,
n and

(Aopc = 7?EILi^ + a- Then,

A-]e(zi, ...,zm Xg)u((Xgf)e[ai] ® ... ® e[an] = n((A?)c)e[a'1] ® ... ® e^J.

Proof:

This is an implication of the fact that ^4~gpi,... ,zn, Xg)An,e(zi,... ,zn,Xg)
"((Ao )C)e[cri] ® ® e[an] = tj((Aq )c)e[cri] ® ... ® e[an] and the preceding Lemma 4.48.

Corollary 4.51 By Lemma 4-47, 4-4$ and 4-49 for a = 0, the Proposition 4-46 îS

proven. Thus,

An,e\zi, ,zn,Xo)Tsos^e(z,zi,... ,zn, Ao)^4n,epi, • • • ,zn,Ao)

= J-aux,e\zi zli • ,zn,Xoj

for A0 = EîLi X* = V Er=i h*-

4.6 Solving the eigenvalue problem of the antiperiodic SOS model

Synopsis:
In this chapter, we deal with solutions of the common eigenvalue problem of the family of

commuting transfer matrices of the eight-vertex SOS model with antiperiodic boundary
conditions (cf. Definition 4.26). A solution to this problem was given in Definition 4.29

as a pair (esos(z), Eox...on aai % l°i, •

, an+i = —ax >), where the eigenvalue was to

be an elliptic polynomial (cf. Appendix 2) and the eigenvector an antiperiodic path in

Pn. Both entities are to solve

Tsos,e(z,zi,... ,zn,A0)Eoi...onO;ai-anlai'--- ,an+i = -ai>=

eSOs(z) Eax. .an «ax...On K, • , ^n+1 = "«1 >,

where the family of transfer matrices of the SOS model with antiperiodic boundary

conditions, well defined for n G 2N+1 fundamental representations, is given in Definition

4.26

TsOS,e(z,Zi,... ,Zn,X0) = Y2trlo\ K^^SOS,e(z,Zi,... ,Zn,X0)
ß

with A0 = 7?Er=i(2;7 + zi) and

In Corollary 4.51 we showed how to relate the family of SOS and the family of auxiliary
transfer matrices by the isomorphism An e(zx,... ,zn,Xo). A common solution to the
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auxiliary eigenvalue problem was given in Definition 4.39 as a pair (e(z),u(xi,... , xn)),
where ep) is to be an elliptic polynomial and u(xi,... ,xn) a function on D, solving

Taux,e(z,Zl,... , Zn, Xq)u(xX ,
. . . ,Xn) = e(z)u(xX, . . . ,Xn).

In this section, we first show how to obtain out of the family of commuting auxiliary

transfer matrices the (equivalent) system of separated equations (Definition 4.52) out of

whose solutions we can build a solution of the eigenvalue problem of the auxiliary transfer

matrix.

Then, we show what conditions an elliptic polynomial (cf. Appendix 2) has to obey to be

a common eigenvalue of the family of auxiliary transfer matrices (Proposition 4.53). In

Corollary 4.54, we use Corollary 4.51 to state the conditions which an elliptic polynomial

has to satisfy in order to be a common eigenvalue of the family of SOS transfer matrices.

In Theorem 4.55, we finally show how to obtain a common eigenvector of the family of

SOS transfer matrices out of a common eigenvector of the family of auxiliary transfer

matrices, also by using Corollary 4.51.

Remark:

Note that we have to restrict ourselves to the case of n E N being an odd integer to

avoid poles of the auxiliary transfer matrix which could occurr at Ao = Y^i=iixi + zi) ^

n was an even integer.

By means of the isomorphism constructed in the fifth section of this chapter, we were

able to relate it to the auxiliary transfer matrix given by

-

_

A 6(z+ Xy-X0) A 9(z + x3)
laux,e{Z,Zi,...,Zn,Ao)-2_^ 0{x) J.1 e(Xy-XA

i n

J] 9(xy + zJ+ n)Tx2r> + J] 9(xy + z3
- n)T+2r>

V?=l 3=1

Note that the operators T^
v
and T7 ^

are omitted in the transfer matrix as written

above. This can be justified by looking at Lemma 4.47, where it was shown that the action

o{baux,e(z,zi,... , zn, A0) and baux,e(z, zx,... ,zn, A0) on a function $ pi,... ,xn,(X0)C)E

Fp° with a fixed (Ao)c G C led to a function <&pi,... , xn, (A°)c) with the same value of

A = (A°)c.
Thus, we may evaluate this family of operators on a possible common eigenfunction

<&pi,... , xn) E Fd in order to get a possible common eigenvalue ep).
If we evaluate a transfer matrix TauXfi(z, zx,. . ,zn,Ao) at the n points z = —xt for

7 = 1,... , n, we get the separated equations.

Definition 4.52 (Separated equations) The separated equations are given by

n"=i e(xi + z3+ V)$(xi, , Xy
- 2t?, ... , xn) + n"=i e(xt + z3-n)x

X $pi, ...

, Xy + 27?, . . .

, Xn)) = e(-Xy)$(Xl, ... ,Xy,... ,xn) (79)

for all i = 1,... ,n.

All separated equations that appear show the same structure of a linear difference equa¬

tion in one variable x% for alH = 1,... ,77. Note that this is a considerable simplification
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compared to the nonlinear difference equation in n variables defined by the original eigen¬
value problem of the antiperiodic SOS transfer matrix.

Since only one variable xz is affected at a time, we can write Q(xx,... ,xz,... ,xn)
= lir=i ^{'Xi) yielding for the ith separated equation

(0(z + z3+ n)4>(z - 2n) + 0(z + z3
- n)<p(z + 2t?)) = e(-z)<7j(z), (80)

where we substituted x% — z. This can be done for all occuring cases i = 1,... ,
n.

Remark:

The equation appearing in this form is also known as a Baxter equation (cf. [47], [31]
and the introduction).
Let us now state the theorems on common eigenvalues and eigenvectors of the family
of auxiliary antiperiodic transfer matrices and by means of the isomorphism also of the

transfer matrices of the SOS with antiperiodic boundary conditions.

Proposition 4.53 (Eigenvalues of the auxiliary transfer matrix) Suppose that

Aï = 1 for i = l,... ,n with n being an odd integer, n ^ T, z% ^ z3 + 2nl for I E {0,1}.
Let Taux,e(z,zi,... ,zn,Ao) be the auxiliary transfer matrix as defined above, the x%,% =

1,... ,n, being restricted to {—zt — n, —z% + n} and Xq = EILi^ "+" zi)-
Then a function e(z) is a common eigenvalue of the family of transfer matrices Taux,e(z),
z E C, if and only if

i) e(z) E 9n(x) with x(l) = (-l)n, X(r) = (-l)ne27"£-i2' and

ii) ep) obeys the quadratic relations

n

e(zy + n)e(zy - n) = J] 9(zk -z%- 2n)9(zk -zt + 2n) (81)
k=i

fori = l,... ,77.

Proof: [30]
Let us first prove the if part. For this, let us suppose that 3?pi,... , xn) defined on D is a

common eigenfunction of the Taux>e(z, zx,... , zn). In particular, it is not identically zero

on D. From the transformation properties of Taux^z we see that a possible common eigen¬
value ep) has to be an element of @n(x) with Xp) = (—l)n and %p) = (—l)ne27rî^=i z\

Setting z = —x% in the equation Tauxfi(z)u(xi,... ,xn) = e(z)u(xx,... ,xn) yields the

separated equations as described above. Due to their structure they yield while setting

Xy to either one of its two possible values

n

]j0pfc - Zy-2n)<$(xx,... ,-Zy + n,... ,xn) = e(z% + 7?)$pi,... ,-Zy-n,... ,xn),
fc=i

n

j^pfc -Zj + 27?)$pi,... ,-Zy ~n,... ,xn) = e(zy -r?)$pi,... ,-Zy + n,... ,xn),
fc=i

for 7 = 1,... ,?7. Since <&pi,... , xn) does not vanish identically zero on D the left hand

side of one of the above equations is non-zero, leading to both sides of both equations

being non-zero. Thus, we obtain the second property of ep).
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For the only-if-part, let us start with an elliptic polynomial ep) obeing the two conditions

indicated above, ep) obeying the second condition means that the system of equations

Uk=i e(x + zk+ v)Qiix ~ H + ECU e(x + zk~ v)Qiix + 2t7) = e(-x)Qy(x),

for x = -Zy + n, —Zy
— n

admits a non-trivial solution for every i = 1,... ,77. Hence, $pi,... , xn) = Yli=i Qi(xi)

obeys the system of separated equations. Thus - and by ep) G Qn(x) - on D (Taux^(z) —

ep))$pi,... , xn) defines a function in &n(x) with respect to z that vanishes at 77 points

—Xy. Thus, by Proposition E.2 of the second Appendix, it vanishes identically. This is

due to the fact that the possible non-vanishing condition, cf. Proposition E.2, cannot

hold since J2=i z%^ — E[=i xi ^ue to xi — ~zi ± V and n being odd.

Corollary 4.54 (Eigenvalues of the antiperiodic SOS model)

^sos(z) is a common eigenvalue of the family of transfer matrices of the SOS model

with antiperiodic boundary conditions if and only if it obeys the two conditions stated in

Proposition 4-53.

Proof:

For the proof we apply Proposition 4.46 and the isomorphism Ifc, m order to get

IcAAn,e(zi, ,zn,Xo)Taux>e(z,zx,... ,zn,Xo)A~^(zi,... ,zn,X0)ICA =

TsOS,e(z,Zi,... ,Zn,X0).

Theorem 4.55 (Eigenfunctions of the antiperiodic SOS model)
Let e*[o"i] ® ...e*[crn] the dual basis to the standard tensor product basis of V®n, i.e.

(e*[ax\®... e*[an})(e[a'x]®.. .®e[a'n}) = n?=1 <^,< for allay,a[ E {-1,1} fori = 1,... ,77.

Let $pi,... ,xn) = niLi 4>(?x) =_ Er=il0-,e{-i,i} nr=i <K_Z* + ^Ui...*» e ?S « com¬

mon eigenfunction of the family TauXjC(z, zx,... , zn, Ao), where fa1...(Jn was defined in the

preceding section. I.e. every (j)(xy) solves the associated separated equation as defined

before for i = 1,... ,77.

Then a common eigenfunction of the family of commuting transfer matrices of the SOS

model with antiperiodic boundary conditions Tsos,e(z,zi, ,2nAo) is given by

n / n \ n

p*= E n^-*+<) E (^/iix
7=i,<rIe{-i,i} \i=i J j=i^e{-i,i}

n / 7-1 1 n 1 n ,

*E^->-E^ + E^ -Eai> e«)
7=1 3=1 3=1 7=1

with

(An,e)aï.'fÀ = e*[ffi] ® ... ® e*[or'n](An,e(zi,... ,zn, A0))e[ffi] ® ... ® e[<r„].

Proof of the Theorem:

Let An,e(zi, ,zn,Xo) = An>e throughout the proof. Let $pi,... ,xn) E Fn be a

common eigenfunction of Taux>e(z, zx,... ,zn, Ao) G End (F®), i.e.

TaUx,e(z,zi,... , zn, A0)$pi,... ,xn) - eSos(z)®(xi, ,xn).
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Then we successively obtain Tsos,e(z, zx,... ,zn, Ao) G End (Pn) as

Taux,e(z, Zi,.. . , Zn, A0) = IpCA~fiI^^TsOS,e{z, ZX, . . . ,Zn, Xo)IcAAn,eLFC,

where we first applied the isomorphism Ipc ' ^n ~~* V®n, then Proposition 4.38, then

the isomorphism Iqa ' ^®n -* Pn-

If we apply this identity to the auxiliary eigenvalue problem, we get

n I n \

TßOS,e(z, Zi,... ,Zn, X0)IcAAn,elFC E ( II ^~Zl +^ ) ^ ~a

i=l,o-,e{-l,l} \î=1 /

= esos(z)IcAAn,elFC E ( Il $(~z% + a%TÙ ) /
7=i,o-,e{-i,i} \7=i

n

( TT A,(_*
j_„„\\

4
a\...un-

With the definition of

(Anfi)i\;;il = e*[a[] ®...® e*[an](An,e(zi,... ,zn, X0))e[ai] ® ... ® e[an]

and
n i—l n n

IcA(e[ai]®...e[an]) = \Yjai,-..,-Y.ai + i:%---T.ai^
2'

' ^ 2 ^ 2
' ^ 2

7=1 7=1 7=7 7=1

we find

-fcM-4n,e-?>C7 ^ ( IT ^~Z% +^ ) ^°

7=1,^ £{-1,1} \7=1 /

XE n^-^ + ^)) E (An>e)Z:.a:
te{-i,i} Vi=i / 7=i,^e{-i,i}

n ;
7—1 t n i n ,

2
' ' ^ 2 ^ 2

' ' ^ 2
7=1 j=l 3=1 1=1

4.7 Limiting cases of the SOS eight-vertex model

Synopsis:
In this section, we want to show how to obtain the operator Se(Z) in separated variables

(cf. Définition 2.23) as a limiting case of the family of commuting auxiliary antiperiodic
transfer matrices (cf. Definition 4.35).
Remark:

For this section, we need a slight generalisation of the auxiliary representation defined in

Proposition 4.33.

Corollary 4.56 Let the operators äe,aux(z, zx,... ,zn, X),bejaux(z, zx,... ,zn,X),

Ce,aux(z, z\,... , zn, A), de>aux(z, zx,... ,zn,X) be the ones defined by Proposition 4-12 act¬

ing on the space F^- Then they define the operator algebra of a functional representation

of ETiV(sl2).
This is a corollary of Proposition 4-33 in the sense that we may imitate the proof where

we nowhere needed the fact that the weights x% for i = 1,... ,xn then took values in a

discrete set.
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3)
x

Definition 4.57 In this case the auxiliary transfer matrix is given by

-

f^ _^9(X-Xy-z) A 9(z + x

n n

x | J] 9(Xy + z3+ A3n)T-2^T-2^ + J] 9(x% + z3
- A3n)T+^T^ ] . (83)

\3=t 7=1

Proposition 4.58 For X restricted to Ao = E"=i(a;J + z%) the transfer matrices defined
above commute.

The proof is given in [39].
The transfer matrices can now be considered acting on a space F^0 — Fn.
This reduces the transfer matrices to

,^
_

^9(X-xt-z) ^j Ô(z + x3)
w

laux,e{Z)-l^ H 9(X1-Xy)

(n

n

J] 9(xy + z3+ A3n)Tx2^ + H 9(xy + z3
- A3n)T+2^

7=1 7=1

Remark:

We want to analyse the elliptic Gaudin limit.

Proposition 4.59 Let n —y 0 for Tauxfi(z). We then obtain an expansion Taux,e(z) =
Top) + 4t72Ti(z) + h.o.t., where

n

A 0'
n

(^-Ef^+^))2-Ec0)^+^)
7=1 7=1

(n
\ n

5e(z) - J]cWpP - zj JJ0P - zt), (84)
7=1 / 7=1

where in the last expression we set y3 = —x3,j = 1,... ,n, in the expression Se(z) of
Proposition 2.23.

Proof:

The proof is straightforward, taking into account the expression Se(z) calculated in

Proposition 2.23.

To calculate any term, we have to look at the expressions

(n

n \

J] 0(xk + zy + Ayn)Tx2* + J] 9(xk + zz - Ayn)T+2^
7=1 7=1 /

for k = 1,... ,n evaluated at n = 0 only, since the other appearing terms involve no

dependence on ??.
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For the term of second order, it suffices to look at 2|t?2JP- (n[=i @(xk + zt + Ayrj)TXk v),
since the term \~\^=x 9(xk + zz -\—Ayn)TXk n is symmetric under n —>—?? to the term

n^iöPfc+z.+A^T^).
We get

1 rfi n

^Q^iYlO^k + Zy + AyriT-2*')^ =

4r?2 E -J1 j(X* + zJ-gfa +Z3)~Y1 -fp(X* + Z*)
\7,7 = 1 7=1

n

9' d d2 \ n

7=1 K
/ 7= 1

V 7=1 7=1 / 7=1

for every k = 1,... ,n. This yields the first sum indicated in the proposition and by
Proposition 2.23 with x% = —

y% for i — l,... ,
n it also yields the second one.

5 The Antiperiodic SOS Model: n = 3

In this chapter, we want to look closer at the steps of solving the eigenvalue prob¬
lem for the SOS model with antiperiodic boundary conditions with 3 spin-^ particles.
Hence, we will work with the auxiliary representation of Proposition 4.33, given by
(M(C, V®3), L^ux e(z, zi, z2, z3, A)) with Ai = A2 = A3 = 1, the tensor product of three

fundamental representations as described in the definition of the L-operator of the SOS

model (M(C,y®3),L^(z,z1,z2,Z3,A) =Ri°1\z-z1, X-2n(h2+h3))R^2)(z-z2,X-
2nhs)Re (z — z%, A)) and the corresponding isomorphism of Proposition 4.44 connecting
the auxiliary representation with the L-operator of the SOS model.

We proceed in several steps: first, we construct the auxiliary representation for 77 = 2

(M(C, V<s>2),L^lxep, zi,Z2, A)) and show that the isomorphism of Proposition 4.44 is

correct. Note that the example n = 2 is of no use in solving the antiperiodic eigenvalue
problem of the SOS model, since this problem can only be properly treated for an odd

number of underlying fundamental representations.
We then verify that the isomorphism of Proposition 4.44 correctly reproduces the auxil¬

iary representation for 77 = 3. We also compute the basis of F®3 in which the operator

öaua;,e(z,zi,z2,z3, X) is diagonal.
Note that the representation (M(C, V®3),L^UX ep, zi,z2,Z3, A)) is the simplest non-

trivial example of the antiperiodic SOS eigenvalue problem treated by functional Bethe

ansatz.

Finally, we compute one eigenvector of the antiperiodic SOS model for 77 = 3 explic¬
itly. We also show that the eigenvalue obtained by this eigenvector obeys the - neces¬

sary and sufficient - condition on eigenvalues given in Theorem 4.54 e(zy)e(z% — 2n) =

n?=i 0& -h- 2ri)°(^ ~z3+2v)-
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5.1 A preliminary step:
77 = 2

Computing the auxiliary representation for

Synopsis:
We first give (M(C, V),Re(z — zi, A)), i.e. the basic operator to construct the auxiliary

representation and the representation connected to the SOS model from.

Then, we formulate the isomorphism of Theorem 4.44 in the case n = 2 (Lemma 5.1).
We proceed by writing down the L-operators which we want to compare by the isomor¬

phism: (M(C,_ V®2), Lf2(012) = R{el)(z - zi, A - 2nh2)R(e2)(z - z2, A)) (Lemma 5.2) and

(M(C,^®2),L^eP,zi,z2,Z3,A)) (Lemma 5.3).
In Proposition 5.4 we then show that they are indeed related by the isomorphism of

Theorem 4.44 in the case n = 2. In Proposition 5.5, we show that by this isomorphism
a basis of V®2 (for A ^ 0) is given and the operator d®2(z, zx,Z2, A) is diagonal in this

basis. Diagonalizing this operator was one of the main objectives of the isomorphism.
Let us write down the fundamental representation of EV^pfe) (M(C, V),Re(z — zx, A))
in matrix form. Remember that it acts on the space V which is a two-dimensional com¬

plex vector space with basis e[— l],e[l]. We need this representation to formulate the

isomorphism described by Proposition 4.44 in the case n = 2. It is given by
'

0(z - zi + 2t?) 0

o e(z-zi)-^à
ae(X, zi =

rp-2n

XX '

6e(A,z-zi) =

ce(A,z-zi) =

0

9{X-z+z1)9{2n)
0(A)

0

0

9{z-zi+X)9(2n)
0(A)
0

r;

TI

+2n

-2»7

de(X,z-zx) =

6(z - zi)
0

9{X-2n)
0(A) ^+2770

0(z-zi+2t?) )
A '

Dete(z-zi) = 9(z-zx+2n)9(z-zx+2n)Ix,

where the determinant can be calculated by using the formula given in Proposition 4.15

a). This representation coincides with (M(C, V),L^ux^e(z, zx,X)) by Proposition 4.41.

Let us now write down the isomorphism of Proposition 4.42 in the case n = 2, i.e. the

matrix A2,e(zx,z2,X) = A2,e(zi,z2X).

Lemma 5.1 In the case n = 2 the matrix A2,e(zi, z2, A) G End (V®2) C End (M(C, V®2))
is given by

-4.2,epl,Z2,A) =

Its inverse is given by

/I
0

0

0

0

9{X+z1-z2)9(2rf) 9(z1-z2-2n)9(X)
9{X+2ri)9{z1-Z2)

0

ö(A+277)ö(^x-
0

-Z2)

0

0

1

(85)

(A2,e) 1pl,Z2,A) =

/I
0

0

0

1

9(X+z1-z2)9(2n)
9(z1-z2-2n)9(X)

0

0

0

fl(*i-Z2)g(A+2T7)
9(zi-z2-2ri)9{X)

0

J

°\
0

0

1J

(86)
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Proof:

This is proven by filling in the appropriate operators into the definition 4.42. The correct

form of the inverse p42,e)-1pi, z2, A) is checked by multiplying with its inverse involving

no residual calculations at all.

Let us now write down the representation (M(C, V®2),Re(z — zx, X — 2nh2) ® Re(z —

Z2,X) = Lf2(z, zi,z2, A)) which consists of the operators äf2(z,zx,Z2,X), bf2(z, zx,Z2, A),

cf2(z, zi,Z2, A), Jf2(z, zi,z2, A) in order to compare it to the auxiliary representation

(M(C,^2),L^e(z,zi,z2,A)).
Lemma 5.2 The entries ofLf2(z,zi,z2,A) are given by

af2(z,zi,z2,X) =

äe(z - z2, A) + &i)6p - zi ,A - 2nh2) ® ce(z - z2, A) =

/ an 0 0 0 \

ae(z — zi, X
— 2??ft2)

with

0 a22 0 0

0 Û32 «33 0

V 0 0 0 au J

-27?

an =. 9(z-zi+2n)9(z-z2 + 2n),

9(z -zi + 2n)9(z - z2)9(X + 2r?)
«22 =

0,32 =

«33 =

<244 =

0(A)

(0(2r?))20(A + z - z2)0(A - z + zi - 2t?)

0(A - 2t?)0(A)

0(z - z2 + 2t?)0(z - zi)0(A)

0(A - 2t?)

0P-z1)0(z-z2)0(A + 4t?)

0(A)

with

hi

^31

&42

^43

z,zx,z2)

( 0 0 0 0 \
&2i 0 0 0

&3i 0 0 0

V 0 642 &43 0 )

F
+277

0(z - zi + 2?7)0(A - z + z2)0(2??)

0(A)

0(z - z2)0(A -z + zi- 2n)9(2n)

0(A) '

0(z - z2 + 2t?)0(A - z + zi + 2t?)0(2t?)

0(A + 2r?)

0(2t?)0(A - z + z2)0p - Zi)0(A + 4??)

0(A)0(A + 2t?)

cf2(z,zi,z2)

( 0 C12 C13 0 ^
0 0 0 C24

0 0 0 C34

V 0 0 0 0 /

-2t?



with

Cl2 =

C13 =

C24 =

C34 =

0(z - zi)0(A - 4t?)0(2t?)0(A + z-z2)

0(A - 2t?)0(A)
'

0(A - 2r? + z - zi)9(2n)9(z - z2 + 2??)

0(A - 2t?)

0(z - z2)0(A + 2t? + z - zi)0(2t?)

0(A)

0(z - zi + 2t?)0(2t?)0(A + Z-Z2)

0(A)

Detf2(z, zx,z2) = 0p - zi - 2t?)0(z - z2 - 2t?)0(z - zx + 2r?)0(z - z2 + 2tj)Ii.

Proof:

This lemma is proved by straightforward calculation. The determinant is either checked

by the multiplicative property of the quantum determinant (cf. [25]) or also by straight¬
forward computation by means of the formula given in Proposition 4.15 involving also

the operator

p,zi,z2,A) =

ce(z — zi, A — 27?/t2) <g> be(z - z2, A) + de(z - zx, X — 2r//i2) ® de(z — z2, A).

The needed calculation consists in comparison of the transformation properties, zeroes

and residues of the left and right hand side of the formula given by Proposition 4.15 a).

Lemma 5.3 The operators of the auxiliary representation in the case n = 2 are given

by

with

,p,zi,z2,A) =

f an 0 0 0 \
0 a22 0 0

0 0 a33 0

\ 0 0 0 a44 J

rp-2r)

-A '

an = 9(z-zi+2n)9(z-z2 + 2n),
9(z - z2)0(A + 2t?)

a22 = 9(z- z-\ +2??)-
0(A)

0p-Z!)0(A + 2n)

0(A)

0P-zi)0P-z2)0(A + 4t?)

«33 = 9(z - z2 + 2t?)

044
0(A)

Ce(^^l,22,A)

/ 0 0 0 0 \
621 0 00

631 0 0 0

V 0 642 &43 0 J

F+27?
A '



with

hi

hi

^42

&43

0(A - z + zi)0(z - z2 + 27?)0(2t?)

0(A)

0(A - z + zi)9(z -Z2 + 2n)9(2n)

0(A)

0(A - z + zi)0(z - z2)0(2t?)0(zi - Z2 + 2t?)

9(zi - z2)0(A)

0(A - z + z2)0(2t?)0(zi - z2 - 2t?)

9(zi - z2)0(A)

with

caux,e\z-izliz2,*) —

C12 =

C13 =

C24 =

C34 =

/ 0 C12 C13 0 \
0 0 0 c24

0 0 0 C34

V 0 0 0 0 y

n-2n
LA '

0(2t?)0(A + z - z2 - 2t?)0(z - zi + 2t?)0(zi - z2 + 2??)

0(A)0(zi - z2)

0(2t?)0(A + z - zi - 2t?)0(z - z2 + 2r?)0(zi - z2 - 2t?)

0(A)0(zi - z2)

0(A + z - zi + 2r?)0(z - z2)0(2t?)

0(A)

0(A + z - z2 + 2t?)0P - zi)0(2t?)

0(A)

Detaux,eiz, z^z2) = 0(z - Z\ - 2t?)0(z - Z2 - 2r?) X

X 0(Z-Zi+27?)0(Z-Z2 + 27?)1I2.

Proof:

This is shown by appropriately writing down the definitions of Proposition 4.33, taking
into account that for n = 2 the auxiliary representation acts on M(C, V®2), where V®2 is

a complex vector space of four dimensions with a canonical basis given by e[cri]®e[cr2], Cj G

{—1,1} for i — 1,2, which can be identified with VA.

Remark:

Now we can compare each of the operators of Lemma 5.2 after conjugation by the operator

A2,e(zi,Z2, X) of Lemma 5.1 to its counterpart of Lemma 5.3.

Proposition 5.4

(A2,e)'läf2(z,Zl,Z2,X)A2,e

(A2,er1bf2(z,ZX,Z2,X)A2,e

(A2,e)'1cf2(z,Zl,Z2,X)A2,e

(A2,e)-1Detf2(z,Zi,Z2)A2,e

where A2,e — -42,epi,z2, A).

= an

^c

ep,zi,z2,A),

;p,zi,z2,A),

caux,e\z, zl, Z2, A),

= Det^ux>e(z,zi,z2),

(87)

(88)

(89)

(90)
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Proof:

Let us first check the simplest equality, the fourth one. Since the determinant is a function

not depending on the weights #1,2:2 it can be written

Detf(z,zi,Z2) = Detf(z,zi,Z2)\.

The calculation hence reduces to the fact that (^42)""1(zi,z2, A)„42pi,z2, A) = I4 on the

one hand and the fact that Detf2(z, zi,z2) = Det^ux e(z, zx, Z2) by Lemmas 5.2 and 5.3.

The most important thing is to show that the isomorphism A2 pi, z2, A) indeed diagonal-
izes the operator äf2(z,zi,z2, A). Let us show this. The way the first equality is shown

coincides with how the other equalities are obtained.

pi2) 1(zi,z2,A)a®2p,zi,z2,A)^2pi,z2,A) =

( 1

0

0

0

1

9{X+zx-z2)9(2n)
9(z1-z2-2n)9(X)

0

/l
0

0

0

0

9{z1-z2)9(X+2r1)
9{z1-Z2-2t1)9{x)

0

0

1

9(X+z1-z2-2r1)9(2i1) t

9{X)9{z1-z2)
0

0

0

1 /

"22
<g>
z32

0

0

V 0

0

0

(si-z2-277)fl(A-277)
9(X)9(z1-z2)

0

/ an

0

0

«22

0

0

V
0,32 «33

0 0

0

0

a®

0

0 \
0

0

1 )
0 \
0

0

a44 y

0 \
0

0

^44 y

T-27, =

r,
-2t?

with

an =

a®
-

"22 ~

a®
-

a32 —

a®
-

"33 —

n®
-

"44 —

an =

«22 =

033

&44

0(z-zi + 2??)0p-z2 + 27?),

0p - zi + 2t?)0(z - z2)0(A + 2t?)

0(A)

(0(277))20(A + z - z2)0(A - z + zi - 2t?)

0(A - 2t?)0(A)

0p - z2 + 2t?)0(z - zi)0(A)

0(A - 2r?)

0(z - zi)0(z - z2)0(A + 4t?)

0(A)

0p-zi+27?)0p-z2 + 2r?),

0(z - zx + 2t?)0(z - z2)0(A + 2t?)

0(A)

0(z - zx)9(z - z2 + 2t?)0(A + 2t?)

0(A)

0(z-z1)0(z-z2)0(A + 4t?)

0(A)
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0,32 =
9(X + zi - z2)0(2t?)0(z - zi + 2r?)0(z - z2)0(A + 2t?)

0(A + 2t?)0Pi

0(A)20(zi ~Z2- 2t?)

z2)0(2t?)20(A + z-z2)0(A z + zi — 2t?)

0(zi - z2

0(A + 27?)0(A + z1-Z2

2t?)0(A)20(A - 2t?)

2t?)0(z - zi)0(z - z2 + 2t?)0(2t?)

9(zx - z2 - 2t?)0(A)0(A - 2t?)

We want to show that 032 = 0. First, we show that all summands transform the same

way under A-»A + 1,A-+A + t. Indeed A —» A + 1 leaves every summand unchanged
and X -y X + t multiplies every summand by a factor e-25T7(2x-22+2n) ^y meanS 0f the

transformation properties of the odd Jacobi theta function.

The residues at A = 2t? and A = 0 vanish identically. Let us check this for A = 2t?. (The
second case is slightly more complicated due to derivatives caused by the second power

of 0(A).)

0(4t?)0(zi - z2)9(z -Z2 + 2n)9(z - zx)
ResA=2„(a32)

0(Z1 - Z2
- 277)

0(4t?)0(zi - z2)9(z - zx)9(z - z2 + 2t?)

0(zi - z2
- 2t?)

_2n
= 0. Thus, a32 = 0.

+

= 0.

Furthermore, as2\x=

By comparing the operator thus calculated to a^ux e(z, zx, z2, A) we see that both coincide.

Let us now show the second identity.

"1pi,z2,A)6f(A2,eY (z, Zi, Z2,X)A2,e(zi, Z2,A) =

0

0

0

0

9(X+z1-z2)9(2n)
9{z1-Z2-2n)9{X)

0

( 1

0

0

9{zx-Z2)9{X+2n)
9{z!-z2-2n)9{X)

0

0

1

o\
0

0

1J

I o

^21

frfl
0

0

0

0

9{X+zi-z2+2n)9{2ri)
9{X+An)9{z1-z2)

0

0

9(X-z+z2)9(z-z1+2r))9(2n)
0(A)

^31

0

0

0

0

&42

0

0

(zi-Z2-2?7)g(A+2n) f
ö(A+47?)e(zi-^2)

0 ]

0

0

0

9(2r])9(X-z+Z2)9(z-z2)9(z1-z2-2ri)
9(X)9(z1-z2)

0

0

0

b%

0\
0

0 \
0

0

0/

-+277

y
0 \
0

0

y

J.+277

with

^21

y31

y42

^43

0(z - zi + 2t?)0(A - z + z2)0(2t?)

0(A)

0(z - z2)0(A - z + zi - 2n)9(2n)

0(A)

0(z -Z2 + 2t?)0(A z + zi + 2n)9(2n)

0(A + 2t?)
z + z2)0(z-zi)0(A + 4t?)0(2t?)0(A

0(A)0(A + 2t?)
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and

0(A + zi
- z2)0(2t?)20(A - z + z2)0(z - zi + 2t?)

^31

642 =

0(zi - z2 - 2t?)0(A)2

0(A + 2t?)0(zi - z2)0(A - z + zi - 2??)

0(zi - z2 - 2r?)0(A)2

0(2t?)0(A -Z + ZI + 2n)9(z - z2 + 2t?)

0(A + 2t?)

0(2t?)20(A - z + z2)9(z - Zi)9(X + Z1-Z2 + 2t?)
+

0(A)0(A + 27?)0(z1-z2)

If we compare the single term coefficients of (v42)e)_1pi, z2, A)of2(z, z\, z2, X) w4.2iepi, z2, X)
with the corresponding entries of b^ux e(z, zx, z2, A) in Lemma 8.3, we perceive that they

are identical.

It remains to be checked that

0(A-z + zi)0(27?)0(z-z2 + 2t?)
631 =

0(A)

and

0(A + z - zi)0(z - z2)0(zi - z2 + 2t?)
42 _

0(A)0(zi-z2)

Let us verify the second of the above identities. The first is shown analogously.

Each summand of its left hand side and the term on the right hand side transform

identically under A —y X + 1 and are to be multiplied by e-2m(-z+zi) y? ^ _^ A _l_ t_ rpne

zeroes of the right hand side are at A = z — zi and z = z2 and are easily shown to be

zeroes of the left hand side. There are possible residues occurring at A = —2t? and A = 0.

They read:

ResA=-277p42) = ~9(2n)9(z - zx)9(z - z2 + 2t?)

,
0pi - z2)0(2t?)0(z - z2 + 2t?)0(z - zi)

and

ResA=0p42) = -

= ResA=o

0pi - z2)

0(2t?)0(z - z2)9(z - zx)0(zi - z2 + 2r?)

0(zi - z2)

0(A + z - zi)0(z - z2)0(zi - z2 + 2??)

0(A)0(zi-z2)
j'

Hence, the left and the right hand side of the equation coincide. Thus, the second identity

of Proposition 5.4 holds true.

The third identity is proved by similar means.

Proposition 5.5 For X / 0, a basis of V®2 is given by

B2 = {A2,e(zi,z2, X) e[ax] ® e[a2] | at E {-1,1} for 7 = 1,2}.

In this basis the operator af2p, zi,z2,A) ^s diagonal.
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Proof:

For every A ^ 0 A2,e(zx, z2, A) is a regular matrix on V®2.

We know that the operator (A2,e)~1(zx,z2,X)af2(z, zx,z2, A)*4.2jepi,z2, A) is diagonal in

the basis e[ax] ® e[<72], i.e.

(^2,e)"1pi,z2,A)ä®2(z,zi,z2,A)^l2iep1,z2,A)(e[cri](8)e[cr2])
= cvl)(J2(A)p[(7i]<g>e[cr2]),

where Oiax^2(X) indicates the eigenvalue of the operator depending on the vector e[ax] ®

ep2] the operator acts on. This identity leads to

ä®2p,zi,Z2,A)(^2iepi,z2,A)p[cri](g)e[cr2]))
= a<n,<T2(X)A2,e(zi, z2, X)(e[ax] ® e[o-2]),

showing that ä®2(z,zi,z2,A) is diagonal in the basis v32.

Corollary 5.6 The new basis is explicitly given by the following four vectors

\

vx

0

0

v o y

,V2

( ° \ ( °

1 0

e(X+z1-z2)9{2n)
9(X+2n)9{z!-z2)

,"3 = 9(z1-Z2-2n)9(X)
9{X+2n)9(z1-Z2)

774 =

(0)
0

0

Note that we will need these expressions for the case n = 3.

5.2 Computing the auxiliary representation for n = 3

Synopsis:

Here, we repeat the steps of the case n = 2 for the case n = 3.

First, we define the isomorphism «43,epi,z2,Z3, A) as used in Proposition 4.43 (Lemma
5.7). Then, we give the representations we want to compare: in Lemma 5.8, we define

(M(C,F®3),Lf(0123)p,zi^^
and in Lemma 5.9 (M(C, V®3),Laux,e P, zi,z2,z3, A)). In Proposition 5.10, we show

that by means of the iosmorphism given in Lemma 5.7 both representations are indeed

isomorphic. This is a special case, n = 3, of Proposition 4.343. Finally, we show that

in the basis of F®3 given by the isomorphism A3fi(zx,Z2,z3,X) needed in Theorem 4.44

- where we start with the standard tensor product basis of V®3 - is indeed a basis in

which äsos,e(z, zi,z2,Z3, A) is diagonal (Lemma 5.11).
Remark:

Having calculated the auxiliary representation in the case 77 = 2, we may reiterate the

same steps in the case n = 3 using what we obtained before.

Let us first state the isomorphism of Proposition 4.43 in the case n = 3.
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Lemma 5.7 The isomorphism A3,e(zi,z2,z3,X) E End (V®3) C End (M(C, V®3)) is

given by

with

a77

Its inverse is given by

A3,e (Zl,Z2,Zs, \) =

/I 0 0 0 0 0 0 °\
0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 Ö52 «53 0 a55 0 0 0

0 0 0 a64 0 ^66 0 0

0 0 0 Ü74 0 0 a77 0

\o 0 0 0 0 0 0 l)

0,52 =

«53 =

a64 =

a74

Û55

^66 =

9(2n)9(X + zx-z3- 2n)9(z2 - z3 + 2t?)

0(A + 2r?)0(z2 - z3)0(zi - z3)

0(2t?)0(A + ZX-Z2- 2n)9(z2 - z3 - 2t?)

0(A + 2t?)0(zi - z2)0(z2

0(27?)0(A + Z1-Z2 + 2t?)

0(A + 4t?)0(zi-z2)
'

0(27?)0(A + zi-z3+27?)

Z3

0(A + 4t?)0(zi - z3)
'

0(A - 2t?)0(zi -zi- 2n)9(zx - Z3 - 27?)

0(X + 2t?)0(zi - z2)0pi -z3)

0(A + 2t?)0(zi - z2 - 2t?)

0(A + 4t?)0(zi-z2)
'

0(A + 2t?)0(zi -z3- 2t?)

0(A + 4t?)0(z1-z3)
'

(A3,e)~l(zX,Z2,Z3,X) =

/I 0 0 0 0 0 0 °\
0 10 0 0 0 0 0

0 0 10 0 0 0 0

0 0 0 10 0 0 0

0

0

0

\o

a521 aÉ 0 a,A 0

0 0 a^l 0 a^
0 0 o^l 0 0

0 0 0 0 0

0

0

177

0

0

0

0

11
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with

ab2 = ~

-*53

*64

J74

^55

0(2t?)0(A + zi - z3 - 2n)9(zi - z2)9(z2 - z3 + 2t?)
0(A - 2t?)0(z! - z2 - 2t?)0(zi - z3 - 2r?)0(z2 - z3)

'

0(2??)0(A + ZI-Z2- 2n)9(zi - z3)9(z2 - z3 - 2n)
9(X - 2n)9(z2 - z3)9(zi -

9(2n)9(X + Z1-Z2 + 2n)

'9(X + 2n)9(zi-z2-2nY

9(2n)9(X + zi-z3 + 2n)

z2 - 27?)0(Z! - Z3 - 2t?)
'

a66 —

*77

0(A + 27?)0(zi-Z3-27?)'

0(zi - z2)9(zi - z3)0(A + 2t?)

0(A - 2t?)0(zi -zi- 2n)9(zx - z3 - 2t?)
:

0(zx - z2)0(A + 4??)

0(zi - z2 - 2t?)0(A + 2n)
'

0(zi - z3)0(A + 4??)

0p! -

z3
- 2t?)0(A + 2t?)

'

Proof:

The proof consists in filling the appropriate terms into Definition 4.42. Multiplication of

"43,epi,z2, Z3, A) with (A-3:e)""1(zi,z2,Z3, A) shows that the inverse was properly chosen.

Let us now continue by describing the tensor product representation (M(C,
T/®3),L®3(z,zi,z2,z3,A) = R^z _ Zi^x _ 2v(h2 + h3)) ® LauX!e(z,zi,z2,X)) and the

auxiliary representation (M(C, V®3),L^UXfi(z,zi,Z2,z3, A))as in the previous case.

Lemma 5.8 The entries of Lf3(z,zi,Z2,z3, X) - namely äf3(z, zi,z2, Z3, A),
6f)3(z,zi,z2,z3,A),

_

c®3p, Zi, z2, Z3, A), De7j®3(z, Zi, z2,Z3) are given by the following four expressions

af3(z,zi,z2,z3,X) =

ae(z - zi, A - 2p2 + x3)) ® a^e(z, z2,z3, X) +

h(z--zi, A-2p2 + £3)) ®c£« ,eP, ^2,Z3, A) =

( an 0 0 0 0 0 0 0 ^
0 022 0 0 0 0 0 0

0 0 033 0 0 0 0 0

0 0 0 044 0 0 0 0
rp— ^

0 Û52 Û53 0 055 0 0 0 1x

0 0 0 Ü64 0 am 0 0

0 0 0 a74 0 0 a77 0

\ 0 0 0 0 0 0 0 «88 1

-277
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with

an = 9(z - zi + 2t?)0(z - z2 + 2t?)0(z - z3 + 2t?)

0(z - z3)0(A + 2r?)
a22 = 0(z - zi + 2t?)0(z - z2 + 2t?)

a33 = 9(z - zi + 2t?)0(z - z2]

0(A)

0(z - z3 + 2t?)0(A + 2t?)

0(A)

044 =
9(z - zi + 2t?)0(z - z2)B(z - z3)9(X + An)

0(A)

Û55
0(z - zi)0(z - z2 + 2t?)0(z - z3 + 2t?)0(A - 2r?)

am

a77

0(A - 4t?)

0(z - zi)0(z - z2 + 2t?)0(z - z3)0(A + 2t?)2
9(X)2

(z - zx)9(z - z2)9(z - z3 + 2t?)0(A + 2t?)2
0(A)2

0(z - zi)0(z - z2)9(z - z3)9(X + 6t?)

0(A)

<252

«53

0(A + z - z3 - 2t?)0(z-- z2 + 2t?)0(2t?)20(A --47? -- z + zi)0p2 - z3 + 2t?)

0(A + z - z2 - 2t?)0(z -

0(A)0(A - 4t?)0(z2 -

- Z3 + 2t?)0(2t?)20(A-

-z3)

-An--z + zi)0(z2 - z3 -2n)

a64 =

a74

0(A)0(A - 4t?)0(z2 - z3)

0(A + z - z2 + 2t?)0(z - z3)0(2t?)20(A - z + zi)

0(A)2

0(A + z - z3 + 2t?)0(z - z2)0(2t?)20(A - z + zx)

0(A)2

and fef3(z, zi,z2,z3,A) =

aep -

zi, A - 2p2 + x3)) ® tffux>e(z, z2,z3, X) +

be(z - zi, A - 2p2 + x3)) ® cÇp, z2, z3, A),

where the operator is not written down as a matrix due to the complicated structure of
3^(z,Z2,z3,X). The last two operators read:

c®3(z,zi,z2,z3,A) =

/ 0 c12 eis 0 eis 0 0 0 \
0 c24 0 c26 0 0

0 c34 0 0 c37 0

0 0

0 0

0 0 0 0 0 0

0 0 0 0

0 c48

0 c56 c57 0

0 0 0 0 0 0 0 c68

0 0 0 0 0 0 0 c78

Voo 0 0 0 0 0 0 /

-2n
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with

Cl2 =
9(z - zi)9(X - 6n)9(2n)9(X + z - z3

- 2n)9(z - z2 + 2t?)0(z2 - z3 + 2t?)

C13

0(A - 4t?)0(A)0(z2 - z3)

0(z - zx)9(X - 6t?)0(27?)0(2t?)0(A + z - z2
- 2t?)0(z - z3 + 2t?)0(z2 - z3 - 2t?)

C24

C34 =

0(A - 4t?)0(A)0(z2 - z3)

0(z - zi)0(A - 2t?)0(A + Z-Z2 + 2n)0(z - z3)9(2n)

0(A)2

0(z - zi)0(A - 2??)0(A + z-z3 + 2n)9(z - z2)9(2n)

C15 =

C26 =

C37 =

0(A)2

0(2t?)0(A - 4t? + z - zi)0(z - z2 + 2t?)0(z - z3 + 2t?)

0(A - 4t?)

0(2t?)0(A + z - zi)0(z - z2 + 2t?)0(z - z3)0(A + 2t?)

0(A)2

0(2t?)0(A + z - zi)0p - z2)9(z - z3 + 2t?)0(A + 2t?)

C48 =

0(A)2

0(2t?)0(A + z - zi + 4t?)0(z - z2)0p - z3)

0(A)

cm =

C57 =

0(2t7)0(z - zi + 2t?)0(A + z-z3- 2n)9(z - z2 + 2t?)0(z2 - z3 + 2r?)

0(A)0(z2 - z3)

0(2t?)0(z - zi + 2t?)0(A + Z-Z2- 2t?)0(z - z3 + 2r?)0(z2 - z3 - 2n)

C68 =

C78

0(A)0(Z2 - Z3)

0(z - zi + 2t?)0(A + Z-Z2 + 2t?)0(z - z3)0(2t?)

0(A)

0(z - zi + 2t?)0(A + z - z3 + 2t?)0(z - z3)0(2t?)

0(A)

and

Detf3(z, zi,z2,z3) = 9(z - Zl + 2n)9(z - z2 + 2t?)0(z - z3 + 2t?)

9(z - zi - 2t?)0(z -z2- 2n)9(z - z3 - 2t?)I3.

Proof:

This is a straightforward calculation, taking into account the multiplicative property of

the quantum determinant.

Lemma 5.9 The auxiliary representation (M(C, V®3),L^UX e(z, zi,Z2, z3, A)) is given by

f an 0 0 0 0 0 0 0\
0 a22 0 0 0 0 0 0

0 0 a33 0 0 0 0 0

0 0 0 a44 0 0 0 0
T_2r?

0 0 0 0 a55 0 0 0

0 0 0 0 0 a66 0 0

0 0 0 0 0 0 a77 0

\ 0 0 0 0 0 0 0a88y

;p,zi,z2,z3,A) =
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with

an = 9(z-zi + 2n)9(z-z2 + 2n)9(z-z3 + 2n),

9(z - zi + 2t?)0(z - z2 + 2??)0(z - z3)0(A + 2??)

0(A)

0(z - zi + 2t?)0(z - z3 + 2t?)0(z - z2)0(A + 2r?)

0(A)

0(z - zi + 2t?)0(z - z2)9(z - z3)0(A + 4t?)

0(A)

0(z - zi)0(z -Z2 + 2n)9(z - z3 + 2??)0(A + 2t?)

0(A)

0(z - zi)0(z - z2 + 2r?)0(z - z3)0(A + 4t?)

0(A)

0(z - zx)0(z - z2)0(z - z3 + 2??)0(A + 4t?)

0(A)

0(z - zx)0(z - z2)9(z - z3)0(A + 6??)

0(A)

Û22 =

Ö33 =

044 =

«55 =

«66 =

«77 =

a88 =

with

°aux,e(z,Zl,Z2,Z3,X)

Ö21

&31

&42

&43

&51

&62

&65

&73

&75

rp+2n

/ 0 0 0 0 0 0 00\
62i 0 0 0 0 0 0 0

631 0 0 0 0 0 0 0

0 &42 643 0 0 0 0 0

&5i 0 0 0 0 0 0 0

0 b&2 0 0 &65 0 0 0

0 0 b73 0 675 0 0 0

V 0 0 0 &84 0 686 &87 0 y

0(A - z + z3)0(27?)0(z - zi + 2t?)0(z - z2 + 2t?)

0(A)

0(A - z + z2)0(2t?)0(z - Z! + 2t?)0(z - z3 + 2r?)

0(A)

0(z2 - z3 + 2t?)0(A - z + z2)0(2t?)0(z -zx + 2t?)0(z - z3)

0p2 - z3)9(X)

0(z2 - z3 - 2t?)0(A - z + z3)9(2n)9(z - zx + 27?)0(z - z2)

0(z2 - z3)0(A)

0(A - z + zi)0(2??)0(z - z2 + 2t?)0(z - z3 + 2t?)

0(A)

0(A - z + zi)0(2t?)0(z - z2 + 2t?)0(z - z3)9(zx - z3 + 2t?)

0(zi - z3)0(A)

0(A - z + z3)9(2n)9(z - zx)9(z - z2 + 2t?)0(zx - z3 - 2t?)

0(zi - z3)0(A)

0(A - z + zi)0(2t?)0(z - z2)0(z - z3 + 2t?)0(zi - z2 + 2r?)

9(zx - z2)0(A)

0(A - z + z2)0(z - zi)0(z - z2 + 2t?)0(zi - z2
- 2t?)0(2t?)

0(zi - z2)0(A)
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with

b&4

387

0pi - z2 + 2t?)0(zi - z3 + 2t?)0(2t?)0(A - z + zx)

0pl - ^2)ö(z2 - Z3)

0(z - z2)0(z - z3)

0(A)

0(A - z + z2)0(2t?)0(z - zi)0(z - z3)

0pi - z3)0(z2 - z3)

0(Z! - Z2
- 27?)0(Z2 - Z3 + 27?)

0(A)

0(A - z + z3)0(2t?)0(z - zi)0(z - z2)

0(zi - z3)0(z2 - z3)

0(zi - z3 - 2t?)0(z2 - z3 - 2t?)

0(A)

X

c?
aux,e (z,zi,z2,z3,A) =

/ 0 C12 C13 0 CIS 0 0 0 \
0 0 0 c24 0 c26 0 0

0 0 0 c34 0 0 c37 0

0 0 0 0 0 0 0 c48

0 0 0 0 0 c56 c57 0

0 0 0 0 0 0 0 c68

0 0 0 0 0 0 0 c78

Voo 0 0 0 0 0 0/

rp-2n

-A

C12 =

C13

C15

C24

C26

C34

C37

9(2n)9(X + z-z3- An)9(z -zt + 2n)9(z - z2 + 2t?)

Q(zi - z2)9(z2 - z3)

9(zi - z3 + 2t?)0(z2 - z3 + 2??)
X

0(A)

0(2t?)0(A + Z-Z2- An)9(z - zx + 2r?)0(z - z3 + 2t?)

0pi - z;2)0(z2 - z3)

0(zi - z2 + 2t?)0(z2 - z3 - 27/)
x

m '

0(2t?)0(A + z - zi - 4t?)0(z - z2 + 2t?)0(z - z3 + 2t?)

0pi - z2)0(zi - z3)

0(z! - z2 - 2t?)0(zi -zz- 2n)

0(A)

0(2t?)0(A + z - z2)0(z - z3)0(z - zi + 2t?)0(zi - z2 + 2??)

0(A)0(zi - z2)

0(2t?)0(A + z - zi)0(z - z2 + 2t?)0(z - z3)0pi - z2 - 2t?)

0pi - z2)0(A)

0(2t?)0(A + z - z3)0(z - zi + 2t?)0(z - z2)0(zi - z3 + 2t?)

0(A)0(zi - z3)

0(2t?)0(A + z - zi)0(z - z2)0(z - z3 + 2t?)0(z1 - z3 - 2t?)

öpi - z3)0(A)
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C48 =

C56 =

C57 -

C68 =

C78 =

0(2t?)0(A + z - zi + 4r?)0(z - z2)9(z - z3)

0(A)

0(2r?)0(A + z - z3)0p - zi)9(z -Z2 + 2t?)0(z2 - z3 + 2t?)

0(z2 - z3)0(A)

0(2r?)0(A + z - z2)9(z - zx)9(z - z3 + 2t?)0(z2 - z3 - 2r?)

0p2 - z3)9(X)

9(2n)9(X + Z-Z2 + An)9(z - zx)9(z - z3)

0(A)

0(2r?)0(A + z-z3+ An)9(z - zx)9(z - z2)

0(A)

Detaux,e{z,Zl,Z2,Z3) = 9(z - ZX - 2??)0p - Z2 - 2r?)0(z - Z3 - 2r?) X

x 0(z - zi + 2t?)0(z - z2 + 2??)0(z - z3 + 2t?) I3-

Proof:

This is a rewriting of the definition of the auxiliary representation of Proposition 4.33 for

the case n = 3.

aaux,e(z, ZX,Z2,Z3, A),

^L.e^l^^A),
C%ux,e(z,Zl,Z2,Z3,X),

Det^e(z,zi,z2,z3),

(91)

(92)

(93)

(94)

Proposition 5.10

(A3,eyläf3(z, Zl, Z2, Z3, A)^3,e

(^3;e)-16®3(z,Zi, Z2, Z3, A)^3>e

(»43,e)_1cf3(^^iA2,^3,A)^3,e

(^eP^er;®3p, zi, z2, z3)^3,e

Turf/i ^3,e = .4.3,6pi, Z2, Z3, A).

Proof:

Throughout the proof, let us write v43je instead of «43,epi, z2, Z3, A).
Let us start with the easiest identity. Detf3(z,zi,Z2,z3) is a function independent of

a;i,a;2,a;3. Hence, we may write

(As^Detf^z, zi, z2, z3)A3,e = Detf3(z, zx, z2, z3)(A3,e)-%A3,e

==Detaux,e(z,Zl,Z2,ZS),
since the formulas of the determinant of the tensored representation and the auxiliary
representation coincide.

Let us now first check the identity involving the operator d^ux e(z, zx, Z2, z3, A), then the

one involving c~UXtC(z, zx, z2, z3, A). The remaining identity can the be checked by identical

methods.

(A3e)-1af3(z,zx,Z2,z3,X)A3e =
0

\

71-277

xx

( an 0 0 0 0 0 0
0

0 a-22 0 0 0 0 0 0

0 0 Û33 0 0 0 0 0

0 0 0 044 0 0 0 0

0 «52 053 0 055 0 0 0

0 0 0 «64 0 am 0 0

0 0 0 a74 0 0 a77 0

V 0 0 0 0 0 0 0 a8
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174

If the steps of the multiplication are performed, we perceive that the diagonal entries

of the above matrix coincide with the entries of a3aux e(z, zx, z2, z3, A) as given in Lemma

5.9.
The off-diagonal entries are as follows and are to be shown to equal zero:

9(2r))6(X + Z1-Z3- 277)6(21 - z2)e(z2 - 23 + 2n)9{z - zi + 2n)9{z - z2 + 277)6(2 - z3)9(X + 2t?)
082 ~

9(X)9(X - 2ri)9{z1 - z2 - 2n)9(z1 - z3 - 277)6(22 - 23)

0(2n)29(z1 - 22)6(21 - z3)9(X + 2n)9(X + z - z3 - 277)6(2 - z2 + 2n)9{X - 4t? - z + zi)9{z2 - z3 + 2n)
+

9{X - 2n)9{zi -Z2- 277)6(21 - z3 - 2r))6(X)9{X - 477)6(22 - z3)

6(277)6(21 - z2)9(X + 277)6(2 - zi)9(z -z2 + 2n)6(z - z3 + 2n)9(X + zx-z3- 477)6(22 -z3 + 2n)

9{Z1 -zi- 2r])9{zi -z3- 2n)9{X - ir,)9{z2 - z3)9(X)

6(2??)6(A + ZI-Z2- 277)6(21 - z3)9{z2 - z3 - 277)6(2 - zi + 277)6(2 - z2)9(z - z3 + 2t?)6(A + 2n)
0,53 ~

6(A - 277)6(23 - 23)6(21 -zi- 277)6(21 - z3 - 2n)9(X)

9(zi - 22)6(21 - z3)9(X + 2ri)S(2ri)29{X + z - z2 - 277)6(2 - z3 + 2n)9(z2 - z3 - 2n)9(X - 4n - z + z{)
+

9{X - 277)6(21 -z3- 2rj)9{z1 - z2 - 2n)9(X)9(X - 477)6(22 - z3)

9(z! - z3)9{X + 277)6(2 - zi)9(z - z2 + 2rj)9{z - z3 + 2?7)6(2n)6(A + zx - z2 - 4n)9(z2 - z3 - 277)
+

9(z! - 23 - 277)6(21 - 22 - 2t7)0(A)6(A - 477)6(22 - 23)

6(2??)6(A + 2i - 22 + 277)6(2 - 21 + 277)^(2 - 22)6(2 - 23)6(A + 4n)
aM ~

8(X + 2t?)6(A)0(zx - 22 - 2n)

6(21 - 22)6(A + 4n)6(A + Z-Z2+ 277)6(2 - z3)9(2ri)29(X - z + zx)

0(2x-22-2n)6(A + 277)6(A)2

6(21 - 22)6(A + 477)6(2 - zi)9{z - 22 + 277)6(2 - z3)9{2n)9{X + zx - 22)

0(2l-22-277)6(A)20(21-22)

6(A + 2x - 23 + 277)6(277)6(2 - 2x + 277)6(2 - 22)6(2 - 23)6(A + 4n)

6(A + 2?7)ô(2x - 23 - 2t7)0(A)

0(zi - 23)6(A + 4??)6(A + 2 - 23 + 277)6(2 - 22)6(2?7)26(A -2 + 21)

6(21 - 23 - 2n)6(A + 2t7)6(A)2

6(A + 477)6(2 - 21)6(2 - 22)6(2 - 23 + 2n)9(2n)0(X + 21 - 23)

9(zx - 23 - 2t7)6(A)2

Let us perform the necessary calculation of one of those entries, e.g. as2. If A -+ A + r,

then each summand is multiplied by a factor e-27^1 -23+2n)^ wnereas \ _>. \ _)_ \ eacn

summand stays unchanged, both properties due to the transformation properties of the

odd Jacobi theta function.
Let us now check the residues which are at A = 4??, A = 2t?, A = 0.

,
_

6(21 - 22)6(21 - 23)6(677)6(277)6(277 + 2 - 23)6(2 - 22 + 277)6(2 - 21)6(22 - 23 + 277)

6(21 - 22)6(677)6(2 - zx)9(z - 22 + 277)6(2 - 23 + 277)6(277)6(21 - 23)6(22 - 23 + 27?)

0(21 - 22 - 277)6(2! - 23 - 277)6(22 - 23)6(47?)
~

'

.

_

6(21 - 23)6(21 - 22)6(22 - 23 + 277)6(2 - 21 + 277)6(2 - 22 + 2n)6(2 - 23)6(477)
KeSA=2,taB2j -

0{zi _z2_ 2??)e(zi _za_ 2rf)e{z2 _ za)

6(21 - 22)6(21 - 23)6(477)6(2 - 23)6(2 - 22 + 2t?)6(2 - 2X + 277)6(22 - 23 + 27?)
_

6(21 - 22 - 277)6(21 - 23 - 277)6(22 - 23)
'

, s

=

6(277)6(21 - 23 - 277)6(21 - 22)6(22 ~ 23 + 277)6(2 - 21 + 277)6(2 - 22 + 277)6(2 - 23)
eSMa52j

6(21 - 22 - 277)6(21 - 23 - 277)6(22 - 23)

6(21 - 23)6(21 - 22)6(277)26(2 - 23 - 277)6(2 - 21 + 477)6(22 - 23 + 277)6(2 - 22 + 277)

6(477)6(21 - 22 - 2n)6(2i - 23 - 277)6(22 - 23)

6(21 - z2)9{2n)26{z - 21)6(2 - 22 + 277)6(2 - 23 + 277)6(21 - 23 - 477)6(22 - 23 + 2n)

6(21 - 22 - 277)6(21 - 23 - 277)6(477)6(22 - 23)

The last case can be shown to equal zero if we take into account the common trans¬

formation behaviour of each summand under transformations of z —y z + t, yielding

multiplication by e-27T7(32-zi-22-23+277)^ ancj z __^ z _|_ ^ yielding multiplication by (—1).
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The two last summands can then be shown to equal the negative first one by looking at

the first one's zeroes at z = z2
— 2t?, z = zx — 2t?, z = z3 which are also zeroes of the sum

of the last two summands.

The zero of as2 are at A = —2n, A = z3 — zi + 2t?. Thus, we see that the negative first

summand of as2 equals the sum of the last two summands or put differently a^ = 0.

The entries of the matrix called 053, a^, a74 can be checked by the same means.

Thus, we conceive that the first identity of Proposition 5.10 holds true.

Let us now look at (.4.3^
tion we obtain

,-i cf3(z, zi, z2, z3, A).A3,e. If we perform the matrix mulitplica-

(A3,e) 1cf3(z,Zi,Z2,Z3,X)A3,e =

/o Cl2 Cl3 0 Cl5 0 0 0 \

0 0 0 C24 0 C26 0 0

0 0 0 C34 0 0 C37 0

0 0 0 0 0 0 0 C48

0 0 0 C54 0 C56 C57 0

0 0 0 0 0 0 0 C68

0 0 0 0 0 0 0 C78

Vo 0 0 0 0 0 0 0 y

with

CX2
(2 - 2i)6(A - 677)6(2t7)6(A + z - 23 - 277)6(2 - 22 + 277)6(22 - 23 + 2n)

6(A - 477)6(A)6(22 - 23)

6(2n)26(A - 477 + 2 - 21)6(2 - 22 + 277)6(2 - 23 + 2t?)6(A + 21 - 23 - 4t?)6(22 - 23 + 2n)

6(A - 4?7)0(A)e(22 - 23)6(21 - 23)

0(z - zi)0(A - 6t7)0(277)0(A + 2 - 22 - 277)0(2 - 23 + 277)6(22 - 23 - 277)
C13 =

0(A - 477)0(A)0(22 - 23)

+

C15

6(2?7)26(A - 4t? + 2 - 21)6(2 - 22 + 277)6(2 - 23 + 2?7)6(A + zx - z2 - 477)6(22 - 23 - 277)

6(A - 4n)e(A)6(2i - 22)6(22 - 23)

6(2?7)6(A - 477 + 2 - 21)6(2 - 22 + 277)6(2 - 23 + 2n)6(2i - z2 - 277)6(21 - 23 - 2??)

6(A)0(2i - 22)6(21 - 23)

9{z - 2i)0(A - 2t?)0(A + 2 - 22 + 2n)0(2 - 23)6(277)
C24 =

6(A)2

C26 =

0(2?7)20(A + 2 - 21)0(2 - 22 + 277)6(2 - 23)0(A + 21 - 22)

0(A)26(2!-22)

6(2t7)6(A + 2 - 21)6(2 - 22 + 277)6(2 - 23)6(21 - 22 - 277)

0(A)6(2i - 22)
• 2i)0(A - 2t7)6(A + 2 - 23 + 277)6(2 - 22)6(277)

C34 =

6(A)2

C37 :

0(2t7)20(A + 2 - 21)0(2 - 23 + 277)6(2 - 22)6(A + 21 - 23)

6(A)26(2i - 23)

6(2t?)6(A + 2 - zx)9(z - z2)9{z - 23 + 277)6(21 - 23 - 2t?)

0(A)6(2i - 23)

9(2n)9(X + Z-Z1+ An)9(z - z2)9(z - z2)8{z - 23)
C48

6(A)

C54 = --

6(2?7)26(A + 21 - 23 - 277)6(23 - 23 + 277)6(2 - 2i)6(A + 2 - 22 + 277)6(2 - 23)

6(21 - 22 - 277)6(21 - 23 - 277)6(22 - 23)6(A)2

6(2t?)6(A + 21 - 23 - 277)6(22 - 23 + 2n)9(2n)29(X + 2 - 21)6(2 - 22 + 277)6(2 - 23)6(A + 21 - 22)

6(A - 277)6(21 - 22 - 277)0(21 - 23 - 277)0(22 - 23)0(A)2
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C57 = -"

0(2n)26(A + 2i - 22 - 277)0(21 - 23)0(22 - 23 - 277)0(2 - 2i)6(A + z - z3 + 277)6(2 - 22)

0(22 - 23)0(21 - 22 - 277)0(21 - 23 - 277)0(A)2

6(2n)36(A + 21 - 22 - 277)6(22 - 23 - 2t?)6(A + 2 - 21)6(2 - 22)6(2 - 23 + 27?)6(A + 21 - 23)

6(A - 277)6(21 - 22 - 277)6(21 - 23 - 2t7)6(A)26(22 - 23)

6(21 - 23)6(2 - 21 + 2rj)9{2rj)29{X + 2 - 23 - 277)6(22 - 23 + 2t?)6(A + Zi - z2)9(z - zx + 2rj)

6(21 - Z2 - 277)0(21 - 23 " 277)0(A)6(22 - 23)

6(21 - 22)6(2 - 21 + 2?7)6(A + 2 - 22 - 277)6(2 - 23 + 277)6(22 - 23 - 277)6(2tj)26(A + 21 - 23)

0(A - 277)6(21 - 22 - 277)6(21 - 23 - 277)0(A)0(22 - 23)

_

6(277)26(A + 21 - 23 - 277)6(22 - 23 + 2?7)6(A + z - zx)9{z - z2 + 277)6(2 - 23)
C56 ~

0(A - 2n)0(2i - 23 - 277)6(22 - 23)0(A)

0(21 - 23)0(2 - 21 + 2n)9(2n)9(X + z - z3 - 277)6(2 - 22 + 277)6(22 - 23 + 2n)
+

0(21 - 23 - 2?7)0(A - 277)6(22 - 23)

6(277)26(A + 21 - 22 - 277)6(22 - 23 - 27?)6(A + z - 21)6(2 - 22)6(z - 23 + 2n)

6(A - 277)6(22 - 23)6(21 - 22 - -2n)6(A)

6(21 - 22)6(2 - 21 + 2v)9(2ri)9(X + z - z2 - 2n)8(z - 23 + 277)6(22 - 23 - 277)

6(21 - 22 - 277)6(A - 277)6(22 - 23)

6(2t?)26(A + 21 - 22 + 2?7)6(A + z - 21 + 477)6(2 - 22)6(2 - 23)
068 ~~

0(A + 27))0(2l - 22 - 2t?)0(A)

9(zx - 22)6(A + 477)6(2 - 21 + 2t?)6(A + 2 - 22 + 2t?)6(2 - 23)l?(2n)
+

6(21 - 22 - 27?)6(A + 2t7)6(A)

6(2n)20(A + 2i - 23 + 2??)0(A + 2 - 21 + 477)0(2 - z2)9(z - z3)
078 ~

0(A + 277)6(21 - 23 - 2t7)6(A)

6(21 - 23)6(A + 477)6(2 - 21 + 2?7)0(A + 2 - 23 + 277)6(2 - 22)6(277)

6(21 - 23 - 2n)0(A + 27?)0(A)

If we compare C15, c2e, c37, C48 to their counterparts in c3ux e(z, zx, z2, z3 ,A) we see that

they coincide. The claim is that also the remaining entries of the conjugated matrix are

the same as the corresponding entries of c^ux e(z, z\, z2, z3, A), in particular C54 = 0.

Let us verify this claim in one case. The other cases are treated similarly. We choose ci2.

The claim reads

0(z - zi + 2t?)0(z - z2 + 2t?)0(A + z-z3- An)9(zi - z3 + 2t?)
012 ~

0(A)0(z! - z3)0(z2 - z3)
X

x 0(z2 - z3 + 2t?)0(2t?) = (c^gp, zi, z2, z3, A))i2-

The transformation behaviour of ci2 is e-2m(z-z3-4v) whße \ _>. A+r and ci2 if A —y A+l.

This coincides with the behaviour of (c^uxe(z, z\, z2, Z3, A))i2.
The residue of ci2 at A = 4t? vanishes, whereas its residue at A = 0 yields

. . 0(z - z1)0(67?)0(2t?)0(z - z3 - 2t?)0(z - z2 + 2t?)0(z2 - z3 + 2t?)
ResA=0(ci2) = r

9(An)9(z2 - z3)

0(z - zi - 4t?)0(2t?)20(z - z2 + 2t?)0(z - z3 + 27?)0(zt - z3 - 4t?)0(z2 - z3 + 2rj)

9(An)9(zi - z3)9(z2 - z3)

=

9(2n)9(z - z3 - 4t?)0(z - zx + 2t?)0(z - z2 + 27?)0p! - z3 + 2t?)0(z2 - z3 + 2t?)

öpi - z3)0(z2 - z3)

= Resx=o(c^ux>e(z, zx,z2, z3, A))i2.

That the above equation holds true is conceived by investigating the transformation

behaviour with respect to z —y z + r which yields a multiplication of every summand by
e-27T7(32-2i-22-23) an(j z _). z _l_ i leading to a multiplication by (—1).
The zeroes are also identical occurring at z = z2 — 2??, z = zi — 2n, z — z3 + 4t?.
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The zeroes of ci2 are at A = 4t? + Z3 — z, z = zx — 2n, z = z2 — 2t?. Hence, they coincide

with the zeroes of (c~;ux e(z, Z\, z2, z3, A))i2. This shows that

c12 = (c^Ux,e(z,Zl,Z2,Z3,X))X2.

Note that due to symmetry while interchanging z2 and z3, the same calculation can

be used to show that ci3 = (c^ux e(z,zi,z2,z3, A))i3. This proves the second identity of

Proposition 5.10. The third identity can be shown by identical means. This completes
the proof of Proposition 5.10.

Remark:

The last lemma concerns the structure of the eigenvectors of dsos,e(z, zi, z2, z3, A).

Lemma 5.11 For A^O, a basis of V®3 is given by the set of vectors

B3 = p43,epi,z2,z3,A)(e[o-i] ® e[a2] ® e[a3}) \a% E {-1,1},i = 1,2,3}.

with A3jÉ(zi, z2, Z3, A) = (I2 ® A2,e)(z2, Z3, X)A3>e(zi, Z2, Z2, X). In this basis the operator

dsos,e(z,zi,z2,z3,X) =

ae(z - zi, X - 2n(x2 + x3)) ® (ae(z - z2, A - 2??a;3) ® de(z - z3, X)

+be(z - z2, A - 2r?x3) ® cXte(z - z3, A)) + be(z - zx ,A - 2r?p2 + x3))®

(ce(z - z2, A - 2nx3) ® ae(z - z3, A) + de(z - z2, A - 2nx3) ® ce(z - z3, A))

is diagonal, as is suggested by Proposition 4-44-

Proof:

We know that in the basis e[ax] ® ep2] ® e[a3],ay G {—l,l},i = 1,2,3, the operator

^aux e(z, zi, z2, Z3, A) is diagonal. By Proposition 5.9, it follows from

(A3,e)~1âf3(z, zx, Z2, z3, X)A3,ee[ai] ® e[a2] ® e[a3]
= Oiaxcr2a3{X)e[°'i\ ® e[°2] ® e[a3],

where aa-10-r,a3(X) denotes the eigenvalue corresponding to the basis vector in case, that

ä®3p, zi, z2, z3, A) pt3,eppi] ® ep2] ® e[a3}))
= Oiai(T2a3(X)A3>e p[ai] ® e[a2] ® e[a3]).

Let us now look at the definition of the operator a®3 (z, zi, z2, z3, A) in Lemma 5.8 yielding

(ae(z, zi, A - 2??p2 + h3)) ® a%UX}e(z, z2,z3, A)

+be(z, zi, A - 2n(h2 + h3)) ® c%ux^e(z, z2,z3, A))*43ie(e[oi] <8> e[a2] ® e[a3}))
= (y.ai(72(7i(X)A3,e (e[ax] ® e[a2] ® e[a3])

and by Proposition 5.4

(aep, zi, A - 2??(ft2 + h3)) ® ((A2,e)~1äf2(z, z2,z3, X)A2,e)

+be(z, zi, X - 2??(ft2 + h3)) ® ((A2,e)~1cf2(z, z2, zz, X)A2,e)) x

x^3,e(e[o-i] <8> e[a2] ® ep3]) = aai(T2<Ta(X)A3,e (e[ax\ ® e[a2] ® ep3]),
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what can be rewritten as

Pi ® (A2,e)~1) {ae(z, zi, X - 2n(h2 + h3)) ® 5®2(z, z2, z3, A)

+be(z, zi, X - 27?(ft2 + h3)) ® cf2(z, z2, z3, A)) (Ii ® A2,e)

A3,e(e[ai] ® e[a2] ® e[a3])
= pi ® A2,e))~l (aep, zi, A - 2n(h2 + ft3)) ® df2(z, z2, z3, A)

+be(z, zi, A - 27?(ft2 + h3)) ® cf2(z, z2, z3, A)) pi ® A2,e)

A3,e(e[ai] ® e[a2] ® e[a3]) =

ao-xo-2<T3(X)A3,e (e[a{\ ® e[a2] ® e[a3]) .

Throughout the computation we denoted A.3>e = A3%e(zi, z2, z3, A) and *42,e = A2,e(z2, z3, A).
If we look up the definition of ä®2p, z2,z3, A) and c®2(z, z2,z3, A) in Lemma 5.2, this

yields the result claimed in Lemma 5.11.

Corollary 5.12 The basis B3 ofV®3 is explicitly given by the following eight vectors

Vl

0

0

0

0

0

0

Voy

/

,v2 =

/

"3

\ /

0(22-23-277)0(A)
6(A+277)0(22-23)

0

0(2?7)6(A+2i -22-277)6(22-23-277)
6(A+277)6(22-23)0(2l-22)

0

0

V 0

/ 0

0

0

0

V5 = 0(A-2n)0(2i -22-2n)0(2i -23-277)
0(A+277)0(21-22)0(21-Z3)

0

0

0

,v±

0

1

6(A+22-23)6(27;)
6(A+27?)6(22-23)

0

6(277)6(A+2i-23-277)6(22-23+277)
e(A+277)6(22 -Z3)ö(2l -23)

0

0

0

0

0

0

1

0

6(277)6(A+2i-22+2?7)
6(A+477)0(2l-22)

0(277)6(A+2i-23)6(21-22+277)
6(A+477)6(2i-22)6(21-23)

0

/ °

0

0

0

1 «6 = 0

8(A+2n)8(2i -22-277)
6(2i-22)6(A+477)

6(2?7)6(A+22 -23)6(21 -22-277)
6(2l-22)0(22-23)0(A+477)

0

\
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7J7 =

0

0

0

0

0

0

6(A)6(22-23-277)6(z! -23-27))
0(A+4n)0(22 -23)0(21-23)

V 0

,V8

0

0

0

0

0

0

V 1 /

where for the fourth vector we used the fact that the sum of the residues of the function

0(A - zi + 2r?)0(A - z2 + 2t?)0(A - z3 - 4??)

0(A - zi)0(A - z2)0(A - z2)

- being invariant under X —y X + t, A—> A + 1 - vanishes.

Note that we will use this corollary while treating the antiperiodic SOS model.

5.3 The antiperiodic SOS model in the case n = 3

Synopsis:
Now let us look at the antiperiodic SOS model in the case 77 = 3. We first write down

the auxiliary antiperiodic transfer matrix in the case 77 = 3 (cf. below). Note that we

fixed A = Ao to ensure commutativity.

Then, we describe an eigenvector of this transfer matrix in Proposition 5.13. (This serves

as a sign that finding eigenvectors of the auxiliary transfer matrix seems feasible.)
In Lemma 5.14, we find the corresponding eigenvalue and show that it indeed obeys the

properties of Proposition 4.54 which are sufficient and necessary for it to be a common

eigenvalue of the SOS antiperiodic transfer matrices as well. The eigenvector of the SOS

transfer matrix corresponding to the one of Proposition 5.13 would then be given by
Theorem 4.55.

Remark:

Here, we first need to verify that, since we had to restrict A to A = Xi + X2 + x3 with

Xy E {-n, ??}, i = 1,2,3 ,
A ^ 0.

We first want to look at the eigenvectors and eigenvalues of the antiperiodic SOS transfer

matrix

Taux,e(ziZliz2,Z3,XQ) = (bauXfi + Caux^)(z, Z\, Z2, Z3, A0),

where Ao = Xi + X2 + x3, and then use the obtained results to look at the antiperiodic
SOS transfer matrix

Tsos,e(z, zi,z2, z3, A0) = bSos,e(z, zx, Z2, Z3, Ao) + cSos,e(z, Zl, Z2, Z3, Ao),

where A0 = n(hi + ft2 + ft3).
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Proposition 5.13 An eigenvector to the auxiliary antiperiodic transfer matrix is given

by

ill

VQ,aux = ^2 ^2 ^2 e^ ® e^ ® e^ =

<Ti =— l <T2 =— 1 cr3=-l

The corresponding eigenvalue reads

1

1

1

1

1

1

V i /

(95)

eop,Zi,z2,z3) =

0(277)0(2-21+377)6(2-22)6(2-23)6(21-22+277)6(21-23+277)
6(377)6(21-22)6(21-23

6(2-22+377)6(277)6(2-21)6(2-23)6(21-22-277)6(22-23+277) ,

6(377)6(21-22)6(22-23)
~t

6(z-23+3n)6(277)6(2-21)6(2-22)6(21-23-277)6(22-23-277)
6(377)6(21-23)6(22-23)

Proof:

Let us first write down the auxiliary transfer matrix

Taux,e(z,Zi,Z2,Z3,Xo) =

+

p,zi,z2,z3,A0) + c^ep,zi,z2,z3,A0) =

/ 0

*21

Pi

0

Pi

0

0

V 0

0 0

0 0

0 0

p2 p3

0 0

*62 0

0 <73

0 0

0

0

0

0

0

0

0

p4

0

0

0

0

0

p5

p5

0

0 0 \
0 0

0

0

0

0

0

0

0 0 0

p6 p6 0 J

0 0

0 0

0 0

0 0

J.+277

(96)

+

/ 0 p2 P3 0 p5 0 0

0 0

0 0

0 0

0 0

0 0

0 0

V 0 0

0 i24 0 t26 0

0 p4 0 0 t37

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 \
0

0

0 0 t48

p6 p7 0

0 0 p8

0 0 p8

0 0 0 y

71-27?

-A
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with

*12 =
fl(277)fl(-7J+Z- z3)B(z -Zi + 277)9(2 -22 +2rt)6(z1 --

z3 + 277)8(22 --

z3 +2i))

fl(37))fl(zi - z3)fl(z2 - z3)

9(2r])9(z - z2 - 77)8(2 -

zi +2r,)6(z- 23 + 277)8(21 --

z2 + 2t))9(z2 --

za - 2ij)

9(3t1)9(z1 - z2)9(z2 -23)

8(277)9(2 - zt - ij)9(z -

z2 + 277)8(2- z3 + 277)8(21 "-

z2
- 2n)e{zt --

z3 - 277)

*21 =

HSv)»(zi -z2)9(z1 -23)

8(277)8(2 - z3 - 77)8(2 -zt+ 277)9(2 - z2 + 2n)

9(7,)

*24

*26 =

*34 =

9(277)8(2 - Z2 + 77)8(2 - z3)9(z -zi+ 2rj)9(zi -

22 + 2V)

9(77)8(21 -22)

0(2 - 21 + 77)8(2 - 22 + 27))9(z - 23)9(2! -

22
- 277)8(277)

*31 =-

9(77)9(2! -22)

9(z - 22 - 77)9(z - 21 + 277)9(2 - 23 + 277)8(277)

9(„)

9(z - «3 + 77)8(277)8(2 - z2)8(2 - zx + 277)9(2! - z3 + 2t))

'37 :

*42 :

9(77)9(21 - 23)

8(2 - 2! + 7j)9(2 - 22)9(2 ~ 23 + 277)9(2! ~

Z3 + 271)6(27,)

9(77)9(2! - 23)

9(277)9(2 -

22 + 7j)9(2 - 21 + 277)9(2 - 23)8(22 -

23 + 2t?)

*43 =

9(77)9(22 -23)

9(2 - 23 + »7)9(2 - 21 + 277)9(2 - 22)9(2t7)9(22 - 23 - 277)

'48 '

fl(77)9(22 - 23)

8(27))9(2 - z3)8(z - 22)9(z - zi + 3tj)

9(77)

*51 =
6(z - 21 - 77)9(z -

22 + 277)9(2 - Z3 + 277)9(277)

9(v)

*58 =

*57 =

*62 =

*65^

9(2 -23 +V)9(z -2i)9(2 -22 +277)9(277)9(22 -23+277)

9(77)9(22-23)

'(277)9(2 - za + 77)9(z - 21)9(2 - z3 + 2t7)9(z2 - 23 - 277)

9(77)9(22-23)

)(z - zi + >7)9(277)9(2 - 22 + 277)9(2 - 23)8(21 -

23 + 277)

9(77)9(21 -23)

9(2 - 23 + 77)8(277)9(2 - zi)9(z - 22 + 27))9(2i -

23 - 277)

9(77)8(21 -23)

9(2 - 22 + 377)9(277)9(2 - 2l)9(2 - 23)

'73 =

9M

9(z -

21 + 77)9(277)9(2 - 22)9(2 - 23 + 277)8(21 - 22)

9(77)9(2! -z2)

9(z - Z2 + 77)8(277)8(2 - 21)8(2 - zs + 2t))9(zi -

z2 - 277)

*78 — —

9(77)9(21 -z2)

9(277)9(2 - 23 + 377)9(2 - zi)9(z - 22)

9(1)

*84 =

*87 :

9(277)8(z -

21 + 377)9(2 - 22)9(2 - 23)9(21 -

22 + 277)9(zi -

-23 +277)

9(377)9(2i -22)9(zi -23)

8(z - z2 + 3ti)9(2tî)9(z - zi)fl(z - z3)fl(*i -

z2 - 277)6(22 -

-Z3 +27?)

8(377)8(Z! -22)9(z2- 23)

9(2 - 23+377)9(277)9(2 - 21)9(2 - 22)9(zi -

23
- 2t7)9(22 --

23
- 277)

8(377)8(21 -23)8(22-23)

If we evaluate this matrix on vojaux, we get eight different expressions for the eigen¬
value eop,zi,z2,Z3). We can check that they are all in 63p;), x(l) = — l,x(T) =

_e+27T7(2i+22+23)-67r777_ jjenC6) we nave to prove that the eight values mutually coin¬

cide at three points: The first and second value coincide when evaluated at z = zx —

2n, z — z2 — 2t?, z = z3 + 7?, hence everywhere. The third and fourth value coincide at

z = Zi — 2??, z = z2,z = z3 — 77, hence everywhere. The fifth and sixth term coicide

at z = zi,z = z2 — 2t?,z = Z3 — 7?, hence everywhere. The eighth and seventh term

coincide at z = zi,z = z2,z = Z3 — 3??, hence everywhere. The sixth and eigth term

coincide at z = zx,z = z3,z = z2 — 3t?, hence the last four expressions are identical.
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The second and fourth term coincide at z = zx — 2n,z = Z2 — r?, z = z3, hence the

first four terms are the same everywhere. The second and sixth expression coincide at

z = zi — t?, z = Z2 — 2t?, z = Z3. Hence each of the last four expressions equals each of

the first four ones. Thus all expressions coincide and we can write down any of the eight

expressions as the eigenvalue eop, zx,Z2, z3), e.g. the last one - which is also the one used

in the proposition:

eop, zx,z2,z3) =

6(277)6(2-21+377)6(2-22)6(2-23)6(21-22+277)6(21-23+277)
6(377)6(21-22)6(2!-23)

h

6(2-22+377)6(277)6(2-21)6(2-23)6(21-22-277)6(22-23+277) .

6(377)0(21-22)0(22-23)
"^

6(2-23+377)6(277)6(2-21)6(2-22)6(21-23-277)6(22-23-277)
6(377)6(21-23)6(22-23)

Lemma 5.14 The eigenvalue eop, zx, z2, Z3) obeys the two properties of Proposition 4-54'-

a) eopj,zi,z2,z3)eopt - 27?,zi,z2,z3) = \~{^3=i9(zy - z3 -2n)9(zy - z3 +27?),

for alii = 1,2,3.

b) e0(z,zi,z2,z3) G 93(x) with x(l) = -1 and x(r) = _e2m(*i+«+*3).

Proof:

a) Let us write down also the first of the eight expressions obtained by the action of

the transfer matrix on votaux.

It reads

e'op,zi,z2,z3) =

6(277)6(2-23-77)6(2-21+277)6(2-22+277)6(21-23+277)6(22-23+277)
6(377)6(21-23)6(22-23)

"^

6(277)6(2-22-77)6(2-21+277)6(2-23+277)6(2!-23+277)6(22-23-27?)
6(377)6(21-22)6(22-23) ~t~

6(277)6(2-21-77)6(2-23+277)6(2-22+277)6(21-23-277)6(21-22-277)
6(377)6(21-23)6(21-22)

In Proposition 5.13, we showed that all expressions of eop, zx, z2, z3) are indeed the

same function. If we evaluate eop, zx, z2, Z3) at z = zu i = 1, 2,3, we get

e0pî, zi, z2, z3) = 9(zy - zi + 2n)9(zy - z2 + 2n)9(zy - z3 + 2??).

If we evaluate e'op, zx, z2, z3) at z = Zj — 2t?, z = 1,2, 3, we get

e'opT. - 27?, zi, z2, z3) = 9(zy -zx- 2n)9(z% - z2 - 2n)9(z% - z3 - 2??).

The product of both expressions at the same value of i yields the lemma.

b) In Proposition 5.13 we showed that under z -+ z + r eo(z,zi,Z2,z3) transformed

as e0(z + r,Zi,Z2,Z3) = e-67r7(2+r)+37r7r+27r7(2i +22+23)_ Taken mto account tnat we

shifted the z of Proposition 4.33 to z —>• z -+• 7? in the section of the isomorphism,
we see that eop,zi,Z2,z3) is indeed an element of the correct space of elliptic

polynomials.
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6 Appendix 1: An alternative approach to the XXX mag¬

netic chain as described by Sklyanin [47]

6.1 The setting corresponding to the XXX chain

Synopsis:

Here, we mainly repeat the steps we did in the section explaining the representation

theory of ipir,p/2). But we do not go as much into details, i.e. in particular we do not in¬

vestigate the eigenvalue problem of a possible transfer matrix or auxiliary transfer matrix

but rather restrict ourselves to stating an isomorphism between the nfold tensor product
of fundamental representations of the Yangian y(sfa) and an auxiliary representation

also found in [46, 44].
We briefly sketch the steps: First, we define some basic notation (Definition 6.1) and the

notion of an "H-module which we need to define a representation of the Yangian (Defi¬
nition 6.4). Then, we give the R-matrix of the Yangian which tells about its (rational)
structure (Definition 6.2).

By the R-matrix, which gives the RLL-relations, and a given rt -module we define a rep¬

resentation of the Yangian (Definition 6.4) and then give examples of finite-dimensional

irreducible representations (Proposition 6.6) (which we could possibly use to develop

generalizations of the isomorphism to be constructed). We also show (Proposition 6.5)
that by means of a tensor product we can construct a new representation of the Yangian
out of two given ones. This means of obtaining new representations if of course needed

to construct the nfold tensor product of fundamental representations which we want to

compare to the auxiliary representation in the next section.

In the actual section, we proceed by generalizing the notion of a representation of a

Yangian to the notion of a functional representation (Definition 6.8). We first define the

spaces of functions which we will need concerning the functional representations which

we will need (Definition 6.7). The functional representation which we will need is given
in Proposition 6.11, namely the auxiliary representation.
We end the chapter with a short digression on twisted representations of the Yangian,
a notion which Sklyanin [46, 44] used to implement different boundary conditions of the

XXX-model which he described.

6.1.1 Introduction

We first want to define the basic objects to deal with in the formulation of the eigen¬
value problem corresponding to the XXX-chain as described by [47], p.67: the Yangian
of s/2(C), denoted 3^p/2) and some examples of representations of y(sl2) that will be

needed afterwards. (In [46] there are also some references given concerning the origin of

the treatment of the mentioned model [20, 21, 37].)

Definition 6.1 (Basic notions)

a) Let % = Ch be the one-dimensional Lie-algebra generated by a generator h. Let

Vy,i — 1,... ,n be modules over H. Vy is called a diagonalizable 'H-module, if Vy

is the direct sum of finite dimensional eigenspaces of h called Vz\p], labeled by the

eigenvalue [j, E C of h: Vy = ®ßVy[ji\.
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We may for example choose V — C2 = V[— 1] ® V[l], with V\jjl] = (ae[/i] | a E C},

taking h = ( J ^ ) , e[l] = (10)r, e[-l] = (01)T.

b) Let Vy,i = 1,... ,n be diagonalizable H-modules. We may consider their tensor

product Vi® ...®Vn. For X E End (V%) we denote by X^ E End(Vi ® ...®Vn)
the operator

X® = 1®...® X <g>... ® 1. (97)
ith place

If X E End(Vy ®V3), we define X^ E End(Vi ®...®Vn) analogously.

c) Let A E End (V®J). Then we can construct A("-J+i-n) e End (Vm) by

A(n-3+l...n) = l0i<<0l ®Am

first 3 copies off

d) Let v E Vi ® ... ® Vn We may define h^> E End(Vi ® ... ® Vn) by means of the

above notation. Let X = X(h^\ ...
, h^) be a function taking values in End(Vi ®

... ® Vn). Ifh^v = /j,yV,i = 1,... ,n, then X(h^l\... ,h^>)v = X(m,... ,/J,n)v.

Definition 6.2 (R-matrix) Let V be a two-dimensional complex vector space with base

e[—1], e[l]. Let the rational R-matrix R End(V ® V) be given by

Rr(z) =

/ z + 2t? 0 0 0 \
0 z 2t? 0

0 2t? z 0

V 0 0 Oz + 2??/

(98)

with the parameter n E C, where we identified e[l] ® e[l] = (1000)T',e[l] ® e[— 1] =

(0 1 0 0)T, e[-l] ® e[l] = (0 0 10)T, e[-l] ® e[-l] = (0 0 0 1)T.
This is the same R-matrix as given in [47] with n here replaced by %.

Proposition 6.3 (QYBE [47]) The rational R-matrix Rr(z) obeys the quantum Yang-
Baxter-relation

RW (z - w)rW (z)RW (w) = i?(23) (w)RW (z)RM (z-w), (99)

where the notation is as previously noted. This relation is defined on End(V®3).

6.1.2 Representations, functional representations, operator algebras

Definition 6.4 (Representation) A representation of the Yangian J^p^) is a pair

(W,Lr), where W is a diagonalizable H-module W = (Bp£cW\p] and LT = Lr(z) E

End(V ® W) is a linear map commuting with h^ + hS2> meromorphic in z EC called the

L-operator.
The L-operator obeys the relation

412) (z - 7i;)413) (z)L^ (w) = 423) (w)L^(z)R^ (z-w). (100)

This condition is called the RLL-relation.
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Remark:

The L-operator is usually written in the form

LJz) _

f ar(z) br(z)

cr(z) dr(z)
E End (V®W), (101)

where ar(z), br(z),cr(z),dr(z) E End(VF) are meromorphic in z E C and obey the condi¬

tions defined by the i?LL-relation.

The i?LL-relation written in terms of the above operators yields the following sixteen

expressions:

aT(z)ar(w

(z — w + 2n)ar(z)br(w

(z — w + 2n)br(z)ar(w

br(z)br(w

(z — w + 2rj)cr(w)ar(z

(z — w)ar(z)dr(w

(z — w)br(z)cr(w

(z — w + 2n)dr(w)br(z

(z — w + 2n)ar(w)cr(z

p — w)cr(z)br(w

(z — w)dr(z)ar(w

(z — w + 2n)br(w)dr(z

cr(z)cr(w

(z — w + 2n)cr(z)dr(w

(z — w + 2n)dr(z)cr(w

dr(z)dr(w

= ar(w)ar(z),

= 2nar(w)br(z) + (z — w)br(w)ar(z),
= (z — w)ar(w)br(z) + 2nbr(w)ar(z),

= br(w)br(z),

— (z — w)ar(z)cr(w) + 2ncr(z)ar(w)

+ 2ncr(z)br(w) = 2ncr(w)br(z) + (z — w)dr(w)ar(z),

+ 2ndr(z)ar(w) = (z — w)cr(w)br(z) + 2ndr(w)ar(z),
= (z — w)br(z)dr(w) + 2ndr(z)br(w),

= 2nar(z)cr(w) + (z — w)cr(z)ar(w),

+ 2nar(z)dr(w) = 2nar(w)dr(z) + (z — w)br(w)cr(z),

+ 27?6r(z)cr(iü) = p — w)ar(w)dr (z) + 2nbr(w)cr(z),
= 2nbr(z)dr(w) + (z — w)dr(z)br(w),
= cr(w)cr(z),
= 27?crpü)<irp) + (z — w)dr(w)cr(z),

— (z — w)cr(w)dr(z) + 2ndr(w)cr(z),

— dr(w)dr(z).

Proposition 6.5 ([47]) If we have two representations of the Yangian ^pp) denoted

{Wi,LTti(z — zi)) and (H72,ir,2(z — z2))? a new representation is given by the tensor

product of the two representations. It reads (Wx ® W2, Lr^x(z — zx)Lr^(z — z2)) by means

of the comultiplication property of the Yangian J^pZ2), as it is a Hopf algebra.

Remark:

If we explicitly write down the L-operator of the tensor product, it looks like

aic82,7-p,zi,z2) = ax,r(z - zx)®a2,r(z - z2)+hjr(z - zi) ®c2,r(z - Z2),

P®2,rP,Zi,Z2) = ai)rp-Zi) ®62,rp-Z2) +P,rp-Zl) <8)d2,rp-Z2),

ci®2,rp,zi,z2) = Ci;r.(z-2;i)(8)a2ir.(z-z2)-l-diirp-zi)<g>C2)r-p-z2),

dl®2,rp,Zi,Z2) = Ci,r(z - Zi)®h,r(z - Z2) +di,r(z - Zi)®d2,r(z - Z2).

Proposition 6.6 (Examples)

a) The representation (W = V,Lr(z) = Rr(z — zq)) is called the fundamental repre¬

sentation ofy(sl2)
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b) Let Va be an infinite dimensional complex vector space with basis ek,k E Z. An

action of h shall be defined by f(h)ek = /(A — 2k)ek for f(h) E End(V\).
The pair (W = V\,Lr(z) = L/i>r(z — zq)) is called the evaluation Verma module

Va,t(zq) ofy(sl2). L\^(z— Zo) is defined as follows in terms ofaA,r(z — zq), b\^(z —

zo),CA,r(z - z0),dA!r(z - z0) :

aA,r(z - z0)ek = (z-zo + 7? + (A-2k)n)ek, (102)

bA,r(z-z0)ek = 2(A-k)nek+i, (103)

CA,7-p-z0)efc = 2krjek-i, (104)

dA,r(z-z0)ek = (z - z0 - (A - 2k)n + n)ek . (105)

c) If A = n, n E N, the representation (Va,La,t(z — Zo)) has a finite dimensional

quotient module of dimension n+1. This representation will be denoted Wa,t(zq).

d) If n — 1, this finite dimensional quotient module is isomorphic to the fundamental

representation (V, Rr(z — zx)).

Proof:

a) In this case, the RLL-relations reduce to the rational Yang-Baxter-equation (cf. [46],
p.21).

b) That these operators define a representation of y(s^) is checked by a straightfor¬
ward calculation of the RLL-relations.

c) This is shown by writing down the corresponding operators acting on a correspond¬

ing basis containing only finitely many elements, cf. [46], p.21.

d) This is checked by calculating the operators on ei,e_i E Va, suitably normalizing
them and comparing to the i?-matrix.

Remark:

In order to understand what follows, we need a further generalization of the notion of a

representation of the Yangian ^(s?2)- This generalization will be provided by the notion

of a functional representation of the Yangian. In order to understand the definition, we

need the following spaces of functions.

Definition 6.7 (Fn, F®) Let Ax,... , An E N. Let pi,... , zn) E C - diag .

Let Sy = {—Zy — AyTj, —z% — AyTj + 2t?, ...
, Ai?? — Zy} with SyHSj =0 for all i,j = 1,... ,

n

with i ^ j. Let D = {pi,... , xn) \ x% E St for all i = 1,... ,n}. Then

a) Fn = {/ : Cn —y C, pi,... , xn) —y /pi,... , xn) \ f holomorphic in

\Xl,• , Xn)f,

b) ?n' = Fnl' {f <E Fn\f(xi,-.. ,xn) = 0 for all pi,... ,xn) E D}.

Definition 6.8 (Functional Representation) Let Tx be the vector space of all com¬

plex valued functions in fi (instead of xi).
A functional representation of y (si2) is a pair (W, Lf(z, p)), where W Ç T\ and L^(z, p)
is a holomorphic function of fi and z EC acting as a difference operator on V ®W obey¬

ing the RLL-relations.

It commutes with h®l + l®h, where h acts by multiplication with the continuous variable

p, E C : /ropi) = /J7jp),7;(/j) E W.
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Proposition 6.9 (Examples)

a) A functional representation of the Yangian is given by (W = Fi,L^r(z — zq)),
where P\,rP — %o) £ End(Fi), A, zq E C, is defined as follows

(äA,r(z, h)v)(ß) = aA,r(z, h)v(n) = (z - z0 + ßn + n)v(ß),

(bA>r{z,h)v){fi) = bA,r(z,h)T^v(pi) = (A + ^)nv(ß-2),

(cA,r(z,h)v)(fi) = CA,r(z,h)T+2r}v(p) = (A - ß)nv(ß + 2),

(dA,r(z, h)v)(n) = dA,r(z, h)v(ß) = (z-z0-ßn + n)v(ß),

f(h)v(ß) = f(ß)v(ß)

where v(ß) Fx.

It is called the functional Verma module V^r(zo).

b) If we restrict the above representation to Fx = Fx^e^A-2k\ken}) and set U(A —

2k) = ek, ek defining the basis of an infinite dimensional vector space, we recover

the evaluation Verma module V^po) by means of the functional representation

(FD,L^(z-z0)).
The L-operator looks the same as one defined in a), but its action is restricted onto

FXR c FX.

Proof:

a) The statement is proven by checking the rational i?LL-relations.

b) This is proven by comparison.

Remark:

a) For a representation of the Yangian, we can define its operator algebra as the algebra

generated by âr(z,h),br(z,h),cr(z,h),dr(z,h),h E End (W), where W Ç T.

b) We can generalize the notion of a functional representation or operator algebra
to operators depending on several weights ßX,... ,ßn E C, acting on the space of

functions !Fn which depend on the before-mentioned weights. The operators read

ar(z,hx,... ,hn),br(z,hx,... ,hn),cr(z,hx,... ,hn), dr(z,hx,... ,hn),hy E End (Fn)
with hyf(p,x,... , ßn) = ujpi,... , ßn) for every f E Fn and i = l,... ,

n.

Proposition 6.10 (Quantum determinant)

a) The following element of the operator algebra is a central element:

Detr(z) = (dr(z - 2n)dr(z) - cyp - 2n)br(z)). (106)

It is called the quantum determinant.

b) If we have two finite dimensional irreducible representations of the Yangian named

(Vx,Lx(z,hx)) and (V2,L2p,/i2)) with quantum determinants Z)ep(z) = Deti(z)\yx
and Z)ep(z) = -Depp)Iy-2, where Depp) and Depp) are scalar functions and

Iy,,i = 1,2, are the identity matrices on Vy, then the detrminant of the tensor prod¬
uct representation (Pl®!^, Li^p, hx, /i2)) is given by Det(z)i®2 = Detip)-Dep(z)-
•^vx®V2! where Ivx®v2 is the identity matrix on Vx ® V^.



115

Proof:

This can be checked by explicitly commuting all the generators of 3^(sZ2) with the quan¬

tum determinant. For the second part of the proposition, cf. [47], p.69.

Proposition 6.11 ([46], pp.19 -20) Let pi,... ,zn) E Cn - diag, and A% E N,i =

1,... ,n.

Let F® be the space of functions defined before. Let

ti n

K,AZ) = J\(z + ^ + A*tj) and A+T-p) = [J(z + z, - AtV) .

7=1 7=1

Let the difference operators Y^ E End(FnJ) for i = 1,... ,n, be given by

(Y±f)(xu. .,xn) = (A±r(xy)T±2y)(xi,...,xn) =

= A^r(xy)f(xi,... ,Xy±2n,... ,xn).

Then the operators

n

daux,r(z,Ai,... ,An,Zi,... ,zn) = JJp + a;*), (107)
7=1

Z + X,
baux,r(z,Ai,...,An,zx,...,Zn) = -J2H—~^A+r(Xy)T+2v, (108)

X o Xy
7=1 3 j=l >

n

cauXyr(z,Ai,... ,An,zi,... ,zn) = J2H
Z

*l An,r(^)Tx2v, (109)
7=1 3^1

n

Detaux,r(z, Ai,... ,An,zi,... ,zn) = JJp - zt - A^ - 2t?) x

7=1

x (z-z. + A.t?) (110)

define an operator algebra obeying the RLL-relations of the Yangian [Vpp).
The operator dr(z,Ax,... ,An,zx,... ,zn) is defined implicitly by the quantum determi¬

nant.

Remark:

Taken together as entries of a 2 x 2 matrix, the operators

aaux,r\Z, Ai, . . .

, An, Zi, . . . ,Zn),... , aaux,r\Z, AX, . . . , An, ZX, . . . ,Zn)

define the operator Laux>r(z, Ax, ..
, An, z\,... , zn). It is a matrix on V with entries in

End (F%).
The above defined representation coincides with the one given in [46] if we substitute

Xy =
—

yy
for every % = 1,... ,n and then consider the representation LauXjr(z) I ) .

Corollary 6.12 Let n = l,z' = z — n and xx = —zi + hin.

Then the operators

äi,rp') = (z' - zi+hin + n),

biAz') = Pit? + At?)T+2P

ci,rP') = Pit?-At?)T-2P

di,r(z') = (z'-zi -hxn + n),
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in End (!FX) are the operator algebra associated to the finite dimensional quotient module

of the functional Verma module of Proposition 6.9 a).

6.1.3 A special class of twisted representations

Remark:

This type of representation is needed to describe the case of non-periodic boundary
conditions of the XXX chain as formulated by Sklyanin [47].
The simplest way to construct the wanted class of representations is to start with the

following proposition and then make use of the Hopf algebra property of 3^pZ2).

Proposition 6.13 Let

A={*") im

be an element of GL(2,V). Then (V, A^ ®I) is a representation o/^pp).

Proof:

The way to prove the statement is straightforward by checking the rational RLL-relations

412) P) (A ® I) (I ® A) = (I ® A) (A ® I)412) (*) •

By writing out the left and right hand side explicitly, we see that they coincide.

Corollary 6.14 Let (W,Lr(z)) be a representation ofy(sl2). Let A E GL(2,V).

By means of the Hopf algebra property ofy(sl2) (W, A^Lj- (z)) is a representation of

y(sh).

Remark:

In Sklyanin [47], the matrix A E GL(2,F) was used to define the boundary conditions of

the XXX chain, cf. the following section of this chapter.

6.2 The isomorphism to establish separation of variables for the XXX

chain

Synopsis:

Here, we first write down the auxiliary representation of Definition 6.11 for At = 1 with

i = 1,... , n, since we want to compare this representation of the Yangian with the nfold

tensor product of its fundamental representation (Definition 6.15).
Since the auxiliary representation is a functional representation we then have to define

an isomorphism from the space of functions on which it acts to the space on which the

nfold tensored fundamental representation acts. This is achieved in Proposition 6.16.

Then, since the isomorphism is - as in the ipir,pZ2) case - constructed inductively, we

formulate one inductive step in Proposition 6.19, thus connecting an auxiliary represen¬

tation with Ai =
...

= An = 1 to a tensor product of a fundamental representation and

an auxilary representation with Ai =
...

= An_i = 1, where the parameters zx,... ,zn

are fixed.

In Proposition 6.20, we show how to construct out of the isomorphism given in Proposi¬
tion 6.19 an isomorphism with respect to which the nfold tensor product of fundamental



117

representations of the Yangian and the auxiliary representation of the Yangian with

Aï = 1 for i — 1,... ,
n are isomorphic.

In the quantum case, we want to find an isomorphism that maps the representation in¬

volved in constructing the XXX chain of order n [47] - Lr(z,zi,... ,zn) E End (y®(n+1)),
which will be defined shortly - to the auxihary representation of Proposition 6.11 with

A, = 1 for i = 1,... ,n (Fn°,LauXtr(z,l,... ,l,zi,... ,zn)
— LauXir(z,zx,... ,zn))- The auxiliary representation is characterized by the property
that the operator a^ux(z, zx,... , zn) is diagonal.
To construct such an isomorphism we first have to specify the results of Proposition 6.11.

Remark (Auxiliary Representation):
The definitions of Propopsition 6.11 being understood, let the auxiliary representation
be given by the following operators

77,

r(z, Zl, . . .

, Zn) = JJP - Zy + T] + Xy),
1=1

bauxAz,ZX,...,Zn)=±i[*ZZ^V +
Xl f[(xt - Zy + Z,

- n)T^\
7=1 3-hy

X% ** X3 "•" Z3
J=1

n
— -I- 4-

n

Cav,x,r(z, Zl,... ,Zn)=^2Y[ J
_

J7
_

^ ^T II^ ~ ^ + Z3 + V)T^,
7=1 3^y

X* Zl X3 + Z3
3=1

n

Vrtaux,r(z,Zl,... ,Zn) = JJp-Zj -2n)(z~ Zy + 27?).
7=1

where the operator dauX:7.(z,zx,... ,zn) is defined implicitly, we put

°aux,r\Z, 1, . . . , 1, Zi, . . . , Zn) = Oaux^r [Z, ZX, . . .

, Zn)

for o = Det, a, b, c, d, and the values of the operators (xt,... , xn) E D

= {pi,... ,xn)\xy E {-7?, 7?} for alii = 1,... ,n}.

Definition 6.15 (L-operator) Let the L-operator

Lr(z,zx,...,zn)E End(V®(n+V)

be given by

Lr(z,zx,..., znfl -n)
= R^l\z - zi)... RW(z -zy)... R(°n\z - zn). (112)

To state the isomorphism between Lr(z, zx,... , zn) and LauXtT(z, z\,... , zn), let us first
state an isomorphism Ipc that maps a basis of F^ to the standard tensor product basis

ofV®n.
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Proposition 6.16 ([rai...ffn], Ifc)

a) A basis of T^ is given by

{[»Vi...°v,] = [JJ ^,17,0-,] | o; E {-1,1} for all i = 1,... , n},
7=1

where by [Iir=i ^iV^,] we mean the equivalence class of functions which is one at

(—zi + ain,... , —zn + onn) E D and zero everywhere else on D. Note that we can

find a meromorphic représentant of this class.

b) The isomorphism Ifc ' Fn ~^ V®n zs 9iven by Ipcpi...^] = epi] ®...® e[an] for
all possible combinations of a% E {—1,1} for i = 1,... ,n. Here, e[ax] ® ... ® e[an]
is an element of the standard tensor producv basis ofV®n.

Proof:

a) [r0-1...o-n] is constructed to yield [rai...o-n] has a value one at pi,... ,an) E D and

['Vi.-.o-jJ has value zero at all other points of D.

Thus, we can write every element [/] E J^jf as

[/] = Er=l,<r,e{-l,l} /(al> • • •
' an)[rax...an\-

b) By construction.

Remark (L^)rp,Zi,... ,zn)):
By means of the isomorphism Ipc defined above, we can define

Laux,r(Z> ^> > Zn) = P2 ® lFc)LaUx,r(z, ZX, . . .

, Zn)(I2 <g> Ip1),

where I2 E End (V) is the identity matrix on V.

Corollary 6.17 By Corollary 6.12 and Proposition 6.16 L^uxr(z,zx) is equal to Rr(z —

zi) as an operator in End (V®2).

Definition 6.18 (An,r(zi,..- ,zn),An,r(zi,- ,zn))

a) Let In_i E End (V®^~1^) be the identity matrix on V^P"1). Let tt_ = 7r_pi -

2ri) = EKU^i -%i~ 2rÙ- Let us Put OauxAziz^ izA = op) for o = a,b, c, d.

Then the matrix An,r(zx,... ,zn) E End (V®n) is given by

An'r =
V o.-\zx - 2nn~)c(zx - 27?) vr^a-pzi - 2t?) J

" (U3)

b) The matrix An<r(zx,... ,zn) E End (V®n) is given by

--n,r\Zl, ,Zn) = J\2 r \Zn—i, Zn) • • • X

xA%-l+l-n\zn-l+i,... ,zn)...AnY\zi,... ,zn). (IIA)



119

Proposition 6.19 Let Anir(zi,... ,zn) be given by the above definition. Let I2 be the

identity matrix on V.

Then,

(h ® A~AZ1, -, Zn))R?X) P " Zi)(L^r)(°2-n\l2 ® An,r(z, Z2, . . •
, Zn))

= Laux>r(z,Zi,. .. ,zn). (115)

Remark:

Instead of writing down one identity involving L-operators, we can also write down the

following four identities involving the entries of L-operators:

AnAzi,... , zn)(ar(z - zi) ® a^ux>r(z, z2,... , zn) +

Or(Z — ZX) ® Caux^r\Z, Z2, . . .

, Zn))An,r(Zl, , zn) = aaUx,r\Z, zl, • ,Zn),

A~Azi, , zn)(ar(z - zi) 0 b^ux^r(z, z2,... , zn) +

br(z-ZX)®cÇUXtr(z,Z2,... ,Zra))A,rpl,--- ,Zn) = b^UXiJ.(z,Zi,... ,Zn),

AnAzu... ,zn)(cr(z-zx)®a^ux^r(z,Z2,... ,zn) +

dr(Z — ZX) ® Caux^r{Z, Z2, . . .
, Zn))An,r{Zl, •

, Zn) = caux,r\z, zlt • • •
, zn),

yl~J.pi,... ,zri)(cr(z-zi)(g)6^a.ir(z,z2,... ,zn) +

dr(z — Zl) ® aauXyr\z, z2,. . .

, Zn))An,r{Zl, • • •

, zn) = aaux^r\z, Zi, ...
, zn).

Proof:
Let us put An,r(zi, , zn) = Ar throughout the proof, since n stays fixed. For the sake

of simplicity, we put o^uxr(z, z2,... , zn) = op) for o = a,b, c, d.

We have to check that the L-operator of Rr Pz — zi)(L^ua,r)(02---n)(z, z2,... ,zn)

= R^ '"n'(z, zi, z2,... ,zn) when conjugated by AniT(zi,... ,zn) coincides with the L-

operator (L^ux^01-n\z,zi,... ,zn). This is checked by checking the corresponding

identity for each entry of the L-operator L^uxr(z,Zi,... ,zn) separately, as was formu¬

lated in the remark.

For the entry a® p,zx,... ,zn) conjugation with AT yields the following:

(z - 2i + 277)a(z) 0

-(7r_)-1c(2i-2?7) (7T_)-1a(2i - 2t?) J { 2770(2) (z - zi)a(z)
|X

x( __,,_ „:,.,_ n_, ,_ ,._r,.. „..N ) =

1 0

a-1 (21
-

277)0(21
-

277) (7r_)a_1(2i
-

277)

1 0

-P_)-PPi-27?) P_)-1a(zi-27?)
' X

p - zi + 2r?)ap) 0

2t?c(z) + (z — zi)ap)(a_1c)(zi — 2t?) p„)p — zi)ap)a-1pi — 2t?)

(z - zi + 2n)a(z) 0

a2ip) (z-zi)p_)-17r_api -27?)op)a'1pi - 2t?) = a22p) J '

where the entry a2i (z) is given and can be simplified in the following manner

«21(2) = (tt-)-1 (-(2-21 +277)0(21 -277)0(2)

(tt-)-1 + 2770(21 - 277)0(2) + (2 - 21)0(21 - 277)a(2)(a_1c)(2i - 277)) =

(tt-)"1 (-(2 - 21 + 277)0(21 - 27?)a(2) + 277*1(21 - 277)0(2) + (2 - 21)0(2)0(21 - 2n)) ,
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where the second line was obtained by using the first of the sixteen relations of the

Yangian 3^p£2). By the ninth of the relation - with z' = z\ — 2n,w' = z - the last line

equals zero. The entry a22p) may by the first relation also be further simplified to yield

G22p) = p-z^op).

Hence, the conjugated matrix reads

*^r a^yz, z\,... , zn)Jir =

(z-zi+ 2n)a^r(z, z2,... , zn) 0

0 p-zi)a^13.irp,z2,... ,.

Let us compare this to what we expect by writing a~;ux r(z, z\,... ,zn), writing it as a

2x2 matrix with entries in End(^®(n_1)).

aaux,r\Z,Zi, . . . ,Zn) =

p -

zi + 2n)a%ux>r(z, z2,... , zn) 0

0 p-zi)a^X!rp,z2,... ,zn).

This coincides with what we calculated.
Let us do the same calculation with the operator &|,p, zi,... ,zn).

A^1b%{z,zi,... ,Z„)Ar =

1 0 \ / (2 - 2i + 277)6(2) 0

-(7r-)-1c(2i-277) (7r_)-1a(2i-277) J \ 2vd(z) (z - zx)b(z)

1 0

(a_1c)(2i — 277) 7T_a-1(2i — 277)

(2 - 21 + 277)6(2) 0

621(2) (2 — 21)0(21 — 277)6(z)a-1(2i — 2t?)

where the entry 62i (z) and its subsequent simplification are given by

«21 (2) =

(tt-)-1 (-(2 - 21 + 2t?)c(2i - 277)6(2) + 2770(21 - 277)^(2)

+(2 — 21)0(21 — 2n)b(z)a~1(zx — 277)0(21 — 277)) =

(TT-)"1 (-(2 - 21 + 277)c(2l - 277)6(2) + 2770.(21 - 277)d(2)+

(2 - 21 + 277)6(2)0(21 - 27?)a_1(2i - 27?)c(2i - 277) - 2770(2)6(21 - 277)0"^21 - 277)0(21 - 277)) =

(7T-)~1(277a(2)d(2i -277) -27?a(2)b(zi -27))a_1(2i -277)0(21 -277)) =

(tt-T1 2770(2)(d(zi -277)0(21) -6(21 -277)a-1 (21 -277)0(21 - 2?7)a(2i))a-1(2i) =

(7T_)-12770(2)(d(2l - 277)a(2l) - 6(21 - 277)c(2l))o-1(2l) =

277(7T_)-1Det^a,r(2i,22,... ,2„)o(2)o-1(2i) = 2rt{ir+)a{z)ar1 (21),

n

where 7T+. is given by

7T+ = JJpi - Zy + 2n).
7=1

Here we used the second relation and the tenth relation for z' = zi — 2??, w' = z and the

ninth relation with z' = zi
— 2n, w' = zi.

The result is that the conjugated matrix of 6^p, zx,... , zn) reads

Ay 0® \Z, Zi, . . . , Zn)Ar =z

(z-zi + 2n)b(z) 0

27?(7r+)a(z)a_1(zi) (z — zpapi — 2??)&p)a~1pi — 2r?)
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Let us compare this with b^ux<r(z, zx,... , zn) which we write the same way as the matrix

aaux r(z, Z^i • • •

i ZA before. This yields - writing each matrix element separately -

n n
— 4- -4-

lFc(baux,r)ll(z> «1, • • •
, zn)lFC = p -

ZX + 2t?) J] JJ
_

J

_

3 V

7=2 3^,3=2
l Zl Xj + Zj

3—2

^.Fc(feaua:,r)l2(z,Zl,--- ,Zn)IFC = 0,

Z — Z, + œ, + 7?
^Fc(&aua;,r)2l(«,^l, ••• ,Zn)LFC = ]7

_i_

*

_

*

,
„

]J(zl ~

z3 + 2rl),
Tj +- Zl Z* -f- X3

3=2 > > ]=1

n n

lF~b(baux,r)22(z, ZX, . . . ,Zn)IFC = (z - ZX)^T JJ * '- -X

7=2 ^7j=2
'

Z — Z3 + X3 + 7?

Xy Zy X3 ~\~ Z3

n

zx-Zy -2nr
-*•-*

Zl — z,
3=2

l l

or - written in terms of the operators o^uxr(z, z2,... , zn) and inverting the isomorphism

Ipc again -

(&Lr,r)ll(*7*l>--- >*n) = (* ~ zl + 2«)&Lz,r p, Z2, . . .
, Zn),

(&a«*,r)2i(«, «i, , zn) = 2n(-K+)a^UXjT(z, z2,... , zn)a%u^r pi, z2,... , zn),

(&Lr,r)22p, ZX,... ,Zn) = p - Zi^^pi - 2??, Z2, . . .
, Zn) X

x b<%ux,r(z,Z2,-.. ,zn)(a%UXtr)~1(zx-2n,Z2,... ,Zn).

If we compare this to the conjugated matrix, we see that both coincide.

It remains to check the operator c^(z,zx,... ,zn). Its conjugation yields

A~1C%,{z,ZX,... ,Zn)Ar =

1
_

0 \( (2-2l)0(2) 2770(2) ^
x

-(tt-)-1c(2i-277) (7T-)-1o(2i -277) J \ 0 (2-21+277)0(2)

1 0
X

V. (a- 1c)(21 -277) (tt-)o-1(2i -2t?)

f 011(2) (tt-52770(2)0(21 -277)

V C2l(jz) 022(2)

where the corresponding coefficients and their simplifications are given below.

cup) =

27?ap)(a_1c)pi — 2t?) + p — zi)c(z) =

(27?a(z)(o~'1c)(zi - 2r?)api) + (z - zi)c(z)a(zi))a_1(zi) =

(2nop)cpi) + (z- zi)cp)api))a_1pi) =

(z — zi + 27?)a(zi)c(z)a_1(zi).
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Here we used the ninth relation first with z' = zx, w' = zx — 2n, then with z' = z, w' = zx.

(7T_)c2ip)(-2??cpi - 2n)a(z) - (z - zx)c(z)a(zx - 2n) =

+ (z -zx + 2n)a(zx - 2n)c(z))a~l(zi - 2t?)c(zi - 2t?) = 0

due to the fifth relation with z' = zx — 2n, w' = z.

c22p) = (-2nc(zx — 2n)a(z) + (z - zx + 2n)a(zx - 2n)c(z))a~1(zx - 2n) =

(z - zx)c(z)a(zx - 2n)a~l(zi - 2t?) = p - Zi)c(z),

where we used the fifth relation with z' = zx — 2n, w' = z.

So the conjugated matrix looks like

•Aj. C® \Z, Z\, . . . ,Zn)Ar =

(z — zi + 2n)a(zi)c(z)a~1 (zi) 2n(ir-)a(z)a~l pi — 2t?)
0 (z — zi)c(z)

The entries of the matrix c^ux r(z,zx,... , zn) yield

n n

/ V \ i \ t \T^ TT z — Z7 + X-, + 7?
(caux,r)ll (z,zi,... ,zn) = i>c > M J-

^-—p - Zi + 2?? X

J^l A/1 Jjn
~

,Oj

X

*=2 j^7,;=2

zi - Zy + 2t?

Zl — Zy1 %

3=2

Y\(2n-Zy + z3)Tx2npl,

n n

(Caux,r)l2(z, Zl, . . .
, Zn) = IpCpT? JJ \ ' ü^1 ~

Z* ~ 2r?))JFC'
3=2

V Zl+Z3 X3
3=2

(caux,r)2l(z,Zi,... ,Zn) = 0,

71 n n

(coW)22p, zi,... , zn) = 7fc(^ II
_

J _Xj V Yl(2n -Zy + z3)
7=2^=2^ *« ^+^,=2

x (~ gl^1~^ + 2V-2wU~1
x

^

2;1^1_^+2r?i^
^c-

If we rewrite this in terms of operators o^uxr(z, z2,... , zn), we get

(Caux,r)n(z,Zl,--- ,zn) = P ~ Zl + 2n)a^ux>r pi, Z2, . . .

, Z„) X

X caux,r \z, z2, ,zn)(aaux^r) pl,Z2,... ,Zra),

(Caux,r)l2(z,Zl,... ,Zn) = 2??p_)aû:u:!.)r p, Z2, . . .

, Zn) X

x {a^uxA^^l - 2t?, z2,... , zn)

(Caux,r)2l(*,3l,-" »^) = °>

(caus,r,)22pj ^l, • i^nj = P —-^lJCa^PZ, Z2, . . . ,Zn).

These are the same entries as appearing in AAc%(z, zx, ...
, zn)Ar-

Since the quantum determinants were shown to be multiplicative in Proposition 6.10

and daUXjr(z, zx,... , zn) is defined implicitly by means of the quantum determinant, this

completes the proof.
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Proposition 6.20 Let An,r(zi, ,zn) the matrix defined before and let I2 E End (V)
be the identity matrix on V.

Then

(I2 ® A~Azi,... ,zn))Lr(z,zi,... ,zn)(h®An,r(zi,... ,zn))

= LauxAz>zi->--- >zA- (116)

Remark:

Written down in the components of both L-operators we get the following four identities:

-^7i,rPi5 • • , zn)ar[z, z\,... , zn)A.np\zx,... ,zn) = aaux^r\z, zx, , zn),

"71,7-Pl> • • •
, Zn)br\Z, ZX, . .

, Zn)An%r\Zl, , Zn) = baux^{Z, ZX, . . . , Zn),

An,r\Zli--- , Zn)cr{Z, ZX, . . . ,Zn)An^\Zl,... , Zn) = Caux^r [Z, ZX, . . . ,Zn),

--n,r\zl, ,Zn)U,r\Z,Zi, . . .
, Zn)An,r\Zl, • • , Zn) = 0,auxr [Z, ZX, . . . ,Zn).

Proof:

Let us proof the four identities we wrote down in the remark instead of proving the

identity involving the L-operators. The proof is by induction. Let us start with n = 2.

By definition -4.2)rpi, z2) = A2)?.pi, z2). Let us prove just one identity, e.g. the one which

reads A2\(zx,z2)crp,zi,z2)^42)rpi,z2) = c^ux>r(z,zi,z2), since the other identities are

shown in a similar manner.

A2j, pi, z2)cr(z, zi,z2)A2,r pi, z2) =

-42)rPi,z;2)crp,zi,z2)^l2)rpi,z2) =

^l^(zi,z2)(crp-zi) ®ar(z - z2) + dr(z - zi) ® cr(z - z2))A2,r(zi, z2) =

A2l(zi,z2)(cr(z - zi) ® a^UXtr(z,z2) + dr(z - zi) ® c^Xirp,z2))*42,rpi,z2) =

caux,r\z, z\iz%)i

where we used the definition of the Lr(z, zi, z2), the identity of Rr(z—zx) and L^ux r(z, zx)
and the preceding proposition.
Let us now assume that

(A~lr){-2-n+l\z2, ...

, Zn+X)or(z, Z2, . . .

, Zn+X)An2,r'n+1)(z2, ...

, Zn+l)

°aux,r\Z, z2, ,Zn+l)

holds true for some fixed n for o = a, b, c, d.

We claim that under these circumstances it follows that

An+lAZl^-- ,Zn+l)or(z,Zi,... , Zn+X)Antr(zX, . . .

, Zn+l)

=

°aux,r\zi zli • • ,zn+l)

for o = a,b, c, d.

Let us show it for cÇuxrp,zi,... ,zn+i), since the proofs of the identities involving
the other operators are strucuturally completely similar. First note that by definition

.{2...n+1), x ,(l...n+l)/ x
-(1...77+1)/

x -rj

Ah,r pz2,... ,zn+i)An+ijr >(zi,... ,zn+i)
=

An+1^T
' (zx,... , zn+x). Hence,

"'auXtryZ, Zl, . . .

, Zn_)_iJ =

'Cll.r(*!>••• iZn+l)(cT(z-ZX)®C^UX!r(z,Z2,... ,Zn+l) +
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+dr(z-Zi)®dauXjr(z,Z2,... ,Z„+1))Aî+l,rPl,--- ,zn+i) =

A~\lAZ^--- >^»-t-l)(-^,r)(2"'n+1)(2r2,..- ,Zn+i)prp-Zl)(g)6rp,Z2,... , Zn+X) +

dr(z - Zi) ® dr(z, Z2, . . .

, Zn+l))^2r-n+1)(z2, . . . , Zn+i)Aî+l,rPl, • •

, Zn+l) =

An+lAZl'--- >zn+l)dr(z,Zi,... , Zn+l)An+l,r(zi, ,Zn+X),

where we used the preceding proposition, the assumption on the operators denoted

°aux,r(z> Z2,... , zn+i), the definition of Lr(z,zx,... , zn+i) and of An+XjT(zx,... , zn+x).
Remark:

The last corollary states the isomorphism between the representation of the XXX-chain

with arbitrary boundary conditions and the auxiliary representation.

Corollary 6.21 Let A E GL(2,V) and I2 be the identity matrix on V.

Then, for Laux,r(z, zx,... ,zn) E End (7(0) ® F%) and Lr(z, zx,... ,zn) E End (V^ ®

A^Laux^r(z, ZX,... ,Zn) = (h® Ipc) (H7)

(A® A~j.pi,... ,zn))Lrp,zi,... ,zn)(h ® An,r(zi,... , zn))(h ® LFc)-
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7 Appendix 2: Spaces of elliptic polynomials

Definition:

a) Let öp) > 0. Let T = Z + rZ and F* ~ (Cx)2 the group of group homomorphisms
T-+Cx. Let xF*.

Then we define the homomorphism <f> : V* —y ET by <f> : x ^ 7;—~(mx(r) — r hrx(l))
2-k%

- where 1 and r are an oriented basis of F.

b) For x G T* let ®k(x) be the space of entire holomorphic functions f(z) of level k

obeying the following property: f(z + r + sr) = e~k(TS +2sz\(r + sr)f(z) for all

r + st E T. Hence

&k(x) = ifiz) holomorphic, entire |

f(z + r + st) = e'mk(Ts2+2sz)X(r + sr)f(z) for all r + st E V}.

The dimension of @k(x) is 0 if k < 0, k if k > 1, for k = 0 it is one if <f>(x) = 0 and 0

otherwise.

For the elements of these function spaces, we obtain the following result:

Proposition E.l:

The function of z E C

f(a, wx,... , wn,, z) = eaz Yl 6(z +
7=1

belongs to 9n(x) with X{r + st) = (-ljM»^8^-2«^^).
Every function in On(x) is °^ the form C f(a, wx,... , wn, z) for some constant C. This

representation is unique up to permutation of the (wx,... , wn) if one requires the Wy to

be in the fundamental domain F = {u + vt\u, v E [0,1)}.
Proof of Proposition E.l:

It follows from the transformation properties of theta functions that the number of zeroes

/ dlrig, counted with multiplicities, of g E ©(x)n hi F ls n- If wx,... ,wn denote
JdF
the zeroes of g then g(z)/f(z,wi,... ,wn,a) is doubly periodic (since X/p + st) and

Xg(r + ST) do not depend on z) and regular, thus constant. Uniqueness follows as a is

uniquely determined by the wt, i = 1,... , n, and Xg-

Corollary E.2:

Let ET be the elliptic curve determined by r and, for k > 0, let Sk(E) = EjSk its k

symmetric power. The map P: (@k(x)) ~^ Sk(E), sending an element of @k(x) to the set

of its zeroes mod V, is injective (i.e. to a given set of zeroes [w[,... ,w'k] E Sk(E) there

corresponds at most one element of Ofe(x))- Its image consists of classes [wx,... ,Wk] E

Sk(E) subject to the condition that X^=i w3 — 4>{x) + ^^, ^ being the image of (1 + r)/2
\nE.

Theorem E.3:
n

Let zi,... , zn E C be pairwise distinct modulo V and x T* such that \~_, z% ^ 4>(x) + kô

7=1

mod F. Then for any /1,... , fn E C there exists a unique function / E @n(x) sucn that

f(zi) = fi,i- 1,... ,n.
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The interpolation formula is given by

f(v\ - V^ t r2-Kta{z-z,)9{z ~ z3 +b) TT Q(z- z3)
I\z)-l^^e 0(h\ ll M*.-*.\

w 4i*0{z>-z>r

with

-s;0"x(i)-=)
77 ..

b = ~4>ix) -nö + ^Zy- k—jj—•
7=1

Proof of Theorem E.3:

The function f(z) has the desired transformation properties. The condition on the sum

of evaluation points ensures that the appearing denominator does not vanish identically.
The function is unique since the difference of any two such functions is a theta function

vanishing at n points zx,... ,zn. By Corollary E.2, since ]C"=i z* ^ ^(x) + kö, it vanishes

identically.
Let us now turn our interest to special classes of difference equations involving coefficients

that are doubly periodic functions:

A{z)Q(z - 2t?) + A+(z)Q(z + 2n)e(z)Q(z),

with A±(z) E en(e^2msn^-2m^=i^s(-l)r+s).
Proposition E.4:

Suppose that A±(z) E en(e=F2n"-2,rt£"=iz«s(-l)r+Ä) with n even.

To obtain a non-trivial solution of the above difference equation,
n

2

Q(z) = eaz]j9(z + w3) E 02(x) and ep) E 9n(e2m^=i^s).
3=1

The character of Q(z) is fixed up to one parameter by the Bethe Ansatz equations

n
n_

2 2

A+(-Wy) JJ 9(-wl + w3-2n) = eAr'aA-(-wl) JJ 9(-wt + w3 + 2n),
J-l,3& 3=1,3&

for i = 1,... ,
n and wt ^ w3 mod T, for i ^ j.

An explicit formula for ep) is given by

,
_

A+(z)Q(z + 2t?) + A_(z)Q(z - 2n)
e[Z)

"

Q(z)

(Q(z),e(z)) form an elliptic polynomial solution. Conversely, if (e(z),Q(z)) is an ellip¬
tic polynomial solution of the above difference equation, then there exists a solution

a,wx,... ,
wn of the Bethe Ansatz equations such that Q(z) is of the above written form

up to a constant C and ep) is also of the above written form.

Proof of Proposition E.4:

A necessary condition of the above difference equation having a non-trivial solution Q(z)
is that all terms are theta functions with the same character. So the character of ep)
has to be e2m ^"=iz%.
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Let Q(z) be the above written function. The formula for ep) transforms as requested, but

may be singular at the zeroes of Q(z). This is precisely prevented by the system of Bethe

Ansatz equations, ensuring that all possible residues of ep) vanish. Thus, ep) is regular
everywhere, leading to its being an elliptic polynomial solution. Hence, (ep), Q(z)) is an

elliptic polynomial solution of the difference equation.

Suppose now, that we have an elliptic polynomial solution (e(z),Q(z)) of the difference

equation. Since we know that ep) E 0a we know that by Proposition E.l, it can be

written - up to a constant C - the way we write it in the Proposition. The points
Wy,i = 1,... , |, are the zeroes of Q(z), so the right nad side of the difference equa¬

tion vanishes at these points, causing also the left hand side to vanish: this yields the

Wy, i = l,... ,
n to obey the Bethe Ansatz equations.
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