mzuriCh ETH Library

Towards User Privacy for
Subscription Based Services

Master Thesis

Author(s):
Benelli, Allan

Publication date:
2022

Permanent link:
https://doi.org/10.3929/ethz-b-000551577

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000551577
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Towards User Privacy for
Subscription Based Services

Master Thesis
Allan Benelli
15t April, 2022

Advisors:

Moritz Schneider, Prof. Dr. Srdjan éapkun
Department of Computer Science, ETH Ziirich
and

Sabine Proll, Alain Brenzikofer

Supercomputing Systems AG, Ziirich

Abstract

Today online service providers collect a massive amount of data. How-
ever, not all of this data is necessary for a service to work, for example
our usage data. In this thesis, we explore an approach to obfuscate the
actual usage of a subscription-based online service while maintaining
the possibility of restricting access to paying customers.

We introduce a system called MixNET that allows users to use a service
while obfuscating their actual usage. To do so, we use the concepts of
mix networks and K-Anonymity. MIXNET aims against an adversary
that inspects HTTP requests addressed to it to identify users. Before
requests reach the service, MIXNET generalizes them and mixes the
subscription-related session cookies used by different users. We explore
how generalization and mixing session cookies can be implemented
using Trusted Execution Environments (TEEs). By doing so, we prevent
session leakage or the disclosure of session-related personal data.

We present a full implementation of MIXNET using Intel SGX and demon-
strate its use in three real-world applications: NZZ and Tagesanzeiger,
two Swiss online newspapers, and the streaming service Zattoo.

Contents

Contents
1 Introduction
2 Motivation and Problem Statement

21 AdversaryModel o oo

22 Requirements

Background

3.1 Web Authentication

3.2 Trusted Execution Environments and Intel SGX

33 Integritee L

34 K-Anonymity L

Overview

System

5.1 Architecture
511 Servero e
512 Router
513 Proxy

52 Workflow e

Evaluation

6.1 Performance

Discussion & Limitations
7.1 Future Work

Related Work

iii

g1 0

O O 0 I 3

11

13
13
13
14
16
19

ii

CONTENTS

9 Conclusion
A Performance Results

Bibliography

iv

33

35

39

Chapter 1

Introduction

By using the Internet, we generate many a lot of data. Different actors collect
this data. These often include the service we use itself, for example, to
improve its service as well as third parties such as advertising companies. If a
service wants to collect data about us, it can very quickly do so by using web
tracking technologies [62, 48]. However, collecting usage data can negatively
affect users, depending on how a service uses the data, and raise privacy
concerns. For this reason, awareness is increasing for privacy-enhancing
technologies and a lot of work has been done in this area. Examples are
the Tor network, which is used for anonymous web browsing, privacy-
enhancing proxies like Privoxy [22], or applications like the browser extension
TrackMeNot [37, 31], which use the principle of obfuscation.

Despite considerable work in this area, there are some pitfalls. On the one
hand, these measures do not provide users with absolute protection and can
not obfuscate all of a user’s usage. If a user wants to use subscription-based
services, he must log in with his account. Consequently, all his requests are
bound to his account once logged in. This causes data collection for a service
that does not follow the principle of privacy-by-design. On the other hand, a
user must be able to trust the privacy-enhancing technology provider not to
work against him.

In this thesis, we show that by using Trusted Execution Environments (TEEs),
we can obfuscate the connection between the request itself and the user who
made the request. Our approach uses the concepts of mix networks and
k-anonymity and applies two steps for each user request:

¢ Mixing user identities
¢ Generalizing the request

By using TEEs, on the one hand, we can perform these steps in a secure
environment; on the other hand, a user can make sure that the expected code

1. INTRODUCTION

is executed. This shifts trust from the privacy-enhancing technology provider
to the TEE manufacturer.

To demonstrate this, we design MIXNET, a system that allows users to use
third-party services while enhancing their privacy. The design of MIxNET
maintains the service’s ability to restrict access to paying customers. We
implemented MIXNET entirely within Intel SGX [44, 17] and applied it to
different real-world applications, such as newspapers or streaming services.
MIXNET ensures that neither sessions nor session-related personal data of a
user will be leaked. The principle of MIXNET does not require cooperation
with the service provider. At the same time, a service provider could use
MIXNET to improve its users’ privacy.

Outline. This thesis is structured as follows: In Chapter 2, we introduce the
problem, the adversary model, and the solution requirements. In Chapter
3, we provide the necessary background for this work. Chapter 4 gives an
overview of MIxNET and addresses the requirements, followed by imple-
mentation details in Chapter 5. In Chapter 6, we present our results from
applying MIxNET to real-world services and analyze its performance. In
Chapter 7, we discuss the limitations of the selected approach and point out
directions for future work. Finally, we finish with related work in Chapter 8
and conclude in Chapter 9.

Chapter 2

Motivation and Problem Statement

The Internet has become our daily companion, and when using it, we are con-
tinuously generating data. The sheer amount of generated and collected data
is almost unimaginable and growing fast. Facebook generated 4 petabytes
(PB) of data daily in 2014 [8] with 1.39 billion users [7], which corresponds
to 2.87 megabytes (MB) daily per user. For 2020, IBM estimated that every
person on earth generates 1.7 MB of data per second [19]. This data has a
variety of origins: the use of web services and IoT devices, creation of social
media content, digital photos and videos, messages, location data, or copies
of this data on different servers.

However, not all user data is mandatory for the functionality of a service.
Different actors have different motivations, collecting data about users” online
behavior and creating user profiles. These include:

¢ Facebook for targeted ads [65]

¢ Netflix for their recommendation algorithm [38]

* Generally web services in the context of web analytics
¢ Intelligence agencies for solving crimes [50]

For a service, it is relatively easy to collect data about its users by using web
tracking methods [62]. Common methods for web tracking include logging
user behavior, combining and analyzing web traffic, tracking cookies, or
other, more advanced, web tracking methods. There has been much research
done in this area; for an overview, see [48].

Depending on how a service uses the collected data, it can have positive and
negative effects [51] for the user. Below are some often critisized user privacy
issues of current internet services:

* A service that is completely tailored to us and only shows us con-
tent that we like creates a "filter bubble”, as Pariser calls it [55]. In

2. MOTIVATION AND PROBLEM STATEMENT

exaggerated terms, one could speak of a kind of “censorship” when
platforms take away our decision on what content we should consume
and withhold other content from us.

e If a service is compromised and personal data falls into the hands of
unauthorized third parties.

¢ Potential sale or sharing of personal data. Many users are not even
aware of what data a service collects about them or what the service
does with it, as they often do not read the terms of use carefully.

* Much of what we do, write, or say ends up in permanent digital
files and can eventually come back to haunt us. It is not easy to
delete something from the web again, which lead to the saying "The
Internet does not forget” [53]. This is an increasingly important issue,
which is underscored by the European Union’s General Data Protection
Regulation (GDPR) [9], especially paragraph 66, which deals with the
"right to be forgotten”.

These privacy constraints have led to a wide array of research into pri-
vacy enhancing technologies. A well-known example of privacy-enhancing
technology is Tor [30], used for anonymous web browsing. Tor conceals a
user’s location and usage from Internet service providers conducting traf-
fic analysis or network surveillance. Another technology is Privoxy [22], a
privacy-enhancing proxy that modifies web page data and HTTP headers
and filters out malicious requests. Several browser extensions exist which
enhance privacy. They block tracking cookies, filter requests, control and
disable javascript on web pages or obfuscate usage by generating noise, like
TrackMeNot [31, 37]. However, in the case of subscription-based services,
these technologies do not provide complete protection, as a user has to log in
with his account to use the service. Consequently, all his requests are bound
to his account once logged in.

In this thesis, we focus on subscription-based services with a paywall, such
as newspapers, streaming services, online software, or databases for images
or similar. For a newspaper, for example, it is legitimate to restrict access to
paying customers. However, for the functionality of the newspaper, it is not
essential to know exactly which user has read which article. This connection,
from users to articles, is what we aim to obfuscate in this thesis. Unlike
services that are free to use, we claim that in an ideal world, when we pay
for a service, the service:

¢ Should not make additional profit from user-related data.

¢ User-related data should be protected.

2.1. Adversary Model

2.1 Adversary Model

In this thesis we focus on the following types of attacks. We assume an active
network attacker. This attacker can try to perform various attacks such as
man-in-the-middle (MITM) [49], DROWN [39], or Sweet32 [26, 42] attacks,
to eavesdrop on communications. However, it cannot break the current
confidentiality and integrity guarantees of modern transport layer security
(TLS) [64, 59].

The service itself is not actively malicious. However, the service can collect
logs of our requests and try to use them later on to collect user data. It can
identify the sender of a request in two ways:

¢ either referring to the user’s session cookie that was used to request
access to the service.

¢ or combining multiple requests and mapping them to one user. To do
so, it refers to the same headers, analyzes the clickstream, or combines
content-related requests

We limit the service ability to use these methods of identification. It cannot
use any other tracking methods, such as fingerprinting or tracking cookies.

We also consider malicious users who have the following intentions:
¢ try to leak personal information of other users

* try to obtain session-relevant information of another user to hijack his
session

* try to circumvent the paywall

Finally, we consider an SGX attacker that tries to modify the code within
an Intel SGX enclave or read out memory. He aims to capture sessions or
session-related personal data to use it for his purposes. However, the attacker
has no ability to break the security properties of a secure SGX enclave.

2.2 Requirements

In this thesis, we assume that a solution that enhances users’ privacy by
protecting users against such an adversary model must meet the following
requirements:

¢ Confidentiality and integrity: The current confidentiality and integrity
guarantees should remain the same.

* No leakage of personal data: Web services keep personal data about
users; this data must be protected.

* No session leakage: It should not be possible to hijack a user session.

2. MOTIVATION AND PROBLEM STATEMENT

¢ Restricted access: In order to not violate the terms of use of a service
and offer paid content to unauthorized users, access to a service must
be restricted to paying users.

* Trust: Another system brings another level of trust. A user must be
able to trust this system not to collaborate with the adversary or a third
party, which would be even worse than the adversary’s original data
collection.

Chapter 3

Background

3.1 Web Authentication

Web authentication [47] is the process of verifying a user’s identity before
granting access to a web resource. It is a critical security measure to protect
sensitive data and resources. Web users encounter many forms of authentica-
tion in everyday life, such as passwords, PINs, or biometric scans.

What happens after our identity has been verified successfully? All authenti-
cation mechanisms can be classified into either token-based or session-based
authentication.

In token-based authentication, the server generates a token containing all the
necessary user data and signs it with a secret key. The token is sent back to
the user and stored on the user-side, but not on the server-side. The user
typically sends the token in the ”Authorization” header of an HTTP request
to a server, which decrypts the token, verifies the signature, and grants access.
This method is also often used for server-to-server connections.

In session-based authentication, the server generates a session, or session file,
which contains all the necessary information about a user. This session is
stored on the server-side, unlike the token-based method. The session ID, a
randomized string to prevent third parties from extracting any information
about the user, is server-side encrypted and transmitted to the user as a
cookie [40]. These cookies should be encrypted to prevent any client-side
tampering. In this thesis, we call this cookie the session cookie. The user
submits this session cookie with each request to a server, which checks
whether the session ID is present in the session store and then grants access.
This method is used for user-to-server connections.

In this thesis we will almost exclusively deal with session-based authentica-
tion since the services we investigate rely on it. Anyone in possession of a
session cookie has almost unrestricted access to the account associated with

3. BACKGROUND

it. For this reason, also client-side protection mechanisms are defined for
cookies [40]. These include cookie-specific flags such as the secure attribute
[40], which forces cookies to be sent only over encrypted connections, and
the httpOnly [18, 40] attribute, which prevents cookies from being accessed
by scripts.

3.2 Trusted Execution Environments and Intel SGX

A Trusted Execution Environment (TEE) is a secure area of a computer’s
main processor where applications can be run in a protected environment,
isolated from the rest of the systems. TEEs are used in various applications,
including mobile devices, smart cards, automotive systems, and on servers
in data centers.

Intel Software Guard Extensions (SGX) [44, 17] is a modern TEE environment
providing various protection mechanisms such as isolated code execution
and attestation[2]. Intel introduced SGX as an instruction set architecture
extension, available in Intel’s processors starting with the sixth-generation
Core processors (Skylake) in 2015. SGX allows developers to create multiple
protected environments, called “enclaves”. An enclave is a secure area of
memory that is isolated from the rest of the computer’s memory. Data and
code run in an enclave is protected from being accessed or tampered with by
other applications or the operating system.

Besides isolated code execution and attestation, Intel SGX offers many other
protections, such as sealing and memory encryption. In the following, we
give a rough overview of the relevant mechanisms for this work. For more
detailed coverage, see [44].

¢ Attestation: SGX can prove that an enclave can be trusted by checking
whether an enclave contains the expected code. This process is called
attestation. Intel distinguishes between local and remote attestation:

— Local Attestation: Two enclaves on the same platform can check
each other.

— Remote Attestation: Intel’s online attestation service [3] is used
to verify an enclave’s signature. A system service called Quoting
Enclave creates this signature. The verifier and the enclave to be
verified do not have to be on the same platform.

* Runtime Isolation: As indicated, SGX provides isolated code execution.
Through protections enforced in the processor, SGX prevents other
potentially malicious software, processes, or the operating system from
accessing code and data in the enclave.

3.3. Integritee

* Sealing and Memory Encryption: SGX encrypts any runtime memory
in an enclave, preventing an untrusted operating system from accessing
it. In addition, SGX can protect confidential data used across mul-
tiple enclave executions. This process is called sealing and involves
encrypting and authenticating enclave data.

3.3 Integritee

Integritee [16, 14] is a framework that aims to improve privacy by integrating
TEEs into substrate-based blockchains [11]. Integritee provides users with
a way to build decentralized, scalable applications that rely on multiple,
mutually trusting TEEs. Intel SGX is used in Integritee, and the component
containing the enclave-code is called a worker. Workers connect to nodes in
the Integritee chain, which verify and store the attestation of the workers.

Integritee offers some key features that are relevant for this work:

* Remote Attestation: Integritee simplifies the process of remote attes-
tation for examiners by storing the TEE attestations of all workers in
an Integritee blockchain. Each worker transmits remote attestations
daily. As a result, a verifier no longer needs to verify the signature of
an enclave via a manufacturer’s online attestation services.

* Redundancy and Scalability: Integritee is designed to expand the
network with new workers without significant hurdles. A new worker
can join the existing network by requesting a current worker to perform
a mutual remote attestation. If successful, the new worker receives the
state and the corresponding keys and immediately starts to work in
parallel. An Integritee chain can attestate more than 1000 such workers.

For more in-depth coverage, see [34].

3.4 K-Anonymity

K-anonymity is a concept for anonymizing datasets, first introduced by
Latanya Sweeney [63, 61]. The concept was introduced to address a prob-
lem: anonymized data can be re-identified by linking it with other datasets.
Sweeney introduced the privacy model for use with databases containing
personally-identifying information.

The concept of k-anonymity is based on the idea that any subset of records
in a database will have at least k individuals who share the same identity
attributes. Then a single individual cannot be identified using only those
records, as we cannot distinguish which of the k individuals it is.

3. BACKGROUND

10

To achieve k-anonymity, each record in a dataset should be generalized and
then possibly suppressed, according to its degree of risk for identifying an
individual:

* Generalization: Generalize the values in this category. The following
would be examples: replace age with age groups, cities with countries,
or religion with a boolean value for “believing”.

¢ Suppression: Remove or replace a value with an ”*”. This is mainly
done when a category has less than k values.

Chapter 4

Overview
e
User A Dq
—_— Req A with g
Req B Pool _
< N Useridentity I 4 Req B with o=,

\User B Useridentity I 5 Req C with 1,
A~) Req C . .

8 % Useridentity I

—

User C

Clients Mixnet Service

Figure 4.1: Overview of MIXNET

MIXNET is a service, completely running in a Trusted Execution Environment
(TEE). It allows users to use third-party services while enhancing user privacy.
As shown in Figure 4.1, the main idea of MIXNET is to mix user sessions with
the goal that a service can no longer identify individual users. Accordingly,
MixNET helps to prevent data collection.

Instead of using the service directly, users will access the service through
MIXNET, analogous to a proxy service. MIXNET keeps a pool of user identities
using its service to perform its primary task of forwarding user requests
with the identity of another user. In doing so, MIxNET applies the concept of
k-anonymity to HTTP traffic from different users by generalizing or removing
tields from HTTP requests.

This way, we enhance privacy, as the service can no longer assign the traffic

11

4. OVERVIEW

12

to a specific user; it only knows that the request came from a user in the
group of MIxNET users. With this solution, we do not harm a service by
disturbing its traffic or falsifying any statistics about page views or the like.
This is important because we assume services that neither work with us nor
against us. Therefore, it would be counterproductive to harm such a service.

Mixner fulfills the requirements from Chapter 2 as follows:

Confidentiality and integrity: MIXNET represents a man-in-the-middle
[49], as it sits on the channel between a user and a service. To secure
this channel, the entire traffic between clients and MIxNET and between
MixNET and services uses the Transport Layer Security (TLS) protocol
[64, 59]. As a man-in-the-middle, MIXNET can read the messages in
plaintext, but since it runs in an SGX enclave, this data cannot leak to
an adversary. Therefore, MIxNET does not degrade the security of any
message between the user and the service.

No leakage of personal data: MIXNET ensures that users’ personal
data is not leaked to another user using two approaches. First, MIXNET
blocks requests to user-account-specific pages, as these mainly contain
sensitive data. Second, MIXNET detects and replaces personal data
embedded in other pages.

No session leakage: MIXNET runs entirely within a Trusted Execution
Environment (TEE), so we rely on the security properties of the TEE to
protect active user sessions. MIXNET cleans up the service response and
removes session cookies or corresponding references. This ensures that
a user does not get any hint about the session used.

Restricted access: MIXNET keeps track of which user submits which
session cookie. These cookies are regularly checked for validity, and
a user has access as long as his cookie is valid. This ensures that only
authorized users have access to a service.

Trust: Remote attestation, which TEEs provide, allows a user to ensure
that the expected code is running. To simplify attestation, we rely on
Integritee, and the code of MIXNET is open source [10].

Chapter 5

System

In this chapter we present the design of MixNET. The selected approach
supports multiple real-world services, which users can select by setting a
cookie.

The main purpose of MIXNET, mixing the user identities, is a simple task.
Recall that tokens or session cookies are used on the web to identify a user,
and having either of them grant unrestricted access to a service. There are
two ways to get such a cookie: Either the user gives it directly to MIXNET, or
he provides his credentials, and MIxNET performs the login to the service,
which then returns the cookie. The first way is chosen for MIXNET, as it is less
complicated since it does not have to deal with complex authentication mech-
anisms like multi-factor authentication. It has the advantage that MIXNET
does not have to worry about sensitive user credentials and only stores and
protects session cookies.

5.1 Architecture

MixNET [10] builds on the code of an Integritee-worker [15] that uses the
Apache Teaclave SGX SDK [1], a software development kit for developing
Intel SGX applications in Rust. MIXNET consist of three modules, as shown
in Figure 5.1. All modules reside in a single Intel SGX enclave.

5.1.1 Server

The server module provides a multithreaded TLS server, handling multiple
TLS sessions concurrently. To do so, it uses Mio [29], a fast, low-level Input /
Output library, which notifies if there is either a new connection to accept or
new network traffic over an existing connection. To protect and encrypt the
traffic it uses the TLS library rustls [24]. Rustls performs a TLS Handshake
to establish a new connection. It handles encryption and decryption using

13

5. SYSTEM

14

Mixnet TEE Service Provider
'S
/ Proxy R
Restricted
Cookie Validator Part
- runs regularly >N
New User ? ¢ p a
Router St
% - Authentication orRge
g - Authorization User A
eglver - Routing / Page User B
Handling
HTTP - Handle Whitelist | | L2567 ¢
Parser v
Authorized ? Request Generator: Content
—els - Forwarded and
default headers
__- Random Cookie
'éanitizer Response
- URLS Hall:dler
C Content
~—
A Yy
A Services.txt
- Domain
Remote Attestation - Subdomains

- Validation Logic
- White / Blacklist

Figure 5.1: System overview

the server’s certificate and private key. The server reads and decodes new
data and parses it to a valid HTTP request. If parsing is successful, the server
uses the request’s headers and body to obtain the information the router
module needs to process the request; otherwise, the server returns an error
message to the client. Necessary information includes the UUID to uniquely
identify the user, which service provider and resource he is targeting, and
his session cookie for the service provider if it is the user’s first request for
this specific service provider. Establishing a new connection is handled by
the main thread while handling events from an existing connection is passed
to a thread pool.

5.1.2 Router

The router essentially hosts the frontend of MixNET. This frontend allows
new users to log in and select which service they want to access. The router
either returns the pages of the frontend directly without querying any third-

5.1. Architecture

party service, or prepares user-supplied data for the proxy to the third-party
service.

Frontend

For users which are not yet authenticated to MIxNET, we first have to check if
they request a valid path. To do so, we use a modified version of the library
route-recognizer [13], which recognizes patterns in the requested path. The
router returns the requested page of MixNeT for valid paths. Otherwise, the
router returns a default error page and an HTTP 404-response. To log in, a
user should request the main page of MIXNET, on which he can select the
desired service provider and transmit his corresponding session cookie. The
main page sets the selected service provider as a cookie for the user, which

we call the target cookie, and assigns a UUID if one does not already exist.

This UUID is later used to uniquely identify users on MIXNET.

For users already authenticated to MixNET, the router checks if they are
authorized to access the requested service provider. It does so by checking
the following two conditions:

* Whether the cookie storage contains a valid session cookie for the
respective service provider of this user.

¢ Or if the request contains a session cookie for the respective service
provider. This session cookie is passed to and checked by the cookie
validator from the Proxy module, described in subsection 5.1.3. Valid
cookies are stored together with the UUID of the owning users in the
cookie storage.

If one of these two conditions applies, the user is authorized to access this
service provider.

Proxy-Preparation

To prevent personal data leakage, we must prevent users from requesting
a path that would lead to a page showing personal data associated with
the session cookie used for this forwarded request. The router module
checks if a user is authorized to access a specific path by having multiple
route-recognizers instances, one per service provider. The router builds the
route-recognizer for a service provider using a predefined white or black list
of which paths users may access and which not.

These route-recognizers, as well as the previously mentioned one of the
frontend, support the following formats, among others:

* exact path segments of the form /a/b.

* named parameters of the format /a/:b, whereas ”:b” captures the

o

filename at location ”:” in a parameter named "b”.

15

5. SYSTEM

16

* path wildcards of the format /a/*.

Thus, for a specific service, we can either directly exclude individual path
patterns that lead to content with personal data or, conversely, only allow
individual path patterns that are necessary to use the service and block the
rest. The first variant has the disadvantage that the requirement is no longer
fulfilled if a service provider changes paths on his side. In contrast, the
second, more restrictive variant continues to function. With both variants,
it can still happen that personal data is included as part of the content, for
example, in the navigation bar with a link to the user profile or as part of
a personalized greeting. The sanitizer part in the proxy module, which is
described in more detail in the chapter 5.1.3, handles these cases.

The router forwards authorized requests to the proxy module and returns a
403 error page in case of unauthorized requests.

5.1.3 Proxy

The proxy module itself consists of five parts, the cookie validator, the cookie
storage, the request generator, the response handler, and the sanitizer:

The cookie validator verifies the session cookies that users submit and is
thus a central element for access management. At the same time, the cookie
validator extracts personal user data associated with the session cookie, which
must not be disclosed when using this cookie. The sanitizer uses this data in
a later step.

A flow must be defined for each service provider. Such a flow can include
multiple HTTP requests with the cookie to be checked. The target of a request
is an area of the web service restricted to authorized users or a specific API
endpoint to query the subscriber status. The response body and its status
code provide information about a user’s access authorization. Based on
the response, we can check if a session cookie is invalid, as shown in the
following listing:

¢ Status code 302: Redirection to a login page means the session cookie
is invalid.

e Status code 403: Missing authorization for the requested page means
the session cookie is invalid.

* API request: JSON response contains a subscription field. If the value
is equal to “false”, the session cookie is invalid.

Otherwise, it was a valid session cookie, and the validator can extract, either
from the same response, or using another request, the personal data for the
sanitizer. This personal data includes the name and the mail address and
further potential data like the residential address, an identity token, or a User
ID.

5.1. Architecture

The validator stores the session cookie and personal data, as well as the
UUID of the user in the cookie storage. All these cookies in the storage are
checked for validity by the validator at regular intervals. Invalid cookies
and their associated data are deleted from the storage, and the user who
contributed the cookie is denied access. This periodic validation ensures the
following properties:

* The cookie storage contains only valid session cookies, which are
required to use a service.

¢ There is no violation of the Terms of Use because only paying customers
of a service provider have access.

The request generator is responsible for making the actual HTTP request to
the service provider. To do this, it takes the request that the user initially
made to MIXNET, extracts the path, and the target cookie, which defines to
which service provider the request should be sent, any extra headers, and
the body. The generator creates a valid target URL from the path and the
target cookie. We defined which headers the request generator should take
over from the original request and which are not used further. In addition
to this, there is a set of default headers that the request generator adds to
each request. The set of default headers include, for example, the “User-
Agent”-Header, so that browser information is not unnecessarily disclosed
to the service provider, and the "Content-Type” and ”Accept” headers as
some servers would otherwise reject the request. Additionally, a valid session
cookie is added to access the service provider, randomly selected from the
cookie store.

Once the generator has built the HTTP request, it checks if there is already an
open TLS stream to the host of the target URL. If so, the request is sent over
this stream. Otherwise, it opens a new secure connection to this host and
sends the request over it. If the request fails, e.g., because of a broken stream,
the request generator tries to open a new stream and resend the request. If
the request is successful, the generator passes the response to the response
handler.

The response handler decides what to do, depending on the class [12] of the
response status code:

¢ Informational responses (100-199): The response’s status and body are
passed directly to the user.

* Successful responses (200-299): The response body is passed to the
sanitizer part. The sanitizer will solve two problems: On the one
hand, the answer contains relative and absolute paths through which
one would land on the original website. Therefore, the sanitizer must
slightly edit the content so that the system continues to work. On the
other hand, this response may contain user data that should not be

17

5. SYSTEM

18

disclosed to other users, which the sanitizer will replace. Afterward,
the cleaned-up body is passed with the original status code to the user.

* Redirection messages (300-399): The “Location” header of the response
is intercepted and adjusted so that the redirection routes the subsequent
traffic through MixneT. Otherwise, a user would be redirected directly
to the service provider.

* Client error responses (400-499): The server’s corresponding error
message and response are returned to the user.

* Server error responses (500-599): A default response is returned to the
user.

The functionality of the response handler regarding headers is similar to the
request generator. The headers that the user receives consist of forwarded
headers, default headers, and headers computed directly by the response
handler. As a principle, the response headers returned by the server are not
used except for the most necessary ones. Therefore tracking cookies or similar
are not forwarded to the user. Exceptions include the following headers:
Cache-Control, Content-Type, Date, and server, which are forwarded not
to impair the functionality of the individual services. After completing its
task, the response handler calculates the “Content-Length” and uses it to
create a valid HTTP response, which is returned to the TLS server. The TLS
server forwards this response to the user via the secure connection.

As mentioned before, the sanitizer solves two problems:

¢ Intercept absolute and relative paths of a website and, if necessary,
rewrite them to ensure that a user does not land on the service’s
website and that future accesses continue to go through MIxNET.

¢ Prevent the disclosure of a user’s sensitive data.

The sanitizer solves both problems using Regular Expressions, each with a
different approach. In the path problem, we have to distinguish between the
main and subdomains of a service:

¢ Relative paths of the main domain are easy to handle since the host
and the path are transmitted separately in HTTP requests. Together
with the target cookie transmitted, this corresponds to how our TLS
server processes requests.

¢ Absolute paths of the main domain are intercepted using Regular
Expressions. The domain in the absolute path is replaced with the
domain of our system. The TLS server can handle this case the same
way as the relative paths.

¢ Subdomains are even less demanding. Per service, subdomains can
be defined, which are stored as Regular Expressions. The Regular

5.2. Workflow

Expressions match URLs with these subdomains, replace them with
this system’s domain, and append the original URL as a query string.
The TLS server checks for each request whether such a query string
exists and sets the destination address accordingly.

In order to protect the sensitive data of the cookie owner, the sanitizer has to
search the content for it. Recall that the cookie validator stores the sensitive
data with the cookie in the cookie storage. Having the data already makes it
easy to search for it with Regular Expressions and replace it.

5.2 Workflow

Figure 5.2 summarizes the system described in the last chapter and shows an
overview of all the requests that happen, when a user uses the service:

(1) The user enters the domain of MIxNET in his browser. The browser and
the TLS server in MIxNET perform a TLS handshake.

(2) MIxNET returns an HTML page where the user can select the service
provider and enter his session cookie.

(3) The user selects the service provider he wants to use via MIXNET and
enters his session cookie.

(4) To check the cookie, the cookie validator creates a new request using the
request generator. If no secure connection to the service provider exists, the
request generator opens a new one and performs a TLS handshake.

(5) The cookie validator verifies the cookie by sending a request to the service
provider and inspecting the response.

(6) If the cookie from (5) was invalid, a 403 error page is returned to the user.
The user can then start again with step (3).

(7) If the cookie from (5) was valid, the service’s home page is requested via
the request generator, using a random cookie from the cookie storage.

(8) The response is processed by the response handler and the sanitizer and
returned to the user.

As of this step, the user has successfully established a session with the service
via MixNET. The user now sees a slightly modified version of the original
service provider’s home page and can navigate it.

Steps 9-11 represent all other requests routed through MIXNET:
(9) A request for a resource is sent by the user.

(10) MixNET verifies that the user is authorized to send this request. The
verification includes:

19

5. SYSTEM

20

User Mixnet Service
1
= = [
= = \
TIIT

TLS Handshake
® <
return selection page @

send selected service
@ provider and session cookie)

@ TLS Handshake
-«

@ test & check cookie
return 403 error @

>
D S @ request root page
return sanitized reponse @ handle response
< !
forward request if
@ : request page : authorized)

return sanitized reponse @ handle response

Figure 5.2: Workflow

¢ Valid cookie in cookie storage; otherwise, a new session cookie must
be submitted, which in turn must be verified.

¢ The requested resource does not contradict the white/black list rules.
(11) same as step (8).

The user’s session is valid until the cookie validator invalidates his initially
submitted session cookie. A user can interrupt the session by deleting the
target cookie. Recall that the target cookie defines which service the user has
selected. The sanitizer adds a button in HTML responses to simplify deleting
the target cookie. The user is then redirected back to MIxNET’s selection page.
He can either select another service and submit a session cookie or resume
the existing session with the previous service without submitting a session
cookie again.

Chapter 6

Evaluation

We have tested MIXNET on three real-world subscription-based services with
a paywall. These include two Swiss daily newspapers, NZZ [20] and Tage-
sanzeiger [27], and the online streaming service Zattoo [35]. All three services
use a different approach regarding web authentication and session manage-
ment. Tagesanzeiger uses OneLog [21], a cross-platform login solution used
by several Swiss media. NZZ currently uses its own solution but is expected
to join OneLog in 2022, and Zattoo uses Beaker [4], a Python library for
web sessions. The following challenges arose during the service-specific
implementation:

* Tagesanzeiger: When a user navigates through the webpage by clicking
links, Tagesanzeiger tries to revalidate a users’ session-cookie using
client-side Javascript. This revalidation will always fail, as MIxNET does
not forward the used cookie to users. MIxNEeT handles this by triggering
a full page reload when detecting such a failed revalidation.

* NZZ: NZZ has a Javascript-heavy page, dynamically creating the URL
of assets like images while rendering on the client-side. To ensure that
all the traffic is routed through MixnET, we used Request Control [32],
a Firefox browser extension, to redirect requests. We note that the same
can be achieved either by

(i) appending a custom javascript to the page that performs the path
rewriting, or

(ii) by rewriting the existing javascript to generate only URLs that
point to MIXNET.

However, due to the implementation complexity of these approaches
we used the browser extension Request Control as a substitute.

¢ Zattoo: Due to the use of Beaker, a single session cookie is not enough
to get full access. For Zattoo to work, a user must supply the Zattoo-

21

6. EVALUATION

22

specific and Beaker-specific session cookies, which must always be
forwarded together by MIxNET.

6.1 Performance

We measured MixNET’s throughput and the generated overhead using MIxNET
to access the implemented services. MIXNET was run on an Intel i7-6600U
machine with 16 GB RAM and connected over WLAN 802.11ac to the Internet
and the local network for all measurements.

To determine MIxNET’s throughput, we measured how many requests per
second MIXNET can process and how many TLS handshakes MIXNET can
perform per second. We consider TLS handshakes because they initially
impact throughput since each new secure connection must first be established.
We set up a second, much simplified TLS server on an Intel i7-11800H
machine with 32 GB of RAM and also connected it over WLAN 802.11ac
to the local network to perform our measurements. In the following, we
call the second TLS server the native TLS server. The native TLS server was
implemented on the same code base as the TLS server in MixNET, but unlike
the one in MIxNET, it does not run on a TEE and does not parse requests but
always returns a minimal response. The overhead generated by the native
TLS server is negligible compared to the measured latencies while using
MIXNET, as can be seen from the measurements in A.1 in Appendix A.

MixNET | Native TLS Server
AVG 203 456
MIN 171 373
MAX 304 508

Table 6.1: Comparison of TLS handshakes per second

We used tls-perf [28] to measure the number of TLS handshakes per second.
Table 6.1 shows the results of a 4-minute measurement for MIXNET and, in
comparison, the results of the native TLS server. MIxNET can only handle
about half as many handshakes as the native TLS server, with an average
of 203 handshakes per second. This performance loss is mainly due to the
isolated code execution and the associated overhead of calls between the
operating system and the enclave.

To determine how many requests MIXNET can handle per second, we used
a modified version of plow [25], which allows us to define the number
of concurrent users and the number of requests per user. With plow we
measured different scenarios by sending requests to the native TLS server
over MIxNET. This way, we avoid possible network overhead and throttling

6.1. Performance

800

700

600
=)
e
8 500 @® #R=1
[}
r ® #R=2
w
$ 400 @ #R=44
[
2 @ #R=60
3 300
<
oo
=3
o
< 200

100

0 | | I | | | | | | | |

T T T T T T T T
1 2 4 8 16 32 64 128 256 512 1024

concurrent users

Figure 6.1: Throughput for different scenarios where #R := requests per user

due to possible protection mechanisms of a service provider. To get scenarios
as realistic as possible, we set the number of requests per user according to
the services we implemented in MixNET. For Tagesanzeiger and NZZ, we
took the number of requests that run through MIXNET when a user requests
the home page of the specific service. This resulted in 44 requests per user
for NZZ and 60 requests per user for Tagesanzeiger. For Zattoo, we have
set the number of requests per user to 2, which corresponds to the number
of average requests per second during actual streaming. Additionally, we
created a scenario where each user sends only a single request for reference.
We measured these scenarios with different numbers of concurrent users
five times each. Figure 6.1 shows the average measured throughput. For
scenarios that send many requests per user, the throughput settles between
500-600 requests per second. Scenarios that send few requests have lower
throughput because TLS handshakes dominate the overhead.

We measured the overhead of MIxNET for a single user based on the im-
plemented services. For Tagesanzeiger and NZZ, we measured when the
DOMContentLoaded event was fired and when the page was completely
loaded. Table 6.2 compares the mean times of 5 runs for accesses via MIXNET

23

6. EVALUATION

24

Service Access | Initial HTML (& std) | Full pageload (& std)
Tagesanzeiger direct 254ms (£ 41) 2.628s (£ 0.239)
MIXNET 458ms (£ 89) 2.054s (£ 0.774)
Overhead + 204ms (80%) - 0.574s (21%)
NZZ direct 289ms (+ 35) 2.802s (4 0.261)
MIXNET 304ms (+ 74) 1.49s (£ 0.243)
Overhead + 15ms (5%) - 1.312s (46%)

Table 6.2: Mean times of DOMContentLoaded event (Initial HTML) and full pageload accessing
a service directly or via MIXNET

and direct accesses to the service. The results show that MIxNET takes a little
longer to load the initial HTML document but loads the entire page faster.
The former is the overhead of accessing via MIXNET; the faster page load
can be explained with the defined white-/blacklists in the router module:
MIxNET blocks some requests and returns an early response. These are
mostly requests to load advertisements or other content from third parties
and are not necessary for the service to work. For Zattoo, we streamed
the same TV-Channel directly and via MIXNET, and for video segments, we
compared the round-trip times (RTT) of each request. Figure 6.2 shows a
mapping of these requests, and Table 6.3 summarizes the results, showing
that streaming over MIXNET only incurs about 50ms of additional latency per
request. The three outliners seen in Figure 6.2 are due to network conditions
and reestablishing TLS sessions with Zattoo’s servers.

6.1. Performance

600
600

400

200 400

100
80

time [ms]

content size [KB]

60 200

40
20
contentsize @ live-time M mixnettime

Figure 6.2: Round-trip times (RTT) of video packages while streaming Zattoo via MIXNET and
directly.

Direct | MixNET | Overhead
Mean RTT | 53ms 99ms +46ms

Table 6.3: Mean round-trip times (RTT) of video packages while streaming Zattoo directly and
via MIXNET.

25

Chapter 7

Discussion & Limitations

The principle of MIxNET works successfully for three real-world services,
but it runs into limitations at a few points. We address and discuss these
limitations in this chapter.

Adversary Model. We have limited the capabilities of our adversary to
identify users based on HTTP requests. If we extend the adversary with, for
example, the ability to use tracking cookies, then MIXNET partially reaches its
limits. Cookies generated on the server-side and returned with the response
can be handled by MIxNET alone since it does not forward response headers,
and thus the generated cookies, to the user. However, embedded javascript
could generate cookies on the client-side and send them directly to the
adversary. This would circumvent the security mechanism provided by
MixnNer. For such cases, additional mitigations are needed, such as the
browser extension Request Control we used for NZZ, which would route
the request through MixNeT. MIXNET would intercept the request and not
forward the cookie to the adversary. Further countermeasures are also
required if we extend the adversary with other capabilities, such as canvas
tingerprinting. Canvas fingerprinting requires access to the HTML5 Canvas
API as well as javascript. A simple way to prevent canvas fingerprinting
would be to disable javascript. There are also various browser extensions
to do so. For more tracking methods and mitigations, refer to [62, 48]. If
we extend our adversary model to an actively malicious service provider,
further measures are necessary. Such a service provider could actively
work against MixNET, for example, by blocking MixNET’s IP address. In
such a case, new IP addresses would have to be constantly used for traffic
originating from MIXNET, e.g., using different proxies or using Tor’s concept
of anonymous communication. In this case, the service provider would take
further measures against MIxNET, ending up in a cat and mouse game. The
use of further privacy-enhancing technologies would also be required in the
case of a malicious SGX provider on which MIxNET runs. Due to the use of

27

7. DiscussioN & LIMITATIONS

28

TEEs, the malicious SGX provider cannot inspect the requests themselves or
access any data in the enclave. However, a malicious SGX provider would
learn the IP addresses of the user. Together with the service provider, he
could thus reveal the identity of a user. To prevent this, the IP address of the
original user would have to be obfuscated. Based on all these examples, we
strongly recommend using MIXNET side-by-side with other countermeasures
to protect privacy effectively.

Vulnerabilities. We rely heavily on Intel SGX’s security guarantees, although
there are known vulnerabilities in Intel SGX. For more in-depth coverage of
known vulnerabilities and mitigations, see here [58, 45].

Personal Data. Filtering out a user’s personal data requires a lot of manual
effort. When setting up MIXNET for a service, a developer must analyze the
service extensively to identify personal information on all whitelisted pages.
Using the simplistic approach that examines all responses for the data and
replaces them is problematic. For example, if MIXNET replaces a users’ real
name in a newspaper text, one can conclude that the session-cookie of a user
with the corresponding name was used, which would be a leak of personal
data. Therefore, it is necessary to define precisely which parts of a response
MIxNET should clean up for each service. A cleaner solution would be to find
a generic way that interprets, for example, an HTML response and cleans up
data based on the HTML structure. In addition to the previous problem, we
need to keep track of updates on the service side. When a service adds new
paths to its page, these must be propagated to the respective white-/blacklist.

Use Cases. As a field of application for MIXNET, we have limited ourselves
to read-only subscription-based services with a paywall. With personalized
services such as Facebook or LinkedIn, the social network and the user’s
profile are at the forefront of the experience, so it would not make sense
to mix sessions. Nevertheless, we could extend the application area to
services that require registration for full use of their service but do not have
a paywall. Examples of this would be read-only proxies of Instagram or
Twitter. However, to continue to achieve the primary goal of enhancing
privacy, interaction with the social network and generating content with the
user’s profile should be avoided entirely and MIxNET should be used only to
consume the content. The situation would be similar for services like Spotify
or Netflix. Suppose we applied the current concept of MIXNET to a read-only
version of Spotify, where interactions like creating a list or liking a song are
prevented. Central functions like personalized lists and suggestions would
be omitted, but the service would not learn anything about the users. If we
want to keep interactions like liking songs, one approach would be to store
them directly in the enclave. This information would not be forwarded to
Spotify but could be attached to a response before returning it to the user.
We leave the elaboration of such an approach for future work.

7.1. Future Work

At this point, we would like to emphasize that MixNET could also be used by
a service provider itself, or in collaboration with it, to provide more privacy
for its users. This would also ease the problem of personal data, as the design
and implementation of a service would be exposed.

7.1 Future Work

We propose three possible directions for future work.

Scalability. The throughput of MIXNET implemented on a single enclave
is around 500 requests per second. To scale the system, one could use the
Integritee framework by running MIxNET on multiple Integritee workers. On
the one hand, this would require a load balancer to distribute the HTTP
requests to the different enclaves; on the other hand, the workers would
have to exchange their cookie storage with each other so that an accurate
session mixing can occur. In addition, future work could benefit from the
upcoming Intel SGX2 version, which allows more threads per enclave than
were available to us. In our setup with the current Intel SGX, the number
of threads was limited to 8 threads running simultaneously, as SGX maps
threads directly to logical processors.

Browser Extension. We propose implementing MIXNET as a browser exten-
sion instead of a web page. This would allow MIXNET to withstand a stronger
adversary model. An implementation as a browser extension would provide
access to numerous browser functionalities such as Firefox’s webRequest API
[33], which could be used to exceptionally route all requests originating from
a page to MIXNET. MIXNET can then process, generalize, block or forward
these requests. This would also include third-party requests, which may be
sent for tracking purposes. The problem of dynamic URL creation that we en-
countered with NZZ would also become obsolete. In addition, MIXNET could
do its part against fingerprinting since it has access to all requests originating
from a page and therefore knows the initiator of a request. MIxNET could
then block requests from certain initiators. We already mentioned that we
could append custom javascript or rewrite existing javascript to solve the path
rewriting problem, but MixNET would have more capabilities as an extension.
For instance, MIXNET could also get access to the browser storage, which
allows accessing cookies where the HttpOnly flag is set. Accessing such
cookies by javascript is forbidden. Having access to all cookies would make
the initial transfer of the session cookie from the user to MIXNET unnecessary.
Further possibilities and an evaluation of such an approach are left for future
work.

Website Analysis. We have already suggested filtering out personal data
based on the HTML structure. Another approach would be to integrate
a tool for website analysis, such as needed for search engine optimization

29

7. DiscussioN & LIMITATIONS

30

(SEO), or an authenticated web crawler. The main purpose of this tool would
be to analyze links and content on a website and find user-related links
and content. With an automated analysis by such a tool, the manual effort
for implementing services could be reduced and react to changes in the
site structure. Another approach would be to analyze websites in greater
depth and detect possible interactions, such as a “like” for a song on Spotity.
MixNET could then be extended to more personalized services such as Spotify
by preventing such interactions.

Chapter 8

Related Work

User privacy is becoming an increasingly important issue in our society. At
the same time, there is a growing need to know whom we are trusting with
our data and that it is safe to use this service. There are many approaches
to improve privacy by avoiding tracking on the web, be it through privacy-
enhancing tools [60] or anonymous communication through services like
Tor [30] or the use of mix networks [36, 56]. TEEs are increasingly used to
provide secure, trustworthy applications. Frameworks such as Integritee [16]
or Enarx [5] simplify running applications on TEEs. The range of applications
using TEEs includes, among others, biometric authentication [41], secure
payments [52] and blockchain wallets [6], or end-to-end encryption between
enclaves [23]. With MIXNET, we extend the possibilities to enhance privacy
using the concept of mix networks and TEEs.

The Nym Network [46] takes a similar approach to MIxNET. It also uses
the concept of mix networks and generalizes requests to a service provider,
thus preventing the service provider from concluding the user who sent the
request. In contrast to MIxNET, the Nym Network is based on a blockchain-
based solution. In the Nym blockchain, among other things, a record is
stored of which user is authorized for which service. However, the Nym
Network does not forward the requests with real user identities but uses
anonymous credentials [43]. This requires service providers to cooperate with
the Nym Network since the service providers must accept these anonymous
credentials. MIXNET, on the other hand, does not require cooperation of the
service provider. More than 100 papers use the concept of mix networks. An
analysis of different applications can be found in the article: “Mix Networks:
Existing Scenarios and Future Directions on Security and Privacy” [36].

The two papers, DelegalTEE [54] and TEEvil [57], work with the concept of
“account sharing” using TEEs. DelegaTEE deals with delegating work, such
as making payments with another person’s account or processing mails for
them. TEEvil, on the other hand, takes the approach that one can lend his

31

8. RELATED WORK

identity to another user in exchange for money. In both approaches, a policy
defines which actions are possible. The policy-based approach would be a
way to extend MIXNET to personalized services by allowing or prohibiting
specific actions.

32

Chapter 9

Conclusion

This thesis presents MIXNET, a system that enhances privacy for users of
subscription-based services. MIXNET obfuscates the connection between
server request and the user who made it. It does so while maintaining the
service’s ability to restrict access to paying customers. The main idea behind
MIXNET is mixing subscription-related cookies and generalizing requests.
MIxNET performs this tasks in an isolated runtime using TEEs.

Our implementation and experiments show that MIXNET can be applied to
different real-world applications, such as newspapers or streaming services,
and works without cooperation with the service provider. Before a request
is forwarded to a service, MIXNET removes identifying headers or replaces
them with generalized default headers. While doing so, MIXNET replaces
the subscription-related cookie with the cookie of an arbitrary MIXNET user.
To restrict access to paying customers, MIxNET keeps track of which user
submitted which cookie and regularly checks the validity. MIXNET prevents
displaying session-related personal data of one user to another user. It does
so by blocking access to user-specific pages based on a white-/blacklist logic
and detecting and replacing personal data embedded in pages. The selected
approach works without cooperation with the service provider.

The throughput of MIxNET settles between 500 and 600 requests per second,
and the overhead of using MIXNET remains within reasonable limits. Stream-
ing via MIXNET adds on average only about 50 ms overhead per request. The
chosen approach is thus even suitable for streaming. For newspapers the
times for a full-page load are even shorter since only functionally relevant
requests are forwarded. MIXNET also works with other privacy-enhancing
tools, and using them side-by-side is an effective way to protect user privacy.

33

Appendix A

Performance Results

100000
10000
c
o
o
%
e 1000
©
=
[
E
100 I
10
1 10 100 1000 10000

requests

B time-mixnet [l time-native-tls-server

Figure A.1: Comparison of mean latencies (in nanoseconds) for requests send to MIXNET and
the native TLS server by a single user

35

A. PERFORMANCE RESULTS

36

800
700
600

=)
[y
S
S 500
<
1%]
s
$ 400
o
o
2 300
Ny
oo
>
o
< 200
100
0

1 2 4 8 16 32 64 128 256 512 1024

concurrent users

#R=1

#R =2

#R =44

#R = 60
#R=1 (ST)
#R=2 (ST)
#R=44 (ST)
#R=61 (ST)

Figure A.2: Throughput comparison of multithreaded vs singlethreaded version of MIXNET

100

80

60

40

time [ms]

20

12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

request

Figure A.3: Time lapse of latency per request via MIXNET for 32 concurrent users sending 44
requests each.

30
100
80
60
20
? _
[as)
7 2
12
8
£ z
g :
= £
8
10
20
<
0

contentsize @ live-time M mixnet-time

Figure A.4: Round-trip times (RTT) of audio packages while streaming Zattoo via MIXNET and
directly.

Bibliography

apache/incubator-teaclave-sgx-sdk: Apache Teaclave (incubating) SGX
SDK helps developers to write Intel SGX applications in the Rust
programming language, and also known as Rust SGX SDK. URL:
https://github.com/apache/incubator-teaclave-sgx-sdk.

Attestation Service for Intel® Software Guard Extensions (Intel® SGX):
API Documentation. URL: https://api.trustedservices.intel.co
m/documents/sgx-attestation-api-spec.pdf.

Attestation Services for Intel® Software Guard Extensions. URL: https:
//www.intel.com/content/www/us/en/developer/tools/software-g
uard-extensions/attestation-services.html.

Beaker - PyPl. URL: https://pypi.org/project/Beaker/.
Enarx — Enarx. URL: https://enarx.dev/.

Ethereum Wallet in a Trusted Execution Environment / Secure Enclave
— by Sascha Thomsen — weeve’s World — Medium. URL: https:
//medium.com/weeves-world/ethereum-wallet-in-a-trusted-exe
cution-environment-secure-enclave-b200b4df9f5f.

Facebook Reports Fourth Quarter and Full Year 2014 Results. URL:
https://investor.fb.com/investor-news/press-release-details/
2015/Facebook-Reports-Fourth-Quarter-and-Full-Year-2014-Re
sults/default.aspx.

Facebook’s Top Open Data Problems - Meta Research — Meta Research.
URL: https://research.facebook.com/blog/2014/10/facebook-s-
top-open-data-problems/.

39

https://github.com/apache/incubator-teaclave-sgx-sdk
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html
https://pypi.org/project/Beaker/
https://enarx.dev/
https://medium.com/weeves-world/ethereum-wallet-in-a-trusted-execution-environment-secure-enclave-b200b4df9f5f
https://medium.com/weeves-world/ethereum-wallet-in-a-trusted-execution-environment-secure-enclave-b200b4df9f5f
https://medium.com/weeves-world/ethereum-wallet-in-a-trusted-execution-environment-secure-enclave-b200b4df9f5f
https://investor.fb.com/investor-news/press-release-details/2015/Facebook-Reports-Fourth-Quarter-and-Full-Year-2014-Results/default.aspx
https://investor.fb.com/investor-news/press-release-details/2015/Facebook-Reports-Fourth-Quarter-and-Full-Year-2014-Results/default.aspx
https://investor.fb.com/investor-news/press-release-details/2015/Facebook-Reports-Fourth-Quarter-and-Full-Year-2014-Results/default.aspx
https://research.facebook.com/blog/2014/10/facebook-s-top-open-data-problems/
https://research.facebook.com/blog/2014/10/facebook-s-top-open-data-problems/

BIBLIOGRAPHY

40

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

GDPR - REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIA-
MENT AND OF THE COUNCIL of 27 April 2016 on the protection
of natural persons with regard to the processing of personal data and
on the free movement of such data, and repealing Directive 95/46/EC.
URL: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri
=CELEX:32016R0679&from=DE.

Github - scs/ma-thesis-no-data-collection. URL: https://github.com
/scs/ma-thesis-no-data-collection.

Home — Substrate. URL: https://substrate.io/.

HTTP response status codes - HTTP — MDN. URL: https://develope
r.mozilla.org/en-US/docs/Web/HTTP/Status.

http-rs/route-recognizer: Recognizes URL patterns with support for
dynamic and wildcard segments. URL: https://github.com/http-rs
/route-recognizer.

Integritee Lightpaper. URL: https://uploads-ssl.webflow.com/60c2
1bdfde439ba700eabc56/612892db018a36£054100b4d _Integritee’20
AGY%20Lightpaper.pdf.

integritee-network /worker at 5{7b47093f7aee10c0f36fc1abaf0003c4{99701.
URL: https://github.com/integritee-network/worker/tree/5£7b
47093f7aeel0c0£36£fc1abaf0003c4£99701.

Integritee — Unchain the value of sensitive data. URL: https://integr
itee.network/.

Intel® Software Guard Extensions. URL: https://www.intel.com/co
ntent/www/us/en/developer/tools/software-guard-extensions/
overview.html.

Mitigating Cross-site Scripting With HTTP-only Cookies — Microsoft
Docs. URL: https://docs.microsoft.com/en-us/previous-versio
ns//ms533046 (v=vs.85)?redirectedfrom=MSDN.

Netezza and IBM Cloud Pak for Data: A knockout combo for tough
data - Journey to Al Blog. URL: https://www.ibm.com/blogs/journe
y-to-ai/2020/06/netezza-and-ibm-cloud-pak-a-knockout-combo
-for-tough-data/.

NZZ - Neue Ziircher Zeitung — Aktuelle News, Hintergriinde & mebhr.
URL: https://www.nzz.ch/.

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=DE
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=DE
https://github.com/scs/ma-thesis-no-data-collection
https://github.com/scs/ma-thesis-no-data-collection
https://substrate.io/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://github.com/http-rs/route-recognizer
https://github.com/http-rs/route-recognizer
https://uploads-ssl.webflow.com/60c21bdfde439ba700ea5c56/612892db018a36f054100b4d_Integritee%20AG%20Lightpaper.pdf
https://uploads-ssl.webflow.com/60c21bdfde439ba700ea5c56/612892db018a36f054100b4d_Integritee%20AG%20Lightpaper.pdf
https://uploads-ssl.webflow.com/60c21bdfde439ba700ea5c56/612892db018a36f054100b4d_Integritee%20AG%20Lightpaper.pdf
https://github.com/integritee-network/worker/tree/5f7b47093f7aee10c0f36fc1abaf0003c4f99701
https://github.com/integritee-network/worker/tree/5f7b47093f7aee10c0f36fc1abaf0003c4f99701
https://integritee.network/
https://integritee.network/
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://docs.microsoft.com/en-us/previous-versions//ms533046(v=vs.85)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions//ms533046(v=vs.85)?redirectedfrom=MSDN
https://www.ibm.com/blogs/journey-to-ai/2020/06/netezza-and-ibm-cloud-pak-a-knockout-combo-for-tough-data/
https://www.ibm.com/blogs/journey-to-ai/2020/06/netezza-and-ibm-cloud-pak-a-knockout-combo-for-tough-data/
https://www.ibm.com/blogs/journey-to-ai/2020/06/netezza-and-ibm-cloud-pak-a-knockout-combo-for-tough-data/
https://www.nzz.ch/

Bibliography

[21] OneLog. URL: https://consent.onelog.ch/?lang=de#/.
[22] Privoxy - home page. URL: https://www.privoxy.org/.

[23] project-oak/oak: Meaningful control of data in distributed systems.
URL: https://github.com/project-oak/oak.

[24] rustls/rustls: A modern TLS library in Rust. URL: https://github.c
om/rustls/rustls.

[25] six-ddc/plow: A high-performance HTTP benchmarking tool with real-
time web UI and terminal displaying. URL: https://github.com/six
—-ddc/plow.

[26] Sweet32: Birthday attacks on 64-bit block ciphers in tls and openvpn.
URL: https://sweet32.info/.

[27] Tages-Anzeiger — Aktuelle Nachrichten und Hintergriinde. URL: https:

//www.tagesanzeiger.ch/.

[28] tempesta-tech/tls-perf: TLS handshakes benchnarking tool. URL: https:
//github.com/tempesta-tech/tls-perf.

[29] tokio-rs/mio: Metal IO library for Rust. URL: https://github.com/t
okio-rs/mio.

[30] Tor Project — Anonymity Online. URL: https://www.torproject.org
/.

[31] Trackmenot. URL: http://trackmenot.io/.

[32] tumpio/requestcontrol: A Firefox extension. URL: https://github.c
om/tumpio/requestcontrol.

[33] webrequest - mozilla — mdn. URL: https://developer.mozilla.org/
en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest.

[34] What is Integritee? A full technical guide. — by Vlady Limes — Polkadot
Ecosystem PromoTeam — Medium. URL: https://medium.com/polka
dot-ecosystem-promoteam/what-is-integritee-a-full-technica
1-guide-75de9c3cc7b9.

[35] Zattoo - Streaming Live TV from any device: with over 100 TV channels!
URL: https://zattoo.com/ch/en.

41

https://consent.onelog.ch/?lang=de#/
https://www.privoxy.org/
https://github.com/project-oak/oak
https://github.com/rustls/rustls
https://github.com/rustls/rustls
https://github.com/six-ddc/plow
https://github.com/six-ddc/plow
https://sweet32.info/
https://www.tagesanzeiger.ch/
https://www.tagesanzeiger.ch/
https://github.com/tempesta-tech/tls-perf
https://github.com/tempesta-tech/tls-perf
https://github.com/tokio-rs/mio
https://github.com/tokio-rs/mio
https://www.torproject.org/
https://www.torproject.org/
http://trackmenot.io/
https://github.com/tumpio/requestcontrol
https://github.com/tumpio/requestcontrol
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest
https://medium.com/polkadot-ecosystem-promoteam/what-is-integritee-a-full-technical-guide-75de9c3cc7b9
https://medium.com/polkadot-ecosystem-promoteam/what-is-integritee-a-full-technical-guide-75de9c3cc7b9
https://medium.com/polkadot-ecosystem-promoteam/what-is-integritee-a-full-technical-guide-75de9c3cc7b9
https://zattoo.com/ch/en

BIBLIOGRAPHY

42

[36]

(371

[38]

[42]

[44]

Khaleel Ahmad and Afsar Kamal. Mix networks: Existing scenarios and
future directions on security and privacy. Recent Patents on Engineering,
14(3):310-323, 2020. URL: https://wuw.ingentaconnect.com/content
/ben/eng/2020/00000014/00000003/art00006, doi:doi:10.2174/18
72212114666191223125619

Rami Al-Rfou’, William Jannen, and Nikhil Patwardhan. Trackmenot-
so-good-after-all. 11 2012. URL: http://arxiv.org/abs/1211.0320.

Xavier Amatriain. Big & personal: Data and models behind netflix
recommendations. BigMine "13, page 1-6, New York, NY, USA, 2013.
Association for Computing Machinery. doi:10.1145/2501221.2501222.

Nimrod Aviram, David Adrian,] Alex Halderman, Sebastian Schinzel,
Juraj Somorovsky, Nadia Heninger, Maik Dankel, Jens Steube, Luke
Valenta, Viktor Dukhovni, Emilia Kadsper, Shaanan Cohney, Susanne
Engels, Christof Paar, and Yuval Shavitt. Drown: Breaking tls using
sslv2. 2016. URL: https://www.usenix.org/conference/usenixsecu
rityl6/technical-sessions/presentation/aviram.

Adam Barth. HTTP State Management Mechanism. RFC 6265, April
2011. URL: https://www.rfc-editor.org/info/rfc6265, doi:10.174
87/RFC6265.

Abhilasha Bhargav-Spantzel. Trusted execution environment for privacy
preserving biometric authentication. Intel Technology Journal, 18(4):162
—177,2014. URL: https://search.ebscohost.com/login.aspx?direc
t=true&db=buh&AN=97377859&site=ehost-1live.

Karthikeyan Bhargavan and Gaétan Leurent. On the practical (in-
)security of 64-bit block ciphers: Collision attacks on http over tls
and openvpn. Proceedings of the ACM Conference on Computer and
Communications Security, 24-28-October-2016:456—-467, 10 2016. doi:
10.1145/2976749.2978423.

Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revocation.
In Proceedings of the International Conference on the Theory and Application
of Cryptographic Techniques: Advances in Cryptology, EUROCRYPT '01,
page 93-118, Berlin, Heidelberg, 2001. Springer-Verlag.

Victor Costan and Srinivas Devadas. Intel sgx explained. Cryptology
ePrint Archive, Report 2016/086, 2016. https://ia.cr/2016/086.

https://www.ingentaconnect.com/content/ben/eng/2020/00000014/00000003/art00006
https://www.ingentaconnect.com/content/ben/eng/2020/00000014/00000003/art00006
https://doi.org/doi:10.2174/1872212114666191223125619
https://doi.org/doi:10.2174/1872212114666191223125619
http://arxiv.org/abs/1211.0320
https://doi.org/10.1145/2501221.2501222
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram
https://www.rfc-editor.org/info/rfc6265
https://doi.org/10.17487/RFC6265
https://doi.org/10.17487/RFC6265
https://search.ebscohost.com/login.aspx?direct=true&db=buh&AN=97377859&site=ehost-live
https://search.ebscohost.com/login.aspx?direct=true&db=buh&AN=97377859&site=ehost-live
https://doi.org/10.1145/2976749.2978423
https://doi.org/10.1145/2976749.2978423
https://ia.cr/2016/086

Bibliography

[45] Jinhua Cui, Jason Zhijingcheng Yu, Shweta Shinde, Prateek Saxena, and
Zhiping Cai. SmashEx: Smashing SGX Enclaves Using Exceptions. Pro-
ceedings of the ACM Conference on Computer and Communications Security,
pages 779-793, 11 2021. doi:10.1145/3460120.3484821.

[46] Claudia Diaz, Harry Halpin, and Aggelos Kiayias. The Nym Network
The Next Generation of Privacy Infrastructure. 2021. URL: https:
//nymtech.net/nym-whitepaper.pdf.

[47] Dmitry Chestnykh. Password authentication for web and mobile apps. 2020.

[48] Tatiana Ermakova, Benjamin Fabian, Hft Leipzig, Benedict Bender, and
Kerstin Klimek. Web Tracking-A Literature Review on the State of
Research. URL: http://hdl.handle.net/10125/50485.

[49] Richard Ford and Michael Howard. Man-in-the-Middle Attack to the
HTTPS Protocol. Technical report, 2009. doi:10.1109/MSP.2009.12.

[50] David Greene, Eff Senior, Staf Attorney, and Katitza Rodriguez. Nsa
mass surveillance programs unnecessary and disproportionate. URL:
https://necessaryandproportionate.org/text.

[51] Michael Lesk. Big data, big brother, big money. IEEE Security Privacy,
11(4):85-89, 2013. doi:10.1109/MSP.2013.81.

[52] Joshua Lind, Ittay Eyal, Florian Kelbert, Oded Naor, Peter R. Pietzuch,
and Emin Giin Sirer. Teechain: Scalable blockchain payments using
trusted execution environments. CoRR, abs/1707.05454, 2017. URL.:
http://arxiv.org/abs/1707.05454, arXiv:1707.05454.

[53] Jamie R Lund. The End of Forgetting and ”Administrative Rights”
to Our Online Personas Personas. Technical Report 2, 2012. URL:
http://kb.iu.edu/data/aorq.html.

[54] Sinisa Matetic, Moritz Schneider, Eth Zurich, Andrew Miller, Ari Juels,
Cornell Tech, Srdjan Capkun, Sinisa Matetic ETH Zurich Moritz Schnei-
der ETH Zurich Andrew Miller, and Ari Juels Cornell Tech Srdjan
Capkun ETH Zurich. DelegaTEE: Brokered Delegation Using Trusted
Execution Environments. URL: https://www.usenix.org/conferenc
e/usenixsecurityl8/presentation/matetic.

[55] Eli Pariser. The filter bubble: What the Internet is hiding from you. Penguin
UK, 2011.

[56] Ania M Piotrowska, Jamie Hayes, Sebastian Meiser, George Danezis,
Tariq Elahi, and K U Leuven. The Loopix Anonymity System. URL:

43

https://doi.org/10.1145/3460120.3484821
https://nymtech.net/nym-whitepaper.pdf
https://nymtech.net/nym-whitepaper.pdf
http://hdl.handle.net/10125/50485
https://doi.org/10.1109/MSP.2009.12
https://necessaryandproportionate.org/text
https://doi.org/10.1109/MSP.2013.81
http://arxiv.org/abs/1707.05454
http://arxiv.org/abs/1707.05454
http://kb.iu.edu/data/aorq.html.
https://www.usenix.org/conference/usenixsecurity18/presentation/matetic
https://www.usenix.org/conference/usenixsecurity18/presentation/matetic

BIBLIOGRAPHY

44

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

www.usenix.org/conference/usenixsecurityl7/technical-session
s/presentation/piotrowska.

Ivan Puddu, Daniele Lain, Moritz Schneider, Elizaveta Tretiakova, Sinisa
Matetic, Srdjant Capkun, and Eth Zurich. TEEvil: Identity Lease via
Trusted Execution Environments. URL: https://arxiv.org/abs/1903
.00449.

Jaak Randmets. An Overview of Vulnerabilities and Mitigations of Intel
SGX Applications. URL: https://cyber.ee/research/reports/D-2-
116-An-0Overview-of-Vulnerabilities-and-Mitigations-of-Inte
1-SGX-Applications.pdf.

Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446, August 2018. URL: https://www.rfc-editor.org/info/rf
c8446, doi:10.17487/RFC8446.

A. Ruiz-Martinez. A survey on solutions and main free tools for privacy
enhancing Web communications. Journal of Network and Computer Appli-
Cﬂﬁons,35(5)1473—1492,912012.doi:lO.1016/J.JNCA.2012.02.011.

Pierangela Samarati and Latanya Sweeney. Protecting Privacy when
Disclosing Information: k-Anonymity and Its Enforcement through
Generalization and Suppression. URL: https://epic.org/wp-content/
uploads/privacy/reidentification/Samarati_Sweeney_paper.pdf.

Niklas Schmucker. Web tracking. In SNET2 Seminar Paper-Summer Term,
volume 2011. Citeseer, 2011. URL: http://citeseerx.ist.psu.edu/vi
ewdoc/download?doi=10.1.1.474.8976&rep=repl&type=pdf.

Latanya Sweeney. k-anonymity: A model for protecting privacy.
International Journal of Uncertainty, Fuzziness and Knowlege-Based Sys-
tems, 10(5):557-570, 10 2002. URL: www.worldscientific.com,
doi:10.1142/50218488502001648.

Sean Turner and e Ieca. Standards Editor: Barry Leiba e bar-
ryleiba@computer.org How Did We Get Here? Transport Layer Se-
curity. Technical report, 2014. URL: www.computer.org/internet/,
doi:10.1109/MIC.2014.126

Nico Weiner. Social networks evolving into service platforms-the
Facebook-case from abusiness model viewpoint. URL: http://bits.b
logs.nytimes.com/2008/07/03/what-is-facebook-worth-part-37/.

www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/piotrowska
www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/piotrowska
https://arxiv.org/abs/1903.00449
https://arxiv.org/abs/1903.00449
https://cyber.ee/research/reports/D-2-116-An-Overview-of-Vulnerabilities-and-Mitigations-of-Intel-SGX-Applications.pdf
https://cyber.ee/research/reports/D-2-116-An-Overview-of-Vulnerabilities-and-Mitigations-of-Intel-SGX-Applications.pdf
https://cyber.ee/research/reports/D-2-116-An-Overview-of-Vulnerabilities-and-Mitigations-of-Intel-SGX-Applications.pdf
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://doi.org/10.17487/RFC8446
https://doi.org/10.1016/J.JNCA.2012.02.011
https://epic.org/wp-content/uploads/privacy/reidentification/Samarati_Sweeney_paper.pdf
https://epic.org/wp-content/uploads/privacy/reidentification/Samarati_Sweeney_paper.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.474.8976&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.474.8976&rep=rep1&type=pdf
www.worldscientific.com
https://doi.org/10.1142/S0218488502001648
www.computer.org/internet/
https://doi.org/10.1109/MIC.2014.126
http://bits.blogs.nytimes.com/2008/07/03/what-is-facebook-worth-part-37/
http://bits.blogs.nytimes.com/2008/07/03/what-is-facebook-worth-part-37/

