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Abstract
Research on the environmental sustainability and nutrient con-
version efficiency of bioconversion technologies applied in
waste-to-protein pathways is relevant from an early development
stage on to identify optimal applications. This review summarizes
the recent advances and remaining issues in this emerging
research field. While black soldier fly larvae (BSFL) have been
intensively studied, various other technologies such as other
insect species, bacteria, fungi, microalgae, and worms, are
currently underrepresented. Regarding environmental sustain-
ability, which is mainly studied through life cycle assessment, the
choice of functional unit is highly relevant for overall outcomes
and comparability. Additionally, decisions on the burden of input
materials and process substitution strongly influence the overall
results. Substrates composed of different residual biomass
streams strongly influence the process efficiency of BSFL, which
is commonly expressed in feed conversion and protein efficiency
rates. In contrast, residual biomass type, protein content, and
amino acid profile are of minor importance for the protein
composition of BSFL. Overall, the large variability of residual
biomass types and bioconversion technologies necessitates
better methodological alignment to produce comparable results
across studies that collectively support decision-making.
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Introduction
Residual biomass (RB; i.e., waste and side streams)
utilization through waste-to-nutrition pathways is
www.sciencedirect.com C
widely recognized as a promising approach for increasing
the nutritional circularity of food systems and decou-
pling their productivity from resource consumption. A
recent review article by Javourez et al. [1] presented a
comprehensive overview of the available conversion
technologies. Within the field of bioconversion tech-
nologies, which utilize the metabolic capacities of or-
ganisms, research has increasingly focused on bacteria
[2], fungi [3], insects, and microalgae [4] hereafter
referred to as technologies. The ability of these organ-
isms to transform residual nutrients into high-value

proteins is a promising alternative to conventional agri-
based products. However, regulatory hurdles and prod-
uct safety concerns related to hazardous or antinutri-
tional compounds remain [5,6]. Furthermore, it is
crucial to analyze the environmental sustainability of
these processes early to avoid undesired trade-offs and
burden-shifting when aiming to replace conventional
protein sources [7]. This is a particularly challenging
task considering the novelty of these technologies with
limited production-scale data. Therefore, this article
aims to document recent advances in the life cycle

assessment (LCA) of bioconversion technologies used
for alternative protein production, summarize the re-
ported impacts of global warming, water, land, and
energy use, and highlight remaining issues. As environ-
mental sustainability and nutritional performance are
strongly interlinked [8], this review further documents
recent findings on protein quantity, amino acid (AA)
profiles, and protein conversion in documented waste-
to-protein pathways. A particular goal was to compare
the effects of feed-grade RB streams, which have
generally more value and competing utilization path-

ways, with non-feed-grade RB streams, which are
commonly associated with safety concerns and regulated
more stringently.
Literature review
The Web of Science and Scopus databases were
searched for keywords related to sustainability, feed
conversion, RB, food or feed applications, and protein.
Articles published in 2018 or later containing at least
one keyword from each category were selected
(n = 1441) and screened for quantitative information of
interest (n = 114). Finally, the quality of the articles was
assessed based on several exclusion criteria (n = 56). For
a detailed workflow, please refer to Figure S.1. Although
the selected articles cover research institutions from
most continents, research activities on bioconversion
urrent Opinion in Green and Sustainable Chemistry 2023, 41:100833
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technologies in waste-to-protein pathways seem to be
heavily concentrated in Germany, Italy, and Europe in
general (Figure 1a). Nevertheless, the geographic dis-
tribution of experimental sites and studied facilities
(Figure 1b) indicates a wide coverage of climatic con-
ditions, which can be relevant for the performance of
bioconversion technologies. Only Razzaq et al. [9]
investigated incorporating RB-sourced fungal proteins

in noodles. In contrast, all other studies have focused on
feed applications. Over half of the selected LCA studies
analyzed insect production, while over 75% of publica-
tions reported on insect proteins. In both cases, the
dominant insect species was Hermetia illucens, commonly
called black soldier fly (BSF), owing to the high sub-
strate plasticity of BSF larvae (BSFL).
Environmental life cycle assessment
Based on the environmental impact data reported for

various bioconversion pathways (Table 1), technologies
and individual studies are difficult to compare because
of the use of different functional units (FUs).
Depending on the primary focus of the study on either
protein provision or RB treatment, the authors adopted
Figure 1

Geographic distribution of the selected research articles by (a) the affiliation o
facilities. If a first author in (a) had affiliations in multiple regions, the study wa
number of articles and the number in brackets refers to the number of review a
articles, book chapters, and original articles that summarized protein contents
exclusively on literature data for their LCA.
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different perspectives when describing the same pro-
cess. Consequently, they either reported their results
against an FU based on RB input, biomass output, or
protein output. For better harmonization, it is therefore
strongly recommended to find a consensus on the most
suitable FU for bioconversion technologies or at least
provide the necessary data to convert one FU to another,
for example, the moisture and protein content of the

final product. Another issue is the lack of data and
varying impact assessment methods for certain impact
categories, e.g., for worm-based applications [10,11] or
water and energy use in general (Table 1). This further
reduces comparability and leads to one-dimensional
analyses based on global warming potential (GWP),
which may overlook relevant trade-offs. For example,
emissions from energy generation are often a dominant
contributor to the overall GWP impacts of bioconversion
technologies [2,3,12,13]. This is in contrast to that of
animal-based proteins, where GWP impacts are mainly

driven by land use change, manure management, and, in
the case of ruminants, enteric fermentation [14].
Therefore, increasing the variety of studied impact
categories based on standardized methods is critical for
achieving more comprehensive assessments.
f the first author and (b) the location of the experimental site or studied
s counted for all of them. The number above each bar indicates the total
rticles and book chapters. The literature category in (b) includes review
or AA profiles from previous studies in a review section or relied
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Table 1

Summary of GWP, land, water, and energy use related impacts reported by recent life cycle assessment (LCA) studies investigating
bacteria-, fungi-, insect-, microalgae-, or worm-based waste-to-protein pathways. Bacteria include purple non-sulfur bacteria; fungi
include Neurospora intermedia and Fusarium venenatum; insects include Hermetia illucens, Musca domestica, Protaetia brevitarsis
seulensis, and Tenebrio molitor; microalgae include Galdieria sulphuraria and Chlorella vulgaris, and worm species include Eisenia
fetida. For specific values of a species or study, please refer to the Supplementary Data.

Category FUa,b GWPb (kgCO2-eq) LUb (m2 * a) WUb (m3) EDb (MJ) Data

Microalgae 1 kg dry protein 8.70–12.49 0.25–0.32 NA 202.8–248.5 [15]
Fungi 1 kg dry protein 23.7 4.4 2.2 NA [3]
Insect 1 kg dry protein 2.4–18.0 −1.3–9.8 −0.07–0.39 NA [16–18]
Microalgae 1 kg dried BMb 0.3–19.7 0.03–0.74 0.2–6.4 13.20–18.04 [13,19,20]
Insect 1 kg dried BMb

−6.4–12.0 −16.8–61.0 2.8–11.0 −108.0–84.2 [12,21–25]
Insect (cc) 1 kg dried BMb

−2.9–8.4 −3.6–22.5 −14.0–103.9 19.5–141.4 [24,26]
Worm 1 kg dried BMb 2.2–6.3 NA NA NA [10,11]
Fungi 1 kg fresh BMb 0.1–0.2 0.05–0.09 0.02 NA [27]
Insect 1 kg fresh BMb 0–1 0 NA 1–10 [6]
Bacteria 1 ton fresh RBb 220.3–322.2 −62810–−196 −8.04–−1.65 NA [2]
Insect 1 ton fresh RBb 35 NA NA NA [28]

a Where possible results based on fresh matter or RB were converted and reported based on 1 kg of dried BM.
b FU, functional unit; GWP, global warming potential; LU, land use; WU, water use; ED, energy demand; BM, biomass; RB, residual BM.
c c = consequential approach (all other studies followed an attributional approach).
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The range of the reported impacts for one technology can

be vast. While this is often attributed to differences in
FUs across studies, variations in outcomes are also driven
by other underlying assumptions, such as the choice of
system boundaries, substitution (system expansion),
allocation, and burdens of RB. According to studies that
reported impacts at the group level, transport processes
are of minor importance (<20%) in the considered
impact categories compared to the core processes
(defined as processes that occur within factory gates) of
RB preparation, bioconversion, and post-processing
[10,11,13,15e17,22,23]. The operation phase caused
the most impacts, but where reported, capital goods

contributed up to 15% of the overall impacts [22].
Regarding substitution or allocation effects, the surveyed
papers reported significant GWP impact reductions of
30e70% from replacing mineral fertilizers with processed
insect residues [12,23]. In comparison, substituting
compost by residues or allocating a share of the impacts
to insect residues used as organic fertilizer yielded
significantly smaller reductions of 10e20% [18,22,24]. As
evidenced, the potential impact reduction of using
bioconversion instead of conventional RB treatment
(e.g., composting) can be very high but depends strongly

on the RB treatment technology [13,15,17,21]. The
allocation of burdens to the RB substrate can also be a
relevant contributor to the overall impacts [3], especially
if animal-based residuals are involved. For example,
Roffeis et al. found that almost 70% of the total impacts
originate from RB (e.g., manure) [22].

In this study, the influence of these parameters is
explicated using BSFL because it is the most studied
technology. We focused on the BSFL studies measured
with attributional assessments and an FU of 1 kg of
www.sciencedirect.com C
dried biomass (Figure 2). Despite the small sample of

seven studies covering 14 RB streams, the analysis
yielded several relevant observations. First, the inclusion
or omission of capital goods, final product transport, and
RB collection and transport are not visible in the overall
GWP impact (Figure 2a, Figure S.2). In contrast, the
effects of substitution or allocation are strongly visible in
the overall GWP impacts (Figure 2b). Compost and
organic fertilizer substitution were expressed in higher
overall emissions (>5 kg CO2-eq/kg dry larvae biomass)
compared to studies that assumed a substitution of
mineral fertilizer or RB treatment (<2 kg CO2-eq/kg dry

larvae biomass). Surprisingly, the study by Modahl et al.

[16] reported comparatively low GWP impacts (3.8 kg

CO2-eq/kg dry larvae biomass) without considering substitu-
tion effects. Finally, the analyzed data indicates that the
allocation of burdens to RB inputs is generally reflected
by higher overall impacts across various impact cate-
gories (based on median values; Figure 2c). Overall, the
findings highlight the relevance of methodological
choices in LCA and the need for alignment to increase
comparability.
Protein quantity
This paragraph summarizes the findings on the total dry
matter (DM) protein content of RB and post-conversion
products in waste-to-protein pathways. Prandi et al. [29]
measured the protein composition of almost 40 different
RB streams (specifically, food waste). Together with

values from other recent publications [12,30e37], they
offer an excellent overview of DM protein content in
potential substrates (Figure 3a). We define non-feed-
grade RB based on European Union (EU) legislation
definitions [6]. On average, this biomass contains 15%
urrent Opinion in Green and Sustainable Chemistry 2023, 41:100833
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Figure 2

Environmental impacts reported by different attributional life cycle assessment (LCA) studies analyzing black soldier fly larvae (BSFL) production
systems based on a functional unit (FU) of 1 kg dried biomass of larvae (meal). a) Global warming potential (GWP) impacts under consideration of
different system boundaries (Core = residual biomass (RB) preparation & bioconversion, post-processing, and capital goods (CG), PT = product
transport to the point of use, RBCT = RB collection & transport). Please refer to Figure S.2 for an illustration of the different system boundaries. b) GWP
impacts based on different substitution or allocation approaches (Alloc. = economic allocation). c) GWP, energy, land, and water use impacts of studies
considering RB to be burden-free or not. Further studies were needed to analyze the impacts of energy, land, and water use in a) & b). Please note that
influencing factors could not be isolated, e.g., comparing substitution and allocation approaches included studies with different system boundaries. Data
sources: [12,16,18,21–24]. For underlying data, please refer to Supplementary Material.

4 Waste-to-nutrition (2023)
more protein than the feed-grade RB. In particular,
animal-based residuals from insect production, and fish
and meat processing showed very high protein values
(median: 37e56% protein). Among feed-grade sub-
strates, the protein contents of side-streams from beer,
dairy, and oil production stand out (median: 20e31%
Current Opinion in Green and Sustainable Chemistry 2023, 41:100833
protein). With regard to post-conversion products, a
wide range of DM protein contents has recently been
reported for microalgae (13e53%) [4,38,39], fungi (17e
70%) [9,40], and insects (20e64%) [4,23,35,37,41e55].
Looking at median values, microalgae (36%) and insects
(40%) show significantly higher protein levels compared
www.sciencedirect.com
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Figure 3

Dry matter (DM) protein contents of (a) residual biomass, i.e., waste & side streams potentially used as rearing substrates, and (b) black soldier fly
larvae. They are grouped by the category of biomass. The groups are colored based on their legal status as feed substrates in the European Union
according to Bosch et al. [6]. Insects are not clearly classified as feed- or non-feed-grade because their status depends on their rearing substrate. The
reported values include crude and true protein. Please refer to the Supplementary Material for absolute values and a description of specific residual
biomass types. Data sources: [4,12,23,29–37,42–54].
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to fungi (11%). The only identified value for bacterial
protein (Lactobacillus kefir) was 54% DM [40]. Most
studies did not report the protein contents of both the
rearing substrates and post-conversion products, except
for insect larvae, where a positive sample correlation

(r = 0.41) was found (Figure S.3). Interestingly, the
mean DM protein content of BSFL did not differ be-
tween feed- and non-feed-grade rearing substrates, even
though the reported protein content ranged from 20% to
60% (Figure 3b), which is often a challenge in animal
feed applications.

A recently debated topic is the conversion of measured
nitrogen (e.g., by the Kjeldahl or Dumas method) to
protein. Many studies still rely on the standard nitrogen-
to-protein conversion factor of 6.25 [36,46,51,52], which
www.sciencedirect.com C
overestimates the true protein content of most RB and
bioconversion products because it includes non-protein
nitrogen, such as chitin from insects. Therefore, an
increasing number of researchers have applied factors
derived from the measured total AA content [29,47e
49]. In the case of BSFL, 4.76 is typically used, which
is almost 25% below the standard factor [47e49]. Un-
fortunately, the applied factor is often not specified. It is
essential to provide the applied conversion factor and
the measurement method when reporting the protein
content to improve cross-study comparisons.
Protein quality
Among the identified studies focusing on waste-to-
protein pathways, AA profiles were almost exclusively
urrent Opinion in Green and Sustainable Chemistry 2023, 41:100833
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found for BSFL [37,43,46,47,52,56] except for one
report on the AA composition of mealworms [55] (see
Supplementary Data). This indicates that research on
the protein quality of other organisms has been strongly
underrepresented in recent years. The AA composition
of RB itself is highly variable (Figure 4a) owing to the
diversity of the analyzed substrates [29,34,43,47,57] and
potentially varying measurement conditions. In general,

meat-, fish-, and manure-based substrates classified as
non-feed-grade in the EU [6] show higher DM AA
contents than feed-grade substrates, such as cereal,
Figure 4

Amino acid (AA) profiles in g/kg dry matter of (a) feed- and non-feed-grade res
substrates) (n = 1–41) (b) overall RB (i.e., feed- and non-feed-grade), and blac
non-feed-grade residual biomass (n = 4–19). In this context, residuals refer to
for BSFL and not residues from the bioconversion, i.e., BSFL residues. The o
various fish species were added as a reference in (c). Chicken diets were ad
reported in Schiavone et al. [59]. The dietary requirements of fish were obtai

Current Opinion in Green and Sustainable Chemistry 2023, 41:100833
brewery, fruit, and vegetable side-streams (Figure 4a).
This agrees with the presented findings for overall
protein content (Figure 3a). When comparing the AA
profiles of BSFL to RB, all AAs in larvae, except for
cysteine, were elevated (Figure 4b). These findings
underscore the suitability of BSFL for bioconversion
with the primary goal of converting RB into high-quality
protein sources for food and feed. The reported AA

profiles of BSFL fed on non-feed- and feed-grade sub-
strates show a low discrepancy (0e3% between me-
dians) across studies, except for tyrosine, where non-
idual biomass (RB; i.e., waste & side streams potentially used as rearing
k soldier fly larvae (BSFL; n = 13–54), and (c) BSFL reared on feed- and
waste or side-streams of biomass that can be used as rearing substrates
ptimal dietary profile for broiler chicken and dietary requirements for
apted from He et al. [58] under consideration of chicken AA digestibility
ned from Lall et al. [61]. Data sources: [29,34,37,43,46,47,52,55–57].

www.sciencedirect.com
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feed-grade substrates led to higher values (þ7% of
median) (Figure 4c). Compared with an optimal dietary
profile for broiler chickens [58,59], BSFL (25% quan-
tile) exceed the requirements for most AAs while being
deficient in cysteine, glycine, and proline. This should
be carefully monitored when formulating animal diets,
as discussed by Heuel et al. [60] and He et al. [58].
Regarding fish diets, methionine and cysteine are crit-

ical in BSFL-based formulations [52].
Feed conversion & protein efficiency
Data on feed conversion (FCRs) and protein efficiency
rates (PERs) along waste-to-nutrition pathways are very

sparse. This represents a key data gap because both
rates can vary significantly among feed sources [35,51].
Therefore, they are important performance indicators of
bioconversion processes. Furthermore, they are
commonly used in feeding trials to study the effect of
replacing conventional protein sources with post-
conversion products in animal diets (e.g., larvae meal
replacing fishmeal). However, FCRs and PERs are
always influenced by many factors and operational pa-
rameters that differ among studies. Generally, the FCR
is calculated by dividing the weight of feed provided to

an organism by its weight gain, while the PER is ob-
tained by dividing the organism’s weight gain during
bioconversion by the amount of protein provided in the
feed [33,53,55]. Thus, a low FCR and a high PER are
desired. However, the calculation methods are associ-
ated with critical uncertainties; for example, some
studies have reported ingested feed instead of the feed
provided for FCR [30,35,41,51,52]. Another disparity
arises from the use of dry- or fresh-matter-based
weights. However, such specifications are often lack-
ing. This makes meaningful cross-study comparisons
difficult and requires future alignment.

Reported FCRs for BSFL and mealworm larvae reared
on various RB substrates range from 1.1 to 14.5 (n = 25)
and 4.4 to 5.5 (n = 2), respectively [33,35,41,51]. The
available data showed no significant difference between
feed- and non-feed-grade rearing substrates (see Sup-
plementary Data). PERs are not found in any biocon-
version technology. For fish species studied in feeding
trials, reported FCRs and PERs for feed blends
containing worm or insect meal were in the range of
1.03e2.83 and 0.33 to 2.45, respectively [52,53,55,62e
64]. The deviation from FCRs and PERs found for
control diets was generally below 20% [52,55,62e64].
However, one study found significant improvements of
the FCR and PER by the supplementation of post-
conversion proteins (FCR, �38%; PER, þ48%) [53]
while another study reported opposite findings
(FCR, þ75%; PER, �41%) [62]. The available data
shows no clear correlation between the inclusion level of
worm or insect meal (from 3% to 100%), and FCR or
PER (see Supplementary Data).
www.sciencedirect.com C
Conclusions
Research on the environmental sustainability and

conversion efficiency of bioconversion technologies is
relevant from an early development stage to identify
optimal substrates and processes. Compared to other
insect species such as mealworms and crickets, BSFL is
currently not allowed as food in the EU [1]. Never-
theless, it is by far the most studied technology. A key
advantage in the context of waste-to-protein pathways
is that BSFL are a non-disease vector with a high
conversion rate on a large variety of different RB types
[35]. In comparison, data on other insect species,
worms, microalgae, fungi, and bacteria remains sparse.

Hence, efforts to investigate underrepresented tech-
nologies should be intensified to close current research
gaps. Furthermore, the large variability of RB and
bioconversion technologies necessitates better meth-
odological alignment to produce comparable results
that collectively support decision-making. Nitrogen
conversion factors should be aligned and documented
to reduce uncertainty. Furthermore, a standardized
approach for FCR and PER calculations should be
defined. With respect to LCA, decisions on the FU and
burdens associated with input materials and process

substitution can strongly influence GWP, land, water,
and energy use. Therefore, defining a common baseline
for LCA studies of bioconversion technologies is
strongly recommended.

From a nutritional perspective, the overall protein con-
tent of RB shows a positive correlation with the reported
BSFL values, which vary significantly across substrates
and studies. Contrastingly, the AA profiles of BSFL were
consistent across studies and rearing substrates. They
exceeded the dietary requirements of broiler chickens

and fish, except for cysteine, glycine, methionine, and
proline. RB can considerably influence the process ef-
ficiency of BSFL expressed by the FCR and PER.
However, as with the other parameters, no significant
difference between the feed- and non-feed-grade sub-
strates was found. Therefore, these waste-to-protein
pathways could be a relevant valorization strategy
considering the lower economic value of non-feed-grade
RB. Other nutritional and non-nutritional differences in
substrates that influence the bioconversion process are
beyond the scope of the present review. However,

product safety remains a key priority and can incur
additional costs. While this issue is raised by many
studies, quantitative data are sparse for most technolo-
gies [1,2,17,31,40]. Investigations on BSFL did not find
an accumulation of selected chemicals and toxins while
pathogenic microbes were even reduced [35,43,49]. At
the same time, BSFL accumulate heavy metals, which
demands careful monitoring in the future [43,44,62].
Finally, products from bioconversion technologies,
which are intended for direct human consumption, will
have to overcome food neophobia and disgust among
urrent Opinion in Green and Sustainable Chemistry 2023, 41:100833
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consumers. The rejection of insect-based products, for
example, is particularly high in western countries and
among older people [65]. Thus, it is likely that in-
gredients sourced directly from RB will evoke similar
reactions among these consumer groups. Feed applica-
tions, on the other hand, result in animal-based products
that are familiar to consumers and thus unlikely to be
met with such reservations.
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