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Preface

This monograph is submitted as a habilitation treatise (”Habilitationsschrift”)
to the Department of Mechanical and Process Engineering of ETH Zurich. It is
a compilation of my work on the fluid mechanics of the inner ear over the past
six years. Next to unpublished material and new ideas, this monograph contains
material from a number of journal articles, conference proceedings and lecture
notes by the author and his co-workers. Some of the presented results were the
outcome of Bachelor, semester or Master projects at ETH Zurich performed by
the many excellent students whom I had the pleasure to supervise. Finally, I
added some results from other authors in order to provide the reader with a
more complete picture of our current knowledge on flow phenomena in the inner
ear.

Nevertheless, I certainly cannot claim by any means to present a complete
and/or conclusive account of the fluid mechanics of the inner ear (although the
title might suggest that). Rather, this monograph presents a snapshot of my cur-
rent understanding of this topic. In particular, in the field of cochlear mechanics
the present knowledge is much broader than presented here. In some chapters
(e.g. chapters 19& 21) I have tried to provide some forward-looking information
as a guideline for future research.

The monograph is divided into three parts: I. the semicircular canals, II. the
cochlea and III. coupled phenomena. There is a total of twenty-three rather short
chapters. I have tried to write them in a self-contained manner such that the
advanced reader should be able to read them independently. Therefore, certain
facts and ideas are repeated in different chapters. For beginners in the field of
biomechanics of the inner ear, I suggest to read the chapters in the suggested
order as they build up on each other.

Zurich, November 2011 Dominik Obrist
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CHAPTER 1

Introduction

The relevance of the research on the inner ear has been recognized for a
long time. This is best reflected by two Nobel prices in physiology or medicine
that were awarded in 1914 to Robert Bárány for his “work on the physiology
and pathology of the vestibular apparatus” and in 1961 to Georg von Békésy
for his “discoveries of the physical mechanism of stimulation within the cochlea”
(figure 1.1).

The scientific recognition of inner ear research goes along with an increas-
ing social relevance of this topic mainly because of demographic changes. The
European Commission states that “by 2020 25% of the EU’s population will be
over 65. Spending on pensions, health and long-term care is expected to increase

(a) Robert Bárány, 1876–1936 (b) Georg von Békésy, 1899–1972

Figure 1.1. Nobel laureates Robert Bárány and Georg von Békésy.
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4 1. INTRODUCTION

by 4-8% of GDP in coming decades, with total expenditures tripling by 2050”1.
Promoting health in an aging society is one of today’s grand challenges in science
and engineering.

One important aspect of human health is the hearing and the balance sense
whose primary sensors constitute the inner ear. Apart from various non-age re-
lated hearing problems, a progressive hearing loss due to age is definitely a health
issue of growing prevalence in our society. Likewise, the most prevalent form
of vertigo (benign paroxysmal positional vertigo, BPPV) can be found predomi-
nantly in elderly people (over 9% of the US population beyond the age of seventy;
Baloh et al., 1989). While hearing loss and/or vertigo are not life threatening
diseases, the proper operation of our senses has a strong social and economical
relevance. Especially in the western hemisphere, a healthy hearing sense at all
stages of our life is regarded as important for maintaining our life style.

Along with the desire for a good hearing, several technology-driven compa-
nies develop and manufacture hearing aids of various kinds. A new generation of
hearing aids (micromechanical devices such as middle-ear implants, etc.) work
directly on or inside the inner ear with various actuator technologies. The tech-
nological challenges for such devices are very different from conventional hearing
aids which emit the amplified and modulated sound signal via a loudspeaker into
the ear canal and which do not interfere directly with the inner ear. To design
inner ear devices with good performance, it is not sufficient to understand the
inner ear only as a black-box because these devices modify the mechanics of the
inner ear itself. Therefore, the different phenomena involved in the mechanics of
the inner ear have to be resolved and described by appropriate physical models.

1. The inner ear

The human ear consists of three parts: the outer ear, the middle ear and the
inner ear (figure 1.2). The present work addresses only the inner ear which is an
anatomically complex structure of only about a centimeter in size (figure 1.3). In
addition to the hearing sense, the inner ear also hosts the primary sensors of our
balance sense. The different functions can be assigned to principal anatomical
structures of the inner ear:

(i) hearing sense: the coiled cochlea is able to decompose an acoustic
signal into its frequency components.

(ii) balance sense: the vestibular apparatus hosts five sensors which are
able to detect angular and linear accelerations in all directions.
(a) angular: the three semicircular canals transduce angular acceler-

ations of the head into an angular velocity signal.

1http://ec.europa.eu/information_society/newsroom/cf/itemlongdetail.cfm?item_

id=3457; last accessed 18 November 2011.
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Figure 1.2. The human ear.

(b) linear: the vestibule hosts the two otolith organs (in the utricle
and the saccule) which are able to detect linear accelerations and
gravity.

Apparently, this small organ has to serve multiple purposes. This diversity is
reflected by a surprisingly large variety of physical phenomena present in the
inner ear.

We will put our focus on the fluid mechanics of the inner ear. Nevertheless,
our considerations will also include other physical processes (e.g. solid mechanics,
electrochemical processes) without which the physiology of the inner ear could
not be understood. In that sense, we regard the inner ear as a multi-purpose
and multi-physics system. Moreover, it is also a multi-scale system with respect
to temporal as well as spatial scales. We will see in the following chapters that
typical time scales range from less than 0.1µs (high-frequency hearing) to several
seconds (mechanical adaptation of the angular balance sense) and that length
scales of less than a nanometer (membrane displacements at the hearing thresh-
old) co-exist with large scales of up to 35mm (length of the uncoiled cochlea).

To the present day, our understanding of the anatomy and physiology of
the inner ear is incomplete. Moreover, many pathological conditions of high
social relevance (e.g. various forms of hearing loss and vertigo) are not properly
understood. This goes along with a need for better therapeutic measures (e.g.
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Figure 1.3. Schematic of a human inner ear (from Obrist et al.,
2010) with the membranous labyrinth (blue) which is filled with
endolymph and the bony labyrinth (yellow) filled with perilymph.
The width of the slender ducts in the semicircular canals is ex-
aggerated for better visibility. In reality, their diameter is only
about 5% of the major diameter of the bony canal (Curthoys
et al., 1977b).

fully implantable hearing devices) which can only be properly developed once the
(patho-)physiology of this organ is sufficiently understood.

2. Challenges when studying the inner ear

Apart from its small size, the main difficulty in studying the inner ear is
its location and (in-)accessibility in the human body. Unlike other organs (e.g.
heart, lung, eye) the principal structure of the inner ear is not a proper body
of its own, but rather a void inside a very dense bone known as the temporal
bone. Except for the oval and round windows which connect the inner ear to
the middle ear, there exists no practicable access to the inner ear other than
access by destruction of the surrounding temporal bone. For this reason, many
clinical investigations use secondary phenomena to study the physiology of the
inner ear (e.g. the vestibulo-ocular reflex for the balance sense, and psychoacoustic
measurements for the cochlea). Direct measurement of physical quantities within
the inner ear are very limited and experimentally demanding, e.g. intracochlear
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pressure measurements (Nakajima et al., 2009) or in vivo canalith settling in
semicircular canals (Rajguru & Rabbitt, 2007).

These practical limitations open the field for theoretical, numerical as well as
in vitro experiments which are the primary methods of investigation used in the
present work. All three approaches involve the modeling of the functional units
of the inner ear. This requires invariably a number of idealizations, simplifica-
tions and sometimes even guesswork because certain anatomical features and/or
rheological properties are simply not known. Moreover, the multi-scale aspect of
the inner ear results in formidable challenges, in particular, for numerical models
of the physiological processes.

To address the challenges listed above, we will begin our study of the in-
volved physical processes on the basis of dimensionless numbers and/or integral
time scales. We will try to identify appropriate scale separations which allow us
to formulate models with manageable complexity. We will find, for instance, that
the balance sense can be appropriately modeled, to first order, as a quasi-steady
system whereas the operation of the hearing sense is based on highly unsteady
phenomena. Therefore, there exists a clear separation of temporal scales between
the two senses. This separation is not only relevant for the modeling, it is also
physiologically important because the anatomy of the inner ear provides no topo-
logical separation between the sensorium of the balance sense and of the hearing
sense. As a matter of fact, the sensory hair cells of the respective senses are
located in corresponding vessels, i.e. all sensory epithelia of the inner ear are sit-
uated within a single endolymphatic fluid space (depicted in blue in figure 1.3).
In part 3, we will discuss certain pathologies of the inner ear (e.g. superior canal
dehiscence) for which the scale separation between the balance and the hearing
sense is disturbed such that we can observe crosstalk between the senses (e.g.
Tullio’s phenomenon).

3. Overview on the anatomy and physiology of the inner ear

Detailed discussions of the anatomy and the physiology of the inner ear will be
given in the respective chapters. Here, we give just a rough anatomical overview
to introduce the most important components and mechanisms in the inner ear.

3.1. Lymphatic fluids. The inner ear is filled with two lymphatic fluids:
the endolymph and the perilymph (figure 1.3). They are separated from each
other by a thin membrane. This membrane forms the so-called membranous
labyrinth which is filled with endolymph (blue in figure 1.3), in contrast to the
bony labyrinth which marks the outer bounds of the inner ear.

The flow field of the endolymph is central to the function of the angular bal-
ance sense. The perilymphatic fluid space is not regarded as playing a significant
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Figure 1.4. Sensory epithelia of the vestibular system.

role in the vestibular system (semicircular canals and otolith organs). However,
it plays a central role in the cochlea, i.e. in our hearing sense.

The endolymph and the perilymph differ in their ion content. The endolymph
has a high content of potassium ions, K+, such that there exists an electrical po-
tential across the separating membrane. This potential is relevant for the proper
operation of the sensory hair cells which have the primary role of transducing
mechanical displacements into afferent nerve signals and may even play the role
of an active amplifier (outer hair cells of the cochlea). From a purely mechanical
point of view, both lymphatic fluids behave like water.

Topologically, there exist just two distinct fluid spaces (figure 1.3). Never-
theless, we can further differentiate the structures of the inner ear based on their
morphology and function.

3.2. Vestibular system: Semicircular canals. The membranous ducts
of the three semicircular canals (SCC) issue directly from the utricle (figure 1.3).
The mutually orthogonal toroidal structures of the SCC feature bulges on one
side before converging into the utricle. These bulges are called ampullae and
host the cupula (figure 1.4) which is a soft gelatinous membrane that blocks the
whole lumen of the endolymphatic ducts. Sensory hair cells are embedded into
the cupula.

Under angular motion the inertia of the endolymph in the semicircular canals
leads to a deflection of the cupula. This activates sensory hair cells in the cupula
leading to afferent nerve signals. For our purposes, it is sufficient to assume
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that the sensation of angular motion is roughly proportional to the deflection
of the cupula. The relationship between mechanical stimulation and afferent
nerve discharge in the cupula is discussed in detail in Yamauchi et al. (2001) and
Highstein et al. (2005).

3.3. Vestibular system: Otoliths. In the central vestibule of the inner
ear, the endolymphatic fluid space forms two sacs (saccule and utricle) which
contain the sensory maculae (figure 1.4) of the otolith organs. The stereocilia of
the otolithic hair cells reach into a gelatinous membrane with otoconia (calcite
crystals) sitting on top.

From a mechanical point of view, the otolith organs operate like technical
accelerometers. Linear accelerations of the head result in inertial forces acting on
the otolithic membrane because the otoconia are heavier than the surrounding
endolymph. These inertial forces deform the membrane which leads to a stimu-
lation of the hair cells beneath. Classically, the mechanics of the otolith organs
is seen as independent of the flow in the utricle and/or saccule. Only recently,
our group (Boselli et al., 2010c) has shown that angular accelerations of the head
causes a vortical flow inside the utricle which may lead to shear stresses on the
utricular macula above its sensation threshold.

3.4. Cochlea. The human cochlea is a small but complex coiled structure
with an uncoiled length of approximately 35mm. It consists of three fluid filled
ducts: the scalae vestibuli and tympani which are filled with perilymph and
the scala media filled with endolymph (figure 1.5). The three main ducts of
the cochlea are separated by two membranes (figure 1.6): Reissner’s membrane
(RM) and the basilar membrane (BM). While Reissner’s membrane is a very
supple structure, the basilar membrane’s stiffness leads to resonance phenomena
at acoustic frequencies.

The base of the scala vestibuli communicates with the middle ear through
the oval window (OW). At its far end, i.e. at the cochlear apex, the scala vestibuli
connects to the scala tympani through a hole known as the helicotrema (H). At
the base of the cochlear coil, the scala tympani connects mechanically to the
middle ear through the membrane of the round window (RW).

The scala media contains the organ of Corti (OC) which is by itself a very
complex fluid-filled system whose internal mechanisms are not fully understood.
It includes several membranes, structural elements, fluid spaces and two types
of hair cells (figure 1.7). These hair cells fill several roles in our hearing sense.
Primarily, they act as mechanotransducers from acoustic to nerve signals. The
acronyms for the cochlear anatomy are summarized in table 1.1.

The cochlea performs a ‘real-time Fourier transform’ on acoustic signals.
These enter the inner ear primarily through the oval window by vibrations of
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Figure 1.5. Coiled human cochlea (adapted from www.
tz-wien.at/Informationen/wiefunktioniertdashoren

.htm).

Table 1.1. List of anatomical acronyms for the inner ear.

SCC semicircular canal figure 1.3
BM basilar membrane figure 1.6& 1.7
TM tectorial membrane figure 1.6& 1.7
OW oval window figure 1.5
RW round window figure 1.5
H helicotrema figure 1.5
OHC outer hair cell figure 1.7
IHC inner hair cell figure 1.7
OC organ of Corti figure 1.6 & 1.7

the stapes (the third ossicle of the middle ear; figure 1.2) which lead to a pulsat-
ing flow of the perilymph in the axial direction of the cochlea. Because the walls
between the perilymphatic ducts and the scala media are compliant, the pulsating
flow results in a traveling wave in the perilymph and on the basilar membrane.
The stiffness of the basilar membrane is strongly graded in axial direction (stiffer
at the base) partly due to its local mechanical properties and partly due to an
increasing width of the BM. Therefore, the magnitude of the traveling wave has
a distinct peak where the stimulation frequency is in resonance with the local
mechanical properties of the basilar membrane and its surrounding fluid. This
(passive) frequency selection process is in tight interaction with active processes
in the organ of Corti which lead to a nonlinear amplification of the oscillating
basilar membrane.
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Figure 1.6. Cross section through the cochlear ducts (scalae
vestibuli, tympani and media) which are separated by Reissner’s
membrane (RM) and the basilar membrane (BM). The organ of
Corti (OC) is located within the scala media.

Figure 1.7. Sketch of the Corti organ with inner (IHC) and
outer hair cells (OHC), the tectorial membrane (TM) and the
basilar membrane (BM). Reprinted from Fettiplace & Hackney
(2006) with permission from the publisher.
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4. Scope and organization of this monograph

This monograph focuses exclusively on the (patho-)physiology of the inner ear
as it relates to fluid mechanics. In general, numerical and experimental methods
and biomedical details will not be discussed in detail; where appropriate, the
reader is referred to the relevant publications.

The first part on the semicircular canals begins by introducing the physiology
of this organ on the basis of a heuristic model (Chapter 2: Steinhausen’s model).
In Chapters 3, 4 & 5 Van Buskirk’s model for semicircular canals will be studied
in detail. It will help us to put the results from Steinhausen’s model on a solid
foundation. Chapter 6 completes our discussion of the fluid mechanics of healthy
semicircular canals by presenting results obtained with modern methods of com-
putational fluid dynamics. The remainder of the first part (Chapters 7– 11) is
concerned with a pathology of the semicircular canals: benign paroxysmal posi-
tion vertigo (BPPV) which is one of the most common causes for vertigo. We will
study this disease on the basis of analytical (Chapter 8) and in vitro (Chapter 9)
models. Results from these models are used in Chapter 11 to discuss a clinical
phenomenon of BPPV.

The second part of this monograph is dedicated to cochlear mechanics. It
has a strong focus on global cochlear modeling which indicates that we will study
the cochlea as a complete system instead of studying the details of different sub-
systems of the cochlea. We present three cochlear models of increasing complexity:
a one-dimensional passive model (Chapter 13), a two-dimensional passive model
(Chapter 14) and a three-dimensional active model (Chapter 17). The presen-
tation of these models is interspersed with a chapter on the modeling of active
processes in the cochlea (Chapter 15) and two chapters on specific flow phenom-
ena within the cochlea (Chapters 16 & 18). The final chapter of the second part
presents a blueprint of a virtual cochlea which is a comprehensive multi-scale and
multi-physics model of the complete cochlea.

The third part addresses the fact that the different sensory organs in the
inner ear are in immediate neighborhood of each other and that they share the
same fluid spaces. Chapter 20 explains how this apparent lack of separation
between the organs is overcome in human physiology such that most humans
have a properly working balance and hearing sense. Chapters 21 & 22 discuss
two examples where the separation between the organs is insufficient such that
we observe a sensory crosstalk.

Chapter 23 concludes this monograph with a discussion biomedical applica-
tions of the presented results and models as well as an outline of thoughts and
ideas for a comprehensive mechanical model of the inner ear.
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The Semicircular Canals





CHAPTER 2

Introduction to the fluid mechanics of

semicircular canals

The semicircular canals (SCC) are part of the vestibular system (figure 1.2).
They belong to the balance sense and are responsible for sensing rotations. In
each ear there are three semicircular canals which are oriented in mutually or-
thogonal directions. The canals are carved in bone and are filled with perilymph
and endolymph, two fluids with mechanical properties similar to water. The en-
dolymph and the perilymph are separated by a membranous duct. At one end
of each semicircular canal there is the ampulla which contains the cupula (fig-
ure 1.4). The cupula is a gelatinous structure which fills the entire cross-section
of the canal such that the flow of the endolymph is blocked (McLaren & Hill-
man, 1976). All three canals connect to the utricle, a larger chamber which also
contains one of the sensors for linear motion.

The fluid dynamics in the semicircular canals is the key to the proper oper-
ation of the sensor for angular motion. Theoretical work on the fluid mechanics
of SCC dates back to Breuer (1874), Crum Brown (1874) and Mach (1875). The
actual discovery of the role of the vestibular organ as the main source of sensation
of motion is due to Ewald (1892). Steinhausen (1933) was the first to postulate
a mathematical description for the sensation of angular motion. This model will
be discussed in § 2.

1. Basic physiology of semicircular canals

Angular acceleration of the head leads to inertial forces on the endolymph
inside the membranous labyrinth. This generates a flow in the SCCs which is
proportional to the angular acceleration in the plane of the respective canal.
This flow deflects the cupula which acts as a temporal integrator such that the
cupula deflection is (roughly) proportional to the angular velocity. Because the
cupula is elastic, the cupula deflection leads to a restoring force pushing on the
endolymph. This results in a slow mechanical adaptation process which lets the
cupula return to its rest position if the angular velocity is held constant (zero
acceleration) for a longer time.

15



16 2. INTRODUCTION TO SCC

When the cupula is deflected the sensory hair cells increase or decrease their
firing rate depending on the orientation of the deflection. The brain determines
the direction of the head rotation by vectorial summation of the inputs of all
six SCC (from the left and the right ear) which results in the perception of
angular motion. The perceived velocity signal leads to an eye movement which
compensates for the head movement such that we are able to maintain our focus
on an object while moving (figure 2.1). This is called the vestibulo–ocular reflex
(VOR).

During continued angular motion in the same direction the eyes have to be
reset at some point by quick eye movements. The repetitive pattern of slow com-
pensatory movements (slow phases) and quick resetting movements (quick phases)
is called nystagmus. We call the velocity of the compensatory eye movements
(slow phase) the nystagmus velocity N . It is known that the nerve signal from
the cupula is controlled and altered by several intricate mechanisms of the central
nerve system before it is translated to the ocular muscles (Robinson, 1977; Cohen
et al., 1977; Raphan et al., 1979). For the scope of our investigation, however, it
is sufficient to simply assume that the volume V displaced cupula is proportional
to the nystagmus velocity, V ∝ N . The cupular volume displacement V (t) is
given as

V (t) =

∫ t

0

∫∫

Ac

u dAdτ, (1)

where u is the axial velocity component of the endolymph flow in the semicircular
canal and Ac is the area of the cross-section of the canal.

The aim of most research on semicircular canals is to show under which
conditions the cupular displacement is proportional to the angular velocity of
the head. To this end, the nystagmus velocity is measured. It is found that the
nystagmus velocity is nearly proportional to the angular velocity for oscillatory
head movements in the horizontal and vertical planes with frequencies between
0.5Hz and 5Hz (Grossman et al., 1988). This range covers the predominant
frequencies occurring during natural head movements.

2. Steinhausen’s model

Steinhausen (1933) modeled the dynamics of semicircular canals as a strongly
damped torsional pendulum, i.e. the cupular displacement V (t) is governed by
an equation of the form

mV̈ + rV̇ + kV = α̈(t), (2)

where α̈ describes the angular acceleration of the head. The parameters r and
k are the damping and stiffness parameters, respectively, whereas m reflects the
mass of the fluid inside the SCC. The damping parameter r is mainly governed
by the viscous drag of the fluid inside the slender ducts of the SCC whereas k
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Figure 2.1. Schematic of the coupling between the SCC and
the extraocular muscles (vestibulo–ocular reflex). The example
shows a rotation of the head to the right with a compensatory
eye movement to the left. ( c© .Koen / Wikimedia Commons / CC-

BY-SA-3.0)

reflects the elasticity of the cupula. The eigenvalues of this second order system
are given by

σ = − r

2m
±
√
( r

2m

)2

− k

m
. (3)

If the damping is sufficiently weak, r2 < 4mk, the two eigenvalues are complex
valued such that Eq. (2) describes a damped oscillation. For r2 ≪ 4mk, the

eigenfrequency of the oscillation is given by
√

k/m. Because of tje small diameter
of the semicircular canals, approximately 0.3mm, the damping parameter r is
large. Therefore, we obtain two real valued eigenvalues and the system has no
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eigenfrequency, i.e. it is an overdamped pendulum. The eigenvalues σ can be
approximated as

σ+ ≈ − r

m
≫ 1, (4a)

σ− ≈ −k

r
≪ 1. (4b)

Although we will show in the following that Eq. (2) is not an accurate description
of an SCC, Eq. (4) tells us that there exist two characteristic time scales of an
SCC which are given by |1/σ±|. The time scale Tc = |1/σ−| ≈ r/k is the slow
time scale of the SCC which is commonly known as the cupula time constant.
It scales with the inverse stiffness of the cupula, i.e. the softer the cupula, the
longer the cupula time constant. The fast time scale Tv = |1/σ+| ≈ m/r relates
the fluid inertia to its viscous forces. Later, we will refer to this time scale as
the viscous time scale. Typical values for the cupula time constant are Tc = 4.2 s
(Dai et al., 1999) but even values beyond 100 s have been reported (Rabbitt et al.,
2009). The viscous time scale Tv is on the order of 10−2 s.

The transfer function G(s) which relates the cupula displacement V to the
rotational head velocity α̇ can be written as

G(s) =
ms

(s− T−1
c )(s− T−1

v )
. (5)

It describes a band pass filter as illustrated in figure 2.2. This indicates that the
two time scales, Tc and Tv, define a frequency band within which the SCC trans-
duce the angular head velocity α̇ proportionally into a cupular displacement V .
It is worthwhile mentioning that the width of this frequency band increases with
r, because r is in the nominator of Tc and in the denominator of Tv. Therefore,
a high damping parameter r contributes to a large operating range of SCCs.

3. Further models of healthy semicircular canals

Steinhausen’s model describes the main features of the dynamics of the semi-
circular canals. The values for the parameters of this simple macroscopic model,
however, remain unclear. Several authors (e.g. Schmaltz, 1931; Van Egmond
et al., 1949) have tried to determine these parameters by assuming Poiseuille
flow in the semicircular canals.

Van Buskirk & Grant (1973) and later Van Buskirk et al. (1976) departed
from the macroscopic Steinhausen model and derived equations for the axisym-
metric flow in the slender part of the canals directly from the Navier–Stokes
equations. They derived a partial integro-differential equation which describes
the axial velocity profile. The restoring force of the deflected cupula enters this
equation in the form of a double integral. Oman et al. (1987) introduced a more
complex description of the geometry of semicircular canals but remained with a



3. FURTHER MODELS OF HEALTHY SEMICIRCULAR CANALS 19

-40dB

-20dB

 0.01  0.1  1  10  100  1000

|G
(i
ω
)|

ω

1/Tv1/Tc

Figure 2.2. Bode diagram of the band pass filter defined by
Steinhausen’s model for the SCC. (m = 1, Tc = 4, Tv = 0.01)

one-dimensional model for the dynamics. Rabbitt & Damiano (1992) introduced
a three-dimensional description of the SCC and found an asymptotic solution
for the flow field. This work was followed by Damiano & Rabbitt (1996) who
performed a detailed analysis of the flow field within the ampulla. They used the
slenderness ratio (ratio between the minor and the major radius of the torus) as
their asymptotic variable ǫ. The flow field in the slender part is considered the
outer solution, whereas the flow in the ampulla is considered the ’boundary layer’
or inner solution. The two solutions are asymptotically matched by balancing
terms with equal powers of ǫ. They found that the flow in the slender part is
barely influenced by the more complicated flow field in the ampulla. In other
words, the dynamics of the endolymph is dominated by the viscous flow in the
slender part of the canal. In retrospect, this important result is justification for
the simplifications by Van Buskirk et al. (1976) who only looked at the flow in the
slender part of the canal for which a constant circular cross-section was assumed.
Ifediba et al. (2007) used the results of Damiano & Rabbitt (1996) to simulate
and study the biomechanics of the complete 3-canal system. Obrist (2008) based
his study on the model by Van Buskirk et al.. Whereas the latter used asymp-
totics to solve the equation, Obrist found an exact solution to the problem. He
analyzed the eigenvalue spectrum of the model and used a modal expansion to
give an explicit expression for the cupula displacement as a functional of the
head maneuver. A recent overview on the biomechanics of SCC can be found in
Rabbitt et al. (2004).
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Although all these later investigations used different models and assumptions,
they all agree with the basic dynamic features of Steinhausen’s model (2) which
postulates a overdamped system with two characteristic time scales.



CHAPTER 3

Van Buskirk’s model of a semicircular canal

In this chapter, we present the model for the flow in semicircular canals
proposed by Van Buskirk et al. (1976), hereafter referred to as VB. This model
provides a solid fluid-mechanical foundation for research on semicircular canals.
In the following Chapter 4, we will derive an exact analytical solution for this
model.

For the purpose of the present investigation, we neglect the flow in the peri-
lymph and consider only the endolymph and its surrounding membranous duct.
Furthermore, we limit our investigation to a single semicircular canal which is a
sensible simplification as long as we consider only head maneuvers in the plane
of the respective semicircular canal. With this simplification the membranous
duct has the topology of a torus. The slender part of the duct spans an angle
β and has a constant circular cross-section of radius a which is much smaller
than the main radius R of the torus (figure 3.1). The utricle spans an angle γ.
The rotation angle α(t) is a function of the time t. It describes the actual head
maneuver.

An observer moving with the canal perceives an axial fluid motion u relative
to the canal. This fluid motion obeys the Navier–Stokes equations. In the slender
part of the semicircular canal the axial component of the Navier–Stokes equations
takes the simple form

∂u

∂t
+Rα̈ = −1

ρ

∂p

∂x
+

ν

r

∂

∂r

(

r
∂u

∂r

)

, (6)

where we have neglected the influence of curvature since R ≫ a. In this equation
α̈(t) is the angular acceleration, ρ is the fluid density, p is the pressure and ν is
the kinematic viscosity. The variables r and x are components of a cylindrical
coordinate system with the origin on the canal centerline. The axial velocity u is
a function of r and t and but is independent of x due to continuity. Note that this
equation is linear. The nonlinear terms which are usually present in the Navier–
Stokes equations are identical to zero because we assume a one-dimensional flow
in the axial direction x.

21
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Figure 3.1. Schematic of a single semicircular canal with the utricle.

Table 3.1. Physical and geometrical parameters

description symbol value

major canal radius R 3.2× 10−3m
duct radius a 1.6× 10−4m
angle subtended by the canal β 1.4π
angle subtended by the utricle γ 0.42π
endolymph density ρ 103 kg/m3

kinematic viscosity of the endolymph ν 10−6m2/s
cupular stiffness K 13GPa/m3

Table 3.1 lists the values for the physical and geometric parameters as they
are used in this section. As a matter of fact, these parameters may vary signif-
icantly for different individuals. Curthoys & Oman (1987) and, more recently,
Bradshaw et al. (2010b) a good overview on the geometry of SCC including vari-
ations by individual.

We differentiate the axial momentum equation once with respect to x to find
an expression for the pressure gradient. All terms with w and α̇ drop out since
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they are constant in x and we obtain

∂2p

∂x2
= 0. (7)

Therefore, ∂p/∂x is a constant and the pressure p(x) is a linear function of x. It
can be expressed through the pressure difference ∆p between the two ends of the
slender part of the semicircular canal,

∆p = p(βR)− p(0) = βR

(
∂p

∂x

)

. (8)

This pressure difference is caused by an external force F which exerts a pressure
F/(πa2) to one end of the semicircular canal. This leads us to the following
expression for the pressure gradient,

∂p

∂x
=

F

πa2βR
. (9)

We model the external force F as the sum of the reactive force Fc of the deflected
cupula and the inertial force Fi of the fluid in the utricle. In the present model,
we assume the fluid motion within the utricle to be negligibly small with respect
to the magnitude of u Van Buskirk (1977). Recent results (Boselli et al., 2010c,
and Chapter 6) have shown, however, that this assumption is not correct. Nev-
ertheless, we will continue with the original model of VB because the impact of
the fluid motion in the utricle on the transduction of angular motion is indeed
small.

The reactive force Fc of the cupula is a function of time and is proportional
to the volumetric deflection of the cupula,

Fc(t)

πa2
= KV = K 2π

∫ t

0

∫ a

0

u(̺, τ)̺ d̺ dτ. (10)

where K determines the mechanical stiffness of the cupula and the volumetric
displacement V is computed as

V (t) = π

∫ t

0

∫ a

0

u(̺, τ)̺ d̺ dτ. (11)

More sophisticated mechanical models for the cupula were studied by Rabbitt &
Damiano (1992) and Yamauchi et al. (2001).

The inertial force Fi of the fluid in the utricle is approximated by Newton’s
second law as

Fi = muRα̈. (12)

Most of the inertial force of the fluid in the utricle is absorbed by the walls at the
end of the utricle. Only the fluid volume which directly pushes onto the fluid in
the slender part of the canal is relevant to Fi. Therefore, we choose the mass mu

to be equal to the mass of the endolymph which is contained in a torus section of
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length γR (arc length of the utricle) with cross-section πa2 (cross-section of the
slender canal),

Fi = ρπa2γR2α̈. (13)

With these expressions, we arrive at the linear inhomogeneous equation for
the endolymph flow field in the slender part of the SCC as proposed by VB,

∂u

∂t
+ (1 + γ/β)Rα̈ = −2πK

ρβR

∫ t

0

∫ a

0

u̺ d̺ dτ +
ν

r

∂

∂r

(

r
∂u

∂r

)

. (14)

(Note that in contrast to VB we have named the angular acceleration α̈ instead
of α.)

We introduce the following dimensionless variables:

r̃ =
r

a
, t̃ =

t

Tv
, ũ =

uTv

R
, (15)

where Tv = a2/ν is a time scale which balances the viscous term ν∇2u with the
unsteady term ∂u/∂t. Note that our definition of the dimensionless variables
differs slightly from the choice of VB who introduced an additional time scale
Ω−1 which characterizes the head maneuver α̇.

With (15), we obtain the dimensionless form of (14),

∂ũ

∂t̃
+ (1 + γ/β)

∂2α

∂t̃2
= −ǫ

∫ t̃

0

∫ 1

0

ũ̺ d̺ dτ +
1

r̃

∂

∂r̃

(

r̃
∂ũ

∂r̃

)

, (16)

where

ǫ =
2πa2KT 2

v

ρβR
≪ 1 (17)

can be regarded as a dimensionless stiffness parameter. Together with the initial
condition ũ(r, 0) = 0 and the boundary conditions ũ(1, t̃) = ∂ũ(0, t̃)/∂r̃ = 0 we
have arrived at a well-posed problem for ũ(r̃, t̃) and the cupula deflection V (t).



CHAPTER 4

Solution of Van Buskirk’s model

In this chapter1, we present a solution to Van Buskirk’s model that has been
introduced in the previous chapter. Van Buskirk et al. (1976) make use of ǫ ≪ 1
and compute an asymptotic solution of Eq. (16) . In contrast to this approach,
we will show in the following that (16) can be solved exactly for an arbitrary
head maneuver α(t).

1. Homogeneous solution

At first, we examine (16) without forcing (and for the ease of writing we drop
the tilde of the non-dimensionalized variables). To this end, we set α(t) = 0 and
differentiate (16) once with respect to t to arrive at the equation

∂2u

∂t2
− 1

r

∂

∂r

(

r
∂2u

∂r ∂t

)

+ ǫ

∫ 1

0

u̺ d̺ = 0. (18)

The ansatz u(r, t) = û(r)e−σt reduces the partial integro-differential equa-
tion (18) to an ordinary integro-differential equation,

σ2rû + σû′ + σrû′′ + rǫ

∫ 1

0

û̺ d̺ = 0, (19)

where û′ ≡ dû/dr. Together with the boundary conditions û(1) = û′(0) = 0 this
equation is a nonlinear eigenvalue problem for the eigenvalue σ. The solution of
this eigenvalue problem yields modal solutions of the form ûk(r) exp(−σkt). For
eigenvalues σ = σr +iσi with a positive real part σr the modal solution decays in
time. Vice versa we obtain growing solutions for σr < 0. For σi 6= 0 the modal
solutions oscillate in time.

1This chapter is based on the article ’Fluidmechanics of semicircular canals – revisited’, Z.

angew. Math. Phys. 59:475-497, 2008 by D. Obrist.
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We can recast the nonlinear eigenvalue problem (19) into a linear general
eigenvalue problem by defining a new dependent variable v(r) = (û(r), σû(r))T ,

Av = σBv, (20)

A =

(

−ǫ r
∫ 1

0 (·)̺ d̺ 0
0 r

)

,

B =

(
r ∂2/∂r2 + ∂/∂r r

r 0

)

.

The method of expanding the dependent variable is often used in hydrodynamic
stability, where the eigenvalue in a spatial stability investigation can appear up
to its fourth power (e.g. Schmid & Henningson, 2000)). In the case of hydrody-
namics the expanded variables αnû have no particular physical meaning. In our
case, −σû(r) corresponds to the acceleration ∂u/∂t. Therefore (20) is nothing
more than a reformulation of (18) in phase space (u, ∂u/∂t) which reduces (18)
from a second order to a first order equation in t.

In the form (20) the matricesA andB are matrices of differential and integral
operators, and the vector v is a vector of continuous functions. By applying
an appropriate spatial discretization scheme we can approximate A and B by
matrices with scalar entries and v becomes a vector of function values at discrete
grid points rj . In our case, we use a compact finite difference scheme of fourth
order and equidistant grid spacing to discretize (20). The discretized eigenvalue
problem can be solved numerically with a standard eigenvalue solver. Already
less than one hundred grid points give enough accuracy to resolve the first few
eigenmodes. Figure 4.1 shows the numerically computed eigenvalue spectrum
for ǫ = 0.017 which is the value used by Van Buskirk et al. (hereafter VB).
For reasons that will become clear in the following, we name the first and least
damped mode the cupula mode and the remaining modes the duct modes.

We have listed the five least stable eigenvalues for different ǫ in table 4.1. All
eigenvalues are real and positive and therefore the physical system described by
(18) is asymptotically stable and does not have any oscillating eigenmodes. This
observation corresponds well to the findings for Steinhausen’s model (Chapter 1).

Although convenient in use, the numerical solution of (20) does not provide
us with any profound insight into the true structure of the eigenvalue spectrum. It
merely gives us numerical values for {σk, ûk(r)}. Therefore we put the numerical
solution aside and proceed to solve (19) analytically.

At this point we make the important observation that the integral in (19) is
proportional to the volume flow through the duct. This definite integral yields
a value which is independent of r, i.e. , a constant. With the definition of the
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Figure 4.1. Eigenvalues σ = σr + iσi for ǫ = 0.017. (Note the
logarithmic scale of the abscissa.)

Table 4.1. Eigenvalues σk and volume flow κk of the five least
stable modes

ǫ = 0.01 ǫ = 0.017 ǫ = 0.05 ǫ = 0.09752 ǫ = 0.2

σ0 6.251×10−4 1.063×10−3 3.127×10−3 6.102×10−3 1.253×10−2

σ1 5.783 5.782 5.780 5.777 5.771
σ2 3.047×101 3.047×101 3.047×101 3.047×101 3.047×101

σ3 7.488×101 7.488×101 7.488×101 7.488×101 7.488×101

σ4 1.390×102 1.390×102 1.390×102 1.390×102 1.390×102

|κ0| 0.2500 0.2501 0.2501 0.2503 0.2505
|κ1| 0.2446 0.2446 0.2447 0.2448 0.2451
|κ2| 0.04643 0.04643 0.04643 0.04642 0.04642
|κ3| 0.01890 0.01890 0.01890 0.01890 0.01890
|κ4| 0.01019 0.01019 0.01019 0.01019 0.01019

dimensionless volume flow rate κ,

κ ≡
∫ 1

0

û(̺) ̺ d̺, (21)
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we can rewrite (19) as an inhomogeneous ordinary differential equation for û,

σrû′′ + σû′ + σ2rû = −rǫκ. (22)

The particular solution of (22) is ûi = −ǫκ/σ2. The homogeneous part of
(22) is a Bessel equation of order zero with the solutions J0(

√
σr) and Y0(

√
σr)

(Abramowitz & Stegun, 1965). We can discard the solution Y0(
√
σr) because it

is singular at r = 0 and does not satisfy the boundary condition there. Thus, we
get

û(r) = AJ0(
√
σ r) − ǫ

κ

σ2
, (23)

where A is an arbitrary constant. We can now substitute û in (21) by (23) which
gives us following expression for κ

κ = Aζσ
σ2

σ2 + ǫ/2
, (24)

with

ζσ ≡
∫ 1

0

J0(
√
σ̺) ̺ d̺. (25)

It remains to satisfy the boundary condition û(1) = 0. From (23) and (24) we
get the relation

J0(
√
σ) =

ǫζσ
σ2 + ǫ/2

(26)

which can be understood as a dispersion relation for the semicircular canal. Its
solutions determine all eigenvalues σ.

Although there is no explicit solution to (26) we can find the locus of all eigen-
values by simple graphical examination. To this end, we plot the function values
of the left-hand side and of the right-hand side of (26) against

√
σ (figures 4.2

& 4.3). The eigenvalues σk correspond to the intersections of the two curves
(marked by circles). As expected from the numerical solution all eigenvalues are
positive.

The dashed curve in figure 4.2, i.e. the right-hand side of (26), drops rapidly
to zero, such that it intersects with the solid line in the vicinity of the first root
of the Bessel function. For larger choices of ǫ the dashed curve drops more slowly.
Theoretically, we can choose ǫ so large that the dashed and the solid curve do
not intersect until around the second root of the Bessel function (or even later).
In that case, we would loose our first few real eigenvalues and we would obtain
instead a pair of complex conjugate eigenvalues (indicating that the system is
now underdamped). However, the situation remains qualitatively as shown in
figure 4.2 for all physiologically sensible choices of ǫ.

We observe that the least damped eigenvalue σ0 is very close to 0. Numerical
investigation shows that σ0 is approximately proportional to ǫ (figure 4.4). If we
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Figure 4.2. Graphical solution of the dispersion relation (26)
for ǫ = 0.09752: intersections of the left-hand side (——) with
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Figure 4.3. Close-up of the graphical solution of the dispersion
relation (26); cf. figure 4.2.

use the approximation J0(s) = 1− s2/4+ s4/64+O(s6) for small s (and σ2 ≪ ǫ)
we can show that this eigenvalue is approximately given by

σ0 ≈ ǫ/16. (27)
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The result (27) is consistent with the result of VB who arrived at σ0 = ǫ/16
through asymptotics for ǫ ≪ 1. All other eigenvalues σ1, σ2, . . . (there are infin-
itely many) correspond approximately to the roots of J0(

√
σ) since the right-hand

side of (26) is almost zero for σ > 1,

σj ≈ λ2
j , j = 1, 2, . . . , (28)

where λj is the j-th root of the Bessel function J0.
From the approximate expressions (27) and (28) we see that there is a fun-

damental difference between the least damped eigenvalue σ0 and all other eigen-
values. To illustrate this difference, we briefly re-consider our problem for a
semicircular canal without a cupula. We can eliminate the cupula from our equa-
tions by setting ǫ = 0. In that case, the right-hand side of (26) is zero. Obviously,
the least stable eigenvalue σ0 is no longer a solution. The other eigenvalues,
however, remain approximately at the same locations. Apparently, these modes
do not depend on the presence of the cupula. They are directly related to the
modes of a normal pipe flow. Therefore, we call them duct modes. The least
stable mode exists only because of the cupula and its eigenvalue, i.e. its damping,
is approximately proportional to the cupula stiffness. Therefore, we call it the
cupula mode and we denote its eigenvalue also by

σc ≡ σ0. (29)
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Figure 4.5. Construction of eigenfunctions from the graphical
solution of (26) on the example of the eigenfunction û2(r) which
is plotted as a thick solid line. (note that this plot uses two
different sets of axes: one with

√
σ on the abscissa for plotting

(26) and one with the abscissa r for the eigenfunction û2(r))

To conclude our discussion of the eigenvalue spectrum, we note that although
σ = 0 satisfies (26) it is not an eigenvalue, since its corresponding eigenfunction
is the trivial solution û = 0.

In addition to the eigenvalues σ, we can also extract the shape of the eigen-
functions û(r) directly from figure 4.2. According to (23) the eigenfunctions û(r)
have the form of Bessel functions of order zero which are shifted by a constant
such that û(r = 1) = 0. Therefore, we can find the shape of the j-th eigen-
function by placing the abscissa r such that r = 1 cuts the Bessel function at
J0(

√
σj). Figure 4.5 demonstrates this graphical construction of the eigenfunc-

tions on the example of û2 which is the eigenfunction associated with σ2. The
higher eigenfunctions consist of increasingly larger sections of the Bessel function.

Because the Bessel function J0 behaves like a parabola in the vicinity of zero,
the eigenfunction û0 of the least damped mode has a nearly parabolic shape.
This is illustrated in figure 4.6 which shows that also the first duct mode û1 has
a velocity profile which is close to a parabola.

The reason for the (nearly) parabolic velocity profiles of the two least damped
modes becomes clearer when we relate our modal ansatz u(r, t) = û(r)e−σt to
a well known result for pulsating pipe flow. Womersley (1955) introduced the
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Figure 4.6. The two least stable eigenfunctions û0(r) and û1(r).
For comparison, the dotted line shows the parabolic profile 1−r2.

dimensionless frequency parameter

Wo = a

√
ω

ν
(30)

where ω is the angular frequency of the pulsation. This number is nowadays
commonly known as the Womersley number. We can recover the Womersley
number in our ansatz if we replace the frequency ω in (30) by 1/T where T
describes the e-folding time of a decaying eigenmode. We find that

√
σ = a

√

1

Tν
= WoT (31)

where WoT indicates that the Womersley number is built with the inverse time
scale 1/T instead of the frequency ω. Therefore, the square root of the eigenvalue
σ can be interpreted as a (modified) Womersley number. This also explains why
the eigenfunction of the cupula mode (with

√
σc ≪ 1) has a parabolic shape.

We should note that the duct modes have also been found by Rabbitt &
Damiano (1992). However, they were missing the cupula mode which they intro-
duced only later by asymptotic matching of the flow field in the ampulla Damiano
& Rabbitt (1996). Furthermore, we find that the two asymptotic solutions of VB
correspond to the cupular mode and the first duct mode, respectively. Whereas
VB have arrived at this result through multiple-scale analysis in t and ǫt, we have
reproduced their results and revealed the complete modal structure by straight-
forward analytical reasoning. The eigenvalues of the cupula mode and the least
damped duct mode correspond directly to the two time scales (4) extracted from
Steinhausen’s model: the dimensional damping rate of the cupula mode scales
like ǫ/(a2/ν) which is therefore a physically meaningful expression for the ratio
k/r in Steinhausen’s model; the least damped eigenvalue of the duct modes scales
with the viscous time scale a2/ν which relates to the ratio r/m.
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This concludes our discussion of the homogeneous problem (18). We have
found the complete spectrum with its corresponding eigenfunctions. In its general
form the solution to (18) is

u(r, t) =

∞∑

k=0

Akûk(r)e
−σkt, (32)

where the coefficients Ak are determined through the initial conditions. One
might argue that the higher modes are physically irrelevant since they are so
heavily damped that they cannot be observed in nature. However, we will show
in the following section that the knowledge of the complete set of modal solutions
is a useful asset for the computation of the inhomogeneous solution of (16).

2. Impulse response

In this section we find the solution of Eq. (16) for an impulsive acceleration
α̈(t) = Bδ(t) of the semicircular canal. This corresponds to a sudden acceleration
of the head at rest to a constant velocity α̇ = Ba2/ν (the factor a2/ν arises be-
cause the dots in α̇ and α̈ stand for the derivative with respect to the dimensional
time variable, cf. Eq. (15)).

We solve this inhomogeneous problem by recasting it into a homogeneous
initial value problem. To this end, we integrate (16) with respect to t from −T
to +T and let T → 0. The left-hand side gives us values for u immediately before
and after t = 0 as well as a constant term from the integration of δ(t). The right-
hand side vanishes due to the boundedness of u, (1/r)∂u/∂r and ∂2u/∂r2 (these
values are bounded since there cannot be infinite velocities or infinite viscous
forces),

u(r, t = 0+)− u(r, t = 0−) + (1 + γ/β)B = 0. (33)

Causality tells us that u(r, t = 0−) must be zero such that we obtain the initial
condition

u(r, t = 0+) = u0 = − (1 + γ/β)B. (34)

Since (16) is a second order equation in t we need a second initial condition. We
obtain this second condition by differentiating (16) once with respect to t. Then
we integrate this equation as before from −T to T with T → 0. In this case the
forcing term on the left-hand side is zero due to the symmetry of δ(t). We obtain

∂u

∂t

∣
∣
∣
∣
t=0+

− ∂u

∂t

∣
∣
∣
∣
t=0−

=− ǫ lim
T→0

∫ T

−T

∫ 1

0

u̺ d̺ ds

+
1

r

∂

∂r

(

r
∂

∂r
u(r, t = 0+)

)

− 1

r

∂

∂r

(

r
∂

∂r
u(r, t = 0−)

)

.

The integral on the right-hand side goes to zero due to the boundedness of u. For
the remaining two terms on the right-hand side we use the causality argument
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and (34). This gives us the second initial condition

∂u

∂t

∣
∣
∣
∣
t=0+

= 0. (35)

With this we have shown that the homogeneous problem (18) together with
the initial conditions (34) and (35) is equivalent to the inhomogeneous prob-
lem (16) with impulsive forcing α̈ = Bδ(t) (Kevorkian, 1990). Or in other words,
the impulsive forcing at t = 0 leads to a non-zero state at t = 0+ which is given by
(34) and (35). This allows us to use the general solution (32) for the homogeneous
problem that we have derived in the previous section. The unknown coefficients
Ak are now determined through the initial conditions,

u(r, t = 0) = u0 =

∞∑

k=0

Akûk(r), (36)

∂

∂t
u(r, t = 0) = 0 =

∞∑

k=0

Akσkûk(r). (37)

In order to get explicit expressions for Ak, we need an orthogonality relation for
the eigenfunctions ûk. We obtain such an orthogonality relation by the theory of
adjoint operators (see, for example, § 3.3.1 in Schmid & Henningson (2000) for a
brief introduction to adjoint problems). The adjoint problem to (20) is defined
as

A+v+ = ηB+v+.

The vector v+ is called the adjoint eigenvector and η is the adjoint eigenvalue.
The adjoint operators A+ and B+ are defined as

(p,Aq) = (A+p,q),

(p,Bq) = (B+p,q),

where p and q are arbitrary vectors and (·, ·) is the inner product which we define
as

(p,q) ≡
∫ 1

0

p∗qdr. (38)

Trough integration by parts we find that

A+ =

(

−ǫ r
∫ 1

0
(·) rdr 0
0 r

)

= A,

B+ =

(
r ∂2/∂r2 + ∂/∂r r

r 0

)

= B.

Therefore (20) is formally self-adjoint and {η,v+} = {σ,v}.
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From the theory of adjoint eigenvalue problems we know that (σ−η∗)(v+,Bv) =
0. For self-adjoint operators, this orthogonality relation reduces to

(vk,Bvl) = ±δkl, (39)

where we assume appropriate scaling of v.
Note that (vk,Bvk) may be negative for certain eigenfunctions vk. Thus, B

is indefinite. It is worthwhile to take a closer look at this peculiar situation. To
this end, we write the left-hand side of (39) in a more explicit form,

(vk,Bvk) =

∫ 1

0

(ûk, σkûk)

(
(r ∂2/∂r2 + ∂/∂r + σkr)ûk

rûk

)

dr

= − ǫκk

σk

∫ 1

0

ûk rdr + σk

∫ 1

0

ûkr dr

= − ǫκ2
k

σk
+ σk

∫ 1

0

û2
kr dr, (40)

where we have used the definition of κ (21) and the original eigenvalue prob-
lem (22). We see that this expression may become negative (independent of the
scaling of ûk) if |σk|2 ≪ ǫ. In the previous section we have seen that this is indeed
the case for the first mode. For all other modes (vk,Bvk) is positive. So, we can
write our orthogonality relation in the more precise form,

(vk,Bvl) =

{

−δkl k, l = 0,

δkl k, l 6= 0.
(41)

With this result at hand we can return to (36) and (37). We apply (vl,B ·) to
both sides of these equations and obtain the following simple expression for An

Al = ±
(
(û∗

l , σ
∗
l û

∗
l )

T ,B(u0, 0)
T
)
, (42a)

Al = ±
∫ 1

0

u0σlûlr dr, (42b)

Al = ±u0σlκl. (42c)

Therefore, the response u(r, t) to the impulsive forcing ∂2α/∂t2 = Bδ(t) is

u(r, t ≥ 0) = B (1 + γ/β)

[

σ0κ0û0(r)e
−σ0t −

∞∑

k=1

σkκkûk(r)e
−σkt

]

. (43)

For the clinical application it is more interesting to look at the volume displace-
ment V (t) of the cupula, Eq. (11), which is indicative of the perception of angular
motion,

V (t ≥ 0) = B 2π(1 + γ/β)

[

κ0

(
1− e−σ0t

)
−

∞∑

k=1

κ2
k

(
1− e−σkt

)

]

. (44)
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Note that we do not need any explicit knowledge of the shape of the eigenfunctions
to compute V (t). It is sufficient to know the eigenvalues σk and the absolute
values of the dimensionless flow rates κk. In practice it is sufficient to use the
first five modes due to the fast convergence of the infinite sum in (44). In table 4.1
we have listed σk and |κk| of the five least stable modes for different values of ǫ.

Before we conclude this section let us make an interesting observation which
will be of good use in the following section. From a physical point of view it is
clear that V (t) → 0 as t → ∞ (i.e. the cupula must return to its relaxed state in
the absence of external forcing). At the same time, equation (44) tells us that

V (t → ∞) = B 2π(1 + γ/β)

[

κ2
0 −

∞∑

k=1

κ2
k

]

. (45)

Therefore, the following relation between the factors κk must hold

κ2
0 =

∞∑

k=1

κ2
k. (46)

3. Arbitrary forcing

In this section, we find the solution to (16) for arbitrary forcing α̈(t). The
theory of Green’s functions (Bender & Orszag, 1978) provides us with a simple
and efficient way to find this solution. Green’s function G(t, τ) is the response
of the dynamic system to an impulsive forcing α̈(t) = δ(t − τ). The volume
displacement for arbitrary forcing can then be computed with the integral

V (t) =

∫ ∞

−∞

α̈(τ)G(t, τ)dτ. (47)

We can easily find G(t, τ) by using our result for impulsive forcing (44) with
B = 1 and t replaced by t− τ ,

G(t, τ) =

{

2π(1 + γ/β)
∑∞

k=0 ∓κ2
k

(
1− e−σk(t−τ)

)
t ≥ τ,

0 t < τ,
(48)

where we use the plus sign for k = 0 and the minus sign for all other modes.
Therefore, the volume displacement V (t) is given by the integral expression

V (t) = 2π(1 + γ/β)

∞∑

k=0

∓κ2
k

[∫ t

−∞

∂2

∂t2
α(τ)

(

1− e−σk(t−τ)
)

dτ

]

. (49)

With this result we have already completed the main task of this section. However,
we can still greatly simplify the integral in (49).

We use integration by parts to find
∫ t

−∞

∂2

∂t2
α(τ)

(

1− e−σk(t−τ)
)

dτ = σk

∫ ∞

0

∂

∂t
α(t− τ)e−σkτdτ, (50)
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where we assume that ∂α/∂t → 0 for t → −∞. In order to make further progress
we need to make use of the particular structure of the eigenvalue spectrum. In § 1
we have found that all eigenvalues except σ0 have a large positive value2. This
allows us to replace the integral for k ≥ 1 by its asymptotic expansion (Bender
& Orszag, 1978)

σk

∫ ∞

0

∂

∂t
α(t− τ)e−σkτdτ ≃ ∂

∂t
α(t). (51)

We get our final expression for the volume displacement by Introducing this result
into (49) and by using relation (46),

V (t) ≈ −2π(1 + γ/β)κ2
0

[
∂α

∂t
− σ0

∫ ∞

0

∂

∂t
α(t− τ)e−σ0τdτ

]

. (52)

This is a remarkable result. First, it allows us to compute easily the volume
displacement V (t) requiring only knowledge of σ0 and |κ0|. Second, and more
importantly, it reveals in mathematical terms how the fluid dynamics of the
semicircular canal translates the angular velocity ∂α/∂t directly to a volume
displacement V (t) of the cupula.

Apart from the second term on the right-hand side of (52) the cupula displace-
ment V is proportional to the angular velocity α̇. We can interpret the second
term as the difference between the perceived and the actual angular velocity α̇.
We define this difference as the velocity error α̇e,

α̇e = −σ0

∫ ∞

0

α̇(t− τ)e−Tvσ0τdτ (53)

where we have returned to dimensional variables (note the factor Tv in the expo-
nent). With this definition, the perceived velocity is α̇+ α̇e. For a velocity profile
α̇(t) which changes rapidly with respect to the cupula time scale Tc = a2/(νσ0)
(as it is the case for most natural movements of the head) the relative velocity
error α̇e/α̇ is only of order σ0, i.e. of order ǫ. For a velocity α̇(t) that changes
very slowly or remains constant (like when spinning continuously on an office
chair) the error term α̇e grows steadily until it nearly cancels α̇. In that sense,
the velocity error can be understood as a mechanical adaptation of the SCC.

It has been postulated many times in literature that semicircular canals are
transducers of angular motion. Equation (52) is mathematical evidence for this
postulate and relates it directly and explicitly to fluid mechanics. This result has
been derived from the fundamental law of conservation of momentum (6) and not
from a macroscopic model that already implies the above postulate.

2In this context large means that these modes are heavily damped. In physical time scales

the mode σ1 ≈ 5.78, for instance, has decayed to about 1% of its initial value after only 0.02 s.
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We conclude this section by giving an approximate value for the proportion-
ality factor (or gain) between α̇ and the dimensional volume displacement V ⋆,

V ⋆(t) ≈ −1.07× 10−12 ·
[

α̇(t)− σ0

∫ ∞

0

α̇(t− τ)e−σ0a
2τ/νdτ

]

[m3], (54)

where the time has to be understood as a dimensional value. This formula is
accurate up to a factor 1 +O(ǫ).



CHAPTER 5

Reaction of semicircular canals to typical head

maneuvers

In this chapter, we apply our results for the dynamics within semicircular
canals to maneuvers of the head as they may occur in daily life and as they are
performed in clinical experiments.

Obrist (2008) showed that the cupula displacement is given by

V (t) ≈ −AcRTv
1 + γ/β

8

[

α̇(t)− σc

∫ ∞

0

α̇(t− τTv)e
−σcτ dτ

]

, (55)

where the factor in front of the square bracket amounts to approximately 1.07×
10−12m3s (using the values from table 3.1). This equation is approximate in the
sense that it yields accurate results for head maneuvers with angular velocities
that change slowly with respect to the viscous time scale Tv = a2/ν. For most
natural head maneuvers (55) is sufficiently accurate.

Equation (55) is analytical evidence that SCC are indeed good sensors for
angular motion, since it shows that V ∝ α̇ apart from the velocity error

α̇e ≡ −σc

∫ ∞

0

α̇(t− τTv)e
−σcτdτ. (56)

If the velocity error is strong enough it may lead to a sensation of reverse angular
motion after the actual angular motion has ended. In any case, the velocity
error leads to an overshoot in the cupula displacement at the end of a head
maneuver. Figure 5.1 demonstrates this effect by numerical integration of (16)
for a smooth head rotation from an upright (0◦) to a supine position (120◦)
in 3 s. Such a head maneuver is part of a diagnostic sequence known as the
Dix–Hallpike maneuver (Dix & Hallpike, 1952). It is often used in clinical and
numerical experiments (e.g. in figure 7.3 and Rajguru et al., 2004) and we will
use it throughout this work. The angle of rotation α for this head maneuver is
given by

α(t) =







0, t < −3s
2π

3·2187

(
2187− 20t7 − 210t6 − 756t5 − 945t4

)
, −3s < t < 0s

2π
3 , 0s < t

(57)
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The time axis is adjusted such that t = 0 s coincides with the end of the ma-
neuver. The particular choice for Eq. (57) ensures that the slopes of the angle
α, the velocity α̇ and the acceleration α̈ are continuous at t = −3 s and 0 s (cf.
figure 5.1b).

Figure 5.1 shows that the cupula displacement V (t) is nearly proportional
to the angular head velocity α̇(t) during the maneuver. At t = 0 s when the
maneuver has finished the cupula has overshot its relaxed position and returns
only slowly (with time constant Tv/σc ≈ 4.2 s) to its relaxed position. This post-
rotatory overshoot (including its effect on the firing rate) can also been seen in
figure 3 of Rabbitt et al. (2009).

1. Constant velocity

It is well known that the sensation of angular motion decreases over time
even if the angular velocity is kept constant. This phenomenon is governed by
different mechanisms. On the one hand, we have several adaptation and storage
mechanisms in the nerve system and, on the other hand, there is an adaptation
in the mechanical system. This mechanical adaptation leads to the velocity error
α̇e of (52).

Clinical tests show that the overall adaptation process has a time constant1

of approximately 21 s (Malcom, 1968). We must not use this value, however, since
it includes the so-called velocity storage mechanism of the nerve system which is
not part of our model (e.g. Robinson, 1977; Cohen et al., 1977; Raphan et al.,
1979). Rather, we must look at the time constant of the mechanical system alone
which corresponds to the relaxation time of the cupula. Here, we use the value
Tc = 4.2 s reported by Dai et al. (1999).

From (52) and (27) we can derive that the appropriate time constant is
attained for

ǫ ≈ 16σc =
16a2

νTc
= 0.09752. (58)

From this value for ǫ we can compute a value for the cupular stiffness K ≈
13GPa/m3. Note that this value is much larger than the value given by Van Buskirk
et al. (1976) because of the larger time constant Tc used by these authors.

2. Sensation threshold

There exists a threshold value for the angular velocity α̇t (Groen & Jongkees,
1948). Below this threshold value angular motion cannot be sensed with the
vestibular organ. Oman et al. (1987) report the threshold value α̇t = 2◦/s.

From (52) we know that the volume displacement of the cupula is linearly
dependent on the amplitude of α̇. If we neglect the velocity error α̇e, we find

1The time constant is defined as the time after which the amplitude has decayed to 1/e of
its initial value.
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Figure 5.1. (a) Cupular displacement V (t) in a healthy SCC
during and after (b) a head maneuver from α = 0◦ to 120◦

(ǫ = 0.09752, σc ≈ 0.00610)

from (54) that the threshold value for the volume displacement Vt is approxi-
mately

|Vt| ≈ 3.74× 10−14m3. (59)
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The value Vt is important for the investigation of canalithiasis (which can
cause benign paroxysmal positional vertigo or BPPV, Chapter 7). In canalithiasis
the endolymph flow is disturbed by small particles falling through the duct. This
disturbed flow may lead to a secondary and pathological deflection of the cupula
which causes vertigo. A symptomatic feature of canalithiasis is the latency be-
tween the head maneuver and the onset of vertigo. This latency period (typically
a few seconds) may be interpreted as the time during which the cupular displace-
ment |V (t)| is smaller than the threshold value Vt. Apart from the threshold
value, we will show in Chapter 8 that also the cupular mode plays an important
role in canalithiasis. It is the only mode that decays slowly enough to be relevant
during the pathological deflection of the cupula which typically lasts for several
seconds.

3. Comparison of different motion patterns

We are interested in the influence of the motion pattern on the response from
the SCC. To this end we study three different acceleration patterns α̈(0 ≤ t ≤ 3s)
which lead to a rotation by 120◦:

α̈I(t) =
2
√
π

9 · 0.004
[

e−(
t−0.02
0.004 )2 − e−(

t−3.02
0.004 )2

]

, (60a)

α̈II(t) =
8
√
π

27 · 0.004

∫ t

0

[

e−(
τ−0.01
0.004 )

2

− 2e−(
τ−1.51
0.004 )

2

+ e−(
τ−3.01
0.004 )

2
]

dτ, (60b)

α̈III(t) =
80π

243

[

t3 − 9

2
t2 +

9

2
t)

]

. (60c)

The first pattern α̈I consists of two impulsive accelerations with opposite sign
which lead to a constant angular velocity of 40◦/s. This pattern cannot be re-
alized in a clinical test since the peak accelerations are far too high. However,
its mathematical treatment is straightforward and it provides a good reference
for the other patterns. The second pattern α̈II prescribes a piecewise constant
acceleration/deceleration of 53.3◦/s2 which causes a linear velocity increase up
to 80◦/s. It is a realistic pattern in the sense that such patterns can be tested in
clinical experiments using computer-controlled three-dimensional rotating chairs.
The third pattern α̈III follows a simple polynomial function. It leads to smooth
velocity changes and comes closest to natural movements. Figure 5.2 shows the
three patterns as functions of time.

Figure 5.3 shows the cupular volume displacement V (t) according to (52) for
the three different acceleration patterns. For small t we see that the cupular
volume displacement V is approximately proportional to the respective angular
velocity α̇ from figure 5.2. As time progresses the velocity error α̇e increasingly
distorts the curves in figure 5.3 and V is now far from proportional to α̇. In
particular, the velocity error (53) leads to a post-rotatory overshoot of V such
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Figure 5.2. Acceleration patterns I, II & III (—— angle α, – – –
angular velocity α̇, · · · angular acceleration α̈)

that the cupula is deflected to the opposite side during the deceleration phase
(for patterns II and III the overshoot starts at t ≈ 2.5s). Moreover, after the
head has come to a complete stop the cupula has not returned to its initial state.
It returns only slowly with a fluid motion that is solely governed by the least
stable eigenvalue σc. Note that the magnitude of the overshoot is approximately
independent of the acceleration pattern.

One might expect that the overshoot of V creates a sensation of negative
angular velocity since the value of V is beyond the threshold value Vt that we
have derived in § 2. And indeed, such a sensation can be observed after a sudden
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Figure 5.3. Cupular volume displacement V for the Dix-
Hallpike maneuver (—— acceleration pattern I,– – – acceleration
pattern II, · · · acceleration pattern III)

deceleration following a long period of constant angular velocity. However, we
typically do not see it for the short Dix-Hallpike maneuver considered here. This
apparent discrepancy between clinical experiments and our model could either
be explained by the velocity storage mechanisms (see e.g. Raphan et al. (1979))
or by inappropriate choices for the geometrical parameters (Curthoys & Oman,
1987) or for the cupula time constant (Rabbitt et al., 2009).



CHAPTER 6

Endolymphatic flow field in semicircular canals

The endolymphatic flow in the slender ducts of the SCCs is almost a Poiseuille
flow with a parabolic velocity profile. We have already obtained this result from
solving van Buskirk’s equations which showed that the cupula mode and the
slowest duct mode feature a (nearly) parabolic flow profile (cf. figure 4.6). Note
that these results have been obtained without making any assumptions about the
Reynolds or Womersley numbers. In this context, we only assumed that the flow
in the SCCs is unidirectional along the main axis of the ducts. Furthermore, van
Buskirk’s model assumed that the flow in the utricle is very slow such that the
viscous losses in the utricle can be neglected (Van Buskirk, 1977).

The results from van Buskirk’s model for the semicircular canals indicate that
typical endolymph flow velocities are on the order of 10−4m/s. The Reynolds
number for the slender duct is then on the order of 10−2. Furthermore, most
natural head maneuvers are sufficiently slow such that the associated Womersley
number is below unity. Therefore, it is appropriate to assume that the endolym-
phatic flow field in semicircular canals is governed by the Stokes equations.

In order to compute numerical solutions of the Stokes equations in the com-
plex morphology of the vestibular labyrinth, it is sensible to use boundary ele-
ment methods (BEM). Boselli et al. (2010b) (see also Boselli et al., 2010a, 2009;
Obrist, 2007) developed a singularity method which is well suited for this study
and which is closely related to BEM. We have used this method to compute the
endolymphatic flow field in a single SCC for a rotatory motion from 0◦ to 120◦

as we have it used in Chapter 5 (cf. Eq. (57) and figure 5.1). The resulting flow
field in the symmetry plane of the SCC is shown in figure 6.1.

1. Vortical flow in the SCC

The flow field within the slender duct exhibits, as expected, parabolic velocity
profiles reminiscent of Poiseuille flow. The flow field after the maneuver due to the
relaxation of the cupula after the post-rotatory overshoot (figure 6.1c) features
parabolic velocity profiles also in the utricle. Obviously, the maximum velocity
along the center-line of the utricle must be very small due to the continuity

45
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Figure 6.1. Velocity field in the symmetry plane at (a) t =
0.8 s (acceleration), (b) t = 1.8 s (deceleration), and (c) t =
4 s (SCC at rest) for the head maneuver given in Eq. (57) and
figure 5.1(b). The arrows are velocity vectors, while the color
shows the velocity magnitude in m/s. (Tc = 16 s). The big
arrows at the center indicate the direction of head rotation (from
Boselli et al., 2011).

equation. It is clear that the viscous losses in the utricle are negligible in this
configuration.

The utricular flow fields during the acceleration and deceleration phases, how-
ever, show striking differences to the unidirectional flow that we have assumed in
Chapter 3 for Van Buskirk’s model. Instead of a Poiseuille-like flow, we find large
vortical flows in the utricle. With respect to the head maneuver, the vortex is
counter-rotating during acceleration and co-rotating during deceleration. More-
over, the maximum velocities within the utricle turn out to be of equal magnitude
as the velocities in the slender duct. A careful analysis of the flow field reveals
that there is a second vortex within the ampulla.

Further studies have shown that the existence of the utricular and ampullary
vortices depends on the morphology of the SCC. It is clear that there are no
vortices if we idealize the SCC as a perfect torus. Boselli et al. (2010d) showed
that the vortices only exist if there are strong variations of the duct lumen. This
is illustrated in figure which compares the flow in the membranous duct of a
posterior SCC and a (hypothetical) flow in the bony labyrinth.

In order to confirm that the assumptions leading to the (steady) Stokes equa-
tions are correct, we performed simulations with a state-of-the-art finite volume
solver for the incompressible Navier–Stokes equations (OpenFOAM). Figure 6.3
shows the flow field computed with this simulation. A detailed analysis of the
velocity profiles shows that (a) the nonlinear advective terms as well as the Cori-
olis forces are negligible and that (b) the unsteady solution lags approximately
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Figure 6.2. Flow fields during the counter-clockwise accelera-
tion of a SCC in (a) the bony labyrinth (assuming that there is
no membranous labyrinth) and (b) the flow field in the membra-
nous duct a the SCC (from Boselli et al., 2010d).

6ms (in the slender duct) behind the quasi-steady solution for the Stokes equa-
tions. This time lag corresponds well to the time scale T ≈ a2/(5.8ν) of the
first duct mode (which is neglected in the Stokes equations). We conclude that
the observed vortices are genuine features of the endolymphatic flow during the
acceleration and deceleration of the head. It should also be noted that these
vortices are different from the vortical flow reported by Pau & Limberg (1990b)
which were probably due to inertial flow caused by an improper scaling of the in
vitro experiment.

2. Effect on the transduction of angular velocity

It remains to discuss the influence of the vortical flow in the ampulla and
utricle on the normal operation of the vestibular system. It turns out that the
utricular vortex has only very little effect on the proper operation of the SCCs.
The cupular deflection remains well described by Van Buskirk’s model (16). The
otolith organs, however, may be influenced by the utricular vortex. This po-
tential crosstalk between angular and linear acceleration sensors is discussed in
Chapter 22.

The vortex in the ampulla may have a direct effect on the cupula which will
deflect into an S-shape rather than a axisymmetric deflection in the shape of a
paraboloid as suggested by Damiano & Rabbitt (1996). This S-shape results in
larger deflection angles at the base of the cupula where the sensory hair cells are
sitting. Therefore, the ampullary vortex may enhance the sensitivity of the SCC
to angular motion. Furthermore, this vortex could also explain the phenomenon
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Figure 6.3. Rendering of the endolymphatic flow field within a
single SCC during an acceleration of 120◦/s2 in counter-clockwise
direction (results obtained with an finite-volume solver for the
Navier–Stokes equations with approximately 200 000 cells; cour-
tesy of B. Grieser).

that there can remain some residual sensitivity to angular motion after a surgical
plugging of an SCC. This plugging inhibits the flow in the slender duct, but it
does not inhibit the formation of an ampullary vortex.

These results for the vortical flow in SCCs and its potential effect on the
vestibular system is discussed in more detail in Boselli et al. (2011).



CHAPTER 7

Canalithiasis and BPPV

Benign paroxysmal positional vertigo (also known as BPPV or top-shelf ver-
tigo) accounts for 20 − 30% of all vertigo syndromes in humans (Baloh et al.,
1989). BPPV is suspected to be caused by small calcite particles floating freely
in the semicircular canals (SCC) of the vestibular system located in the inner
ear. This condition, known as canalithiasis, is the main subject of the present
chapter.

The calcite particles are known as canaliths (figure 7.1). Most likely, these
canaliths are otoconia (cf. figure 1.4) which have detached from the utricular
macula due to traumatic impact or age. Their typical size is between 0.5 and
15µm (Campos, 1990). There are reports (e.g. Parnes & Mcclure, 1992; Welling
et al., 1997) that canaliths can form larger clusters which can separate again into
single canaliths due to repositioning. The relevance of this phenomenon will be
discussed in Chapter 11.

The diagnosis of BPPV typically uses a series of head maneuvers commonly
known as the Dix–Hallpike maneuver (Dix & Hallpike, 1952). First, the head is
yawed by 45◦ toward the side of the ear to be tested. This aligns the plane of
the posterior semicircular canal (this is the canal which is oriented like the rim
of the pinna) with the sagittal direction of the body. The body is then tilted
backward and the head extended so as to reach a rotation of 120◦ in the plane of
the posterior semicircular canal. Figure 7.2 illustrates the Dix–Hallpike maneuver
for a patient with the right ear affected by canalithiasis and BPPV.

Similar to the diagnostic head maneuver due to Dix & Hallpike (1952), there
exist therapeutic head maneuvers known as Epley maneuvers (Epley, 1992). The
Epley maneuvers aim at removing the canaliths from the slender ducts of the
SCC by shifting them into the utricular cavity.

1. Theoretical, experimental and computational models of BPPV

BPPV due to canalithiasis has been studied theoretically and numerically by
several authors (House & Honrubia, 2003; Squires et al., 2004; Rajguru et al.,
2005; Obrist & Hegemann, 2008). Experiments investigating the physical mech-
anisms of BPPV on animal SCC have been presented by Suzuki et al. (1996a,b),
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(a) (b)

Figure 7.1. (a) Canaliths (open arrow) in a fenestrated left
posterior semicircular canal (filled arrow). (b) Normal human
otoconia (courtesy of D. J. Lim, House Ear Clinic, Los Angeles,
CA). Reprinted from Welling et al. (1997) with permission from
the publisher.

Otsuka et al. (2003), Rajguru & Rabbitt (2007) and Valli et al. (2008). A review
of BPPV from a medical point of view has been given by Furman & Cass (1999).

In vitro experiments with SCC are sparse although they allow a clearer defini-
tion of the experimental configuration, a better repeatability of the experiments
and the possibility to perform larger systematic studies with varying experimental
parameters. To our best knowledge, only the work of Pau & Limberg (1990b,a,
1988) on the flow in a healthy SCC and the work by Valli et al. (2006) and Obrist
et al. (2010) on canalithiasis have been published so far. To improve the han-
dling, these in vitro models are usually scaled up while it must be ensured that
this scaling does not alter the relevant physical processes. The in vitro model by
Obrist et al. (2010) will be presented in detail in Chapter 9.

2. Landmarks of top-shelf vertigo symptoms

Results from clinical experiments are widely available. Figure 7.3 shows the
nystagmus velocity of a typical BPPV patient with canalithiasis during and after
a head maneuver. In this clinical experiment (performed at the Interdisciplinary
Center for Vertigo & Balance Disorders by Drs. C. Bockisch and S. Hegemann)
the eye movements were recorded in a magnetic frame (Remmel-type system,
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Figure 7.2. Illustration of the Dix–Hallpike maneuver for a pa-
tient with canalithiasis in the right ear. Reprinted from Furman
& Cass (1999) with permission from the publisher.

modified by Lasker, Baltimore) using dual scleral search coils (Skalar Instru-
ments, Delft). A search coil was placed on the right eye around the cornea (after
anesthetizing the conjunctiva with oxybuprocaine 0.4%). The angular velocity
was computed according to Hepp (1990) and Tweed et al. (1990).

During the movement of the head (−3s < t < 0s) the nystagmus velocity N is
approximately proportional to the head velocity. This is called the per-rotatory
nystagmus which is the normal reaction to an angular head movement. It is
symptomatic for canalithiasis patients that there is a second nystagmus after a
certain onset-latency TL. We call this the positional nystagmus. It is pathological
and causes vertigo. The onset-latency TL, the time to peak TP and the maxi-
mum strength of the nystagmus Nmax are the landmarks which characterize a
positional nystagmus. In clinical testing it is found that these values may differ
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Figure 7.3. Nystagmus velocity N (•) and head velocity (——)
of a canalithiasis patient during and after a head maneuver. The
time TP and magnitude Nmax of the maximum nystagmus veloc-
ity are only estimates due to incomplete data between t = 6s and
10s. After its peak (t > 10s) the positional nystagmus decays
approximately like exp(−t/4.2s) (— ·—).

substantially between different patients, different head maneuvers or even differ-
ent instances of the same experiment. The onset-latency, for instance, typically
lasts for a few seconds but there are also cases where the positional nystagmus
starts immediately after the head maneuver. The total duration of the positional
nystagmus ranges typically from 10 to 60s (Aw et al., 2005). A priori, it is not
clear whether these different characteristic values are related to different sizes or
numbers of particles in the SCC. However, we will present results (e.g. figure 8.4)
which show that different particle sizes and numbers have a direct effect on the
duration and intensity of the positional nystagmus, and we will show (figure 8.5)
that certain particle sizes and numbers may lead to a vanishing onset-latency.



CHAPTER 8

Analytical model for canalithiasis

Theoretical work on BPPV is still relatively sparse. Only recently papers
by House & Honrubia (2003), Rajguru et al. (2004, 2005), Squires et al. (2004)
and Obrist & Hegemann (2008) brought forward mathematical models for BPPV.
This chapter is based on the most recent paper (Obrist & Hegemann, 2008) which
presented an analytical study of BPPV on the basis of Van Buskirk’s model for
SCC (Chapter 3). It has the aim to reveal the principal mechanisms leading to
the positional nystagmus. We will identify the important parameters and their
relation to the landmarks of BPPV (e.g. onset-latency, time to peak and peak
nystagmus velocity; Chapter 7).

In contrast to earlier investigations, we deliberately choose an idealized ge-
ometry limited to a single SCC with constant circular cross-section in the slender
part. This is in strong contrast to the work of Squires et al. (2004) which heavily
relies on the varying cross-section of the SCC. It is also different from Rajguru
et al. (2004, 2005) who used a detailed three-dimensional model of all three SCC
which allowed them to study complex head maneuvers. Here, we aim to idealize
the problem as much as possible and to retain as little as necessary. This will
allow us to study the principal mechanisms in great detail. Our idealized model
is able to offer: clear explanations for certain phenomena, explicit expressions
for the characteristic features of the positional nystagmus, and the dimensionless
numbers which are most relevant to canalithiasis.

The fluid dynamics of healthy SCC (without particles) has been discussed
previously in chapters 3, 5 and 6. Here, we start by deriving a fluid-particle
model for canalithiasis with two-way coupling (§ 1). The governing equations
feature several dimensionless coefficients which indicate the relevance of the dif-
ferent physical phenomena. Numerical solutions of the governing equations are
studied in § 2 which will explain the central mechanisms of canalithiasis. We
will describe a mechanism for the onset-latency. In contrast to the explanation
offered by Squires et al. (2004) this mechanism does not require the particles to
be located within the ampulla at the beginning of the maneuver. Also, it will
be shown that the onset-latency may vanish under certain conditions (figure 8.5).
In addition, section 2 includes a parameter study to illustrate the influence of
size and number of the particles on the positional nystagmus. In § 3 a linearized
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version of the governing equations is analyzed in detail. We will find analytical
approximations for the temporal eigenvalues. From this we will define a Stokes
number which relates the particle size directly to the positional nystagmus. These
results will allow us to formulate a reduced order model in § 4 from which we can
derive explicit relations between the landmarks of BPPV and the particle prop-
erties. These relations show that the Stokes number is one of the most relevant
parameters for canalithiasis. We will demonstrate how these relations might be
used to diagnose the particle size from clinical data. We conclude this chapter
with an brief excursion to non-normal operators (§ 5) where we will show that
top-shelf vertigo can also be understood as a transient growth phenomenon in a
damped mechanical system.

1. Governing equations for the semicircular canal with particles

The governing equations for the particulate flow in the SCC are based on
Van Buskirk’s equation (16) to which we add an equation for the particle motion.
In addition, we introduce coupling terms to model the fluid-particle interaction.

The modeling of the particle dynamics is a critical issue. The particle ve-
locities and trajectories have a direct impact on the endolymph flow and on the
positional nystagmus. The particles are calcite particles (otoconia) presumably
detached from the macula of the utricle. Campos (1990) reports radii in the range
from 0.5µm to 15µm. However, the actual number, size and shape of particles in
the SCC of canalithiasis patients is not known, and it is likely that the particles
are non-spherical and that collisions between particles will occur. It is also clear
that the particles will directly interact with the wall at some point. Whether
they are likely to stick to the wall or whether they will roll or slide along the
wall is not known. An accurate prediction of the particle trajectories is obviously
very difficult. Nevertheless, it is possible to make some reasonable idealizations
which allow us to understand the principal mechanisms of canalithiasis.

Squires et al. (2004) used a two-dimensional particle model which keeps track
of the radial and the axial position of a particle. Their model is based on asymp-
totic results for small spheres settling in circular pipes under Stokes flow condi-
tions (Bungay & Brenner, 1973; Happel & Brenner, 1973). In this model the
pressure drop due to a settling particle is highest if the particle falls along the
centerline of the pipe. As the particle approaches the wall the pressure decreases.
Further, Squires et al. introduce a lubrication gap between the particle and the
wall (1µm) to prevent the particles from sticking to the wall. This lubrication
gap allows the particles to slide along the wall with 30% or more of their free-fall
velocity. At the same time Squires et al. assume that the pressure drop due to
particles is negligibly small if they slide along the wall.

Rajguru & Rabbitt (2007) showed recently in an animal experiment that the
hair cells in the cupula are also stimulated by particles which are sliding along
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the wall. They explain this apparent contradiction between their experiment and
the assumptions of Squires et al. with the size of the particles: whereas the model
of Squires et al. is derived for small particles, Rajguru & Rabbitt used relatively
large particles (> 10% of the canal diameter). This suggests that the pressure
drop due to (larger) particles sliding along the wall is not negligible.

A more pragmatic approach to particle modeling was taken by House &
Honrubia (2003) and Rajguru et al. (2004). They formulated a one-dimensional
particle model based on Stokes’ formula for the drag of a sphere in an unbounded
fluid. This model tracks only the axial position of the particles in the SCC. The
most striking difference between the two approaches lies in the pressure drop.
Whereas the pressure drop of Squires et al. varies strongly with respect to the
radial position, the pressure drop of House & Honrubia is independent of the
radial position. If the particle is at the center of the canal the model of House &
Honrubia underpredicts the pressure drop by a factor two and it overpredicts the
pressure drop if the particle is close to the wall. Averaged over the circular cross-
section, however, the pressure drop is equal for both models. In this light, we can
expect that (on average) the two models should give similar predictions for the
cupula displacement if we assume that a particle passes through different radial
positions during the course of a positional nystagmus. In the present chapter, we
assume that the one-dimensional particle model is sufficiently accurate for a study
of the principal mechanisms of canalithiasis. We will discuss this assumption in
Chapter 10 by studying experimental and further numerical results obtained with
more sophisticated particle models.

For the formulation of our one-dimensional particle model we consider np

particles of radius ap and mass mp which move freely in a SCC (figure 8.1).
Their motion is governed by the particle inertia, the Stokes drag of the particle,
the particle gravity and an external forcing (angular motion of the head). Their
axial position is denoted by xp(t) (measured relative to the SCC). The origin
xp = 0 is set to the (initially) lowest point in the canal,

xp(0) = ẋp(0) = 0. (61)

The particle equation of motion,

mp(ẍp +Rα̈) = Fs + Fg, (62)

includes a term for the particle inertia mp(ẍp +Rα̈) and two terms for external
forces: the gravitational force,

Fg = −mp(1− ρ/ρp)g sin(xp/R+ α), (63)

and a Stokes drag force for a sphere of radius ap,

Fs = −6πνρap(ẋp − up). (64)
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Figure 8.1. Schematic of a single SCC with geometrical param-
eters (not to scale).

The velocity up is the local fluid velocity at the particle location. Since we do
not keep track of the radial position we approximate the up by the bulk velocity
of the fluid,

up =
2π

Ac

∫ a

0

u(r′, t) r′dr′. (65)

At the same time we introduce the Stokes drag (64) to the fluid equation (14).
To this end, we assume that the Stokes drag Fs of np particles induces an axial
pressure gradient −npFs/(AcβR) along the slender duct.

Again, we use the dimensionless variables (15) and x̃p(t̃) = xp(t)/R. Further-
more, we define the Froude number Fr as

Fr2 =
R

gT 2
v (1− ρ/ρp)

. (66)

The Froude number is a dimensionless coefficient occurring frequently in problems
which involve fluid dynamics and gravity. It relates inertial forces (∼ a3pρpR/T 2

v )

to gravity forces (∼ a3p(ρp − ρ)g). For the parameters from table 3.1 we get

Fr2 = 0.79052. Since Fr2 = O(1) the inertial and gravity forces play an equally
important role in canalithiasis. With these definitions the governing equations
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for the particulate flow in a SCC are

∂

∂t̃
ũ− 1

r̃

∂

∂r̃

(

r̃
∂

∂r̃
ũ

)

+ ǫ

∫ t̃

0

∫ 1

0

ũ r′dr′dt′ + χ

(

2

∫ 1

0

ũ r′dr′ − ∂

∂t̃
x̃p

)

= −(1 + γ/β)
∂2

∂t̃2
α, (67a)

∂2

∂t̃2
(x̃p + α) + ξ

(
∂

∂t̃
x̃p − 2

∫ 1

0

ũ r′dr′
)

+
1

Fr2
sin(x̃p + α) = 0, (67b)

with the initial and boundary conditions

ũ(r̃, 0) =
∂

∂t̃
ũ(r̃, 0) = x̃p(0) =

∂

∂t̃
x̃p(0) = 0, (68a)

ũ(1, t̃) =
∂

∂r̃
ũ(0, t̃) = 0. (68b)

In contrast to Van Buskirk’s equation (16) the system of equations (67) is now
nonlinear because of the circular shape of the SCC which leads to a sine function
in the gravitational force term in (63). The governing equations contain two new
dimensionless coefficients ξ and χ,

ξ =
9ρa2

2ρpa2p
, (69a)

χ =
3apnp

βR
. (69b)

It will become clear in § 3 that the coefficient ξ determines the time it takes
for particles to adjust their own velocity to the velocity of the surrounding flow.
The higher the value of ξ, the quicker the particles adjust their velocities to
the surrounding flow. Typical values for ξ lie around 102 (for large particles,
ap ≈ 20µm) and 105 (for very small particles, ap < 1µm) which means that
particles adjust their velocity 102 times (or 105 times, respectively) more rapidly
than Tv. The physical meaning of the coefficient χ is much different. Its value
determines the impact of the particle motion on the fluid flow. Typically, χ is
very small ranging from approximately 10−4 (one very small particle) to 10−2

(many large particles). Nevertheless, it would be wrong to neglect χ since no
positional nystagmus could be observed without it. Typical values for the used
dimensionless coefficients are listed in table 8.1. Unless noted otherwise these
values will be used in the following sections.
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Table 8.1. Values of the dimensionless coefficients for different
particle sizes ap (the Stokes number St will be defined in § 3).

ap ξ χ St ǫ Fr2

1µm 42666.67 0.000213×np 205.58 0.09752 0.79052
5µm 1706.67 0.001066×np 8.22 0.09752 0.79052

10µm 426.67 0.002132×np 2.06 0.09752 0.79052
15µm 189.63 0.003197×np 0.91 0.09752 0.79052
20µm 106.67 0.004263×np 0.51 0.09752 0.79052
25µm 68.27 0.005329×np 0.33 0.09752 0.79052
30µm 47.41 0.006395×np 0.23 0.09752 0.79052

2. Numerical study of the principal mechanisms

The governing equations (67) can be solved numerically in a straightforward
manner. The nonlinear terms are integrated with respect to time with an explicit
scheme and we use an implicit Crank–Nicolson scheme for the linear terms to cope
with the numerical stiffness of the problem. The spatial derivatives are discretized
with a central sixth-order compact finite difference scheme (one-sided lower order
schemes at the boundaries) on an equidistant grid (e.g. Ferziger & Perić, 2002).
This discretization method yields an efficient and robust simulation code.

Figure 8.2 shows a typical solution of (67) for the maneuver from figure 5.1(b).
During the head maneuver (per-rotatory phase, t < 0) we observe that the cupula
displacement V (t) follows qualitatively the curve of the head velocity α̇(t). Imme-
diately after the head maneuver has ended there is an overshoot. This overshoot
is somewhat smaller than the overshoot in the healthy SCC due to influence of
the particles. Up to this point the solution is qualitatively the same as for the
healthy SCC. In the post-rotatory phase (t > 0) the cupula displacement V (t)
crosses the zero axis a second time at t = TL (onset-latency) instead of relaxing
to zero slowly and monotonically. The cupula only returns to its relaxed position
after its deflection has reached a local extremum −Vmax at t = TP (time to peak).
This behaviour of the cupula corresponds to the positional nystagmus observed
with canalithiasis patients (cf. figure 7.3). The second crossing of the zero axis
and the subsequent local extremum of the cupula displacement is perceived as
a secondary angular motion which leads to the positional nystagmus and causes
vertigo.

We would like to emphasize the observation that the onset-latency is caused
by the overshoot of the cupula. This is an alternative to the explanation offered by
Squires et al. (2004) who related the onset-latency to the passage of the particles
from the ampulla into the slender duct. Our explanation also holds if the initial



2. NUMERICAL STUDY OF THE PRINCIPAL MECHANISMS 59

(a)

-1.5

-1

-0.5

 0

 0.5

 0  5  10  15  20

t [s]

V
[1
0
−
1
2
m

3
]

—— with particles
– – – without particles

TL

TP

−Vmax

(b)

-120

-90

-60

-30

 0

 0  5  10  15  20

t [s]

[◦
],
[◦
/
s]

—— xp/R
– – – ẋp/R
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Figure 8.2. Numerical simulation of (a) the cupula displace-
ment V (t) and the (b) particle position xp(t) and velocity ẋp(t)
for a SCC with seven particles (np = 7) of radius ap = 14µm

(ǫ = 0.09752, Fr2 = 0.79052, ξ = 217.69, χ = 0.02089). For com-
parison (a) shows again the cupula displacement of a healthy
SCC from figure 5.1(a).
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location of the particles is not in the ampulla (a possibility indicated, for instance,
in Appendix A of Rajguru et al., 2004).

The particle motion xp(t) can also be split into a per-rotatory and a post-
rotatory phase. In the per-rotatory phase (t < 0) the particles accelerate such
that they attain their maximum velocity at the end of the head maneuver. During
the post-rotatory phase (t > 0) the particles fall down through the canal. At the
same time they gradually decelerate such that they come to a halt when they
reach the lowest position in the canal. There is no oscillation about the lowest
position. The particles behave like the mass of an overdamped pendulum.

The corresponding results for np = 10 and ap = 11µm are shown in figure 8.3
as a sequence of schematic drawings. It documents the two-phase process of
canalithiasis: particle positioning during the per-rotatory phase and secondary
endolymph flow during the post-rotatory phase which is induced by the falling
particles.

We study the influence of np and ap on the characteristic values TL, TP , and
Vmax by varying np from 1 to 50 and ap from 1 to 30µm (figure 8.4). Note that we
are covering here a wider range of particle sizes than suggested by Campos (1990)
because we also want to consider large lumps of smaller particles. As mentioned
earlier, the actual number and size of particles present in the SCC of a canali-
thiasis patient is not known. We can only estimate the particle size and number
by comparing clinical data to results from theoretical models and experiments.
Rajguru & Rabbitt (2007) concluded from their study that canalithiasis “most
likely involves particles on the order of 5-20µm”. We will try in § 4 to estimate
the particle size for the data shown in figure 7.3.

As a general trend we observe that more and larger particles lead to a shorter
onset-latency and an earlier and more intense peak nystagmus. Curve fitting
suggests that the magnitude of the positional nystagmus is proportional to the
total particle cross-section (πa2pnp). There are also configurations for which the
onset-latency TL vanishes (figure 8.5a). In these cases the particle-induced flow is
so strong that there is no overshoot, i.e. the positional nystagmus follows the head
movement seamlessly (figure 8.5b). This phenomenon has also been observed in
clinical experiments.

Rajguru et al. (2004) found that the time to peak is proportional to 1/a2p if
the total particle mass Mp = npmp is kept constant (figure 5(c) in their paper).
Our results (figure 8.6a) agree with their observations at least for smaller particles
and large Mp. Furthermore, in figure 8.6(b) we observe that the peak nystagmus
decreases for larger particles if Mp is kept constant. To understand this effect we
need to take into account our previous observation that Vmax scales approximately
like a2pnp, at the same time we keep the total particle mass constant, i.e. , np ∝
a−3
p constant. It follows that Vmax must decrease with increasing particle size.
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Figure 8.3. Schematics of the SCC with particles (ap = 11µm,

np = 10; ǫ = 0.09752, Fr2 = 0.79052, ξ = 352.61, χ = 0.02345)
during a head maneuver (the arrow shows the absolute particle
velocity ẋp+Rα̇; the cupula is drawn separately below the canal
as a bulged membrane).

3. Analysis of the linearized equations

In order to obtain a deeper understanding of the fluid-particle dynamics in
SCC we linearize the governing equations (67). To this end, we assume that the
angle φ = xp/R + α (spanned by the particle angle xp/R and the direction of
gravity −α) is small, such that

sinφ ≈ φ = xp/R+ α.

This approximation may introduce a sizable error for angles of 90◦ and more,
but we will see that the results obtained from the linearized problem remain
qualitatively correct and that they will help us to understand the observations of
§ 2.
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Figure 8.4. Influence of the particle size ap and the particle
number np on the characteristic values of the positional nystag-
mus (curves for np = 1, 2, . . . , 50); the dotted line in (c) indicates
the maximum cupula displacement in the per-rotatory phase.

We write the linearized governing equations (67) as

∂

∂t̃
Qu = Pu+ f , (70)

where Q, P are operator matrices. The vector u contains the dependent variables
ũ and x̃p and f contains the forcing terms.

To study the temporal spectrum of (70) we set α̇ to zero which corresponds
to the situation after the head maneuver (t > 0 s). The governing equations (70)
then form a homogeneous initial value problem in which the initial values are the
result of a completed head maneuver. With the separation ansatz

u(r̃, t̃) = û(r̃)e−σt̃, (71)
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Figure 8.5. Vanishing onset-latency: (a) latency TL as a func-
tion of the particle size ap and number np; (b) cupula displace-
ment V (t) for a configuration without onset-latency (ap = 20µm,
np = 10).
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Figure 8.6. (a) Time to peak TP and (b) cupula displacement
Vmax as a function of ap if the total particle mass Mp is kept
constant (np ∝ a−3

p ). The dotted line in (a) indicates the pro-

portionality of TP to 1/a2p; the dotted line in (b) indicates the
maximum cupula displacement in the per-rotatory phase.

we obtain the generalized eigenvalue problem

−σQû = Pû. (72)



64 8. ANALYTICAL MODEL FOR CANALITHIASIS

A numerical solution of this problem is shown in figure 8.7(a). The eigenvalues
of the cupular mode and the duct modes are nearly at the same locations as in
the configuration without particles (cf. figure 4.1). In addition, there are two new
eigenvalues attributable to the particle equation. We can find estimates for the
two new eigenvalues by analyzing the decoupled linearized particle equation

∂2

∂t̃2
x̃p + ξ

∂

∂t̃
x̃p + Fr−2x̃p = 0. (73)

Assuming that Fr−2 ≪ ξ we find

σs ≈
1

Fr2ξ
, σf ≈ ξ, (74)

We name the corresponding modes the slow particle mode σs and the fast particle
mode σf . Inspection of the numerical results shows that the expressions (74) are
indeed good estimates for the eigenvalues of (72).

These results motivate the definition of a Stokes number which relates a
typical time constant for the particle motion to a typical time constant of the
fluid flow. The classical choice for a Stokes number relates the fast particle mode
to the viscous time scale Tv,

Stclassical = ξ−1 ≪ 1 (75)

The fact that Stclassical is very small for typical particle sizes suggests that the
particles behave like passive tracers which follow the streamlines and have negligi-
ble influence on the fluid (e.g. Clift et al., 1978). Obviously, this Stokes number
does not tell the full story and it is not useful in the context of canalithiasis.
Therefore, we discard the definition (75) and define a different Stokes number
from the estimated time scales for the slow particle mode and the cupula mode,

St =
σc

σs
=

ǫFr2ξ

16
=

9πKa4

16β a2p g(ρp − ρ)
. (76)

For the typical parameters from table 3.1 we find that St may be below as well
as above unity. We will see in the following that this Stokes number and the two
least stable modes (cupula mode and slow particle mode) play a central role in
canalithiasis.

Therefore, we examine these two modes in some more detail. The two es-
timates (27) and (74) actually suggest that the two eigenvalues coincide for
St = 1. For the standard parameters from table 3.1 this would be the case
for ap ≈ 14.3µm. Figure 8.7(b) investigates this idea by comparing the approx-
imate expressions (27) and (74) to the numerically computed eigenvalues. We
find that the two eigenvalues never coincide. Rather, they repel each other as
we approach St = 1. This repulsion becomes stronger for larger numbers of
particles np. For small particle radii (St > 1) the eigenvalues follow closely the
estimates (27) and (74). For St < 1, however, the eigenvalues have switched roles:
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σc (cupula mode) as a function of the particle radius ap (np=10);
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the cupula eigenvalue σc follows the estimated curve for the slow particle mode
and vice versa. As a result, the cupula mode always decays faster than the slow
particle mode. In other words, the slow particle mode will prevail as t → ∞.

The change of roles shows also in figure 8.8(a) where we plotted the ratio θ
between the bulk velocity

ū = 2

∫ 1

0

u r dr (77)

and the particle velocity −σx̂p where θc and θs are the ratios for the cupula mode
and the slow particle mode, respectively. This plot shows us two things. First,
we note that the fluid velocity and the particle velocity always point in the same
direction (co-flow) in the cupula mode whereas they always point in opposite
directions (counter-flow) in the slow particle mode. Second, we find that the
particle velocity is dominant (|ū| ≪ |−σx̂p|) in the slow particle mode for St > 1
and that it is dominant in the cupula mode for St < 1. Hence, the switching of
roles at St = 1 is manifested in the dominance of the particle velocity over the
fluid velocity.

As a final result in this section we derive the universal approximation θu
for the ratio between the fluid bulk velocity and the particle velocity. To this
end, we enter the approximate eigensolution for the slow particle mode into the
linearized governing equations, i.e. , a parabolic velocity profile for the endolymph
and x̂ exp(−t̃/Fr2ξ) for the particle motion. From this we obtain

θu =
ū

−σx̂
=

−χSt

16St2 − (16 + 2χ)St + ǫ/4
. (78)

This expression approximates θc for St < 1 and θs for St > 1 (figure 8.8(b)).
We would like to emphasize that the number of particles np plays a small but,

nevertheless, very important role here. Figure 8.7(b) shows that the values of σc

and σs can be predicted relatively well by the estimates (27) and (74) which are
both independent of the particle number. Only for St ≈ 1 the particle number
has a noticeable influence on σs and σc. In that sense, the influence of np is small.
At the same time the effect of a non-zero np is huge in the sense that the cupula
mode and the fast particle mode switch roles at St = 1. They would not do that
if np were zero. This observation goes along with our comment at the end of § 1,
where we mentioned that χ (which is proportional to np) must not be neglected
even though it is very small.

4. Reduced-order model for canalithiasis

Figures 7.3 and 8.2 suggest that the cupula oscillates about its relaxed state
at least once during the first few seconds after the head maneuver. This appears
to contradict the results from the previous section where we have found that
all modes decay monotonically as t → ∞. To explain this transient oscillation
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ū
/
(−

σ
x̂
p
)

θc

−θs

θu

−θu

(b)

Figure 8.8. (a) Ratio θ between the average fluid velocity ū and
the particle velocity −σx̂p of the cupula mode and of the slow
particle mode as a function of the particle radius ap (np=10).
Subfigure (b) shows the same data on a logarithmic scale to-
gether with the approximate expression θu.
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we reduce our dynamical system to the two least stable modes. We can do this
because all energy in the other modes dissipates faster than Tv after the head
maneuver has ended. Therefore these higher modes are irrelevant to the slow
dynamics of the positional nystagmus. (They are very relevant, however, during
the per-rotatory phase as shown in Chapter 4.)

To formulate the reduced-order model we reduce the flow profile ũ(r̃, t̃) to
the bulk velocity ū(t̃). Likewise the k-th eigenfunction (ûk(r̃),−σkx̂p,k) reduces
to the vector (ūk,−σkx̂p,k). This reduced system has the general solution

(
ū

∂x̃p/∂t̃

)

= A1

(
ūs

−σsx̂p,s

)

e−σs t̃ +A2

(
ūc

−σcx̂p,c

)

e−σc t̃. (79)

If we know the initial conditions, i.e. the fluid velocity ū0 and the particle velocity

x̃
(1)
p,0 immediately after the head maneuver (t̃ = 0), we can determine the constants

A1,2.
We will see in the following that for appropriate choices of A1,2 the reduced-

order model (79) exhibits exactly the transient oscillations of the cupula that we
observed in figure 7.3 and 8.2. Furthermore, we use the reduced order model (79)
to derive explicit relations for the onset-latency TL, the time to peak TP and the
maximum cupula deflection Vmax.

Numerical simulations (e.g. figure 8.2) show that typical head maneuvers
always lead to co-flow situations at t̃ = 0, i.e. , the endolymph and the particles
move in the same direction. From figure 8.7(b), however, we know that we always
end up in a counter-flow configuration as t̃ → ∞. Therefore, either the fluid flow
or the the particle velocity must change direction at a certain time t̃ > 0. If
A1 > 0 the cupula relaxes faster than the particles fall and, therefore, the fluid
velocity will change sign at t̃ = TP (figure 8.9). If A1 < 0 the particles fall faster
than the cupula relaxes. In that case, the particle velocity changes sign and there
is no nystagmus. Since we were never able to observe the case A1 < 0 in our
numerical simulations of the full nonlinear system, we concentrate here on the
case where A1 > 0.

It is straightforward to show that

A1 =
x̃
(1)
p,0

−σsx̂p,s

θ0 − θc
θs − θc

, A2 = −
x̃
(1)
p,0

−σcx̂p,c

θ0 − θs
θs − θc

, (80)

where θ0 = ū0/x̃
(1)
p,0 is the ratio between the initial fluid and particle velocities.

The values θc and θs were discussed in § 3. From figure 8.9 and the expression
for A1 it becomes clear that we get a positional nystagmus if and only if θ0 < θc.
The time of peak nystagmus TP corresponds to the time where ū changes sign
(cf. figure 8.9(a)). From (79) we can compute it as

TP =
1

σc − σs
ln

[
θc(θ0 − θs)

θs(θ0 − θc)

]

. (81)
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Note that TP goes to infinity as θ0 → θc. Similarly we can find an expression for
TL. And the magnitude of the maximum cupula displacement is

Vmax = Ac

∫ ∞

TP

ū(t̃) dt̃, (82)

which gives

Vmax = Acx̃
(1)
p,0

(
1

σs
− 1

σc

)

θs
θ0 − θc
θs − θc

[
θc(θ0 − θs)

θs(θ0 − θc)

]−σs/(σc−σs)

. (83)

We can simplify these expressions by using our results from § 2 and figures 8.7(b)
and 8.8:

For St > 1 : St ≈ σc

σs
, |θc| ≫ |θ0|, |θc| ≫ |θs|, θs ≈ θu; (84)

For St < 1 : St ≈ σs

σc
, |θs| ≫ |θ0|, |θs| ≫ |θc|, θc ≈ θu. (85)
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Figure 8.9. Two possible cases of transition from co-flow to
counter-flow: (a) for A1 > 0 the fluid velocity ū changes sign at
t̃ = Tp when the cupula displacement V reaches an extremum;
(b) for A1 < 0 the particle velocity ∂x̃p/∂t̃ changes sign, the fluid
velocity and the cupula displacement decay monotonically.
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This yields the following expressions for the onset-latency TL, the time to peak
TP and the magnitude of the maximum cupula displacement Vmax

TP =
16

ǫ

St

St − 1
ln

(

1− θ0
θu

)

(86a)

TP − TL =
16

ǫ

St

St − 1
lnSt (86b)

Vmax =
16

ǫ
ū0(St − 1)

(

1− θ0
θu

)−1/(St−1)

(86c)

Typical values for 1− θ0/θu can be found in figure 8.10.
Although only approximately valid for the linearized equations, these explicit

expressions give us a good idea of the relation between the physical and geomet-
rical properties and the characteristic features of the positional nystagmus. For
instance, we see that all characteristic values scale linearly with the cupula time
constant 16/ǫ. We also find that the time from the onset of the nystagmus to
its peak depends strongly on the Stokes number St , but that it is independent
(in the spirit of a first approximation) of the head maneuver and the number of
particles.
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Figure 8.11. Estimate for the difference between time to peak
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ing to the relation (86b) (ǫ = 0.09752, Fr2 = 0.79052).

The explicit expression for the time between the onset-latency and the peak
nystagmus, Eq. (86b), stands out since it is relatively simple and might help to
estimate the particle size directly from clinical data. It shows us that TP −TL de-
pends strongly on the Stokes number and that it is independent of the number of
particles (keep in mind here that this relation is only an approximation). We have
used this relation to plot TP −TL as a function of the particle size (figure 8.11). A
comparison of estimates from (86b) with numerical solutions of the full nonlinear
governing equations (67) shows that figure 8.11 slightly underestimates the par-
ticle size. Nevertheless, it can serve as a valuable tool for diagnosing the particle
size. The patient in figure 7.3, for example, exhibits a difference between TP and
TL of approximately 8 s. With the help of figure 8.11 we can now estimate a
particle size of 6µm. We need to keep in mind, however, that it is not possible to
determine the particle size and number conclusively from our model. This model
does not consider, for example, non-spherical particles or even multiple particles
of different sizes. At the current stage of abstraction and idealization our model
is capable of revealing only the fundamental mechanisms and the basic relations
between particle size and number and the positional nystagmus.

5. Non-normality of top-shelf vertigo

We have seen in this chapter that the dynamics of canalithiasis can be un-
derstood as the interplay of the first two eigenmodes of the linearized analytical
model of canalithiasis. The cupula mode and the slow particle mode interact with
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each other in a way that the potential energy of the elevated particles is exchanged
with the deformation energy stored in the elastic cupula. This process leads to
an apparent oscillation of the cupula even though the involved eigenvalues are
purely real and do not predict any oscillating behaviour.

An energy analysis of the top-shelf vertigo dynamics shows that the kinetic
energy in the system, i.e. the kinetic energy of the particles plus the kinetic
energy of the fluid, has a local minimum approximately at the end of the head
maneuver. After this minimum the kinetic energy increases transiently before it
decays exponentially fast according to the asymptotic decay rates predicted by
the eigenvalues.

This transient energy growth in a damped system can be related to the non-
normality of the underlying dynamical system. This is a well known phenomenon
from viscous shear flows which can occur whenever the eigenfunctions of the
perturbed base flow are not orthogonal with respect to an appropriate energy
metric (Trefethen et al., 1993). For canalithiasis the non-orthogonality of the
first two eigenmodes is obvious from their velocity profiles which are both nearly
parabolic and can cancel each other (at t = TP ) such that the kinetic energy of
the fluid is temporarily almost zero. In that sense, the symptoms of top-shelf
vertigo can be understood as an expression of non-normality in biomechanics.



CHAPTER 9

In vitro model of an SCC with canalithiasis

Here, we present the design of a properly scaled experimental model1 the
validation of this model and we demonstrate its use for the study of SCC with
canalithiasis. For simplicity, our SCC model is limited to the membranous duct
of a single SCC and the utricle. The two other SCC, the saccule and the bony
labyrinth are omitted.

1. Scaling of the experiment

To facilitate the handling of the experiment and to enable an accurate mea-
surement of the cupula deflection and the particle trajectories, we scale the SCC
by the factor f > 1 to a size of several centimeters. To maintain the subtle
balance between the different physical processes in a SCC with canalithiasis, this
geometrical scaling requires us to modify the other physical parameters as well.
Because BPPV is a transient process it is sensible to keep the most relevant time
scales of a SCC with canalithiasis constant: the viscous time scale Tv, the cupula
time constant Tc and the particle settling time Tp. These values are discussed in
the following and derived in more detail in Obrist & Hegemann (2008).

We have learned in Chapter 4 that there are two characteristic time scales
which determine the dynamics in a healthy SCC: the viscous time scale and the
cupula time constant. In a SCC with canalithiasis, there are two additional time
scales which describe the dynamics of the particles: the particle relaxation time
and the particle settling time. These two time scale correspond to the fast and the
slow particle mode that we have found in Chapter 8. All time scales correspond
to the inverse of the temporal eigenvalues of the SCC (cf. figure 8.7(a)).

The viscous time scale describes how fast viscous effects are able to relax a
perturbed flow field in the slender duct of the SCC to an equilibrium state. It is
given by

Tv =
a2

ν
, (87)

where a is the radius of the slender duct of the SCC and ν is the kinematic
viscosity of the endolymph. If we scale the geometry by a factor f , i.e. a+ =

1This chapter is based on the article by Obrist et al. (2010) in the Journal of Biomechanics.

73
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fa (where the superscript + indicates model parameters) we have to scale the
kinematic viscosity ν by a factor of f2 (ν+ = f2ν) to maintain Tv constant.

The particle settling time Tp describes a typical time scale for the settling of
a canalith in a SCC under the influence of gravity. It corresponds to the inverse
of the eigenvalue of the slow particle mode σs, Eq. (74), and is given by

Tp =
9a2R

2ga2p(ρp/ρ− 1)Tv
, (88)

where R is the major radius of the SCC, g is the gravitational acceleration, ap
is the canalith radius and ρ and ρp are the densities of the endolymph and the
canaliths, respectively. After inserting the scaled values for a+ = fa, a+p = fap
and R+ = fR we find that the following relation must hold,

ρ+p
ρ+

= 1 + f

(
ρp
ρ

− 1

)

. (89)

Finally, the cupula time constant describes how fast a deflected cupula relaxes
in a SCC at rest. It is given by Tv/σc, cf. Eq. (27), which results in

Tc =
8ρβR

πa2KTv
, (90)

where βR is the arc length of the slender duct and K describes the stiffness of
the cupula. From this follows, that the scaled stiffness of the cupula K+ should
be

K+

K
=

ρ+

fρ
. (91)

By this scaling, we ensure that the most relevant dynamical processes in the
experiment run in real time. This means, for example, that a particle falls with
an f times higher velocity through the model SCC (which is f times larger than
a real SCC) such that it settles in the same time as canalith would settle in a
real SCC.

This scaling maintains the dimensionless Reynolds and the Womersley num-
bers constant as well. The classical Stokes number Stclassical, Eq. (75), as well as
the Froude number Fr , Eq. (66), are different from a real SCC with canalithiasis.
These dimensionless numbers have been sacrificed in favor of the geometric scaling
because they are not of imminent relevance to BPPV. Their ratio Fr2/Stclassical,
however, is maintained constant in our scaling because it relates directly to the
particle settling time Tp.

Based on the available materials, we choose a scaling factor of f = 4.4. This
allows us to use a multipurpose cutting oil for the endolymph with a specific
density of ρ+ = 845kg/m3 and a kinematic viscosity of ν+ = 19.5 × 10−6m2/s
(Ecocut 3010, Fuchs Petrolub AG, Mannheim, Germany). From Eq. (89) it follows
that the model canaliths should have a density of ρ+p = 7200kg/m3. For the
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Table 9.1. Parameters of the model SCC and an unscaled SCC.

description symbol model SCC unscaled SCC
scaling factor f 4.4
major SCC radius R 16mm 3.64mm
minor SCC radius a 0.8mm 0.182mm

angle spanned by duct β 250◦ 250◦ (6)

endolymph viscosity ν 19.5× 10−6m2/s (2) 10−6m2/s (5)

endolymph density ρ 845kg/m3 (2) 1000kg/m3 (5)

canalith radius ap 125µm (3) 28.4µm
canalith density ρp 7800kg/m3 (3) 2700kg/m3 (5)

cupula stiffness K 1.7GPa/m3 8.9GPa/m3

(achieved cupula stiffness (1)) (4.0GPa/m3) (4) (20.7GPa/m3)

viscous time scale Tv 0.0328s 0.0331s
cupula time constant Tc 4.24s 4.19s

(achieved cupula time constant (1)) (1.80s) (1.80s)
particle settling time Tp 1.11s 1.22s
particle relaxation time Tr 1.64µs 0.48µs

(1) The cupula time constant achieved with the present experimental set-up
is lower than the targeted time constant of 4.2s (Dai et al., 1999).
(2) Ecocut 3010 at 24◦C.
(3) steel micro-balls.
(4) Goodfellow elastomer film 50µm.
(5) Bronzino (1995).
(6) Van Buskirk et al. (1976)

present experiments, we use steel particles (micro-balls made of E52100 steel,
MARTIN & C., Perosa Argentina, Italy) with a density of ρ+p = 7800kg/m3 and

a radius of a+p = 125µm which corresponds to canaliths with ap ≈ 28µm. We use
a Silicone Elastomer Film with a thickness of 50µm by Goodfellow Cambridge
Ltd. (Huntingdon, UK) for modeling the cupula. According to Eq. (91) the
resulting cupula stiffness should be approximately K+ = 1.7GPa/m3. However,
as we will report in § 3.1, the model cupula turns out to be stiffer such that the
cupula time constant is lower than desired.

The scaled parameters are summarized in table 9.1 together with their un-
scaled values which compare reasonably well to human posterior SCC (Curthoys
et al., 1977a,b) and actual canaliths (Lim, 1984). The reduced particle and cupula
time constants (due to the heavy particles and a stiff cupula) result in a model
SCC which responds faster than a real SCC to symptomatic “head maneuvers”.
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Figure 9.1. Complete experimental set-up.

2. Components of the experimental set-up

The complete experimental set-up (figure 9.1) consists of the scaled model of
a single SCC, a stepper motor for rotating the SCC model, various measurement
equipment and a personal computer for controlling the stepper motor, for data
acquisition and for post-processing.

The centerpiece of our experiment is the scaled SCC (figure 9.2). It consists
of an anodized aluminium base plate with a narrow circular groove of radius R+

and a larger cavity. This cavity represents the utricle and the ampulla holding
the cupula. The slender duct of the SCC is modeled by a transparent tube (inner
radius a+, length βR+) which is inserted into the narrow groove. The thin elastic
membrane which models the cupula is clamped between the two halves of a PVC
insert fitting tightly in the cavity of the utricle (figure 9.2(b)). One side of this
insert connects directly to the tube which represents the slender duct. The other
side opens to the utricle. The cupula is rotated by 90◦ such that the deflection
is normal to the plane of the SCC. This change in the geometry has a negligible
effect on the dynamics of our model SCC because the inertial forces needed for
the redirection of the endolymph by 90◦ are very small compared to the viscous
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(a)

(b)

Figure 9.2. (a) CAD rendering of the complete SCC model and
(b) a schematic cross-section of the cupula insert: aluminium
base plate (black), latex tube (gray), insert (blue), cupula mem-
brane (yellow). (Not shown: Plexiglas front plate, O-ring seal,
venting hole, various bolts.)

forces in an SCC. The base plate is closed by a Plexiglas front plate with an
O-ring seal. The system is filled with oil through a sealable hole in the utricle. A
second sealable hole in the front plate is used for venting. The particles can be
injected through the filling hole with a syringe.

The SCC model is mounted onto a computer-controlled stepper motor. The
deflection yc of the cupula (with respect to its relaxed position) is measured with a
vibrometer (CLV-2534-4, Polytec GmbH, Waldbronn, Germany) which uses laser
interferometry to measure the velocity dyc/dt. The deflection yc is obtained by
numerical integration of the velocity signal. The laser beam is adjusted to the
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center of the cupula membrane (at the end of the angular maneuver). To improve
the reflection of the laser beam we have painted the center of the membrane with a
silver glitter pen. During the rotation of the SCC the membrane deflection cannot
be measured. Even if the laser beam followed the rotating SCC the vibrations of
the system would be too large for an accurate measurement.

The experiments are captured with a video camera such that the canalith
positions and velocities can be extracted from the video sequence with a particle
tracking algorithm (Ohmi & Li, 2000; Marxen et al., 2000). The light source
which is required to get sufficient image quality for the particle tracking may
heat the oil in the SCC and alter its viscosity. Therefore, the oil temperature has
to be measured on a regular basis to adjust the results if necessary.

3. Experimental results

We use the SCC model for various experiments with and without particles
where we mimic a typical head maneuver by rotating the SCC by 120◦ in TM

seconds. Unless noted otherwise, we use the maneuver define in Eq. (57) which
lasts for TM = 3s.

3.1. Calibration of the cupula time constant. Because the stiffness K+

and the cupula time constant Tc cannot be determined exactly a priori, the SCC
model (without particles) has to be calibrated to determine Tc. Ideally, Tc should
not change between experiments. However, the cupula time constant is very
sensitive to the clamping of the membrane in the insert (e.g. wrinkles and/or pre-
straining) and we observe an aging effect (mechanical fatigue, creeping, diffusion
of oil into the membrane, etc. ) which tends to stiffen the cupula membrane.
Therefore, the membrane has to be replaced regularly and Tc must be determined
before every experiment.

The calibration test makes use of the well-known phenomenon (Grant & Van
Buskirk, 1976; Highstein et al., 2005) that a deflected cupula in a SCC at rest
relaxes according to

yc ∼ e−t/Tc . (92)

This exponential decay can be observed, for instance, in figure 5.1(a) for t > 0 s
when the cupula returns from the overshoot to its relaxed position. The cupula
time constant can be determined by fitting a curve with exponential decay to
yc(t).

Figure 9.3 shows the results from several calibration tests. The initial de-
flection of the cupula was generated with standard rotational movements of the
SCC. The curves follow Eq. (92) which indicates that the relation between the
pressure across the cupula and its deflection is indeed linear. According to Dai
et al. (1999) the cupula time constant for human posterior SCC is 4.2s. Recent
results for oyster toadfish (Rabbitt et al., 2009) suggest that the cupula time
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constant may be as large as 13 to 104s (36s on average). Our model cupula leads
to shorter time constants which are typically below 2s. The experiments shown
in figure 9.3 and 10.1 had a time constant of Tc ≈ 1.8s while the experiments in
figure 9.4, 9.5 and 10.2 yielded Tc ≈ 0.75s, 1.2s and 1.3s, respectively.

The difference in the cupula time constant between our experimental set-up
and a real SCC is reflected in table 9.1 by the values in parentheses. The shorter
time constant is the result of a stiffer cupula membrane. This difference could be
eliminated by increasing the diameter of the model cupula. Despite the shorter
time constant, we believe that the fundamental mechanisms of BPPV remain
intact and that the differences are only of quantitative nature. Moreover, the
present experimental set-up will allow us to quantify the effect of larger cupula
time constants by increasing systematically the diameter of the model cupula.

3.2. Overshoot. During the acceleration of the head, the cupula is deflected
by an amount approximately proportional to the angular velocity. In the decelera-
tion phase, the cupula moves back by the same amount. But instead of returning
exactly to its relaxed position, the cupula overshoots slightly the relaxed posi-
tion (cf. figure 5.1a). This overshoot is related to the mechanical adaptation
of the SCC which leads to a slow relaxation of the cupula already during the
maneuver. This relaxation adds up with the deflection during the deceleration
phase to an overshoot (we have used this overshoot to initialize the calibration
tests). Note that this overshoot does not include the velocity storage mechanism
(Raphan et al., 1979; Squires et al., 2004) which probably reduces the effect of
the overshoot on the nystagmus.

Mathematically, the overshoot is described by the velocity error (53) in the
analytical result for the cupula deflection. We compare this analytical prediction
to our experiment in figure 9.4 where we used different maneuvers to trigger
different cupula overshoots. These maneuvers complete the rotation of the SCC
by 120◦ in TM = 0.5s to 6s.

3.3. Canalithiasis. To study canalithiasis, we inject different numbers of
particles (np) into the slender duct of the SCC. We let the particles settle to the
lowest point in the system and then rotate the SCC according to Eq. (57). After
the maneuver has ended, the particles fall through the SCC (or they slide and roll
along its wall). They come to rest at the duct wall when the non-hydrodynamic
forces between particles and wall (molecular forces as well as mechanical forces
due to small geometrical imperfections and surface roughness) cancel the gravity
force. During their settling the particles induce a flow in the direction of the
falling particles which deflects the cupula in the direction of the head maneuver
(leading to vertigo).

Figure 9.5 shows the deflection of the cupula for different numbers of particles.
The curves for the cupula deflection have been averaged over several realizations
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Figure 9.3. Calibration tests: (a) Cupula velocity for ten real-
izations (red curve: average value) of a calibration test initiated
with the standard head maneuver Eq. (57). (b) Cupula time con-
stants evaluated from the ten realizations. (c) Exponential decay
of the cupula velocity (Tc = 1.8s) plotted on a logarithmic scale
for maneuvers with TM = 1.5s, 3s and 6s.
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Figure 9.4. Overshoot at t = 0s for different maneuvers which
complete the rotation by 120◦ in TM seconds in a model SCC
without particles with (a) Tc ≈ 0.75s and (b) Tc ≈ 1.8s. The
dotted line indicates the theoretical predictions according to
Eq. (53).

of the experiment. In particular, the experiments with large numbers of particles
exhibit larger variations in yc(t) between different realizations (up to 20%). This
is most likely related to irregular interactions between the falling particles. The
effect of the particle interaction is emphasized by figure 9.3(b) which shows results
where the particles were magnetized before the experiment such that they form



82 9. IN VITRO MODEL OF AN SCC WITH CANALITHIASIS

larger clusters while falling through the SCC. Apparently, this clustering leads to
a stronger cupula deflection (see also Chapter 11 for a further discussion of this
phenomenon).

In the sense of a ‘null experiment’, we have tested configurations in which all
particles are located inside the utricle. This corresponds to a BPPV patient who
has been treated with a specific head maneuver in order to move the canaliths
out of the slender duct into the utricle. As expected, these experiments do not
exhibit any pathological deflection of the cupula.

4. Discussion of the results

The experimental results presented in section 3 compare well with established
results on the behavior of healthy SCC (Damiano & Rabbitt, 1996; Van Buskirk
et al., 1976; Obrist, 2008) and of SCC with canalithiasis (e.g. Aw et al., 2005).

The experiments from sections 3.1 and 3.2 validate the experimental set-
up. The results presented in figure 9.3 show that the cupula relaxation in our
model SCC without particles adheres to an exponential decay. This phenomenon
is directly related to the post-rotatory overshoots compared in figure 9.4. In
accordance with our results, this data shows also a tendency toward smaller
overshoots for larger cupula time constants.

The theoretical and experimental results in figure 9.4 show both the same
general trends but differ quantitatively. Assuming that the membrane in the
SCC model deflects like a circular clamped plate, the volumetric displacement
V is proportional to the displacement yc (because the displacements are small
with respect to the membrane diameter). If, however, the deflected cupula is
slightly corrugated and/or the vibrometer laser beam is not exactly centered,
we can easily imagine that the proportionality factor between V and yc changes
substantially.

The canalithiasis experiments in § 3.3 confirm the fundamental mechanism of
BPPV as described by various authors (House & Honrubia, 2003; Rajguru et al.,
2004; Obrist & Hegemann, 2008). We can see that the onset-latency, i.e. the time
from the end of the maneuver to the onset of the positional nystagmus, is directly
related to the cupular overshoot. In configurations with many particles, the flow
induced by the settling particles can be so strong that there is no overshoot and,
thus, no onset-latency. Such cases have also been found in clinical tests by Aw
et al. (2005). Moreover, the landmarks of the cupula displacements in figure 9.5
(such as the onset-latency, the time to the peak deflection, etc. ) show a remark-
able agreement with clinical data by Aw et al. (2005) (especially for posterior
SCC) if we factor in that our model reacts faster due to the short cupula time
constant. The quantitative differences to the numerical results in Chapter 8 can
be mainly attributed to the idealized particle description of the analytic model.
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Figure 9.5. Cupula displacement yc for canalithiasis experi-
ments with different numbers np of particles and different cupula
time constants: (a) Tc ≈ 1.8s and (b) Tc ≈ 1.2s. The curves are
averages of multiple realizations of the experiments. The par-
ticles in (b) are slightly magnetized such that they form larger
clusters of particles.
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We will see in the following chapter (e.g. figure 10.2) that the multi-particle dy-
namics is more complex than the model used in Chapter 8. Furthermore, the
reduced particle and cupula time constants lead to a faster “response” of our
model, i.e. the beginning of the pathological cupula deflection and the time of
the peak deflection occur earlier than in a real SCC. Nevertheless, the experimen-
tal results confirm that the pathological deflection of the cupula increases with
the number of particles.

The present experimental set-up can also be used to study various phenomena
such as the effect of polydisperse and/or non-spherical particles on the cupula
deflection. It is expected that the nonlinear particle interaction leads to large
variations in the cupula deflection patterns.



CHAPTER 10

Particle trajectories in SCC

We have seen in the previous chapters that the dynamics of the canaliths
(particles within the SCC) is dominating the symptoms of top-shelf vertigo.

Depending on the initial position, number and size of the canaliths their tra-
jectories within the slender duct of the SCC can differ substantially. Figure 10.1
shows different realizations of the in vitro experiment discussed in Chapter 9 for
single particle trajectories whereas figure 10.2 gives an impression of the complex
particle dynamics in a configuration with multiple particles.

We see that the canaliths can either remain at the outer wall of the SCC
during the whole maneuver, detach from this wall for a short period, or even
temporarily touch the inner wall of the SCC. These particle trajectories have a
direct impact on the cupula displacement (Obrist et al., 2008). This phenomenon
will be studied in the following section.

1. Two-dimensional particle model

In our analytical model of canalithiasis (Chapter 8), we have only used the
one-dimensional particle model first proposed by House & Honrubia (2003). It is
not clear a priori whether this is indeed an appropriate model, whether we might
be missing some fundamental effects or, even worse, whether this model yields
misleading results. Therefore, we compare our results to results obtained with
the two-dimensional particle model by Squires et al..

To this end, we add an equation for the radial particle motion to the govern-
ing equations (67). The drag forces in both particle equations are adjusted to
reflect the influence of the pipe walls (Bungay & Brenner, 1973; Happel & Bren-
ner, 1973; Squires et al., 2004). We modify the pressure drop due to the moving
particles according to Squires et al.. Details can be found in the appendix of
Squires et al. (2004) and references therein. To be consistent with Squires et al.,
we also introduce a lubrication gap of 1µm. In addition, we include a centrifugal
force, mpRα̇2, to reflect the influence of the rotating reference frame. The re-
sulting equations for the two-dimensional model are solved within the simulation
framework described in Chapter 8.
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(a) (b) (c)

Figure 10.1. Particle trajectories for head movements with
np = 1 (red circle indicates the starting position). (a) The par-
ticle slides along the outer wall (never detaches from the wall),
(b) the particle falls through the SCC until it hits the outer wall,
(c) the particle detaches from the outer wall, hits the inner SCC
wall, detaches a second time, falls onto the outer SCC wall and
slides toward the lowest point of the SCC (Tc ≈ 1.8s). Reprinted
from Obrist et al. (2010).

Figure 10.3 shows the particle trajectories obtained with the two-dimensional
model during and after the head maneuver for different particle sizes. During
most of the head maneuver the particles remain in contact (apart from the lubri-
cation gap) with the outer wall. Smaller particles remain at the wall even beyond
90◦ due to the centrifugal forces. Only when the head maneuver comes to an end
the particles start falling down in a more or less straight line until they hit either
the inner or the outer wall of the SCC. The very small particles touch the inner
wall first and detach a second time before they hit the outer wall. The situation
is different for large particles. During the head maneuver they slide down along
the wall so much that they never detach. The one-dimensional model neglects
these effects.

Figure 10.4 compares the axial particle velocities for the three cases from
figure 10.3. The rapid changes in the axial velocities in the two-dimensional model
correspond to the instants when the particles either hit or detach from the wall. In
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Figure 10.2. Particle trajectories for head movements with
np = 35 (the azimuthal angle αp of the particle positions as
a function of time) in a model SCC with (Tc ≈ 1.3s.). The
particles follow different trajectories (some falling through the
slender duct, some sliding first along the inner wall). Further-
more, some particles form clusters or fall at different velocities
(indicated by the different slopes of the individual curves). The
red line shows the predicted particle trajectory according to the
analytical model by Obrist & Hegemann (2008). Reprinted from
Obrist et al. (2010).

general, the axial particle velocity is smaller with the two-dimensional model. But
although the two-dimensional model reveals more detail in the particle dynamics,
the two models describe the same principal behaviour and give similar results.

2. Effect of particle trajectories on cupula displacement

Finally, we compare the cupula displacements, the key indicator for the per-
ceived angular velocity (figure 10.5). Again, the results differ somewhat quantita-
tively for the two particle models, but the basic character of the results remains
the same as for the one-dimensional particle model: a trend toward shorter onset-
latency and stronger nystagmus for larger particles, no latency for very large par-
ticles, etc. . Apparently, we are not missing any basic feature of the positional
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(a) (b) (c)

Figure 10.3. Particle trajectories for np = 5 and (a) ap = 5µm,
(b) 15µm, (c) 25µm (• indicates the location of the particles
at the end of the head maneuver). Reprinted from Obrist &
Hegemann (2008).

nystagmus if we use the one-dimensional model. We conclude that the two differ-
ent particle models yield (in the spirit of a first approximation) equivalent results.
The following observations can help explain this somewhat surprising fact:

(i) The smaller particles spend a certain amount of time close to the cen-
terline of the canal. During this time (coincidental with the build-up
of the positional nystagmus) the pressure drop in the two-dimensional
model is larger than in the one-dimensional model. While the particles
are closer to the wall the situation is reversed. On average, the two
effects tend to cancel.

(ii) Because of their size (relative to the canal) the large particles induce
a pressure drop which is large enough to cause a positional nystagmus
even while they are only sliding along the wall. This is consistent with
the experiment of Rajguru & Rabbitt (2007). It has to be noted, how-
ever, that our results are very sensitive to the choice of the lubrication
gap. This point requires further investigation.

(iii) Mathematically speaking the cupula has the role of a temporal integra-
tor which tends to smooth differences in the particle dynamics.

The two-dimensional particle model adds an additional level of detail to the re-
sults which is valuable for the study of the more intricate features of canalithiasis
(e.g. fatigue of top-shelf vertigo, Chapter 11). Nevertheless, the one-dimensional
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Figure 10.4. Axial particle velocity ẋp(t) for np = 5 and (a)
ap = 5µm, (b) 15µm, (c) 25µm (—— one-dimensional particle
model; – – – two-dimensional particle model; note the different
ranges for (a) ). Reprinted from Obrist & Hegemann (2008).

model appears to be sufficient for the study of the principal features of canali-
thiasis.
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Figure 10.5. Cupula displacement V (t) for np = 5 and (a)
ap = 5µm, (b) 15µm, (c) 25µm (—— one-dimensional particle
model; – – – two-dimensional particle model). Reprinted from
Obrist & Hegemann (2008).



CHAPTER 11

Fatigue of top-shelf vertigo

It has been observed in clinical testing that the top-shelf vertigo symptoms
become weaker when the symptomatic maneuver is repeated. This fatigue of
BPPV may be related to the clustering of canaliths, i.e. it is hypothesized (e.g.
Welling et al., 1997) that the canaliths are initially clustered (cf. figure 7.1a). Dur-
ing repeated maneuvers these clusters may fall apart leading to weaker induced
flow fields and smaller cupula displacements. This hypothesis is not supported
by state-of-the-art theoretical models (Rajguru et al., 2004; Squires et al., 2004;
Obrist & Hegemann, 2008) which predict a weakened cupula displacement for
clustered canaliths (cf. figure 8.6). In the following we will test this hypothesis
on our in vitro model of an SCC (Chapter 9).

1. Experiments with clustered particles

We perform experiments with different numbers of canaliths. The measured
cupula displacements are averaged over ten instances of the same experiment.
The whole series of experiments is repeated with magnetized particles. This mag-
netization of the steel spheres leads to larger lumps of particles which simulates
canalith clustering.

The resulting cupula displacements for the different experiments were already
displayed in figure 9.5. Figure 11.1 summarizes these results and shows the maxi-
mum cupula displacements for separated and clustered canaliths as a function of
the number of canaliths. The different nature of the trajectories for the clustered
and separated particles is illustrated in figure 11.2 1.

2. Potential causes for fatigue

These experimental results suggest that canalith clustering leads to a cupula
displacement which is approximately four times larger than for SCC with sepa-
rated canaliths. However, the cupula time constant in the clustered experiments
is smaller (Tc = 1.2s) than the time constant for the separated experiments
(Tc = 1.8s). Therefore, the presented results have to be taken with caution.

1pictures by Dominique Kronenberg, Master thesis FS 2009, Institute of Fluid Dynamics,

ETH Zurich.
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Figure 11.1. Maximum cupula displacements during the posi-
tional nystagmus for separated and clustered canaliths.

Figure 11.2. Snapshots of the particle positions in experiments
with np = 35 particles (red: magnetized; green: non-magnetized)
using the head maneuver defined in Eq. (57) running from t =
−3 s to 0 s.

More recent studies2 with matched cupula stiffness indicate that the effect of
clustering is weaker than figure 11.1 suggests.

There are also strong indications that the initial position of the particles
plays a role in the fatigue of BPPV. Figure 10.1, for instance, shows that even

2Aurelio Schmid, Master thesis FS 2011, Institute of Fluid Dynamics, ETH Zurich
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slight perturbations of the initial position of the particles can lead to significantly
different particle trajectories and thereby to stronger or weaker cupula deflections
(Chapter 10). Furthermore, wall friction and/or geometrical imperfections can
cause the particles to stop before they reach the lowest position in the canal.
Therefore, the initial position of the particles for following maneuvers (in the
opposite direction) corresponds to the case shown in figure 10.1(a) which leads
to a weaker cupula deflection than in figure 10.1(b).

We conclude that both mechanisms—canalith clustering as well as the initial
canalith position—can lead to a fatigue of BPPV symptoms. It is not unlikely
that a combination of both mechanisms are involved in the clinically observed
phenomenon of BPPV fatigue.





Part 2

The Cochlea





CHAPTER 12

Introduction to cochlear mechanics

Next to the semicircular canals and the otolith organs we find the cochlea
which hosts the hearing sensorium. Although all systems share the same fluid
spaces and exhibit some anatomical similarities, we will find that cochlear me-
chanics differs dramatically from the mechanics of the vestibular system.

The vibrations of the oval window lead to a pulsatile flow in the cochlea
(figure 1.5). The generated flow field interacts with the compliant membranes
inside the cochlea leading to traveling waves in the fluid and on the basilar mem-
brane (BM) along the axis of the cochlea. The graded mechanical stiffness of the
BM (stiffer at the base of the cochlea and more supple toward the apex) leads
to localized peaks in the amplitudes of these traveling waves due to resonance
phenomena. This basic mechanism of signal transport in the cochlea has already
been discovered by Békésy almost a century ago (von Békésy, 1960). In principle,
it is equivalent to the wave propagation mechanism in a fluid filled pipe with
compliant walls.

The locations of the peaks of the traveling waves (’characteristic places’)
depend on the frequency of the acoustic signal. This resonance phenomenon
relates each frequency of the acoustic signal to a specific axial location along the
cochlea. This frequency mapping is known as the ’place principle’.

The displacement of the BM due to the traveling waves stimulates the organ
of Corti (OC). The three rows of outer hair cells (OHC) in the OC (figure 1.7)
are ’motors’ which can amplify the BM displacements. This so-called ’active
process’ sharpens the tuning of the cochlea which is necessary because the passive
resonance of the traveling wave yields an insufficiently distinct signal. The inner
hair cells (IHC) are a fourth row of hair cells. They have no active motor function
but are stimulated by the amplified oscillations of the BM and the other structures
in the OC. The IHC excitation finally leads to afferent nerve signals and thereby
to the perception of sound. (The acronyms are summarized in table 1.1.)

The exact role of the active processes and, in particular, their effect on the
cochlear mechanics is not yet understood in its full complexity (Nobili et al.,
1998). It is clear, however, that the active processes are more than a simple
second stage of filters after the traveling wave phenomenon. The active processes
within the OC interact closely with the surrounding structures and fluids, i.e.

97



98 12. INTRODUCTION TO COCHLEAR MECHANICS

besides the traveling waves triggering the active processes within the OC, the
micromechanics in the OC has an influence on the traveling waves as well.

Next to the nonlinear active processes in the OHC, the phenomenon of acous-
tic streaming (Lighthill, 1992) is suspected to be of relevance to cochlear mechan-
ics. It describes a weakly nonlinear process which generates a steady streaming
through the interaction of weak linear waves. Acoustic streaming in the cochlea
will be discussed in Chapter 16.

Apart from the active OHC and acoustic streaming, there exists a third
mechanism which is often perceived as nonlinear although it is linear by nature.
This mechanism can lead to transient phenomena beyond the classical concept of
resonance. It is related to the grading of the mechanical properties along the axis
of the cochlea which results in non-normal differential operators for the cochlear
dynamics, This phenomenon will be touched in Chapter 13.

The crux in cochlear mechanics is the large range of scales and physical
phenomena which operate simultaneously and interactively. The tight interaction
between the different components of the cochlea is illustrated schematically in
figure 12.1. It should become clear from this figure that fluids in the cochlea (in
blue) play the role of a mediator between the different scales and components of
the cochlea. Hydrodynamic phenomena are able to transmit information between
large distances and/or to translate it between different physical sub-systems. The
nature of these transmissions is different at different places in the cochlea: ranging
from a wave guide mediating between the oval window and the basilar membrane,
all the way to (suspected) acoustic streaming phenomena in the microscale space
within the OC.

It is clear that the mechanisms governing our hearing organ can only be
understood if we study it as a complete system reflecting this tight interaction
between the different scales, rather than just studying the different functional
units separately.

1. Open questions in cochlear mechanics

Although the basic principles of cochlear mechanics are understood, there
are many phenomena and mechanisms which remain unknown or only poorly
understood. In the following, we list some pertinent open questions which are
strongly related to the hydrodynamics within the cochlea.

(i) How are the IHC stimulated within the OC?
The intricate dynamics within the OC are suspected to be much more
complex than it might appear at first glance. The exact mechanism of
excitation of the IHC, for instance, is not known. Next to the anatom-
ical uncertainty whether the IHCs are connected to the TM (e.g. Lim,
1980), it is also unclear whether the flow in the subtectorial space
(fluid filled space beneath the TM) is purely oscillatory or whether this
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Figure 12.1. Schematic of the interaction between different
components and processes in the cochlea (fluid flows in blue;
structures in amber; other processes in green).

flow has a non-zero average (due to acoustic streaming as suspected
by Lighthill, 1992) which would tilt the IHC stereocilia (hair bundles
at the end of the hair cells) predominantly in one direction during the
stimulation.

(ii) How is the acoustic signal transmitted along the axis of the
cochlea?
The classical theory of traveling waves remains quite popular in coch-
lear modeling. It is an inviscid one-dimensional long-wave theory. Its
weaknesses have been known for a long time and some improvements
have been proposed (e.g. the two-dimensional inviscid theory by Lesser
& Berkley (1972). Nevertheless, the traveling-wave theory remains
sketchy especially because the viscosity is still neglected. The travel-
ing wave models have to be questioned even more since the discovery
of the active processes in the cochlea, because the OHC motility leads
to sharp axial gradients in the BM displacement which will render the
flow fields much more complex than assumed so far. Moreover, there
exist so-called ‘reverse traveling waves’ which are responsible for a phe-
nomenon known as otoacoustic emissions (OAE; He et al., 2008). In
the context of signal transmission in the cochlea, De Boer & Nuttall
(2009) speak also of ’hidden waves’ which indicates that there exist
other signaling mechanisms beyond the (forward) traveling waves in
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the perilymphatic spaces. Some of these alternative signaling mecha-
nisms can be explained by anatomical details (e.g. OHC tilting; Lim
& Steele, 2002), others might simply be ’hidden’ in the fluid-structure
interaction of the cochlea.

(iii) How are vibrations at the oval window (or alternative actua-
tors) transduced into a perilymphatic flow?
At the oval window, it is not clear how displacements of the membrane
translate into a flow of the perilymph and subsequently into a BM
stimulation, e.g. for cochlear stimulation due to a rocking motion of
the stapes (Sim et al., 2010). Recent studies by Pozrikidis (2007) and
the author’s group (Edom et al., 2010a) used detailed flow simulations
to study this issue at least in a local context. A conclusive discussion,
however, would require a global model of the complete cochlea. The
interest in the transduction of oval window displacement into traveling
waves has become more prominent recently with the advent of new
generations of hearing aids which stimulate the cochlea mechanically
with a small piston at the oval window (DACS devices; Mojallal et al.,
2007) or with micro-actuators directly immersed into the perilymph.
Most current models of cochlear fluid dynamics are far from being able
to answer these questions.

(iv) What is the effect of a local flow inside the OC on global coch-
lear mechanics?
Lim & Li (2007) pointed out the complexity of the viscous flow inside
the OC. Most global cochlear models available today are of insufficient
detail for studying the subtle interactions between the flow within the
OC and the large-scale dynamics of the surrounding lymph. The oscil-
latory flow in the tunnel of Corti in the vicinity of the characteristic
place observed by Karavitaki & Mountain (2007), for instance, is a
good example demonstrating this need for a detailed global cochlear
model. This oscillatory flow might be a result of the OHC motility and
will alter the local mechanical properties of the BM. Obviously, this
would have a direct impact on the global traveling waves which again
will influence the BM stimulation at the characteristic place. Such
subtle interactions between local and global mechanisms can only be
understood with the help of a global cochlear model which includes a
wide range of scales and phenomena.

In order to be able to answer these open questions, several challenges in
cochlear modeling have to be overcome. One of the principal problems is the lack
of a good access to a living cochlea. In vivo studies are extremely difficult because
of (a) the fact that the cochlea is a hidden cavity carved in solid bone (temporal
bone), (b) the small size of the cochlea, and (c) the even smaller scales of the
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oscillatory displacements of the sensory membranes. It is almost impossible to
measure membrane displacements or flow fields within the organ of Corti without
disturbing the dynamics in the cochlea.

2. State-of-the-art in global cochlear modeling

2.1. Passive cochlear models. Early global models described passive coch-
lear mechanics (because the OHC motility was not yet discovered) and were
mostly limited to one- or two-dimensional idealized geometries (’box model’).
Out of the many cochlear models (see Inselberg, 1978 and, more recently, De
Boer, 1996 for an overview) the so-called transmission-line model stands out as a
simple yet illustrative model. This one-dimensional inviscid linear description of
cochlear mechanics is usually attributed to Peterson & Bogert (1950) (actually,
their model also considered acoustic waves within the perilymph itself). Although
it has been shown many times that the transmission-line model fails to describe
the more subtle aspects of cochlear dynamics correctly, it remains in use to this
day because it reproduces basic phenomena quite well (e.g. the traveling waves)
and is amenable to analytical study (e.g. Xin, 2004; Obrist & Schmid, 2008).

Apart from the passive and linear description of the BM, the main deficiency
of the transmission-line model is the restriction to one-dimensional flow and long
wave lengths as well as the lack of viscosity in the fluid. Lesser & Berkley (1972)
showed that the cochlear flow is (at least) two-dimensional. They described the
flow field as a potential flow which is free of the restriction to long wave lengths.
However, their description satisfies only slip boundary conditions at the walls
and still neglects viscosity. Another two-dimensional model based on a finite-
difference discretization of the flow field was proposed a few years later by Allen
(1978). Viscous effects were included in an extension of the transmission-line
model by Leveque et al. (1988). This extended model remains (technically) one-
dimensional but includes the effect of the Stokes boundary layers which lead to
local viscous dissipation that is out of phase with the bulk flow. Beyer (1992)
presented probably the first two-dimensional transient simulation of the viscous
flow in the cochlea. The multi-compartment model by Chadwick et al. (1996)
introduces more geometrical detail by including some functional components of
the OC. Two- and three-dimensional flow in the cochlea was discussed from the
theoretical point of view in several papers by Lighthill (e.g. Lighthill, 1981b,a).
In a later paper, he put the main focus on acoustic streaming in the cochlea.
Acoustic streaming describes a mean flow generated by nonlinear interactions
between linear waves (Lighthill, 1978). Its possible relevance to cochlear dynamics
has been pointed out by several authors (e.g. Kern, 2003). To our best knowledge,
such nonlinear effects in the cochlea (nonlinear refers here to fluid motions and
not to the description of the BM) have not been studied further.
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Several studies suggest that the flow in the cochlea is three-dimensional (e.g.
Taber & Steele, 1979; Olson, 1998; Parthasarathi et al., 2000; White & Grosh,
2005; Cheng et al., 2008). Figure 5 in White & Grosh (2005), for instance, indi-
cates that there are transversal variations in the BM deflection which is inherently
tied to three-dimensional flow structures. Most models of the cochlea neglect the
coiling of the cochlea because it is commonly believed that the coiling of the
cochlea does not have a significant effect on cochlear mechanics. Only recently, a
study by Manoussaki & Chadwick (2000) (and also by Cai et al., 2005; Manous-
saki et al., 2006, 2008) indicated that the coiling may lead to an amplification of
low-frequency signals.

Although there exist by now several simulations of the full three-dimensional
flow field (van Hengel, 1996; van Hengel et al., 1996; Böhnke & Arnold, 1999;
Parthasarathi et al., 2000; Givelberg & Bunn, 2003; Cheng et al., 2008), most
studies either fail to describe the full physics of the fluid flow and/or they include
just a passive BM. Böhnke & Arnold (1999), for instance, presented a finite-
element model of the cochlea which describes an inviscid and compressible fluid
flow and a passive description of the cochlear partition. Böhnke extended this
model in a later work to study the perception of bone-conducted sound (Böhnke
& Arnold, 2006) and the effect of a cochlear implant electrode on the cochlear
mechanics (Kiefer et al., 2006). Parthasarathi et al. (2000) neglected viscous
effects in their three-dimensional simulation. Pozrikidis (2008) used boundary-
integral methods to describe the interaction between the viscous perilymph and a
passive BM in two dimensions. The recent model by Cheng et al. (2008) describes
the interaction between a viscous fluid flow and a passive basilar membrane with
a finite-element approach in a simplified three-dimensional geometry. The same
geometry was used earlier in a laboratory experiment by White & Grosh (2005).

In addition to theoretical and numerical cochlear models, some physical mod-
els of the cochlea were developed. The life-sized models by Zhou et al. (1993),
White & Grosh (2005) and Wittbrodt et al. (2006) allow detailed experimental
studies of BM dynamics and can be used for the validation of theoretical and
numerical results (at least for passive models).

2.2. Active cochlear models. The introduction of nonlinear active mod-
els for the BM had a major impact on cochlear modeling (see Manley et al., 2008,
for a recent and comprehensive discussion of active processes in the cochlea). Pas-
sive models typically describe the BM as a set of linear damped oscillators with
varying mechanical properties along the cochlear axis. Active models account for
the observation that a dead cochlea exhibits a response to acoustic stimulation
which is different from in vivo experiments. The dynamics of a ‘living’ cochlea
is found to be highly nonlinear and non-local (e.g. Robles & Ruggero, 2001). It
is commonly believed that these phenomena are directly related to the electro-
motility of the outer hair cells. This electromotility leads to an expansion and
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contraction of the OHC under the influence of an oscillating electric field (similar
to the piezo effect). Electromotility together with the so-called hair cell gating
(Steele, 1992) leads to a nonlinear amplification of the fluid pressure signal. Nowa-
days, it is widely accepted that these active nonlinear processes are responsible
for the sharp tuning of the cochlea observed in in vivo experiments.

Prominent nonlinear active models for the cochlea are due to Steele and co-
workers (e.g. Steele et al., 2009; Lim & Steele, 2002). They formulate their models
in a global context together with detailed local micromechanical models. To be
able to work with these global models, i.e. to render these models computationally
treatable, the original model is boiled down to a pseudo-local problem by a WKBJ
method (Bender & Orszag, 1978). This asymptotic method is used to reduce
the complexity of a model while retaining the most relevant global effects. Their
multi-scale model of the organ of Corti (Steele et al., 2009) embeds a detailed local
description of the Corti organ into a global context by the WKBJ approximation.
While this is arguably one of the most sophisticated models of global cochlear
dynamics, it remains limited by the asymptotic approximation to the global signal
transmission mechanisms.

There is yet another class of global cochlear models which have no ambition
to describe every functional unit of the cochlea on the basis of first principles
of the underlying physics. Rather, they seek to provide a compact and efficient
model which reproduces the transduction of acoustic waves to nerve signals as
accurately as possible. The model of Kern (2003) describes the central nonlinear
mechanism by a Hopf-type amplifier. While Lim & Steele (2002) approximate the
flow field by a vector-potential for the fluid displacement, Kern (2003) bases his
description of the flow field on an analogy with surface water waves. The model of
Kern (2003) has also been realized as an analog circuit (Martignoli et al., 2007).

It has been shown that the models based on the work by Lim & Steele (2002)
and Kern (2003) are able to reproduce several nonlinear phenomena commonly
observed in clinical experiments such as: response compression, harmonic dis-
tortion, two-tone suppression, and distortion products (see, e.g. Lim & Steele,
2003; Kern & Stoop, 2003; Stoop & Kern, 2004; Stoop et al., 2005; Yoon et al.,
2007; Stoop et al., 2007; Kern et al., 2008). Nevertheless, neither model is able
to describe in detail the flow processes at work in cochlea.

This brief review of earlier work on global cochlear modeling should give a
good overview on the current state-of-the-art. It points out the inherent problem
in global cochlear modeling: no global model is able to describe all physical
phenomena in the cochlea at an equal level of detail. In order to get a utilizable
global model, concessions are made on the morphology, the active processes, the
micromechanics in the OC, the fluid flow, or sometimes even on the numerical
fidelity.





CHAPTER 13

One-dimensional passive cochlea model and

pseudo-resonance

Since the work of von Békésy (1960) it is well accepted that an acoustic
stimulation of the cochlea at the oval window leads to traveling waves on the
basilar membrane (BM). These waves form a standing wave packet whose loca-
tion depends on the frequency of the stimulation. Such wave packets do not
quite satisfy homogeneous boundary conditions. The BM deflection at the oval
window is non-zero due to the acoustic stimulation. As first suggested by Tre-
fethen & Embree (2005) this relates cochlear dynamics directly to the concept
of wave packet pseudomodes which are nearly exact eigenfunctions that violate
the homogeneous boundary conditions only by an asymptotically small param-
eter ǫ. The theory of wave packet pseudomodes has been used successfully to
study the hydrodynamic stability of various shear flows (Obrist & Schmid, 2011,
2010; Mao & Sherwin, 2011). In the following, we will derive approximations to
wave packet pseudomodes in the cochlea on the basis of a linear one-dimensional
model (Peterson & Bogert, 1950) and we will discuss these results with respect
to resonance phenomena in the cochlea.

oval window

round window basilar membrane (BM)

L

p0(t)
u, p η

x

scala vestibuli

scala tympani

Figure 13.1. Schematic view of the uncoiled cochlea.

1. The transmission-line model

Arguably the simplest model which is able to reproduce the principal mecha-
nisms of cochlear mechanics is known as the transmission-line model. It is due to

105
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Peterson & Bogert (1950) who went through a careful analysis of cochlear fluid
mechanics. Along this way, they were able to eliminate a large number of from
the governing equations (e.g. acoustic waves in the perilymph) such that they
finally arrived at a quite simple set of equations.

Although the transmission-line model is known to be flawed, it is still widely
in use—primarily because of its simplicity. It is instructive to walk through the
derivation of this model. As we will see in the following, the transmission-line
model is closely related to the pulse propagation in a compliant fluid filled tube
as it can be found in the arterial system.

For the transmission-line model, we assume one-dimensional inviscid flow in
the scala vestibuli (the flow field in the scala tympani is assumed to be anti-sym-
metric). The axial velocity u, the pressure p and the deflection η of the BM are
functions of the axial coordinate x (figure 13.1). The governing equations consist
of two fluid equations for momentum and mass conservation, and an equation for
the forced oscillation of the BM,

ρu̇ = −p′, (93a)

u′ = dη̇, (93b)

mη̈ + rη̇ + kη = −2p. (93c)

The function d(x) is the ratio of the width of the BM to the cross-section A(x)
of the scala vestibuli, ρ is the fluid density, and m(x), r(x), and k(x) determine
the mechanical properties of the BM along the cochlea. The superscripts ˙ and ′

stand for the partial derivatives with respect to t and x, respectively.
The equation for mass conservation, Eq. (93b), relates the gradient of the

flow velocity to the velocity of the BM which increases or decreases the lumen
of the scala vestibuli. This equation is the result of a simple mass balance in
an infinitesimally short axial section of the scala vestibuli. It includes implicitly
the assumption of long waves on the BM. This long-wave assumptions is one
of the major weaknesses of the transmission-line model. If this assumption was
dropped, the mass balance equation would obtain additional nonlinear terms. For
a discussion of such a wave propagation model (in the context of arterial pulse
waves) see Pedley (1980).

Note that the forcing with −2p of the BM in Eq. (93c) is due to the pressure
difference across the BM. If the pressure in the scala vestibuli is p then the
pressure in the scala tympani is −p (due to symmetry) such that the pressure
difference is −2p.

For a harmonic stimulation at the oval window the equations can be trans-
formed to the frequency domain and two of the three dependent variables can be
eliminated to obtain an ordinary differential equation in x for the third dependent
variable. We arrive at this equation by transforming the dependent variables to
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the frequency domain,

(u(x, t), p(x, t), η(x, t)) = (û(x), p̂(x), η̂(x))e−iωt (94)

where ω ∈ R is the stimulation frequency. The governing equations then read

ρiωû = −p̂′, (95a)

û′ = −diωη̂, (95b)

(−ω2m− iωr + k)
︸ ︷︷ ︸

=Z(ω)

η̂ = −2p̂. (95c)

such that η̂ can be replaced by −2p̂/Z,

ρiωû = −p̂′, (96a)

û′ = 2diωp̂/Z. (96b)

Finally, we can eliminate û by taking the derivative of Eq. (96a), such that we
obtain

p̂′′ − 2dρω2

Z(ω, x)
p̂ = 0. (97)

This equation defines a pressure wave with a varying phase speed. It becomes
singular wherever the dispersion relation of the BM, Z(ω, x), has a root. The
effective wave speed at these roots tends to zero and the amplitude of the response
has a local maximum. This resonance phenomenon relates every frequency ω to
a characteristic place x(ω) which defines the so-called ‘tonotopic map’ of the
cochlea.

Because of the (weak) damping r of the BM, all roots ω of Z(ω, x ∈ R) are
complex. Therefore, the steady-state solutions for harmonic stimulations exhibit
a finite amplitude at the characteristic place. Increased damping further mollifies
the solutions and reduces the sharpness of the tuning.

A mathematically rigorous discussion of the traveling wave phenomena in the
cochlea can be found in Lighthill (1981b).

2. Traveling wave solutions

Typical traveling wave solutions of (93) are shown in figure 13.2. The BM
amplitude increases slowly as we move from the oval window toward the apex.
The amplitude peaks at a frequency-dependent location and then decays rapidly
to zero for the remainder of the cochlea. Although the results look like the BM
acts as a continuous mechanical structure, we have to keep in mind that the third
equation (93c) has to be understood as a zero-dimensional equation for a set of
independent mechanical oscillators which are forced by the local fluid pressure.
The fluid pressure, of course, is a global variable governing the dynamics of the
fluid in the whole cochlea. Therefore, the continuous structure of the BM is not
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Figure 13.2. Typical solutions of the transmission line model
for (a) low , (b) medium and (c) high frequency stimulation. The
x-axis ranges from 0 (oval window) to 1 (apex). The solid line
shows the BM deflection at a specific time and the dashed line is
the BM amplitude. The vertical broken lines indicate the value
of x∗ for the corresponding frequency.

the result of a mechanical coupling within the BM. It is due to the tight interplay
between the dynamics of the perilymph and the BM.

The transmission line model features many characteristics of the real cochlea.
However, some of the basic assumptions underlying this model are clearly violated
in a real cochlea. Foremost, it is the assumption of a (nearly) one-dimensional
flow field which bears problems. One-dimensional flow is a reasonable idealization
for long wave lengths on the BM. For high wave numbers (as we see them, for
instance, in figure 13.2) the continuity equation shows us that flow velocities
perpendicular to the BM cannot be neglected. Furthermore, the transmission
line model fails to match the sharp tuning of the real cochlea (as observed in
clinical experiments).

3. Wave packet pseudomodes of the cochlea

For a further study1 of the solutions of the transmission line model, we make
the independent variables t and x and the parameters m, r, k, and d dimension-
less:

x = Lx̃, t = ω−1
0 t̃, m = m0m̃, r = r0r̃, k = k0k̃, d = d0d̃. (98)

The base frequency ω0 is defined as
√

k0/m0. We eliminate w and p from (93)

and write the resulting equation in phase space with η = (η, η̇)T ,

Lη̇ = Rη + f(x, t) (99a)

L =

(
1 0

0 d− ǫ2(m′′ + 2m′ ∂
∂x +m ∂2

∂x2 )

)

(99b)

R =

(
0 1

ǫ2(k′′ + 2k′ ∂
∂x + k ∂2

∂x2 ) ǫ2ν(r′′ + 2r′ ∂
∂x + r ∂2

∂x2 )

)

(99c)

1This section is based on the conference paper by Obrist & Schmid (2008).
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where we dropped all ˜ for the ease of writing and ˙ and ′ are now derivatives with
respect to the dimensionless variables. This equation contains two dimensionless
coefficients (damping coefficient ν, slenderness coefficient ǫ)

ν =
ω0r0
k0

, ǫ2 =
m0

2ρd0L2
∼ A

L2
≪ 1. (100)

We assume zero pressure boundary conditions at both ends of the cochlea.
The acoustic stimulation at the oval window enters the governing equation (99)
as a forcing term f(x, t) = (0, 2δ′′(x)p0(t))

T where δ(x) is Dirac’s delta function.
The steady-state response of the BM due to a harmonic stimulation f(x, t) =

f0(x)e
−iωt is given by

η = −[R+ iωL]−1f0e
−iωt. (101)

As we have seen in figure 13.2, such resonance solutions of (99) have the shape of
wave packets. They correspond to wave packet pseudomodes which are asymptot-
ically good approximations to eigenfunctions (Trefethen & Embree, 2005). We
characterize a wave packet pseudomode centered at x = x∗ by its local wave
number α∗/ǫ and its (pseudo-)eigenvalue λ.

In the theory of wave packet pseudomodes the parameters x∗ and α∗ are
related to λ by the operator symbol. (The symbol of an operator corresponds to
the eikonal equation of its WKBJ expansion.) The implicit form of the symbol
of (99) is

−iλLη̂ = Rη̂ (102a)

L =

(
1 0
0 d− ǫ2m′′ − 2ǫiα∗m

′ + α∗
2m

)

(102b)

R =

(
0 1

ǫ2k′′ + 2ǫiα∗k
′ − α∗

2k ν(ǫ2r′′ + 2ǫiα∗r
′ − α∗

2r)

)

(102c)

with η̂ = (η̂, λη̂)T . The functions d, m, k, r, and their derivatives are evaluated
at x∗. However, a wave packet pseudomode exists only if the twist condition is
satisfied (Trefethen & Embree, 2005). The generalized twist condition for symbols
in matrix form is

Im

{
∂ det(F)

∂x∗

/
∂ det(F)

∂α∗

}

< 0 (103)

where F = R + iλL. Figure 13.3 shows the symbol curves λ = λ(x∗, α∗ =
−∞ . . .∞) for which (102) and (103) are satisfied.

We obtain asymptotically good approximations for the location (and the local
wave number) of the wave packet in the steady-state solution, if we choose x∗ and
α∗ such that λ(x∗, α∗) = ω ∈ R (i.e. where the symbol curve cuts the real axis).
The vertical broken lines in figure 13.2 indicate the value of x∗ which correspond
to the respective frequency. Apparently, x∗ (and also α∗) predicts the location
and local wave number of the wave packet reasonably well.
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Figure 13.3. Symbol curves λ(x∗, α∗) for x∗ = 0, 0.1, . . . , 1 and
α∗ ∈ R. The dashed lines indicate the sections of the symbol
curves for which the twist condition is not satisfied.

The theory of wave packet pseudomodes provides elegant analytical tools for
predicting resonance phenomena in the cochlea. The symbol curves in figure 13.3
give immediate insight into the dynamics of the cochlea. They hold more in-
formation than the eigenvalues of (99). Apart from the results shown here, the
theory of wave packet pseudomodes can help us to learn more about the transient
dynamics of the cochlea. It has been observed, for instance, that cochlear pseu-
domodes located on the upper half-plane of figure 13.3 exhibit transient growth
(with respect to a metric based on potential and kinetic energy of the BM). Fur-
thermore, Obrist & Schmid (2010) have shown how the symbol curves can be
used to predict the group velocity of localized disturbances.



CHAPTER 14

Two-dimensional inviscid passive cochlea model

In this chapter, we present a re-formulation in the time domain of an estab-
lished two-dimensional inviscid model for a passive cochlea1 which was originally
formulated in the frequency domain by Lesser & Berkley (1972). First, this
model is an illustration for a robust numerical solution of this tightly coupled
fluid-structure problem in the time domain. And second, the model provides a
simple numerical tool for studying basic transient flow processes in the cochlea.

basilar membrane (BM)

oval window

scala vestibuli

scala tympani
η(x, t)

φ(x, y, t), p(x, y, t)ξ(t)

x

y

Figure 14.1. Two-dimensional model of the cochlea as a slen-
der box partitioned by a flexible basilar membrane.

For our purpose, we simplify the cochlea to a slender rectangular box (figure
14.1) which is split into two fluid-filled separate ducts (scalae vestibuli and tym-
pani) by an elastic partition (basilar membrane, BM). The system is stimulated
through a flexible membrane (oval window) with a velocity ξ(t).For simplicity,
we assume that the velocity profile at the oval window is rectangular. The BM
can be displaced only by a small amount η in the transversal direction. The
dynamics of the BM is described by a set of damped linear oscillators which have
no direct mechanical connection to their neighbors such that axial coupling along
the BM is only possible via the fluid motion. The fluid motion itself is described
as a potential flow with slip boundary conditions at the walls for which the BM
motion yields the normal velocity boundary conditions. Symmetry allows us to
reduce the problem to the scala vestibuli and the BM. Although this description

1This chapter is based on the proceedings article by D. Obrist, Proc. Appl. Math. Mech.

9, 2009.
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neglects several important effects such as unsteady boundary layers, it has its
merits for high frequency stimulations. The governing equations are

∇2φ = 0 (104a)

ρφ̇+ p = 0 (104b)

mη̈ + rη̇ + kη = −2p |y=0 (104c)

∂φ/∂y|y=0 = η̇ (104d)

where ρ is the fluid density and φ is the flow potential which is driven by the
pressure p in the linearized momentum equation (104b). The forced oscillation of
the BM is described by (104c) where m(x), r(x), and k(x) are the mass, damping
and stiffness parameters of the BM (values taken from Lesser & Berkley, 1972).
Finally, the compatibility condition (104d) couples the BM to the flow field.

1. Numerical modeling

To solve the governing equations, we eliminate the pressure p and recast the
equations as a system first-order differential equations in time,




γ∂/∂y(·)|y=0 0 −γ
0 1 0

−2(·)|y=0 0 m/ρ









φ̇
η̇
η̈



 =





∂/∂y(·)|y=0 0 −1
0 0 1
0 −k/ρ −r/ρ









φ
η
η̇



 (105)

which has to be integrated in times under the condition that ∇2φ = 0 remains
satisfied. The parameter γ 6= 0 has been introduced (a) to render the matrix
on the left-hand side non-singular, and (b) to allow us to set the eigenvalues
associated with the compatibility equation (104d) to γ−1, i.e. we avoid numerical
instabilities by setting γ < 0.

To discretize (105) in space, the BM displacement η and velocity η̇ are dis-
cretized on a grid of N equidistant points xj along the BM. For the flow potential
φ, we make the spectral ansatz

φ(x, y, t) = ξ(t) [x̂(1− x̂/2)− ŷ(σ − ŷ/2)] +

N−1∑

k=0

ak(t)
cosh kπ(σ − ŷ)

coshkπσ
cos kπx̂

(106)
which is a generalization of the ansatz used by Lesser & Berkley (1972) (the
coordinates x̂ and ŷ have been non-dimensionalized with the length of the cochlea
and σ ≪ 1 is the aspect ratio of the scala vestibuli). This ansatz satisfies the
Laplace equation (104a) and the boundary conditions at the oval window and
at the solid walls. The coefficients ak, the BM displacement η(xj) and velocity
η̇(xj) can now be determined by integrating the system (105) in time with a
generalized Crank-Nicolson scheme. We choose this implicit time integration
scheme over an explicit scheme to prevent any numerical instabilities related to
the fluid-structure interaction (e.g. Causin et al., 2005).
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In this modeling framework the helicotrema can be easily integrated by elim-
inating the fluid-structure interaction at the apex of the ’numerical BM’, i.e. we
set the mechanical properties of the BM at this location such that it behaves like
a passive tracer which has no influence on the fluid.

2. Transient stimulations

In figure 14.2 we show the results for an impulsively started harmonic stim-
ulation with 5kHz (zero initial conditions, N = 200). The steady-state response
(wave packet centered at x ≈ 7.5mm) is quickly established while a decaying wave
packet travels slowly toward the apex. This wave packet is a transient phenom-
enon which is eventually washed out. It is likely that this phenomenon is much
weaker in a real cochlea because of the fluid viscosity which is neglected here.
Furthermore, it is observed (not shown here) that the helicotrema (located at
35mm < x < 37mm) helps to reduce the amplitude of the transient wave packet
more quickly.

The wiggles in the wave packet at x ≈ 7.5mm in figure 14.2(c) illustrate the
phase speed of the traveling wave. We see that it is continuously reduced toward
the characteristic place. The trace of the transient wave packet traveling toward
the apex of the cochlea indicates the group velocity which tends toward zero at
the apex.

Figure 14.3 shows results for a click stimulation with an approximate du-
ration of 10−4s. The stimulation amplitude is chosen such that the maximum
displacement of the oval window is 1µm. The results show a traveling wave packet
which moves from the oval window toward the apex with decreasing group veloc-
ity. The potential energy density of the BM peaks at x ≈ 12.6mm and t ≈ 0.001s.
This peak shifts toward the apex and to later times for longer clicks.

This simulation is an impressive illustration of the transient nature of cochlear
mechanics. Cochlear models formulated in the frequency domain suggest that
a click must lead to a broadbanded stimulation of the BM (due to the broad
frequency content of clicks). Figure 14.3(c) shows that this is indeed the case.
However, this broadbanded stimulation occurs sequentially over the course of
several milliseconds (from high toward low frequencies) which certainly leads to
a different sound perception as if all hair cells were stimulated simultaneously.

The presented simulation is a robust and versatile numerical tool. It can
be used to study a variety of effects related to non-harmonic stimulations of the
cochlea (e.g. speech, music). Furthermore, we can simulate initial value problems
to study the non-modal dynamics of the cochlea (Obrist & Schmid, 2008). In the
following chapter, we will present a concept for including the active processes of
the OHC into this model.
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Figure 14.2. Impulsively started stimulation at 5 kHz: (a)
snapshot of the flow field at t = 0.005s (arrows: velocity vec-
tors, colors: pressure field); (b) snapshot of the BM displacement
at t = 0.005s; (c) x-t-diagram for the potential energy density
kη2/2 along the BM (bright colors indicate high energy).
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Figure 14.3. Click stimulation (duration 10−4 s): (a) snapshot
of the flow field at t = 0.001s (arrows: velocity vectors, colors:
pressure field); (b) snapshot of the BM displacement at t =
0.001s; (c) x-t-diagrams for the potential energy density kη2/2
along the BM (bright colors indicate high energy).





CHAPTER 15

Modeling of the active processes

In this chapter1, we will present a concept for including the active processes
in a global cochlear model. A detailed discussion of the active processes in the
cochlea from a biomedical point of view is given in the book of Manley et al.
(2008).

Similar to a passive model (e.g. Chapter 13), the passive basilar membrane
is modeled by a set of linear oscillators,

m(η)η̈ + r(η)η̇ + k(η)η = ∆p+ bζ. (107)

where η denotes the normal displacement of the basilar membrane, m(η) the
mass of the oscillators, r(η) the damping, k(η) the stiffness, and ∆p the pressure
difference across the membrane. The last term bζ describes an additional forcing
by active amplification.

The active amplification of the basilar membrane motion is modeled by non-
linear oscillators which feature a Hopf bifurcation (Kern & Stoop, 2003; Duke
& Jülicher, 2007). The dynamical behavior of such a system is governed by the
equation

ζ̇ = (µ+ iω)ζ − |ζ|2ζ + γη̇ (108)

with the complex amplitude ζ , the bifurcation parameter µ, the Hopf neutral
frequency ω and a complex multiplier γ of the forcing term which couples the
nonlinear oscillator to the velocity η̇ of the basilar membrane.

Such an active amplification has been investigated and implemented2 into
the two-dimensional inviscid global cochlear model which was described in Chap-
ter 14. With an appropriate tuning of the parameters ω, µ, γ and b of the
active model we can reproduce typical results for active processes in the cochlea.
Figure 15.1 shows the effect of the nonlinear amplification, tuning and response
compression. These results compare well qualitatively to the experimental data
for chinchilla by Robles & Ruggero (2001).

1This chapter is based on the proceedings article ’Simulation of fluid flow and basilar
membrane motion in a two-dimensional box model of the cochlea’ by E. Edom, D. Obrist, L.
Kleiser which was presented at the 11th Int. Mechanics of Hearing Workshop, Williamstown,
Massachusetts, July 16-22, 2011

2Andreas Müller, semester thesis FS 2009, Institute of Fluid Dynamics, ETH Zurich
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Figure 15.1. Wave envelopes of the BM displacement for a
5000Hz stimulation at different intensities. The curves illustrate
the amplification, tuning and response compression due to the
active processes in the Corti organ. (Courtesy of A. Müller,
Institute of Fluid Dynamics, ETH Zurich.)

Figure 15.2 shows a phenomenon known as distortion product which is ob-
served when an (active) cochlea is stimulated by two neighboring harmonic tones3

(here: f1 = 10 kHz, f2 = 12 kHz). The nonlinear active process creates other
harmonics, i.e. distortion products, which result in displacements of the basilar
membrane at other locations. The most prominent distortion products are gen-
erated for the frequencies 2f1 − f2 = 8kHz and 3f1 − 2f2 = 6kHz. They are a
direct result of the cubic term in Eq. (108). These two distortion products appear
as traces on the x-t-diagram at x ≈ 0.4 cm and x ≈ 0.5 cm (note that these traces
are relatively close to the base of the cochlea because BM has not been properly
tuned for this experiment).

The pitch diagram in figure 15.2(b) shows that there exist also other distor-
tion products at f = 2kHz, 4 kHz, 6 kHz. Furthermore it can be seen that these
distortion products are not only present at their respective characteristic places
but also all the way toward the oval window. This is a clear indication of so-called
‘reverse traveling waves’.

3C.-F. Benner, Bachelor thesis 2011, Institute of Fluid Dynamics, ETH Zurich.
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The locations of the local maxima on the pitch diagram run along a curve
from the top left toward the bottom right. This is an indirect representation of
the tonotopic map of the cochlea. It indicates the location of maximum resonance
for a given frequency.
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Figure 15.2. Distortion product for a two-tone stimulation
with 10 and 12 kHz: (a) x-t-diagram showing the BM displace-
ments (including the transient wave packet traveling toward the
apex); (b) pitch diagram on the basis of a Fourier transform of
the x-t-diagram between t = 0.08 and 0.1 s. The increased en-
ergy content at the bottom right of the pitch diagram is due to
the transient wave packet. (Courtesy of C.-F. Benner, Institute
of Fluid Dynamics, ETH Zurich.)



CHAPTER 16

Acoustic streaming in the cochlea

Acoustic streaming is a fascinating phenomenon in fluid mechanics where
an oscillating component in a flow field (e.g. acoustic waves) generates a steady
directed flow. Often the steady streaming component is much stronger than the
primary oscillating flow. Probably the first to consider streaming phenomena was
Rayleigh (1884). A contemporary review on acoustic streaming is given by Riley
(2001).

The terms ’steady streaming’ and ’acoustic streaming’ are used interchange-
ably for this phenomenon, although the latter can be misleading because the
streaming does not necessarily require acoustic waves. This is especially the case
in the context of cochlear mechanics where the streaming phenomena are due to
the traveling waves in the perilymph which is an incompressible flow phenome-
non. Nevertheless, the term ‘acoustic streaming’ has found its way into the field of
cochlear mechanics mainly due to the seminal contribution by Sir James Lighthill
with his article on ‘Acoustic streaming in the ear itself’. He studied the possibility
for steady streaming within the cochlea on a theoretical basis (Lighthill, 1992).
This work was based on the earlier articles by Lighthill on acoustic streaming
(Lighthill, 1978) and on cochlear mechanics (Lighthill, 1981b,a).

In general, acoustic streaming is related to the Reynolds stresses generated by
the primary oscillating flow field. The streaming phenomena can be classified in
two principal mechanisms: the ‘quartz wind’ and ’Rayleigh streaming’. Whereas
the former can be found in the main body of fluid, the latter is related to the
boundary layers (Riley, 2001).

Apart from the theoretical work by Lighthill (1992) there is very little litera-
ture on streaming phenomena within the cochlea. A short discussion on stream-
ing in the perilymph is given by Lesser & Berkley (1972) where they point out
the relation to the so-called Békésy eddies (figure 4 in Lesser & Berkley, 1972).
The short article by Böhnke & Scharff (2009) gives a framework for the study of
acoustic streaming in the cochlea but does not provide any results. Streaming
phenomena have also been investigated in other organs, e.g. in the eye by Repetto
et al. (2008). Simulations of the perilymphatic flow by the author’s group showed
evidence for a weak streaming directly induced by the stapes vibrations. These
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results were obtained in the simulation framework outlined in Chapter 17 which
solves directly the Navier–Stokes equations.

1. Lighthill’s study of acoustic streaming in the cochlea

Lighthill (1992) showed that the quartz wind in the cochlea is rather weak,
whereas the Rayleigh streaming can lead to significant flow velocities. He also
touched a third form of acoustic streaming which is related to the mean fluid
particle motion in the direction of wave propagation for surface waves in deep
water. This effect is known as Stokes drift and can lead to streaming velocities up
to V 2/c where V is the velocity amplitude of the traveling wave and c its phase
velocity. This term may become large at the characteristic place where V reaches
its maximum while the phase velocity c tends to zero. However, Lighthill (1992)
showed that the Stokes drift is exactly canceled outside the boundary layer by
an opposing flow due to the Stokes boundary layer itself.

The velocities due to Rayleigh streaming at the edge of the boundary layer
reach values up to

us =
V 2

4c
− 3V V ′

4ω
(109)

where V ′ indicates the gradient of the velocity amplitude along the main axis of
the cochlea. Lighthill (1992) points out that the fluid velocity amplitude V can
also be taken as the velocity amplitude of the BM motion wherever the flow is
two-dimensional.

The streaming velocity us can be understood as a slip velocity with which
the bulk flow slips over the wall (excluding the thin boundary layer). It has been
derived by Lighthill (1992) for the nearly two-dimensional flow in the vicinity of
the characteristic place. The first term in (109) is due to the phase difference
between the axial and the wall-normal velocity which leads to a ‘shear-stress’
component of the Reynolds stress. The second term in (109) is due to the vari-
ation of V in axial direction and is related to the ‘normal-stress’ component of
the Reynolds stresses.

According to (109), the streaming velocity us can become significant (with
respect to the BM velocity amplitude V ) either if the phase velocity becomes
small or if the gradient V ′ becomes large. This is the case in the vicinity of
the characteristic place. Note that the second term contributes constructively
to the first term for V ′ < 0, i.e. after the maximum BM displacement when the
amplitude drops rapidly to zero.

2. Physiological relevance

Although Lighthill (1992) gives no quantitative results, he makes it clear
that the even conservative estimates suggest significant streaming velocities in
the cochlea. Nevertheless, the relevance of acoustic streaming in the cochlea is
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not well established. There are, however, several places where acoustic streaming
could play a role in the mechanics of hearing.

First and foremost, it is the mechanism for the stimulation of the inner hair
cells (IHC). There appears to be a consensus that the stereocilia (hair bundles)
of the IHC are not embedded in the tectorial membrane (unlike the stereocilia
of the OHC; cf. figure 1.6). Therefore, the deflection of the IHC stereocilia
must be related to a flow in the subtectorial gap (gap beneath the tectorial
membrane). A purely oscillatory flow in this gap deflects the stereocilia in a way
that the IHC are stimulated and inhibited in alternation. This is certainly a
much less efficient way of stimulating the IHC than deflecting the stereocilia only
to one side through a streaming flow within the subtectorial gap. Lighthill (1992)
studied this possibility and showed that such a streaming is possible at least on
a theoretical basis. Even though Lighthill did not include the active processes in
the Corti organ directly in his considerations, his results remain relevant for IHC
stimulation also because the active processes lead to sharper gradients in the flow
field which can enhance streaming effects.

Second, acoustic streaming takes place in the perilymphatic fluid spaces. The
Békésy eddies are in vitro evidence of a slow streaming flow which originates at
the place of maximum BM displacement (i.e. the characteristic place). Most
likely, the Békésy eddies can be related to the mechanisms of Rayleigh streaming
where Reynolds stresses within the thin boundary layer lead to a steady Stokes
flow in the whole field. Lesser & Berkley (1972) argue that these effects are weak
because the gradients in their (passive) cochlear model are small. This brings us
back to the point mentioned before, that acoustic streaming is most likely greatly
enhanced in an active cochlea.

The Békésy eddies and all other streaming flows in the lymphatic ducts are
churning the lymph. This could be of relevance of the slow but steady replace-
ment of old lymph with new fluid. The mixing process due to streaming could
enhance the transport of metabolites dissolved in the lymphatic fluids. A steady
streaming of the endolymph within the scala media could support the metabo-
lism of the active processes in the organ of Corti. This possibility (for which
there is no evidence at this point) is even more intriguing if we consider that
the vascularization of the Corti organ is very sparse and that the streaming is
strongest at the place of maximum BM displacement, i.e. at the place with the
highest metabolic demand.

Finally, it should be emphasized that the mechanisms of acoustic streaming
within the cochlea must not be confused with the nonlinear effects which are
classically related to an active cochlea. The nonlinear phenomena of acoustic
streaming in the cochlea are quite weak and are unlikely to lead to nonlinear
phenomena such as distortion products or two-tone suppression. Such phenomena
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must be related to the nonlinear dynamics of the OHC which is discussed in
Chapter 15.



CHAPTER 17

Transient viscous model of an active cochlea

In the present chapter, we outline a global cochlear model as it is developed
and used by the author’s group. The state-of-the-art in global cochlear modeling
has already been laid out in Chapter 12. In contrast to other global models
(e.g. Böhnke & Arnold, 1999, 2006), the present model has a strong focus on the
perilymphatic flow field while the solid mechanics of the cochlea is described by
lumped parameter models. Furthermore, it does not model the endolymphatic
flow within the scala media and idealizes the cochlear geometry to a simple box
model. It does, however, include the active processes in the OHC and solves the
full Navier–Stokes equations such that viscous effects as well as weak nonlinear
flow phenomena are captured. Unlike global models which were formulated in
the frequency domain (e.g. Lim & Steele, 2002) this model is formulated in the
time domain which allows the study of transient phenomena in the cochlea.

1. Rationale for the transient, nonlinear, viscous, active model

While the quality of cochlear models has enormously improved over the past
years with respect to the BM dynamics, the modeling of the fluid dynamics in
the cochlea has not kept pace. Relatively few studies with a focus on the flow
system exist today and many of them are flawed by disrespecting relevant physical
phenomena. Several effects which are currently attributed to other functional
units in the cochlea (e.g. strong mechanical damping in the BM) might in reality
be related to hydrodynamic effects. At the same time, some flow phenomena
assumed implicitly (e.g. irrotational flow) by current models may not exist in
reality. In contrast to these observation, the cochlear model by Givelberg &
Bunn (2003) features an accurate representation of the flow field. Unfortunately,
they used only a passive BM model and the authors indicate at the end of their
paper that the representation of the BM needs to be improved. Exactly along
this line of thought, we combine here an established nonlinear active model for
the dynamics of the BM with a high-fidelity flow simulation.

To our knowledge, none of the currently available global cochlear models is
able to describe all of the following flow phenomena:
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(i) Acoustic streaming — this phenomenon can only be studied if the
Navier–Stokes equations are not linearized.

(ii) Unsteady boundary layers — cochlear models based on potential
flow solutions neglect the presence of unsteady boundary layers whose
thickness depends on the frequency of the stimulation.

(iii) Reverse traveling waves — a representation of reverse traveling
waves requires a correct description of the boundary conditions at the
base and the apex of the cochlea (i.e. , oval window and helicotrema).

(iv) Flow at the basal end of the cochlea — the motion of the stapes
which does not necessarily move like a piston (Huber et al., 2001; Sim
et al., 2010)) and the position of the oval window which is located
rather at the side than at the front end of the scala vestibuli may lead
to complex flow structures at the basal end of the cochlea.

(v) High shear close to the characteristic place — active BM am-
plification leads to steep axial gradients in the flow field close to the
characteristic place which may trigger strong viscous effects.

Here, we present a global cochlear model which is able to confirm or dismiss the
relevance of these phenomena.

1.1. Transient dynamics. The model is formulated in the time domain
which allows us to perform transient simulations. Many previous studies of coch-
lear dynamics are limited to harmonic stimulations (pure tones). In that case,
the governing equations can be studied in the frequency domain (at least for lin-
ear models). The BM response is then a steady-state response oscillating with
the stimulation frequency. However, these results give no indication about the
transient process that leads to this steady-state solution. Neither do we know
how long it takes to reach the steady-state, nor can we find out which parts of
the cochlea are stimulated during the transient phase. However, this and other
information about the transient phase is important for a comprehensive under-
standing of cochlear dynamics, since the cochlea hardly ever has to respond to
steady-state (or even pure tone) stimulation. Music, speech and environmental
noise have a very transient nature. Moreover, many clinical experiments use
clicks as acoustic stimulant.

A simple example for the relevance of the transient processes in the cochlea
is the effect of the helicotrema in a transmission-line model of the cochlea (Chap-
ter 13). If we solve this model in the frequency domain for steady-state solutions
we obtain (nearly) the same solutions whether we do or do not include the heli-
cotrema. Only if we solve this model in the time domain as a forced initial value
problem, we observe an influence of the helicotrema and find that the steady-
state solution is reached more rapidly if the helicotrema is considered (see also
Xin (2004) for a discussion of related effects).
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Furthermore, transient simulations might shed some light on the dynamics
of waves traveling toward the basal end of the cochlea: a phenomenon which is
relevant for the understanding of otoacoustic emissions (OAE) (He et al., 2008)
and has been touched in the past by several authors (e.g. Lighthill, 1992).

1.2. Flow phenomena in the cochlea. As we will point out in the fol-
lowing, a careful study of the fluid dynamics in the cochlea calls for a numerical
solution of the full Navier–Stokes equations. The character of the flow in the
cochlea is uncommon to typical problems in fluid dynamics: On the one hand,
the small size of the cochlea and the small flow velocities lead to small Reynolds
numbers which indicate a flow dominated by viscosity. On the other hand, the
high frequencies lead to strong unsteady effects. The low Mach number and the
long length of acoustic waves in perilymph indicates that compressibility effects
are negligible (although Lighthill, 1981b provides some arguments that compress-
ibility could have an effect anyway). And finally, the compliance of the BM leads
to wave propagation (similar to pulse waves in the arterial system). In addition,
these waves are strongly influenced by nonlinear amplification in the BM. Tech-
nically speaking, the flow in the scala vestibuli is a highly unsteady creeping flow
through a compliant pipe with nonlinear amplification.

Because of the small Reynolds number in the cochlea (Re < 1) one might be
tempted to describe the flow only by the (unsteady) Stokes equations rather than
by the full Navier–Stokes equations. This, however, would neglect (even weak)
nonlinear effects which might be relevant to cochlear dynamics (for instance,
acoustic streaming in the cochlea as discussed in Chapter 16). Other consider-
ations might also lead one to believe that viscosity can be neglected. Lesser &
Berkley (1972), for instance, argued that the boundary layers in the cochlea are
very thin and, therefore, negligible. While it is true that these Stokes boundary
layers are very thin for high stimulation frequencies (their thickness scales like
the inverse of the square root of the stimulation frequency) they must not be ne-
glected for lower frequencies. Figure 17.1 illustrates this fact by plotting velocity
profiles for a pulsating flow in a pipe (Womersley, 1955) with the approximate
dimensions of the scala vestibuli. For low frequencies (figure 17.1b) the flow pro-
file deviates dramatically from a nearly rectangular flow profile that we obtain
for high frequencies (figure 17.1a). In addition, there is a frequency-dependent
phase shift between the bulk flow rate and the pressure gradient (which will also
lead to a phase shift in the BM response). We can see this shift by comparing the
flow profiles at the phase 0◦ (maximum pressure gradient) for the two different
frequencies: at this instant there is almost no flow for the high frequencies, but
there is a net flow to the right for the low frequency case while the fluid in the
core is still flowing to the left. These unsteady boundary layers introduce a con-
siderable amount of viscous dissipation and shear at the BM which may be out
of phase with the bulk flow. Cochlear models which are based on a potential flow
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Figure 17.1. Velocity profiles for pulsating flow in a circular
pipe for (a) 20kHz and (b) 20Hz. The values next to the curves
indicate the phase of the pulsation: at 0◦ the pressure gradient
reaches its maximum value and at ±90◦ it is zero. (pipe diameter
1mm; kinematic viscosity 10−6m2/s)

solution implicitly assume the situation shown in figure 17.1a which appears to
be appropriate only for high frequencies. The missing viscous damping in these
models is usually included in the mechanical damping of the BM as in Eq. (93c).

1.3. Numerical aspects of cochlear fluid dynamics. Lesser & Berkley
(1972) used a spectral method for the spatial discretization of the flow inside a box
model of the cochlea. Despite the high numerical quality of this method, it is not
suitable for the present model because spectral methods are relatively inflexible
with respect to more involved boundary conditions. A detailed description of the
boundaries of the scala vestibuli requires the formulation of dynamic boundary
conditions with spatial variations (e.g. deflection of the oval window, changing
material properties of the BM and an in-/outflow at the helicotrema). Therefore,
we use finite-difference schemes for the spatial discretization. They allow a high
convergence order, variable grid spacing, and a straightforward implementation
of complex boundary conditions. Furthermore, we require a numerical time inte-
gration scheme with stability properties that allow a sufficiently large time step
size even though the cochlea is a stiff dynamical system.

2. Definition of the computational model

2.1. Cochlear geometry. Rather than using a coiled geometry, we use an
idealized uncoiled geometry (“box model”) which consists of a single rectangular
duct with constant cross section (figure 17.2). This duct represents the scala
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Figure 17.2. Computational domain with the boundary con-
ditions (gray: no-slip; blue: Dirichlet in-/outflow; green: (an-
ti-)symmetry.

vestibuli. The whole cochlear partition is collapsed to a flat plane which forms
the bottom wall of the duct. The flow in the scala tympani is assumed to be
anti-symmetric to the flow in the scala vestibuli and is not included explicitly in
the computational domain.

2.2. Governing equations. We model the flow field of the perilymph by
the Navier–Stokes equations,

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u, (110a)

∇ · u = 0, (110b)

where u denotes the velocity vector, t the time, and p the pressure. The Reynolds
number Re is based on the maximum velocity Us of the stapes motion, the length
Ls of the stapes footplate (approximately 3mm), and the kinematic viscosity ν∗

of the perilymph.
The Navier–Stokes equations are solved numerically on a Cartesian coordi-

nate system with grid stretching toward the walls such that the Stokes boundary
layers can be resolved. The simulations are carried out with a high-order Navier–
Stokes solver (Henniger et al., 2010) which uses finite-differences for discretizing
the spatial derivatives and a three-step third-order Runge–Kutta scheme for the
time integration.

2.3. Boundary conditions. The displacement of the BM (on the order of
micro- to nanometers) is very small compared to the height of the scala vestibuli
(on the order of a millimeter). Therefore, we assume that the flow domain main-
tains its shape during the whole simulation. The motion of the BM leads to
Dirichlet boundary conditions for the normal velocity on the BM. It can be shown
by a Taylor expansion that the velocity error due to this formulation of the BM
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motion is of order η2/2 where η is the displacement of the BM normal to the
wall.

Similar to the BM motion, the stimulation at the oval window is represented
by Dirichlet boundary conditions as well. The helicotrema is modeled by symme-
try boundary conditions and at the remaining walls we impose no-slip boundary
conditions.

2.4. Computational mesh. Because of unsteady viscous effects, we obtain
boundary layers in the scala vestibuli whose thickness is proportional to the
inverse of the square root of the frequency. Therefore, these unsteady boundary
layers are thin for high frequencies and relatively thick for low frequencies. For a
transient simulation which includes a larger range of frequencies we need therefore
a fine spatial resolution close to the walls.

2.5. Time integration. From the point of view of numerical stability for
the fluid-structure coupling between the perilymph and the BM, it is critical to
include the equation for the BM properly into the time integration scheme of the
fluid simulation. The allowable time step size is dominated by the time scales of
the stimulation at the oval window and by the local eigenfrequencies of the BM.

2.6. Modeling of the BM dynamics. The formulation of the dynamics
of the basilar membrane is an integral part of any global cochlear model. Here,
we adapt the active BM model by Kern (2003) to our formulation, as it was
already outlined in Chapter 15. In its original formulation, Kern’s model uses a
potential flow approximation for the fluid dynamics which is augmented by an
energy dissipation term drawn from a surface wave analogy. Such an additional
dissipation mechanism is not necessary for the present model because the whole
viscous dissipation is already included in the flow simulation.

The details of the formulation are given in Chapter 15 whereas the mass term
in (107) may be neglected because the inertia is already included in the Navier–
Stokes equations (assuming that the BM has approximately the same density as
the perilymph). It is also debatable whether the damping term can be excluded
from (107) because this mechanical damping is probably much smaller than the
viscous contribution from the Stokes boundary layers.

For the present three-dimensional model, the one-dimensional elastic force
kη has to be replaced by an equation for plate bending, such that we get

∂2

∂x2

(

Dxx
∂2η

∂x2

)

+ 2
∂2

∂x∂z

(

Dxz
∂2η

∂x∂z

)

+
∂2

∂z2

(

Dzz
∂2η

∂z2

)

= −2p(x, 0, z) + bζ.

(111)
It is common to assume that the bending stiffness of the BM is negligible

in the axial direction, i.e. that Dxx ≪ Dzz and Dxz ≪ Dzz. The dominant
transversal stiffness of the BM is due to the microstructure of the BM which
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contains stiff fibers embedded in a soft tissue matrix. All fibers are oriented in
the z-direction. Based on Young’s modulus for the fibers Ef and the fiber ratio
f , we can estimate the transversal bending stiffness Dzz as

Dzz =
fEfI

1− ν2
(112)

where ν = 0.3 is Poisson’s ratio and I is the area moment of inertia (Dr. J. H.
Sim, personal communication).

At every time step, we have to solve the fourth-order differential equation

∂2η

∂z2

(

Dzz
∂2η

∂z2

)

= −2p(x, 0, z) + bζ. (113)

independently for each axial location x. This equation is effectively an ordinary
differential equation which can be solved efficiently with a simple finite-difference
discretization.

With respect to the flow simulation, the implementation of an active model
corresponds to a modification of the boundary condition at the BM. The whole
complexity of the nonlinear active BM model is therefore contained in a dynamic
formulation of the boundary condition.

Alternatively, one could consider using the nonlinear feed-forward model by
Lim & Steele (2002). This BM model uses a WKBJ approximation to the flow
field based on a vector-potential formulation for the fluid displacement. It yields a
pressure distribution along the BM which is used as an input for their description
of the BM. In the present cochlear model, the pressure distribution along the BM
comes directly from the fluid simulation.

In the nonlinear feed-forward model the force by the OHCs on the BM FC
BM

is assumed to be a feedback to the total force on the BM FBM ,

FC
BM (x+∆, t) = αFBM (x, t) = α[2F f

BM (x, t) + FC
BM (x, t)], (114)

where ∆ determines the axial shift in the feed-forward mechanism, F f
BM is the

force exerted by the fluid on the BM and α is the feed-forward gain factor.
A simple implementation of this mechanism assumes that the feedback force

by the OHCs is linearly proportional to the total BM force, i.e. that α is only a
function of the location and independent of the amplitude and frequency of the
excitation. However, in reality there exists saturation in the OHC force and α
should not be treated as a constant.

In the nonlinear-feedback mechanism, the coefficient α is a function of the
BM displacement as suggested in figure 17.3. Given that the time step size is
small enough, it should be sufficient for our time domain simulation to use FBM

from the previous time step for approximating α for the new time step. This
renders the discretized form of the nonlinear model linear.
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Figure 17.3. Relation of the OHC force FC to the BM force
FBM and the definition of the amplification factor. Reprinted
from Lim & Steele (2002) with permission from the publisher.

3. Possible improvements to the model

In order to improve the morphological representation of the cochlea, it is pos-
sible to modify the fluid domain with constant cross-sectional area to a domain
with varying cross section either by the immersed boundary method (Beyer, 1992;
Peskin, 2002; Givelberg & Bunn, 2003) or by using a grid with curvilinear coor-
dinates. More realistic geometrical data of the fluid chambers can be obtained
from µCT imaging of human temporal bones.

Similarly, the fluid-structure interaction between the flow and the basilar
membrane can be implemented via the immersed boundary method. In the
present formulation, the boundary conditions impose the BM velocity onto the
fluid which responds with a pressure on the BM. In the immersed boundary
method, the perilymph flow determines the displacement velocity of the BM.
The right-hand side of the equation for the BM dynamics, e.g. Eq. (104c), yields
a pressure jump. This pressure jump is translated into a field force which acts
on the fluid such that the loop is closed.

These improvements for the present global cochlear model are the basis for
Chapter 19 where we present a blueprint for the design of a virtual cochlea.



CHAPTER 18

Flow in the cochlea due to a rocking stapes

The common believe that the stapes stimulates the cochlear fluids in a piston-
like transversal motion is inherent to several models of cochlear mechanics (e.g.
Chapter 13 & 14). Recently, it has been found (e.g. Hato et al., 2003) that the
stapes motion contains also rotational components, i.e. tilting or rocking motions.
Rocking motions have been observed about the long as well as the short axis of
the stapes.

The relevance of these rocking motions are under debate. While a piston-
like motion creates a net fluid displacement which has to be compensated by a
displacement of the round window, the rocking motion does not necessarily lead
to a flow throughout the cochlea. Therefore, it is suspected by some authors (e.g.
Voss et al., 1996; Decraemer et al., 2007) that the rocking motions are unable
to stimulate the BM significantly and that they are not relevant for the hearing
process. Hato et al. (2003) and Decraemer et al. (2007), for instance, argue that
the rocking of the stapes causes a forth and back movement of the fluid only
in a small volume beneath the stapes footplate and that the generated pressure
field does not propagate any further into the cochlea. However, there exists some
experimental evidence that rocking motions of the stapes can create cochlear
responses. Huber et al. (2008) measured compound action potentials (CAP) in
guinea pigs for a prescribed rocking stapes motion and report that their CAP
measurements suggest cochlear activity.

1. Numerical simulations of a rocking stapes motion

Edom et al. (2010a) performed numerical simulations to study the effect of
rocking stapes motions1. For simplicity, a two-dimensional box model with a
rigid basilar membrane was used (figure 18.1). The spatial extent of the box was
varied to asses the influence of the cochlear geometry.

We consider the stapes to be sitting sideways on the scala vestibuli (cf. fig-
ure 1.5) such that the basal end of the basilar membrane is located at the wall

1Parts of this chapter have been taken from the conference paper by Edom et al. (2010a)

and the associated poster.
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Figure 18.1. Configuration of the computational domain with
the stapes location. Reprinted from Edom et al. (2010b).

opposite to the stapes. This configuration is different from many classical coch-
lear models which assume an axial position of the stapes (e.g. figure 14.1). It is
closer to reality and, as we will show in the following, it is relevant to the rocking
stapes motion.

It will be shown that the fluid flow induced by rocking movements of the
stapes exhibits non-negligible velocity and pressure magnitudes throughout the
computational domain. The flow field consists of thin viscous boundary layers and
of a potential flow region. In these regions the velocity and pressure magnitudes
exhibit different frequency dependence which can be explained with the classical
theory of fluid flows. Furthermore, we will find that the geometry of the cochlea
can promote higher velocity and pressure magnitudes in the vicinity of the basilar
membrane. Possible consequences of the rotational stapes movement component
on the hearing will be discussed at the end of this paper.

As outlined in section 17, we model the flow field of the perilymph by the
Navier–Stokes equations. Because we assume a rigid BM, we impose zero velocity
boundary conditions at the walls except at the location of the stapes. The stapes
motion is modeled as an inflow which is imposed by Dirichlet boundary conditions
for the velocity normal to the wall, i.e. we set

uw(y) =

{

2y/Ls · sin 2πft for |y| ≤ L/2,

0 otherwise.
(115)

As we have already explained in Chapter 17, it is not necessary to move the walls
because the actual displacements are small. The error due to this formulation
of the stapes motion is of order (Us/2πf)

2 where f is the stimulation frequency
with which the velocity amplitude oscillates harmonically between −1 and 1.

2. Flow field behind a rocking stapes

Figure 18.2 shows an instantaneous flow field which is generated by the rock-
ing stapes with Us = 1.05 × 10−4m/s and Ls = 3mm. This velocity amplitude
was reported by Sim et al. (2010) for a sound pressure level of 94dB (in the middle
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Figure 18.2. Snapshot of the velocity field in the vicinity of
the rocking stapes. Reprinted from Edom et al. (2010b).

ear). The amplitudes of the velocity vectors in figure 18.2 oscillate simultaneously
with the stapes.

A closer look at the velocity field shows that Stokes boundary layers form
close to the walls. According to the theory for Stokes layers, their thickness
scales with the viscous length scale

√

ν/2πf . Outside these boundary layers the
velocity field is nearly independent of the frequency. The velocity amplitudes de-
cay approximately quadratically with increasing distance from the stapes (figure
18.3).

The Reynolds number based on the stapes length and velocity amounts to
0.35 such that we can safely neglect the influence of the nonlinear advective
terms for the present analysis (which neglects the weakly nonlinear phenomena
discussed in Chapter 16). Therefore, the vorticity ζ = ∂v/∂x−∂u/∂y is governed
by

∂ζ

∂t
− 1

Re
∇2ζ = 0. (116)

This is the Stokes equation formulated for the vorticity in the flow field. It is
identical to a diffusion equation in which 1/Re plays the role of a diffusion coef-
ficient. The rocking stapes has the role of a vorticity source which is introduced
to the flow through the boundary condition

ζw = −∂uw

∂y
. (117)

We find that the stapes introduces a vorticity amplitude of 2/Ls along its foot-
plate. At the edges of the footplate where the stapes velocity uw drops rapidly
to zero, the gradient ∂uw/∂y is much higher and of opposite sign.
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Figure 18.3. Magnitude of the velocity amplitudes (given in
dB) for two different box geometries. Reprinted from Edom et al.
(2010b).

The vorticity introduced by the rocking stapes penetrates into the flow field
according to (116) such that the vorticity decays rapidly to zero with the dimen-

sionless length scale
√

ν/2πf/Ls. This length scale corresponds to the inverse of
the Womersley number, Eq. (30), and shows that the vorticity boundary layer at
the stapes corresponds to a Stokes boundary layer.

Outside the Stokes boundary layer the vorticity is exponentially small, such
that we can assume an irrotational flow. Therefore, the bulk flow is governed
by ∇2φ = 0 where φ is the velocity potential. The time or the stimulation
frequency do not appear explicitly in this equation. This explains why the velocity
amplitudes in the bulk flow do not depend on the stimulation frequency. At
the same time, the observation that the amplitudes decay quadratically with
increasing distance indicates that the rocking stapes acts like a dipole source.

In the Stokes regime, the curves of constant pressure are perpendicular to
the streamlines and coincident with the curves for φ = const. . The pressure
amplitudes are plotted in figure 18.4 where the centre of the stapes has been
taken as a reference point with zero pressure. This distribution confirms that the
rocking stapes has the character of a dipole source.
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Figure 18.4. Magnitude of the pressure amplitudes (given in
dB) for two different box geometries. The centre of the stapes
footplate is used as the reference point with zero pressure.
Reprinted from Edom et al. (2010b).

3. Relevance of the rocking stapes for the BM stimulation

Unfortunately, the pressure distribution shown is somewhat misleading for
the interpretation of the results with respect to the stimulation of the basilar
membrane. In order to estimate the BM stimulation, we have to consider the
pressure difference across the BM. To this end, it is sensible to consider the
pressure at the round window as reference pressure (which is close to atmospheric
pressure). If we follow the scala tympani from the round window toward the
helicotrema, the pressure remains nearly constant because the rocking stapes does
create hardly any flow in these regions of the cochlea. This situation persists until
we come close to the rocking stapes. Therefore, we obtain a better impression of
the pressure difference acting on the BM, if we assume that the pressure at the
right boundary of figure 18.4 is held constant and that the pressure field oscillates
about this reference value.

The resulting pressure difference across the BM (using the results for geome-
try B) is highest at the base of the cochlea (about 0.3Pa for a stimulus with 94 dB
SPL at 1000Hz). It remains approximately constant until the stapes footplate.
Then it decays rapidly with about 20dB per stapes length. We conclude that
significant signals from the rocking stapes can reach the basal end of the BM but
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not any other parts of the BM. Thus, rocking stapes motion may be relevant for
high frequency hearing which is consistent with the finding that rocking motions
are most prominent at high frequencies (Voss et al., 2000).

If we compare these results to pressure measurements for a piston-like stapes
motion (Nakajima et al., 2009) at the same sound pressure level in the middle
ear, we find that the pressure signal at the BM from the rocking stapes is about
30dB weaker than for the piston-like motion.

It should also be noted that the presented results can be of relevance for a
condition known as round window atresia which indicated that the round win-
dow is rigid such that no net fluid motions are possible. Excluding secondary
phenomena which allow a leakage of perilymph (leading to so-called ‘cochlear
compressibility’), the round window atresia does not allow any stapes movement
other than rocking. The findings of Linder et al. (2003) indicate that round win-
dow atresia does not lead to a total conductive hearing loss. The results presented
in this chapter may be an explanation for this observation.

Finally, we would like to emphasize the relevance of the position of the stapes.
We have seen that a rocking stapes acts in the far field like a dipole. Comparisons
between the cochlear flow due to a monopole and a dipole source have been
performed by Pozrikidis (2008). Unlike a monopole source (e.g. a piston-like
motion) which is point symmetric, a dipole has a principal axis. In our case, the
stapes sits sideways on the scala vestibuli (cf. figure 1.5) such that the dipole
principal axis is oriented along the main axis of the cochlea. The results would
be different, i.e. the signal on the BM would be weaker, if the stapes was located
at the basal end of the cochlea as it is done in most cochlear models.



CHAPTER 19

Blueprint of a virtual cochlea

In this chapter, we propose the design of a virtual cochlea, i.e. a compre-
hensive three-dimensional model including several simulation modules describing
the functional units (e.g. flow simulation, structural simulation, model for OHC
motility) in a global context. This chapter has to be understood as a blueprint
of a cochlear model that has yet to be realized in practice.

The virtual cochlea shall enable the study of the tight interplay between var-
ious local components and phenomena. From the point of view of the researcher
in mechanics of hearing, the distinctive features of the virtual cochlea are:

• simulation in the time domain (transient acoustic stimulations)
• high morphological fidelity for the whole cochlea (including a detailed
representation of the Corti organ)

• modeling of the OHC motility (active processes)
• inclusion of a wide range of physical flow phenomena (e.g. acoustic
streaming) by solving the full Navier-Stokes equations

• modular software approach to allow easy comparison of different mod-
els for sub-systems

Wherever possible, the simulation modules solve governing equations which
are based on first principles (e.g. Navier–Stokes equations for the fluid simulation).
The governing equations are solved in the time domain to allow the simulations
of transient phenomena.

The virtual cochlea is designed for next-generation Petascale-supercomputers
which require extreme levels of computational parallelism. The parallelization
strategy for the virtual cochlea puts the primary focus on the homogeneity of the
numerical algorithm rather than on the reduction of floating point operations.
This strategy is unconventional and addresses current developments in super-
computing architectures which go toward larger and larger numbers of parallel
processing units.

Cochlear mechanics has to be understood as a multi-scale and multi-physics
problem. Typical length scales of different physical systems involved in cochlear
mechanics are illustrated in figure 19.1. The involved physical sub-systems are
treated in separate simulation modules which are tightly coupled according to
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Figure 19.1. Range of spatial scales in the mechanics of hearing.

figure 12.1. In the following, we will explain the multi-physics and multi-scale
aspects in detail and will explain which methods will be used to realize the virtual
cochlea.

1. Multi-physics simulation framework

There will be three primary simulation modules: (a) flow simulation, (b)
structural simulation, and (c) a simulation of the active processes. The flow fields
and the structural dynamics will be spatially and temporally resolved. The mech-
anisms leading to OHC motility are at a cellular scale which will not be spatially
resolved. Therefore, the OHC motility will be modeled as a zero-dimensional
lumped-parameter model, i.e. the nonlinear dynamics of the OHCs will be de-
scribed as a set of ordinary differential equations which are integrated in time.

These three simulation modules are coupled though the immersed boundary
(IB) method (Peskin, 2002) which results in field forces for the flow simulation and
OHC model and in boundary- or interface conditions for the structural simulation.
The immersed boundary method (IB) has been shown to be suited very well
for modeling fluid-structure interactions (FSI), in particular, in a biomedical
context (e.g. De Tullio et al., 2009). IB has even been used before to simulate the
perilymphatic flow within the cochlea (Beyer, 1992; Givelberg & Bunn, 2003).

2. Multi-scale approach

The resolution requirements for the flow simulation are dominated by (a) the
size of the smallest flow structures and (b) the smallest morphological scales of
the flow domain. The pulsating flow in the cochlea develops viscous boundary
layers which are similar to Stokes boundary layers. Their thickness scales with the
inverse square root of the frequency. From this we can estimate that the smallest
flow structures have a typical size of 100 to 1µm for stimulation frequencies
between 20 and 20 000Hz. The smallest morphological scales in the cochlear fluid
spaces can be found in the Corti organ (OC) where the narrow gap beneath the
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tectorial membrane (cf. figure 1.6) has a width of only a few micrometers. To
resolve the flow in this gap, we need at least a few grid points. Therefore, we
require a grid spacing of less than 1µm in the Corti organ, but in the rest of
the cochlea we can use a larger grid spacing. Instead of using a very fine sub-
micrometer mesh throughout the whole cochlea, we split the flow problem into
two domains: a large-scale domain and a small-scale domain.

The large-scale flow simulation computes the flow field in the scalae vestibuli,
tympani and media except for the flow within the Corti organ. It includes also
the interaction of the fluids with the oval and round windows, with the tectorial
membrane, the basilar membrane and Reissner’s membrane (cf. figure 1.6). The
small-scale simulation models the flow in the whole organ of Corti.

Based on our current understanding of the anatomy there is no direct inter-
face between the fluid within the Corti organ and the endolymph in the scala
media. We are aware though that such a connection might exist through a thin
gap at the edge of the tectorial membrane which is called ’marginal zone’ in Lim
(1980). In that case, we can couple the two domains via a penalization method
which leads to an embedded grid approach. The penalization method is directly
related to IB and fits in nicely with the algorithms used for the FSI.

3. Cochlear morphology - computational model

The virtual cochlea requires a detailed description of the cochlear morphology.
In the flow simulation, the morphology defines the location of the field forces
used in the IB method. In the structural simulation, it defines the shape of the
simulated components.

The overall cochlear shape is given by the bony cavity of the cochlea in the
temporal bone. Such data is available, for instance, in the form of µCT data of
a human temporal bone (cf. picture on the title page). The internal structures
(membranes, Corti organ, etc.) can be taken from data in the literature (e.g.
Dallos et al., 1996) and histological sections (e.g. using the morphological model
from the Eaton-Peabody Laboratory of Auditory Physiology, 2008).

First, the morphology is to be defined on the basis of cochlear cross-sections
from the basal end to the apex. In each of these cross-sections the relevant struc-
tures (e.g. membranes) are parametrized through manual segmentation. Thereby,
each cross-section is split into a structural part, a large-scale flow domain and a
small-scale flow domain. This process is illustrated in figure 19.2. The segmented
partial cross-sections are then connected to the neighboring cross-sections to yield
three-dimensional morphological definitions of the separate simulation domains.

The definition of the mechanical properties for the fluids is straightforward as
they are well established in the literature (e.g. Bronzino, 1995). The mechanical
properties of the tissue are not so clear. Here, we can use mechanical properties



142 19. BLUEPRINT OF A VIRTUAL COCHLEA

large-scale flow simulation

a
n
a
to

m
ic

a
l 

d
a
ta

small-scale flow simulation

structural model

lumped-parameter model

segmentation

Figure 19.2. Generation of the computational model(s) by seg-
menting anatomical data.

used in other established models (e.g. Baumgart et al., 2009; Steele et al., 2009)
although most of these have been designed for animal cochleae.

4. Flow simulation

The flow simulation carries the main burden of the computational work. As
noted above, the fluid simulation is split in two: a large- and a small-scale flow
simulation. These two simulations do not have a common interface but are tightly
coupled through force fields to the structural simulation to reflect the FSI.

4.1. Numerical method for the flow simulation. Although the large-
and small-scale flow simulations address systems with different principal roles in
cochlear mechanics and different length scales, we can use the same numerical
approach for both simulations. As we will explain further below, a detailed and
accurate simulation of the hydrodynamics within the cochlea is computationally
very expensive. As of today, it cannot be carried out with generally available flow
solvers. Therefore, we should use high-order Navier-Stokes solvers such as the
code IMPACT (Henniger et al., 2010) which is optimized for massively-parallel
supercomputers and is arguably currently the fastest simulation code of its kind.
IMPACT uses high-order finite differences on a staggered grid for the spatial dis-
cretization of the Navier-Stokes equations and semi-implicit or high-order explicit
time integration schemes. The Poisson equation for the pressure is solved with
a multigrid method. The work is distributed to different processing units by a
domain decomposition of the Cartesian grid in all three directions. Performance
tests have shown that problems with more than 100 billion grid points can be
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solved efficiently with this code on computers with 22 000 processing units (Cray
XT5 at the Swiss Supercomputing Centre CSCS) without any problems.

4.2. Structured mesh for flow simulation. The two flow domains are
immersed into two three-dimensional rectangular boxes with uniformly spaced
Cartesian grids. The grid spacing for the large-scale simulation is dominated
by the viscous length scale

√

ν/2πf which yields a typical length scale for the
thickness of the Stokes boundary layers in the cochlea based on the kinematic
viscosity ν and the frequency f . For stimulation frequencies of a few kilohertz,
we will need a grid spacing between 1 and 2µm. The box for the large-scale
simulation has the dimensions of approximately 1mm× 1mm× 35mm leading to
about 10 billion grid points. The resolution for the small-scale simulation which
contains the OC is mainly determined by the scales of the structures themselves.
The narrow gap beneath the TM has a width of only a few micrometers. There-
fore, we need a resolution of about 0.5µm. This will lead to another 10 billion
uniformly spaced grid points in the small-scale simulation used to resolve a box
of 0.3mm× 0.1mm× 35mm enclosing the whole OC. We immerse the segmented
cochlear cross-sections into these meshes such that the cross-sections are paral-
lel to each other. This conforms to the Cartesian grid of the underlying flow
simulation, but neglects the coiling of the cochlea. We believe that an uncoiled
morphology will be sufficient to study the most relevant physics of cochlear me-
chanics. Nevertheless, we maintain the option of modeling a coiled cochlea by
slightly tilting the cross-sections against each other. This process results in a
curvilinear orthogonal grid for which we can use the same simulation code if we
add some metric terms at relatively little cost.

4.3. Fluid-structure interaction through the immersed boundary
method. The immersion of the flow domains into the structured Cartesian grids
of the Navier-Stokes solver is realized according to the IB method via field forces
(Peskin, 2002), i.e. we choose the field forces f(x, y, z, t) in the Navier–Stokes
equations,

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u+ f , (118)

such that the flow velocity vector u(x, y, z, t) takes the desired values at the walls
(e.g. zero velocity at rigid walls). The appropriate choice of these field forces is
best explained in the context of a fluid-structure coupling. Here, we can choose
the field force f to be equal to the force exerted by the structure onto the fluid. If
we model a compliant wall by a spring, for example, we can apply the spring force
F = kx to the flow. Because the wall or the interface to the structural component
lies, in general, not exactly on a grid line of the structured flow grid, we have to
distribute the force F to the grid points in the immediate neighborhood of the
wall, i.e. the force field f will be mostly zero except in the vicinity of the walls.
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Figure 19.3. Implementation of multi-physics concept by cou-
pling the simulation modules through forces and displacements:
fluid (blue), structures (amber), OHC motility (green).

Figure 19.3 illustrates this coupling concept and shows that the forces F for the
two flow simulations will come from the structural simulation. Whereas the small-
scale simulation is completely enclosed by the structural model, the domain of
the large-scale flow simulation is also bounded by bony walls and softer tissue
behind the stria vascularis (cf. figure 1.6). The forces for these outer walls of the
cochlea come from lumped-parameter models.

5. Structural Simulation

The membranous structures within the cochlea (Reissner’s membrane, basilar
membrane, round window) can be modeled with finite shell elements. For the
other structural components, we propose to follow the finite-element approach
used by Steele et al. (2009) in their multi-scale model of the OC.

This approach to structural modeling integrates well with the IB method for
the fluid-structure coupling. The computational effort required for the structural
simulation is small compared to the fluid simulation because (a) most structures
are thin and can be modeled by two-dimensional shell elements leading to much
fewer degrees of freedom than in the flow field (approximately 10 million ele-
ments), and (b) the governing equations are integrated in time with an explicit
scheme such that no systems of equations have to be solved. The fluid simulation
and the lumped-parameter models for the OHCs will yield the displacements and
velocities at the interfaces to the fluid and to the OHCs, respectively. The struc-
tural simulation returns the forces at the fluid-structure interfaces to the fluid
via IB to complete the coupling loop (figure 19.3).

The finite-element model defines equations of the form

Mẍ+Rẋ+Kx = F
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where M, R, and K are the mass, damping and stiffness matrices, respectively.
The vector x contains the displacement of all structural nodes. It can be split
into a vector of boundary or interface nodes xb (interfaces to the fluid or OHCs)
and a vector of the ‘inner’ nodes x̃. The displacements of the boundary or
interface nodes xb come directly from the flow simulation and the OHC model
(cf. figure 19.3). The reduced equation for the inner nodes can be advanced
explicitly by one time step. This yields the new forces at the boundary nodes
which are then returned to the flow simulation.

6. Lumped-parameter models

The virtual cochlea requires lumped-parameter models for: (a) the active
processes in the OC, i.e. OHC motility; (b) the middle-ear mechanics which
yields the displacements for the oval window, i.e. the acoustic input for the virtual
cochlea; (c) the outer bounds of the cochlea, i.e. the bony walls of the cochlear
ducts and the supple walls at the stria vascularis (cf. figure 1.6).

The lumped-parameter models are given as ordinary differential equations
which are integrated in time together with the other simulation modules. These
equations are not directly coupled to each other, i.e. there is a separate model at
each location (e.g. at each OHC).

6.1. OHC motility. The active processes in the OC are highly relevant to
a properly working cochlea. We follow the concept of Kern & Stoop and model
the dynamics of the outer hair cells as a nonlinear oscillator which exhibits a
Hopf bifurcation (e.g. Stoop & Kern, 2004; Kern, 2003; Kern & Stoop, 2003).
Each OHC is modeled by a separate differential equation. These equations are
coupled to the simulation framework trough the forces acting on the OHCs (from
the structural simulation). The resulting displacements are handed back to the
structural simulation. We have outlined the details of this modeling approach in
Chapter 15 and have tested it successfully in the context of a transient inviscid
model of the perilymphatic flow by reproducing established nonlinear phenomena
such as distortion products (e.g. figure 15.2).

6.2. Middle-ear mechanics. The middle-ear mechanics is modeled be-
cause we need a dynamic description for the stapes displacement at the oval
window. We propose to use a straightforward model which describes the basic
characteristics of this dynamical system (e.g. Kringlebotn, 1988). The input to
this model is the acoustic stimulation of the virtual cochlea and the output yields
the displacement of the oval window.

6.3. Outer bounds of the cochlea. We model the outer bounds of the
cochlea (large-scale model) by local (visco-)elastic models of the form F = kx+rv
where x is the displacement of the wall, v is the displacement velocity (equal to
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the fluid velocity at this location) and k and r are spring and damping constants,
respectively. These constants have to be chosen such that these boundaries of
the large-scale flow simulation behave like ’walls’. For the bony walls, we have to
choose a relatively large spring constant k to make them stiff (at least an order
of magnitude stiffer than the stiffest part of the BM). For the stria vascularis, we
can use a large damping coefficient r and a moderate stiffness k.

7. Time integration

The computational cost for the virtual cochlea depends not only on the spatial
discretization (i.e. the grid size) but also on the time step size. There are two
inherent limits for the time step size: the first and most natural limit is the
temporal scale of the acoustic signals, i.e. each oscillation has to be resolved by
at least a few time intervals. Stimulation frequencies of 10 kHz, for instance,
require a time step size on the order of 10−5 s. The second limit is determined by
numerical stability. A rough estimation of the Courant-Friedrichs-Levy criterion
indicates that the necessary time step for a stable simulation on the intended
grids is larger than the limit imposed by the acoustic signal. The stability limit
due to the viscous term in the flow simulation imposes a limit of about 10−7 s.
A further limitation comes from the FSI through IB where stiff structures (e.g.
rigid walls) limit the time step. Givelberg & Bunn (2003) report a time step
size of 10−8 s due to the rigid walls of their cochlear ducts. Such limitations can
be mitigated by accepting ‘softer’ bony walls which should still give acceptable
results as long as the bone stiffness is sufficiently larger than the stiffness of the
BM. On the numerical side, we have the possibility of implementing the most
rigid structures with a direct velocity forcing method proposed by Fadlun et al.
(2000) or an immersed interface method (Leveque & Li, 1994). Furthermore, we
can increase the time step limit by using a semi-implicit time stepping. Detailed
performance studies (Henniger et al., 2010), however, have shown that, in many
cases, purely explicit time integration is more efficient overall. Whether this is
the case for the virtual cochlea will have to be investigated. From the current
point of view, we expect to be able to use an explicit time stepping scheme (e.g.
third-order Runge-Kutta) with a time step of approximately 10−8 s.

8. High-performance computing

The computational efficiency of the proposed numerical approach is inher-
ently tied to the homogeneity of the structured grid for the flow simulation. This
homogeneity is maintained by representing the cochlear morphology with the IB
method. The major drawback of IB is the waste of grid points in those regions
of the computational domain which are ‘behind the walls’. Similarly, we may
have over-resolved regions in the flow field (e.g. in the core region of the scalae
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vestibuli and tympani) where we will spend more effort than necessary for resolv-
ing the local flow structures. These two problems could of course be overcome
by using an unstructured grid which places the grid points only where needed
leading to one to two orders of magnitudes fewer grid points. Nevertheless, we
still opt for a structured Cartesian grid for the following reason: the intended
scale of the simulations will be so large that the use of supercomputers is imper-
ative regardless whether we use a structured or a body-fitted grid. To be able
to use such computing platforms efficiently, the problem has to be distributed
to many different processors while maintaining an equal load on all processors
(load balancing). This is facilitated by structured grids for which a homogeneous
data distribution is natural and the communication remains mostly local between
neighboring domains. Furthermore, the performance per processor is higher for
structured meshes because of its cache-friendly data structure. In summary, we
estimate that the apparent advantage of body-fitted grids is easily offset by the
high computational efficiency of structured grids with IB.

With the current trends in supercomputing it will become increasingly im-
portant to use straightforward and homogeneous numerical methods which can
be easily parallelized, rather than intricate schemes which may reduce the com-
putational expense locally but prevent the parallelization at a global scale. Or
in more practical terms: we should always accept a few more grid points if we
obtain a homogeneous numerical method in return, because there will be enough
aggregate computational power to pay for the additional grid points if (and only
if) we are able to parallelize the method.

Based on the expected development of supercomputing, the virtual cochlea is
expected to be able to use on the order of 200 000 parallel threads which results
roughly in 100 000 grid points per thread for the flow simulation and 10 000
elements per thread for the structural model. Such a parallelization scheme
should result in a simulation turn-around of a few days or less even for large
transient simulations. To make early simulations more efficient, coarser meshes
can be used which will also allow larger time steps. This can be achieved by
limiting the maximum stimulation frequency.

9. How can the virtual cochlea be used?

The virtual cochlea is a test bench for confirming or dismissing hypotheses
on physical processes in the cochlea as they are listed in Chapter 12. We can
run virtual experiments and measure different quantities resolved in space and
time. This is typically impossible in vivo because of the poor accessibility of the
cochlea.

For example, we can use the virtual cochlea to test Lighthill’s hypothesis on
IHC stimulation (Lighthill, 1992). Such an in silico experiment is quite straight-
forward: we stimulate the virtual cochlea with a harmonic acoustic signal and
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then inspect the resulting flow field for a steady streaming around the IHC. These
results can be put in context with existing studies for the local flow about hair
bundles (e.g. Kozlov et al., 2011). This analysis will be done first for a continued
harmonic stimulation. Second, we can use the virtual cochlea to investigate the
involved mechanisms also for transient stimulations (e.g. clicks) for which it will
be especially interesting to see how the nonlinear active processes in the cochlea
support our transient hearing. We expect to observe phenomena which cannot be
studied with state-of-the-art models operating in the frequency domain, because
the transient dynamics in an active cochlea must not be modeled as a superposi-
tion of results for harmonic stimulations. These in silico experiments shall help us
to get a detailed understanding of the mechanisms involved in the transduction
of transient acoustic signals toward stimulated IHC.

Furthermore, the multi-scale character of the virtual cochlea will allow us to
study the different kinds of ’hidden waves’ (De Boer & Nuttall, 2009) which are
likely to be present simultaneously at different scales within the cochlea. This will
also help us to investigate the process leading to ’reverse traveling waves’ which
are responsible for transmitting otoacoustic emissions toward the oval window.

Last but not least, the virtual cochlea will yield detailed pressure fields in
the cochlear ducts. Such pressure fields can be studied with respect to the mode
of stimulation, i.e. whether we stimulate the cochlea through different stapes
movements, through bone conducted waves, or through artificial intracochlear
actuators. The measurement of intracochlear pressure fields is also the subject
of several experimental campaigns (e.g. Nakajima et al., 2009) such that in vivo
reference data is available. In the long run, a deeper understanding of the pressure
distribution in the cochlea is of interest for the development of new generations
of hearing aids.



Part 3

Coupled phenomena





CHAPTER 20

Scale separation in the inner ear

So far, we have treated the different sensors of the inner ear separately. This
is also the typical approach used in most other studies: Investigations on the
hearing sense concentrate on the cochlea and neglect the vestibular side of the
inner ear, whereas the SCCs are studied without considering the cochlear cavity.
Likewise, the otolithic organs are typically treated as an isolated organ although
the utricular maculae is immersed in the endolymphatic fluid space of the SCCs.

There are several good reasons (that we shall discuss in the following) which
justify the separate treatment of the different organs. At the same time, some
important effects are then lost and it is not possible to study interactions be-
tween the sensors. Such interactions can be regarded as sensory crosstalk which
indicates that the organs may be sensitive to primary stimulations of the neigh-
boring organ, e.g. stimulation of the SCCs by sound (Tullio’s phenomenon). Such
crosstalk between the sensors of the inner ear are well documented and are dis-
cussed in the overview article by Halmagyi et al. (2005).

Before we look at two examples for sensory crosstalk in chapters 21 & 22, we
discuss here the reasons why a separate treatment of the sensors of the inner ear
can be successful anyway (as long as one is not specifically interested in crosstalk
phenomena). The first and most obvious reason is the spatial separation of the
cochlea and the balance sense. This separation goes along with the different
primary fluid spaces of the organs: whereas the basic physiology of the SCCs can
be explained with an endolymph flow alone, the simpler cochlear models only
consider the flow in the perilymph. For the otoliths, the presence of fluids is
typically neglected at all.

At a closer look, it becomes clear that these two reasons (spatial separation;
different fluid spaces) fall short of fully explaining the separation of the basic
functionality of the different organs. Even though the organs might be separated
into endolymphatic and perilymphatic flow in different parts of the inner ear, the
fluid spaces of the different sensory organs are mechanically connected through
the thin membranes surrounding the endolymphatic fluid space. In general, this
membrane is so supple that it can move freely with the fluid in the normal
direction. It has no effect on the fluids other than imposing a no-slip bound-
ary condition. Therefore, the distribution of the tangential shear stress across
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Figure 20.1. Temporal scale separation between the cochlea
and the SCCs.

the membrane does not have to be continuous. The fluid pressure, however, is
transmitted across the membrane and therefore has to be continuous across the
membrane. The latter property is somewhat more complicated across the basilar
membrane whose stiffness is not negligible such that there is a pressure jump
across the (deflected) basilar membrane.

We see that the two fluid spaces are tightly coupled because the membranous
labyrinth is a supple structure. Moreover, the argument of the spatial separation
of the SCCs and the cochlea is rendered moot if we consider that the stapes is
located in the middle between these two organs and one might even conjecture
that a vibrating stapes has a direct effect on the utricular macula since the utricle
is located just as close to the stapes as the base of the basilar membrane.

These considerations leave us now with the question why it is possible at
all to study the organs separately. The answer to this question can be found
in the dominant time scales of the organs. As we have discussed in chapter 2,
the operative range of SCCs is limited by the viscous time scale Tv = O(10−1s)
and the cupula time scale Tc = O(1 . . . 101s). These time scales are large with
respect to the time scales of the cochlea which operates at frequencies from 20 to
20 000Hz. At these acoustic frequencies, the endolymph flow in the slender SCCs
is strongly damped as we can see from the higher duct modes in figure 4.1. Vice
versa, the cochlea is insensitive to slow stimulations.

We conclude that there exists a clear temporal scale separation between the
balance sense and the hearing (figure 20.1). The vestibular system operates on
the slower time scales, whereas the dynamics of the cochlea is governed by fast
processes.



CHAPTER 21

Tullio’s phenomenon and superior canal

dehiscence

There exist certain conditions under which the vestibular system responds
to acoustic stimulations (Halmagyi et al., 2005). Here, we will discuss a specific
form of this sensory crosstalk which leads to a sensation of angular motion when
a sound is heard. Sound-induced vertigo has been known since the experiments
of Tullio (1929) on pigeons. Therefore, this phenomenon is commonly known
as Tullio’s phenomenon. Tullio’s phenomenon has been connected to a specific
anatomical defect which is known as superior canal dehiscence (SCD). The SCD
denotes a hole in the bony wall of the inner ear which connects the vestibular
system to the cranial cavity.

The sensation of angular motion in Tullio’s phenomenon is related to a stim-
ulation of the superior semicircular canal. This stimulation implies that there
exists a net fluid flow in the superior canal which deflects the cupula and ex-
cites the hair cells. This brings us to the intriguing question of how a purely
oscillatory acoustic stimulation can generate a directed flow. At first glance,
such a phenomenon is completely unexpected because the flows in the inner ear
are usually assumed to be governed by the linear Stokes equations (Chapter 6).
From a mathematical point of view, a transfer of acoustic energy into a directed
flow is only possible through a nonlinear process. In the context of the acoustic
stimulation, the nonlinear phenomenon of acoustic streaming (Chapter 16) is a
natural candidate for such a process. Because the inner ear contains compliant
walls which separate the fluid spaces, there exist also intricate fluid-structure
interactions which could be responsible for Tullio’s phenomenon.

In the following, we will outline a mechanical model for Tullio’s phenomenon.
Without being able to provide any conclusive results, this chapter provides a
guideline for the research on the mechanisms of Tullio’s phenomenon.

We begin our investigation with a brief review on the superior canal dehis-
cence (§ 1) which is apparently a relevant factor in Tullio’s phenomenon. In the
following, we will study the characters of the endolymphatic and perilymphatic
flow fields (§ 2). We will find that the two flows are fundamentally different even
though both flows are in a low-Reynolds-number regime. Therefore, our model
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of Tullio’s phenomenon will consist of different formulations for the endolymph
and the perilymph. At the same time, these two separate formulations have to
remain tightly coupled to represent the mechanical interaction across the walls
of the membranous labyrinth. In section 3, we discuss different nonlinear mech-
anisms which may be involved in Tullio’s phenomenon. This will lead us in § 4
to a hypothesis for a mechanism which involves traveling waves in the SCC. We
conclude this chapter by outlining in section 5 the design of a numerical model
for studying the proposed hypothesis.

1. Superior canal dehiscence

Many vestibular responses to sound are related to the condition of superior
canal dehiscence. The dehiscence of the superior semicircular canal is an anatom-
ical defect of the bony labyrinth (prevalence of about 1%; Carey et al., 2000). It
is a hole in the bone surrounding the superior semicircular canal which opens to
the cranial cavity (cf. figure 1.3). This hole is covered by the dura mater (tissue
layer enclosing the central nervous system). From a mechanical point of view,
this hole is similar to the round window of the cochlea (cf. figure 1.2). Therefore,
it is often called ‘third window’ of the inner ear.

Minor et al. (1998) was the first to relate this dehiscence to sound- and
or pressure-induced vertigo. Carey et al. (2004) presented a detailed study of
acoustic responses of vestibular afferents for chinchilla with SCD. Since Minor’s
publication in 1998, the superior semicircular canal dehiscence (SCD) enjoys
a lot of attention from the scientific community and several other effects have
been related to SCD. Songer & Rosowski (2010), to name just one of the most
recent publications, investigated effects of SCD on the hearing: they reported
a hypersensitivity to bone-conducted sound and a decreased sensitivity to air-
conducted sound (increased air-bone gap) in chinchilla with SCD. Moreover, they
were able to revert this effect by re-patching the dehiscence. This supports the
common understanding that these phenomena are directly related to the presence
of a hole in the bony labyrinth. Hypersensitivity due to SCD is not only known
for bone-conducted hearing but also for the otolithic function (e.g. Manzari et al.,
2011).

SCD is a good example for the complex systemic nature of the inner ear. This
complexity is probably also the reason why mechanical models and/or explana-
tions for the clinically observed phenomena are relatively sparse (e.g. Songer &
Rosowski, 2007). In particular, our understanding of the underlying mechanical
processes which are responsible for transducing an acoustic signal to a vestibular
signal (Tullio’s phenomenon) remains very vague. Only a few basic mechanisms
related to SCD are illustrated, for instance, in Minor et al. (1998).
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Figure 21.1. Sketch of the endolymphatic and perilymphatic
flow regimes and their interaction through the wall of the mem-
branous labyrinth.

2. Properties of the lymphatic flow fields

The medium between the oscillating stapes and the endolymph of the SCCs is
the perilymph. It is separated from the endolymph by the compliant walls of the
membranous labyrinth. Therefore, any sensible mechanical model of the coupling
between sound stimulation and vestibular responses must not only include a
representation of the endolymphatic flow field but also of the perilymphatic flow
and the membranous labyrinth.

We have seen in Chapter 20 that the cochlea and the SCC are separated by
their dominant time scales (cf. figure 20.1). This time scale separation is reflected
in the character of the endolymphatic and the perilymphatic flow fields: In the
slender ducts of the endolymphatic fluid space we find Poiseuille-like flow profiles
which are characteristic for slow processes, i.e. for small Womersley numbers.
The velocity profile of the perilymph in the scalae vestibuli and tympani features
thin Stokes boundary layers typical of high Womersley numbers. With the SCD
acting as a third window, there is also a perilymphatic flow in the bony labyrinth.
It is to be expected that this pulsating flow exhibits the same Stokes boundary
layers as in the cochlea.

Figure 21.1 illustrates these properties of the two lymphatic flows. It also
suggests that the two flows can communicate through displacements of the mem-
branous wall.
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3. Nonlinear mechanisms

The inability of linear systems to transfer energy between the slow processes
in the SCC and the fast dynamics of the cochlea (and vice versa) tells us that
Tullio’s phenomenon involves nonlinear mechanisms. Acoustic streaming is a
prominent example of such a nonlinear mechanism (Chapter 16). It translates
small oscillatory (’acoustic’) fluid motions into a steady directed flow (’stream-
ing’). Mathematically, this is only possible if we consider the full Navier–Stokes
equations which contain nonlinear terms.

A further candidate for the nonlinear mechanics can be found in impedance
pumps (e.g. Thomann, 1978; Avrahami & Gharib, 2008). It is known that a
directed net flow can be generated inside a torus by periodic squeezing at one
location. This effect is possible if the wall compliance is varied along the torus
axis and if the squeezing location is asymmetric with respect to the compliance
distribution. The necessary variation in the compliance of the SCC is given by
structures like the cupula or the utricular macula and by variations in the cross-
section (ampulla, utricular cavity). Furthermore, the third window of the SCD
creates an strong impedance variation which could promote an impedance pump
mechanism in the SCC. It should be noted, however, that the impedance pumps
described in the literature typically operate a much higher Reynolds numbers
than in our problem.

Of course, there are also other nonlinear phenomena present in the inner
ear which may transfer energy between different time scales. These are, for
instance, the dynamics of the OHC in the Corti organ (Chapter 15) or nonlinear
mechanical behaviour of the deformed tissue either due to a nonlinear constitutive
law or due to large deformations. Whereas the former phenomenon is known to
be very relevant in cochlear mechanics (e.g. distortion products in figure 15.2), it
is unlikely to cause any measurable effect in the SCCs. The latter phenomena are
expected to be weak as well because the deformations of the membranous walls
are very small. Here, we will focus primarily on fluid mechanical effects and on
nonlinearities introduced through the fluid-structure coupling.

4. Traveling wave hypothesis

The nonlinear mechanisms listed above invariably involve displacements of
the membranous walls. This leads use to the following hypothesis for the coupling
mechanism between the vibrating stapes and an endolymph streaming: First, we
assume that the stapes stimulates a rapidly pulsating perilymph flow. Because
of the SCD (‘third window’) this perilymph flow does not only exist within the
cochlea but also in the SCC. By a mechanism similar to the one in the cochlea, the
perilymph will initiate traveling waves on the membranous wall inside the SCCs.
These traveling waves are then expected to lead to a streaming endolymph flow,
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Figure 21.2. Schematic of the configuration of the numerical
model with the fully-resolved endolymph flow (blue) and the per-
ilymph (yellow) which is directly stimulated by the stapes. The
inset on the left shows traveling pulse waves on the membranous
walls due to differences between the perilymph pressure pp and
the endolymph pressure pe.

e.g. by an impedance pump mechanism (Thomann, 1978; Avrahami & Gharib,
2008), through acoustic streaming (Lighthill, 1992) or even by straightforward
peristalsis.

An important element in this hypothesis is the traveling wave in the SCC.
These waves are the result of the interaction between the walls of the membranous
labyrinth and the pulsating pipe flow. The configuration is quite similar to the
situation in the cochlea except that the round window is replaced by the SCD
and that the basilar membrane is replaced by the membranous duct (figure 21.2).
In the following, we discuss the character and the modeling of these traveling
waves.

4.1. Compliant walls for the membranous labyrinth. In order to ob-
tain traveling waves, we have to allow small wall displacements due to an excess
pressure in the endolymph. We use a very simple model for this displacement
which is also used in the basic theory for the pulse propagation in arteries (Ped-
ley, 1980). To this end, we introduce the distensibility D of the membranous
duct. The distensibility D is defined as the relative change of the area Ae (e.g.
the cross-section or lumen of the membranous duct) due to a pressure increase,
D = A−1

e (dAe/dpe).
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The distensibility for the membranous labyrinth can be approximated on the
basis of basic geometrical and physical properties of the membranous labyrinth.
From the theory of thin-walled tubes we know that D = 2a/Ēh where a is the
radius of the SCC duct, h the wall thickness and Ē the average Young’s modulus
(Lighthill, 1975). If we assume Young’s modulus to be on the order of its value
for veins (105Pa; Pedley, 1980) we get a distensibility on the order of 10−4Pa−1.
With the values estimated by Rabbitt et al. (1999), the distensibility is even as
large as 10−2Pa−1. Further data on the mechanical properties of the membranous
labyrinth can be found, for instance, in Wit et al. (2000).

From the distensibility, we can compute the local displacement of the walls
as a function of the local fluid pressure. For typical acoustic pressures of less
than 1Pa this corresponds to wall displacements of less than 1% of the radius of
the membraneous duct. For a linear inviscid pulse propagation, the wave speed
is given as c =

√

1/Dρ where ρ is the density of the endolymph. We estimate
it to be on the order of 1m/s which corresponds to wave lengths of 1mm for
stimulation frequencies of 1 kHz.

4.2. One-dimensional model for the perilymph flow in the SCC.
Instead of solving the full Navier–Stokes equations for the perilymph, we can
reduce the physics for the perilymph to a one-dimensional inviscid model. This
simplification is motivated by the transmission-line model for cochlear mechanics
(Chapter 13) because the configuration of perilymph flow along the membranous
duct in the SCC is similar to the configuration found in the cochlea. This popular
model goes back to Peterson & Bogert (1950) and describes the perilymph flow in
the cochlea and its interaction with the basilar membrane. The flow is modeled
as inviscid because the high frequency of the pulsating flow leads to very thin
Stokes boundary layers (cf. figure 21.1) whereas the bulk flow features nearly
constant velocity profiles and behaves as if it was an inviscid flow.

Of course, one may ask if it is really appropriate to simplify the perilymph
flow that much. Unfortunately, the answer to this question is not clear a priori.
Nevertheless, there are some good reasons why it appears reasonable to proceed
as described here: In contrast to the endolymph, the perilymph flow is just a
means of transporting the acoustic stimulation from the stapes to the endolymph.
Nonlinear phenomena which are probably also present in the perilymph flow (e.g.
acoustic streaming) are likely to be much smaller in magnitude than the primary
pulsating flow itself. In the endolymph, however, there is no principal pulsating
bulk flow such that the weak nonlinear effects (if present) will dominate. For a
more sophisticated model of the perilymph flow a two-dimensional model could
be formulated following the two-dimensional cochlea model of Lesser & Berkley
(1972) as it is described in Chapter 14.

Here, we outline the simplest possible model for the perilymph. Following
the derivation of the transmission-line model for cochlear mechanics, we relate
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the axial velocity of the perilymph u to the local perilymph pressure pp by the
momentum equation which reads

ρ
∂u

∂t
= −∂pp

∂s

where ρ is the density of the perilymph and s is the arc length along the principal
axis of the SCC. The continuity equation relates the velocity gradient to the
change of the cross-section Ap of the perilymphatic space,

∂u

∂s
= − 1

Ap

∂Ap

∂t
.

The infinitesimal change dAp of the perilymphatic lumen is of course equal to
a negative change of the endolymphatic lumen −dAe. It is a function of the
pressure difference pp − pe across the wall of the membranous labyrinth.

The momentum and continuity equations define a system of partial differ-
ential equations in time t and space s for the velocity u and pressure pp of the
perilymph. These equations need to be solved along two pathways between the
stapes and the third window (figure 21.2). The oscillating stapes imposes a ve-
locity boundary condition at one end while the SCD acts as a pressure boundary
condition at the other end.

It remains to be investigated whether the ampulla imposes another boundary
condition to this system because the perilymphatic flow might be blocked by
the membranous ampulla. In that case, we might have to impose homogeneous
Dirichlet boundary conditions for the perilymph velocity at either end of the
ampulla.

5. Numerical model for Tullio’s phenomenon

The traveling wave model described in the previous section can be used in a
numerical model for Tullio’s phenomenon. To this end, the endolymphatic flow
is simulated in the semicircular canals with a Navier–Stokes solver. The small
wall displacements due to the traveling waves are introduced to the endolymph
simulation via velocity boundary conditions at the walls.

The displacements at the walls will lead to a velocity and a pressure field
in the endolymph. The pressure at the walls can be used as the endolymphatic
pressure pe in the traveling wave model. This allows us to compute the next time
level in the traveling wave model by numerical integration which leads to new
wall displacements for the endolymph simulation.

The fluid-structure coupling between the two fluids and the membranous wall
results in a transient simulation of the endolymph flow in which the traveling wave
model acts as a dynamic boundary condition.
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The resulting endolymph flow is analyzed for its frequency content. Certainly,
there will be a flow component at the acoustic stimulation frequency which is gen-
erated in the endolymph through a linear coupling with the pulsating perilymph.
The physiologically relevant flow components, however, are those which generate
a net flow (streaming) within the membranous labyrinth. These flow components
do not necessarily have to be at zero frequency. It is sufficient that there exists
a significant flow at a very low frequency such that the cupula can be deflected
to one side for a few seconds.

Truly steady deflections of the cupula are not to be expected anyway, because
the restoring force of the deflected cupula will eventually cancel or overcome the
streaming of the endolymph.

In the case that we cannot find any significant streaming in the endolymph
with the present model formulation, it is sensible to modify the model by adding
new or different physical phenomena: for instance, a more complex perilymph
model (e.g. Lesser & Berkley, 1972) and/or a more detailed representation of
the mechanics of the membranous wall for modeling the endolymph/perilymph
coupling. These modifications could address, for instance, the fact that the
transmission-line model is based on a long-wave assumption which leads to a
linear wave equation. As estimated earlier, we expect traveling waves of approx-
imately 1mm length which could violate the long-wave assumption and lead to
nonlinear phenomena in the wave propagation (see e.g. Pedley, 1980 for a thor-
ough discussion of such effects).



CHAPTER 22

Influence of angular motions on the otolith

organs

Boselli et al. (2010c) presented new results on the endolymphatic flow fields
in SCCs to a wider community at the 6th meeting of the Bárány society. The
principal result of this numerical investigation was the existence of vortical flows
in the utricle and ampulla during angular accelerations and decelerations of the
vestibular system. The detailed nature of the endolymphatic flow field is discussed
in Chapter 6. In the present chapter, we will study the influence of the utricular
vortex on the otolith organs. This chapter is based on the results and discussion
in Boselli et al. (2011).

Our typical understanding of the otolith organs does not include any active
role for the endolymph. Typical models for the otolith organ (e.g. Jaeger et al.,
2002) implicitly assume the endolymph to be at rest (which is indeed the case for
linear accelerations). Based on the smallest linear acceleration of approximately
2× 10−3g (Peters, 1969) which can be sensed by the utricle, we can compute an
equivalent shear stress acting on the macula of

τmin ≈ 2× 10−3g · (ρo − ρf ) · b ≈ 2× 10−4Pa (119)

where b ≈ 30µm is the thickness of the layer of otoconia sitting on top of the hair
cells, and ρo,f are the densities of the otoconia and the endolymph, respectively.

Boselli et al. (2011) showed that the utricular vortex leads to shear stresses
at the walls of the utricle which appear to be highest at the location of the
utricular macula, i.e. the sensory epithelium of the utricle (figure 22.1). These
wall-shear stresses reach values on the order of 10−3Pa. Even though the above
calculation of the sensitivity threshold of the utricle, Eq. (119), contains several
rough assumptions, it appears fair to state that natural rotatory head maneuvers
can lead to fluid flows which stimulate the utricular macula above its sensitivity
threshold.

The coupling mechanism between angular motion and the otolith organs leads
to a sensory crosstalk. Unfortunately, we were unable to find any experimental re-
sults which are able to confirm conclusively our theoretical and numerical results.
Nevertheless, there exist phenomena which could be explained by the described
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Figure 22.1. Shear stress at the walls of the utricle and the
horizontal ampulla during angular acceleration (120◦/s2) in the
plane of the horizontal canal (from Boselli et al., 2011).

coupling mechanism. The utricular cavity of some vertebrates, for instance, con-
tains a structure known as papilla neglecta which is known to respond to angular
motion (Brichta & Goldberg, 1998). The papilla neglecta consists of a few hair
cells embedded in a small cupula which is protruding from the utricular wall. It
cannot be stimulated directly by inertial forces because there are no otoconia
with higher density. Therefore, it appears likely that the utricular vortex is re-
sponsible for the response to rotation. Another possibly related phenomenon has
been reported by Bockisch et al. (2005) who observed a lack of otolith contri-
bution to yaw head rotations while there is such a contribution for rotations in
other directions. This effect could be explained by the particular pattern of the
wall-shear stress on the utricular macula. During a yaw head rotation the vortex
rotates roughly in the plane of the utricular macula. This vortex does not deflect
the hair cells on the macula unidirectionally but along the circular stream lines.
We may conjecture that the opposing stimuli for the different hair cells cancel
across the whole macula such that the otolithic contribution disappears for yaw
rotations.

The previous reasoning points out the relevance of different wall-shear stress
patterns for different planes of rotation. Obviously, the wall-shear stress pattern
contains information about the angular velocity as well as about the plane of
rotation. While a simple acceleration sensor with a mass and a spring would
not be able to sense different patterns, the otolith organs may be able to do
that because they contain a relatively large number of hair cells (even more than
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Figure 22.2. Schematic of the structure and orientation of the
utricular and saccular maculae. The alignment of the hair cells
is indicated by a dot for the kinocilia (k) and a thin line for the
stereocilia (s). The firing rate of the hair cell increases when
the stereocilia are deflected toward the kinocilium. The striola
(str) separates each macula into two regions of opposing hair-cell
alignment. Reprinted from Fitzpatrick & Day (2004).

the cochlea!) which are oriented in a structured but non-uniform manner across
the cupula (figure 22.2). Therefore, we may speculate whether some anatomical
features of the otoliths (e.g. the striola running through the center of the macula)
are actually related to these wall-shear stress patterns.

Along the same line of thought, it is not unlikely that there exists a direct
relation between the location of the maximum shear stress and the position of
the macula within the utricular cavity. Boselli et al. (2011) have also shown that
the elliptic cross-section of the utricular cavity increases the level of wall-shear
stress at the macula. Therefore, it is not unlikely that this specific morphology
is the result of an evolutionary optimization.

Finally, there is an interesting connection to a common disease of the inner ear
known as Ménière’s dis¡ease. In Ménière’s disease, it is known that the pressure of
the endolymph is increased (endolymphatic hydrops) which leads to a significantly
enlarged utricle. Boselli et al. (2011) showed that size of the utricle increases
strength of the vortex and thereby also the magnitude of the wall-shear stress
on the macula. This suggests that vertigo (which can be a result of Ménière’s
disease) are related to an altered flow field in the utricle.





CHAPTER 23

Concluding remarks

In the various chapters of this book, we have laid out different aspects of the
fluid mechanics of the inner ear. It should have become clear that this tiny organ
hosts a remarkable variety of physical phenomena which are in a subtle balance.
Only their tight interaction enables the three sensorial functions of the inner ear
(hearing, linear and angular balance).

1. Biomedical applications

Next to satisfying our desire for a better understanding of human physiology,
the presented models of the organs of the inner ear can serve quite practical
purposes in the field of biomedical engineering.

Our models of BPPV (chapters 8 & 9) can support the medical practitioner
in the diagnosis and therapy of this commonly occurring form of vertigo. Further
refinements of these models (e.g. Boselli et al., 2010a) in combination with
patient-specific imaging of the SCC (e.g. Bradshaw et al., 2010b,a) will eventually
enable custom-tailored therapies for treating BPPV.

With the advent of new generations of micromechanical hearing aids, a de-
tailed understanding of the hydrodynamics within the cochlea has regained the
interest of scientists and manufacturers alike. Cochlear actuators which produce
mechanical signals within the perilymphatic fluid space or artificial ciliary sen-
sors to replace damaged hair cells interact directly with the fluids in the cochlea.
Whereas the cochlear actuator stimulates traveling waves in a relatively large fluid
space of about one millimeter diameter, the artificial hair cells are immersed in
a fluid space of only a few micrometers height (tectorial gap). Nevertheless both
flow systems are relevant for hearing and are in close interaction. Therefore, the
design and optimization of this new generation of hearing aids requires a compre-
hensive model of the whole cochlea with a particular focus on the hydrodynamics
in the various fluid spaces.

2. Toward a comprehensive mechanical model of the inner ear

In particular, in the last few chapters, we have tried to look at the inner
ear as a complete system and not just as a sum of three different sensors. In
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order to better understand complex pathologies which affect multiple organs (e.g.
Ménière’s disease) it is necessary to treat the inner ear as a single physiological
system with a wide range of tightly coupled physical mechanisms and phenomena.
The modeling concept proposed in the following is a step toward such a systemic
understanding of the inner ear.

We showed in Chapter 20 that the SCCs and the cochlea are separated in
terms of their relevant time scales. A comprehensive mechanical model of the
whole inner ear must therefore be able to cover a very wide range of time scales.
Moreover, there is obviously also a wide range of spatial scales which includes
tiny displacements of the cupula and/or the basilar membrane as well as the
full length of the uncoiled cochlea. Next to the spatial and temporal scales
to be covered, a comprehensive model must describe the physics of the fluids
(endolymph, perilymph), of the structural components which can be soft (cupula,
basilar membrane, Corti organ, membranous labyrinth, etc. ) or relatively stiff
(stapes footplate, bony walls), and of the electrochemical and micromechanical
processes in the OHC. We are therefore facing a multi-scale and multi-physics
problem.

A multi-scale numerical model of the inner ear is a formidable challenge
for computational science and, in particular, for high-performance computing.
Only a careful selection of numerical methods and algorithms which are tuned
for specific computer architectures will allow a simulation of the complete inner
ear. Furthermore, the multi-physics aspect suggests that we should use differ-
ent custom-tailored numerical approaches, e.g. discretization schemes, for the
different physical system. It is not sensible to model the fluid dynamics, the
solid mechanics and the active OHCs with one and the same numerical approach.
This leads to separate simulation modules for different physical processes which
requires an explicit coupling of the modules.

At the same time, it should be clear that a comprehensive model of the inner
ear cannot consist of a large monolithic numerical simulation. We have shown in
Chapter 19 that a monolithic computational model for the cochlea alone is within
reach. But it is certainly out of reach, if this model should cover the whole
inner ear. Moreover, we must not forget that there exist several phenomena
and processes in the inner ear which we have not touched in this monograph.
Most prominently, this is the bone conduction of acoustic signals which adds yet
another wave guide to the inner ear. Of equal importance are the details of the
electrochemical and micromechanical processes in the outer hair cells which we
have described here only by heuristic lumped-parameters models. Furthermore,
these are anatomical details of the Corti Organ, the micromechanics of the cupula,
the flow in the endolymphatic duct and sac (two additional anatomical features
of the membranous labyrinth), the electrophysiology within the cochlea (relevant
for cochlear implants), the dynamics of the middle-ear ossicles and, last but not
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least, the mechanical properties of the soft tissues in the inner ear. This list is
certainly not exhaustive. Nevertheless, it already shows that the level of detail
at which certain processes are to be modeled has to be chosen with great caution.
In this context, the model of Tullio’s phenomenon (Chapter 21) with its different
modeling approaches for the various involved processes should serve as a guideline
for the sensible design of a comprehensive mechanical model of the inner ear.
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Physiologie des Menschen und der Tiere 232, 500–512.

Stoop, R., Jasa, T., Uwate, Y. & Martignoli, S. 2007 From hearing to
listening: Design and properties of an actively tunable electronic hearing sensor.
Sensors 7, 3287–3298.

Stoop, R. & Kern, A. 2004 Two-tone suppression and combination tone gener-
ation as computations performed by the Hopf cochlea. Phys. Rev. Lett. 93 (26),
268103.

Stoop, R., Steeb, W.-H., Gallas, J. & Kern, A. 2005 Auditory two-tone
suppression from a subcritical Hopf cochlea. Physica A 351, 175–183.

Suzuki, M., Kadir, A., Hayashi, N. & Takamoto, M. 1996a Functional
model of benign paroxysmal positional vertigo using an isolated frog semicir-
cular canal. J. Vestib. Res. 6 (2), 121–125.

Suzuki, M., Kadir, A., Takamoto, M. & Hayashi, N. 1996b Experimental
model of vertigo induced by detached otoconia. Acta Otolaryngol. 116 (2),
269–272.



Bibliography 179

Taber, L. A. & Steele, C. R. 1979 Comparison of ”WKB” and experimental
results for three-dimensional cochlear models. J. Acoust. Soc. Am. 65, 1007–
1018.

Thomann, H. 1978 Simple pumping mechanism in a valveless tube. Z. angew.
Math. Phys. 29, 169–177.

Trefethen, L. N. & Embree, M. 2005 Spectra and pseudospectra: The behav-
ior of nonnormal matrices and operators . Princeton Univ. Press.

Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A.

1993 Hydrodynamic stability without eigenvalues. Science 261 (5121), 578–
584.

Tullio, P. 1929Das Ohr und die Entstehung der Sprache und Schrift , translated
by a. jellinek edn. Berlin: Urban & Schwarzberg.

Tweed, D., Cadera, W. & Vilis, T. 1990 Computing three-dimensional eye
position quaternions and eye velocity from search coil signals. Vision Research
30, 97–110.

Valli, P., Botta, L., Zucca, G., Valli, S. & Buizza, A. 2008 Simulation of
cupulolithiasis and canalolithiasis by an animal model. J. Vestib. Res. 18 (2-3),
89–96.

Valli, P., Buizza, A., Ghilardi, P., Pagliardi, M., Greco, G. & Favalli,

V. 2006 Experimental approach to canalolithiasis by means of animal and
physical models. In 24th Barany Society meeting, June 11-14 2006 . Uppsala,
poster presentation.

Van Buskirk, W. & Grant, J. 1973 Biomechanics of the semicircular canals.
In Biomechanics Symposium, pp. 53–54. ASME.

Van Buskirk, W., Watts, R. & Liu, Y. 1976 The fluid mechanics of the
semicircular canals. J. Fluid Mech. 78 (1), 87–98.

Van Buskirk, W. C. 1977 The effects of the utricle on fluid-flow in semicircular
canals. Ann. Biomed. Eng. 5 (1), 1–11.

Van Egmond, A., Groen, J. & Jongkees, L. 1949 The mechanics of the
semicircular canal. J. Physiol. 110 (1), 1–11.

van Hengel, P., Duifhuis, H. & van den Raadt, M. 1996 Spatial periodicity
in the cochlea: The result of interaction of spontaneous emissions? J. Acoust.
Soc. Am. 99, 3566–3571.
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Békésy eddies, 121
Navier–Stokes equations, 21, 46, 122, 129,

130

acoustic streaming, 99, 101, 121, 153
air-bone gap, 154
air-conducted sound, 154
ampulla, 8, 15

vortical flow, 46

basilar membrane, 9, 130, 144
damping, 130
stiffness, 10, 97, 112, 152
transversal stiffness, 130

benign paroxysmal positional vertigo, see
also BPPV

bone-conducted sound, 166
BPPV, 49

fatigue, 91
onset-latency, 51, 53, 58, 60, 70, 82, 87
time to peak, 51, 70

canalithiasis, 49
2D particle model, 85

canaliths, 49, 75
clustered, 49, 91
initial position, 93
magnetized, 91

cochlea, 9
active models, 102
characteristic place, 97
distortion product, 118

electrophysiology, 166
nonlinear feed-forward model, 131
passive models, 101

place principle, 97

response compression, 117

tonotopic map, 107, 119
Corti organ, 9, 11

cupula, 8, 15
dimensionless stiffness, 24

maximum displacement, 70
reactive force, 23

stiffness, 18, 23, 40, 75
time constant, 18, 40, 73, 78

volume displacement, 16, 23
cupula mode, 26

distensibility, 157
Dix–Hallpike maneuver, 49

duct modes, 26

endolymph, 7

flow velocities, 45
endolymphatic hydrops, 163

Epley maneuver, 49

fast particle mode, 64

fluid-structure interaction, 140, 143, 153
Froude number, 56

FSI, see also fluid-structure interaction

hair cell, 9

inner, 11
outer, 11, 97

hearing aid, 4, 100, 148, 165

helicotrema, 9, 113, 126
hidden waves, 148

Hopf bifurcation, 117, 145

IB, see also immersed boundary method

immersed boundary method, 132, 140

181



182 INDEX

impedance pump, 156
inner ear, 5

kinocilia, 163

labyrinth

bony, 6
membranous, 6

macula, 9, 49, 163

middle ear, 5, 145

nystagmus, 16
per-rotatory, 51

positional, 51

OAE, see also otoacoustic emissions

organ of Corti, see also Corti organ
ossicles, 5
otoacoustic emissions, 99
otoconia, 9, 49
otolith, 9, 161

sensitivity threshold, 161
striola, 163

outer ear, 5
oval window, 9, 100, 111, 126, 130, 145
overdamped pendulum, 18
overshoot, 42

papilla neglecta, 162
particle settling time, 73
perilymph, 7

peristalsis, 157

Reissner’s membrane, 9, 144
reverse traveling wave, see also traveling

wave, reverse

Reynolds number, 45, 74, 127, 135
round window, 9, 144
round window atresia, 138

saccule, 9
scala media, 9
scala tympani, 9
scala vestibuli, 9
SCC, see also semicircular canal
SCD, see also superior canal dehiscence
semicircular canal, 8, 15

eigenfunction, 31
horizontal, 6
lateral, see also horizontal

operating range, 16, 18

overshoot, 58, 79
post-rotatory overshoot, 40
posterior, 6
sensation threshold, 40
superior, 6
surgical plugging, 48
traveling wave hypothesis, 156
velocity error, 37

slow particle mode, 64
stapes, 10

rocking, 100, 133
sideways, 126, 133

steady streaming, see also acoustic
streaming

Steinhausen’s model, 16, 32
stereocilia, 9, 99, 123, 163
Stokes boundary layer, 101, 122, 127, 130,

135, 136, 140, 155
Stokes equations, 45, 123, 127, 135, 153
Stokes number, 74

BPPV, 64
classical, 64

subtectorial space, 98
superior canal dehiscence, 154

tectorial membrane, 11
temporal bone, 6
third window, 154
top-shelf vertigo, see also BPPV
transmission-line model, 101, 105, 158
traveling wave, 10

reverse, 99
Tullio’s phenomenon, 153

utricle, 9
inertial force, 23
vortical flow, 46, 161

Van Buskirk’s model, 21
velocity storage, 40, 44
vestibular system, 8
vestibulo–ocular reflex, VOR, 16
viscous time scale, 18, 73
VOR, see also vestibulo–ocular reflex

wave packet pseudomodes, 108
symbol, 109
twist condition, 109

Womersley number, 32, 45, 74, 136, 155


