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 Con way’s Light 
on the Shadow 
of Mordell
Alexander P. Veselov

The celebrated Markov triples are positive integer 
solutions of the Markov equation

x2 + y2 + z2 = 3xyz.

Andrey Andreyevich Markov (1856–1922) [6] showed 
that all such solutions can be found recursively from 
(1, 1, 1) using a natural action of the modular group 
PSL2(ℤ) on the solutions of this equation generated by the 
cyclic permutation of variables and the Vieta involution 
(x, y, z) ↦ (x, y, 3xy − z).

Markov introduced his triples in 1879 in relation to 
the Diophantine properties of the binary quadratic forms 
that can be interpreted as the description of the “most 
irrational” numbers. Since then, many surprising con-
nections have been discovered between Markov triples 
and hyperbolic geometry, combinatorics of words, and, 
more recently, the theory of Frobenius manifolds, alge-
braic geometry, and cluster mutations (see [1, 2] and the 
references therein). This makes the Markovian theme one 
of the most fascinating stories in mathematics, which be-
cause of a still unproven uniqueness conjecture [1] is far 
from being finished.

Recently, Valentin Ovsienko [8], motivated by his at-
tempts to understand possible super analogues of cluster 
algebras [9–11], introduced the so-called shadow version 
of Markov triples by considering the solutions of a cer-
tain version of the Markov equation over dual numbers 
X = a + b� , �2 = 0.

The dual numbers were introduced in 1873 by Wil-
liam Clifford (1845–1879) and were used by Eduard Study 
(1862–1930) to describe the relative positions of two skew 
lines in space. They are the simplest case of the Grassmann 
numbers, which are used to describe the fermionic fields in 
modern quantum theory.

In fact, Ovsienko introduced the shadow versions of 
other sequences of integers, including Fibonacci numbers 
and (with Serge Tabachnikov) Somos-4 sequences [8, 11]. 
Recently, Andrew Hone [4] extended this study to a more 
general Somos-4 recurrence relation over dual numbers.

As always with a new development, a valid question is 
whether the shadow dynamics are interesting enough to 
deserve a detailed study. The aim of this note is to add few 
more arguments to those of Ovsienko and Hone in favor of 
a positive answer to this question.

Namely, we will study the shadow Mordell triples satis-
fying the Mordell equation

with X, Y, Z dual integers. As was shown by Louis Mordell 
[7], this equation can be viewed as a “solvable” modification 

Mathematical Gems and C uri osi tie s Edited by Sophie Morier-Genoud and Valentin Ovsienko

This column is a place for those bits of contagious mathematics 
that travel from person to person in the community because 
they are so elegant, surprising, or appealing that one has 
an urge to pass them on. Contributions are most welcome. 
Submissions should be uploaded at the Intelligencer’s website 
https:// www. sprin ger. com/ journ al/ 283 by clicking on “Submit 
manuscript” or sent directly to Sophie Morier-Genoud (sophie.
morier-genoud@imj-prg.fr) or Valentin Ovsienko (valentin.
ovsienko@univ-reims.fr).

X2 + Y2 + Z2 = 2XYZ + 1

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



  ⚫  The Mathematical Intelligencer372

of Markov’s equation. This fact was used by Don Zagier [15] 
to study the growth of the Markov numbers.

Note that as in the case of Markov’s equation, we have 
a natural action of the modular group PSL2(ℤ) on the solu-
tions of the Mordell equation. Remarkably, the shadow 
orbits of the solution (1, 1, 1), which is stationary for 
modular dynamics, are none other than the values of bi-
nary quadratic forms and thus can be visualized using the 
original Conway topograph [3].

The shadows of other Mordell triples can be written 
explicitly in terms of the solutions of Pell’s equations, fol-
lowing Mordell [7]. We will discuss also the shadow growth 
along the paths in the Conway topograph, which can be 
described in terms of the Lyapunov function of the Euclid 
tree [12].

The Conway Topograph and the Modular 
Group
The values of binary quadratic forms on the integer lattice 
ℤ
2 is one of the most classical objects of study in number 

theory, going back to Fermat, with later contributions from 
Euler, Gauss, and Jacobi. A famous question asks which 
integers n can be represented as the sum of two squares,

and in how many ways. The answer is given by the Jacobi 
formula for the number N(n) of such representations:

where N1(n) and N3(n) are the numbers of the divisors of n 
with residues 1 and 3 modulo 4, respectively (see, e.g., [5]).

In the 1990s, this very classical story had a very inter-
esting twist due to the intervention of John H. Conway. 

n = x2 + y2, x, y ∈ ℤ ,

N(n) = 4(N1(n) −N3(n)) ,

In his book The Sensual (Quadratic) Form [3], Conway 
described the following “topographic” way to “visualize” 
these values. He introduced the notions of the lax vector as 
a pair (±v) , v ∈ ℤ

2 , and the superbase of the integer lattice 
ℤ
2 as a triple of lax vectors (±e1,±e2,±e3) such that (e1, e2) 

is a basis of the lattice and

Every basis (e1, e2) can be included in exactly two super-
bases, namely ±(e1, e2,−e1 − e2) and ±(e1,−e2,−e1 + e2) , 
so that the corresponding set of the superbases can be 
described using the binary tree embedded in the plane. 
The connected components of the complement to the 
tree (domains) are labeled by the primitive (that is, hav-
ing coprime coordinates) lax vectors and the edges by the 
lax bases, while the superbases correspond to the vertices 
of the tree (see Figure 1a, where we have shown only one 
representative of the lax vectors). The projective version of 
the Conway superbase topograph is known also as the Farey 
tree, since it is related to Farey “addition”

(see Figure 1).
Let Q(x, y) = ax2 + hxy + by2 be a binary quadratic form 

(in Conway’s notation) with x, y ∈ ℤ ; the coefficients a, b, h 
need not be integers. By taking the values of the form Q on 
the vectors of the superbase, we get what Conway called 
the topograph of Q, containing the values of Q on all primi-
tive lattice vectors. In particular, if e1 = (1, 0) , e2 = (0, 1) , 
e3 = −(1, 1) , we have the values Q(e1) = a , Q(e2) = b , 
Q(e3) = c ∶= a + b + h.

Conway’s key idea1 is that one can construct the topo-
graph of Q recursively, starting from this triple and using 

e1 + e2 + e3 = 0 .

a

b
∗
c

d
=

a + c

b + d

(a) (b)

Figure 1.  (a) The superbase topograph and (b) the Farey tree.

1Conway clearly believed that this is an important idea, claiming in the introduction to his lectures [3] that “the ‘topograph’ of the 
First Lecture is new.”
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the following property of any quadratic form, which Con-
way called the arithmetic progression rule (known also in 
geometry as the parallelogram law):

In fact, the quadratic forms (in any dimension) can be 
characterized as the continuous functions Q satisfying rela-
tion (1). In particular, for Q(x, y) = x2 + xy + y2 , (x, y) ∈ ℤ

2 , 
describing the square lengths of vectors in a regular 
hexagonal lattice, we have the Conway topograph shown in 
Figure 2.

As Conway nicely explained, the modular group 
PSL2(ℤ) can be viewed as the natural symmetry 
group of his topograph. Indeed, it is well known that 
PSL(2,ℤ) = ℤ2 ∗ ℤ3 is generated by

where U acts on the topograph combinatorially by rotation 
by � about the edge center, and V acts by rotation by 2�∕3 
about the vertex. Thus, within Klein’s Erlangen program, 
Conway’s topograph can be viewed as a discrete version 
of the hyperbolic plane with its isometry group PSL2(ℝ) 
replaced by PSL2(ℤ).

This means that Conway’s topograph can be used to 
describe any PSL2(ℤ) dynamics. In particular, we have a 

(1)Q(u + v) + Q(u − v) = 2(Q(u) + Q(v)), u, v ∈ ℝ
2 .

U =

(
0 − 1
1 0

)
, V =

(
0 − 1
1 1

)
,

natural action of PSL2(ℤ) on the solutions of Markov’s equa-
tion x2 + y2 + z2 = 3xyz , generated by the Vieta involution 
and cyclic permutation of the variables. As Markov showed 
in [6], all integer solutions of Markov’s equation form one 
orbit of PSL2(ℤ) acting on (1, 1, 1). A part of the corre-
sponding Conway topograph of the Markov triples is shown 
in Figure 3 with the local Vieta rule generating them.

Shadow Markov and Mordell triples
Let

be the commutative ring of dual integers. By analogy with the 
Gaussian integers a + bi , i2 = −1 , a, b ∈ ℤ , we will call them 
Clifford integers. The invertible elements (units) in 𝔻(ℤ) have 
the form ±1 + b� for b ∈ ℤ.

Ovsienko [8] proposed the shadow version of Markov 
triples as the solutions over Clifford integers of the following 
version of the Markov equation:

as the PSL2(ℤ)-orbit of the initial triple of units X = 1 , 

Y = Z = 1 + � (for the motivation for this choice, see [8]).

𝔻(ℤ) = {a + b�, a, b ∈ ℤ, �2 = 0}

(2)X2 + Y2 + Z2 = (3 − 2�)XYZ, X,Y, Z ∈ 𝔻(ℤ) ,

(a) (b)

Figure 2.  (a) The arithmetic progression rule; (b) the Conway topograph of the quadratic form Q = x2 + xy + y2.

(a) (b)

Figure 3.  (a) Vieta involution and (b) Conway topograph of Markov triples.
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Ovsienko observed that the shadow companion of the 
very left (Fibonacci) branch of the Markov tree

is the known sequence A238846, which is the convolution 
of two bisections of the Fibonacci sequence, and he asked 
for a possible meaning of the other shadows (see Figure 4). 
This is a very interesting question, which is still largely 
open.

We will discuss the simpler Diophantine equation

which was studied by Mordell [7] and can be viewed as a 
“solvable” modification of Markov’s equation.2 Recently, it 
was realized that it is closely related to the two-valued for-
mal group in complex K-theory studied by Buchstaber and 
Novikov (see [2]).

Mordell showed that this equation has integer solutions 
of two types: 

 I: x = 1 , y = z,
 II: 2x = �a + �a , 2y = �b + �b , 2z = �c + �c,

where a, b, c ∈ ℤ satisfy a + b = c , and � = p + q
√
d , 

� = p − q
√
d , and p, q are solutions of Pell’s equation

where d ∈ ℕ is not a perfect square. It is well known that all 
positive integer solutions of this classical equation (mistak-
enly ascribed to Pell by Euler) can be given by

where (p0, q0) is the minimal positive (fundamental) solu-
tion, which can be found from the continued fraction 
expansion of 

√
d (see, e.g., [5]). One can also use Conway’s 

topograph to describe the solutions of Pell’s equation, as is 
nicely explained by Weissman in [14].

1, 4, 13, 40, 120, 354, 1031, 2972, 8495,…

(3)x2 + y2 + z2 = 2xyz + 1 ,

p2 − dq2 = 1 ,

p + q
√
d =

�
p0 + q0

√
d
�k

, k ∈ ℕ,

In particular, when d = 2 , the fundamental solution 
of Pell’s equation p2 − 2q2 = 1 is p0 = 3 , q0 = 2 , which 
leads to the Mordell triples of type II with � = 3 + 2

√
2 , 

� = 3 − 2
√
2 . As in the Markov case, we have the action of 

PSL2(ℤ) generated by the Vieta involution

and by cyclic permutations of the variables. However, in contrast 
to the Markov case, we see that PSL2(ℤ) has infinitely many 
orbits here. In particular, we have a special type-I orbit consist-
ing of the single point (1, 1, 1) fixed under the action of PSL2(ℤ).

Let us look at the shadows X = 1 + a� , Y = 1 + b� , 
Z = 1 + c� of this special orbit. The corresponding or-
bit on the Conway topograph satisfies the Vieta rule 
Z + Z� = 2XY , giving

which is none other than Conway’s arithmetic progression 
rule! Thus we have the following nice surprise.

Theorem 1. Shadow PSL2(ℤ)-orbits of the special Mordell tri-
ple (1, 1, 1) can be naturally visualized by Conway topographs 
of the values of binary quadratic forms.

Note that this is true for any coefficients of the binary 
quadratic forms and any Mordell triples, not necessarily 
integers (Figure 5).

Before considering the shadows of other Mordell triples, 
let us look at the underlying geometry. Geometrically, the 
Mordell equation (3) determines a particular affine realiza-
tion of the classical Cayley’s nodal cubic surface with the 
maximal number (which is 4) of conical singularities at the 
points (1, 1, 1), (1,−1,−1) , (−1, 1,−1) , (−1,−1, 1) (see the 
real version in Figure 6).

The following observation, going back to Mordell,  
allows one to linearize the Mordell equation.

Theorem 2. [7] The real Mordell triples (x, y, z) with 1 ≤ x , 
y ≤ z can be parametrized as

(x, y, z) ↦ (x, y, 2xy − z)

c + c� = 2(a + b) ,

Figure 4.  The shadow Markov tree (from [8]).

2It is very interesting to read Mordell’s comments in [7, p. 505] about what solvability could mean for Diophantine equations.
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with real u, v,w ≥ 0 satisfying the Euclid relation w = u + v.

Now we can use the fact that any analytic relation can 
be extended to the dual numbers using the formula

since �2 = 0 . This leads us to the following shadow Mordell 
triples:

where the parameters satisfy the Euclid relation

Theorem 3. The formulas (5), (6) describe all solutions of the 
Mordell equation

over real dual numbers having real parts 1 ≤ x , y ≤ z , with 
the exception of the special triple x = y = z = 1 , for which the 
shadows were described above.

(4)x = cosh u, y = cosh v, z = coshw

f (a + b�) = f (a) + bf �(a)� ,

(5)
X = cosh u + �� sinh u,

Y = cosh v + �� sinh v,

Z = coshw + �� sinhw,

(6)w = u + v, � = � + �.

(7)X2 + Y2 + Z2 = 2XYZ + 1

First, note that X = x + x̃𝜀 , Y = y + ỹ𝜀 , Z = z + z̃𝜀 
satisfy (7) iff

and

Let X = cosh u + x̃𝜀 , Y = cosh v + ỹ𝜀 , Z = coshw + z̃𝜀 be a 
shadow of the triple (4) with w = u + v . Then using the addi-
tion formula for cosh , we can rewrite (8) as

Dividing this equation by sinh u sinh v sinhw , assumed 
to be nonzero, we see that the parameters 𝛼 = x̃∕ sinh u , 
𝛽 = ỹ∕ sinh v , 𝛾 = z̃∕ sinhw satisfy the relation � = � + � . 
This means that if none of x, y, z is 1, then the correspond-
ing shadows indeed have the form (5), (6). For the Mor-
dell triples (1, y, y) with y ≠ 1 , the shadows have the form 
(1, y + ỹ𝜀, y + z̃𝜀) with arbitrary ỹ, z̃ , which agrees with (5), 
(6), since � could be arbitrary because sinh u = 0 . The case 
of the special triple (1, 1, 1) is the only exceptional one here, 
but it was discussed above.

Thus, the shadows of the Mordell triples (5) on the 
Conway topograph are determined by the pairs of Eu-
clid’s triples (6). In particular, we have a natural choice 
when these triples are proportional:

leading to the following shadows, which we will call 
principal:

Let us return now to the integer Mordell triples of type II,

where the integers a, b, c satisfy a + b = c and � = p + q
√
d , 

� = p − q
√
d  , with p,  q a solution of Pell’s equation 

p2 − dq2 = 1.

Theorem 4. The following formulas provide an explicit form 
of the principal integer shadows of Mordell triples (9):

x2 + y2 + z2 = 2xyz + 1

(8)(x − yz)x̃ + (y − xz)ỹ + (z − xy)z̃ = 0.

sinh v sinhwx̃ + sinh u sinhwỹ − sinh u sinh vz̃ = 0.

� = �u, � = �v, � = �w, u ± v ± w = 0 ,

X = cosh(u + ��) = cosh u + �u� sinh u ,

Y = cosh(v + ��) = cosh v + �v� sinh v ,

Z = cosh(w + ��) = coshw + �w� sinhw .

(9)x =
1

2
(�a + �a), y =

1

2

(
�b + �b

)
, z =

1

2
(�c + �c) ,

(a) (b)

Figure 5.  (a) Shadow of the special orbit (1, 1, 1); (b) the Conway topograph of Q = x2 + xy + y2.

Figure 6.  A real Cayley–Mordell surface.
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where m, a, b, c ∈ ℤ , a + b = c.

Indeed, since �� = (p + q
√
d)(p − q

√
d) = p2 − dq2 = 1 , 

the equality cosh u =
1

2
(�a + �a) implies that u = ±a log � 

and sinh u = ±
1

2
(�a − �a) . Now we have only to choose the 

values of the parameter � in the formula for principal shad-
ows to make them integers, which leads to formula (10). In 
particular, for Pell’s equation p2 − 2q2 = 1 with p = 3 , q = 2 , 
m = 1 , we have the Conway topographs of the corresponding 
Mordell triples and their shadows shown in Figure 7.

Note that in contrast to Markov’s equation, where we 
have only the local Vieta rule on the topograph to generate 
the solutions, in the Mordell case we have also the explicit 
formula (10) for the Mordell triples and their shadows in 
terms of the corresponding Euclid triples (cf. Mordell’s 
comments in [7]).

Shadow Growth on the Conway 
Topograph
As we can see in Figure 7, in the Conway topograph the 
shadows grow faster than the Mordell triples. Let us look at 
their growth in more detail.

Consider the corresponding Euclid tree of triples 
a, b, c ∈ ℤ with a + b = c parametrizing the Mordell triples 
(9). Note that 2x(a) ∶= �a + �a = 2x(−a) , so we can restrict 
ourselves to positive a, b, c (see Figure 8). Traversing this 
tree can be viewed as an application of the classical Euclid-
ean algorithm for finding the greatest common divisor of a 
and b (assumed here to be 1).

Theorem 5. On the Conway topograph, the growth of the 
Mordell numbers and their principal shadows (10) are related 
asymptotically for large a by

(10)

x̃ =
1

2
√
d
ma(𝜉a − 𝜂a) ,

ỹ =
1

2
√
d
mb(𝜉b − 𝜂b) ,

z̃ =
1

2
√
d
mc(𝜉c − 𝜂c) ,

x̃(a) ∼ Cax(a), C = m∕
√
d,

where a is the corresponding entry in the Euclid tree. In other 
words, asymptotically, we have the shadow growth

Indeed, we know that 𝜉 = p + q
√
d > 1 , 

𝜂 = p − q
√
d < 1 , since �� = p2 − dq2 = 1 . This im-

plies that for large positive a, we asymptotically have 
2x(a) = �a + �a ∼ �a , and thus in the Conway topograph 
the shadows grow as

Here we have used the standard notation f (a) ∼ g(a) when 
lima→∞ f (a)∕g(a) = 1.

Let us look now more closely at the growth along the 
paths on the Conway topograph. Using a Farey tree, we can 
label the directed infinite paths by � ∈ ℝP1 , where � is the 
limit of Farey fractions along the path (see Figure 9).

Following [12], we define the Lyapunov function Λ(�) 
describing the growth of the Euclid triples

along the path �(�):

(here an(�) can be replaced by bn(�) or cn(�)).

Theorem 6. ([12]) The function Λ(�) has the following properties:

• Λ(�) is defined for all � ∈ ℝP1 and is GL2(ℤ)-invariant: 

• Λ(�) vanishes almost everywhere, but the Hausdorff 
dimension of its support is 1.

• The Lyapunov spectrum SpecE ∶= {Λ(�), � ∈ ℝP1} of the 
Euclid tree is 

where � =
�
1 +

√
5
�
∕2 is the golden ratio.

Using this function, we can describe the growth of both 
Mordell triples and their shadows.

x̃ ∼ cx ln x, c = m∕
√
d ln 𝜉.

2x̃(a) = ma(𝜉a − 𝜂a)∕
√
d ∼ ma𝜉a∕

√
d ∼ Cax(a).

(an(�), bn(�), cn(�))

(11)Λ(�) ∶= lim sup
n→∞

ln |an(�)|
n

Λ

(
a� + b

c� + d

)
= Λ(�), � ∈ ℝP1,

(
a b
c d

)
∈ GL2(ℤ) .

SpecE = [0, ln�],

(a) (b)

Figure 7.  (a) A Mordell tree; (b) its shadow.
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The special orbit (1, 1, 1) is stationary for the modular 
dynamics, so it has zero growth, but as we have seen, the 
shadows are the values of binary quadratic forms. Their 
growth in the Conway topograph was studied by Spalding 
and the author in [13], which leads to the following result.

Consider the growth in the Conway topograph of the 
PSL2(ℤ)-orbit of X = 1 + a� , Y = 1 + b� , Z = 1 + c� . Let

be the corresponding binary quadratic form and

its discriminant, which we assume for simplicity to be 
nonzero. When D > 0 , the quadratic form is indefinite; 
otherwise, it is either positive or negative definite.3 As a 
corollary of the results of [13], we have the following result.

Theorem 7. When D(a, b, c) < 0 , the growth of the shadows 
of the special Mordell triple (1, 1, 1) along the path �(�) satisfies

When D(a, b, c) > 0 , the same is true except for 𝜉 = 𝛼, �̄� , 
which are the roots of the quadratic equation Q(�, 1) = 0 

Q(x, y) = ax2 + (c − a − b)xy + by2

D(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc

lim sup
n→∞

1

n
ln |an(�)| = 2Λ(�) .

defining the ends of the corresponding Conway river, where 
the growth is zero.

Recall that the Conway river [3] is the infinite path 
separating the positive and negative values of the indefi-
nite binary quadratic forms in the Conway topograph (see 
Figure 10, and for more details, [13]).

For the type-II Mordell triples, we can describe the rela-
tive growth of the shadows along the path �(�) . Let xn(�) 
and x̃n(𝜉) be the Mordell numbers (9) and their shadows 
(10) along the path �(�).

Theorem 8. The relative growth of the principal shadows 
x̃n(𝜉) of the type-II Mordell numbers xn(�) along the path �(�) 
can be described by

Indeed, from the explicit formulas (9), (10), it follows 
that

Note that the condition on the shadows being principal 
can be removed here. For the generic shadows of the orbit 
(1, 1, 1), this limit is 2Λ(�) . I believe that similar results about 
shadow growth hold also for Ovsienko’s shadow Markov 
numbers, but that is still to be established.

Another natural research direction is to study similar 
questions for the elliptic version of the Mordell equation

corresponding to the addition formula for the Jacobi 
elliptic function cn(u, k) (see [2]). As explained in [2], these 
equations have significant meaning in topology: the Mor-
dell equation is closely related to the formal group law in 
complex K-theory, while its elliptic version is related to the 
elliptic cohomology.

lim sup
n→∞

1

n
ln

x̃n(𝜉)

xn(𝜉)
= Λ(𝜉) .

lim sup
n→∞

1

n
ln

x̃n(𝜉)

xn(𝜉)
= lim sup

n→∞

ln an(𝜉)

n
= Λ(𝜉) .

(12)
X2 + Y2 + Z2 = 1 + 2XYZ − k2

(
1 − X2

)(
1 − Y2

)(
1 − Z2

)
,

Figure 8.  The Euclid tree.

(a) (b)

Figure 9.  (a) Farey and (b) Euclid trees with the “golden” Fibonacci path.

3In the corresponding real projective plane, the equation D(a, b, c) = 0 defines a conic, with the disk D < 0 the celebrated Cayley–
Klein model of the hyperbolic plane.
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Figure 10.  Conway’s river for Q = 17x2 − 12xy + 2y2.
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