A taxonomic study of Podostemaceae subfamily Podostemoideae of Laos with phylogenetic analyses of Cladopus, Paracladopus and Polypleurum

Satoshi Koi \& Masahiro Kato

Kew Bulletin

Official Journal of the Royal Botanic Gardens, Kew

ISSN 0075-5974
Volume 67
Number 3
Kew Bull (2012) 67:331-365
DOI 10.1007/s12225-012-9399-8

Kew Bulletin

An International Journal for Taxonomy, Systematics and Conservation of Plants and Fungi

Kew

Your article is protected by copyright and all rights are held exclusively by The Board of Trustees of the Royal Botanic Gardens, Kew. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your work, please use the accepted author's version for posting to your own website or your institution's repository. You may further deposit the accepted author's version on a funder's repository at a funder's request, provided it is not made publicly available until 12 months after publication.

A taxonomic study of Podostemaceae subfamily Podostemoideae of Laos with phylogenetic analyses of Cladopus, Paracladopus and Polypleurum

Satoshi Koi ${ }^{1,2}$ \& Masahiro Kato ${ }^{1}$

Abstract

Summary. The Podostemaceae of Laos are much less understood than those of adjacent Thailand. Comparative morphology using new materials, together with the latest molecular phylogenetic studies, have revealed a high diversity in subfamily Podostemoideae in Laos. This subfamily comprises five genera and 15 species. The genus Hydrobryum Endl. is enlarged, and found to be remarkably diverse in root and shoot morphology. We describe two species, H. subcylindricum sp. nov. and H. taeniatum sp. nov., with subcylindrical and ribbon-like roots, respectively; H. austrolaoticum sp. nov., H. verrucosum sp. nov. and H. subcrustaceum sp. nov. with crustose roots, and H. takakioides sp. nov. with crustose roots and elongate shoots. Diplobryum C. Cusset, comprising four species and characterised solely by the nearly 20 -ribbed capsule, is polyphyletic. Two Lao and a Vietnamese species of Diplobryum are transferred to Hydrobryum: H. ramosum (C. Cusset) Koi \& M. Kato comb. nov., with floating subcylindrical roots and anchoring disk-like bases, and H. vientianense (M. Kato \& Fukuoka) Koi \& M. Kato comb. nov. and H. minutale (C. Cusset) Koi \& M. Kato comb. nov. with crustose roots. The rootless D. koyamae M. Kato \& Fukuoka was recently combined as Hydrodiscus koyamae (M. Kato \& Fukuoka) Koi \& M. Kato. Cladopus (sect. Griffithella) pierrei (Lecomte) C. Cusset is not segregated even at a sectional rank. We also describe Polypleurum pluricostatum sp. nov., and add Hydrobryum tardhuangense M. Kato, Paracladopus chiangmaiensis M. Kato and Polypleurum schmidtianum Warm. as new records to Laos, and Polypleurum wallichii (R. Br. ex Griff.) Warm. from new localities in Laos.

Key Words. Flora, matK, taxonomy, Thailand.

Introduction

The Podostemaceae is a family of unusual aquatic angiosperms comprising c. 280 species classified in 49 genera. The family, commonly known as river-weeds, is found in rapids and waterfalls in the tropics and subtropics: the habitats are quite similar across the world. Vegetative plants grow submerged in turbulent water, firmly adhering on rock surfaces during the rainy season. When the water level lowers during the dry season the plants become exposed, producing flower and fruit, before finally desiccating. Therefore the plants are forcibly annual. The vegetative plants are alga-, liverwort- or moss-like as adaptations to such an environment. The flowers are reduced and simple, consisting of a few filiform or lobed tepals, $1-3$ stamens (but multiple in American species), and a single, 2 - 3-carpellate pistil.

The earliest floristic treatment of Lao Podostemaceae was made by Cusset (1973a, b), who enumerated three species, Cladopus pierrei (Lecomte) C. Cusset (Podostemoideae), Dalzellia carinata (Lecomte) C. Cusset, and Da. diversifolia (Lecomte) C. Cusset (Tristichoideae) (the subfamilies were treated as
families). Later, Diplobryum ramosum C. Cusset was added (Cusset 1992). Kato \& Fukuoka (2002) described two more species of Diplobryum C. Cusset, Di. vientianense M. Kato \& Fukuoka and Di. koyamae M. Kato \& Fukuoka, although they doubted the monophyly of the genus, and added a new record of Polypleurum wallichii (R. Br. ex Griff.) Warm. Dalzellia carinata and Da. diversifolia were transferred to the new genus Cussetia M. Kato (Kato 2006a). As a result, three genera and five species of Podostemoideae and one genus and two species of Tristichoideae have so far been recognised.

Diplobryum is an enigmatic genus. It was established by Cusset (1972) for Di. minutale C. Cusset from southern Vietnam. The genus was characterised by the crustose root, the capitate stigma, the 20 -ribbed capsule, the ovary-stalk protruding beyond the spathella and bracts, and the ellipsoidal or lenticular, ribbed seed (Cusset 1972, 1973a). Di. ramosum is distinct from Di. minutale in its cylindrical, repeatedly branched roots and linear, elongate stigmas (Cusset 1992). Di. vientianense, like Di. minutale, has crustose

[^0]roots bearing flowers scattered on the dorsal surface, whereas Di. koyamae, like Di. ramosum, has floriferous, ramified axes (the homology of which to the root or shoot was uncertain) (Kato \& Fukuoka 2002). Thus the enlarged genus Diplobryum was poorly defined by a single character, i.e. the 20 -ribbed capsule, and is remarkably heterogenous. Very recently Koi \& Kato (2010) proposed a new genus Hydrodiscus Koi \& M. Kato for Di. koyamae, based on molecular phylogenetic relationships and evidence of seedling and shoot development.

Investigation of Podostemaceae in Laos was motivated by recent progress of taxonomy of the family in adjacent Thailand. For Thai Podostemaceae, Cusset (1973a, b; 1992) and Cusset \& Cusset (1988) have recorded in total seven genera and 10 species. In floristic studies of the family mostly based on recent collections, Kato (2004, 2006a), Kato et al. (2004), Koi et al. (2008) and Kato \& Koi (2009) enumerated 10 genera and 42 species, indicating that Thailand is a centre of diversity of the family in Asia. This remarkably enlarged number of taxa implies that the Podostemaceae of Laos, northeast of Thailand, are potentially more diverse than we assumed. It will not be surprising if more species are discovered by future explorations.

This paper describes a new and revised taxonomy of the subfamily Podostemoideae of Laos, based on comparative morphology using new materials, along with the latest molecular phylogenetic relationships (Koi \& Kato 2010) and those revealed in this study. Due to insufficient field observations and lack of collections from Laos, the conservation assessments given below are very preliminary. The habitat is restricted to exposed rapids and waterfalls, where populations are patchy, and is still undisturbed in most areas. Generally the Lao species are near threatened (NT) according to IUCN conservation ratings. Podostemaceae will be threatened by future water pollution and dam construction.

Materials and methods

Materials were collected from central and southern Laos (according to administrative divisions), and all vouchers are deposited in the Herbarium (TNS), Department of Botany, National Museum of Nature and Science (Tsukuba); Forest Herbarium (BKF), Department of National Parks, Wildlife and Plant Conservation (Bangkok); and National University of Laos Herbarium. These herbaria are not listed in the specimen citations; locations of specimens from other herbaria are given.

For comparative morphology, materials were fixed with FAA (formaldehyde:acetic acid:50\% ethyl alcohol $=5: 5: 90$). We also examined specimens deposited in University of Copenhagen Herbarium (C), Royal Botanic Garden Edinburgh Herbarium (E), Herbari-
um of Royal Botanic Gardens, Kew (K), National Herbarium of the Netherlands (L), Herbarium of National Museum of Natural History, Paris (P), and University of Tokyo Herbarium (TI).

Materials for phylogenetic analysis are listed in the Appendix. Analysis was performed using chloroplast matK sequences. The methods of DNA extraction, sequencing and phylogenetic analyses are described in Koi \& Kato (2010). For the maximum likelihood (ML) and Bayesian analyses, the program Modeltest (version 2.3; Posada \& Crandall 1998) and the Akaike Information Criterion (AIC; Akaike 1974) were used to determine the best DNA substitution model for the present dataset; the General Time Reversible model with proportion of invariable sites and an alpha shape parameter for the gamma distribution (GTR $+\mathrm{I}+\mathrm{G}$) was selected. In the analyses of the Cladopus-Hydrobryum clade, the following parameter values were used: nucleotide frequencies were $\mathrm{A}=0.3265, \mathrm{C}=0.1477$, $\mathrm{G}=0.1251, \mathrm{~T}=0.4007$; the substitution rate matrix was A to $\mathrm{C}=1.2814$, A to $\mathrm{G}=1.1151$, A to $\mathrm{T}=0.2374$, C to $\mathrm{G}=0.5374$, C to $\mathrm{T}=0.9087, \mathrm{G}$ to $\mathrm{T}=1.0000$; the proportion of invariable sites was 0.2753 ; and the gamma distribution shape parameter was 0.9412 . In the analyses of the Polypleurum clade, the following parameter values were used: nucleotide frequencies were $\mathrm{A}=0.3318, \mathrm{C}=0.1458, \mathrm{G}=0.1366, \mathrm{~T}=0.3857$; the substitution rate matrix was A to $\mathrm{C}=0.8628$, A to G $=1.0083$, A to $\mathrm{T}=0.1104, \mathrm{C}$ to $\mathrm{G}=0.3656, \mathrm{C}$ to $\mathrm{T}=$ 0.9279 , G to $\mathrm{T}=1.0000$; the proportion of invariable sites was 0.4696 ; and the gamma distribution shape parameter was 1.0854 . Heuristic searches were conducted with 100 random addition replicates involving nearest-neighbor-interchange (NNI) branch swapping. Bootstrap values were calculated for 100 replicates with 10 random addition replicates involving NNI branch swapping. In maximum parsimony (MP) analyses, bootstrap values were calculated for 1000 replicates with 10 random addition replicates (time limit of 10 minutes was imposed for each addition replicate in the analysis of the Cladopus-Hydrobryum clade) involving tree-bisection-reconnection (TBR) branch swapping. In the Bayesian analysis, the GTR model $+\mathrm{I}+\mathrm{G}$ was selected and Markov chain Monte Carlo (MCMC) iterations with four chains were conducted for $2,000,000$ generations, sampling every 100 generations. The first 5,000 trees were discarded as burn-in, and the remaining 15,000 trees were used to calculate a 50% majority-rule tree and to determine the posterior probabilities for branches. Polypleurum stylosum (Wight) J. B. Hall, Zeylanidium lichenoides (Kurz) Engl. and Z. subulatum (Gardner) C. Cusset of subfamily Podostemoideae were treated as outgroups in the analysis of the Cladopus-Hydrobryum clade, and two samples of Z. subulatum were the outgroup in the analysis of the Polypleurum clade (Kita \& Kato 2001, 2004; M. Kato, unpubl. data).

Results and discussion

Morphology

The results of the comparative morphology study are shown in the Key, Table 1, and the descriptions of taxa below.

Phylogeny

Koi \& Kato (2010) performed an ML phylogenetic analysis of the matK gene for Cladopus H. A. Möller and Paracladopus M. Kato, and a monophyletic clade of the two genera was illustrated as a triangle with no species names given on the tree. In the present tree (Fig. 1A), deduced using added materials and the same method, the Cladopus pierrei clade includes C. doianus (Koidz.) Kôriba, and the two form a clade with C. fukienensis (H. C. Chao) H. C. Chao and C. austrosinensis M. Kato \& Y. Kita, the latter three of which are distributed in China and Japan. C. taiensis C. Cusset and C. fallax C. Cusset of Thailand form another clade with Indonesian and Australian species. The Lao and Thai plants of Paracladopus chiangmaiensis M . Kato form a clade which is sister to P. chanthaburiensis Koi \& M. Kato.

The present phylogenetic analysis for Hydrobryum Endl. and related genera, consistent with the latest results (Koi \& Kato 2010), indicates monophyly of Hydrodiscus koyamae, Diplobryum (= Hydrobryum) vientianense, D. (= H.) ramosum, and some other crustose-, ribbon-like or subcylindrical-rooted species of Laos, along with Hanseniella C. Cusset, Hydrobryum, and Thawatchaia M. Kato, Koi \& Y. Kita, all with crustose roots (Fig. 1A, B). Hydrodiscus koyamae is basal in this clade though the monophyly of the other related species is supported with a relatively low bootstrap value. Diplobryum (= Hydrobryum) vientianense of Laos and Thailand forms a clade with H. loeicum M. Kato of NE Thailand within the Hydrobryum clade. Diplobryum (= Hydrobryum) ramosum and the remaining Lao species of Hydrobryum, except H. tardhuangense M. Kato, with various root morphologies, form another clade with the crustose-rooted H. somranii M. Kato of NE Thailand. These species are described as new below.

The phylogenetic analysis does not support the separation of the genera Diplobryum and Hydrobryum by Cusset (1972, 1992) and Kato \& Fukuoka (2002), and the currently accepted definition of the genus Hydrobryum (Cusset 1992; Kato 2004) (Fig. 1B). Many characters shared by D. vientianense and Vietnamese D. minutale, type of the genus, suggest that D. minutale is also assignable to Hydrobryum. D. ramosum and some other species, like Cladopus and Polypleurum (Taylor ex Tul.) Warm., have non-crustose roots, but they are referable to Hydrobryum. Because Hydrobryum had conventionally been characterised by a few characters such as the crustose roots and more than 8 -ribbed,
flattened capsules, the taxonomic definition of this polymorphic genus revealed here is amended below.

A phylogenetic analysis of Polypleurum shows that it is divided into two subclades (Fig. 2). One subclade includes P. pluricostatum sp. nov. and, except basal P. longistylosum M. Kato, has roots with tufts of leaves borne exclusively at sinuses of root branches (Kato 2006a). The other subclade includes P. schmidtianum Warm. and P. wallichii, and, like P. longistylosum, is characterised by the root with tufts of leaves borne on the flank between root branches.

The trees indicate non-monophyly of some species. Cladopus pierrei excluding East Asian C. doianus, Polypleurum pluricostatum excluding Thai P. longicaule M. Kato, and extra-Lao Hydrobryum japonicum Imamura excluding Japanese Hy. floribundum Koidz. are paraphyletic species. In MP analysis, however, P. pluricostatum is monophyletic (data not shown). Hy. taeniatum sp. nov. and H. subcylindricum sp. nov. are polyphyletic to each other. We accept morphologically recognisable, phylogenetically paraphyletic species in Podostemaceae. In this torrenticolous aquatic family, conspecific populations are isolated in sparse habitats, and most species are distributed in single rivers or in a few isolated rivers (Kato 2006a). It is likely that progenitor species can maintain paraphyletic relationships of populations after progeny species speciated from the colonisers of the progenitors, and progenitor populations are morphologically more similar to each other than to progeny species. Our treatment of paraphyletic species is based on this assumption, which should be verified by close examination.

The ovary is 2- or less often 1-locular in Hydrobryum (Table 1). It is 2-locular in the basal Hydrodiscus, Hanseniella and Thawatchaia, and also in most American and other Asian Podostemoideae (Kato 2004, 2006a; Ghogue et al. 2009). Therefore the 1-locular ovary is an apomorphic character state. The 1-locular ovary has 2 -surfaced placentas with reduced margins, suggesting an early cessation in growth of the septum during ovary development, as implied for African Djinga felicis C. Cusset by Ghogue et al. (2009). The phylogeny suggests that the reduction of locules happened two or three times in Hydrobryum, and in the former case, reversal to the 2-locular ovary happened in $H y$. ramosum comb. nov. and Hy. verrucosum sp. nov. A similar infrageneric reduction occurred in extra-Asian clades, for example, in African Saxicolella Engl. (Ameka et al. 2002).

The stamens are double with a common andropod in the majority of the Hydrobryum clade or single in five species of Hydrobryum (Table 1). Because the two stamens are plesiomorphic in the clade, the single stamens are autoapomorphic for the remotely related species. The stamens are usually single or rarely double in Cladopus and Polypleurum. The two stamens are auto-apomorphic in these genera.
Table. 1 Comparison of characters among species of Hydrodiscus, Hanseniella, Thawatchaia and Hydrobryum in Southeast Asia. koyama = Hydrodiscus koyamae; hetero = Hanseniella heterophylla; smiti $=\mathrm{Ha}$. smitinandii; triloba $=$ Thawatchaia trilobata; bifolia $=$ Hydrobryum bifoliatum; kaengs $=$ Hy. kaengsophense; tardh $=$ Hy. tardhuangense; griffith $=H y$. griffithii; loei $=H y$. loeicum; somran $=H y$. somranii; chiang $=H y$. chiangmaiense; japon $=H y$. japonicum; khaoya $=H y$. khaoyaiense; micran $=H y$. micrantherum; phetch $=H y$. phetchabunense; vient $=H y$. vientianense; minut $=H y$. minutale; austro $=H y$. austrolaoticum; verruc $=H y$. verrucosum; subcrus $=H y$. subcrustaceum; takak $=H y$. takakioides; taeni $=H y$. taeniatum; subcyl $=$ Hy. subcylindricum; ramos $=H y$. ramosum. Lao species are shown in bold face; Hy. tardhuangense and Hy. vientianense are distributed also in Thailand.

Character	koyama	hetero	smiti	triloba	bifolia	kaengs	tardh	griffith	loei	somran	chiang	japon
Root*1	absent	crust										
Flowering shoot** ${ }^{2}$	straight	erect	erect	appress								
Flower	straight	erect	erect	oblique	oblique	oblique	oblique	oblique	oblique	erect	oblique	oblique
Ranks of bracts	2	4	4	2	-	2	2	9		2	2	2
No. of bracts	8-15	≤ 24	≤ 28	8-12	2-3	4-6	2-3	5-6	4-6	2-4	4	4-5
Bract conformity** ${ }^{\text {a }}$	uniform	dimorph	dimorph	uniform								
Shape of bract	simple	bilobed/simple	bilobed/simple	trilobed	simple							
Bract tip* ${ }^{4}$	acumin	obtuse	obtuse	acute	acumin	acumin to linear	acute	obtuse	obtuse	obtuse	obtuse	obtuse
Spathella* ${ }^{5}$					irr		longi		irr	longi		
	smooth	smooth	smooth	smooth	papil	smooth	subpapil	smooth	papil	papil	papil	smooth
Stamens	2	2	9	2	2	2	2	2	2	2	2	2
Ovary locule	2	2	2	2	2	2	2	2	2	1	2	2
No. of ovules* ${ }^{6}$	20-41	4-6	4-6	7-9	17-25	16-18	13-25	22-29	4-7	6-12	12-20	$11-15$
Ovule disposition*7	M+C	M	M	M	M+C	M+C	M	M+C	M	M	M+C	M
Length of stigma	unequal	equal	equal	equal	unequal	unequal	equal	equal	equal	equal	equal	equal
Stigma* ${ }^{8}$	entire	cristate	entire	entire	subent	entire						
No. of capsule ribs	18-20	12-16	8	8-10	14-20	12-14	15-16	12-14	16-20	12-14	12-14	12-14
Character	khaoya	micran	phetch	vient	minut	austro	verruc	subcrus	takak	taeni	subcyl	ramos
Root*1	crust	ribbon	narrow ribbon	subcylin								
Flowering shoot** ${ }^{2}$	appress	elongate	appress	appress	straight							
Flower	oblique	oblique	oblique	erect	oblique	oblique	erect	oblique	erect	oblique	oblique	straight
Ranks of bracts	2		2	2	2	9	2	2	6-7	2	9	9
No. of bracts	2-3	$2-4 *{ }^{9}$	2 - 4	3-6	2	2-6	3-6	2-4	22-34	2-4	2-4	4-6
		$3-5{ }^{* 9}$										
Bract conformity**	uniform											
Shape of bract	simple											
Bract tip*4	obtuse	subulate	obtuse	obtuse	linear							
Spathella* ${ }^{5}$				longi	longi	longi	longi					
	smooth	smooth	smooth	papil	papil	smooth	papil	papil	papil	\pm papil	smooth	smooth
Stamens	1	1	2	2	2	1	2	2	1	2	1	2
Ovary locule	2	1	9	2	2	1	2	1	1	1	1	2
No. of ovules* ${ }^{6}$	17-23	$9-13^{* 9}$	4-8	8-27	25-28	13-67	17-67	18-36	20-45	20-27	20-49	30-61
		$15-23 *^{9}$										
Ovule disposition* ${ }^{7}$	M	M	M	M +C	M +C	M +C	M +CM	M	M+C			M +C
Length of stigma	equal											
Stigma* ${ }^{8}$	entire											
No. of capsule ribs	12-14	12-14	16-20	12-18	20	14-16	15-18	12-16	15-17	16-17	16-20	16-18

[^1]

Fig. 1. ML phylogenetic trees of matK of Cladopus, Hanseniella, Hydrodiscus, Paracladopus and Thawatchaia clades (Hydrobryum clade is shown as triangle) (A) and Hydrobryum clade (B, opposite). Numbers above and below branches indicate bootstrap supports ($>50 \%$) of ML (left) and MP (right), and posterior probabilities (>0.50) of Bayesian analyses, respectively. Polypleurum and Zeylanidium species are treated as outgroups. Numbers in parentheses following species names are species numbers used in this paper.

Floristic comparison

Based on molecular and morphological evidence, we recognise Cladopus (1 sp.), Hydrobryum (9 spp.), Hydrodiscus (1 sp.), Paracladopus (1 sp.), and Polypleurum (3 spp.) in the subfamily Podostemoideae. In Laos, another subfamily also occurs, Tristichoideae, which comprises Cussetia (2 spp.), Dalzellia (a few species) and Terniopsis H. C. Chao (several species) (S. Koi \& M. Kato, unpubl. data), which requires further study. Among the taxa, Paracladopus had been regarded as endemic to Thailand (Kato 2006a; Koi et al. 2008), but here we record P. chiangmaiensis from Laos. Hydrodiscus is endemic to Laos and phylogenetically sister to all other members of the Hydrobryum group. Hydrobryum species with subcylindrical to ribbon-like roots and with prominent shoots are also restricted to Laos, so the Lao Hydrobryum group is remarkably diverse. It is possible that there are still scientifically unknown species because of poor collections made to date.

Six species from three genera, Cladopus, Hydrobryum and Terniopsis, occur in China, while six species of Cladopus and Hydrobryum are found in Japan (Kato \&

Kita 2003; Kita \& Kato 2004; Kato 2008). A few species are distributed in adjacent Cambodia and Vietnam. Podostemaceae of Myanmar (Burma) perhaps includes three species of three genera, Hydrobryum, Polypleurum and Zeylanidium (Tul.) Engl. (Cusset 1992; Kato 2006b; Tanaka et al. 2006). Northern India, Nepal and Bhutan are inhabited by three species of three genera, Hydrobryum, Polypleurum and Zeylanidium (Cusset 1992; Kato 2006b; Kato \& Koi 2009). Ten genera and more than 24 species occur in southern India and Sri Lanka (Cusset \& Cusset 1988; Cusset 1992; Mathew \& Satheesh 1997), which remain to be reinvestigated. Only a single species, Terniopsis malayana (J. Dransf. \& Whitmore) M. Kato, is distributed in Malaysia (peninsular), two species are found in Indonesia (Cladopus javanicus M. Kato \& Hambali and C. nymanii H. A. Möller), one species occurs in Papua New Guinea (C. queenslandicus (Domin) C. D. K. Cook \& Rutish.), and in N Australia there are two species of two genera (C. queenslandicus and Terniopsis australis (C. Cusset \& G. Cusset) M. Kato) (Kato et al. 2003; Kato 2009). Thailand is inhabited by at least 42 species of 10

Fig. 1. (continued)

Fig. 2. ML phylogenetic tree of matK of Polypleurum clade including Griffithella. Numbers above and below branches indicate bootstrap supports ($>50 \%$) of ML (left) and MP (right), and posterior probabilities (>0.50) of Bayesian analyses, respectively. Zeylanidium subulatum is treated as an outgroup. Numbers in parentheses following species names are species numbers used in this paper.
genera, the largest number in Asia, a few of which belong in small genera endemic to Thailand, i.e., Hanseniella and Thawatchaia (Kato 2004, 2006a; Kato \& Koi 2009).

All Lao genera except Hydrodiscus are distributed in Thailand, while most species of Laos are endemic. Thus, Laos and Thailand together shape a centre of distribution for Podostemaceae in SE Asia. This region is considered to be the secondary centre of
diversification for the subfamily Podostemoideae, which likely underwent primary diversification in tropical America (Kita \& Kato 2001; Kato 2006b, 2009).

The genus Hydrobryum, the largest of the Lao genera, comprises 9 species, which, along with the related genera, are discriminated by their multiple diagnostic characters, as shown in Table 1 and the Key.

Key to the Podostemaceae species of Laos

1. Root absent; shoots to 1 m long, branched, floating; anchoring base disk-like . . 6. Hydrodiscus koyamae Roots present; shoots reduced (to 2 cm long) . 2
2. Roots cylindrical to ribbon-like . 3 Roots crustose. 10
3. Roots floating at least distally . 4

Roots creeping on rock along the entire length. 5
4. Roots adhered by disk-like base; tufts of leaves (shoots) and flowers borne only at sinuses of root branches. 15. Hydrobryum ramosum
Roots adhered by proximal parts; tufts of leaves and flowers borne on flank of root between successive branches.

1. Polypleurum wallichii
2. Tufts of leaves and flowers borne on flank of root between successive branches 6
Tufts of leaves and flowers borne only at sinuses of root branches. 7
3. Bracts entire; capsules ellipsoidal, c. 8-ribbed. 2. Polypleurum schmidtianumBracts trilobed; capsules globose or ellipsoidal, 12 - 14-ribbed 4. Paracladopus chiangmaiensis
4. Bracts digitate; capsules globose or ellipsoidal, smooth. 5. Cladopus pierrei Bracts entire; capsules ellipsoidal, ribbed. 8
5. Flowering shoots erect; capsules not flattened 3. Polypleurum pluricostatum
Flowering shoots appressed; capsules flattened 9
6. Roots to 1 mm wide; stamen 1 14. Hydrobryum subcylindricumRoots $1-2 \mathrm{~mm}$ wide; stamens 213. Hydrobryum taeniatum
7. Flowering shoots erect, $7-14 \mathrm{~mm}$ long; bracts terete, subulate 12. Hydrobryum takakioides
Flowering shoots appressed, much shorter; bracts flat, ovate 11
8. Stamens 1; ovaries 1-locular. 9. Hydrobryum austrolaoticumStamens 2; ovaries 1- or 2-locular.1212. Ovaries 1-locular, subsessile, stalks $0.1-0.5 \mathrm{~mm}$ long; ovaries matured within spathella11. Hydrobryum subcrustaceum
Ovaries 2-locular, stalks $0.3-2 \mathrm{~mm}$ long; ovaries at least partly protruded from spathella 13
9. Bracts distally acute to linear; basal part of ovaries enclosed by spathella . . . 7. Hydrobryum tardhuangenseBracts ovate, obtuse; ovaries exposed14
10. Roots adhered to rock by thin pads; stamens forked ${ }^{1} / 2-1 / 5$ from top; ovules $8-27$ per locule.. 8. Hydrobryum vientianenseRoots adhered by prominent warty projections; stamens forked ${ }^{1} / 4^{-1} /{ }_{8}$ from top; ovules $17-67$ per locule . .

Taxonomic revision and comparative morphology

Polypleurum (Taylor ex Tul.) Warm.; Cusset (1992: 36); Kato (2006a: 35). Type species: Polypleurum wallichii (R. Br. ex Griff.) Warm.

About 17 species in tropical Asia; three species in Laos.
nOTES. This genus is characterised by the ribbon-like roots with shoots at the sinuses of root branches or along the flanks between successive root branches, the entire bracts, and the ellipsoidal, slightly flattened, 8- or 12-14ribbed capsules dehiscing by unequal or subequal valves (Kato 2006a). Along with Zeylanidium and some small genera, it forms a clade in Podostemoideae different from the Hydrobryum clade and Cladopus clade (Kita \& Kato 2001; S. Koi, unpubl. data).

1. Polypleurum wallichii (R. Br. ex Griff.) Warm. (Warming 1901b: 57); Cusset (1992: 42, f. 8); Kato (2006a: 36, f. 14). Type: India, Cherrapunji, Griffith s.n. (holotype K!).

Roots floating, attached to rock surface with proximal parts, ribbon-like, $3-5 \mathrm{~mm}$ wide, c .1 mm thick, irregularly branched; leaves a few per tuft, linear-oblong, to 5 mm long, on both flanks of root between root branches and at sinuses of root branching. Flowering shoots on both flanks of root between successive root branches and at sinuses
of root branching, solitary, appressed or oblique, flowers oblique to erect; bracts $3-4$ in 2 files, lanceolate to ovate-lanceolate, sheath-like base, apex acute or acuminate (often caducous), $6-9 \mathrm{~mm}$ long; spathella enclosing young flower, ellipsoidal, obtuse, c. $3-6 \mathrm{~mm}$ long, ruptured near apex at anthesis; pedicels $7-13 \mathrm{~mm}$ long; tepals 2, on each side of stamen, linear, $1-1.5 \mathrm{~mm}$ long; stamens 2 with andropod, forked $1 / 2-1 / 4$ from tip, $2.5-3 \mathrm{~mm}$ long, as long as pistil; anthers elliptic, 0.7 0.9 mm long; ovaries single, sessile, 2-locular, ellipsoidal, $2-2.5 \mathrm{~mm}$ long, $1-1.2 \mathrm{~mm}$ wide; stigmas 2, papillate, forked at base, subulate to narrowly triangular, entire, equal or subequal, $0.3-0.8 \mathrm{~mm}$ long; ovules $56-89$ per locule, borne on whole placenta surface; capsulestalks $4-16 \mathrm{~mm}$ long, capsules ellipsoidal, $2-2.5 \mathrm{~mm}$ long, $1-1.2 \mathrm{~mm}$ wide, 8 (-10)-ribbed, dehiscing by 2 unequal valves. Fig. 3.

DISTRIBUTION. Northern, central and southern Laos; northern and southern India, SE Burma, Thailand, possibly also Cambodia.
SPECIMENS EXAMINED. LAOS. Vientiane prov.: Hinkhanna waterfall, 200 m alt., $18^{\circ} 03^{\prime} 28.0^{\prime \prime} \mathrm{N}, 102^{\circ} 28^{\prime} 29.7^{\prime \prime} \mathrm{E}$, fr. Jan., M. Kato et al. L-03; loc. cit., fl. fr. Dec., S. Koi Eo T. Wongprasert LK-09; Khu Kanna Nam Tok (= Hinkhanna waterfall), N. Fukuoka Eo T. Koyama L-65097 (TNS). Sekong prov.: Tad Faek waterfall, 123 m alt., $15^{\circ} 14^{\prime} 37.9^{\prime \prime} \mathrm{N}, 106^{\circ} 44^{\prime} 57.3^{\prime \prime} \mathrm{E}$, fr. Feb., S. Koi $\mathcal{E} T$. Wongprasert LK-238. Attapeu prov.: Tad Hiew Khon waterfall, Ban Muen Hua Mueang, 137 m alt., $15^{\circ} 13^{\prime}$ $45.4^{\prime \prime N}, 106^{\circ} 44^{\prime} 46.8^{\prime \prime} \mathrm{E}$, fl. fr. Jan., S. Koi et al. LK-127.

Fig. 3. Polypleurum wallichii. A root with flowering shoots on flank; B tuft of leaves; C young flower enclosed by spathella and subtended by bracts; D young flower with 1 ovary, 2 stamens on common andropod and 2 tepals (1 not seen), protruding from ruptured spathella and bracts; E flower with anthers fallen, spathella and bracts; F fruit, side view; G ovules on septum in 2-locular capsule with valve removed. From M. Kato et al. L-03. DRAWn by m. naKAIIMA.

HABITAT. Epilithic on seasonally submerged rocks in waterfalls in open places.
CONSERVATION STATUS. Near threatened (NT): collected from a few spots; widely and patchily distributed in Asia.
notes. This is the most widely distributed species in the genus, ranging from India to northern Laos. It is closely related to Indian and Sri Lankan Polypeurum elongatum (Gardner) J. B. Hall and P. stylosum, with which it shares the shoots borne along the flanks of the root and the two stamens. P. wallichii is also close to P. schmidtianum, but differs in the root partly floating (vs entirely adhering to the rock in P. schmidtianum) and the two stamens.

The Lao plant is referable to var. wallichii, while var. parvum M. Kato is restricted to central Thailand (Kato 2006a).
2. Polypleurum schmidtianum Warm. (Warming 1901a: 258; 1901b: 3, f. 1 - 6); Cusset (1992: 38); Kato (2006a: 40). Type: Thailand, Klong Sarlakpet, Koh Chang, 600 ft , Schmidt s.n. (C 3160).
Polypleurella schmidtiana (Warm.) Engl. (Engler 1927: 9).
Roots ribbon-like, $1.2-2 \mathrm{~mm}$ wide, 0.8 mm thick, irregularly and often branched. Flowering shoots on both flanks of root between successive branches and at sinuses of root branching, solitary, appressed; bracts $3-4$ in 2 files, uniform, lanceolate to ovate, sheathlike base, apex linear (caducous), $1.8-2.5 \mathrm{~mm}$ long; spathella enclosing young flower, ellipsoidal, obtuse, $2-2.5 \mathrm{~mm}$ long, smooth on dorsal side, minutely papillate on the apical part on ventral side, ruptured near apex at anthesis, persistent; pedicels $3-7 \mathrm{~mm}$ long; tepals 2, on each side of stamen, linear, c. 1 mm long; stamen $1,2-3 \mathrm{~mm}$ long, as long as pistil; anthers elliptic, $0.5-0.7 \mathrm{~mm}$ long; ovaries single, sessile, 2-locular, ellipsoidal, $1.2-2 \mathrm{~mm}$ long, 0.8 1 mm wide; stigmas 2 , forked at base, subulate, entire, equal or unequal, $0.5-1 \mathrm{~mm}$ long; ovules $25-42$ per locule, borne on whole placenta surface; capsule-stalks 3-13 mm long, capsules ellipsoidal, c. 1.8 mm long, c. 0.8 mm wide, $8-9$-ribbed, dehiscing by 2 unequal valves. Fig. 4 .

DISTRIBUTION. Northern central Laos; SE Thailand.
SPECIMEN EXAMINED. LAOS. Bolikhamsai prov.: Tad Nampa waterfall, Nam Nampa R., Ban Nampa, 163 m alt., $18^{\circ} 30^{\prime} 47.7^{\prime \prime N}$, $103^{\circ} 36^{\prime} 26.8^{\prime \prime} \mathrm{E}$, fl. fr. Jan., S. Koi et al. LK-106.
habitat. Epilithic on seasonally submerged rocks in waterfalls in open places.
CONSERVATION STATUS. Near threatened (NT): collected from a single waterfall.
NOTES. This was recorded from SE Thailand (Trat province including Ko Chang), so the Lao population is isolated from it. The Lao specimen differs from Thai
specimens in the narrower root (vs $2-4 \mathrm{~mm}$ wide in Thai specimens), the longer stamen ($2-3 \mathrm{~mm}$ vs c .1 .2 mm), and the larger ovary ($1.2-2 \mathrm{~mm}$ vs $1.2-1.6 \mathrm{~mm}$) with the longer stigmas $(0.5-1 \mathrm{~mm}$ vs $0.2-0.5 \mathrm{~mm})$. Nevertheless, they have identical matK sequences.
3. Polypleurum pluricostatum Koi \mathcal{E} M. Kato sp. nov. a P. wallichii et P. schmidtiano foliis ad ramificationibus radices differt, P. wongprasertii M. Kato similissimum, sed stamine ovario longiore, capsulis pluricostatis differt, P. prachinburiensis M. Kato \& Koi similissimum, sed stigmatibus longioribus differt. Typus: Laos, Vientiane prov., Nam Mang 3 Dam, Mt Phuu Khao Khouay, 700 m alt., $18^{\circ} 21^{\prime} 26.8^{\prime \prime} \mathrm{N}, 102^{\circ} 48^{\prime} 28.6^{\prime \prime} \mathrm{E}, ~ S . K o i, ~ R$. Fujinami, N. Katayama \& T. Wongprasert LKF-03 (holotypus TNS!; isotypus BKF!).
http://www.ipni.org/urn:Isid:ipni.org:names:77120300-1
Roots ribbon-like, $1.5-3.5 \mathrm{~mm}$ wide, isotomously or anisotomously branched; leaves to 7 per tuft, needlelike, sheath-like base, to 20 mm long, on dorsal surface of root at sinuses of root branching. Flowering shoots on dorsal surface of root at sinuses of root branching, solitary, erect; bracts $2-5$ in 2 files, uniform, triangular, apex acute, acuminate, needle-like or linear (caducous), $1-15 \mathrm{~mm}$ long, scaly-papillate; spathella enclosing young flower, ellipsoidal, $2-4 \mathrm{~mm}$ long, scaly-papillate, ruptured near apex at anthesis, persistent; pedicels $1-6 \mathrm{~mm}$ long; tepals 2 , on each side of stamen, linear, 1 mm long; stamens $1,1.5-3 \mathrm{~mm}$ long, as long as pistil; anthers elliptic, c. 0.8 mm long; ovaries single, sessile, 2-locular, ellipsoidal, $1.2-2 \mathrm{~mm}$ long, $1-1.2 \mathrm{~mm}$ wide; stigmas 2 , forked at base, linear to subulate, entire, equal or subequal, $0.5-0.8 \mathrm{~mm}$ long; ovules $14-64$ per locule, borne on whole placenta surface (sometimes except in central area); capsulesstalks $1.5-6.5 \mathrm{~mm}$ long, capsules ellipsoidal, $1.2-2 \mathrm{~mm}$ long, c. 1 mm wide, $12-14$-ribbed, dehiscing by 2 unequal or subequal valves. Fig. 5.

DISTRIBUTION. Northern central Laos; NE Thailand. SPECIMENS EXAMINED. LAOS. Vientiane prov.: Nam Mang 3 Dam, Mt Phuu Khao Khouay, 700 m alt., $18^{\circ} 21^{\prime} 26.8^{\prime \prime} \mathrm{N}, 102^{\circ} 48^{\prime} 28.6^{\prime \prime} \mathrm{E}$, fl. fr. Dec., S. Koi $\mathcal{E} T$. Wongprasert LK-01; loc. cit., fl. Dec., S. Koi ET. Wongprasert LK-02; loc. cit., fl. fr. Dec., S. Koi Ė T. Wongprasert LK-04; loc. cit., fl. fr. Jan., S. Koi et al. LKF01; loc. cit. fl. fr. Jan., S. Koi et al. LKF-03 (type).
habitat. Epilithic on seasonally submerged rocks in rapids in open place.
CONSERVATION STATUS. Near threatened (NT): collected from a single spot.
nOTES. This is distinct from Polypeurum wallichii and P. schmidtianum, but apparently very similar to Thai congeners, in the tufts of leaves at the sinuses between

Fig. 4. Polypleurum schmidtianum. A ribbon-like root with young flowering shoots on flank; B young flower enclosed by spathella and subtended by bracts; C young flower protruding from ruptured spathella (not drawn); D flower with 1 ovary, 1 stamen and 2 tepals (1 not seen); E fruit with dehiscing capsule on elongate stalk; F ovules on ovary septum. From S. Koi et al. LK-106. drawn by m. nakaima.
root branches, for example: P. wongprasertii M. Kato, P. longifolium M. Kato, P. phuwuaense M. Kato, P. longicaule, P. erectum M. Kato, P. sisaketense M. Kato \& Koi, P. prachinburiense M. Kato \& Koi, and P. insulare M. Kato \& Koi (Kato 2006a; Kato \& Koi 2009). P. pluricostatum is most similar to P. wongprasertii and P. prachinburiense, but differs from the former in the length of stamen $(1.5-3 \mathrm{~mm}$ vs $1-1.2 \mathrm{~mm}$ in P. wongprasertii) and the number of capsule ribs (1214 vs $10-12$), and from the latter in the length of stigma ($0.5-0.8 \mathrm{~mm}$ vs $0.2-0.4 \mathrm{~mm}$). The species is also discriminated from P. longifolium in the shorter leaves (to 20 mm vs $20-40 \mathrm{~mm}$); from P. phuwuaense in the shorter pedicel ($1-6 \mathrm{~mm}$ vs $10-15 \mathrm{~mm}$) and shorter capsule-stalk ($1.5-6.5 \mathrm{~mm}$ vs $8-12 \mathrm{~mm}$); from
P. erectum in the wider roots $(1.5-3.5 \mathrm{~mm}$ vs $1-$ 1.5 mm), fewer bracts ($2-5 \mathrm{vs}$ many), shorter capsulestalk ($1.5-6.5 \mathrm{~mm}$ vs $12-20 \mathrm{~mm}$); from P. sisaketense in the linear (vs hemicircular) and longer stigmas (0.5 0.8 mm vs $0.1-0.2 \mathrm{~mm}$); and from P. insulare in the greater number of ovules ($14-64$ vs $10-12$) and greater number of capsule-ribs ($12-14$ vs $8-12$).

Phylogenetically, Polypeurum pluricostatum includes, or is the closest to, P. longicaule (Fig. 2). However, morphologically P. longicaule is distinct from P. pluricostatum in the long (to 18 cm long), branched floating shoots, the broad ($2.5-5 \mathrm{~mm}$) root and the long ($5-20 \mathrm{~mm}$) capsule-stalk. In the elongate shoot, which is apomorphic in Polypleurum, P. longicaule is a derived species, and the paraphyletic P. pluricostatum is ancestral.

Fig. 5. Polypleurum pluricostatum. A ribbon-like root with tufts of leaves at sinuses of root branches; B root with flowering shoots at sinuses of root branches; C young flower enclosed by spathella and subtended by bracts; D flower with 1 ovary, 1 stamen and 2 tepals (1 not seen), protruding above ruptured spathella and bracts; E fruit with elongate stalk, ruptured spathella and bract remains, side view; F ovules on ovary septum with lower central sterile area. From S. Koi et al. LKF-03. DRAWn by m. nakAima.

Paracladopus M. Kato (2006a: 29); Koi et al. (2008: 202, emended). Type: Paracladopus chiangmaiensis M. Kato. Two species in Thailand; one species in Laos.
notes. This genus is sister to Cladopus (Fig. 1A) and differs from it in the vegetative shoots (tufts of leaves) and flowering shoots borne on the flanks of the root between successive branches and the ribbed capsules. Paracladopus chiangmaiensis and P. chanthaburiensis are distinct from each other morphologically and molecular-phylogenetically (Koi et al. 2008; Fig. 1A). P. chiangmaiensis occurs in several spots in southern Laos and in a few spots in Chiang Mai province, northern Thailand, while P. chanthaburiensis is known in a narrow area in Chanthaburi province, southeastern Thailand.
4. Paracladopus chiangmaiensis M. Kato (2006a: 29, f. 11). Type: Northern Thailand, Chiang Mai prov., Mae Wang stream, N of Doi Inthanon National Park, 450 m alt., $18^{\circ} 38^{\prime} \mathrm{N}, 98^{\circ} 43^{\prime} \mathrm{E}$, fl. fr. March, M. Kato, R. Imaichi \mathcal{E}° T. Wongprasert TL-808 (holotype BKF!; isotype TNS!).

Roots ribbon-like, $0.8-2.5 \mathrm{~mm}$ wide, isotomously or anisotomously branched, adhering to rock surface with rhizoid pads distributed in centre of root and by holdfasts at shoot bases on ventral side; holdfasts cylindrical, to 0.6 mm long; leaves to 6 per tuft, ensiform with lamina flat in adaxial-abaxial plane, linear-oblong, sheath-like base, apex obtuse, to 4.5 mm long, on both flanks of root between successive root branches and at sinuses of root branching. Flowering shoots on both flanks of root between root branches and at sinuses of root branching, solitary, appressed; bracts $3-11$, uniform, trilobed, $0.8-1.8 \mathrm{~mm}$ long; spathella enclosing young flower, ellipsoidal, mucronate, $1-2 \mathrm{~mm}$ long, ruptured near apex at anthesis; pedicels 0.5 1.5 mm long; tepals 2 , on each side of stamen, linear, $0.3-0.8 \mathrm{~mm}$ long; stamen $1,1.2-1.6 \mathrm{~mm}$ long, as long as pistil; anthers elliptic c. 0.2 mm long, caducous; ovaries single, sessile, 2-locular, globose or ellipsoidal, $0.8-1.4 \mathrm{~mm}$ long, $0.6-1 \mathrm{~mm}$ wide; stigmas 2 , forked at base, narrowly triangular, entire, equal, $0.3-0.5 \mathrm{~mm}$ long; ovules $16-45$ per locule, borne on whole placenta surface; capsule-stalks 0.6 1.8 mm long, capsules globose or ellipsoidal, 0.8 1.4 mm long, $0.6-1 \mathrm{~mm}$ wide, 12 - 14-ribbed, dehiscing by 2 unequal or subequal valves. Fig. 6 .

DISTRIBUTION. Southern Laos; northern Thailand. SPECIMENS EXAMINED. LAOS. Salavan prov.: Tad Lo waterfall, 350 m alt., $15^{\circ} 31^{\prime} 36.1^{\prime \prime} \mathrm{N}, 106^{\circ} 16^{\prime} 22.3^{\prime \prime} \mathrm{E}$, st. Jan., S. Koi et al. LKF-116; Huay Taphung R., at the point crossing Route $20,500 \mathrm{~m}$ alt., $15^{\circ} 27^{\prime} 59.7^{\prime \prime} \mathrm{N}$, $106^{\circ} 10^{\prime} 12.3^{\prime \prime} \mathrm{E}$, st. fl. fr. Jan., S. Koi et al. LKF-119.

Champasak prov.: Tad Pha Suam waterfall, Bajiang National Park, 200 m alt., $15^{\circ} 16^{\prime} 33.3^{\prime \prime N} \mathrm{~N}, 105^{\circ}$ 55'19.2"E, fl. fr. Feb., S. Koi E® T. Wongprasert LK213; loc. cit., st. fl. fr. Jan., S. Koi et al. LKF-110; Houay Pa Lai R., Ban Kaeng Yao, Bajiang, 227 m alt., 15° $20^{\prime} 7.0^{\prime \prime} \mathrm{N}, 105^{\circ} 58^{\prime} 55.2^{\prime \prime} \mathrm{E}$, st. Feb., S. Koi E T. Wongprasert LK-220; Huay Ka Pheu R., at the point crossing Route $20,450 \mathrm{~m}$ alt., $15^{\circ} 24^{\prime} 33.6^{\prime \prime} \mathrm{N}, 106^{\circ} 05^{\prime} 28.5^{\prime \prime} \mathrm{E}$, st. fl. Feb., S. Koi E T. Wongprasert LK-223; loc. cit., st. fl. fr. Jan., S. Koi et al. LKF-121; Houay Champy R., at the point crossing Route $20,200 \mathrm{~m}$ alt., $15^{\circ} 15^{\prime} 30.6^{\prime \prime} \mathrm{N}$, $105^{\circ} 55^{\prime} 59.5^{\prime \prime} \mathrm{E}$, fl. fr. Jan., S. Koi et al. LKF-105.
habitat. Epilithic on seasonally submerged rocks in waterfalls and rapids in open places.
CONSERVATION STATUS. Near threatened (NT): collected from several spots.
nOtes. This is the first record of the genus from Laos. The clade of Parocladopus chiangmaiense is divided into two subclades: one consists of Thai and Lao plants and the other consists of only Lao plants (Fig. 1A). The plants of the former clade have more bracts than those of the latter. South-eastern Thai P. chanthaburiensis is geographically close to, but distinct from, P. chiangmaiensis in the digitate bracts and two stamens (Koi et al. 2008).

Cladopus H. A. Möller (1899: 115); Cusset (1992: 20) excl. Griffithella (Tul.) Warm.; Kato \& Kita (2003: 90); Kato (2006a: 3). Type: Cladopus nymanii H. A. Möller.
Lecomtea Koidz. (Koidzumi 1929: 52). Type: Lecomtea pierrei (Lecomte) Koidz.
Torrenticola Steenis (1949: 66). Type: Torrenticola queenslandica (Domin) Domin ex Steenis.

About nine species in E and SE Asia; one species in Laos.
NOTES. Torrenticola had been segregated as a monotypic genus characterised by the elongate shoots with trifid leaves (bracts) and weakly ribbed capsules (van Steenis 1949; Aston 1990). Kita \& Kato (2001) showed that phylogenetically it is nested within Cladopus, and Cook \& Rutishauser (2001) combined them. Mathew \& Satheesh (1997) separated the genera Cladopus and Griffithella (Tul.) Warm. by the root habit, but Cusset (1992) treated them as sections of the genus Cladopus based on the shared smooth-surfaced capsule and the number of stamens (1 vs 2). Section Griffithella (Tul.) C. Cusset is excluded from the genus (see also notes below).
5. Cladopus pierrei (Lecomte) C. Cusset (1973a: 73, pl. 10, f. $7-9$; 1992: 25). Type: Laos, Champassak, Bassac, F.(A.) F. J. Harmand s.n. (as Pierre 5194) (P!).

Roots ribbon-like, $1-4(-7) \mathrm{mm}$ wide, isotomously or anisotomously branched; leaves to 10 per tuft, linear, to 3.5 mm long, on dorsal surface of root at sinuses of

Fig. 6. Paracladopus chiangmaiensis. A ribbon-like root with tufts of leaves on flank; B 2-fariate ensiform leaves; C leaf; D, E young flowers enclosed by spathellas and subtended by bracts (distal part of bract is fallen); F flower with 1 ovary, 1 stamen and 2 tepals, partly protruding from ruptured spathella subtended by bracts, dorsal view; G flower with ruptured spathella and bracts on flank of root with holdfast on ventral side, ventral view; H stamen and 2 tepals; J fruit; K ovules on ovary septum. From S. Koi et al. LKF-110. drawn by m. nakaima.
root branching. Flowering shoots on dorsal surface of root at sinuses of root branching, solitary, erect; bracts $8-10$ in 2 files, digitate with $5-10$ lobes, lobes cylindrical, hard, membranous base, $1-2 \mathrm{~mm}$ long, papillate with silica; spathella enclosing young flower (which is inclined inside spathella), ellipsoidal, flattened, mucronate, $1.3-3.2 \mathrm{~mm}$ long, ruptured irregularly at apex at anthesis; pedicels $1-5 \mathrm{~mm}$ long; tepals 2, on each side of stamen, linear, 0.6 1.2 mm long; stamens 1 , or 2 with andropod, forked above middle or near base, $1-3 \mathrm{~mm}$ long, as long as, or shorter than, pistil; anthers elliptic, $0.3-0.8 \mathrm{~mm}$ long, caducous; ovaries single, sessile, 2-locular, globose or ellipsoidal, $0.9-2 \mathrm{~mm}$ long, $0.6-1.6 \mathrm{~mm}$ wide; stigmas 2, forked at base, linear to narrowly oblong, equal, $0.5-1 \mathrm{~mm}$ long; ovules $14-78$ per locule, borne on whole placenta surface; capsule-stalks $1-5 \mathrm{~mm}$ long, capsules chestnut-brown, globose or ellipsoidal, $0.9-2 \mathrm{~mm}$ long, $0.7-1.5 \mathrm{~mm}$ wide, smooth but with two stripes, dehiscing by 2 unequal or subequal valves. Fig. 7.

DISTRIBUTION. Central and southern Laos; southern Vietnam.
SPECIMENS EXAMINED. LAOS. Khammouan prov.: NakaiNan Theun Biological Conservation Area, Jan. 1978, T. C. Whitmore s.n. (E) (which comprises fragmentary flowers and fruits, so more complete material is needed for identification). Savannakhet prov.: Sammataek rapid, Muang Phin, 150 m alt., $16^{\circ} 18^{\prime}$ $03.4^{\prime \prime N}, 105^{\circ} 58^{\prime} 56.8^{\prime \prime} \mathrm{E}$, fr. Feb., S. Koi \mathcal{E} T. Wongprasert LK-211. Salavan prov.: Kaeng Koo rapid, Vapy Distr., 141 m alt., $15^{\circ} 42^{\prime} 31.7^{\prime \prime} \mathrm{N}, 106^{\circ} 04^{\prime} 08.1^{\prime \prime} \mathrm{E}$, fl. fr. Feb., S. Koi \mathcal{E} T. Wongprasert LK-232; Huay Taphung R., at the point crossing Route $20,500 \mathrm{~m}$ alt., $15^{\circ} 27^{\prime} 59.7^{\prime \prime} \mathrm{N}$, $106^{\circ} 10^{\prime} 12.3^{\prime \prime} \mathrm{E}$, fl. fr. Jan., S. Koi et al. LKF-118. Champasak prov.: Bassac, F.(A.) F. J. Harmand s.n. (as Pierre 5194) (type, P); Tham Champee waterfall, 936 m alt., $15^{\circ} 12^{\prime} 12.5^{\prime \prime N}, 106^{\circ} 07^{\prime} 59.2^{\prime \prime E}$, st. fl. fr. Jan., S. Koi et al. LK-117; Tat Yuang waterfall, 957 m alt., $15^{\circ} 10^{\prime}$ $50.4^{\prime \prime} \mathrm{N}, 106^{\circ} 08^{\prime} 18.8^{\prime \prime} \mathrm{E}$, st. fl. fr. Jan., S. Koi et al. LK-121; loc. cit., st. Jan., S. Koi et al. LK-123; Tad Champy waterfall, 137 m alt., $15^{\circ} 17^{\prime} 41.0^{\prime \prime} \mathrm{N}, 105^{\circ} 51^{\prime} 36.6^{\prime \prime} \mathrm{E}$, fl. fr. Feb., S. Koi E T. Wongprasert LK-214; Houay Pa Lai R., Ban Kaeng Yao, Bajiang, 227 m alt., $15^{\circ} 20^{\prime} 7.0^{\prime \prime} \mathrm{N}$, $105^{\circ} 58^{\prime} 55.2^{\prime \prime} \mathrm{E}$, fl. fr. Feb., S. Koi E T. Wongprasert LK-221; Huay Ka Pheu R., at the point crossing Route 20, 450 m alt., $15^{\circ} 24^{\prime} 33.6^{\prime \prime} \mathrm{N}, 106^{\circ} 05^{\prime} 28.5^{\prime \prime} \mathrm{E}$, st. fl. fr. Feb., S. Koi \mathcal{E} T. Wongprasert LK-222; loc. cit., fl. fr. Jan., S. Koi et al. LKF-120; Houay Champy R., at the point crossing Route $20,200 \mathrm{~m}$ alt., $15^{\circ} 15^{\prime} 30.6^{\prime \prime} \mathrm{N}$, $105^{\circ} 55^{\prime} 59.5^{\prime \prime} \mathrm{E}$, fl. fr. Jan., S. Koi et al. LKF-103; Tad Pha Suam waterfall, Bajiang National Park, 200 m alt., $15^{\circ} 16^{\prime} 33.3^{\prime \prime N}, 105^{\circ} 55^{\prime} 19.2^{\prime \prime E}$, st. fl. fr. Jan., S. Koi et al. LKF-109. Sekong prov.: Tad Faek waterfall, 123 m alt., $15^{\circ} 14^{\prime} 37.9^{\prime \prime} \mathrm{N}, 106^{\circ} 44^{\prime} 57.3^{\prime \prime} \mathrm{E}$, fr. Feb., S. Koi \mathcal{E} T. Wongprasert LK-237. Attapeu prov.: Tad Hiew Khon
waterfall, Ban Muen Hua Mueang, 137 m alt., $15^{\circ} 13^{\prime}$ 45.4"N, $106^{\circ} 44^{\prime} 46.8^{\prime \prime} \mathrm{E}$, fl. fr. Jan., S. Koi et al. LK-128; Tad Nam Pa (Tad Jo) waterfall, Ban Xan Sai, 129 m alt., $14^{\circ} 56^{\prime} \mathrm{N}, 107^{\circ} 03^{\prime} 01.7^{\prime \prime} \mathrm{E}$, fl. fr. Jan., S. Koi et al. LK-132; Sekong R., Kaeng Mueang, Lavy village, 106 m alt., $15^{\circ} 18^{\prime} 03.3^{\prime \prime} \mathrm{N}, 106^{\circ} 42^{\prime} 43.3^{\prime \prime} \mathrm{E}$, st. fl. fr. Jan., S. Koi et al. LK-134; loc. cit., fl. fr. Feb., S. Koi E T. Wongprasert LK-241.
HABITAT. Epilithic on seasonally submerged rocks in waterfalls and rapids in open places.
CONSERVATION STATUS. Near threatened (NT): collected from several spots in a broad area.
NOTES. This species is variable in the root width and the number of stamens. The phylogenetic result shows that the clade of this species includes Cladopus doianus (= C. japonicus Imamura) and is divided into three subclades, one of which is a subclade comprising two forms, i.e., C. doianus with single or occasionally two or more stamens and C. pierrei p.p. (= LK-128, $132,134,232,237,241)$ with two stamens; the second is C. pierrei p.p. (= LK-211) with broad root ($5-7 \mathrm{~mm}$ wide) and two stamens; and the third is the remaining C. pierrei p.p. (= LK-117, 121, 123, 214, 221, 222; LKF-103, 109, 118, 120) with dominantly single stamens (Fig. 1A). This division is in contrast to the geography that Lao C. pierrei is remarkably separated from Japanese and south-eastern Chinese (Fujian) C. doianus (= C. chinensis H. C. Chao). C. doianus differs from C. pierrei in the short capsule stalk and the narrow fan-like stigma and possibly in the cleistogamy. C. pierrei is likely a paraphyletic ancestral species.

The present analysis indicates a dual phylogenetic feature of Cladopus in SE Asia. Lao C. pierrei, along with C. doianus, belongs to the Northern clade distributed in China and Japan (Kita \& Kato 2004), while Thai C. taiensis and Thai and Vietnamese C. fallax belong to the Southern clade extending to Indonesia, Papua New Guinea and Queensland (Australia).

Cusset (1973a, 1992) divided the genus Cladopus into two sections by the number of stamens, Cladopus with one stamen and Griffithella with two stamens on the common andropod. C. pierrei was assigned to the latter as the only SE Asian species. However, the variability of stamens and the phylogeny of C. pierrei revealed in this study do not allow separation even at the section level. There are similar variations in the number of stamens in Hydrobryum and Polypleurum (Kato 2004, 2006a). Koi et al.'s (2012) molecular phylogenetic analysis suggests that southern Indian C. hookerianus (Tul.) C. Cusset, type of sect. Griffithella, belongs to the Polypleurum-Zeylanidium clade. Therefore, C. hookerianus should be placed in an appropriate genus.

The genus Lecomtea Koidz. was proposed for Cladopus pierrei (Koidzumi 1929): it is not warranted.

Fig. 7. Cladopus pierrei. A ribbon-like root with tufts of leaves at sinuses of root branches; B tuft of leaves; C single-stamened flower protruding from spathella subtended by bracts; D bract; E, F flowers with 1 ovary, 2 stamens on common andropod and 2 tepals: E side view; F ventral view; G fruit with ruptured spathella and bracts at base of stalk; H ovules on ovary septum. From S. Koi et al. LKF-109. DRAWN by m. NAKAIIMA.

Hydrodiscus Koi \mathcal{E} M. Kato (2010: 387). Type species: Hydrodiscus koyamae (M. Kato \& Fukuoka) Koi \& M. Kato.

DISTRIBUTION. A monotypic genus endemic to Laos. NOTES. This monotypic genus is phylogenetically sister to the Hydrobryum clade including Hanseniella and Thawatchaia (Koi \& Kato 2010; Fig. 1A). Hydrodiscus is rootless and has shoots with anchoring disk-like bases and in this character it is unique in Asian Podostemoideae (Koi \& Kato 2010). Disk-bearing plants are also seen in some species of African Podostemoideae, which are phylogenetically separated from the Asian Podostemoideae (Kita \& Kato 2001; Moline et al. 2007). In the absence of roots it is also similar to South American genera, e.g. Mourera Aubl. and Rhyncholacis Tul., in another clade remote from the Asian clade (Warming 1899; Rutishauser \& Grubert 1994; Kita \& Kato 2001; S. Koi et al. unpubl. data). Since Hydrodiscus is placed in the Asian-Australian Podostemoideae, it is likely that the loss of the root happened independently of the African and American clades, and also of Dalzellia, subfamily Tristichoideae (Kita \& Kato 2001, 2005; Imaichi et al. 2004).
6. Hydrodiscus koyamae (M. Kato Eo Fukuoka) Koi \mathcal{E} M. Kato (2010: 387, f. 35). Type: Laos, Boli Kham Xai (= Bolikhamsai) prov., Tat Luek Nam Tok (= Tad Leuk waterfall), N. Fukuoka © H. Koyama L-65169 (holotype TNS!; isotypes L!, MO, SHO).
Diplobryum koyamae M. Kato \& Fukuoka (2002: 116, f. 4).

Shoots attached to rock surface with disk-like base, cylindrical, to 1 m long, $0.6-1.5 \mathrm{~mm}$ in diam., branched many times, glabrous or sparsely scaly-leafy; shorter shoots borne on disk; leaves narrowly-deltoid to deltoid, $1.2-1.5 \mathrm{~mm}$ long, c. 1 mm wide. Flowering shoots alternate on lateral sides of elongated shoot, solitary or sometimes with 1 or 2 additional lateral flowers, also borne on basal disk; bracts $4-7$ in 2 files, uniform but basal ones smaller, ovate, sheath-like base, apex acute or acuminate, $3-6 \mathrm{~mm}$ long; spathella enclosing young flower, narrowly ellipsoidal (fusiform), c. 5 mm long, ruptured near apex at anthesis, persistent; pedicels c. 1 mm long; tepals 2, on each side of stamen, linear, c. 4 mm long; stamens 2 with andropod, forked ${ }^{1} / 2-1 / 3$ from tip, $6-10(-13) \mathrm{mm}$ long, longer than pistil; anthers oblong, $1.5-2 \mathrm{~mm}$ long; ovaries single, stalked (stalks $2-3 \mathrm{~mm}$ long), 2locular, ellipsoidal, flattened, $3-3.5 \mathrm{~mm}$ long, 1.2 1.5 mm wide, $1-1.2 \mathrm{~mm}$ thick; stigmas 2 , forked above base, linear to narrowly triangular, unequal, 1 1.5 mm long; ovules $20-41$ per locule, borne on whole placenta surface except in small central lower area; capsule-stalks $2-4 \mathrm{~mm}$ long, capsules ellipsoidal,
slightly flattened, $3-3.5 \mathrm{~mm}$ long, c. 1.2 mm wide, c. 1 mm thick, 18 - 20-ribbed, dehiscing by 2 equal or subequal valves. Fig. 8.

DISTRIBUTION. Endemic to northern central Laos.
SPECIMENS EXAMINED. LAOS. Bolikhamsai prov.: Tad Leuk waterfall, Phuu Khao Khouay National Park, 200 m alt., $18^{\circ} 23^{\prime} 42.9^{\prime \prime} \mathrm{N}, 103^{\circ} 04^{\prime} 17.0^{\prime \prime} \mathrm{E}$, st. fl. fr. Jan., M. Kato et al. L-06; loc. cit., N. Fukuoka E \mathcal{G}. Koyama L65169 (type, TNS); Tad Xai waterfall, Phuu Khao Khouay National Park, 300 m alt., $18^{\circ} 27^{\prime} 7.0^{\prime \prime} \mathrm{N}, 103^{\circ} 08^{\prime}$ $39.5^{\prime \prime} \mathrm{E}$, st. fl. fr. Jan., M. Kato et al. L-11; loc. cit., 300 m alt., $18^{\circ} 27^{\prime} 18.8^{\prime \prime} \mathrm{N}, 103^{\circ} 08^{\prime} 31.8^{\prime \prime} \mathrm{E}$, fl. fr. Jan., S. Koi et al. LKF-13; Tad Nampa waterfall, Nam Nampa R., Ban Nampa, 163 m alt., $18^{\circ} 30^{\prime} 47.7^{\prime \prime} \mathrm{N}, 103^{\circ} 36^{\prime} 26.8^{\prime \prime} \mathrm{E}$, fl. fr. Jan., S. Koi et al. LK-104.
HABITAT. Epilithic on seasonally submerged rocks in waterfalls in open places.
CONSERVATION STATUS. Near threatened (NT): collected from a few spots in a small area.
NOTES. This is known from a very narrow area in northern central Laos. It was originally assigned with doubt to the genus Diplobryum, because of superficial analogy of the branched axis to D. ramosum (Kato \& Fukuoka 2002), which is assignable to Hydrobryum (see below). However, the two are remarkably distinct in the body plan (Koi \& Kato 2010).

Hydrobryum Endl., emend.; Cusset (1992: 44); Kato (2004: 143). Type: Hydrobryum griffithii (Wall. ex Griff.) Tul.
Synstylis C. Cusset (1992: 26). Type species: Synstylis micranthera (P. Royen) C. Cusset.
Diplobryum C. Cusset (1972: 279, f. 1; 1973a: 68, f. 11), p.p. excl. D. koyamae, synon. nov. Type species: Diplobryum minutale C. Cusset.

Roots crustose, ribbon-like or subcylindrical; shoots reduced as tufts of leaves, scattered on dorsal surface of root or borne at sinuses of root lobing or branching; leaves linear; flowering shoots appressed, or exceptionally elongate and erect; bracts imbricate, ovate, or exceptionally separated, subulate; spathella enclosing young flower, ruptured irregularly near apex or longitudinally at anthesis, persistent; tepals 2 on each side of stamen, linear; stamens 1 , or 2 with andropod, as long as, or longer than, pistil; ovaries single, ellipsoidal, mostly flattened, 1- or 2-locular; stigmas 2 , forked at or above base, equal or unequal; capsules ellipsoidal, flattened, 12 - 20-ribbed, dehiscing by 2 equal or unequal valves.

DISTRIBUTION. Seventeen species in E and SE Asia and Himalayas; seven endemic species in Laos. Because the species are variable ranging beyond the conventional definition of the genus, it is amended below.

Fig. 8. Hydrodiscus (syn. Diplobryum) koyamae. A floating, branched shoots; B part of shoot branches with flower buds; C flowers emerging from submerged shoot branches; D floriferous disk-like base; E flowers on shoot branchlets with red-purple anthers; F fruit and bracts on dried branchlet. From M. Kato et al. L-06.
nOtes. Diplobryum is reduced to Hydrobryum, based primarily on the molecular evidence that D. vientianense, morphologically close to D. minutale (type of Diplobryum), is nested within Hydrobryum (Koi \& Kato 2010; Fig. 1B). Both species and D. ramosum are combined with Hydrobryum below.

It is difficult to define the morphologically diverse genus Hydrobryum by one or a few particular characters, but it is definable by a combination of characters (root, leaf, flowering shoot, bract, stamen, ovary/ capsule). This contrasts with the previous simpler definition by the crustose roots, as well as the ovate
entire bracts on reduced flowering shoots, flattened ribbed capsules, and equal capsule-valves (Cusset 1972, 1992; Kato 2004). In the above-described characters, Hydrobryum differs from Cladopus with digitate bracts and smooth capsules, Polypleurum with erect flowering shoots, and Zeylanidium with 8-ribbed capsules and prominently unequal capsule-valves (one of which is persistent and the other is caducous). Hydrobryum is the most closely related to Hanseniella and Thawatchaia phylogenetically and morphologically, but distinct in that the bract is entire in Hydrobryum while it is bi- and trilobed in Hanseniella and Thawatchaia, respectively (Kato 2004).

The monophyletic group consisting of Lao species and Thai Hydrobryum somranii M. Kato exhibits a remarkable variation of roots: they range from crustose to ribbon-like and subcylindrical. In the ribbon-like and subcylindrical roots, every shoot is borne at a sinus of root branches. This association also occurs in different genera, e.g., Cladopus, a part of Polypleurum and Zeylanidium (Mathew \& Satheesh 1997; Hiyama et al. 2002; Koi \& Kato 2003; Kato 2006a). There is no such association in the crustose roots. The diversification of the roots will be elucidated by analysis of the root apical meristem responsible for the morphology.
7. Hydrobryum tardhuangense M. Kato (2004: 148, f. 7). Type: Thailand, Loei prov., Tard Huang International Waterfall, Na Haew National Park, 570 m alt., $17^{\circ} 34^{\prime} \mathrm{N}, 100^{\circ} 59^{\prime} \mathrm{E}$, M. Kato, Y. Kita E T. Wongprasert TL-314 (holotype BKF!; isotype TI!).

Roots crustose, irregularly lobed; leaves to 8 per tuft, linear, sheath-like base, to 3 mm long, papillate, scattered on dorsal surface of root, surrounded by raised rings of root tissue. Flowering shoots scattered on dorsal surface of root, solitary, erect or oblique; bracts $2-3$, uniform, ovate or deltoid, entire, apex acute to linear (caducous), $1-3.5 \mathrm{~mm}$ long, smooth; spathella enclosing young flower, ellipsoidal, $1.5-2.2 \mathrm{~mm}$ long, minutely papillate in distal part, smooth in basal part, split longitudinally at anthesis, persistent; pedicels c. 0.2 mm long; tepals 2 , on each side of stamen, linear, $1-2.5 \mathrm{~mm}$ long; stamen 2 with andropod, forked ${ }^{1} / 3-1 / 4$ from tip, $3-3.5 \mathrm{~mm}$ long, as long as, or longer than, pistil; anthers elliptic, c. 0.4 mm long; ovaries single, stalked (stalks c. $0.3-1 \mathrm{~mm}$ long), 2 locular, ellipsoidal, flattened, $1.5-2 \mathrm{~mm}$ long, $0.7-$ 1 mm wide, $0.6-0.8 \mathrm{~mm}$ thick; stigmas 2 , forked at base, linear to subulate, one apex pointed and the other obtuse, entire, equal, $0.3-0.8 \mathrm{~mm}$ long, papillate; ovules $13-25$ per locule, borne on marginal surface of placenta and in small central upper area; capsule-stalks 1 1.2 mm long, capsules ellipsoidal, flattened, $1.5-2 \mathrm{~mm}$ long, $0.7-1 \mathrm{~mm}$ wide, $0.5-0.7 \mathrm{~mm}$ thick, $15-16$-ribbed, dehiscing by 2 equal valves. Fig. 9 .

DISTRIBUTION. Northern central Laos; north-eastern Thailand.
SPECIMEN EXAMINED. LAOS. Khammouan prov.: Tad Namsanam waterfall, Ban Khounkham, Ban Namsanam Dist., 260 m alt., $18^{\circ} 13^{\prime} 11.2^{\prime \prime} \mathrm{N}, 104^{\circ} 30^{\prime} 21.6^{\prime \prime} \mathrm{E}$, st. fl. fr. Jan., S. Koi et al. LK-113.
habitat. Epilithic on seasonally submerged rocks in waterfalls in open places.
CONSERVATION STATUS. Near threatened (NT): collected from a single waterfall.
NOTES. This is the first record from Laos: the species is now known from two separate places. The Lao specimen differs from the Thai specimens in having more capsule-ribs (vs 12 - 14 in Thai plants).
8. Hydrobryum vientianense (M. Kato \mathcal{E} Fukuoka) Koi \mathcal{E} M. Kato comb. nov. Type: Laos, Vientiane prov., Khu Kanna Nam Tok (= Hinkhanna waterfall), N. Fukuoka E \mathcal{E} H. Koyama L-65098 (holotype TNS!; isotype L!).
http://www.ipni.org/urn:lsid:ipni.org:names:77120301-1
Diplobryum vientianense M. Kato \& Fukuoka, Acta Phytotax. Geobot. 53: 115, f. 1, 2 (2002).

Roots crustose, irregularly lobed, adhering to rock surface with rhizoids in pads on ventral side; leaves linear, tufts scattered on dorsal surface of root. Flowering shoots scattered on dorsal surface of root, appressed, flower erect or oblique; bracts $3-6$ in 2 files, uniform but basal ones smaller, ovate, hoodshaped, entire, apex obtuse, $0.8-2 \mathrm{~mm}$ long, papillate; spathella enclosing young flower, ellipsoidal, flattened, $2-2.5 \mathrm{~mm}$ long, papillate except in centre, ruptured longitudinally or irregularly on dorsal surface near apex at anthesis, persistent; pedicels $0.5-1 \mathrm{~mm}$ long; tepals 2, on each side of stamen, linear, 2-4 mm long; stamens 2 with flattened andropod, forked $1 / 2-$ $1 / 5$ from tip, $2-6 \mathrm{~mm}$ long, longer than pistil, filaments pale or pink when fresh; anthers elliptic, c. 0.5 mm long; ovaries single, stalked (stalks $1-1.5 \mathrm{~mm}$ long), 2-locular, ellipsoidal, flattened, $1.8-2.5 \mathrm{~mm}$ long, $0.8-1.1 \mathrm{~mm}$ wide, $0.5-1 \mathrm{~mm}$ thick, light-green when fresh, protruding from spathella; stigmas 2, forked above base, linear, entire, equal or subequal, $0.5-2.5 \mathrm{~mm}$ long; ovules $8-27$ per locule, borne on whole placenta surface except in small central lower area; capsule-stalks $1-2.5 \mathrm{~mm}$ long, capsules ellipsoidal, flattened, $1.7-2.5 \mathrm{~mm}$ long, $1-1.2 \mathrm{~mm}$ wide, $0.5-0.9 \mathrm{~mm}$ thick, $12-18$-ribbed, dehiscing by 2 equal or subequal valves; seeds ellipsoidal, smooth. Fig. 10.

DISTRIBUTION. Northern central Laos; north-eastern Thailand.

Fig. 9. Hydrobryum tardhuangense. A crustose root with tufts of leaves (i.e. vegetative shoots) on dorsal surface; B tuft of leaves; C young flower enclosed by spathella and subtended by bracts; D young flower with ruptured spathella and bracts; \mathbf{E} flower with 1 ovary, 2 stamens on andropod and 2 tepals; F fruit, right, side view; G ovules on ovary septum with central sterile area. From S. Koi et al. LK-113. DRAWN BY m. NAKAIMA.

SPECIMENS EXAMINED. LAOS. Vientiane prov.: Tad Hum waterfall, 200 m alt., $18^{\circ} 10^{\prime} 24.0^{\prime \prime} \mathrm{N}, 102^{\circ} 24^{\prime} 55.5^{\prime \prime} \mathrm{E}$, fl. fr. Jan., M. Kato et al. L-01; Hinkhanna waterfall, 200 m alt., $18^{\circ} 03^{\prime} 28.0^{\prime \prime} \mathrm{N}, 102^{\circ} 28^{\prime} 29.7^{\prime \prime} \mathrm{E}$, fl. fr. Jan., M. Kato et
al. L-02; loc. cit., N. Fukuoka E乛 H. Koyama L-65098 (type); loc. cit., fl. fr. Dec., S. Koi \mathcal{E} T. Wongprasert LK08; Tad Chan Thevoda waterfall, Phuu Khao Khouay National Park, 200 m alt., $18^{\circ} 17^{\prime} 52.4^{\prime \prime} \mathrm{N}, 102^{\circ} 45^{\prime} 10.6^{\prime \prime} \mathrm{E}$,

Fig. 10. Hydrobryum vientianense. A crustose root with flowering shoots on dorsal surface; B young flower enclosed by spathella and subtended by bracts; C flower with 1 ovary, 2 stamens on andropod and 2 tepals, protruding from ruptured spathella subtended by bracts; D fruit with ruptured spathella and bracts; E ovules on ovary septum with lower central sterile area in capsule with valve removed. From M. Kato et al. L-02. drawn by m. nakaima.
fl. fr. Jan., M. Kato et al. L-16; Tad Palay waterfall, 100 m alt., fl. fr. Dec., S. Koi E \mathcal{E} T. Wongprasert LK-06; Tad Moun waterfall, 100 m alt., fl. fr. Dec., S. Koi $\mathcal{E} T$. Wongprasert LK-07.
habitat. Epilithic on seasonally submerged rocks in waterfalls and rapids in open places.
CONSERVATION STATUS. Near threatened (NT): collected from a few spots.
NOTES. Variable in the sizes of the tepal, the filament on the andropod, the ovary, and the stigma. The spathellas split usually longitudinally at anthesis, but in
specimen M. Kato $\mathrm{L}-01$, it is apt to rupture near the apex rather than longitudinally. The proportion of andropod to stamen is also variable within the species. The stamens mostly are branched at the middle in specimens N. Fukuoka $\mathcal{E} \mathcal{H}$. Koyama L-65098, M. Kato et al. $\mathrm{L}-01$ and L-02, while branched ${ }^{1} / 3-1 / 5$ from the tip in specimen M. Kato et al. L-16.

This species is the most similar to Hydrobryum (= Diplobryum) minutale of southern Vietnam (newly combined below) and H. verrucosum of Laos in the crustose roots, $3-6$ bracts, spathellas longitudinally
split at anthesis, flowers protruding from the spathellas by elongation of ovary-stalks, and capsules up to 18 - 20 -ribbed, but differs from H. minutale in having larger flowers (tepals, stamens and ovaries) and linear stigmas (vs capitate in H. minutale), and from H. verrucosum in the absence of projections, smaller ovaries and capsules, and having fewer ovules ($8-27$ vs $17-67$ in H. verrucosum). The capsule-stalk is usually straight, not bent as described in a previous study (Kato \& Fukuoka 2002). H. vientianense belongs to a different clade from H. verrucosum.

Hydrobryum vientianense is sister to H. loeicum of NE Thailand with which it shares most of their characters, but differs in the longitudinally dehiscing spathella (vs irregularly dehiscing in H. loeicum), the length of the ovary-stalk ($1-1.5 \mathrm{~mm}$ vs 0.5 mm), the number of ovules ($8-27$ vs $4-7$ per locule) and the disposition of ovules (marginal and central vs marginal) (Kato 2004). However, specimen M. Kato et al. L-01 has ovules either on the central and marginal parts of the placenta, or only on the marginal surface. H. vientianense belongs to the same clade as NE Thai H. phetchabunense M. Kato \& Koi, but differs from it in the even surface of the root around tufts of leaves (vs raised in H. phetchabunense), papillate spathella (vs smooth) and a greater number of ovules $(8-27$ vs $4-8$ per locule).

8A. Hydrobryum minutale (C. Cusset) Koi Ev M. Kato comb. nov. Type: Southern Vietnam (Lang Bian), Chevalier 30946bis (P!). Endemic to southern Vietnam.
http://www.ipni.org/urn:lsid:ipni.org:names:77120302-1
Diplobryum minutale C. Cusset, Adansonia, Ser. 2, 12: 279, pl. 1 (1972); Cusset (1973a: 70, pl. 11); Cusset (1992: 49).
9. Hydrobryum austrolaoticum Koi \mathcal{E} M. Kato sp. nov. Hydrobryum micrantheri ovario 1-loculato, stamine singularis simile, sed capsulis pauciori-costatis differt. Typus: Laos, Champasak prov., Houay Champy river at the point crossing Route $20,200 \mathrm{~m}$ alt., $15^{\circ} 15^{\prime} 30.6^{\prime \prime} \mathrm{N}$, $105^{\circ} 55^{\prime} 59.5^{\prime E} \mathrm{E}, S$. Koi, R. Fujinami \mathcal{E} T. Wongprasert LKF104 (holotypus TNS!; isotypus BKF!).
http://www.ipni.org/urn:lsid:ipni.org:names:77120303-1
Roots crustose, irregularly lobed; leaves 1-2 (or more) per tuft, linear, ($0.8-$) $2-3.5 \mathrm{~mm}$ long, scattered on dorsal surface of root. Flowering shoots scattered on dorsal surface of root, solitary, appressed, flowers oblique; bracts $2-6$ in 2 files, uniform, ovate, entire, apex obtuse, $0.5-1.2 \mathrm{~mm}$ long, smooth; spathella enclosing young flower, ellipsoidal, flattened, $1-1.5 \mathrm{~mm}$ long,
smooth, ruptured longitudinally or irregularly on dorsal surface near apex at anthesis, persistent; flowers sessile; tepals 2, on each side of stamen, linear, distal part is broader than proximal, $1-2.5 \mathrm{~mm}$ long; stamens 1,2 5 mm long, longer than pistil; anthers elliptic, c. 0.3 mm long; ovaries single, stalked (stalks $0.3-1 \mathrm{~mm}$ long), unilocular, ellipsoidal, flattened, $1-1.6 \mathrm{~mm}$ long, $0.7-0.9 \mathrm{~mm}$ wide, $0.5-0.6 \mathrm{~mm}$ thick; stigmas 2 , forked above base, linear to subulate, entire, equal, $0.3-0.8 \mathrm{~mm}$ long; ovules $13-67$ per ovary, borne on whole placenta surface except in central lower area or only on marginal surface of placenta; capsule-stalks $0.7-1.2 \mathrm{~mm}$ long, capsules ellipsoidal, flattened, $1.2-2 \mathrm{~mm}$ long, 0.7 1 mm wide, $0.5-0.7 \mathrm{~mm}$ thick, $14-16$-ribbed, dehiscing by 2 equal valves. Fig. 11.

DISTRIBUTION. Endemic to southern Laos.
SPECIMENS EXAMINED. LAOS. Salavan prov.: Tad Lo waterfall, 350 m alt., $15^{\circ} 31^{\prime} 36.1^{\prime \prime} \mathrm{N}, 106^{\circ} 16^{\prime} 22.3^{\prime \prime} \mathrm{E}$, st. Jan., S. Koi et al. LKF-115. Champasak prov.: Tham Champee waterfall, 936 m alt., $15^{\circ} 12^{\prime} 12.5^{\prime \prime} \mathrm{N}, 106^{\circ} 07^{\prime}$ 59.2"E, fl. fr. Jan., S. Koi et al. LK-116; Tat Yuang waterfall, 957 m alt., $15^{\circ} 10^{\prime} 50.4^{\prime \prime} \mathrm{N}, 106^{\circ} 08^{\prime} 18.8^{\prime \prime} \mathrm{E}$, fl. fr. Jan., S. Koi et al. LK-122; stream in front of Laos Army Camp 16 on Route $16,1057 \mathrm{~m}$ alt., $15^{\circ} 18^{\prime} 58.1^{\prime \prime} \mathrm{N}, 106^{\circ} 20^{\prime}$ 09.1"E, fl. fr. Jan., S. Koi et al. LK-125; Houay Champy R. at the point crossing Route $20,200 \mathrm{~m}$ alt., $15^{\circ} 15^{\prime} 30.6^{\prime \prime} \mathrm{N}$, $105^{\circ} 55^{\prime} 59.5^{\prime \prime} \mathrm{E}$, fl. fr. Jan., S. Koi et al. LKF-104 (type); loc.cit., fl. fr. Jan., S. Koi et al. LKF-106.
HABITAT. Epilithic on seasonally submerged rocks in waterfalls and rapids in open places.
CONSERVATION STATUS. Near threatened (NT): collected from a few spots.
NOTES. The single stamen and the unilocular ovary are common among the crustose species such as Hydrobryum austrolaoticum, H. micrantherum and H. takakioides, and the subcylindrical-rooted H. subcylindricum also has both characters. But H. austrolaoticum is distinct from H. micrantherum in a fewer capsule-ribs (vs $12-14$ in H. micrantherum) and from H. takakioides in the very short flowering shoot and flat bract. The phylogeny shows that the similarity of H. austrolaoticum and H. micrantherum is an analogy. H. austrolaoticum is sister to a clade comprising H. somranii of NE Thailand, H. takakioides, H. verrucosum and H. subcrustaceum with crustose roots, and H. taeniatum, H. subcylindricum and H. ramosum with ribbon-like or subcylindrical roots. All but H. verrucosum and H. ramosum share the unilocular ovary (Table 1).

Specimens Koi et al. LK-116 and LK-125 are slightly different from the other specimens in the number and disposition of ovules; 13-30 ovules are borne only on the marginal surface of the placenta in the former (exceptionally a few more ovules are borne on the central upper area), whereas $25-67$ ovules are borne on the whole placenta surface except the central lower area. Specimen Koi et al. LK-122 has spathella rup-

Fig. 11. Hydrobryum austrolaoticum. A crustose root with flowering shoots on dorsal surface; B young flower enclosed by spathella and subtended by bracts; C flower with 1 ovary, 1 stamen and 2 tepals, partly enclosed by ruptured spathella and subtended by bracts, dorsal view; D flower, side view; E capsule with 7 - 8 ribs per valve; F ovules on placenta with lower sterile area, taken out of unilocular ovary. From S. Koi et al. LKF-104. drawn by m. nakalima.
tured irregularly on the dorsal surface and some of them have fewer ribs on the capsule. Specimen Koi et al. LKF-106 is abnormal though the matK sequence is identical to the type specimens.
10. Hydrobryum verrucosum Koi $\mathcal{E} M$. Kato sp. nov. H. somranii floribus erectis, setis capsularum longis simile et affine, sed radice inferne verrucosa, ovariis 2-locularibus, ovulis plumi, capsulis pluricostatis differt. Typus: Laos, Bolikhamsai prov., Tad Xai waterfall, Phuu Khao Khouay National Park, 300 m alt., $18^{\circ} 27^{\prime} 07.0^{\prime \prime} \mathrm{N}, 103^{\circ} 08^{\prime} 39.5^{\prime \prime} \mathrm{E}$,
M. Kato, S. Koi, C. Tsutsumi, N. Katayama, T. Wongprasert \mathfrak{E} S. Suddee L-12 (holotypus TNS!; isotypus BKF!).
http://www.ipni.org/urn:lsid:ipni.org:names:77120304-1
Roots crustose, irregularly lobed, adhering to rock surface by warty projections (holdfasts) scattered on ventral side; leaves 2-4 (or more) per tuft, $1.5-3 \mathrm{~mm}$ long or longer, linear, scattered on dorsal surface of root. Flowering shoots scattered on dorsal surface of root, solitary, appressed, flowers erect; bracts $3-6$ in 2 files, uniform but basal ones smaller, ovate, entire,
apex obtuse, $1-1.5 \mathrm{~mm}$ long, papillate in marginal part; spathella enclosing young flower, ellipsoidal, flattened, $2-2.5 \mathrm{~mm}$ long, papillate except in centre, split longitudinally on dorsal surface at anthesis, persistent; pedicels $0.5-2 \mathrm{~mm}$ long; tepals 2 , on each side of stamen, linear, $1.5-4 \mathrm{~mm}$ long; stamens 2 with flattened andropod, forked $1 / 4^{1} /{ }^{1}$ from tip, 4 8 mm long, as long as, or longer than, pistil; anthers elliptic, $0.5-1 \mathrm{~mm}$ long; ovaries single, stalked (stalks 0.7 2 mm long), 2-locular, ellipsoidal, slightly flattened, 2 3.3 mm long, $1-1.5 \mathrm{~mm}$ wide, $0.8-1.2 \mathrm{~mm}$ thick, redpurplish when fresh, protruding from spathella; stigmas 2, forked at base, linear to subulate, entire, equal, $0.5-2 \mathrm{~mm}$ long, papillate; ovules $17-67$ per locule, borne on whole placenta surface except in central lower area; capsulestalks $1-4 \mathrm{~mm}$ long, capsules ellipsoidal, slightly flattened, $2.5-3 \mathrm{~mm}$ long, $1-1.5 \mathrm{~mm}$ wide, $0.8-$ 1.2 mm thick, $(12-) 15-18$-ribbed, dehiscing by 2 unequal valves. Fig. 12.

DISTRIBUTION. Endemic to northern central Laos.
SPECIMENS EXAMINED. LAOS. Bolikhamsai prov.: Tad Leuk waterfall, Phuu Khao Khouay National Park, 200 m alt., $18^{\circ} 23^{\prime} 42.9^{\prime \prime} \mathrm{N}, 103^{\circ} 04^{\prime} 17.0^{\prime \prime} \mathrm{E}$, fl. fr. Jan., M. Kato et al. L-07; Tad Xai waterfall, Phuu Khao Khouay National Park, 300 m alt., $18^{\circ} 27^{\prime} 07.0^{\prime \prime} \mathrm{N}, 103^{\circ} 08^{\prime}$ $39.5^{\prime \prime} \mathrm{E}$, fl. fr. Jan., M. Kato et al. L-12 (type); loc. cit., $18^{\circ} 27^{\prime} 18.8^{\prime \prime N}$, $103^{\circ} 08^{\prime} 31.8^{\prime \prime} \mathrm{E}$, fl. fr. Jan., S. Koi et al. LKF-14; Tad Nampa waterfall, Nam Nampa R., Ban Nampa, 163 m alt., $18^{\circ} 30^{\prime} 47.7^{\prime \prime N}, 103^{\circ} 36^{\prime} 26.8^{\prime \prime} \mathrm{E}$, fl. fr. Jan., S. Koi et al. LK-105. Khammouan prov.: hills NW of Ban Mak Pheuang on N side of Nam Thun, 950 m alt., $17^{\circ} 51^{\prime} 477^{\prime \prime} \mathrm{N}, 105^{\circ} 20^{\prime} 2^{\prime \prime} \mathrm{E}$, fl. Oct., M. F. Newman et al. LAO 708 (E).
hABITAT. Epilithic on seasonally submerged rocks in waterfalls and rapids in open places.
CONSERVATION STATUS. Near threatened (NT): collected from a few spots.
NOTES. This is similar to north-eastern Thai Hydrobryum somranii in the erect flowers and long ($1-2 \mathrm{~mm}$) ovary stalks. However, there are remarkable differences: in H. verrucosum there are prominent warty projections on the ventral side of the root, the ovary is 2-locular (vs 1-locular in H. somranii), the ovules are 38-119 per ovary (vs $12-24$), and the capsule is $15-18$ ribbed (vs 12 - 14). However, the capsules of M. F. Newman et al. LAO 708 are 12 -ribbed. H. verrucosum is also similar to H. vientianense in the erect flowers with relatively long ovary-stalks, but distinct from it in having more ovules ($17-67$ per locule vs $8-27$ in H. vientianense) and the projection (presence vs absence).

The above three species belong to three different clades. Although Hydrobryum verrucosum and H. ramosum show remarkable differences in the root morphology (crustose vs floating and subcylindrical), they are sister to each other.
11. Hydrobryum subcrustaceum Koi \mathcal{E} M. Kato sp. nov. H. somranii radicibus crustaceis, surculis floriferis brevissimis, staminibus 2, ovaries, capsulis c. 12-costalis simile et affine, sed floribus adpressis, stigmatibus longioribus ($1-1.5 \mathrm{~mm}$), ovulis plumi (usque ad 37 in loculis), differt. Typus: Laos, Vientiane prov., Nam Mang 3 Dam, Mt Phuu Khao Khouay, 750 m alt., $18^{\circ} 21^{\prime}$ $35.9^{\prime \prime} \mathrm{N}, 102^{\circ} 48^{\prime} 25.3^{\prime \prime} \mathrm{E}$, S. Koi \mathcal{E} T. Wongprasert LK-03 (holotypus TNS!; isotypus BKF!).
http://www.ipni.org/urn:lsid:ipni.org:names:77120306-1
Roots crustose, lobed irregularly or sometimes associated with shoots at sinuses; leaves a few per tuft, linear, to 3 mm long, scattered on dorsal surface of root. Flowering shoots scattered on dorsal surface of root, solitary, appressed; bracts 2-4 in 2 files, uniform but basal ones smaller, ovate, entire, sheath-like base, apex obtuse, $0.5-1.2 \mathrm{~mm}$ long, papillate; spathella enclosing young flower, ellipsoidal, flattened, $1.8-2.5 \mathrm{~mm}$ long, papillate, split near apex at anthesis (stamens and stigmas emerged from spathella, ovary embedded within spathella at anthesis), persistent; flowers sessile; tepals 2, on each side of stamen, linear, $2-2.5 \mathrm{~mm}$ long; stamens 2 with flattened andropod, forked $1 / 3-1 / 7$ from tip, 3 4 mm long, longer than pistil; anthers elliptic, 0.2 0.4 mm long; ovaries single, subsessile (stalks $0.1-0.5 \mathrm{~mm}$ long), unilocular, ellipsoidal, flattened, $1-2 \mathrm{~mm}$ long, c. 1 mm wide, c. 0.5 mm thick; stigmas 2, forked above base, linear, entire, equal, $1-1.5 \mathrm{~mm}$ long, papillate; ovules $18-36$ per ovary, borne on marginal surface of placenta; capsules subsessile (stalks $0.2-0.4 \mathrm{~mm}$ long), ripened within spathella, ellipsoidal, flattened, $1.5-2 \mathrm{~mm}$ long, $0.8-1 \mathrm{~mm}$ wide, 0.5 mm thick, $12-16$-ribbed, dehiscing by 2 unequal valved. Fig. 13.

DISTRIBUTION. Endemic to northern central Laos. SPECIMENS EXAMINED. LAOS. Vientiane prov.: Chaova waterfall, Phuu Khao Khouay National Park, 200 m alt., $18^{\circ} 22^{\prime} 07.9^{\prime \prime N}, 102^{\circ} 42^{\prime} 13.3^{\prime \prime} \mathrm{E}$, sr. fl. fr. Jan., M. Kato et al. L-15; Nam Mang 3 Dam, Mt Phuu Khao Khouay, 750 m alt., $18^{\circ} 21^{\prime} 35.9^{\prime \prime} \mathrm{N}, 102^{\circ} 48^{\prime} 25.3^{\prime \prime} \mathrm{E}$, fl. fr. Dec., S. Koi $\mathcal{E} T$. Wongprasert LK-03 (type); loc. cit., fl. fr. Jan., S. Koi et al. LKF-02; loc. cit., fl. fr. Jan., S. Koi et al. LKF-04.
hABITAT. Epilithic on seasonally submerged rocks in waterfalls and rapids in open places.
CONSERVATION STATUS. Near threatened (NT): collected from a few spots in a small area.
nOTES. This species is similar to north-eastern Thai Hydrobryum somranii in the crustose roots, 2 stamens, and 1locular ovaries. But H. subcrustaceum differs from H. somranii in the number of ovules $(18-36$ vs $6-12$ per ovary in H. somranii), ovary-stalks ($0.1-0.5 \mathrm{~mm}$ vs $1-$ 2 mm long), flowers (appressed vs erect), and stigmas ($1-$ 1.5 mm vs $0.3-0.6 \mathrm{~mm}$ long). Although H. subcrustaceum is similar to H. loeicum, H. chiangmaiense M. Kato, H. japonicum and H. phetchabunense in the crustose roots,

Fig. 12. Hydrobryum verrucosum. A crustose root with flowering shoots on dorsal surface; B side view of reproductive roots on root, showing warty projections on ventral surface; C tuft of leaves; D young flower enclosed by spathella and subtended by bracts; E young flower with ruptured spathella and bracts; F flower with 1 ovary, 2 stamens on andropod and 2 tepals, protruding from ruptured spathella and bracts; G fruit with ruptured spathella and bracts; H ovules on ovary septum with lower central sterile area in capsule with valve removed. From M. Kato et al. L-12. DRAWn by m. naKAIIMA.

Fig. 13. Hydrobryum subcrustaceum. A crustose root with tufted leaves on dorsal surface; B tuft of leaves; C flowering shoots on dorsal surface of crustose root; D young flower enclosed by spathella and subtended by bracts; E flower at anthesis with ovary embedded in ruptured spathella and subtended by bracts; F young fruit with 1 capsule, 2 stamens on andropod and 2 tepals, spathella remain and bracts; G ovules on placenta with central sterile area, taken out of unilocular ovary. From S. Koi \& T. Wongprasert LK-03. DRAWN BY M. NAKAIIMA.
appressed flowers, ovate bracts, linear (or entire) stigmas, and 2 stamens, it differs from these species in the number of ovary locules (1 vs 2). H. subcrustaceum is sister to a clade of H. subcylindricum, H. takakioides and H. taeniatum with subcylindrical or ribbon-like roots.

The root of Hydrobryum subcrustaceum is considerably lobed. Lobing is sometimes associated with shoot formation. In such an association, there are shoots on the dorsal surface interior to the sinuses between root lobes. This positional relationship between the root lobing and the shoot, though occasional, is similar to that in Zeylanidium olivaceum (Gardner) Engl. (Hiyama et al. 2002). The ribbon-like roots of H. taeniatum and narrowly subcylindrical roots of H. subcylindricum and H. ramosum branch always associated with shoot formation, whereas H. austrolaoticum, H. somranii, and H. verrucosum, like other congeners, have crustose roots being lobed without the association of shoots.
12. Hydrobryum takakioides Koi \mathcal{E} M. Kato sp. nov. Radices crustaceae, super pagina supera surculifer, a congeneris surculis floriferis $7-14 \mathrm{~mm}$ longis, bracteis (vel foliis) subulatis, separatis differt. Typus: Laos, Bolikhamsai prov., Tad Xai waterfall, Phuu Khao Khouay National Park, 300 m alt., $18^{\circ} 27^{\prime} 18.8^{\prime \prime} \mathrm{N}, 103^{\circ} 08^{\prime}$ 31.8"E, S. Koi, R. Fujinami, N. Katayama \& \mathcal{O} T. Wongprasert LKF-16 (holotypus TNS!; isotypus BKF!).
http://www.ipni.org/urn:lsid:ipni.org:names:77120307-1
Roots crustose; leaves more than 10 per tuft, linear, to 10 mm long, scattered on dorsal surface of root. Flowering shoots scattered on dorsal surface of root, solitary, elongated, erect, $7-14 \mathrm{~mm}$ long; bracts $22-34$ in $6-$ 7 indistinct orthostichous files, spaced, uniform, subulate, $2-3.5 \mathrm{~mm}$ long; spathella enclosing young flower, ellipsoidal, $2-3 \mathrm{~mm}$ long, papillate, ruptured irregularly at apex at anthesis, persistent; flowers sessile; tepals 2, on each side of stamen, linear, $2.5-5 \mathrm{~mm}$ long; stamen 1 , 8 - 10 mm long, longer than pistil; anthers elliptic, 1 1.5 mm long; ovaries single, stalked (stalks $0.7-2.5 \mathrm{~mm}$ long), unilocular, ellipsoidal, $1.2-2 \mathrm{~mm}$ long, $0.5-$ 0.8 mm wide, protruding from spathella; stigmas 2 , forked above base, linear, entire, equal, $1-1.2 \mathrm{~mm}$ long; ovules $20-45$ per ovary, borne on whole placenta surface, sometimes except in central lower area; capsule-stalks 1 2 mm long, capsules ellipsoidal, slightly flattened, 1.8 2.5 mm long, $0.5-1.2 \mathrm{~mm}$ wide, $0.5-1 \mathrm{~mm}$ thick, $15-17-$ ribbed, dehiscing by 2 equal valves, ribs indistinct. Fig. 14.

DISTRIBUTION. Endemic to northern central Laos. SPECIMENS EXAMINED. LAOS. Bolikhamsai prov.: Tad Xai waterfall, Phuu Khao Khouay National Park, 300 m alt., $18^{\circ} 27^{\prime} 18.8^{\prime \prime} \mathrm{N}, 103^{\circ} 08^{\prime} 31.8^{\prime \prime} \mathrm{E}$, fl. fr. Jan., M. Kato et al. L-14; loc. cit., st. fl. fr. Feb., S. Koi \mathcal{E} T. Wongprasert LK202; loc. cit., fl. fr. Jan., S. Koi et al. LKF-16 (type).

HABITAT. Epilithic on seasonally submerged rocks in waterfall in open places.
CONSERVATION STATUS. Near threatened (NT): collected from a single waterfall.
nOTES. This species is remarkable in the genus for its elongate erect reproductive shoots with spaced subulate bracts and nearly radial ellipsoidal ovaries. In the reproductive shoot morphology, it looks like the unique moss Takakia S. Hatt. \& Inoue. Phylogenetically it is related to Hydrobryum subcylindricum and H. taeniatum with subcylindrical or ribbon-like roots and very short flowering shoots.
13. Hydrobryum taeniatum Koi \mathcal{E} M. Kato sp. nov. A congeneris radicibus taeniatis, a H. subcylindrico radicibus latioribus (c. 2 mm), staminibus 2 differt. Typus: Laos, Bolikhamsai prov., Tad Leuk waterfall, Phuu Khao Khouay National Park, 200 m alt., $18^{\circ} 23^{\prime} 42.9^{\prime \prime} \mathrm{N}$, $103^{\circ} 04^{\prime} 17.0^{\prime \prime} \mathrm{E}, \mathrm{M}$. Kato, S. Koi, C. Tsutsumi, N. Katayama, T. Wongprasert \mathcal{E} S. Suddee L-08 (holotypus TNS!; isotypus BKF!).
http: / /www.ipni.org/urn:lsid:ipni.org:names:77120308-1
Roots ribbon-like, (1-) $1.8-2 \mathrm{~mm}$ wide, isotomously (or anisotomously) branched, adhering to rock surface by warty projections (holdfasts) scattered on ventral side. Flowering shoots on dorsal surface of root at sinuses of root branching, solitary, appressed; bracts $2-4$ in 2 files, uniform but basal ones smaller, ovate, entire, apex obtuse or sometimes acute, $(0.5-1)$ c. 2.5 mm long; spathella enclosing young flower, ellipsoidal, $1.2-1.5$ (-1.8) mm long, slightly papillate, ruptured irregularly or longitudinally on dorsal surface near apex at anthesis, persistent; tepals 2, on each side of stamen, linear, $1.5-2 \mathrm{~mm}$ long; stamens 2 with andropod, forked to $1 / 3$ from tip, (1.5-) c. 3 mm long, longer than pistil (or as long as pistil); anthers elliptic, $0.5-0.7 \mathrm{~mm}$ long; ovaries single, stalked (stalks to 0.2 mm long), unilocular, ellipsoidal, flattened, $0.9-1.2 \mathrm{~mm}$ long, $0.6-0.9 \mathrm{~mm}$ wide, $0.5-0.7 \mathrm{~mm}$ thick; stigmas 2, forked above base, linear, entire, equal, $0.5-1 \mathrm{~mm}$ long; ovules $20-27$ (33) per ovary, borne on marginal surface of placenta; capsule-stalks c. 0.2 mm long, capsules ellipsoidal, flattened, $1.1-1.5 \mathrm{~mm}$ long, $0.9-1 \mathrm{~mm}$ wide, 0.5 0.8 mm thick, (15-) $16-17$-ribbed, dehiscing by 2 unequal valves. Fig. 15.

DISTRIBUTION. Endemic to northern central Laos. SPECIMEN EXAMINED. LAOS. Bolikhamsai prov.: Tad Leuk waterfall, Phuu Khao Khouay National Park, 200 m alt., $18^{\circ} 23^{\prime} 42.9^{\prime \prime} \mathrm{N}, 103^{\circ} 04^{\prime} 17.0^{\prime \prime} \mathrm{E}$, fl. fr. Jan., M. Kato et al. L-08 (type); Tad Nampa waterfall, Nam Nampa R., Ban Nampa, 163 m alt., $18^{\circ} 30^{\prime} 47.7^{\prime \prime} \mathrm{N}$, $103^{\circ} 36^{\prime} 26.8^{\prime \prime} \mathrm{E}$, fl. fr. Jan., S. Koi et al. LK-107.

Fig. 14. Hydrobryum takakioides. A crustose root with vegetative shoots on dorsal surface; B vegetative shoot; C young flower enclosed by spathella at shoot tip; D shoot with flower at tip partly covered by ruptured spathella; E flower with 1 ovary, 1 stamen and 2 tepals; F young fruit with spathella remains and bracts; G ovules on placenta with central sterile area in unilocular ovary with valve removed. From S. Koi et al. LKF-16. DRawn by m. nakAilma.

Fig. 15. Hydrobryum taeniatum. A ribbon-like root with flowering shoots at sinuses of root branches; B young flower enclosed by spathella and subtended by bracts; C flower with 1 ovary, 2 stamens on andropod and 2 tepals, partly protruding from ruptured spathella and subtended by bracts; D fruit with spathella remains and subtending bracts; E ovules on placenta with central sterile area, taken of unilocular ovary. From M. Kato et al. L-08. DRAWn by m. naKalima.
hABITAT. Epilithic on seasonally submerged rocks in rapids in open places.
CONSERVATION STATUS. Near threatened (NT): collected from a few spots in a small area.
NOTES. This is distinct from all other congeners in the ribbon-like root with shoots borne at the sinuses of root branching. In this character, Hydrobryum taeniatum is similar to the genera Cladopus, Polypleurum and Zeylanidium, but differs from Cladopus in the entire bracts (vs digitate in Cladopus), from Polypleurum in the appressed flower (vs erect), and from Zeylanidium in the $16-17$-ribbed capsule (vs 8).

The specimen Koi et al. LK-107 is embedded in the clade of Hydrobryum subcylindricum. It shares all characters with M. Kato et al. L-08 except the slightly narrower root ($1-2 \mathrm{~mm}$ vs $1.8-2 \mathrm{~mm}$ in L-08), longer proportion of andropod relative to stamen (forked $1 / 5-1 / 15$ from tip vs ${ }^{1} / 3$), and the shorter stamen (as long as pistil vs longer than pistil). H. taeniatum (M. Kato et al. L-08) and H. subcylindricum (M. Kato et al. L-09) are sympatric, suggest-
ing independence of the two species, but the relationship between them requires further analysis.
14. Hydrobryum subcylindricum Koi \mathcal{E} M. Kato sp. nov. A congeneris radicibus taeniatis, a H. taeniato radicibus angustioribus (usque ad 1 mm), staminibus 1 differt. Typus: Laos, Bolikhamsai prov., Tad Xai waterfall, Phuu Khao Khouay National Park, 300 m alt., $18^{\circ} 27^{\prime} 18.8^{\prime \prime N}, 103^{\circ} 08^{\prime} 31.8^{\prime \prime} \mathrm{E}$, S. Koi, R. Fujinami, N. Katayama $\mathcal{E} T$. Wongprasert LKF-17 (holotypus TNS!; isotypus BKF!).
http:/ /www.ipni.org/urn:lsid:ipni.org:names:77120309-1
Roots creeping, adhering to rock surface by pads on ventral side, narrowly subcylindrical, $0.5-0.8 \mathrm{~mm}$ wide, isotomously branched. Flowering shoots on dorsal surface of root at sinuses of root branching, solitary, appressed; bracts $2-4$ in 2 files, uniform, ovate, entire, apex acute,
$0.5-0.8 \mathrm{~mm}$ long, smooth; spathella enclosing young flower, ellipsoidal with longitudinal pleat, $1.2-1.8 \mathrm{~mm}$ long, smooth, ruptured near apex at anthesis (stamens and stigmas emerged from spathella, ovary embedded within spathella at anthesis), persistent; flowers subsessile (pedicels to 0.2 mm long); tepals 2 , on each side of stamen, linear, $0.5-1 \mathrm{~mm}$ long; stamen 1, $2-2.5 \mathrm{~mm}$ long, as long as, or longer than, pistil; anthers elliptic, 0.2 - 0.4 mm long; ovaries single, sessile, unilocular, ellipsoidal, flattened, $0.8-1.2 \mathrm{~mm}$ long, $0.5-0.7 \mathrm{~mm}$ wide, $0.3-0.5 \mathrm{~mm}$ thick; stigmas 2, forked above base, linear, entire, equal, $0.5-1.2 \mathrm{~mm}$ long, papillate; ovules $20-49$ per ovary, borne on marginal surface of placenta; capsules subsessile (stalks to 0.2 mm long), ripened within spathella (partially emerged from torn spathella), ellipsoidal, flattened, $1.0-1.2 \mathrm{~mm}$ long, $0.8-0.9 \mathrm{~mm}$ wide, $0.5-0.6 \mathrm{~mm}$ thick, $16-20$-ribbed, dehiscing by 2 unequal valves. Fig. 16.

DISTRIBUTION. Endemic to northern central Laos. SPECIMENS EXAMINED. LAOS. Bolikhamsai prov.: Tad Leuk waterfall, Phuu Khao Khouay National Park, 200 m alt.,
$18^{\circ} 23^{\prime} 42.9^{\prime \prime} \mathrm{N}, 103^{\circ} 04^{\prime} 17.0^{\prime \prime} \mathrm{E}$, fl. fr. Jan., M. Kato et al. L-09; Tad Xai waterfall, Phuu Khao Khouay National Park, 300 m alt., $18^{\circ} 27^{\prime} 07.0^{\prime \prime} \mathrm{N}, 103^{\circ} 08^{\prime} 39.5^{\prime \prime} \mathrm{E}$, fl. fr. Jan., M. Kato et al. L-13; loc. cit., fl. fr. Jan., S. Koi et al. LKF-17 (type).
hABITAT. Epilithic on seasonally submerged rocks in waterfalls in open places.
CONSERVATION STATUS. Near threatened (NT): collected from a few spots in a small area.
NOTES. This is similar to Hydrobryum (= Diplobryum) ramosum in the root being narrow-subcylindrical and the shoots borne at the sinuses of root branches, but differs in the root creeping on the rock surface (vs floating in H. ramosum), the single stamen (vs 2), the short ovary-stalk (0 mm vs $1-3.5 \mathrm{~mm}$), and the unilocular ovary (vs 2-locular).
15. Hydrobryum ramosum (C. Cusset) Koi E M. Kato comb. nov. Type: Laos, Vientiane prov., Phu Khao Khwai (= Phuu Khao Khouay), T. Smitinand s.n. (C!).
http://www.ipni.org/urn:lsid:ipni.org:names:77120310-1

Fig. 16. Hydrobryum subcylindricum. A narrow ribbon-like root with flowering shoots at sinuses of root branches; B young flower enclosed by spathella and subtended by bracts; C flower at anthesis with stamen and stigmas protruding from ruptured spathella subtended by bracts; D young fruit with 1 capsule, 1 stamen and 2 tepals (1 not seen), subtended by bracts; E ovules on placenta with central sterile area, taken out of unilocular ovary. From S. Koi et al. LKF-17. DRAWN BY M. NAKAIMA.

Fig. 17. Hydrobryum ramosum. A floating, narrow ribbon-like root with flowering shoots at sinuses of root branches, arrows indicate holdfasts; B disk-like base of root with flowering shoots; C young flower enclosed by spathella and subtended by bracts; D young flower with 1 ovary, 2 stamens on andropod and 2 tepals, protruding from ruptured spathella and subtended by bracts; E fruit; F ovules on ovary septum with lower central sterile area in capsule with valve removed. From S. Koi \mathcal{E} T. Wongprasert LK-05. drawn by m. nakaima.

Diplobryum ramosum C. Cusset, Adansonia 14: 50, f. 11 (1992).

Roots floating, attached to rock surface by small disk-like bases and a few elongate holdfasts, subcylindrical, flattened, $0.5-2.5 \mathrm{~mm}$ wide, isotomously branched; holdfasts cylindrical, c. 0.5 mm in diam., on ventral side of root opposite flowering shoots. Flowering shoots borne on dorsal surface of root at sinuses between root branching (or not associated with root branching), solitary, appressed; bracts $4-6$ in 2 files, (oblong-) ovate, sheath-like base, thickened, apex linear (caducous), ($1-2 \mathrm{~mm}$) to 4.5 cm long; spathella enclosing young flower, ellipsoidal, funnel-like, $4-7 \mathrm{~mm}$ long, smooth, split longitudinally at anthesis, persistent; pedicels $1-2 \mathrm{~mm}$ long; tepals 2 , on each side of stamen, linear, $3.5-5 \mathrm{~mm}$ long; stamens 2 with flattened andropod, forked $1 / 3-1 / 5$ from tip, 5 12 mm long, as long as, or longer than, pistil; anthers elliptic, $0.8-1.2 \mathrm{~mm}$ long; ovaries single, stalked (stalks $1-3.5 \mathrm{~mm}$ long), 2-locular, ellipsoidal, flattened, 2.5 3.5 mm long, $1-1.5 \mathrm{~mm}$ wide, $0.8-1.2 \mathrm{~mm}$ thick; stigmas 2, forked above base, linear, entire, equal or subequal, $1.5-3 \mathrm{~mm}$ long, papillate; ovules $30-61$ per locule, borne on whole placenta surface except in central lower area; capsule-stalks $2-10 \mathrm{~mm}$ long, capsules ellipsoidal, flattened, $2.5-4 \mathrm{~mm}$ long, 0.8 1.7 mm wide, $0.5-1.2 \mathrm{~mm}$ thick, ($14-$) 16 - 18-ribbed, dehiscing by 2 equal valves. Fig. 17.

DISTRIBUTION. Endemic to northern central Laos. SPECIMENS EXAMINED. LAOS. Vientiane prov.: Phu Khao Khwai, T. Smitinand s.n. (type, C); Mt Phu Kao Kwai (= Phuu Khao Khouay), N. Fukoka Ev T. Koyama L-65040 (L, TI, TNS); Nam Mang 3 Dam, Mt Phuu Khao Khouay, 750 m alt., $18^{\circ} 21^{\prime} 38.0^{\prime \prime} \mathrm{N}, 102^{\circ} 48^{\prime} 26.3^{\prime \prime} \mathrm{E}$, fl. fr. Dec., S. Koi E T. Wongprasert LK-05; loc. cit., fl. fr. Jan., S. Koi et al. LKF-05.
HABITAT. Epilithic on seasonally submerged rocks in rapids in open places.
CONSERVATION STATUS. Near threatened (NT): collected from a single spot.
notes. This is distinct in the genus Hydrobryum in the floating and subcylindrical roots. The root, like that of Sri Lankan Polypleurum elongatum (Gardner) J. B. Hall, adheres to the rock surface by the disk-like base and sometimes also by a few holdfasts. The root is apparently similar to the floating shoot with the disklike base of Hydrodiscus koyamae (Koi \& Kato 2010). Among the species examined, H. ramosum is the most closely related to the crustose H. verrucosum.

Acknowledgements

We thank T. Wongprasert, S. Suddee, N. Katayama, R. Fujinami and C. Tsutsumi for their help in the field study, Y. Hirayama for her technical assistance, and M.
F. Newman who drew our attention to specimens collected from central Laos. We are also indebted to directors and curators of Herbaria C, E, K, L, P, and TI for helping us examine specimens in the herbaria or on loan. This study was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science.

Appendix

Materials used in phylogenetic analysis. Species names (in bold) are followed by localities (for some materials), vouchers, and GenBank accession numbers of matK.

Cladopus austrosinensis M. Kato \mathcal{E} Y. Kita - CH-301, AB104560 ${ }^{\text {b }}$; CH-302, AB104559 ${ }^{\text {b }}$. C. doianus (Koidz.) Koriba - JK-Manose, AB179656 ${ }^{\text {b }}$. C. fallax C. Cusset -TL-701, AB293561 ${ }^{\text {c }}$; TL-1610, AB537378 ${ }^{\text {d }}$. C. fukienensis (H. C. Chao) H. C. Chao - CH-01, AB179653 ${ }^{\text {b }}$. C. javanicus M. Kato \mathcal{E} Hambali - ID-02, AB066175 ${ }^{\text {b }}$. C. nymanii H. A. Möller - ID-03, $\mathrm{AB} 104561^{\mathrm{b}}$; S-01, AB104577 ${ }^{\mathrm{b}}$. C. pierrei C. Cusset -LK-117, AB610213 ${ }^{\text {e }}$ LK-121, AB610214 ${ }^{\mathrm{e}}$; LK-123, AB610215 ${ }^{\text {e }}$; LK-128, AB610219 ${ }^{\text {e } ; ~ L K-132, ~ A B 610220 ~}{ }^{\text {e }}$; LK-134, AB610221 ${ }^{\mathrm{e}}$; LK-211, AB610224 ${ }^{\mathrm{e}}$; LK-214, AB610225 ${ }^{\text {e }}$; LK-221, AB610226 ${ }^{\text {e }}$; LK-222, AB610227 ${ }^{\text {e }}$; LK-232, AB610228 ${ }^{\mathrm{e}}$; LK-237, AB610222 ${ }^{\mathrm{e}}$; LK-241, AB610223 ${ }^{\text {e }}$; LKF-103, AB537379 ${ }^{\text {d }}$; LKF-109, AB610217 ${ }^{\mathrm{e}}$; LKF-118, AB537380 ${ }^{\text {d }}$; LKF-120, AB610218 ${ }^{\mathrm{e}}$. C. queenslandicus (Domin) C. D. K. Cook E Rutish. - AU-01, AB038199 ${ }^{\mathrm{a}}$; H. Akiyama 16803, AB300702 ${ }^{\text {c }}$. C. taiensis C. Cusset - TL-101, AB048372a ${ }^{\text {a }}$ Hanseniella heterophylla C. Cusset -TL-311, AB104562 ${ }^{\text {b }}$; TL-1104, AB537388 ${ }^{\text {d }}$; Gaeng Tha Lad, Loei, Thailand, TPK-13, AB610229 ${ }^{\text {e }}$; Gaeng Gliang, Loei, Thailand, TPK-15, AB610230 ${ }^{\text {e }}$. Hydrobryum austrolaoticum Koi \& M. Kato -LK-116, AB610232 ${ }^{\text {e }}$ LK-122, AB610233 ${ }^{\text {e }}$ LK-125, AB610234 ${ }^{\mathrm{e}}$; LKF-104, AB537417 ${ }^{\mathrm{d}}$; LKF-106, AB610231 ${ }^{\mathrm{e}}$; LKF-115, AB537418 ${ }^{\text {d }}$. Hy. bifoliatum C. Cusset - TL-310, AB104564 ${ }^{\text {b }}$. Hy. chiangmaiense M. Kato - TK-07, AB537389 ${ }^{\text {d }}$; TL-65, AB537390 ${ }^{\text {d }}$ TL-422, AB537391 ${ }^{\text {d }}$; TL-423, AB048373 ${ }^{\text {b }}$; TL-424, AB537392 ${ }^{\text {d }}$; TL-428, AB537393 ${ }^{\text {d }}$; TL-429, AB104570 ${ }^{\text {b }}$; TL-801, AB537394 ${ }^{\text {d }}$. Hy. floribundum Koidz. -JK-Mae, AB104571 ${ }^{\text {b }}$. Hy. griffithii (Wall. ex Griff.) Tul. -CH-102, AB104568 ${ }^{\text {b }}$; TL-205, AB104569 ${ }^{\text {b }}$. Hy. japonicum Imamura - CH-101, AB104573 ${ }^{\text {b }}$; JK-01, AB038192 ${ }^{\text {a }}$; J. Murata et al. 041232, AB537396 ${ }^{\text {d }}$; Tard Muey waterfall, Maetakhra National Park, Mae On, Chiang Mai, Thailand, TK-01, AB610235 ${ }^{\text {e }}$ TL-415, AB537397 ${ }^{\text {d }}$; TL-420, AB537398 ${ }^{\text {d }}$; TL-427, AB537399 ${ }^{\text {d }}$; TL-1103, AB537400 ${ }^{\text {b }}$; Sapa, Vietnam, Vie-1, AB610236 ${ }^{\text {e }}$. Hy. kaengsophense M. Kato - TL-312, AB104565 ${ }^{\text {b }}$. Hy. khaoyaiense M. Kato - TK-09, AB537395 ${ }^{\text {d }}$. Hy. koribanum Imamura ex Nakayama Ev Minamitani -

JK-05, AB048374 ${ }^{\mathrm{a}}$. Hy. loeicum M. Kato - TL-210, AB104566 ${ }^{\text {b }}$; TL-211, AB537401 ${ }^{\text {d }}$. Hy. micrantherum var. crassum M. Kato - TL-57, AB038205 ${ }^{\text {a ; TL-58, }}$ $\mathrm{AB} 104574^{\mathrm{b}}$; TL-306, AB104576 ${ }^{\mathrm{b}}$. Hy. micrantherum var. micrantherum (P. Royen) C. D. K. Cook E® Rutish. -TL-62, AB104575 ${ }^{\text {b }}$. Hy. phetchabunense M. Kato $\mathcal{E}{ }^{\circ}$ Koi-TKF-01, AB537414 ${ }^{\mathrm{d}}$, TL-1102, AB537415 ${ }^{\mathrm{d}}$. Ну. puncticulatum Koidz. - JK-Yaku, AB104572 ${ }^{\text {b }}$. Hy. ramosum (C. Cusset) Koi E₹ Kato - LK-05, AB537383 ${ }^{\text {d }}$; LKF-05, AB610237 ${ }^{\mathrm{e}}$. Hy. somranii M. Kato - TL-703, AB537402 ${ }^{\text {d }}$; TL-704, AB537403 ${ }^{\text {d }}$. Hy. subcrustaceum Koi Ev M. Kato - L-15, AB537408 ${ }^{\text {; }}$; LK-03, AB537409 ${ }^{\mathrm{d}}$, LKF-02, AB537410 ${ }^{\text {d }}$, LKF-04, AB537411 ${ }^{\text {d }}$. Hy. subcylindricum Koi E₹ M. Kato - L-09, AB537405 ${ }^{\text {d }}$ $\mathrm{L}-13, \mathrm{AB} 610238^{\mathrm{e}}$; LKF-17, AB537406 ${ }^{\mathrm{d}}$. Hy. taeniatum Koi \mathcal{E} M. Kato - L-08, AB537404 ${ }^{\text {d }}$; LK-107, AB610239 ${ }^{\text {e }}$. Hy. takakioides Koi Go M. Kato - L-14, AB610240 ${ }^{\mathrm{e}}$; LK-202, AB610241 ${ }^{\text {e }}$; LKF-16, AB537407 ${ }^{\text {d }}$. Hy. tardhuangense M. Kato - LK-113, AB610242 ${ }^{\text {; }}$ TL-208, $\mathrm{AB} 104567^{\mathrm{b}}$. Hy. verrucosum Koi G$~ M . ~ K a t o ~-~ L-07, ~$ AB537412 ${ }^{\text {d }}$; L-12, AB610243 ${ }^{\mathrm{e}}$; LK-105, AB610244 ${ }^{\mathrm{e}}$; LKF-14, AB537413 ${ }^{\text {d }}$. Hy. vientianense (M. Kato Eु Fukuoka) Koi E๒ M. Kato - L-01, AB537384; ; L-02, AB610245 ${ }^{\text {e }}$, L-16, AB537385 ${ }^{\text {d }}$; LK-06, AB537386 ${ }^{\text {d }}$, LK-07, AB610246 ${ }^{\text {e }}$ LK-08, AB537387 ${ }^{\text {d }}$; TKF-02, AB537416 ${ }^{\text {d }}$; Gok-tab waterfall, Loei, Thailand, TPK-26A, AB610247 ${ }^{\mathrm{e}}$; loc. cit., TPK-26B, AB610248 ${ }^{\mathrm{e}}$; Gaeng Hua Wang Hai, Loei, Thailand, TPK-28, AB610249 ${ }^{\text {e }}$ Loei stream, Loei, Thailand, TPK-29, AB610250 ${ }^{\text {e }}$. Hydrobryum sp. - Gaeng Songkone, Loei, Thailand, TPK-01, AB610253 ${ }^{\text {e }}$. Hydrobryum sp. - Gaeng Wang Gohia, Loei, Thailand, TPK-16, AB610251 ${ }^{\mathrm{e}}$. Hydrobryum sp. - Huai Phai waterfall, Loei, Thailand, TPK-22, AB610252 ${ }^{\mathrm{e}}$. Hydrodiscus koyamae (M. Kato Ė Fukuoka) Koi Ė M. Kato - L-06, AB537381 ${ }^{\text {d }}$; L-11, AB537382 ${ }^{\text {d }}$ LK-104, AB610255 ${ }^{\text {e }}$; LKF-13, AB610254 ${ }^{\mathrm{e}}$. Paracladopus chanthaburiensis Koi Ė M. Kato - TL-1533, AB293558. Pa. chiangmaiensis M. Kato - LK-213, AB610258'; LK-220, AB610259 ${ }^{\mathrm{e}}$; LK-223, AB611703 ${ }^{\mathrm{e}}$; LKF-105, AB610256 ${ }^{\text {e }}$; LKF-110, AB537419 ${ }^{\text {d }}$, LKF-116, AB610257 ${ }^{\mathrm{e}}$; LKF-119, AB537420 ${ }^{\text {d }}$; LKF-121, AB537421 ${ }^{\mathrm{d}}$; TL-808, AB293560 ${ }^{\text {c }}$; TL-1706, AB537422 ${ }^{\text {d }}$. Polypleurum elongatum (Gardner) J. B. Hall - SL-12, AB048376 ${ }^{\text {a }}$. Po. erectum M. Kato - Cha Naen waterfall, Phu Wua Wildlife Sanctuary, Nong Khai, Thailand, TL-706, AB610260 ${ }^{\mathrm{e}}$. Po. insulare M. Kato Ėv Koi - Khlong Phu waterfall, Ko Chang, Trat, Thailand, TL-1512, AB610261 ${ }^{\mathrm{e}}$. Po. longicaule M. Kato - Tharn Ngam waterfall, Udon Thani, Thailand, TL-709, AB610262 ${ }^{\mathrm{e}}$; loc. cit., TL-901, AB610263 ${ }^{\mathrm{e}}$. Po. longifolium M. Kato Cha Naen waterfall, Phu Wua Wildlife Sanctuary, Nong Khai, Thailand, TL-707, AB610264 ${ }^{\mathrm{e}}$; loc. cit., TL-904, AB610265 ${ }^{\text {e }}$. Po. longistylosum M. Kato - TL-318, AB104578 ${ }^{\text {b }}$; Phoolaor waterfall, Si Sa Ket, Thailand, TL-1503, AB610266 ${ }^{\mathrm{e}}$. Po. munnarense Nagendran \mathcal{E} Arekal - Kuriyarkutty R., Orukomban, Parambikulam

Wildlife Sanctuary, Trichur, Kerala, India, A. K. Pradeep 90004, AB610267 ${ }^{\mathrm{e}}$. Po. phuwuaense M. Kato - Chet Si waterfall, Phu Wua Wildlife Sanctuary, Nong Khai, Thailand, TL-705, AB610268 ${ }^{\mathrm{e}}$. Po. pluricostatum Koi § \mathcal{V}^{2}. Kato - LK-01, AB610269 ${ }^{\mathrm{e}}$; LK-02, AB610270 ${ }^{\mathrm{e}}$; LK-04, AB610271 ${ }^{\mathrm{e}}$; LKF-01, AB610272 ${ }^{\mathrm{e}}$; LKF-03, AB610273 ${ }^{\text {e }}$ Lad Hin Tak waterfall, Phu Rua National Park, Loei, Thailand, TPK-20, AB610274 ${ }^{\mathrm{e}}$. Po. prachinburiense M. Kato \mathcal{E} Koi - Takro waterfall, Prachinburi, Thailand, TL-1404, AB610275 ${ }^{\text {e }}$; Kaeng Hin Phoeng waterfall, Khao Yai National Park, Na Dee, Prachinburi, Thailand, TL-1601-1, AB610276 ; loc. cit., TL-1602, AB610277 ${ }^{\mathrm{e}}$; loc. cit., TL-1604, AB610278 ${ }^{\mathrm{e}}$. Po. schmidtianum Warm. - LK-106, AB610279 ${ }^{\mathrm{e}}$; Sato stream, Klong Sato, Bo Rai, Trat, Thailand, TKF-21, AB610463 ${ }^{\mathrm{e}}$; Saphan Hin waterfall, Trat, Thailand, TL-1303, AB610280 ${ }^{\mathrm{e}}$; loc. cit., TL-1508A, AB610281 ${ }^{\mathrm{e}}$; loc. cit., TL-1508B, AB610282e . Po. sisaketense M. Kato E Koi - Phoolaor waterfall, Kantharalak, Si Sa Ket, Thailand, TL-1502, AB610464 ${ }^{\mathrm{e}}$. Po. stylosum (Wight) J. B. Hall - Kunthipuzha, Mannarkkad, Malappuram, Kerala, India, A. K. Pradeep 90003, AB610465 ${ }^{\text {e; }}$ Panathur, Kasaragod, Kerala, India, KI-109, AB610466 ${ }^{\text {e }}$; Cheenganni Puzha, Kannur, Kerala, India, KI-211, AB610467 ${ }^{\text {e }}$; Punavoorthodu Urulanthanni, Ernakuram, Kerala, India, KI-222, AB610468 ${ }^{\text {; }}$ SL-05, AB066174 ${ }^{\text {b }}$. Po. wallichii (R. Br. ex Griff.) Warm. - L-03, AB610470 ${ }^{\mathrm{e}}$; LK-09, AB610471 ${ }^{\mathrm{e}}$; LK-127, AB610472 ${ }^{\mathrm{e}}$; LK-238, AB610473 ${ }^{\text {e }}$; TL-55, AB038204 ${ }^{\text {a }}$, Nang Rong waterfall, Khao Yai National Park, Nakhon Nayok, Thailand, TL-601, AB610469 ${ }^{\mathrm{e}}$. Po. wongprasertii M. Kato - TL-319, AB104579 ${ }^{\text {b }}$. Thawatchaia trilobata M. Kato, Koi Ė Y. Kita - TL-419, AB104563b; Gaeng Khem, Dansai, Loei, Thailand, TPK-02, AB610474 Gaeng Tham, Huaylad, Dansai, Loei, Thailand, TPK-04, AB610475 ${ }^{\text {e }}$; Gaeng Tha Laad, Phu Ruea, Loei, Thailand, TPK-14, AB610476 ${ }^{\mathrm{e}}$. Zeylanidium lichenoides (Kurz.) Engl. - KI-37, AB104582 ${ }^{\text {b }}$. Z. subulatum (Gardner) C. Cusset - Pooyam Kutty R. near Kothamanglam, Ernakuram, Kerala, India, KI-219, AB610477 ${ }^{\mathrm{e}}$; SL-01, AB038202 ${ }^{\text {a }}$.

Sources: ${ }^{\text {a }}$ Kita \& Kato (2001), ${ }^{\text {b }}$ Kita \& Kato (2004), ${ }^{\mathrm{c}}$ Koi et al. (2008), ${ }^{\mathrm{d}}$ Koi \& Kato (2010), ${ }^{\text {e }}$ present study.

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans. Automatic Control 19: 716 723.

Ameka, K. G., Pfeifer, E. \& Rutishauser, R. (2002). Developmental morphology of Saxicolella amicorum and S. submersa (Podostemaceae: Podostemoideae) from Ghana. Bot. J. Linn. Soc. 139: 255 273.

Aston, H. I. (1990). Podostemaceae. In: Bureau of Flora and Fauna, Canberra (eds), Flora of Australia

Volume 18 Podostemaceae to Combretaceae. 18: $1-5$. Australian Govt. Printing Service, Canberra.
Cook, C. D. K. \& Rutishauser, R. (2001). Name changes in Podostemaceae. Taxon 50: 1163-1167.
Cusset, C. (1972). Diplobryum, genre monospécifique nouveau de Podostemaceae. Adansonia, ser. 2, 12: 279-282.
(1973a). Podostemaceae. Flore du Cambodge, du Laos et du Viêt-nam 14: 65-74. Museum National d'histoire naturelle, Paris.
(1973b). Tristichaceae. Flore du Cambodge, du Laos et du Viêt-nam 14: 75 - 79. Museum National d'histoire naturelle, Paris.
(1992). Contribution à l'étude des Podostemaceae: 12. Les genres asiatiques. Bull. Mus. Natl. Hist. Nat., B, Adansonia 14: 13-54.
\& Cusset, G. (1988). Etude sur les Podostemales. 9. Délimitations taxinomiques dans les Tristichaceae. Adansonia 10: 149-177.
Engler, E. (1927). Podostemonaceae americanae novae. Bot. Jahrb. Syst. 61: 1-9.
Ghogue, J.-P., Ameka, G. K., Gros, V., Huber, K. A., Pfeifer, E. \& Rutishauser, R. (2009). Enigmatic morphology of Djinga felicis (Podostemaceae Podostemoideae), a badly known endemic from northwestern Cameroon. Bot. J. Linn. Soc. 160: 64-81.
Hiyama, Y., Tsukamoto, I., Imaichi, R. \& Kato, M. (2002). Developmental anatomy and branching of roots of four Zeylanidium species (Podostemaceae), with implications for evolution of foliose roots. Ann. Bot. 90: 735-744.
Imaichi, R., Maeda, R., Suzuki, K. \& Kato, M. (2004). Developmental morphology of foliose shoots and seedlings of Dalzellia zeylanica (Podostemaceae) with special reference to their meristems. Bot. J. Linn. Soc. 144: 289 - 302.
Kato, M. (2004). Taxonomic studies of Podostemaceae of Thailand. 1. Hydrobryum and related genera with crustaceous roots (subfamily Podostemoideae). Acta Phytotax. Geobot. 55: 133 - 165.
(2006a). Taxonomic studies of Podostemaceae of Thailand. 2. Subfamily Tristichoideae and subfamily Podostemoideae with ribbon-like roots. Acta Phytotax. Geobot. 57: 1 - 54.
(2006b). Distribution and biogeography of Podostemaceae in Asia. Bull. Natl. Sci. Mus., Tokyo, B, 32: 19 - 27.
(2008). A taxonomic study of Podostemaceae of Japan. Bull. Natl. Sci. Mus., Tokyo, B, 34: $63-73$.
(2009). Podostemaceae of Malesia: taxonomy, phylogeny and biogeography. Blumea 54: 198 202.
\& Fukuoka, N. (2002). Two new species of Diplobryum (Podostemaceae, Podostemoideae) from Laos. Acta Phytotax. Geobot. 53: 115-120. \& Kita, Y. (2003). Taxonomic study of Podostemaceae of China. Acta Phytotax. Geobot. 54: 87 - 97.
\qquad
\qquad , \& Koi, S. (2003). Molecular phylogeny, taxonomy and biogeography of Malaccotristicha australis comb. nov. (syn. Tristicha australis) (Podostemaceae). Austral. Syst. Bot. 16: 177 - 183.
\& Koi, S. (2009). Taxonomic Studies of Podostemaceae of Thailand. 3. Six new and a rediscovered species. Gard. Bull. Singapore 61: 55-72.
\qquad _, \& Kita, Y. (2004). A new foliose-rooted genus of Podostemaceae from Thailand with a note on root evolution. Acta Phytotax. Geobot. 55: $65-73$.
Kita, Y. \& Kato, M. (2001). Infrafamilial phylogeny of the aquatic angiosperm Podostemaceae inferred from the nucleotide sequences of the matK gene. Pl. Biol. 3: 156-163.
\& \qquad (2004). Molecular phylogeny of Cladopus and Hydrobryum (Podostemaceae, Podostemoideae) with implications for their biogeography in East Asia. Syst. Bot. 29: 921 - 932.
\& ___ (2005). Seedling developmental anatomy of an undescribed Malaccotristicha species (Podostemaceae, subfamily Tristichoideae) with implications for body plan evolution. Plant Syst. Evol. 254: 221 232.

Koi, S. \& Kato, M. (2003). Comparative developmental anatomy of the root in three species of Cladopus (Podostemaceae). Ann. Bot. 91: 927-937. _ \& ___ (2010). Developmental morphology of seedling and shoot and phylogenetic relationship of Diplobryum koyamae (Podostemaceae). Amer. J. Bot. 97: 373-387.
, Kita, Y. \& Kato, M. (2008). Paracladopus chanthaburiensis, a new species of Podostemaceae from Thailand, with notes on its morphology, phylogeny and distribution. Taxon 57: 201 - 210.
_, Hirayama, Y., Rutishauser, R., Huber, K. A. \& Kato, M. (2012). Molecular phylogenetic analysis of Podostemaceae: Implications for taxonomy of major groups. Bot. J. Linn. Soc. 169: 461 - 492.
Koidzumi, G. (1929). A new Podostemonaceae found in the province Ohsumi, Kyusiu, Japan. In: Y. Doi (ed.), Florula Satsumensis 1 (4): 48 - 53. Kagoshima.
Mathew, C. J. \& Satheesh, V. K. (1997). Taxonomy and distribution of the Podostemaceae in Kerala, India. Aquat. Bot. 57: 243-274.
Moline, P., Thiv, M., Ameka, G. K., Ghogue, J.-P., Pfeifer, E. \& Rutishauser, R. (2007). Comparative morphology and molecular systematics of African PodostemaceaePodostemoideae, with emphasis on Dicraeanthus and Ledermanniella from Cameroon. Int. J. Pl. Sci. 168: 159 - 180.
Möller, H. (1899). Cladopus nymani n. gen., n. sp., eine Podostemacée aus Java. Ann. Jard. Bot. Buitenzorg 1: 115-132.
Posada, D. \& Crandall, K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinfomatics 14: $817-818$.

Rutishauser, R. \& Grubert, M. (1994). The architecture of Mourera fluviatilis (Podostemaceae). I. Mature structures and leaf development. Bot. Helvet. 104: 179-194.
Tanaka, N., Kobayashi, S., Ohi-Toma, T. \& Murata, J. (2006). New or noteworthy plant collections from Burma (1) Hydrobryum japonicum, Balanophora subcupularis, Rhopalocnemis phalloides and Sonerila laeta. J. Jap. Bot. 81: 324-331.
Steenis, C. G. G. J. van. (1949). Podostemaceae. Fl. Malesiana. Ser. I, 4 (2): $65-68$.

Warming, E. (1899). Familien Podostemaceae. Kongel. Danske Vidensk. Selsk. Skr., Naturvidensk. Math. Afd., ser. 6, 9: 105-154.
(1901a). Podostemaceae. In: Johs. Schmidt, Flora of Koh Chang: Contributions to the knowledge of the vegetation in the Gulf of Siam. Bot. Tidsskr. 24: 241-327.
(1901b). Familien Podostemaceae. VI. Kongel. Danske Vidensk. Selsk. Skr., Naturvidensk. Math. Afd., ser. 6, 11: 1-67.

[^0]: Accepted for publication June 2012. Published online 31 July 2012
 ${ }^{1}$ Department of Botany, National Museum of Nature and Science, Tsukuba, 305-0005, Japan. e-mail: sorang@kahaku.go.jp
 ${ }^{2}$ Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan. e-mail: skoi@bs.naist.jp

[^1]: $*^{1}$ crust $=$ crustaceous, ribbon $=$ ribbon-like, narrow ribbon $=$ narrow ribbon-like, subcylin $=$ subcylindrical; $; *^{2}$ appress $=$ appressed; $*^{3}$ dimorph $=\operatorname{dimorphic;} ; *^{4}$ acumin $=$ acuminate; $*^{5}$ irr $=$
 ruptured irregularly near apex, longi $=$ longitudinally split, papil = papillate; $*^{6}$ number of ovules per locule, but per placentral face in a 1 -locular ovary; $*^{2} \mathrm{M}=$ on marginal surface of septum, $\mathrm{M}+\mathrm{C}=$ on septum surface except in lower central area; ${ }^{* 8}$ subent $=$ subentire; $*^{9}$ top $=$ var. micrantherum, bottom $=$ var. crassum

