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DISSERTATION ABSTRACT 

The evolution of species is accompanied by phenotypic changes, such as the fin to limb 
transition, which led to the phenotypic diversity observed among species today. Studying and 
understanding these phenotypic transitions and the underlying genetic changes are important 
topics in evolutionary biology. With the advent of next-generation experimental methods, large 
volumes of biological data, such as protein-protein interaction (PPI) data, have accumulated and 
big data analyses have become the norm in bioinformatics studies. This dissertation attempts to 
use such publicly available large-scale data sets to study the evolutionary phenotypic transitions, 
which gives a new perspective to evolutionary biological studies. Here, the focus is on biological 
network data because they represent complex biological relationships, such as the interactions 
between proteins and relationships between different taxa that are important when studying the 
phenotypic transitions. This work builds the computational framework to integrate large-scale 
biological network data such as PPI networks, anatomy ontology data, and phylogenetic trees 
and solves the challenges associated with the integrations. The first objective focuses on solving 
the challenge of poor PPI network data quality by integrating with anatomy ontology data, which 
significantly improved the accuracy of network-based candidate gene prediction. The second 
objective uses the improved integrated networks to study the gene module changes associated 
with the fin to limb transition, which was the selected use case. This enabled the identification of 
crucial conserved and module-specific genes and formulate important evolutionary hypotheses 
regarding fin to limb transition. The integrative framework developed for the first and second 
objectives is general and can be adapted to study any other phenotypic comparison given 
sufficient data. The final objective attempts to solve challenges associated with integrating large-
scale phylogenetic trees with large anatomical trait matrices, which required the development of 
a bioinformatics pipeline. In summary, the computational frameworks developed for this 
dissertation enables the study of the evolutionary history of a desired anatomical character in a 
phylogenetic tree and the associated changes in the gene modules which led to the phenotypic 
changes of the anatomical character. This is greatly beneficial for future evolutionary biology 
studies. 
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INTRODUCTION 

The process of evolution is correlated with constant changes in phenotypes of species, which 

lead to the wealth of phenotypic diversity observed among different species today. Studying such 

phenotypic changes is a cornerstone in evolutionary biology and has assisted in developing 

modern disciplines, such as the evolutionary developmental biology (evo–devo), which is 

focused on studying the relationships between the processes of individual development and 

phenotypic changes during evolution (Austin, 2017; Müller, 2007; Raff, 2000). One major 

concern of such disciplines is to link the changes in phenotypes to their corresponding genotypic 

changes. It is important to understand what genes and genetic interactions were lost and what 

new interactions were gained during an evolutionary transition, such as the fin to limb transition. 

This research attempts to use protein-protein interaction (PPI) networks and anatomy ontology 

data to study such phenotypic transitions by building integrative algorithms to better identify 

genetic patterns and study the evolution of phenotypic traits. 

Traditionally, wet lab methods, such as gene knockout (Erard, et al., 2017; Hall, et al., 

2009), gene knockdown (Huang, et al., 2013), overexpression (Amatruda, et al., 1992; Gu, et al., 

2014), natural mutation (Albalat, et al., 2010), and ectopic expression (Alexandre, et al., 1996; 

Joos, et al., 2018), are used to predict gene associations to phenotypes. These methods alter the 

expression of a gene or a gene set and observe its effect on desired phenotypes to unravel the 

phenotypic function of the genes. These wet lab methods are accurate in their predictions but 

suffer from high resource and time consumption. Therefore, faster computational candidate gene 

prediction methods are required to predict gene candidates for desired phenotypes.  

Computational candidate gene prediction methods (Cowen, et al., 2017; Zhang, et al., 

2017) have gained a reputation in the last few decades due to the wealth of genomic and 
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proteomic data accumulated using next-generation sequencing methods. They are much faster 

than the wet lab methods and do not require experimental resources. Computational candidate 

gene prediction algorithms work on different biological principles, such as the sequence 

similarity (Zhang, et al., 2017) and PPI (Cowen, et al., 2017; Sharan, et al., 2007), to predict new 

gene candidates. The use of PPI networks has become widespread for candidate gene prediction, 

especially for predicting disease-causing genes, due to the availability of large PPI datasets in 

public databases.  

The PPI networks are computationally stored using the graph data structure, which 

enables the use of graph theory and other network/graph analysis algorithms to identify network 

patterns and modules (Cormen, 2009; Cowen, et al., 2017). The goal here is to use biological 

network analysis algorithms to study the phenotypic transitions during the evolution. This also 

includes building novel integrative network frameworks to enhance the efficiency of the 

analysis. Generally, traditional wet lab methods and other computational prediction methods can 

predict the phenotypic function of a gene, but they fail to identify the gene interactions that 

determine the phenotype. In addition to the individual roles of the genes, their interactions with 

each other have a significant effect in determining the phenotype (Sharan, et al., 2007). 

Analyzing biological networks, such as PPI networks, allows identifying important gene 

interactions and modules that determine phenotypes, which is a significant advantage of the 

biological network analysis (Cowen, et al., 2017; Yu, et al., 2013); hence, the use of biological 

networks in this work.  

This dissertation contains three objectives that use network algorithms in a sequential 

manner to understand the genotypic basis behind evolutionary transitions. These involve building 

novel integrative frameworks, integration of large networks, and computationally solving the 
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challenges when integrating and analyzing large biological datasets. The fin to limb transition 

(Amaral and Schneider, 2018; Coates, 1994; Don, et al., 2013) is an important event that is 

associated with aquatic to terrestrial transformation of vertebrates (Clack, 2012; Long and 

Gordon, 2004); hence, it was selected as the biological use case to demonstrate the 

computational methods. 

The main challenge with biological network analysis is the low network quality and the 

low prediction accuracy associated with the candidate gene predictions (Sharan, et al., 2007; von 

Mering, et al., 2002). Before using PPI networks for studying evolutionary transitions, their 

quality must be enhanced for analyzing anatomical phenotypes. The first objective of this 

dissertation focuses on integrating experimental knowledge about gene-anatomical phenotype 

relationships via anatomy ontology, which includes building a novel integrative framework that 

uses anatomy ontology and PPI networks and evaluating the networks to assess whether the 

quality has been improved.  

The second objective focuses on using the quality-enhanced PPI networks to analyze the 

genetic changes behind phenotypic transitions during evolution. PPI networks allow the 

identification of gene modules associated with anatomical phenotypes, such as the pectoral fin 

and the forelimb, and observe the changes in those modules over the course of evolution. For 

instance, the zebrafish pectoral fin module can be compared with the mouse forelimb module to 

discover the modular evolution of genes including the changes in the genes, gene interactions, 

and also the importance of the genes in the module. These modular changes can be associated 

with the fin to limb transition, which is extremely valuable and cannot be directly analyzed using 

wet lab methods.  
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The first two objectives focus on the gene-to-phenotype relationship when analyzing 

evolutionary transitions. Another aspect when studying evolution is mapping anatomical 

phenotypes to large phylogenetic trees, which enables the understanding of how anatomical 

characters, such as the pectoral fin, evolved in different species during the course of evolution. 

When studying the phenotypic changes during evolution, large-scale phylogenetic trees and trait 

matrices are required for a better understanding of those changes, which introduces various 

challenges in large-scale data integration (Dececchi, et al., 2016; Didier, 2017; Jackson, et al., 

2018). The third objective focuses on identifying these challenges and solving them using 

graph/network algorithms to efficiently integrate large phylogenetic trees with trait matrices. 

This completes the three-way relationship between genes, phenotypes, and taxonomy for a better 

understanding about evolutionary transitions. In summary, this dissertation demonstrates how 

large-scale biological networks, large data integration, and graph/network algorithms can be used 

to computationally study phenotypic changes associated with evolutionary transitions, which will 

be beneficial for evolutionary biology in the post-genomic era.  
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CHAPTER 1: DEVELOP AN INTEGRATIVE FRAMEWORK BY COMBINING PPI 

NETWORKS WITH ANATOMY ONTOLOGY DATA AND TEST THE HYPOTHESIS 

THAT THE INTEGRATION ENHANCED THE ACCURACY OF CANDIDATE GENE 

PREDICTION ASSOCIATED WITH ANATOMICAL PHENOTYPES. 

 

Abstract 

This objective focuses on developing an integrative framework using protein-protein 

interaction (PPI) networks and anatomy ontology data to improve the candidate gene prediction 

accuracy. The integration was expected to improve the quality of the PPI networks by reducing 

false positive and false negative interactions. The hypothesis was that the integrated networks 

have a better candidate gene prediction accuracy compared to the original PPI networks due to 

the increase in network quality. To test this hypothesis, the candidate gene prediction 

performance of the integrated networks and the original PPI networks were compared using the 

mouse and the zebrafish anatomical profiles. According to the results, integrated networks 

outperformed the PPI networks and confirmed that the integration of anatomy ontology data with 

PPI networks improves the quality of the interactions. The increased candidate gene prediction 

accuracy of the integrated networks was observed under diverse computational settings, 

including four semantic similarity calculation methods (Lin, Resnik, Schlicker, and Wang), two 

evaluation curves (ROC and precision-recall curves), two evaluation modes (single-function 

evaluation method versus multi-function evaluation method), two model organisms (mouse and 

zebrafish), and two network conditions (filtered vs. unfiltered), which showed their robustness. 

The results were further validated to confirm the biological significance and to negate the effect 
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of the circular use of the anatomy profiles, which also confirmed the significance of the 

integrative networks proving their usability in biological network analyses.  

 

1.1 Background 

Unraveling the molecular and phenotypic functions of proteins is a cornerstone in biology 

as it improves our understanding of the biological system, which leads to a plethora of practical 

implications, such as drug development and agricultural improvements. However, a large 

proportion of gene sequences are still not functionally annotated due to experimental constraints 

(Erdin, et al., 2011; Zhang, et al., 2017). Therefore, computational candidate gene prediction has 

become widespread in bioinformatics to improve the pace of the gene functional annotations. 

There are different candidate gene prediction algorithms that are based on different biological 

principles, such as sequence similarity (Jones and Swindells, 2002; Zhang, et al., 2017), 

phylogenetic profile-based similarity (Pellegrini, et al., 1999), protein structure-based similarity 

(Yachdav, et al., 2014), expression profile-based similarity (Wang, et al., 2017), and PPI 

networks (Cowen, et al., 2017; Sharan, et al., 2007). Some of these methods have limitations; for 

instance, sequence similarity-based candidate gene prediction methods assign functions based on 

sequence homology. However, in some instances, proteins having very similar sequences are 

shown to have different functions (Erdin, et al., 2011). Alternatively, PPI network-based 

candidate gene prediction has become widespread because it is based on experimental 

interactions, and proteins are more likely to share the same function when they are physically 

interacting with each other. 
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1.1.1 Protein-protein interaction (PPI) networks 

PPI networks represent the physical interactions of proteins for a given organism as a 

computational graph (Cowen, et al., 2017; Sharan, et al., 2007; Zickenrott, et al., 2017). The 

proteins in the graph are represented by the nodes and the interactions between them are 

represented by the edges (Fig. 1.1). Protein interaction data are experimentally elucidated by 

methods, such as the yeast two-hybrid assay, high-throughput mass-spectrometric protein 

complex identification (HMS-PCI),  and X-ray crystallography (Shoemaker and Panchenko, 

2007). There are databases such as the Database of Interacting Proteins (DIP) that include only 

experimental protein interactions (Xenarios, et al., 2001). Initially, the number of experimental 

protein interactions was not adequate for large-scale analyses of biological systems. Therefore, 

some experiments, such as the yeast two-hybrid assay and high-throughput mass-spectrometry 

are now conducted at a large-scale using next-generation methods (Shoemaker and Panchenko, 

2007). However, the experimental interaction data are still incomplete, and a portion of the 

interactions generated using next-generation methods are known to be false positives 

(Szklarczyk, et al., 2017; von Mering, et al., 2002; Zeng, et al., 2008). To solve these issues, 

protein-protein interactions were computationally predicted using algorithms that use additional 

biological properties of genes, such as the co-expression (Shoemaker and Panchenko, 2007). As 

a result, databases such as STRING (Szklarczyk, et al., 2017) began to emerge, which contain 

both experimentally and computationally predicted protein interactions.  

The STRING database (https://string-db.org/) has gained a rapid popularity because of 

the abundance, the higher coverage, and the quality control of the PPI data it stores 

(Franceschini, et al., 2013; Szklarczyk, et al., 2015; Szklarczyk, et al., 2017; von Mering, et al., 

2005). Currently, it has PPI data for 2031 organisms, which is the highest number of taxa in 
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comparison to any other PPI database (Szklarczyk, et al., 2017). In addition to the traditional 

protein interaction data elucidated by experimental methods, STRING also includes protein 

interaction data derived from literature mining and computational predictions. As a result, the 

traditional term: “protein-protein interaction”, which was used to describe direct physical 

interactions between proteins, has been updated to “protein-protein association”, which is based 

on functional association not limited to direct interactions (von Mering, et al., 2005). This 

accounts for the higher abundance of the PPI data for a large number of organisms in the 

STRING database, and because it is also quality controlled, it is the prime source for PPI 

network analyses.  

The central application of the PPI networks in bioinformatics is to predict the molecular 

or phenotypic function of unknown/unannotated proteins. Usually, in a PPI network, there is a 

proportion of proteins with known functions, and the functions of others are unknown, i.e., 

unannotated. The proteins with known functions can be used to predict the function of 

unannotated proteins based on the assumption that the interacting proteins are more likely to 

share common functions (Cowen, et al., 2017; Sharan, et al., 2007). There are several 

computational algorithms developed for this task that use graph theory or other network analysis 

techniques. Some algorithms are generally applied in other domains, such as social networks, 

physical computer networks, trade networks, chemical networks, etc. (Martínez-López, et al., 

2009; Salter-Townshend, et al., 2012). 

The algorithms for PPI network-based candidate gene prediction can be separated into 

two major groups based on their execution: module assisted methods and direct methods 

(Sharan, et al., 2007). The module assisted methods first look for a functional module in the 

network and then assign the function or functions of the known proteins in the module to all the 
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other unannotated members (Bader and Hogue, 2003; Pizzuti and Rombo, 2014; Tripathi, et al., 

2016). Direct methods do not have a module detection step, instead, they directly assign the 

functions to unannotated proteins based on their interactions to known neighbors (Chua, et al., 

2006; Kourmpetis, et al., 2010). Neighborhood counting is a widespread and a simple direct 

method category that has been used for candidate gene prediction for years. The most frequently 

used and the simplest neighborhood counting method is the Majority Voting method, which 

obtains the majority vote from the known neighbor proteins when assigning the function to 

unannotated proteins (Schwikowski, et al., 2000; Zeng, et al., 2012). Performance comparisons 

have shown that the direct methods have a higher prediction accuracy compared to the module 

assisted methods (Sharan, et al., 2007); therefore, a neighborhood counting method that uses chi-

square-like scores to assign gene function (Hishigaki, et al., 2001) was used for this analysis.  

As with any computational prediction method, the biggest challenge for the network-

based candidate gene prediction algorithms is to increase the accuracy of the predictions (Cowen, 

et al., 2017; Sharan, et al., 2007; Zeng, et al., 2012). There are two main approaches taken to 

fulfill this goal: (1) developing more advanced algorithms to improve the prediction accuracy, 

(2) improving the quality of the PPI networks. Although new algorithms are added to the 

candidate gene prediction algorithm arsenal regularly, the quality of the PPI networks must be 

improved to make better use of those algorithms. Current PPI data are generated at a large-scale 

using next-generation PPI detection methods, but they also accumulate network noise or false 

positive interactions (Sharan, et al., 2007; Szklarczyk, et al., 2017; von Mering, et al., 2002). 

Furthermore, the PPI networks are still incomplete and may not represent all possible 

interactions within a cell (Hart, et al., 2006). Therefore, improving the quality of the PPI 

networks using experimental and computational methods is a hot topic in bioinformatics 
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(Cowen, et al., 2017; Shoemaker and Panchenko, 2007; Szklarczyk, et al., 2017; von Mering, et 

al., 2005).  

The computational methods that improve the PPI network quality involve integrating 

information from various other data sources, such as literature text data and gene expression 

profiles, with experimental PPI networks, of which the STRING database is the prime example 

(Szklarczyk, et al., 2017; von Mering, et al., 2005). However, there is always a room for 

improvement by using newly available data sources. Particularly, when using PPI networks for 

predicting the phenotype of the gene instead of the molecular function, additional challenges 

arise because a phenotype is a result of numerous proteins participating in several biological 

pathways. The prediction of a phenotype is not as straightforward as predicting a molecular 

function of a protein (Cowen, et al., 2017). Therefore, computational methods are essential to 

improve the quality of the PPI networks with the emphasis on their usage in predicting the 

phenotypes of the proteins. Experimental knowledge about gene-to-phenotype relationships, 

such as diseases and development of anatomical structures, is continuously accumulated in 

literature. However, there is a lack of methods to integrate this information directly with PPI 

networks and use it for candidate gene prediction. One way to use this information is through 

biological ontologies, which is the focus of this chapter. 

 

1.1.2 Biological Ontologies 

Ontologies conceptualize the knowledge of certain domains by representing them as a 

computable, hierarchical set of terms that can be easily used for computational analysis (Gene 

Ontology, 2016; Pesquita, et al., 2009). In simple terms, ontologies can be understood as 

vocabularies that aid computer algorithms to understand subject domains, such as biological 
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functions, anatomical systems, environments, web information, etc. In bioinformatics, the Gene 

Ontology (GO) is the leading ontology, which has been used for biological analyses focused on 

the molecular function, the cellular location, and the biological processes of genes (Ashburner, et 

al., 2000; Consortium, 2004; Gene Ontology, 2016). The GO has three domain subontologies to 

aid in these areas: cellular component (GO-CC), biological process (GO-BP), and molecular 

function (GO-MF). The GO has been integrated with numerous biological tools and has become 

the standard functional annotation system in several biological databases, such as the NCBI 

GenBank (Benson, et al., 2008). Recently, various other biological ontologies have emerged 

focusing on specific biological aspects, such as the Human Phenotype Ontology (HPO) for 

human phenotypes (Köhler, et al., 2016), the Vertebrate Taxonomy Ontology (VTO) to store 

taxon information on vertebrates (Midford, et al., 2013), and the Disease Ontology to store 

human disease information (Kibbe, et al., 2015). The focus of this research is anatomical 

phenotypes; hence, the most suitable ontology to use is the Uberon anatomy ontology (Elhanan, 

et al., 2017; Haendel, et al., 2014; Mungall, et al., 2012). 

  Uberon is an integrated cross-species anatomy ontology, which constitutes over 14,000 

classes representing anatomical entities (Elhanan, et al., 2017; Haendel, et al., 2014; Mungall, et 

al., 2012). This ontology integrates species-specific anatomical ontologies, such as the Mouse 

Anatomy Ontology (MA), Xenopus Anatomy Ontology (XAO) and Zebrafish Anatomy 

Ontology (ZFA) in a species-neutral way, along with multi-species anatomical ontologies such 

as Mammalian Phenotype Ontology (MP) and Teleost Anatomy Ontology (TAO) (Dahdul, et al., 

2012; Dahdul, et al., 2010). This integration provides the required bridge between different taxa, 

which can be used for computational analyses involving multiple species, another characteristic 
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that makes Uberon a suitable candidate for the scope of this particular research. A basic example 

of how anatomical entities are related in Uberon is demonstrated in Fig. 1.2. 

 The goal of this work is to improve the candidate gene prediction accuracy of PPI 

networks by improving their network quality. For this purpose, the Uberon anatomy ontology is 

used to capture the experimental knowledge stored in the literature regarding gene to anatomical 

phenotype relationships, such as genes involved with the development of the pectoral fin, 

forelimb, and axial skeleton. A novel integrative framework is proposed to integrate Uberon 

anatomy ontology data with PPI networks. The first step of the integrative framework is to 

generate a gene network based on the anatomy ontology (anatomy-based gene network), which is 

constructed by calculating the semantic similarity between Uberon terms annotated to genes. 

Semantic similarity is used to represent the similarity between two ontology terms based on their 

relationship and the proximity in the ontology structure (Pesquita, et al., 2009; Wang, et al., 

2007) or by calculating the information content using the number of gene annotations for each 

term (Resnik, 1995; Schlicker, et al., 2006). 

 The second step is to integrate the anatomy-based gene network with the PPI network 

using an accuracy-based weighting framework. The hypothesis is that the integration of the PPI 

network with the anatomy-based gene network will enhance the accuracy of the candidate gene 

prediction by improving the quality of the PPI network. This may result through either removing 

false positive interactions in the PPI network or by introducing new interactions to the PPI 

network by the incorporation of anatomy-based gene network interactions. This hypothesis can 

be further explained using the hypothetical scenario represented in Fig. 1.3. The candidate gene 

prediction performance of the integrated network and the PPI network can be compared to 

confirm the validity of the hypothesis.  
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 The concept of constructing gene networks by calculating the semantic similarity 

between ontology terms has been presented before (Jiang, et al., 2011; Le and Dang, 2016; Zeng, 

et al., 2012), but they were only applied to GO. For example, Jiang, et al. (2011) constructed a 

gene network using the GO-BP component to infer disease genes in human. However, the 

network was not integrated with an existing PPI network, instead, it was used directly for disease 

gene prediction and the results were compared with a human PPI network. In the proposed 

integrative framework, the anatomy-based gene network constructed using anatomy ontology 

data is integrated with the PPI network, which will only keep the interactions that are supported 

by both the source networks. The integration is expected to enhance the quality of the source 

networks by reducing the false positive and false negative interactions. Furthermore, to my 

knowledge, a gene similarity network has not been constructed before using anatomy ontology. 

Therefore, the proposed integrative framework will be beneficial for studies that use anatomical 

phenotypes, such as evolutionary analyses studying the anatomical changes in organisms during 

the evolutionary history, which will be a valuable addition to the computational candidate gene 

prediction arsenal that mostly focuses on disease genes in humans.  

 

1.2 Methods 

1.2.1 Retrieval and pre-processing of the protein-protein interaction (PPI) datasets from the 

STRING database 

The proposed integrative framework can be applied to any PPI dataset if the Uberon 

phenotypic annotations are available; but for this work, the focus is on phenotypic changes 

associated with the aquatic to terrestrial vertebrate transition; therefore, the zebrafish and the 

mouse were selected to represent aquatic and terrestrial vertebrates, respectively. The zebrafish is 
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the most frequently used model organism to represent fishes, and the mouse is an extensively 

studied model organism to represent terrestrial vertebrates. The PPI datasets for the zebrafish and 

the mouse were downloaded from the STRING database (https://string-db.org/). The proteins in 

the PPI datasets are represented by a unique STRING identifier (id). However, to facilitate the 

integration at later stages, the STRING id was converted into the gene symbol during the pre-

processing step. The PPI datasets contain a combined score for each interaction to represent its 

strength (Szklarczyk, et al., 2017; von Mering, et al., 2005). Usually, the full PPI networks are 

too large for downstream analyses; therefore, the networks must be filtered based on a cutoff. 

The recommended cutoff is 0.7 to select only the high-quality interactions (von Mering, et al., 

2005), which was applied to the mouse and zebrafish networks.  

 

1.2.2 Construction of the anatomical profiles 

In order to construct the anatomy-based gene networks for the mouse and the zebrafish, 

initially, their anatomical profiles must be constructed. Anatomical profiles represent the 

multiple anatomical term annotations for each gene. Usually, a single gene is annotated with 

multiple Uberon terms, which can be represented in the following format: consider two genes 

represented by G1 and G2. If their associated Uberon terms are represented by (ta1, ta2... tam) and (tb1, 

tb2...tbn), respectively, their anatomical profiles are given below. 

G1: (ta1, ta2... tam) 

G2: (tb1, tb2...tbn) 

To obtain the anatomical profiles, the associations between genes and Uberon terms were 

retrieved from the Monarch Initiative repository (https://monarchinitiative.org/) via a script 

written in Scala (Odersky, 2008). Then the redundant associations were deduplicated and the 
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associations were converted into anatomical profiles that are in the format as shown above. The 

Monarch Initiative retrieves genes and their anatomical phenotype annotations from the zebrafish 

(https://zfin.org/) and the mouse (http://www.informatics.jax.org/) model organism databases and 

associate them with the corresponding Uberon terms. Moreover, the annotations available in the 

Monarch Initiative are pre-processed and cross-checked with other model organism annotations 

to remove uncertain gene-phenotype associations that are resulted when the expression of 

multiple genes are disrupted at one time to observe the effect on a given phenotype (Mungall, et 

al., 2017). 

 

1.2.3 Gene name/symbol reconciliation between the PPI networks and the anatomical profiles 

Before the integration, it is important to reconcile the gene names/symbols between the 

two data sources. The STRING database obtains data from various data sources, such as Entrez 

Gene database (Maglott, et al., 2005) and UniProt knowledgebase (Apweiler, et al., 2004), and 

the Monarch Initiative data repository obtains data from model organism databases. 

Occasionally, the gene names do not match, and a manual inspection indicated that some 

STRING gene names are outdated compared to data from the Monarch Initiative. A 

computational method was developed to match the genes between the two sources, which works 

in three rounds: (1) match the genes directly using their names/symbols, (2) match using their 

Ensembl identifiers, and (3) match the gene names in the anatomical profiles to the synonyms 

available in the STRING database. Each round attempted to sequentially minimize the number of 

gene mismatches. 

After the reconciliation, the outdated gene names in the PPI networks were replaced by 

the up-to-date gene names from the anatomical profiles. However, there were still genes in the 
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anatomical profiles that were mismatched with those in the PPI networks. Therefore, reconciled 

anatomical profiles, which only contain the matched genes, were generated for mouse and 

zebrafish to use for network evaluations in section 1.2.7. Furthermore, these profiles contain a 

majority of Uberon terms with only few genes annotated to each term. For instance, evaluations 

that are based on Uberon terms that have only two or three genes are not reliable. In reality, those 

genes may have more gene-to-phenotype associations that are still not discovered by 

experimental gene function/phenotype prediction methods. The network-based candidate gene 

prediction algorithm could predict those associations correctly, but since they are unknown, they 

will be considered as false positives. Therefore, the reconciled mouse and zebrafish anatomical 

profiles were filtered to contain only the Uberon terms that have at least 10 gene annotations. 

These filtered profiles were used for the evaluations in section 1.2.7. 

 

1.2.4 Generation of anatomy-based gene networks 

To generate gene networks based on anatomy ontology, similarity scores between gene 

pairs must be calculated. This can be achieved by first calculating semantic similarity scores 

between Uberon anatomical terms annotated to a particular gene pair, and then, aggregating 

those scores to calculate a single similarity score between the two genes. The general workflow 

for generating anatomy-based gene networks is represented in Fig. 1.4.  

To calculate semantic similarity between Uberon anatomical terms, four methods were 

used: Wang method (Wang, et al., 2007), Resnik method (Resnik, 1995), Lin method (Lin, 

1998), and Schlicker method (Schlicker, et al., 2006). The latter three methods (Resnik, Lin, and 

Schlicker) are based on calculating the information content (IC) of each node in the ontology, 

and their equations are given below (equations 1.1, 1.2, and 1.3).  
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Resnik:      
											𝑠𝑖𝑚&	(𝑡), 𝑡+) = 	 𝑚𝑎𝑥

0∈2(03,04)
{𝐼𝐶(𝑡)}          (1.1) 

 
Lin:  
						𝑠𝑖𝑚9	(𝑡), 𝑡+) = 	 𝑚𝑎𝑥

0∈2(03,04)
: +;<(0)
;<(03)=;<(04)

>                 (1.2) 

 
Schlicker:   
𝑠𝑖𝑚2	(𝑡), 𝑡+) 	= 	 𝑚𝑎𝑥

0∈2(03,04)
:	 +;<(0)
;<(03)=;<(04)

	(1 + 𝐼𝐶(𝑡))>	         (1.3)	
 
 

In the above equations, t1 and t2 represent the ontology terms of which the similarity is 

calculated, whereas S denotes the set of common ancestors for the two terms. The information 

content for a given term t is represented by IC(t), which is calculated based on the number of 

genes annotated to the term t as illustrated below (equations 1.4 and 1.5). 

																												𝐼𝐶(𝑡) = 	−𝑙𝑜𝑔	(𝑝(𝑡))	              (1.4) 
 

		𝑃(𝑡) = 	 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑔𝑒𝑛𝑒𝑠	𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑	𝑤𝑖𝑡ℎ	𝑡ℎ𝑒	𝑡𝑒𝑟𝑚	t+𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑔𝑒𝑛𝑒𝑠	𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑	𝑤𝑖𝑡ℎ	𝑡ℎ𝑒	𝑒𝑛𝑡𝑖𝑟𝑒	𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦  (1.5) 

 

The Wang method is another widespread semantic similarity calculation method but it does 

not involve the information content. It only depends on the ontology structure and the 

relationships between the terms. The equation for the Wang semantic similarity calculation 

between two terms t1 and t2 is given below. 

Wang:   
												𝑠𝑖𝑚U(𝑡), 𝑡+) = 	

∑ (2W3(0)=2W4(0))W∈X3∩X4
2Z(03)=2Z(04)

   (1.6) 

 
  In the above equation, St1(t) represents the semantic contribution of term ‘t’ on term t1, 

when ‘t’ is an ancestor of t1. The term SV(t1) represents the semantic contribution of all the 
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ancestors of term t1 on itself. This method has proven to yield better results compared to other 

information content-based methods (Wang, et al., 2007).  

The above four semantic similarity calculation methods were used to calculate the 

similarity between gene pairs using the method explained below. Let us assume that the gene G1 

is annotated with the Uberon terms: (ta1, ta2... tam), and the gene G2 is annotated with the Uberon 

terms: (tb1, tb2...tbn), then the similarity between the two genes, sim (G1, G2), can be calculated using 

the following equation (1.7). 

𝑠𝑖𝑚(𝐺), 𝐺+) = 	
∑ \]^(0_`,0(a4))=∑ \]^b0cd,0(a3)e3fdfg3f`fh

^=i
                            (1.7) 

The t(G1) = (ta1, ta2... tam) and t(G2) = (tb1, tb2...tbn) represent Uberon term anatomical profiles 

for gene G1 and gene G2, respectively, and the simbtai,  t(G2)e represents the maximum semantic 

similarity between term tai and any of the terms in 	t(G2), which can be calculated using the 

equation (1.8) below. 

																									𝑠𝑖𝑚b𝑡𝑎𝑖, 𝑡(𝐺2)e = 𝑚𝑎𝑥
𝑡𝑏∈𝑡(𝐺2)

𝑠𝑖𝑚( 𝑡𝑎𝑖, 𝑡𝑏)	                           (1.8) 

 

Using the equation (1.7), a similarity score for each gene pair in the anatomical profiles 

of the mouse and the zebrafish was calculated. This generates a pairwise gene similarity matrix 

for each semantic similarity calculation method (Lin, Resnik, Schlicker, and Wang) per 

organism. All the methods were implemented using Python (Van Rossum and Drake, 2011) 

scripts, and the Uberon ontology was downloaded from: http://uberon.github.io/downloads.html 

(01/10/2018).  

After obtaining a gene similarity matrix, the final step of the anatomy-based gene 

network construction was to connect each pair of genes with an edge. This can be done with or 
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without applying a cutoff. Without the cutoff, all the gene pairs with a similarity score are 

retained in the anatomy-based gene network (unfiltered network). With the cutoff, if the pairwise 

gene similarity score between two genes is higher than the cutoff, an edge will be placed to 

connect these two genes, otherwise, these two genes will not be connected (filtered network). 

Suitable cutoffs for gene networks based on different semantic similarity methods were obtained 

by analyzing their similarity score distributions. Cutoffs were selected to keep the number of 

interactions/gene pairs approximately similar to that of the STRING PPI networks with the 0.7 

cutoff for each model organism. Finally, four filtered anatomy-based gene networks and four 

unfiltered (without applying the cutoff) networks were generated using the four semantic 

similarity calculation methods (Lin, Resnik, Schlicker, and Wang) for the mouse and the 

zebrafish. Both filtered and unfiltered networks were evaluated using the methods explained in 

section 1.2.7 to compare the performance of different semantic similarity methods for anatomy-

based gene network generation for each model organism. 

 

1.2.5 Integration of the anatomy-based gene networks with the STRING PPI networks 

The integration was achieved by an accuracy-based weighting method that uses the 

combined scores for each gene interaction from the STRING PPI networks and the gene 

similarity scores calculated during the previous section (1.2.4) for the anatomy-based gene 

networks. This accuracy-based weighting method was used to integrate multiple networks in a 

previous work (Fraser and Marcotte, 2004), but in this scenario, it was used to integrate only two 

network types: PPI and anatomy-based gene networks.  

Initially, the PPI and anatomy-based gene networks had to be evaluated separately, then 

accuracy scores were determined for each network type, which were used to decide the weights 
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for the integration of gene similarity scores. For instance, if the accuracy values for the PPI and 

anatomy-based gene networks are AC1 and AC2 respectively, the weights for the PPI network (W1) 

and the anatomy-based gene network (W2) are calculated using the equation (1.9) and equation 

(1.10). In this instance, the accuracy values for each network are equivalent to their area under 

the curve (AUC) values of the ROC curves generated during the evaluation workflow (explained 

in section 1.2.7)  

																																					𝑊) = 	
l<3

l<3=l<4
                     (1.9) 

																																							𝑊+ = 	
l<4

l<3=l<4
                    (1.10) 

Then, the weights are used to calculate the gene similarity scores for the integrated 

network, based on the gene similarity scores of the original two networks. For instance, consider 

the similarity between two genes: Ga and Gb. If the similarity scores from the PPI network and the 

anatomy-based gene network for those two genes are given by sim1(Ga, Gb) and sim2(Ga, Gb), 

respectively, the similarity score in the integrated network: sim3(Ga, Gb) is calculated by the 

equation (1.11) below.  

𝑠𝑖𝑚m(𝐺n, 𝐺o) = 	 	𝑊1𝑠𝑖𝑚)(𝐺n, 𝐺o) + 	𝑊2𝑠𝑖𝑚+(𝐺n, 𝐺o)																																(1.11) 

If an interaction is not found in an original network, the similarity score will be zero for 

that network; for instance, if Ga and Gb are not interacting in the PPI network, sim1(Ga, Gb) will be 

zero. During the calculation of weights, the most accurate original network will obtain a higher 

weight, and the integrated network will be weighted towards the more accurate network. This 

method was used to integrate PPI and anatomy-based gene networks for the mouse and the 

zebrafish. The integration was performed separately for the different anatomy-based gene 

networks for the four different semantic similarity calculation methods (Lin, Resnik, Schlicker, 
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and Wang). Eventually, four integrated networks were generated for each model organism. Then 

a gene similarity score cutoff was applied as explained in section 1.2.4 to keep only the high-

quality interactions. As proposed by the hypothesis, the integrated networks are expected to be 

more reliable and accurate because applying a proper cutoff will only keep the interactions that 

are common to both the original networks. Therefore, false positive interactions in the STRING 

PPI network will be filtered out if they are not found in the anatomy-based gene network and 

false negative interactions in the STRING PPI networks will be added to the integrated network 

only if they have a very high similarity score in the anatomy-based gene network. 

 

1.2.6 Network-based candidate gene prediction 

To evaluate the performance of the networks, a network-based candidate gene prediction 

algorithm must be implemented. Majority Voting (MV) is a frequently used algorithm where a 

function is assigned to a gene, based on counting the number of genes with that function in its 

immediate neighborhood (Schwikowski, et al., 2000). Although this method is widespread, it 

only works well for functions/phenotypes with a higher number of gene annotations. A 

function/phenotype with fewer annotations will always get low prediction scores because it is not 

frequently found in the network (Sharan, et al., 2007; Zeng, et al., 2012). To solve this issue, a 

chi-square based method was introduced (Hishigaki, et al., 2001), which considers the expected 

frequency for each function/phenotype and calculates the difference between the expected and 

observed number of genes for that function in the neighborhood. This method reduces the bias 

towards frequent functions/phenotypes because the expected frequency mitigates the 

disadvantage for functions/phenotypes with a low number of gene annotations (Sharan, et al., 

2007). Therefore, the Hishigaki method was selected for the candidate gene prediction. 
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When using the Hishigaki method, one function/phenotype is considered at a time, and 

for each unknown gene without the function/phenotype, a prediction score is calculated 

according to the equation (1.12) below. 

																																								𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛	𝑠𝑐𝑜𝑟𝑒 =
(ip(q)rsp)4

sp
			                         (1.12) 

In the equation (1.12), nf(u) denotes the number of genes with the considered 

function/phenotype (f) in the neighborhood of the gene in interest (u). Generally, the length of 

the neighborhood can be defined by the user but the immediate neighborhood (a length of one 

edge from the gene u) is shown to yield better results (Hishigaki, et al., 2001); therefore, only the 

immediate neighborhood of a gene was considered for predictions. The expected frequency for 

the function/phenotype is given by ef, which is calculated according to the equation (1.13) below. 

																																																			𝑒𝑓 = 	
𝑡𝑜𝑡𝑓∗𝑛(𝑢)

𝑡𝑜𝑡𝑁
           (1.13) 

In the equation (1.13), totf	denotes the total number of genes annotated with the given 

function/phenotype (f) in the network and totN indicates the total number of genes in the 

network. The total number of genes in the immediate neighborhood of the gene of interest (u) is 

denoted by n(u).  

The conventional Hishigaki method does not consider the interaction weights/gene 

similarity scores between gene pairs; hence; it is usually implemented on networks that are 

filtered with a similarity score cutoff. To evaluate the full/unfiltered gene networks, the 

Hishigaki method was modified to consider the interaction weights/gene similarity scores 

(denoted as weighted-Hishigaki). In the modified version, instead of directly counting the 

number of genes in the neighborhood, the interaction weights for each neighborhood gene are 
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summed. The updated equations (1.14 and 1.15) for the weighted-Hishigaki method are given 

below. 

																										𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛	𝑠𝑐𝑜𝑟𝑒 = (∑ 𝑠𝑖𝑚(𝑣,𝑢𝑣∈𝑛𝑓(𝑢) )−𝑒𝑓)
2

𝑒𝑓			
																			(1.14) 

																																											𝑒𝑓 = 	
𝑡𝑜𝑡𝑓∗∑ 𝑠𝑖𝑚(𝑣,𝑢𝑣∈𝑛(𝑢) )

𝑡𝑜𝑡𝑁
                 (1.15) 

In the equation 1.14, nf(u) denotes the genes with the considered function/phenotype (f) in 

the neighborhood of the gene in interest (u) and v iterates through those neighbors that are 

annotated with the given function/phenotype (f). In the equation 1.15, v iterates through all the 

neighbors of gene u. In both the equations, sim(v,u) represents the interaction weight/gene 

similarity score for the interaction between genes v and u.  

To test the performance of the different network prediction methods, Hishigaki method, 

weighted-Hishigaki method, Majority Voting, and weighted-majority method were implemented 

on the zebrafish STRING PPI network filtered with 0.7 score cutoff (refer to section 1.2.1 for 

details) and evaluated with the workflow explained in section 1.2.7.  

During the evaluations, Hishigaki method was used on filtered gene networks and 

weighted-Hishigaki method was used to compare the full/unfiltered networks. When using the 

unfiltered networks, weighted-Hishigaki method must be used to consider the different weights 

of the network because they contain all the interactions with a gene similarity score (even low-

quality interactions). Furthermore, when comparing different networks during the evaluation, the 

prediction scores were normalized using the min-max normalization (Han, et al., 2011; Witten, et 

al., 2016) to facilitate the evaluation. The equation (1.16) for the min-max normalization, which 
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transforms a value v of a numeric attribute A to v’ is given below. The minimum value and the 

maximum value of the attribute A is represented by minA and maxA, respectively. 

																																									𝑣′ = 𝑣−𝑚𝑖𝑛𝐴
𝑚𝑎𝑥𝐴−𝑚𝑖𝑛𝐴			

                                        (1.16) 

1.2.7 Evaluation of the network performance 

Evaluation is an important step in network-based candidate gene prediction because it 

allows assessing the performance of a network or the prediction algorithm. In this work, the 

focus is on evaluating the performance of different networks (integrated versus PPI). The filtered 

anatomical profiles for the mouse and the zebrafish that were reconciled during the network 

reconciliation step (section 1.2.3) were used for the evaluation because all the genes in these 

profiles can be matched to all the network types (anatomy-based gene networks, PPI, and 

integrated networks). Furthermore, these profiles only contain Uberon terms that have at least 10 

gene annotations, which reduces the problems caused by evaluating terms with low number of 

gene annotations. 

Usually, during the evaluation, the genes in the profiles are separated into two groups: the 

training and the validation set, where the functions/phenotypes of the training set are considered 

as known and the functions/phenotypes of the validation set are treated as unknown. Then, the 

model built from the training set is used to predict the functions/phenotypes of the validation set, 

and a suitable evaluation metric (e.g., accuracy, precision, receiver operating characteristic 

curve, etc.) is used to assess the proportion of genes whose functions/phenotypes are correctly 

predicted (Han, et al., 2011; Witten, et al., 2016).   

There are different methods to separate the dataset into a training and a validation set; the 

simplest one is separating them according to a pre-defined percentage. For instance, if there are 

100 genes in the profile, 60 genes can be included in the training set and 40 genes can be 
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included in the validation set (Han, et al., 2011). However, in this method, one particular gene 

would only be placed in either the training set or the validation set, hence, the evaluation is only 

performed on the genes in the validation set and not performed on genes that were selected to the 

training set. The leave-one-out cross-validation is another method, where each gene in the profile 

will be left out as the validation set iteratively at a time, and the rest of the genes will be 

considered as the training set (Han, et al., 2011; Witten, et al., 2016). For example, if there are 

100 genes, one gene will be selected as the validation set and the remaining 99 will be in the 

training set, which will be used to predict the functions of the gene in the validation set. This 

process is repeated another 99 times until each gene gets selected as the validation gene. In this 

method, each gene gets an equal chance to be in the validation and the training set; hence, the 

bias is removed. Moreover, this method is suited for smaller datasets as the iterative process 

multiplies the number of times the predictions are made, and each iteration only selects one gene 

in the validation, leaving enough genes in the training set to be used by the model or the network. 

Considering these reasons, the leave-one-out cross-validation was selected for the evaluation of 

the networks.  

Different evaluation metrics can be used to assess the predictions. Conventionally, 

accuracy and error rate (Han, et al., 2011; Witten, et al., 2016) are used as the evaluation metrics, 

but they are not ideal for unbalanced datasets, such as the gene anatomical profiles, where few 

genes are annotated to a given anatomical term (positives for that anatomical term) and many 

genes are not annotated to it (negatives). As an alternative solution, the precision and recall are 

widely used in network-based candidate gene prediction (Han, et al., 2011). The precision only 

depends on the number of true positives and the predicted positives for a given anatomical term 

(equation 1.17); therefore, it is ideal for unbalanced samples because having a large number of 
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negatives or positives does not affect the final precision value. The recall is also known as the 

true positive rate (equation 1.18), which depends on the number of true positives as well as the 

false positives.  

						𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 ix^osy	z{	0yxs	|z\]0]}s\
ix^osy	z{	0yxs	|z\]0]}s\=ix^osy	z{	{n~\s	|z\]0]}s\

                       (1.17)   

												𝑟𝑒𝑐𝑎𝑙𝑙 = 	 ix^osy	z{	0yxs	|z\]0]}s\
ix^osy	z{	0yxs	|z\]0]}s\=ix^osy	z{	{n~\s	is�n0]}s\

                       (1.18)   

Another option is to use curves, such as the receiver operating characteristic (ROC) curve 

and the precision-recall curve. These curves are widely used because instead of comparing a 

single number, such as the precision and the recall, two metrics can be calculated to different 

prediction score thresholds and plotted in a curve in a pairwise manner. Therefore, the evaluation 

is performed on a series of prediction score thresholds, which makes the comparison more 

comprehensive (Han, et al., 2011; Witten, et al., 2016). The most common evaluation curve is 

the ROC curve, which plots the recall (true positive rate; equation 1.18) to the false positive rate 

(equation 1.19).  

												𝑓𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑟𝑎𝑡𝑒 = 	 ix^osy	z{	{n~\s	|z\]0]}s\
ix^osy	z{	{n~\s	|z\]0]}s\=ix^osy	z{	0yxs	is�n0]}s\

           (1.19)                          

The precision-recall curve is another curve type, which can be to evaluate the network-

based candidate gene predictions. Because of the inclusion of the precision, it is used in 

evaluating network-based candidate gene predictions (Zeng, et al., 2012). For this work, both 

ROC and precision-recall curves were used for the evaluations.  

Although a gene has multiple Uberon terms annotated to it in the annotation profile, 

typically, the leave-one-out cross-validation is applied to a single Uberon term at a time and a 

single ROC curve or a precision-recall curve is generated for each term. If there are 100 Uberon 

terms in all the profiles, 100 curves will be generated (Han, et al., 2011). Finally, the distribution 
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of the area under the curve (AUC) values for the ROC curves can be plotted and compared 

among different networks or prediction methods to evaluate their performance (Kourmpetis, et 

al., 2010). This method will be referred to as the ‘single-function evaluation method’ from 

herein. The single-function evaluation method was used to assess the performance of different 

networks by comparing the AUC distribution of ROC curves and precision-recall curves using 

box plots and histograms.  

However, it is easier to generate and compare a single ROC curve or a precision-recall 

curve for each network rather than comparing the distribution of AUC values. To achieve this, 

the single-function evaluation method was modified to consider multiple terms/phenotypes at a 

time. This method will be referred to as the ‘multi-function evaluation method’ from herein. 

During the multi-function evaluation, all the Uberon terms annotated to the gene of interest will 

be considered at the same time when calculating the true positives and false positives. For 

instance, if the Hishigaki method was able to predict 5 Uberon terms correctly as compared to 

the original annotations, the number of true positives will be 5; if it predicted 2 Uberon 

terms/functions that are not in the original annotation list for the gene, there will be 2 false 

positives. With the multi-function method, one single ROC or precision-recall curve will be 

generated for each network, making it convenient for the network comparison. Both the single-

function and multi-function evaluation methods were used in this research to increase the 

robustness of the conclusions. The general workflow for evaluating multiple networks is given in 

Fig. 1.5.  

First, the evaluations were performed on the anatomy-based gene networks (section 

1.2.4) to find the best semantic similarity method for the network generation for the mouse and 

the zebrafish. During the evaluations, the Hishigaki method was used for candidate gene 
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prediction on filtered networks. Then, the same approach was used on the integrated networks 

(section 1.2.5) to select the best performing integrated network from Lin, Resnik, Schlicker, and 

Wang methods for the mouse and the zebrafish. 

According to the proposed hypothesis, the integrated networks are expected to 

outperform the STRING PPI networks. The evaluation workflow (Fig. 1.5) was implemented on 

STRING PPI networks for the mouse and the zebrafish and compared with the results of the 

integrated networks for each semantic similarity method separately. Although anatomy-based 

gene network performance is not included in the hypothesis, their results were compared with the 

STRING PPI and the integrated networks as well. In summary, for each model organism, a 

comparison was done using the single and multi-function evaluation methods on the integrated 

network, the anatomy-based gene network, and the STRING PPI network for each semantic 

similarity calculation method (Lin, Resnik, Schlicker, and Wang). For example, during the multi-

function evaluation, three ROC curves were generated each for the integrated network, the 

anatomy-based gene network, and the STRING PPI network for each semantic similarity 

calculation method and their AUC values were compared to find the best performing network. 

However, to support the hypothesis, the interest was on comparing the AUC values of the PPI vs. 

the integrated networks. Even if an anatomy-based gene network performed better than an 

integrated network, it could not be selected for network-based candidate gene prediction in 

practice because it only contains genes in the anatomical profile. On the other hand, the 

integrated networks contain not only the genes from the anatomical profiles but also the genes 

from the STRING PPI networks; therefore, they are more practical for predicting new candidates 

for unknown phenotypes. Again, Hishigaki method was used on filtered networks and weighted-
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Hishigaki method was used on unfiltered networks to evaluate whether filtering a network would 

impact the results.  

 

1.2.8 Validating the evaluation results 

It is important to understand the biological significance of the evaluation results. For 

instance, during the previous step, if the integrated networks performed better than the STRING 

PPI networks, it must be confirmed that the increased performance is due to the biological 

significance of integrating experimental phenotype data via anatomy ontology and not due to 

random error/noise. Furthermore, the same anatomical profiles from mouse and zebrafish that 

were used for the evaluation of the networks were used during the construction of the anatomy-

based gene networks (section 1.2.4) as well. Therefore, an argument can be made that the 

increase in the performance of the integrated networks is merely due to using the same 

anatomical profiles for both network construction and evaluation, which can be considered as a 

circular use of the anatomical profiles. To test these issues, further experiments were required to 

validate the biological significance of the evaluations. Due to the computational intensity and 

time constraints, the anatomy-based gene network and the integrated network for the Wang 

method from zebrafish were selected based on their better performance during the evaluations 

(section 1.3.6). 

First, to confirm whether the increase in the performance of the anatomy-based gene 

network and the integrated networks is purely due to the random error, they can be compared 

with fully random networks. Here, a fully random network is defined as a network of the same 

size in terms of the number of nodes and the interactions as the original network (Hishigaki, et 

al., 2001). Using a Python script, fully random networks were generated for the zebrafish 
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integrated network and the anatomy-based gene network for the Wang method. The number of 

genes and the number of interactions of the fully random networks were the same for each 

network type; only the arrangement of the interactions was randomized. Furthermore, another 

type of random network was generated by only randomizing the anatomical profiles. Here, the 

zebrafish anatomical profile, which was used to generate the anatomy-based gene network and 

the integrated network, was randomized by randomly assigning Uberon terms to each gene to 

match the original number of annotations. Then, the random profiles were used to create a 

random anatomy-based gene network using the Wang method, and it was integrated with the 

zebrafish PPI network to generate the random integrated network. The second method is only a 

partial randomization because only the profiles were randomized, and the number of genes and 

the interactions are different from the original networks. From herein, the first random network 

type will be referred to as ‘fully random networks’, and the second type will be referred to as 

‘random profile networks’. 

The evaluation workflow (Fig. 1.5) was implemented on the fully random anatomy-based 

gene network and the random profile anatomy-based gene network, and the results were 

compared with the original zebrafish anatomy-based gene network for the Wang method. This 

was repeated for fully random and random profile integrated networks as well. If there is a 

biological significance in the original anatomy-based gene network and the integrated network, 

the original networks should outperform the random networks. 

To evaluate the effect of the circular use of the zebrafish anatomical profiles, 30 Uberon 

terms were randomly removed from the reconciled zebrafish anatomical profile file, and an 

anatomy-based gene network was generated using the remaining Uberon terms in the profile 

using the Wang method. Then, the generated anatomy-based gene network was integrated with 
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the zebrafish PPI network and the networks were evaluated using a new anatomical profile file 

that only contains the removed 30 Uberon terms and their gene annotations. The zebrafish PPI 

network was also evaluated using the same new anatomical profile, and its performance was 

compared with the anatomy-based gene network and the integrated network. Because the 30 

Uberon terms were removed during the network generation, if the anatomy-based gene network 

and the integrated network outperformed the PPI network, there is no effect from the circular use 

of anatomical terms in the profile for the evaluation. If the performance increase in the integrated 

network is only due to re-using the same Uberon terms for the evaluation, the integrated network 

should not show a performance increase compared to the PPI network when those 30 Uberon 

terms were used for the evaluation because they were not involved in the network construction. 

Another experiment to measure if there is an effect from the circular use of the 

anatomical profiles is not to use anatomical profiles for evaluation at all. In this scenario, the 

Gene Ontology (GO) profiles can be used for the evaluation. The zebrafish GO annotations were 

downloaded from the GO consortium downloads page 

(http://www.geneontology.org/page/download-go-annotations) and they were pre-processed to 

keep only the GO-BP annotations (Ashburner, et al., 2000). Then, GO profiles were constructed 

for the zebrafish using the GO-BP annotations. These profiles were reconciled using the method 

explained in section 1.2.3, and genes that are not in the zebrafish networks (PPI, anatomy-based 

gene network, and integrated network) for the Wang method were removed from the profiles. 

Then, the reconciled GO profile file was used to evaluate the aforementioned three networks 

using the evaluation workflow (Fig. 1.5). Here, GO profiles for the zebrafish were not used to 

construct the anatomy-based gene network, the integrated network, and the PPI network; if the 

integrated network outperformed the STRING PPI network, it indicates that the integrated 
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network is higher in quality irrespective of the gene profiles (Uberon anatomy profiles or GO-BP 

profiles) used for the evaluation.  

This integrative framework was developed in Python programming language (Van 

Rossum and Drake, 2011) and the scripts are available in a GitHub repository, which can be 

accessed using the following link: 

https://github.com/pasanfernando/Integrative_network_analysis.git. 

 

1.3 Results 

1.3.1 The STRING PPI networks 

The zebrafish STRING PPI network contained 23,018 genes and 12,558,675 interactions; 

the distribution of the gene similarity scores/combined scores of the PPI network is shown in Fig. 

1.6.a. The mouse STRING PPI network contained 21,052 genes and 6,262,253 interactions of 

which the distribution is shown in Fig. 1.6.b. Most of the gene similarity scores are distributed 

between 0.1 to 0.3 region. Further, there is a slightly higher distribution between 0.9 and 1 

region, especially for the mouse PPI network. 

After applying the 0.7 gene similarity score cutoff to keep only the high-quality 

interactions, most of the interactions were removed from the networks. The filtered zebrafish PPI 

network contained 14,677 genes and 501,704 interactions, and the filtered mouse PPI network 

contained 13,866 genes and 414,667 interactions.  

 

1.3.2 Construction of anatomical profiles and reconciliation of the gene names 

The original zebrafish anatomical profiles file retrieved from the Monarch Initiative 

repository contained 5,405 genes annotated to 960 Uberon anatomical terms, and the mouse 
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profiles file contained 14,652 genes annotated to 1,537 Uberon terms (Table 1.1). Not all of 

these genes were found in the STRING PPI networks, owing to differences in the data sources. 

After implementing the gene reconciliation algorithm that contained three rounds (direct name 

matching, Ensembl id matching, and gene synonym matching), the number of original matches 

has increased from 2,527 (direct name matching) to 3,048 for the zebrafish and from 8,166 to 

8,607 for the mouse. The detailed reconciliation statistics are shown in Table 1.1.  

The extra 521 genes for the zebrafish and 441 genes for the mouse that were matched 

during round 2 (using Ensembl ids) and round 3 (using gene synonyms) contained outdated gene 

names in the PPI networks. Therefore, they were updated to the correct names that were used in 

the anatomical profiles. After the reconciliation, the original anatomical profiles were filtered to 

contain only the genes that were matched with the PPI networks and to contain only the Uberon 

terms that have at least 10 gene annotations (Table 1.1). These reconciled and filtered anatomical 

profiles were used during the evaluation of different network types because it is important to 

evaluate the networks using the genes that are found in all the three types of networks (PPI, 

anatomy-based gene networks, and integrated networks) for the zebrafish and the mouse. 

 

1.3.3 Generation of the anatomy-based gene networks 

When constructing the anatomy-based gene networks, original anatomical profiles 

(before the reconciliation) were used to retain all of their genes in the networks. The reconciled 

anatomical profiles were only used for the evaluation of the networks. The gene similarity score 

distributions for the four types of unfiltered anatomy-based gene networks (Lin, Resnik, 

Schlicker, and Wang) for the zebrafish and the mouse are shown in Figs. 1.7 and 1.8, 

respectively. The gene similarity scores for Lin, Resnik, and Schlicker methods are distributed 
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between a range from 0 to 0.40. In contrast, the distribution for the Wang method is symmetrical 

around the 0.50 region.  

Obtaining these distributions are critical to determine the score cutoff applied to each 

network. For example, applying 0.7 as the cutoff for the Wang anatomy-based gene network for 

the zebrafish, generated a filtered network with 5,386 genes and 789,282 interactions; if the same 

0.7 cutoff was applied to the zebrafish Resnik network, the filtered network will only have 30 

genes and 31 interactions. If these two networks were evaluated, the changes in the number of 

genes and the number of interactions would have a significant effect on their performance. 

Therefore, a cutoff must be applied to keep the network size relatively constant among the 

different networks. However, it is practically difficult to apply cutoffs to keep the exact number 

of genes and the interactions among the networks. Therefore, using the trial and error method, 

different cutoffs were applied to anatomy-based gene networks to keep the number of 

interactions between 500,000 and 750,000. The statistics for the network sizes of filtered and 

unfiltered networks and their cutoffs are shown in Tables 1.2 and 1.3 for the zebrafish and the 

mouse, respectively. The unfiltered mouse anatomy-based gene networks are significantly larger 

than the zebrafish networks; for instance, the zebrafish anatomy-based gene network for the 

Wang method has 14,604,258 interactions, whereas its mouse counterpart has 107,324,905 

interactions. This is due to the difference between number of genes in the original anatomical 

profiles for the zebrafish and the mouse. The mouse profile has 14,652 genes compared to the 

5,405 genes in the zebrafish profile (Table 1.1). When calculating the gene similarity scores 

during the anatomy-based network generation, the number of pairwise comparisons is 

significantly high in the mouse compared to the zebrafish, which causes the higher number of 

interactions in the mouse anatomy-based gene networks. 
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1.3.4 Integration of the anatomy-based gene networks with the STRING PPI networks 

During the integration, unfiltered anatomy-based gene networks for the zebrafish and the 

mouse were integrated with the corresponding STRING PPI networks. When selecting the 

cutoffs for filtering the integrated networks, their gene similarity score distributions were 

considered as explained before (section 1.3.3). The statistics for the filtered and unfiltered 

network sizes are shown in Table 1.4 for the zebrafish and Table 1.5 for the mouse. The 

generated integrated networks are larger than the anatomy-based gene networks in terms of the 

number of genes and the interactions. For instance, the Wang anatomy-based gene network for 

the zebrafish has 5,405 genes and 14,604,258 interactions (Table 1.2), whereas the zebrafish 

integrated network for the Wang method has 25,375 genes and 26,821,274 interactions (Table 

1.4). During the integration, the 5,405 genes in the anatomy-based gene network were integrated 

with the 23,018 genes in the zebrafish PPI network, which caused an increase in the network 

size. The common genes and interactions were retained according to the integration formula 

(equation 1.11), and also the genes and the interactions that are unique to one network were 

included in the integrated network. Therefore, the integrated networks are more complete in 

terms of the number of genes and the information contained.  

The gene similarity score distributions for the integrated networks for the zebrafish and 

the mouse are shown in Figs. 1.9 and 1.10, respectively. When compared to the distributions of 

the corresponding anatomy-based gene networks as shown in Figs. 1.7 and 1.8, the distributions 

of the integrated networks are slightly skewed to the right; especially, the gene similarity scores 

of the Wang anatomy-based gene networks were symmetrical and distributed around 0.5; in 

contrast, the distributions for the Wang integrated networks are shifted to 0-0.50 region. This is 
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due to the effect of the integration. Only the interactions that have high similarity scores in the 

anatomy-based gene network and the PPI network receive higher scores in the integrated 

network. Most of the interactions in the anatomy-based gene network received low support from 

the PPI network, thus the gene similarity score distribution of the integrated network is skewed 

to right. By applying the cutoffs as shown in Tables 1.4 and 1.5, the interactions with the highest 

similarity scores, which received support from both the PPI and the anatomy-based gene 

networks, could be selected.  

 

1.3.5 Network-based candidate gene prediction 

The performance of the Hishigaki prediction method, weighted-Hishigaki prediction 

method, Majority Voting (MV) method, and weighted-Majority Voting method was evaluated 

using the zebrafish STRING PPI filtered network. For the multi-function evaluation method, the 

ROC curve comparison and the precision-recall curve comparison are shown in Figs. 1.11.a and 

1.11.b, respectively. For the single-function evaluation method, the comparison of the AUC 

distributions of ROC curves and the precision-recall curves is shown in Supplementary Fig.  

S1.1. According to all the figures, the performances of different network-based candidate gene 

prediction methods are approximately similar, except for the precision-recall curve comparison 

(Fig 1.11.b). All other comparisons indicate that the Hishigaki and weighted Hishigaki methods 

slightly outperform the Majority Voting and weighted Majority Voting methods. Even in the 

precision-recall curve comparisons (Fig. 1.11.b), the weighted-Hishigaki method outperforms 

other methods in the initial region. Considering these results and the advantages discussed in 

section 1.2.6, the Hishigaki method and the weighted-Hishigaki method were selected as the 

network-based candidate gene prediction methods. The Hishigaki method was used for the 



   

 
37 

filtered networks and the weighted-Hishigaki method was used for the unfiltered/full networks 

because it considers the interaction weights of the unfiltered networks. 

 

1.3.6 Evaluation of the network performances 

 First, the anatomy-based gene networks were evaluated to compare the performance of 

different semantic similarity calculation methods (Lin, Resnik, Schlicker, and Wang) used during 

the network generation. For the zebrafish, the comparison of the ROC curves and the precision-

recall curves generated using the multi-function evaluation method for the different filtered 

anatomy-based gene networks are shown in Figs. 1.12.a and 1.12.b, respectively. For the mouse, 

the comparison of the ROC curves and the precision-recall curves for the different filtered 

anatomy-based gene networks are shown in Figs. 1.13.a and 1.13.b, respectively. For the single-

function evaluation method, the AUC distribution comparisons for the zebrafish and the mouse 

are shown in Supplementary Figs. S1.2 and S1.3, respectively. According to these results, all 

four semantic similarity calculation methods have very similar performance, but the anatomy-

based gene networks generated from the Wang method slightly outperformed other methods, 

especially in precision-recall curve comparisons for the zebrafish (Fig. 1.12.b) and the mouse 

(Fig. 1.13.b).  

The integrated networks for the four semantic similarity methods (Lin, Resnik, Schlicker, 

and Wang) were compared separately to select the best integrated network for the zebrafish and 

the mouse. For the zebrafish, the comparison of the ROC curves and the precision-recall curves 

generated using the multi-function evaluation method for the different filtered integrated 

networks are shown in Figs. 1.14.a and 1.14.b, and for the mouse, the comparison of the ROC 

curves and the precision-recall curves are shown in Figs. 1.15.a and 1.15.b, respectively. For the 
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single-function evaluation method, the AUC distribution comparisons for the zebrafish and the 

mouse are shown in Supplementary Figs. S1.4 and S1.5, respectively. For the zebrafish, the Lin 

method has the best AUC for both the curve types and the Wang method comes as a close 

second. These results are confirmed by the AUC distribution comparisons (Supplementary Fig. 

S1.4). For the mouse, the performance of the four integrated networks are very similar, but the 

Schlicker method slightly outperforms the other three methods (Figs. 1.15.a and 1.15.b).  

According to the proposed hypothesis, the integrated networks are expected to perform 

better than the PPI networks. To test this hypothesis, the comparisons of ROC and precision-

recall curves for the filtered integrated networks, the anatomy-based gene networks, and the PPI 

networks for the zebrafish are shown in Figs. 1.16 and 1.17, respectively. In each figure, four 

comparisons are shown for the four semantic similarity calculation methods. The comparisons 

for ROC and precision-recall curves for the mouse are shown in Figs. 1.18 and 1.19, 

respectively. According to these results, the AUC values of the curves for the integrated 

networks (green) are significantly higher than the PPI networks. This indicates that the filtered 

integrated networks for all the semantic similarity calculation methods have higher candidate 

gene prediction accuracy than the corresponding PPI networks in both the model organisms. 

Although the anatomy-based gene networks (blue curves) have the highest AUC values, the 

integrated networks have similar AUC values in most comparisons; in some instances, such as 

the zebrafish ROC curve comparison for the Lin method (Fig. 1.16.a), the integrated network 

(green curve) even outperforms the anatomy-based gene network (blue curve). For the proposed 

hypothesis, only the integrated networks are compared with the PPI networks. The anatomy-

based gene networks are not practical for candidate gene predictions because they only contain a 

limited number of proteins/genes with known Uberon annotations. The integrated networks have 
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unknown genes coming from the PPI networks, which make them better networks for gene 

predictions.  

Above results are confirmed once again by the results of the single-function evaluation 

method for the zebrafish (Supplementary Figs. S1.6, S1.7, S1.8, and S1.9) and the mouse 

(Supplementary Figs. S1.10, S1.11, S1.12, and S1.13). The boxplot and histogram distributions 

for the AUC values of ROC and precision-recall curves for the filtered integrated networks are 

higher than the filtered PPI networks for both the model organisms. This indicates that after the 

integration, even when the networks are evaluated for each anatomical term separately, the 

performance is generally better than the original PPI networks.  

Furthermore, the ROC (Supplementary Fig. S1.14) and precision-recall curve 

(Supplementary Fig. S1.15) comparisons for the zebrafish and the ROC (Supplementary Fig. 

S1.16) and precision-recall curve (Supplementary Fig. S1.17) comparisons for the mouse 

unfiltered networks that were evaluated using the multi-function evaluation method also show 

that the integrated networks have better candidate gene prediction performance than the PPI 

networks. This is further confirmed by the single-function evaluation method results for the same 

unfiltered networks for the zebrafish (Supplementary Figs. S1.18, S1.19, S1.20, and S1.21) and 

the mouse (Supplementary Figs. S1.22, S1.23, S1.24, and S1.25). As can be seen, even in the 

unfiltered networks, integrated networks for the four semantic similarity methods have a better 

candidate gene prediction than the PPI networks. This proves that filtering the networks by a 

gene similarity score cutoff does not affect the final conclusions. 
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1.3.7 Validating the evaluation results 

The ROC and precision-recall curve comparisons for the non-randomized anatomy-based 

gene network and the integrated network for the Wang method with their fully random and 

random profile counterparts are shown in Fig. 1.20. For the single-function evaluation method, 

the comparisons of the AUC distributions for the same networks are shown in Supplementary 

Figs. S1.26 and S1.27. According to the comparisons, non-randomized networks (blue) have a 

higher performance compared to the randomized networks in both the network types. When 

comparing the two randomization methods, random profile networks (green), which were 

constructed by only randomizing the anatomy profiles have a higher performance than the fully 

random networks (red). This comparison with randomized networks indicates that the high 

performance observed by the anatomy-based gene network and the integrated network is due to 

their biological significance, not merely due to random error.  

To test the effect of the circular use of the same anatomy profiles for anatomy-based gene 

network construction and for the evaluation of those networks, 30 Uberon terms with at least 10 

gene annotations were randomly removed from the zebrafish anatomy profile, which was used 

for anatomy-based gene network and integrated network construction using the Wang method. 

Then, those networks were evaluated using only the removed 30 Uberon terms, and their 

performance was compared with the filtered zebrafish STRING PPI network. The ROC and 

precision-recall curve comparisons are shown in Figs. 1.21.a and 1.21.b, respectively. The 

comparison of the AUC distributions for the single-function evaluation method is shown in 

Supplementary Fig. S1.28. According to the comparisons, the integrated network (green) 

performs better than the PPI network (red), even when being evaluated using the 30 Uberon 

terms that were not used for the network construction. Here, the integrated network (green) even 
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has a better performance than the anatomy-based gene network (blue). This proves that using the 

same anatomy profile for network construction and evaluation does not affect the final 

conclusion of the integrated network having a better performance than the PPI network. 

To prove this point further, the filtered PPI network, anatomy-based gene network, and 

integrated network for the zebrafish were evaluated using GO-BP profiles for the zebrafish. 

Because the anatomy-based gene network and the integrated network were constructed using the 

zebrafish anatomy profile using the Wang method, the GO-BP annotations, which were used for 

the evaluation, do not have a direct influence on the network construction. The ROC and 

precision-recall curve comparisons for this evaluation are shown in Figs. 1.22.a and 1.22.b, 

respectively, and the comparison of the AUC distributions for the single-function evaluation 

method is shown in Supplementary Fig. S1.29. According to the comparisons, the integrated 

network (green) performs better than both the PPI (red) and anatomy-based gene (blue) 

networks, even when evaluated by the GO-BP profiles. Therefore, irrespective of the profile type 

(anatomy or GO-BP) integration has improved the quality of the network.  

 

1.4 Discussion 

The goal of this work was to test whether the integration of anatomy ontology data with 

PPI networks enhances the network-based candidate gene prediction accuracy. The PPI networks 

are used to predict gene candidates for certain phenotypes or functions, but they suffer from low 

prediction accuracy due to the low quality of the networks. One way to increase the quality of the 

PPI networks is to incorporate experimental knowledge gathered in the biological literature about 

gene-phenotype relationships. Here, using biological ontologies and semantic similarity 

calculation methods, a computational framework was developed to integrate experimental 
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knowledge about gene-phenotype associations with PPI interaction data. First, anatomy-based 

gene networks were constructed by calculating pairwise similarity scores between genes using 

the semantic similarity between respective anatomical profiles, which represents a network of 

genes based on their Uberon annotations. In this network, if two genes receive a high gene 

similarity score, these genes are regulating similar anatomical phenotypes. Next, the anatomy-

based gene networks for the mouse and the zebrafish were integrated with the corresponding PPI 

networks downloaded from the STRING database. In the integrated networks, the gene 

interactions that receive a higher support from both the PPI and anatomy-based gene networks 

will receive higher similarity scores. This filters out false positive interactions in the PPI 

networks if those interactions are not supported by the anatomy-based gene networks, that is, if 

they receive low scores from the anatomy-based gene networks. On the other hand, gene 

interactions with low scores in the PPI networks will be enhanced if the interactions are 

supported by the anatomy-based gene networks, that is, if they have high similarity scores from 

the anatomy-based gene networks. In cases where the gene similarity score is zero in anatomy-

based gene networks due to lack of anatomical term annotations, the support from the PPI 

network should be extremely high for those interactions to receive a moderate similarity score in 

the integrated networks and potentially be selected after application of the gene similarity cutoff. 

Furthermore, if two proteins are not interacting in a PPI network, they need a higher support 

from the anatomy-based gene network to receive a moderate gene similarity score in the 

integrated network and to be selected after the application of the gene similarity score cutoff. 

Finally, a hypothesis was formulated that the integrated networks should have a higher candidate 

prediction accuracy than the PPI networks because of the increased quality of the network 

interactions.  
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According to the network performance evaluations, the integrated networks performed 

better than the PPI networks, proving that the integration has increased the quality of the 

networks. The evaluations were performed under different settings to improve the robustness of 

the final conclusion, which yielded the same result. For example, both ROC curves and 

precision-recall curves were used during the evaluation. Furthermore, the conventional single-

function method where curves are generated for each function at a time and a modified multi-

function evaluation method where one curve is generated for the entire network were used for 

the evaluation. These evaluation methods were tested on anatomy-based gene networks and 

integrated networks constructed using four semantic similarity methods (Lin, Resnik, Schlicker, 

and Wang) for two model organisms (zebrafish and mouse). Usually, biological networks are 

filtered by a score threshold before their usage, but for this evaluation, both filtered and 

unfiltered networks were used to confirm that the filtering of the networks does not affect the 

consistency of the results. Under a number of various experimental settings as explained above, 

the integrated networks performed better than the PPI networks, strengthening the conclusion 

that the integration of the literature knowledge using anatomy ontology increases the candidate 

gene prediction accuracy of the PPI networks. 

To test the biological significance of the results, the integrated and the anatomy-based 

gene networks for the Wang method for the zebrafish were compared with the randomized 

versions of these networks (Fig. 1.20). The results demonstrated that the higher candidate gene 

prediction performance observed in the integrated network has a biological significance and it 

was not due to random error. Out of the two randomization procedures used, the random profile 

networks (green) that were generated by only randomizing the anatomical profiles have a better 

performance than the fully random networks (red) that were constructed by completely 
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randomizing the entire networks. The AUC values for the ROC curves of fully random networks 

are closer to 0.5, which is expected in a randomized prediction (Han, et al., 2011). When only the 

anatomical profiles are randomized, the original number of annotations per gene was kept 

constant even after the randomization, which may lower the randomization effect by including 

closely related Uberon terms for the same gene. This may explain their higher performance 

compared to the fully random networks. However, the non-randomized networks (blue) have a 

significantly higher performance than the two randomized network types, especially, in 

precision-recall curves, due to their biological significance.  

Another challenge faced during the analysis is the concern of circular use of the same 

anatomical profiles for the construction of the networks (anatomy-based gene networks and then 

the integrated networks) and for their evaluation. The increased performance observed in the 

integrated networks may be due to using the same anatomical profiles for the evaluation. Two 

experiments were conducted to assess whether the circular use of the anatomical profiles affects 

the observed results. First, 30 Uberon terms were randomly selected and their annotations were 

removed from the zebrafish anatomy profile and the networks constructed using the Wang 

method were evaluated using the same 30 terms (Fig. 1.21). Second, the networks were 

evaluated using the GO-BP profiles for the zebrafish (Fig. 1.22). In both experiments, the 

annotations used for the network construction were not used for the evaluation, and in both the 

occasions the integrated network (green) outperformed the PPI network (red). This indicates the 

increased performance observed in the integrated networks is not due to the circular use of the 

same anatomical profiles.  

The anatomy-based gene networks that were constructed by calculating the pairwise 

semantic similarity between genes are used to generate the integrated networks in the zebrafish 
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and the mouse. According to the network performance evaluations (Fig. 1.16, Fig. 1.17, Fig. 

1.18, and Fig. 1.19), the anatomy-based gene networks (blue) performed slightly better than the 

integrated networks (green). However, the anatomy-based gene networks contain a limited 

number of genes that only have Uberon annotations, thus they are not practical for candidate 

gene prediction as the integrated networks. For example, the zebrafish filtered anatomy-based 

gene network constructed using the Schlicker method contains 5,386 genes (Table 1.2), whereas 

the corresponding integrated network contains 12,755 genes (Table 1.3). Furthermore, the 

anatomy-based gene networks represent the gene organization in the network based only on their 

phenotypic annotations and do not include the molecular interactions coming from experimental 

sources, which is achieved after the integration. During the integration, the anatomy-based gene 

networks were populated with new genes coming from the PPI networks, which included some 

unknown genes. Even with the highly populated network structure, the integrated networks 

outperformed the PPI networks. In some cases, such as the zebrafish networks for the Lin 

method (Fig. 1.16.a), the integrated network even outperforms the anatomy-based gene network.  

Moreover, the extra validation experiments conducted to check the concern of the 

circular use of the same anatomy profiles (Fig. 1.21 and Fig. 1.22) show that the integrated 

network performs better than the anatomy-based gene network when the same anatomical profile 

was not used for the construction of the networks and for the evaluation. When the GO-BP 

profiles were used for the evaluation (Fig. 1.22), the integrated network (green) comfortably 

outperforms the anatomy-based gene network. This indicates that there is some bias in using the 

same anatomical profiles for the construction and the evaluation of the anatomy-based gene 

networks, which may have affected their slightly higher performance than the integrated 

networks. However, the integration process reduces this bias by including the interactions from 
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the PPI networks. Because the PPI networks are mainly based on empirical data about direct PPI 

interactions, the interactions that receive higher support in the integrated networks incorporates 

information from these empirical sources, such as mass spectrometry, which was not captured by 

anatomy-based gene networks. This may be a potential reason for the higher performance of the 

integrated networks when the networks were evaluated using the Uberon or GO terms that were 

not included for the network construction. Therefore, the integrated networks are suited for 

candidate gene prediction, although the anatomy-based gene networks have a slightly higher 

candidate gene prediction in the original evaluations. Anatomy-based gene networks were only 

constructed as an intermediate step for the construction of the integrated networks and the goal 

was to investigate the effect of the integration of the anatomical annotations with the PPI 

networks. The anatomy-based gene networks only contain the genes with anatomical 

annotations, hence, they will miss a large portion of unknown genes (added by the PPI networks) 

if they are used for candidate gene prediction. Also, the anatomy-based gene networks do not 

include the physical interactions of the proteins coming from empirical sources. The interaction 

scores in the integrated networks captures information from both PPI networks and anatomy-

based gene networks. Because of these reasons, the integrated networks are better suited for 

discovering new gene candidates than the anatomy-based gene networks.   

This research involves the integration of large-scale datasets including the PPI data in the 

STRING database and the anatomical annotations retrieved from the Monarch Initiative 

repository. Integrating such data in large quantities has been a challenge, which requires 

computational methods to facilitate the integrations. During the integration, matching gene 

identities from the two data sources (STRING and Monarch Initiative repository) was a 

challenge. For example, some of the gene names were outdated in the STRING database. 
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Furthermore, there were several synonyms for some of the genes, which can be challenging 

when using only the gene name matching. Therefore, as explained in the Methods (section 

1.2.3), a gene name reconciliation algorithm was developed to first, match the genes using the 

gene name/symbol, then, using their Ensembl ids, and finally, using synonyms matching. This 

improved the number of matchings and provided an efficient integration (Table 1.1). Integrating 

data from different data sources still remains a challenge; although data repositories such as 

Monarch Initiative have been developed, this requires special attention and development of 

bioinformatics algorithms and tools to achieve a better integration.  

Large-scale integration also introduces computational challenges, especially, when 

working with biological networks. Usually, the network analysis algorithms are computationally 

intensive and require specialized modifications depending on the problem for a better 

implementation (Cormen, 2009). This work required the construction of large networks 

(anatomy-based gene networks and integrated networks), which is a computationally challenging 

task, especially, for a model organism such as the mouse with a large number of annotations. 

Furthermore, there is a lack of developed bioinformatics tools and codes to address large-scale 

network integration problems. Software packages, such as Cytoscape (Smoot, et al., 2011) are 

valuable for network visualization and general analysis tasks but are not suitable for specific 

problems, such as network integration. Moreover, built-in codes and libraries for semantic 

similarity calculations are not readily available for the Python programming language; there are 

several packages, such as Owl Sim in Java (Horridge and Bechhofer, 2011; Washington, et al., 

2009) and GoSemSim in R (Yu, 2010) that can load ontologies in Owl format and perform basic 

semantic similarity calculations, but they lack the implementation of specified methods, such as 

the Wang method. Furthermore, GoSemSim is only focused on the GO and could not be used on 
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the Uberon anatomy ontology. The existing libraries implemented on Java and R were not 

suitable for large-scale network construction and integration. Therefore, all the scripts that were 

required for this work were newly developed in Python focusing on efficient running time and 

memory usage. These scripts can be generally implemented on any ontology, including GO, 

Uberon, etc., which could be very useful for the community interested in biological ontologies 

and networks.  

For this research, the proposed integrative method was implemented using anatomy 

ontology data because the focus was to study changes in anatomical phenotypes associated with 

evolutionary changes. The methodology used for the integration can be generally applied to any 

type of ontology and network data given the nature of the biological question. For instance, if the 

focus is to study changes in the molecular function, the molecular function component of the GO 

(Ashburner, et al., 2000; Consortium, 2004) can be used instead of the Uberon anatomy 

ontology. Furthermore, this approach can be extended for any model organism if the PPI network 

and ontology data are available, although this work focuses on only the mouse and the zebrafish. 

For instance, this work can be extended to human anatomical entities using Uberon as it is a 

species-independent ontology. To facilitate the usability, the scripts used for the integrated 

framework will be organized into a Python package, which can be easily used with any ontology 

or a domain. 

An interesting future challenge would be to include quality terms using Phenotype And 

Trait Ontology (PATO) to analyze the genes associated with certain qualities of anatomical 

entities, such as the size or the presence and absence of an anatomical entity (Gkoutos, et al., 

2009). For this task, a computational framework must be established to include composite entity-

quality terms. Alternatively, phenotype ontologies, which already include quality of an 
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anatomical entity, such as the Human Phenotype Ontology (Köhler, et al., 2016) and the 

Mammalian Phenotype Ontology (Smith and Eppig, 2012) can be directly used for the 

integrative framework. However, according to Manda, et al. (2016), incorporation of entity-

quality terms does not significantly increase the amount of semantic information captured from 

phenotype profiles based on taxon-phenotype annotations. Nonetheless, incorporation of 

additional phenotype information into gene networks, which was not tested before, may increase 

the performance and is a potential method to improve the network performance. This integration 

of quality terms for anatomical structures may also help to identify condition-specific gene 

interaction changes. Currently, large-scale PPI networks retrieved from databases such as 

STRING represent all possible interactions that occur within the cell for an organism in any 

condition type. However, the protein interactions may differ depending on the condition or the 

phenotype (e.g., pectoral fin presence versus absence, a human disease presence versus absence, 

etc.) (Creixell, et al., 2015; Georgii, et al., 2009; Greene, et al., 2015). Presently, the best method 

to compare the protein interaction changes associated with specific conditions and phenotypes is 

to generate experimental protein interactions through methods such as mass spectrometry for 

each condition or the phenotype, which is time-consuming and expensive (Rao, et al., 2014; 

Shoemaker and Panchenko, 2007). An alternative computational method is to compare 

condition-specific co-expression networks (Creixell, et al., 2015; Ficklin, et al., 2017). By 

including quality terms, such as presence/absence and size, with anatomical terms for calculating 

semantic similarity, these phenotype networks can be used to filter out the condition-specific 

interactions from the large-scale PPI networks available in the STRING. This can further 

improve condition-specific PPI network generation, which is extremely beneficial for future 

molecular biology studies. 
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The proposed integrative approach will be extremely useful for disease phenotypes in 

human and other model organisms. Predicting disease genes using biological networks is 

extremely widespread due to the associated medical implications (Peng, et al., 2017; Wang, et 

al., 2011; Zickenrott, et al., 2017), and the goal is to improve the accuracy of the predictions. 

Using the proposed integrative method, experimental knowledge regarding known gene to 

disease associations can be integrated with the human gene networks. For this purpose, Human 

Disease Ontology (Kibbe, et al., 2015; Osborne, et al., 2009) can be used instead the Uberon to 

semantically capture the gene to disease annotations. Therefore, the integrative framework 

proposed in this work is adaptable for a broad number of research questions and is a powerful 

tool for the bioinformatics community, who thrives on improving the accuracy of biological 

analyses.  

This work focuses on improving the quality of the PPI networks computationally using 

biological ontologies to capture gene-anatomical phenotype associations, which was not captured 

by PPI networks. However, the quality of the empirical PPI networks must also improve to make 

better biological conclusions. This is an active research area which focuses on improving the 

quality of the experimental methods, such as yeast two-hybrid assay and high-throughput mass-

spectrometry and adding novel experimental methods, such as electron microscopy (Beck and 

Baumeister, 2016) and synthetic lethality (Wang, et al., 2017; Ye, et al., 2005). Furthermore, 

novel computational techniques to predict PPIs have also emerged, such as using post-

translational modifications (e.g., phosphorylation and glycosylation patterns of proteins) for the 

predictions (Duan and Walther, 2015; Minguez, et al., 2014). The experimental and 

computational PPI data generation methods must be continuously improved and complement 

each other to achieve the overall goal of generating high-quality PPI networks. In this context, 
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the integrative method proposed in this work is a timely addition to improve PPI network quality 

as biological conclusions that are made based on the networks highly depend on their quality. 

 

1.5 Conclusion 

This work focuses on improving the quality of the PPI networks by integrating anatomy 

ontology data. The networks were evaluated under different settings: four semantic similarity 

calculation methods (Lin, Resnik, Schlicker, and Wang), two evaluation curves (ROC and 

precision-recall curves), two evaluation modes (single-function evaluation method vs. multi-

function evaluation method), two model organisms (mouse and zebrafish), and two network 

conditions (filtered vs. unfiltered); in all the settings, the integrated networks significantly 

outperformed the PPI networks, which reflects in robustness. The results were further validated 

to confirm the biological significance and to negate the effect of the circular use of the anatomy 

profiles, which also confirmed the significance of the integrative framework. Together, these 

results support the hypothesis that the integration of the experimental knowledge via anatomy 

ontology increases the quality of the PPI networks, therefore, improving their candidate gene 

prediction accuracy. The integrated networks are now optimized to detect gene modules 

associated with anatomical phenotypes with a higher accuracy (the focus of the second Chapter). 

Furthermore, this approach can be applied to diverse biological questions, such as predicting 

disease genes or evolutionary novelties, which makes it an important tool in bioinformatics to 

unravel candidate genes.  
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Tables 

Table 1.1. The statistics for the reconciliation of gene names between the anatomical profiles and 

the STRING PPI networks for zebrafish and mouse. 

 Zebrafish Mouse 

Number of genes in the original anatomical profile 5,405 14,652 

Number of Uberon terms/functions in the original 

anatomical profile 
960 1,537 

Number of genes directly matched to the PPI 

network using the gene name (round 1) 
2,527 8,166 

Number of genes matched using the ensemble IDs 

(round 2) 
402 378 

Number of genes matched using synonyms in the 

STRING database (round 3) 
119 63 

Number of final gene matches to the PPI network 

(in all 3 rounds)/ Number of genes in the reconciled 

anatomical profile 

3,048 8,607 

Number of Uberon terms in the reconciled 

anatomical profile 
943 1,524 

Number of final gene mismatches 2,357 6,045 

Number of genes kept in the profile file after 

filtering the Uberon terms with less than 10 gene 

annotations 

3,037 8,606 

Number of Uberon terms kept in the profile file 

after filtering the terms with less than 10 gene 

annotations 

294 850 
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Table 1.2. The statistics for the unfiltered and filtered anatomy-based gene networks for 

zebrafish 

 Lin method 
Resnik 

method 

Schlicker 

method 
Wang method 

Number of genes in the 

unfiltered network 
5,405 5,405 5,405 5,405 

Number of interactions in 

the unfiltered network 
14,534,897 14,534,897 14,534,897 14,604,258 

The gene similarity score 

cutoff 
0.55 0.18 0.24 0.70 

Number of genes in the 

filtered network 
5,387 4,909 5,401 5,386 

Number of interactions in 

the filtered network 
700,138 712,286 692,539 789,282 
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Table 1.3. The statistics for the unfiltered and filtered anatomy-based gene networks for mouse 

 Lin method 
Resnik 

method 

Schlicker 

method 
Wang method 

Number of genes in the 

unfiltered network 
14,652 14,652 14,652 14,652 

Number of interactions in 

the unfiltered network 
107,094,117 107,094,117 107,094,117 107,324,905 

The gene similarity score 

cutoff 
0.9 0.32 0.41 0.95 

Number of genes in the 

filtered network 
9,784 10,081 12,755 9,126 

Number of interactions in 

the filtered network 
588,359 536,602 522,183 510,139 
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Table 1.4. The statistics for the unfiltered and filtered integrated networks for zebrafish 

 Lin method 
Resnik 

method 

Schlicker 

method 
Wang method 

Number of genes in the 

unfiltered network 
25,375 25,375 25,375 25,375 

Number of interactions in 

the unfiltered network 
26,753,086 26,753,086 26,753,086 26,821,274 

The gene similarity score 

cutoff 
0.33 0.23 0.24 0.4 

Number of genes in the 

filtered network 
17,394 20,066 20,929 13,940 

Number of interactions in 

the filtered network 
730,855 726,589 690,208 744,519 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 



   

 
56 

Table 1.5. The statistics for the unfiltered and filtered integrated networks for mouse 

 Lin method 
Resnik 

method 

Schlicker 

method 
Wang method 

Number of genes in the 

unfiltered network 
27,097 27,097 27,097 27,097 

Number of interactions in 

the unfiltered network 
111,461,010 111,461,010 111,461,010 111,690,355 

The gene similarity score 

cutoff 
0.50 0.27 0.30 0.53 

Number of genes in the 

filtered network 
13,125 17,898 18,002 12,916 

Number of interactions in 

the filtered network 
653,848 661,619 613,671 712,720 
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Figures 

 

Figure 1.1. Representation of protein-protein interactions in a graph. The nodes (gray) represent 

proteins and the edges (black) represent their interactions 
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Figure 1.2. A representation of how Uberon entities are related. Uberon classes are shown in 

gray boxes. The ‘is_a’ relationships are represented by full arrows and ‘part_of’ relationships are 

represented by dashed arrows. This figure is adapted from the Mungall, et al. (2012) publication. 
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Figure 1.3. A hypothetical scenario that compares candidate gene predictions based on a (a) PPI 

network and an (b) anatomy-based gene network. The nodes A, B, and C in both networks 

represent three genes known to be associated with a certain phenotype, which can be denoted as 

phe1. Because their phenotype is known, they are colored in black. In the PPI network (a), genes 

D and F are predicted to be associated with phe1 based on their interactions with known genes. 

In contrast, the anatomy-based gene network (b) only predicts D as a potential candidate because 

the gene F does not have any interaction with other genes. The absence of interactions of gene F 

can be due to two reasons: (1) it is not annotated with any anatomical terms, (2) it is not 

annotated with terms that are similar to the anatomy terms associated with genes: A, B, and C. 

The anatomy-based gene network (b) is built entirely on anatomy ontology information, thus it 

provides a different interaction structure. Hypothetically, the gene F could be a false positive 

interaction in the PPI network, and the integrative use of the anatomy-based network may reduce 

the false positives by filtering them. 
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Figure 1.4. The general workflow for generating anatomy-based gene networks. The genes are 

represented by G1, G2, etc., and their Uberon annotations are represented by ta1, tb1, etc. In the gene 

similarity matrix, the similarity scores between genes are represented by s11, s12, etc. 
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Figure 1.5. The general evaluation workflow used for evaluating the networks. If the single-

function evaluation method is selected, the distributions of the area under the curve (AUC) 

values are compared, whereas the direct AUC values for the ROC and precision-recall curves are 

compared in the multi-function method. 
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Figure 1.6. Gene similarity score/combined score distributions for (a) zebrafish and (b) mouse 

unfiltered PPI networks. 
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Figure 1.7. The gene similarity score distributions for the zebrafish unfiltered anatomy-based 

gene networks constructed by (a) Lin method, (b) Resnik method, (c) Schlicker method, and (d) 

Wang method. 
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Figure 1.8. The gene similarity score distributions for the mouse unfiltered anatomy-based gene 

networks constructed by (a) Lin method, (b) Resnik method, (c) Schlicker method, and (d) Wang 

method. 
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Figure 1.9. The gene similarity score distributions for the zebrafish unfiltered integrated 

networks constructed by (a) Lin method, (b) Resnik method, (c) Schlicker method, and (d) Wang 

method. 
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Figure 1.10. The gene similarity score distributions for the mouse unfiltered integrated networks 

constructed by (a) Lin method, (b) Resnik method, (c) Schlicker method, and (d) Wang method. 
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Figure 1.11. The comparison of (a) ROC curves and (b) precision-recall curves for different 

network-based candidate gene prediction methods. These curves were generated for filtered 

zebrafish PPI networks using the multi-function evaluation method.  
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Figure 1.12. The comparison of (a) ROC curves and (b) precision-recall curves for different 

filtered anatomy-based gene networks for the zebrafish. These curves were generated using the 

multi-function evaluation method.  
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Figure 1.13. The comparison of (a) ROC curves and (b) precision-recall curves for different 

filtered anatomy-based gene networks for the mouse. These curves were generated using the 

multi-function evaluation method.  
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Figure 1.14. The comparison of (a) ROC curves and (b) precision-recall curves for different 

filtered integrated networks for the zebrafish. These curves were generated using the multi-

function evaluation method.  
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Figure 1.15. The comparison of (a) ROC curves and (b) precision-recall curves for different 

filtered integrated networks for the mouse. These curves were generated using the multi-function 

evaluation method.  
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Figure 1.16. The comparison of ROC curves for the filtered integrated networks (green), PPI 

networks (red), and anatomy-based gene networks (blue) for the four semantic similarity 

calculation methods in the zebrafish.  
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Figure 1.17. The comparison of precision-recall curves for the filtered integrated networks 

(green), PPI networks (red), and anatomy-based gene networks (blue) for the four semantic 

similarity calculation methods in the zebrafish.  

 

 

 

 



   

 
74 

 

Figure 1.18. The comparison of ROC curves for the filtered integrated networks (green), PPI 

networks (red), and anatomy-based gene networks (blue) for the four semantic similarity 

calculation methods in the mouse. 
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 Figure 1.19. The comparison of precision-recall curves for the filtered integrated networks 

(green), PPI networks (red), and anatomy-based gene networks (blue) for the four semantic 

similarity calculation methods in the mouse. 
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Figure 1.20. The comparison of (a) ROC and (b) precision-recall curves for the filtered non-

randomized anatomy-based gene network (blue), random profile anatomy-based gene network 

(green), and fully random anatomy-based gene network (red) and the comparison of (c) ROC and 

(d) precision-recall curves for the filtered non-randomized integrated network (blue), random 

profile integrated network (green), and fully random integrated network for the Wang method for 

the zebrafish. 
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Figure 1.21. The comparison of (a) ROC and (b) precision-recall curves for the filtered 

integrated network (green), PPI network (red), and anatomy-based gene network (blue) for the 

Wang method for the zebrafish. The integrated network and the anatomy-based gene network 

were created using the zebrafish anatomy profile after randomly removing 30 Uberon terms, 

which had at least 10 gene annotations for each term. The same 30 terms were used for the 

evaluation to generate the above curves.  
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Figure 1.22. The comparison of ROC (a) and precision-recall (b) curves of the filtered integrated 

network (green), PPI network (red), and anatomy-based gene network (blue) for the Wang 

method for the zebrafish. The networks were evaluated using annotation profiles that contain 

Biological Process terms of the Gene Ontology for zebrafish genes.  
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Supplementary Figures 

 

Supplementary Figure S1.1. The boxplot comparisons of the AUC distributions for (a) ROC 

curves and (b) precision-recall curves and the histogram comparisons of the AUC distributions 

for (c) ROC curves and (d) precision-recall curves for the different network-based candidate 

gene prediction methods for the zebrafish filtered PPI network. In the boxplots, the red line and 

the square represent the median and mean, respectively. 
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Supplementary Figure S1.2. The boxplot comparisons of the AUC distributions for (a) ROC 

curves and (b) precision-recall curves and the histogram comparisons of the AUC distributions 

for (c) ROC curves and (d) precision-recall curves for different filtered anatomy-based gene 

networks for the zebrafish. In the boxplots, the red line and the square represent the median and 

mean, respectively. 
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Supplementary Figure S1.3. The boxplot comparisons of the AUC distributions for (a) ROC 

curves and (a) precision-recall curves and the histogram comparisons of the AUC distributions 

for (c) ROC curves and (d) precision-recall curves for the different filtered anatomy-based gene 

networks for the mouse. In the boxplots, the red line and the square represent the median and 

mean, respectively. 
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Supplementary Figure S1.4. The boxplot comparisons of the AUC distributions for (a) ROC 

curves and (b) precision-recall curves and the histogram comparisons of the AUC distributions 

for (c) ROC curves and (d) precision-recall curves for the different filtered integrated networks 

for the zebrafish. In the boxplots, the red line and the square represent the median and mean, 

respectively. 
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Supplementary Figure S1.5. The boxplot comparisons of the AUC distributions for (a) ROC 

curves and (b) precision-recall curves and the histogram comparisons of the AUC distributions 

for (c) ROC curves and (d) precision-recall curves for the different filtered integrated networks 

for the mouse. In the boxplots, the red line and the square represent the median and mean, 

respectively. 
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Supplementary Figure S1.6. The boxplot comparisons for the AUC distributions of ROC curves 

for filtered anatomy-based gene networks, integrated networks, and PPI networks for the four 

semantic similarity calculation methods for the zebrafish. In the boxplots, the red line and the 

square represent the median and mean, respectively. 
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Supplementary Figure S1.7. The boxplot comparisons for the AUC distributions of precision-

recall curves for filtered anatomy-based gene networks, integrated networks, and PPI networks 

for the four semantic similarity calculation methods for the zebrafish. In the boxplots, the red 

line and the square represent the median and mean, respectively. 
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Supplementary Figure S1.8. The histogram comparisons for the AUC distributions of ROC 

curves for filtered anatomy-based gene networks, integrated networks, and PPI networks for the 

four semantic similarity calculation methods for the zebrafish.  
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Supplementary Figure S1.9. The histogram comparisons for the AUC distributions of precision-

recall curves for filtered anatomy-based gene networks, integrated networks, and PPI networks 

for the four semantic similarity calculation methods for the zebrafish.  
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Supplementary Figure S1.10. The boxplot comparisons for the AUC distributions of ROC curves 

for filtered anatomy-based gene networks, integrated networks, and PPI networks for the four 

semantic similarity calculation methods for the mouse. In the boxplots, the red line and the 

square represent the median and mean, respectively. 
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Supplementary Figure S1.11. The boxplot comparisons for the AUC distributions of precision-

recall curves for filtered anatomy-based gene networks, integrated networks, and PPI networks 

for the four semantic similarity calculation methods for the mouse. In the boxplots, the red line 

and the square represent the median and mean, respectively. 
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Supplementary Figure S1.12. The histogram comparisons for the AUC distributions of ROC 

curves for filtered anatomy-based gene networks, integrated networks, and PPI networks for the 

four semantic similarity calculation methods for the mouse.  
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Supplementary Figure S1.13. The histogram comparisons for the AUC distributions of precision-

recall curves for filtered anatomy-based gene networks, integrated networks, and PPI networks 

for the four semantic similarity calculation methods for the mouse.  
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Supplementary Figure S1.14. The comparison of ROC curves for the unfiltered integrated 

networks (green), PPI networks (red), and anatomy-based gene networks (blue) for the four 

semantic similarity calculation methods for the zebrafish. 
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Supplementary Figure S1.15. The comparison of precision-recall curves for the unfiltered 

integrated networks (green), PPI networks (red), and anatomy-based gene networks (blue) for the 

four semantic similarity calculation methods for the zebrafish. 
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Supplementary Figure S1.16. The comparison of ROC curves for the unfiltered integrated 

networks (green), PPI networks (red), and anatomy-based gene networks (blue) for the four 

semantic similarity calculation methods for the mouse. 
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Supplementary Figure S1.17. The comparison of precision-recall curves for the unfiltered 

integrated networks (green), PPI networks (red), and anatomy-based gene networks (blue) for the 

four semantic similarity calculation methods for the mouse. 
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Supplementary Figure S1.18. The boxplot comparisons for the AUC distributions of ROC curves 

for unfiltered anatomy-based gene networks, integrated networks, and PPI networks for the four 

semantic similarity calculation methods for the zebrafish. In the boxplots, the red line and the 

square represent the median and mean, respectively. 
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Supplementary Figure S1.19. The boxplot comparisons for the AUC distributions of precision-

recall curves for unfiltered anatomy-based gene networks, integrated networks, and PPI networks 

for the four semantic similarity calculation methods for the zebrafish. In the boxplots, the red 

line and the square represent the median and mean, respectively. 
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Supplementary Figure S1.20. The histogram comparisons for the AUC distributions of ROC 

curves for unfiltered anatomy-based gene networks, integrated networks, and PPI networks for 

the four semantic similarity calculation methods for the zebrafish.  
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Supplementary Figure S1.21. The histogram comparisons for the AUC distributions of precision-

recall curves for unfiltered anatomy-based gene networks, integrated networks, and PPI networks 

for the four semantic similarity calculation methods for the zebrafish.  
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Supplementary Figure S1.22. The boxplot comparisons for the AUC distributions of ROC curves 

for unfiltered anatomy-based gene networks, integrated networks, and PPI networks for the four 

semantic similarity calculation methods for the mouse. In the boxplots, the red line and the 

square represent the median and mean, respectively. 
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Supplementary Figure S1.23. The boxplot comparisons for the AUC distributions of precision-

recall curves for unfiltered anatomy-based gene networks, integrated networks, and PPI networks 

for the four semantic similarity calculation methods for the mouse. In the boxplots, the red line 

and the square represent the median and mean, respectively. 
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Supplementary Figure S1.24. The histogram comparisons for the AUC distributions of ROC 

curves for unfiltered anatomy-based gene networks, integrated networks, and PPI networks for 

the four semantic similarity calculation methods for the mouse.  
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Supplementary Figure S1.25. The histogram comparisons for the AUC distributions of precision-

recall curves for unfiltered anatomy-based gene networks, integrated networks, and PPI networks 

for the four semantic similarity calculation methods for the mouse.  
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Supplementary Figure S1.26. The boxplot comparisons of the AUC distributions for (a) ROC 

and (b) precision-recall curves and the histogram comparisons of the AUC distributions for (c) 

ROC and (d) precision-recall curves for the filtered non-randomized anatomy-based gene 

network (blue), random profile anatomy-based gene network (green), and fully random anatomy-

based gene network (red) for the Wang method for the zebrafish. In the boxplots, the red line and 

the square represent the median and mean, respectively. 
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Supplementary Figure S1.27. The boxplot comparisons of the AUC distributions for (a) ROC 

and (b) precision-recall curves and the histogram comparisons of the AUC distributions for (c) 

ROC and (d) precision-recall curves for the filtered non-randomized integrated network (blue), 

random profile integrated network (green), and fully random integrated network (red) for the 

Wang method for the zebrafish. In the boxplots, the red line and the square represent the median 

and mean, respectively. 
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Supplementary Figure S1.28. The boxplot comparisons of the AUC distributions for (a) ROC 

and (b) precision-recall curves and the histogram comparisons of the AUC distributions for (c) 

ROC and (d) precision-recall curves for the filtered integrated network (green), PPI network 

(red), and anatomy-based gene network (blue) for the Wang method for the zebrafish. The 

integrated network and the anatomy-based gene network were generated using the zebrafish 

anatomy profile after randomly removing 30 Uberon terms, which had at least 10 gene 

annotations. The same 30 terms were used for the evaluation to generate the above distributions. 

In the boxplots, the red line and the square represent the median and mean, respectively. 
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Supplementary Figure S1.29. The boxplot comparisons of the AUC distributions for (a) ROC 

and (b) precision-recall curves and the histogram comparisons of the AUC distributions for (c) 

ROC and (d) precision-recall curves for the filtered integrated network (green), PPI network 

(red), and anatomy-based gene network (blue) for the Wang method in zebrafish. The networks 

were evaluated using the annotation profiles containing Biological Process terms of Gene 

Ontology for the zebrafish genes. In the boxplots, the red line and the square represent the 

median and mean, respectively. 
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Chapter 2: Study the modular structure of the phenotypic changes using the integrated 

networks 

 

Abstract 

Evolutionary phenotypic transitions, such as the fin to limb transition, result from 

changes in associated genes and their interactions. Identifying and analyzing these important 

changes in gene modules are vital to achieve a better understanding of evolutionary phenotypic 

changes. When performing network module analyses, the quality of the biological networks and 

the accuracy of the predictions are important for the conclusions. Therefore, this chapter focuses 

on using the integrated networks constructed in Chapter 1, which were shown to have a better 

quality, to detect and compare the gene modules for paired fins (pectoral fin, pelvic fin) and 

paired limbs (forelimb, hindlimb) to identify modular changes associated with fin to limb 

transition. The fin to limb transition is the most widely studied evolutionary phenotypic 

transition, yet current studies focus on one gene or few genes at a time. Therefore, it is the ideal 

use case to study modular changes at a larger scale for this work. During module detection, 

candidate genes for each module were predicted. The genes in each module were ranked 

according to their weighted-degree, and important hub genes were identified. For each 

comparison, the conserved genes were discovered and compared, and discoveries regarding their 

role in fin to limb transition were made. Furthermore, the fate of zebrafish module-specific genes 

in the mouse was investigated and an evolutionary hypothesis was formulated regarding their 

involvement in newly emerged anatomical structures during the aquatic to terrestrial vertebrate 

transition. The role of mouse module-specific genes in the zebrafish was investigated to discover 

evidence for their involvement with anatomical entities that were lost during the aquatic to 
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terrestrial vertebrate transition. The module analysis results were organized and tabulated in a 

way that can be used by evolutionary developmental biologists for further investigations. The 

computational framework developed for this work can be applied to study evolutionary 

phenotypic transitions involving diverse model organisms and anatomical entities with sufficient 

data, which is valuable for future evolutionary bioinformatics studies.  

 

2.1 Background 

Phenotypes are the result of multiple genes working together in complex biological 

pathways. Modifications in phenotypes due to environmental changes require rewiring of these 

gene interactions and their involvement in biological pathways (Defoort, et al., 2018; Robertson 

and Lovell, 2009; Yamada and Bork, 2009). Most often, it is the interaction of multiple proteins 

rather than the contribution of a single protein that determines the resulting phenotypes, such as 

fin development and limb development (Cowen, et al., 2017; Sharan, et al., 2007; Vespignani, 

2003). Therefore, investigating the collection of genes and their interactions, i.e., modular gene 

structure (Cowen, et al., 2017), underlying the phenotypes is important in evolutionary biology 

to understand the evolutionary mechanisms that drives phenotypic changes. Hence, gene module 

analysis has become widespread in bioinformatics and the concept of modular evolution has 

emerged to explain the changes in gene groups rather than focusing on single genes when 

studying the evolution of organisms (Tang, et al., 2011; Tripathi, et al., 2016).  

Protein-protein interaction (PPI) networks are represented as computational graphs, 

which enables the use of graph theoretic methods to study the network structure. In graph theory, 

a module is defined as a set of nodes that are highly connected with nodes inside the module and 

sparsely connected with outside nodes (Cowen, et al., 2017; Gagneur, et al., 2004). These graph 
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modules usually correspond to biological functions and phenotypes; hence, they are identified as 

functional modules in the biological vocabulary (Tang, et al., 2011; Ulitsky and Shamir, 2007).  

There are several module detection algorithms that can be used to detect modules in a 

graph (Pereira-Leal, et al., 2004; Tripathi, et al., 2016). Some methods, such as graph 

partitioning (Kernighan and Lin, 1970), partitional clustering (Lloyd, 1982), and clique 

percolation (Zhang, et al., 2006) do not require any prior information about known gene 

functions or phenotypes; they only consider the network structure. These methods are more 

suited for identifying smaller protein complexes associated with molecular functions or 

biological processes. Complex phenotypes such as pectoral fin development, involve large 

number of genes (over 100). Thus, there are computational limitations for using the 

aforementioned network structure-based module detection methods. In such situations, the genes 

that are known to be associated with the phenotype can be used as prior information to detect the 

modules (Cowen, et al., 2017). These methods start from the set of known genes for the given 

phenotype and expand the module based on network structure. For example, one of the simplest 

ways to isolate a functional module by expansion is to assume all the immediate neighbors of the 

genes with the known phenotype are included in the module (Cowen, et al., 2017). However, this 

method has proven to yield a lot of false positives as not all immediate neighbors of the gene of 

interest should have the same phenotype (Cowen, et al., 2017). Therefore, network-based 

candidate gene prediction algorithms, such as Hishigaki method (Hishigaki, et al., 2001) and 

label propagation algorithm (Gregory, 2010; Liu and Murata, 2010) are often used to predict the 

most likely candidates that should be included in a module, which have been shown to be more 

accurate (Cowen, et al., 2017; Hishigaki, et al., 2001; Sharan, et al., 2007). 
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One of the advantages of performing module analysis is the ability to identify hub genes. 

Hub genes are defined as important genes that are central to the stability of the module (Liu, et 

al., 2016; Taylor, et al., 2009). They have a higher number of interactions with other module 

members, and their removal is most likely to destroy the module organization, and thus the 

biological function or the phenotype that is governed by the module. By performing network 

analysis, a simple set of genes for a function or a phenotype can be transformed into a ranked list 

that is sorted by their importance in the module. Usually, the number of interactions of a gene 

within the module (degree) is used for the ranking (Tang, et al., 2014).  

When studying the evolution of gene modules corresponding to the evolution of species, 

most studies focus on identifying the genes that are retained during evolution, i.e., conserved 

genes, and their organization in the respective modules (Kelley, et al., 2003; Sharan, et al., 2005; 

Shui and Cho, 2016; Wuchty, et al., 2003). It is hypothesized that gradual modular changes are 

associated with evolution while maintaining the basic modular structure (Liu, et al., 2011; 

Vespignani, 2003) because dramatic changes in gene interactions may destroy the proper 

function of an organism. To support this hypothesis, the conserved genes are observed to play an 

important role in maintaining the stability of the gene modules during species evolution (Shui 

and Cho, 2016; Vespignani, 2003; Wuchty, et al., 2003). The recruitment and the removal of 

other genes and the rewiring of biological pathways are often held together by the conserved 

genes. Performing module analysis allows identification of these important conserved genes, 

which are often identified as hub genes (Vespignani, 2003; Wuchty, et al., 2003).  

This work focuses not only on identifying the conserved genes, but also on the module-

specific genes that have been recruited or removed during the evolution. Although conserved 

genes are typically considered as important evolutionary hub genes, there can be exceptions to 
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this observation (Liang, et al., 2006). Therefore, it is important to identify the role of module-

specific genes in the respective modules and their evolutionary fate if they are removed from the 

module.  

The use case for this work is the fin to limb transition, which is an important phenotypic 

change associated with the aquatic to terrestrial vertebrate transformation (Amaral and 

Schneider, 2018; Clack, 2012; Shubin, 2008). According to fossil record, the transformation of 

lobe-finned fishes into land vertebrates occurred in the Devonian, 365-408 million years ago 

(Shubin, 2008; Sordino and Duboule, 1996). It is believed that Devonian fishes belonging to the 

Panderichthyidae are the closest relatives of earliest land vertebrates such as Ichthyostega and 

Acanthostega (Vorobyeva and Schultze, 1991). This transformation is associated with many 

phenotypic changes including the fin to limb transition and changes in the cranial and axial 

skeleton (Clack, 2012; Shubin, 2008). The relationship between homologous anatomical 

structures of land and aquatic vertebrates is evident by several similar characteristics. For 

instance, the pectoral fin endoskeleton of panderichthyid fishes shows significant similarities 

with limbs, such as the presence of a proximal humerus and two distal bones (Amaral and 

Schneider, 2018; Sordino and Duboule, 1996). This indicates that forelimbs and hindlimbs of 

tetrapods are homologous to pectoral and pelvic fins of fish, respectively. 

Identifying the genetic changes associated with the fin to limb transition is a prominent 

topic of ongoing studies in evolutionary biology. Many wet lab experiments have been 

performed showing the evolutionary importance of genes such as shh and hoxd (Akimenko and 

Ekker, 1995; Freitas, et al., 2012; Zhang, et al., 2010). Few computational studies, however, have 

been targeted on the fin to limb transition, including studies such as Onimaru, et al. (2016) and 

Sheth, et al. (2012). The recent availability of large PPI networks and the ability to perform 
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module analysis through the advancement of novel network algorithms provide an opportunity 

for a new perspective on the genetic changes associated with the fin to limb transition, and this is 

the motivation for this study. The quality of PPI network data has been a major issue in previous 

network analyses.  Thus, the improved quality of the PPI networks that are integrated with 

anatomy ontology data (Chapter 1) is the key to achieve a higher accuracy for the module 

analyses performed here.  

In this work, new gene candidates that did not contain original annotations to paired fins 

or paired limbs are predicted for each module and conserved genes are identified to understand 

their role in the modular evolution. Moreover, fin and limb module-specific genes are identified, 

and their evolutionary roles are investigated. This work suggests some evolutionary hypotheses 

regarding the role of conserved and module-specific genes in fin to limb transition. Finally, this 

study provides a general computational platform to perform gene module comparisons for any 

phenotypic transition given sufficient data for the analysis. 

 

2.2 Methods 

2.2.1 Selection of the integrated networks for module detection 

Based on the comparison of network-based candidate gene prediction performances for 

the filtered integrated networks (sections 1.2.4 and 1.2.5) that were generated by four semantic 

similarity methods (Lin, Resnik, Schlicker, and Wang), the best performing networks were 

selected for the zebrafish and the mouse. Because these networks have the highest performance 

for each model organism, the detected modules will be of the highest accuracy. These networks 

were filtered based on a gene similarity score cutoff (section 1.2.5); therefore, only the gene 

interactions with a high reliability were retained in the networks.  
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2.2.2 Detection of network modules 

The pectoral fin (UBERON:0000151) module identified from the zebrafish integrated 

network was compared with the forelimb (UBERON:0002102) module from the mouse, and the 

pelvic fin (UBERON:0000152) module from the zebrafish was compared with the hindlimb 

(UBERON:0002103) module from the mouse. For module detection, genes with direct 

annotations to aforementioned anatomical entities were extracted from the anatomical profiles 

that were constructed using data from the Monarch Initiative repository 

(https://monarchinitiative.org/) (section 1.2.2). In the anatomical profiles, some genes are 

directly annotated to aforementioned anatomical entities, and others are annotated to parts of the 

entities. The genes that were annotated to the parts but did not have direct annotations to the 

parent term were extracted using a Python script that uses the Uberon anatomy ontology 

relationships. These were added to the list of genes with direct annotations for the particular 

anatomical entity. The genes that were annotated to developmental precursors (buds of the 

pectoral fin, pelvic fin, forelimb, and hindlimb) but did not have direct annotations to the parent 

term were also extracted and added to the gene lists. The genes that were directly annotated to 

the particular anatomical entity or to a part or a developmental precursor are collectively 

identified as ‘genes with original annotations’ herein. Then, the network-based candidate gene 

prediction performance for each anatomical entity was evaluated, and ROC and precision-recall 

curves were generated for each (section 1.2.7). 

For predicting the candidate genes, the Hishigaki network-based candidate gene 

prediction method (Hishigaki, et al., 2001) was used (section 1.2.6), and the precision values for 

each anatomical entity generated during the evaluation were used to select a precision threshold 
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for the candidate gene prediction. The precision (equation 1.17 in section 1.2.7) is identified as a 

suitable evaluation metric for network-based candidate gene predictions (Sharan, et al., 2007) 

because it only uses the known gene annotations (positives) for a specific function/anatomical 

entity. Furthermore, it is suited for unbalanced samples such as gene functions where the number 

of genes annotated to a function/anatomical entity (positives) is low compared to the remaining 

genes without annotations (negatives). The trial and error method was used to select the best 

precision threshold for each module focusing on the resulting module size. When comparing the 

pectoral fin module with the forelimb module and the pelvic fin module with the hindlimb 

module, it was assumed that the equivalent modules are approximately similar in size (number of 

genes) to perform an efficient comparison. Finally, after predicting the candidate genes, the 

modules for the pectoral fin and the pelvic fin were extracted from the zebrafish integrated 

network and the modules for the forelimb and the hindlimb were extracted from the mouse 

integrated network. Some of the genes with direct annotations to the term, a part, or the 

developmental precursor could not be extracted due to two reasons: (1) the gene was lost due to 

the application of the network cutoff and (2) the gene did not have any interaction with other 

genes in the module, i.e., it was isolated.  

The extracted modules were visualized using the Cytoscape software (Shannon, et al., 

2003; Smoot, et al., 2011). For the visualizations, different colors were assigned to distinguish 

predicted genes, genes with direct annotations to the anatomical entity, and genes that were only 

annotated to the parts or the developmental precursor of the anatomical entity.  
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2.2.3 Assessing the biological significance of the modules 

It is important to assess whether the module genes for each anatomical entity (pectoral 

fin, pelvic fin, forelimb, and hindlimb) are clustered together in the network and forming a 

cohesive module or just randomly scattered throughout the network. Genes in a module (module 

genes) must be clustered together compared to genes that were randomly picked from the rest of 

the genes in the network, i.e., the network background (Cowen, et al., 2017). An algorithm was 

developed to count the number of module genes in the immediate neighborhood of each gene in 

the network. Then, the distributions of these counts were compared between the module genes 

and the network background genes. If the module genes are densely clustered together, they 

should have a higher number of module genes in their neighborhoods compared to the network 

background genes. Therefore, the module gene count distribution should be higher for the 

module genes compared to the network background genes.  

 

2.2.4 Comparison of the network modules 

Relevant to the fin to limb transition use case as previously described, the pectoral fin 

module of the zebrafish was compared with the forelimb module of the mouse, and the pelvic fin 

module of the zebrafish was compared with the hindlimb module of the mouse to identify the 

modular changes.  

Teleosts, such as the zebrafish, have more genes compared to tetrapods, such as the 

mouse, and a whole genome duplication event is proposed to have occurred at the origin of 

actinopterygian fishes, i.e., the teleost genome duplication (Braasch, et al., 2014; Meyer and 

Schartl, 1999). Therefore, most of the mouse genes have duplicated copies in the zebrafish. To 

perform the module comparison, the orthology gene mappings between mouse and zebrafish 
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genes were downloaded (06/26/2018) from the ZFIN (Bradford, et al., 2011; Westerfield, et al., 

1998): the zebrafish model organism database (https://zfin.org/downloads). During the 

comparison, if multiple zebrafish orthologs were present in a zebrafish module for a single 

mouse gene, all zebrafish orthologs were retained for that mouse gene. There can be multiple 

mouse orthologs for a single zebrafish gene, but for the selected four modules, there were no 

such genes. By performing the module comparison, conserved genes (genes that are common to 

the two modules), zebrafish module-specific genes, and mouse module-specific genes were 

identified. 

In PPI network analysis, the degree of a node/gene (the number of interactions for the 

particular node/gene) is often used as an important metric (Aittokallio and Schwikowski, 2006; 

Jeong and Chen, 2013). Genes with higher degrees in a module, i.e., hub genes, are considered as 

more important because they have more interactions with other module genes and removal of 

such a gene from the module may significantly affect the integrity of the module (Taylor, et al., 

2009). When analyzing networks with weights assigned for interactions (weighted networks), 

weighted degree is preferred over the degree because it considers the different interaction 

weights rather than just counting the number of interactions for a specific node (Rubinov and 

Sporns, 2010; Tang, et al., 2014). The equation for weighted degree calculation (equation 2.1) is 

given below. 

																	𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑑𝑒𝑔𝑟𝑒𝑒 = 	∑ 𝑠𝑖𝑚(𝑣, 𝑢𝑣∈𝑛(𝑢) )                      (2.1) 

In the equation 2.1, n(u) is the neighborhood of the gene of interest (u) and v iterates 

through all the neighbors of gene u and obtains the summation of each interaction weight (gene 

similarity score) for the interaction between genes v and u, which is represented by sim(v,u). 
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 The weighted degree for each gene in a module was calculated and the genes were 

ranked accordingly. The weighted degree of each zebrafish module gene was also compared with 

the corresponding mouse ortholog. However, due to the size differences of the zebrafish and 

mouse modules, the weighted degree of each gene was normalized by dividing by the total 

number of genes in each module. Calculating the weighted degrees for module genes enables to 

compare the weighted degree distributions between selected gene portions, such as conserved 

genes, zebrafish module-specific genes, and mouse module-specific genes. Boxplots were 

generated for the comparison of normalized weighted degree distributions for conserved genes, 

zebrafish module-specific genes, and mouse module-specific genes for the comparison of 

pectoral fin versus forelimb and pelvic fin versus hindlimb modules.  

Enrichment analyses were performed using the biological process component of the Gene 

Ontology (GO-BP) and Uberon anatomy ontology (section 2.2.6) for each group (conserved 

genes, zebrafish module-specific genes, and mouse module-specific genes) for the module 

comparisons. This enabled the identification of the enriched biological processes and anatomical 

entities for the module-specific genes versus conserved genes. The fate of the zebrafish module-

specific genes in mouse was investigated by extracting mouse orthologs for the pectoral fin and 

pelvic fin module-specific genes and performing enrichment analyses using Uberon and GO-BP 

terms. The fate of the mouse module-specific genes in zebrafish was investigated by extracting 

zebrafish orthologs for the forelimb and hindlimb module-specific genes and performing 

enrichment analyses using Uberon and GO-BP terms.  
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2.2.5 Validating the predicted genes 

Detected modules contain a portion of predicted genes that can be potential candidates 

for the given anatomical entity (section 2.2.2). These predicted genes can be validated using 

either experimental methods, such as gene knockdown (Huang, et al., 2013) or computational 

methods that are the focus of this dissertation. First, an enrichment analysis can be performed to 

confirm whether the predicted genes share similar ontology terms (e.g., biological process and 

anatomy ontology terms) as the genes with original annotations to the anatomical entity of 

interest. Here, enrichment analyses were performed on the predicted genes versus the genes with 

original annotations using the GO-BP terms and the Uberon anatomy ontology terms (section 

2.2.6). The enriched terms were then compared to detect common terms enriched in the predicted 

gene set. 

A second way to validate a predicted gene is to compare it with orthologs from another 

organism to determine whether it has retained the gene function or annotated to a homologous 

anatomical entity during the evolution of species. Here, the predicted genes for the pectoral fin 

and pelvic fin modules in zebrafish were compared with the orthologous genes in the forelimb 

and hindlimb modules in mouse, respectively, and the predicted genes for the forelimb and 

hindlimb modules in mouse were compared with orthologous genes in the pectoral fin and pelvic 

fin modules in zebrafish.  

As the third way to further confirm the importance of the predicted genes in each module, 

the weighted degree distributions for the predicted genes were compared with the weighted 

degree distributions for the genes with original annotations for each module. If the predicted 

genes have a higher weighted degree distribution, it can be concluded that the predicted genes 

have a similar or higher importance as known genes that contribute to the anatomical phenotype. 
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2.2.6 Functional enrichment analysis 

Functional enrichment analysis is used to identify ontology terms that are enriched for a 

given set of genes (Huang, et al., 2009; Kuleshov, et al., 2016). Gene Ontology (GO) terms are 

commonly used for this purpose. For this work, the DAVID (https://david.ncifcrf.gov/) online 

functional enrichment analysis tool was used to perform gene set enrichment analysis using GO-

BP component. DAVID uses Fisher’s exact test (Routledge, 2005) to perform enrichment 

analyses. Although the GO is widely used for enrichment analysis, anatomy ontologies are rarely 

used for functional enrichment analysis. To my knowledge, the only published tool that uses 

anatomy ontology to perform enrichment analysis is the Plant Ontology Enrichment Analysis 

Server (POEAS) (Shameer, et al., 2014). To perform enrichment analysis using Uberon anatomy 

ontology, a Python program (Uberon enrichment analysis program) was developed, which uses 

Fisher’s exact test. All the gene sets (sections 2.2.4 and 2.2.5) were used for GO and Uberon 

enrichment analyses. Terms with p-values less than 0.05 were considered as enriched terms. 

 

2.3 Results 

2.3.1 Selection of the integrated networks for module detection 

For the zebrafish, the filtered integrated network generated using the Lin method was 

selected for module detection because it outperformed all other integrated networks (Schlicker, 

Wang, and Resnik) during network-based candidate gene predictions (section 1.3.6; Fig. 1.14.a, 

Fig. 1.14.b, and Supplementary Fig. S1.4). For the mouse, the filtered integrated network 

generated using the Schlicker method was selected based on the network-based candidate gene 

prediction performance (section 1.3.6; Fig. 1.15.a, Fig. 1.15.b, and Supplementary Fig. S1.5). 
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The zebrafish Lin integrated network contained 17,394 genes and 730,855 interactions and was 

filtered using gene similarity score cutoff 0.33 (Table 1.4). The mouse Schlicker integrated 

network contained 18,002 genes and 613,671 interactions and was filtered using gene similarity 

score cutoff 0.30 (Table 1.5).  

 

2.3.2 Detection of network modules 

The statistics for the number of genes in the module with original annotations to each 

anatomical entity is given in Table 2.1. The total number of genes for the pectoral fin (198) and 

the forelimb (267) are not substantially different, but the total number of genes for the pelvic fin 

(15) and the hindlimb (777) are substantially different. 

The ROC curves generated for each anatomical entity during the network-based 

candidate gene prediction evaluations are given in Fig. 2.1 and the precision-recall curves are 

given in Fig. 2.2. According to the curves, all anatomical entities except the pelvic fin have high 

accuracies for network-based candidate gene predictions. The reason for the low accuracy for the 

pelvic fin is because it has fewer genes (15) with original annotations, and the network-based 

candidate gene prediction may have predicted correct gene candidates, which could have been 

considered as false positives because they were not included in the original annotations.  

The statistics for the extracted gene modules including the precision thresholds used for 

candidate gene prediction, the number of predicted genes, the number of genes with original 

annotations, the total number of genes, and the number of genes lost due to network cutoff or 

isolation are given in Table 2.2. The genes with original annotations that were lost during the 

module extraction are listed in Supplementary Table S2.1. A high precision threshold of 0.7 was 

used for candidate gene predictions for pectoral fin, forelimb, and hindlimb modules. The 
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precision threshold for the pelvic fin was lowered to 0.05 to obtain an approximately similar 

number of genes in the pelvic fin and the hindlimb modules. 

The visualizations of the resulting modules for the pectoral fin, pelvic fin, forelimb, and 

hindlimb are given in Figs. 2.3, 2.4, 2.5, and 2.6, respectively. The companion Cytoscape 

network files for these modules are available online at 

https://github.com/pasanfernando/Chapter2_datafiles repository. The top 50 genes in the pectoral 

fin, pelvic fin, forelimb, and hindlimb modules ranked based on the weighted degree are listed in 

Supplementary Tables S2.2, S2.3, S2.4, and S2.5, respectively. The full gene lists for the above 

modules are available at https://github.com/pasanfernando/Chapter2_datafiles repository. 

 

2.3.3 Assessing the biological significance of the modules 

The boxplot comparisons of the distribution of module gene counts in the immediate 

neighborhoods of module genes versus network background genes for each module is given in 

Fig. 2.7. It is clear that module gene counts are higher in the immediate neighborhood of the 

module genes compared to the network background genes for all the modules. This indicates that 

the module genes are clustered together and not randomly scattered throughout the network. 

Therefore, there is a biological significance in the pectoral fin, the pelvic fin, the forelimb, and 

the hindlimb modules. 

 

2.3.4 Comparison of the network modules 

2.3.4.1 Pectoral fin and forelimb comparison 

According to the comparison, 183 genes are specific to the pectoral fin module, 207 

genes are specific to the forelimb module, and 37 genes are shared (conserved genes) by the 
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pectoral fin and forelimb (Fig. 2.8). The conserved genes are listed in Table 2.3. To observe the 

relationship of conserved genes, the subnetworks networks of the 37 conserved genes from the 

pectoral fin and the forelimb modules are visualized in Fig. 2.9. This figure represents how the 

conserved genes are interacting with each other within the respective modules. A boxplot 

comparison of normalized weighted degree distributions for pectoral fin module-specific genes, 

pectoral fin conserved genes (genes of the pectoral fin in common with forelimb), forelimb 

conserved genes (genes of the forelimb in common with pectoral fin), and forelimb module-

specific genes is given in Fig. 2.10. It is evident that conserved genes in both modules have 

higher normalized weighted degree distributions compared to the respective module-specific 

genes. This indicates the conserved genes are more important to the stability of the modules.  

The enriched GO-BP terms for the pectoral fin module-specific genes, pectoral fin 

conserved genes, forelimb conserved genes, and forelimb module-specific genes are listed in 

Supplementary Tables S2.6, S2.7, S2.8, and S2.9, respectively. The enriched Uberon anatomy 

ontology terms for the same gene groups are listed in S2.10, S2.11, S2.12, and S2.13. For the 

enrichment analyses, the terms with p-values less than 0.05 were selected as enriched terms. 

To understand the fate of the pectoral fin module-specific genes in the mouse, the 

enriched BP and Uberon terms for the mouse orthologs for the pectoral fin module-specific 

genes are given in Supplementary Tables S2.14 and S2.15, respectively. To identify the role of 

forelimb module-specific genes in the zebrafish, the enriched BP and Uberon terms for their 

zebrafish orthologs are given in Supplementary Tables S2.16 and S2.17, respectively.   
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2.3.4.2 Pelvic fin and hindlimb comparison 

According to the comparison, 536 genes are specific to the pelvic fin module, 601 genes 

are specific to the hindlimb module, and 81 genes are conserved genes in both the pelvic fin and 

hindlimb (Fig. 2.11) modules. The conserved genes are listed in Table 2.4. To observe the 

relationships among conserved genes, subnetworks of the 81 conserved genes from the pectoral 

fin and the forelimb modules are visualized in Fig. 2.12. This figure represents how the 

conserved genes are interacting with each other within the respective modules. A boxplot 

comparison of normalized weighted degree distributions for pelvic fin module-specific genes, 

pelvic fin conserved genes, hindlimb conserved genes, and hindlimb module-specific genes are 

given in Fig. 2.13. According to the figure, it is evident that conserved genes in the hindlimb 

module have a higher normalized weighted degree distribution compared to the hindlimb 

module-specific genes. For the pelvic fin module, the normalized weighted degree distribution of 

the conserved genes is marginally higher than the module-specific genes. This means the 

conserved genes are more important to the stability of the modules, especially in the forelimb 

module.  

The top 100 enriched GO-BP terms for the pelvic fin module-specific genes, pelvic fin 

conserved genes, hindlimb conserved genes, and hindlimb module-specific genes are listed in 

Supplementary Tables S2.18, S2.19, S2.20, and S2.21, respectively. The enriched Uberon 

anatomy ontology terms for the same gene groups are listed in Supplementary Tables S2.22, 

S2.23, S2.24, and S2.25, respectively. For the enrichment analyses, the terms with p-values less 

than 0.05 were selected as enriched terms. 

To understand the fate of the pelvic fin module-specific genes in the mouse, the enriched 

GO-BP and Uberon terms for their mouse orthologs are given in Supplementary Tables S2.26 
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and S2.27, respectively. To identify the role of the hindlimb module-specific genes in the 

zebrafish, the enriched BP and Uberon terms for their zebrafish orthologs are given in 

Supplementary Tables S2.28 and S2.29, respectively. 

 

2.3.5 Validating the predicted genes 

The list of predicted genes for pectoral fin, pelvic fin, forelimb, and hindlimb modules 

are given in Tables 2.5, 2.6, 2.7, and 2.8, respectively. In these, the predicted genes are ordered 

according to the rank based on weighted degree and a column that details whether the ortholog of 

each predicted gene is associated with the equivalent anatomical entity of the other organism is 

also included. For instance, in Table 2.5, the top predicted gene for the pectoral fin, bmp4, is 

directly annotated to the forelimb in the mouse. This provides a certain validation for the 

prediction of the bmp4 gene. Out of the 45 predicted genes for the pectoral fin, 14 genes have 

mouse orthologs that are associated with the forelimb (9 direct annotations, 2 annotations only to 

the parts or the developmental precursors, and 3 predicted genes). Out of the 605 predicted genes 

for the pelvic fin (Table 2.6), 78 genes have mouse orthologs that are associated with the 

hindlimb (46 direct annotations, 20 annotations only to the parts or the developmental 

precursors, and 12 predicted genes). Out of the 18 predicted genes for the forelimb (Table 2.7), 6 

genes have mouse orthologs that are associated with the pectoral fin (2 direct annotations, 1 

annotation only to the parts or the developmental precursors, and 3 predicted genes). Out of the 

32 predicted genes for the hindlimb (Table 2.8), 12 genes have mouse orthologs that are 

associated with the pelvic fin (all 12 are predicted genes). 

The enriched GO-BP terms that are common to the predicted gene set and genes with 

original annotations to pectoral fin, pelvic fin, forelimb, and hindlimb are listed in 



   

 
126 

Supplementary Tables S2.30, S2.31, S2.32, and S2.33, respectively. The enriched Uberon terms 

that are common to the predicted genes and genes with original annotations to pectoral fin, pelvic 

fin, forelimb, and hindlimb are listed in Supplementary Tables S2.34, S2.35, S2.36, and S2.37, 

respectively. In these, the enriched terms are sorted based on the p-value of those terms for the 

predicted genes. There are several common enriched terms for all the modules, some of which 

are related to the anatomical entity of the module.  

The boxplot comparisons of the weighted degree distributions for the predicted genes 

versus genes with original annotations for the pectoral fin, pelvic fin, forelimb, and hindlimb 

modules are shown in Fig. 2.14. In all the modules, the weighted degree distributions of the 

predicted genes are higher than the genes with original annotations. This indicates that predicted 

genes as a group have a higher number of interactions and central to the stability of the modules. 

This could be due to selecting high precision thresholds for the predictions, the accurate 

performance of the network-based candidate gene predictions and using high quality integrated 

networks for the predictions. This provides further evidence that the predicted genes are 

important genes for the anatomical phenotypes of the paired fins and limbs.  

 

2.4 Discussion 

This chapter focuses on identifying gene modules related to evolutionary phenotypic 

transitions and comparing them to identify the modular changes associated with those transitions. 

The fin to limb transition was selected as the use case for this purpose, and the modules for the 

pectoral fin, pelvic fin, forelimb, and hindlimb were extracted and the homologous modules were 

compared to identify the changes. The integrated networks (Chapter 1) were used to ensure that 
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the detected modules have accurate predicted genes and the interactions within the modules are 

more reliable. 

 

2.4.1 Pectoral fin and forelimb module comparison 

The pectoral fin (220 genes) and forelimb modules (243 genes) are approximately similar 

in the module size (Table 2.2) and contain a majority of genes that have direct annotations to the 

anatomical entity or only to its parts or the developmental precursors (Figs. 2.3 and 2.5). In the 

pectoral fin module, the top-ranked hub gene based on the weighted degree is the shha (sonic 

hedgehog a) gene (Supplementary Table 2.2) that is well-known to be associated with pectoral 

fin development (Grandel, et al., 2000; Letelier, et al., 2018). Not only in the fishes, the shh gene 

is also important in the development and morphogenesis of limbs in tetrapods including humans 

(Abbasi, 2011; Lopez-Rios, 2016). The loss or gain of activity in the sonic hedgehog signaling 

pathway in tetrapods results in gained, lost, or malformed limbs (Lopez-Rios, 2016). The shh 

gene is also considered as an important gene associated with fin to limb transition because it is 

important in the morphological patterning of paired fins and limbs (Amaral and Schneider, 2018; 

Coates and Cohn, 1998). It is also an important hub gene in the forelimb module, which is 

ranked 4th according to the weighted degree (Supplementary Table S2.4).  

The top-ranked gene in the forelimb module is bmp4 (bone morphogenetic protein 4), 

which is another important gene associated with limb formation and morphogenesis in tetrapods 

(Bakrania, et al., 2008; Bandyopadhyay, et al., 2006). As with the shh signaling pathway, 

mutations in bmp4 affect the bmp4 signaling pathway, which causes abnormalities in limb and 

digit formation in tetrapods (Bakrania, et al., 2008). Bmp4 is ranked 2nd in the pectoral fin module 

(S2.2, Table 2.3) and was predicted during module detection.  Bmp4 does not have direct 
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annotations to the pectoral fin or its parts or developmental precursors, but it is involved with 

caudal fin development in zebrafish (Smith, et al., 2008).  

When comparing modules from different species networks, a main goal is to identify the 

genes in common, which are interpreted as the conserved genes (Sharan, et al., 2005; Shui and 

Cho, 2016). The extractions of conserved genes for the pectoral fin and forelimb modules are 

shown in Fig. 2.9. Some of the important hub genes in the pectoral fin module, such as shha, 

bmp4, bmp2b, and bmp7a, have retained their importance in the forelimb module and ranked 

high based on the weighted degree (Table 2.3).  Other genes, such as sox9, have changed its 

importance (based on ranking) during the transition from pectoral fin to forelimb. For instance, 

sox9a and sox9b genes are ranked 83rd and 104th, respectively, in the pectoral fin module 

(Supplementary Table 2.2, Fig. 2.9), while their mouse ortholog, sox9, has ranked 15th and has 

become more important in the forelimb module (Table 2.3, Fig. 2.9). The sox9 gene is known to 

be involved with digit patterning in the limbs of tetrapods due to its participation in the a bmp-

sox9-wnt Turing network (Raspopovic, et al., 2014). In the zebrafish, sox9a and sox9b genes are 

involved with pectoral fin development (Yan, et al., 2005). Because digits emerged after the 

transition from fins to limbs, hypothetically, the involvement of sox9 in a digit patterning 

pathway in the mouse may have increased its number of interactions with other module genes in 

the forelimb module, and hence, the importance. 

The conserved genes in both the modules have higher normalized weighted degree 

distributions compared to the respective module-specific genes (Fig. 2.10). This means that 

conserved genes share more interactions within the module and are more central to modular 

stability. From an evolutionary point of view, during the transition from the pectoral fin to the 

forelimb, it appears that more important genes with higher degrees in the pectoral fin module, 
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such as shha and bmp4, were conserved in the forelimb module and new forelimb module-

specific genes were recruited surrounding those conserved genes.  

A comparison of enriched GO-BP terms and Uberon terms between module-specific 

genes and conserved genes indicates that conserved genes are more enriched in general 

biological processes and anatomical entities than the module-specific genes. For example, for the 

pectoral fin module-specific genes, five of the top six enriched BP terms are specifically related 

to fin development (fin development, pectoral fin development, fin morphogenesis, embryonic 

pectoral fin morphogenesis, and pectoral fin morphogenesis) (Supplementary Table S2.6), 

whereas for the conserved genes in the pectoral fin module, only two of the top six enriched BP 

terms are related to fin development (pectoral fin development and embryonic pectoral fin 

morphogenesis) (Supplementary Table S2.7). The remaining four include terms such as 

embryonic viscerocranium morphogenesis, cardioblast differentiation, and inner ear 

development, which are more diverse biological processes.  Furthermore, some biological 

processes, such as heart morphogenesis and swim bladder development are only enriched for the 

conserved pectoral fin genes. This is further confirmed when comparing enriched Uberon terms 

between pectoral module-specific genes and conserved genes (Supplementary Tables S2.10 and 

S2.11). For instance, Uberon entities such as anal fin, dorsal fin, and pelvic fin are only enriched 

for pectoral fin module-specific genes, whereas several heart-related terms (epicardium and heart 

rudiment) and digestive system-related terms (liver and intestine) are only enriched in the 

conserved genes of the pectoral fin module. From these results, it appears that pectoral fin 

module-specific genes are involved with fin-related pathways as a group and pectoral fin 

conserved genes are involved with a number of general anatomical entities, such as heart, 

digestive system, ear, and related pathways as a group. 
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Similar results were observed when comparing enriched terms for forelimb module-

specific genes and forelimb conserved genes in mouse. For instance, comparison of enriched BP 

terms between forelimb module-specific genes (Supplementary Table S2.9) and forelimb 

conserved genes (Supplementary Table S2.8) indicates that there are five limb-related biological 

processes (embryonic digit morphogenesis, embryonic limb morphogenesis, embryonic forelimb 

morphogenesis, and limb development) within the top 15 enriched BP terms for the module-

specific genes (Supplementary Table S2.9). However, for forelimb conserved genes, there are 

only 3 limb-related biological processes (embryonic limb morphogenesis, embryonic forelimb 

morphogenesis, and embryonic hindlimb morphogenesis) within the top 15 enriched BP terms, 

and they are ranked lower compared to forelimb module-specific enriched terms. Furthermore, as 

observed for the pectoral fin, general biological processes, such as heart development, lung 

development, and kidney development have achieved higher ranks within the top enriched BP 

terms for the forelimb conserved genes.   

Based on higher weighted degree distributions and enrichment analyses for pectoral fin 

conserved genes, it can be speculated that conserved genes, as a group, are more central to the 

stability of the module. Further, they are not only limited to fin-related anatomical entities and 

biological processes, but also to more diverse biological processes. Hypothetically, this may be a 

reason for them to be conserved in the forelimb module during the evolutionary transition, as 

they are central genes involved in the functioning of the whole organism.  The forelimb module-

specific genes may have been recruited for the forelimb development while forming interactions 

with the conserved genes. This may explain the high weighted degree distributions observed for 

the conserved genes in both pectoral fin and forelimb modules.  
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One important point to note is that the enrichment analyses are performed for the group 

of genes as a whole and the results indicate the enrichment for the whole group. Therefore, 

higher weighted degree distributions observed for the conserved genes and the speculation that 

they are involved in diverse biological processes and the lower weighted degree distributions for 

the module-specific genes and the speculation that they are involved in more limb or fin-related 

biological processes are for the whole groups of genes. Thus, although it appears as there are 

exceptions to this general observation, e.g., module-specific genes such as lef1 and hdac1 for the 

pectoral fin (Supplementary Table S2.2) have higher weighted degrees and are involved with 

diverse biological processes similar to the conserved genes, the generalization here pertains to 

the whole gene set. 

 

2.4.2 Pelvic fin and hindlimb module comparison 

Detection of the pelvic fin module was challenging because only 15 genes had original 

annotations (Table 2.1). However, for the hindlimb, there were 777 genes with original 

annotations (Table 2.1). Unlike the limb development in the mouse, where forelimb and 

hindlimb buds emerge at the same timepoint, the pelvic fin buds emerge at a much later stage 

than the pectoral fin bud (Grandel and Schulte-Merker, 1998). This may be a potential reason for 

the lack of annotations to the pelvic fin, as many of the studied gene disruptions kill the larval 

zebrafish before the pelvic fin develops or the larvae are sacrificed at a pre-determined early 

stage. To perform a meaningful comparison, more genes had to be predicted for the pelvic fin by 

lowering the precision threshold during the network-based candidate gene prediction (Table 2.2). 

The resulting pelvic fin module contains a majority of predicted genes (Fig. 2.4), which may not 

be as reliable as other modules, but it was necessary to perform the comparison. Lack of 
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annotations for certain anatomical and GO terms, such as pelvic fin, is a major issue in 

bioinformatics analyses (Baumgartner Jr, et al., 2007; Kim, et al., 2003). Ideally, more wet lab 

experiments should be focused on those anatomical entities. 

In the pelvic fin module, the top ranked gene (predicted) is hsp90ab1 (Supplementary 

Table S2.3). Although it is a heat shock protein and does not have known effects on the pelvic 

fin, studies show that the inhibition of its expression causes defects in zebrafish, especially in eye 

development (Yeyati, et al., 2007). Furthermore, according to Yeyati, et al. (2007), the disruption 

of hsp90ab1 expression is associated with caudal fin fold defects in the zebrafish; which is not 

recorded in ZFIN or Monarch Initiative repository. Therefore, there is evidence to suggest that 

hsp90ab1 may also be associated with the pelvic fin.  

The top ranked gene in the hindlimb module based on weighted degree is trp53 

(Supplementary Table S2.5), which is associated with embryonic hindlimb development (Im, et 

al., 2016) in the mouse. It appears that function of trp53 is crucial for limb development in the 

mouse, as radiation-induced apoptosis that disrupts trp53 expression interferes with limb 

development and causes deformed limbs (Vares, et al., 2011; Wang, et al., 2000). The trp53 gene 

is also found in the pelvic fin module (predicted gene) but has a lower rank (24) based on the 

weighted degree (Supplementary Table S2.3, Table 2.4, and Fig. 2.12).  

When comparing the conserved genes in the pelvic fin and the hindlimb modules (Table 

2.4 and Fig. 2.12), several important genes, which are central to the modular stability, can be 

identified. For example, the ctnnb1 gene, which is predicted and ranked 4th in the pelvic fin 

module, is ranked 3rd in the forelimb module (Table 2.4 and Fig. 2.12). The ctnnb1 is essential for 

the β-catenin pathway, which is necessary for the hindlimb initiation in the mouse (Kawakami, et 

al., 2011). Although it does not have known associations to the paired fins in the zebrafish, it is 
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known to be essential for the development of the fish embryo (Li, et al., 2014; Zhang, et al., 

2012); hence, it is potentially an essential gene for the development of the pelvic fin.  

The conserved genes in the hindlimb module have a higher weighted degree distribution 

compared to the module-specific genes (Fig. 2.13). This implies that conserved genes are more 

important to the stability of the hindlimb module as a group. However, the weighted degree 

distribution of pelvic fin conserved genes is marginally higher than the module-specific genes 

(Fig. 2.13). Majority of genes in the pelvic fin is predicted, which may be a reason for this 

observation. Using enrichment analysis to compare the enriched GO-BP terms and Uberon terms 

for pelvic fin module-specific genes and conserved genes is challenging, as there are limited 

original annotations to the pelvic fin. However, the top enriched BP terms for the pelvic fin 

module-specific genes include fin development and fin morphogenesis (Supplementary Table 

S2.18); hence, the majority of those predicted genes are associated with fin development. The 

top 10 enriched Uberon terms for the pelvic fin module-specific genes include five fin-related 

entities (pectoral fin, anal fin, median fin fold, pelvic fin, and dorsal fin) (Supplementary Table 

S2.22), which means those genes are mainly involved with fin development as a group. 

However, a similar observation can be seen for the conserved genes in the pelvic fin module, as 

there are four fin-related terms (pectoral fin, median fin fold, ventral fin fold, and dorsal fin) in 

the top 10 enriched Uberon terms (Supplementary Table S2.23). There is no clear evidence to 

hypothesize that conserved genes in pelvic fin are generally involved with more diverse 

biological processes and anatomical terms compared to module-specific genes as seen for the 

pectoral fin (section 2.4.1). Having a large number of predicted genes in the pelvic fin module is 

a potential reason for the pelvic fin results to deviate from the other three modules.  
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For the hindlimb module-specific genes, the top 10 enriched BP terms include biological 

processes such as embryonic limb morphogenesis, skeletal system development, ossification, 

embryonic digit morphogenesis, and cartilage development that could be related to limb 

development (Supplementary Table S2.21), whereas for the hindlimb conserved genes, there is 

only one limb-related enriched term (embryonic limb morphogenesis) in the top 10 BP terms 

(Supplementary Table S2.20). However, there are more diverse biological processes such as 

heart development and lung development in the top 10 BP terms. Similarly, nine (hindlimb, 

appendicular skeleton, skeletal system, hindlimb zeugopod, tibia, hindlimb stylopod, femur, 

forelimb, and trabecular bone tissue) out of the top 10 enriched Uberon terms for the hindlimb 

module-specific genes are related to the limb (Supplementary Table S2.25), whereas only three 

(appendicular skeleton, hindlimb, forelimb) out of the top 10 enriched Uberon terms for 

hindlimb conserved genes are related to the limb (Supplementary Table S2.24). The remaining 

terms are mostly related to the face and head (jaw skeleton, facial skeleton, face, head, mouth, 

and cranium) (Supplementary Table S2.24). 

Although the top enriched terms for the pelvic fin module-specific and conserved genes 

are not significantly different, the enriched terms for the hindlimb module-specific genes are 

more specific towards the limb development and morphogenesis as seen with the pectoral fin and 

forelimb comparison. Furthermore, the conserved genes for both pelvic fin and hindlimb 

modules have higher weighted degree distributions and thus are more important to the function 

of individual modules than the module-specific genes. Therefore, as explained in the section 

2.4.1, during the transition from the pelvic fin to the hindlimb, the conserved genes that were 

retained in the hindlimb were potentially involved with diverse biological processes and 
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anatomical entities and thus more central to the function of the modules. The hindlimb module-

specific genes may have been recruited surrounding the important conserved genes.  

 

2.4.3 The fate of the zebrafish module-specific genes in the mouse 

For both pectoral fin-forelimb and pelvic fin-hindlimb comparisons, there were large 

number of zebrafish module-specific genes that were not included in the limb modules (Fig. 2.8 

and Fig. 2.11). It is interesting to investigate the new roles of those zebrafish module-specific 

genes in the mouse. The aquatic to terrestrial vertebrate transition resulted in several anatomical 

changes and introduced new anatomical entities such as lungs and neck to tetrapods that helped 

them to overcome the terrestrial environment (Clack, 2012; Shubin, 2008). A closer inspection of 

enriched BP and Uberon terms for the mouse orthologs of the pectoral fin (Supplementary 

Tables S2.14 and S2.15) and pelvic fin (Supplementary Tables S2.26 and S2.27) module-specific 

genes indicate that those genes are enriched for a number of novel anatomical entities that 

occurred in tetrapods and related biological processes. These enriched anatomical entities are 

listed in Table 2.9 for the pectoral fin module-specific genes and in Table 2.10 for the pelvic fin 

module-specific genes.  

For instance, the pectoral fin module-specific gene lef1, which is an important gene 

(ranked 7th) in the pectoral fin module, is involved with palate development, trachea gland 

development BP terms and associated with neck-related phenotypes (Duan, et al., 1999; 

Nawshad and Hay, 2003). Neck is an important anatomical entity emerged in tetrapods, which 

allowed them to support the head that was crucial for their success in the land. Of the pelvic fin 

module-specific genes, the mapk1 gene is an example that is associated with neck-related 

phenotypes and biological processes, such as thymus development and trachea formation 



   

 
136 

(Boucherat, et al., 2014; Hoffman, et al., 2006). The mapk1 gene is ranked 12th in the pelvic fin 

module and is important for the stability of the module. It is also involved with the lung 

phenotypes and the development of the lung (Boucherat, et al., 2014), which is another important 

structure emerged in tetrapods that enabled them to breath and thrive in terrestrial environments. 

In both the pectoral fin and pelvic fin modules, lama5 gene is an example for a module-specific 

gene which is involved with lung development in the mouse (Nguyen, et al., 2002). Furthermore, 

it is also involved with hair follicle development and hair-related phenotypes (Gao, et al., 2008), 

which is another anatomical entity that is specific for mammals such as the mouse. The egfra is 

another important pelvic fin module-specific gene that is not only involved with the lung 

(Threadgill, et al., 1995) and hair (Laisney, et al., 2010) in the mouse but also in the development 

of more specific structures such as placenta (Lee and Threadgill, 2008) and eyelid (Laisney, et 

al., 2010). With these examples and the enriched terms listed in Table 2.9 and Table 2.10, it can 

be hypothesized that most of the zebrafish module-specific genes were recruited for tetrapod 

specific anatomical entities that helped them to thrive in a terrestrial environment.  

 

2.4.4 The fate of the mouse module-specific genes in the zebrafish 

There is a large number of module-specific genes for the forelimb (Fig. 2.8) and hindlimb 

(Fig. 2.11) in the mouse. These genes do not appear in pectoral fin or pelvic fin modules, and the 

question of their developmental function in the zebrafish arises.  Enrichment analyses showed 

that most of the mouse module-specific genes are enriched in the head of the zebrafish, 

specifically, to the jaw skeleton and post-hyoid pharyngeal arch skeleton (Supplementary Table 

S2.16, S2.17, S2.28, S2.29 and Tables 2.11, 2.12). The latter region covers the gill chamber and 

contains parts such as gill rakers (Gillis, et al., 2013). This suggests that at least some of the 
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mouse module-specific genes may have been associated with the operculogular series and gill 

specific structures that are absent in mouse and more generally lost in tetrapods. For instance, fst 

is a crucial forelimb module-specific gene (Supplementary Table S2.4), which has a zebrafish 

ortholog (fsta) with phenotypes related to splanchnocranium (Dalcq, et al., 2012) and post-hyoid 

pharyngeal arch skeleton (Dal-Pra, et al., 2006) that supports the gill chamber. Furthermore, 

twist1 is module-specific for both the forelimb and hindlimb, and it has two zebrafish orthologs 

(twist1a and twist1b) that are involved with pharyngeal system development (Das and Crump, 

2012). 

There are also some mouse module-specific genes that are involved with the caudal fin of 

the zebrafish. For instance, tgfbr3, which is module-specific for both the forelimb and the 

hindlimb, is involved with the development of the caudal fin (Kamaid, et al., 2015). Furthermore, 

hindlimb module-specific genes such as wnt5b are involved with pectoral fin morphogenesis 

(Yokoi, et al., 2003) although they are not included in the pelvic fin module. Another example is 

lep, which is module-specific for both forelimb and hindlimb; its ortholog in zebrafish, lepa, is 

associated with otolith development (Liu, et al., 2012). In fact, otoliths were enriched in the 

zebrafish orthologs of both forelimb (Table 2.11) and hindlimb (Table 2.12) module-specific 

genes. Otoliths are located in the inner ear cavity of all teleost fishes where they aid in hearing 

and serve as balance organs (Rodríguez Mendoza, 2006). According to these results, it can be 

speculated that some mouse module-specific genes were involved with fish specific anatomical 

entities such as operculogular series and caudal fin that were lost during the transition to 

tetrapods, and then, those genes were recruited for the limb modules.  
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2.4.4 Validating the predicted genes 

One important application of PPI networks is that they can be used to predict candidate 

genes during module detection (Cowen, et al., 2017; Sharan, et al., 2007). There can be several 

important genes that were missed by wet lab gene prediction methods, such as gene knockout for 

anatomical entities such as pelvic fin (section 2.4.2). However, validating the predictions is 

important in any bioinformatics analysis. The best way to validate is to use wet lab methods, but 

within the scope of the computational analysis, several steps were taken to ensure that the best 

predictions were made. First, before the detection of the four modules, the candidate gene 

prediction accuracy for each anatomical entity was evaluated (Fig. 2.1 and Fig. 2.2). According 

to the ROC and precision-recall curves, pectoral fin, forelimb, and hindlimb show high accurate 

predictions (the AUC values of ROC curves for all three entities are higher than 0.85) (Fig. 2.1). 

The problem with the pelvic fin is the low number of original annotations (15 genes) (Table 2.1) 

due to experimental restrictions (section 2.4.2); hence, the network-based candidate gene 

prediction method may have predicted correct gene candidates that were treated as false positives 

due to lack of knowledge regarding those genes. Therefore, relying only on evaluation methods 

such as ROC and precision-recall curves is not adequate.  

A second way to validate the predictions is to confirm whether the orthologs of the 

predicted genes are involved with the homologous anatomical entities in other organisms. For 

example, the predicted genes of the zebrafish modules were checked with their mouse 

counterparts, and vice versa. The orthologs of several predicted genes were annotated to the 

homologous anatomical entity. For instance, 78 of the predicted genes in the pelvic fin module 

were associated with the hindlimb in mouse. This provides a certain level of validation for the 

predicted genes. However, not all the predicted genes have to be associated with the homologous 
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anatomical entity in the other organism. As discussed in the sections 2.4.3 and 2.4.4, it appears 

that some zebrafish paired fin module genes have lost the association with the paired limbs 

during evolution and new genes have been recruited. Furthermore, there is a possibility that some 

predicted genes in the zebrafish fin modules are associated with the mouse limb modules, but the 

associations are not yet discovered by wet lab methods.  

A third method used to validate the predicted genes is to perform enrichment analysis for 

the predicted genes and analyze the enriched terms to identify terms that are related to the 

anatomical entity in question (Huang, et al., 2009; Kuleshov, et al., 2016). For this work, the 

enriched GO-BP and Uberon terms for predicted genes and genes with original annotations for 

each module were compared to identify the common terms for both the groups. This confirms 

whether the predicted genes are regulating the same biological processes and involved with the 

same anatomical entities as the genes with original annotations. For the pectoral fin, the common 

enriched biological processes (Supplementary Table S2.30) include terms such as skeletal system 

development and Wnt signaling pathway, which are related to pectoral fin development. For 

instance, Wnt signaling pathway is known to be associated with paired fin and caudal fin 

development in the zebrafish (Stoick-Cooper, et al., 2007; Wehner, et al., 2014). When 

considering the common enriched Uberon terms for the pectoral fin (Supplementary Table 

S2.34), there are anatomical entities such as median fin fold, ventral fin fold, and caudal fin, 

which are related to the pectoral fin.  

For the pelvic fin, the only biological process that was common to the predicted genes 

and the original genes is fin development (Supplementary Table S2.31). When considering the 

enriched Uberon terms (Supplementary Table S2.35), all terms that were common to the 

predicted and original genes, such as median fin fold and lepidotrichium were related to the fins. 
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This is useful evidence that suggests although the number of predicted genes for the pelvic fin is 

high (605) (Table 2.2), as a group, they are highly involved with fin-related development 

processes and anatomical entities. Therefore, there is a high potential for those genes to be 

involved with the pelvic fin.  

For the forelimb module, the common BP terms for predicted genes and genes with 

original annotations (Supplementary Table S2.32) include processes such as BMP signaling 

pathway, embryonic limb morphogenesis, embryonic digit morphogenesis, and Wnt signaling 

pathway, and common Uberon terms (Supplementary Table S2.36) include anatomical entities 

such as appendicular skeleton and skeletal system. For the hindlimb module, common BP terms 

(Supplementary Table S2.33) include embryonic limb morphogenesis, BMP signaling pathway, 

and embryonic digit morphogenesis, and common Uberon terms (Supplementary Table S2.37) 

include entities such as appendicular skeleton and limb, which are related to the hindlimb. 

Therefore, from the results of enrichment analyses, it is clear that for all four modules, there are 

enriched biological processes and anatomical entities that are related to the limb or the fin in 

question that are shared by predicted genes and genes with original annotations. 

When predicting genes for the modules, a relatively high precision threshold (0.7) was 

used for all the modules (Table 2.2) except the pelvic fin (due to lack of original annotations). 

Therefore, the weighted degree distributions for the predicted genes are high for all the modules 

(even the pelvic fin) compared to the genes with original annotations (Fig. 2.14). This indicates 

that the predicted genes in all the modules are important for the stability of the module and have 

high number of interactions with other members as a group. For example, the bmp4 gene is a 

predicted gene in the pectoral fin module, which is ranked 2nd (section 2.4.1) (Supplementary 

Table S2.2). The wnt3a (ranked 4th) and wnt5b (ranked 10th) are another two important predicted 
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genes in the pectoral fin module (Supplementary Table S2.2), which potentially are involved 

with the pectoral fin development. They both are associated with the Wnt signaling pathway, 

which is crucial for paired fin development in fish (Mercader, 2007; Stoick-Cooper, et al., 2007). 

According to Supplementary Table S2.2, there are several predicted genes that have a higher 

rank, which could be involved with the pectoral fin.  

For the pelvic fin module, nearly all the top ranked genes are predictions (Supplementary 

Table S2.3). For instance, the ctnnb1 gene is an important predicted hub gene, which ranked 4th in 

the pelvic fin module (Supplementary Table S2.3). Although it does not have any known 

associations with fin development in fish in literature, it is known to be associated with limb 

development in the mouse (Browne, et al., 2012). Therefore, it is found in the hindlimb module 

as an important hub gene (ranked 3rd) (Table 2.4). Therefore, there is a high possibility that it is 

also associated with fin development in fish. The cad gene is another predicted hub gene, which 

is ranked 8th in the pelvic fin module. Although it does not have any direct associations with the 

pelvic fin, it is expressed in fin buds during zebrafish development (Willer, et al., 2005). 

Therefore, it can be a potential important gene for pelvic fin development that needs more 

investigation. 

The mouse is better studied than zebrafish, but there is room for improvement regarding 

unravelling genes associated with limb development. For example, in the forelimb module, some 

crucial genes such as smad4 (rank 6th) and bmp7 (rank 7th) were predicted (Supplementary Table 

S2.4). Although smad4 does not have direct annotations to paired limbs, there is literature 

support for its role in early limb development (Zuzarte-Luıs, et al., 2004). The bmp7 is an 

important gene not only for limb development in tetrapods (Bandyopadhyay, et al., 2006) but 

also for fin development in the zebrafish (Mullins, et al., 1996). It has direct annotations to the 
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limb term but not specifically to the forelimb and hindlimb; hence, not included in those 

modules. Not only the bmp7 was accurately predicted for the forelimb (rank 7th) (Supplementary 

Table S2.4) and hindlimb modules (rank 26th) (Supplementary Table S2.5), network analysis 

results show that it is an important hub gene in both the modules. Interestingly, the hras and kras 

predicted genes ranked 2nd and 5th, respectively in the hindlimb module. They are both oncogenes 

that are involved in development of tumors, such as lung cancer in the mouse (To, et al., 2008). 

There is no literature evidence to support their involvement in limb development; therefore, these 

are good candidates to validate using wet lab experiments.  

These validation results show that the predicted genes are important to the stability of the 

individual modules. They also indicate the practical advantage of the integrated networks 

developed in Chapter 1 for accurately unravelling new candidate genes for anatomical entities. 

As a future step, some predicted genes that are important in the modules can be validated using 

wet lab methods, such as gene knockout, to confirm their role in fin or limb development.  

 

2.4.1 Challenges and future directions 

When performing big data analyses, such as large-scale network analyses, the final 

results depend on the original input data, which are retrieved from public databases. The 

completeness of these datasets is an important factor that determines the accuracy of the 

predictions and conclusions. When considering gene-phenotype associations, the human and 

mouse models are extensively studied, and more complete datasets are available for them than 

other model organisms such as the zebrafish and the Xenopus. When studying the aquatic to 

terrestrial vertebrate transition, Xenopus is an important model organism that could have been 

useful for the analysis. Unfortunately, limited anatomical phenotype annotations are available for 
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Xenopus genes in public databases; hence, it had to be excluded from the analysis. Even the 

zebrafish annotations are not complete; anatomical entities, such as pelvic fin needs more focus 

in wet lab experiments. Ultimately, the predictions of computational analyses, such as this work 

can be used as a foundation for those wet lab experiments, which is valuable for the 

improvement of evolutionary bioinformatics.  

When comparing large-scale gene sets and PPI networks across different model 

organisms, identifying the correct gene orthologs is important. When comparing mouse and 

zebrafish genes, this becomes complicated due to the extra duplication event in the teleost fishes 

(Braasch, et al., 2014; Meyer and Schartl, 1999). As a result, if multiple zebrafish orthologs are 

present for a single mouse gene, all orthologs were kept during the analysis. For instance, the 

sox9 gene is a member of the forelimb module in mouse and it has two zebrafish orthologs, 

sox9a and sox9b, which are present in the pectoral fin module (Table 2.3). 

When performing network analyses on large PPI networks and modules, the visualization 

of these modules is a challenge. Typically, visualizing smaller protein complexes are more clear 

and easier to understand than visualizing large gene modules of phenotypic entities such as 

hindlimb. Although a static figure can be used to distinguish the distribution of predicted versus 

genes with original annotations, to focus on individual genes, it has to be opened in an interactive 

network viewer, such as Cytoscape (Smoot, et al., 2011). Therefore, the Cytoscape network files 

for the four modules were included in the repository at 

https://github.com/pasanfernando/Chapter2_datafiles, which enable the user to zoom in, interact, 

and observe the arrangement of desired genes in the module. 

For this work, enrichment analysis was used extensively to identify the enriched Uberon 

and GO-BP terms for gene sets. There are several enrichment tools developed for the GO 
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(Huang, et al., 2009), but no published tools are available for the Uberon ontology. Therefore, a 

Python program (Uberon enrichment analysis program) that uses the Fisher’s exact test was 

developed to perform enrichment analysis using the Uberon ontology (Section 2.2.6). 

Furthermore, most of the current tools and publications list the enriched terms as a table sorted 

according to the p-values (e.g., Supplementary Table S2.6). The tables typically contain related 

ontological terms in a tabulated form and have to be read one by one. Tools such as REVIGO 

(Supek, et al., 2011) (http://revigo.irb.hr/) and Gorilla (Eden, et al., 2009) have been developed 

to visualize the enriched GO terms in a graph structure. This enables to cluster related ontology 

terms together based on semantic similarity between the terms. For instance, the graph 

visualization of the top 100 enriched BP terms for the pectoral fin module-specific genes (listed 

in Supplementary Table S2.6) that was generated using REVIGO tool is given in Fig. 2.15. As a 

future step, this functionality will be added to the Uberon enrichment analysis program.  

One of the main advantages of performing network analysis is to identify important hub 

genes that are crucial for the anatomical entity/function. To identify them, each gene in the 

module was assigned a rank based on its weighted degree (Supplementary Tables S2.2, S2.3, 

S2.4, and S2.5). This information is valuable for biologists not only to discover that a specific 

gene is involved with the paired fin or limb but also to understand its importance and the role in 

the gene module. Tables showing the comparison of conserved genes for module comparisons 

(Table 2.3 and Table 2.4) allow to identify how the importance of conserved genes changed after 

the transition. Overall, the results generated in this work, are extremely valuable for evolutionary 

developmental biologists to shed light on fin to limb transition. All the scripts, used for this 

Chapter and the integrated network generation in Chapter 1 are openly available and written in a 

generalized way to work with any PPI network for any organism. Therefore, this analysis can be 
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extended to study evolutionary transitions involving a broad range of anatomical entities and 

model organisms if sufficient data is available.  

 

2.5 Conclusion 

The goal of this chapter was to study the modular changes associated with evolutionary 

phenotypic transitions using the integrated networks generated during Chapter 1. Employing the 

integrated networks ensured that the module detections, gene predictions, and identification of 

important genes in the modules are more accurate than using conventional PPI networks. During 

the analysis of paired fin and paired limb modules, important hub genes that are crucial for the 

stability of the modules were identified. All the genes of the modules were ranked based on the 

weighted degree. Some of the important genes were predicted during the module detection and 

they have strong evidence to confirm their involvement with the respective fins or limbs.  

Furthermore, it was found that the conserved genes have a higher potential to be hub 

genes than the module-specific genes due to their higher weighted degree distribution. It could 

be speculated that during the fin to limb transition, most of the crucial hub genes of fin modules 

were conserved in limb modules and module-specific limb genes were recruited surrounding 

those conserved genes. These conserved genes, such as the shh gene, as a group, are involved not 

only with fin or limb development, but also with more diverse developmental processes 

compared to module-specific genes. Moreover, further speculations were made regarding the fate 

of zebrafish and mouse module-specific genes. There was evidence to suggest that zebrafish fin 

module-specific genes are employed in anatomical structures, such as lung and neck that 

emerged after the aquatic to terrestrial vertebrate transition. Furthermore, there was evidence to 

speculate that mouse limb module-specific genes were involved with anatomical structures, such 
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operculogular series in the zebrafish that were lost during the transition. The network analysis 

results of this work provide the groundwork for evolutionary developmental biologists to 

investigate into aforementioned hypotheses. The computational framework was established to 

perform large-scale network analyses to study evolutionary transitions involving any model 

organism and anatomical entity with sufficient data, which is valuable for the improvement of 

evolutionary biology.  
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Tables  

Table 2.1. The statistics for the number of genes with original annotations to each anatomical 

entity 

 Pectoral fin Pelvic fin Forelimb Hindlimb 

Number of genes with direct 

annotations to the anatomical 

entity 

192 13 216 530 

Number of genes annotated only 

to the parts of the anatomical 

entity 

3 2 44 239 

Number of genes annotated only 

to the bud of the anatomical 

entity 

3 0 7 8 

The total number of genes used 

for the module detection 
198 15 267 777 
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Table 2.2. The statistics for the extracted modules 

 Pectoral fin Pelvic fin Forelimb Hindlimb 

The precision threshold used for 

candidate gene prediction 
0.7 0.05 0.7 0.7 

Number of predicted genes in 

the module 
45 605 18 32 

Number of genes with original 

annotations to the anatomical 

entity, a part, or the bud in the 

module 

175 12 225 639 

Total number of genes in the 

module 
220 617 243 671 

Number of genes with original 

annotations that were lost due to 

the network cutoff 

17 3 25 101 

Number of genes with original 

annotations that were lost due to 

isolation in the network 

6 0 17 37 
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Table 2.3. Comparison of the 37 genes that are common to the pectoral fin and forelimb modules 

(conserved genes) (Fig. 2.8 and Fig. 2.9). The genes are ordered according to the rank in the 

zebrafish module. 

Zebrafish 
gene name 

Annotation 
type 

Weighted 
degree 

Rank in the 
module 

Mouse gene 
name 

Annotation 
type 

Weighted 
degree 

Rank in the 
module 

shha 

direct 
annotation 
to the 
pectoral fin 

36.6983 1 shh 

direct 
annotation 
to the 
forelimb 

37.6249 4 

bmp4 predicted 35.5652 2 bmp4 

direct 
annotation 
to the 
forelimb 

47.2641 1 

bmp2b predicted 34.3109 3 bmp2 

direct 
annotation 
to the 
forelimb 

31.3004 13 

wnt3a predicted 31.4927 4 wnt3a predicted 30.9124 14 

fgf8a predicted 31.0094 5 fgf8 

direct 
annotation 
to the 
forelimb 

34.0672 8 

gli2a predicted 27.2862 8 gli2 

direct 
annotation 
to the 
forelimb 

33.0563 11 

bmp7a 

direct 
annotation 
to the 
pectoral fin 

25.8141 11 bmp7 predicted 34.2132 7 

fgfr1a predicted 25.6442 12 fgfr1 

direct 
annotation 
to the 
forelimb 

33.4360 10 

fgf10a 

direct 
annotation 
to the 
pectoral fin 

24.2622 17 fgf10 

direct 
annotation 
to the 
forelimb 

22.7474 33 

smo 

direct 
annotation 
to the 
pectoral fin 

23.6222 19 smo 

direct 
annotation 
to the 
forelimb 

28.7826 20 

wnt4a predicted 20.4183 29 wnt4 predicted 27.9668 23 

ptch1 

direct 
annotation 
to the 
pectoral fin 

18.8304 30 ptch1 predicted 27.3374 24 

ihha predicted 18.1064 32 ihh direct 
annotation 29.6653 17 
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to the 
forelimb 

tbx5a 

direct 
annotation 
to the 
pectoral fin 

16.7968 35 tbx5 

direct 
annotation 
to the 
forelimb 

8.6229 86 

aldh1a2 

direct 
annotation 
to the 
pectoral fin 

16.6865 36 aldh1a2 
annotated 
to a part or 
bud 

7.1983 100 

hand2 

direct 
annotation 
to the 
pectoral fin 

16.4984 38 hand2 

direct 
annotation 
to the 
forelimb 

13.8461 62 

zic2a predicted 15.2976 40 zic2 
annotated 
to a part or 
bud 

7.3701 99 

tcf7 

direct 
annotation 
to the 
pectoral fin 

15.0392 42 tcf7 

direct 
annotation 
to the 
forelimb 

7.7495 93 

msx1a predicted 14.6308 45 msx1 predicted 23.4172 31 

met 

direct 
annotation 
to the 
pectoral fin 

14.5234 46 met 

direct 
annotation 
to the 
forelimb 

13.9973 60 

esr2a predicted 13.2000 51 esr2 

direct 
annotation 
to the 
forelimb 

7.6748 95 

apc 

direct 
annotation 
to the 
pectoral fin 

9.3808 61 apc 

direct 
annotation 
to the 
forelimb 

12.6243 67 

tfap2a predicted 9.2007 62 tfap2a 

direct 
annotation 
to the 
forelimb 

9.3891 78 

dlx5a 
annotated 
to a part or 
bud 

8.9299 81 dlx5 predicted 16.1115 51 

sox9a 

direct 
annotation 
to the 
pectoral fin 

8.8290 83 sox9 

direct 
annotation 
to the 
forelimb 

29.7370 15 

disp1 

direct 
annotation 
to the 
pectoral fin 

8.6768 85 disp1 

direct 
annotation 
to the 
forelimb 

1.8115 183 

mecom predicted 8.4715 89 mecom 
annotated 
to a part or 
bud 

3.3452 155 

sox9b predicted 7.2558 104 sox9 direct 
annotation 29.7370 15 
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to the 
forelimb 

thraa 

direct 
annotation 
to the 
pectoral fin 

7.0911 105 thra 

direct 
annotation 
to the 
forelimb 

3.2473 157 

cyp26b1 

direct 
annotation 
to the 
pectoral fin 

6.5056 111 cyp26b1 

direct 
annotation 
to the 
forelimb 

3.5223 151 

ctgfa 

direct 
annotation 
to the 
pectoral fin 

5.3072 124 ctgf 

direct 
annotation 
to the 
forelimb 

20.3372 41 

wls 

direct 
annotation 
to the 
pectoral fin 

4.8573 133 wls 

direct 
annotation 
to the 
forelimb 

6.6655 107 

osr1 

direct 
annotation 
to the 
pectoral fin 

4.6429 136 osr1 
annotated 
to a part or 
bud 

0.3046 241 

sparc 

direct 
annotation 
to the 
pectoral fin 

3.7395 148 sparc 

direct 
annotation 
to the 
forelimb 

12.4871 69 

chsy1 

direct 
annotation 
to the 
pectoral fin 

1.9657 176 chsy1 
annotated 
to a part or 
bud 

1.0702 210 

rspo2 

direct 
annotation 
to the 
pectoral fin 

0.7583 200 rspo2 

direct 
annotation 
to the 
forelimb 

3.6481 149 

pax1b 

direct 
annotation 
to the 
pectoral fin 

0.3795 209 pax1 

direct 
annotation 
to the 
forelimb 

6.2887 111 
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Table 2.4. Comparison of the 81 genes that are common to the pelvic fin and hindlimb modules 

(conserved genes) (Fig. 2.11 and Fig. 2.12). The genes are ordered according to the rank in the 

zebrafish module. 

Zebrafish 
gene name 

Annotation 
type 

Weighted 
degree 

Rank in the 
module 

Mouse 
gene name 

Annotation 
type 

Weighted 
degree 

Rank in the 
module 

ctnnb1 predicted 106.2749 4 ctnnb1 

direct 
annotation 
to the 
hindlimb 

72.1808 3 

smarca4a predicted 97.4336 11 smarca4 

direct 
annotation 
to the 
hindlimb 

36.4034 56 

kras predicted 93.403 15 kras predicted 70.7748 5 

rac1a predicted 92.9107 16 rac1 

direct 
annotation 
to the 
hindlimb 

24.2559 103 

mapk14a predicted 92.1789 17 mapk14 

direct 
annotation 
to the 
hindlimb 

71.7856 4 

src predicted 91.7256 18 src 

direct 
annotation 
to the 
hindlimb 

70.3811 6 

fgfr1a predicted 91.2553 19 fgfr1 

direct 
annotation 
to the 
hindlimb 

53.223 16 

met predicted 90.8735 20 met 

direct 
annotation 
to the 
hindlimb 

34.8637 64 

tp53 predicted 83.8035 24 trp53 

direct 
annotation 
to the 
hindlimb 

82.9324 1 

mtor predicted 80.8121 28 mtor 
annotated 
to a part or 
bud 

38.6216 49 

ptenb predicted 78.531 32 pten 
annotated 
to a part or 
bud 

43.6208 35 

bmp4 predicted 76.215 36 bmp4 

direct 
annotation 
to the 
hindlimb 

63.9989 10 

bmp2b predicted 68.2429 45 bmp2 predicted 45.0361 32 
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rac1b predicted 67.0359 50 rac1 

direct 
annotation 
to the 
hindlimb 

24.2559 103 

notch2 predicted 66.3735 54 notch2 

direct 
annotation 
to the 
hindlimb 

39.0854 47 

fgfr2 predicted 63.0559 67 fgfr2 

direct 
annotation 
to the 
hindlimb 

48.7644 24 

ptena predicted 60.7765 80 pten 
annotated 
to a part or 
bud 

43.6208 35 

mapk14b predicted 59.24 89 mapk14 

direct 
annotation 
to the 
hindlimb 

71.7856 4 

smad2 predicted 58.5213 92 smad2 predicted 45.6514 30 

wnt3a predicted 57.9542 95 wnt3a 

direct 
annotation 
to the 
hindlimb 

42.6564 39 

ret predicted 57.2523 98 ret 
annotated 
to a part or 
bud 

23.5326 110 

vegfaa predicted 57.0152 100 vegfa 
annotated 
to a part or 
bud 

50.7476 20 

junba predicted 54.8789 109 junb 

direct 
annotation 
to the 
hindlimb 

15.5932 205 

fgf8a predicted 52.5593 122 fgf8 

direct 
annotation 
to the 
hindlimb 

46.6654 29 

gli2a predicted 52.1448 130 gli2 

direct 
annotation 
to the 
hindlimb 

42.8396 38 

dicer1 predicted 50.473 140 dicer1 

direct 
annotation 
to the 
hindlimb 

18.3287 187 

smad3a predicted 49.5403 150 smad3 
annotated 
to a part or 
bud 

49.4434 22 

hrasb predicted 48.0853 162 hras predicted 72.8342 2 

shha predicted 48.0501 163 shh 

direct 
annotation 
to the 
hindlimb 

44.4006 33 
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bmp2a predicted 47.8327 165 bmp2 predicted 45.0361 32 

fgf4 predicted 47.5358 167 fgf4 
annotated 
to a part or 
bud 

24.3609 102 

bmp7a predicted 46.1288 178 bmp7 predicted 48.2316 26 

vegfab predicted 45.8605 183 vegfa 
annotated 
to a part or 
bud 

50.7476 20 

mysm1 predicted 43.0713 209 mysm1 

direct 
annotation 
to the 
hindlimb 

4.6408 394 

fgf10a predicted 42.2153 212 fgf10 

direct 
annotation 
to the 
hindlimb 

33.825 67 

fgf10b predicted 40.7886 219 fgf10 

direct 
annotation 
to the 
hindlimb 

33.825 67 

sirt1 predicted 40.1693 232 sirt1 
annotated 
to a part or 
bud 

25.4897 94 

bmpr1aa predicted 36.7892 251 bmpr1a 

direct 
annotation 
to the 
hindlimb 

35.5242 61 

lef1 predicted 35.665 259 lef1 predicted 36.7074 53 

gli2b predicted 33.6578 277 gli2 

direct 
annotation 
to the 
hindlimb 

42.8396 38 

wnt4a predicted 33.0982 286 wnt4 predicted 35.4014 62 

smo predicted 32.2549 293 smo 

direct 
annotation 
to the 
hindlimb 

34.086 66 

sod2 predicted 30.6061 308 sod2 
annotated 
to a part or 
bud 

18.8196 178 

gdf11 

direct 
annotation 
to the 
pelvic fin 

29.3173 321 gdf11 

direct 
annotation 
to the 
hindlimb 

8.6569 283 

stat1b predicted 28.9557 323 stat1 

direct 
annotation 
to the 
hindlimb 

33.3038 72 

smad3b predicted 27.6166 333 smad3 
annotated 
to a part or 
bud 

49.4434 22 

casp3a predicted 27.2208 340 casp3 predicted 49.0774 23 
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map3k14b predicted 26.1706 350 map3k14 
annotated 
to a part or 
bud 

7.1186 312 

aldh1a2 predicted 25.4504 354 aldh1a2 
annotated 
to a part or 
bud 

9.8933 263 

gli3 predicted 25.0939 359 gli3 

direct 
annotation 
to the 
hindlimb 

38.3084 52 

bmpr1ba predicted 24.8781 361 bmpr1b 
annotated 
to a part or 
bud 

20.0326 131 

ihha predicted 24.0223 366 ihh 

direct 
annotation 
to the 
hindlimb 

33.7444 68 

ptch1 predicted 23.8507 369 ptch1 predicted 38.8191 48 

bmpr1ab predicted 22.5899 386 bmpr1a 

direct 
annotation 
to the 
hindlimb 

35.5242 61 

vdrb predicted 22.4408 388 vdr 

direct 
annotation 
to the 
hindlimb 

15.8149 202 

shhb predicted 20.6403 404 shh 

direct 
annotation 
to the 
hindlimb 

44.4006 33 

bmpr1bb predicted 20.1116 408 bmpr1b 
annotated 
to a part or 
bud 

20.0326 131 

fsta predicted 17.8232 422 fst 
annotated 
to a part or 
bud 

27.0851 86 

hand2 predicted 15.7932 437 hand2 

direct 
annotation 
to the 
hindlimb 

24.7719 101 

msx1a predicted 15.3589 442 msx1 predicted 26.6468 88 
cx43 predicted 15.0787 444 gja1 predicted 28.3709 84 

vdra predicted 13.7382 454 vdr 

direct 
annotation 
to the 
hindlimb 

15.8149 202 

pax3a predicted 13.4122 458 pax3 

direct 
annotation 
to the 
hindlimb 

31.1909 76 

ihhb predicted 13.389 460 ihh 

direct 
annotation 
to the 
hindlimb 

33.7444 68 
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lamc1 predicted 13.3297 461 lamc1 

direct 
annotation 
to the 
hindlimb 

7.8573 299 

desma predicted 13.1643 462 des 
annotated 
to a part or 
bud 

14.3164 217 

col1a1a predicted 12.9905 465 col1a1 

direct 
annotation 
to the 
hindlimb 

43.3734 36 

lmx1bb predicted 11.9354 481 lmx1b 
annotated 
to a part or 
bud 

9.1733 271 

col2a1a predicted 11.8949 483 col2a1 

direct 
annotation 
to the 
hindlimb 

43.3479 37 

tbx4 

direct 
annotation 
to the 
pelvic fin 

10.3408 496 tbx4 

direct 
annotation 
to the 
hindlimb 

10.3871 259 

hspg2 predicted 9.6841 500 hspg2 

direct 
annotation 
to the 
hindlimb 

14.1006 220 

fras1 predicted 9.0362 507 fras1 
annotated 
to a part or 
bud 

14.535 212 

col1a2 predicted 6.6976 539 col1a2 

direct 
annotation 
to the 
hindlimb 

28.4794 83 

scube2 predicted 6.4974 543 scube2 

direct 
annotation 
to the 
hindlimb 

3.4888 434 

col11a1b predicted 6.2965 545 col11a1 

direct 
annotation 
to the 
hindlimb 

14.3918 215 

col11a1a predicted 5.9988 550 col11a1 

direct 
annotation 
to the 
hindlimb 

14.3918 215 

col1a1b predicted 5.9171 554 col1a1 

direct 
annotation 
to the 
hindlimb 

43.3734 36 

rspo2 
annotated 
to a part or 
bud 

4.0927 570 rspo2 

direct 
annotation 
to the 
hindlimb 

3.6481 429 
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frem2a predicted 3.5366 577 frem2 
annotated 
to a part or 
bud 

1.5047 537 

pitx1 predicted 2.8035 592 pitx1 

direct 
annotation 
to the 
hindlimb 

9.5149 267 

pax3b predicted 2.4374 595 pax3 

direct 
annotation 
to the 
hindlimb 

31.1909 76 
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Table 2.5. The 45 predicted genes of the pectoral fin module ranked and ordered according to the 

weighted degree of each gene. NA indicates ‘not available’ due to the ortholog not found in the 

mouse. 

Zebrafish gene 
name 

ZFIN identifier Weighted 
degree 

Rank in 
the 
module 

Mouse 
ortholog 
name 

Mouse ortholog status 

bmp4 zdb-gene-980528-
2059 

35.5652 2 bmp4 direct annotation to the forelimb 

bmp2b zdb-gene-980526-
474 

34.3109 3 bmp2 direct annotation to the forelimb 

wnt3a zdb-gene-001106-1 31.4927 4 wnt3a predicted 
fgf8a zdb-gene-990415-

72 
31.0094 5 fgf8 direct annotation to the forelimb 

gli2a zdb-gene-990706-8 27.2862 8 gli2 direct annotation to the forelimb 
wnt5b zdb-gene-980526-

87 
25.9169 10 wnt5b not associated with the forelimb 

fgfr1a zdb-gene-980526-
255 

25.6442 12 fgfr1 direct annotation to the forelimb 

smad5 zdb-gene-990603-9 25.5690 13 smad5 not associated with the forelimb 
gli1 zdb-gene-030321-1 25.2858 14 gli1 not associated with the forelimb 
tcf7l1a zdb-gene-980605-

30 
24.8101 15 tcf7l1 not associated with the forelimb 

foxd3 zdb-gene-980526-
143 

24.7462 16 foxd3 not associated with the forelimb 

ta zdb-gene-980526-
437 

23.7992 18 NA not associated with the forelimb 

cdx4 zdb-gene-980526-
330 

23.1331 20 cdx4 not associated with the forelimb 

pax2a zdb-gene-990415-8 22.2653 22 pax2 not associated with the forelimb 
ctnnb2 zdb-gene-040426-

2575 
22.1606 24 NA not associated with the forelimb 

ptch2 zdb-gene-980526-
44 

21.7001 25 ptch2 not associated with the forelimb 

isl1 zdb-gene-980526-
112 

21.5418 26 isl1 not associated with the forelimb 

fgf3 zdb-gene-980526-
178 

20.9767 28 fgf3 not associated with the forelimb 

wnt4a zdb-gene-980526-
352 

20.4183 29 wnt4 predicted 

gpc4 zdb-gene-011119-1 18.5224 31 gpc4 not associated with the forelimb 
ihha zdb-gene-051010-1 18.1064 32 ihh direct annotation to the forelimb 
wnt11 zdb-gene-990603-

12 
17.1389 34 wnt11 not associated with the forelimb 

zic2a zdb-gene-000710-4 15.2976 40 zic2 annotated to a part or bud 
nkx2.2a zdb-gene-980526-

403 
15.0866 41 nkx2-2 not associated with the forelimb 
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dlx2a zdb-gene-980526-
212 

14.8123 43 dlx2 not associated with the forelimb 

pitx2 zdb-gene-990714-
27 

14.7898 44 pitx2 not associated with the forelimb 

msx1a zdb-gene-980526-
312 

14.6308 45 msx1 predicted 

myf5 zdb-gene-000616-6 13.7077 48 myf5 not associated with the forelimb 
esr2a zdb-gene-030116-2 13.2000 51 esr2 direct annotation to the forelimb 
dharma zdb-gene-990415-

22 
9.6753 59 NA not associated with the forelimb 

tfap2a zdb-gene-011212-6 9.2007 62 tfap2a direct annotation to the forelimb 
mecom NA 8.4715 89 mecom annotated to a part or bud 
sox9b zdb-gene-001103-2 7.2558 104 sox9 direct annotation to the forelimb 
grem2b zdb-gene-030911-9 6.8164 108 grem2 not associated with the forelimb 
unm t31148 zdb-gene-070117-

1894 
6.6863 109 NA not associated with the forelimb 

dzip1 zdb-gene-040526-1 6.4409 112 dzip1 not associated with the forelimb 
b3gat3 zdb-gene-020419-3 6.0316 115 NA not associated with the forelimb 
scube2 zdb-gene-050302-

80 
5.3349 123 scube2 not associated with the forelimb 

hot zdb-gene-070117-
2108 

2.7511 160 NA not associated with the forelimb 

frem2b zdb-gene-081119-4 2.6947 163 frem2 not associated with the forelimb 
unm s273 zdb-gene-070117-

864 
2.4459 167 NA not associated with the forelimb 

unm s245 zdb-gene-070117-
865 

2.4459 167 NA not associated with the forelimb 

eda zdb-gene-050107-6 2.3936 169 eda not associated with the forelimb 
zmp:0000001138 zdb-gene-140106-

98 
2.1176 172 NA not associated with the forelimb 

mgt zdb-gene-070117-
2188 

1.0103 197 NA not associated with the forelimb 
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Table 2.6. The top 50 predicted genes of the pelvic fin module ranked and ordered according to 

the weighted degree of each gene. NA indicates ‘not available’ due to the ortholog not found in 

the mouse. The full predicted gene list is available at 

https://github.com/pasanfernando/Chapter2_datafiles. 

Zebrafish 
gene name 

ZFIN identifier Weighted 
degree 

Rank in 
the 
module 

Mouse 
ortholog 
name 

Mouse ortholog status 

hsp90ab1 zdb-gene-990415-95 129.9415 1 hsp90ab1 not associated with the hindlimb 
mapk3 zdb-gene-040121-1 121.5328 2 mapk3 not associated with the hindlimb 
rhoab zdb-gene-040322-2 108.0837 3 rhoa not associated with the hindlimb 
ctnnb1 zdb-gene-980526-

362 
106.2749 4 ctnnb1 direct annotation to the hindlimb 

hsp90aa1.
2 

zdb-gene-031001-3 105.1273 5 hsp90aa1 not associated with the hindlimb 

paics zdb-gene-030131-
9762 

104.4687 6 paics not associated with the hindlimb 

gsk3b zdb-gene-990714-4 101.2293 7 gsk3b not associated with the hindlimb 
cad zdb-gene-021030-4 97.8373 8 cad not associated with the hindlimb 
cdc42 zdb-gene-030131-

8783 
97.7752 9 NA not associated with the hindlimb 

acta1b zdb-gene-030131-55 97.6682 10 acta1 not associated with the hindlimb 
smarca4a zdb-gene-030605-1 97.4336 11 smarca4 direct annotation to the hindlimb 
mapk1 zdb-gene-030722-2 96.3956 12 mapk1 not associated with the hindlimb 
jupa zdb-gene-991207-22 95.0796 13 jup not associated with the hindlimb 
cdk1 zdb-gene-010320-1 93.9169 14 cdk1 not associated with the hindlimb 
kras NA 93.4030 15 kras predicted 
rac1a zdb-gene-030131-

5415 
92.9107 16 rac1 direct annotation to the hindlimb 

mapk14a zdb-gene-010202-2 92.1789 17 mapk14 direct annotation to the hindlimb 
src zdb-gene-030131-

3809 
91.7256 18 src direct annotation to the hindlimb 

fgfr1a zdb-gene-980526-
255 

91.2553 19 fgfr1 direct annotation to the hindlimb 

met zdb-gene-041014-1 90.8735 20 met direct annotation to the hindlimb 
insrb zdb-gene-020503-4 90.6827 21 insr not associated with the hindlimb 
si:ch211-
163m16.1 

NA 84.6841 22 NA not associated with the hindlimb 

actl6a zdb-gene-020419-36 83.9023 23 actl6a not associated with the hindlimb 
tp53 zdb-gene-990415-

270 
83.8035 24 trp53 direct annotation to the hindlimb 

pak2a zdb-gene-021011-2 83.2637 25 pak2 not associated with the hindlimb 
ehmt2 zdb-gene-010501-6 82.9897 26 ehmt2 not associated with the hindlimb 
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kdrl zdb-gene-000705-1 81.0991 27 NA not associated with the hindlimb 
mtor zdb-gene-030131-

2974 
80.8121 28 mtor annotated to a part or bud 

pkn2 zdb-gene-061207-42 79.5943 29 pkn2 not associated with the hindlimb 
prkcbb zdb-gene-040426-

1178 
79.5529 30 prkcb not associated with the hindlimb 

hsp90aa1.
1 

zdb-gene-990415-94 78.6325 31 hsp90aa1 not associated with the hindlimb 

ptenb zdb-gene-030616-47 78.5310 32 pten annotated to a part or bud 
kita zdb-gene-980526-

464 
77.2229 33 kit not associated with the hindlimb 

akt2 zdb-gene-031007-5 77.0797 34 akt2 not associated with the hindlimb 
igf1ra zdb-gene-020503-1 76.5270 35 igf1r not associated with the hindlimb 
bmp4 zdb-gene-980528-

2059 
76.2150 36 bmp4 direct annotation to the hindlimb 

igf1rb zdb-gene-020503-2 75.0886 37 igf1r not associated with the hindlimb 
rap1b zdb-gene-030131-

9662 
73.3502 38 rap1b not associated with the hindlimb 

rac2 zdb-gene-040625-27 73.3136 39 rac2 not associated with the hindlimb 
hspa9 zdb-gene-030828-12 72.3324 40 hspa9 not associated with the hindlimb 
hdac1 zdb-gene-020419-32 69.4428 41 hdac1 not associated with the hindlimb 
pola1 zdb-gene-030114-9 69.0229 42 pola1 not associated with the hindlimb 
actc1a zdb-gene-040520-4 68.6027 43 actc1 not associated with the hindlimb 
top2b zdb-gene-041008-

136 
68.4413 44 top2b not associated with the hindlimb 

bmp2b zdb-gene-980526-
474 

68.2429 45 bmp2 predicted 

insra zdb-gene-020503-3 68.1565 46 insr not associated with the hindlimb 
flt1 zdb-gene-050407-1 68.0761 47 flt1 not associated with the hindlimb 
ralbb zdb-gene-040625-

121 
67.8323 48 ralb not associated with the hindlimb 

btk zdb-gene-070531-1 67.4762 49 NA not associated with the hindlimb 
rac1b zdb-gene-060312-45 67.0359 50 rac1 direct annotation to the hindlimb 
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Table 2.7. The 18 predicted genes of the forelimb module ranked and ordered according to the 

weighted degree of each gene. NA indicates ‘not available’ due to the ortholog not found in the 

zebrafish. 

Mouse 
gene 
name 

MGI 
identifier 

Weighted 
degree 

Rank in 
the 
module 

Zebrafish 
ortholog names 

Zebrafish ortholog status 

smad4 mgi:894293 34.5294 6 smad4a, smad4b not associated with the pectoral fin 
bmp7 mgi:103302 34.2132 7 bmp7a direct annotation to the pectoral fin 
wnt3a mgi:98956 30.9124 14 wnt3a predicted 
nog mgi:104327 29.3757 19 NA not associated with the pectoral fin 
wnt4 mgi:98957 27.9668 23 wnt4a predicted 
ptch1 mgi:105373 27.3374 24 ptch1 direct annotation to the pectoral fin 
wnt1 mgi:98953 26.4361 25 wnt1 not associated with the pectoral fin 
bmpr1
a 

mgi:133893
8 

26.0359 26 bmpr1ab, 
bmpr1aa 

not associated with the pectoral fin 

chrd mgi:131326
8 

24.6081 28 chrd not associated with the pectoral fin 

msx1 mgi:97168 23.4172 31 msx1a predicted 
msx2 mgi:97169 22.8361 32 msx2b, msx2a not associated with the pectoral fin 
fst mgi:95586 18.1062 46 fsta,fstb not associated with the pectoral fin 
wnt7b mgi:98962 17.7777 47 wnt7ba, wnt7bb not associated with the pectoral fin 
dlx5 mgi:101926 16.1115 51 dlx5a annotated to a part or bud 
wnt9a mgi:244608

4 
15.9927 52 wnt9a not associated with the pectoral fin 

foxc2 mgi:134748
1 

13.9395 61 NA not associated with the pectoral fin 

nkx3-2 mgi:108015 13.6063 63 nkx3.2 not associated with the pectoral fin 
tbx4 mgi:102556 8.7400 84 tbx4 not associated with the pectoral fin 
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Table 2.8. The 32 predicted genes of the hindlimb module ranked and ordered according to the 

weighted degree of each gene. NA indicates ‘not available’ due to the ortholog not found in the 

zebrafish. 

Mouse 
gene 
name 

MGI 
identifier 

Weighted 
degree 

Rank in 
the 
module 

Zebrafish 
ortholog names 

Zebrafish ortholog status 

hras mgi:96224 72.8342 2 hrasb predicted 
kras mgi:96680 70.7748 5 kras predicted 
myc mgi:97250 66.8072 7 mycb, myca not associated with the pelvic fin 
fos mgi:95574 64.7904 9 fosab, fosaa not associated with the pelvic fin 
tgfb1 mgi:98725 54.2763 15 tgfb1b, tgfb1a not associated with the pelvic fin 
igf1 mgi:96432 52.9341 17 igf1 not associated with the pelvic fin 
fgf2 mgi:95516 51.2651 19 fgf2 not associated with the pelvic fin 
casp3 mgi:107739 49.0774 23 casp3a predicted 
bmp7 mgi:103302 48.2316 26 bmp7a predicted 
wnt5a mgi:98958 48.1588 27 wnt5a not associated with the pelvic fin 
smad2 mgi:108051 45.6514 30 smad2 predicted 
pdgfra mgi:97530 45.2074 31 pdgfra not associated with the pelvic fin 
bmp2 mgi:88177 45.0361 32 bmp2a, bmp2b predicted 
nog mgi:104327 39.7063 46 NA not associated with the pelvic fin 
ptch1 mgi:105373 38.8191 48 ptch1 predicted 
lef1 mgi:96770 36.7074 53 lef1 predicted 
wnt1 mgi:98953 35.9468 60 wnt1 not associated with the pelvic fin 
wnt4 mgi:98957 35.4014 62 wnt4a predicted 
mmp2 mgi:97009 35.3982 63 mmp2 not associated with the pelvic fin 
spp1 mgi:98389 33.6944 70 NA not associated with the pelvic fin 
dcn mgi:94872 33.0020 73 dcn not associated with the pelvic fin 
mmp14 mgi:101900 30.9303 77 mmp14a, 

mmp14b 
not associated with the pelvic fin 

chrd mgi:131326
8 

29.8136 81 chrd not associated with the pelvic fin 

gja1 mgi:95713 28.3709 84 cx43 predicted 
msx1 mgi:97168 26.6468 88 msx1a predicted 
twist1 mgi:98872 25.5266 93 twist1a, twist1b not associated with the pelvic fin 
bglap mgi:88156 24.8621 99 NA not associated with the pelvic fin 
bglap2 mgi:88157 24.8447 100 NA not associated with the pelvic fin 
sp7 mgi:215356

8 
21.0093 119 sp7 not associated with the pelvic fin 

foxc2 mgi:134748
1 

17.4167 192 NA not associated with the pelvic fin 
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nkx3-2 mgi:108015 15.3314 207 nkx3.2 not associated with the pelvic fin 
hapln1 mgi:133700

6 
8.9023 279 hapln1a, 

hapln1b 
not associated with the pelvic fin 
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Table 2.9. Some of the enriched Biological Process terms from the Gene Ontology and Uberon 

terms for the mouse orthologs of the pectoral fin module-specific genes that are related to novel 

anatomical entities generated in tetrapods during fin to limb transition. The terms are organized 

into specific anatomical regions. 

Anatomical region Term Identifier Term name  P-value 
Lung uberon 0002167 right lung 0.00023623 
 

uberon 0002168 left lung 0.00120309 
 

uberon 0003512 lung blood vessel 0.04982657 
 

GO:0030324 lung development 0.00446791 
Neck and lower jaw uberon 0001708 jaw skeleton 2.93E-05 
 

uberon 0003451 lower jaw incisor 0.00017578 
 

uberon 0002413 cervical vertebra 0.00380992 
 

uberon 0003216 hard palate 0.00029064 
 

uberon 0001716 secondary palate 0.00151298 
 

GO:0060021 palate development 0.00113011 
 

GO:0061153 trachea gland development 0.01600806 
Face and hair uberon 0001456 face 5.43E-08 
 

uberon 0005600 crus commune 9.42E-05 
 

uberon 0001690 ear 0.00026285 
 

uberon 0000004 nose 0.00090415 
 

uberon 0001711 eyelid 2.75E-06 
 

uberon 0034772 margin of eyelid 0.03232832 
 

uberon 0002073 hair follicle 0.02808325 
 

uberon 0010514 strand of duvet hair 0.02594653 
 

GO:0001942 hair follicle development 0.03174493 
 

GO:0060789 hair follicle placode formation 0.03176245 

 GO:0061029 eyelid development in camera-type 
eye 

0.07754317 

Other uberon 0002544 digit 0.00066645 
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Table 2.10. Some of the enriched Biological Process terms from the Gene Ontology and Uberon 

terms for the mouse orthologs of the pelvic fin module-specific genes that are related to novel 

anatomical entities generated in tetrapods during fin to limb transition. The terms are organized 

into specific anatomical regions. 

Anatomical region Term Identifier Term name  P-value 
Lung uberon 0001004 respiratory system 3.10E-06  

uberon 0002012 pulmonary artery 4.49E-06  
uberon 0002048 lung 1.66E-05  
uberon 0003512 lung blood vessel 6.31E-05  
uberon 0006524 alveolar system 0.00031454  
uberon 0008870 pulmonary alveolar parenchyma 0.00034866  
uberon 0000117 respiratory tube 0.00063848  
uberon 0004785 respiratory system mucosa 0.00465107  
GO:0030324 lung development 3.55E-04  
GO:0060425 lung morphogenesis 0.0083659 

Neck and lower jaw uberon 0003216 hard palate 0.00044958  
uberon 0002370 thymus 0.00057905  
GO:0048538 thymus development 4.03E-04  
GO:0060021 palate development 0.00391519  
GO:0060440 trachea formation 0.00614484  
GO:0060017 parathyroid gland development 0.00614484 

Face and hair uberon 0001818 tarsal gland 0.00026935  
uberon 0001711 eyelid 0.00043278  
uberon 0000004 nose 0.00707171  
uberon 0001681 nasal bone 0.01712347  
uberon 0002073 hair follicle 0.00052472  
uberon 0010512 strand of guard hair 0.00311381  
GO:0061029 eyelid development in camera-type eye 0.00211434  
GO:0001942 hair follicle development 3.29E-06 

Other uberon 0001987 placenta 2.69E-05  
uberon 0003946 placenta labyrinth 0.00010402 
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Table 2.11. Some of the enriched Biological Process terms from the Gene Ontology and Uberon 

terms that are related to fin to limb transition for the zebrafish orthologs of the forelimb module-

specific genes. The terms are organized into specific anatomical regions. 

Anatomical 
region 

Term Identifier Term name  P-value 

Fin related uberon 4000164 caudal fin 0.00325469  
GO:0035118 embryonic pectoral fin morphogenesis 1.60E-05 

Other uberon 0000033 head 2.96E-07  
uberon 0005886 post-hyoid pharyngeal arch skeleton 0.03545473  
uberon 0001708 jaw skeleton 0.0342243  
uberon 0008895 splanchnocranium 0.01593721 

 uberon 0002280 otolith 0.01730733  
GO:0060037 pharyngeal system development 0.02837219 
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Table 2.12. Some of the enriched Biological Process terms from the Gene Ontology and Uberon 

terms that are related to fin to limb transition for the zebrafish orthologs of the hindlimb module-

specific genes. The terms are organized into specific anatomical regions. 

Anatomical region Term Identifier Term name  P-value 
Fin related uberon 4000164 caudal fin 0.0046263  

uberon 0012438 blastema of regenerating fin/limb 0.00591299  
uberon 2001456 pectoral fin endoskeletal disc 0.0328624  
GO:0035118 embryonic pectoral fin morphogenesis 0.00553237  
GO:0031101 fin regeneration 0.00239174 

Other uberon 0000033 head 2.90E-15  
uberon 0005886 post-hyoid pharyngeal arch skeleton 3.02E-05  
uberon 0001708 jaw skeleton 0.00287797  
uberon 0005884 hyoid arch skeleton 0.01978595  
uberon 0011611 ceratohyal bone 0.0328624  
uberon 0002280 otolith 0.01008715  
GO:0060037 pharyngeal system development 0.02837219  
GO:0048701 embryonic cranial skeleton morphogenesis 1.03E-05  
GO:0048703 embryonic viscerocranium morphogenesis 9.92E-04  
GO:0060021 palate development 0.01953552  
GO:0060037 pharyngeal system development 0.01986392  
GO:0048840 otolith development 0.03165263 
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Figures 

 

Figure 2.1. The ROC curves for the four anatomical entities that were generated during network-

based candidate gene prediction evaluations. 
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Figure 2.2. The precision-recall curves for the four anatomical entities that were generated 

during network-based candidate gene prediction evaluations. 
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Figure 2.3. Visualization of the pectoral fin module including genes with direct annotations to 

the pectoral fin (green), genes annotated only to the pectoral fin parts or developmental 

precursors (blue), and predicted genes (red). Node size is proportional to the degree (number of 

interactions) of the gene. An interactive version of this module is available at 

https://github.com/pasanfernando/Chapter2_datafiles as a Cytoscape network file. 
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Figure 2.4. Visualization of the pelvic fin module including genes with direct annotations to the 

pelvic fin (green), genes annotated only to the pelvic fin parts or developmental precursors 

(blue), and predicted genes (red). Node size is proportional to the degree (number of interactions) 

of the gene. An interactive version of this module is available at 

https://github.com/pasanfernando/Chapter2_datafiles as a Cytoscape network file. 
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Figure 2.5. Visualization of the forelimb module including genes with direct annotations to the 

forelimb (green), genes annotated only to the forelimb parts or developmental precursors (blue), 

and predicted genes (red). Node size is proportional to the degree (number of interactions) of the 

gene. An interactive version of this module is available at 

https://github.com/pasanfernando/Chapter2_datafiles as a Cytoscape network file. 

 



   

 
174 

 

Figure 2.6. Visualization of the hindlimb module including genes with direct annotations to the 

hindlimb (green), genes annotated only to the hindlimb parts or developmental precursors (blue), 

and predicted genes (red). Node size is proportional to the degree (number of interactions) of the 

gene. An interactive version of this module is available at 

https://github.com/pasanfernando/Chapter2_datafiles as a Cytoscape network file. 
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Figure 2.7. Boxplot comparisons of the distributions of module gene counts in the immediate 

neighborhood of module genes versus network background genes for each anatomical entity. In 

the boxplots, the red line and the square represent the median and mean, respectively. 
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Figure 2.8. Venn diagram showing the number of pectoral fin module-specific genes, conserved 

genes, and forelimb module-specific genes. 
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Figure 2.9. Extractions of the 37 conserved genes from (a) the pectoral fin module and (b) the 

forelimb module. Node size is proportional to the degree (number of interactions) of the gene. 

The arrow represents the direction of modular evolution. 
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Figure 2.10. Boxplot comparison of normalized weighted degree distributions for (a) pectoral fin 

module-specific genes, (b) pectoral fin conserved genes, (c) forelimb conserved genes, and (d) 

forelimb module-specific genes. In the boxplots, the red line and the square represent the median 

and mean, respectively. 
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Figure 2.11. Venn diagram showing the number of pelvic fin module-specific genes, conserved 

genes, and hindlimb module-specific genes.  
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Figure 2.12. Extractions of the 81 conserved genes from (a) the pelvic fin module and (b) the 

hindlimb module. Node size is proportional to the degree (number of interactions) of the gene. 

The arrow represents the direction of modular evolution. 



   

 
181 

 

Figure 2.13. Boxplot comparison of normalized weighted degree distributions for (a) pelvic fin 

module-specific genes, (b) pelvic fin conserved genes, (c) hindlimb conserved genes, and (d) 

hindlimb module-specific genes. In the boxplots, the red line and the square represent the median 

and mean, respectively. 
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Figure 2.14. The boxplot comparisons of the weighted degree distributions for the predicted 

genes versus genes with original annotations for each module. In the boxplots, the red line and 

the square represent the median and mean, respectively. 
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Figure 2.15. Visualization of the enriched Biological Process terms from the Gene Ontology 

generated using the REVIGO online tool (http://revigo.irb.hr/). The interactions are based on 

Resnik semantic similarity between the terms. 
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Supplementary Tables 

Supplementary Table S2.1. The genes with original annotations that were lost due to network 

cutoff or isolation in the network 

Pectoral fin Pelvic fin Forelimb Hindlimb 

Lost due to network 
cutoff: 17 

1. bcl2l16 
2. bot 
3. don 
4. ful 
5. gpatch3 
6. hmx4 
7. mko 
8. not found 
9. si:ch211-

185a18.2 
10. tmem260 
11. unm au21 
12. unm m572 
13. unm ti205 
14. unm tm136 
15. unm to219 
16. wan 
17. zon 

 
Lost due to isolation: 
6 

1. ap1g1 
2. dul 
3. gaz 
4. nokr2 
5. nrg2a  
6. perp 

 
 
 
 

Lost due to network 
cutoff: 3 

1. mir223 
2. sub 
3. wan 

 
Lost due to 
isolation: 0 
 

Lost due to network cutoff: 
25 

1. am 
2. ccd 
3. cl 
4. dbf 
5. del(2hoxd1-

hoxd10)26ddu 
6. del(6dlx6-dlx5)1tlu 
7. etn3 
8. fts 
9. is(in8b2-

8b3.1;6c1)1tshir 
10. lgl 
11. mdga2 
12. mhdaali18 
13. mirc1 
14. morc2a 
15. os 
16. pf 
17. t(7;18)50h 
18. tg(cag-mrfp1,-

sox9,-egfp)1haak 
19. tg(col2a1-

mef2c/vp16)1eno 
20. tg(hand2)#tshir 
21. tg(pgk1-fgf2)15cofn 
22. tg(plp1-

lmnb1)1108qsp 
23. tg(prrx1-sox9,-

lacz)1haak 
24. tg(tyr,col2a1-

trpv4*r594h)#dhco 
25. vsd 

 
Lost due to isolation: 17 

1. btd 
2. cdk20 
3. cpox 
4. del(5d5mit73-

d5mit351)5jcs 
5. lgi4 
6. nkx6-1 
7. npat 
8. ostm1 
9. pappa2 

Lost due to network cutoff: 
101 

1. 4933430i17rik 
2. ano5 
3. aspb 
4. b2b1594clo 
5. b2b2187clo 
6. bolt 
7. cby 
8. cl 
9. clec11a 
10. dbf 
11. del(6dlx6-dlx5)1tlu 
12. dh 
13. dmpy 
14. dp(16cbr1-

fam3b)1rhr 
15. fts 
16. gnd 
17. hacd1 
18. hxd 
19. hydro 
20. igf1sl1 
21. inad 
22. is(in8b2-

8b3.1;6c1)1tshir 
23. klhl41 
24. lgl 
25. lx 
26. lz 
27. map3k20 
28. mhdaali18 
29. mir140 
30. mir92-1 
31. mirc1 
32. mpc234h 
33. nad 
34. nma 
35. nmf419 
36. not found 
37. ogfod1 
38. os 
39. pf 
40. pl 
41. pma 
42. ps 
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10. pex10 
11. rnf165 
12. scx 
13. tg(sod1*g127x)716

mrkl 
14. tram2 
15. trpv4 
16. uchl1 
17. vps54 

43. scarf2 
44. skc3 
45. srn 
46. ssq 
47. t(7;18)50h 
48. tal 
49. tenm4 
50. tg(acta1-

il15*)11650lsq 
51. tg(ar*100q)c25als 
52. tg(ar*100q)c32als 
53. tg(b19-

rnai:il3)241ckn 
54. tg(cag-

dsred2/rnai:tardbp)
6zxu 

55. tg(cd4-
npm/alk)n1ingh 

56. tg(ckmm-cav3)1ysu 
57. tg(cnp-gpr17)1qrlu 
58. tg(col11a2-

npr2*)28keoz 
59. tg(col1a1-

ifitm5*)1brle 
60. tg(col1a1)73prc 
61. tg(ctnnb1)1efu 
62. tg(eef1a1-

gnas*r201c)184pab
i 

63. tg(epo*)458mym 
64. tg(gfap-il6)g167lms 
65. tg(gfap-il6)g16lms 
66. tg(gfap-il6)g369lms 
67. tg(h2-k-fosl1)1wag 
68. tg(igkv3-5*-

myc)#plbe 
69. tg(lckil4)1315dbl 
70. tg(mbp-

cadm4*)#pele 
71. tg(mt1-hgfsf)19lmb 
72. tg(mt2a-

tgfbr2)4rser 
73. tg(myh7-pln)2egk 
74. tg(nefl*e397k)#milg 
75. tg(pgk1-fgf2)15cofn 
76. tg(plp1*)4rsj 
77. tg(prnp-

ar*112q)#deme 
78. tg(prnp-fus)wt3cshw 
79. tg(prnp-

mapt*p301l)jnpl3hl
mc 

80. tg(prnp-
snca*a53t)83vle 

81. tg(prnp-
tardbp*a315t)23jlel 
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82. tg(prnp)c35cwe 
83. tg(prnp*)#rgab 
84. tg(s100b-v-

erbb)4496waw 
85. tg(sod1*)df7yaw 
86. tg(sod1*g37r)106dp

r 
87. tg(sod1*g37r)29dpr 
88. tg(sod1*g85r)148d

wc 
89. tg(sod1*g85r)74dw

c 
90. tg(sod1*g93a)<dl>

1gur 
91. tg(sod1*g93a)1gur 
92. tg(sod1*h46r)lara 
93. tg(tcrar28,tcrbr28)k

rndim 
94. tg(teto-

htr4*d100a)7niss 
95. tg(thy1-

mapt*p301l)2vln 
96. tg(thy1-

mapt*p301s)2541go
dt 

97. tg(thy1-
snca*a30p)18pjk 

98. tg(thy1-
ubqln2*p497s)3mon
t 

99. tg(thy1-
ubqln2*p506t)6mon
t 

100. ts(17<16>)65dn 
101. vsd 

 
Lost due to isolation: 37 

1. adgrf5 
2. akap11 
3. arid5b 
4. col4a3bp 
5. coq9 
6. ctsf 
7. dnase1l2 
8. elmod1 
9. epg5 
10. hhipl1 
11. hr 
12. lgi4 
13. lncpint 
14. ltn1 
15. lyst 
16. mbd5 
17. noto 
18. nxn 
19. pex10 
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20. pgam5 
21. pole4 
22. psph 
23. qk 
24. rnf13 
25. sacs 
26. skida1 
27. slc38a2 
28. sno 
29. spata6 
30. spg20 
31. stard10 
32. tg(pmp22)c22clh 
33. tg(prnp-

fus*r521c)3313ejh 
34. tg(sod1*g85r)#roos 
35. tg(sod1*g86r)m3jw

g 
36. tg(thy1-

mapt*)30schd 
37. zfp106 
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Supplementary Table S2.2. The top 50 genes of the pectoral fin module ranked and ordered 

based on the weighted degree. Full gene list is available at 

https://github.com/pasanfernando/Chapter2_datafiles repository. 

Zebrafish gene 
name 

ZFIN identifier Annotation type Module-specific 
or conserved 
status 

Weighted 
degree 

Rank 

shha zdb-gene-980526-166 direct annotation to the 
pectoral fin 

conserved 36.6983 1 

bmp4 zdb-gene-980528-2059 predicted conserved 35.5652 2 
bmp2b zdb-gene-980526-474 predicted conserved 34.3109 3 
wnt3a zdb-gene-001106-1 predicted conserved 31.4927 4 
fgf8a zdb-gene-990415-72 predicted conserved 31.0094 5 
gsk3b zdb-gene-990714-4 direct annotation to the 

pectoral fin 
module-specific 29.1916 6 

lef1 zdb-gene-990714-26 direct annotation to the 
pectoral fin 

module-specific 28.3310 7 

gli2a zdb-gene-990706-8 predicted conserved 27.2862 8 
hdac1 zdb-gene-020419-32 direct annotation to the 

pectoral fin 
module-specific 27.0476 9 

wnt5b zdb-gene-980526-87 predicted module-specific 25.9169 10 
bmp7a zdb-gene-000208-25 direct annotation to the 

pectoral fin 
conserved 25.8141 11 

fgfr1a zdb-gene-980526-255 predicted conserved 25.6442 12 
smad5 zdb-gene-990603-9 predicted module-specific 25.5690 13 
gli1 zdb-gene-030321-1 predicted module-specific 25.2858 14 
tcf7l1a zdb-gene-980605-30 predicted module-specific 24.8101 15 
foxd3 zdb-gene-980526-143 predicted module-specific 24.7462 16 
fgf10a zdb-gene-030715-1 direct annotation to the 

pectoral fin 
conserved 24.2622 17 

ta zdb-gene-980526-437 predicted module-specific 23.7992 18 
smo zdb-gene-980526-89 direct annotation to the 

pectoral fin 
conserved 23.6222 19 

cdx4 zdb-gene-980526-330 predicted module-specific 23.1331 20 
chd zdb-gene-990415-33 direct annotation to the 

pectoral fin 
module-specific 22.2847 21 

pax2a zdb-gene-990415-8 predicted module-specific 22.2653 22 
smad1 zdb-gene-991119-8 direct annotation to the 

pectoral fin 
module-specific 22.2133 23 

ctnnb2 zdb-gene-040426-2575 predicted module-specific 22.1606 24 
ptch2 zdb-gene-980526-44 predicted module-specific 21.7001 25 
isl1 zdb-gene-980526-112 predicted module-specific 21.5418 26 
fgf20a zdb-gene-060110-1 direct annotation to the 

pectoral fin 
module-specific 21.0334 27 
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fgf3 zdb-gene-980526-178 predicted module-specific 20.9767 28 
wnt4a zdb-gene-980526-352 predicted conserved 20.4183 29 
ptch1 zdb-gene-980526-196 direct annotation to the 

pectoral fin 
conserved 18.8304 30 

gpc4 zdb-gene-011119-1 predicted module-specific 18.5224 31 
ihha zdb-gene-051010-1 predicted conserved 18.1064 32 
tbx16 zdb-gene-990615-5 direct annotation to the 

pectoral fin 
module-specific 17.1606 33 

wnt11 zdb-gene-990603-12 predicted module-specific 17.1389 34 
tbx5a zdb-gene-991124-7 direct annotation to the 

pectoral fin 
conserved 16.7968 35 

aldh1a2 zdb-gene-011010-3 direct annotation to the 
pectoral fin 

conserved 16.6865 36 

fgf24 zdb-gene-030708-1 direct annotation to the 
pectoral fin 

module-specific 16.6315 37 

hand2 zdb-gene-000511-1 direct annotation to the 
pectoral fin 

conserved 16.4984 38 

szl zdb-gene-030530-1 direct annotation to the 
pectoral fin 

module-specific 15.9244 39 

zic2a zdb-gene-000710-4 predicted conserved 15.2976 40 
nkx2.2a zdb-gene-980526-403 predicted module-specific 15.0866 41 
tcf7 zdb-gene-050222-4 direct annotation to the 

pectoral fin 
conserved 15.0392 42 

dlx2a zdb-gene-980526-212 predicted module-specific 14.8123 43 
pitx2 zdb-gene-990714-27 predicted module-specific 14.7898 44 
msx1a zdb-gene-980526-312 predicted conserved 14.6308 45 
met zdb-gene-041014-1 direct annotation to the 

pectoral fin 
conserved 14.5234 46 

foxl1 zdb-gene-040426-1181 direct annotation to the 
pectoral fin 

module-specific 14.3996 47 

myf5 zdb-gene-000616-6 predicted module-specific 13.7077 48 
acvr1l zdb-gene-990415-9 direct annotation to the 

pectoral fin 
module-specific 13.7041 49 

wnt2ba zdb-gene-030717-2 direct annotation to the 
pectoral fin 

module-specific 13.2992 50 
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Supplementary Table S2.3. The top 50 genes of the pelvic fin module ranked and ordered based 

on the weighted degree. The full gene list is available at 

https://github.com/pasanfernando/Chapter2_datafiles repository. 

Zebrafish gene 
name 

ZFIN identifier Annotation 
type 

Module-
specific or 
conserved 
status 

Weighted 
degree 

Weighted-
rank 

hsp90ab1 zdb-gene-990415-95 predicted module-specific 129.9415 1 
mapk3 zdb-gene-040121-1 predicted module-specific 121.5328 2 
rhoab zdb-gene-040322-2 predicted module-specific 108.0837 3 
ctnnb1 zdb-gene-980526-362 predicted conserved 106.2749 4 
hsp90aa1.2 zdb-gene-031001-3 predicted module-specific 105.1273 5 
paics zdb-gene-030131-9762 predicted module-specific 104.4687 6 
gsk3b zdb-gene-990714-4 predicted module-specific 101.2293 7 
cad zdb-gene-021030-4 predicted module-specific 97.8373 8 
cdc42 zdb-gene-030131-8783 predicted module-specific 97.7752 9 
acta1b zdb-gene-030131-55 predicted module-specific 97.6682 10 
smarca4a zdb-gene-030605-1 predicted conserved 97.4336 11 
mapk1 zdb-gene-030722-2 predicted module-specific 96.3956 12 
jupa zdb-gene-991207-22 predicted module-specific 95.0796 13 
cdk1 zdb-gene-010320-1 predicted module-specific 93.9169 14 
kras NA predicted conserved 93.403 15 
rac1a zdb-gene-030131-5415 predicted conserved 92.9107 16 
mapk14a zdb-gene-010202-2 predicted conserved 92.1789 17 
src zdb-gene-030131-3809 predicted conserved 91.7256 18 
fgfr1a zdb-gene-980526-255 predicted conserved 91.2553 19 
met zdb-gene-041014-1 predicted conserved 90.8735 20 
insrb zdb-gene-020503-4 predicted module-specific 90.6827 21 
si:ch211-163m16.1 NA predicted module-specific 84.6841 22 
actl6a zdb-gene-020419-36 predicted module-specific 83.9023 23 
tp53 zdb-gene-990415-270 predicted conserved 83.8035 24 
pak2a zdb-gene-021011-2 predicted module-specific 83.2637 25 
ehmt2 zdb-gene-010501-6 predicted module-specific 82.9897 26 
kdrl zdb-gene-000705-1 predicted module-specific 81.0991 27 
mtor zdb-gene-030131-2974 predicted conserved 80.8121 28 
pkn2 zdb-gene-061207-42 predicted module-specific 79.5943 29 
prkcbb zdb-gene-040426-1178 predicted module-specific 79.5529 30 
hsp90aa1.1 zdb-gene-990415-94 predicted module-specific 78.6325 31 
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ptenb zdb-gene-030616-47 predicted conserved 78.531 32 
kita zdb-gene-980526-464 predicted module-specific 77.2229 33 
akt2 zdb-gene-031007-5 predicted module-specific 77.0797 34 
igf1ra zdb-gene-020503-1 predicted module-specific 76.527 35 
bmp4 zdb-gene-980528-2059 predicted conserved 76.215 36 
igf1rb zdb-gene-020503-2 predicted module-specific 75.0886 37 
rap1b zdb-gene-030131-9662 predicted module-specific 73.3502 38 
rac2 zdb-gene-040625-27 predicted module-specific 73.3136 39 
hspa9 zdb-gene-030828-12 predicted module-specific 72.3324 40 
hdac1 zdb-gene-020419-32 predicted module-specific 69.4428 41 
pola1 zdb-gene-030114-9 predicted module-specific 69.0229 42 
actc1a zdb-gene-040520-4 predicted module-specific 68.6027 43 
top2b zdb-gene-041008-136 predicted module-specific 68.4413 44 
bmp2b zdb-gene-980526-474 predicted conserved 68.2429 45 
insra zdb-gene-020503-3 predicted module-specific 68.1565 46 
flt1 zdb-gene-050407-1 predicted module-specific 68.0761 47 
ralbb zdb-gene-040625-121 predicted module-specific 67.8323 48 
btk zdb-gene-070531-1 predicted module-specific 67.4762 49 
rac1b zdb-gene-060312-45 predicted conserved 67.0359 50 
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Supplementary Table S2.4. The top 50 genes of the forelimb module ranked and ordered based 

on the weighted degree. The full gene list is available at 

https://github.com/pasanfernando/Chapter2_datafiles repository. 

Mouse gene 
name 

MGI 
identifier 

Annotation type Module-specific 
or conserved 
status 

Weighted 
degree 

Rank 

bmp4 mgi:88180 direct annotation to the forelimb conserved 47.2641 1 
ctnnb1 mgi:88276 direct annotation to the forelimb module-specific 46.0747 2 
trp53 mgi:98834 direct annotation to the forelimb module-specific 37.8867 3 
shh mgi:98297 direct annotation to the forelimb conserved 37.6249 4 
wnt5a mgi:98958 direct annotation to the forelimb module-specific 35.6754 5 
smad4 mgi:894293 predicted module-specific 34.5294 6 
bmp7 mgi:103302 predicted conserved 34.2132 7 
fgf8 mgi:99604 direct annotation to the forelimb conserved 34.0672 8 
runx2 mgi:99829 direct annotation to the forelimb module-specific 34.0628 9 
fgfr1 mgi:95522 direct annotation to the forelimb conserved 33.436 10 
gli2 mgi:95728 direct annotation to the forelimb conserved 33.0563 11 
gli3 mgi:95729 direct annotation to the forelimb module-specific 32.0078 12 
bmp2 mgi:88177 direct annotation to the forelimb conserved 31.3004 13 
wnt3a mgi:98956 predicted conserved 30.9124 14 
sox9 mgi:98371 direct annotation to the forelimb conserved 29.737 15 
fgfr2 mgi:95523 direct annotation to the forelimb module-specific 29.6869 16 
ihh mgi:96533 direct annotation to the forelimb conserved 29.6653 17 
fgfr3 mgi:95524 direct annotation to the forelimb module-specific 29.5449 18 
nog mgi:104327 predicted module-specific 29.3757 19 
smo mgi:108075 direct annotation to the forelimb conserved 28.7826 20 
wnt7a mgi:98961 direct annotation to the forelimb module-specific 28.1128 21 
smad3 mgi:1201674 direct annotation to the forelimb module-specific 27.969 22 
wnt4 mgi:98957 predicted conserved 27.9668 23 
ptch1 mgi:105373 predicted conserved 27.3374 24 
wnt1 mgi:98953 predicted module-specific 26.4361 25 
bmpr1a mgi:1338938 predicted module-specific 26.0359 26 
vegfa mgi:103178 annotated to a part or bud module-specific 24.9811 27 
chrd mgi:1313268 predicted module-specific 24.6081 28 
col2a1 mgi:88452 direct annotation to the forelimb module-specific 24.2746 29 
fgf9 mgi:104723 direct annotation to the forelimb module-specific 24.0714 30 
msx1 mgi:97168 predicted conserved 23.4172 31 
msx2 mgi:97169 predicted module-specific 22.8361 32 
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fgf10 mgi:1099809 direct annotation to the forelimb conserved 22.7474 33 
tgfb2 mgi:98726 direct annotation to the forelimb module-specific 22.6531 34 
pax3 mgi:97487 direct annotation to the forelimb module-specific 22.5835 35 
pthlh mgi:97800 direct annotation to the forelimb module-specific 22.3993 36 
esr1 mgi:1352467 direct annotation to the forelimb module-specific 22.0893 37 
bmp5 mgi:88181 direct annotation to the forelimb module-specific 21.7889 38 
itgb1 mgi:96610 direct annotation to the forelimb module-specific 21.6904 39 
acvr1 mgi:87911 direct annotation to the forelimb module-specific 20.5535 40 
ctgf mgi:95537 direct annotation to the forelimb conserved 20.3372 41 
lrrk1 mgi:2142227 direct annotation to the forelimb module-specific 20.1363 42 
cdc42 mgi:106211 annotated to a part or bud module-specific 19.6953 43 
twist1 mgi:98872 direct annotation to the forelimb module-specific 19.5487 44 
lrp6 mgi:1298218 direct annotation to the forelimb module-specific 18.1913 45 
fst mgi:95586 predicted module-specific 18.1062 46 
wnt7b mgi:98962 predicted module-specific 17.7777 47 
gdf5 mgi:95688 direct annotation to the forelimb module-specific 17.6851 48 
dkk1 mgi:1329040 direct annotation to the forelimb module-specific 17.3777 49 
gsc mgi:95841 direct annotation to the forelimb module-specific 16.3233 50 
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Supplementary Table S2.5. The top 50 genes of the hindlimb module ranked and ordered based 

on the weighted degree. The full gene list is available at 

https://github.com/pasanfernando/Chapter2_datafiles repository. 

Mouse gene 
name 

MGI identifier Annotation type Module-specific 
or conserved 
status 

Weighted 
degree 

Rank 

trp53 mgi:98834 direct annotation to the hindlimb conserved 82.9324 1 
hras mgi:96224 predicted conserved 72.8342 2 
ctnnb1 mgi:88276 direct annotation to the hindlimb conserved 72.1808 3 
mapk14 mgi:1346865 direct annotation to the hindlimb conserved 71.7856 4 
kras mgi:96680 predicted conserved 70.7748 5 
src mgi:98397 direct annotation to the hindlimb conserved 70.3811 6 
myc mgi:97250 predicted module-specific 66.8072 7 
tnf mgi:104798 direct annotation to the hindlimb module-specific 65.6905 8 
fos mgi:95574 predicted module-specific 64.7904 9 
bmp4 mgi:88180 direct annotation to the hindlimb conserved 63.9989 10 
lepr mgi:104993 direct annotation to the hindlimb module-specific 63.4939 11 
il6 mgi:96559 direct annotation to the hindlimb module-specific 62.6003 12 
runx2 mgi:99829 direct annotation to the hindlimb module-specific 61.843 13 
smad4 mgi:894293 direct annotation to the hindlimb module-specific 58.2585 14 
tgfb1 mgi:98725 predicted module-specific 54.2763 15 
fgfr1 mgi:95522 direct annotation to the hindlimb conserved 53.223 16 
igf1 mgi:96432 predicted module-specific 52.9341 17 
esr1 mgi:1352467 direct annotation to the hindlimb module-specific 52.2754 18 
fgf2 mgi:95516 predicted module-specific 51.2651 19 
vegfa mgi:103178 annotated to a part or bud conserved 50.7476 20 
mmp9 mgi:97011 direct annotation to the hindlimb module-specific 49.7613 21 
smad3 mgi:1201674 annotated to a part or bud conserved 49.4434 22 
casp3 mgi:107739 predicted conserved 49.0774 23 
fgfr2 mgi:95523 direct annotation to the hindlimb conserved 48.7644 24 
itgb1 mgi:96610 direct annotation to the hindlimb module-specific 48.3952 25 
bmp7 mgi:103302 predicted conserved 48.2316 26 
wnt5a mgi:98958 predicted module-specific 48.1588 27 
fgfr3 mgi:95524 direct annotation to the hindlimb module-specific 48.0184 28 
fgf8 mgi:99604 direct annotation to the hindlimb conserved 46.6654 29 
smad2 mgi:108051 predicted conserved 45.6514 30 
pdgfra mgi:97530 predicted module-specific 45.2074 31 
bmp2 mgi:88177 predicted conserved 45.0361 32 
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shh mgi:98297 direct annotation to the hindlimb conserved 44.4006 33 
sox9 mgi:98371 direct annotation to the hindlimb module-specific 43.7136 34 
pten mgi:109583 annotated to a part or bud conserved 43.6208 35 
col1a1 mgi:88467 direct annotation to the hindlimb conserved 43.3734 36 
col2a1 mgi:88452 direct annotation to the hindlimb conserved 43.3479 37 
gli2 mgi:95728 direct annotation to the hindlimb conserved 42.8396 38 
wnt3a mgi:98956 direct annotation to the hindlimb conserved 42.6564 39 
lrrk1 mgi:2142227 direct annotation to the hindlimb module-specific 42.2122 40 
il10 mgi:96537 direct annotation to the hindlimb module-specific 41.3969 41 
il4 mgi:96556 direct annotation to the hindlimb module-specific 41.1804 42 
lep mgi:104663 direct annotation to the hindlimb module-specific 40.6877 43 
pthlh mgi:97800 direct annotation to the hindlimb module-specific 40.5325 44 
tnfsf11 mgi:1100089 direct annotation to the hindlimb module-specific 40.3085 45 
nog mgi:104327 predicted module-specific 39.7063 46 
notch2 mgi:97364 direct annotation to the hindlimb conserved 39.0854 47 
ptch1 mgi:105373 predicted conserved 38.8191 48 
mtor mgi:1928394 annotated to a part or bud conserved 38.6216 49 
egr1 mgi:95295 direct annotation to the hindlimb module-specific 38.4933 50 
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Supplementary Table S2.6. The top 100 enriched Biological Process terms from the Gene 

Ontology for the pectoral fin module-specific genes. The full enriched term list is available at 

https://github.com/pasanfernando/Chapter2_datafiles repository.  

Term Identifier Term name P-value 
GO:0033333 fin development 5.88E-30 
GO:0033339 pectoral fin development 5.97E-24 
GO:0051216 cartilage development 4.67E-20 
GO:0033334 fin morphogenesis 2.69E-17 
GO:0035118 embryonic pectoral fin morphogenesis 3.08E-15 
GO:0035138 pectoral fin morphogenesis 5.77E-14 
GO:0001947 heart looping 1.90E-13 
GO:0007275 multicellular organism development 1.36E-12 
GO:0048703 embryonic viscerocranium morphogenesis 6.36E-12 
GO:0003143 embryonic heart tube morphogenesis 1.68E-11 
GO:0006355 regulation of transcription, DNA-templated 5.96E-11 
GO:0014032 neural crest cell development 3.04E-10 
GO:0007368 determination of left/right symmetry 3.33E-10 
GO:0001756 somitogenesis 1.10E-09 
GO:0007507 heart development 1.61E-09 
GO:0048701 embryonic cranial skeleton morphogenesis 5.80E-09 
GO:2000223 regulation of BMP signaling pathway involved in heart jogging 2.16E-08 
GO:0042476 odontogenesis 3.49E-08 
GO:0009953 dorsal/ventral pattern formation 2.13E-07 
GO:0007422 peripheral nervous system development 3.03E-07 
GO:0016055 Wnt signaling pathway 7.25E-07 
GO:0030166 proteoglycan biosynthetic process 7.54E-07 
GO:0030902 hindbrain development 1.19E-06 
GO:0009880 embryonic pattern specification 1.33E-06 
GO:0043010 camera-type eye development 2.58E-06 
GO:0060028 convergent extension involved in axis elongation 4.11E-06 
GO:0030182 neuron differentiation 6.91E-06 
GO:0060030 dorsal convergence 8.19E-06 
GO:0031290 retinal ganglion cell axon guidance 1.01E-05 
GO:0030198 extracellular matrix organization 1.32E-05 
GO:0001503 ossification 1.64E-05 
GO:0060037 pharyngeal system development 2.01E-05 
GO:0006351 transcription, DNA-templated 2.26E-05 
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GO:0036342 post-anal tail morphogenesis 2.44E-05 
GO:0048666 neuron development 4.11E-05 
GO:0048665 neuron fate specification 5.57E-05 
GO:0015012 heparan sulfate proteoglycan biosynthetic process 5.57E-05 
GO:0048066 developmental pigmentation 7.59E-05 
GO:0050650 chondroitin sulfate proteoglycan biosynthetic process 7.61E-05 
GO:0030900 forebrain development 1.28E-04 
GO:0030901 midbrain development 1.28E-04 
GO:0060042 retina morphogenesis in camera-type eye 1.44E-04 
GO:0048793 pronephros development 1.50E-04 
GO:0048709 oligodendrocyte differentiation 1.65E-04 
GO:0045879 negative regulation of smoothened signaling pathway 1.65E-04 
GO:0048384 retinoic acid receptor signaling pathway 1.65E-04 
GO:0006024 glycosaminoglycan biosynthetic process 1.65E-04 
GO:0001649 osteoblast differentiation 1.65E-04 
GO:0031101 fin regeneration 1.73E-04 
GO:0031017 exocrine pancreas development 2.47E-04 
GO:0007420 brain development 3.89E-04 
GO:0060536 cartilage morphogenesis 4.99E-04 
GO:0048264 determination of ventral identity 5.79E-04 
GO:0021903 rostrocaudal neural tube patterning 6.11E-04 
GO:0001755 neural crest cell migration 6.28E-04 
GO:0043049 otic placode formation 7.62E-04 
GO:0060348 bone development 9.12E-04 
GO:0060351 cartilage development involved in endochondral bone 

morphogenesis 
9.12E-04 

GO:0060070 canonical Wnt signaling pathway 0.00113706 
GO:0007224 smoothened signaling pathway 0.00122997 
GO:0060059 embryonic retina morphogenesis in camera-type eye 0.00122997 
GO:0035462 determination of left/right asymmetry in diencephalon 0.00127048 
GO:0007417 central nervous system development 0.00205425 
GO:0071696 ectodermal placode development 0.0021555 
GO:0045743 positive regulation of fibroblast growth factor receptor signaling 

pathway 
0.0021555 

GO:0003146 heart jogging 0.00241705 
GO:0048596 embryonic camera-type eye morphogenesis 0.00268046 
GO:0031076 embryonic camera-type eye development 0.00268046 
GO:0031016 pancreas development 0.00308488 
GO:0001501 skeletal system development 0.00308488 
GO:0030509 BMP signaling pathway 0.00385573 
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GO:0050769 positive regulation of neurogenesis 0.00389087 
GO:0035775 pronephric glomerulus morphogenesis 0.00389087 
GO:0021986 habenula development 0.00457459 
GO:0021984 adenohypophysis development 0.00457459 
GO:0030903 notochord development 0.00473414 
GO:0060041 retina development in camera-type eye 0.00521292 
GO:0021508 floor plate formation 0.00530953 
GO:0061371 determination of heart left/right asymmetry 0.00572415 
GO:0048699 generation of neurons 0.00609484 
GO:0045892 negative regulation of transcription, DNA-templated 0.00682315 
GO:0060026 convergent extension 0.00682935 
GO:0009952 anterior/posterior pattern specification 0.00722391 
GO:0009948 anterior/posterior axis specification 0.00781325 
GO:0045893 positive regulation of transcription, DNA-templated 0.00844084 
GO:0042472 inner ear morphogenesis 0.00972333 
GO:0008104 protein localization 0.00972333 
GO:0048702 embryonic neurocranium morphogenesis 0.00972333 
GO:0007498 mesoderm development 0.01074824 
GO:0070121 Kupffer's vesicle development 0.0119139 
GO:0007154 cell communication 0.0124591 
GO:0003140 determination of left/right asymmetry in lateral mesoderm 0.01293391 
GO:0060027 convergent extension involved in gastrulation 0.01478156 
GO:0071599 otic vesicle development 0.01529561 
GO:0070278 extracellular matrix constituent secretion 0.01576409 
GO:0055014 atrial cardiac muscle cell development 0.01576409 
GO:0071711 basement membrane organization 0.01576409 
GO:0048840 otolith development 0.01654059 
GO:0030917 midbrain-hindbrain boundary development 0.01915513 
GO:0030514 negative regulation of BMP signaling pathway 0.01915513 
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Supplementary Table S2.7. The top 100 enriched Biological Process terms from the Gene 

Ontology for the pectoral fin conserved genes. The full enriched term list is available at 

https://github.com/pasanfernando/Chapter2_datafiles repository. 

Term identifier Term name  P-value 
GO:0033339 pectoral fin development 1.06E-19 
GO:0048703 embryonic viscerocranium morphogenesis 3.70E-11 
GO:0009953 dorsal/ventral pattern formation 1.73E-10 
GO:0042664 negative regulation of endodermal cell fate specification 1.99E-09 
GO:0010002 cardioblast differentiation 3.57E-09 
GO:0035118 embryonic pectoral fin morphogenesis 3.89E-09 
GO:0048839 inner ear development 1.62E-08 
GO:0051216 cartilage development 3.64E-08 
GO:0007275 multicellular organism development 4.86E-08 
GO:0060041 retina development in camera-type eye 6.00E-08 
GO:0030902 hindbrain development 6.23E-08 
GO:0009952 anterior/posterior pattern specification 1.20E-07 
GO:0003342 proepicardium development 1.29E-07 
GO:0001947 heart looping 2.41E-07 
GO:0043049 otic placode formation 2.45E-07 
GO:0048793 pronephros development 4.23E-07 
GO:0007224 smoothened signaling pathway 4.83E-07 
GO:0031016 pancreas development 1.78E-06 
GO:0001889 liver development 1.97E-06 
GO:0030916 otic vesicle formation 2.80E-06 
GO:0030903 notochord development 3.30E-06 
GO:0021984 adenohypophysis development 3.63E-06 
GO:0007368 determination of left/right symmetry 3.73E-06 
GO:0060070 canonical Wnt signaling pathway 1.11E-05 
GO:0030182 neuron differentiation 1.18E-05 
GO:0048795 swim bladder morphogenesis 3.39E-05 
GO:0030917 midbrain-hindbrain boundary development 3.63E-05 
GO:0001756 somitogenesis 4.81E-05 
GO:0031018 endocrine pancreas development 5.02E-05 
GO:0048557 embryonic digestive tract morphogenesis 5.64E-05 
GO:0042694 muscle cell fate specification 8.45E-05 
GO:0021703 locus ceruleus development 8.45E-05 
GO:0031290 retinal ganglion cell axon guidance 9.49E-05 
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GO:0003007 heart morphogenesis 1.49E-04 
GO:0006355 regulation of transcription, DNA-templated 1.76E-04 
GO:0016055 Wnt signaling pathway 2.39E-04 
GO:0048701 embryonic cranial skeleton morphogenesis 2.49E-04 
GO:0031076 embryonic camera-type eye development 2.52E-04 
GO:0021536 diencephalon development 3.68E-04 
GO:0042476 odontogenesis 4.35E-04 
GO:0048709 oligodendrocyte differentiation 5.06E-04 
GO:0055002 striated muscle cell development 5.06E-04 
GO:0048794 swim bladder development 5.06E-04 
GO:0021508 floor plate formation 5.06E-04 
GO:0001708 cell fate specification 5.83E-04 
GO:0048752 semicircular canal morphogenesis 5.83E-04 
GO:0008015 blood circulation 7.53E-04 
GO:0048702 embryonic neurocranium morphogenesis 9.44E-04 
GO:0060536 cartilage morphogenesis 0.00104762 
GO:0048264 determination of ventral identity 0.00115614 
GO:0036342 post-anal tail morphogenesis 0.00126982 
GO:0009887 organ morphogenesis 0.00126982 
GO:0071599 otic vesicle development 0.00151259 
GO:0009880 embryonic pattern specification 0.00164163 
GO:0045165 cell fate commitment 0.00285445 
GO:0003146 heart jogging 0.00302826 
GO:0060042 retina morphogenesis in camera-type eye 0.00302826 
GO:0000122 negative regulation of transcription from RNA polymerase II 

promoter 
0.00313287 

GO:0008543 fibroblast growth factor receptor signaling pathway 0.00320693 
GO:0007517 muscle organ development 0.00339044 
GO:0001501 skeletal system development 0.00357876 
GO:0035050 embryonic heart tube development 0.00357876 
GO:0040007 growth 0.00377186 
GO:0031017 exocrine pancreas development 0.00396973 
GO:0010862 positive regulation of pathway-restricted SMAD protein 

phosphorylation 
0.00417235 

GO:0060395 SMAD protein signal transduction 0.00459171 
GO:0043408 regulation of MAPK cascade 0.00480842 
GO:0061131 pancreas field specification 0.00482266 
GO:0035777 pronephric distal tubule development 0.00482266 
GO:0003303 BMP signaling pathway involved in heart jogging 0.00482266 
GO:0060876 semicircular canal formation 0.0072255 
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GO:0048618 post-embryonic foregut morphogenesis 0.0072255 
GO:0003170 heart valve development 0.0072255 
GO:0042573 retinoic acid metabolic process 0.0096227 
GO:0001957 intramembranous ossification 0.0096227 
GO:0060956 endocardial cell differentiation 0.0096227 
GO:0035776 pronephric proximal tubule development 0.0096227 
GO:0007267 cell-cell signaling 0.01039994 
GO:0060788 ectodermal placode formation 0.01201428 
GO:0035143 caudal fin morphogenesis 0.01201428 
GO:0016539 intein-mediated protein splicing 0.01201428 
GO:0021523 somatic motor neuron differentiation 0.01201428 
GO:0021587 cerebellum morphogenesis 0.01440024 
GO:0071699 olfactory placode morphogenesis 0.01440024 
GO:0001839 neural plate morphogenesis 0.01440024 
GO:0021628 olfactory nerve formation 0.01440024 
GO:0007411 axon guidance 0.01591333 
GO:0048339 paraxial mesoderm development 0.01678059 
GO:0048385 regulation of retinoic acid receptor signaling pathway 0.01678059 
GO:0021953 central nervous system neuron differentiation 0.01915536 
GO:0006461 protein complex assembly 0.01915536 
GO:0048663 neuron fate commitment 0.01915536 
GO:0050935 iridophore differentiation 0.02152455 
GO:0045892 negative regulation of transcription, DNA-templated 0.02198396 
GO:0021520 spinal cord motor neuron cell fate specification 0.02388818 
GO:0045893 positive regulation of transcription, DNA-templated 0.02464145 
GO:0021986 habenula development 0.0309458 
GO:0032474 otolith morphogenesis 0.0309458 
GO:0006351 transcription, DNA-templated 0.03240686 
GO:0048384 retinoic acid receptor signaling pathway 0.03328729 
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Supplementary Table S2.8. The top 100 enriched Biological Process terms from the Gene 

Ontology for the forelimb conserved genes. The full enriched term list is available at 

https://github.com/pasanfernando/Chapter2_datafiles repository. 

Term identifier Term name P-value 
GO:0045944 positive regulation of transcription from RNA polymerase II 

promoter 
1.13E-19 

GO:0045893 positive regulation of transcription, DNA-templated 7.32E-17 
GO:0007389 pattern specification process 1.23E-15 
GO:0030326 embryonic limb morphogenesis 2.72E-15 
GO:0001503 ossification 1.44E-13 
GO:0010628 positive regulation of gene expression 2.30E-13 
GO:0042475 odontogenesis of dentin-containing tooth 2.99E-13 
GO:0035115 embryonic forelimb morphogenesis 4.31E-13 
GO:0007275 multicellular organism development 1.04E-12 
GO:0007507 heart development 1.41E-12 
GO:0030324 lung development 1.52E-12 
GO:0035116 embryonic hindlimb morphogenesis 3.57E-11 
GO:0048754 branching morphogenesis of an epithelial tube 6.25E-11 
GO:0008285 negative regulation of cell proliferation 9.08E-11 
GO:0001822 kidney development 1.15E-10 
GO:0021904 dorsal/ventral neural tube patterning 2.30E-10 
GO:0001658 branching involved in ureteric bud morphogenesis 3.88E-10 
GO:0000122 negative regulation of transcription from RNA polymerase II 

promoter 
4.34E-10 

GO:0010629 negative regulation of gene expression 1.38E-09 
GO:0001649 osteoblast differentiation 1.80E-09 
GO:0001947 heart looping 1.90E-09 
GO:0042733 embryonic digit morphogenesis 2.80E-09 
GO:0090263 positive regulation of canonical Wnt signaling pathway 3.07E-09 
GO:0008284 positive regulation of cell proliferation 3.45E-09 
GO:0060349 bone morphogenesis 3.91E-09 
GO:0001701 in utero embryonic development 3.97E-09 
GO:0007224 smoothened signaling pathway 4.38E-09 
GO:0043066 negative regulation of apoptotic process 5.41E-09 
GO:0034504 protein localization to nucleus 6.28E-09 
GO:0050679 positive regulation of epithelial cell proliferation 6.64E-09 
GO:0045892 negative regulation of transcription, DNA-templated 6.85E-09 
GO:0030501 positive regulation of bone mineralization 8.41E-09 
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GO:0051216 cartilage development 1.06E-08 
GO:0045595 regulation of cell differentiation 1.11E-08 
GO:0030154 cell differentiation 1.27E-08 
GO:0060021 palate development 1.31E-08 
GO:0030509 BMP signaling pathway 1.51E-08 
GO:0060445 branching involved in salivary gland morphogenesis 1.58E-08 
GO:0002062 chondrocyte differentiation 2.61E-08 
GO:0045597 positive regulation of cell differentiation 2.61E-08 
GO:0009953 dorsal/ventral pattern formation 3.62E-08 
GO:0007267 cell-cell signaling 4.19E-08 
GO:0009887 organ morphogenesis 5.88E-08 
GO:0009952 anterior/posterior pattern specification 6.92E-08 
GO:0001708 cell fate specification 1.01E-07 
GO:0030902 hindbrain development 1.22E-07 
GO:0048646 anatomical structure formation involved in morphogenesis 1.22E-07 
GO:0060441 epithelial tube branching involved in lung morphogenesis 1.22E-07 
GO:0009880 embryonic pattern specification 1.22E-07 
GO:0003007 heart morphogenesis 1.42E-07 
GO:0009954 proximal/distal pattern formation 1.71E-07 
GO:0042476 odontogenesis 2.00E-07 
GO:0042127 regulation of cell proliferation 2.23E-07 
GO:0042472 inner ear morphogenesis 2.57E-07 
GO:0045165 cell fate commitment 2.57E-07 
GO:0021983 pituitary gland development 3.11E-07 
GO:0007368 determination of left/right symmetry 4.65E-07 
GO:0002053 positive regulation of mesenchymal cell proliferation 7.42E-07 
GO:0060070 canonical Wnt signaling pathway 7.45E-07 
GO:0001656 metanephros development 8.28E-07 
GO:0030901 midbrain development 1.02E-06 
GO:0032355 response to estradiol 1.40E-06 
GO:0001823 mesonephros development 1.44E-06 
GO:0090090 negative regulation of canonical Wnt signaling pathway 1.47E-06 
GO:0070374 positive regulation of ERK1 and ERK2 cascade 1.47E-06 
GO:0045666 positive regulation of neuron differentiation 1.54E-06 
GO:0061053 somite development 2.38E-06 
GO:0001759 organ induction 2.97E-06 
GO:0048538 thymus development 3.74E-06 
GO:0014032 neural crest cell development 4.43E-06 
GO:0006355 regulation of transcription, DNA-templated 8.35E-06 
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GO:0048557 embryonic digestive tract morphogenesis 8.63E-06 
GO:0045669 positive regulation of osteoblast differentiation 8.77E-06 
GO:0050680 negative regulation of epithelial cell proliferation 1.10E-05 
GO:0060425 lung morphogenesis 1.31E-05 
GO:0032967 positive regulation of collagen biosynthetic process 1.68E-05 
GO:0030878 thyroid gland development 1.68E-05 
GO:0060129 thyroid-stimulating hormone-secreting cell differentiation 2.18E-05 
GO:0021938 smoothened signaling pathway involved in regulation of 

cerebellar granule cell precursor cell proliferation 
2.18E-05 

GO:0030900 forebrain development 2.23E-05 
GO:0071542 dopaminergic neuron differentiation 2.35E-05 
GO:0045880 positive regulation of smoothened signaling pathway 2.60E-05 
GO:0006351 transcription, DNA-templated 2.67E-05 
GO:0001837 epithelial to mesenchymal transition 2.88E-05 
GO:0031016 pancreas development 3.48E-05 
GO:0060684 epithelial-mesenchymal cell signaling 3.63E-05 
GO:0010463 mesenchymal cell proliferation 3.63E-05 
GO:0060513 prostatic bud formation 3.63E-05 
GO:0060665 regulation of branching involved in salivary gland morphogenesis 

by mesenchymal-epithelial signaling 
3.63E-05 

GO:0071773 cellular response to BMP stimulus 4.17E-05 
GO:0030177 positive regulation of Wnt signaling pathway 4.93E-05 
GO:0016055 Wnt signaling pathway 5.27E-05 
GO:0001501 skeletal system development 5.27E-05 
GO:0030879 mammary gland development 5.35E-05 
GO:0008543 fibroblast growth factor receptor signaling pathway 7.77E-05 
GO:0001525 angiogenesis 9.09E-05 
GO:0060485 mesenchyme development 1.01E-04 
GO:0021978 telencephalon regionalization 1.01E-04 
GO:0042487 regulation of odontogenesis of dentin-containing tooth 1.01E-04 
GO:0001657 ureteric bud development 1.08E-04 
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Supplementary Table S2.9. The top 100 enriched Biological Process terms from the Gene 

Ontology for the forelimb module-specific genes. The full enriched term list is available at 

https://github.com/pasanfernando/Chapter2_datafiles repository. 

Term identifier Term name P-value 
GO:0001501 skeletal system development 4.17E-37 
GO:0042733 embryonic digit morphogenesis 2.51E-35 
GO:0030326 embryonic limb morphogenesis 4.31E-34 
GO:0035115 embryonic forelimb morphogenesis 4.06E-27 
GO:0007275 multicellular organism development 6.29E-23 
GO:0045944 positive regulation of transcription from RNA polymerase II promoter 6.62E-22 
GO:0000122 negative regulation of transcription from RNA polymerase II promoter 1.17E-19 
GO:0051216 cartilage development 1.71E-19 
GO:0009953 dorsal/ventral pattern formation 7.65E-19 
GO:0060021 palate development 2.57E-16 
GO:0060173 limb development 1.17E-15 
GO:0009952 anterior/posterior pattern specification 1.39E-15 
GO:0035108 limb morphogenesis 1.54E-15 
GO:0045893 positive regulation of transcription, DNA-templated 3.23E-15 
GO:0001958 endochondral ossification 3.95E-15 
GO:0032332 positive regulation of chondrocyte differentiation 5.07E-15 
GO:0030509 BMP signaling pathway 9.40E-15 
GO:0002062 chondrocyte differentiation 2.31E-14 
GO:0009954 proximal/distal pattern formation 4.06E-14 
GO:0001503 ossification 4.29E-14 
GO:0001843 neural tube closure 5.04E-14 
GO:0002053 positive regulation of mesenchymal cell proliferation 5.74E-14 
GO:0050680 negative regulation of epithelial cell proliferation 3.21E-13 
GO:0008284 positive regulation of cell proliferation 1.23E-12 
GO:0001701 in utero embryonic development 3.32E-12 
GO:0045669 positive regulation of osteoblast differentiation 3.57E-12 
GO:0001822 kidney development 4.12E-12 
GO:0048701 embryonic cranial skeleton morphogenesis 4.34E-12 
GO:0060348 bone development 8.46E-12 
GO:0048706 embryonic skeletal system development 1.62E-11 
GO:0035116 embryonic hindlimb morphogenesis 2.86E-11 
GO:0042475 odontogenesis of dentin-containing tooth 3.29E-11 
GO:0016055 Wnt signaling pathway 5.78E-11 
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GO:0035136 forelimb morphogenesis 5.83E-11 
GO:0021915 neural tube development 7.86E-11 
GO:0060070 canonical Wnt signaling pathway 9.68E-11 
GO:0030199 collagen fibril organization 1.49E-10 
GO:0007507 heart development 1.71E-10 
GO:0035137 hindlimb morphogenesis 1.73E-10 
GO:0048704 embryonic skeletal system morphogenesis 1.74E-10 
GO:0002063 chondrocyte development 2.81E-10 
GO:0007389 pattern specification process 3.02E-10 
GO:0030324 lung development 3.93E-10 
GO:0048589 developmental growth 1.76E-09 
GO:0008285 negative regulation of cell proliferation 2.24E-09 
GO:0030501 positive regulation of bone mineralization 2.84E-09 
GO:0048705 skeletal system morphogenesis 3.29E-09 
GO:0003151 outflow tract morphogenesis 3.29E-09 
GO:0007179 transforming growth factor beta receptor signaling pathway 4.13E-09 
GO:0001756 somitogenesis 4.60E-09 
GO:0050679 positive regulation of epithelial cell proliferation 4.72E-09 
GO:0090090 negative regulation of canonical Wnt signaling pathway 6.76E-09 
GO:0009887 organ morphogenesis 1.37E-08 
GO:0045880 positive regulation of smoothened signaling pathway 1.62E-08 
GO:0030514 negative regulation of BMP signaling pathway 1.77E-08 
GO:0090263 positive regulation of canonical Wnt signaling pathway 2.36E-08 
GO:0060065 uterus development 2.41E-08 
GO:0001658 branching involved in ureteric bud morphogenesis 2.52E-08 
GO:0001502 cartilage condensation 3.41E-08 
GO:0007411 axon guidance 3.82E-08 
GO:0001568 blood vessel development 3.97E-08 
GO:0045165 cell fate commitment 4.50E-08 
GO:0031069 hair follicle morphogenesis 5.13E-08 
GO:0030282 bone mineralization 5.13E-08 
GO:0045778 positive regulation of ossification 8.66E-08 
GO:0030154 cell differentiation 8.79E-08 
GO:0006355 regulation of transcription, DNA-templated 1.65E-07 
GO:0001649 osteoblast differentiation 2.22E-07 
GO:0003007 heart morphogenesis 2.58E-07 
GO:0071542 dopaminergic neuron differentiation 3.87E-07 
GO:1904948 midbrain dopaminergic neuron differentiation 6.89E-07 
GO:0060349 bone morphogenesis 7.21E-07 
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GO:0048566 embryonic digestive tract development 7.74E-07 
GO:0032331 negative regulation of chondrocyte differentiation 7.74E-07 
GO:0060351 cartilage development involved in endochondral bone morphogenesis 1.23E-06 
GO:0001707 mesoderm formation 1.26E-06 
GO:0007050 cell cycle arrest 1.62E-06 
GO:0006351 transcription, DNA-templated 1.70E-06 
GO:0055007 cardiac muscle cell differentiation 1.77E-06 
GO:0045879 negative regulation of smoothened signaling pathway 1.79E-06 
GO:0008589 regulation of smoothened signaling pathway 2.30E-06 
GO:0048568 embryonic organ development 2.85E-06 
GO:0030901 midbrain development 2.85E-06 
GO:0007492 endoderm development 2.85E-06 
GO:0010628 positive regulation of gene expression 3.14E-06 
GO:0032330 regulation of chondrocyte differentiation 3.17E-06 
GO:0010468 regulation of gene expression 3.18E-06 
GO:0042127 regulation of cell proliferation 3.53E-06 
GO:0042474 middle ear morphogenesis 3.66E-06 
GO:0003148 outflow tract septum morphogenesis 3.66E-06 
GO:0036342 post-anal tail morphogenesis 4.53E-06 
GO:0060272 embryonic skeletal joint morphogenesis 4.72E-06 
GO:0001525 angiogenesis 6.05E-06 
GO:0007224 smoothened signaling pathway 7.47E-06 
GO:0001657 ureteric bud development 8.54E-06 
GO:0010862 positive regulation of pathway-restricted SMAD protein phosphorylation 8.54E-06 
GO:0045599 negative regulation of fat cell differentiation 8.54E-06 
GO:0007267 cell-cell signaling 9.90E-06 
GO:0060395 SMAD protein signal transduction 1.28E-05 
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Supplementary Table S2.10. The top 100 enriched Uberon terms for the pectoral fin module-

specific genes. The full enriched term list is available at 

https://github.com/pasanfernando/Chapter2_datafiles repository.  

Uberon identifier Term name P-value 
uberon 0000151 pectoral fin 1.45E-158 
uberon 0005886 post-hyoid pharyngeal arch skeleton 5.01E-26 
uberon 0003102 surface structure 1.65E-20 
uberon 0011610 ceratohyal cartilage 3.13E-19 
uberon 2000040 median fin fold 4.47E-17 
uberon 0001708 jaw skeleton 4.83E-16 
uberon 4000163 anal fin 2.44E-14 
uberon 0003107 meckel's cartilage 9.41E-14 
uberon 0003097 dorsal fin 2.89E-11 
uberon 0008896 post-hyoid pharyngeal arch 4.39E-11 
uberon 0011004 pharyngeal arch cartilage 5.36E-11 
uberon 4000164 caudal fin 6.11E-11 
uberon 4000172 lepidotrichium 1.70E-10 
uberon 0000468 multicellular organism 3.18E-10 
uberon 0005419 pectoral appendage bud 5.05E-10 
uberon 0001840 semicircular canal 4.11E-09 
uberon 0000033 head 4.18E-08 
uberon 0004752 palatoquadrate cartilage 1.65E-07 
uberon 0000152 pelvic fin 1.73E-07 
uberon 2001069 ventral fin fold 4.17E-07 
uberon 0001846 internal ear 5.16E-07 
uberon 0000165 mouth 8.69E-07 
uberon 0003278 skeleton of lower jaw 7.86E-06 
uberon 0001703 neurocranium 1.01E-05 
uberon 2000694 ceratobranchial 5 tooth 1.07E-05 
uberon 0001032 sensory system 2.63E-05 
uberon 0002533 post-anal tail bud 3.01E-05 
uberon 0011242 ethmoid cartilage 3.21E-05 
uberon 0009635 parachordal cartilage 4.32E-05 
uberon 0011607 hyomandibular cartilage 5.16E-05 
uberon 4000174 caudal fin lepidotrichium 5.88E-05 
uberon 0002240 spinal cord 8.58E-05 
uberon 0004741 cleithrum 9.86E-05 
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uberon 2001516 ceratobranchial cartilage 0.00012274 
uberon 0001016 nervous system 0.00015561 
uberon 0000966 retina 0.0001935 
uberon 2005317 pectoral fin fold 0.00020788 
uberon 0003051 ear vesicle 0.00024665 
uberon 0005884 hyoid arch skeleton 0.00026962 
uberon 2001239 ceratobranchial 5 bone 0.00029839 
uberon 0001894 diencephalon 0.00030376 
uberon 0004753 scapulocoracoid 0.00031826 
uberon 0006860 swim bladder 0.00034864 
uberon 0002028 hindbrain 0.00035814 
uberon 0001890 forebrain 0.00036888 
uberon 0003099 cranial neural crest 0.00038728 
uberon 0007215 trabecula cranii 0.00044491 
uberon 0000941 cranial nerve ii 0.00049253 
uberon 2001821 notochord posterior region 0.00065456 
uberon 0005421 pectoral appendage apical ectodermal ridge 0.000661 
uberon 2000250 opercle 0.0006919 
uberon 0003931 diencephalic white matter 0.00089287 
uberon 0001898 hypothalamus 0.00095346 
uberon 0003011 facial motor nucleus 0.00095346 
uberon 0003936 postoptic commissure 0.00102597 
uberon 2002193 dorsolateral septum 0.00112865 
uberon 0005729 pectoral appendage field 0.00112865 
uberon 0000044 dorsal root ganglion 0.00116026 
uberon 0000019 camera-type eye 0.00154635 
uberon 2005222 ventral larval melanophore stripe 0.00176204 
uberon 0005598 trunk somite 0.00176204 
uberon 0003114 pharyngeal arch 3 0.00176204 
uberon 0003068 axial mesoderm 0.00176204 
uberon 4000175 pectoral fin lepidotrichium 0.00176204 
uberon 0001905 pineal body 0.00196393 
uberon 0003079 floor plate 0.00206531 
uberon 0003901 horizontal septum 0.00232987 
uberon 0006334 posterior lateral line 0.00246051 
uberon 0003056 pre-chordal neural plate 0.00257904 
uberon 0002329 somite 0.00284081 
uberon 0007812 post-anal tail 0.00318555 
uberon 0002328 notochord 0.00334979 
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uberon 0009621 tail somite 0.00359526 
uberon 0001908 optic tract 0.00359526 
uberon 4000176 anal fin lepidotrichium 0.00359526 
uberon 0000935 anterior commissure 0.00364652 
uberon 0001264 pancreas 0.00371816 
uberon 2001256 lateral floor plate 0.00482413 
uberon 0003075 neural plate 0.00542672 
uberon 0011778 motor nucleus of vagal nerve 0.00624516 
uberon 2000356 gill raker 0.00624516 
uberon 0010741 bone of pectoral complex 0.00624516 
uberon 0006597 quadrate bone 0.00627714 
uberon 0000926 mesoderm 0.00731927 
uberon 0000925 endoderm 0.00731927 
uberon 0003077 paraxial mesoderm 0.00796392 
uberon 2001456 pectoral fin endoskeletal disc 0.00796392 
uberon 0004880 chordamesoderm 0.00796392 
uberon 0005362 vagus x ganglion 0.00796392 
uberon 0003061 blood island 0.00963146 
uberon 0011615 basihyal cartilage 0.00963146 
uberon 2000073 somite 5 0.01018278 
uberon 0010710 pectoral fin skeleton 0.01018278 
uberon 0004375 bone of free limb or fin 0.01018278 
uberon 2007008 ventral intermandibularis anterior 0.01018278 
uberon 2007048 ventral intermandibularis posterior 0.01018278 
uberon 0003117 pharyngeal arch 6 0.01018278 
uberon 0002222 perichondrium 0.01018278 
uberon 0000948 heart 0.01130549 
uberon 0002196 adenohypophysis 0.0120689 
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Supplementary Table S2.11. The top 100 enriched Uberon terms for the pectoral fin conserved 

genes. The full enriched term list is available at 

https://github.com/pasanfernando/Chapter2_datafiles repository.  

Uberon identifier Term name P-value 
uberon 0000151 pectoral fin 2.85E-22 
uberon 2001456 pectoral fin endoskeletal disc 5.23E-10 
uberon 2001516 ceratobranchial cartilage 2.84E-09 
uberon 0011242 ethmoid cartilage 2.84E-09 
uberon 0005419 pectoral appendage bud 6.37E-09 
uberon 0003107 meckel's cartilage 1.62E-08 
uberon 2000250 opercle 1.75E-08 
uberon 0003051 ear vesicle 2.68E-08 
uberon 0004752 palatoquadrate cartilage 2.68E-08 
uberon 0008896 post-hyoid pharyngeal arch 3.69E-08 
uberon 0007215 trabecula cranii 4.46E-08 
uberon 0001708 jaw skeleton 8.85E-08 
uberon 0011607 hyomandibular cartilage 1.66E-07 
uberon 0003079 floor plate 2.59E-07 
uberon 0007812 post-anal tail 4.23E-07 
uberon 0011610 ceratohyal cartilage 8.66E-07 
uberon 0002329 somite 2.05E-06 
uberon 2000558 posterior macula 2.43E-06 
uberon 0005945 neurocranial trabecula 4.92E-06 
uberon 0001049 neural tube 6.55E-06 
uberon 0001264 pancreas 7.13E-06 
uberon 0001976 epithelium of esophagus 1.02E-05 
uberon 0002348 epicardium 1.02E-05 
uberon 2005409 pars superior ear 1.02E-05 
uberon 0007831 pectoral girdle skeleton 2.43E-05 
uberon 0002531 paired fin bud 2.43E-05 
uberon 0002328 notochord 3.42E-05 
uberon 0003901 horizontal septum 3.43E-05 
uberon 2001089 myoseptum 4.54E-05 
uberon 0004742 dentary 4.74E-05 
uberon 0007329 pancreatic duct 6.29E-05 
uberon 2000168 anterior macula 8.13E-05 
uberon 0000959 optic chiasma 8.13E-05 
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uberon 0003069 otic placode 8.47E-05 
uberon 0005507 rhombomere 3 0.00010303 
uberon 0005886 post-hyoid pharyngeal arch skeleton 0.00012482 
uberon 0011615 basihyal cartilage 0.00013041 
uberon 0001703 neurocranium 0.00013041 
uberon 0000468 multicellular organism 0.000148 
uberon 0003098 optic stalk 0.00015702 
uberon 2001239 ceratobranchial 5 bone 0.00018976 
uberon 0005515 rhombomere 5 0.00022664 
uberon 0009635 parachordal cartilage 0.00022664 
uberon 0002533 post-anal tail bud 0.00022939 
uberon 0002241 chondrocranium 0.00026786 
uberon 0000965 lens of camera-type eye 0.00033083 
uberon 0004741 cleithrum 0.00036419 
uberon 0004291 heart rudiment 0.00036419 
uberon 2000422 retroarticular 0.00045298 
uberon 2001425 basal plate cartilage 0.00045298 
uberon 0002087 atrioventricular canal 0.00054642 
uberon 0006860 swim bladder 0.00061179 
uberon 0001135 smooth muscle tissue 0.00067652 
uberon 0000948 heart 0.00071284 
uberon 0002107 liver 0.00078239 
uberon 0003278 skeleton of lower jaw 0.00083833 
uberon 0001846 internal ear 0.00090271 
uberon 2000657 entopterygoid 0.00094304 
uberon 0001900 ventral thalamus 0.00094304 
uberon 0001043 esophagus 0.00094304 
uberon 4000175 pectoral fin lepidotrichium 0.00094304 
uberon 2000694 ceratobranchial 5 tooth 0.00096343 
uberon 0000935 anterior commissure 0.00106543 
uberon 0002407 pericardium 0.00112019 
uberon 0001277 intestinal epithelium 0.00117402 
uberon 0005412 optic fissure 0.00117402 
uberon 0002394 bile duct 0.00125195 
uberon 0005387 olfactory glomerulus 0.00125195 
uberon 0000058 duct 0.00125195 
uberon 0003936 postoptic commissure 0.00141162 
uberon 0003091 thyroid primordium 0.00160269 
uberon 0000936 posterior commissure 0.00160269 
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uberon 0004753 scapulocoracoid 0.00160269 
uberon 0007274 crista of ampulla of anterior semicircular duct of membranous 

laybrinth 
0.00199471 

uberon 2001256 lateral floor plate 0.00199471 
uberon 0000931 proctodeum 0.00199471 
uberon 0010170 region of neural crest 0.00242745 
uberon 0002342 neural crest 0.00242745 
uberon 2000040 median fin fold 0.00265588 
uberon 0003077 paraxial mesoderm 0.00290037 
uberon 2001076 intestinal bulb 0.00290037 
uberon 0005305 thyroid follicle 0.00290037 
uberon 0011611 ceratohyal bone 0.00290037 
uberon 0003052 midbrain-hindbrain boundary 0.00393324 
uberon 0002397 maxilla 0.00455478 
uberon 0011606 hyomandibular bone 0.00455478 
uberon 0003932 cartilage element of chondrocranium 0.00455478 
uberon 2000476 branchiostegal ray 0.00455478 
uberon 0003072 optic cup 0.00455478 
uberon 2001069 ventral fin fold 0.00494971 
uberon 0002518 otolith organ 0.00518303 
uberon 0001213 intestinal villus 0.00518303 
uberon 0001997 olfactory epithelium 0.0058488 
uberon 0004117 pharyngeal pouch 0.0058488 
uberon 0004740 basibranchial bone 0.00655156 
uberon 0004745 parasphenoid 0.00655156 
uberon 0001891 midbrain 0.00826705 
uberon 0004739 pronephric glomerulus 0.0105616 
uberon 0003081 lateral plate mesoderm 0.0106027 
uberon 0001032 sensory system 0.01156592 
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Supplementary Table S2.12. The top 100 enriched Uberon terms for the forelimb conserved 

genes. The full enriched term list is available at 

https://github.com/pasanfernando/Chapter2_datafiles repository.  

Uberon identifier Term name P-value 
uberon 0002102 forelimb 4.43E-37 
uberon 0001708 jaw skeleton 1.16E-28 
uberon 0003128 cranium 4.11E-28 
uberon 0011156 facial skeleton 1.81E-27 
uberon 0002470 autopod region 3.24E-26 
uberon 0005944 axial skeleton plus cranial skeleton 4.09E-26 
uberon 0007811 craniocervical region 1.04E-25 
uberon 0002091 appendicular skeleton 2.32E-25 
uberon 0002544 digit 1.23E-24 
uberon 0001434 skeletal system 1.90E-22 
uberon 0000165 mouth 5.07E-22 
uberon 0001684 mandible 2.12E-21 
uberon 0002103 hindlimb 2.86E-21 
uberon 0004716 conceptus 7.68E-21 
uberon 0001456 face 2.78E-20 
uberon 0000033 head 1.73E-19 
uberon 0001690 ear 1.81E-19 
uberon 0001716 secondary palate 2.24E-19 
uberon 0001703 neurocranium 2.60E-19 
uberon 0003822 forelimb stylopod 1.00E-18 
uberon 0002105 vestibulo-auditory system 1.84E-18 
uberon 0001756 middle ear 4.24E-17 
uberon 0002397 maxilla 8.19E-17 
uberon 0001007 digestive system 1.15E-16 
uberon 0003216 hard palate 4.95E-16 
uberon 0005619 secondary palatal shelf 5.08E-16 
uberon 0002418 cartilage tissue 1.04E-15 
uberon 0001049 neural tube 1.98E-15 
uberon 0003823 hindlimb zeugopod 4.07E-15 
uberon 0005871 palatine process of maxilla 9.49E-15 
uberon 0006849 scapula 1.02E-14 
uberon 0003252 thoracic rib cage 3.52E-14 
uberon 0000975 sternum 5.39E-14 
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uberon 0001446 fibula 1.03E-13 
uberon 0000976 humerus 1.44E-13 
uberon 0001890 forebrain 4.82E-13 
uberon 0001004 respiratory system 5.98E-13 
uberon 0003107 meckel's cartilage 8.30E-13 
uberon 0000209 tetrapod frontal bone 2.05E-12 
uberon 0005417 forelimb bud 2.47E-12 
uberon 0003450 upper jaw incisor 2.70E-12 
uberon 0002228 rib 2.77E-12 
uberon 0006428 basisphenoid bone 2.84E-12 
uberon 0001677 sphenoid bone 2.91E-12 
uberon 0000955 brain 7.90E-12 
uberon 0005062 neural fold 1.18E-11 
uberon 0002218 tympanic ring 1.38E-11 
uberon 0001066 intervertebral disk 1.55E-11 
uberon 0001689 malleus bone 2.21E-11 
uberon 0001723 tongue 2.31E-11 
uberon 0000922 embryo 2.75E-11 
uberon 0002517 basicranium 3.02E-11 
uberon 0004535 cardiovascular system 3.29E-11 
uberon 0000979 tibia 3.38E-11 
uberon 0001681 nasal bone 4.41E-11 
uberon 0002104 visual system 6.79E-11 
uberon 0000383 musculature of body 1.18E-10 
uberon 0001424 ulna 1.39E-10 
uberon 0003655 molar tooth 1.56E-10 
uberon 0000012 somatic nervous system 1.56E-10 
uberon 0002407 pericardium 1.62E-10 
uberon 0006207 aortico-pulmonary spiral septum 2.18E-10 
uberon 0000004 nose 2.59E-10 
uberon 0002012 pulmonary artery 2.72E-10 
uberon 0004356 apical ectodermal ridge 3.54E-10 
uberon 0008828 presphenoid bone 4.91E-10 
uberon 0000401 mandibular ramus 5.74E-10 
uberon 0005620 primary palate 7.31E-10 
uberon 0000080 mesonephros 8.46E-10 
uberon 0003451 lower jaw incisor 1.03E-09 
uberon 0000309 body wall 1.16E-09 
uberon 0001737 larynx 1.36E-09 
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uberon 0000948 heart 1.47E-09 
uberon 0002416 integumental system 1.49E-09 
uberon 0006772 long bone epiphyseal plate hypertrophic zone 1.72E-09 
uberon 0004347 limb bud 2.09E-09 
uberon 0001435 carpal bone 2.26E-09 
uberon 0004362 pharyngeal arch 1 2.55E-09 
uberon 0002516 epiphyseal plate 3.17E-09 
uberon 0001676 occipital bone 3.27E-09 
uberon 0001423 radius bone 3.77E-09 
uberon 0003697 abdominal wall 3.77E-09 
uberon 0001738 thyroid cartilage 4.08E-09 
uberon 0001894 diencephalon 4.44E-09 
uberon 0004657 mandible condylar process 6.08E-09 
uberon 0005175 chest organ 6.17E-09 
uberon 0001682 palatine bone 6.18E-09 
uberon 0002087 atrioventricular canal 6.48E-09 
uberon 0001844 cochlea 8.06E-09 
uberon 0004649 sphenoid bone pterygoid process 8.79E-09 
uberon 0006721 alisphenoid bone 8.79E-09 
uberon 0003221 phalanx 8.89E-09 
uberon 0000019 camera-type eye 1.19E-08 
uberon 0000210 tetrapod parietal bone 1.46E-08 
uberon 0001008 renal system 1.66E-08 
uberon 0010380 enteric nerve 1.70E-08 
uberon 0003604 trachea cartilage 1.98E-08 
uberon 0001688 incus bone 1.98E-08 
uberon 0002328 notochord 2.23E-08 
uberon 0003075 neural plate 2.30E-08 
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Supplementary Table S2.13. The top 100 enriched Uberon terms for the forelimb module-

specific genes. The full enriched term list is available at 

https://github.com/pasanfernando/Chapter2_datafiles repository.  

Uberon identifier Term name P-value 
uberon 0002102 forelimb 1.10E-239 
uberon 0002091 appendicular skeleton 2.35E-177 
uberon 0002103 hindlimb 1.51E-122 
uberon 0000976 humerus 8.36E-120 
uberon 0003822 forelimb stylopod 4.90E-119 
uberon 0001434 skeletal system 1.79E-113 
uberon 0001424 ulna 1.34E-111 
uberon 0001423 radius bone 1.77E-102 
uberon 0003823 hindlimb zeugopod 2.32E-91 
uberon 0005944 axial skeleton plus cranial skeleton 2.97E-76 
uberon 0000979 tibia 3.92E-76 
uberon 0002470 autopod region 3.30E-72 
uberon 0000376 hindlimb stylopod 3.42E-72 
uberon 0003252 thoracic rib cage 4.48E-72 
uberon 0000981 femur 6.47E-70 
uberon 0003128 cranium 6.45E-68 
uberon 0007811 craniocervical region 1.29E-66 
uberon 0002544 digit 4.86E-63 
uberon 0011156 facial skeleton 6.22E-57 
uberon 0002228 rib 2.29E-56 
uberon 0003221 phalanx 1.11E-54 
uberon 0001446 fibula 4.66E-53 
uberon 0000165 mouth 8.61E-53 
uberon 0001456 face 1.27E-52 
uberon 0001708 jaw skeleton 4.02E-50 
uberon 0000033 head 5.72E-50 
uberon 0001703 neurocranium 6.78E-50 
uberon 0002516 epiphyseal plate 3.16E-49 
uberon 0002374 metacarpal bone 2.51E-47 
uberon 0001684 mandible 1.92E-42 
uberon 0000975 sternum 3.11E-42 
uberon 0004716 conceptus 9.92E-42 
uberon 0002471 zeugopod 6.47E-37 
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uberon 0006772 long bone epiphyseal plate hypertrophic zone 1.10E-36 
uberon 0001007 digestive system 3.07E-34 
uberon 0001435 carpal bone 4.61E-34 
uberon 0001448 metatarsal bone 1.16E-33 
uberon 0001716 secondary palate 1.57E-32 
uberon 0001004 respiratory system 1.39E-29 
uberon 0002483 trabecular bone tissue 8.58E-29 
uberon 0002517 basicranium 2.16E-27 
uberon 0002397 maxilla 2.54E-27 
uberon 0006333 snout 2.88E-27 
uberon 0006849 scapula 5.91E-26 
uberon 0001049 neural tube 9.50E-25 
uberon 0001130 vertebral column 9.92E-25 
uberon 0002498 deltopectoral crest 1.29E-24 
uberon 0001105 clavicle bone 2.09E-24 
uberon 0001677 sphenoid bone 4.67E-24 
uberon 0001676 occipital bone 2.17E-23 
uberon 0002418 cartilage tissue 9.31E-23 
uberon 0001690 ear 1.69E-22 
uberon 0003216 hard palate 2.87E-22 
uberon 0000922 embryo 5.19E-22 
uberon 0002105 vestibulo-auditory system 7.47E-22 
uberon 0004535 cardiovascular system 7.51E-22 
uberon 0006771 long bone epiphyseal plate proliferative zone 1.65E-20 
uberon 0001095 caudal vertebra 1.77E-20 
uberon 0003861 neural arch 2.07E-20 
uberon 0007812 post-anal tail 2.78E-20 
uberon 0004347 limb bud 3.20E-20 
uberon 0004356 apical ectodermal ridge 3.60E-20 
uberon 0001008 renal system 4.07E-20 
uberon 0000004 nose 4.88E-20 
uberon 0001756 middle ear 1.32E-19 
uberon 0000014 zone of skin 2.28E-19 
uberon 0002229 interparietal bone 7.07E-19 
uberon 0001681 nasal bone 7.20E-18 
uberon 0001711 eyelid 1.21E-17 
uberon 0000210 tetrapod parietal bone 2.18E-17 
uberon 0000159 anal canal 2.67E-17 
uberon 0002048 lung 2.80E-17 
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uberon 0002412 vertebra 3.27E-17 
uberon 0003461 shoulder bone 3.27E-17 
uberon 0000209 tetrapod frontal bone 4.02E-17 
uberon 0001447 tarsal bone 1.06E-16 
uberon 0002104 visual system 1.24E-16 
uberon 0000982 skeletal joint 1.27E-16 
uberon 0007830 pelvic girdle bone/zone 2.36E-16 
uberon 0002208 sternebra 1.75E-15 
uberon 0002446 patella 1.80E-15 
uberon 0001066 intervertebral disk 3.19E-15 
uberon 0000924 ectoderm 3.86E-15 
uberon 0001723 tongue 5.35E-15 
uberon 0000383 musculature of body 6.69E-15 
uberon 0001439 compact bone tissue 7.86E-15 
uberon 0000019 camera-type eye 7.88E-15 
uberon 0001245 anus 8.40E-15 
uberon 0000947 aorta 2.38E-14 
uberon 0006430 xiphoid cartilage 2.45E-14 
uberon 0002113 kidney 2.52E-14 
uberon 0006428 basisphenoid bone 3.81E-14 
uberon 0001678 temporal bone 4.02E-14 
uberon 0000012 somatic nervous system 4.20E-14 
uberon 0008867 trabecular network of bone 5.36E-14 
uberon 0002347 thoracic vertebra 6.04E-14 
uberon 0002413 cervical vertebra 1.90E-13 
uberon 0001075 bony vertebral centrum 1.94E-13 
uberon 0004747 supraoccipital bone 2.00E-13 
uberon 0000323 late embryo 2.03E-13 
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Supplementary Table S2.14. The enriched Biological Process terms from the Gene Ontology for 

the mouse orthologs of the pectoral fin module-specific genes. 

Term identifier Term name P-value 
GO:0007275 multicellular organism development 5.68E-14 
GO:0045944 positive regulation of transcription from RNA polymerase II promoter 3.32E-10 
GO:0009887 organ morphogenesis 6.91E-09 
GO:0006355 regulation of transcription, DNA-templated 4.00E-08 
GO:0006351 transcription, DNA-templated 3.72E-07 
GO:0060070 canonical Wnt signaling pathway 4.94E-07 
GO:0043588 skin development 6.59E-07 
GO:0042475 odontogenesis of dentin-containing tooth 1.08E-06 
GO:0006357 regulation of transcription from RNA polymerase II promoter 1.41E-06 
GO:0045893 positive regulation of transcription, DNA-templated 1.22E-05 
GO:0030154 cell differentiation 1.67E-05 
GO:0016055 Wnt signaling pathway 1.91E-05 
GO:0021766 hippocampus development 4.51E-05 
GO:0010628 positive regulation of gene expression 5.57E-05 
GO:0000122 negative regulation of transcription from RNA polymerase II promoter 1.37E-04 
GO:0090090 negative regulation of canonical Wnt signaling pathway 2.21E-04 
GO:0035904 aorta development 3.56E-04 
GO:0006024 glycosaminoglycan biosynthetic process 4.45E-04 
GO:0021522 spinal cord motor neuron differentiation 4.94E-04 
GO:0007507 heart development 5.13E-04 
GO:0007224 smoothened signaling pathway 5.74E-04 
GO:0030182 neuron differentiation 6.07E-04 
GO:0043010 camera-type eye development 8.19E-04 
GO:0060021 palate development 0.00113011 
GO:0007281 germ cell development 0.00128033 
GO:0001843 neural tube closure 0.00184155 
GO:0002062 chondrocyte differentiation 0.00192196 
GO:0001657 ureteric bud development 0.00217299 
GO:0008284 positive regulation of cell proliferation 0.00252077 
GO:0001756 somitogenesis 0.00337659 
GO:0030111 regulation of Wnt signaling pathway 0.00412055 
GO:0015012 heparan sulfate proteoglycan biosynthetic process 0.00412055 
GO:0030324 lung development 0.00446791 
GO:0071300 cellular response to retinoic acid 0.00513915 
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GO:0001701 in utero embryonic development 0.00546615 
GO:0045669 positive regulation of osteoblast differentiation 0.00582864 
GO:0001568 blood vessel development 0.00657098 
GO:0045165 cell fate commitment 0.00683035 
GO:0048844 artery morphogenesis 0.00788494 
GO:0045665 negative regulation of neuron differentiation 0.00792833 
GO:0030334 regulation of cell migration 0.00821812 
GO:0051216 cartilage development 0.00976019 
GO:0043066 negative regulation of apoptotic process 0.01109612 
GO:0021983 pituitary gland development 0.0112363 
GO:0001837 epithelial to mesenchymal transition 0.01196962 
GO:0007417 central nervous system development 0.01218445 
GO:0045892 negative regulation of transcription, DNA-templated 0.01259202 
GO:0035116 embryonic hindlimb morphogenesis 0.01349739 
GO:0010718 positive regulation of epithelial to mesenchymal transition 0.01429137 
GO:0007399 nervous system development 0.01594534 
GO:0061153 trachea gland development 0.01600806 
GO:0060976 coronary vasculature development 0.01679091 
GO:0001656 metanephros development 0.01766254 
GO:0003281 ventricular septum development 0.01766254 
GO:0071787 endoplasmic reticulum tubular network assembly 0.02128751 
GO:0034653 retinoic acid catabolic process 0.02128751 
GO:0008543 fibroblast growth factor receptor signaling pathway 0.02229888 
GO:0001649 osteoblast differentiation 0.02292059 
GO:0048706 embryonic skeletal system development 0.02328026 
GO:0002051 osteoblast fate commitment 0.02653893 
GO:0048755 branching morphogenesis of a nerve 0.02653893 
GO:0001755 neural crest cell migration 0.02844596 
GO:0001942 hair follicle development 0.03174493 
GO:0072177 mesonephric duct development 0.03176245 
GO:2000343 positive regulation of chemokine (C-X-C motif) ligand 2 production 0.03176245 
GO:0060662 salivary gland cavitation 0.03176245 
GO:0060789 hair follicle placode formation 0.03176245 
GO:0042127 regulation of cell proliferation 0.0339043 
GO:0060348 bone development 0.03636502 
GO:0009913 epidermal cell differentiation 0.03695824 
GO:1901522 positive regulation of transcription from RNA polymerase II promoter 

involved in cellular response to chemical stimulus 
0.03695824 

GO:0021554 optic nerve development 0.03695824 
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GO:0071168 protein localization to chromatin 0.03695824 
GO:0048752 semicircular canal morphogenesis 0.03695824 
GO:0048793 pronephros development 0.03695824 
GO:0048341 paraxial mesoderm formation 0.04212643 
GO:0048702 embryonic neurocranium morphogenesis 0.04212643 
GO:0030853 negative regulation of granulocyte differentiation 0.04212643 
GO:0001947 heart looping 0.04374438 
GO:0016567 protein ubiquitination 0.04533511 
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Supplementary Table S2.15. The top 100 enriched Uberon terms for the mouse orthologs of the 

pectoral fin module-specific genes. The full enriched term list is available at 

https://github.com/pasanfernando/Chapter2_datafiles repository. 

Uberon identifier Term name P-value 
uberon 0000922 embryo 6.92E-12 
uberon 0004716 conceptus 2.01E-11 
uberon 0007811 craniocervical region 8.10E-11 
uberon 0001049 neural tube 3.87E-10 
uberon 0005944 axial skeleton plus cranial skeleton 1.06E-09 
uberon 0003128 cranium 1.35E-09 
uberon 0000033 head 1.99E-09 
uberon 0001456 face 5.43E-08 
uberon 0001434 skeletal system 5.81E-07 
uberon 0000165 mouth 5.91E-07 
uberon 0001703 neurocranium 1.11E-06 
uberon 0001007 digestive system 2.10E-06 
uberon 0000926 mesoderm 2.55E-06 
uberon 0001711 eyelid 2.75E-06 
uberon 0004341 primitive streak 3.74E-06 
uberon 0011156 facial skeleton 5.55E-06 
uberon 0003457 head bone 7.51E-06 
uberon 0005070 anterior neuropore 1.28E-05 
uberon 0001819 palpebral fissure 2.93E-05 
uberon 0001708 jaw skeleton 2.93E-05 
uberon 0000478 extraembryonic structure 3.52E-05 
uberon 0000947 aorta 4.31E-05 
uberon 0003655 molar tooth 5.25E-05 
uberon 0004022 germinal neuroepithelium 7.58E-05 
uberon 0000948 heart 9.02E-05 
uberon 0000019 camera-type eye 9.15E-05 
uberon 0002104 visual system 9.22E-05 
uberon 0005600 crus commune 9.42E-05 
uberon 0001860 endolymphatic duct 0.0001457 
uberon 0003451 lower jaw incisor 0.00017578 
uberon 0002470 autopod region 0.00019574 
uberon 0001508 arch of aorta 0.0002267 
uberon 0002167 right lung 0.00023623 
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uberon 0001004 respiratory system 0.0002535 
uberon 0001690 ear 0.00026285 
uberon 0002105 vestibulo-auditory system 0.00028019 
uberon 0003216 hard palate 0.00029064 
uberon 0010190 pair of dorsal aortae 0.00029282 
uberon 0002384 connective tissue 0.00030192 
uberon 0004044 anterior visceral endoderm 0.00043905 
uberon 0001818 tarsal gland 0.00049939 
uberon 0035077 lateral nasal gland 0.00062633 
uberon 0000014 zone of skin 0.0006311 
uberon 0002544 digit 0.00066645 
uberon 0002827 vestibulocochlear ganglion 0.00071149 
uberon 0003955 molar crown 0.0007931 
uberon 0001756 middle ear 0.00080729 
uberon 0004535 cardiovascular system 0.00087226 
uberon 0000423 eccrine sweat gland 0.00087311 
uberon 0001601 extra-ocular muscle 0.00087311 
uberon 0000004 nose 0.00090415 
uberon 0002539 pharyngeal arch 0.00091495 
uberon 0000084 ureteric bud 0.0009682 
uberon 0001751 dentine 0.00097362 
uberon 0003066 pharyngeal arch 2 0.00097362 
uberon 0002168 left lung 0.00120309 
uberon 0001688 incus bone 0.00128991 
uberon 0000091 bilaminar disc 0.00140356 
uberon 0011864 tendon collagen fibril 0.00148402 
uberon 0001716 secondary palate 0.00151298 
uberon 0003544 brain white matter 0.0016391 
uberon 0000955 brain 0.00172361 
uberon 0003051 ear vesicle 0.00180251 
uberon 0003068 axial mesoderm 0.00184711 
uberon 0007833 osseus semicircular canal 0.00187241 
uberon 0000309 body wall 0.00193054 
uberon 0002091 appendicular skeleton 0.00207267 
uberon 0004573 systemic artery 0.00222527 
uberon 0010513 strand of zigzag hair 0.00225969 
uberon 0000945 stomach 0.0023366 
uberon 0010409 ocular surface region 0.00233819 
uberon 0004043 semicircular canal ampulla 0.00242659 
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uberon 0005356 rathke's pouch 0.00242659 
uberon 0003950 inner ear canal 0.00254497 
uberon 0001890 forebrain 0.00257106 
uberon 0003252 thoracic rib cage 0.00267041 
uberon 0008854 root of molar tooth 0.00268605 
uberon 0008799 transverse palatine fold 0.00268605 
uberon 0002418 cartilage tissue 0.00271496 
uberon 0001199 mucosa of stomach 0.00287821 
uberon 0005291 embryonic tissue 0.00300689 
uberon 0001167 wall of stomach 0.00324016 
uberon 0000007 pituitary gland 0.00332109 
uberon 0001862 vestibular labyrinth 0.003632 
uberon 0002413 cervical vertebra 0.00380992 
uberon 0004362 pharyngeal arch 1 0.00403845 
uberon 0001872 parietal lobe 0.00403845 
uberon 0002329 somite 0.00405486 
uberon 0001908 optic tract 0.00421892 
uberon 0001274 ischium 0.00421892 
uberon 0001853 utricle of membranous labyrinth 0.00477616 
uberon 0001752 enamel 0.00477616 
uberon 0002196 adenohypophysis 0.00516843 
uberon 0005176 tooth enamel organ 0.00541814 
uberon 0002487 tooth cavity 0.00541814 
uberon 0010197 trunk of common carotid artery 0.00541814 
uberon 0004090 periorbital region 0.00541814 
uberon 0001894 diencephalon 0.00586178 
uberon 0001854 saccule of membranous labyrinth 0.00617638 
uberon 0004212 glomerular capillary 0.00617638 
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Supplementary Table S2.16. The enriched Biological Process terms from the Gene Ontology for 

the zebrafish orthologs of the forelimb module-specific genes. 

Term identifier Term name P-value 
GO:0006355 regulation of transcription, DNA-templated 2.74E-11 
GO:0007275 multicellular organism development 2.01E-09 
GO:0009953 dorsal/ventral pattern formation 1.36E-08 
GO:0016055 Wnt signaling pathway 6.90E-08 
GO:0006351 transcription, DNA-templated 2.18E-07 
GO:0030509 BMP signaling pathway 5.94E-07 
GO:0030182 neuron differentiation 7.04E-07 
GO:0035118 embryonic pectoral fin morphogenesis 1.60E-05 
GO:0045165 cell fate commitment 5.38E-05 
GO:0030510 regulation of BMP signaling pathway 1.57E-04 
GO:0048701 embryonic cranial skeleton morphogenesis 4.43E-04 
GO:0002072 optic cup morphogenesis involved in camera-type eye development 4.70E-04 
GO:0007178 transmembrane receptor protein serine/threonine kinase signaling 

pathway 
0.00117724 

GO:0040007 growth 0.00129193 
GO:0060027 convergent extension involved in gastrulation 0.00135252 
GO:0010862 positive regulation of pathway-restricted SMAD protein phosphorylation 0.0015685 
GO:0042074 cell migration involved in gastrulation 0.00165586 
GO:0048468 cell development 0.00172114 
GO:0060395 SMAD protein signal transduction 0.00188379 
GO:0030903 notochord development 0.00205679 
GO:0043408 regulation of MAPK cascade 0.00205679 
GO:0007179 transforming growth factor beta receptor signaling pathway 0.00414164 
GO:0021592 fourth ventricle development 0.00421122 
GO:0045743 positive regulation of fibroblast growth factor receptor signaling pathway 0.00536967 
GO:0048703 embryonic viscerocranium morphogenesis 0.00585852 
GO:0060070 canonical Wnt signaling pathway 0.0061092 
GO:0001944 vasculature development 0.00649015 
GO:0015012 heparan sulfate proteoglycan biosynthetic process 0.00665665 
GO:0002062 chondrocyte differentiation 0.00665665 
GO:0030097 hemopoiesis 0.00670985 
GO:0008543 fibroblast growth factor receptor signaling pathway 0.0095973 
GO:0007417 central nervous system development 0.01064297 
GO:0061386 closure of optic fissure 0.01302316 
GO:0006024 glycosaminoglycan biosynthetic process 0.01302316 
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GO:0071910 determination of liver left/right asymmetry 0.01490327 
GO:0007064 mitotic sister chromatid cohesion 0.01689251 
GO:0009948 anterior/posterior axis specification 0.01898788 
GO:0051216 cartilage development 0.01918023 
GO:0007155 cell adhesion 0.01955582 
GO:0061371 determination of heart left/right asymmetry 0.02012978 
GO:0045595 regulation of cell differentiation 0.02118641 
GO:0030198 extracellular matrix organization 0.0234852 
GO:0060026 convergent extension 0.02377358 
GO:0038108 negative regulation of appetite by leptin-mediated signaling pathway 0.02505648 
GO:2000366 positive regulation of STAT protein import into nucleus 0.02505648 
GO:0060912 cardiac cell fate specification 0.02505648 
GO:1900745 positive regulation of p38MAPK cascade 0.02505648 
GO:2000583 regulation of platelet-derived growth factor receptor-alpha signaling 

pathway 
0.02505648 

GO:0002076 osteoblast development 0.02505648 
GO:0070587 regulation of cell-cell adhesion involved in gastrulation 0.02505648 
GO:1990051 activation of protein kinase C activity 0.02505648 
GO:0043010 camera-type eye development 0.02506223 
GO:0060041 retina development in camera-type eye 0.02513516 
GO:0060828 regulation of canonical Wnt signaling pathway 0.02588139 
GO:0001503 ossification 0.02588139 
GO:0060037 pharyngeal system development 0.02837219 
GO:0050767 regulation of neurogenesis 0.02837219 
GO:0002138 retinoic acid biosynthetic process 0.03734953 
GO:0032481 positive regulation of type I interferon production 0.03734953 
GO:0010332 response to gamma radiation 0.03734953 
GO:0032965 regulation of collagen biosynthetic process 0.03734953 
GO:0006978 DNA damage response, signal transduction by p53 class mediator 

resulting in transcription of p21 class mediator 
0.03734953 

GO:0010470 regulation of gastrulation 0.03734953 
GO:0071733 transcriptional activation by promoter-enhancer looping 0.03734953 
GO:0030917 midbrain-hindbrain boundary development 0.04515412 
GO:0001568 blood vessel development 0.04877064 
GO:0048730 epidermis morphogenesis 0.0494884 
GO:0032868 response to insulin 0.0494884 
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Supplementary Table S2.17. The enriched Uberon terms for the zebrafish orthologs of the 

forelimb module-specific genes.  

Uberon identifier Term name P-value 
uberon 0008823 neural tube derived brain 2.29E-07 
uberon 0000033 head 2.96E-07 
uberon 0000468 multicellular organism 3.10E-07 
uberon 0000019 camera-type eye 2.07E-05 
uberon 0001555 digestive tract 9.84E-05 
uberon 0001016 nervous system 0.00082865 
uberon 0002107 liver 0.00093463 
uberon 0001017 central nervous system 0.00141338 
uberon 2000084 yolk 0.00145089 
uberon 4000164 caudal fin 0.00325469 
uberon 0000948 heart 0.00876155 
uberon 0008895 splanchnocranium 0.01593721 
uberon 0002280 otolith 0.01730733 
uberon 0005281 ventricular system of central nervous system 0.02130098 
uberon 2000033 intermediate cell mass of mesoderm 0.02183289 
uberon 0001782 pigmented layer of retina 0.02256819 
uberon 0001231 nephron tubule 0.02976965 
uberon 0001155 colon 0.02976965 
uberon 0001708 jaw skeleton 0.0342243 
uberon 0005886 post-hyoid pharyngeal arch skeleton 0.03545473 
uberon 0001647 facial nerve 0.03865184 
uberon 0002407 pericardium 0.04825439 
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Supplementary Table S2.18. The top 100 enriched Biological Process terms from the Gene 

Ontology for the pelvic fin module-specific genes. The full enriched term list is available at 

https://github.com/pasanfernando/Chapter2_datafiles repository.  

Term identifier Term name P-value 
GO:0016310 phosphorylation 1.07E-30 
GO:0006468 protein phosphorylation 4.11E-19 
GO:0007169 transmembrane receptor protein tyrosine kinase signaling 

pathway 
1.03E-14 

GO:0033333 fin development 1.66E-10 
GO:0007178 transmembrane receptor protein serine/threonine kinase signaling 

pathway 
8.51E-09 

GO:0007507 heart development 9.67E-09 
GO:0006470 protein dephosphorylation 6.89E-08 
GO:0007275 multicellular organism development 1.13E-07 
GO:0030154 cell differentiation 2.15E-07 
GO:0007264 small GTPase mediated signal transduction 2.32E-07 
GO:0051216 cartilage development 4.89E-07 
GO:0001947 heart looping 6.53E-07 
GO:0038083 peptidyl-tyrosine autophosphorylation 1.22E-06 
GO:0007188 adenylate cyclase-modulating G-protein coupled receptor 

signaling pathway 
6.36E-06 

GO:0033334 fin morphogenesis 7.58E-06 
GO:0031290 retinal ganglion cell axon guidance 8.15E-06 
GO:0006351 transcription, DNA-templated 1.15E-05 
GO:0030509 BMP signaling pathway 1.51E-05 
GO:0031101 fin regeneration 1.75E-05 
GO:0006164 purine nucleotide biosynthetic process 2.05E-05 
GO:0001649 osteoblast differentiation 3.11E-05 
GO:0001889 liver development 3.85E-05 
GO:0000028 ribosomal small subunit assembly 6.47E-05 
GO:0043009 chordate embryonic development 6.89E-05 
GO:0009953 dorsal/ventral pattern formation 7.59E-05 
GO:0043010 camera-type eye development 8.17E-05 
GO:0000027 ribosomal large subunit assembly 8.95E-05 
GO:0006177 GMP biosynthetic process 9.26E-05 
GO:0001568 blood vessel development 9.52E-05 
GO:0030514 negative regulation of BMP signaling pathway 9.69E-05 
GO:0006412 translation 1.15E-04 
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GO:0048066 developmental pigmentation 1.48E-04 
GO:0030318 melanocyte differentiation 1.81E-04 
GO:0003007 heart morphogenesis 2.04E-04 
GO:0060536 cartilage morphogenesis 2.09E-04 
GO:0045859 regulation of protein kinase activity 2.78E-04 
GO:0007492 endoderm development 4.22E-04 
GO:0009952 anterior/posterior pattern specification 5.33E-04 
GO:0045087 innate immune response 5.44E-04 
GO:0001501 skeletal system development 5.97E-04 
GO:0086010 membrane depolarization during action potential 6.35E-04 
GO:0048565 digestive tract development 7.98E-04 
GO:0045944 positive regulation of transcription from RNA polymerase II 

promoter 
8.73E-04 

GO:0008016 regulation of heart contraction 9.21E-04 
GO:0016055 Wnt signaling pathway 0.001096677 
GO:0060973 cell migration involved in heart development 0.00118875 
GO:0021514 ventral spinal cord interneuron differentiation 0.00119353 
GO:0060070 canonical Wnt signaling pathway 0.001316618 
GO:0030902 hindbrain development 0.001530477 
GO:0097324 melanocyte migration 0.001745185 
GO:0035138 pectoral fin morphogenesis 0.001745185 
GO:0043473 pigmentation 0.001763508 
GO:0033339 pectoral fin development 0.002041423 
GO:0045165 cell fate commitment 0.002349988 
GO:0042127 regulation of cell proliferation 0.002429371 
GO:0031284 positive regulation of guanylate cyclase activity 0.002430008 
GO:0007263 nitric oxide mediated signal transduction 0.002430008 
GO:0090131 mesenchyme migration 0.002430008 
GO:0000398 mRNA splicing, via spliceosome 0.002440101 
GO:0034097 response to cytokine 0.00244015 
GO:0045893 positive regulation of transcription, DNA-templated 0.002507479 
GO:0060026 convergent extension 0.002687487 
GO:0060037 pharyngeal system development 0.002740327 
GO:0048264 determination of ventral identity 0.002740327 
GO:0060041 retina development in camera-type eye 0.003792248 
GO:0048484 enteric nervous system development 0.003874613 
GO:0043049 otic placode formation 0.003874613 
GO:0035050 embryonic heart tube development 0.003928907 
GO:0002574 thrombocyte differentiation 0.004285938 
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GO:0006355 regulation of transcription, DNA-templated 0.004473334 
GO:0048703 embryonic viscerocranium morphogenesis 0.004655303 
GO:0038061 NIK/NF-kappaB signaling 0.004767449 
GO:0045776 negative regulation of blood pressure 0.004767449 
GO:0031017 exocrine pancreas development 0.00495185 
GO:0001525 angiogenesis 0.005226845 
GO:0021984 adenohypophysis development 0.005453861 
GO:0042476 odontogenesis 0.005453861 
GO:0006383 transcription from RNA polymerase III promoter 0.005453861 
GO:0030097 hemopoiesis 0.005661671 
GO:0035118 embryonic pectoral fin morphogenesis 0.006112377 
GO:0007179 transforming growth factor beta receptor signaling pathway 0.006112377 
GO:0048010 vascular endothelial growth factor receptor signaling pathway 0.006794668 
GO:0014003 oligodendrocyte development 0.006794668 
GO:0006360 transcription from RNA polymerase I promoter 0.006794668 
GO:0048709 oligodendrocyte differentiation 0.006794668 
GO:0006457 protein folding 0.00701842 
GO:0007368 determination of left/right symmetry 0.007696847 
GO:0006809 nitric oxide biosynthetic process 0.00779477 
GO:0045909 positive regulation of vasodilation 0.00779477 
GO:0006207 'de novo' pyrimidine nucleobase biosynthetic process 0.00779477 
GO:0060975 cardioblast migration to the midline involved in heart field 

formation 
0.00779477 

GO:0048935 peripheral nervous system neuron development 0.00779477 
GO:0048699 generation of neurons 0.008314213 
GO:0000122 negative regulation of transcription from RNA polymerase II 

promoter 
0.008666322 

GO:0021522 spinal cord motor neuron differentiation 0.010017396 
GO:0006260 DNA replication 0.010509899 
GO:1902766 skeletal muscle satellite cell migration 0.011470527 
GO:0044319 wound healing, spreading of cells 0.011470527 
GO:0044211 CTP salvage 0.011470527 
GO:0043097 pyrimidine nucleoside salvage 0.011470527 
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Supplementary Table S2.19. The top 100 enriched Biological Process terms from the Gene 

Ontology for the pelvic fin conserved genes. The full enriched term list is available at 

https://github.com/pasanfernando/Chapter2_datafiles repository.  

Term identifier Term name P-value 
GO:0009953 dorsal/ventral pattern formation 7.42E-18 
GO:0030509 BMP signaling pathway 1.10E-09 
GO:0007275 multicellular organism development 1.69E-08 
GO:0042664 negative regulation of endodermal cell fate specification 4.29E-08 
GO:0010002 cardioblast differentiation 7.70E-08 
GO:0001947 heart looping 9.05E-08 
GO:0009952 anterior/posterior pattern specification 1.91E-07 
GO:0007224 smoothened signaling pathway 2.23E-07 
GO:0001756 somitogenesis 2.23E-07 
GO:0001889 liver development 2.84E-07 
GO:0048703 embryonic viscerocranium morphogenesis 3.87E-07 
GO:0033339 pectoral fin development 5.44E-07 
GO:0055002 striated muscle cell development 6.00E-07 
GO:0008543 fibroblast growth factor receptor signaling pathway 8.67E-07 
GO:0007517 muscle organ development 1.00E-06 
GO:0033334 fin morphogenesis 1.81E-06 
GO:0030903 notochord development 2.49E-06 
GO:0031647 regulation of protein stability 2.52E-06 
GO:0006355 regulation of transcription, DNA-templated 5.90E-06 
GO:0007368 determination of left/right symmetry 1.10E-05 
GO:0030182 neuron differentiation 1.22E-05 
GO:0031101 fin regeneration 2.11E-05 
GO:0006351 transcription, DNA-templated 2.11E-05 
GO:0016310 phosphorylation 2.35E-05 
GO:0040007 growth 4.03E-05 
GO:0021508 floor plate formation 4.45E-05 
GO:0010862 positive regulation of pathway-restricted SMAD protein phosphorylation 4.95E-05 
GO:0060395 SMAD protein signal transduction 6.02E-05 
GO:0043408 regulation of MAPK cascade 6.61E-05 
GO:0007178 transmembrane receptor protein serine/threonine kinase signaling pathway 8.22E-05 
GO:0060956 endocardial cell differentiation 1.53E-04 
GO:0048795 swim bladder morphogenesis 1.53E-04 
GO:0033333 fin development 1.83E-04 
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GO:0048557 embryonic digestive tract morphogenesis 2.54E-04 
GO:0035143 caudal fin morphogenesis 2.54E-04 
GO:0016539 intein-mediated protein splicing 2.54E-04 
GO:0009880 embryonic pattern specification 2.70E-04 
GO:0007267 cell-cell signaling 3.14E-04 
GO:0048793 pronephros development 3.14E-04 
GO:0042694 muscle cell fate specification 3.79E-04 
GO:0021703 locus ceruleus development 3.79E-04 
GO:0000122 negative regulation of transcription from RNA polymerase II promoter 3.92E-04 
GO:0021953 central nervous system neuron differentiation 7.04E-04 
GO:0048663 neuron fate commitment 7.04E-04 
GO:0031016 pancreas development 8.73E-04 
GO:0031076 embryonic camera-type eye development 0.00112343 
GO:0060325 face morphogenesis 0.00112343 
GO:0048468 cell development 0.00117991 
GO:0048263 determination of dorsal identity 0.00163684 
GO:0061371 determination of heart left/right asymmetry 0.00164982 
GO:0021984 adenohypophysis development 0.00192807 
GO:0048709 oligodendrocyte differentiation 0.002242 
GO:0048794 swim bladder development 0.002242 
GO:0001649 osteoblast differentiation 0.002242 
GO:0030878 thyroid gland development 0.00257841 
GO:0048752 semicircular canal morphogenesis 0.00257841 
GO:0060070 canonical Wnt signaling pathway 0.00321008 
GO:0008015 blood circulation 0.00331769 
GO:0006468 protein phosphorylation 0.00348935 
GO:0048702 embryonic neurocranium morphogenesis 0.00414411 
GO:0007417 central nervous system development 0.00502765 
GO:0048264 determination of ventral identity 0.00505585 
GO:0001945 lymph vessel development 0.00505585 
GO:0050767 regulation of neurogenesis 0.00505585 
GO:0016525 negative regulation of angiogenesis 0.00554316 
GO:0036342 post-anal tail morphogenesis 0.00554316 
GO:0043049 otic placode formation 0.00605114 
GO:0071599 otic vesicle development 0.00657958 
GO:0007179 transforming growth factor beta receptor signaling pathway 0.00769693 
GO:0007411 axon guidance 0.00789129 
GO:0030917 midbrain-hindbrain boundary development 0.00828542 
GO:0038066 p38MAPK cascade 0.0101675 
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GO:0002275 myeloid cell activation involved in immune response 0.0101675 
GO:0051895 negative regulation of focal adhesion assembly 0.0101675 
GO:0003303 BMP signaling pathway involved in heart jogging 0.0101675 
GO:0060912 cardiac cell fate specification 0.0101675 
GO:0061131 pancreas field specification 0.0101675 
GO:0033340 pelvic fin development 0.0101675 
GO:0010831 positive regulation of myotube differentiation 0.0101675 
GO:0031018 endocrine pancreas development 0.01016764 
GO:0060041 retina development in camera-type eye 0.01023913 
GO:0030901 midbrain development 0.01222062 
GO:0030900 forebrain development 0.01222062 
GO:0045165 cell fate commitment 0.01222062 
GO:0030097 hemopoiesis 0.01223899 
GO:0048839 inner ear development 0.01294194 
GO:0003146 heart jogging 0.01294194 
GO:0048618 post-embryonic foregut morphogenesis 0.01521292 
GO:0031174 lifelong otolith mineralization 0.01521292 
GO:0031290 retinal ganglion cell axon guidance 0.01521407 
GO:0048565 digestive tract development 0.01681701 
GO:0051146 striated muscle cell differentiation 0.02023297 
GO:0001957 intramembranous ossification 0.02023297 
GO:0014707 branchiomeric skeletal muscle development 0.02023297 
GO:0033336 caudal fin development 0.02023297 
GO:0048855 adenohypophysis morphogenesis 0.02023297 
GO:0030902 hindbrain development 0.02112173 
GO:0008285 negative regulation of cell proliferation 0.02203214 
GO:0007519 skeletal muscle tissue development 0.02485899 
GO:0021523 somatic motor neuron differentiation 0.02522775 
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Supplementary Table S2.20. The top 100 enriched Biological Process terms from the Gene 

Ontology for the hindlimb conserved genes. The full enriched term list is available at 

https://github.com/pasanfernando/Chapter2_datafiles repository.  

Term identifier Term name P-value 
GO:0045944 positive regulation of transcription from RNA polymerase II promoter 1.33E-27 
GO:0010628 positive regulation of gene expression 3.28E-25 
GO:0030326 embryonic limb morphogenesis 3.43E-22 
GO:0042475 odontogenesis of dentin-containing tooth 3.43E-22 
GO:0001701 in utero embryonic development 1.22E-20 
GO:0007507 heart development 2.62E-20 
GO:0045893 positive regulation of transcription, DNA-templated 9.95E-19 
GO:0008284 positive regulation of cell proliferation 4.76E-18 
GO:0030324 lung development 8.41E-18 
GO:0000122 negative regulation of transcription from RNA polymerase II promoter 1.20E-17 
GO:0008285 negative regulation of cell proliferation 3.66E-17 
GO:0035116 embryonic hindlimb morphogenesis 1.74E-15 
GO:0001501 skeletal system development 2.43E-15 
GO:0048754 branching morphogenesis of an epithelial tube 4.20E-15 
GO:0003007 heart morphogenesis 1.93E-14 
GO:0045669 positive regulation of osteoblast differentiation 3.66E-14 
GO:0043066 negative regulation of apoptotic process 4.55E-14 
GO:0001649 osteoblast differentiation 1.95E-13 
GO:0051216 cartilage development 2.59E-13 
GO:0010629 negative regulation of gene expression 3.72E-13 
GO:0060021 palate development 3.76E-13 
GO:0007389 pattern specification process 4.51E-13 
GO:0002053 positive regulation of mesenchymal cell proliferation 5.57E-13 
GO:0001947 heart looping 8.50E-13 
GO:0042733 embryonic digit morphogenesis 1.53E-12 
GO:0007275 multicellular organism development 2.68E-12 
GO:0002062 chondrocyte differentiation 3.67E-12 
GO:0035108 limb morphogenesis 5.54E-12 
GO:0009953 dorsal/ventral pattern formation 6.30E-12 
GO:0030509 BMP signaling pathway 2.01E-11 
GO:0001525 angiogenesis 3.86E-11 
GO:0045892 negative regulation of transcription, DNA-templated 1.17E-10 
GO:0060441 epithelial tube branching involved in lung morphogenesis 1.98E-10 
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GO:0009952 anterior/posterior pattern specification 2.01E-10 
GO:0001657 ureteric bud development 3.26E-10 
GO:0001658 branching involved in ureteric bud morphogenesis 3.26E-10 
GO:0071542 dopaminergic neuron differentiation 6.89E-10 
GO:0001822 kidney development 7.65E-10 
GO:0021983 pituitary gland development 8.59E-10 
GO:0070374 positive regulation of ERK1 and ERK2 cascade 1.08E-09 
GO:0060445 branching involved in salivary gland morphogenesis 1.38E-09 
GO:0031016 pancreas development 1.59E-09 
GO:0031069 hair follicle morphogenesis 2.32E-09 
GO:0048589 developmental growth 2.32E-09 
GO:0030501 positive regulation of bone mineralization 3.30E-09 
GO:0009887 organ morphogenesis 4.50E-09 
GO:0021904 dorsal/ventral neural tube patterning 5.30E-09 
GO:0030901 midbrain development 5.40E-09 
GO:0048568 embryonic organ development 5.40E-09 
GO:0045165 cell fate commitment 6.10E-09 
GO:0045596 negative regulation of cell differentiation 6.42E-09 
GO:0050679 positive regulation of epithelial cell proliferation 8.96E-09 
GO:0045597 positive regulation of cell differentiation 1.30E-08 
GO:0001934 positive regulation of protein phosphorylation 1.64E-08 
GO:0009880 embryonic pattern specification 1.91E-08 
GO:0030902 hindbrain development 1.91E-08 
GO:0030900 forebrain development 2.14E-08 
GO:0060070 canonical Wnt signaling pathway 2.72E-08 
GO:0001944 vasculature development 2.94E-08 
GO:0001889 liver development 4.30E-08 
GO:0032355 response to estradiol 6.58E-08 
GO:0008283 cell proliferation 7.65E-08 
GO:0042127 regulation of cell proliferation 1.00E-07 
GO:0010468 regulation of gene expression 1.19E-07 
GO:0010718 positive regulation of epithelial to mesenchymal transition 1.22E-07 
GO:0090263 positive regulation of canonical Wnt signaling pathway 1.30E-07 
GO:0071773 cellular response to BMP stimulus 1.42E-07 
GO:0034504 protein localization to nucleus 1.42E-07 
GO:0007224 smoothened signaling pathway 1.85E-07 
GO:0042472 inner ear morphogenesis 2.01E-07 
GO:0001656 metanephros development 2.17E-07 
GO:0045595 regulation of cell differentiation 2.49E-07 



   

 
237 

GO:0007179 transforming growth factor beta receptor signaling pathway 2.57E-07 
GO:0043065 positive regulation of apoptotic process 2.60E-07 
GO:0001569 patterning of blood vessels 2.83E-07 
GO:0042493 response to drug 2.90E-07 
GO:0043010 camera-type eye development 3.26E-07 
GO:0048856 anatomical structure development 4.21E-07 
GO:0010463 mesenchymal cell proliferation 4.21E-07 
GO:0030154 cell differentiation 4.42E-07 
GO:0001502 cartilage condensation 6.63E-07 
GO:0048557 embryonic digestive tract morphogenesis 8.16E-07 
GO:0006029 proteoglycan metabolic process 8.39E-07 
GO:0007411 axon guidance 9.39E-07 
GO:1902895 positive regulation of pri-miRNA transcription from RNA polymerase II 

promoter 
9.95E-07 

GO:0001503 ossification 1.12E-06 
GO:0048646 anatomical structure formation involved in morphogenesis 1.44E-06 
GO:0090090 negative regulation of canonical Wnt signaling pathway 1.60E-06 
GO:0007267 cell-cell signaling 1.69E-06 
GO:0048593 camera-type eye morphogenesis 1.71E-06 
GO:0042542 response to hydrogen peroxide 1.88E-06 
GO:0002052 positive regulation of neuroblast proliferation 2.01E-06 
GO:0042487 regulation of odontogenesis of dentin-containing tooth 2.34E-06 
GO:0060485 mesenchyme development 2.34E-06 
GO:0042476 odontogenesis 2.36E-06 
GO:0043392 negative regulation of DNA binding 3.17E-06 
GO:0021522 spinal cord motor neuron differentiation 3.17E-06 
GO:0048738 cardiac muscle tissue development 3.17E-06 
GO:0035264 multicellular organism growth 4.13E-06 
GO:0001837 epithelial to mesenchymal transition 4.18E-06 
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Supplementary Table S2.21. The top 100 enriched Biological Process terms from the Gene 

Ontology for the hindlimb module-specific genes. The full enriched term list is available at 

https://github.com/pasanfernando/Chapter2_datafiles repository.  

Term identifier Term name P-value 
GO:0001501 skeletal system development 2.02E-34 
GO:0001503 ossification 2.58E-28 
GO:0045944 positive regulation of transcription from RNA polymerase II promoter 4.76E-27 
GO:0030326 embryonic limb morphogenesis 1.90E-26 
GO:0045893 positive regulation of transcription, DNA-templated 3.11E-25 
GO:0051216 cartilage development 4.68E-19 
GO:0042733 embryonic digit morphogenesis 5.94E-19 
GO:0008284 positive regulation of cell proliferation 9.08E-19 
GO:0060021 palate development 1.79E-17 
GO:0007275 multicellular organism development 3.26E-17 
GO:0060349 bone morphogenesis 5.17E-13 
GO:0009887 organ morphogenesis 7.17E-13 
GO:0000122 negative regulation of transcription from RNA polymerase II promoter 1.65E-12 
GO:0035115 embryonic forelimb morphogenesis 3.13E-12 
GO:0060173 limb development 4.71E-12 
GO:0002062 chondrocyte differentiation 6.66E-12 
GO:0008285 negative regulation of cell proliferation 9.13E-12 
GO:0045669 positive regulation of osteoblast differentiation 1.62E-11 
GO:0050680 negative regulation of epithelial cell proliferation 4.13E-11 
GO:0009952 anterior/posterior pattern specification 9.27E-11 
GO:0001958 endochondral ossification 1.25E-10 
GO:0060348 bone development 1.27E-10 
GO:0002063 chondrocyte development 2.14E-10 
GO:0016055 Wnt signaling pathway 3.94E-10 
GO:0009954 proximal/distal pattern formation 5.08E-10 
GO:0001649 osteoblast differentiation 8.43E-10 
GO:0048705 skeletal system morphogenesis 9.75E-10 
GO:0007568 aging 9.77E-10 
GO:0050679 positive regulation of epithelial cell proliferation 9.98E-10 
GO:0030500 regulation of bone mineralization 1.20E-09 
GO:0007507 heart development 1.34E-09 
GO:0043066 negative regulation of apoptotic process 1.38E-09 
GO:0002053 positive regulation of mesenchymal cell proliferation 1.65E-09 
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GO:0051091 positive regulation of sequence-specific DNA binding transcription factor 
activity 

2.59E-09 

GO:0048701 embryonic cranial skeleton morphogenesis 3.09E-09 
GO:0009953 dorsal/ventral pattern formation 3.51E-09 
GO:0030509 BMP signaling pathway 7.10E-09 
GO:0046716 muscle cell cellular homeostasis 7.30E-09 
GO:0035116 embryonic hindlimb morphogenesis 7.51E-09 
GO:0090090 negative regulation of canonical Wnt signaling pathway 9.24E-09 
GO:0043410 positive regulation of MAPK cascade 1.23E-08 
GO:0030282 bone mineralization 1.42E-08 
GO:0030178 negative regulation of Wnt signaling pathway 1.80E-08 
GO:0035108 limb morphogenesis 2.40E-08 
GO:0001843 neural tube closure 3.28E-08 
GO:0031214 biomineral tissue development 3.40E-08 
GO:0032332 positive regulation of chondrocyte differentiation 4.87E-08 
GO:0045778 positive regulation of ossification 7.29E-08 
GO:0010628 positive regulation of gene expression 7.55E-08 
GO:0042493 response to drug 9.27E-08 
GO:0001974 blood vessel remodeling 1.23E-07 
GO:0003151 outflow tract morphogenesis 1.24E-07 
GO:0090263 positive regulation of canonical Wnt signaling pathway 1.49E-07 
GO:0048704 embryonic skeletal system morphogenesis 1.51E-07 
GO:0036342 post-anal tail morphogenesis 1.54E-07 
GO:0043065 positive regulation of apoptotic process 2.59E-07 
GO:0060065 uterus development 3.12E-07 
GO:0001701 in utero embryonic development 3.64E-07 
GO:0001934 positive regulation of protein phosphorylation 3.92E-07 
GO:0040014 regulation of multicellular organism growth 4.49E-07 
GO:0001502 cartilage condensation 4.69E-07 
GO:0060070 canonical Wnt signaling pathway 5.37E-07 
GO:0030199 collagen fibril organization 5.71E-07 
GO:0007517 muscle organ development 6.44E-07 
GO:0040018 positive regulation of multicellular organism growth 9.00E-07 
GO:0030217 T cell differentiation 9.00E-07 
GO:0007628 adult walking behavior 1.12E-06 
GO:0035136 forelimb morphogenesis 1.29E-06 
GO:0008584 male gonad development 1.37E-06 
GO:0006351 transcription, DNA-templated 1.43E-06 
GO:0030198 extracellular matrix organization 1.70E-06 
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GO:0001568 blood vessel development 2.22E-06 
GO:0050731 positive regulation of peptidyl-tyrosine phosphorylation 2.34E-06 
GO:0007389 pattern specification process 2.35E-06 
GO:0006355 regulation of transcription, DNA-templated 2.38E-06 
GO:0035019 somatic stem cell population maintenance 2.52E-06 
GO:0045453 bone resorption 2.60E-06 
GO:0016477 cell migration 2.98E-06 
GO:0035137 hindlimb morphogenesis 3.04E-06 
GO:0001666 response to hypoxia 3.21E-06 
GO:0007417 central nervous system development 3.49E-06 
GO:0030154 cell differentiation 3.69E-06 
GO:0030501 positive regulation of bone mineralization 4.16E-06 
GO:0007409 axonogenesis 4.51E-06 
GO:0035987 endodermal cell differentiation 4.58E-06 
GO:0042981 regulation of apoptotic process 5.33E-06 
GO:0021915 neural tube development 6.20E-06 
GO:0042060 wound healing 6.24E-06 
GO:0048747 muscle fiber development 6.38E-06 
GO:0014033 neural crest cell differentiation 6.71E-06 
GO:0030335 positive regulation of cell migration 7.03E-06 
GO:0010629 negative regulation of gene expression 7.25E-06 
GO:0001942 hair follicle development 7.32E-06 
GO:0030316 osteoclast differentiation 7.70E-06 
GO:0060325 face morphogenesis 7.73E-06 
GO:0042127 regulation of cell proliferation 9.04E-06 
GO:0070374 positive regulation of ERK1 and ERK2 cascade 9.72E-06 
GO:0045880 positive regulation of smoothened signaling pathway 9.82E-06 
GO:0030279 negative regulation of ossification 1.22E-05 
GO:0001756 somitogenesis 1.37E-05 
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Supplementary Table S2.22. The enriched Uberon terms for the pelvic fin module-specific 

genes.  

Uberon identifier Term name P-value 
uberon 0000151 pectoral fin 7.11E-07 
uberon 4000163 anal fin 3.82E-06 
uberon 2000040 median fin fold 4.79E-05 
uberon 0005281 ventricular system of central nervous system 9.46E-05 
uberon 0001017 central nervous system 0.00019108 
uberon 2000694 ceratobranchial 5 tooth 0.0003055 
uberon 0000152 pelvic fin 0.00031273 
uberon 0002107 liver 0.00032183 
uberon 2000106 extension 0.00067516 
uberon 0003097 dorsal fin 0.00130209 
uberon 0001555 digestive tract 0.00130304 
uberon 0007812 post-anal tail 0.00164604 
uberon 2001239 ceratobranchial 5 bone 0.00186514 
uberon 4000172 lepidotrichium 0.00200288 
uberon 2000084 yolk 0.00501523 
uberon 0012438 blastema of regenerating fin/limb 0.00586938 
uberon 2001280 branchiostegal ray 3 0.00590243 
uberon 0000982 skeletal joint 0.00913717 
uberon 0002120 pronephros 0.0119861 
uberon 0015178 somite border 0.01298747 
uberon 0001703 neurocranium 0.01579709 
uberon 0000178 blood 0.01709498 
uberon 0002513 endochondral bone 0.01987709 
uberon 0002457 intersomitic artery 0.0218951 
uberon 0007215 trabecula cranii 0.02246904 
uberon 0000165 mouth 0.02399809 
uberon 4000174 caudal fin lepidotrichium 0.02496839 
uberon 0002422 fourth ventricle 0.02857919 
uberon 0005362 vagus x ganglion 0.03250281 
uberon 0000959 optic chiasma 0.03250281 
uberon 0000468 multicellular organism 0.03847851 
uberon 0002280 otolith 0.0390762 
uberon 0003053 ventricular zone 0.0415756 
uberon 2000411 posterior crista primordium 0.0415756 
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uberon 2000356 gill raker 0.04385078 
uberon 0005419 pectoral appendage bud 0.04400473 
uberon 0011944 subintestinal vein 0.04508881 
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Supplementary Table S2.23. The top 100 enriched Uberon terms for the pelvic fin conserved 

genes. The full enriched term list is available at 

https://github.com/pasanfernando/Chapter2_datafiles repository.  

Uberon identifier Term name P-value 
uberon 0003079 floor plate 1.08E-08 
uberon 0000151 pectoral fin 8.38E-06 
uberon 0007812 post-anal tail 1.15E-05 
uberon 2000040 median fin fold 4.10E-05 
uberon 2001089 myoseptum 8.16E-05 
uberon 0001976 epithelium of esophagus 0.00010711 
uberon 2001069 ventral fin fold 0.00013312 
uberon 0001043 esophagus 0.00016953 
uberon 2000250 opercle 0.00044826 
uberon 0003097 dorsal fin 0.00053446 
uberon 2000033 intermediate cell mass of mesoderm 0.00062034 
uberon 2002200 hypobranchial muscle 0.00063788 
uberon 0003901 horizontal septum 0.00071559 
uberon 0003077 paraxial mesoderm 0.00082036 
uberon 2001456 pectoral fin endoskeletal disc 0.00082036 
uberon 4000172 lepidotrichium 0.00082036 
uberon 0000160 intestine 0.00086843 
uberon 0001264 pancreas 0.00110702 
uberon 0003082 myotome 0.00113857 
uberon 4000163 anal fin 0.00135149 
uberon 0003069 otic placode 0.00169069 
uberon 0002328 notochord 0.00234575 
uberon 0005419 pectoral appendage bud 0.00303292 
uberon 0002348 epicardium 0.00316901 
uberon 0001135 smooth muscle tissue 0.00316901 
uberon 0004291 heart rudiment 0.00350066 
uberon 0002533 post-anal tail bud 0.00429825 
uberon 0004752 palatoquadrate cartilage 0.00433197 
uberon 0007269 pectoral appendage musculature 0.00439376 
uberon 4000175 pectoral fin lepidotrichium 0.00439376 
uberon 0002329 somite 0.0047405 
uberon 0008896 post-hyoid pharyngeal arch 0.0049714 
uberon 0003107 meckel's cartilage 0.0056048 
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uberon 0002394 bile duct 0.00580184 
uberon 0007831 pectoral girdle skeleton 0.00580184 
uberon 2001516 ceratobranchial cartilage 0.00595325 
uberon 0003091 thyroid primordium 0.00738763 
uberon 2000694 ceratobranchial 5 tooth 0.0088291 
uberon 0006860 swim bladder 0.00883525 
uberon 0002633 motor nucleus of trigeminal nerve 0.00914566 
uberon 0007274 crista of ampulla of anterior semicircular duct of membranous laybrinth 0.00914566 
uberon 2001256 lateral floor plate 0.00914566 
uberon 0000931 proctodeum 0.00914566 
uberon 0010170 region of neural crest 0.01107057 
uberon 0002342 neural crest 0.01107057 
uberon 4000174 caudal fin lepidotrichium 0.01107057 
uberon 0007329 pancreatic duct 0.01107057 
uberon 0011607 hyomandibular cartilage 0.01188946 
uberon 4000164 caudal fin 0.01244072 
uberon 0007298 pronephric proximal convoluted tubule 0.01263336 
uberon 0000959 optic chiasma 0.0131571 
uberon 2000558 posterior macula 0.01540015 
uberon 0005507 rhombomere 3 0.01540015 
uberon 0000965 lens of camera-type eye 0.01755751 
uberon 0002196 adenohypophysis 0.01779469 
uberon 0001049 neural tube 0.0181603 
uberon 0014907 intersomitic vessel 0.01866956 
uberon 0005805 dorsal aorta 0.01999588 
uberon 0000152 pelvic fin 0.02033582 
uberon 2000676 sagitta 0.02033582 
uberon 0011944 subintestinal vein 0.02123921 
uberon 0004117 pharyngeal pouch 0.02583882 
uberon 0005515 rhombomere 5 0.02583882 
uberon 0002241 chondrocranium 0.02879142 
uberon 0001794 inner limiting layer of retina 0.02960362 
uberon 0005499 rhombomere 1 0.02960362 
uberon 2000544 pectoral fin actinotrichium 0.02960362 
uberon 2000623 basipterygium bone 0.02960362 
uberon 0003412 pelvic appendage bud mesenchyme 0.02960362 
uberon 0006964 pars distalis of adenohypophysis 0.02960362 
uberon 0007097 chordo neural hinge 0.02960362 
uberon 2000674 interopercle 0.02960362 
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uberon 2007046 midbrain hindbrain boundary neural rod 0.02960362 
uberon 2005346 extrapancreatic duct 0.02960362 
uberon 2000284 subopercle 0.02960362 
uberon 2001300 vagal placode 4 0.02960362 
uberon 2001297 vagal placode 1 0.02960362 
uberon 2001298 vagal placode 2 0.02960362 
uberon 2001299 vagal placode 3 0.02960362 
uberon 0002228 rib 0.02960362 
uberon 2001277 anterior chamber swim bladder 0.02960362 
uberon 0001638 vein 0.02960362 
uberon 2007032 midbrain neural rod 0.02960362 
uberon 0005422 pelvic appendage apical ectodermal ridge 0.02960362 
uberon 0006859 swim bladder bud 0.02960362 
uberon 0002514 intramembranous bone 0.02960362 
uberon 0000948 heart 0.0313214 
uberon 0004741 cleithrum 0.03507643 
uberon 0003011 facial motor nucleus 0.0384002 
uberon 0000926 mesoderm 0.0418392 
uberon 0000925 endoderm 0.0418392 
uberon 2001357 alar plate midbrain 0.04407914 
uberon 0007124 pharyngeal pouch 3 0.04407914 
uberon 0007125 pharyngeal pouch 4 0.04407914 
uberon 0001093 vertebral bone 2 0.04407914 
uberon 0002424 oral epithelium 0.04407914 
uberon 2001430 pneumatic duct 0.04407914 
uberon 0004376 fin bone 0.04407914 
uberon 2005316 fin fold pectoral fin bud 0.04407914 
uberon 0005283 tela choroidea 0.04407914 
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Supplementary Table S2.24. The top 100 enriched Uberon terms for the hindlimb conserved 

genes. The full enriched term list is available at 

https://github.com/pasanfernando/Chapter2_datafiles repository.  

Uberon identifier Term name P-value 
uberon 0002091 appendicular skeleton 3.19E-33 
uberon 0002103 hindlimb 6.19E-33 
uberon 0001708 jaw skeleton 2.38E-30 
uberon 0011156 facial skeleton 1.01E-28 
uberon 0005944 axial skeleton plus cranial skeleton 1.29E-27 
uberon 0001456 face 1.66E-27 
uberon 0000033 head 2.63E-27 
uberon 0000165 mouth 1.31E-26 
uberon 0003128 cranium 2.05E-26 
uberon 0002102 forelimb 1.75E-24 
uberon 0007811 craniocervical region 4.04E-24 
uberon 0004716 conceptus 2.03E-23 
uberon 0001434 skeletal system 2.95E-23 
uberon 0001684 mandible 3.01E-21 
uberon 0002470 autopod region 1.67E-20 
uberon 0000383 musculature of body 1.57E-19 
uberon 0001004 respiratory system 2.75E-19 
uberon 0003823 hindlimb zeugopod 3.13E-19 
uberon 0001049 neural tube 3.51E-19 
uberon 0002544 digit 5.64E-19 
uberon 0001716 secondary palate 6.56E-19 
uberon 0001007 digestive system 1.14E-18 
uberon 0001703 neurocranium 1.22E-18 
uberon 0002397 maxilla 1.33E-18 
uberon 0001690 ear 1.39E-17 
uberon 0002105 vestibulo-auditory system 2.82E-17 
uberon 0003252 thoracic rib cage 4.13E-17 
uberon 0003216 hard palate 5.32E-17 
uberon 0000014 zone of skin 6.27E-17 
uberon 0001890 forebrain 9.98E-17 
uberon 0002104 visual system 1.76E-16 
uberon 0000955 brain 2.30E-16 
uberon 0000948 heart 7.45E-16 
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uberon 0000019 camera-type eye 7.87E-16 
uberon 0001008 renal system 8.45E-16 
uberon 0004535 cardiovascular system 1.19E-15 
uberon 0005619 secondary palatal shelf 1.80E-15 
uberon 0003822 forelimb stylopod 3.01E-15 
uberon 0001446 fibula 6.03E-15 
uberon 0002516 epiphyseal plate 6.20E-15 
uberon 0002416 integumental system 1.01E-14 
uberon 0001285 nephron 1.07E-14 
uberon 0001894 diencephalon 1.14E-14 
uberon 0001229 renal corpuscle 1.15E-14 
uberon 0000947 aorta 1.21E-14 
uberon 0000975 sternum 2.24E-14 
uberon 0000012 somatic nervous system 2.35E-14 
uberon 0000004 nose 2.76E-14 
uberon 0002012 pulmonary artery 3.00E-14 
uberon 0000074 renal glomerulus 3.92E-14 
uberon 0006772 long bone epiphyseal plate hypertrophic zone 4.88E-14 
uberon 0001756 middle ear 4.90E-14 
uberon 0000474 female reproductive system 5.73E-14 
uberon 0001225 cortex of kidney 7.17E-14 
uberon 0001681 nasal bone 9.46E-14 
uberon 0000979 tibia 1.01E-13 
uberon 0002483 trabecular bone tissue 1.01E-13 
uberon 0000084 ureteric bud 1.50E-13 
uberon 0000209 tetrapod frontal bone 2.85E-13 
uberon 0001723 tongue 3.11E-13 
uberon 0001677 sphenoid bone 4.49E-13 
uberon 0006333 snout 1.19E-12 
uberon 0000976 humerus 1.30E-12 
uberon 0002228 rib 1.43E-12 
uberon 0003655 molar tooth 1.96E-12 
uberon 0002094 interventricular septum 1.99E-12 
uberon 0004347 limb bud 2.89E-12 
uberon 0002218 tympanic ring 3.02E-12 
uberon 0003451 lower jaw incisor 3.02E-12 
uberon 0002028 hindbrain 5.27E-12 
uberon 0000924 ectoderm 6.31E-12 
uberon 0000376 hindlimb stylopod 7.85E-12 
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uberon 0002517 basicranium 9.17E-12 
uberon 0001130 vertebral column 9.40E-12 
uberon 0002298 brainstem 9.72E-12 
uberon 0001037 strand of hair 1.08E-11 
uberon 0006849 scapula 1.84E-11 
uberon 0003107 meckel's cartilage 1.84E-11 
uberon 0010166 coat of hair 1.96E-11 
uberon 0006207 aortico-pulmonary spiral septum 2.15E-11 
uberon 0002080 heart right ventricle 2.45E-11 
uberon 0001711 eyelid 2.98E-11 
uberon 0004356 apical ectodermal ridge 2.98E-11 
uberon 0003975 internal female genitalia 4.59E-11 
uberon 0000922 embryo 6.10E-11 
uberon 0000981 femur 7.75E-11 
uberon 0002048 lung 7.78E-11 
uberon 0001230 glomerular capsule 9.73E-11 
uberon 0000059 large intestine 1.10E-10 
uberon 0002084 heart left ventricle 1.13E-10 
uberon 0001891 midbrain 2.01E-10 
uberon 0005871 palatine process of maxilla 3.50E-10 
uberon 0002407 pericardium 3.63E-10 
uberon 0002418 cartilage tissue 4.47E-10 
uberon 0001911 mammary gland 4.82E-10 
uberon 0002113 kidney 4.82E-10 
uberon 0001895 metencephalon 5.03E-10 
uberon 0003221 phalanx 5.23E-10 
uberon 0001439 compact bone tissue 5.32E-10 
uberon 0008974 apocrine gland 5.42E-10 
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Supplementary Table S2.25. The top 100 enriched Uberon terms for the hindlimb module-

specific genes. The full enriched term list is available at 

https://github.com/pasanfernando/Chapter2_datafiles repository.  

Uberon identifier Term name P-value 
uberon 0002103 hindlimb 2.05e-340 
uberon 0002091 appendicular skeleton 3.0587604134e-320 
uberon 0001434 skeletal system 1.62E-222 
uberon 0003823 hindlimb zeugopod 6.11E-203 
uberon 0000979 tibia 2.71E-190 
uberon 0000376 hindlimb stylopod 8.00E-187 
uberon 0000981 femur 4.30E-183 
uberon 0002102 forelimb 4.60E-85 
uberon 0005944 axial skeleton plus cranial skeleton 2.27E-80 
uberon 0002483 trabecular bone tissue 2.04E-70 
uberon 0002516 epiphyseal plate 1.09E-65 
uberon 0003663 hindlimb muscle 3.02E-58 
uberon 0008777 hypaxial musculature 6.71E-55 
uberon 0001424 ulna 1.44E-53 
uberon 0003128 cranium 1.28E-51 
uberon 0003822 forelimb stylopod 4.18E-51 
uberon 0007811 craniocervical region 4.56E-51 
uberon 0000976 humerus 1.21E-50 
uberon 0006772 long bone epiphyseal plate hypertrophic zone 2.64E-50 
uberon 0001134 skeletal muscle tissue 4.82E-50 
uberon 0000383 musculature of body 1.98E-49 
uberon 0001423 radius bone 3.48E-48 
uberon 0011156 facial skeleton 3.35E-46 
uberon 0001439 compact bone tissue 6.40E-45 
uberon 0002470 autopod region 5.17E-44 
uberon 0001708 jaw skeleton 2.14E-43 
uberon 0003252 thoracic rib cage 3.83E-43 
uberon 0001446 fibula 2.16E-41 
uberon 0001703 neurocranium 2.57E-41 
uberon 0000165 mouth 5.13E-39 
uberon 0002544 digit 1.45E-38 
uberon 0001456 face 1.04E-37 
uberon 0001684 mandible 1.32E-36 
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uberon 0000033 head 2.97E-36 
uberon 0008867 trabecular network of bone 5.49E-36 
uberon 0003221 phalanx 1.44E-35 
uberon 0001130 vertebral column 6.99E-34 
uberon 0002228 rib 9.84E-34 
uberon 0001448 metatarsal bone 2.49E-30 
uberon 0006771 long bone epiphyseal plate proliferative zone 9.20E-27 
uberon 0000440 trabecula 1.06E-26 
uberon 0001004 respiratory system 5.29E-26 
uberon 0000475 organism subdivision 1.45E-25 
uberon 0001389 soleus muscle 1.04E-24 
uberon 0007812 post-anal tail 3.07E-24 
uberon 0001007 digestive system 6.78E-24 
uberon 0001388 gastrocnemius 9.31E-24 
uberon 0002374 metacarpal bone 7.00E-23 
uberon 0004535 cardiovascular system 3.17E-22 
uberon 0002105 vestibulo-auditory system 6.14E-22 
uberon 0001690 ear 8.89E-22 
uberon 0000012 somatic nervous system 7.20E-21 
uberon 0001780 spinal nerve 9.62E-21 
uberon 0006333 snout 1.34E-20 
uberon 0002397 maxilla 1.58E-20 
uberon 0001095 caudal vertebra 1.64E-20 
uberon 0002104 visual system 3.47E-19 
uberon 0001385 tibialis anterior 1.62E-18 
uberon 0002240 spinal cord 4.15E-18 
uberon 0000468 multicellular organism 8.18E-18 
uberon 0000019 camera-type eye 9.69E-18 
uberon 0007830 pelvic girdle bone/zone 1.51E-17 
uberon 0001756 middle ear 1.76E-17 
uberon 0002412 vertebra 2.17E-17 
uberon 0000975 sternum 2.99E-17 
uberon 0001716 secondary palate 4.81E-17 
uberon 0002048 lung 2.37E-16 
uberon 0001438 metaphysis 2.93E-16 
uberon 0001377 quadriceps femoris 7.63E-16 
uberon 0002517 basicranium 1.87E-15 
uberon 0001435 carpal bone 2.67E-15 
uberon 0001008 renal system 2.77E-15 
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uberon 0001386 extensor digitorum longus 3.03E-15 
uberon 0006849 scapula 1.06E-14 
uberon 0001711 eyelid 1.08E-14 
uberon 0000210 tetrapod parietal bone 1.21E-14 
uberon 0001447 tarsal bone 1.69E-14 
uberon 0000474 female reproductive system 2.49E-14 
uberon 0004716 conceptus 1.41E-13 
uberon 0002413 cervical vertebra 1.47E-13 
uberon 0001049 neural tube 2.35E-13 
uberon 0000014 zone of skin 2.41E-13 
uberon 0000948 heart 4.92E-13 
uberon 0001689 malleus bone 6.36E-13 
uberon 0002347 thoracic vertebra 7.26E-13 
uberon 0001723 tongue 7.97E-13 
uberon 0001678 temporal bone 8.99E-13 
uberon 0006861 diaphysis proper 1.22E-12 
uberon 0001681 nasal bone 2.13E-12 
uberon 0004347 limb bud 2.63E-12 
uberon 0003861 neural arch 3.02E-12 
uberon 0002446 patella 3.28E-12 
uberon 0003461 shoulder bone 4.16E-12 
uberon 0001013 adipose tissue 4.52E-12 
uberon 0006068 bone of tail 4.91E-12 
uberon 0002315 gray matter of spinal cord 7.28E-12 
uberon 0001676 occipital bone 8.95E-12 
uberon 0000982 skeletal joint 1.00E-11 
uberon 0002416 integumental system 1.10E-11 
uberon 0002418 cartilage tissue 1.24E-11 
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Supplementary Table S2.26. The top 100 enriched Biological Process terms from the Gene 

Ontology for the mouse orthologs of the pelvic fin module-specific genes. The full enriched term 

list is available at https://github.com/pasanfernando/Chapter2_datafiles repository. 

Term identifier Term name P-value 
GO:0006468 protein phosphorylation 5.19E-34 
GO:0016310 phosphorylation 1.24E-30 
GO:0046777 protein autophosphorylation 9.64E-22 
GO:0018105 peptidyl-serine phosphorylation 1.63E-15 
GO:0045893 positive regulation of transcription, DNA-templated 5.38E-15 
GO:0018108 peptidyl-tyrosine phosphorylation 1.80E-14 
GO:0045944 positive regulation of transcription from RNA polymerase II promoter 3.24E-14 
GO:0007169 transmembrane receptor protein tyrosine kinase signaling pathway 1.41E-13 
GO:0010628 positive regulation of gene expression 1.67E-13 
GO:0009887 organ morphogenesis 7.65E-12 
GO:0030335 positive regulation of cell migration 1.14E-11 
GO:0042493 response to drug 7.06E-11 
GO:0018107 peptidyl-threonine phosphorylation 1.51E-10 
GO:0043066 negative regulation of apoptotic process 4.82E-10 
GO:0043627 response to estrogen 5.96E-10 
GO:0001934 positive regulation of protein phosphorylation 6.88E-10 
GO:0006351 transcription, DNA-templated 1.09E-09 
GO:0038083 peptidyl-tyrosine autophosphorylation 1.75E-09 
GO:0048565 digestive tract development 2.26E-09 
GO:0035690 cellular response to drug 7.15E-09 
GO:0008284 positive regulation of cell proliferation 9.34E-09 
GO:0035556 intracellular signal transduction 1.19E-08 
GO:0030154 cell differentiation 1.47E-08 
GO:0035970 peptidyl-threonine dephosphorylation 2.43E-08 
GO:0007275 multicellular organism development 4.69E-08 
GO:0045665 negative regulation of neuron differentiation 8.95E-08 
GO:0071773 cellular response to BMP stimulus 1.34E-07 
GO:0007264 small GTPase mediated signal transduction 2.17E-07 
GO:0000122 negative regulation of transcription from RNA polymerase II promoter 2.52E-07 
GO:0030182 neuron differentiation 3.94E-07 
GO:0060070 canonical Wnt signaling pathway 4.66E-07 
GO:0071407 cellular response to organic cyclic compound 7.62E-07 
GO:0016477 cell migration 1.56E-06 
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GO:0006355 regulation of transcription, DNA-templated 1.98E-06 
GO:0007178 transmembrane receptor protein serine/threonine kinase signaling pathway 2.25E-06 
GO:0001942 hair follicle development 3.29E-06 
GO:0043525 positive regulation of neuron apoptotic process 3.31E-06 
GO:0007049 cell cycle 4.64E-06 
GO:0043524 negative regulation of neuron apoptotic process 5.40E-06 
GO:0007179 transforming growth factor beta receptor signaling pathway 6.68E-06 
GO:0006357 regulation of transcription from RNA polymerase II promoter 8.40E-06 
GO:0048485 sympathetic nervous system development 8.61E-06 
GO:0045740 positive regulation of DNA replication 9.30E-06 
GO:0071363 cellular response to growth factor stimulus 1.61E-05 
GO:0007507 heart development 1.70E-05 
GO:0048663 neuron fate commitment 1.77E-05 
GO:0030509 BMP signaling pathway 2.27E-05 
GO:0001701 in utero embryonic development 2.45E-05 
GO:0008584 male gonad development 2.93E-05 
GO:0006470 protein dephosphorylation 3.41E-05 
GO:0071333 cellular response to glucose stimulus 3.48E-05 
GO:0030513 positive regulation of BMP signaling pathway 3.59E-05 
GO:0031175 neuron projection development 3.65E-05 
GO:0045165 cell fate commitment 3.86E-05 
GO:0003151 outflow tract morphogenesis 4.33E-05 
GO:0043406 positive regulation of MAP kinase activity 4.33E-05 
GO:0042127 regulation of cell proliferation 5.34E-05 
GO:0010629 negative regulation of gene expression 7.71E-05 
GO:0016569 covalent chromatin modification 8.05E-05 
GO:0051496 positive regulation of stress fiber assembly 1.15E-04 
GO:0060041 retina development in camera-type eye 1.17E-04 
GO:0010468 regulation of gene expression 1.23E-04 
GO:0003007 heart morphogenesis 1.31E-04 
GO:0045429 positive regulation of nitric oxide biosynthetic process 1.31E-04 
GO:0007399 nervous system development 1.38E-04 
GO:0045597 positive regulation of cell differentiation 1.49E-04 
GO:0006366 transcription from RNA polymerase II promoter 1.71E-04 
GO:0008285 negative regulation of cell proliferation 1.73E-04 
GO:0007165 signal transduction 2.05E-04 
GO:0045931 positive regulation of mitotic cell cycle 2.26E-04 
GO:0032212 positive regulation of telomere maintenance via telomerase 2.26E-04 
GO:0045471 response to ethanol 2.30E-04 
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GO:0007224 smoothened signaling pathway 2.52E-04 
GO:0007167 enzyme linked receptor protein signaling pathway 2.85E-04 
GO:0007204 positive regulation of cytosolic calcium ion concentration 3.02E-04 
GO:0048709 oligodendrocyte differentiation 3.03E-04 
GO:0001525 angiogenesis 3.37E-04 
GO:0030324 lung development 3.55E-04 
GO:0001764 neuron migration 3.55E-04 
GO:0048015 phosphatidylinositol-mediated signaling 3.99E-04 
GO:0048538 thymus development 4.03E-04 
GO:0016055 Wnt signaling pathway 4.15E-04 
GO:0090090 negative regulation of canonical Wnt signaling pathway 4.48E-04 
GO:0010001 glial cell differentiation 4.49E-04 
GO:0071260 cellular response to mechanical stimulus 4.50E-04 
GO:0030501 positive regulation of bone mineralization 4.54E-04 
GO:0009790 embryo development 4.87E-04 
GO:0070301 cellular response to hydrogen peroxide 4.90E-04 
GO:0045909 positive regulation of vasodilation 5.16E-04 
GO:0060412 ventricular septum morphogenesis 5.16E-04 
GO:0070374 positive regulation of ERK1 and ERK2 cascade 5.21E-04 
GO:0048661 positive regulation of smooth muscle cell proliferation 5.26E-04 
GO:0008283 cell proliferation 5.53E-04 
GO:0051091 positive regulation of sequence-specific DNA binding transcription factor 

activity 
6.17E-04 

GO:0001666 response to hypoxia 6.21E-04 
GO:0060045 positive regulation of cardiac muscle cell proliferation 6.46E-04 
GO:0007623 circadian rhythm 6.56E-04 
GO:0048646 anatomical structure formation involved in morphogenesis 7.64E-04 
GO:0048854 brain morphogenesis 7.64E-04 
GO:0000082 G1/S transition of mitotic cell cycle 7.71E-04 
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Supplementary Table S2.27. The top 100 Uberon terms for the mouse orthologs of the pelvic fin 

module-specific genes. The full enriched term list is available at 

https://github.com/pasanfernando/Chapter2_datafiles repository. 

Uberon identifier Term name P-value 
uberon 0000922 embryo 6.50E-16 
uberon 0004716 conceptus 1.53E-13 
uberon 0004365 vitelline blood vessel 2.69E-09 
uberon 0000478 extraembryonic structure 3.51E-09 
uberon 0001007 digestive system 8.53E-09 
uberon 0000014 zone of skin 2.47E-08 
uberon 0010190 pair of dorsal aortae 4.77E-08 
uberon 0001049 neural tube 1.02E-07 
uberon 0008852 visceral yolk sac 1.23E-07 
uberon 0000948 heart 1.60E-07 
uberon 0004535 cardiovascular system 4.34E-07 
uberon 0000468 multicellular organism 5.93E-07 
uberon 0000016 endocrine pancreas 8.87E-07 
uberon 0002067 dermis 1.91E-06 
uberon 0001004 respiratory system 3.10E-06 
uberon 0000358 blastocyst 3.19E-06 
uberon 0000033 head 3.57E-06 
uberon 0002012 pulmonary artery 4.49E-06 
uberon 0002407 pericardium 1.34E-05 
uberon 0002048 lung 1.66E-05 
uberon 0004374 vitelline vasculature 2.27E-05 
uberon 0001987 placenta 2.69E-05 
uberon 0003087 anterior cardinal vein 3.00E-05 
uberon 0000006 islet of langerhans 3.49E-05 
uberon 0001264 pancreas 4.05E-05 
uberon 0000947 aorta 4.50E-05 
uberon 0001456 face 6.01E-05 
uberon 0003512 lung blood vessel 6.31E-05 
uberon 0002240 spinal cord 7.35E-05 
uberon 0003946 placenta labyrinth 0.00010402 
uberon 0002368 endocrine gland 0.00011026 
uberon 0001792 ganglionic layer of retina 0.00012935 
uberon 0002062 endocardial cushion 0.00014493 
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uberon 0001508 arch of aorta 0.00015353 
uberon 0001083 myocardium of ventricle 0.0001601 
uberon 0007811 craniocervical region 0.00016979 
uberon 0001809 enteric ganglion 0.0001807 
uberon 0000084 ureteric bud 0.00020974 
uberon 0002087 atrioventricular canal 0.00022946 
uberon 0002315 gray matter of spinal cord 0.00024038 
uberon 0004647 liver lobule 0.00026764 
uberon 0001818 tarsal gland 0.00026935 
uberon 0000165 mouth 0.00027721 
uberon 0001675 trigeminal ganglion 0.00027999 
uberon 0006207 aortico-pulmonary spiral septum 0.00028524 
uberon 0002416 integumental system 0.00028781 
uberon 0010172 bulb of aorta 0.00030071 
uberon 0002005 enteric nervous system 0.00030515 
uberon 0006524 alveolar system 0.00031454 
uberon 0008870 pulmonary alveolar parenchyma 0.00034866 
uberon 0000088 trophoblast 0.00039593 
uberon 0002094 interventricular septum 0.000402 
uberon 0000383 musculature of body 0.00042772 
uberon 0001711 eyelid 0.00043278 
uberon 0003216 hard palate 0.00044958 
uberon 0001280 liver parenchyma 0.00046467 
uberon 0000011 parasympathetic nervous system 0.0004649 
uberon 0002073 hair follicle 0.00052472 
uberon 0002370 thymus 0.00057905 
uberon 0008856 stomach muscularis externa 0.0006099 
uberon 0000019 camera-type eye 0.00061682 
uberon 0002408 parietal serous pericardium 0.00062547 
uberon 0001496 ascending aorta 0.00063348 
uberon 0000117 respiratory tube 0.00063848 
uberon 0002165 endocardium 0.00073687 
uberon 0003066 pharyngeal arch 2 0.00073687 
uberon 0002511 trabecula carnea 0.00077776 
uberon 0000013 sympathetic nervous system 0.0008281 
uberon 0000012 somatic nervous system 0.00090485 
uberon 0002342 neural crest 0.00093289 
uberon 0003618 aorta tunica media 0.00093289 
uberon 0002080 heart right ventricle 0.00100621 
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uberon 0001637 artery 0.0010228 
uberon 0001708 jaw skeleton 0.00113097 
uberon 0002104 visual system 0.00120939 
uberon 0002069 stratum granulosum of epidermis 0.00121228 
uberon 0001074 pericardial cavity 0.00142689 
uberon 0001041 foregut 0.00145277 
uberon 0008874 pulmonary acinus 0.00148651 
uberon 0004493 cardiac muscle tissue of myocardium 0.00151061 
uberon 0002410 autonomic nervous system 0.00154176 
uberon 0001135 smooth muscle tissue 0.00168825 
uberon 0001716 secondary palate 0.00180283 
uberon 0003501 retina blood vessel 0.00195196 
uberon 0002025 stratum basale of epidermis 0.00203946 
uberon 0011156 facial skeleton 0.0021246 
uberon 0003823 hindlimb zeugopod 0.00219172 
uberon 0001534 right subclavian artery 0.00222747 
uberon 0005970 brain commissure 0.00223824 
uberon 0003073 lens placode 0.00223824 
uberon 0003128 cranium 0.00240653 
uberon 0001003 skin epidermis 0.0024443 
uberon 0010513 strand of zigzag hair 0.00258297 
uberon 0001213 intestinal villus 0.00269833 
uberon 0001806 sympathetic ganglion 0.00286072 
uberon 0005870 olfactory pit 0.00286072 
uberon 0005343 cortical plate 0.00286898 
uberon 0005062 neural fold 0.00286898 
uberon 0004663 aorta wall 0.0028703 
uberon 0010512 strand of guard hair 0.00311381 
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Supplementary Table S2.28. The enriched Biological Process terms from the Gene Ontology for 

the zebrafish orthologs of the hindlimb module-specific genes.  

Term identifier Term name P-value 
GO:0006355 regulation of transcription, DNA-templated 1.34E-09 
GO:0007275 multicellular organism development 5.81E-09 
GO:0040007 growth 7.61E-07 
GO:0010862 positive regulation of pathway-restricted SMAD protein phosphorylation 1.22E-06 
GO:0060395 SMAD protein signal transduction 1.89E-06 
GO:0043408 regulation of MAPK cascade 2.33E-06 
GO:0048701 embryonic cranial skeleton morphogenesis 1.03E-05 
GO:0048468 cell development 1.49E-05 
GO:0051216 cartilage development 1.50E-05 
GO:0030182 neuron differentiation 3.49E-05 
GO:0016055 Wnt signaling pathway 5.61E-05 
GO:0007417 central nervous system development 1.10E-04 
GO:0060070 canonical Wnt signaling pathway 1.97E-04 
GO:0006351 transcription, DNA-templated 2.70E-04 
GO:0008543 fibroblast growth factor receptor signaling pathway 3.76E-04 
GO:0001501 skeletal system development 5.14E-04 
GO:0007155 cell adhesion 6.49E-04 
GO:0048703 embryonic viscerocranium morphogenesis 9.92E-04 
GO:0043401 steroid hormone mediated signaling pathway 0.00114721 
GO:0030903 notochord development 0.00117063 
GO:0005975 carbohydrate metabolic process 0.00129702 
GO:0009612 response to mechanical stimulus 0.00135076 
GO:0030510 regulation of BMP signaling pathway 0.00160837 
GO:0030513 positive regulation of BMP signaling pathway 0.00204619 
GO:0001503 ossification 0.00204619 
GO:0045165 cell fate commitment 0.00207662 
GO:0000165 MAPK cascade 0.00225021 
GO:0002062 chondrocyte differentiation 0.00225021 
GO:0007626 locomotory behavior 0.0023328 
GO:0031101 fin regeneration 0.00239174 
GO:0043010 camera-type eye development 0.0025896 
GO:0007517 muscle organ development 0.00308006 
GO:0009953 dorsal/ventral pattern formation 0.00369912 
GO:0005978 glycogen biosynthetic process 0.0039571 
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GO:0030916 otic vesicle formation 0.0039571 
GO:0035118 embryonic pectoral fin morphogenesis 0.00553237 
GO:0007179 transforming growth factor beta receptor signaling pathway 0.00553237 
GO:0030282 bone mineralization 0.00628086 
GO:0060349 bone morphogenesis 0.00737634 
GO:0030902 hindbrain development 0.00739625 
GO:0070654 sensory epithelium regeneration 0.00769009 
GO:0031099 regeneration 0.00927093 
GO:0007519 skeletal muscle tissue development 0.0106517 
GO:0043627 response to estrogen 0.01086062 
GO:0061024 membrane organization 0.01086062 
GO:0021587 cerebellum morphogenesis 0.01086062 
GO:0043697 cell dedifferentiation 0.01086062 
GO:0009948 anterior/posterior axis specification 0.01102739 
GO:0042074 cell migration involved in gastrulation 0.01173397 
GO:0045595 regulation of cell differentiation 0.01296272 
GO:0048839 inner ear development 0.01440797 
GO:0008045 motor neuron axon guidance 0.01440797 
GO:0061300 cerebellum vasculature development 0.01492536 
GO:0030198 extracellular matrix organization 0.01507944 
GO:0060536 cartilage morphogenesis 0.01737942 
GO:0060021 palate development 0.01953552 
GO:0046716 muscle cell cellular homeostasis 0.01953552 
GO:0060538 skeletal muscle organ development 0.01953552 
GO:0048884 neuromast development 0.01986392 
GO:0060037 pharyngeal system development 0.01986392 
GO:0035567 non-canonical Wnt signaling pathway 0.02253359 
GO:0042981 regulation of apoptotic process 0.02458938 
GO:0072661 protein targeting to plasma membrane 0.02465756 
GO:0006874 cellular calcium ion homeostasis 0.02703075 
GO:0055113 epiboly involved in gastrulation with mouth forming second 0.02923793 
GO:0016203 muscle attachment 0.0302594 
GO:0030500 regulation of bone mineralization 0.0302594 
GO:0048840 otolith development 0.03165263 
GO:0007267 cell-cell signaling 0.03311103 
GO:0001889 liver development 0.03497684 
GO:0051482 positive regulation of cytosolic calcium ion concentration involved in 

phospholipase C-activating G-protein coupled signaling pathway 
0.03505962 

GO:0060027 convergent extension involved in gastrulation 0.03507928 
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GO:0001568 blood vessel development 0.03507928 
GO:0055001 muscle cell development 0.03631032 
GO:0030199 collagen fibril organization 0.03631032 
GO:0060041 retina development in camera-type eye 0.03668877 
GO:0006357 regulation of transcription from RNA polymerase II promoter 0.03680213 
GO:0060059 embryonic retina morphogenesis in camera-type eye 0.03864788 
GO:0045944 positive regulation of transcription from RNA polymerase II promoter 0.0397757 
GO:0006508 proteolysis 0.04168701 
GO:0007631 feeding behavior 0.04278097 
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Supplementary Table S2.29. The enriched Uberon terms for the zebrafish orthologs of the 

hindlimb module-specific genes.  

Uberon identifier Term name P-value 
uberon 0000019 camera-type eye 7.22E-18 
uberon 0000468 multicellular organism 5.69E-17 
uberon 0000033 head 2.90E-15 
uberon 0008823 neural tube derived brain 1.67E-12 
uberon 0001016 nervous system 5.42E-10 
uberon 0001017 central nervous system 1.81E-08 
uberon 0002107 liver 4.19E-07 
uberon 0000948 heart 6.07E-07 
uberon 0001555 digestive tract 1.70E-06 
uberon 0001032 sensory system 1.93E-06 
uberon 0007812 post-anal tail 2.28E-06 
uberon 0002407 pericardium 1.47E-05 
uberon 0005886 post-hyoid pharyngeal arch skeleton 3.02E-05 
uberon 2000084 yolk 3.05E-05 
uberon 0005281 ventricular system of central nervous system 6.07E-05 
uberon 0010314 structure with developmental contribution from neural crest 0.00074386 
uberon 0001846 internal ear 0.0008888 
uberon 0002329 somite 0.00089648 
uberon 0001003 skin epidermis 0.00170376 
uberon 0003102 surface structure 0.00190061 
uberon 0002100 trunk 0.00252997 
uberon 0001708 jaw skeleton 0.00287797 
uberon 0004141 heart tube 0.00345967 
uberon 0001782 pigmented layer of retina 0.00380629 
uberon 0000017 exocrine pancreas 0.00384968 
uberon 4000164 caudal fin 0.0046263 
uberon 0001945 superior colliculus 0.00488419 
uberon 0012438 blastema of regenerating fin/limb 0.00591299 
uberon 0000965 lens of camera-type eye 0.00652003 
uberon 0000966 retina 0.0085354 
uberon 0002280 otolith 0.01008715 
uberon 0008897 fin 0.01130278 
uberon 0002028 hindbrain 0.01447067 
uberon 0001890 forebrain 0.01678628 
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uberon 0014907 intersomitic vessel 0.01866955 
uberon 0005884 hyoid arch skeleton 0.01978595 
uberon 2000106 extension 0.02390583 
uberon 0005310 pronephric nephron tubule 0.02958931 
uberon 2001456 pectoral fin endoskeletal disc 0.0328624 
uberon 0011611 ceratohyal bone 0.0328624 
uberon 0003052 midbrain-hindbrain boundary 0.03515936 
uberon 0002328 notochord 0.03668385 
uberon 0002082 cardiac ventricle 0.03785239 
uberon 0006283 future cardiac ventricle 0.04193983 
uberon 0005087 tooth placode 0.04412975 
uberon 0002422 fourth ventricle 0.04604822 
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Supplementary Table S2.30. The enriched Biological Process terms from the Gene Ontology that 

are common to the predicted genes and genes with original annotations for the pectoral fin. The 

enriched terms are sorted based on the p-value of those terms for the predicted genes. 

Term 
identifier 

Term name P-value for predicted 
genes 

P-value for original 
genes 

GO:0007275 multicellular organism development 2.41E-12 1.85E-09 
GO:0009953 dorsal/ventral pattern formation 6.32E-12 2.23E-06 
GO:0051216 cartilage development 2.28E-11 4.70E-17 
GO:0009880 embryonic pattern specification 4.19E-09 0.0160149 
GO:0006355 regulation of transcription, DNA-templated 4.82E-09 1.70E-07 
GO:0014032 neural crest cell development 2.91E-08 0.00016897 
GO:0001756 somitogenesis 6.37E-08 2.80E-07 
GO:0007368 determination of left/right symmetry 1.71E-07 4.78E-09 
GO:0030182 neuron differentiation 3.70E-07 9.35E-05 
GO:0007224 smoothened signaling pathway 6.03E-07 0.00117078 
GO:0048703 embryonic viscerocranium morphogenesis 3.24E-06 2.95E-16 
GO:2000223 regulation of BMP signaling pathway 

involved in heart jogging 
3.31E-06 0.0037629 

GO:0042476 odontogenesis 4.29E-06 2.35E-06 
GO:0021984 adenohypophysis development 4.29E-06 0.00442453 
GO:0030902 hindbrain development 4.52E-06 4.34E-08 
GO:0009952 anterior/posterior pattern specification 7.59E-06 0.00060755 
GO:0001947 heart looping 8.61E-06 6.61E-15 
GO:0016055 Wnt signaling pathway 1.66E-05 6.53E-06 
GO:0048793 pronephros development 2.04E-05 1.01E-05 
GO:0003143 embryonic heart tube morphogenesis 3.81E-05 3.94E-08 
GO:0031018 endocrine pancreas development 5.91E-05 0.02264448 
GO:0042694 muscle cell fate specification 9.42E-05 0.04578302 
GO:0031290 retinal ganglion cell axon guidance 0.000111737 9.33E-06 
GO:0048701 embryonic cranial skeleton morphogenesis 0.000292195 5.06E-09 
GO:0060070 canonical Wnt signaling pathway 0.00042765 8.61E-05 
GO:0021508 floor plate formation 0.000564411 0.00513581 
GO:0048264 determination of ventral identity 0.001287915 0.00055075 
GO:0060037 pharyngeal system development 0.001287915 0.00055075 
GO:0060041 retina development in camera-type eye 0.001442926 5.42E-06 
GO:0071599 otic vesicle development 0.001684552 0.0148082 
GO:0030917 midbrain-hindbrain boundary development 0.002132019 0.00117078 
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GO:0060059 embryonic retina morphogenesis in camera-
type eye 

0.002132019 0.01854958 

GO:0045893 positive regulation of transcription, DNA-
templated 

0.002141963 0.04413722 

GO:0008543 fibroblast growth factor receptor signaling 
pathway 

0.003568028 0.03020605 

GO:0031016 pancreas development 0.003981011 9.33E-06 
GO:0001501 skeletal system development 0.003981011 0.00293934 
GO:0043010 camera-type eye development 0.007171621 0.00060755 
GO:0007507 heart development 0.010543118 1.44E-08 
GO:0003342 proepicardium development 0.012678336 0.00059083 
GO:0010002 cardioblast differentiation 0.022708189 3.72E-05 
GO:0045892 negative regulation of transcription, DNA-

templated 
0.024331089 0.00642797 

GO:0030166 proteoglycan biosynthetic process 0.025200109 0.00259184 
GO:0021986 habenula development 0.032638807 0.00442453 
GO:0048384 retinoic acid receptor signaling pathway 0.035106069 0.00015684 
GO:0001649 osteoblast differentiation 0.035106069 0.00015684 
GO:0048709 oligodendrocyte differentiation 0.035106069 3.28E-06 
GO:0030198 extracellular matrix organization 0.047350757 0.00940935 
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Supplementary Table S2.31. The enriched Biological Process terms from the Gene Ontology that 

are common to the predicted genes and genes with original annotations for the pelvic fin. The 

enriched terms are sorted based on the p-value of those terms for the predicted genes. 

Term identifier Term name P-value for the predicted 
genes 

P-value for the original 
genes 

GO:0033333 fin development 7.11E-10 9.72E-08 
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Supplementary Table S2.32. The enriched Biological Process terms from the Gene Ontology that 

are common to the predicted genes and genes with original annotations for the forelimb. The 

enriched terms are sorted based on the p-value of those terms for the predicted genes. 

Term 
identifier 

Term name P-value for the 
predicted genes 

P-value for the original 
genes 

GO:0030509 BMP signaling pathway 2.12E-17 2.19E-10 
GO:0007275 multicellular organism development 5.15E-12 5.81E-25 
GO:0007389 pattern specification process 1.71E-09 1.90E-15 
GO:0030326 embryonic limb morphogenesis 2.62E-09 1.44E-40 
GO:0045669 positive regulation of osteoblast differentiation 3.87E-09 2.15E-10 
GO:0045893 positive regulation of transcription, DNA-

templated 
1.91E-08 8.27E-22 

GO:0001701 in utero embryonic development 2.06E-07 3.67E-14 
GO:0042475 odontogenesis of dentin-containing tooth 3.08E-07 2.14E-16 
GO:0042733 embryonic digit morphogenesis 3.72E-07 6.50E-38 
GO:0051216 cartilage development 8.94E-07 1.05E-21 
GO:0060021 palate development 1.03E-06 1.88E-18 
GO:0060070 canonical Wnt signaling pathway 1.24E-06 1.80E-11 
GO:0045944 positive regulation of transcription from RNA 

polymerase II promoter 
1.27E-06 5.94E-32 

GO:0000122 negative regulation of transcription from RNA 
polymerase II promoter 

2.30E-06 3.42E-23 

GO:0001501 skeletal system development 2.60E-06 9.14E-36 
GO:0009952 anterior/posterior pattern specification 3.12E-06 1.71E-17 
GO:0001649 osteoblast differentiation 3.23E-06 3.89E-10 
GO:0001707 mesoderm formation 4.43E-06 4.00E-05 
GO:0071773 cellular response to BMP stimulus 4.43E-06 4.00E-05 
GO:0007411 axon guidance 9.70E-06 1.08E-07 
GO:0001658 branching involved in ureteric bud 

morphogenesis 
1.16E-05 3.84E-12 

GO:0009953 dorsal/ventral pattern formation 1.24E-05 1.42E-21 
GO:0008285 negative regulation of cell proliferation 2.11E-05 1.63E-13 
GO:0003007 heart morphogenesis 2.78E-05 2.07E-09 
GO:0090263 positive regulation of canonical Wnt signaling 

pathway 
3.19E-05 8.99E-12 

GO:0016055 Wnt signaling pathway 3.95E-05 2.85E-11 
GO:0001503 ossification 9.34E-05 1.17E-21 
GO:0090090 negative regulation of canonical Wnt signaling 

pathway 
0.000111887 1.05E-10 

GO:0009887 organ morphogenesis 0.000136246 1.77E-11 
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GO:0045892 negative regulation of transcription, DNA-
templated 

0.00014868 3.08E-08 

GO:0045596 negative regulation of cell differentiation 0.000155607 0.00172739 
GO:0048646 anatomical structure formation involved in 

morphogenesis 
0.000226843 5.78E-06 

GO:0042474 middle ear morphogenesis 0.000226843 5.78E-06 
GO:0003148 outflow tract septum morphogenesis 0.000226843 0.000132268 
GO:0001822 kidney development 0.000229367 1.74E-17 
GO:0021983 pituitary gland development 0.00035634 1.84E-05 
GO:0001837 epithelial to mesenchymal transition 0.000380704 0.00036855 
GO:0060349 bone morphogenesis 0.00040586 4.87E-11 
GO:0035115 embryonic forelimb morphogenesis 0.000514369 6.35E-37 
GO:0030501 positive regulation of bone mineralization 0.000543461 1.62E-13 
GO:0060325 face morphogenesis 0.000635432 7.74E-05 
GO:0048568 embryonic organ development 0.000635432 4.91E-06 
GO:0007492 endoderm development 0.000635432 0.000990141 
GO:0030901 midbrain development 0.000635432 1.15E-08 
GO:0030514 negative regulation of BMP signaling pathway 0.000840378 0.000152854 
GO:0010862 positive regulation of pathway-restricted 

SMAD protein phosphorylation 
0.000914879 1.46E-05 

GO:0001657 ureteric bud development 0.000914879 9.46E-07 
GO:0045599 negative regulation of fat cell differentiation 0.000914879 0.001967343 
GO:0003151 outflow tract morphogenesis 0.001156789 7.48E-09 
GO:0045668 negative regulation of osteoblast differentiation 0.001243528 0.00346626 
GO:0001756 somitogenesis 0.001243528 1.82E-07 
GO:0045165 cell fate commitment 0.002045776 2.19E-11 
GO:0042472 inner ear morphogenesis 0.002045776 1.01E-07 
GO:0050679 positive regulation of epithelial cell 

proliferation 
0.002276056 1.05E-13 

GO:0006355 regulation of transcription, DNA-templated 0.0030741 1.70E-09 
GO:0007267 cell-cell signaling 0.004133083 1.62E-09 
GO:0030336 negative regulation of cell migration 0.004371326 0.030620272 
GO:0006351 transcription, DNA-templated 0.005714263 2.85E-08 
GO:0030324 lung development 0.005931081 6.63E-18 
GO:0048762 mesenchymal cell differentiation 0.010296133 0.00020907 
GO:0060272 embryonic skeletal joint morphogenesis 0.01122718 1.20E-07 
GO:0043616 keratinocyte proliferation 0.012157404 0.008847589 
GO:0061053 somite development 0.013086804 0.00045 
GO:0008284 positive regulation of cell proliferation 0.013313841 3.23E-18 
GO:0014032 neural crest cell development 0.015870067 8.96E-07 
GO:0003203 endocardial cushion morphogenesis 0.015870067 3.15E-05 
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GO:0035137 hindlimb morphogenesis 0.015870067 1.96E-08 
GO:0032331 negative regulation of chondrocyte 

differentiation 
0.016796179 2.91E-08 

GO:0051145 smooth muscle cell differentiation 0.016796179 4.01E-05 
GO:0060037 pharyngeal system development 0.016796179 0.016734602 
GO:0048856 anatomical structure development 0.016796179 4.01E-05 
GO:0021904 dorsal/ventral neural tube patterning 0.017721471 4.21E-08 
GO:0008283 cell proliferation 0.017771413 3.67E-05 
GO:0045879 negative regulation of smoothened signaling 

pathway 
0.019569595 7.65E-05 

GO:0023019 signal transduction involved in regulation of 
gene expression 

0.021414447 0.002033958 

GO:0060425 lung morphogenesis 0.022335647 0.002305628 
GO:0007498 mesoderm development 0.0241756 0.002913859 
GO:0007507 heart development 0.024473032 1.18E-18 
GO:0042476 odontogenesis 0.025094353 4.27E-07 
GO:0035108 limb morphogenesis 0.026012293 6.57E-17 
GO:0001702 gastrulation with mouth forming second 0.026012293 0.038461084 
GO:0071542 dopaminergic neuron differentiation 0.026929419 7.12E-10 
GO:0048663 neuron fate commitment 0.029675922 2.55E-05 
GO:0035116 embryonic hindlimb morphogenesis 0.030589801 1.87E-19 
GO:0048589 developmental growth 0.032415128 1.19E-10 
GO:0034504 protein localization to nucleus 0.032415128 0.000592382 
GO:0048754 branching morphogenesis of an epithelial tube 0.033326579 4.55E-12 
GO:0002053 positive regulation of mesenchymal cell 

proliferation 
0.034237221 1.34E-18 

GO:0030154 cell differentiation 0.034609309 1.49E-12 
GO:0060412 ventricular septum morphogenesis 0.035147055 0.008576143 
GO:0030879 mammary gland development 0.035147055 6.02E-05 
GO:0001656 metanephros development 0.035147055 7.45E-09 
GO:0033077 T cell differentiation in thymus 0.036056083 0.000898871 
GO:0048706 embryonic skeletal system development 0.040589145 4.11E-11 
GO:0045597 positive regulation of cell differentiation 0.042396746 1.13E-05 
GO:0048705 skeletal system morphogenesis 0.049595145 1.36E-07 
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Supplementary Table S2.33. The enriched Biological Process terms from the Gene Ontology that 

are common to the predicted genes and genes with original annotations for the hindlimb. The 

enriched terms are sorted based on the p-value of those terms for the predicted genes. 

Term 
identifier 

Term name P-value for the 
predicted genes 

P-value for the 
original genes 

GO:0045944 positive regulation of transcription from RNA 
polymerase II promoter 

4.34E-14 7.62E-37 

GO:0045893 positive regulation of transcription, DNA-
templated 

3.71E-12 4.70E-31 

GO:0001649 osteoblast differentiation 1.27E-11 5.39E-12 
GO:0050679 positive regulation of epithelial cell proliferation 4.24E-11 2.50E-09 
GO:0001837 epithelial to mesenchymal transition 1.74E-09 0.00157941 
GO:0060325 face morphogenesis 6.66E-09 0.00497598 
GO:0008285 negative regulation of cell proliferation 1.07E-08 1.18E-17 
GO:0010629 negative regulation of gene expression 1.13E-08 7.93E-09 
GO:0008284 positive regulation of cell proliferation 1.36E-08 8.36E-26 
GO:0010628 positive regulation of gene expression 1.49E-08 5.42E-17 
GO:0001658 branching involved in ureteric bud 

morphogenesis 
1.72E-08 6.90E-07 

GO:0009887 organ morphogenesis 2.72E-08 2.99E-14 
GO:0001701 in utero embryonic development 2.89E-08 3.27E-14 
GO:0030335 positive regulation of cell migration 4.24E-08 1.74E-05 
GO:0030326 embryonic limb morphogenesis 6.92E-08 9.15E-40 
GO:0045669 positive regulation of osteoblast differentiation 1.02E-07 8.74E-17 
GO:0007507 heart development 2.36E-07 8.32E-18 
GO:0060021 palate development 3.14E-07 8.09E-23 
GO:0010718 positive regulation of epithelial to mesenchymal 

transition 
3.16E-07 0.01455875 

GO:0030509 BMP signaling pathway 3.53E-07 2.76E-12 
GO:0045892 negative regulation of transcription, DNA-

templated 
3.57E-07 4.21E-07 

GO:0042060 wound healing 5.21E-07 1.23E-05 
GO:0048701 embryonic cranial skeleton morphogenesis 5.57E-07 8.42E-08 
GO:0007275 multicellular organism development 5.67E-07 1.89E-21 
GO:0001503 ossification 5.78E-07 1.14E-28 
GO:0001934 positive regulation of protein phosphorylation 6.10E-07 1.08E-08 
GO:0001501 skeletal system development 9.93E-07 4.60E-43 
GO:0001657 ureteric bud development 1.30E-06 0.00213229 
GO:0030324 lung development 2.06E-06 3.43E-11 
GO:0000122 negative regulation of transcription from RNA 

polymerase II promoter 
2.43E-06 7.84E-20 



   

 
270 

GO:0007389 pattern specification process 2.81E-06 4.16E-11 
GO:0042475 odontogenesis of dentin-containing tooth 3.92E-06 6.87E-14 
GO:0042733 embryonic digit morphogenesis 4.73E-06 5.30E-25 
GO:0030500 regulation of bone mineralization 5.94E-06 1.79E-05 
GO:0045165 cell fate commitment 6.70E-06 6.90E-07 
GO:0060395 SMAD protein signal transduction 8.76E-06 9.49E-06 
GO:0042474 middle ear morphogenesis 9.01E-06 0.00415561 
GO:0051216 cartilage development 1.13E-05 6.37E-26 
GO:0060070 canonical Wnt signaling pathway 1.56E-05 3.09E-09 
GO:0001843 neural tube closure 2.19E-05 3.09E-06 
GO:0090090 negative regulation of canonical Wnt signaling 

pathway 
2.67E-05 4.37E-10 

GO:0071773 cellular response to BMP stimulus 2.88E-05 0.00038339 
GO:0001707 mesoderm formation 2.88E-05 4.37E-06 
GO:0048754 branching morphogenesis of an epithelial tube 3.14E-05 5.48E-06 
GO:0030501 positive regulation of bone mineralization 3.41E-05 3.34E-09 
GO:0030879 mammary gland development 3.70E-05 7.76E-05 
GO:0043066 negative regulation of apoptotic process 3.88E-05 3.04E-15 
GO:0045596 negative regulation of cell differentiation 4.13E-05 0.01495266 
GO:0030514 negative regulation of BMP signaling pathway 6.59E-05 0.03947855 
GO:0048705 skeletal system morphogenesis 0.00010666 2.20E-09 
GO:0043406 positive regulation of MAP kinase activity 0.00010666 0.00073993 
GO:0045668 negative regulation of osteoblast differentiation 0.00011893 0.00015728 
GO:0048762 mesenchymal cell differentiation 0.00015495 0.00017231 
GO:0009612 response to mechanical stimulus 0.00016899 6.14E-05 
GO:0061053 somite development 0.00025555 0.00048879 
GO:0007179 transforming growth factor beta receptor 

signaling pathway 
0.00028339 1.47E-07 

GO:0070374 positive regulation of ERK1 and ERK2 cascade 0.00028588 3.19E-09 
GO:0016477 cell migration 0.00030363 1.90E-06 
GO:2000679 positive regulation of transcription regulatory 

region DNA binding 
0.00033627 0.00934741 

GO:0003203 endocardial cushion morphogenesis 0.0003807 0.00108701 
GO:0016055 Wnt signaling pathway 0.00045893 1.58E-09 
GO:0008283 cell proliferation 0.00051842 4.12E-06 
GO:1902895 positive regulation of pri-miRNA transcription 

from RNA polymerase II promoter 
0.00064319 0.02270901 

GO:0032355 response to estradiol 0.00067863 4.88E-06 
GO:0023019 signal transduction involved in regulation of gene 

expression 
0.0007037 0.0035404 

GO:0007267 cell-cell signaling 0.00071851 1.79E-07 
GO:0031214 biomineral tissue development 0.00112204 0.00012938 
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GO:0001822 kidney development 0.00140877 2.39E-08 
GO:0031016 pancreas development 0.00145299 2.71E-06 
GO:0040007 growth 0.00172815 5.48E-06 
GO:0002053 positive regulation of mesenchymal cell 

proliferation 
0.00182495 2.88E-17 

GO:0030154 cell differentiation 0.00184529 1.77E-08 
GO:0007492 endoderm development 0.0021305 0.00497598 
GO:0030901 midbrain development 0.0021305 1.26E-06 
GO:0010595 positive regulation of endothelial cell migration 0.00223737 0.02729736 
GO:0043065 positive regulation of apoptotic process 0.00245285 4.03E-10 
GO:0045740 positive regulation of DNA replication 0.00245859 0.00679759 
GO:0048706 embryonic skeletal system development 0.00257293 0.00020375 
GO:0045597 positive regulation of cell differentiation 0.00280899 4.36E-06 
GO:0010862 positive regulation of pathway-restricted SMAD 

protein phosphorylation 
0.00305488 6.90E-07 

GO:0045599 negative regulation of fat cell differentiation 0.00305488 6.90E-07 
GO:0007568 aging 0.00317746 8.86E-08 
GO:0048468 cell development 0.00318148 0.00040482 
GO:0009953 dorsal/ventral pattern formation 0.00318148 4.20E-16 
GO:0021915 neural tube development 0.00344197 1.25E-06 
GO:0006355 regulation of transcription, DNA-templated 0.0035698 3.72E-08 
GO:0001756 somitogenesis 0.00413529 3.60E-07 
GO:0001666 response to hypoxia 0.00425666 8.11E-06 
GO:0001541 ovarian follicle development 0.0042811 0.00102775 
GO:0043408 regulation of MAPK cascade 0.00457982 0.00022813 
GO:0071560 cellular response to transforming growth factor 

beta stimulus 
0.00488793 4.73E-05 

GO:0048812 neuron projection morphogenesis 0.00520538 0.00186241 
GO:0003007 heart morphogenesis 0.00536758 1.28E-12 
GO:0071363 cellular response to growth factor stimulus 0.00536758 6.98E-05 
GO:0048839 inner ear development 0.0056989 8.92E-05 
GO:0090263 positive regulation of canonical Wnt signaling 

pathway 
0.00586801 3.47E-11 

GO:0001938 positive regulation of endothelial cell 
proliferation 

0.00586801 0.03967443 

GO:0050680 negative regulation of epithelial cell proliferation 0.00674768 1.02E-11 
GO:0000187 activation of MAPK activity 0.00749191 0.00128144 
GO:0060548 negative regulation of cell death 0.00827159 0.02477654 
GO:0048661 positive regulation of smooth muscle cell 

proliferation 
0.00827159 1.38E-05 

GO:0007050 cell cycle arrest 0.008472 1.56E-05 
GO:0016485 protein processing 0.00950655 0.01045742 
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GO:0007417 central nervous system development 0.01015302 2.40E-08 
GO:0061312 BMP signaling pathway involved in heart 

development 
0.0102439 0.00041145 

GO:0051897 positive regulation of protein kinase B signaling 0.01196962 0.00160387 
GO:0050731 positive regulation of peptidyl-tyrosine 

phosphorylation 
0.01292758 1.37E-07 

GO:1904948 midbrain dopaminergic neuron differentiation 0.0136359 0.01964074 
GO:0043410 positive regulation of MAPK cascade 0.01366739 7.62E-11 
GO:0051092 positive regulation of NF-kappaB transcription 

factor activity 
0.0149405 0.01163548 

GO:0061384 heart trabecula morphogenesis 0.01532769 0.0247888 
GO:0008584 male gonad development 0.0157281 7.20E-05 
GO:0009952 anterior/posterior pattern specification 0.0157281 4.58E-17 
GO:0006468 protein phosphorylation 0.01621133 3.88E-05 
GO:0060039 pericardium development 0.01701666 0.03041854 
GO:0007165 signal transduction 0.01815958 0.01179635 
GO:0007435 salivary gland morphogenesis 0.01870283 0.00305644 
GO:0007219 Notch signaling pathway 0.01934164 0.00078917 
GO:0030308 negative regulation of cell growth 0.01934164 4.31E-07 
GO:0042493 response to drug 0.01991886 3.17E-11 
GO:0060272 embryonic skeletal joint morphogenesis 0.02038621 0.00025275 
GO:0060389 pathway-restricted SMAD protein 

phosphorylation 
0.02206678 0.0050812 

GO:0006366 transcription from RNA polymerase II promoter 0.02326995 0.04072805 
GO:0007411 axon guidance 0.02682883 9.88E-07 
GO:0061036 positive regulation of cartilage development 0.02709179 0.00934741 
GO:0035567 non-canonical Wnt signaling pathway 0.02876123 0.01111749 
GO:0060038 cardiac muscle cell proliferation 0.02876123 0.01111749 
GO:0035137 hindlimb morphogenesis 0.02876123 1.99E-07 
GO:0060037 pharyngeal system development 0.0304279 0.01306762 
GO:0017015 regulation of transforming growth factor beta 

receptor signaling pathway 
0.03209181 0.00169332 

GO:0046579 positive regulation of Ras protein signal 
transduction 

0.03706695 0.02270901 

GO:0006351 transcription, DNA-templated 0.03711583 4.28E-09 
GO:0090190 positive regulation of branching involved in 

ureteric bud morphogenesis 
0.03871983 3.17E-05 

GO:0045778 positive regulation of ossification 0.03871983 5.75E-09 
GO:0035050 embryonic heart tube development 0.03871983 0.02558431 
GO:0009880 embryonic pattern specification 0.04036995 4.13E-05 
GO:0048646 anatomical structure formation involved in 

morphogenesis 
0.04036995 2.99E-06 

GO:0045216 cell-cell junction organization 0.04036995 0.02864555 
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GO:0032967 positive regulation of collagen biosynthetic 
process 

0.04366199 0.03532201 

GO:0035987 endodermal cell differentiation 0.04530391 8.45E-05 
GO:0042476 odontogenesis 0.04530391 5.02E-07 
GO:0042981 regulation of apoptotic process 0.04548052 8.66E-07 
GO:0035108 limb morphogenesis 0.0469431 1.11E-16 
GO:0055010 ventricular cardiac muscle tissue morphogenesis 0.0469431 0.00097892 
GO:0043392 negative regulation of DNA binding 0.04857957 0.00012938 
GO:0071542 dopaminergic neuron differentiation 0.04857957 6.06E-08 
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Supplementary Table S2.34. The enriched Uberon terms that are common to the predicted genes 

and genes with original annotations for the pectoral fin. The enriched terms are sorted based on 

the p-value of those terms for the predicted genes. 

Uberon term identifier Uberon term name P-value for the 
predicted genes 

P-value for the 
original genes 

uberon_0011610 ceratohyal cartilage 3.81E-13 1.90E-14 
uberon_0005886 post-hyoid pharyngeal arch skeleton 1.88E-12 2.56E-19 
uberon_2001516 ceratobranchial cartilage 9.63E-11 0.00102618 
uberon_0011242 ethmoid cartilage 9.63E-11 0.00029496 
uberon_0003107 meckel's cartilage 1.84E-10 3.21E-12 
uberon_0003079 floor plate 1.42E-09 0.03374939 
uberon_0002533 post-anal tail bud 9.84E-08 0.00338073 
uberon_0007215 trabecula cranii 1.50E-07 0.00035249 
uberon_0008896 post-hyoid pharyngeal arch 1.85E-07 2.03E-11 
uberon_0007812 post-anal tail 6.22E-07 0.00521186 
uberon_0002329 somite 7.57E-07 0.00590808 
uberon_0001016 nervous system 2.59E-06 0.03822373 
uberon_0002328 notochord 6.81E-06 0.00808243 
uberon_0011607 hyomandibular cartilage 1.03E-05 6.45E-06 
uberon_0001049 neural tube 2.10E-05 0.0227542 
uberon_0004752 palatoquadrate cartilage 2.14E-05 2.87E-09 
uberon_2000250 opercle 2.74E-05 1.51E-05 
uberon_0000165 mouth 3.80E-05 0.00014836 
uberon_0000468 multicellular organism 4.20E-05 1.09E-09 
uberon_0001894 diencephalon 5.15E-05 0.0201601 
uberon_0003901 horizontal septum 7.47E-05 0.00192572 
uberon_2001256 lateral floor plate 8.54E-05 0.03796748 
uberon_0003051 ear vesicle 0.00019633 2.14E-06 
uberon_0005945 neurocranial trabecula 0.0002281 0.00646992 
uberon_2001239 ceratobranchial 5 bone 0.00033971 0.00024377 
uberon_0003099 cranial neural crest 0.00040528 0.017947 
uberon_0002028 hindbrain 0.0005451 0.00387881 
uberon_0000044 dorsal root ganglion 0.00085431 0.03471745 
uberon_0000965 lens of camera-type eye 0.00096984 0.02462029 
uberon_0001890 forebrain 0.00100664 0.00629125 
uberon_0001708 jaw skeleton 0.00115871 7.84E-20 
uberon_2000694 ceratobranchial 5 tooth 0.00170211 7.74E-06 
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uberon_2001089 myoseptum 0.00170211 0.01399613 
uberon_0002240 spinal cord 0.0017408 0.00254371 
uberon_0001264 pancreas 0.00181488 0.00023088 
uberon_0003936 postoptic commissure 0.00248307 0.00081772 
uberon_0007329 pancreatic duct 0.003566 0.00556203 
uberon_0011615 basihyal cartilage 0.00372936 0.0016559 
uberon_0003077 paraxial mesoderm 0.00425656 0.00706401 
uberon_2000040 median fin fold 0.0046312 1.80E-17 
uberon_2000558 posterior macula 0.00500389 0.0087837 
uberon_0000033 head 0.0061048 6.69E-08 
uberon_0001032 sensory system 0.0062966 4.43E-05 
uberon_0003072 optic cup 0.00666504 0.01290014 
uberon_0003098 optic stalk 0.00666504 0.00167394 
uberon_4000164 caudal fin 0.00707562 9.31E-11 
uberon_2001069 ventral fin fold 0.00853811 2.60E-07 
uberon_0009635 parachordal cartilage 0.00854196 3.23E-06 
uberon_0004741 cleithrum 0.01174598 8.41E-06 
uberon_0003278 skeleton of lower jaw 0.0124274 1.01E-06 
uberon_0001898 hypothalamus 0.01291407 0.0053699 
uberon_0003011 facial motor nucleus 0.01291407 0.0053699 
uberon_0000926 mesoderm 0.01413075 0.03471745 
uberon_0000948 heart 0.01508289 0.00333015 
uberon_0001891 midbrain 0.01623867 0.01553909 
uberon_0000019 camera-type eye 0.01756108 0.00298894 
uberon_0005884 hyoid arch skeleton 0.0224617 0.00079602 
uberon_0000935 anterior commissure 0.02393768 0.00050308 
uberon_0011085 palatoquadrate arch 0.02551321 0.01749 
uberon_0004375 bone of free limb or fin 0.03295212 0.0093632 
uberon_0001703 neurocranium 0.03765523 1.19E-07 
uberon_0001976 epithelium of esophagus 0.04102281 0.0137538 
uberon_0002348 epicardium 0.04102281 0.00099481 
uberon_2002193 dorsolateral septum 0.04102281 0.00099481 
uberon_0011004 pharyngeal arch cartilage 0.04146017 2.83E-10 
uberon_2001257 medial floor plate 0.04902763 0.0188574 
uberon_0005598 trunk somite 0.04902763 0.0188574 
uberon_0003114 pharyngeal arch 3 0.04902763 0.0188574 
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Supplementary Table S2.35. The enriched Uberon terms that are common to the predicted genes 

and genes with original annotations for the pelvic fin. The enriched terms are sorted based on the 

p-value of those terms for the predicted genes. 

Uberon term 
identifier 

Uberon term 
name 

P-value for the predicted genes P-value for the original genes 

uberon_0000151 pectoral fin 3.26E-07 1.42E-09 
uberon_2000040 median fin fold 5.40E-06 8.70E-05 
uberon_4000163 anal fin 0.00016979 4.43E-11 
uberon_4000172 lepidotrichium 0.00351758 2.42E-06 
uberon_0003097 dorsal fin 0.02306165 1.03E-11 
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Supplementary Table S2.36. The top 100 enriched Uberon terms that are common to the 

predicted genes and genes with original annotations for the forelimb. The enriched terms are 

sorted based on the p-value of those terms for the predicted genes. The full enriched term list is 

available at https://github.com/pasanfernando/Chapter2_datafiles repository. 

Uberon term 
identifier 

Uberon term name P-value for the 
predicted genes 

P-value for the 
original genes 

uberon_0001703 neurocranium 9.49E-19 3.67E-52 
uberon_0011156 facial skeleton 2.21E-18 1.36E-65 
uberon_0003128 cranium 5.88E-16 9.57E-79 
uberon_0001676 occipital bone 7.46E-16 4.99E-20 
uberon_0001708 jaw skeleton 2.83E-15 2.61E-61 
uberon_0004716 conceptus 7.34E-14 2.32E-48 
uberon_0007811 craniocervical region 7.49E-14 4.41E-77 
uberon_0000209 tetrapod frontal bone 1.20E-13 1.61E-17 
uberon_0002091 appendicular skeleton 1.27E-13 1.39E-187 
uberon_0001434 skeletal system 2.87E-13 2.37E-122 
uberon_0005944 axial skeleton plus cranial skeleton 3.25E-13 1.13E-87 
uberon_0000165 mouth 1.11E-12 3.64E-61 
uberon_0002517 basicranium 1.36E-12 2.14E-27 
uberon_0001692 basioccipital bone 2.48E-12 0.00016976 
uberon_0003252 thoracic rib cage 2.49E-12 4.72E-74 
uberon_0001756 middle ear 3.11E-11 1.26E-24 
uberon_0001456 face 5.09E-11 6.78E-61 
uberon_0006428 basisphenoid bone 7.87E-11 5.22E-16 
uberon_0001049 neural tube 1.06E-10 3.88E-29 
uberon_0001684 mandible 1.12E-10 1.56E-51 
uberon_0000210 tetrapod parietal bone 1.25E-10 1.03E-16 
uberon_0003216 hard palate 1.35E-10 4.89E-27 
uberon_0004747 supraoccipital bone 4.05E-10 6.38E-08 
uberon_0000033 head 6.18E-10 2.24E-58 
uberon_0001690 ear 6.79E-10 9.92E-30 
uberon_0001716 secondary palate 1.22E-09 1.29E-40 
uberon_0001685 hyoid bone 1.35E-09 1.21E-10 
uberon_0001677 sphenoid bone 1.46E-09 8.95E-27 
uberon_0001689 malleus bone 1.90E-09 8.78E-13 
uberon_0002105 vestibulo-auditory system 2.07E-09 1.06E-28 
uberon_0001007 digestive system 3.28E-09 1.27E-40 
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uberon_0002229 interparietal bone 4.28E-09 3.38E-18 
uberon_0002228 rib 4.82E-09 2.08E-59 
uberon_0001004 respiratory system 1.82E-08 9.08E-34 
uberon_0000955 brain 2.00E-08 1.48E-14 
uberon_0001678 temporal bone 2.39E-08 1.11E-14 
uberon_0006721 alisphenoid bone 3.22E-08 5.08E-06 
uberon_0003450 upper jaw incisor 6.27E-08 9.49E-07 
uberon_0003051 ear vesicle 9.95E-08 1.97E-06 
uberon_0008828 presphenoid bone 9.95E-08 1.88E-12 
uberon_0000922 embryo 1.55E-07 1.90E-25 
uberon_0003451 lower jaw incisor 1.66E-07 2.76E-08 
uberon_0002218 tympanic ring 1.66E-07 1.04E-15 
uberon_0002418 cartilage tissue 5.94E-07 8.02E-30 
uberon_0003655 molar tooth 6.91E-07 1.66E-12 
uberon_0003966 gonial bone 9.41E-07 0.00011778 
uberon_0010389 pterygoid bone 9.41E-07 6.42E-06 
uberon_0002510 anterior fontanel 1.34E-06 0.00254357 
uberon_0002328 notochord 1.35E-06 2.01E-07 
uberon_0001066 intervertebral disk 1.77E-06 2.31E-19 
uberon_0011933 vibrissa unit 2.02E-06 3.00E-05 
uberon_0001738 thyroid cartilage 2.79E-06 1.22E-07 
uberon_0001681 nasal bone 3.03E-06 6.39E-22 
uberon_0001890 forebrain 3.25E-06 3.76E-13 
uberon_0004649 sphenoid bone pterygoid process 4.50E-06 1.93E-08 
uberon_0002329 somite 4.85E-06 6.28E-09 
uberon_0004660 mandible coronoid process 5.01E-06 4.14E-07 
uberon_0005871 palatine process of maxilla 5.01E-06 1.37E-09 
uberon_0001695 squamous part of temporal bone 6.79E-06 7.79E-07 
uberon_0005942 hair outer root sheath 6.79E-06 0.01132058 
uberon_0003075 neural plate 8.18E-06 0.00165765 
uberon_0000924 ectoderm 8.52E-06 6.64E-17 
uberon_0018242 palatine bone horizontal plate 9.74E-06 1.20E-07 
uberon_0001694 petrous part of temporal bone 9.74E-06 2.04E-05 
uberon_0002073 hair follicle 1.01E-05 7.57E-10 
uberon_0002224 thoracic cavity 1.06E-05 9.88E-09 
uberon_0000401 mandibular ramus 1.15E-05 4.55E-11 
uberon_0001737 larynx 1.80E-05 1.91E-10 
uberon_0006772 long bone epiphyseal plate hypertrophic zone 1.97E-05 2.91E-40 
uberon_0001687 stapes bone 2.19E-05 6.84E-08 



   

 
279 

uberon_0003861 neural arch 2.26E-05 2.25E-18 
uberon_0002470 autopod region 2.28E-05 5.54E-91 
uberon_0002103 hindlimb 2.43E-05 2.57E-138 
uberon_0001752 enamel 2.98E-05 0.00014902 
uberon_0003107 meckel's cartilage 2.98E-05 4.98E-17 
uberon_0002413 cervical vertebra 3.01E-05 1.16E-14 
uberon_0001894 diencephalon 3.06E-05 5.38E-11 
uberon_0001706 nasal septum 3.53E-05 1.69E-09 
uberon_0001092 vertebral bone 1 3.73E-05 1.52E-10 
uberon_0001682 palatine bone 3.93E-05 1.83E-10 
uberon_0002416 integumental system 3.96E-05 2.80E-16 
uberon_0000004 nose 4.01E-05 2.04E-24 
uberon_0002028 hindbrain 4.59E-05 3.77E-08 
uberon_0005354 malleus processus brevis 4.75E-05 0.00721838 
uberon_0005619 secondary palatal shelf 4.82E-05 3.00E-17 
uberon_0001130 vertebral column 5.03E-05 5.26E-27 
uberon_0001691 external ear 5.83E-05 3.87E-15 
uberon_0001232 collecting duct of renal tubule 6.68E-05 8.78E-05 
uberon_0003982 mature ovarian follicle 6.68E-05 0.00364138 
uberon_0001075 bony vertebral centrum 6.98E-05 6.89E-13 
uberon_0001675 trigeminal ganglion 6.98E-05 0.000653 
uberon_0001998 sternocostal joint 7.60E-05 1.87E-09 
uberon_0003461 shoulder bone 8.04E-05 3.33E-19 
uberon_0002129 cerebellar cortex 8.27E-05 0.00314678 
uberon_0002414 lumbar vertebra 8.67E-05 6.55E-10 
uberon_0005867 mandibular prominence 8.70E-05 0.00080115 
uberon_0001037 strand of hair 0.00010094 3.10E-07 
uberon_0003941 cerebellum anterior vermis 0.00010272 0.01504756 
uberon_0002217 synovial joint 0.00010272 0.00100864 
uberon_0001043 esophagus 0.00011262 6.33E-07 
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Supplementary Table S2.37. The top 100 enriched Uberon terms that are common to the 

predicted genes and genes with original annotations for the hindlimb. The enriched terms are 

sorted based on the p-value of those terms for the predicted genes. The full enriched term list is 

available at https://github.com/pasanfernando/Chapter2_datafiles repository. 

Uberon term 
identifier 

Uberon term name P-value for 
the predicted 
genes 

P-value for 
the original 
genes 

uberon_0003128 cranium 4.01E-24 5.82E-57 
uberon_0011156 facial skeleton 1.11E-22 4.74E-53 
uberon_0001434 skeletal system 1.42E-21 1.19E-223 
uberon_0005944 axial skeleton plus cranial skeleton 4.39E-21 3.58E-88 
uberon_0007811 craniocervical region 3.88E-19 2.99E-57 
uberon_0001456 face 4.19E-19 2.62E-45 
uberon_0000033 head 1.62E-18 5.98E-44 
uberon_0001708 jaw skeleton 2.11E-17 1.39E-53 
uberon_0001703 neurocranium 3.94E-17 2.49E-44 
uberon_0000165 mouth 3.90E-16 1.59E-47 
uberon_0002091 appendicular skeleton 1.44E-15 0 
uberon_0002105 vestibulo-auditory system 1.25E-14 1.85E-25 
uberon_0001690 ear 3.73E-14 1.27E-25 
uberon_0001684 mandible 4.59E-14 8.20E-43 
uberon_0001007 digestive system 1.41E-13 1.04E-28 
uberon_0006333 snout 2.45E-13 8.50E-22 
uberon_0002483 trabecular bone tissue 1.84E-12 4.59E-72 
uberon_0000210 tetrapod parietal bone 1.91E-12 6.03E-14 
uberon_0001756 middle ear 1.96E-12 9.35E-20 
uberon_0001004 respiratory system 4.07E-12 8.92E-32 
uberon_0000209 tetrapod frontal bone 3.47E-11 3.65E-13 
uberon_0000383 musculature of body 4.96E-11 1.02E-56 
uberon_0001630 muscle organ 1.56E-10 0.00011844 
uberon_0002517 basicranium 3.84E-10 1.66E-17 
uberon_0001049 neural tube 7.14E-10 2.88E-19 
uberon_0001676 occipital bone 1.39E-09 1.36E-12 
uberon_0002229 interparietal bone 1.95E-09 1.81E-10 
uberon_0001677 sphenoid bone 2.11E-09 1.50E-13 
uberon_0000955 brain 3.27E-09 2.55E-14 
uberon_0006428 basisphenoid bone 4.44E-09 2.35E-07 
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uberon_0002228 rib 4.70E-09 4.14E-37 
uberon_0003252 thoracic rib cage 9.23E-09 5.47E-50 
uberon_0004716 conceptus 1.03E-08 3.81E-21 
uberon_0003450 upper jaw incisor 1.09E-08 2.32E-05 
uberon_0006772 long bone epiphyseal plate hypertrophic zone 2.06E-08 6.26E-55 
uberon_0002416 integumental system 3.26E-08 9.53E-16 
uberon_0003451 lower jaw incisor 3.59E-08 2.90E-09 
uberon_0000014 zone of skin 4.54E-08 9.99E-19 
uberon_0001689 malleus bone 5.05E-08 2.31E-12 
uberon_0001130 vertebral column 5.84E-08 2.46E-37 
uberon_0003107 meckel's cartilage 1.03E-07 2.75E-12 
uberon_0004535 cardiovascular system 2.17E-07 5.30E-28 
uberon_0002113 kidney 2.72E-07 3.61E-13 
uberon_0006721 alisphenoid bone 4.21E-07 6.91E-06 
uberon_0000474 female reproductive system 4.37E-07 7.29E-19 
uberon_0003216 hard palate 4.55E-07 3.86E-17 
uberon_0000019 camera-type eye 4.68E-07 1.67E-23 
uberon_0002516 epiphyseal plate 4.92E-07 4.29E-72 
uberon_0001678 temporal bone 6.21E-07 4.05E-12 
uberon_0002418 cartilage tissue 6.60E-07 3.22E-14 
uberon_0001890 forebrain 6.60E-07 2.57E-12 
uberon_0005070 anterior neuropore 6.63E-07 0.04722767 
uberon_0001692 basioccipital bone 9.19E-07 0.00016117 
uberon_0002101 limb 9.91E-07 4.55E-08 
uberon_0001008 renal system 1.01E-06 5.55E-21 
uberon_0002104 visual system 1.18E-06 1.15E-25 
uberon_0002397 maxilla 1.25E-06 8.65E-29 
uberon_0001681 nasal bone 1.28E-06 2.59E-17 
uberon_0002370 thymus 1.86E-06 5.49E-13 
uberon_0002405 immune system 1.88E-06 1.05E-06 
uberon_0003697 abdominal wall 2.07E-06 1.51E-07 
uberon_0002218 tympanic ring 2.14E-06 5.31E-11 
uberon_0001716 secondary palate 2.86E-06 2.15E-25 
uberon_0000948 heart 2.92E-06 1.31E-18 
uberon_0002390 hematopoietic system 3.26E-06 3.56E-07 
uberon_0002544 digit 3.57E-06 2.75E-48 
uberon_0003461 shoulder bone 4.45E-06 2.81E-14 
uberon_0001752 enamel 5.00E-06 1.17E-06 
uberon_0006849 scapula 5.00E-06 1.09E-18 
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uberon_0002491 lambdoid suture 5.12E-06 0.00065007 
uberon_0003975 internal female genitalia 5.36E-06 5.15E-14 
uberon_0000323 late embryo 8.00E-06 4.11E-10 
uberon_0002428 limb bone 8.82E-06 0.00139297 
uberon_0000309 body wall 9.97E-06 7.79E-08 
uberon_0002048 lung 1.23E-05 3.26E-20 
uberon_0002470 autopod region 1.37E-05 1.95E-55 
uberon_0001229 renal corpuscle 1.41E-05 4.22E-05 
uberon_0001075 bony vertebral centrum 1.53E-05 1.30E-09 
uberon_0002328 notochord 1.71E-05 2.82E-07 
uberon_0001285 nephron 1.79E-05 1.62E-06 
uberon_0002073 hair follicle 1.82E-05 3.40E-07 
uberon_0001225 cortex of kidney 2.68E-05 1.80E-05 
uberon_0001987 placenta 2.68E-05 1.80E-05 
uberon_0006861 diaphysis proper 3.28E-05 3.71E-12 
uberon_0006771 long bone epiphyseal plate proliferative zone 3.45E-05 2.52E-29 
uberon_0001016 nervous system 3.73E-05 5.57E-07 
uberon_0005956 outflow part of left ventricle 3.78E-05 0.00017418 
uberon_0001037 strand of hair 4.12E-05 3.95E-06 
uberon_0002137 aortic valve 4.12E-05 0.00021436 
uberon_0001695 squamous part of temporal bone 4.43E-05 0.00058499 
uberon_0010166 coat of hair 5.19E-05 1.65E-06 
uberon_0002329 somite 5.99E-05 0.00015746 
uberon_0001758 periodontium 6.34E-05 3.57E-09 
uberon_0003051 ear vesicle 6.89E-05 0.00027719 
uberon_0008828 presphenoid bone 6.89E-05 3.51E-08 
uberon_0001683 jugal bone 6.89E-05 8.05E-11 
uberon_0002224 thoracic cavity 6.89E-05 5.32E-05 
uberon_0002412 vertebra 7.08E-05 2.93E-18 
uberon_0000945 stomach 7.42E-05 0.00021632 
uberon_0000012 somatic nervous system 7.46E-05 1.69E-27 
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Chapter 3: Integrate large-scale trait data with large phylogenies by computationally 

solving the challenges associated with big data integration. 

 

Abstract 

When studying the evolution of anatomical characters, such as the pectoral fin and the 

pelvic fin, it is important to infer their evolutionary history using ancestral state reconstructions. 

Performing large-scale ancestral state reconstructions using large trait data matrices and large 

phylogenetic trees is important when conducting macroevolutionary studies, but previous 

ancestral state reconstructions were limited in scale due to computational constraints. Using a 

large synthetic morphological supermatrix for paired fins retrieved from the Phenoscape 

Knowledgebase (KB) and a large species-level tree for teleost fishes retrieved from the Open 

Tree of Life (Open Tree), the integration challenges were solved by developing new 

computational methods that mostly focused on extending the original data volume and 

minimizing the data loss. For example, the data propagation algorithm developed during this 

work extended the original data significantly and reduced the missing data percentage from 

85.9% to 38.4%.  This was critical for conducting efficient ancestral state reconstructions. These 

methods were arranged into a bioinformatics pipeline (PhenTree pipeline) that can be used to 

integrate any anatomical character from the Phenoscape KB with a large phylogenetic tree 

retrieved from the Open Tree, which then can be used to perform large-scale ancestral state 

reconstructions to study the evolution of anatomical characters. 
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3.1 Background 

Understanding the evolutionary history of anatomical traits is extremely important in 

evolutionary biology. For instance, the absence of the pectoral fin in fishes such as eels has 

fascinated the researchers since at least the time of Aristotle (Leunissen, 2010; Ogle, 1882) and 

is investigated continuously until now. To understand the evolution of anatomical traits, it is 

important not only to observe the character states of extant species but also to understand the 

characteristics of ancestral taxa, which are extinct or available as fossils. The process of inferring 

unknown ancestral states based on observed states of existing species is identified as the 

ancestral state reconstruction (Cunningham, 1999; Didier, 2017). This requires the integration of 

a trait matrix with a phylogenetic tree. Ancestral state reconstructions enable tracing the 

evolution of a particular trait through the evolutionary history and identify important events, such 

as changes from the presence to the absence or potential regains of anatomical entities.  

Currently, biological data are accumulated at a rapid pace; next-generation experimental 

methods generate large volumes of data, which has introduced the concept of big data analysis 

(Fan, et al., 2014). However, ancestral state reconstructions are mostly conducted at a smaller 

scale due to the limited availability of data sources and integration challenges (Jackson, et al., 

2018). The availability of large-scale trait matrices and large phylogenies were limited until 

recently when resources such as the Phenoscape Knowledgebase (Phenoscape KB; 

https://kb.phenoscape.org) (Dececchi, et al., 2015; Jackson, et al., 2018) and the Open Tree of 

Life (Open Tree; https://tree.opentreeoflife.org) (Jackson, et al., 2018; Rees and Cranston, 2017) 

emerged.  

The Phenoscape KB contains ontology-annotated phenotypic data for vertebrates, which 

are primarily based on published character matrices (Dahdul, et al., 2015; Dececchi, et al., 2015; 
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Edmunds, et al., 2016). The use of ontology terms to annotate free text phenotypic descriptions 

from literature enables the Phenoscape KB data to be readily extractable and computable, which 

is ideal for large-scale studies across multiple species. The phenotypic data from the Phenoscape 

KB are associated with the taxonomic names from the Vertebrate Taxonomy Ontology (VTO) 

(Midford, et al., 2013), which primarily uses the Catalog of Fishes (Eschmeyer, 2013) for extant 

fishes, the National Center for Biotechnology Information (NCBI) taxonomy for extant 

tetrapods, and the PaleoDb (Melott, 2008) to supplement the extinct taxa. The phenotypic 

characters in the Phenoscape KB are annotated using the Entity-Quality (EQ) formalism 

(Dececchi, et al., 2015; Mungall, et al., 2010; Mungall, et al., 2007), where the anatomical 

entities such as pectoral fin and their relationships are based on the Uberon anatomy ontology 

(Haendel, et al., 2014; Mungall, et al., 2012), and the quality terms that represent the variation in 

the anatomical entities, such as  size, presence/absence, and shape are drawn from the Phenotype 

and Trait Ontology (PATO) (Gkoutos, et al., 2005).  

The Open Tree is a comprehensive data source for the retrieval of large phylogenetic 

trees (Hinchliff, et al., 2015). It uses the ‘propinquity’ supertree pipeline to dynamically 

synthesize trees by using multiple input phylogenies along with a reference taxonomy (Redelings 

and Holder, 2017). The input phylogenies for the Open Tree are published trees that are 

manually curated to align tips with the Open Tree reference taxonomy (Rees and Cranston, 

2017). The single rooted supertrees constructed by the pipeline can be customized according to 

the user preference. If the species relationships of the tree are unresolved, they can be manually 

curated and adjusted to retrieve a better-resolved tree, which is important when performing 

ancestral state reconstructions (Jackson, et al., 2018). Even without user modifications, the Open 
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Tree interface (https://tree.opentreeoflife.org) allows the user to easily retrieve large 

phylogenetic trees for any taxonomic group of interest. 

Despite the availability of these resources, integration of large trait matrices with large 

phylogenetic trees has remained a challenge (Jackson, et al., 2018). The computational 

algorithms required for the integration and the visualization of large phylogenetic trees require 

improvements (Harmon, et al., 2013; Harris and Arbuckle, 2016; Hunt and Slater, 2016). The 

integration of trait data with phylogenetic trees requires a successful transfer of trait data to the 

phylogenetic tree, which involves minimizing the amount of data lost during the integration. 

Especially when the two data sources use different taxonomic naming systems, matching the 

correct names at a large scale is challenging. Therefore, different taxonomic reconciliation 

solutions, such as the Taxonomic Name Resolution Service (TNRS), which aggregates 

taxonomic data from different data sources (Boyle, et al., 2013), have appeared. As the size of 

the trait data and the phylogenetic trees increases, these solutions must be improved to facilitate 

the extra volume of data and new solutions must be developed; this is the primary objective of 

this Chapter.  

Integration of trait data retrieved from the Phenoscape KB and phylogenetic trees 

retrieved from the Open Tree is required for performing large-scale ancestral state 

reconstructions. However, this integration cannot be achieved using existing computational 

solutions, thus requires manual processing, which is not applicable for large-scale data. 

Therefore, new computational solutions were developed to solve the challenges associated with 

the integration. The developed algorithms were arranged into a bioinformatics pipeline 

(PhenTree pipeline), which can be used to easily integrate any trait data matrix that contains a 

single anatomical character retrieved from the Phenoscape KB with any phylogenetic tree 
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downloaded from the Open Tree. The functionality of the pipeline was demonstrated using the 

evolution of paired fins in teleost fishes as the use case, which involved a phylogeny that 

contained over 38,000 taxa (Jackson, et al., 2018). This pipeline contains computational 

algorithms to reduce the number of mismatches between the two data sources and also to extend 

the original data amount. This Chapter discusses the challenges that are associated with 

integrating large trait matrices with large phylogenies and the computational methods developed, 

which were used to solve those challenges.  

 

3.2 Methods 

3.2.1 Retrieval of a synthetic morphological supermatrix from the Phenoscape KB 

The Phenoscape KB generates synthetic morphological supermatrices, which are large-

scale presence/absence trait matrices that can be retrieved using the OntoTrace tool (Dececchi, et 

al., 2015). A synthetic morphological supermatrix for the pectoral fin and the pelvic fin for 

Teleostei used in Jackson, et al. (2018), which was downloaded from the OntoTrace was used for 

this work. This matrix was in NeXML format (Vos, et al., 2012) and contained data provenance 

in metadata. In the matrix, the presence is denoted by ‘1’ and the absence is denoted by ‘0’. At 

the time of the retrieval, the Phenoscape KB contained 21,569 character states annotated with 

526,221 phenotypes for 5,208 extant and fossil vertebrates from 171 comparative studies 

(Jackson, et al., 2018).  

 

3.2.2 Retrieval of a species-level tree/phylogeny from the Open Tree 

The Open Tree (Hinchliff, et al., 2015) can be used to retrieve a species-level tree for any 

taxonomic group using the public interface (https://tree.opentreeoflife.org). The trees retrieved 
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from the interface are based on the publicly available supertree (Open Tree 2.10) generated by 

the propinquity pipeline (Redelings and Holder, 2017). It also enables the user to customize the 

tree if the taxonomic groups in the publicly available supertree are not fully resolved. The 

phylogenies retrieved from the Open Tree are in Newick format (Cardona, et al., 2008). For this 

work, a customized Teleostei species-level tree was obtained from Jackson, et al. (2018), which 

was originally retrieved from the Open Tree. 

 

3.2.3 Pre-processing the synthetic morphological supermatrix and the species-level tree 

The first challenge when integrating the synthetic morphological supermatrix with the 

Teleostei species-level tree is pre-processing them to remove resource specific anomalies. For 

instance, the synthetic morphological supermatrix is in NeXML format, which is not ideal for 

downstream analyses. Therefore, it was converted into the tab-delimited format, which is easy to 

manipulate and read. Furthermore, the synthetic morphological supermatrices retrieved from the 

Phenoscape KB can contain missing character states denoted by ‘?’, which were removed during 

the pre-processing.  

The phylogenetic trees downloaded from the Open Tree also require pre-processing. The 

Newick format tree file, retrieved from the Open Tree, contained Open Tree identification 

numbers at the end of each taxon name (e.g., Scleropages_jardinii_ott335719, 

Danio_rerio_ott1005914), which needed to be removed before further processing. Moreover, 

some of the large phylogenetic trees from the Open Tree may contain unifurcating nodes, i.e., 

internal nodes on the tree with exactly one child node (Sukumaran and Holder, 2018). For 

instance, in the Teleostei species-level tree, there are some genera with exactly one species for 

each genus (e.g., genus Heterophotus only contains Heterophotus ophistoma species). The 
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presence of unifurcating nodes typically causes problems when manipulating the tree with 

phylogenetic software (Sukumaran and Holder, 2018). Particularly, Mesquite (Maddison and 

Maddison, 2016), which was used to perform ancestral state reconstructions in this work, 

generates errors when a tree contains unifurcating nodes. Therefore, the unifurcating nodes on 

the tree were suppressed using the DendroPy Python library (Sukumaran and Holder, 2010; 

Sukumaran and Holder, 2018). 

 

3.2.4 Removal of apparent polymorphisms and conflicts 

The supermatrices retrieved from the Phenoscape KB contain taxa with both presence 

and absence for a particular character denoted by ‘0&1’. Using the provenance reports available 

in the metadata, the reasons for observing ‘0&1’ can be identified; these are due to either actual 

polymorphisms, apparent polymorphisms, or conflicts (Jackson, et al., 2018). Actual 

polymorphisms are described at the species level and both presence and absence are declared in 

the same reference. For instance, in fishes in which the anatomical entity is present in one gender 

(e.g., female) and absent in the other gender (e.g., male), both presence and absence could be 

represented in the matrix. Apparent polymorphisms are described at higher taxonomic levels 

(e.g., genus, family), and the author does not provide the information about the species in which 

the anatomical entity is present or missing. In such instances, where ‘0&1’ is assigned to higher-

level taxa, it is difficult to trace which species lack or retain the anatomical entity. Conflicts 

occur when two different authors make conflicting statements about presence and absence for the 

same anatomical entity for the same taxon. These conflicts could occur at any taxonomic level.  

It is important to identify the reason for these ‘0&1’ states. If it is due to conflicts, the 

conflicting states can be investigated and corrected if one author has incorrectly described the 
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state of the anatomical entity. Using the metadata for the morphological supermatrix, the taxa 

with ‘0&1’ states were identified for further investigation. If the ‘0&1’ states were present in 

higher-level taxa due to apparent polymorphisms or conflicts, those states were removed from 

the pre-processed matrix to facilitate data propagation from higher-level taxa to species at a later 

stage (section 3.2.6). 

 

3.2.5 Distinguishing inference versus assertion 

The phenotypic data available in the Phenoscape KB are tagged with ontology terms, 

which gives the advantage of inferring the phenotypic state of an anatomical entity using indirect 

descriptions of the entity and its parts (Jackson, et al., 2018). The ontology-based inference has 

been shown to greatly expand the available data (Dececchi, et al., 2015), a desirable feature 

given the insufficiency of direct statements/assertions by authors regarding the anatomical 

phenotypes.  

An example that shows the use of ontology relationships to infer phenotypic states is 

given in Fig. 3.1 (Jackson, et al., 2018). In the example, the phenotype “pectoral fin rays are 

unbranched” was annotated as Entity: “pectoral fin ray,” Quality: “branched”, and based on the 

ontology relationships, the pectoral fin was inferred as present because pectoral fin ray is a part 

of the pectoral fin (Fig. 3.1). However, the converse is not true; the presence of pectoral fin does 

not mean that all the parts of the pectoral fin are present.  

Although ontology-based inference expands the amount of data available in 

supermatrices from the Phenoscape KB, they are based on computational predictions. Therefore, 

the reliability of inferred data is lower than direct author assertions about phenotypes, which are 

based on specimens of the species. When using the supermatrices from the Phenoscape KB, it is 
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important to distinguish between the inferred versus asserted data to understand the proportion of 

data based on inference. This was done using a Python script that uses the metadata associated 

with the morphological supermatrix. This script adds a new column (inferred status column) to 

the matrix (the matrix with the ‘0&1’ states removed from higher-level taxa), which indicates the 

inferred status of the anatomical character for each taxon in the matrix. In the case of an inferred 

presence for a particular taxon, the character state of ‘2’ is indicated in the inferred status column 

for the taxon; the character state ‘3’ is indicated in the inferred status column for a taxon with 

inferred absence. When presence and absence is asserted, the original states of ‘1’ and ‘0’ is 

copied to the inferred status column, respectively. This inferred status column can be used to 

differentially visualize inferred versus asserted character states in the phylogenetic tree after 

performing the ancestral state reconstruction.  

 

3.2.6 Data propagation 

The morphological supermatrices from Phenoscape KB contain character states annotated 

to higher-level taxa (e.g., family, genus, etc.). In such cases, the authors wanted to convey that 

the character states such as presence and absence for higher-level taxa would apply to all their 

descendants at the species level. However, character states at higher-level taxa cannot be utilized 

by current tools for ancestral state reconstruction without manual editing, which is not feasible 

for large-scale data (Jackson, et al., 2018). For example, the PhyTools R package (Revell, 2012) 

has not implemented the functionality to perform reconstructions using data at internal nodes, but 

it has developed a workaround method, which could not be applied to large-scale phylogenetic 

trees (Jackson, et al., 2018). It is important to use this data at higher-level taxa when performing 

large-scale ancestral state reconstructions because of the paucity of data in trait matrices. 
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Therefore, an algorithm was developed to propagate character data annotated to families and 

genera to their corresponding species.  

The use of VTO to annotate taxa in the Phenoscape KB helps in implementation of the 

propagation algorithm. Ontologies are usually stored as directed acyclic graphs (Pesquita, et al., 

2009), which simplifies the manipulations and analyses that use the ontology data. The 

propagation algorithm stores the VTO relationships in a graph data structure, which is ideal for 

retrieving the relationships between higher-level taxa (families and genera) and their species. 

This makes it easier to propagate data from higher-level taxa to species, reducing the running 

time of the algorithm. The propagation algorithm works in two iterations (Fig. 3.2). During the 

first iteration, character states from genera are propagated to the corresponding species. During 

the second iteration, character states from families are propagated to the remaining species that 

did not receive propagated data from the first iteration. During the propagation, species with 

existing character states are not replaced but considered as propagation conflicts (Fig. 3.2). This 

applies to the species with directly asserted or inferred character states and species with data 

propagated from genera during the first iteration. Taxonomic levels above family are not 

considered for the propagation. After the propagation, species that were not included in the 

original morphological supermatrix were added to the matrix with the character states propagated 

from their higher-level taxa. To distinguish the propagated character states from the non-

propagated character states, a new column was added to the matrix to indicate the propagated 

status. This column can also be used during the visualizations of the matrix data in the species-

level tree to visualize the distribution of the propagated data in the tree.  

The propagation algorithm propagates the data from higher-level taxa (families and 

genera) as intended by the authors. For example, when an author states that pectoral fin is present 
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for a certain genus, it is meant that the pectoral fin is present for all the species of that genus. 

However, during the propagation process, there are occasions where the propagated character 

state is conflicting with an already existing state of a species. For instance, when the author states 

that pectoral fin is present for a certain genus, and if the pectoral fin is absent in one of the 

species in that genus, it can be considered as a propagation conflict. Furthermore, during the 

second propagation iteration, when character states are propagated from a family to 

corresponding species, these states can conflict with an opposite state that was propagated during 

the first iteration from a genus that is also a descendent of that family. Propagation algorithm 

retains the original character state of the species in these situations, but it is important to estimate 

the number of conflicts to indicate the reliability of the propagation algorithm. Therefore, the 

number of conflicts occurred during the propagation for the Teleostei morphological supermatrix 

with two characters (pectoral fin and pelvic fin) were counted. To further estimate the reliability 

of the propagation algorithm in a much larger matrix, a new matrix was downloaded from the 

Phenoscape KB using the OntoTrace to include all the parts of the paired fin and include all 

characters with values for Teleostei (obtained 9/1/2018). The propagation algorithm was 

implemented on the larger matrix, one character at a time, and the number of propagation 

conflicts was recorded.  

 

3.2.7 Reconciliation of taxon names 

Another challenge when integrating the Phenoscape KB supermatrices with the Open 

Tree phylogenetic trees is reconciling taxon names between the two data files. The Phenoscape 

KB uses VTO for the taxon names and the Open Tree taxon names are based on the NCBI 

taxonomy system, the Interim Register for Marine and Non-marine Genera (IRMNG), the Global 
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Biodiversity Information Facility (GBIF), and the World Register of Marine Species(WoRMS) 

(Jackson, et al., 2018). Therefore, the taxon names must be reconciled between the two data files 

to reduce the number of mismatches. A combined algorithm was developed to reconcile the 

taxon names by first matching the taxon names using the NCBI taxonomy IDs (Sayers, et al., 

2009) as the common identifier and then matching the remaining taxa using exact taxon names. 

The mismatched taxa were printed as a list to identify the reason for the mismatches. This 

algorithm converts the VTO taxon names of the matrix with propagated data into Open Tree 

taxon names to easily integrate with the Open Tree species-level tree.  

 

3.2.8 Ancestral state reconstruction 

The final output matrix generated in the previous section (3.2.7) was used by Jackson, et 

al. (2018) to perform ancestral state reconstructions to study the evolution of the pectoral and the 

pelvic fin.  

There were three types of data in the final output matrix: asserted data based on direct 

author statements, inferred only data generated using ontology-based inference (excluding data 

with both inferred and asserted states; they are considered as asserted data), and data propagated 

from higher-level taxa. Different colors were assigned to asserted, inferred only, and propagated 

data using the additional columns in the final output matrix for pectoral and pelvic fins, which 

indicate the inferred only and propagated status for a particular character state. These data were 

visualized in Mesquite (Maddison and Maddison, 2016) using ancestral state reconstructions. 
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3.2.9 The PhenTree bioinformatics pipeline 

Although this work demonstrates the use of the developed computational algorithms to 

integrate a large species-level tree with a synthetic morphological supermatrix to study the 

evolution of paired fins in teleost fishes, they can be applied to study the evolution of any 

anatomical character. To make the computational algorithms reusable, they were assembled into 

a bioinformatics pipeline called the ‘PhenTree’. The PhenTree pipeline includes the discussed 

steps from the pre-processing the data files (section 3.2.3) to the reconciliation of taxon names 

(section 3.2.7). Although OntoTrace can generate synthetic morphological supermatrices with 

multiple characters, the pipeline works for matrices with one single character because ancestral 

state reconstructions are performed on one character at a time. The output of the pipeline is a 

matrix that can be integrated with any species-level tree from the Open Tree. The pipeline was 

developed in Python programming language (Van Rossum and Drake, 2011) and contains six 

steps (matrix conversion, pre-processing the input matrix, removal of apparent polymorphisms 

and conflicts, distinguishing inference versus assertion, data propagation, and reconciliation of 

taxon names) (Fig. 3.3). This pipeline is available as a command-line tool 

(https://github.com/pasanfernando/generic_pipeline_for_trait_integration) to be downloaded and 

run on a computer with any operating system (Windows, Mac, Linux) with Python. More details 

of the command-line version can be found in the Fernando, et al. (2017). Furthermore, the 

PhenTree pipeline is also available as a web tool (http://phentree.biocoms.org/), which is easier 

to use. A detailed tutorial about the PhenTree web tool is also included. A snapshot of the 

PhenTree web tool is shown in Fig. 3.4. 
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3.3 Results 

3.3.1 The synthetic morphological supermatrix and the species-level tree 

The synthetic morphological supermatrix from the OntoTrace contained two characters 

(pectoral fin and pelvic fin) associated with 3047 taxa (2,663 species, 132 genera, 223 families, 

and 29 supra-familial taxa) from 87 studies (Jackson, et al., 2018). There were 6,094 total cells in 

the synthetic morphological matrix of which 4,853 were populated. Out of the 4,853 populated 

cells, 616 contained only directly asserted data, 3,953 contained only inferred data, and 284 

contained both asserted and inferred data. For the pectoral fin, 246 taxa have only asserted data, 

2,020 taxa have only inferred data, and 42 taxa have both asserted and inferred data. For the 

pelvic fin, 370 taxa have only asserted data, 1,933 taxa have only inferred data, and 242 taxa 

have both asserted and inferred data. The species-level tree for Teleostei obtained from the Open 

Tree contained 38,419 species-level tips and 560 families.  

 

3.3.2 Removal of apparent polymorphisms and conflicts 

Conflicts and apparent polymorphic character states were identified for 74 higher-level 

taxa (50 families and 24 genera for pelvic fin and 4 families for pectoral fin), which were 

removed from the matrix (Jackson, et al., 2018). Actual polymorphic character states (within 

species variation identified by a single author) were found only for the pelvic fin in five species 

(a catfish, Glanapteryx anguilla; two hatchet herrings, Pristigaster cayana and Pristigaster sp.; 

and two priapumfishes, Phallostethus lehi and Phallostethus dunkeri). Conflicts that were found 

at the species-level as a result of data aggregation and inference were all between asserted and 

inferred states. These were found in the pelvic fin for five species (the eel catfish, Channallabes 

apus, two air-breathing catfishes, Dolichallabes microphthalmus, and Gymnallabes typus, the 
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cobia, Rachycentron canadum, and the three-spined stickleback Gasterosteus aculeatus), and in 

the pectoral fin for one species (the bobtail snipe eel, Neocyema erythrosoma) (Jackson, et al., 

2018). Conflicts and the actual polymorphisms at the species level were retained in the matrix 

because they do not affect the propagation. 

 

3.3.3 Data propagation 

The propagation algorithm transferred asserted and inferred data from a total of 182 

families and 119 genera to the corresponding species that otherwise lacked data for the pectoral 

and pelvic fins (Jackson, et al., 2018). This resulted in an addition of 11,293 new species to the 

pre-processed data matrix that contained 2,663 species, which increased the total number of 

species to 13,956 in the resulted propagated matrix. When considering the two fins separately, 

the number of species with data for the pectoral fin increased from 2,023 to 11,594 (9,571 

species added) and species for the pelvic fin increased from 2,478 to 6,878 (4,400 species added) 

as a result of the propagation. Of the propagated species, there were 12 instances of propagation 

conflicts (6 conflicts for the pectoral fin and 6 conflicts for the pelvic fin) when the propagated 

character state does not agree with the existing species-level character state out of 4,501 

instances of existing species level states for both fins (2,023 for pectoral fin and 2,478 for pelvic 

fin). This percentage (0.27%) of propagation conflicts is quite negligible compared to the 

number of propagation attempts made on existing species data.  

To further analyze the number of propagation conflicts, a larger matrix for Teleostei that 

consists all the available parts for the paired fin (pectoral fin and pelvic fin) was retrieved. This 

matrix contained 115 anatomical characters (Supplementary Table S3.1) for 3,109 taxa (2,725 

species, 132 genera, 223 families, and 29 supra-familial taxa). The propagation algorithm was 
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implemented on each character separately and the propagation statistics for each character is 

shown in Supplementary Table S3.1. In total, the propagation added species-level data to 

420,254 cells that otherwise did not have any data for all the characters. Furthermore, out of 

42,611 cells with existing species-level data for all the characters, propagated states only 

conflicted with 255 (0.60%) cells with existing data, which is relatively low compared to the 

amount of propagated states.  

 

3.3.4 Reconciliation of taxon names 

The combined algorithm for the taxon name reconciliation, which initially uses the NCBI 

IDs for matching and then uses exact taxon name matches, managed to successfully match 

12,582 of the 13,956 species in the matrix with the 38,419 species in the Teleostei species-level 

tree (Jackson, et al., 2018). This number is higher than using either method alone (NCBI 

taxonomic IDs: 4,423 matches; exact taxon name matching: 12,500 matches). Of the mismatched 

1,374 species (of the 13,956), 72 are fossil species which are not included in the Open Tree 

taxonomic sources, 362 are species with unconventional names that were added to the VTO 

because they are referenced in publications (e.g., “Notropis sp. sawfin shiner (Coburn and 

Cavender 1992)”), and 940 are mismatched for multiple other reasons (e.g., taxonomic name 

changes between the two data sources, extinct species that are not marked as such in the VTO). 

The mismatched species are listed in the Supplementary Table S3.2.  

Before the propagation, the pre-processed data matrix contained 2663 species for two 

characters (pectoral fin and pelvic fin), with 3538 populated cells for species (85.9% missing 

data) (Table 3.1). After the propagation, the final output matrix contained 12,582 species with 

16,408 populated cells (34.8% missing data) (Table 3.1).  
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Of the 16,408 populated cells in the final output matrix, 494 (150 pectoral, 344 pelvic) 

contained only directly asserted data (Fig. 3.5) where the presence of the pectoral fin was 

asserted in 123 species, and absence asserted in 30. The presence of the pelvic fin was directly 

asserted in 150 species and absence asserted in 194. In the remaining cells, 3,044 (1,511 pectoral, 

1,533 pelvic) contained only inferred data, and 12,870 cells (8,798 pectoral, 4,072 pelvic) 

contained propagated data (Fig. 3.5). Of the 8,798 species for which pectoral fin data were 

propagated, 5,077 of these were propagated from asserted family and genus-level data. Of the 

4,072 species for which pelvic fin data were propagated, 2,906 of these were propagated from 

asserted family and genus-level data. These are numbers after the reconciliation of taxon names; 

hence, only the species that matched with the species-level tree file are considered. 

 

3.3.5 Ancestral state reconstruction 

The results of the ancestral state reconstructions are available in Jackson, et al. (2018). 

Data propagation and ontology-based inference play a major role in extending the original data 

volume to perform large-scale ancestral state reconstructions. Fig. 3.6 visually represents the 

proportion of propagated and inferred only data after performing the ancestral state 

reconstructions for the pectoral fin and the pelvic fin. It is clear that asserted data (shown in dark 

blue) that are based on direct author statements represent a smaller portion in the visualizations 

for both the fins. Without inferred (light blue) and propagated (green) data these large-scale 

ancestral state reconstructions become inefficient due to the low data volume.  
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3.4 Discussion 

Integrating large-scale trait matrices with large phylogenetic trees introduces several 

computational challenges, which were investigated during this work. Computational solutions 

were developed using a large morphological supermatrix for paired fins retrieved from the 

Phensocape KB and a Teleostei species-level tree from the OpenTree. By implementing these 

solutions, data for the pectoral fin and the pelvic fin were successfully mapped to the Teleostei 

species-level tree, which constituted 38,419 taxa. The computational solutions were assembled 

into a generic bioinformatics pipeline, ‘PhenTree’, which can be used to integrate any trait 

matrix that contains a single anatomical character retrieved from the Phenoscape KB with any 

phylogenetic tree obtained from the Open Tree. Using the pipeline, ancestral state 

reconstructions that were usually limited to a smaller number of taxa can now be performed at a 

larger scale for large taxonomic groups, such as Teleostei, which helps to identify useful 

evolutionary patterns. In an era where large quantities of biological data are generated using 

next-generation methods and ‘big data analysis’ is essential for identifying biological patterns, 

ancestral state reconstructions must move into the realm of the big data analysis. This is enabled 

by the computational methods in the pipeline that automate the integration process and remove 

any manual modifications required, which is essential to perform large-scale ancestral state 

reconstructions. 

The first challenge when performing large-scale ancestral state reconstructions is finding 

reliable data sources to retrieve large trait data matrices and phylogenetic trees. These were 

lacking until recently when data sources such as the Phenoscape KB and the Open Tree emerged. 

The ability of the Phenoscape KB to generate large synthetic morphological supermatrices by 

combining smaller published matrices is critical for macroevolutionary studies.  
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When performing large-scale ancestral state reconstructions, it is important to integrate 

the maximum possible amount of trait data with the phylogenetic tree. This can be achieved 

through two main approaches: (1) extending the original data volume by computational methods, 

(2) minimizing the data loss during the integration. The anatomical data in the Phenoscape KB 

are tagged with Uberon anatomy ontology terms, which can be used to extend the original data 

volume by ontology-based inference (Dececchi, et al., 2015; Jackson, et al., 2018). In cases 

where authors do not directly state the presence and absence of an anatomical entity such as the 

pectoral fin but make indirect statements about the anatomical parts, ontology relationships are 

used to infer the presence or the absence of the original anatomical entity (Fig. 3.1). It appears 

that the contribution of inference is significant compared to direct assertions in terms of the data 

volume. For instance, in the morphological supermatrix used for this work, 3,044 cells (1,511 for 

pectoral fin and 1,533 for pelvic fin) with species-level data are inferred only compared to the 

494 (150 for pectoral fin and 344 for pelvic fin) cells with direct author assertions (Fig. 3.5). The 

impact of data extension through inference on the ancestral state reconstructions for the pectoral 

fin and the pelvic fin is illustrated in Fig. 3.6. It is evident how the inference (shown in light 

blue) extends mapped data in the Teleostei species-level tree, leading to a more complete 

analysis of the evolution of paired fins.   

The data propagation algorithm, which propagates data from families and genera to 

corresponding species without data, is another computational approach that extended the volume 

of the data. The supermatrices retrieved from Phenoscape KB contain data that are annotated to 

higher-level taxa. For example, the supermatrix obtained for this work contained pectoral or 

pelvic fin data for 182 families and 119 genera (after removing higher-level taxa with ‘0&1’ 

states), which would have been lost if they were not propagated to the corresponding species. 
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Although there were data annotated to taxa above the family level (e.g., orders), they were not 

propagated due to the increasing expectation of evolutionary changes in character states with 

increasing divergence time. Furthermore, the apparent polymorphisms and conflict states (‘0&1’) 

were removed from higher-level taxa before the propagation (section 3.2.4). In apparent 

polymorphisms, the ‘0&1’ state labeled for a higher-level taxon such as a genus indicates that 

some of the species of the genus contain the fin and some lack the fin. Without knowing the 

exact species which lack or contain the fin, this data cannot be propagated to the species level.  

During the propagation, existing species-level data were never replaced by data coming 

from the families and genera. In some instances, the data at species level conflicted with the data 

from the corresponding families and genera. For instance, the species, Moringua edwardsi is 

annotated with pectoral fin presence (‘1’) but the corresponding family, Moringuidae is 

annotated with pectoral fin absence (‘0’). These are considered as propagation conflicts and they 

affect the reliability of the propagation algorithm. However, the percentage of propagation 

conflicts is very low compared to the number of existing species-level data. In the matrix for the 

paired fins (2 characters), this was 0.27%, and in the larger matrix that included parts of the 

paired fins (115 characters), the propagation conflict percentage was 0.60% (Supplementary 

Table S3.1). Therefore, the reliability of the propagation algorithm can be considered as high. 

Rather than not using the propagation due to potential propagation conflicts, it can be used to 

avoid losing a significant proportion of data annotated to families and genera. Not only the 

propagation can be used to avoid missing data but also it extends the data volume by adding data 

to species without original annotations. As depicted in Fig. 3.5, the propagation added data to 

12,870 cells (8,798 for pectoral fin and 4,072 for pelvic fin) corresponding to species without 

original data in the morphological supermatrix for the paired fins. There are two main reasons for 
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the pectoral fin to have more propagated data than the pelvic fin: (1) data were propagated from 

more families and genera for the pectoral fin (151 families and 97 genera) compared to the pelvic 

fin (90 families and 71 genera), (2) most families in the VTO that were involved with pectoral 

fin data propagation are more speciose (e.g., Loricariidae, 899 species; Callichthyidae, 211 

species) (Jackson, et al., 2018). The importance of propagated data for ancestral state 

reconstruction is evident in Fig. 3.6 as propagated data (shown in green) completes a significant 

portion of the Teleostei species-level tree.  

The amount of data extended by the propagation is significantly higher compared to the 

amount of data extended by the inference (Fig. 3.5). However, when considered together, the 

amount of data extended by both inference and propagation is substantial as shown in Fig. 3.5 

and Fig. 3.6, and essential when integrating large trait data with large phylogenetic trees. In the 

final output matrix that was integrated with the Teleostei species-level tree, the missing data 

percentage was reduced from 98% to 85.9% using the inference, and further reduced from 85.9% 

to 34.8% using the propagation. The PhenTree pipeline implements the propagation algorithm on 

any trait matrix for any single anatomical entity retrieved from the Phenoscape KB and enables 

the user to differentially visualize the distribution of propagated and inferred data in the species-

level tree from the Open Tree. This is important because despite the propagation and inference 

extending the original data volume, they are still extended by computational methods and the 

reliability may not be up to par with asserted data that are based on species specimens. 

Therefore, the user should have the option to distinguish between asserted, inferred and 

propagated data types after mapping them to the phylogenetic tree.  

Reconciliation of taxon names is another important challenge associated with integrating 

trait matrices from the Phenoscape KB with phylogenetic trees from the Open Tree as they use 



   

 
304 

different taxon naming systems (Phenoscape KB: VTO; Open Tree: NCBI taxonomy system). 

This is a common challenge when integrating large data from different sources that use different 

naming systems. Taxon name reconciliation is an active research area, and current methods 

frequently use the taxon name as the integrative unit (Patterson, 2003), which introduces several 

challenges, such as resolving synonyms, abbreviations, misspellings, and handling improper 

naming syntax (Cranston, et al., 2014; Patterson, et al., 2016). Furthermore, a single taxon name 

can belong to multiple tips within the same taxonomy, which is identified as homonyms (Rees 

and Cranston, 2017). There are several solutions developed for the reconciliation of taxon names. 

There are online servers, such as the Taxonomic Name Resolution Service (TNRS), which act as 

scientific name repositories that aggregate data from different sources (Boyle, et al., 2013). 

Furthermore, there are software, such as the toolkit distributed by the Global Names Architecture 

(GNA), which can perform taxon name reconciliations (Patterson, et al., 2016). Furthermore, 

when the Open Tree integrates multiple source taxonomies to build the Open Tree taxonomy, the 

taxon names are matched from individual taxonomic sources to identify the correct taxonomic 

name (Redelings and Holder, 2017; Rees and Cranston, 2017). Unfortunately, the VTO, which 

the taxon names from the Phenoscape KB are based on, does not support the aforementioned 

taxon name reconciliation solutions, thus required the development of an efficient taxon name 

reconciliation method (section 3.2.7). The taxonomy ID can be used as an alternative for the 

taxon name (Thomson and Shaffer, 2010). However, depending solely on NCBI taxonomy IDs 

for reconciliation was inefficient because a large number of VTO taxa (9,522) in the final output 

matrix did not have references to NCBI taxonomy IDs. Therefore, an algorithm was developed 

that first uses NCBI taxonomy IDs and then uses taxon names for the reconciliation. This 

improved the number of matches compared to those that independently use NCBI taxonomy IDs 
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and taxon names. However, there were still some mismatches due to various reasons. For 

example, some of the taxa in the VTO are extinct and not found in the Open Tree and some taxa 

in the VTO contain unconventional names (Supplementary Table S3.2). To reduce these 

mismatches, VTO must either use the aforementioned taxon name reconciliation solutions or 

pre-process the taxa names to keep only the standard names. Reconciliation of taxon names still 

remains a challenge. More efficient solutions must be developed, and existing solutions must be 

improved in the future to accommodate emerging data recourses that can be used for 

macroevolutionary analyses. 

When the Phenoscape KB aggregates multiple matrices to generate morphological 

supermatrices, data conflicts can arise due to different statements made by different authors 

regarding the same anatomical phenotype. The ability to isolate the conflicts is critical to further 

investigate the reason for the conflicts, which gives a better understanding of the anatomical 

entities in question and may lead to useful discoveries. They may be due to errors in author 

statements, observing different specimens of the same species, or due to different interpretations 

of the observations. Because ontology-based inference is used in the Phenoscape KB 

supermatrices, a conflict can arise between an inferred state and an asserted state for the same 

entity, which is the common conflict type reported for the supermatrices (Dececchi, et al., 2015). 

In the supermatrix generated for this work, only 0.04% of the species-level data (6 of 16,408 

populated cells) were conflicted (excluding actual polymorphisms), and all of them were 

between asserted and inferred states. For example, one author (Nelson, 2006) asserted the 

absence of the pelvic fin in the eel catfish, Channallabes apus  and another author (De Pinna, 

1993) described the thickness of the first pelvic fin ray of the same species. The first pelvic fin 

ray is a part of the pelvic fin; hence, the presence of the pelvic fin ray leads to the inference of 
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the presence of the pelvic fin, which conflicts the asserted absence by Nelson (2006). Similar to 

this conflict, identification of other conflicts is important for further investigations. The 

PhenTree pipeline isolates these conflicts for any single character matrix given the metadata, 

which is a useful feature to broaden the knowledge about the anatomical entities and correct 

some potential errors made by authors.  

The goal of performing ancestral state reconstructions is to study the evolution of 

characters by investigating their ancestral states. For example, questions such as how often, and 

in which taxa, the paired fins were lost are of utmost importance in ichthyology (Larouche, et al., 

2017; Nelson, 1990; Yamanoue, et al., 2010). The automation achieved through the 

computational solutions developed in this work enabled to perform a macroevolutionary analysis 

using a large-scale supermatrix and a large species-level tree to study the evolution of paired fins 

in teleosts and identify taxa where the fins were regained after a loss (see Jackson, et al. (2018) 

for details).  

As demonstrated, performing ancestral state reconstructions at a larger scale enables to 

identify important evolutionary patterns and points to certain phylogenetic clades that need more 

investigation. Although the computational solutions developed in this work were used to 

integrate a supermatrix for paired fins with a Teleostei species-level tree to study the evolution of 

paired fins, these methods can be applied to study the evolution of any anatomical entity 

available in the Phenoscape KB using the PhenTree pipeline (Fernando, et al., 2017). Reusability 

of computational solutions is important in bioinformatics that is at times taken for granted. The 

PhenTree pipeline ensures that the computational algorithms developed to solve the challenges 

associated with the integration of large trait matrices with large phylogenetic trees are reusable to 

study more evolutionary hypotheses. However, still, some challenges remain for the future, 
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especially relating to the visualization of large phylogenetic trees. Visualization and 

manipulation of large phylogenetic trees are challenging using current phylogenetic software 

(Harmon, et al., 2013). Although software such as Mesquite enables manipulation of large 

phylogenetic trees, some functions require manual modifications, which is cumbersome at a 

large scale (Jackson, et al., 2018). The next-generation tools must facilitate easier navigation and 

support more complex evolutionary analyses (Gruenstaeudl, 2016). With projects such as Arbor 

(Harmon, et al., 2013) developing for visualizations and comparative analyses of large 

phylogenetic trees, the evolutionary biology field seems to be moving in the right direction. 

Therefore, the PhenTree pipeline is a timely addition to the bioinformatics tools that perform 

macroevolutionary analyses and the computational solutions included in the pipeline will benefit 

future macroevolutionary studies. 

 

3.5 Conclusion 

This work focused on understanding and solving computational challenges associated 

with the integration of large trait matrices with large phylogenetic trees using a morphological 

supermatrix for paired fins retrieved from the Phenoscape KB and a Teleostei species-level tree 

retrieved from the Open Tree. This work showed the importance of data sources such as the 

Phenoscape KB and the Open Tree for performing macroevolutionary studies. Importantly, it 

was clear that computational solutions focused on extending the original data volume and 

minimizing the data loss were required for the integration. For example, the data propagation 

algorithm, developed during this work, was able to further extend the data in the morphological 

supermatrix that was originally extended through ontology-based inference, which was critical 

for the analysis. The combined method that uses both the NCBI ID and the taxon name for taxon 
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name reconciliation was able to minimize the data loss during the integration. This work 

showcased the importance of such computational techniques for macroevolutionary studies. 

Most importantly, the computational methods developed in this work are now available as a 

reusable bioinformatics pipeline (PhenTree pipeline), which can be used to integrate large-scale 

data for any anatomical character obtained from the Phenoscape KB with a large phylogenetic 

tree from the Open Tree. The evolution of a single anatomical character, such as the pectoral fin, 

can be treated as a single evolutionary hypothesis. Using the PhenTree pipeline, the evolution of 

each anatomical character with data in the Phenoscape KB can be studied, broadening the 

number of evolutionary hypothesis that can be made, which is important for performing 

macroevolutionary studies in the era of the big data analysis. 
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Tables 

Table 3.1. Percentage of missing data before and after data propagation. The table contains the 

change in the percentage of missing data before propagation in the pre-processed matrix 

compared to after propagation in the final output matrix. Missing percentages are relative to the 

total number of species in the final output matrix (12,582 species; 25,164 cells). 

 

 Cells with data 
for pectoral fin 

Cells with data 
for pelvic fin 

Total populated 
cells 

 
Percentage of 

missing data in 
the final output 

matrix 
 

Before 
propagation 

(Pre-processed 
matrix) 

1,661 1,877 3,538 85.9% 

After 
propagation 
(Final output 

matrix) 

10,459 5,949 16,408 34.8% 
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Figures 

 

Figure 3.1. Ontology-based inference of presence of an anatomical structure. The presence of a 

structure (pectoral fin) is inferred from a quality (unbranched) of its part (pectoral fin ray). The 

arrows represent the direction of ontological inference, and the ‘X’s represent relationships that 

are not inferred through ontological reasoning. This figure was adapted from Jackson, et al. 

(2018). 
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Figure 3.2. A schematic representation of the propagation algorithm. During the first iteration 

(red arrow), data are propagated from genera to corresponding species. For instance, state 1 from 

Genus A1 is propagated to Species A11, which initially lacked data. During the second iteration 

(green arrow), data are propagated from families to the remaining species with missing data 

(Species A22). The character states of the species with existing data are not modified by the 

propagation during each iteration. For example, the character states of species that had original 

data (Species A12 and Species A21) are not replaced during first iteration and character states 

propagated from genera during the first iteration (Species A11) are not replaced during the 

second iteration. 
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Figure 3.3. The general workflow for integrating a synthetic morphological supermatrix retrieved 

from the Phenoscape Knowledgebase with a species-level tree obtained from the Open Tree of 

Life to be used for ancestral state reconstruction. The PhenTree pipeline (shown in blue) 

converts the supermatrix step by step to a version that can be merged with the species-level tree. 

This figure was adapted from Jackson, et al. (2018).  
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Fig. 3.4. A snapshot of the user interface of the PhenTree web tool. A detailed tutorial is 

available in the tutorial tab. The tool can be accessed using the following link: 

http://phentree.biocoms.org/.  
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Fig. 3.5. Combined usage of inference and propagation extends morphological data. The bar 

charts show the number of species with asserted (light gray), inferred only (medium gray), and 

propagated (dark grey) data for the pectoral fin and pelvic fin. Increase in the number of species 

with data after inference and then propagation demonstrate the importance of these steps in 

reducing missing data. *Of the 8,798 species for which pectoral fin data are propagated from 

family and genus-level data, 5,077 are propagated from asserted data, and 3,721 are propagated 

from inferred data. **Of the 4,072 species for which pelvic fin data are propagated from family 

and genus-level data, 2,906 are propagated from asserted data, and 1,166 are propagated from 

inferred data. 
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Figure 3.6. The distribution of asserted (dark blue), inferred only (light blue), and propagated 

data (green) after preforming ancestral state reconstructions for the pectoral and pelvic fins. 
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Supplementary Tables 

Supplementary Table S3.1. Propagation statistics for the matrix that contained parts of the paired 

fins (115 characters) for Teleostei. The propagation algorithm was implemented on one character 

at a time; therefore, the statistics are recorded separately for each character. 

Character 
name 

Uberon ID Number of 
families 

contributed 
to the 

propagation 

Number of 
genera 

contributed 
to the 

propagation 

Number 
of 

existing 
species 

with 
data 

Number 
of newly 

added 
species 

Total 
number of 

species after 
the 

propagation 

Number of 
propagation 

conflicts 

Pectoral fin 
radial 

cartilage 

Uberon_2
201586 

52 29 974 2294 3268 0 

Pelvic fin 
skeleton 

Uberon_0
010711 

132 78 2230 8480 10710 8 

Mesopterygi
um element 

Uberon_4
300081 

11 24 55 1206 1261 0 

Pectoral fin 
distal radial 
element 2 

Uberon_2
102279 

11 7 104 1145 1249 0 

Pectoral fin 
spine 

Uberon_2
001787 

45 13 1045 3916 4961 4 

Pectoral fin 
radial bone 

Uberon_2
001586 

51 29 960 2292 3252 0 

Paired fin 
skeleton 

Uberon_0
010713 

181 112 2580 10880 13460 0 

Pectoral fin 
radial 

skeleton 

Uberon_4
440009 

52 29 987 2294 3281 0 

Paired fin 
radial 

skeleton 

Uberon_4
300013 

76 38 986 1919 2905 0 

Branched 
pectoral fin 

ray 

Uberon_2
001993 

11 11 315 1153 1468 0 

Pectoral fin 
proximal 

radial 
element 

Uberon_2
101587 

15 30 475 1236 1711 0 

Paired fin 
spine 

Uberon_4
500009 

57 14 1085 3341 4426 0 

Paired fin 
radial 

element 

Uberon_1
600006 

76 38 986 1919 2905 0 

Pelvic fin 
ray 

Uberon_4
300117 

93 26 795 6854 7649 36 

Pelvic fin 
lepidotrichiu

m 

Uberon_4
000173 

109 46 1449 7131 8580 65 
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Paired fin 
radial bone 

Uberon_1
500006 

60 37 959 1760 2719 0 

Pectoral fin 
radial 

element 

Uberon_2
101586 

52 29 987 2294 3281 0 

Pectoral fin 
lepidotrichiu

m 

Uberon_4
000175 

53 36 1595 4216 5811 4 

Pelvic fin 
middle 

radial bone 

Uberon_1
500010 

107 26 519 7359 7878 1 

Paired fin 
lepidotrichiu

m 

Uberon_4
440011 

62 45 1875 3497 5372 0 

Paired fin 
radial 

cartilage 

Uberon_1
700006 

41 22 946 1149 2095 0 

Lateropteryg
ium 

Uberon_2
002077 

91 26 732 6829 7561 36 

Pectoral fin 
distal radial 
element 3 

Uberon_2
102280 

11 7 104 1145 1249 0 

Pelvic fin 
ray 1 

Uberon_2
001776 

91 26 777 6829 7606 36 

Pectoral fin 
skeleton 

Uberon_0
010710 

156 98 2053 10220 12273 15 

Pelvic splint Uberon_2
001788 

91 27 596 6846 7442 16 

Anterior 
dentation of 
pectoral fin 

spine 

Uberon_2
002001 

12 10 310 1183 1493 0 

Anterior 
distal 

serration of 
pectoral fin 

spine 

Uberon_2
002002 

12 7 50 1179 1229 0 

Pectoral fin 
proximal 

radial bone 
4 

Uberon_2
002029 

11 7 76 1145 1221 0 

Pectoral fin 
proximal 

radial 
cartilage 

Uberon_2
201587 

15 30 462 1236 1698 0 

Pectoral fin 
proximal 

radial bone 
3 

Uberon_2
002028 

11 10 139 1149 1288 0 

Posterior 
dentation of 
pectoral fin 

spine 

Uberon_2
002000 

12 9 306 1186 1492 0 
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Pectoral fin 
distal radial 

bone 3 

Uberon_2
002280 

11 7 104 1145 1249 0 

Pectoral fin 
proximal 

radial bone 

Uberon_2
001587 

14 30 448 1234 1682 0 

Pelvic radial 
cartilage 

Uberon_2
001538 

106 42 295 7460 7755 3 

Pectoral fin 
ray 

Uberon_4
500007 

12 12 422 1156 1578 0 

Pectoral fin 
distal radial 
cartilage 2 

Uberon_2
202279 

11 7 104 1145 1249 0 

Pectoral fin 
proximal 

radial bone 
2 

Uberon_2
002027 

11 7 105 1145 1250 0 

Pectoral fin 
proximal 

radial bone 
1 

Uberon_2
002026 

14 7 105 1166 1271 0 

Metapterygi
um cartilage 

Uberon_4
400000 

11 7 28 1145 1173 0 

Mesopterygi
um bone 

Uberon_4
300087 

11 24 55 1206 1261 0 

Pelvic 
axillary 
process 

Uberon_2
002086 

91 26 260 6865 7125 0 

Pelvic fin 
radial bone 

Uberon_2
000508 

106 42 575 7441 8016 1 

Pectoral 
axillary 
process 

Uberon_2
002087 

11 7 78 1145 1223 0 

Mesopterygi
um cartilage 

Uberon_1
500007 

11 24 55 1206 1261 0 

Pectoral fin 
proximal 

radial 
element 1 

Uberon_2
102026 

14 7 118 1166 1284 0 

Pectoral fin 
distal radial 
cartilage 3 

Uberon_2
202280 

11 7 104 1145 1249 0 

Pectoral fin 
proximal 

radial 
element 2 

Uberon_2
102027 

11 7 105 1145 1250 0 

Pelvic fin 
radial 

skeleton 

Uberon_4
440010 

121 43 295 7617 7912 3 

Pectoral fin 
proximal 

radial 
cartilage 2 

Uberon_2
202027 

11 7 105 1145 1250 0 



   

 
319 

Pelvic fin 
radial 

element 

Uberon_2
100508 

121 43 295 7617 7912 3 

Pectoral fin 
proximal 

radial 
cartilage 1 

Uberon_2
202026 

14 7 105 1166 1271 0 

Pectoral fin 
proximal 

radial 
cartilage 3 

Uberon_2
202028 

11 10 139 1149 1288 0 

Pelvic fin 
spine 

Uberon_2
002270 

111 40 347 7623 7970 17 

Pectoral fin 
ray 1 

Uberon_2
001761 

12 8 137 1148 1285 0 

Pectoral fin 
ray 2 

Uberon_2
001762 

11 7 92 1145 1237 0 

Pectoral fin 
proximal 

radial 
element 3 

Uberon_2
102028 

11 10 139 1149 1288 0 

Pectoral fin 
proximal 

radial 
element 4 

Uberon_2
102029 

11 7 76 1145 1221 0 

Propterygiu
m element 

Uberon_4
300083 

12 8 73 1148 1221 0 

Propterygiu
m cartilage 

Uberon_2
001589 

12 8 73 1148 1221 0 

Pectoral fin 
distal radial 

bone 2 

Uberon_2
002279 

11 7 104 1145 1249 0 

Pectoral fin 
distal radial 

element 

Uberon_2
101588 

11 7 105 1145 1250 0 

Pelvic fin 
ray 6 

Uberon_2
001781 

91 26 294 6865 7159 0 

Pectoral fin 
distal radial 

cartilage 

Uberon_2
201588 

11 7 105 1145 1250 0 

Pectoral fin 
proximal 

radial 
cartilage 4 

Uberon_2
202029 

11 7 76 1145 1221 0 

Pectoral fin 
distal radial 

bone 

Uberon_2
001588 

11 7 105 1145 1250 0 

Pelvic 
cartilage 

Uberon_4
300016 

94 27 285 6928 7213 7 

Pectoral fin 
base 

Uberon_4
300147 

25 7 31 1709 1740 0 

Pelvic fin 
clasper 

Uberon_0
010518 

91 26 548 6829 7377 0 

Pectoral 
splint 

Uberon_4
300155 

12 9 41 1188 1229 0 
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Metapterygi
um element 

Uberon_4
300082 

11 7 28 1145 1173 0 

Rudimentar
y pectoral 

fin ray 

Uberon_4
300103 

11 7 55 1145 1200 0 

Pelvic fin 
ray 2 

Uberon_2
001777 

91 26 227 6865 7092 0 

Pelvic fin 
ray 3 

Uberon_2
001778 

92 26 225 6883 7108 0 

Pelvic fin 
distal radial 

bone 

Uberon_1
500008 

91 26 518 6844 7362 0 

Pelvic fin 
distal radial 
element 1 

Uberon_2
101417 

91 26 218 6865 7083 0 

Pelvic fin 
distal radial 

bone 3 

Uberon_2
001416 

91 26 518 6844 7362 0 

Pelvic radial 
2 cartilage 

Uberon_2
001541 

91 26 218 6865 7083 0 

Pelvic fin 
distal radial 

bone 2 

Uberon_2
001415 

91 26 518 6844 7362 0 

Pelvic fin 
distal radial 

bone 1 

Uberon_2
001417 

91 26 518 6844 7362 0 

Ventral 
marginal 
cartilage 

Uberon_4
300018 

91 26 548 6829 7377 0 

Pelvic fin 
distal radial 
cartilage 2 

Uberon_2
201415 

91 26 218 6865 7083 0 

Propterygiu
m bone 

Uberon_4
300089 

11 7 28 1145 1173 0 

Pelvic fin 
distal radial 
element 2 

Uberon_2
101415 

91 26 218 6865 7083 0 

Unbranched 
pelvic fin 

ray 

Uberon_4
500011 

91 26 218 6865 7083 0 

Pelvic fin 
basipterygial 

radial 

Uberon_1
500009 

91 26 518 6844 7362 0 

Clasper 
plate 

Uberon_0
018315 

91 26 548 6829 7377 0 

Pelvic radial 
1 cartilage 

Uberon_2
001542 

91 26 218 6865 7083 0 

Mesenchym
e pelvic fin 

Uberon_0
003935 

91 26 218 6865 7083 0 

Pelvic fin 
distal radial 

element 

Uberon_1
600008 

91 26 218 6865 7083 0 

Pectoral fin 
distal radial 
element 1 

Uberon_2
102277 

11 7 28 1145 1173 0 



   

 
321 

Pelvic fin 
distal radial 
cartilage 3 

Uberon_2
201416 

91 26 218 6865 7083 0 

Metapterygi
um bone 

Uberon_4
300088 

11 7 28 1145 1173 0 

Pelvic fin 
distal radial 
element 3 

Uberon_2
101416 

91 26 218 6865 7083 0 

Pelvic fin 
distal radial 
cartilage 1 

Uberon_2
201417 

91 26 218 6865 7083 0 

Pelvic fin 
ray 5 

Uberon_2
001780 

91 26 218 6865 7083 0 

Pelvic fin 
middle 
radial 

element 

Uberon_1
600010 

91 26 218 6865 7083 0 

Pectoral fin 
distal radial 
cartilage 1 

Uberon_2
202277 

11 7 28 1145 1173 0 

Pectoral fin 
intermediate 
radial bone 

Uberon_4
200208 

11 7 28 1145 1173 0 

Pelvic fin 
ray 7 

Uberon_2
001782 

91 26 218 6865 7083 0 

Pectoral fin 
fold 

Uberon_2
005317 

11 7 28 1145 1173 0 

Apical 
ectodermal 
ridge pelvic 

fin 

Uberon_2
001450 

91 26 218 6865 7083 0 

Pelvic fin 
actinotrichiu

m 

Uberon_2
000596 

91 26 218 6865 7083 0 

Pelvic fin 
ray 4 

Uberon_2
001779 

91 26 218 6865 7083 0 

Pelvic radial 
3 cartilage 

Uberon_2
001540 

91 26 218 6865 7083 0 

Unbranched 
pectoral fin 

ray 

Uberon_4
500010 

11 7 28 1145 1173 0 

Pectoral fin 
actinotrichiu

m 

Uberon_2
000544 

11 7 28 1145 1173 0 

Basal scute Uberon_4
200165 

19 1 3 952 955 0 

Pectoral fin 
distal radial 

bone 1 

Uberon_2
002277 

11 7 28 1145 1173 0 

Mesenchym
e pectoral 

fin 

Uberon_0
003934 

11 7 28 1145 1173 0 

Pectoral fin 
ray 7 

Uberon_2
001767 

11 7 28 1145 1173 0 
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Pectoral fin 
ray 6 

Uberon_2
001766 

11 7 28 1145 1173 0 

Pectoral fin 
ray 5 

Uberon_2
001765 

11 7 28 1145 1173 0 

Pectoral fin 
ray 4 

Uberon_2
001764 

11 7 28 1145 1173 0 

Pectoral fin 
ray 3 

Uberon_2
001763 

11 7 28 1145 1173 0 
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Supplementary Table S3.2. The species that were mismatched between the final output matrix 

that contains Vertebrate Taxonomy Ontology (VTO) taxon names and the Teleostei species-level 

tree from the Open Tree of Life that contains taxon names based on the NCBI taxonomy system.  

 
 
The number of mismatched taxa 
that is extinct: 72 
 
 

 
The number of mismatched taxa 
that has sp. in name (improper 
naming): 362 
 

 
The remaining number of 
mismatches taxa: 940 
 

Saurorhamphus freyeri 
Batrachoides nidificans 
Joffrichthys triangulpterus 
Enchodus brevis 
Bolcyrus formosissimus 
Phractocephalus nassi 
Idiacanthus trispinosus 
Astroscopus countermani 
Cretophareodus alberticus 
Carangidarum americanus 
Corydoras revelatus 
Batrachoides antiquior 
Idiacanthus bellistriatus 
Idiacanthus cameratus 
Diodon circumflexus 
Socnopaea grandis 
Eosolea formosa 
Lampanyctus latesulcatus 
Austromola angerhoferi 
Enchodus gracilis 
Hoplopteryx antiquus 
Cimolichthys nepaholica 
Conger vetustus 
Myripristis homopterygius 
Tautoga (Protautoga) conidens 
Holocentrum pygaeum 
Beryx radians 
Eosolea bartonensis 
Nematonotus bottae 
Phareodus encaustus 
Conger meridies 
Beryx ornatus 
Eosolea subglabra 
Holocentrum pygmaeum 
Palaeolycus dreginensis 
Congeris brevior 
Voltaconger latispinus 
Beryx germanus 
Eosolea texana 
Phractocephalus acreornatus 
Albula dunklei 
Brychaetus muelleri 

Glyptothorax sp. (de Pinna 1993) 
Genus 2 (Bockmann 1998) 
Genus 7 sp. (Bockmann 1998) 
Parotocinclus sp. (Britto 2003) 
Stegophilus sp. (Schaefer 1990) 
Phractura sp. (Mo 1991) 
Diplomystes sp. (de Pinna 1993) 
Pterodoras sp. (Kailola 2004) 
Akysis sp. (de Pinna 1993) 
Coregonus sp. (Fink and Fink 1981) 
Salmo sp. (Fink and Fink 1981) 
Poecilocharax sp. (Fink and Fink 
1981) 
Hypostomus sp. round snout 1 
(Armbruster 2004) 
Pareiorhina sp. (Britto 2003) 
Clarias sp. (Fink and Fink 1981) 
Otothyris sp. (Schaefer 1991) 
Orinocodoras sp. (Royero 1999) 
Chiloglanis sp. E (Vigliotta 2008) 
Astroblepus sp. (Britto 2003) 
Farlowella sp. (de Pinna 1993) 
Leptodoras sp. (Vigliotta 2008) 
Pareiorhina sp. (Armbruster 2004) 
Dianema sp. (Kailola 2004) 
Oxyropsis sp. (de Pinna 1993) 
Imparfinis sp. B (Bockmann 1998) 
Acrochordonichthys sp. (de Pinna 
1993) 
Scopaeocharax sp. (Burns et al 
1995) 
Pterygoplichthys sp. (Schaefer 
1987) 
Neosilurus sp. 1 (de Pinna 1993) 
Exastilithoxus sp. (Armbruster 
2004) 
Loricariidae sp. (Mo 1991) 
Sturisoma sp. (Schaefer 1987) 
Corydoras sp. (Mo 1991) 
Hoplomyzon sp. (Friel 1994) 
Micralestes cf. elongatus (Zanata 
and Vari 2005) 

Hippocampus europaeus 
Patagonotothen shagensis 
Leiocassis similis 
Salarias basilisca 
Rivulus tocantinensis 
Kryptopterus eugeneiatus 
Aspidoras aff. poecilus (Britto 
2003) 
Megalebias wolterstorffi 
Rivulus peruanus 
Homaloptera smithi 
Rivulus siegfriedi 
Silurus palavanensis 
Hippocampus planifrons 
Rivulus uatuman 
Dinotopterus jacksoni 
Canthigaster rostratus 
Liparis quasimodo 
Trachycorystes obscurus 
Leptocephalus holti 
Megalodoras granulosus 
Hypsoblennius hentzi 
Ctenopoma fasciolatum 
Hippocampus chinensis 
Platybelone platura 
Rivulus sape 
Duboisialestes tumbensis 
Rivulus amanan 
Rivulus jurubatibensis 
Odax acroptilus 
Peckoltia snethlageae 
Farlowella platoryncus 
Cichlasoma ornatum 
Heterandria litoperas 
Isorineloricaria spinosissimus 
Synodontis fascipinna 
Pseudotrematomus lepidorhinus 
Hime purpurissata 
Lycodes pacificus 
Rivulus elongatus 
Hypostomus commersonii 
Rivulus montium 
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Joffrichthys symmetropterus 
Albula eppsi 
Enchodus venator 
Taubateia paraiba 
Myctophum americanum 
Genartina texana 
Albula lapidosa 
Brachyplatystoma promagdalena 
Beryx zippei 
Conger fornicatus 
Rharbichthys ferox 
Myripristis leptacanthus 
Teratichthys antiquitatus 
Ranzania grahami 
Ranzania tenneyorum 
Lampadena jacksoni 
Eosolea claibornensis 
Conger sanctus 
Channa elliptica 
Parenchodus longipterygius 
Phareodus testis 
Eurypholis pulchellus 
Eurypholis boissieri 
Beryx microcephalus 
Enchodus petrosus 
Eosolea aquitanica 
Fajumia schweinfurthi 
Claibornichthys troelli 
Genartina hampshirensis 
Enchodus marchesettii 
 

Garra sp. 'Discognathichthys' 
(Coburn and Cavender 1992) 
Creagrutus sp. (Fink and Fink 
1981) 
Synodontis sp. (de Pinna 1993) 
Roeboides sp. B (Lucena and 
Menezes 1998) 
Ixinandria sp. (Britto 2003) 
Glyptothorax sp. (de Pinna 1996) 
Genus 12 sp. (Bockmann 1998) 
Bunocephalus sp. (de Pinna 1993) 
Myoglanis sp. (Bockmann 1998) 
Xyliphius cf. melanopterus (Friel 
1994) 
Zaireichthys sp. B (Vigliotta 2008) 
Hypostomus sp. (Schaefer 1987) 
Euchilichthys sp. A (Vigliotta 2008) 
Garra sp. (Coburn and Cavender 
1992) 
Astroblepus festae sp. 2 (Mo 1991) 
Gyrinocheilus sp. (Fink and Fink 
1981) 
Neoplecostomus sp. (Schaefer 1990) 
Farlowella sp. (Schaefer 1987) 
Hypostomus sp. round snout 2 
(Armbruster 2004) 
Erethistes sp. (de Pinna 1993) 
Genus 5 sp. B (Bockmann 1998) 
Arius sp. (Royero 1999) 
Chiloglanis sp. A (Vigliotta 2008) 
Ageneiosus sp. 3 (Mo 1991) 
Hoplomyzon n. sp. (Friel 1994) 
Tyttocharax sp. (Burns et al 1995) 
Charax sp. (Buckup 1998) 
Hypoptopoma sp. (Schaefer 1991) 
Planaltina sp. (Burns et al 1995) 
Ernstichthys sp. (de Pinna 1993) 
Astroblepus sp. (Fink and Fink 
1981) 
Loricariichthys sp. (Britto 2003) 
Tanganikallabes sp. (de Pinna 
1993) 
Micralestes cf. acutidens (Zanata 
and Vari 2005) 
Leptodoras sp. (Friel 1994) 
Sternarchogiton sp. B (Albert 2001) 
Platystacus sp. (Mo 1991) 
Argopleura sp. (Weitzman and Fink 
1985) 
Corydoras barbatus sp. II (Britto 
2003) 
Pangasius sp. (de Pinna 1993) 
Leporinus cf. ecuadorensis 
(Sidlauskas and Vari 2008) 
Carpiodes sp. (Fink and Fink 1981) 
Imparfinis sp. A (Bockmann 1998) 

Nothobranchius mkuziensis 
Rivulus rossoi 
Hypsidoris farsonensis 
Rivulus lanceolatus 
Monotrete brevirostris 
Doryrhamphus multiannulatus 
Tetraodon leiurus 
Pseudotrematomus loennbergii 
Nannoplecostomus eleonorae 
Rivulus micropus 
Lipophrys adriaticus 
Plicofollis angyropleuron 
Leiocassis longispinalis 
Procatopus kabae 
Procatopus loemensis 
Bathophilus metallicus 
Gnathagnus egregius 
Cyprinus buggenhagii 
Xyrichtys woodi 
Cottus altaicus 
Microphis biocellatus 
Astephus resimus 
Syngnathus argentatus 
Pseudotrematomus scotti 
Bassanago albescens 
Hemiancistrus itacua 
Centromochlus marthae 
Microphis ocellatus 
Cathorops higuchi 
Limnothrissa stappersii 
Oligancistrus punctatissimus 
Alutera monoceros 
Sciades sona 
Solea nasuta 
Rivulus kayabi 
Aseraggodes pavoninus 
Malapterurus baarbatus 
Neoarius coatesi 
Platybelone lovii 
Rivulus torrenticola 
Isorineloricaria spinosissma 
Procatopus cabindae 
Simpsonichthys flavicaudatus 
Lebias anatoliae 
Cryptoheros septemfasciatus 
Austrolebias salviai 
Lipophrys dalmatinus 
Xenobalistes caeruleolineatus 
Brachirus salinarum 
Simpsonichthys janaubensis 
Moringua raitaborus 
Andamia expansa 
Gila alvordensis 
Ariopsis seemanni 
Parapteronotus bonapartii 
Simpsonichthys constanciae 
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Ichthyborus sp. (Fink and Fink 
1981) 
Chrysichthys sp. 1 (de Pinna 1993) 
Rita sp. (Kailola 2004) 
Trichomycteridae sp. (de Pinna 
1993) 
Cetopsorhamdia sp. n. B 
(Bockmann 1998) 
Akysis sp. 2 (Chen 1994) 
Engraulis sp. (Arratia 1999) 
Chiloglanis sp. B (Vigliotta 2008) 
Erethistes sp. (Chen 1994) 
Gymnocorymbus sp. (Fink and Fink 
1981) 
Brycon sp. (Lucena and Menezes 
1998) 
Albula sp. (Fink and Fink 1981) 
Auchenipterichthys sp. (de Pinna 
1993) 
Sturisoma sp. (Friel 1994) 
Tyttocharax sp. A (Weitzman and 
Fink 1985) 
Chaetostoma sp. (Friel 1994) 
Astroblepus sp. (Armbruster 2004) 
Cetopsidae sp. (de Pinna 1993) 
Scleromystax sp. (Britto 2003) 
Allothrissops sp. (Arratia 1999) 
Genus C species C (Malabarba 
1998) 
Bunocephalus sp. (de Pinna 1996) 
Catostomus sp. (Fink and Fink 
1981) 
Megalancistrus sp. (Schaefer 1987) 
Neoplecostomus sp. (Schaefer 1991) 
Ageneiosus sp. 2 (Mo 1991) 
Gagata sp. (de Pinna 1993) 
Xyliphius cf. lepturus (Friel 1994) 
Osteoglossum sp. (de Pinna and 
Grande 2003) 
Rineloricaria sp. (Britto 2003) 
Synodontis sp. (Royero 1999) 
Ancistrus sp. (Britto 2003) 
Rhamdia sp. (Kailola 2004) 
Erethistes sp. (de Pinna 1996) 
Microlepidogaster sp. (Armbruster 
2004) 
Bagrichthys sp. 1 (de Pinna 1993) 
Akysis sp. 1 (Chen 1994) 
Hysteronotus sp. (Weitzman and 
Menezes 1998) 
Xyliphius sp. (Chen 1994) 
Auchenipterus sp. (de Pinna 1993) 
Tetranematichthys n. sp. (Royero 
1999) 
Loricaria sp. (Armbruster 2004) 
Amphilius sp. A (Vigliotta 2008) 

Trachelyichthys n. sp 1 (Royero 
1999) 
Rivulus glaucus 
Hippocampus tuberculatus 
Scoloplax baileyi 
Selar crumenmophthalmus 
Chiasmodon lavenbergi 
Rivulus ornatus 
Synodontis marmorata 
Simpsonichthys flagellatus 
Chlorophthalmus agassiz 
Microphis platyrhynchus 
Halidesmus waltairiensis 
Rivulus nicoi 
Phalloceros malabarai 
Rivulus pacificus 
Gymnothorax prionodon 
Orestias frontosus 
Pseudoscopelus vityazi 
Thalassenchelys coheni 
Rivulus caurae 
Eomola bimaxillaria 
Brachysynodontis batensoda 
Soleichthys multifasciatus 
Acanthostracion bucephalus 
Archaeotetraodon jamestyleri 
Tatia creutzbergi 
Dinotopterus gigas 
Pseudoscopelus albeolus 
Bothus thompsoni 
Rivulus salmonicaudus 
Exoglossum maxillingua 
Sympterichthys politus 
Uncisudis longirostris 
Epiplatys berkenkampi 
Protoclupea chilensis 
Knightia bohaiensis 
Simpsonichthys magnificus 
Scartichthys xiphiodon 
Simpsonichthys hellneri 
Rivulus intermittens 
Rivulus illuminatus 
Channa pleurophthalmus 
Astyanax incaocus 
Parapercis mimaseana 
Parasilurus asotus 
Salarias reticulatus 
Artedidraco loennbergi 
Lycodes fasciatus 
Cryptobalistes brevis 
Protriacanthus gortanii 
Odax cyanomelas 
Himantolophus rostratus 
Rondeletia bicolor 
Paranotothenia trigramma 
Plotosus anguillaris 
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Bunocephalus n. sp. 4 (Friel 1994) 
Ageneiosus cf. guianensis (Mo 
1991) 
Otothyris sp. (Britto 2003) 
Phenacorhamdia sp. B (Bockmann 
1998) 
Exostoma sp. (de Pinna 1996) 
Liposarcus sp. (Friel 1994) 
Characidium sp. (Fink and Fink 
1981) 
Phenacorhamdia sp. D (Bockmann 
1998) 
Bunocephalus n. sp. 5 (Friel 1994) 
Gladioglanis sp. A (Bockmann 
1998) 
Leptoglanis sp. (de Pinna 1993) 
Roeboides sp. A (Lucena and 
Menezes 1998) 
Humbertia sp. (Arratia 1999) 
Zaireichthys sp. A (Vigliotta 2008) 
Arius sp. (Kailola 2004) 
Pseudobunocephalus cf. bifidus 
(Friel 1994) 
Trichomycterus sp. (Schaefer 1990) 
Loricariichthys sp. (Schaefer 1987) 
Imparfinis sp. n. (Bockman 1998) 
Genus 7 (Bockmann 1998) 
Anaethalion cf. A. subovatus 
(Arratia 1999) 
Distichodus sp. (Sidlauskas and 
Vari 2008) 
Ageneiosus sp. (Soares-Porto 1998) 
Hemiancistrus sp. (Armbruster 
2004) 
Ageneiosus sp. (de Pinna 1993) 
Hemipsilichthys sp. (Armbruster 
2004) 
Pimelodella sp. n. (Bockmann 1998) 
Euchilichthys sp. B (Vigliotta 2008) 
Pachythrissops sp. (Arratia 1999) 
Centromochlus sp. (Rio Negro) 
(Royero 1999) 
Phenacorhamdia sp. A (Bockmann 
1998) 
Pterygoplichthys sp. (de Pinna 
1993) 
Peckoltia sp. big spot (Armbruster 
2004) 
Chiloglanis sp. C (Vigliotta 2008) 
Neosilurus sp. 2 (de Pinna 1993) 
Chiloglanis sp. (de Pinna 1993) 
Chaetostomus sp. (Britto 2003) 
Loricariinae sp. (Friel 1994) 
Ancistrus sp. (Britz and Hoffman 
2006) 
Peckoltia sp. 2 (Armbruster 2004) 

Pseudobagrus vachellii 
Rivulus litteratus 
Lipophrys canevae 
Antennarius analis 
Gymnelus barsukovi 
Rivulus kayapo 
Synodus cresseyi 
Liosaccus pachygaster 
Clarotes macrocephalus 
Synodontis melanoptera 
Pseudobagrus aurantiacus 
Amblydoras bolivarensis 
Hemiarius kessleri 
Cynopanchax bukobanus 
Barbus callensis 
Tharsis dubius 
Halichoeres chrysotaenia 
Rhinecanthus echarpe 
Scobinichthys granulosus 
Synodontis ornatissima 
Hypostomus cordovae 
Hypostomus butantanis 
Canthidermis maculatus 
Chatrabus damaranus 
Pagothenia phocae 
Protoclupea atacamensis 
Rivulus bororo 
Sphoeroides hyperostosus 
Hexanematichthys mastersi 
Archaeotetraodon winterbottomi 
Parotocinclus halbothi 
Platybelone pterura 
Heterandria obliqua 
Hypostomus emarginatus 1 
(Armbruster 2004) 
Acentronura breviperula 
Pelteobagrus nudiceps 
Lophiodes abdituspinus 
Tetraodon cochinchinensis 
Arius latiscutatus 
Omobranchus lineolatus 
Simpsonichthys chacoensis 
Conger dissimilis 
Poecilothrissa congica 
Bembrops philippinus 
Erethistes serratus 
Microglanis aff. iberingi (Shibatta 
1998) 
Rivulus megaroni 
Trachinotus bailloni 
Synodontis punctulata 
Notarius troschelii 
Rivulus bahianus 
Rivulus monticola 
Neotropius khavalchor 
Rivulus scalaris 
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Trachydoras sp. (Vigliotta 2008) 
Astroblepus sp. (Schaefer 1990) 
Hypoptopoma sp. (Britto 2003) 
Hypostomus sp. (de Pinna 1993) 
Amblygaster sp. (DiDario 2004) 
Thrissops cf. T. subovatus (Arratia 
1999) 
Hypoptopoma sp. (Armbruster 
2004) 
Chrysichthys sp. 2 (de Pinna 1993) 
Ameiurus sp. (Vigliotta 2008) 
Sternopygus sp. (Fink and Fink 
1981) 
Corydoras n. sp. (Britto 2003) 
Thrissops cf. T. formosus (Arratia 
1999) 
Hemiodus sp. (Fink and Fink 1981) 
Phractura sp. (de Pinna 1993) 
Scoloplax sp. (de Pinna 1993) 
Phractura sp. (Vigliotta 2008) 
Astroblepus sp. (de Pinna 1993) 
Amphilius sp. B (Vigliotta 2008) 
Otocinclus sp. (Schaefer 1987) 
Neosilurus sp. (Kailola 2004) 
Limatulichthys sp. (Britto 2003) 
Kronichthys sp. (Schaefer 1987) 
Glyptothorax sp. (Friel 1994) 
Trachelyichthys n. sp. 2 (Royero 
1999) 
Pseudobunocephalus sp. (Friel 
1994) 
Genus 2 sp. B (Bockmann 1998) 
Cetopsidium sp. (de Pinna, Ferraris 
and Vari 2007) 
Loricaria sp. (Britto 2003) 
Centrodoras sp. (Vigliotta 2008) 
Centromochlus n. sp. (Royero 1999) 
Trachycorystes sp. (de Pinna 1993) 
Leporinus cf. moralesi (Sidlauskas 
and Vari 2008) 
Chiloglanis sp. D (Vigliotta (2008) 
Ameiurus sp. (de Pinna 1993) 
Notropis sp. ""sawfin shiner"" 
(Coburn and Cavender 1992) 
Bunocephalus n. sp. 3 (Friel 1994) 
Microlepidogaster sp. (Britto 2003) 
Leptorhamdia sp. (Bockmann 1998) 
Pseudancistrus sp. (Armbruster 
2004) 
Pseudopimelodus sp. (Friel 1994) 
Ageneiosus sp. 1 (Mo 1991) 
Synodontis sp. (Vigliotta 2008) 
Megalonema sp. (de Pinna 1993) 
Loricaria sp. (Schaefer 1987) 
Bunocephalus sp. (Mo 1991) 

Antennarius senegalensis 
Symphurus arabicus 
Cirrhilabrus ryukyuensis 
Laimosemion ubim 
Rivulus dibaphus 
Jenynsia pygogramma 
Syngnathus hymenolomus 
Pseudotrematomus pennellii 
Synodontis caudovittata 
Tarletonbeania tenua 
Simpsonichthys izecksohni 
Sciades platypogon 
Symphurus sayademalhensis 
Rivulus romeri 
Halicampus crinitus 
Hippocampus taeniopterus 
Sardinella janeiro 
Poeciliopsis letoni 
Orthrias tigris 
Cichlasoma salvini 
Stemonosudis elongatus 
Melletes papilio 
Hisonotus candombe 
Navodon xanthopterus 
Anguilla borneensis 
Pseudobagrus tokiensis 
Pseudobagrus pictus 
Pshekhadiodon parini 
Synaphobranchus capensis 
Cichlasoma beani 
Rivulus monikae 
Leiuranus cyclorhinus 
Chrysichthys furcatus 
Tylosurus imperialis 
Solea lascaris 
Leptolepis coryphaenoides 
Parauchenoglanis loennbergi 
Poecilia parae 
Astyanax novae 
Corythoichthys isigakius 
Hippocampus villosus 
Mastacembelus flavomarginatus 
Spectrolebias reticulatus 
Epiplatys azureus 
Electrona subasper 
Cottus haemusi 
Zenopsis nebulosa 
Phaenomonas forsteri 
Hippocampus dahli 
Platybelone trachura 
Hippichthys cyanospilus 
Lipophrys velifer 
Pseudobagrus wittenburgii 
Cretatriacanthus guidottii 
Mystriophis porphyreus 
Rivulus speciosus 
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Tyttocharax sp. B (Weitzman and 
Fink 1985) 
cf. Arius macrorhynchus (Kailola 
2004) 
Kronichthys sp. 1 (Armbruster 
2004) 
Platydoras sp. (Royero 1999) 
Bunocephalus sp. (Fink and Fink 
1981) 
Hemisorubim sp. (de Pinna 1993) 
Genus 5 (Bockmann 1998) 
Pterodoras sp. (Royero 1999) 
Pseudopimelodus sp. (de Pinna 
1993) 
Bunocephalus sp. 3 (Chen 1994) 
Farlowella sp. (Britto 2003) 
Astroblepus festae sp. 3 (Mo 1991) 
Microsynodontis sp. (Vigliotta 
2008) 
Acentronichthys sp. n. B (Bockmann 
1998) 
Bunocephalus n. sp. 2 (Friel 1994) 
Pseudoloricaria sp. (Britto 2003) 
Ictalurus sp. (Vigliotta 2008) 
Clarias sp. (de Pinna 1993) 
Bunocephalus sp. 2 (Chen 1994) 
Phenacorhamdia sp. C (Bockmann 
1998) 
Neoplecostomus sp. (de Pinna 
1993) 
Microlepidogaster sp. (Schaefer 
1991) 
Entomocorus sp. (de Pinna 1993) 
Genus 1 (Royero 1999) 
Leiocassis sp. (Mo 1991) 
Megalops sp. (Fink and Fink 1981) 
Austroglanis sp. (de Pinna 1993) 
Citharinus sp. (Sidlauskas and Vari 
2008) 
Neoplecostomus sp. (Britto 2003) 
Liobagrus cf. marginatus (Mo 
1991) 
Decapogon sp. (Schaefer 1987) 
Genus 5 sp. A (Bockmann 1998) 
Trachelyopterus sp. (Vigliotta 2008) 
Schizolecis sp. (Britto 2003) 
Corydoras barbatus sp. I (Britto 
2003) 
Ictalurus sp. (Fink and Fink 1981) 
Hydrocynus cf. brevis (Zanata and 
Vari 2005) 
Esox sp. (Fink and Fink 1981) 
Clarias sp. (Britz and Hoffman 
2006) 
Osteogeneiosus sp. (Mo 1991) 
Arius sp. (Schaefer 1990) 

Microphis leiaspis 
Ostracion clippertonense 
Mola chelonopsis 
Ostichthys sufensis 
Rivulus corpulentus 
Synodus houlti 
Pseudotrematomus hansoni 
Lycodes colletti 
Ascalabos voithii 
Brachypetersius gabonensis 
Lacustricola lualabaensis 
Creedia bilineatus 
Ariopsis assimilis 
Scartichthys fernandezensis 
Rivulus zygonectes 
Dinotopterus atribranchus 
Sciades felis 
Patagonotothen occidentalis 
Doras fimbriatus 
Leptocephalus thorianus 
Pseudobagrus ransonnettii 
Alticus aldabraensis 
Zungaro luetkeni 
Compsaraia compsus 
Gordichthys conquensis 
Neoarius velutinus 
Astephus antiquus 
Dexillus muelleri 
Hime formosanus 
Hisonotus leptochilus 
Bothrocara tanakae 
Brycinus aff. nurse (Zanata and 
Vari 2005) 
Selene setipinnis 
Hemipsilichthys? (Armbruster 
2004) 
Synodontis leoparda 
Procatopus lamberti 
Regalecus pacificus 
Rivulus rutilicaudus 
Halieutopsis nasuta 
Lycoptera davidi 
Zebrias japonica 
Halichoeres kneri 
Peckoltia arenaria 
Brachirus selheimi 
Phoxocampus kampeni 
Cottus kuznetzovi 
Plotosus brevibarbus 
Rhamdella gilli 
Vladichthys gloverensis 
Zebrias cochinensis 
Plancterus zebrinus 
Austrolebias vasferreirai 
Channichthys normani 
Rivulus xanthonotus 
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Cnidoglanis sp. (Mo 1991) 
Leporinus cf. niceforoi (Sidlauskas 
and Vari 2008) 
Hybognathus sp. (Coburn and 
Cavender 1992) 
Amblydoras sp. (Friel 1994) 
Akysis sp. 1 (de Pinna 1996) 
Tridentopsis sp. (Schaefer 1990) 
Microglanis sp. (de Pinna 1993) 
Heteropneustes sp. (de Pinna 1993) 
Brycon sp. (Fink and Fink 1981) 
Lipopterichthys sp. (Britto 2003) 
Cetopsorhamdia sp. n. C 
(Bockmann 1998) 
Trachyglanis sp. (de Pinna 1993) 
Opsariichthys sp. (Cavender and 
Coburn 1992) 
Imparfinis sp. cf. minutus (Bockman 
1998) 
Kronichthys sp. 2 (Armbruster 
2004) 
Ernstichthys sp. (de Pinna 1996) 
Pseudopimelodus sp. 2 (Shibatta 
1991) 
Distichodus sp. (Fink and Fink 
1981) 
Pimelodella sp. B (Bockmann 1998) 
Hypostomus sp. (Britto 2003) 
Panaque sp. (de Pinna 1993) 
Mesoborus sp. (Fink and Fink 
1981) 
Bunocephalus cf. knerii (Friel 
1994) 
Rhamdiopsis sp. n. A (Bockmann 
1998) 
Leporinus cf. fasciatus (Sidlauskas 
and Vari 2008) 
Eutropius sp. (de Pinna 1993) 
Hoplomyzon cf. papillatus (Friel 
1994) 
Ctenolucius sp. (Fink and Fink 
1981) 
Bunocephalus sp. 1 (Chen 1994) 
Ernstichthys sp. (Friel 1994) 
Pseudancistrus sp. gold spot 
(Armbruster 2004) 
Hemidoras sp. (Vigliotta 2008) 
Henonemus sp. (Schaefer 1990) 
Hypoptopoma sp. (Schaefer 1987) 
Malapterurus sp. (Vigliotta 2008) 
Adontosternarchus sp. (Fink and 
Fink 1981) 
Helogenes sp. (Mo 1991) 
Abramites sp. (Fink and Fink 1981) 
Lycoptera davidi cf. L. tokunagai 
(Arratia 1999) 

Glyptothorax sausii 
Gila boraxobius 
Paralipophrys trigloides 
Cichlasoma istlanum 
Syngnathus pellegrini 
Gagata gasawyuh 
Domeykos profetaesis 
Leptolepides haerteisi 
Zebrasoma veliferum 
Notropis dorsalis 
Halichoeres annularis 
Lipophrys bauchotae 
Clupeonella muhlsi 
Nemacheilus insignis 
Antennarius ocellatus 
Sinopangasius semicultratus 
Tachysurus mica 
Parapercis tetracanthus 
Zaireichthys rhodesiensis 
Solea orientalis 
Lasiancistrus nationi 
Rivulus uakti 
Simpsonichthys igneus 
Spinacanthus cuneiformis 
Trichomycterus anhanga 
Tautoga (Protautoga) 
Antennarius scriptissimus 
Synodontis guttata 
Gelanoglanis tracieso 
Paruroconger drachi 
Chlorophthalmus productus 
Ophisoma prorigerum 
Caulophryne bacescui 
Epiplatys infrafasciatus 
Mystus elongatus 
Aphyosemion jeanpoli 
Antennarius drombus 
Neoarius latirostris 
Rineloricaria rupestris 
Xyrichtys pentadactylus 
Ophichthus unicolor 
Xyrichtys bimaculatus 
Comephorus baikalensis 
Ancistrus albihoai 
Rivulus planaltinus 
Kali caribbaea 
Notarius phrygiatus 
Rivulus lazzarotoi 
Rivulus vittatus 
Synaptura nigra 
Platybelone argalus 
Dinotopterus filicibarbis 
Pseudobagrus nitidus 
Rivulus cladophorus 
Hoplostethus racurictus 
Danio erythromicron 
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Genus sp. 1 (Royero 1999) 
Synodontis ? sp. (Royero 1999) 
Compasaria sp. 1 (Albert 2001) 
Propimelodus sp. (Mo 1991) 
Auchenipterus sp. (cuyuni) (Royero 
1999) 
Parotocinclus sp. (Schaefer 1991) 
Lycoptera cf. L. sinensis (Arratia 
1999) 
Pimelodella sp. A (Bockmann 1998) 
Peckoltia sp. 1 (Armbruster 2004) 
Harttia sp. (Armbruster 2004) 
Wallago sp. (Mo 1991) 
Planiloricaria sp. (Britto 2003) 
Ompok sp. (de Pinna 1993) 
Akysis sp. (Friel 1994) 
Apareiodon sp. (Fink and Fink 
1981) 
Bunocephalus sp. (Friel 1994) 
Euchilichthys sp. C (Vigliotta 2008) 
Synodontis sp. (Mo 1991) 
Pseudotothyris sp. (Schaefer 1991) 
Chasmocranus sp. (de Pinna 1993) 
Corydoras sp. (de Pinna 1993) 
Trachelyopterus sp. (de Pinna 
1993) 
Pseudopimelodus sp. 1 (Shibatta 
1991) 
Rhinodoras sp. (Vigliotta 2008) 
Pristigaster sp. (DiDario 1999) 
Bagrichthys sp. 2 (de Pinna 1993) 
Akysis sp. 3 (de Pinna 1996) 
Phreatobius sp. 2 (de Pinna 1993) 
Diplomystes sp. (Vigliotta 2008) 
Gephyrocharax sp. (Weitzman and 
Fink 1985) 
Silurichthys sp. (Bornbusch 1991) 
Lasiancistrus sp. (Armbruster 2004) 
Acrobrycon sp. (Burns et al 1995) 
Amaralia n. sp. (Friel 1994) 
Astephus sp. (Lundberg 1992) 
Ancistrus sp. (Armbruster 2004) 
Micralestes sp. (Zanata and Vari 
2005) 
Vandellia sp. (Fink and Fink 1981) 
Crossoloricaria sp. (Armbruster 
2004) 
Tatia sp. (de Pinna 1993) 
Hypostomus sp. (Schaefer 1990) 
Astroblepus festae sp. 1 (Mo 1991) 
Panaque sp. (Friel 1994) 
Chiloglanis sp. F (Vigliotta 2008) 
Entomocorus n. sp. (Royero 1999) 
Chiloglanis sp. G (Vigliotta 2008) 
Pterobunocephalus sp. (Friel 1994) 
Callichthys sp. (Mo 1991) 

Formosania lacustre 
Stomias colubrinus 
Rivulus atratus 
Proaracana dubia 
Alosa pontica 
Belone acus 
Antennarius radiosus 
Barbus versluysii 
Caranx otrynter 
Ophichthus fowleri 
Paratrachichthys pulsator 
Gymnodraco victori 
Trichomycterus florense 
Muraenesox yamaguchiensis 
Ipnops pristibrachium 
Scomberoides commersonianus 
Poropanchax myersi 
Nemapteryx caelatus 
Brachaluteres fahaqa 
Rivulus crixas 
Doryrhamphus dactyliophorus 
Chelonodon dapsilis 
Rhinecanthus rectangularis 
Bathycongrus baranesi 
Synaptura marginata 
Antennarius duescus 
Tetraodon palembangensis 
Pseudocaranx cheilio 
Echiophis mordax 
Zignoichthys oblongus 
Procatopus schioetzi 
Microphis aculeatus 
Halichoeres hyrtlii 
Platybelone annobonensis 
Nemacheilus savona 
Pellona mayrinki 
Batrichthys felinus 
Aulopus nanae 
Rhombus minimus 
Bolcabalistes varii 
Aplocheilichthys luluae 
Liauchenoglanis maculatus 
Pseudoscopelus microps 
Electrona rissoi 
Ophisurus rotundus 
Cyprinella zanema 
Brachirus fitzroiensis 
Syngnathus acicularis 
Pachythrissops laevis 
Pachythrissops vectensis 
Gymnothorax miliais 
Rivulus derhami 
Pseudolabrus crassilabris 
Batasio niger 
Arothron perspicillaris 
Antennablennius sexfasciatus 
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Pterygoplichthys sp. (Vigliotta 
2008) 
Anaethalion sp. (Arratia 1999) 
Genus 12 (Bockmann 1998) 
Phreatobius sp. 1 (de Pinna 1993) 
Genus 6 sp. (Bockmann 1998) 
Corydoras sp. A (Britto 2003) 
Aspidoras cf. pauciradiatus (Britto 
2003) 
Akysis sp. 2 (de Pinna 1996) 
Exostoma sp. (Chen 1994) 
Mystus sp. (Kailola 2004) 
Glyptothorax sp. (Chen 1994) 
Genus 2 sp. A (Bockmann 1998) 
Roestes sp. (Lucena and Menezes 
1998) 
Ictalurus sp. (Mo 1991) 
Exostoma sp. (de Pinna 1993) 
Genus 6 (Bockmann 1998) 
Characidium cf. zebra (Buckup 
1998) 
Homaloptera sp. (Fink and Fink 
1981) 
Genus 11 sp. (Bockmann 1998) 
Eigenmannia sp. (Fink and Fink 
1981) 
Cetopsorhamdia sp. n. A 
(Bockmann 1998) 
Reganella sp. (Britto 2003) 
Hemiancistrus sp. Brazil 
(Armbruster 2004) 
Bunocephalus n. sp. 1 (Friel 1994) 
Loricaria sp. (Friel 1994) 
Imparfinis sp. (de Pinna 1993) 
Oxyropsis sp. (Schaefer 1991) 
Genus 11 (Bockmann 1998) 
 

Gymnelus platycephalus 
Rivulus modestus 
Parbatmya brazosensis 
Gymnoscopelus aphya 
Gila bicolor 
Bathophilus cwyanorum 
Fundulopanchax sjoestedti 
Anaethalion angustissimus 
Arius parkii 
Lampanyctus cupriarius 
Ammodytes idai 
Rivulus depressus 
Albula goreensis 
Hypostomus plecostomus 1 
(Armbruster 2004) 
Eospinus daniltshenkoi 
Stomias pacificus 
Rhynchocypris oxycephalus 
Simpsonichthys mediopapillatus 
Aplocheilichthys atripinnis 
Rivulus tessellatus 
Rivulus leucurus 
Pseudolabrus mortonii 
Uropterygius goslinei 
Orthrias panthera 
Fundulopanchax kribianus 
Hippocampus moluccensis 
Bothus ypsigrammus 
Microphis millepunctatus 
Clarias tijsmanni 
Rhinecanthus rectanguls 
Labrus cyaedus 
Hippocampus natalensis 
Belone euxini 
Heterandria dirempta 
Echiodon anchiperus 
Synodontis resupinata 
Solea bleekeri 
Acanthostracion polygonia 
Varasichthys ariasi 
Hemibagrus johorensis 
Bovichtus elongatus 
Notarius bonillai 
Dinotopterus loweae 
Barchatus cirrhosa 
Trichiurus nanhaiensis 
Chascanopsetta danae 
Careproctus cryptacanthoides 
Paramphilius goodi 
Protacanthodes nimesensis 
Lycodes gracilis 
Paranotothenia angustata 
Astephus calvus 
Osmerus dentex 
Alticus orientalis 
Laimosemion jauaperi 
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Rivulus faucireticulatus 
Ompok krattensis 
Tetraodon turgidus 
Balistomorphus spinosus 
Tylosurus fodiator 
Leptolebias cruzi 
Hippocampus suezensis 
Lactoria fornasini 
Tetraodon suvattii 
Scomberoides moadetta 
Pseudotrematomus eulepidotus 
Rivulus limoncochae 
Gymnothorax kikako 
Plectocretacicus clarae 
Gymnothorax argus 
Astyanax vermulion 
Phalacronotus micronema 
Rivulus mazaruni 
Clupea pallasi 
Hippocampus bicuspis 
Scartichthys rubropunctatus 
Balistes villosus 
Coloconger saldanhai 
Harpagifer marionensis 
Istiblennius enosimae 
Epiplatys steindachneri 
Lasiancistrus castelnaui 
Rivulus riograndensis 
Gymnothorax ruepellii 
Anaethalion knorri 
Triphoturus microchir 
Nematogenys cuivi 
Pseudojuloides inornatus 
Anaethalion angustus 
Neostethus geminus 
Hypostomus emarginatus 2 
(Armbruster 2004) 
Pseudotrematomus nicolai 
Coreobagrus okadai 
Chelidonichthys gurnardus 
Rivulus pinima 
Dinotopterus foveolatus 
Acanthopleurus collettei 
Stlegicottus scutiger 
Pterolebias hoignei 
Cichlasoma festae 
Bryx heraldi 
Erethistes maesotensis 
Nimbapanchax melanopterygiuus 
Liparis takashimensis 
Symphodus ocellaris 
Synaptura commersonnii 
Saurenchelys elongatum 
Zignodon fornasieroae 
Antennarius multioccelatus 
Aspistor insculptus 
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Halichoeres lamarii 
Gephyroglanis congicus 
Protacanthodes ombonii 
Aplocheilichthys nimbaensis 
Prohollardia avita 
Carangoides ciliarius 
Rivulus kuelpmanni 
Hippocampus polytaenia 
Peckoltia ucayalensis 
Xenoclarias holobranchus 
Chilomycterus reticulartus 
Rivulus giarettai 
Pseudobagrus hoi 
Megalebias elongatus 
Lycodes schmidti 
Ostracion meretrix 
Mastacembelus goro 
Microphis vaillantii 
Nototheniops larseni 
Simpsonichthys semiocellatus 
Corydoras bertoni 
Holocentrus adscensionsis 
Lycoptera sinensis? 
Thalassenchelys foliaceus 
Acentronura mossambica 
Halicampus vittatus 
Iniistius javanicus 
Crystallodytes enderburyensis 
Lampanyctus bensoni 
Rivulus parnaibensis 
Rhamdia quelin 
Bodianus albostriatus 
Orthogonikleithrus leichi 
Hemiancistrus pankimpuju 
Syngnathus heptagonus 
Rivulus altivelis 
Rivulus lungi 
Lacustricola moeruensis 
Rivulus gaucheri 
Eoplectus bloti 
Rivulus wassmanni 
Arius danicus 
Pseudocaranx georgianus 
Laciris pelagicus 
Microphis lineatus 
Niwaella multifasciata 
Pterygoplichthys ambrosettiii 
Rivulus elegans 
Leiocassis macropterus 
Arius harmandi 
Rivulus javahe 
Omobranchus ferox 
Amarginops hildae 
Uropterygius makatei 
Myxocephalus quadricornis 
Triglopsis quadricornis 
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Halicampus ensenadae 
Pseudeutropius atherinoides 
Micronema cheveyi 
Hypostomus plecostomus 2 
(Armbruster 2004) 
Synodontis cuangoana 
Pardachirus rautheri 
Pseudotocinclus jaquiae 
Chirolophis snyderi 
Rivulus holmiae 
Thrissops regleyi 
Leptolepides sprattiformis 
Melanostomias spilorhynchus 
Ichthyapus acutirostris 
Sphyraena asotus 
Archiaphyosemion petersi 
Synaptura lusitanica 
Aspistor luniscutis 
Oligolactoria bubiki 
Elassoma evergladi 
Protobalistum imperialis 
Amphichthys hildebrandi 
Sardinella dayi 
Doryrhamphus malus 
Gnathagnus elongatus 
Thrissops cephalus 
Nelusetta ayraud 
Rhynchocypris poljakowi 
Aphyosemion viride 
Glyptoperichthys lituratus 
Phenacorhamdia tenuis 
Megalocottus taeniopterus 
Photostomias tantillux 
Synodontis notata 
Synodus amaranthus 
Micropanchax pumilus 
Encheliophis homei 
Micropanchax rudolfianus 
Notogoneus osculus 
Rivulus rubromarginatus 
Luisichthys vinalesensis 
Monocentris japonica 
Corythoichthys conspicillatus 
Soleonasus finis 
Aphyosemion obscurum 
Mystus amemiyai 
Harengula jaaguana 
Megacheirodon unicus 
Simpsonichthys costai 
Fundulus notti 
Rivulus taeniatus 
Leptocephalus proboscideus 
Heterandria cataractae 
Caranx ruber 
Ariosoma sanzoi 
Allothrissops mesogaster 



   

 
335 

Rivulus cyanopterus 
Aseraggodes smithi 
Poecilia amazonica 
Petrocephalus guttatus 
Pangasius micronema 
Trichomycterus cachiaensis 
Rivulus kirovskyi 
Glyptothorax horai 
Monochirus atlanticus 
Pseudotrematomus tokarevi 
Chiasmodon bolangeri 
Rivulus decoratus 
Doumea alula 
Rhynchocypris oxycephala 
Rivulus kiroskyi 
Pisodonophis semicinctus 
Lampanyctus gemmifer 
Trichomycterus quechuorum 
Phenacogrammus altus 
Clarias camerunensus 
Microdevario kubotai 
Opsanus tao 
Strabozebrias cancellatus 
Pseudotrematomus vicarius 
Triodon antiquus 
Ageneiosus rondoni 
Lagocephalus cheesemanii 
Halichoeres dimidiatus 
Halichoeres penrosei 
Platybelone platyura 
Conger marginatus 
Chrysichthys stappersii 
Acanthopleurus trispinosus 
Malthopsis retfera 
Aethotaxis mitopteryx 
Micrognathus pygmaeus 
Rivulus egens 
New genus (Schaefer 1991) 
Rivulus simplicis 
Encheliophis boraborensis 
Paralichthys coeruleosticta 
Rhabdoblennius rhadotrachelus 
Thamnaconus garretti 
Acanthopsoides graciroides 
(Sawada 1982) 
Phoxinus perenurus 
Rivulus sucubti 
Solea triophthalma 
Bathycongrus macrocercus 
Cyprinodon hubbsi 
Synaptura annularis 
Rivulus beniensis 
Pholidophorus bechei 
Hara filamentosus 
Phrynorhombus regius 
Moclaybalistes danekrus 
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Aphyosemion microphtalmum 
Rhynchostracion nasus 
Aplocheilichthys loati 
Muraenesox ferox 
Alticus magnusi 
Festucalex townsendi 
Liparis niger 
Rivulus boehlkei 
Limia nicholsi 
Lagocephalus guntheri 
Xyrichtys cyanifrons 
Tetraodon baileyi 
Liparis meridionalis 
Parika scaber 
Moema ortegai 
Orthogonikleithrus hoelli 
Ctenopoma machadoi 
Solea hexophthalma 
Rivulus amanapira 
Netuma proxima 
Cyprinus niloticus 
Anguilla huangi 
Trachinotus glaucus 
Diplomystus dentatus 
Acanthurus sandvicensis 
Micropoecilia parae 
Aphyosemion bochtleri 
Sympterichthys verrucosus 
Rivulus villwocki 
Nipponocypris temminckii 
Syngnathus acusimilis 
Oxycheilinus digrammus 
Simpsonichthys bokermanni 
Simpsonichthys harmonicus 
Schilbe djemeri 
Rivulus xinguensis 
Rivulus karaja 
Pseudobagrus longirostris 
Notoscopelus kroyeri 
Hippocampus tristis 
Ichthyscopus inermis 
Astyanax armandoi 
Poeciliopsis sonoriensis 
Thalassoma septemfasciatum 
Aplocheilichthys pumilis 
Careproctus entargyreus 
Albula argentea 
Channa striatus 
Synodontis melanosticta 
Chelonodon fluviatilis 
Notropis boucardi 
Carapus smithvillensis 
Merodoras nheco 
Doryrhamphus paulus 
Lindbergichthys nudifrons 
Doryrhamphus melanopleura 
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Parapteronotus bonaparti 
Pachythrissops furcatus 
Pseudobagrus virgatus 
Choerodon caninus 
Tylosurus melanotus 
Clupea bentincki 
Symphurus novemfasciatus 
Cosmocampus coccineus 
Monotrete ocellaris 
Pseudocoris philippina 
Hippocampus takakurae 
Stemonosudis similis 
Heptadiodon echinus 
Synodontis multimaculata 
Acanthaluteres brwonii 
Hemiarius maculatus 
Liparis barbatus 
Orestias agassii 
Selar crumnophthalmus 
Notarius quadriscutis 
Rivulus rubripunctatus 
Soleichthys nigrostriolatus 
Siderea pictus 
Corydoras esperanze 
Trichiurus nitens 
Eotetraodon pygmaeus 
Ostracion camurun 
Rivulus erberi 
Hippocampus arnei 
Poecilia zonata 
Muraenichthys malabonensis 
Barbourichthys zanzibaricus 
Acanthopleurus serratus 
Astronesthes barbatus 
Rivulus paresi 
Pelteobagrus sinensis 
Rivulus paracatuensis 
Rivulus igneus 
Solegnathus naso 
Careproctus entomelas 
Ancistrus sp (Hoffmann and Britz 
2006) 
Hemisynodontis membranaceus 
Corythoichthys waitei 
Antennarius dorehensis 
Nemacheilus rupecula 
Pterocryptis afghana 
Ageneiosus valenciennesi 
Aulotrachichthys fernandezianus 
Ompok anostomus 
Synodontis ilebrebis 
Pseudobagrus taphraphilus 
Synodontis aterrima 
Oreoglanis pumatensis 
Pachythrissops propterus 
Leuciscus cephalus 
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Synodontis macropunctata 
Pseudobagarius kyphus 
Hippocampus bleekeri 
Hippocampus kampylotrachelos 
Eolactoria sorbinii 
Malacosteus indicus 
Hippocampus manadensis 
Pictichromis caitinae 
Festucalex amakusensis 
Chionodraco kathleenae 
Chilomycterus atringa 
Mystus fortis 
Antennarius bermudensis 
Ophichthus altipennis 
Balistomorphus ovalis 
Trachyrhamphus bicoractatus 
Antennarius sanguineus 
Clarias dialonensis 
Synodontis zanzibarica 
Antennarius rosaceus 
Balistomorphus orbiculatus 
Tetraodon cutcutia 
Holtbyrnia melanocephala 
Ctenopoma oxyrhynchum 
Pterolebias zonatus 
Rivulus birkhahni 
Poecilia dominicensis 
Eubalichthys quadrispinus 
Paratrachichthys novaezelandicus 
Hypophthalmus longifilis 
Notropis sallaei 
Pelteobagrus argentivittatus 
Peckoltia kuhlmanni 
Ophichthus rotidoderma 
Mystus guilio 
Alepes melanoptra 
Synodontis macrophthalma 
Microphis yoshi 
Peckoltia filicaudata 
Hypsopanchax modestus 
Sciades emphysetus 
Cichlasoma facetum 
Ariopsis guatemalensis 
Xyrichtys twistii 
Cottus japonicus 
Tetraodon cambodgiensis 
Oligobalistes robustus 
Synodontis vermiculata 
Encheliophis dubius 
Phaenomonas foresti 
Paralichthys oblongus 
Leptobotia curta 
Pterygoplichthys anisitsi 
Socnopaea horai 
Melanocetus polyactis 
Amphilophus robertsoni 
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Kryptopterus bleekeri 
Duopalatinus olallae 
Blennius maoricus 
Helicolenus hilgendorfii 
Rivulus christinae 
Ariosoma gnanadossi 
Rasbora dusonensis 2 (Cavender 
and Coburn 1992) 
Rivulus dapazi 
Carpathospinosus propheticus 
Ompok siluroides 
Mastacembelus batesii 
Cichlasoma atromaculatum 
Chilomycterus schoepfi 
Choeroichthys valencienni 
Rita itchkeea 
Astyanax rutilus 
Ompok mysoricus 
Simpsonichthys flammeus 
Rhamdia parvus 
Antennablennius velifer 
Sprattus phalerica 
Pseudoscopelus stellatus 
Coreobagrus ichikawai 
Synodontis dorsomaculata 
Synodontis albolineata 
Achiropsis nattereri 
Prodiodon tenuispinus 
Synodontis kogoensis 
Cathorops festae 
Tischlingerichthys viohli 
Catathyridium lorentzi 
Clupeonella tscharchalensis 
Bathophilus novicki 
Parapterygotrigla multiocellata 
Thrissops subovatus 
Brachirus breviceps 
Liparis lindbergi 
Thalassoma quinquevittatus 
Notarius rugispinis 
Heterandria jonesii 
Poecilothrissa moeruensis 
Nothobranchius kiyawensis 
Aphyosemion melinoeides 
Rivulus nudiventris 
Tylosurus rafale 
Nannoptopoma sternoptychum 
Centromochlus musaica 
Lebias fasciatus 
Prodiodon erinaceus 
Tetraodon abei 
Simpsonichthys antenori 
Parapercis naevosa 
Lindbergichthys mizops 
Aphyosemion margaretae 
Pangasius tubbi 
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Nototheniops loesha 
Ophichthus lithinus 
Dinotopterus nyasensis 
Doryrhamphus extensus 
Charitosomous lineolatus 
Heterandria anzuetoi 
Paraliparis wildi 
Gambusia rachovii 
Rivulus uraenis 
Liparis ingens 
Hypoptopoma joberti 
Channomuraena bennettii 
Chauliodus slaoni 
Rivulus cearensis 
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