Kobe University

Doctoral Dissertation

A systematic study of Nuphar（Nymphaeaceae）in Japan with special reference to the role of hybridization

コウホネ属（スイレン科）の分類学的再検討および種間交雑に関する研究

February， 2007

Takashi Shiga

志賀 隆
SUMMARY 1
CHAPTER 1. General introduction 5
CHAPTER 2. Morphological variations and genetic relationships of Nuphar japonica, N.oguraensis, N. subintegerrima, and unidentified plants in central towestern Japan 10
CHAPTER 3. Cryptic hybridization and introgression between Nuphar japonica and \boldsymbol{N}.pumila: Homoploid hybrid speciation in progress? 26
CHAPTER 4. Hybridization between Nuphar japonica and N. submersa in centralJapan: A case in lotic water 41
CHAPTER 5. Inter and intraspecific phylogeny and geographic variation of Nupharspecies in Japan and adjacent countries based on the AFLP fragment andallozyme data 48
CHAPTER 6. A taxonomic revision of genus Nuphar Sm. in Japan 63
ACKNOWLEDGMENTS 93
REFERENCES 95

Tables 1-23
Figures 1-32
Appendix 1-6

SUMMARY

Nuphar Sm. (Nymphaeaceae), yellow water-lily, is a genus of perennial freshwater macrophytes and is distributed in the temperate zone of the Northern Hemisphere. The genus is one of the most taxonomically problematic aquatic plants. I investigated the morphological and genetic variations of Nuphar in Japan and adjacent countories and, based on the results, I tried the taxonomical revision of Nuphar in Japan.

In Chapter 1, I gave an outline of the taxonomical, morphological, genetical and ecological characterstics of the genus Nuphar, with special reference to the possibility of homoploid hybrid speciation.

In Chapter 2, I investigated the morphological variations and genetic relationships of a total of 56 populations of Nuphar japonica DC., N. subintegerrima (Casp.) Makino, N. oguraensis Miki and unidentified intermediate plants in central to western Japan.

The phenogram of cluster analysis based on 15 morphological characters revealed five cluster groups (Groups $1-5$). Groups 1, 3 and 5 corresponded well to the description of N. japonica, N. oguraensis and N. subintegerrima sensu stricto, respectively. On the other hand, Groups 2 and 4 showed intermediate values in most of their characters. Morphological relationships suggested that the two intermediate groups were of hybrid origin between N. japonica and N. oguraensis and between N. japonica and N. subintegerrima, respectively.

Allozyme analyses (analysis of allele frequencies and principal coordinate analysis based on shared allele distance among the 162 multi-locus genotypes) showed the three Nuphar species to be well distinguished. The intermediate plant groups were also shown genetically to be of hybrid origin. However, many of the
intermediate plants did not show additive combinations of parental allozymes, which were expected in F_{1} hybrids. The absence of characteristic parental bands suggested that sexual reproduction had occurred within the hybrids. Crossability analysis supported that reproductive isolation might be weak in Nuphar species and promote introgressive hybridization.

In Chapter 3, I investigated morphological and allozyme variation and pollen viability in 22 populations of Nuphar japonica, N. pumila (Timm) DC., and unidentified intermediate plants in Hokkaido to assess hybridization and introgression between the two species and the potential existence of homoploid hybrid speciation.

A phenogram based on cluster analysis using 15 morphological characters revealed three cluster groups. Groups 1 and 3 had distinctive morphological characteristics and corresponded to the published descriptions of N. japonica and N. pumila, respectively, whereas Group 2 showed intermediate values in most characteristics. In the allozyme study, many morphologically intermediate plants showed additive combinations of species-specific alleles from the two species. In the DNA analysis, Pollen viability was significantly lower in intermediate populations than in the two species. Intermediate populations were found within the area of overlap between the ranges of the two species. On these evidences, I concluded that the intermediate plants represent hybrids between the two species. Relationships among species-specific AFLP bands, cpDNA haplotypes and morphology indicated that the hybrids have backcrossed to N. japonica repeatedly and genomes of N. pumila have been introduced to N. japonica as nuclear genes.

Four hybrid populations showed different relationships between morphology and pollen viability. Hybrids in artificially disturbed populations had discontinuously
intermediate morphology between their parental species and were completely fertile in some cases. It is probable that ecological selection has contributed to the discontinuous morphological patterns. Homoploid hybrid speciation may occurr in these Nuphar hybrids.

In Chapter 4, I investigated morphology, allozyme variation and pollen viability in 9 populations of Nuphar japonica, N. submersa Shiga \& Kadono, and unidentified intermediate plants in central to eastern Japan. A phenogram based on cluster analysis using 10 morphological characters revealed three cluster groups. Groups 1 and 3 corresponded to N. japonica and N. submersa, respectively, whereas Group 2 showed intermediate values in most characteristics between the two species. In allozyme study, many morphologically intermediate plants showed additive combinations of species-specific alleles in two loci (lap1 and mdh3) from the two species. Pollen viability was significantly lower in intermediate plants than in the two species. Based on these evidences, I concluded that the intermediate plant was of hybrid origin between the two species.

In Chapter 5, I tried to solve phylogenetic relationships and geographical patterns of Nuphar species, using AFLPs and allozyme markers.

In phylogenetic analysis, the neighbor-joining topology based on AFLP data supported interspecific relationships which were proposed by previous phylogenetic study, except for N. subintegerrima. Asian Nuphar plants were monophyletic group with 83% bootstrap values in the NJ tree. Within Asian Nuphar taxa, four strongly supported monophyletic groups were recognized; the first cluster consisted of N. oguraensis, N. shimadae Hayata and N. submersa; the other three clusters corresponded to N. pumila, N. japonica and N. subintegerrima, respectively. The phylogenetic tree showed both N. pumila and N. oguraensis were sister taxa but well
separated phylogenetically. In N. oguraensis group, two subclusters were recognized. The first subcluster consisted of N. submersa and the second subcluster consisted of N. oguraensis and N. shimadae. Nuphar oguraensis and N. shimadae should be considered conspecific.

In the AFLP analysis, the two clades of N. japonica showed significant correlation each other between geographic distance and genetic distance. The geographical distribution ranges of the two AFLP groups did not overlap and the two cpDNA haplotypes indicated almost the same distributional patterns. Furthermore, the plants of the two groups had significantly different morphological traits. Allopatric speciation may be in progress in N. japonica.

Nucleotide diversity, genetic differentiation and genotypic diversities within and among populations lower in the populations of all the species distributed in east to north regions than those of central to south regional ones. It is possible that the eastern to northern populations of Nuphar had experienced bottleneck effect. Present distributional patterns and geographical genetic variation of Japanese Nuphar may result from the distribution of refugia in glacial periods.

In Chapter 6, I proposed a taxonomic revision of Japanese Nuphar taxa based on the results of previous chapters and ca. 800 sheets of herbarium specimens, including some European specimens. Here I revised the Japanese Nuphar into six species and three hybrid taxa, as follows:
N. japonica DC.,
N. pumila (Timm) DC.,
N. saikokuensis Shiga \& Kadono, sp. nov.,
N. shimadae Hayata,
N. subintegerrima (Casp.) Makino,
N. submersa Shiga \& Kadono, sp. nov., N. \times fluminalis Shiga \& Kadono, hybr. nov., N. \times hokkaiensis Shiga \& Kadono, hybr. nov., $N . \times$ saijoensis (Shimoda) Shiga \& Kadono, comb. nov..

I reduced taxonomic rank of the taxa characterized by the red stigmatic disc to form.

Natural hybridization and introgression frequently occur in Nuphar. Aquatic species with high morphological variability may consist of a complex of homoploid hybrid species and parental species. In this study, I conclude that repeated hybridization and introgression caused high morphological variability of Japanese Nuphar and geographic isolation is an important factor for divergence and speciation in the genus.

General Introduction

High morphological variability in aquatic plants is well known and seriously constrains taxonomic resolution in some cases (Sculthorpe 1967, Santamaría 2002). The variations are caused by phenotypic plasticity but the role of hybridization and geographical variations are also considerable (Les and Philbrick 1993, Avise 2000, Lowe et al. 2004). Natural hybrids are common and frequent in many plant groups (Arnold 1997, Rieseberg 1997). In aquatic plants, hybridization has been reported in 26% of 177 aquatic genera, except for single-species genera (Les and Philbrick 1993). Les and Philbrick (1993) suggested that detailed studies including molecular techniques of aquatic plants revealed a higher incidence of morphological variations attributed to hybridization and geographical variation.

Hybridization and introgression have played a significant role in speciation, and have resulted in the production of new and evolutionarily stable lineages (Stebbins 1950, Dejoode and Wendel 1992, Rieseberg et al. 1995). Hybrid species can be classified into two types: allopolyploid, which involves a change in ploidy, and homoploid, in which the hybridization occurs with no change in chromosome number (Grant 1983, Rieseberg 1997, Gross and Rieseberg 2005). In allopolyploid hybrid complexes, the derived species can be distinguished from the parental ones based on cytogenetic features such as differences in the chromosome number or size. However,
it is very difficult to detect hybridization events in homoploid hybrid complexes because the hybrid swarms retain the original ancestral genetic system (Grant 1983).

Homoploid hybrid speciation has been confirmed with molecular markers in only eight plant genera and two animal genera (Rieseberg 1997, Gross and Rieseberg 2005). However, cryptic hybridization and hybrid speciation may occur among many plant species with the same level of ploidy. Natural hybridization has also obscured the morphological and genetic discontinuities between ancestral traits (Harrison 1993, Arnold 1997) and has sometimes made it difficult to recognize species delimitations. It is possible that species that exhibit highly polymorphic morphology consist of a complex of homoploid hybrid species and parental species.

Nuphar Sm. (Nymphaeaceae), yellow water-lily, is a genus of perennial freshwater macrophytes and is distributed in the temperate zone of the Northern Hemisphere. The genus is one of the most problematic aquatic macrophytes to identify and seven to 20 species have been recognized worldwide, according to Cook (1990), Padgett (1999) and Padgett et al. (1999). In Japan four species with one or two varieties or formas have been recognized in various Japanese floras (Kitamura and Murata 1961, Ohwi 1965, Tamura 1982). In 1991, Shimoda described two new varieties in two species. Kadono (1994) enumerated four species, N. japonica DC., N. oguraensis Miki, N. subintegerrima (Casp.) Makino and N. pumila (Timm) DC. with three varieties and one form. The former three species are endemic to eastern Asia and N. pumila is distributed widely in the Old World (Hara 1951, Beal 1956, Ohwi 1965, Tamura 1982, Kadono 1994). Natural hybridization and introgression have been considered to cause the indeterminable taxonomic delimitation (Beal 1956, Padgett et al. 1998, 1999, 2002). Heslop-Harrison (1953), Les and Philbrick (1993)
and Padgett et al. (1998, 2002) described typical examples of natural hybridization among Nuphar species.

The chromosome number of Nuphar, including natural hybrids, is uniform ($2 \mathrm{n}=$ 34) and the genus has thus been interpreted as diploid with $\mathrm{x}=17$ (Langlet and Søderberg 1927, Heslop-Harrison 1953, Ohga et al. 1962, Okada and Tamura 1981); the absence of specimens with different chromosome numbers suggests that homoploid hybrid speciation may have occurred in the genus Nuphar. Some hybrids have been considered to represent stabilized lineages, including $N . \times$ spenneriana Gaudin (Heslop-Harrison 1953), N. \times rubrodisca Morong (Padgett et al. 1998), and N. \times saijoensis (Shimoda) Padgett and Shimoda (Padgett et al. 2002). However, how and under what environmental conditions these hybrid lineages are stabilized is not fully known.

The plants of this genus grow clonally with rhizome and the fragments may be transported by water flow and give rise to new ramets (Heslop-Harrison 1955, Smits et al. 1989). It is considered that seed-dispersal of Nuphar species also depends on water flow (Smith et al. 1989, Hart and Cox 1995, Ouborg et al. 2000). Smith et al. (1990) studied germination for N. lutea (L.) Sm., which evidenced that seeds could not germinate after chewing by waterfowls or after dehydration treatment. Pollinators of Nuphar have been known to be beetles and flower flies, which pollinated in short range (Lippok et al. 1997, 2000). Hence, in Nuphar species, it seems that geographical patterns of watershed strongly affect the gene flow and distribution of genealogical lineages. Furthermore, it is needed to understand morphological, genetic relationships and geographical patterns to solve variable morphology and patterns of hybrid zones of Nuphar species.

In this study, I investigated the inter and intraspecific morphological
relationships, genetic variation, as revealed by allozyme analysis, amplified fragment length polymorphism (AFLP), and cpDNA sequence variations, and pollen viability to evaluate whether taxonomic delimitations of genus Nuphar are affected by the hybridization events and the geographical variations. The aims of the present study are (1) to confirm whether hybridization and introgression has occurred among Japanese Nuphar taxa (Chapters 2, 3, and 4), (2) to compare putative hybrid populations to elucidate the potential for subsequent homoploid hybrid speciation (Chapters 3 and 4), (3) to evaluate phylogenetic relationships (Chapter 5), (4) to discuss the geographic variation and importance of allopatric speciation (Chapter 5) and (5) to revise the taxonomy of the genus Nuphar in Japan (Chapter 6).

Morphological variations and genetic relationships of Nuphar japonica, N. oguraensis, N. subintegerrima, and unidentified plants in central to western Japan

INTRODUCTION

In Japan, Kadono (1994, 1995) reported intermediate forms that were difficult to identify to known species in Japan. He also addressed a problem regarding the delimitation of Nuphar subintegerrima (Casp.) Makino. Nuphar subintegerrima was first described as N. japonica DC. var. subintegerrima Casp. by Caspary (1866). Makino (1910) later recognized it as a distinct species, N. subintegerrima (Casp.) Makino. He described N. subintegerrima as being a dwarf plant with emergent or floating leaves of $5-11 \mathrm{~cm}$ long and $4-8.5 \mathrm{~cm}$ wide. Plants with floating leaves longer than 20 cm , which are widely distributed in central to western Japan, have also been treated as N. subintegerrima. Kadono (1994) doubted that these plants were conspecific with N. subintegerrima in a strict sense as described by Makino (1910). Furthermore, some plants are intermediate in size and morphology between N. subintegerrima sensu lato and N. japonica. Because herbarium specimens of N. subintegerrima are difficult to distinguish from N. japonica, Padgett (1999) and

Padgett et al. (2002) treated N. subintegerrima as a synonym of N. japonica
Natural hybridization and introgression have been considered to cause the indeterminable taxonomic delimitation (Beal 1956, Padgett et al. 1998, 1999, 2002). Heslop-Harrison (1953), Les and Philbrick (1993) and Padgett et al. (1998, 2002) described typical examples of natural hybridization among Nuphar species. Molecular markers such as allozyme are powerful tools to detect hybridization event and, so far, have identified many hybrid species (cf. Arnold et al. 1990, Nason et al. 1992). These genetic data from allozymes can supply successfully species-specific markers, which provide the quantification of introgression (Arnold et al. 1990, Szymura and Barton 1991, Rieseberg and Ellstrand 1993).

In the second chapter, I describe the morphological variations, with special reference to populations in central to western Japan where delimitation of the species of Nuphar is most problematic. Then, I will try to evaluate the hypothesis of hybrid origin of unidentified intermediate plants and discuss some related problems based on the allozyme study and crossability analysis in N. japonica, N. oguraensis and N. subintegerrima sensu stricto. I will focus on the following two topics: (1) Are the unidentified intermediate plants conspecific with N. subintegerrima?, (2) Are the unidentified intermediate plants of hybrid origin?, (3) How is the genetic relationship among these Nuphar taxa?

MATERIALS AND METHODS

Plant materials

Plant materials of Nuphar were collected from 53 localities from central to western Japan (Table 1). Some northern populations were included to represent typical N. japonica for comparison. Sampling was conducted from late July to early October in

2001 and 2002. In each of the three localities where I recognized apparently different forms of plants growing in neighboring stands I collected the different forms separately and designated them as A, B and C (Table 1). As a result, I sampled 56 populations in total. They included populations of N. japonica, N. subintegerrima s. l., N. oguraensis and the unidentified intermediate plants. The Nuphar plants are predominantly clonal and it is probable that only one genet constitutes a local population. The rhizome length of Japanese Nuphar was about 3 to 5 m in the fields (Nakamura and Yamatou 1986). So I got samples at an interval of 5 m or more to collect different genets.

Morphological analysis

For measurement of morphological characters, more than ten emergent or floating leaves, flowers and fruits were collected from each population. Twenty-seven morphological characters, comprising 9 vegetative, 12 floral and 6 fruit characters, that have been used as important characters for the identification of the taxa of Nuphar (Ohtaki and Ishido 1980, Tamura 1982, Kadono 1994, Padgett et al. 1999), were investigated (see Table 2). Qualitative features (L9, Fl4 and F19) were scored as shown in Table 2 and treated as quantitative characters.

All measurements were made using the materials fixed in FAA (ethanol formalin - acetic acid) in the field.

Allozyme analyses

Extracts were prepared from 0.1 g fresh emerged or floating leaves in $500 \mu \mathrm{l}$ of grinding buffer (Soltis et al. 1983) and electrophoresed on 9% starch-gels. Two buffer systems, Histidine-criate, pH 6.5 (system 1) and Tris-Borate-EDTA, pH 8.6 (system
2) were used to resolve the following six enzymes (Soltis et al. 1983). System 1 was run for three enzymes: malate dehydogenase (MDH, EC 1.1.1.37), phosphoglucose isomerase (PGI, EC 5.3.1.9) and phosphoglucomutase (PGM, EC 5.4.2.2), and system 2 for three enzymes: leucine aminopeptidase (LAP, EC 3.4.11.1), triose-phosphate isomerase (TPI, EC 5.3.1.1) and phosphomannose isomerase (PMI, EC 5.3.1.8). Electrophoresis was run at 40 mA for 7 h (system1) and at 60 mA for 6 h (system 2). Staining recipes were taken from Akiyama and Suzuki (1998) modified from Wendel and Weeden (1989).

Genetic interpretations of zymograms were conducted from isozyme number and subunit structures of each enzyme (Gottlieb 1982, Weeden and Wendel 1989). Putative loci were numbered sequentially, beginning with the most anodal migrating band; putative alleles were labeled alphabetically, also beginning with the most anodal band. The numbers and letters corresponded to inferred encoding alleles. Genetic analysis of inheritance patterns has supported my genetic interpretations of zymograms (data not shown).

Crossability analysis

Plants of five populations, NI-1 (Group 1), HY-8 (Group 3), GI-1 and MI-1 (Group 5), and HY-1 (Group 4), were selected to use in artificial cross experiments in a green house and in the fields. A total of 25 cross combinations were carried out among cluster groups, that is NI- $1 \times \mathrm{NI}-1, \mathrm{NI}-1 \times \mathrm{HY}-8, \mathrm{NI}-1 \times \mathrm{GI}-1, \mathrm{NI}-1 \times \mathrm{MI}-1, \mathrm{NI}-1 \times \mathrm{HY}-1$, HY- $8 \times$ NI- 1 , HY- $8 \times$ HY- 8 , HY $8 \times$ GI- 1, HY $8 \times$ MI- 1, HY- $8 \times$ HY- 1, GI- $1 \times$ NI- 1, GI- $1 \times$ HY- 8 , GI- $1 \times$ GI-1, GI- $1 \times$ MI- 1 , GI- $1 \times$ HY- 1, MI- $1 \times$ NI- 1, MI- $1 \times$ HY- 8 , MI- $1 \times$ GI- 1 , MI- $1 \times$ MI- 1 , MI- $1 \times$ HY- 1, HY- $1 \times$ NI- 1, HY- $1 \times$ HY- 8, HY- $1 \times$ GI- 1, HY- $1 \times$ MI- 1 and HY- $1 \times \mathrm{HY}-1$, during the years 2002 to 2005 . To investigate a possibility of apomixis, I
also emasculated the buds of some flowers in each population and bagged. One month later after artificial crossing, the fruits were harvested in the green house and the fields.

Seeds obtained from artificial crossing were tested for germination rate. Germination studies by Smith et al. (1989) had shown that optimal germination of seeds of N. lutea (L.) Sibth. \& Sm. was obtained when the seeds were subjected to a cold treatment and subsequently incubated in hypoxic tap water. Thus, in order to obtain a maximal germination response, the seeds were stored at $4{ }^{\circ} \mathrm{C}$ for 5 weeks. Subsequently, seeds were incubated in 30 ml screw bottles filled with tap water. Germination was checked after the seeds had been incubated for 4 weeks at ca. $20^{\circ} \mathrm{C}$ with a 14 h photoperiod. Light was provided by fluorescent white lamps.

Data analyses

Most quantitative data were continuous for all characters, making them difficult to use for recognizing taxonomic units based on specific key characters. Cluster analysis was therefore carried out for the 52 populations based on the averages of each character. The Ward's method was chosen for this analysis, using standardized variables and the squared Euclidean distance.

Before applying cluster analysis, principal components analysis (PCA) was performed to select morphological characters to use in cluster analysis. When a character showed a high correlation ($\mathrm{r}>0.7$) with other characters, one character that showed the highest proportion on the first three principal components was selected. As a result, the following 15 characters were used for cluster analysis: leaf blade length (L1), leaf blade shape (L3), distance to maximum width of blade/total length of blade ratio (L7), presence or absence of central lacuna in the petiole (L9), maximum
length of the stigmatic disc (Fl1), min./max. ratio of the stigmatic disc length (Fl3), stigma width (Fl6), stigma length/width ratio (Fl7), shape of stigma (F19), anther length (Fl10), anther length/filament length ratio (Fl12), fruit length (Fr1), length/width ratio of the fruit (Fr3), seed length (Fr4), seed width (Fr5).

Differences among populations and among cluster groups for each morphological trait were tested using nested analysis of variance (nested ANOVA). When the differences were significant ($P<0.05$), a multiple comparison was performed with Scheffe's F-test. To analyze morphological relationships among each cluster groups, PCA was performed, based on the same data set of cluster analysis. All statistical tests were performed using JMP ver. 4J (SAS Institute Inc., USA).

To examine genetic relationships of Japanese Nuphar, shared allele distance (DSA; Jin and Chakraborty 1993) between multi-locus genotype (MLG) was calculated by using the program Populations version 1.2.28 (Langella 2002). In clonal plants, analyses based on allele frequencies in populations such as Nei's genetic distance (Nei 1972) may show incorrect genetic similarity by populations. Relationships among all MLGs were assessed by a principal coordinate analysis (PCO) using the program MVSP version 3.1 (Kovach 1999).

RESULTS

Morphological variations

The Ward's method phenogram showed three major clusters (Fig. 1). An additional subcluster was recognized within each of the second and the third clusters. These five cluster groups were recognized as operational taxonomic units (OTUs) and named Groups 1, 2, 3, 4, and 5.

Significant differences among the cluster groups and populations were found in
all of the measured variables by the nested ANOVA ($P<0.05$; Table 3). Group 1 was significantly different from the other cluster groups in 17 characters. It had the highest values in 14 characters (L1-L4, L6-L8, Fl1, Fl2, Fl5, Fl8, Fl10, Fr1, Fr2) and the lowest values in two characters (L5, Fl3). Group 3 was significantly different in 13 characters and had the lowest values in six characters (L7-L9, Fl6, Fl10, Fl12). Except for the only one sample, this group was especially distinct in the presence of central lacuna in the petiole (L9 $=0.02 \pm 0.14$). Group 5 was significantly different from other cluster groups in 19 characters. Group 5 had the highest values in four characters (Fl6, Fl12, Fr4, Fr5) and the lowest in 14 characters (L1-L4, L6, Fl1, Fl2, Fl4, Fl5, Fl7-Fl9, Fl11, Fr1). Its roundish leaves (L3=1.12 ± 0.06 and $\mathrm{L} 7=0.55 \pm 0.03$) was useful for distinguishing Group 5 from the other groups, although some plants of Group 3 had roundish leaves.

Group 2 was significantly different in 12 characters and Group 4 was significantly different in 11 characters. But Groups 2 and 4 did not have diagnostic characters, except for Fr3 and Fr6 in Group 4. The values of most of the characters of both groups were intermediate among Groups 1,3 and 5 . The values of Group 2 were intermediate between Groups 1 and 3 in 17 characters (L1-L8, Fl1, Fl2, Fl5, Fl6, Fl8, Fl10, Fl12, Fr5, Fr6), between Groups 1 and 5 in 13 characters (L1-L8, Fl1, Fl2, Fl5, Fl8, Fr1) and between Groups 3 and 5 in four characters (Fl6, Fl12, Fr5, Fr6). The values of Group 4 were also intermediate between Groups 1 and 3 in 10 characters (L1-L3, L5-L8, F18, Fl10, Fr2), between Groups 1 and 5 in 19 characters (L1-L8, Fl1, Fl2, Fl4, Fl5, Fl7-Fl11, Fr1, Fr2) and between Groups 3 and 5 in six characters (Fl4, Fl6, Fl7, Fl11, Fl12, Fr5).

The PCA based on the same data set with cluster analysis provided well-expressed morphological relationships among five cluster groups (Fig. 2). The
two intermediate cluster groups were separated by principal component 2. Group 2 was intermediate between Groups 1 and 3 and Group 4 was intermediate between Groups 1 and 5 . The first three principal components were responsible for 68.5% of the variance. Principal component 1 accounted for 37.4% of total variance, which was contributed to by leaf characters (L1, L3, L7, L9), characters of stamen (Fl10, Fl12) and fruit length (Fr1). Principal component 2, accounting for 22.1% of total variance, was contributed to by characters of stigma (Fl6, F17, F19) and the width of the seed (Fr5) (Table4).

The geographic distribution patterns of each cluster group are shown in Fig. 3. The populations of Group 1 are widely distributed from northern Japan to Kyushu. Populations of Groups 2 and 4 are distributed from central to western Japan. Populations of Group 3 are distributed in western Japan. The distribution range of Group 5 is limited to the Tokai Region of central Japan.

Isozyme loci

Fifteen putative loci were detected from variation in banding patterns of six enzymes (Fig. 4). These loci were distributed as follows: single locus for LAP, two loci for PGM and PMI, three loci for PGI and TPI, and four loci for MDH. The 12 loci, excluding pgm2, pgi1 and tpi1, were genetically interpretable (Fig. 4). All loci except for mdh2 were polymorphic. All dimeric enzymes, MDH, PGI and TPI, had heterodimeric bands between loci (mdh1-mdh2, mdh3-mdh4, pgi1-pgi2 and tpi2-tpi3). Although putative null alleles were detected in two loci, lap1 and pmi2, these putative loci could be interpreted by the density of the bands.

Variation between morphological groups

Nine polymorphic loci (lap1, mdh1, mdh3, pgi2, pgi3, pmi1, pmi2, tpi2 and tpi3) showed the patterns of allele frequencies that were distinctive among Groups 1,3 and 5, respectively (Table 5). In Group 3, the allele for one of the three diagnostic loci ($m d h 3, m d h 4$ and $t p i 2$) was fixed. Group 5 had four diagnostic loci (lap1, pmi1, pmi2 and tpi3) and, among them, pmi1 was fixed. Although Group 1 had two specific alleles in $m d h 3$ and pgi3 with low frequency, they did not display a clear pattern like those of Groups 3 and 5. Allele frequencies in Group 2 were intermediate to those of Groups 1 and 3 in mdh3, mdh4 and pgm1. But the allele frequencies were intermediate between those of Group 5 and the other two Groups 1 and 3 in lap1, pmi1 and pmi2. Some MLGs of Group 2, J-O 1, 2, 5, 6, 10, 18 and 20 (see Appendix 1), had the alleles, which were species-specific both to Group 3 (mdh3a) and Group 5 (pmila) in four populations ($\mathrm{NI}-5, \mathrm{TO}-1, \mathrm{TO}-2$ and $\mathrm{TO}-3 \mathrm{~b}$). Group 4 had intermediate allele frequencies between Groups 1 and 5 in all loci diagnostic to Group 5 (lap1, pmi1, pmi2 and tpi3). In the two intermediate morphological Groups (2 and 4), specific allele frequency detected in pgi1 (FU-1, GI-2) was low.

Principal coordinate analysis (PCO)

Figure 5 shows the result of PCO analysis of 162 MLGs based on 11 isozyme loci. The Groups 1, 3 and 5 could be distinguished and two continuous intermediate Groups (2 and 4) scattered along axis 1 (46.2\% of total variance) (Fig. 5a). The ranges of axis 1 of the three species were 0.048 to 0.252 (Group 1), 0.219 to 0.327 (Group 3) and -0.284 to -0.144 (Group 5). The ranges of MLGs of Group 2 (-0.093 to 0.268) and Group 4 (-0.358 to 0.099) were wider than the range of the other three Groups. The MLGs of Group 4 were mostly scattered between Groups 1 and 5 , although only one

MLG was plotted out of these ranges. In contrast, the distribution range of MLGs of Group 2 was over the range from Group 1 to Group 3. There was no distinct separation along axis 2 (31.1%) and axis 3 (16.8%; not shown).

Genetic variations of each population were shown in Figs. 5b-d. In Groups 1, 3, and 5, genotypic variation was low and well circumscribed in a given area. On the other hand, the populations of Groups 2 and 4 showed various patterns: some populations scattered between Groups 1 and 5 or Groups 1 and 3 and same as the morphological relationships (HY-1, HY-5, GI-2, KA-1, KA-2, KA-5, NA-1, OK-3 and SI-1), some were more or less overlapped with Groups 1, 3, and 5 (FU-2, GI-3, HI-2a, HY-7, NI-5, OH-1, OK-1, OK-6, TO-1, TO-2 and TO-3b), and others were not distinguishable for the morphological relationships (FU-1, FU-2, FU-3, GI-3, HI-4, HI-5, HY-3, KA-4, MY-1b, MY-1c and TO-3a).

Cross incompatibility

All cross combinations produced fruits and emasculated flowers produced no fruits in all treatments (Table 6).

Seeds of most of the combinations showed the germination rate between 39.5-78.5\% (Table 7). In the case of Group 3, however germination rate was significantly reduced, when pollen donor was other taxa (Kruskal-Wallis test, $P<0.001$).

DISCUSSION

The morphological variations and relationships among Nuphar in central to western

Japan

The phenogram based on 15 morphological characters revealed five cluster groups.

The cluster groups are well distinguishable each other by many morphological characters. Groups 1, 3 and 5 in particular exhibited some remarkable characters. In contrast, Groups 2 and 4 showed intermediate values in most of their characters.

Plants of Groups 1, 3 and 5 correspond well to the classical descriptions of N. japonica, N. oguraensis and N. subintegerrima, respectively (De Candolle 1821, Delessert 1823, Caspary 1866, Makino 1910, Miki 1934). Group 1 includes the biggest plants in many quantitative characters and, therefore, it is obviously identifiable as N. japonica, one of the largest species of Nuphar in the Old World (Padgett et al. 1999, Padgett 2003). Group 3 is characterized by thin petiole (L8=3.33 ± 0.89), the presence of a central lacuna in the petiole ($L 9=0.02 \pm 0.14$) and the lowest anther to filament length ratio (Fl12 $=0.51 \pm 0.08$) and identifiable as N. oguraensis (Miki 1934). Group 5 includes the smallest plants with roundish leaves. These features correspond to those of N. subintegerrima as described by Makino (1910). Hereafter, this taxon is expressed as N. subintegerrima s. s..

Recent taxonomic studies of worldwide Nuphar by Padgett (1999, 2003) and Padgett et al. (2002) recognized only two species in Japan, Nuphar japonica and N. pumila (Timm) DC., and treated N. oguraensis as a subspecies of N. pumila and N. subintegerrima as a synonym of N. japonica. My study shows that three species are distinctly distinguishable. Nuphar subintegerrima s. s. is distinct in the small, roundish leaves. Intermediate plants which have so far been identified as N. subintegerrima, are not conspecific with N. subintegerrima s. s. The intermediate plants may have caused confusion in the treatment of Padgett (1999) and Padgett et al. (2002).

As can be seen from phenetic relationships among cluster groups (Table 3, Fig. 2), the occurrences of two groups of intermediate plants, Groups 2 and 4, is confirmed.

Although morphological variables of both cluster groups widely overlapped, some floral features differ from each other. Plants of Group 2 are intermediate between N. japonica and N. oguraensis in some floral characters (Fl1, Fl2, Fl5, Fl6, Fl8, Fl10, Fl12). Group 4 is intermediate between N. japonica and N. subintegerrima s. s. in such characters as Fl1, Fl2, Fl4, Fl5, and Fl7-Fl11. The PCA indicated that Group 2 was intermediate between Groups 1 and 3 and Group 4 was intermediate between Groups 1 and 5. Principal component 2, summarizing variations in some floral characters, provided evidence for differentiation between Groups 2 and 4. These findings support the recognition of two different intermediate groups by their morphology and suggest hybrid origin for them from different parental combinations; Group 2 between N. japonica and N. oguraensis and Group 4 between N. japonica and N. subintegerrima. In Nuphar, natural hybridization and introgression are known to cause difficulty in the taxonomic delimitation of species (Heslop-Harrison 1953, Beal 1956, Les and Philbrick 1993, Padgett et al. 1998, 2002). It is probable that natural hybridization occurs widely in Japan.

Geographic distribution patterns of Groups 2 and 4 (Fig. 3) agree well with the range of distribution of the indeterminable specimens of Nuphar that were provisionally identified as N. subintegerrima (Kadono 1994). The populations of Group 2 were within the range of overlap of N. japonica (Group 1) and N. oguraensis (Group 3) in western Japan. In the Hokuriku Region, however, N. oguraensis is not located. In contrast, populations of Group 4 are distributed more widely than one of the putative parents, N. subintegerrima s. s. (Group 5). Nuphar subintegerrima s. s. differs from other taxa in large seeds (Table 3, Chapter 6). Miki (1960) reported reliquiaes of large seed of Nuphar, which was similar that of N. subintegerrima, in Shimane Prefecture. Hence, the past distributinal range of this species might be
wider than present distributional range. Further molecular and historical analysis of the distribution pattern of each taxon is needed to determine the origin of the intermediate groups.

The genetic relationship and origin of intermediate groups

In allele frequencies and PCO analysis, the plants of Group 4 were intermediate between N. japonica and N. subintegerrima and the plants of Group 2 were intermediate among three species (Table 5, Fig. 5). Although the intermediate groups had one specific allele (pgi1c) in low frequency, allele frequencies of Group 4 were intermediate between those of N. japonica and N. subintegerrima and these of Group 2 were intermediate among three species (Table 5). Furthermore, many plants of the intermediate groups had species-specific alleles of putative parental species (Appendix 1). The PCO analysis indicated that three species were well identified and two morphologically intermediate groups (Groups 2 and 4) were plotted continuously between N. subintegerrima and N. oguraensis in principal coordinate axis 1 (Fig. 5). The plants of Group 4 were genetically intermediate between N. japonica and N. subintegerrima as was the case with intermediate morphology. In contrast to Group 4, the plants of Group 2 were genetically intermediate among three species.

Natural hybridization in Nuphar has been reported with some combinations (Les and Philbrick 1993). Most of putative hybrids were considered natural crosses between dwarf taxa and large-leaved taxa (Heslop-Harrison 1953, Padgett et al. 1998, Padgett et al. 2002). In Japan, $N . \times$ saijoensis (Shimoda) Padgett and Shimoda was reported to be of hybrid origin between N. japonica and N. pumila subsp. oguraensis (Miki) Padgett (=N. oguraensis var. akiensis Shimoda), which has a reddish stigmatic disk (Shimoda 1991, Kadono 1994), based on morphology, pollen and seed
fertility tests and randomly amplified DNA (RAPD) analysis (Padgett et al. 2002). From morphological analyses, I hypothesized that natural hybridization occurred widely in Japan and the two intermediate groups recognized by morphological characters were of hybrid origin between N. japonica and N. oguraensis and between N. japonica and N. subintegerrima, respectively. The genetic evidences obtained in this study supported my hypothesis that Group 4 is of hybrid origin between N. japonica and N. subintegerrima. On the contrary, Group 2 is genetically intermediate among three species. Some populations of Group 2 had MLGs, which had alleles specific to both N. oguraensis and N. subintegerrima. Therefore, natural hybridization may have occurred not only between N. japonica and N. oguraensis but also between N. oguraensis and N. subintegerrima.

In addition, many intermediate plants did not show additive combinations of parental allozymes, which would be expected in F_{1} hybrids. The absence of some characteristic parental bands suggests that sexual reproduction has occurred among the hybrid plants. I suppose that genetic variations within and among the intermediate populations are likely to be due to repeated hybridization events, such as intercrosses between parent species or between independently produced hybrids, and backcrossing of hybrids with one of the parent species.

During my field study, I observed that some populations of Groups 2 (GI-3, OK-6, KA-2) and 4 (NI-5, HI-2a, TO-2, TO-3b, MY-1bc) showed lower fruit set and pollen stainability than their putative parent species (data not shown). This observation agrees well with the fact that interspecific hybrids are often less fertile than their parents (Gottlieb 1972, Metz et al. 1994, Arnold 1997), and suggests that the Groups 2 and 4 are of hybrid origin.

All of the combinations of crosses among N. japonica, N. oguraensis, N.
subintegerrima and intermediate plants (HY-1; Group 4) produced F1 progeny in my crossability analysis (Table 6, 7). The chromosome number of Nuphar is $2 \mathrm{n}=34$ and was interpreted as diploid based on $\mathrm{x}=17$ (Langlet and Søderberg 1927, Heslop-Harrison 1953, Ohga et al. 1962, Okada and Tamura 1981). Reproductive isolation mechanism might be weak in Nuphar species and promote introgressive hybridization among these plants, although hybridization events between N. oguraensis and other taxa may be directional as suggested by germination experiment (Table 7).

Some plants of intermediate populations had the same MLGs with putative parental species. It is possible that some intermediate populations include plants of putative parental species, because I identified the two intermediate morphological groups by averages of morphological characters of each population in this chapter. Further morphological and molecular analyses based on individual data are needed to discuss the hybridizaion and introgression events in each population. In the next chapter, I will discussed hybridization event in Hokkaido Island based on individual population data.

The three Japanese Nuphar species were well distinguished by patterns of allele frequencies and PCO analysis (Table 5, Fig. 5). Although N. japonica had species-specific alleles with low frequencies, N. oguraensis and N. subintegerrima had diagnostic loci and were distinctly distinguishable. Although a recent taxonomic study of Nuphar worldwide treated N. subintegerrima as a synonym of N. japonica (Padgett et al. 1999, 2002, Padgett 2003), the present results indicate that N. subintegerrima is a distinct taxon.

Several isozymes in my study (MDH, PGI and TPI) revealed duplicated loci (Fig. 2). Isozyme duplication has also been reported in isozyme studies of N. pumila var.
ozeensis (Miki) H.Hara and intermediate plants, identified as " N. subintegerrima" (Suzuki et al. 1997, Murayama et al. 1998). Padgett et al. (2002) discussed that intermediate populations of Nuphar in Japan are of hybrid origin, based on allozyme data of Suzuki et al. (1997) in which enzyme loci of an intermediate population were duplicated. However, my allozyme analysis revealed that isozyme duplication was not restricted to intermediate plants, but also occurred in MDH, PGI and TPI in N. japonica, N. oguraensis and N. subintegerrima. Furthermore, these isozymes were also duplicated in N. pumila, (Chapter 3), and N. lutea (data not shown). Although the Nuphar species have been considered diploid (Langlet and Søderberg 1927, Okada and Tamura 1981), these isozyme duplications suggest that the sect. Nuphar (Padgett 1999) is genetically polyploid. It is probable that these duplications occurred early in the evolution of the genus Nuphar. To understand evolutionary history of Nuphar I conducted further molecular study based on AFLP fragments, which is described in Chapter 5.

Cryptic hybridization and introgression between Nuphar japonica and N. pumila: Homoploid hybrid speciation in progress?

INTRODUCTION

In northern Japan, the distribution ranges of N. japonica DC. and N. pumila (Timm) DC. overlap, but the two species have different morphological and ecological traits. Nuphar japonica, which is distributed in Japan and Korea, is an emergent-leaved plant and one of the largest Nuphar species. It is mainly a lowland plant found in lakes, slow rivers, and canals (Lee 1989, Kadono 1994, Padgett et al. 1999, Padgett 2003). On the other hand, N. pumila is a small floating-leaved species found in lakes and moors from sea level to high elevations, and is distributed from East Asia to Europe (Hara 1951, Beal 1956, Padgett et al. 1999). Padgett et al. (2002) recognized two subspecies, subsp. pumila and subsp. oguraensis, in N. pumila in Japan. However, N. oguraensis Miki could be well recognized as a distinct species from morphology, genetic features and distribution ranges (Chapters 2, 5 and 6). I will treat N. pumila subsp. pumila sensu Padgett et al. (2002) as N. pumila in this paper. In Hokkaido, Japan, unidentified plants intermediate in morphology between N. japonica and N. pumila have been reported (Ito 1967), and the chromosome numbers
of these intermediate plants were the same as those in all Nuphar species (Keiko Murayama and Yasuro Kadono, unpublished data). Such intermediate plants may have originated through homoploid hybridization between the two species.

In this chapter, I investigate the morphological relationships, allozyme variation, AFLP fragment variation, cpDNA haplotype and pollen viability of putative hybrid populations to evaluate the hypothesis that homoploid hybridization and subsequent hybrid speciation has occurred between the two species. The goals of my study are (1) to confirm whether hybridization and introgression have occurred between N. japonica and N. pumila, and (2) to compare putative hybrid populations to elucidate the potential for homoploid hybrid speciation.

MATERIALS AND METHODS

Plant materials

I collected a total of 423 individual plants from 22 populations in Hokkaido, Japan (Table 8). These included specimens of N. japonica, N. pumila, and unidentified intermediate plants. As Nuphar plants are predominantly clonal, it is possible that local populations may comprise a single genet. Because Japanese Nuphar has a rhizome length of 3 to 5 m (Nakamura and Yamatou 1986), I collected the samples at intervals of at least 5 m to minimize the risk of collecting multiple specimens of the same genet. Sampling was conducted from August to early September in 2004.

Artificial cross experiment was performed between the plants of N. japonica (ATT) and N. pumila (BEB) and I obtained six synthetic F_{1} hybrids. The six hybrids were checked for genetic composition of nuclear DNA and chloroplast DNA by allozyme and AFLP markers and trnL intron sequences.

Morphological analyses

For measurements of morphological characteristics, I collected emergent or floating leaves, flowers, and fruits from 3 to 60 Nuphar plants in each population (Table 8). I assessed the 21 morphological characteristics (Table 9) that have been considered important in the identification of Nuphar taxa (Ohtaki and Ishido 1980, Kadono 1994, Padgett et al. 1999, Chapter 2). These comprised 11 vegetative, 6 floral, and 4 fruit characteristics. All measurements were made using materials fixed in FAA (ethanol, formalin, and acetic acid) in the field.

The data for most quantitative characteristics were continuous, and it was difficult to recognize taxonomic units based on specific key characteristics. Thus, I performed cluster analysis for the 22 populations based on the mean values of each characteristic. I chose Ward's method for this analysis and used standardized variables and Euclidean distances.

Differences among populations and among cluster groups in each morphological trait were tested using nested analysis of variance (nested ANOVA). When the differences were significant ($P<0.05$), I performed a multiple comparison using Scheffés F-test. To analyze morphological relationships among individuals, I performed principal-components analysis (PCA). All statistical tests were performed using JMP ver. 4J (SAS Institute Inc., USA).

To avoid misleading correlations, I excluded six characteristics (used for the calculation of ratios) from the cluster analysis and PCA: leaf blade width (L2), sinus depth (L4), length from the leaf tip to the point of maximum blade width (L6), minimum petiole width at 5 cm from the base of blade (L9), filament length (F15), and seed width (Fr3). As a result, the remaining 15 characters were used. Before applying these analyses, I arcsine-transformed the maximum blade width
position/total length of blade (L7), the min./max. petiole diameter ratio (L10), and the length/width of seed ratio (Fr4).

Allozyme analyses

I prepared extracts from 0.1 g of fresh leaves in $500 \mu \mathrm{~L}$ of grinding buffer (Soltis et al. 1983), and electrophoresed the extracts in 9% starch gels. The buffer systems, investigated enzymes and procedures of electrophoresis and staining were the same as in Chapter 2.

Fifteen putative loci were detected from variation in banding patterns of six enzymes. These loci were distributed as follows: single locus for LAP, two loci for PGM and PMI, three loci for PGI and TPI, and four loci for MDH. The 12 loci, excluding pgm2, pgi1 and tpi1, were genetically interpretable (for locus names, refer to those of Chapter 2). All loci except for mdh3 were monomorphic. So I determined genotypes of $m d h 3$ and compared among different morphological groups.

DNA extraction

Total DNA was extracted from 50-100 mg dry mass of leaves of each accession by the CTAB method (Stewart and Via 1993) with some modificaitons and approximately 200 ng of total DNA per sample was obtained.

Chloroplast DNA analysis

The portion of the trnL intron region was amplied from total genomic DNA using the polymerase chain reaction (PCR) and thermostable DNA polymerase. Primers used for amplification of the $\operatorname{trn} L$ (UAA) intron were primers C (5 '-CGAAATCGGTAGACG CTACG-3') and D (5 '-GGGGATAGAGGGACTTGAAC-3') by Taberlet et al. (1991).

More than one sample was selected from each population and sequenced using the BigDye Terminator Cycle Sequencing kit (Applied Biosystems) and an ABI Prism 3100 automated sequencer (Applied Biosystems) with its associated DNA sequencing analysis software.

The cpDNA sequences revealed three haplotypes and I designated a new primer pair (Forward 5'-CAACCCGAATCCTTATTTTT-3', Reverse 5’-TCTCCCAGTCTCATA CTCTG-3') to recognize the haplotypes by PCR product size (Fig. 9). PCR product sizes were determined for 22 samples of N. japonica, 80 samples of intermediate populations, 34 samples of N. pumila and 6 artificial crosses using the ABI Prism 3100 automated sequencer and GenScan 3.7 analysis software (Applied Biosystems).

AFLP analysis

AFLP was performed for the same samples with cpDNA analysis according to Vos et al. (1995) with some modifications. Sample DNA was restricted with the endonucleases EcoRI and MseI at $37^{\circ} \mathrm{C}$ in 1.5 hours and ligated to appropriate double-stranded adapters at $20^{\circ} \mathrm{C}$, overnight. Two steps of amplification followed, that is, a preselective amplification in which I used primers with one base pair (bp) extension, and a second amplification in which primers with 3 bp extensions were used, thereby further reducing the number of fragments. For the second amplification, I initially tried 16 different primer combinations. From these, I selected four combinations, -ACA(FAM)/-CTA, -ACG(FAM)/-CTA, -ACA(JOE)/-CTG and -ACG(JOE)/-CTG, for the extensions to the EcoRI and MseI sites, respectively.

The PCR products from the selective amplification were visualized using an ABI Prism 3100 automated sequencer. Fragments from 50 to 500 bp in size were sized with GeneScan 500 ROX Size Standard (Applied Biosystems). Sizing and
quantification of AFLP bands with GenScan 3.7 (Applied Biosystems) and the electoropherograms were imported into Genotyper 3.7 (Applied Biosystems). Assignment of AFLP bands of size categories was performed by manual evaluation of all electropherograms using Genotyper 3.7. The AFLP bands were aligned after size categories in a data matrix and either value 0 or 1 ($0=$ fragment absent; $1=$ fragment present) was assigned. If an AFLP band fixed among all plants of putative parental species examined, I defined it as a species-specific band.

Pollen viability

Pollen viability was estimated based on the stainability of the pollen grains with cotton blue staining solution (20% phenol, 20% lactic acid, and 40% glycerine aqueous solution to which 1% cotton blue aqueous solution was added) for 1 h . I removed three anthers from each flower and collected the pollen grains on a glass slide. I counted more than 500 pollen grains from each flower, and calculated pollen viability as the number of stained pollen grains divided by the total number of pollen grains examined. In this analysis, I examined the same individuals used in other analyses, including examined all samples of morphologically intermediate specimens in the cluster analysis.

Data analysis

AFLP is a dominant marker (Vos et al. 1995). Thus, if F1 hybrids backcross to one parent repeatedly, other parental AFLP bands are reduced. To analyze patterns of introgression, I judged that it is originated by backcrossing, if a hybrid did not have species-specific markers of both parental species with same ratio, it is originated by backcrossing.

I superimposed number of specific bands of putative parental species on morphological variations to compare patterns of introgression of specific markers.

All statistical tests were performed using JMP ver. 4J (SAS Institute Inc., USA).

RESULTS

Cluster analysis

The Ward's phenogram revealed two major clusters (Fig. 6), and the first cluster contained two distinct subclusters. I used these three clusters as operational taxonomic units and named them Groups 1, 2 and 3.

I found significant differences among cluster groups and populations in all measured characteristics (nested ANOVA, $P<0.05$; Table 10). Group 1 differed significantly from the other cluster groups in 11 characteristics. It had the highest values in 9 characteristics (L1, L7, L8, L10, L11, Fl2, Fl6, Fr1, Fr4) and the lowest values in two characteristics (L3, L5). Group 3 differed significantly from the other cluster groups in 12 characteristics. This group had the highest values in two characteristics (L3, L5) and the lowest values in 10 characteristics (L1, L7, L8, L10, L11, Fl1, Fl2, Fl4, Fl6, Fr4). Group 2 differed significantly from the other groups in 10 characteristics, but had neither highest nor lowest values in the measured characteristics. The values for Group 2 were thus intermediate between those in Groups 1 and 3 in 10 characteristics (L1, L3, L5, L7, L10, L11, Fl2, Fl6, Fr4).

The plants in Groups 1 and 3 corresponded well to the descriptions of N. japonica and N. pumila, respectively (Timm 1792, De Candolle 1821). Hereafter, I thus refer to Groups 1, 2, and 3 as N. japonica, intermediate populations, and N. pumila, respectively.

Morphological relationships among cluster groups

The PCA, based on the same data used in the cluster analysis, revealed well-expressed morphological relationships among the three cluster groups (Fig. 7a). The two species (Groups 1 and 3) could be clearly distinguished, and the intermediate populations (Group 2) were scattered continuously along PC axis 1 (Fig. 7 a). The ranges of PCA values along axis 1 were 1.545 to 6.951 for N. japonica (Group 1) and -5.248 to -0.780 for N. pumila (Group 3). The range for plants in the intermediate populations (-2.366 to 5.642) was wider than the range of either of the two parent species. Data for plants in the intermediate populations (Group 2) were scattered continuously within the ranges of values for N. japonica and N. pumila.

The first three principal components (PCs) accounted for 80.4% of the variance (Table 11). PC1 explained 67.0% of total variance, and all characteristics except for Fl3 and Fr2 contributed to this variance. PC2, which explained 7.4% of the total variance, was contributed to only by characteristic Fl3.

Genotype of mdh3

One polymorphic locus (mdh3) showed distinctive genotype frequencies among N. japonica, N. pumila, and the intermediate populations (Fig. 7b; Table 12). The genotypes of N. pumila and N. japonica were nearly fixed as "aa" and "bb", respectively. In contrast, most morphologically intermediate plants were "ab".

The geographic distributions of the different genotypes of $m d h 3$ and of the morphological groups are shown in Fig. 8. I have added data for some northern Honshu populations of N. japonica for comparison (see Chapter 2). Intermediate populations were distributed within the area of overlap between the ranges of N. japonica and N. pumila. The "ab" heterozygotic populations of N. japonica and N.
pumila (SAA, TAO, TOB and TOJ) were located near the other different morphological groups.

Chloroplast DNA analysis

Three cpDNA lengths were detected at the partial trnL intron region as 234, 238 and 241 bp (Table 13). Sequence analyses confirmed that these haplotypes differed by 12 indels (total 48 bp) together with 4 substitution sites.

The haplotypes detected at trnL intron region showed that haplotype length of 238 bp was specific to N. japonica and 234 bp was specific to N. pumila except for one population (URU), which had the haplotype of 241 bp . Most of intermediate populations had the N. japonica haplotype except for one in TST and three in NNO that had N. pumila haplotype (234 bp) (Table 13). All of the synthetic F1 hybrids had a haplotype of the maternal parent (Table 13).

AFLP analysis

AFLP bands discriminated 108 genotypes; 22 genotypes from seven populations of N. japonica, 34 genotypes from 11 populations of N. pumila, and 52 genotypes from four intermediate populations (Table13). All of the plants of N. japonica and N. pumila were revealed to have unique genotypes and each intermediate population consist of more than two genotypes. Nuphar japonica and N. pumila had 25 and 16 species-specific bands, respectively (Table 13). Both sets of these specific bands were additively observed in four intermediate populations; $72-100 \%$ of N. japonica specific bands and $0-100 \%$ of N. pumila specific bands (Table 13). All of the synthetic F1 hybrids had the whole parental bands with complete additive combination (Table 13). Although the plants of SAS showed almost complete additive combination pattern of
parental AFLP bands, the plants in other intermediate populations indicated various combination patterns (Fig. 10). Each population except for SAS did not have species-specific markers of both N. japonica and N. pumila with same ratio and species-specific bands of N. pumila were mostly reduced.

Rlationships among species-specific AFLP bands and morphology (PC1) of hybrid populations were shown in Fig. 11. Some plants morphologically similar to N. japonica, which comprised 25 to 75 percentiles of morphological variation (PC1) of N. japonica, had one to 10 N . pumila specific bands. There were no plants morphologically similar to N. pumila.

Pollen viability

The pollen viability averaged $92.6 \% \pm 5.5 \%(\operatorname{mean} \pm \mathrm{SD})$ in N. japonica (Group 1), $92.7 \% \pm 9.8 \%$ in N. pumila (Group 3), and $64.7 \% \pm 33.1 \%$ in the intermediate populations (Group 2); it was significantly lower in the intermediate populations than in either of the two species (Kruskal-Wallis test, $P<0.001$).

Relationships between pollen viability and morphology (PC axis 1) were shown in Fig. 7c. Pollen viability varied widely in the intermediate populations (from 0% to 99.2\%). In particular, morphologically intermediate plants with PC1 ranging from about -2 to 2 had lower pollen viability than other plants in the intermediate populations that resembled to N. japonica morphologically.

Relationships between pollen viability and AFLP marker were also shown in Fig. 12. Intermediate plants with many species-specific markers of both N. japonica and N. pumila exhibited lower pollen viability than others.

Comparison of intermediate populations

The four intermediate populations (SAK, SAS, NNO, and TST) showed different patterns of morphology, mdh3 genotype, and pollen viability (Fig. 13). Morphological variations (PC 1) were continuous from the intermediate populations to the range of N. japonica in SAK, but were discontinuous among N. pumila, intermediate plants, and N. japonica in TST and NNO (Fig. 13). In terms of the mdh3 genotypes, some plants of N. japonica and N. pumila with typical morphology were heterozygotes in SAK and TST. Some intermediate plants were homozygotes in SAK, TST, and NNO, although most of the genotypes were heterozygotes (Figs. 8, 13).

Pollen viability of morphologically intermediate plants varied among populations from low viability in SAS (14.4% to 19.5%) to high viability in SAK where the plants resembled to N. japonica (all>80\%). It was widely variable in TST (8.4% to 95.0%) and NNO (0% to 96.7%). All plants with typical N. japonica and N. pumila morphology showed high pollen viability.

DISCUSSION

Hybridization between N. japonica and N. pumila

In a comprehensive study of putative Nuphar hybrid taxa, Padgett et al. $(1998,2002)$ successfully employed the criteria offered by Gottlieb (1972) to test whether a plant taxon had arisen through hybridization. The principal criteria were morphological intermediacy, biochemical additivity of both the parental species, reduced fertility compared with the parent species, and geographical distribution in the area of overlap of the parental species. I applied the same criteria to the present analysis of intermediate populations that were putative Nupharhybrids.

First, as can be seen from the phenetic relationships among the three cluster groups based on morphological characteristics, intermediate populations were widely
scattered between those of N. japonica and N. pumila. Second, the mdh3 genotype of many morphologically intermediate plants was an "ab" heterozygote, which is considered to be the progeny resulting from a cross between "aa" (N. pumila) and "bb" (N. japonica). In AFLP analysis, intermediate plants also had both AFLP fragments specific to the two species. Third, the plants of intermediate populations showed low mean pollen viability, although some intermediate plants in the NNO, TST, and SAK populations exhibited high pollen viability. So far as my observations were concerned, fruit and seed set ratios were also low in intermediate plopulations except for some intermediate plants in a few populations. Fourth, all intermediate populations were found within the area of overlap between the distributions of the two species. In addition, some populations of N. japonica and N. pumila located near the other morphological groups (SAA, TAO, TOB and TOJ) had allozyme alleles from the other species. These results support the hypothesis that the morphologically intermediate plants represent hybrids between N. japonica and N. pumila.

The variation in pollen viability among the putative hybrids (Figs. 7c, 13) suggests that the hybrids with heterozygote genotypes are not F_{1} progeny but rather later progeny. Some hybrids did not show additive combinations of parental allozyme bands, as would be expected in F_{1} hybrids. And many hybrids did not have all species-specific AFLP bands of both parental species. This suggests that sexual reproduction has occurred among the hybrid plants.

Introgression and pollen viability restoration

Many hybrids (93.8% of total hybrids) had N. japonica's cpDNA haplotype. It is probable that a hybridization event in which a female parent was N. japonica and a male parent was N. pumila occurred. The artificial cross experiment in Chapter 2
showed the case that, when a female parent was N. oguraensis, germination rate was reduced. Because N. oguraensis is closely related to N. pumila (Chapter 5), hybrid seeds with a female parent of N. pumila may be inferior in germination ability in natural habitats.

Reduction of species-specific AFLP bands of N. pumila in all of the hybrid populations, except for SAS, strongly suggests that hybrids have backcrossed to N. japonica repeatedly. Hybrid populations are distributed in lowland lakes (Table 8). Nuphar pumila's habitats such as highland lakes and marshes are generally oligotrophic environments. Hybrids may not be able to grow in oligotorophic environment, and thus backcrossing to N. pumila is limited. Further field and greenhouse experiments are needed to discuss about backcross events in this hybrid zone.

Relationships among species-specific AFLP bands, cpDNA haplotypes and morphology (PC1) indicated that genomes of N. pumila have been introduced to N. japonica as nuclear genes (Figs. 10, 11). In hybridization study, maternal or paternal genome marker, such as cpDNA and mtDNA, are used as a sign of intorogressive hybridization event (Rieseberg and Wendel 1993, Sutton et al. 1994, Watano et al. 1996, Senjo et al. 1999). In this study, I could not detect introgression of cpDNA genome in this hybrid zone of Nuphar. Therefore, Many introgressions of nuclear genomes may occur in cryptic hybrid events of other plant species.

It has been shown that fertile hybrid lineages can be obtained after a small number of generations of selfing or backcrossing, even if F_{1} hybrids were almost completely sterile in Helianthus species (Rieseberg 1997, Rieseberg and Noyes 1998). Backcrosses and crosses between hybrids have restored pollen viability in the hybrid Nuphar populations in my study (NNO, TST, and SAK).

Potential of homoploid hybrid speciation in Nuphar

As hybrid backcrosses occur repeatedly, morphological traits are believed to shift from intermediate values closer to the parental values (Arnold 1997, Lowe et al. 2004, Rosenthal et al. 2005) and pollen viability is considered to be restored (Rieseberg and Noyes 1998). The results in two hybrid populations (SAA and SAK) support these hypotheses and also suggest the occurrence of introgression in SAK.

However, although the NNO and TST hybrids were evidently intermediate morphologically between their parental species, they were fertile. The habitats of the two populations were artificially disturbed environments, in which strong ecological selection had presumably operated. One environment (TST) is used as an irrigation pond and the other (NNO) is a famous sight-seeing location in Hokkaido where many ferries and powerboats disturb the Nuphar population. In contrast, the habitats of SAS and SAK were lakes in a natural condition.

The known processes of homoploid hybrid speciation include recombinational speciation with chromosomal sterility barriers and hybrid speciation with external barriers, including ecological prezygotic barriers (Grant 1983, Rieseberg 1997). Recent theoretical and empirical studies supported the hypothesis that ecological selection is a major factor in promoting homoploid hybrid speciation (Buekle et al. 2000, Gross and Rieseberg 2005). It is possible that ecological selection contributed to the discontinuous morphological patterns observed in NNO and TST. Homoploid hybrid speciation may thus occur in the populations under ecological selection.

The case is similar in $N . \times$ saijoensis, a hybrid between N. japonica and N. oguraensis. Nuphar \times saijoensis usually inhabits irrigation ponds in western Japan (Shimoda 1991). Irrigation ponds were the habitats liable to large water level
fluctuations. The habit of $N . \times$ saijoensis is similar to N. japonica $\times N$. pumila and the hybrids change their growth form from emergent-leaved in shallow water to floating-leaved in deep water. Artificially disturbed environments may be essential to stabilizing hybrid lineages of Nuphar as distinct taxa.

An artificial hybrid between N. japonica and N. pumila has been well known among aquatic plant cultivators, but natural hybrids of this combination have not been reported (Swindells 1983). Thereby, I described the hybrid formerly in Chapter 6.

Hybridization between Nuphar japonica and N. submersa in central Japan: A case in lotic water

INTRODUCTION

In the genus Nuphar Sm. (Nymphaeaceae), natural hybridization and introgression are well known and have been understood to account for the difficulty in taxonomic delimitation of Nuphar species (Heslop-Harrison 1953, Beal 1956, Padgett et al. 1998, 1999, 2002; Chapters 2 and 3). In Japan hybrid status of some intermediate plants has been confirmed and the unstable habitat conditions have been discussed to play an important role to the hybrid speciation (Chapter 3). In previous chapters (Chapters 2 and 3), I mainly discussed about hybridization events in lentic water, such as irrigation ponds, however.

Nuphar submersa Shiga and Kadono is a new species reported from central Japan in my study (see Chapter 6). During the course of my survey of the new species, I found some unidentified plants intermediate in morphology in rivers and streams. As the results of morphological, allozymic and pollen viability studies, I concluded the intermediate plants to be a hybrid between N. japonica DC., which is widely distributed in Japan (Kadono 1994), and N. submersa. In this chapter, I will investigate the new hybrid and discuss the hybridization event in lotic water.

MATERIALS AND METHODS

Plant materials

I collected a total of 86 individual plants from 9 populations in central to eastern Japan (Table 14). These included specimens of Nuphar japonica, N. submersa, and unidentified intermediate plants. Sampling occurred from August to early September in 2001, 2002, 2004 and 2005.

Morphological analyses

For measurements of morphological characteristics, I collected submerged leaves and flowers from 6 to 10 Nuphar plants in each population (Table 14). I assessed the following 13 morphological characteristics that have previously been considered important in the identification of Nuphar taxa (Kadono 1994, Padgett et al. 1999, Chapters 2, 3 and 5): submerged leaf blade length (SL1), submerged leaf blade width (SL2), submerged leaf blade shape (SL3=SL1/SL2), sinus depth (SL4), sinus depth/length of blade ratio (SL5=SL4/SL1), maximum petiole width at 5 cm from the base of the blade (SL6), number of veins (SL7), maximum length of stigmatic disk (F1), stigma width (F2), number of stigma (F3), anther length (F4), filament length (F5), anther length/filament length ratio (F6=F4/F5). These comprised 7 vegetative (SL1-SL7), 6 floral (F1-F6) characteristics. All measurements were made using materials fixed in FAA (ethanol, formalin, and acetic acid) in the field.

The data for most quantitative characteristics were continuous, and it was difficult to recognize taxonomic units based on specific key characteristics. Thus, I performed cluster analysis for the 9 populations based on the mean values of each characteristic. I chose Ward's method for this analysis and used standardized
variables and Euclidean distances.
Differences among populations and among cluster groups in each morphological trait were tested using nested analysis of variance (nested ANOVA). When the differences were significant among taxonomic groups ($P<0.05$), I performed a multiple comparison using Scheffés F test. To analyze morphological relationships among individuals, I performed principal-components analysis (PCA). All statistical tests were performed using JMP ver. 4J (SAS Institute Inc., USA).

To avoid misleading correlations, I excluded three characteristics which were used for the calculation of ratios from the cluster analysis and PCA: submerged leaf blade width (SL2), sinus depth (SL4) and filament length (F5). As a result, the remaining 10 characters were used. Before applying these analyses, I arcsine-transformed the submerged leaf blade shape (SL3=SL1/SL2).

Allozyme analyses

I prepared extracts from 0.1 g of fresh leaves in $500 \mu \mathrm{~L}$ of grinding buffer (Soltis et al., 1983), and electrophoresed the extracts in 9% starch gels. The buffer systems, investigated enzymes and the procedures of electrophoresis and staining were the same as in Chapters 2 and 3.

I detected 15 putative loci from the variation in banding patterns of the six enzymes. These loci were distributed as follows: a single locus for LAP, two loci each for PGI and PMI, three loci each for PGM and TPI, and four loci for MDH. Of these, 12 loci were genetically interpretable. All loci except lap1 and mdh3 could not be used for a species-specific marker, so I determined the genotypes of lap1 and mdh3 and compared them among the different morphological groups. Locus names were referred to as in those of Chapter 2.

Pollen viability

Methods of estimation of pollen viability were the sme as in Chapter 3. In all analyses, I examined the same individuals used in morphological and allozyme analyses (Table 14).

RESULTS

Cluster groups

The Ward's phenogram revealed two major clusters (Fig. 14), and the second cluster contained two distinct subclusters. I used these three clusters as operational taxonomic units and named them Groups 1, 2 and 3.

Significant differences were found among the three cluster gruops in all measured characteristics (nested ANOVA, $P<0.05$; Table 15). Group 1 differed significantly from the other morphological groups in 9 characteristics. It had the highest values in 9 characteristics (SL1, SL3, SL5, SL6, SL7, F1, F3, F4, F6). Group 3 differed significantly from the other morphological groups in 6 characteristics. This species had the lowest values in 6 characteristics (SL1, SL5, SL7, F2, F4, F6). Group 2 differed significantly from the other groups in 5 characteristics, but had neither highest nor lowest values in the measured characteristics. The values were thus intermediate between those in Groups 1 and 3 in 5 characteristics (SL1, SL3, SL7, F4, F6).

The plants in Groups 1 and 3 corresponded well to the descriptions of N. japonica and N. submersa, respectively (De Candolle 1821, Chapter 6). Hereafter, I thus refer to Groups 1, 2, and 3 as N. japonica, intermediate plants, and N. submersa, respectively.

Morphological relationships among two species and intermediate plants

The PCA revealed well-expressed morphological relationships among the three morphological groups (Fig. 15a). The two species and intermediate plants could be clearly distinguished along PC axis 1 (Fig. 15a). The ranges of PCA values along axis 1 were 1.105 to 4.933 for Nuphar japonica (Group 1) and -4.397 to -2.951 for N. submersa (Group 3). Data for the intermediate plants (Group 2) were scattered between the ranges of values for N. japonica and N. pumila (-2.019 to 0.107). Morphological relationships were not well resolved in PC2 and PC3.

The first three principal components (PCs) accounted for 88.7% of the variance (Table 16). PC1 explained 74.6% of total variance, and all characteristics except for SL3 contributed to this variance. PC 2 , which explained 7.4% of the total variance, was contributed to by none of the characteristics.

Genotype of lap1 and mdh3

Two polymorphic loci (lap1 and mdh3) showed distinctive genotype frequencies among Nuphar japonica, N. submersa, and the intermediate plants (Figs. 15b-c, Table 17). The genotypes of N. japonica were fixed as "aa" in lap1 and "bb" in mdh3. On the other hand, the genotypes of N. submersa were fixed as "cc" in lap1 and "aa" in mdh3. In contrast, morphologically intermediate plants were not homozygous in the two loci, but most of the intermediate plants were heterozygous like "ac" and "ab".

Pollen viability

The pollen viability was $93.2 \% \pm 4.6 \%$ (mean $\pm \mathrm{SD}$) in N. japonica, $93.1 \% \pm 3.5 \%$ in
N. submersa, and $35.5 \% \pm 14.1 \%$ in the intermediate plants (Fig. 15d, Table 17). It was significantly lower in the intermediate plants than in either of the two species (Kruskal-Wallis test, $P<0.001$).

In the intermediate plants, the pollen viability of the plants of heterozygous genotype in the two loci $(30.6 \% \pm 14.2 \%, \mathrm{n}=17)$ was lower than that of the plants of genotype, which is homozygous in one locus ($44.4 \% \pm 11.7 \%, \mathrm{n}=9$) (Mann-Whitney's U test, $P=0.031$).

DISCUSSION

As can be seen from the phenetic relationships among the three cluster groups based on morphological characteristics, intermediate plants were scattered between those of Nuphar japonica and N. submersa. Secondly, the lap1 and mdh3 genotypes of many morphologically intermediate plants were "ac" and "ab" heterozygotes, which are considered to be the progeny resulting from a cross between "aa" and "cc" in lap1 and "aa" and "bb" in mdh3. Third, the plants of intermediate populations showed low pollen viability, although some intermediate plants exhibited moderate pollen viability. Fruit setting ratio and seed setting ratio of the intermediate populations were low in a natural habitat (e.g. Figs. 16E-F). Fourth, all intermediate populations were found within Tochigi Prefecture, where the distributions of the two putative parent species overlap. Nuphar japonica is distributed in Japan and Korea (Lee 1989, Kadono 1994) and N. submersa is endemic to Tochigi Prefecture (Chapter 6). These results indicate that the morphologically intermediate plants represent hybrids between N. japonica and N. submersa.

Some intermediate plants did not show additive combinations of parental allozyme bands, as would be expected in F_{1} hybrids. This suggests that sexual
reproduction has occurred among the hybrid plants. The pollen viability of the putative later progeny was higher than putative F_{1} hybrids. It is probable that backcrosses and/or crosses between hybrids have restored pollen viability in the hybrid Nuphar populations.

As hybrid backcrosses occur repeatedly, morphological traits are believed to shift from intermediate values closer to the parental values (Arnold 1997, Lowe et al. 2004, Rosenthal et al. 2005) and pollen viability is assumed to be restored (Rieseberg and Noyes 1998). The morphological study in three hybrid populations, however, indicated that morphological characters of the intermediate population strictly ranged between Nuphar japonica and N. submersa. Extensive introgression may have not occurred in this hybrid complex.

All of the hybrid populations were located in the irrigation ditches with seasonal water level fluctuation (Takashi Shiga and Yasuro Kadono, unpublished data). In Japanese Nuphar hybrids, some populations of $N . \times$ saijoensis (Shimoda) Padgett and Shimoda and $N . \times$ hokkaiensis Shiga \& Kadono (=N. japonica \times pumila; see Chapter 6) occurred in artificially fluctuating environments such as irrigation ponds (Shimoda 1991, Chapter 3). The hybrid between N. japonica and N. submersa may also adapt to such a changing lotic water environment and hybrid speciation may be in progress.

I described this hybrid as $N . \times$ fuluminalis Shiga \& Kadono in Chapter 6.

CHAPTER 5

Inter and intraspecific phylogeny and geographic variation of Nuphar species in Japan and adjacent countries based on the AFLP fragment and allozyme data

INTRODUCTION

Recent theoretical and empirical advances in the field of molecular genetics have provided many insights into the assessments of evolutionary genetic relationships among populations for a number of species (Avise 2000). Phylogeographic studies interpret the historical processes that may have left their evolutionary signatures on the present geographic distributions of genetic traits (Lowe et al. 2004). Aquatic plants are particularly suitable for historical biogeographic studies due to their limited dispersal capacity. It is supported that land is a barrier to their dispersal and thus local populations are confined to their own watershed and isolated from one another (Johansson and Nilsson 1993).

The species of the genus Nuphar Sm . are perennial aquatic vascular plants in north temperate regions. A plant of this genus grow clonally with rhizome and the fragments may be transported by water flow and give rise to new ramets (Heslop-Harrison 1955, Smits et al. 1989). It is considered that seed-dispersal of

Nuphar species also depend on water flow (Smith et al. 1989, Hart and Cox 1995). Smith et al. (1990) have studied germination traits for N. lutea (L.) Sm., which evidenced that seeds could not germinate after chewing by waterfowls or after dehydration treatment. Pollinators were beetles and flower flies, which pollinated in short range (Lippok et al. 1997, 2000). Hence, in Nuphar species, it seems that geographical patterns of watershed strongly affect the gene flow and distribution of genealogical lineages. Furthermore, it is needed to understand genetic relationships and geographical patterns to solve variable morphology and patterns of hybrid zones of Nuphar species.

In this chapter, I investigated the genetic features in Japanese, Korean and Taiwanese populations of Nuphar species, that is, N. japonica DC., N. oguraensis Miki, N. pumila (Timm) DC., N. shimadae Hayata and N. subintegerrima (Casp.) Makino, by AFLP and allozyme analyses in order to clarify genetic relationships of genealogical lineages and its geographic patterns. Genetic data were also used to elucidate the congruence between phylogeny and current taxonomy of the species and varieties based on morphological and geographic patterns. To investigate phylogeographic patterns, genetic studies based on molecular markers such as allozymes and organelle and nuclear genome sequences are effective. The slow rate evolution of non cording and intron region of cpDNA and mtDNA sequence, however, conspire to limit the resolution of phylogeographic patterns revealed in studies of plants (Schaal and Olsen 2000). Thus, I tried to solve phylogenetic relationships and geographical patterns of Nuphar species, using AFLPs, which are high variability nuclear markers. And I also used allozyme markers to estimate and compare genotypic diversities among and within the populations for each species.

MATERIALS AND METHODS

Nuphar species and its distribution

Five species and some intraspecific taxa distribute in Japan, Korea and Taiwan, according authors to Ohwi (1965), Tamura (1981), Lee (1989), Kadono (1994) and Fu (2001). Nuphar japonica, which is a large emergent species, distributes in overall Japanese archipelago and Korean peninsular (Lee 1989, Kadono 1994; Chapters 2 and 3). Nuphar oguraensis is a floating leaved species and distributes in Western Japan (Kadono 1994; Chapter 2). Some specimens from Korea had a petiole with central lacuna (Kadono s.n. in herbarium of Kobe Univ.; Table 18), which is a diagnostic character of N. oguraensis (Miki 1934), although only N. japonica and N. pumila are recognized in Korea (Lee1989). Nuphar oguraensis is also confirmed to be distributed in Korea in the present study. Distribution range of N. pumila is wide from Lapland to East Asia (Hara 1951) and this species is floating leaved taxon. In Japan, N. pumila distribute in Hokkaido Island and north Japan (Kadono 1994; Chapter 3). One endemic species, N. shimadae, is distributed in Taiwan (Hayashi 2002), although taxonomic delimitation between N oguraensis and N. shimadae is indefinite (Miki 1934, 1937). A present distribution of N. subintegerrima, which is a small plant, is endemic to Tokai District, Japan (Makino 1910; Chapter 2).

Plant materials

A total of 65 Nuphar plants were collected from 60 localities in Japan, Korea, Taiwan and Slovakia; 29 of N. japonica, nine of N. oguraensis var. oguraensis, four of N. oguraensis var. akiensis, one of N. shimadae, two of a new submerged taxon (Chapter 6) that I provisory named " N. submersa" in this chapter, 11 of N. pumila var. pumila, 3 of N. pumila var. ozeensis (Table 18). European taxon, N. lutea, was added to
compare with the Asian taxa. Based on the results of a molecular phylogenetic study by Les et al. (1999), Barclaya longifolia Wall. was chosen as the out-group taxon in the phylogenetic study. In this chapter, I treated each Nuphar plants as operational taxonomic units (OTUs).

AFLP analysis

The methods of AFLP analysis were the same as in Chapter 3.

Chloroplast DNA analysis

The method of DNA extraction and cpDNA analysis were the same as in Chapter 3. I identified haplotypes of trnL intron region of N. japonica.

Allozyme analysis

I prepared extracts from 0.1 g of fresh leaves in $500 \mu \mathrm{~L}$ of grinding buffer (Soltis et al. 1983), and electrophoresed the extracts in 9% starch gels. Sampling numbers, the buffer systems, investigated enzymes and procedures of electrophoresis and staining were the same as in Chapters 2, 3 and 4 . Sampling numbers were the same as in Chapters 2 and 3 (Tables 3, 10).

Morphological analysis

If cpDNA and AFLP analyses showed clear intraspecific group in N. japonica, I measured morphological characters, which were used in Chapters 2, 3, and 4, to elucidate whether morphological differentiation have occurred. All populations except for IK-1, SI-3, and WA-1 were investigated. Sampling numbers were the same as in Chapters 2, 3, and 4 (Tables 3, 10, 15).

Data analysis

Phylogenetic analysis was performed using PHYLIP (Phylogeny Inference Package) version 3.5c (Felsenstein 1993). A phylogenetic tree based on nucleotide diversity as a measure of genetic distance (nucleotide substitution per nucleotide site, d; Nei and Miller 1990, Innan et al. 1999) was constructed using neighbor-joining method (Saitou and Nei 1987). These were exported to NEIGHBOR program from the PHYLIP package.

To estimate the historical process of dispersal, pairwise distance comparison between genetic and geographical distance were conducted within a species or population (Hutchison and Templeton 1999). Geographic distance was taken as the minimum distance between two locations, and calculated from latitude and longitudes of sampling locations by the GRS80 method (http://vldb.gsimc.go.jp/sokuchi/surveycalc/bl2stf.html). The significance of correlation between genetic and geographic distance was assigned by Mantel test (10000 permutations; Mantel 1967) using IBD program version 1.52 (Bohonak 2002).

I applied the criteria described by Good and Wake (1992) to evaluate whether different cohesive groups exist within species. This method analyzes genetic differentiation as a function of spatial separation, based on a plot of pairwise genetic distance versus geographical distances. A regression line is fitted to a set of points representing pairs of populations from a priori defined subsets of samples, and if the regression line passes through the origin, the samples are interpreted as being conspecific, because this pattern is most readily explained by gene flow with isolation-by-distance. Conversely, the regression for samples that include genetically isolated groups will deviate significantly from a 0 origin, because genetic divergence
among samples is expected to be independent of their degree of geographical separation. This analysis was performed for N. japonica.

In order to evaluate genetic diversity, the proportion of shared fragments for each pair of samples, F (Nei and Li 1979, Innan et al. 1999) was calculated for AFLP data. From the value of F obtained for each taxon, I estimated the nucleotide diversity, п, i.e., the average number of nucleotide substitutions per nucleotide site, using the method of Innan et al. (1999) for AFLP data. This method takes into account relative probabilities of evolutionary events such as mutations in the restriction sites or in the additional selective nucleotides, and appearance of new restriction sites within the fragments. The nucleotide diversity was estimated about N. japonica, N. oguraensis, N. pumila and N. subintegerrima.

Genotypic diversity, which is a diversity of genotype, within and between populations was surveyed in all Japanese taxa except for N. submersa. The genotypic diversity within populations was estimated by mean numbers of MLGs per population, a ratio of polymorphic populations, the Shimpson's diversity index (D) (Peet 1974). About the genotypic diversity among populations, mean numbers of populations per MLG, a ratio of unique MLGs in a population and a ratio of populations with the commonest MLG were calculated.

All statistical tests except for Mantel test were performed using JMP ver. 4J (SAS Institute Inc. USA).

RESULTS

The number of fragments scored is summarized in Table 19. A total of 835 different AFLP fragment size categories were observed from four selective primer pairs (Appendixes 2-5). For each primer pairs, of the total 194-236 fragments scored, 4-33
(1.7-17.0\%) were unique for the outgroup taxon. Of the total 772 fragments scored in Nuphar species, 749 (97.0%) were found to be polymorphic. For each of the four species, N. japonica, N. oguraensis, N. pumila and N. subintegerrima, 196-237 fragments were scored per samples on average (Table 20).

All the 66 plants examined were revealed to be unique genotypes (Appendix 2-5).

Phylogenetic relationships among species

Excluding European taxon, N. lutea, Asian Nuphar plants were monophyletic group with 83% bootstrap values in the NJ tree (Fig. 17; pairwise genetic distance is shown in Appendix 6). Within Asian Nuphar taxa, four main monophyletic groups were recognized; the first cluster consisted of N. oguraensis, N. shimadae and N. submersa; the other three clusters corresponded to N. pumila, N. japonica and N. subintegerrima, respectively. These four clusters were strongly supported with high bootstrap values ($94-100 \%$).

About the relationships among four main monophyletic groups, the plants of N. pumila and N. oguraensis, including N. shimadae and N. submersa, were sister groups with 88% bootstrap value. The relationships among the plants of N. japonica and N. subintegerrima were poorly resolved with low support value (53\%), although the cluster group of N. subintegerrima was the ancestral position (Fig. 17). In N. oguraensis group, two subclusters were recognized. The first subcluster of two OTUs with 100% support value consisted of N. submersa and a group of N. oguraensis and N. shimadae (Fig. 17). Thirteen fragments were fixed in TG-1 and TG-2 as species-specific fragments of N. submersa.

Phylogenetic relationships within species

There was congruence between phylogenetic position and geographical origins of Nuphar plants. The cluster group of N. japonica consisted of two main subclusters (Clade-1 and 2) with high bootstrap values (98% and 81%; Fig. 17). The subclusters identified well corresponded to the geographical positions of the samples; one subcluster, Clade-1, from East to North Japan and another, Clade-2, from West to South Japan (Fig. 18). Two cpDNA hapolotypes were detected in N. japonica (Fig. 9) and these distributional patterns were very similar to the clade distributions (Fig. 18).

In the plants of N. oguraensis, two clusters consisting of more than one OTU were identified, although the branching orders among these two clusters and eight OTUs (GI-4, HY-8, HI-2b, HI-7, HHS, FO-1, MY-2 and MY-8) were not solved (Fig. 17). These clusters identified distributed in Korea and Taiwan (N. shimadae) and in Kochi Pref., Japan (Fig. 17).

The plants of N. pumila in Hokkaido Island were revealed to be a monophyletic group (Fig. 17). One subcluster and three OTUs were recognized within Hokkaido Island group. This subcluster consisted of two groups; the group of seven OTUs (KUT, TSC, NET, NEN, HAK, AKT and BEB) with 97\% bootstrap value corresponded to plants from East Hokkaido Island (Table 18, Fig. 17) and the other of three OTUs were from Uryu-numa Moor (URU).

Within the cluster of N. subintegerrima, two subclusters were recognized. These subclusters distributed in Gifu, Aichi and in Mie Pref., respectively.

The plants of intraspecific taxa were not monophyletic (Fig.17). Three plants of N. oguraensis var. akiensis and three plants of N. pumila var. ozeensis did not belong to the same cluster together. These OTUs closely related with the geographically close OTUs rather than the OTUs of same intraspecific taxa (Table 18, Fig. 17).

Correlation between genetic and geographic distances

The correlation between genetic and geographic distances was demonstrated for N. japonica, N. pumila, N. subintegerrima, and N. oguraensis including N. shimadae in Fig. 19. In four species examined, a significant positive correlation ($P<0.01$) was found for N. japonica, N. oguraensis and N. pumila.

Figure 20 shows the correlation between genetic and geographic distance for intraspecific groups of N. japonica. A significant positive correlation was revealed for Clade-1 ($P<0.01$) and 2 ($P<0.05$). But the regression line of relationship between Clade-1 and Clade-2 deviated from a 0 origin.

Genetic variation within a species

The intraspecific genetic variation of the four Nuphar species was estimated using two parameters, proportion of shared AFLP fragments between individuals F and nucleotide diversity п (Table 20). There were two groups with regard to F and п; one had high F and low п and included N. japonica and N. pumila, and the other had low F and high $п$ and included N. oguraensis and N. subintegerrima. The proportion of shared fragments between individuals was different significantly ($\mathrm{H}=161.2$, $P<0.0001$)

In intraspecific groups of N. japonica, Clade-1 had higher F and lower п ($F=0.89$, $\Pi=0.0073)$ than those of Clade-2 ($F=0.85, \mathrm{z}=5.68, P<0.0001$; $п=0.0102$; Table 20), while the distributional range of the former group was much greater than that of the latter (Fig. 18).

Genotypic diversity

Statistics summarizing genotypic diversity within and among populations based on the frequencies of MLGs were shown in Table 21. The ratio of distingishable genotypes (MLG/N) of central to south regional taxa and clade, that is, N. oguraensis, N. subintegerrima and Clade-1 of N. japonica, were higher than those of east to north regional taxa and clade, N. pumila and Clade-2 of N. japonica.

In terms of diversity within populations, mean number of MLGs per population, the number of polymorphic populations, the diversity index (D) were higher in central to south regional taxa and clade than in others as was the case with MLG/N, although the differences in these statistics were not significant (Kruskal-Wallis test, $P>0.05$). As for diversity among populations, genetic variation among populations was also high in central to south regional taxa and clade than in others, which was indicated by low mean number of populations per MLG, many locally unique MLGs and low ratio of the commonest MLG, although there were no significant differences statistically (Kruskal-Wallis test, $P>0.05$). In N. japonica, N. oguraensis, and N. pumila the commonest MLGs (e.g. Jap 16, Ogu 6) had wide geographic distribution patterns (Appendix 1).

Morphological analysis

To evaluate morphological differentiation between the two clades of N. japonica, I measured 28 morphological characters; 7 emergent leaf, 7 submerged leaf, 8 floral, 6 fruit characters (Table 22). Significant differences between the two clades of N. japonica were found in 19 characters (t-test, $P<0.05$). Clade-1 had the higher values in 8 characters and the lowest values in 11 characters. The plants of Clade-1 were larger in plant size than those of Clade-2. In leaf morphology, Clade-1 had long
narrowly oblong leaves and narrowly ovoid fruits and seeds. On the other hand, Clade-2 had oblong to ovate leaves, in which sinus is deep like floating leaves and ovoid fruits and seeds.

DISCUSSION

Phylogenetic relationships among species

The neighbor-joining topology based on AFLP data supported interspecific relationships, which were proposed by previous phylogenetic study based on morphology and nrDNA sequences of ITS and matK (Padgett et al. 1999), excepted for N. subintegerrima. Padgett et al. (1999)'s phylogenetic tree was poorly resolved as to relationships among dwarf Nuphar species and their phylogenetic tree was biased for morphological data. As AFLP data provided clear phylogenetic relationships of Japanese Nuphar, further study by AFLP is needed to elucidate phylogeny of the genus Nuphar.

The phylogenetic tree showed both N. pumila and N. oguraensis were sister taxa but well separated phylogenetically. Although Padgett et al. (2002) treated N. oguraensis as a subspecific rank of N. pumila, their distribution ranges do not overlap and the central lacuna of petiole distinguished N. oguraensis from N. pumila (Kadono 1994, Chapters 2 and 6).

In N. oguraensis group, two subclusters were recognized. The first subcluster consisted of N. submersa and the second one included N. oguraensis and N. shimadae, which are morphologically very similar (Miki 1934), with 100% support value. It is probable that N. oguraensis and N. shimadae are conspecific.

The phylogenetic study also showed both N. submersa and N. oguraensis to be sister taxa, but well separated phylogenetically. Nuphar submersa, which is a new
species from Tochigi Prefecture, is a submerged plant in most cases inhabiting rivers and streams (Chapter 6). When N. submersa was cultivated in lentic water, the plants rarely formed incomplete floating leaves with a partially cuticularized leaf blade (data not shown, Yoichi Komine personal communications). It is probable that N. submersa lost the genetic ability to form floating leaves. This result is a case that submerged species has evolved from floating-leaved species in Japan.

Genetic and morphological differentiation of geographic lineage

In my AFLP analysis, the two clades of N. japonica showed significant correlation each other between geographic distance and genetic distance. But the regression line of relationship between Clade-1 and Clade-2 deviated from a 0 origin (Fig. 20). This is an expected pattern when two compared groups do not form a single genetically cohesive group (Good and Wake 1992, Sites Jr. and Marshall 2003). The geographical distribution ranges of the two AFLP groups did not overlap and the two cpDNA haplotypes indicated almost the same distributional patterns (Fig. 18). Furthermore, the plants of the two groups had significantly different morphological traits (Fig. 21, Table 20). Hence these results provide that the two groups are separating from the same cohesive group (Templeton 1989), and allopatric speciation may be in progress in N. japonica.

It is suggested that geographic patterns of species and interspecies lineages of aquatic life, which depended on hydrochory for dispersal, were affected by geographic pattern of water system (e.g. Avise 2000, Takehana et al. 2003). Geographic distribution of subclades of N. japonica and those of N. pumila and N. oguraensis, which are closely related species, showed similar pattern (Fig. 24). The distribution of southern clade and species, Clade-2 of N. japonica and N. oguraensis, is limited to
the region south from Kinki and Tokai district. Geographical border may be existent in central Japan in Nuphar species.

Genetic diversity, differentiation and genotypic variation

Nucleotide diversity, genetic differentiation and genotypic diversities within and among populations of east to north regional clade and species were also lower than those of central to south regional clade and species, although there were no significant differences statistically. It is possible that the eastern to northern populations of Nuphar had experienced bottleneck effect. Glacial-interglacial cycles during the Pleistocene have had profound effects on the evolutionary history and the distribution pattern of northern temperate plants (Avise 2000, Petit et al. 2002, Sawada et al. 2003). Present distributional patterns and geographical genetic variation of Japanese Nuphar may result from distribution of refugia in glacial periods. According to some authors (Beal 1956, Cook 1990, Padgett 1999, Padgett et al. 1999), only two species, N. lutea and N. pumila, are distributed widely in the northern Eurasian Continent. However I recognized more species in Japan (see Chapter 6). The evidences in the previous chapters suggest that genetic and morphological divergence among them, and speciation in Japan. Further molecular study including other old world species and new world species is needed to know detailed evolutional history of the genus Nuphar.

Nuphar subintegerrima showed high level of genetic differentiation, nucleotide and genotypic diversities (Tables 20, 21), regardless the present restricted distribution (Fig. 3). Some studies have indicated an association between the distributional range and genetic variation. That is, broadly distributed species showed higher genetic diversity than the species with restricted distribution.

Endemic species, in particular, showed very low isozyme diversity within and among populations (Lesica et al. 1988, Hamrick and Godit 1989, Santamaría 2002). Genetic differentiation in N. subintegerrima may reflect the isolated situation caused by the disappearance of formerly distributed many populations.

It seems common in aquatic plants that genetic and genotypic variation within populations is low and high among populations (Les 1991, Laushman 1993, Hollingworth et al. 1996, Kaplan and Štěpánek 2003). Similar tendency was confirmed in all Nuphar species (Table 21). The dominance of clonal reproduction results in low genotypic diversity within a population. The species of Nuphar grow clonally with rhizome and the fragments may be transported by water flow and give rise to new ramets (Heslop-Harrison 1955, Smits et al. 1989). No or few seedlings of N. lutea and N. polysepala Engelm. were found in the field and vegetative reproduction was suggested to be dominant in these species (Hart and Cox 1995, Barrat-Segretain 1996). On the other hand, in N. pumila var. ozeensis seedling establishment had been reported in Ozegahara Moor of central Japan (Murayama et al. 1998, Kanai 2002). In this study, many populations of N. japonica, N. oguraensis and N. subintegerrima consisted of several genets, but the number of the clones was limited in many cases (Table 21). In the AFLP analysis, the populations of N. japonica and N. pumila in Hokkaido consisted of some genets (Table 13, Chapter 3). In addition, I observed the seedling establishment in the populations of N. japonica (YA-1), N. oguraensis (HY-8), and N. pumila (URU) (data not shown). Hence seedling establishment may be frequently in Japanese Nuphar species, although vegetative reproduction must be dominant.

The commonest MLGs of N. japonica, N. oguraensis, N. pumila (e.g. Jap 16, Ogu 6; Appendix 1) were distributed widely. In clonal plants, widespread genotypes
indicated that vegetative organ is dispersed in other sites and the same clones spread widely (Hollingsworth et al. 1996, Kadono et al. 1997) or the total number of clones detected is an underestimate (Ellstrand and Roose 1987). In Nuphar, the rhizome is dispersed to the same water body but difficult to disperse to other distant water bodies (Smits et al. 1989, Hart and Cox 1995, Barrat-Segretain 1996). Moreover, these MLGs are homozygote in all loci (Appendix 1). Therefore, it is likely that the widespread MLGs are not the same genet.

A taxonomic revision of genus Nuphar Sm. in Japan

INTRODUCTION

The genus Nuphar Sm . is taxonomically the most problematic genus in the Nymphaeaceae because of its polymorphic morphology (Beal 1956, Padgett et al. 1999). Taxonomic interpretations of Nuphar have varied and two to ca. 20 species have been recognized in the world according to authors (Beal 1956, Cook 1990, Padgett 1999, Padgett et al. 1999). Recent phylogenetic study based on morphological data, cpDNA and nrDNA sequences gave evidence to the presence of two major lineages within this genus, although relationships within the major lineages were poorly resolved (Padgett et al. 1999). One lineage comprises primarily the Old World taxa and the other represents the New World taxa.

In Japan, taxonomic treatments of Nuphar have generally recognized four species, that is, N. japonica, N. oguraensis, N. pumila and N. subintegerrima, and the taxa except for N. pumila are endemic to the East Asia (e.g. Ohwi 1965, Tamura 1982, Kadono 1994). Many taxonomic studies of Nuphar have been conducted in Europe and North America (Morong 1886, Harz 1893, Schuster 1907-1908, Miller and Standley 1912, Heslop-Harison 1955, Beal 1956). However, there have been rather few studies in Asia including Japan. Recent taxonomic studies based on a
restricted number of herbarium specimens by Padgett (1999, 2003) recognized only two species, N. japonica and N. pumila, in Japan.

Taxonomy of Nuphar is problematic because of not only variable morphology but also incomplete herbarium specimens. Herbarium specimens of Nuphar are notoriously incomplete and measurements of dried specimens are considered too inaccurate to allow a critical analysis of variation (Heslop-Harrison 1955, Beal 1956, Padgett 1999). So, intensive studies based on fresh materials of many populations of Nuphar are needed.

In this chapter, I will propose a taxonomic revision of Japanese Nuphar taxa based on the results of previous chapters. I investigated morphology, using fresh materials, and genetic features of many populations in Chapters $1-5$. In addition, I also examined ca. 800 sheets of herbarium specimens, including some European specimens. Specimens in the herbarium of Hiroshima University (HIRO), The Kyoto University Museum (KYO), Makino Herbarium, Tokyo Metropolitan University (MAK), Osaka Museum of Natural History (OSA), The Hokkaido University Museum (SAPS), Botanical Garden of Hokkaido University (SAPT), Taiwan Forest Research Institute (TAIF), The University of Tokyo (TI), National Science Museum, Tokyo (TNS), Tochigi Prefectural Museum (TOCH), Herbarium Tsudanum, Tohoku University (TUS) and Kobe University (tentatively abbreviated as KOBE) were examined. Here six species (Table 23), including four forms, and three nothospecies are enumerated from Japan based on morphological, genetical, ecological and geographical studies. Measurement values refer to fresh materials.

KEY TO THE JAPANESE SPECIES OF NUPHAR

A. Leaves always submerged under natural conditions; submerged leaves narrowly
oblong-triangular, base slightly cordate-sagittate \qquad 1. N. submersa
A. Leaves both emergent or floating as well as submerged; base of leaves with a deep sinus
B. Leaves emergent
C. Emergent leaves widely ovate to oblong, $10-50 \mathrm{~cm}$. Seeds $3.0-5.5 \mathrm{~mm}$ long D. Emergent leaves narrowly ovate to oblong, 25-50 cm long
2. N. japonica
D. Emergent leaves widely ovate to narrowly ovate, $10-30 \mathrm{~cm}$ long
3. N. saikokuensis
C. Emergent leaves rounded, $4-17 \mathrm{~cm}$ long; seeds $5.5-6.5 \mathrm{~mm}$ long
\qquad
B. Leaves floating
C. Anther and filament length ratio 1:1 to 1:2
D. Floating leaves rounded, $4-17 \mathrm{~cm}$ long; seeds $5.5-6.5 \mathrm{~mm}$ long
\qquad
D. Floating leaves widely ovate to narrowly ovate, $10-30 \mathrm{~cm}$ long; seeds
\qquad
C. Anther and filament length ratio 1:2 to 1:3
D. Petiole without lacuna .. 5. N. pumila
D. Petiole with central lacuna .. 6. N. shimadae

TAXONOMY

1. Nuphar submersa Shiga \& Kadono, sp. nov. (Figs. 24, 25, 26).
=Nuphar sp., Plants of Utsunomiya City 146, tab. 34 (2001).
="Nuphar subintegerrima" auct. non Makino: Sekimoto, Index of Plant of Tochigi

Prefecture 19 (1951); Plant Society of Tochigi Prefecture, List of Plants in Tochigi Prefecture 126 (1968); Hasegawa, Vegetation and Flora of Tochigi Prefecture, tab. 155 (1983); Komine, Plants of Tochigi 1: 199 (2003).
="Nuphar japonica" auct. non DC.: Komine, Plants of Tochigi 1: 199 (2003), p. p.; Komine, Plants of Tochigi 2; 142 (2003), p. p.

Haec species nova Nuphari japonicae DC. et N. oguraensi Miki proxima est, sed ab eis foliis submersis anguste oblongis triangulatis, non sinuosis, antheris rufescentibus et fructibus rubris differt.

Typus: JAPAN; Tochigi Pref.; Koshiro, Imaichi-shi, alt. 240 m, Sept. 29, 2004, T. Shiga 3480 (Holotype OSA, Isotypes KYO, TNS).

Description: Perennial aquatic herbs. Rhizomes slender, procumbent, branching. Leaves submerged or rarely floating in lentic water; submerged leaves narrowly oblong-triangular, $10-18 \mathrm{~cm}$ long, $2-5 \mathrm{~cm}$ wide (Figs. 25A, 26), membranaceous, undulate, without sinus; floating leaves narrowly ovate, base slightly cordate-sagittate. Petiole flattened, usually with central lacuna (Fig. 22H). Peduncle raised above the water. Flowers yellow, June to October, 2-3 cm across, protogynous; sepals 5 , obovate, apex rounded, $1-2 \mathrm{~cm}$ long (Figs. $25 \mathrm{C}-\mathrm{D}$); petals spatulate, $5-7 \mathrm{~mm}$ long (Fig. 25E); anthers strongly recurved after anthesis (Figs. 24B, 25G), 1.5-2.5 mm long, the length ratio of anther to filament $1: 2$ to $1: 3$, pollen sack tinged orange to red (Figs. 24C, 25F); carpels many, fused; stigmatic disc tinged reddish to dark red, $4-8 \mathrm{~mm}$ across, $7-9$ rays, shallowly dentate, stigmatic rays usually regularly arranged, 2-3 mm long (Fig. 24A); fruit reddish, ovoid, 2-3 cm long (Fig. 23); seeds numerous, narrowly ovoidal to ovoidal, 3.5-4.5 mm long, 2.5-3.5 mm wide (Fig. 25H).

Japanese name: Shimotsuke-kōhone (nov.)
Distribution: Japan (Tochigi Pref.). Endemic.

Hab.: Rivers and streams.
Note: Nuphar submersa is a new submerged species inhabiting rivers and streams, which resemble N. japonica in the morphology of submerged leaves and N. oguraensis in the flower morphology and petiole anatomy. Narrow oblong submerged leaves and reddish stigmatic disc of this species have been often confused with N. japonica or N. pumila var. ozeensis (Hasegawa 1982, Botany Section of Natural Environment Research Group of Tochigi Prefecture 2003ab), although Hasegawa (2001) suggested this species was different from N. japonica and the the other Nuphar species.

The phylogenetic study (Chapter 5) showed both N. submersa and N. oguraensis (= N. shimadae) were sister taxa but well separated phylogenetically. Diagnostic morphology and life form of N. submersa with submerged leaves alone in lotic water differ from N. oguraensis. Furthermore, N. submersa is isolated ca. 300 km east from easternmost locality of N. oguraensis (Aichi Pref.). Therefore, I described N. submersa as a new species. Further studies about relationships of dwarf Nuphar species is needed to know whether this species should be treated as a subspecies or varietiy of N. pumila.

The investigation of herbarium specimens showed that distribution range of N. submersa was restricted to Tochigi Pref. (Fig. 27). In my field research, only two small populations were located in Tochigi Pref. and most of the populations have been extinct to date; population size of TG-1 was $0.5 \mathrm{~m} \times 30 \mathrm{~m}$ and TG-2 was fragmented in $1 \mathrm{~m} \times 100 \mathrm{~m}$ range. It has proven to be one of the species most urgently in need of protection in the conservation programs of Japanese flora.

The Nuphar plant called "Nagaba-beni-kōhone" by Japanese aquatic plant cultivators is sometimes this species.

Specimens examined：JAPAN：Tochigi Pref．：Hosyakuji－mura，Jul．31，1951，Y．Matsumura s．n． （TNS 011391，016444）；Mine－cho，Utsunomiya－shi，Sept．18，1947，（TOCH 121889）；Shimokawai， Minaminasu－machi，alt． 130 m，Sept．6，1995，Y．Komine 81551 （TOCH）；Nov．2004，H．Hirayama s．n． （KOBE）；Aug．6，2005，T．Shiga 3560－3562（KOBE，OSA）；Koshiro，Imaichi－shi，alt． 240 m，Jul．26， 2003. M．Komakura \＆T．Sugawara s．n．（TOCH 139148）；Sept．30，2004，T．Shiga 3479 （KOBE，OSA），Aug．6， 2005，T．Shiga 3595 （KOBE）；Sakazura，Kawachi－cho，Kawachi－gun，Aug．17，1980，T．Noguchi s．n． （KOBE）；Nomoto－gawa River，Higashimizunuma，Haga－cho，Haga－gun，Aug．8，1988，Y．Kadono 5528 （KOBE）．

2．Nuphar japonica DC．，Syst．Nat．（Candolle）2： 62 （1821）；Icon．Select．Pl．2： 3. tab． 6 （1823）；Miki，Stud．Hist．\＆Nat．Monuments in Kyotohu 18：82．tab．3．F．，fig． 48．A－E（1937）；Makino，Makino’s New Ill．Fl．Jap．tab． 653 （1961）；Ohwi，Fl．Jap． 437. fig． 5 （1965）；Kitamura \＆Murata，Col．Ill．Herb．Pl．Jap．2：252．tab．56，fig 113－1 （1972）；Ohtaki \＆Ishido，Ill．Jap．Water Pl．91．tab． 41 （1980）；Tamura，Wild Fl．Jap． 2：94．pl．93－4（1982）；Lee，Ill．Fl．Korea 339 （1989）；Kadono，Aquat．Pl．Jap．112， 114 （1994）．इNymphaea lutea sensu Thunberg，Fl．Jap．223（1784）．non．L．ミNuphar japonicum DC．var．crenatum Casp．subvar．luteum（＝flava）Casp．，Ann．Mus．Bot． Lugduno－Batavi．2：254，tab．VIII，fig．11－22（1865）；Makino，Bot．Mag．（Tokyo）11： 279 （1897）．ミNymphaea japonica（DC．）Kuntze，Rev．Gen．Pl．1： 12 （1891）．三Nymphozanthus japonicus（DC．）Fernald，Rhodora 21：187（1919）．Lectotype ［designated here］：Icon．Select．Pl．2：3．tab． 5 （1823）．
＝Nuphar japonicum DC．var．stenophyllum Miki，Stud．Hist．\＆Nat．Monuments in Kyotohu 18：82．tab．3．G．，fig．48．F－G（1937）．nom．nud．

Description：Perennial aquatic herbs，procumbent．Rhizomes branching，stout． Leaves spirally arranged，emergent and submerged，rarely floating in deep water； submerged leaves narrowly oblong， $10-50 \mathrm{~cm}$ long， $7-20 \mathrm{~cm}$ wide，membranaceous， margin undulate，or submerged leaves sometimes absent in well grown populations in stagnant water；emergent and floating leaves subcriaceous，narrowly ovate to
oblong, 20-52 cm long, $10-26 \mathrm{~cm}$ wide, base with a deep sinus, entire, apex obtuse to rounded, upper surface glabrous, lower surface slightly pubescent. Petiole usually terete to more of less flattened above (Fig. 22A). Peduncle raised above water. Flowers yellow, June to October, $4-6 \mathrm{~cm}$ across, protogynous; sepals 5, obovate-orbicular, apex rounded, $2-3 \mathrm{~cm}$ long, subcoriaceous, yellow, becoming green in fruit; petals inconspicuous, obovate-cuneate, ca. 8 mm long; anthers many, $3-8 \mathrm{~mm}$ long, ratio of pollen sack to filament length ca. $1: 1$ to $1: 2$; pistil 1 , carpels, many, fused; stigmatic rays $3-6 \mathrm{~mm}$ long; disc of stigma yellow, $7-16 \mathrm{~mm}$ across, $8-23$ rays, dentate; fruit green, ovoid to subglobose, $3-6 \mathrm{~cm}$ long (Fig. 23); seeds numerous, ovoid, $4.0-5.5 \mathrm{~mm}$ long, $2.5-4.5 \mathrm{~mm}$ wide.

Nuphar japonica DC. f. japonica

Japanese name: Kōhone.
Distribution: Japan (Hokkaido, Honshu, Shikoku and Kyusyu) and Korea
Hab.: Lakes, ponds, rivers and streams.
Note: De Candolle (1821) did not designate type specimen of N. japonica DC. in his description. After that, in Icones Selectae Plantarum vol. 2 (Delessert 1823), Turpin illustllated N. japonica (tab. 6) based on original material which was used for description. Thus, I selected the illustration to serve as the lectotype. This plate clearly shows the diagnostic anther and filament ratio, which is ca. 1:1, and narrowly oblong emergent leaf with a deep sinus.

In my genetic and morphological study, two geographical lineages of N. japonica are cleary recognizable (Chapter 5). Although these groups seems to be geographically separating from same cohesive groups and differ in many morphological traits, preliminary artificial cross between the two groups provides
fertile seeds (data not shown) and the morphology between the groups is continuous (Fig. 20). Therefore I did not admit intraspecific rank of N. japonica. Miki (1937) reported narrowly oblong submerged leaf plants as N. japonica var. stenophylla, which is naked name. North distributional group (Clade-1) includes plants of this morphological type (Fig. 20).

Specimens examinedः JAPAN: Hokkaido Pref.: Sarobetsu, Teshio-gun, Sept. 1966, M. Tohyama s.n. (SAPS); Toikanbetsu, Horonobe-cho, Teshio-gun, Jul. 20, 1956, H. Hara s.n. (TI); Jul. 20, 1956, H. Hara \& S. Kurosawa s.n. (TI); Shimonuma, Horonobe-cho, Teshio-gun, Aug. 3, 1940, S. Sugawara 9909 (SAPT); Otoi, Horonobe-cho, Teshio-gun, Sept. 1, 2004, T. Shiga \& S. Takebayashi 89 (KOBE, OSA); Wakkasakanai, Toyotomo-cho, Teshio-gun, Sept. 14, 1982, F. G. Meyer, S. G. March, M. Kawase, D. G. Nielsen and H. Takahashi 18951 (SAPT); Jul. 23, 1987, Y. Kadono 4826 (KOBE); Nakagawa-cho, Nakagawa-gun, Aug. 10, 1918, S. Sugawara 9910 (SAPT); Lake Kimoma-numa, Sarufutsu-mura, Souya-gun, Sept. 4, 1966, S. Hayashi s.n. (SAPS); Asaginodaichi, Sarufutsu-mura, Souya-gun, Aug. 25, 1999 H. Tachibana \& M. Yamazaki s.n. (SAPT); Aug. 31, 2004, T. Shiga \& S. Takebayashi 84 (KOBE, OSA); Lake Kamuito-numa, Asagi, Sarufutsu-mura, Souya-gun, Sept. 2, 2004, T. Shiga \& S. Takebayashi 91 (KOBE, OSA); Lake Mokeuni-numa, Sarufutsu-mura, Souya-gun, Jul. 26, 1998, H. Fujïta 9800655 (SAPT); Takigawa-shi, Aug. 29, 1988, Y. Gouda 127 (KYO); Tsukigaumi, Tsukigata-cho, Kobato-gun, Aug. 10, 1991, Y. Kadono 7145 (KOBE); Sept. 4, 2004, T. Shiga 3467 (KOBE, OSA); Horomui, Iwamizawa-shi, Jul. 13, 1884, K. Miyabe s.n. (SAPS); Jul. 27, 1887, K. Miyabe s.n. (SAPS); May 27, 1906, S. Ito s.n. (SAPS); Bibaitappu, Kita-mura, Sorachi-gun, Sept. 4, 2004, T. Shiga 3469 (KOBE, OSA); Shintotsukawa-mura, Sorachi-gun, Aug. 26, 1960, Y. Matsumura s.n. (KYO); Tsuru-numa Pond, Naganuma-cho, Yubari-gun, Jul. 24, 1967, T. Sasaki s.n. (SAPS); Sapporo-shi, Jul. 1878 (SAPS); Nakanuma-cho, Higashi-ku, Sapporo-shi, Sept. 10, 2004, T. Shiga 3474 (KOBE, OSA); Shirakawa-ku, Sapporo-shi, Oct. 8, 1939, T. Inoue s.n. (SAPS); Shinoro River, Barato, Kita-ku, Sappro-shi, Jul. 14, 1987, Y. Kadono 4630 (KOBE); Porotokotan, Shiraoi-cho, Shiraoi-gun, Aug. 26, 1971, M. Hara 142, 143 (SAPS); Toasa-gawa River, Toasa, Hayakita-cho, Yufutsu-gun, Jul. 15, 1985, Y. Kadono \& G. Wiegleb 876 (KOBE); Toasa-gawa River, Hayakita-cho, Yufutsu-gun, Aug. 25, 1988, Y. Kadono 5631 (KOBE); Tomino, Atsuma-cho, Yufutsu-gun, Aug. 23, 2004, T. Shiga 3444 (KOBE, OSA); Tomakomai-shi, Aug. 21, 1899, J. Hanzawa s.n. (SAPS); Lake Utonai-ko, Tomakomai-shi, Aug. 18, 1975, S. Nakayama et al. s.n. (SAPS); Yufutsu, Tomakomai-shi, Aug. 25, 1892 (SAPS); Aug. 22, 1899, J. Hanzawa s.n. (SAPS); Yufutsu River, Tomakomai-shi, Aug. 24, 1994, H. Takahashi 17543 (SAPS); Bisawa, Tomakomai-shi, Aug. 23, 2004, T. Shiga 3446 (OSA); Bibi-gawa River, Bisawa, Tomakomai-shi, Jul. 14, 1985, Y. Kadono \& G. Wigleb 863 (KOBE); Bibigawa River, Uenae, Tomakomai-shi, Aug. 4, 1991, H. Takahashi 11215 (SAPS); Oikomanai, Taiki-cho, Hiroo-gun, Jul. 26, 1979, E. Miki \& M. Ito 93 (KYO, TNS); Lake Oikamanai-numa, Bansei, Taiki-cho, Hiroo-gun, Aug. 24, 2004, T. Shiga 3457 (KOBE, OSA); Shizukari Moor, Oshamanbe-cho, Yamakoshi-gun, Aug. 9, 1986, Y. Kadono 3958 (KOBE); Utazai , Kuromatsunai-cho, Suttsu-gun, Aug. 9, 1986, Y. Kadono 3945 (KOBE); Esa-cho, Hiyama-gun, Jul. 10, 1950, S. Sugawara 9914 (SAPT); Hakodate-shi, 1861 (TNS); Jul. 1877 (TI); Aug. 1886, S. Nozawa s.n. (SAPS); 1903, U. Faurie 6221 (KYO). Aomori Pref.: Lake Ane-numa, Kamikita-cho, Kamikita-gun, Aug. 6, 1986, Y. Kadono 3854 (KOBE); Itako-numa, Noheji-cho, Kamikita-gun, Jul. 3, 1984, O. Tominaga s.n. (OSA); Lake Usoriyama, Osore-zan, Ohata-cho, Shimokita-gun, Aug. 7, 1986, Y. Kadono 3905 (KOBE); Fukuhara, Kizukuri-cho, Nishitsugaru-gun, Aug. 20, 1989, Y. Kadono 6203 (KOBE);

Kanzawa-tameike Pond, Koshimizu, Kizukuri-cho, Nishitsugaru-gun, Aug. 20, 1989, Y. Kadono 6218 (KOBE); Kizukuri-cho, Nishitsugaru-gun, Jul. 3, 1984, Y. Miyatake \& O. Tominaga s.n. (OSA); Lake Oni-numa, Dekishima, Kizukuri-cho, Nishitsugaru-gun, Aug. 16, 2001, T. Shiga 3639 (OSA), 3640 (KOBE, OSA); Ohtaki-numa, Tateoka-mura, Nishitsugaru-gun, Aug. 1, 1954, I. Yokouchi s.n. (MAK); Wakado-cho, Hirosaki-shi, Sept. 22, 1991, T. Nakamura 626 (KOBE); Saruka, Onoe-cho, Minamitsugaru-gun, Aug. 22, 1880 (TI). Iwate Pref.: Lake Ohnuma, Hachimantai, Hachimantai-shi, Jul. 22, 1953, H. Hara s.n. (TI); Nagai, Tamayama-mura, Iwate-gun, Sept. 20, 1991, T. Nakamura 607 (KOBE); Shimo-nukazuka, Ezuriko-mura, Waga-gun, Sept. 2, 1985, G. Wiegleb \& Y. Kadono 846 (KOBE); Takekoma-cho, Rikuzentakata-shi (Cult.), Aug. 5, 1903, G. Toba s.n. (MAK). Miyagi Pref.: Wakuya-cho, Tooda-gun, Sept. 18, 1991, T. Nakamura 457 (KOBE); Gamou, Miyagi-shi, Jul. 2, 1915, Y. Ogura s.n. (TI). Akita Pref.: Hinai-cho-ohgida, Odate-shi, Jun. 14, 1920, M. Itsumi 257 (KYO, MAK); Akita-shi, 1930 (TI); Aug. 22, 2004, T. Shiga 3438 (OSA); Kamikitatesaruta, Akita-shi, Aug. 15, 2001, T. Shiga 3637 (OSA), 3638 (KOBE, OSA); Lake Ohnuma, Umesawa, Tazawako-cho, Senboku-gun, Jun. 9, 2002, T. Shiga 3118 (KOBE, OSA), 3119 (OSA); Mizuhataya, shimizu, Nakasen-cho, Senboku-gun, Sept. 2, 1985, Y. Kadono \& G. Wiegleb 877 (KOBE); Otogoe, Yuwa-cho, Minamiakita-gun, Aug. 24, 1989, Y. Kadono 6326 (KOBE); Takenari-gata, Konoura-cho, Yuri-gun, Aug. 25, 1989, Y. Kadono 6347 (KOBE). Yamagata Pref.: Tazawa, Murayama-shi, Jun. 9, 2002, T. Shiga 3120 (KOBE, OSA), 3121 (OSA); Naikawa, Tsuruoka-shi, Jul. 27, 1933, S. Murai s.n. (KYO); Shimo-nagabashi, Yuza-cho, Akumi-gun, Aug. 25, 1989, Y. Kadono 6353 (KOBE). Fukushima Pref.: Nozawa, Sekisawa, Iitate-mura, Souma-gun, Aug. 23, 2002, T. Shiga 3250 (KOBE, OSA); Lake Inawashiro, Shidahama, Nakakomatsu, Inawashiro-machi, Yama-gun, Aug. 23, 2002, T. Shiga 3249 (KOBE, OSA); Tairanumanouchi, Iwaki-shi, Aug. 24, 2002, T. Shiga 3252 (KOBE, OSA). Ibaragi Pref.: Lake Kasumigaura, Toyoshima, Azuma-cho, Inashiki-gun, Aug. 27, 1924, Y. Narita s.n. (TI); Lake Kasumigaura, Takasaki, Tamari-mura, Aug. 26, 2001, T. Shiga 3641, 3642 (KOBE, OSA); Ono-gawa River, Shimone-cho, Ushiku-shi, Aug. 25, 2002, T. Shiga 3254 (KOBE, OSA); Sotonasakaura?, Itako-shi, 1900, Y. Suzuki s.n. (MAK); Tsutchiura-shi, Jul. 28, 1883, S. Matsuda s.n. (KYO). Tochigi Pref.: Hitomarujinjya, Konaka-cho, Sano-shi (Cult.?), Aug. 7, 2005, T. Shiga 3572 (KOBE, OSA); Kanuma-shi, Jul. 23, 1901, T. Makino s.n. (MAK). Gunma Pref.: Morinji-numa Pond, Horiku-cho, Tatebayasi-shi, Oct. 7, 1957, H. Tanaka s.n. (TNS). Chiba Pref.: Lake Inba-numa, Jul. 24, 1961, Yano s.n. (MAK); Kashiwa-shi, Sept. 15, 1958, K. Nagata s.n. (TNS); Mama, Ichikawa-shi, Aug. 1, 1893, K. Miyabe s.n. (SAPS); Mobara-shi, Sept. 22, 1920, Osaka Women's college (= Osaka Women's Univ.) s.n. (MAK); Near Ryufuku-ji?, Asahi-shi, Jul. 1939, T. Makino s.n. (MAK). Tokyo Pref.: Tokyo, Jun. 14, 1899, T. Makino? s.n. (KYO); Kokyo-higashigyoen, Chiyoda-ku (Cult.), Jul. 19, 2005, T. Shiga 3539 (KOBE, OSA); Meiji-jingu, Shibuya-ku, 1970, N. Kato 11596, 11600, 11604 (MAK); 1970, N. Kato \& Yano 11601 (MAK); Minami-ike, Meiji-jingu, Shibuya-ku, Oct. 16, 1970, N. Kato 11606-11608 (MAK); Ohmiyahachiman, Wadamura, Suginami-ku, Nov. 6, 1904, T. Makino s.n. (KYO, MAK); Oizumi, Nerima-ku, Jul. 1933, T. Makino s.n. (MAK); Sanpouji-ike Pond, Shakujii, Nerima-ku, C. Kataoka 604 (OSA); Aug. 17, 1900, S. Matsuda s.n. (KYO); Sept. 27, 1939, T. Makino s.n. (MAK); Jun. 13, 1948, T. Makino s.n. (KYO, MAK); Aug. 19, 1948, J. Ohwi \& T. Maruyama s.n. (TNS); Jul. 2, 2004, T. Shiga 3412 (KOBE, OSA); Inokashira, Mitaka-shi, 1914, T. Makino s.n. (KYO, MAK); Ushihama, Fussa-shi, Jul. 7, 1947, T. Kawasaki 6624 (TNS). Kanagawa Pref.: Nakashinden, Ebina-shi, Jul. 2, 2004, T. Shiga 3413, 3414 (KOBE, OSA), 3415 (OSA). Niigata Pref.: Lake Fukushima-gata, Toyosaka-shi, Jul. 30, 1980, Y. Kadono 1101 (KOBE); Lake Fukushima-gata, Shinbana, Toyosaka-shi, Jun. 11, 2002, T. Shiga 3122 (KOBE, OSA); Aug. 5, 2005, T. Shiga 3553 (OSA); Hacchyo-oki, Nagaoka-shi, Oct. 4, 1896, T. Arai s.n. (SAPS); Sekihara, Nagaoka-shi, Jul. 28, 1989, I. Ito s.n. (KOBE); Nov. 22, 2002, T. Shiga 3643 (OSA); Nagamine, Yoshikawa-machi, Nakakubiki-gun, Oct. 10, 2002, T. Shiga 3320 (KOBE, OSA); Lake Amaga-ike, Iwanoko-shinden, Oogata-machi, Nakakubiki-gun, Jun. 8,

2002, T. Shiga 3127-3130 (KOBE, OSA); Oct. 11, 2002, T. Shiga 3318 (KOBE, OSA); Kanda, Sanwa-mura Nakakubiki-gun, August 1, 2003, T. Shiga 3189 (KOBE, OSA). Toyama Pref.: Midarashi Pond, Miyada, Himi-shi, Aug. 4, 1996, H. Marui 1242 (OSA). Ishikawa Pref.: Lake Katano-kamoike, Katano-cho, Kaga-shi, Aug. 10, 2001, T. Shiga 3645 (OSA). Fukui Pref.: Kita-gawa River, Nishinonaka, Mikuni-cho, Sakai-gun, Aug. 28, 1991, Y. Kadono 7150 (KOBE); Sonobe, Takahama-cho, Ooi-gun, Aug. 11, 1970, M. Kuwashima 19532 (OSA); Tsuruga-shi, Sept. 21, 1978, Y. Kadono 1862 (KOBE). Nagano Pref.: Lake Nakatsuna, Oomachi-shi, Jul. 26, 1973, S. Misyo \& S. Tsugaru 1030 (TNS); Lake Nakatuna, Yanaba, Ohmachi-shi, Aug. 18, 1975, K. Seto 21595 (OSA); Aug. 1, 1980, Y. Kadono 1129 (KOBE); Jul. 27, 1990, Y. Kadono 6787 (KOBE). Gifu Pref.: Hiwada, Takane-mura, Oono-gun, Oct. 4, 1986, H. Nagase s.n. (KOBE); Somaga-ike Pond, Hiwada-kougen, Takane-mura, Oono-gun, Oct. 24, 1999, K. Okuda \& M. Kitano 523-15 (SAPT); Kukuri, Kani-shi, Jun. 8, 2001, T. Shiga 3684 (OSA). Shizuoka Pref.: Tsurugaike Pond, Shinohara, Iwata-shi, Sept. 5, 1983, Kurosawa 430 (TNS); Lake Tsuruga-numa, Iwai, Iwata-shi, Jun. 10, 2001, T. Shiga 2764 (OSA); Ukishima-numa, Shizuoka-shi, Sept. 6, 1925, H. Muramatsu s.n. (TI). Mie Pref: Shiraki-cho, Kameyama-shi, Jul. 5, 1990, M. Kuribayashi 371 (OSA); Kamishiraki, Kameyama-shi, Jul. 24, 1991, K. Seto 36535 (OSA); Katsuta, Tamaki-cho, Watarai-gun, Jul. 17, 2002, T. Shiga 3644 (KOBE, OSA); Maeno, Meiwa-cho, Taki-gun, Oct. 14, 1991, T. Nakamura 715 (KOBE). Shiga Pref.: Shiozu, Nishiazai-cho, Ika-gun, Oct. 20, 1988, Y. Kadono 5804 (KOBE); Sakai-gawa River, Imazu-cho, Takashima-gun, Jul. 12, 1988, Y. Kadono 5423 (KOBE); South east of Aiba, Shinasahi-machi, Takashima-gun, Jul. 19, 1996, S. Fujii \& C. Karasaki 5312 (OSA); Zensho, Ohtsu-shi, Aug. 18, 1942, C. Hashimoto 9888 (KYO). Kyoto Pref.: Kameyama Botanical Garden, Kameoka-shi (Cult.), Jun. 20, 1998, M. Watanabe, K. Kadowaki \& M. Miyahara 44 (KYO, OSA). Osaka Pref.: Amagataki-cho, Kishiwada-shi, Aug. 14, 1942, T. Nakazima s.n. (OSA); Bessho, Sennan-shi, Sept. 16, 1962, T. Nakazima s.n. (OSA); Nariai, Kumatori-cho, Sennan-gun, Sept. 23, 1961, K. Seto 11047 (OSA). Hyogo Pref.: Kinashi, Toyooka-shi, Jul. 14, 2002, H. Marui 5154 (OSA); Akasaka-cho, Aioi-shi, Aug. 23, 1976, N. Fukuoka \& N. Kurosaki 670 (KYO, OSA). Wakayama Pref.: Nishinoyama, Naga-cho, Naga-gun, Nov. 3, 2001, T. Shiga 2833 (OSA). Okayama Pref.: Kosaka, Saeki-cho, Wake-gun, Sept. 3, 2001, T. Shiga 3671 (KOBE, OSA); Nov. 4, 2001, T. Shiga 2835 (OSA); Shiroo, Kojima, Kurashiki-shi, Sept. 2, 2001, T. Shiga 3669 (KOBE, OSA). Hiroshima Pref.: Misonou, Higashihiroshima-shi, Aug. 16, 2002, T. Shiga 3241 (KOBE, OSA); Hara, Hachihonmatsu-cho, Higashihirosima-shi, Aug. 16, 2002, T. Shiga 3243 (KOBE, OSA). Yamaguchi Pref.: Osaba, Yamaguchi-shi, Jun. 10, 1893, S. Nikaidoh 204 (TI). Kochi Pref.: Kochi-shi (Cult.), Sept. 1892, T. Makino s.n. (MAK); Jun. 1893, T. Makino s.n. (MAK); Kusaka-gawa River, Shimobun, Hidaka-mura, Takaoka-gun, Nov. 5, 2003, T. Shiga 3371, 3372 (KOBE, OSA); Ryu, Usa-cho, Tosa-shi, Nov. 5, 2003, T. Shiga 3373 (KOBE, OSA). Kumamoto Pref.: Sagara-mura, Kuma-gun, May 31, 1987, Y. Kadono 4520 (KOBE). Miyazaki Pref.: Hasetani, Yasuhisa-machi, Miyakonojo-shi, Nov. 7, 1989, T. Minamitani s.n. (KOBE); Hasetani, Toyomitsu-cho, Miyakonojo-shi, Oct. 2, 2002, T. Shiga 3279 (KOBE, OSA); Matsuo, Kushima-shi, Oct. 2, 2002, T. Shiga 3283 (KOBE, OSA). Kagoshima Pref.: Katayama Flower Park, Katayama, Ibusuki-shi (Cult.?), May 28, 1987, Y. Kadono 4481 (KOBE).

Nuphar japonica DC. f. rubrotincta (Casp.) Kitam., Acta Phytotax. Geobot. 20: 204 (1962); Kitamura \& Murata, Col. Ill. Herb. Pl. Jap. 2: 252 (1972); Tamura, Wild Fl. Jap. 2: 94 (1982); Kadono, Aquat. Pl. Jap. 112 (1994). ミNuphar japonicum DC. var.
crenatum Casp. subvar. rubrotincutum (= rubropicta) Casp., Ann. Mus. Bot. Lugduno-Batavi. 2: 254, tab. VIII, fig. I -VI (1865); Makino, Bot. Mag. (Tokyo) 11: 280 (1897). \equiv Nuphar subintegerrimum (Casp.) Makino f. rubrotinctum (Casp.) Makino, Bot. Mag. (Tokyo) 24: 142 (1910). ミNuphar japonicum DC. var. rubrotinctum (Casp.) Ohwi, Fl. Jap. 437 (1965). nom. nud.; Ohtaki \& Ishido, Ill. Jap. Water Pl. 91 (1980). Lectotype [designated here]: Ann. Mus. Bot. Lugduno-Batavi. 2: 254, tab. VIII, fig. I VI (1865)

Description: Sepals at first yellow then reddish.
Japanese name: Beni-kōhone
Distribution: Japan (only in cultivation)
Note: Type of N. japonica var. crenatum subvar. rubrotinctum was not designated by Caspary (1865). Thus, I selected one illstration of Caspary (1865; tab. VIII, fig. I -VI) on which the description was based, to serve as the lectotype. This plate clearly shows the diagnostic reddish sepals.

Specimen examined: JAPAN: Tokyo Pref.: Koishikawa Botanical Garden, Bunkyo-ku (Cult.), Jun. 28, 1880 (TNS).

Key to the forms of Nuphar japonica:
A. Sepals yellow ... f. japonica
A. Sepals tinged with orange to red \qquad f. rubrotincta
3. Nuphar saikokuensis Shiga \& Kadono, sp. nov. (Fig. 28)
="Nuphar subintegerrimum (Casp.) Makino pro parte" sensu Tamura, Wild Fl. Jap. 2: pl. 94-1 (1982).
="Nuphar subintegerrimum (Casp.) Makino pro parte" sensu Kadono, Aquat. Pl. Jap. fig. 114-115 (1994).
="Nuphar subintegerrimum" acut. non Makino: Suzuki et al., Nat. Hum. Activities 2: 52. pl. 1-2 (1997).

Haec species nova Nuphari japonicae DC. et N. subintegerrimae (Casp.) DC. et N. oguraensi Makino propinqua; ab eis foliis ovatis oblongis, caulibus teretiusculis non lacunaribus differet.

Typus: JAPAN, Pref. Hyogo; Oda-cho, Ono-shi, May 30, 2001, T. Shiga 3223 (OSA).

Description: Perennial aquatic herbs. Rhizomes procumbent, branching. Leaves submerged and floating or emergent; submerged leaves roundish to ovate, $7-30 \mathrm{~cm}$ long, $5-20 \mathrm{~cm}$ wide, membranaceous, margin undulate; floating and emergent leaves ovate to widely ovate, $10-30 \mathrm{~cm}$ long, $7-20 \mathrm{~cm}$ wide, base cordate, apex rounded, upper surface glabrous, lower surface slightly pubescent. Petiole usually terete to more of less flattened above (Fig. 22). Peduncle raised above water. Flowers yellow, June to October, $3-4 \mathrm{~cm}$ across, protogynous; sepals 5, obovate-orbicular, apex rounded, $1.5-2.5 \mathrm{~cm}$ long, subcoriaceous, yellow; petals inconspicuous, obovate-cuneate, $5-8 \mathrm{~mm}$ long; anthers many, $4-6 \mathrm{~mm}$ long, ratio of pollen sack to filament length ca. 1:1 to $1: 2$; pistil 1 , carpels, many, fused; stigmatic rays $2.5-4 \mathrm{~mm}$ long; disc of stigma yellow, 4-11 mm across, 5-17 rays, shallowly toothed; fruit green, narrowly ovoid to ovoid (Fig. 23); seeds numerous, ovoid, 3.5-5 mm long, 3-4.5 mm wide.

Japanese name: Saikoku-hime-kōhone (nov.)
Distribution: Central to Western Japan
Note: Nuphar saikokuensis is morphologically and genetically intermediate among N. japonica, N. oguraensis and N. subintegerrima and considered to be of hybrid origin between N. japonica and N. subintegerrima or among these three
species (mainly Group 4 in Chapter 2). Because this species is more or less fertile and distributes widely in central to western Japan, I treat this taxon as species rank.

Specimens examined: JAPAN: Niigata Pref.: Lake Uwasekigata, Maki-machi, Nishikanbara-gun, Jul. 22, 1979, H. Kariya s.n. (KOBE); Ikenodaira, Koshiji-machi, Santoh-gun, Aug. 27, 1958, S. Iwano 11769 (TUS); Jun. 22, 1973, H. Hujino 15521 (SAPS, TUS); Aug. 6, 1986, H. Hujino 19291 (TUS); Jul. 5, 1989, I. Ito s.n. (KOBE); Ikenodaira, Ojiya-shi, Oct. 13, 2002, T. Shiga 3331 (KOBE, OSA); Lake Asahiike, Uchigango, Ogata-cho, Nakakubiki-gun, Sept. 5, 1988, M. Sasagawa s.n. (KOBE). Fukui Pref.: Kunugi, Kanazu-cho, Sakai-gun, Aug. 10, 2001, T. Shiga 3650, 3651 (KOBE, OSA); Heisenji-cho, Katsuyama-shi, Aug. 10, 2001, T. Shiga 3648 (KOBE, OSA), 3649, 3652 (OSA); Tsuruga, Echizen, May 5, 1933, Z. Tashiro s.n. (KYO); Ikenokochi, Tsuruga-shi, Jul. 18, 1966, K. Seto 15577 (OSA); Ikenodaira Moor, Ikenokouchi, Tsuruga-shi, Aug. 9, 2001, T. Shiga 3646, 3647 (OSA). Gifu Pref.: Mt. Wada, Itoshiro, Shirotori-cho, Gujo-gun, Jul. 1933, G. Itoshiro s.n. (TNS); Jul. 2, 1933, G. Koidzumi s.n. (KYO); Jun. 9, 2001, T. Shiga 3222 (KOBE); Oct. 17, 2003, T. Shiga 3357 (KOBE, OSA); Kashio, Kawabe-cho, Kamo-gun, Jun. 17, 1997, T. Umehara 8087 (OSA); Higashitabirako, Kani-shi, Jul. 18, 1996, H. Takahashi 16543 (KYO); Oct. 1, 2002, T. Shiga 3654 (KOBE, OSA). Aichi Pref.: Tenpaku-cho, Toyohashi-shi, May 22, 1949, K. Torii s.n. (KYO). Mie Pref.: Suzuka-shi (Iino-mura, Ise), Sept. 8, 1951, G. Nakai 5651 (KYO); Asauda, near Shijuku, Ueno-shi, Jun. 9, 1968, I. Hiura s.n. (OSA); Tsuge, Iga-cho, Ayama-gun, Sept. 2002, T. Yamaji s.n. (OSA); Otanuma, Umase, Miyama-cho, Kitamuro-gun, Aug. 6, 1962, K. Seto 11595 (OSA); May 17, 1987, K. Seto 32545 (OSA); Oct. 13, 1995, S. Fujii 4718 (OSA); Oct. 13, 1994, T. Fujii 4957 (OSA). Shiga Pref.: Hamabun, Imazu-cho, Takashima-gun, Aug. 24, 1994, T. Fujii 3973 (OSA); Lake Biwa, Hamabun, Imazu-cho, Takashima-gun, Oct. 6, 1997, S. Fujii 5981 (OSA); Lake Hamabun-numa, Hamabun, Imazu-cho, Takashima-gun, Jun. 7, 2002, T. Shiga 3126 (KOBE, OSA); Warasono, Shinasahi-machi, Takashima-gun, Jun. 7, 2002, T. Shiga 3124 (KOBE, OSA); Aug. 9, 2001, T. Shiga 3661 (KOBE, OSA); Aug. 23, 2002, T. Shiga 3662 (OSA); Lake Biwa, Fukamizo and Harie, Shinasahi-cho, Takashima-gun, Sept. 22, 1994, S. Fujii 4093 (OSA); Lake Biwa, Haginohama, Takashima-cho, Takashima-gun, Sept. 18, 1994, T. Fujii 4048 (OSA); Ohmimaiko, Shiga-cho, Shiga-gun, Dec. 16, 1975, Y. Kadono 1630, 2000 (KOBE); Oct. 21, 1975, Y. Kadono 1856 (KOBE); Jun. 13, 1975, Y. Kadono 1972 (KOBE); Jun. 28, 1976, Y. Kadono 6024 (KOBE); Lake Biwa, Ohmimaiko to Kitahira, Shiga-cho, Shiga-gun, Jun. 30, 1962, G. Murata 16461 (MAK); Shiga-cho, Shiga-gun (Komatsu-mura, Ohmi), Aug. 15, 1937, C. Hashimoto 4531 (KYO, TNS); Sept. 26, 1941, C. Kataoka s.n. (OSA); Lake Nishinoko, Azuchi-cho, Gamo-gun, Sept. 14, 1975, K. Nagai s.n. (KYO, OSA); Tsuda-cho, Ohmihachiman-shi, Aug. 5, 2002, S. Fujii 9260 (KYO, OSA); Ichinobe, Yokaichi-shi, Sept. 21, 1951, M. Hutoh 5271 (OSA); Shin-nunobiki River, Youkaichi-shi, Sept. 2, 1988, Y. Kadono 5659 (KOBE); Lake Biwa, Chuzu-cho, Yasu-gun, Sept. 23, 1994, S. Fujii 4121 (OSA); Noda, Chuzu-cho, Yasu-gun, Jun. 27, 1996, K. Seto 46144 (OSA); Nasaka, Minakuchi-cho, Koka-gun, Oct. 15, 1988, Y. Kadono 5755 (KOBE). Kyoto Pref.: Sunako-ike Pond, Osada, Fukuchiyama-shi, Oct. 13, 1975, Y. Kadono 1980 (KOBE); May 14, 1976, Y. Kadono 1999 (KOBE); May 29, 1977, Y. Kadono 25 (KOBE); Jul. 4, 1981, Y. Miyatake s.n. (OSA); Naka-ike Pond, Ikejiri, Kameoka-shi, Sept. 19, 1976, Y. Kadono 1658, 1928 (KOBE); Kamigamo, Kita-ku, Kyoto-shi, Aug. 2, 1932, J. Ohtuka 4 (KYO); Oharano-Minamikasuga-cho, Nishigyo-ku, Kyoto-shi, Jul. 30, 1998, S. Tsugaru et al. 26637 (KYO, TUS); Daigo, Fushimi-ku, Kyoto-shi, Oct. 10, 1995, G. Murata 71619 (KYO); Sept. 21, 1977, G. Murata et al. 12 (KYO); Aug. 18, 1979, Z. Sato s.n. (TI); Oct. 11, 1977, Y. Kadono 308 (KYO), 1925 (KOBE); Aug. 18, 1978, Y. Kadono 518 (KYO), 1555 (KOBE); Jun. 9, 1977, Y. Kadono 1558 (KOBE); Jul. 4, 1978, Y. Kadono 1564 (KOBE); Oct. 16, 1977, Y. Kadono 1922 (KOBE); Apr. 25, 1978, Y. Kadono 531 (KYO); Sept. 11, 2002, S. Tsugaru et al. 31890
(KYO); Sept. 14, 1963, S. Kitamura \& G. murata 2270 (MAK); Jul. 23, 1977, S. Kitamura s.n. (KYO); May 26, 1921, N. Kinashi s.n. (KYO); May 30, 1979, M. Ito 701 (KYO); Jul. 18, 1980, K. Seto 26229 (OSA); Jun. 2, 1968, K. Nagai 10639 (KYO); May 22, 1931, J. Ohwi s.n. (KYO); Jul. 30, 1977, G. Murata 32688 (KYO). Osaka Pref.: Botanical Gardens Faculty of Science Osaka City Univ., Kisaichi, Katano-shi (cult.), Aug. 5, 2000, G. Murata 72887 (KYO). Hyogo Pref.: Sasayama-shi (Tanba-sasayama), Sept. 9, 1954, Z. Tashiro s.n. (TNS); Aonogahara-cho, Kasai-shi, Oct. 2, 1980, Y. Kadono 1244 (KOBE); Asazuma-cho, Kasai-shi, Sept. 10, 1995, N. Kurosaki \& K. Akai 1723 (KYO, MAK, OSA); Tamaoka-cho, Kasai-shi, Sept. 12, 2002, T. Shiga 3229 (KOBE, OSA); Abiki-cho, Kasai-shi, May 17, 2001, T. Shiga 3221 (KOBE); Ureshino, Yashiro-cho, Katoh-gun, Jun. 23, 1987, Y. Kadono 4536 (KOBE); Kamikume, Yashiro-cho, Katoh-gun, Aug. 17, 1990, Y. Kadono 6805 (KOBE); Yamashiro, Yashiro-cho, Katoh-gun, Jul. 15, 2000, T. Kobayashi 34764 (OSA); Ochihara, Sanda-shi, Sept. 11, 1986, Y. Kadono 3978 (KOBE); Fujiga-oka, Sanda-shi, May 29, 1998, T. Fujii 9538 (OSA); Aug. 28, 1998, T. Fujii 10214 (OSA); Tokura, Sanda-shi, Aug. 11, 1998, T. Fujii 10031 (OSA); Sakai-cho to Daikai-cho, Ono-shi, Sept. 19, 1983, Y. Kadono 3193 (KOBE); Ohhiraki-cho, Ono-shi, Oct. 4, 1986, T. Umehara 1349, 1350 (OSA); Oct. 4, 1986, T. Fujii T-0243 (OSA); Oda-cho, Ono-shi, May 30, 2001, T. Shiga 3223, 3234, 3226 (KOBE); May 27, 2002, T. Shiga 3099 (KOBE, OSA); Aug. 26, 2001, T. Shiga 3665 (OSA); Ohharanoishii, Takarazuka-shi, Sept. 14, 1997, K. Seto 48072 (OSA); Ohharano, Takarazuka-shi, Sept. 12, 1999, H. Kondo 99091201 (OSA); Misaka, Miki-shi, Aug. 26, 1982, Y. Kadono 2113 (KOBE); Iwaya, Shijimi-cho, Miki-shi, Oct. 2, 1994, S. Miyake 3170 (KYO); Aug. 19, 1995, S. Miyake 4059 (OSA); Aug. 5, 1995, S. Miyake 4338 (MAK); Near Nishimino River, Miki-shi, May 19, 1987, I. Yamamoto s.n. (KOBE); Near Ono-shi, Miki-shi, May 19, 1987, I. Yamamoto s.n. (KOBE); Kuchiyokawa-cho, Miki-shi, Jul. 26, 1968, G. Murata \& H. Nishimura 301 (KYO); Shijimi-cho, Miki-shi, Sept. 22, 1968, G. Murata \& H. Nishimura 368 (KYO); Higashiiwao, Kamiso-cho, Kakogawa-shi, Oct. 19, 1981, Y. Kadono 1380 (KOBE); Aug. 21, 1983, Y. Kadono 3117 (KOBE); Aug. 31, 1984, Y. Kadono 3590 (KOBE); Sept. 23, 1984, Y. Kadono 3393, 3397 (KOBE); Nobuka, Kakogawa-shi, Sept. 27, 1987, Y. Kadono 5076 (KOBE); Kamiso-cho, Kakogawa-shi, Sept. 23, 1984, N. Kurosaki 14638 (KYO); Hirano-cho to Kande-cho, Nishi-ku Kobe-shi, Jul. 27, 1982, Y. Kadono 2301 (KOBE); Iwaoka-cho, Nishi-ku, Kobe-shi, Aug. 22, 1984, Y. Kadono 3416 (KOBE); Shinshinden to Hirano-cho, Nishi-ku, Kobe-shi, Aug. 25, 1984, Y. Kadono 3533 (KOBE); Hirano-cho, Nishi-ku, Kobe-shi, May 20, 1990, Y. Kadono 6667 (KOBE); Midorigaoka, Hyogo-ku, Kobe-shi, Aug. 15, 1969, T. Muroi s.n. (TNS); Tadokoro, Goshiki-cho, Tsuna-gun, May 24, 2001, T. Shiga 3220, 3663 (KOBE, OSA); Sept. 12, 2001, T. Shiga 3664 (OSA). Nara Pref.: Saki-cho, Nara-shi, May 22, 1949, M. Hutoh 4177 (OSA); Hokkeji, Nara-shi, Aug. 11, 2002, T. Shiga 3230 (KOBE, OSA). Wakayama Pref.: Kamitonda-cho, Nishimuro-gun, May, 1925, J. Nakajima s.n. (TI); Sou, Nachikatsuura-cho, Higashimuro-gun, Sept. 22, 1996, K. Ohora s.n. (OSA). Okayama Pref.: Goishi, Mitsuishi, Bizen-shi, Sept. 2, 2001, T. Shiga 3668 (KOBE, OSA); Kojima, Kurashiki-shi, Sept. 1, 1991, Y. Obata s.n. (KOBE); Shiroo, Kojima, Kurashiki-shi, Sept. 2, 2001, T. Shiga 3670 (KOBE, OSA); Sugisawa, Saeki-machi, Wake-gun, Sept. 3, 2001, T. Shiga 3672 (OSA). Yamaguchi Pref.: Yamaguchi-shi (Miyano-mura, Yoshiki-gun, Suoh), Sept. 23, 1889, S. Nikaidoh 204 (TNS). Tokushima Pref.: Kandase-cho, Komatsushima-shi, Aug. 17, 2002, T. Shiga 3246 (KOBE, OSA); Higaino-cho, Komatsushima-shi, Sept. 3, 1990, T. Nakamura 104 (KOBE); Shibafu-cho, Komatsushima-shi, Aug. 18, 2002, T. Shiga 3673 (OSA), 3674 (KOBE, OSA); Sept. 13, 2001, T. Shiga 3675 (OSA), 3676 (KOBE, OSA); Taura-cho, Komatsushima-shi, Sept. 12, 2001, T. Shiga 3681 (KOBE, OSA). Kagawa Pref.: Sakamoto, Hiketa-cho, Okawa-gun, Sept. 13, 2001, T. Shiga 3655 (OSA); Tsuruwa, Tsuda-cho, Okawa-gun, Sept. 14, 2001, T. Shiga 3657 (OSA), 3683 (KOBE, OSA); Gomyo, Shirotori-cho, Okawa-gun, Sept. 13, 2001, T. Shiga 3656, 3682 (OSA); Sakaiba, Nishiwake, Ayakami-cho, Ayauta-gun, Sept. 14, 2001, T. Shiga 3658 (KOBE, OSA); Tomikuma, Ayauta-cho, Ayauta-gun, Sept. 14, 2001, T. Shiga 3659 (KOBE, OSA); Sept. 14, 2001,
T. Shiga 3660 (OSA). Ehime Pref.: Daima, Matsumae-cho, Iyo-gun, Nov. 6, 2003, T. Shiga 3367, 3368 (KOBE, OSA). Kumamoto Pref.: Hitoyoshi (Hitoyoshi, Higo), Aug. 20, 1939, K. Mayebara 3011 (TI, TNS); Sagara-mura, Kuma-gun, Jun. 10, 1923, K. Mayebara 2551 (TI, TNS); Hirabaru, Sagara-mura, Kuma-gun, May 31, 1987, Y. Kadono 4510 (KOBE); Nishiki-cho, Kuma-gun (Nishinomura, Higo), Sept. 5, 1953, K. Mayebara 5116 (TI, TNS). Ohita Pref.: Usa-jingu, Minamiusa, Usa-shi, Jun. 12, 1990, T. Nakamura \& Y. Kadono 12 (KOBE); Sept. 30, 2002, T. Shiga 3317 (KOBE, OSA). Miyazaki Pref.: Tomiyoshi, Yamanokuchi-cho, Kitamorokata-gun, Oct. 2, 2002, T. Shiga 3282 (KOBE, OSA); Tomita, Shintomi-cho, Koyu-gun, Nov. 8, 1988, Y. Kadono 5891 (KOBE); Hirata, Kawanami-cho, Koyu-gun, May 26, 1987, Y. Kadono 4461 (KOBE). Kagoshima Pref.: Fumoto, Sendai-shi, Oct. 3, 1965, Hatushima \& Sako 29832 (MAK).
4. Nuphar subintegerrima (Casp.) Makino, Bot. Mag. (Tokyo) 24: 141 (1910)(Fig. 4); Miki, Stud. Hist. \& Nat. Monuments in Kyotohu 18: 84. tab. 3. E., fig. 50. H-O (1937); Ohwi, Fl. Jap. 437 (1965); Ohtaki \& Ishido, Ill. Jap. Water Pl. 93. tab. 42. (1980); Tamura, Wild Fl. Jap. 2: 94. pro parte (pl. 94-1 is N. saikokuensis). (1982); Kadono, Aquat. Pl. Jap. 113-115. pro parte (1994). \equiv Nuphar japonicum DC. var. subintegerrimum Casp., Ann. Mus. Bot. Lugduno-Batavi. 2: 254, tab VIII, fig. 1-10 (1865); Makino, Bot. Mag. (Tokyo) 11: 280 (1887). ミNymphozanthus subintegerrimus (Casp.) Fernald, Rhodora 21: 187 (1919). Lectotype [designated here; Fig. 29]: JAPAN, Prov. Mikawa, Near Toyohashi, Oct. 25, 1893, T. Makino s.n. (MAK 59655!). Syntypes: JAPAN, Prov. Musashi, Tokyo, cult.?, Jul. 10, 1879 (TI?, non vidi). Prov. Iwashiro, Near Shiokawa in Aizu, Aug., 1879, J. Matsumura s.n. (TI?, non vidi). Prov. Tōtōmi, Hamamatsu (TI?, not vidi).

Description: Perennial aquatic herbs. Rhizomes procumbent, branching. Leaves submerged and floating or emergent; submerged leaves roundish to widely ovate, 5-16 cm long, $5-15 \mathrm{~cm}$ wide, membranaceous, margin undulate; floating and emergent leaves roundish, 4-17 cm long, 4-15 cm wide, base cordate, apex rounded, upper surface glabrous, lower surface slightly pubescent. Petiole usually terete to more of less flattened above (Fig. 22C). Peduncle raised above water. Flowers yellow,

June to October, 2-3.5 cm across, protogynous; sepals 5, obovate-orbicular, apex rounded, $1.5-2.5 \mathrm{~cm}$ long, subcoriaceous, yellow; petals inconspicuous, obovate-cuneate, $3-6.5 \mathrm{~mm}$ long; anthers many, 2-3.5 mm long, ratio of pollen sack to filament length ca. 1:1; pistil 1, carpels, many, fused; stigmatic rays $7-11 \mathrm{~mm}$ long, broad, apex rounded; disc of stigma yellow or orange, $4-5 \mathrm{~mm}$ across, $8-12$ rays, shallowly toothed; fruit green or dark red (Fig. 23), ovoid to subglobose, 2-4.5 cm; seeds numerous, widely ovoid, $5.5-6.5 \mathrm{~mm}$ long, $3.5-5 \mathrm{~mm}$ wide.

Japanese name: Hime-kōhone
Distribution: Japan (Tokai Dist., Fukushima Pref. and Tokyo Pref. (only in cultivation?))

Note: Larger plants with ovate to oblong floating or emergent leaves of $15-30 \mathrm{~cm}$ long have often been identified as N. subintegerrima (Kadono 1994). But morphological and allozyme studies (Chapter 2) have revealed these plants to be of hybrid origin between N. japonica and N. subintegerrima or N. oguraensis or among these three species. Nuphar subintegerrima s. s. is easily distinguishable from other taxa.

Natural populations of this species now distribute only in Tokai Distinct, although herbarium specimens were collected in Tokyo, which were presumed to be cultivated ones. Nuphar subintegerrima s. l. including N. saikokuensis have been designated as endangered species in Japan (Environmental Agency of Japan 2000). My study shows that N. subintegerrima s. s. is particularly endangered. I located only five populations, all limited to Tokai Region. Most of its populations are extinct today (Study Group of Flora of Aichi Prefecture 1996). It has proved to be one of the most urgent species in need of protection in the conservation of Japanese flora.

Specimens examined: JAPAN: Tokyo Pref.: Fukiage-gyoen, Ohte-machi, Chiyoda-kub (Cult.?), Jun.

6, 1987, S. Kitamura s.n. (KYO); Kokyo-higashigyoen, Chiyoda-ku (Cult.), Jul. 19, 2005, T. Shiga 3540-3542 (OSA); Shiroganedai-cho, Meguro-ku, Tokyo (Cult.?), Aug. 18, 1946, T. Yamazaki s.n. (TI); Institute for Nature Study, National Science Museum, Meguro-ku (Cult.?), Jul. 7, 1947, G. Hiyama s.n. (TNS); Meguro-ku (Cult.?), Aug. 1946, I. Furusawa s.n. (TI); Tokyo, Sept. 14, 1934, K. Hisauchi s.n. (TI). Gifu Pref.: Matsuki-cho, Takayama-shi, Sept. 17, 1985, H. Nagase s.n. (KOBE); Hino, Gifu-shi, May 24, 1992, K. Yoshida s.n. (TNS); Tachibokubora, Gifu-shi, Sept. 15, 2002, T. Shiga 3228 (KOBE); Oct. 1, 2002, T. Shiga 3653 (KOBE, OSA). Aichi Pref.: Gakuden-chiku, Inuyama-shi, Sept. 30, 1999, K. Okuda \& M Kitano 575-3 (SAPS); Ikenodai, Inuyama-shi, Oct. 6, 2002, T. Shiga 3349 (KOBE); May 10, 2004, T. Shiga 3378 (KOBE); Ueda, Owari, Jul. 12, 1891, T. Ito s.n. (TNS); Nagoya, Jul. 1959, K. inami s.n. (TNS); Narumi-cho, Midori-ku, Nagoya-shi, Aug. 22, 1968, S. Hamashima s.n. (TNS); Nagoya Univ., Higashiyama, Nagoya-shi, Jun. 29, 1946, F. Maekawa 166B91 (TI); Tashiro-cho, Nagoya-shi, Aug. 13, 1917, T. Makino 59656 (MAK); Kamishidami, Moriyama-ku, Nagoya-shi, Oct. 6, 2002, T. Shiga 3275 (KOBE, OSA). Mie Pref.: Oshibuchi, Nansei-cho, Watarai-gun, Oct. 14, 1995, S. Fujii 4633 (OSA); Sept. 12, 1995, K. Seto 44776 (OSA); Aug. 11, 2002, T. Shiga 3234 (KOBE); Sept. 14, 2002, T. Shiga 3227 (KOBE); Kokai, Isobe-cho, Shima-gun, Sept. 12, 1995, K. Seto 44751-44753 (OSA); Ugata, Ago-cho, Shima-gun, Sept. 12, 1995, K. Seto 44758 (OSA): Oct. 16, 2003, T. Shiga 3355 (KOBE).
5. Nuphar pumila (Timm) DC., Syst. Nat. (Candolle). 2: 61 (1821); Sato, Illust. Aquatic Pl. Manchuria, 74 (1942); Ohwi, Fl. Jap. 437 (1965); Kitamura \& Murata, Col. Ill. Herb. Pl. Jap. 2: 253. fig 113-4 (1972); Tamura, Wild Fl. Jap. 2: 94. pl. 94-3 (1982); Zhu, Plantae Medicinales Chinae Breali-rientalis, 352 (1989); Kadono, Aquat. Pl. Jap. 116, 118 (1994); Fu \& Padgett, Fl. China, 115. fig. 110 (2001). ミNympaea lutea β. pumila Timm, Magaz. F. Naturk. Mecklenb. 2: 256 (1792). \equiv Nymphaea pumila (Timm) Hoffm., Deuts. Fl. ed. 2, 1: 241 (1800). ミNymphozanthus pumilus (Timm) Fernald, Rhodora 21: 186 (1919). इNuphar luteum (L.) Sibth. \& Sm. subsp. pumilum (Timm) Beal, J. Elisha Mitchell Sci. Soc. 72: 325 (1956). Neotypes [Beal, J. Elisha. Mitchell. Sci. Soc. 72: 325 (1956)]: Savonia borealis, par. Maaninka, in sinu Juurikkalahti lacus Pöljänjärvi, in fundo limosa, 1918, O. Kyyhkynen, Pl. Fin. Exs. 1170 (P, MO, NY, P, UC, non vidi), Herb. Delessert (G, non vidi).
$=$ Nympaea lutea β. minima Willd., Sp. Pl. 2: 1151 (1799). \equiv Nymphaea minima (Willd.) Smith, Engl. Bot. 32: tab. 2292 (1811).
$=$ Nuphar subpumilum Miki, Stud. Hist. \& Nat. Monuments in Kyotohu 18: 82.
tab. 3. B., fig. 50. A-J (1937). nom. nud.
Description: Perennial aquatic herbs. Rhizomes slender, procumbent, branching. Leaves submerged and floating, rarely emergent in high density or shallow water; submerged leaves roundish to widely ovate, $9-15 \mathrm{~cm}$ long, $9-13 \mathrm{~cm}$ wide, membranaceous, margin undulate; floating leaves widely ovate to ovate, $8-24 \mathrm{~cm}$ long, 6-18 cm wide, base with a deep sinus, entire, apex obtuse to rounded, upper surface glabrous, lower surface slightly pubescent or hirsute. Petiole usually slightly flattened. Vascular bundles of petiole arranged symmetrically with central vascular bundles (Fig. 22B). Peduncle raised above water. Flowers yellow, July to Augst, ca. 2.5 cm across, protogynous; sepals 5, obovate, apex rounded, $1.2-2.5 \mathrm{~cm}$ long, subcoriaceous, yellow; petals narrowly obovate, 4-7 mm long; anthers strongly recurved after anthesis, $1.5-4 \mathrm{~mm}$ long, ratio of pollen sack to filament length $1: 2$ to 1:3; pistil 1, carpels, many, fused; stigmatic disc yellow or red, 4-10 mm across, 6-16 rays, deeply lobed; fruit green or dark red ovoid to subglobose, $2-4 \mathrm{~cm}$ long; seeds numerous, narrowly ovate to ovate, $3-5 \mathrm{~mm}$ long, $1.5-3 \mathrm{~mm}$ wide.

Note: Beal (1956) determined six specimens of two localities as neotypes of N. pumila. I checked Kyyhkynen's material collected at Lake Pöljänjärvi in TNS (duplicate of neotypes?) and this specimen was well concordant with original description.

Some authors have considered that N. pumila has great morphological variability (Heslop-Harrison 1955, Beal 1956). This species closely allied with N. microphylla (Pres.) Fern. in North America, N. oguraensis and N. sinensis Hand.-Mazz. distributed in South China, although phylogenetic relationships among these taxa were poorly resolved (Padgett et al. 1999). These taxa called "dwarf Nuphar" are characterized by small plant size, deep blade sinus size and flat petiole
(Padgett et al. 1999). Padgett (1999) regarded Asian dwarf Nuphar, N. oguraensis and N. sinensis, as subspecies of N. pumila. But Japanese N. pumila and N. shimadae (= N. oguraensis) were morphologically and genetically (Chapter 5) distinguishable and geographically isolated each other (Fig. 27). Hence, I accept both taxa as species in this study. Taxonomic revision of dwarf Nuphar, N. pumila, N. shimadae, N. sinensis and N. microphylla, based on morphological and genetic data is needed.

Nuphar pumila (Timm) DC. f. pumila

Japanese name: Nemuro-kōhone
Distribution: Boreal region of the Old World (from Lapland to east Asia, south to the Baltic areas and local in Scotland, southwestern Poland, Switzerland, adjacent areas of France and Germany, Russia including Sakhalin and Kurils, China and Korea in Eurasia. In Japan, Hokkaido and north Honshu).

Hab.: Lakes, ponds and mires
Specimens examined: JAPAN: Hokkaido Pref.: Lake Meguma-numa, Keihoku, Wakkanai-shi, Sept. 1, 2004, T. Shiga \& S. Takebayashi 213 (OSA); Shimomasuhoro, Wakkanai-shi, Aug. 17, 1980, K. Harusawa s.n. (OSA); Shimotonbetsu, Hamatonbetsu-cho, Esashi-gun, Jul. 20, 1987, Y. Kadono 4759 (KOBE); Lake Oh-numa (Lake Otatomari?), Rishiri Isl., Aug. 17, 1954, S. Sugawara 9917 (SAPT); Lake Otatomari, Rishiri Isl., Rishirifuji-cho, Rishiri-gun, Aug. 9, 1934, M. Tatewaki s.n. (SAPS); Funadomari, Rebun Isl., Rebun-cho, Rebun-gun, Jul. 24, 1933, M. Tatewaki, T. Nakai \& C. Cho 19495 (SAPS); Jul. 25, 1933, M. Tatewaki, T. Nakai \& C. Cho 19439 (SAPS); Lake Chimikeppu, Tsubetsu-cho, Abashiri-gun, Aug. 9, 1953, Class s.n. (SAPS); Aug. 18, 1957, Matsuda 19 (SAPS); Jul. 4, 1970? (MAK); Jul. 25, 1972 (MAK); Aug. 25, 2004, T. Shiga 3597, 3598 (OSA); Lake Akan-ko, Akan-cho, Akan-gun, Aug. 23, 1897, Kawakami s.n. (SAPS); Uryu-numa Moor, Uryu-cho, Uryu-gun, Aug. 23, 1959, M. Xommer s.n. (OSA); Aug. 12, 1998, H. Takahashi 25654 (SAPS); Sept. 6, 2004, T. Shiga 3678 (OSA); Shinsen-numa Moor, Kyowa-cho, Iwanai-gun, Aug. 14, 1938, K. Togashi s.n. (SAPS); Sept. 17, 1966, Ko. Ito s.n. (SAPS); Sept. 5, 2004, T. Shiga 3599 (OSA); Koinuma, Atsuma-cho, Yufutsu-gun, Aug. 23, 2004, T. Shiga 3447, 3448 (KOBE, OSA); Iwaobetsu, Syari-cho, Syari-gun, Jul. 14, 1951, Class s.n. (SAPS); Jul. 30, 1958 (SAPS); Lake Barasanto, Honbekkai, Bekkai-cho, Bekkai-gun, Aug. 30, 2004, T. Shiga \& S. Takebayashi 73 (KOBE, OSA); Nemuro-shi, Aug. 2, 1937, T. Terasaki s.n. (TNS); Jul. 22, 1888, K. Miyabe s.n. (SAPS); Lake Chohboshi-ko, Chohboshi, Nemuro-shi, Aug. 3, 1979, Y. Kadono 842 (KOBE); Aug. 30, 2004, T. Shiga \& S. Takebayashi 72 (OSA); Hanasaki, Nemuro-shi, Aug. 1-2, 1928, S. Saito 959 (TI); Lake

Nanbuto, Katsuragi, Nemuro-shi, Jul. 4, 1987, T. Sasaki 109 (KYO, OSA, TNS); Jul. 3, 1987, T. Sasaki 110 (KYO, SAPS); Jul. 21, 1998, T. Sasaki 124 (KYO, OSA); Aug. 21, 1988, Y. Kadono 5596 (KOBE); Aug. 29, 2004, T. Shiga \& S. Takebayashi 55, 69 (KOBE, OSA), 70 (OSA); Near Nanbuto Lake, Katsuragi, Nemuro-shi, Jul. 23, 1987, Y. Inoue \& T. Sasaki 6896 (KYO, OSA, TNS); Ochiishi, Nemuro-shi, Jul. 15, 1931, J. Ohwi s.n. (KYO, TNS); Tomoshiri, Nemuro-shi, Aug. 6, 1884 (TI); 1894, S. Yamane s.n. (SAPS); Aug. 4, 1884, K. Miyabe s.n. (SAPS); Aug. 6, 1912, D. Hoshi s.n. (SAPS); Aug. 2, 1957, K. Yoshida s.n. (SAPS); Jul. 16, 1961, M. Kikuchi s.n. (TNS); Aug. 16, 1979, M. Hara 147 (SAPS); Kiritappu Moorland, Shinkawa, Hamanaka-cho, Akkeshi-gun, Jun. 15, 1968, Ko. Ito s.n. (SAPS); Kiritappu Moor, Hamanaka, Hamanaka-cho, Akkeshi-gun, Aug. 29, 2004, T. Shiga \& S. Takebayashi 211 (KOBE, OSA); Lake Tokotan-numa, Tokotan, Honmachi, Akkeshi-cho, Akkeshi-gun, Aug. 29, 2004, T. Shiga \& S. Takebayashi 15 (KOBE, OSA), 210 (OSA); Akanuma, Kushiro Moor, Kushiro-shi, Jul. 17, 1987, Y. Kadono 4664 (KOBE); Ashirisechiri River, Kushiro-shi, Jul. 11, 1886, M. Nakamura s.n. (SAPS); Shinkushiro River, Kushiro Moor, Kushiro-shi, Jul. 17, 1987, Y. Kadono 4691 (KOBE); Lake Takkobu-numa, Hosooka, Kushiro-cho, Kushiro-gun, Aug. 25, 1975, Y. Kadono 1639 (KOBE); Aug. 5, 1979, Y. Kadono 861 (KOBE); Jul. 18, 1987, Y. Kadono 4724 (KOBE); Aug. 19, 1988, Y. Kadono 5576 (KOBE); Aug. 9, 1991, Y. Kadono, T. Nakamura \& K. Watanabe 46 (KOBE); Aug. 27, 2004, T. Shiga 3466 (KOBE, OSA); Lake Shirarutoro, Kayanuma, Shibecha-cho, Kawakami-gun, Aug. 9, 1951, M. Tatewaki 41983 (SAPS); Aug. 7, 1991, Y. Kadono 7 (KOBE); Lake Toro, Shibecha-cho, Kawakami-gun, Jul. 9, 1975, Y. Kadono 1645 (KOBE); Aug. 29, 1992, H. Takahashi \& Y. Takashima 15150 (SAPS); Lake Shikaribetsu, Shikaoi-cho, Kato-gun, Jul. 21, 1935, M. Hirano s.n. (OSA); Ohtsu, Toyokoro-cho, Nakagawa-gun, Aug. 24, 2004, T. Shiga 3680 (OSA); Ukishima-koen, Kitahiyama-cho, Setana-gun, Jun. 24, 1998, H. Takahashi 24936 (SAPS). Aomori Pref.: Minamihakkoda, 1965 (TNS); Mt. Kushiga-mine, Minamihakkoda, Aug. 11, 1953, K. Hoshoi s.n. (TNS); Ouse-yachi, Minamihakkoda, Towada-shi, Jul. 21, 1957, K. Hosoi s.n. (TI); Jul. 18, 1962, H. Ohashi s.n. (TI). Akita Pref.: Hachimantai, Aug. 1933, S. Muramatsu s.n. (TI); Lake Naganuma, Hachimantai, Kazuno-shi, Aug. 8. 1931, M. Matsuda s.n. (TNS); Aug. 5, 1951, S. Kurosawa s.n. (TI); Jul. 22, 1953, H. Hara s.n. (TI). KURILS: Toshimoe, Ubetsu, Etorohu Isl. (Iturup Isl.), Aug. 27, 1898, Kawakami 131 (SAPS); Aug. 25, 1928, S. Saito s.n. (TI); Aug. 8, 1939, B. Shimura s.n. (SAPS); Kunashiri Isl., Aug. 7, 1923, M. Tatewaki 3642 (SAPS); 1935, J. Ohwi? s.n. (KYO); Tofutsu, Kunashiri Isl., Sept. 17, 1894, C. Endou 25574 (SAPS); Aug. 20, 1936, M. Tatewaki 25574 (SAPS); Furukappu, Kunashiri Isl., Jul. 22, 1930, Y. Matsumura s.n. (KYO); Aug. 20, 1931, J. Ohwi s.n. (KYO); Notoro, Shikotan Isl, Jun. 22, 1934, M. Tatewaki 20653 (SAPS). SAKHALIN: Fukakusa (Uglezavodsk), S. Sugahara s.n. (KYO); Chipisani (Ozerskii), G. Nakahara s.n. (TI); Aug. 1906, G. Nakahara s.n. (TI, TNS). CHINA: Shangzhi, Heilongjiang, Aug. 13, 2005, Y. Zhu s.n. (OSA). SWEDEN: Hälsingländ, Arbrä, Lillbotjärn, Jul. 1885, N. Söderlund s.n. (TNS); Orsa parish, the church-villege, Jul. 19, 1899, A. Björkman s.n. (TNS); Tarendo parish, Koivuniemi, Jul. 23, 1959, C. G. Alm s.n. (TNS); Säver, Skeppsvik Västerbotten, 1888, N. L. Andersson s.n. (KYO). FINLAND: par. Kirkknummi, Jul. 3, 1963, J. Merilainen \& P. Isoviita s.n. (TNS); Savonia borealis, par. Maaninka, in sinu Juurikkalahti lacus Pöljänjärvi, in fundo limosa, Aug. 4, 1918, O. Kyyhkynen s.n. (TNS; dupulicate of Beal's neotypes?); par. Maaninka, in sinu Juurikkalahti lacus Poljanjarvi, Aug. 4, 1918, O. Kyyhkynen s.n. (TI); par. Vehkalahti, Jul. 6, 1960, L. Fagerstörm s.n. (TNS); Pohjois-Pohjanmaa, Pudsjärvi, Lätväjärvi, Jul. 26, 1973, T. Ulvinen \& E. Ohenoja s.n. (TNS); Sydösterbotten, Krsholm s:n, Karperö, träsk, Aug. 11, 1952, R. Bäck s.n. (TNS). POLAND: Pomerania, Aug. 12, 1938, H. Greinert s.n. (KYO); Rybnik, Jul. 30, 1893 (TI).

Nuphar pumila (Timm) DC. f. ozeensis (H. Hara) Shiga \& Kadono, comb. nov.
[Basionym] Nuphar pumilum (Timm) DC. var. ozeense (Miki) H. Hara, Bot. Mag. (Tokyo) 64: 79 (1951); Ohwi, Fl. Jap. 437. (1965); Kitamura \& Murata, Col. Ill. Herb. Pl. Jap. 2: 253. tab. 56. (1972); Tamura, Wild Fl. Jap. 2: 94. pl. 93-5. (1982); Kadono, Aquat. Pl. Jap. 116, 118 (1994). Holotype: JAPAN, Honshu, Prov. Kodzuke, in stagnum paludis Nakatashiro, Ozegahara, ca. 1400m alt., Jul. 26, 1950, H. Hara s.n. (TI!)
=Nuphar ozeensis Miki, Stud. Hist. \& Nat. Monuments in Kyotohu 18: 82. tab. 3. A., fig. 50. K-T (1937). nom. nud.

Description: Stigmatic disc tinged red and fruit green
Japanese name: Oze-kōhone
Distribution: Japan (Hokkaido and Honshu (Tohoku Dist.))
Hab.: Lakes and mires
Note: The red tinged stigmatic disc has been used as a diagnostic character to classify the various taxa of Nuphar (Beal 1956, Padgett 1998). On the other hand, the stigmatic disc varies in color even within a population (Mochizuki 1972). In the AFLP analysis (Chapter 4), N. pumila var. ozeensis investigated in two localities, GUM and URY, was polyphyletic taxon. Hence, I reduced taxonomic rank of N. pumila var. ozeensis to form.

Specimens examined: JAPAN: Hokkaido Pref.: Uryu-numa Moor, Uryu-cho, Uryu-gun, Aug. 23, 1959, M. Hotta 1670 (KYO); Jul. 27, 1970, Ko. Ito s.n. (SAPS); Aug. 11, 1984, K. Tatsumi \& S. Sakai 4090 (KYO, TI); Jul. 8, 1998, H. Takahashi 25785, 25187 (SAPS); Jul. 23, 1998, H. Takahashi 25295, 25300, 25648 (SAPS); Aug. 12, 1998, H. Takahashi 25639, 25641, 25649 (SAPS); Sept. 6, 2004, T. Shiga 3679 (KOBE, OSA). Yamagata Pref.: Mt. Gassan, Jul. 19, 1964, Y. Yuki s.n. (TNS); Jul. 27, 1964, T. Yamazaki s.n. (TI); Midagahara, Mt. Gassan, Aug. 4, 1948, M. Sato s.n. (TI). Gunma Pref.: Ozegahara Moor, Aug. 17, 1914, D. Hoshi s.n. (TI); Jul. 26, 1922, D. Hoshi 9929 (SAPT); 1924, Takeda \& Tatewaki 935 (SAPS); Jul. 16, 1924, H. Takeda s.n. (TNS); 1929, T. Makino s.n. (MAK); Jul. 26, 1932, Z. Tashiro s.n. (KYO); Jul. 22, 1934, Noguchi s.n. (TNS); Aug. 17, 1941, D. Hoshi s.n. (KYO); Aug. 1, 1949, M. Hutoh 2211 (OSA); Aug. 1950, M. Mizushima s.n. (TI); Jul. 16, 1952, M. Tohyama s.n. (SAPS); Jul. 21, 1952, K. Maeda 14538 (OSA); Jul. 27, 1955, C. Ookawa s.n. (TNS); Kamitashiro, Ozegahara Moor, Aug. 6, 1946, M. Furuse s.n. (KYO); Jul. 20, 1950, M. Togashi 59978 (TI); Jul. 8, 1951, I. Harusawa s.n. (TI); Sept. 4, 1978, H. Hara \& S. Kurosawa s.n. (TI); Aug. 30, 1979, H. Hara \& S. Kurosawa s.n. (TI);

Nakatashiro, Ozegahara Moor, Jul. 23, 1946, M. Furuse 79 (KYO); Aug. 8, 1949 (TNS); Jul. 16, 1950, M. Mizushima s.n. (TI); Jul. 17, 1952, M. Tohyama s.n. (SAPS); Sept. 18, 1978, H. Kanai s.n. (TNS); Sept. 6, 1978, H. Kanai s.n. (TNS); Senaka-aburi-tashiro, Ozegahara Moor, Aug. 30, 1979, H. Hara \& S. Kurosawa s.n. (TI).

Nuphar pumila (Timm) DC. f. rubro-ovaria Koji Ito ex Hideki Takah., M. Yamaz. \& J. Sasaki, J. Jap. Bot. 80: 51. fig. 2 (2005). Holotype: JAPAN, Hokkaido, Sorachi-dhicho, Uryu-gun, Uryu-cho. Uryu-numa mire, alt. 840-850 m, pond J-16. Jul. 23, 1998, H. Takahashi 25288 (SAPS 628!). Paratypes: JAPAN, Hokkaido, Prov. Ishikari, Uryu, Uryunuma bog. Jul. 27, 1970, Ko. Ito s.n. (SAPS 626!). Sorachi-shicho, Uryu-gun, Uryu-cho. Uryu-numa mire, alt. 840-850 m, pond G-04. Jul. 23, 1998, H. Takahashi 25318 (SAPS 627!); Uryu-numa mire, pond I-129. Aug. 2, 2001, M. Yamazaki, M. Mochida \& Y. Fujïmura 01447 (SAPS 629!).

Description: Stigmatic disc and fruit tinged red
Japanese name: Uryu-kōhone
Distribution: Japan (Hokkaido)
Hab.: Mires
Specimens examined: JAPAN: Hokkaido Pref.: Uryu-numa Moor, Uryu-cho, Uryu-gun, Jul. 23, 1998, H. Takahashi 25655 (SAPS); Sept. 6, 2004, T. Shiga 3477, 3478 (KOBE, OSA).

Key to the forms of Nuphar pumila:
A. Stigmatic disc yellow
f. pumila
A. Stigmatic disc tinged with red
B. Fruit green .. f. ozeensis
B. Fruit red \qquad f. rubro-ovaria
6. Nuphar shimadae Hayata, Ic. Pl. Formos. 6: 2. tab. I , fig. 1-11 (1916); Miki, Stud. Hist. \& Nat. Monuments in Kyotohu 18: 84. tab. 3. C., fig. 49. L-T. (illustration
of petiole with lacuna) (1937); Lin, Water Pl. Taiwan 1: 89 (2002); Fu, Fl. China 115 (2001). pro syn. Typus: FORMOSA, Shiuchikuchō, Shimpo, Dec. 1915, Y. Shimada s.n. (Holotype TI!; Isotypes TAIF!).
=Nuphar oguraensis Miki var. akiense Shimoda, J. Phytogeogr. Taxon. 39: 3. fig. 3-4, 9 (1991); Kadono, Aquat. Pl. Jap. 113 (1994). Holotype: JAPAN, Pref. Hiroshima, Kamijiike, Saijo-cho, Higashi-Hiroshima City (Pond 13 in Fig. 7 of Shimoda (1991)), Sept. 24, 1986, M. Shimoda 4713 (HIRO!).

Description: Perennial aquatic herbs. Rhizomes slender, procumbent, branching. Leaves submerged and floating; submerged leaves roundish to ovate, $10-19 \mathrm{~cm}$ long, 9-16 cm wide, membranaceous, margin undulate, many submerged leaves remaining even at floating-leaved stage; floating leaves widely ovate to ovate, 9-19 cm long, 8-15 cm wide, base deeply cordate-sagittate, apex rounded, upper surface glabrous, lower surface slightly pubescent or hirsute. Petiole flattened, with central lacuna or without central vascular bundle (Figs. 22D, E). Peduncle raised above water. Flowers yellow, June to November, $2-3 \mathrm{~cm}$ across, protogynous; sepals 5, obovate, apex rounded, 1-2 cm long; petals, spatulate, 5-7 mm long; anthers strongly recurved after anthesis, $2.5-4 \mathrm{~mm}$ long, ratio of pollen sack to filament length 1:2 to 1:3; pistil 1 , carpels, many, fused; stigmatic disc yellow or red, $5-10 \mathrm{~mm}$ across, $8-15$ rays, shallowly dentate, stigmatic rays usually regularly arranged; fruit green, ovoid, 2-4.5 cm long (Fig. 23); seeds numerous, narrowly ovate to ovate, $3.5-5 \mathrm{~mm}$ long, $2-3.5 \mathrm{~mm}$ wide.

Note: Miki (1934) indicated that N. oguraensis and N. shimadae were morphologically resemble each other, especially in the petioles of both species with central lacuna in his illustration (Miki 1937), although yellow stigmatic disc and glabrous lower surface of floating leaves of N. oguraensis differ from N. shimadae,
which have red stigmatic disc and hirsute floating leaves on the lower surface. In this study, I observed that the floating leaves were much hirsute on lower surface in many specimens of N. oguraensis and the AFLP analysis (Chapter 5) provided strong monophyletic relationship of N. oguraensis and N. shimadae. Furthermore, N. shimadae and N. oguraensis var. akiensis were not separable from N. oguraensis var. oguraensis. Thus, I consider N. oguraensis and N. shimadae are conspecific and N. oguraensis var. akiensis, which have red stigmatic disc (Shimoda 1991), is a synonym of N. shimadae.

Further studies about relationships of dwarf Nuphar species is needed to determine whether N. shimadae should be treated as a subspecies or variety of N. pumila.

Nuphar shimadae Hayata f. shimadae

Japanese name: Beni-ogura-kōhone (= Taiwan-kōhone)

Distribution: Western Japan (Honshu; Chugoku Dist., Shikoku Dist. and Kyushu Dist.), Korea and Formosa

Hab.: Ponds, rivers and streams
Specimens examined: JAPANः Hiroshima Pref.: Kihata, Saijo-cho, Higashihiroshima-shi, Sept. 7, 1990, T. Nakamura 210 (KOBE); Shitami, Saijo-cho, Higashihiroshima-shi, Aug. 16, 2002S, T. Shiga 3244 (KOBE, OSA); Sako-ike Pond, Shimomi, Saijo-cho, Higashihiroshima-shi, Aug. 2, 1987, Y. Kadono 4891 (KOBE). Kochi Pref.: Koda, Kochi-shi, Oct. 1892, T. Makino s.n. (MAK); Koda-gawa River, Koda, Kochi-shi, Nov. 5, 2003, T. Shiga 3364-3366 (KOBE, OSA); Okuda-gawa River, Hata-cho, Ino-machi, Agawa-gun, Nov. 5, 2003, T. Shiga 3362, 3363 (KOBE, OSA). KOREA: Aug. 2004, Y. Kadono s.n. (KOBE). FORMOSA: Nankan, Toyen, Oct. 1924, S. Sasaki s.n. (TNS); Xinzhu (Sintiku), Jul. 28, 1922, T. Ito 9777 (TNS); Sinpo, Sintiku, Nov. 15, 1915, S. Sasaki s.n. (TNS); Oct. 20, 1923, S. Sasaki s.n. (TNS); Taoyuan Hsein, Hsiaoli, Jun. 11, 1928, S. Saito s.n. (TI).

Nuphar shimadae Hayata f. oguraensis (Miki) Shiga \& Kadono, comb. nov.
[Basionym] Nuphar oguraensis Miki, Bot. Mag. (Tokyo) 48: 334. fig. 7 (1934);

Miki, Stud. Hist. \& Nat. Monuments in Kyotohu 18: 84. tab. 3. D., fig. 49. A-K (1937);
Ohwi, Fl. Jap. 437 (1965); Kitamura \& Murata, Col. Ill. Herb. Pl. Jap. 2: 253. fig. 113-3 (1972); Tamura, Wild Fl. Jap. 2: 94. pl. 94-2 (1982); Kadono, Aquat. Pl. Jap. 113, 115 (1994). \equiv Nuphar pumila (Timm) DC. subsp. oguraensis (Miki) Padgett, sida 18: 825 (1999). Lectotype [designed here; Fig. 30]: JAPAN, Hondo, Prov. Yamashiro, Mukojima in Lake Ogura, Jul. 3, 1926, S. Miki s.n. (OSA!). Syntypes: JAPAN, Hondo, Prov. Yamashiro, Mukojima in Lake Ogura, 1926, S. Miki s.n. (OSA!); Prov. Kawachi, Hirakata, Aug., 1933, G. Ikeo s.n. (OSA?, non vidi); Prov. Hizen, The tatara river in Kasuyagori, Sept. 7, 1933, R Koketsu et S. Hanada s.n. (OSA!); Prov. Satsuma, Pond Imuta, Aug., 24, 1927, S. Imamura s.n. (OSA?, non vidi).
="Nuphar subintegerrima" acut non Makino: Miki, Oekol. Stud. Wasserg. Ogura-teich 143 (1927).
="Nuphar sp. (Japanese name: Gifu-Hime-Kōhone)" Takahashi et al., Acta Phytotax. Geobot. 46: 213-215 (1995).

Description: Stigmatic disc yellow
Japanese name: Ogura-kōhone
Distribution: Western Japan (Honshu; Tokai Dist., Kansai Dist. and Chugoku Dist., Shikoku, Kyushu) and Korea

Hab.: Ponds, rivers and streams
Note: Phylogenetic analysis based on the AFLP data (Chapter 5) indicated that N. oguraensis var. oguraensis, taxon with yellow stigmatic disc, and N. shimadae, taxon with reddish stigmatic disc including N. oguraensis var. akiensis, were polyphyletic. Hence, I propose this new combination.

Specimens examined: JAPAN: Gifu Pref.: Hora, Gifu-shi, Jul. 2, 1995, H. Takahashi 16174 (KYO); Oct. 16, 2003, T. Shiga 3356 (OSA); May 10, 2004, T. Shiga 3379 (KOBE, OSA). Aichi Pref.: Yatsukaho, Shinshiro-shi, Oct. 19, 1997, T. Umehara 7547 (OSA); Oct. 19, 1997, T. Fujii 9014 (OSA). Kyoto Pref.:

Prov. Yamashiro, Oct. 19, 1948, M. Hutoh 2433 (OSA); Kyaike, Osada, Fukuchiyama-shi, Aug. 21, 1965, M. Togashi s.n. (TI); Yagi-cho, Funai-gun, Sept. 8, 1957, G. Murata 10774 (TNS); Ohno, Higashibetsuin-cho, Kameoka-shi, Sept. 1, 1995, S. Tsugaru \& T. Takahashi 22552 (OSA); Kameyama Botanical Garden, Kameoka-shi (Cult.), May 27, 1996, S. Tsugaru \& T. Takahashi 23232 (OSA); Yodo River, Yodo, Fushimi-ku, Kyoto-shi, Jul. 13, 1958, K. Seto 10458 (OSA, TNS); Shimoueno, Ooyamasaki-cho, Otokuni-gun, Jul. 1, 1938, H. Yamamoto s.n. (TNS); Lake Ogura-ike, Uji-shi, Jul. 21, 1929, O. Kitadani s.n. (OSA); Jul. 5, 1933, Y. Araki 291 (KYO, TI). Osaka Pref.: Yodo River, Kamishima, Hirakata-shi, Jun. 13, 1960, K. Seto 9290 (OSA). Hyogo Pref.: Joraku, Hikami-cho, Hikami-gun, Jun. 9, 1991, Y. Kadono 7021 (KOBE); Sept. 4, 1991, Y. Kadono 7166 (KOBE); Kako-gawa River, Inahata, Hikami-cho, Hikami-gun, Oct. 18, 1986, Y. Kadono 4158 (KOBE); Ihara, Sannan-cho, Hikami-gun, Sept. 7, 1988, Y. Kadono 5518, 5730 (KOBE); Sept. 17, 1984, Y. Kadono 3462 (KOBE); Ichijima, Ichijima-cho, Hikami-gun, Aug. 4, 1961, H. Koyama 1054 (KYO, MAK, TNS); Atarino, Tannan-cho, Taki-gun, Dec. 15, 1998, T. Fujii 10801 (OSA); Fukada-Park, Fujiga-oka, Sanda-shi, May 9, 1998, T. Fujii 9496 (OSA); May 29, 1998, T. Fujii 9537 (OSA); Aug. 28, 1998, T. Fujii 10215 (OSA); Hinodesaka, Sanda-shi, Jun. 30, 2002, T. Shiga 3148 (KOBE, OSA); Hirono-Kaitaku, Sanda-shi, Aug. 28, 1999, T. Fujii 11587 (OSA); Kawahara, Sanda-shi, Aug. 7, 2000, S. Fujii \& T. Fujii 8097 (OSA); Namita, Sanda-shi, Sept. 5, 1996, T. Fujii 6610 (OSA); Jul. 25, 1999, T. Fujii 11422 (OSA); Sept. 1, 2001, K. Katsura s.n. (MAK, OSA); Jun. 30, 2002, T. Shiga 3149 (KOBE, OSA), 3152, 3153 (OSA); Ohara, Sanda-shi, Aug. 25, 1996, S. Miyake 5176 (MAK); Aug. 25, 1996, T. Fujii 5176 (OSA); Seikanji, Kamo, Sanda-shi, Sept. 9, 1997, T. Fujii 8567 (OSA); Muko-gawa River, Tono, Tannan-cho, Sasayama-shi, Sept. 28, 2001, T. Shiga 2787 (OSA); Jun. 3, 2002, T. Shiga 3100 (KOBE, OSA); Tono, Sasayama-shi, Aug. 28, 1999, T. Fujïi 11585 (OSA); Sept. 27, 2001, T. Yamazaki 1346 (OSA). Hiroshima Pref.: Seranishi-cho, Sera-gun, Aug. 16, 2002, T. Shiga 3240 (KOBE, OSA); Kamitsuda, Seranishi-cho, Sera-gun, Aug. 15, 2002, T. Shiga 3238 (OSA); Kurokawa to Kamitsuda, Seranishi-cho, Sera-gun, Jul. 30, 1988, Y. Kadono s.n. (KOBE); Gion, Fukuda, Daiwa-cho, Kamo-gun, Aug. 19, 2001, K. Katsura s.n. (OSA); Ohara, Shimotokura, Daiwa-cho, Kamo-gun, Aug. 19, 2001, K. Katsura s.n. (OSA); Hina, Nomi, Toyosaka-cho, Kamo-gun, Sept. 14, 1999, K. Okuda \& M. Shimoda 580-5 (SAPT); Nakayadani, Toyosaka-cho, Kamo-gun, Oct. 2, 1979, N. Fukuoka, N. Kurosaki \& M. Ito 2875 (KYO). Tokushima Pref.: Aratano, Anan-shi, Aug. 17, 1965, Abe 19333 (TNS); Ohtsuda-gawa River, Nagaike-cho, Anan-shi, Aug. 3, 1997, T. Umehara 7464 (OSA); Yoshino, Kainan-cho, Kaifu-gun, Sept. 25, 1909, S. Fukui s.n. (MAK). Fukuoka Pref.: Aso-ike Pond, Ikenoyama, Hoshino-mura, Yame-gun, Oct. 3, 2002, T. Shiga 3666, 3667 (OSA). Kumamoto Pref.: Konoe, Higo, May 3, 1953, K. Mayibara 4983 (TI, TNS), 4984 (TI); Nakaharu, Higo, Aug. 20, 1939, K. Mayibara 3012 (TI, TNS). Miyazaki Pref.: Kawasaka-gawa River, Nagai, Kitagawa-cho, Higashiusuki-gun, Sept. 30, 2002, T. Shiga 3314 (KOBE, OSA); Kirihara, Takanabe-cho, Koyu-gun, Aug. 3, 1984, T. Minamitani 36298 (KOBE); Takanabe-cho, Koyu-gun, Jun. 2, 1958, M. Nagasawa s.n. (TNS); Ohyamada-ike Pond, Minou, Saito-shi, Oct. 1, 1989, T. Minamitani 36315 (KOBE); Hamamiya, Takagi-cho, Miyakonojo-shi, Oct. 2, 2002, T. Shiga 3281 (KOBE, OSA). Kagoshima Pref.: Prov. Satsuma, 1899, T. Makino s.n. (MAK); Hazuki, Okuchi-shi, Oct. 8, 1934, Muramatsu s.n. (TI). KOREAः Aug. 2004, Y. Kadono s.n. (KOBE).

Key to the forms of Nuphar shimadae:
\qquad
A. Stigmatic disc yellow f. oguraensis

NATURAL HYBRIDS

1. Nuphar \times fluminalis Shiga \& Kadono, hybr. nov. (N. japonica \times N. submersa; Figs. 16B, D-F, 31)

Haec planta Nuphari japonicae DC. propinqua est, sed ab eis stigmatibus et antheris rufescentibus differt. Affinis N. submersae Shiga \& Kadono, sed ad eis petiolis solidis et foliis sinuosis distat.

Typus: JAPAN, Pref. Tochigi, Sai-kawa River, Saikawa-bashi, Ohashi-cho, Sano-shi, Alt. 30 m, Aug. 7, 2005, T. Shiga 3584 (Holotype OSA, Isotype TNS).

Description: Intermediate between N. japonica (Fig. 16C) and N. submersa (Fig. 16A) in morphology (Fig. 16B). Submerged leaves narrowly ovate, base with a sinus. Similar to N. japonica, but anthers strongly recurved after anthesis (Fig. 16B, D). Stigmatic disc and fruit tinged with red (Fig. 16D).

Japanese name: Nagare-kōhone (nov.)
Distribution: Japan (Tochigi pref.). Endemic.
Hab.: Rivers and streams
Note: The Nuphar plant called "Nagaba-beni-kohone" by Japanese aquatic plant cultivators is this nothospecies in some cases.

Further taxonomic studies about N. pumila and N. submersa is needed to determine whether this nothospecies should be treated as a nothosubspecies or nothovariety of $N . \times$ saijoensis (Shimoda) Padgett and Shimoda

Specimens examined: JAPAN: Tochigi Pref.: Uba-gawa River, Mizuhono-cho, Ashikaga-shi, May 2, 2003, H. Kawauchi s.n. (TOCH); Kurahone, Ohtawara-shi, May 30, 1966, H. Kato s.n. (TOCH 121885); Kuwa-mura, Oyama-shi, Sept. 9, 1934, K. Moritani 1359 (TOCH 12884); Kikusawa-gawa River, Funatsu-cho, Sano-shi, May 26, 2003, H. Kawauchi s.n. (TOCH); Kikusawa-gawa River, Horigome-cho, Sano-shi, Nov. 7, 2002, J. Hasegawa s.n. (TOCH 137486), Aug. 8, 2005, T. Shiga 3587-3590, 3596 (OSA); Sept. 22, 2006, T. Shiga 4015-4017 (OSA); Ishida, Meiji-mura, Kawachi-gun, Jul. 23, 1942, K. Izawa s.n. (TNS 70899); Egawa River, Shimokomagi, Mooka-shi, Alt. 60m, Aug. 7, 2005, T. Shiga 3568-3571 (OSA);

Sept. 22, 2006, T. Shiga 4021 (OSA); Sai-kawa River, Ohashi-cho, Sano-shi, Alt. 30 m, Aug. 7, 2005, T. Shiga 3578-3583 (OSA); Sept. 22, 2006, T. Shiga 4018-4020 (OSA).
2. Nuphar \times hokkaiensis Shiga \& Kadono, hybr. nov. (N. japonica \times N. pumila; Fig. 32)
="Nuphar pumila (Timm) DC. var. ozeensis" acut non H. Hara: Ito, Jour. Jap. Bot. 42: 242 (1967).
$=" N$. japonica \times pumila" Swindells, Waterlilies 134 (1983).
Haec planta Nuphari japonicae DC. et N. pumilae (Timm) DC. propinqua est, sed ab eis foliis emersis ovatis oblongis, stigmatibus luteis vel rubris, fructibus chloris vel rubris differet.

Typus: JAPAN, Pref. Hokkaido; Lake Konuma, Oshima-shicho, Nanae-cho. alt. 120-130m, Sept. 9, 2004. T. Shiga 3471 (Holotype OSA, Isotype SAPS).

Description: Intermediate between N. japonica and N. pumila in morphology. Similar to N. japonica, but anthers strongly recurved after anthesis. Stigmatic disc is yellow or tinged with red. Fruit is green or tinged with red.

Japanese name: Hokkai-kōhone (nov.)
Distribution: Japan (Hokkaido)

Note: Although an artificial hybrid between N. japonica and N. pumila was well known among aquatic plant cultivators, natural hybrid of this combination had not been reported (Swindells 1983). Because some N. \times hokkaiensis have red stigmatic disc, this hybrid species has often been identified as N. pumila var. ozeensis in Hokkaido, Japan (Ito 1967). Nuphar \times hokkaiensis has partly to fully fertile pollens (Chapter 3).

Further taxonomic studies about N. pumila and N. shimadae is needed to make clear whether this nothospecies should be treated as a nothosubspecies or
nothovariety of $N . \times$ saijoensis (Shimoda) Padgett and Shimoda.
Specimens examined: JAPAN: Hokkaido Pref.: Asajino Moor, Sarufutsu-mura, Souya-gun, Aug. 26, 1999, M. Yamazaki 9964, 9965 (SAPT); Lake Kamuito-numa, Asajino, Sarufutsu-mura, Souya-gun, Jul. 21, 1987, Y. Kadono 4782 (KOBE); Sept. 2, 2004, T. Shiga \& S. Takebayashi 92 (KOBE, OSA); Lake Kimamo-numa, Sarufutsu-mura, Souya-gun, Jul. 28, 1966, Ko. Ito s.n. (MAK, SAPS, TI); Aug. 28, 1966, S. Hayashi s.n. (SAPS); Sept. 4, 1966, S. Hayashi s.n. (SAPS); Jul. 21, 1967, Ko. Ito s.n. (SAPS); Jul. 21, 1987, Y. Kadono 4778 (KOBE); Lake Sansen-numa, Kamisarufutsu, Sarufutsu-mura, Souya-gun, Sept. 2, 2004, T. Shiga \& S. Takebayashi 212 (KOBE, OSA); Lake Mokeuni-numa, Sarufutsu-mura, Souya-gun, Jul. 26, 1998, H. Fujita 9800653 (SAPT); Aug. 5, 1998, H. Takahashi 25534 (SAPS); Soarobetsu Mire, Toyotomi-cho, Teshio-gun, Aug. 3, 1995, H. Fujita 9500442, 9500443 (SAPT); Tsukigaumi, Tsukigata-cho, Kabato-gun, Jul. 13, 1982, H. Takahashi \& H. Kariya 2712 (SAPS); Sept. 4, 2004, T. Shiga 3468 (KOBE, OSA); Oshima, Kameda (SAPS); Lake Jyunsai-numa, Nanae-cho, Kameda-gun, Aug. 17, 1888 (SAPS); Sept. 1913, S. Nishida s.n. (SAPS); Lake Konuma, Nanae-cho, Kameda-gun, Aug. 8, 1986, Y. Kadono 3926 (KOBE); Aug. 18, 1989, Y. Kadono 6173 (KOBE); Sept. 9, 2004, T. Shiga 3470, 3472 (KOBE, OSA); Lake Ohnuma, Nanae-cho, Kameda-gun, Aug. 9, 1906, K. Saida s.n. (TNS); Jul. 9, 1916 (SAPS); Aug. 15, 1916, F. C. Greatrex 170 (SAPS); Jul. 10, 1956, T. Yamazaki s.n. (TI); Sept. 15, 1980, M. Hara 137, 138, 145 (SAPS); Jul. 20, 1980, M. Hara 141 (SAPS); Aug. 16, 1984, M. Hara s.n. (SAPS); Aug. 8, 1986, Y. Kadono 3923 (KOBE); Sept. 9, 2004, T. Shiga 3473 (KOBE, OSA); Lake Kimonto-numa, Taiki-cho, Hiroo-gun, Aug. 9, 1998, H. Takahashi 25628 (SAPS).
3. Nuphar \times saijoensis (Shimoda) Shiga \& Kadono, comb. nov. (N. japonica $\times N$. shimadae)
[Basionym] Nuphar japonica DC. var. saijoense Shimoda, J. Phytogeogr. Taxon. 39: 5. fig. 5-6, 10 (1991); Kadono, Aquat. Pl. Jap. 112 (1994). \equiv Nuphar \times saijoensis (Shimoda) Padgett and Shimoda (= N. japonica \times N. pumila subsp. oguraensis (Miki) Padgett), Aquat. Bot. 72: 171 (2002). Holotype: JAPAN, Hiroshima Pref., Gouso, Saijo-cho, Higashi-hiroshima City (Pond 50 in Fig. 7 of Shimoda (1991)). Jun. 27, 1989, M. Shimoda 4742 (HIRO!).

Description: Intermediate between N. japonica and N. shimadae in morphology. Similar to N. japonica, but anthers strongly recurved after anthesis. Stigmatic disc is yellow or tinged with red.

Japanese name: Saijō-kōhone
Distribution: Western Japan.

Note: Shimoda (1991) described this taxon as a variety of N. japonica and suggested hybrid origin between N. japonica and N. oguraensis var. akiensis. Padgett et al. (2002) investigated Nuphar plants in Saijo Basin, Hiroshima Pref., including type localities of N. oguraensis var. akiensis and N. japonica var. saijoensis and determined N. japonica var. saijoensis to be of hybrid origin between N. japonica and N. oguraensis var. akiensis. Then, they treated with N. oguraensis as a subspecies of N. pumila. Thus, $N . \times$ saijoensis (Shimoda) Padgett and Shimoda is applied to hybrid between N. japonica and N. pumila. Hence, I proposed a new combination as hybrid between N. japonica and N. shimadae (= N. oguraensis var. akiensis).

Specimens examined: JAPAN: Kyoto Pref.: Ten-noh, Tanabe-cho, Tuzuki-gun, Sept. 14, 1980, Y. Kadono 1139 (KOBE). Hiroshima Pref.: Kamitsuda, Seranishi-cho, Sera-gun, Aug. 15, 2002, T. Shiga 3239 (KOBE, OSA); Seranishi-cho, Sera-gun, Aug. 16, 2002, T. Shiga 3242 (KOBE, OSA); Nitanda, Seranishi-cho, Sera-gun, Aug. 15, 2002, T. Shiga 3677 (KOBE, OSA); Yamato-cho, Kamo-gun, Aug. 3, 1987, O. Sekino \& I. Yamamoto s.n. (KOBE); Gouso, Saijo-cho, Higashihiroshima-shi, August 16, 2002, T. Shiga 3245 (KOBE, OSA); Hachihonmatsu, Higashihiroshima-shi, May 13, 1978, Y. Kadono 1855 (KOBE). Kochi Pref.: Hizume-gawa River, Satokaida, Nangoku-shi, Nov. 5, 2003, T. Shiga 3359-3361 (KOBE, OSA); Kusaka-gawa River, Shimobun, Hidaka-mura, Takaoka-gun, Nov. 5, 2003, T. Shiga 3369, 3370 (KOBE, OSA). Fukuoka Pref.: Ohkado, Syonai-cho, Kaho-gun, Jun. 7, 1989, S. Tsutsui s.n. (KOBE). Miyazaki Pref.: Eda, Kitagawa-cho, Higashiusuki-gun, Nov. 25, 1989, T. Minamitani s.n. (KOBE); Sept. 30, 2002, T. Shiga 3315 (KOBE, OSA), 3316 (KOBE); Jizo-ike Podn, Oose-cho, Miyazaki-shi, Oct. 28, 1989, T. Minamitani s.n. (KOBE); Oct. 1, 2002, T. Shiga 3287 (KOBE, OSA).

ACKNOWLEDGMENTS

I am very grateful to my advisor, Dr. Yasuro Kadono (Kobe University) for his invaluable guidance. And I also appreciate Dr. Kuniaki Watanabe, Dr. Keiko Kosuge, Dr. Hiroshi Kudoh, Dr. Satoko Iida, Dr. Tetsuhiro Kawagoe, Mr. Jiro Sugisaka (Kobe University), Dr. Jun Ishii (The University of Tokyo), Dr. Yuki Shibayama, and all members of laboratory of biodiversity research group (Kobe University) for their valuable comments and continued support throughout my study.

I am grateful to the following people for their help with sampling the plant materials: Mr. Mituru Usuba, Dr. Takahide Kurosawa (Fukushima University), Mr. Yukio Kosaka, Mr. Naoyuki Shimizu, Dr. Susumu Ishizawa (Research Center of Plants of Niitsu City), Mr. Keita Tanaka, Mr. Atushi Syoji (Niigata University), Ms. Eriko Mashima, Ms. Akiko Hirayama (Fukui Nature Conservation Center), Mr. Hideki Marui, Dr. Shinichi Takagawa (The University of Tokyo), Mr. Yoshihiro Takai, Mr. Ryouji Naruse, Mr. Naoyoshi Nagase, Dr. Syunsuke Serizawa (Aichi University of Education), Dr. Takashi Nishimoto (Okayama Prefectural Nature Conservation Center), Dr. Makoto Mochida (Hokkaido University), Ms. Mami Yamazaki (Sapporo Museum Activity Center), Mr. Junichi Sasaki, Mr. Yoshito Ueda, Ms. Yuko Sakiyama, Mr. Shyuichiro Takebayashi, Ms. Yuko Tamaki, Ms. Youko Tsukasaki, Mr. Michiaki Mori, Ms. Hiroko Hirayama, Ms. Yoshiko Shibata, Mr. Shinichi Shibata, Mr. Masami Tezuka (Nikko Museum of Japanese History), Mr. Yoichi Komine and Mr. Tatsuya Noguchi, and Ms. Yuko Shiga.

I would like to thank Dr. Keiko Murayama (Kyusyu University), Dr. Takeshi Suzuki (Museum of Nature and Human Activities), Dr. Toshiaki Kondo (Hiroshima University), Mr. Shingo Kaneko (Hiroshima University), Mr. Daisuke Saito, Mr.

Takumi Saito, Ms. Akiko Minaga, and Mr. Masato Ozeki for their helpful advice with my electrophoresis and DNA analyses. Especially, Dr. Yuji Isagi (Kyoto University) gave free access to the use of a sequencer in his laboratory and gave me critical advice of my genetic studies.

Dr. Michio Wakabayashi (MAK), Dr. Akiko Shimizu (TI), Dr. Hideki Takahashi (SAPT), Dr. Mikio Azuma (SAPS), Dr. Yuichi Kadota (TNS), Dr. Tomio Yamaguchi (HIRO), Dr. Koji Yonekura (TUS), Dr. Hidetoshi Nagamasu (KYO), Dr. Akiyo Naiki (OSA) and Dr. Hiroshi Ogura (TOCH) kindly assisted me for permission to examine herbarium specimens. Dr. A. Naiki also kindly assisted me with Latin description.

Finally, I would also like to thank my uncle and aunt, Taizo Kimiya and Kazue Kimiya, and my family, Tatsuo Shiga, Kenichi Shiga, Yuko Shiga, and Kanasa Shiga.

REFERENCES

Akiyama H., Suzuki T. (1998) Starch gel electrophoresis for botanical research. Humans and Nature 9: 97-114 (in Japanese).

Arnold M. L. (1997) Natural hybridization and evolution. Oxford University Press, Oxford.

Arnold M. L., Hamrick J. L., Bennett B. D. (1990) Allozyme variation in Louisiana Irises: a test for introgression and hybrid speciation. Heredity 65: 297-306.

Avise J. C. (2000) Phylogeography. Harvard University Press, Cambridge \& London.
Barrat-Segretain M.-H. (1996) Germination and colonization dynamics of Nuphar lutea (L.) Sm. in a former river channel. Aquat. Bot. 55: 31-38.

Beal E. O. (1956) Taxonomic revision of the genus Nuphar Sm. of North America and Europe. J. Elisha Mitchell Sci. Soc. 72: 317-346.

Bohonak A. J. (2002) IBD (Isolation By Distance): a program for analyses of isolation by distance. J. Heredity 93: 153-154.

Botany Section of Natural Environment Research Group of Tochigi Prefecture (2003a) Plants of Tochigi 1: A Resarch of Natural Environments of Tochigi prefecture. Division of Natural Environment, Department of Forestry, Tochigi Prefecture, Utsunomiya (in Japanese).

Botany Section of Natural Environment Research Group of Tochigi Prefecture (2003b) Plants of Tochigi 2: The List of Specimens. Division of Natural Environment, Department of Forestry, Tochigi Prefecture, Utsunomiya (in Japanese).

Buekle C. A., Morris R. J., Asmussen M. A., Rieseberg L. H. (2000) The likelihood of homoploid hybrid speciation. Heredity 84: 441-451.

Caspary R. (1866) Nymphaeaceae. In: Miquel, F. A. G. (ed.) Ann. Mus. Bot. Lugd.-Bat. II . pp. 241-256.

Cook C. D. K. (1990) Aquatic Plant Book. SPB Academic Publishing, Hague.
De Candolle A. P. (1821) Nymphaeaceae, Nuphar japonica. Syst. Nat. 2: 62.
Dejoode D. M., Wendel J. F. (1992) Genetic diversity and origin of the Hawaiian islands cotton, Gossypium tomentosum. Amer. J. Bot. 79: 1311-1319.

Delessert B. (1823) Icones Selectae Plantarum vol. 2. Apud Fortin Masson et Sociorum, Parisiis.

Ellstrand N. C., Roose M. L. (1987) Patterns of genotypic diversity in clonal plant
species. Amer. J. Bot. 74: 123-131.
Environmental Agency of Japan (2000) Threatened Wildlife of Japanः Red Data Book 2nd Edition, vol. 8, Vascular Plants. Japan Wildlife Research Center, Tokyo (in Japanese).

Felsenstein J. (1993) PHYLIP (Phylogeny Inference Package) version 3.5c. Department of genetics, University of Washington, Seattle, USA.

Good D. A., Wake D. B. (1992) Geographic variation and speciation in the torrent salamanders of the genus Rhyacotriton (Caudata: Rhyacotritonidae). Uni. Calif. Pub. Zool. 39: 131-147.

Gottlieb L. D. (1972) Levels of confidence in the analysis of hybridization in plants. Ann. Mo. Bot. Gard. 59: 435-446.

Gottlieb L. D. (1982) Conservation and duplication of isozymes in plants. Science 216: 373-380.

Grant V. (1983) Plant speciation second edition. Columbia University Press, New York.

Gross B. L., Rieseberg L. H. (2005) The ecological genetics of homoploid hybrid speciation. J. Heredity 96: 241-252.
Hamrick J. L., Godit M. J. W. (1989) Allozyme diversity in plant species. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. (eds.), Plant Population Genetics, Breeding, and Genetic Resources, Sinauer Associates, Sunderland, pp. 43-63.
Hara H. (1951) Observations on some plants of the Ozegahara moor, central Honshu. Bot. Mag. Tokyo 64: 74-80.
Harrison R. G. (1993) Hybrid and hybrid zones: historical perspective. In: Harrison RG (ed) Hybrid zones and the evolutionary process. Oxford University Press, New York, Oxford, pp 3-12.
Hart K. H., Cox P. A. (1995) Dispersal ecology of Nuphar luteum (L.) Sibthorp \& Smith: abiotic seed dispersal mechanisms. Bot. J. Linn. Soc. 119: 87-100.

Harz C. O. (1893) Ueber zwei für Deutschland neue NupharArten. Bot. Centralbl. 53: 224-231.

Hasegawa J. (1982) Vegetation and Flora of Tochigi Prefecture. Tochinohashobo, Kanuma (in Japanese).

Hasegawa J. (2001) Plants of Utsunomiya City. Private publication, Utsunomiya (in Japanese).

Heslop-Harrison Y. (1953) Nuphar intermedia Ledeb., a presumed relict hybrid, in

Britain. Watsonia 3: 7-25.
Heslop-Harrison Y. (1955) Nuphar. J. Ecol. 43: 342-355.
Hollingsworth P. M., Preston C. D., Gornall R. J. (1996) Genetic variability in two hydrophilous species of Potamogeton, P. pectinatus and P. filiformis (Potamogetonaceae). Plant Syst. Evol. 202: 233-254.

Huchison D. W., Templeton A. R. (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evoltion 53: 1898-1914.

Innan H., Terauchi R., Kahl G., Tajima F. (1999) A method for estimating nucleotide diversity from AFLP data. Genetics 151: 1157-1164.

Ito K. (1967) Distribution of the Nuphar species in Hokkaido. Jour Jap Bot 42: 242-243, 381 (in Japanese).
Jin L., Chakraborty R. (1993) Estimation of genetic distance and coefficient of gene diversity from single-probe multilocus DNA fingerprinting data. Mol. Biol. Evol. 11: 120-127.

Johansson M. E., Nilson C. (1993) Hydrochory, population dynamics and distribution of the clonal aquatic plant Ranunculus lingua. J. Ecol. 81: 81-91.
Kadono Y. (1994) Aquatic Plants of Japan. Bun-ichi Sogo Shuppan, Tokyo (in Japanese).
Kadono Y. (1995) Present state and some future problems in the studies of aquatic macrophytes in Japan. J. Phytogeogr. Tax. 43:9-14 (in Japanese).
Kadono Y., Nakamura T., Suzuki T. (1997) Genetic uniformity of two aquatic plants, Egeria densa Planch. and Elodea nuttallii (Planch.) St. John, introduced in Japan. Jpn. J. Limnol. 58: 197-203.
Kanai H. (2002) Change of distribution of Nymphaea tetragona Georgi and Nuphar pumilum DC. var. ozeense H.Hara (Nymphaeaceae) in an interval of 16 years on basis of pool catalog databese of the Ozegahara moor, central Japan. J. Jap. Bot. 77: 38-46 (in Japanese, with English abstract).
Kaplan Z., Štěpánek J. (2003) Genetic variation within and between populations of Potamogeton pusillus agg. Plant Syst. Evol. 239: 95-112.

Kitamura S., Murata G. (1961) Colored Illustrations of Herbaceous Plants of Japan II (Choripetalae). Hoikusha, Osaka (in Japanese).

Kovach W. L. (1999) MVSP A Multi Variate Statistical Package for Windows, ver. 3.1. Kovach Computing Services, Pentraeth, Wales.

Langella O. (2002) Populations, ver. 1.2.28. CNRS, Gif sur Yvette.

Langlet O. F. J., Søderberg G. E. (1927) Über die chromosomen-zahlen einiger Nymphaeaceen. Acta Horti Berg. 9: 85-104.

Laushman R. H. (1993) Population genetics of hydrophilous angiosperms. Aquat. Bot. 44: 147-158.

Lee T. B. (1989) Illustrated flora of Korea. Hyangmoonsa, Seoul.
Les D. H. (1991) Genetic diversity in the monoecious hydrophile Ceratophyllum (Ceratophyllaceae). Amer. J. Bot. 78: 1070-1082.

Les D. H., Philbrick C. T. (1993) Studies of hybridization and chromosome number variation in aquatic angiosperms: evolutionary implications. Aquat. Bot. 44: 181-228.

Les D. H., Schneider E. L., Padgett D. J., Soltis P. S., Soltis D. E., Zanis M. (1999) Phylogeny, classification and floral evolution of water lilies (Nymphaeaceae; Nymphaeales): a synthesis of non-molecular, rbcL, matK, and 18s rDNA data. Syst. Bot. 24: 28-46.
Lesica P., Leary R. F., Allendorf F. W. (1988) Lack of genetic diversity within and among populations of an endangered plant, Howelia aquatilis. Conserv. Biol. 2: 275-282.

Lin C. (2002) Water Plants of Taiwan vol. 1. Field Vision Publishing, Taipei.
Lippok B., Renner S. S. (1997) Pollination of Nuphar (Nymphaeaceae) in Europe: flies and bees rather than Donacia beetles. Plant Syst. Evol. 207: 273-283.
Lippok B., Gardine A. A., Williamson P. S., Renner S. S. (2000) Pollination by flies, bees, and beetles of Nuphar ozarkana and N. advena (Nymphaeaceae). Amer. J. Bot. 87: 898-902.

Lowe A, Harris S, Ashton P (2004) Ecological genetics. Blackwell Publishing, Malden, Oxford, Carlton.
Makino T. (1910) Observations on the flora of Japan. Bot. Mag. Tokyo 24: 137-147.
Mantel, N. (1967) The detection of disease clustering and a generalized regression approach. Cancer Research 27: 209-220.

Metz E. C., Kane R. E., Yamaguchi H., Palumbi S. R. (1994) Fertilization between closely related sea urchins is blocked by incompatibilities during sperm-egg attachment and early stages of fusion. Biological Bulletin 187: 23-34.
Miki S. (1934) On fresh water plants new to Japan. Bot. Mag. Tokyo 48: 326-337.
Miki S. (1937) The water phanerogams in Japan, with special reference to those of Prov. Yamashiro. Stud. Hist. \& Nat. Monuments in Kyotohu 18: 1-127 (in Japanese).

Miki S. (1960) Nymphaeaceae remains in Japan, with new fossil genus Eoeuryale. Journal of the Institute of Polytechnics Osaka City Univrsity, Japan D-11: 63-70. Miller G. S.X, Standley P. C. (1912) The North American species of Nymphaea. Contr. U. S. Nat. Herb. 16: 63-108.

Mochizuki R. (1972) Nuphar pumila (Timm) DC. var. ozeense (Miki) Hara from Akita Pref. Jour. Jap. Bot. 47: 76 (in Japanese).
Morong T. (1886) Revision of the North American Species of Nymphaea. Bot. Gaz. 11: 164-169.
Murayama K., Fukuhara H., Kadono Y. (1998) Genetic variation of Nymphaea tetragona Georgi and Nuphar pumila var. ozeensis (Miki) Hara (Nymphaeaceae) in the Ozegahara moor. In: Oze Scientific Resarch Group (ed.) Scientific Resarches of the Oze Area in Central Japan, pp.274-288 (in Japanese).
Nakamura H., Yamatou J. (1986) Liminological ecology in Nakakubiki Lake-group. Bachelor's thesis of department of education, Niigata University (in Japanese).
Nason J. D., Ellstrand N. C., Arnold M. L. (1992) Patterns of hybridization and introgression in populations of oaks, manzanitas, and iries. Amer. J. Bot. 79: 101-111.
Nei M. (1972) Genetic distance between populations. Amer. Natur. 106: 283-292.
Nei M., Li W.-H. (1979) Mathmatical model for studying genetic variation in terms of restrictions endonucleases. Proc. Natl. Acad. Sci. USA 76: 5269-5273.
Nei M., Miller J. C. (1990) A simple method for estimating average number of nucleotide substitutions within and between populations from restriction data. Genetics 125: 873-879.
Ohga I., Mitsukuri S., Nagashima T. (1962) Chromosome numbers and karyotypes of Nelumbo and its two related genera. La Kromosomo 51-52: 1700-1706 (in Japanese, with English summary).
Ohtaki, S., Ishido T. (1980) Illustrated Japanese Water Plants. Hokuryukan, Tokyo (in Japanese).
Ohwi J. (1965) Flora of Japan, Revised Edition. Shibundo, Tokyo (in Japanese).
Okada H., Tamura M. (1981) Karyomorphological study on the Nymphaeales. Jour. Jap. Bot. 56: 367-374.
Padgett D. J. (1999) Nomenclatural novelties in Nuphar (Nymphaeaceae). Sida 18: 823-826.

Padgett D. J. (2003) Phenetic studies in Nuphar Sm. (Nymphaeaceae): variation in sect. Nuphar. Plant Syst. Evol. 239: 187-197.

Padgett D. J., Les D. H., Crow G. E. (1998) Evidence for the hybrid origin of Nuphar \times rubrodisca (Nymphaeaceae). Amer. J. Bot. 85: 1468-1476.

Padgett D. J., Les D. H., Crow G. E. (1999) Phylogenetic relationships in Nuphar (Nymphaeaceae): evidence from morphology, chloroplast DNA, and nuclear ribosomal DNA. Amer. J. Bot. 86: 1316-1324.

Padgett D. J., Shimoda M., Horky L. A., Les D. H. (2002) Natural hybridization and the imperiled Nuphar of Western Japan. Aquat. Bot. 72: 161-174.

Peet R. (1974) The measurement of species diversity. Ann. Rev. Ecol. Syst. 5: 285-307.
Petit R. J., Brewer S., Bordacs S., Burg K., Cheddadi R., Coart E., Cottrell J., Csaikl U., Fineschi S., Finkelday R., Goicoechea P. G., Jensen J. S., Konig A., Lowe A. J., Madsen S. F., Matyas G., Oledska I., Popescu F., Slade D., Van Dam B., de Beaulieu J.-L., Kremer A. (2002) Identification of postglacial colonization routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecology and Management 156: 49-74.

Rieseberg L. H. (1997) Hybrid origins of plant species. Ann. Rev. Ecol. Syst. 28: 359-389.

Rieseberg L. H., Ellstrand N. C. (1993) What can molecular and morphological markers tell us about plant hybridization? Critical Reviews in Plant Sciences 12: 213-241.

Rieseberg, L. H. Noyes R. D. (1998) Genetic map-based studies of reticulate evolution in plants. Trends Plant. Sci. 3: 254-259.

Rieseberg L. H., Van Fossen C., Desrochers A. M. (1995) Hybrid speciation accompanied by genomic reorganization in wild sunflowers. Nature 375: 313-316.

Riseberg L. H., Wendel J. F. (1993) Introgression and its consequences in plants. In: Harrison R. G. (ed.) Hybrid Zones and the Evolutionary Process. Oxford University Press, Oxford, pp.70-110.

Rosenthal D. M., Rieseberg L. H., Donovan L. A. (2005) Re-creating ancient hybrid species' complex phenotypes from early-generation synthetic hybrids: three example using wild sunflowers. Am. Nat. 166: 26-41.

Saitou N., Nei M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.

Santamaría L. (2002) Why are most aquatic plants widely distributed? dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecol. 23: 137-154.

Sawada M., Viau A. E., Gajewski K. (2003) The biological of aquatic macrophytes in North America since the Last Glacial Maximum. Journal of Biogeography 30: 999-1017.

Schaal B. A., Olsen K. M. (2000) Gene genealogies and population variation in plants. Proc. Natl. Acad. Sci. USA 97: 7024-7029.
Schuster J. (1907-1908) Zur systematik von Castalia and Nymphaea. Bull. Herb. Boissier II 7: 853-868, 901-916, 981-996; 8: 67-74.

Sculthorpe C. D. (1967) The biology of aquatic vascular plants. Edward Arnold, London.

Senjo M., Kimira K., Watano Y., Ueda K., Shimizu T. (1999) Extensive mitochondrial introgression from Pinus pumila to P. parviflora var. pentaphylla (Pinaceae). Jour. Pl. Res. 112: 97-105.

Shimoda M. (1991) Nuphar from the Saijo Basin, Hiroshima Prefecture, western Japan. J. Phytogeogr. Taxon. 39: 1-8 (in Japanese, with English abstract).

Sites Jr., J. W., Marshall J. C. (2003) Delimiting species: a Renaissance issue in systematic biology. Trends in Ecology and Evolution 18: 462-470.

Smits A. J. M., Van Ruremonde R., Van Der Velde G. (1989) Seed dispersal of three nymphaeid macrophytes. Aquat. Bot. 35: 167-180.
Smits A. J. M., Van Avesaath P. H. Van Der Velde G. (1990) Germination requirements and seed banks of some nymphaeid macrophytes: Nymphaea alba L., Nuphar lutea (L.) Sm. and Nymphoides peltata (Gmel.) O. Kuntze. Freshwater Biology 24: 315-326.

Soltis D. E., Haufler C. H., Darrow D. C., Gastony G. J. (1983) Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffers, and staining schedules. Amer. Fern J. 73: 9-27.
Stebbins G. L. J. (1950) Variation and evolution in plants. Columbia University Press, Columbia.

Stewart C. N., Via L. E. (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14: 748-750.

Study Group of Flora of Aichi Prefecture (1996) SOS from Plants: Threatened Plants of Aichi Prefecture. Study Group of Flora of Aichi Prefecture (in Japanese).

Sutton B. C. S., Pritchard S. C., Gawley J. R., Newton C. H. (1994) Analysis of Sitka spruce - interior spruce introgression in British Columbia using cytoplasmic and nuclear DNA probes. Can. J. For. Res. 24: 278-285.

Suzuki T., Murayama K., Kadono Y., Nagayoshi T. (1997) Allozyme variation of

Nuphar subintegerrimum (Nymphaeaceae) at Kita-Nagaike pond, Kakogawa City, Hyogo Prefecture, Japan. Nat. Hum. Activities 2: 47-52.

Swindells P. (1983) Waterlilies. Croom Helm, London and Canberra, Timber Press, Portland.

Szymura J. M., Barton N. H. (1991) The genetic structure of the hybrid zone between the fire-bellied toads, Bombina bombina and B. variegata: comparisons between transects and between loci. Evolution 45:237-261.

Takahashi H., Yamazaki M., Sasaki J. (2005) A new form of Nuphar pumila (Timm) DC. var. ozeensis (Miki) H. Hara (Nymphaeaceae). Jour. Jap. Bot. 80: 48-51.

Takehana Y., Nagai N., Matsuda M., Tsuchiya K., Sakaizumi M. (2003) Geographic variation and diversity of the cytochrome b gene in Japanese wild populations of Medaka, Oryzias latipes. Zool. Soci. 20: 1279-1291.

Tamura M. (1982) Nymphaeaceae. In: Satake Y., J. Ohwi, S. Kitamura, S. Watari \& T. Tominari (eds.) Wild Flowers of Japan: Herbaceous Plants (including Dwarf Subshrubs) II. Heibonsha, Tokyo, pp. 93-95 (in Japanese).

Timm J. C. (1795) Nymphaea lutea L. var. pumila Timm. Mag Naturk Oekon Mecklenburgs 2: 50.

Templeton A. R. (1989) The meaning of species and speciation. In: Otte D., Endler J. A. (eds.) Speciation and Its Consequences. Sinauer Associates, Sunderland, pp. 3-27.

Vos P. R., Hogers R., Bleeker M., Reijans M., Van De Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M., Zabear M. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acid. Res. 23: 4407-4414.
Watano Y., Imazu M., Shimizu T. (1996) Spatial distribution of cpDNA and mtDNA haplotypes in a hybrid zone between Pinus pumila and Parviflora var. pentaphylla (Pinaceae). Jour. Pl. Res. 109: 403-408.

Weeden N. F., Wendel J. F. (1989) Genetics of plant isozymes. In: Soltis D. E., Soltis P. S. (eds.) Isozymes in Plant Biology. Dioscorides Press, Portland, Oregon, pp. 46-72.

Wendel J. F., Weeden N. F. (1989) Visualization and interpretation of plant isozyme. In: Soltis D. E., Soltis P. S. (eds.) Isozymes in Plant Biology, Dioscorides Press, Portland, Oregon, pp. 5-45.

Table 1. Localities of 59 populations of Nuphar. Sampling size for morphological analysis (Mor.) and for allozyme analysis (Allo.) and number of multi-locus genotypes (MLGs; G) are also shown.

| Pop. | Sampling locality | | | Latitude, N/
 longitude, E | Mor. |
| :---: | :--- | :--- | :--- | :--- | :--- | Allo. | G |
| :---: |
| Code |

TABLE 1. (continued)

Pop. Code	Sampling locality		Latitude, N/ longitude, E	Mor. Allo.	G
TO-2	Tokushima Pref.: Kandase-cho, Komatsushima-shi	$34^{\circ} 0^{\prime} / 134^{\circ} 35^{\prime}$	30	10	1
TO-3a	Tokushima Pref.: Shibahu-cho, Komatsushima-shi (A)	$34^{\circ} 0^{\prime} / 134^{\circ} 35^{\prime}$	22	10	1
TO-3b	Tokushima Pref.: Shibahu-cho, Komatsushima-shi	(B)	$34^{\circ} 0^{\prime} / 134^{\circ} 35^{\prime}$	21	15
MY-1b	Miyazaki Pref.: Nagai, Kitagawa-cho (B)	$32^{\circ} 40^{\prime} / 131^{\circ} 43^{\prime}$	10	13	1
MY-1c	Miyazaki Pref.: Nagai, Kitagawa-cho (C)	$32^{\circ} 40^{\prime} / 131^{\circ} 43^{\prime}$	10	8	2
japonica-subintegerrima intermediate plants (Group 4)					
FU-2	Fukui Pref.: Heisenji-cho, Katuyama-shi	$36^{\circ} 2^{\prime} / 136^{\circ} 32^{\prime}$	22	30	11
GI-2	Gifu Pref.: Higashitabirako, Kani-shi	$35^{\circ} 24^{\prime} / 137^{\circ} 1^{\prime}$	28	30	12
GI-3	Gifu Pref.: Itoshiro, Shiratori-machi	$36^{\circ} 0^{\prime} / 136^{\circ} 46^{\prime}$	42	30	8
SI-1	Shiga Pref.: Warasono, Shinasahi-machi	$35^{\circ} 21^{\prime} / 136^{\circ} 4^{\prime}$	17	30	13
NA-1	Nara Pref.: Hokkeji-cho, Nara-shi	$34^{\circ} 42^{\prime} / 135^{\circ} 48^{\prime}$	10	25	4
HY-1	Hyogo Pref.: Ota-cho, Ono-shi	$34^{\circ} 52^{\prime} / 135^{\circ} 0^{\prime}$	39	30	18
HY-5	Hyogo Pref.: Abiki-cho, Kasai-shi	$34^{\circ} 52^{\prime} / 134^{\circ} 53^{\prime}$	15	24	4
HY-7	Hyogo Pref.: Tamaoka-cho, Kasai-shi	$34^{\circ} 55^{\prime} / 134^{\circ} 51^{\prime}$	15	16	4
OK-3	Okayama Pref.: Kojimashirao, Kurashiki-shi	$34^{\circ} 29^{\prime} / 133^{\circ} 52^{\prime}$	20	20	2
OK-6	Okayama Pref.: Sugisawa, Saeki-machi	$34^{\circ} 52^{\prime} / 134^{\circ} 8^{\prime}$	40	15	1
KA-1	Kagawa Pref.: Sakamoto, Hiketa-cho	$34^{\circ} 12^{\prime} / 134^{\circ} 26^{\prime}$	16	10	1
KA-2	Kagawa Pref.: Gomyo, Shirotori-cho	$34^{\circ} 12^{\prime} / 134^{\circ} 16^{\prime}$	n.d.	20	1
KA-5	Kagawa Pref.: Tomikuma, Ayauta-machi	$34^{\circ} 15^{\prime} / 133^{\circ} 52^{\prime}$	27	25	3
OH-1	Ohita Pref.: Minamiusa, Usa-shi	$33^{\circ} 31^{\prime} / 131^{\circ} 23^{\prime}$	21	28	21

Table 2. Twenty seven morphological characters investigated. Characters marked with asterisk were used for cluster analysis.

Character code	Characters measured
Emergent and floating leaf	
L1	Leaf blade length (cm)*
L2	Leaf blade width (cm)
L3	Leaf blade shape (L1/L2)*
L4	Sinus depth (cm)
L5	Sinus/length of blade ratio (L4/L1)
L6	Length to the maximum blade width position from
	the blade (cm)
L7	Maximum blade width position/total length of blade
	ratio (L6/L1)*
L8	Petiole diameter at 5 cm from the base of blade (mm)
L9	Presence or absence of central lacuna in petiole*
	: $0=$ present, $1=$ absent

TABLE 3. Comparison of morphological characters for five cluster groups (mean \pm SD). Different letters indicate significant differences bv Tukev HSD multiple comparison test ($P<0.05$).

Character	Cluster group 1				2				3				4				5			
	mean	\pm	SD																	
L1 (cm)	30.7	\pm	4.72	a	20.8	\pm	4.26	b	14.3	\pm	2.09	c	18.8	\pm	3.28	d	11.6	\pm	2.90	e
L2 (cm)	18.4	\pm	2.58	a	13.5	\pm	2.33	b	11.2	\pm	1.47	c	12.7	\pm	2.64	b	10.4	\pm	2.53	d
L3 (L1/L2)	1.68	\pm	0.18	a	1.54	\pm	0.15	b	1.28	\pm	0.10	c	1.51	\pm	0.21	d	1.12	\pm	0.06	e
L4 (cm)	8.1	\pm	1.30	a	6.6	\pm	0.97	b	6.1	\pm	0.78	c	6.1	\pm	1.00	c	4.8	\pm	0.80	d
L5 (L4/L1)	0.27	\pm	0.04	a	0.32	\pm	0.05	b	0.43	\pm	0.02	c	0.32	\pm	0.03	b	0.42	\pm	0.04	c
L6 (cm)	20.4	\pm	3.75	a	12.7	\pm	3.28	b	7.5	\pm	1.31	c	11.6	\pm	2.21	d	6.4	\pm	1.77	e
L7 (L6/L1)	0.66	\pm	0.06	a	0.61	\pm	0.05	b	0.53	\pm	0.03	c	0.61	\pm	0.05	b	0.55	\pm	0.03	d
L8 (mm)	9.1	\pm	1.36	a	6.1	\pm	1.59	b	3.3	\pm	0.89	c	5.9	\pm	1.22	b	4.0	\pm	1.12	d
L9	1.00	\pm	0.00		1.00	\pm	0.00		0.02	\pm	0.14		1.00	\pm	0.00		1.00	\pm	0.00	
Sample no.	205				222				54				313				62			

TABLE 3. (continued)

Character	Cluster group 1				2				3				4				5			
	mean	\pm	SD																	
Fl1 (mm)	10.3	\pm	1.71	a	8.2	\pm	1.35	b	7.0	\pm	1.29	c	7.5	\pm	1.35	c	6.3	\pm	0.79	d
Fl2 (mm)	9.2	\pm	1.51	a	7.7	\pm	1.24	b	6.6	\pm	1.08	c	7.0	\pm	1.29	c	6.0	\pm	0.79	d
Fl3 (Fl2/Fl1)	0.90	\pm	0.09	a	0.94	\pm	0.05	b	0.94	\pm	0.05	b	0.93	\pm	0.05	b	0.95	\pm	0.04	b
Fl4	0.94	\pm	0.18	a	0.94	\pm	0.17	a	0.97	\pm	0.12	a	0.85	\pm	0.31	b	0.73	\pm	0.33	c
Fl5 (mm)	4.0	\pm	0.66	a	3.3	\pm	0.55	b	2.8	\pm	0.52	c	3.0	\pm	0.62	c	2.5	\pm	0.33	d
Fl6 (mm)	1.0	\pm	0.14	a	0.8	\pm	0.13	b	0.7	\pm	0.17	c	1.0	\pm	0.19	a	1.2	\pm	0.15	d
F17 (Fl5/Fl6)	4.36	\pm	1.20	ab	4.14	\pm	0.92	a	4.10	\pm	1.04	b	3.08	\pm	0.58	c	2.11	\pm	0.37	d
Fl8 (no.)	13.74	\pm	2.55	a	12.14	\pm	1.92	b	10.48	\pm	1.57	c	11.42	\pm	2.37	d	8.37	\pm	1.27	e
F19	2.96	\pm	0.14	a	2.98	\pm	0.07	a	2.75	\pm	0.44	b	2.75	\pm	0.36	b	2.21	\pm	0.37	c
Sample no.	142				109				55				118				30			
Fl10 (mm)	5.4	\pm	0.73	a	4.4	\pm	0.75	b	3.2	\pm	0.39	c	4.7	\pm	0.72	d	4.2	\pm	0.75	b
Fl11 (mm)	5.8	\pm	0.91	a	6.2	\pm	1.28	b	6.5	\pm	1.50	b	5.2	\pm	1.01	c	4.4	\pm	1.18	d
Fl12 (Fl10/Fl11	0.94	\pm	0.14	a	0.73	\pm	0.16	b	0.51	\pm	0.08	c	0.92	\pm	0.17	a	1.02	\pm	0.24	d
Sample no.	162				130				60				129				30			

Table 3. (continued)

Character	Cluster group				2				3				4				5			
	mean	\pm	SD						mean	\pm	SD									
Fr1 (mm)	41.9	\pm	6.23	a	32.4	\pm	5.53	b	32.3	\pm	4.99	b	31.2	\pm	4.92	b	28.5	\pm	5.47	c
Fr2 (mm)	30.5	\pm	4.21	a	22.0	\pm	5.04	b	20.7	\pm	3.61	b	24.1	\pm	3.86	c	20.2	\pm	3.04	b
Fr3 (Fr1/Fr2)	1.39	\pm	0.20	a	1.53	\pm	0.30	b	1.58	\pm	0.19	b	1.31	\pm	0.21	c	1.42	\pm	0.21	a
Fr4 (mm)	4.8	\pm	0.30	a	4.8	\pm	0.44	b	4.5	\pm	0.31	b	4.6	\pm	0.41	b	5.7	\pm	0.35	c
Fr5 (mm)	3.6	\pm	0.31	a	3.3	\pm	0.45	b	2.9	\pm	0.28	c	3.7	\pm	0.38	a	4.3	\pm	0.35	d
Fr6 (Fr4/Fr5)	1.36	\pm	0.10	a	1.47	\pm	0.14	b	1.55	\pm	0.17	c	1.26	\pm	0.09	d	1.33	\pm	0.11	a
Sample no.	139				96				51				118				25			

TABLE 4. Loadings of 15 morphological characters for the first three factors from the analysis of 52 populations of Nuphar in central to western Japan.

Character	PCA 1	PCA 2	PCA 3
L1	0.8848	0.2381	-0.0423
L3	0.7840	0.3377	0.1413
L7	0.8311	-0.0602	0.0638
L9	0.6335	-0.3639	0.2433
Fl1	0.8207	0.3461	-0.0913
Fl3	-0.4259	-0.1377	0.5294
Fl6	0.2950	-0.8234	-0.1975
F17	0.2544	0.8055	0.0539
F19	0.4146	0.6626	0.3978
Fl10	0.8778	-0.1412	0.0263
Fl12	0.6320	-0.5681	0.2187
Fr1	0.6811	0.2461	-0.5330
Fr3	-0.3631	0.4036	-0.2587
Fr4	0.1544	-0.3653	-0.5573
Fr5	-0.3989	0.6414	-0.2343
Eigenvalue	5.6169	3.3224	1.3388
Variance \%	37.44%	22.14%	8.93%
Cumulative \%	37.44%	59.59%	68.52%
of variance			

Table 5. Mean allele frequencies for five Nuphar species or groups according to morphological type for 12 scorable loci.

Locus	allele	Cluster group				
		3	2	1	4	5
lap1	A	1.000	0.944	1.000	0.801	0.329
	B	0.000	0.056	0.000	0.106	0.377
	null	0.000	0.000	0.000	0.094	0.294
	A	0.092	0.066	0.000	0.000	0.000
	B	0.789	0.934	1.000	1.000	1.000
	C	0.119	0.000	0.000	0.000	0.000
mdh2	A	1.000	1.000	1.000	1.000	1.000
mdh3	A	1.000	0.281	0.000	0.000	0.000
	B	0.000	0.639	0.960	1.000	1.000
	C	0.000	0.080	0.040	0.000	0.000
mdh4	A	0.000	0.446	0.154	0.561	0.529
	B	1.000	0.554	0.846	0.439	0.471
	A	0.000	0.000	0.010	0.000	0.471
	B	1.000	0.998	0.990	0.916	0.529
	C	0.000	0.002	0.000	0.084	0.000
pgi2	A	1.000	0.972	0.997	1.000	1.000
	B	0.000	0.028	0.003	0.000	0.000
pgm1	A	0.661	0.245	0.139	0.578	0.553
	B	0.339	0.755	0.861	0.422	0.447
pmi1	A	0.000	0.000	0.000	0.013	0.024
	B	0.000	0.233	0.072	0.634	0.977
	C	1.000	0.767	0.928	0.352	0.000
tpi2	A	0.000	0.221	0.000	0.726	1.000
	B	0.849	1.000	1.000	1.000	1.000
tpi3	A	0.151	0.000	0.000	0.000	0.000
	B	1.000	1.000	1.000	0.866	0.377
	C	0.000	0.000	0.000	0.017	0.094

Table 6. Fruit set after crossing among five Nuphar populations.
A. Green house experiment

Female parent	Pollen donor										Emasculation	
	Group 1		Group 3		Group 5				Group4			
	NI-1		HY-8		GI-1		MI-1		HY-1			
NI-1	66.7	(6)	54.5	(11)	61.5	(11)	66.7	(13)	62.5	(8)	0	(8)
HY-8	25.0	(4)	50.0	(2)	100.0	(1)	0.0	(1)	n.d.		0	(1)
GI-1	55.6	(9)	50.0	(6)	46.2	(13)	27.3	(11)	27.3	(11)	0	(4)
MI-1	66.7	(6)	42.7	(7)	50.0	(8)	75.0	(4)	33.3	(9)	0	(2)
HY-1	50.0	(2)	n.d.		50.0	(2)	60.0	(5)	20.0	(5)	0	(1)

Values show means (\%). Sample size in parenthes.

Female parent	Pollen donor										Emasculation	
	Group 1		Group 3		Group 5				Group4			
	NI-1		HY-8		GI-1		MI-1		HY-1			
NI-1	87.5	(8)	100.0	(5)	100.0	(2)	100.0	(1)	100.0	(4)	0	(2)
HY-8	83.3	(12)	63.6	(11)	75.0	(8)	70.0	(10)	88.9	(9)	0	(7)
GI-1	n.d.											
MI-1	100.0	(1)	n.d.		n.d.		100.0	(4)	100.0	(1)	n.d.	
HY-1	88.9	(9)	50.0	(4)	40.0	(5)	57.1	(7)	53.8	(13)	0	(3)

[^0]TABLE 7. Germination rate after crossing among five Nuphar populations (means \pm SD (\%)). Different letters indicate significant differences by Tukey HSD multiple comparison test ($P<0.05$).

Female parent	Pollen donor										Difference among pollen donors
	Group 1	Group 3	Group 5					Group4			
	NI-1	HY-8	GI-1	MI-1				HY-1			
NI-1	71.4 ± 29.6	79.7 ± 20.9	60.1 ± 32.3		37.9	± 28.9		68.6	± 34.1		$H=1.444$ NS
HY-8	8.5 ± 14.8 a	52.9 ± 28.7 b	4.8 ± 5.8	a	5.3	± 11.4	a	6.7	± 6.4	a	$H=16.413$ P<0.01
GI-1	44.2 ± 34.1	45.9 ± 35.0	66.2 ± 27.9		43.4	± 49.5		49.2	± 45.0		$H=5.946 \mathrm{NS}$
MI-1	65.2 ± 23.0	60.1 ± 32.3	77.3 ± 25.3		78.5	± 22.3		63.3	± 15.3		$H=0.748$ NS
HY-1	56.9 ± 32.6	41.0 ± 22.0	46.9 ± 12.3		59.7	± 30.6		39.5	± 29.8		$H=2.956$ NS

morphological measurements (Morph.), allozyme analyses (Allo.) and pollen stainability (pollen) are also listed.

Population Code	Sampling locality	Latitude (N)	Longitude (E)	Morph.	Allo.	Pollen
NNO	Ohnuma-cho, Nanae-cho	$41^{\circ} 59^{\prime} 18^{\prime \prime}$	$140^{\circ} 39^{\prime} 52^{\prime \prime}$	26	26	26
TAO	Bansei, Taiki-cho	$42^{\circ} 33^{\prime} 54^{\prime \prime}$	$143^{\circ} 28^{\prime} 3^{\prime \prime}$	20	20	3
ATT	Tomino, Atsuma-cho	$42^{\circ} 38^{\prime} 50^{\prime \prime}$	$141^{\circ} 52^{\prime} 45^{\prime \prime}$	20	20	6
ATO	Koinuma, Atsuma-cho	$42^{\circ} 38^{\prime} 11^{\prime \prime}$	$141^{\circ} 53^{\prime} 39^{\prime \prime}$	12	20	3
TOJ	Ohtsu, Toyokoro-cho	$42^{\circ} 40^{\prime} 46^{\prime \prime}$	$143^{\circ} 37^{\prime} 54^{\prime \prime}$	3	6	1
TOB	Bisawa, Tomakomai-shi	$42^{\circ} 44^{\prime} 26^{\prime \prime}$	$141^{\circ} 43^{\prime} 18^{\prime \prime}$	16	20	3
AKT	Honmachi, Akkeshi-cho	$43^{\circ} 00^{\prime} 13^{\prime \prime}$	$144^{\circ} 51^{\prime} 59^{\prime \prime}$	20	20	3
HAK	Hamanaka, Hamanaka-cho	$43^{\circ} 06^{\prime} 37^{\prime \prime}$	$145^{\circ} 06^{\prime} 09^{\prime \prime}$	3	7	1
KIO	Bibaitappu, Kita-mura	$43^{\circ} 13^{\prime} 07^{\prime \prime}$	$141^{\circ} 40^{\prime} 15^{\prime \prime}$	16	16	3
TST	Tsukigaumi, Tsukigata-cho	$43^{\circ} 18^{\prime} 28^{\prime \prime}$	$141^{\circ} \circ 7^{\prime 2} 26^{\prime \prime}$	40	40	40
NEN	Katsuragi, Nemuro-shi	$43^{\circ} 19^{\prime} 11^{\prime \prime}$	$145^{\circ} 37^{\prime} 02^{\prime \prime}$	20	20	3
NET	Makinouchi, Nemuro-shi	$43^{\circ} 19^{\prime} 45^{\prime \prime}$	$145^{\circ} 37^{\prime} 21^{\prime \prime}$	14	20	3
BEB	Honbekkai, Bekkai-cho	$43^{\circ} 25^{\prime} 26^{\prime \prime}$	$145^{\circ} 14^{\prime} 56^{\prime \prime}$	20	20	6
TSC	Numasawa., Tsubetsu-cho	$43^{\circ} 38^{\prime} 08^{\prime \prime}$	$143^{\circ} 52^{\prime} 38^{\prime \prime}$	6	20	5
URU	Uryu-numa Moor, Uryu-cho	$43^{\circ} 42^{\prime} 00^{\prime \prime}$	$141^{\circ} 36^{\prime}$ '06"	27	60	5
KUT	Takkobu, Kushiro-shi	$43^{\circ} 6^{\prime} 18^{\prime \prime}$	$144^{\circ} 29^{\prime} 07^{\prime \prime}$	12	12	3
SAM	Nakanuma-cho, Higashi-ku, Sapporo-shi	$43^{\circ} 73^{\prime \prime}$	$141^{\circ} 26^{\prime} 12^{\prime \prime}$	6	7	3
HOO	Otoi, Horonobe-cho	$45^{\circ} 00^{\prime} 09^{\prime \prime}$	$141^{\circ} 41^{\prime} 45^{\prime \prime}$	6	10	1
SAS	Kamisarufutsu, Sarufutsu-mura	$45^{\circ} 09^{\prime} 31^{\prime \prime}$	$142^{\circ} 07^{\prime} 35^{\prime \prime}$	3	3	3
SAA	Asaginodaichi, Sarufutsu-mura	$45^{\circ} 12^{\prime} 51^{\prime \prime}$	$142^{\circ} 15^{\prime} 21^{\prime \prime}$	20	20	3
SAK	Asagi, Sarufutsu-mura	$45^{\circ} 14^{\prime} 07^{\prime \prime}$	$142^{\circ} 12^{\prime} 35^{\prime \prime}$	16	29	16
WAM	Keihoku, Wakkanai-shi	$45^{\circ} 24^{\prime} 03^{\prime \prime}$	$141^{\circ} 49^{\prime} 01^{\prime \prime}$	3	7	1

Table 9. Twenty one morphological characters investigated. Characters marked with asterisk were used for cluster and principal component analyses.

Character
code
Emergent and floating leaf
L1 Leaf blade length (cm)*
L2 Leaf blade width (cm)
L3 Leaf blade shape (L1/L2)*
L4 Sinus depth (cm)
L5 Sinus/length of blade ratio (L4/L1)*
L6 Length from the maximum blade width position of the blade (cm)
L7 Maximum blade width position/total length of blade ratio (L6/L1)* Maximum petiole width at 5 cm from the base of blade (mm)* Minimum petiole width at 5 cm from the
L9 base of blade (mm)
L10 Min./max. of petiole width ratio (L9/L8)*
L11 Number of vein*
Flower
Fl1 Maximum length of stigmatic disk (mm)*
Fl2 Stigma width (mm)*
Fl3 Number of stigma*
Fl4 Anther length (mm)*
Fl5 Filament length (mm)
Fl6 Anther length/filament length ratio (Fl4/Fl5)*
Fruit
Fr1 Fruit length (mm)*
Fr2 Seed length (mm)*
Fr3 Seed width (mm)
Fr4 Length/width ratio of seed (Fr2/Fr3)*

TABLE 10. Comparison of morphological characters for three cluster groups (mean $\pm \mathrm{SD}$). Different letters indicate significant differences by Tukey HSD multiple comparison test ($P<0.05$).

Character	Cluster group											
	1				2				3			
	mean	\pm	SD		mean	\pm	SD		mean	\pm	SD	
Emergent and floating leaf characters												
L1 (cm)	32.81	\pm	5.48	a	27.46	\pm	7.15	b	14.7	\pm	3.11	c
L2 (cm)	17.84	\pm	3.59	a	16.90	\pm	3.44	b	10.8	\pm	2.00	c
L3 (L1/L2)	0.54	\pm	0.05	a	0.62	\pm	0.05	b	0.74	\pm	0.05	c
L4 (cm)	7.16	\pm	1.78	a	8.25	\pm	1.43	b	5.5	\pm	0.99	c
L5 (L4/L1)	0.22	\pm	0.03	a	0.31	\pm	0.04	b	0.38	\pm	0.03	c
L6 (cm)	21.63	\pm	3.42	a	16.99	\pm	5.09	b	8.1	\pm	1.99	c
L7 (L6/L1)	0.66	\pm	0.05	a	0.61	\pm	0.03	b	0.54	\pm	0.03	c
L8 (mm)	10.44	\pm	1.67	a	8.19	\pm	2.39	b	4.98	\pm	1.13	c
L9 (mm)	8.97	\pm	1.57	a	5.82	\pm	2.55	b	2.72	\pm	0.62	c
L10 (L9/L8)	0.86	\pm	0.05	a	0.69	\pm	0.13	b	0.55	\pm	0.07	c
L11 (no.)	79.16	\pm	12.28	a	58.30	\pm	14.21	b	35.41	\pm	6.43	c
Sample no.	112				115				219			
Flower characters												
Fl1 (mm)	9.94	\pm	1.88	a	9.90	\pm	1.65	b	6.85	\pm	1.29	c
Fl 2 (mm)	1.01	\pm	0.16	a	0.86	\pm	0.26	b	0.70	\pm	0.16	c
Fl3 (no.)	13.22	\pm	3.15	a	12.75	\pm	2.71	ab	10.77	\pm	1.87	b
Fl4 (mm)	4.17	\pm	0.61	a	4.15	\pm	0.54	a	2.77	\pm	0.38	b
Fl5 (mm)	5.88	\pm	0.93	a	7.64	\pm	1.46	ab	7.78	\pm	1.49	b
Fl6 (Fl4/Fl5)	0.72	\pm	0.13	a	0.56	\pm	0.14	b	0.37	\pm	0.08	c
Sample no.	104				88				152			
Fruit characters												
Fr1 (mm)	44.51	\pm	7.26	a	36.62	\pm	7.46	b	30.32	\pm	5.26	b
Fr2 (mm)	4.62	\pm	0.39	a	4.13	\pm	0.41	ab	4.13	\pm	0.35	b
Fr3 (mm)	3.48	\pm	0.33	a	2.81	\pm	0.48	b	2.34	\pm	0.28	c
Fr4 (Fr5/Fr4)	0.75	\pm	0.04	a	0.68	\pm	0.08	b	0.57	\pm	0.05	c
Sample no.	109				88				193			

TABLE 11. Factor loadings of 15 morphological characters to the first three components of the PCA for 22 populations of Nuphar in Hokkaido. Eigenvalues and percentages of variance and cumultative variance to the total variance for the first three principal components are also listed.

Character	PCA 1	PCA 2	PCA 3
L1	0.9331	-0.0751	0.0848
L3	-0.8737	0.1337	-0.1068
L5	-0.9081	0.1541	-0.0287
L7	0.8151	-0.0039	0.1007
L8	0.9097	-0.0131	0.0375
L10	0.8673	-0.1952	-0.0895
L11	0.9388	-0.1243	-0.0038
Fl1	0.7763	0.5095	0.2023
Fl2	0.7674	0.2630	-0.1394
Fl3	0.5723	0.7108	0.2185
Fl4	0.8070	-0.1097	0.1424
Fl6	0.8262	-0.2921	0.0709
Fr1	0.7816	-0.0229	-0.3235
Fr2	0.4974	0.2210	-0.7850
Fr4	0.8679	-0.1594	0.0707
Eigenvalue	10.0487	1.1070	0.8982
Variance \%	66.99%	7.38%	5.99%
Cumulative \%	66.99%	74.37%	80.36%
of variance			

Table 12. Frequencies of genotypes of $m d h 3$ and Mean pollen viability (\%) for 22 Nuphar populations in Hokkaido, Japan.

Population Code	Genotype of mdh3				Pollen viability (\%)	
	aa	ab	bb	bc	mean	(SD)
N. japonica						
TAO		0.050	0.950		95.1	(2.8)
ATT			1.000		94.6	(3.5)
TOB		0.125	0.875		93.3	(2.1)
KIO			1.000		90.3	(3.2)
SAM				1.000	96.3	(2.3)
HOO			1.000		87.2	
SAA	0.050	0.050	0.900		85.7	(11.0)
Intermediate populations						
NNO		0.692	0.308		49.8	(37.8)
TST	0.050	0.625	0.325		73.7	(19.2)
SAS		1.000			17.6	(2.8)
SAK		0.793	0.207		63.5	(41.3)
N. pumila						
ATO	1.000				71.1	(15.7)
TOJ	0.500	0.500			86.4	
AKT	1.000				86.2	(16.4)
HAK	1.000				89.1	
NEN	1.000				97.7	(0.6)
NET	1.000				99.2	(0.0)
BEB	1.000				98.5	(0.7)
TSC	1.000				95.0	(1.5)
URU	1.000				94.3	(1.9)
KUT	1.000				94.6	(5.7)
WAM	1.000				91.0	

TABLE13. Chloroplast DNA (cpDNA) haplotypes, AFLP genotypes and additive patterns of AFLP bands for N. japonica and N. pumila. N shows the number of samples used for analyses.

Taxa	Populatio n ID	N	cpDNA	Genotype	AFLP analyses			
					Specific bands for N. japonica (A)	Observed ratio of A	Specific bands for N. pumila (B)	Observed ratio of B
N. japonica	SAA	3	238	1-3	25	1.00	---	---
	HOO	1	238	4	25	1.00	---	---
	SAM	3	238	5-7	25	1.00	---	---
	KIO	3	238	8-10	25	1.00	---	---
	TOB	3	238	11-13	25	1.00	---	---
	ATT	6	238	14-19	25	1.00	---	---
	TAO	3	238	20-22	25	1.00	---	---
Hybrid populations	SAS	1	238	23	25	1.00	15	0.94
		3	238	24	25	1.00	16	1.00
	SAK	1	238	25	25	1.00	6	0.38
		2	238	26	25	1.00	9	0.56
		3	238	27	25	1.00	10	0.63
		2	238	28-29	24	0.96	11	0.69
		1	238	30	23	0.92	12	0.75
		1	238	31	25	1.00	11	0.69
		3	238	32	24	0.96	12	0.75
		1	238	33	25	1.00	12	0.75
		1	238	34	24	0.96	13	0.81
		1	238	35	25	1.00	13	0.81
	TST	1	238	36	25	1.00	---	---
		2	238	37	24	0.96	---	---
		2	238	38	23	0.92	---	.-.
		1	238	39	22	0.88	---	---
		2	238	40	24	0.96	1	0.06
		1	238	41	23	0.92	2	0.13
		1	238	42	20	0.80	5	0.31
		4	238	43	24	0.96	2	0.13
		1	238	44	21	0.84	5	0.31
		1	238	45	19	0.76	8	0.50
		1	238	46	20	0.80	9	0.56
		1	238	47	25	1.00	5	0.31
		1	238	48	22	0.88	8	0.50
		1	238	49	21	0.84	10	0.63
		1	238	50	21	0.84	11	0.69
		1	238	51	19	0.76	13	0.81
		1	234	52	23	0.92	10	0.63
		2	238	53	22	0.88	11	0.69
		1	238	54	24	0.96	10	0.63
		3	238	55	23	0.92	11	0.69
		1	238	56	22	0.88	12	0.75
		1	238	57	23	0.92	12	0.75
		7	238	58	23	0.92	12	0.75
		1	238	59	25	1.00	12	0.75

TABLE 13. (continued)

Taxa	Pop. ID	N	cpDNA	Genotype	AFLP analyses			
					Specific bands for N. japonica	Observed ratio of A	Specific bands for N. pumila	Observed ratio of B
Hybrid population	NNO	2	238	60	25	1.00	---	---
		1	238	61	24	0.96	---	---
		2	238	62	24	0.96	1	0.06
		1	238	63	25	1.00	1	0.06
		1	238	64	18	0.72	8	0.50
		1	234	65	23	0.92	8	0.50
		1	234	66	22	0.88	9	0.56
		1	234	67	23	0.92	10	0.63
		1	238	68	20	0.80	13	0.81
		1	238	69	23	0.92	11	0.69
		1	238	70	21	0.84	14	0.88
		1	238	71	24	0.96	12	0.75
		4	238	72	23	0.92	13	0.81
		1	234	73	23	0.92	13	0.81
		2	238	74	24	0.96	13	0.81
N. pumila	WAM	1	234	75	---	---	16	1.00
	KUT	3	234	76-78	---	---	16	1.00
	URU	5	241	79-83	---	---	16	1.00
	TSC	5	234	84-88	---	---	16	1.00
	BEB	6	234	89-94	---	---	16	1.00
	NET	3	234	95-97	---	---	16	1.00
	NEN	3	234	98-100	---	---	16	1.00
	HAK	1	234	101	---	---	16	1.00
	AKT	3	234	102-104	---	---	16	1.00
	TOJ	1	234	105	---	---	16	1.00
	ATO	3	234	106-108	---	---	16	1.00
Artificial hybrid (male \times female)	ATT \times BEB	3	234		25	1.00	16	1.00
	BEB \times ATT	3	238		25	1.00	16	1.00

Table 14. Localities of the 9 Nuphar populations used in this study. Numbers of samples (N) for morphological measurements, allozyme analyses, and pollen viability are shown. All voucher specimens are deposited in OSA.

Population Code	Sampling locality	Latitude (N)	Longitude (E)	N	Voucher specimen
Nuphar japonica (Group 1)					
YA-1	Yamagata Pref.: Tazawa, Murayama-shi	$38^{\circ} 32^{\prime} 39^{\prime \prime}$	$140^{\circ} 22^{\prime} 12^{\prime \prime}$	10	T. Shiga 3120
FS-2	Fukushima Pref.: Sekisawa, Iitate-mura	$37^{\circ} 40^{\prime} 49^{\prime \prime}$	$140^{\circ} 45^{\prime} 00^{\prime \prime}$	10	T. Shiga 3250
IB-2	Ibaragi Pref.: Tamasaki, Tamari-mura	$36^{\circ} 09^{\prime} 32^{\prime \prime}$	$140^{\circ} 19^{\prime} 00{ }^{\prime \prime}$	10	T. Shiga 3252
NI-4	Niigata Pref.: Nagamine, Yoshikawa-cho	$37^{\circ} 14^{\prime} 44^{\prime \prime}$	$138^{\circ} 21^{\prime} 58^{\prime \prime}$	10	T. Shiga 3320
N. submersa (Group 3)					
TG-1	Tochigi Pref.: Koshiro, Nikko-shi	$36^{\circ} 39^{\prime}$	$139^{\circ} 43^{\prime}$	10	T. Shiga 3480
TG-2	Tochigi Pref.: Shimokawai, Nasukarasuyama-shi	$36^{\circ} 42^{\prime}$	$146^{\circ} 06^{\prime}$	10	T. Shiga 3560
Intermediate plants (Group 2)					
TG-3	Tochigi Pref.: Shimokomagi, Mooka-shi	$36^{\circ} 26^{\prime} 10 "$	$139{ }^{\circ} 58^{\prime} 56{ }^{\prime \prime}$	6	T. Shiga 3571
TG-4	Tochigi Pref.: Ohashi-cho, Sano-shi	$36^{\circ} 19^{\prime} 00{ }^{\prime \prime}$	$139^{\circ} 33^{\prime 2} 22^{\prime \prime}$	10	T. Shiga 3584
TG-5	Tochigi Pref.: Horigome-cho, Sano-shi	$36^{\circ} 20^{\prime} 05^{\prime \prime}$	$139^{\circ} 34^{\prime} 05^{\prime \prime}$	10	T. Shiga 3587

TABLE 15. Comparison of morphological characteristics of the three groups. Values within a row followed by different alphabets differ significantly (Tukey's HSD multiple-comparison test, $P<0.05$).

Characteristic	Cluster group											
	1				2				3			
	Mean	\pm	SD		Mean	\pm	SD		Mean	\pm	SD	
Submerged leaf characteristics												
SL1 (cm)	32.3	\pm	5.8	a	21.3	\pm	4.8	b	13.1	\pm	3.1	c
SL3 (SL2/SL1)	0.43	\pm	0.08	a	0.33	\pm	0.06	b	0.29	\pm	0.03	b
SL5 (SL4/SL1)	0.19	\pm	0.04	a	0.14	\pm	0.03	b	0.04	\pm	0.04	c
SL6 (mm)	5.5	\pm	1.4	a	2.2	\pm	0.4	b	1.6	\pm	0.4	b
SL7 (no.)	64.8	\pm	6.1	a	39.5	\pm	3.5	b	29.1	\pm	5.5	c

Flower characteristics

F1 (mm)	10.6	\pm	2.3	a	7.6	\pm	1.3	b	6.4	\pm	0.4	b
F2 (mm)	1.02	\pm	0.11	a	0.86	\pm	0.07	a	0.57	\pm	0.06	b
F3 (no.)	14.3	\pm	2.6	a	9	\pm	2.1	b	7.5	\pm	0.9	b
F4 (mm)	5.4	\pm	0.5	a	4	\pm	0.6	b	2.3	\pm	0.2	c
F6 (Fl4/Fl5)	0.95	\pm	0.09	a	0.68	\pm	0.14	b	0.35	\pm	0.06	c
Sample no. (n)	40				26				20			

Table 16. Factor loadings of 15 morphological characteristics in the first three principal components (PC) of the PCA for 8 populations of Nuphar in Tochigi Prefecture. Eigenvalues and percentages of total variance and cumulative variance for the first three principal components are shown.

Characteristic	PCA 1	PCA 2	PCA 3
SL1	0.886	-0.118	-0.215
SL3	0.686	0.431	0.563
SL5	0.83	0.372	0.018
SL6	0.897	-0.166	0.226
SL7	0.927	-0.015	-0.097
F1	0.838	-0.437	0.206
F2	0.849	0.16	-0.295
F3	0.872	-0.35	0.149
F4	0.938	0.025	-0.183
F6	0.888	0.196	-0.229
Eigenvalue Proportion of total variance (\%) Cumulative \% of total variance	7.463	74.6	74.6

Table 17. Frequencies of multi-locus genotypes and mean pollen viability (\%) for nine Nuphar populations from central to eastern Japan.

Population code	Multi-locus genotype (lap1 and mdh3)					Pollen viability (\%)	
	$\begin{gathered} 1 \\ (\mathrm{aa}, \mathrm{bb}) \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ (\mathrm{ac}, \mathrm{bb}) \end{gathered}$	$\begin{gathered} 3 \\ (a c, a b) \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (\mathrm{aa}, \mathrm{ab}) \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ (\mathrm{cc}, \mathrm{aa}) \end{gathered}$	Mean	(SD)
N. japonica populations (Group 1)							
YA1	1.000					94.1	(3.2)
FS2	1.000					93.1	(4.1)
IB2	1.000					90.9	(6.6)
NI4	1.000					94.6	(3.5)
Intermediate populations (Group 2)							
TG3		0.333	0.667			28.4	(29.2)
TG4			1.000			38.5	(4.3)
TG5		0.200	0.300	0.500		36.8	(4.2)
N. submersa populations (Group 3)							
TG1					1.000	94.6	(2.4)
TG2					1.000	91.5	(3.9)

Table 18. Localities of 66 specimens of Nuphar and Barclaya. Herbarium abbreviation in parenthese.

Pop. Code	Sampling locality	Latitude (N)	Longitude (E)	Voucher for DNA
Nuphar japonica				
SAA	Hokkaido Pref.: Asaginodaichi, Sarufutsu-mura	$45^{\circ} 12{ }^{\prime} 51{ }^{\prime \prime}$	$142^{\circ} 15^{\prime} 21{ }^{\prime \prime}$	T. Shiga \& S. Takebayashi 84 [OSA]
HOO	Hokkaido Pref.: Otoi, Horonobe-cho	$45^{\circ} 00 \cdot 09{ }^{\prime \prime}$	$141^{\circ} 41^{\prime} 45{ }^{\prime \prime}$	T. Shiga \& S. Takebayashi 89 [OSA]
SAM	Hokkaido Pref.: Nakanuma-cho, Higashi-ku, Sapporo-shi	$43^{\circ} 7138{ }^{\prime \prime}$	$141^{\circ} 26^{\prime} 12{ }^{\prime \prime}$	T. Shiga 3474 [OSA]
KIO	Hokkaido Pref.: Bibaitappu, Kita-mura	$43^{\circ} 13^{\prime} 07{ }^{\prime \prime}$	$141^{\circ} 40^{\prime} 15{ }^{\prime \prime}$	T. Shiga 3469 [OSA]
TOB	Hokkaido Pref.: Bisawa, Tomakomai-shi	$42^{\circ} 44^{\prime} 26{ }^{\prime \prime}$	$141^{\circ} 43^{\prime} 18{ }^{\prime \prime}$	T. Shiga 3446 [OSA]
ATT	Hokkaido Pref.: Tomino, Atsuma-cho	$42^{\circ} 38^{\prime} 11{ }^{\prime \prime}$	$141^{\circ} 53 ' 39{ }^{\prime \prime}$	T. Shiga 3444 [OSA]
TAO	Hokkaido Pref.: Bansei, Taiki-cho	$42^{\circ} 33^{\prime} 54{ }^{\prime \prime}$	$143^{\circ} 28^{\prime} 3^{\prime \prime}$	T. Shiga 3457 [OSA]
AO-1	Aomori Pref.: Dekijima, Kizukuri-cho	$40^{\circ} 50^{\prime} 6^{\prime \prime}$	$140^{\circ} 18^{\prime} 4{ }^{\prime \prime}$	T. Shiga 3639 [OSA]
AK-1	Akita Pref.: Kamikitatesaruta, Akita-shi	$39^{\circ} 40^{\prime} 23$ "	$140^{\circ} 10^{\prime} 18{ }^{\prime \prime}$	T. Shiga 3637 [OSA]
YA-1	Yamagata Pref.: Tazawa, Murayama-shi	$38^{\circ} 32^{\prime 3} 3{ }^{\prime \prime}$	$140^{\circ} 22^{\prime} 12^{\prime \prime}$	T. Shiga 3120 [KOBE, OSA]
FS-1	Fukushima Pref.: Shidahama, Inawashiro-cho	$37^{\circ} 30^{\prime \prime} 8^{\prime \prime}$	$140{ }^{\circ} 8^{\prime} 41{ }^{\prime \prime}$	T. Shiga 3249 [OSA]
FS-2	Fukushima Pref.: Nozawa, Iitate-mura	$37^{\circ} 40^{\prime} 49^{\prime \prime}$	$140^{\circ} 45^{\prime} 1{ }^{\prime \prime}$	T. Shiga 3250 [OSA]
FS-3	Fukushima Pref.: Tairanumanouchi, Iwaki-shi	$37^{\circ} 0^{\prime 2} 2{ }^{\prime \prime}$	$140^{\circ} 58^{\prime} 17{ }^{\prime \prime}$	T. Shiga 3252 [OSA]
IB-1	Ibaragi Pref.: Takasaki, Tamari-mura	$36^{\circ} 9^{\prime \prime} 32^{\prime \prime}$	$140^{\circ} 19^{\prime \prime} 1^{\prime \prime}$	T. Shiga 3641 [OSA]
IB-2	Ibaragi Pref.: Shimone-cho, Ushiku-shi	$35^{\circ} 59^{\prime} 41{ }^{\prime \prime}$	$140^{\circ} 9{ }^{\prime} 36{ }^{\prime \prime}$	T. Shiga 3254 [OSA]
TK-1	Tokyo Pref.: Syakujii, Nerima-ku	$35^{\circ} 44^{\prime} 16^{\prime \prime}$	$139^{\circ} 35^{\prime} 42$ "	T. Shiga 3412 [OSA]
KN-1	Kanagawa Pref.: Nakashinden, Ebina-shi	$35^{\circ} 26^{\prime} 20$	$1399^{\circ} 23^{\prime} 10^{\prime \prime}$	T. Shiga 3413 [OSA]
NI-1	Niigata Pref.: Shinbana, Toyosaka-shi	$37^{\circ} 54{ }^{\prime} 19$ "	$139{ }^{\circ} 14^{\prime} 41{ }^{\prime \prime}$	T. Shiga 3122 [OSA]
NI-4	Niigata Pref.: Nagamine, Yoshikawa-cho	$37^{\circ} 14{ }^{\prime} 28{ }^{\prime \prime}$	$138^{\circ} 22^{\prime} 11{ }^{\prime \prime}$	T. Shiga 3320 [OSA]
IK-1	Ishikawa Pref.: Katano-Kamoike, Kaga-shi	$36^{\circ} 19^{\prime} 19{ }^{\prime \prime}$	$136{ }^{\circ} 17^{\prime \prime} 21^{\prime \prime}$	T. Shiga 3645 [OSA]
SI-3	Shiga Pref.: Shiozu, Shiozu-cho	$35^{\circ} 30^{\prime} 55{ }^{\prime \prime}$	$1369^{\prime} 44^{\prime \prime}$	K. Murayama \& Y. Kadono s.n. [KOBE]
MI-2	Mie Pref.: Katsuta, Tamaki-cho	$34^{\circ} 27^{\prime} 51{ }^{\prime \prime}$	$136{ }^{\circ} 37{ }^{\prime} 17{ }^{\prime \prime}$	T. Shiga 3644 [OSA]
WA-1	Wakayama Pref.: Nishinoyama, Naga-cho	$34^{\circ} 16{ }^{\prime} 54{ }^{\prime \prime}$	$135{ }^{\circ} 26^{\prime} 33$ "	T. Shiga 2833 [OSA]
OK-2	Okayama Pref.: Kojimashirao, Kurashiki-shi	$34^{\circ} 29^{\prime} 31{ }^{\prime \prime}$	$133^{\circ} 51{ }^{\prime} 38{ }^{\prime \prime}$	T. Shiga 3669 [OSA]
OK-4	Okayama Pref.: Kosaka, Saeki-cho	$34^{\circ} 50{ }^{\prime \prime}{ }^{\prime \prime}$	$134^{\circ} 3^{\prime \prime}{ }^{\prime \prime}$	T. Shiga 2835 [OSA]
HI-10	Hiroshima Pref.: Hachihonmatsu, Higashihiroshima-shi	$34^{\circ} 25^{\prime} 26{ }^{\prime \prime}$	$132{ }^{\circ} 41^{\prime} 6$ "	T. Shiga 3243 [OSA]
KO-4	Kochi Pref.: Usa-cho, Tosa-shi	$33^{\circ} 25^{\prime} 41{ }^{\prime \prime}$	$133^{\circ} 27^{\prime} 15{ }^{\prime \prime}$	T. Shiga 3373 [OSA]
MY-5	Miyazaki Pref.: Matsuo, Kushima-shi	$31^{\circ} 28^{\prime} 11{ }^{\prime \prime}$	$131{ }^{\circ} 3^{\prime} 16{ }^{\prime \prime}$	T. Shiga 3283 [OSA]
MY-6	Miyazaki Pref.: Toyomitsu-cho, Miyakonojo-shi	$31^{\circ} 41^{\prime} 23$ "	$1315^{\circ}{ }^{\prime} 47{ }^{\prime \prime}$	T. Shiga 3279 [KOBE, OSA]

Table 18. (continued)

Code	Sampling locality	Latitude (N)	Longitude (E)

Table 18. (continued)

| Pop. Code | Latitude (N) | Longitude (E) |
| :--- | :---: | :---: | Voucher

Table 19. AFLP variations revealed by four AFLP primer pairs in 65 Nuphar plants. Data included that of Barclaya longifolia are also shown in parenthes.

Primer combination		Fragment size (bp)	Number of amplified fragments	Number of monomorphic fragments	Number of polymorphic fragments
EcoRI	MseI				
ACA	CTA	50-370	178 (197)	8 (2)	170 (195)
ACG	CTA	53-389	201 (208)	5 (2)	196 (206)
ACA	CTG	60-471	232 (236)	8 (4)	224 (232)
ACG	CTG	52-467	161 (194)	2 (0)	159 (194)
Total			772 (835)	23 (8)	749 (827)

Table 20. Number of AFLP fragments scored and genetic diversity in N. japonica, N. oguraensis, N. pumila and N. subintegerrima. F; mean proportion of shared fragments between individuals; π, estimated nucleotide diversity

Taxa	N	Average no. of fragments \pm SD	Total AFLP fragments	Number of polymorphic fragments	$F \pm \mathrm{SD}$	$\pi \pm \mathrm{SD}(\times 1000)$		
N. japonica	29	232.1 ± 11.8	425	352	0.84	± 0.06	11.3	± 4.3
Clade-1	20	230.2 ± 7.7	368	299	0.89	± 0.02	7.3	± 1.6
Clade-2	9	236.3 ± 17.7	329	292	0.85	± 0.05	10.2	± 3.3
N. oguraensis	13	197.5 ± 14.7	414	306	0.74	± 0.04	18.9	± 3.5
N. oguraensis (including N. shimadae)	14	196.6 ± 14.5	423	314	0.74	± 0.04	18.5	± 3.4
N. pumila	14	217.6 ± 9.1	397	293	0.83	± 0.08	12.1 ± 6.3	
N. subintegerrima	5	236.8 ± 11.0	376	299	0.74	± 0.07	18.8	± 5.5

TABLE 21. Genotypic diversity within and among populations as expressed by frequency of multi-locus genotypes (MLGs) and mean values of Simpson's diversity (D). Allozyme data were summarized from Chapters 2 and 3.

Species						
Taxa	N. japonica			N. pumila	N. ogura ensis	N.subinte gerrima
Region	Total	East to North (Clade-1)	West to South (Clade-2)	North	West to South	Central
Populations	23	17	6	12	7	5
Sample size (N)	452	347	105	229	109	85
No. of MLGs recoverd	21	13	10	4	8	9
MLG / N	0.046	0.037	0.095	0.017	0.073	0.106
Diversity within populations						
Mean no. of MLGs per population (SD)	$\begin{gathered} 1.957 \\ (1.461) \end{gathered}$	$\begin{gathered} 1.941 \\ (1.478) \end{gathered}$	$\begin{gathered} 2.167 \\ (1.472) \end{gathered}$	$\begin{gathered} 1.083 \\ (0.289) \end{gathered}$	$\begin{gathered} 1.571 \\ (0.535) \end{gathered}$	$\begin{gathered} 2.000 \\ (1.414) \end{gathered}$
Polymorphic populations (\%)	$\begin{gathered} 12 \\ (52.2) \end{gathered}$	$\begin{gathered} 8 \\ (47.1) \end{gathered}$	$\begin{gathered} 4 \\ (66.7) \end{gathered}$	$\begin{gathered} 2 \\ (16.7) \end{gathered}$	$\begin{gathered} 4 \\ (57.1) \end{gathered}$	$\begin{gathered} 2 \\ (40.0) \end{gathered}$
Simpson's D (SD)	$\begin{gathered} 0.212 \\ (0.285) \end{gathered}$	$\begin{gathered} 0.175 \\ (0.261) \end{gathered}$	$\begin{gathered} 0.317 \\ (0.348) \end{gathered}$	$\begin{gathered} 0.096 \\ (0.096) \end{gathered}$	$\begin{gathered} 0.196 \\ (0.226) \end{gathered}$	$\begin{gathered} 0.377 \\ (0.332) \end{gathered}$
Diversity among populations						
Mean no. of populations per MLG (SD)	$\begin{gathered} 2.143 \\ (3.245) \end{gathered}$	$\begin{gathered} 2.62 \\ (4.073) \end{gathered}$	$\begin{gathered} 1.5 \\ (0.756) \end{gathered}$	3.5 (5)	$\begin{gathered} 1.375 \\ (0.744) \end{gathered}$	$\begin{gathered} 1.111 \\ (0.333) \end{gathered}$
Unique MLGs (\%)	$\begin{gathered} 13 \\ (61.9) \end{gathered}$	$\begin{gathered} 5 \\ (38.5) \end{gathered}$	$\begin{gathered} 6 \\ (60.0) \end{gathered}$	$\begin{gathered} 2 \\ (50.0) \end{gathered}$	$\begin{gathered} 6 \\ (75.0) \end{gathered}$	$\begin{gathered} 8 \\ (88.9) \end{gathered}$
Populations with the commonest MLG (\%)	$\begin{gathered} 16 \\ (69.6) \end{gathered}$	$\begin{gathered} 16 \\ (94.1) \end{gathered}$	$\begin{gathered} 3 \\ (50.0) \end{gathered}$	$\begin{gathered} 11 \\ (91.7) \end{gathered}$	$\begin{gathered} 3 \\ (42.9) \end{gathered}$	$\begin{gathered} 1 \\ (40.0) \end{gathered}$

TABLE 22. Comparison of morphological characters for two clades of N. japonica (mean \pm SD). Significance of difference by t-test was expressed by ns, $P>0.05 ; *, P<0.05 ; * *, P<0.01 ; * * *$, $P<0.001$.

Character	N. japonica Clade 1			Clade 2			Difference between the clades
	mean	\pm	SD	mean	\pm	SD	
Emergent leaf characters							
Leaf blade length (cm)	32.47	\pm	5.07	28.73	\pm	4.52	***
Leaf blade width (cm)	18.18	\pm	3.16	18.07	\pm	2.59	ns
Length/width of leaf blade ratio	0.56	\pm	0.06	0.63	\pm	0.05	***
Sinus depth (cm)	7.55	\pm	1.63	8.36	\pm	1.20	***
Sinus/length of blade ratio	0.23	\pm	0.04	0.29	\pm	0.02	***
Maximum blade width position/total length of blade ratio	0.67	\pm	0.06	0.64	\pm	0.04	***
Petiole width at 5 cm from the base of blade (mm)	10.03	\pm	1.62	8.28	\pm	0.78	***
Sample no.	230			76			
Submerged leaf characters							
Leaf blade length (cm)	26.08	\pm	6.28	19.83	\pm	3.92	***
Leaf blade width (cm)	11.91	\pm	2.82	12.01	\pm	1.91	ns
Length/width of leaf blade ratio	0.47	\pm	0.11	0.62	\pm	0.10	***
Sinus depth (cm)	5.10	\pm	1.55	5.37	\pm	0.82	ns
Sinus/length of blade ratio	0.20	\pm	0.06	0.27	\pm	0.03	***
Maximum blade width position/total length of blade ratio	0.72	\pm	0.09	0.67	\pm	0.05	***
Petiole width at 5 cm from the base of blade (mm)	5.57	\pm	1.31	5.13	\pm	0.92	*
Sample no.	190			62			
Flower characters							
Length of stigmatic disc (mm)	10.27	\pm	1.90	9.26	\pm	1.01	**
Width of stigmatic disc (mm)	8.84	\pm	1.55	8.79	\pm	0.96	ns
Length/width of stigmatic disc ratio	0.87	\pm	0.10	0.95	\pm	0.04	***
Stigma length (mm)	3.92	\pm	0.61	3.53	\pm	0.39	***
Number of stigma	13.73	\pm	2.97	12.75	\pm	1.80	ns
Anther length (mm)	4.78	\pm	0.91	5.52	\pm	0.75	***
Filament length (mm)	5.82	\pm	0.85	6.09	\pm	1.14	ns
Anther length/filament length ratio	0.84	\pm	0.18	0.92	\pm	0.15	**
Sample no.	202			32			
Fruit characters							
Fruit length (mm)	43.61	\pm	6.88	42.49	\pm	6.52	ns
Fruit width (mm)	28.10	\pm	5.25	32.16	\pm	3.37	***
Length/width ratio of fruit	0.65	\pm	0.11	0.77	\pm	0.10	***
Seed length (mm)	4.72	\pm	0.37	4.84	\pm	0.29	ns
Seed width (mm)	3.52	\pm	0.32	3.65	\pm	0.32	*
Length/width ratio of seed	0.75	\pm	0.05	0.75	\pm	0.05	ns
Sample no.	199			38			

TABLE 23. Comparison of Nuphar japonica, N. shimadae, N. pumila, N. saikokuensis, N. subintegerrima and N. submersa in the diagnostic characters. Data of N. japonica, N. shimadae, N. pumila and N. subintegerrima were cited from Chapters 2, 3, 4, and 6.

	N. japonica	N. pumila	N. saikokuensis	N. shimadae	N. subintegerrima	N. submersa
Life form	emergent	floating-leaved	floating-leaved	floating-leaved	emergent or floating-leaved	submerged
Emergent or floating leaf	narrowly ovate	widely ovate to ovate	widely ovate to ovate	widely ovate to ovate	roundish	narrowly ovate*
Submerged leaf	narrowly ovate to ovate	roundish to ovate	widely ovate to ovate	roundish to ovate	roundish to ovate	narrowly oblongtriangular
Sinus of submerged leaf	deep	deep	deep	deep	deep	shallow or absent
Central lacuna of petiole	absent	absent	absent	present	absent	usually present
Stigmatic disc color	yellow	red or yellow	yellow	red or yellow	orange or yellow	red
Anther and filament length ratio	1:1~1:2	1:2~1:3	1:1~1:2	1:2~1:3	1:1	1:2~1:3
Anther color	yellow	yellow	yellow	yellow	yellow	red
Fruit color	green	red or green	green	green	red or green	red

*Leaves of Nuphar submersa are always submerged in natural populations. They are rarely floating-leaves in lentic water.

Squared Euclidean Distance

Fig. 1. Phenogram of cluster analysis of 52 Nuphar populations in central to western Japan based on 15 morphological characters (Ward method). The population codes are refered to in Table 1.

Fig. 2. The 2-D scatter plots by principal components 1 and 2 of a principal component analysis using the same data set as cluster analysis.

Fig. 3. Distribution of the populations of five cluster groups in Chapter 2. A. Group 1; B. Group 2; C. Group 3; D. Group 4; E. Group 5

Fig. 4. Schematic illustration of electrophoretic phenotypes observed in Japanese Nuphar. Alphabetical codes below the banding patterns denote genotypes of each putative locus. Putative null alleles are indicated by botted line and " n ". Anode is toward the top of the figure.

$\begin{array}{ccccc}-0.4 & -0.2 & 0 & 0.2 & 0.4\end{array}$

$$
\text { PCO } 1
$$

Fig. 5. Principal coordinate analysis of 162 MLGs of N. japonica (Group 1; solid circle), N. oguraensis (Group 3; solid triangle), N. subintegerrima (Group 5; solid square), Group 2 (open inverse triangle), Group 4 (open diamond) based on shared allele distance between each MLG. The first two coordinate axes account for 46.2% and 31.1% of the variation. In the figures b)-d), broken lines encircle the same populations. For population code, see Table 1.

Fig. 6. Phenogram drawn from a cluster analysis (Ward method) for 22 Nuphar populations in Hokkaido, Japan. Fifteen morphological characters were analyzed (see Table 9). The population codes are referred to in Table 8.
a) Cluster group

b) Genotype of $m d h 3$

c) Pollen fertility

Fig. 7. Principal component analysis (PCA) of N. japonica (Group 1), intermediate populations (Group 2) and N. pumila (Group 3) from Hokkaido, Japan. Fifteen morphological characters were analyzed (see Table 9). Data for cluster groups (a), genotype of $m d h 3$ (b) and fertility (c) are superimposed on the PCA (c on axis 1 only). Symbols indicate phenotype (a and c) or genotype (b).

Fig. 8. Geographic distributions of different genotypes of $m d h 3$. Symbols show morphological groups of each population: N. japonica (Group 1; open circle), intermediate populations (Group 2; solid diamond) and N. pumila (Group 3; open triangle). Some northern Honshu populations of N. japonica with asterisk are added for comparison (see Chapter 2). Distribution patterns of N. japonica and N. pumila are also shown.
N. japonica [238bp] AACGAATGAATGGGGTTGAGGGTTGGTAGAAGAATCTATCCATCGGAACTCCGGAGGGATGATCCTATGTACTGAAATAT N. japonica [232bp] AACGAATGAATGGGGTTGAGGGTTGGTAGAAGAATCTATCCATCGGAACTCCGGAGGGATGATCCTATGTACTGAAATAT N. pumila [234bp] AACGAATGAATGGGGTTGAGGGTTGGTAGAAGAATCTATCCATCGGAACTCCGGAGGGATGATCCTATGTACTGAAATAT
N. pumila [241bp] AACGAATGAATGGGGTTGAGGGTTGGTAGAAGAATCTATCCATCGGAACTCCGGAGGGATGATCCTATGTACTGAAATAT
N. japonica [238bp] CAAACGATTAATCACAACCCGAATCCTTATTTTTTTTATTTTATTATTTTATATTTAT----AAT-AAATAAAAAAATATAT N. japonica [232bp] CAAACGATTAATCACAACCCGAATCCTTATTTTTTTATTTT---ATTT---TTTAT----AAT-AAATAAAAAAATATAT N. pumila [234bp] CAAACGATTAATCACAACCCGAATCCTTATTTTTT-ATTTT---ATTT---TTTAT----AAT-AAATAAAAAAATATAT N. pumila [241bp] CAAACGATTAATCACAACCCGAATCCTTATTTTTTTATTT-ATTAT----------AAAAAATAAAATAAAAAAATATAT

* $\quad * * * * \quad * * * * * * * * * * * * * * \quad *$
N. japonica [238bp] TATATATTAT--ATT------ATAATAATATTAATAATATATTAATAAATTTGTATAATACTATAAT---------------_ [400]
N. japonica [232bp] TATATATTAT--ATTAATATTATAATAATATTAATAATATATTAATAAATTAGTATAATACTATAAT------_-_ [400]
N. pumila [234bp] TATA--TTAT----------AATAATATTAATAATATATTAATAAATTAGTATAATACTATAATATATAATACTATA N. pumila [241bp] TATA--TTATATATT-------AATAATATTAATAATATATTAATAAATTAGTATAATACTATAATATATAATAATATA
** $* *$
N. japonica [238bp] --AAATTATATTTATATTATAATAATGTTCATAACTCTTGTGTTGTGAATCGATCCCAAGTTGAAGGAAGAATCAAATAT [480]
N. japonica [232bp] --AAATTATA----TTATAATAATGTTCATAACTCTTGTGTTGTGAATCGATCCCAAGTTGAAGGAAGAATCAAATAT [480]
N. pumila [234bp] ATAAATTATA----TTATAATAATGTTCATAACTCTTGTGTTGTGAATTGATCCCAAGTTGAAGGAAGAATCAAATAT
N. pumila [241bp] ATAAATTATA-----TTATAATAATGTTCATAACTCTTGTGTTGTGAATCGATCCCAAGTTGAAGGAAGAATAAAATAT **

TCAGTGATGAAATCATTCACTCCAGAGTATGAGACTGGGAGAGAAATGACTGATCGAACGAGAATAAAGATAGAGTCCCA TCAGTGATGAAATCATTCACTCCAGAGTATGAGACTGGGAGAGAAATGACTGATCGAACGAGAATAAAGATAGAGTCCCA TCAGTGATGAAATCATTCACTCCAGAGTATGAGACTGGGAGAGAAATGACTGATCGAACGAGAATAAAGATAGAGTCCCA TCAGTGATGAAATCATTCACTCCAGAGTATGAGACTGGGAGAGAAATGACTGATCGACCGAGAATAAAGATAGAGTCCCA
N. japonica [238bp] TTCTACCTGTCAATGCCGACAGAGAGAAATGACTGCAATGCAATTTG [607]
N. japonica [232bp] TTCTACCTGTCAATGCCGACAGAGAGAAATGACTGCAATGCAATTTG [607] N. pumila [234bp] TTCTACCTGTCAATGCCGACAGAGAGAAATGACTGCAATGCAATTTG [607] N. pumila [241bp] TTCTACCTGTCAATGCCGACAGAGAGAAATGACTGCAATGCAATTTG [607]

Fig. 9. Partial nucleotide sequences of intron of TrnL in Nuphar japonica and N. pumila. Number of nucleotide from 5^{\prime} end is indicated on the right. Asterisks show variable sites. Tips of arrows indicate the 3^{\prime} ends of the new discriminate primers. A fragment size amplified by new primers was also shown in parenthesis.

Fig. 10. Scatter diagrams of the number of specific bands for four hybrid populations. CpDNA haplotypes of N. japonica type (238 ; solid circle) and N. pumila type (234 ; open triangle) are also shown. Broken lines show the case in which the hybrids have speciesspecific markers of both species with the same ratio.

Fig. 11. Number of specific bands of putative parental species and morphological variations (PC axis 1). Different symbols show four hybrid populations, respectively. The box-plot shows the median as the vertical line within the box, the limits of the box represent the 25 th and 75 th percentile, the limits of the whisker plot the 10th and 90th percentile. Maximum and minimum morphological values (PC axis 1) of N. japonica and N. pumila are indicated by solid circles.

Fig. 12. 3-D scatter diagram of relationship between the number of specific bands and pollen stainability. Different symbols show four hybrid populations, respectively.

Fig. 13. Pollen stainability (\%) of four putative hybrid populations are superimposed on the PCA axis 1. Symbols indicate the $m d h 3$ genotypes. The box-plot shows the median as the vertical line within the box, the limits of the box represent the 25th and 75th percentile, the limits of the whisker plot the 10th and 90th percentile. Maximum and minimum morphological values (PC axis 1) of N. japonica and N. pumila are indicated by solid circles.

Fig. 14. Phenogram based on the results of cluster analysis (Ward's method) of 9 Nuphar populations in central to eastern Japan. Ten morphological characteristics were analyzed. The population codes are referred to in Table 14.

Fig. 15. Results of principal components analysis (PCA) of the plants of the three cluster groups based on 10 morphological characteristics. (a) the three cluster groups, (b) the genotype of lap 1, (c) the genotype of $m d h 3$, and (d) pollen viability superimposed on the PCA (on PC axis 1 only). Each symbol indicates phenotypes ((a) and (d)) or genotypes ((b) and (c)). In the figure a); broken lines encircle the same populations. For population code, see Table 14.

Fig. 16. Nuphar xfluminalis Shiga \& Kadono, hybr. nov. from TG-4 (B, D-F), N. submersa (A; T. shiga 3595 (OSA)) and N. japonica (C; T. shiga 3243 (OSA)). A-D: Flower. E-F: Fruit. Scale indicates 1 cm .

Fig. 17. Phylogenetic relationshipos of Nuphar species. Neibor-joining tree based on Nei and Li's genetic distance (1979) for 848 AFLP fragments. Bootstrap values ($>50 \%$) based on 1000 replicates are shown above branches.

Fig. 18. Geographic distribution of plants of two clades of N. japonica and two clades inferred from NJ tree (Fig. 16) and cpDNA, TrnL intron region, haplotype. The sequences of each cpDNA haplotype were shown in Fig. 9. One symbol shows one plant. The overall distribution range of N. japonica is also shown by broken line.

Fig. 19. Scatter diagrams of genetic distance (substitutions/site, d; Innan et al. 1999) based on the AFLP fragment data against geographic distances between sampling localities, for pairwise comparison of individuals in N. japonica, N. oguraensis included N. shimadai, N. pumila and N. subintegerrima. Broken lines are the regression lines. Significance of correlation by Mantel test was expressed by **P <0.01 and ns, $\mathrm{P}>0.05$ on the right shoulders of the corelation coefficients (r).

Fig. 20. Scatter diagrams of genetic distance based on the AFLP fragment data against geographical distances between sampling localities, for pairwise comparison of individuals in the two geographic clades of N. japonica and relationships between two clades. Broken lines are the regression lines. Significance of correlation by Mantel test was expressed by $* \mathrm{P}<0.05$ and ${ }^{* *} \mathrm{P}<0.01$ on the right shoulders of the corelation coefficients (r).

Fig. 21. Comparison of leaf morphology of the N. japonica's two phylogenetic clades. Symbols indicate plants of Clade-1 (open circle) and Clade-2 (solid circle).

Fig. 22. Comparison of petiole anatomy; A) N. japonica (NI-1), B) N. pumila (NNA), C) N. subintegerrima (MI-1), D) N. oguraensis var. oguraensis (HY-8), E) N. oguraensis var. akiensis (HHS), F) N. shimadae (Taiwan), G) N. saikokuensis (GI-3) and H) N. submersa (TG-1).

MI-1

TG-1

Fig. 23. Comparison of fruit color of N. japonica (MY-6), N. oguraensis (HY-8), N. subintegerrima (GI-1, MI-1) and N. submersa (TG-1)

Fig. 24. Nuphar submersa Shiga \& Kadono, sp. nov. from TG-1. A: Stigmatic disc. B: Flower. C: Stamen. D-E: Habit.

Fig. 25. Nuphar submersa. A: Whole plant. B: Flower. C-D: Sepal. E: Petal. F: Stamen. G: Stamen after anthesis. H: seed. A, F-G from T. Shiga 3480 (OSA). B-E, H from T. Shiga 3479 (OSA). Scale indicates 5 mm except A.

Fig. 26. Holotype of Nuphar submersa Shiga \& Kadono (T. Shiga 3480 (1/3), OSA). Bar indicates 5 cm .

Fig. 27. Distribution of N. submersa based on herbarium specimens. Symbols indicate harbarium specimen of extant $(\boldsymbol{)}$) and extinct (O) populations. Distribution ranges of five other species of Japanese Nuphar are also shown.

Fig. 28. Holotype of Nuphar saikokuensis Shiga \& Kadono (T. Shiga 3225, OSA). Bar indicates 5 cm .

Fig. 29. Lectotype of Nuphar subintegerrima (Casp.) Makino (T. Makino 59655, MAK). Bar indicates 5 cm .

Fig. 30. Lectotype of Nuphar oguraensis Miki (S. Miki s.n., OSA). The letters, "Lake Ogura July 3 1926", on newspaper were written by Shigeru Miki.

Fig. 31. Holotype of Nuphar xfluminalis Shiga \& Kadono (T. Shiga 3584, OSA). Bar indicates 5 cm .

Fig. 32. Holotype of Nuphar xhokkaiensis Shiga \& Kadono (T. Shiga 3471, OSA). Bar indicates 5 cm .

Appendix 1. Multi-locus genotypes (MLGs) of five Nuphar groups based on 11 loci in Chapter 2.

MLG	lap1	mdh1	mdh3	mdh4	pgi1	pgi2	pgm1	pmi1	pmi2	tpi2	tpi3	Population code
N. japonica (Group 1)												
Jap 1	aa	bb	bb	aa	bb	aa	aa	cc	nn	bb	bb	HI-10
Jap 2	aa	bb	bb	aa	bb	aa	ab	cc	nn	bb	bb	MY-6
Jap 3	aa	bb	bb	aa	bb	aa	bb	cc	nn	bb	bb	HS-10, HI-10
Jap 4	aa	bb	bb	ab	bb	aa	aa	bc	nn	bb	bb	OK-2
Jap 5	aa	bb	bb	ab	bb	aa	aa	cc	nn	bb	bb	HI-10
Jap 6	aa	bb	bb	ab	bb	aa	ab	bc	nn	bb	bb	OK-2
Jap 7	aa	bb	bb	ab	bb	aa	ab	cc	nn	bb	bb	HI-10
Jap 8	aa	bb	bb	ab	bb	aa	bb	cc	nn	bb	bb	MI-2, HI-10, MY-6
Jap 9	aa	bb	bb	bb	ab	aa	aa	cc	nn	bb	bb	FS-1
Jap 10	aa	bb	bb	bb	ab	aa	ab	cc	nn	bb	bb	FS-1
Jap 11	aa	bb	bb	bb	ab	aa	bb	cc	nn	bb	bb	NI-1
Jap 12	aa	bb	bb	bb	ab	ab	ab	cc	nn	bb	bb	FS-1
Jap 13	aa	bb	bb	bb	bb	aa	aa	cc	nn	bb	bb	FS-1
Jap 14	aa	bb	bb	bb	bb	aa	ab	bc	nn	bb	bb	OK-4
Jap 15	aa	bb	bb	bb	bb	aa	ab	cc	nn	bb	bb	FS-1, NI-4
Jap 16	aa	bb	bb	bb	bb	aa	bb	cc	nn	bb	bb	AO-1, AK-1, YA-1, FS-1, FS-2, FS3, NI-1, NI-4, IB-1, IB-2
Jap 17	aa	bb	bb	bb	bb	ab	ab	cc	nn	bb	bb	FS-1
Jap 18	aa	bb	bc	bb	bb	aa	bb	cc	nn	bb	bb	IB-2
Jap 19	aa	bb	cc	bb	bb	aa	bb	cc	nn	bb	bb	IB-2
N. oguraensis (Group 3)												
Ogu 1	aa	aa	aa	bb	bb	aa	aa	cc	nn	bb	bb	TO-4
Ogu 2	aa	bb	aa	bb	bb	aa	aa	cc	nn	bb	bb	HI-7, MY-8
Ogu 3	aa	bb	aa	bb	bb	aa	aa	cc	nn	ab	bb	MY-2
Ogu 4	aa	bb	aa	bb	bb	aa	aa	cc	nn	aa	bb	MY-2
Ogu 5	aa	bb	aa	bb	bb	aa	ab	cc	nn	bb	bb	HI-2b
Ogu 6	aa	bb	aa	bb	bb	aa	bb	cc	nn	bb	bb	HY-8, HI-2b, MY-8
Ogu 7	aa	cc	aa	bb	bb	aa	aa	cc	nn	bb	bb	FO-1
Ogu 8	aa	cc	aa	bb	bb	aa	ab	cc	nn	bb	bb	FO-1

N. subintegerrima (Group 5)

Sub 1	aa	bb	bb	ab	ab	aa	bb	aa	aa	bb	aa	GI-1
Sub 2	aa	bb	bb	ab	ab	aa	bb	bb	aa	bb	aa	GI-1
Sub 3	aa	bb	bb	ab	bb	aa	bb	aa	aa	bb	cc	AI-1
Sub 4	aa	bb	bb	ab	bb	aa	bb	bb	aa	bb	aa	GI-1
Sub 5	aa	bb	bb	bb	bb	aa	bb	bb	aa	bb	aa	GI-1
Sub 6	bb	bb	bb	aa	aa	aa	aa	bb	aa	bb	bb	MI-1, MI-3
Sub 7	nn	bb	bb	bb	bb	aa	aa	bb	aa	bb	aa	AI-2
Sub 8	nn	bb	bb	bb	bb	aa	ab	bb	aa	bb	aa	AI-2
Sub 9	nn	bb	bb	bb	bb	aa	bb	bb	aa	bb	aa	AI-2

japonica-oguraensis intermediate (Group 2)

J-O 1	aa	ab	ab	ab	bb	aa	aa	bc	aa	bb	bb	TO-3b
J-O 2	aa	ab	ab	ab	bb	aa	aa	bc	an	bb	bb	TO-1, TO-3b
J-O 3	aa	ab	ab	ab	bb	aa	aa	bc	nn	bb	bb	TO-1
J-O 4	aa	ab	ab	ab	bb	aa	aa	cc	nn	bb	bb	TO-1
J-O 5	aa	ab	ab	ab	bb	aa	bb	cc	an	bb	bb	TO-3b
J-O 6	aa	ab	ab	ab	bb	ab	bb	cc	an	bb	bb	TO-2
J-O 7	aa	ab	ab	ab	bb	ab	bb	cc	nn	bb	bb	TO-1

Appendix 1. (continued)

MLG	lap1	mdh1	mdh3	mdh4	pgi1	pgi2	pgm1	pmi1	pmi2	tpi2	tpi3	Population code
J-O 8	aa	bb	aa	aa	bb	aa	aa	cc	nn	bb	bb	HI-4
J-O 9	aa	bb	aa	ab	bb	aa	aa	cc	nn	bb	bb	HI-4, HI-5
J-O 10	aa	bb	aa	ab	bb	aa	bb	cc	an	bb	bb	NI-5
J-O 11	aa	bb	aa	ab	bb	aa	bb	cc	nn	bb	bb	HI-4
J-O 12	aa	bb	aa	bb	bb	aa	aa	cc	nn	bb	bb	HI-4
J-O 13	aa	bb	aa	bb	bb	aa	ab	cc	nn	bb	bb	HI-5
J-O 14	aa	bb	aa	bb	bb	aa	bb	cc	nn	bb	bb	HI-4, HI-5
J-O 15	aa	bb	ab	aa	bb	aa	aa	cc	nn	bb	bb	HI-4
J-O 16	aa	bb	ab	ab	bb	aa	aa	bc	nn	bb	bb	MY-1c
J-O 17	aa	bb	ab	ab	bb	aa	aa	cc	nn	bb	bb	HI-4, HI-5
J-O 18	aa	bb	ab	ab	bb	aa	bb	cc	an	bb	bb	NI-5
J-O 19	aa	bb	ab	ab	bb	aa	bb	cc	nn	bb	bb	HI-2a
J-O 20	aa	bb	ab	bb	bb	aa	bb	cc	an	bb	bb	NI-5
J-O 21	aa	bb	ab	bb	bb	ab	bb	bc	nn	bb	bb	TO-1
J-O 22	aa	bb	bb	aa	bb	aa	bb	bc	nn	bb	bb	OK-1
J-O 23	aa	bb	bb	ab	bb	aa	ab	bb	nn	bb	bb	MY-1b, MY-1c
J-O 24	aa	bb	bb	ab	bb	aa	ab	bc	an	bb	bb	TO-3a
J-O 25	aa	bb	bb	ab	bb	aa	ab	bc	nn	bb	bb	OK-1
J-O 26	aa	bb	bb	ab	bb	aa	bb	bc	nn	bb	bb	OK-1
J-O 27	aa	bb	bb	bb	bb	aa	bb	cc	aa	bb	bb	FU-3
J-O 28	aa	bb	bb	bb	bb	aa	bb	cc	nn	bb	bb	FU-3
J-O 29	aa	bb	cc	bb	bb	aa	bb	bb	aa	bb	bb	FU-1
J-O 30	aa	bb	cc	bb	bb	aa	bb	bb	an	bb	bb	FU-1
J-O 31	aa	bb	cc	bb	bb	aa	bb	bc	aa	bb	bb	FU-1
J-O 32	aa	bb	cc	bb	bb	aa	bb	bc	an	bb	bb	FU-1
J-O 33	aa	bb	cc	bb	bb	aa	bb	bc	nn	bb	bb	FU-1
J-O 34	aa	bb	cc	bb	bb	aa	bb	cc	aa	bb	bb	FU-1
J-O 35	aa	bb	cc	bb	bb	aa	bb	cc	an	bb	bb	FU-1
J-O 36	aa	bb	cc	bb	bc	aa	bb	bc	an	bb	bb	FU-1
J-O 37	ab	bb	bb	aa	bb	aa	bb	bb	an	bb	bb	KA-4
J-O 38	ab	bb	bb	ab	bb	aa	bb	cc	an	bb	bb	HY-3

japonica-subintegerrima intermediate (Group 4)

J-S 1	aa	bb	bb	aa	bb	aa	aa	ab	aa	bb	bc	HY-1
J-S 2	aa	bb	bb	aa	bb	aa	aa	ab	nn	bb	bb	HY-1
J-S 3	aa	bb	bb	aa	bb	aa	aa	bb	aa	bb	aa	$\mathrm{OH}-1$
J-S 4	aa	bb	bb	aa	bb	aa	aa	bb	aa	bb	bb	HY-1, HY-5, NA-1
J-S 5	aa	bb	bb	aa	bb	aa	aa	bb	aa	bb	bc	HY-5
J-S 6	aa	bb	bb	aa	bb	aa	aa	bb	an	bb	bb	HY-1, KA-5
J-S 7	aa	bb	bb	aa	bb	aa	aa	bc	aa	bb	ab	OH-1
J-S 8	aa	bb	bb	aa	bb	aa	aa	bc	aa	bb	bb	SI-1, NA-1
J-S 9	aa	bb	bb	aa	bb	aa	aa	cc	aa	bb	ab	$\mathrm{OH}-1$
J-S 10	aa	bb	bb	aa	bb	aa	aa	cc	aa	bb	bb	NA-1
J-S 11	aa	bb	bb	aa	bb	aa	aa	cc	an	bb	bb	NA-1
J-S 12	aa	bb	bb	aa	bb	aa	ab	bb	aa	bb	bb	SI-1, HY-1, HY-5
J-S 13	aa	bb	bb	aa	bb	aa	ab	bb	an	bb	bb	HY-1
J-S 14	aa	bb	bb	aa	bb	aa	ab	bb	nn	bb	bb	HY-1, OK-3
J-S 15	aa	bb	bb	aa	bb	aa	ab	bc	aa	bb	bb	SI-1
J-S 16	aa	bb	bb	aa	bb	aa	ab	bc	nn	bb	bb	OK-3
J-S 17	aa	bb	bb	aa	bb	aa	ab	cc	aa	bb	bb	SI-1

Appendix 1. (continued)

MLG	lap1	mdh1	mdh3	mdh4	pgi1	pgi2	pgm1	pmi1	pmi2	tpi2	tpi3	Population code
J-S 18	aa	bb	bb	aa	bb	aa	bb	ab	aa	bb	bb	HY-1
J-S 19	aa	bb	bb	aa	bb	aa	bb	bb	aa	bb	bb	HY-1
J-S 20	aa	bb	bb	aa	bb	aa	bb	bb	aa	bb	bc	HY-5
J-S 21	aa	bb	bb	aa	bb	aa	bb	bb	an	bb	bb	HY-1, SI-1
J-S 22	aa	bb	bb	aa	bb	aa	bb	bc	aa	bb	bb	SI-1
J-S 23	aa	bb	bb	aa	cc	aa	bb	bb	an	bb	bb	GI-2
J-S 24	aa	bb	bb	ab	bb	aa	aa	ab	aa	bb	bb	HY-1
J-S 25	aa	bb	bb	ab	bb	aa	aa	bb	aa	bb	aa	OH-1
J-S 26	aa	bb	bb	ab	bb	aa	aa	bb	nn	bb	bc	HY-1
J-S 27	aa	bb	bb	ab	bb	aa	aa	bc	aa	bb	ab	OH-1
J-S 28	aa	bb	bb	ab	bb	aa	aa	bc	aa	bb	bb	SI-1, HY-7
J-S 29	aa	bb	bb	ab	bb	aa	aa	cc	aa	bb	bb	HY-7
J-S 30	aa	bb	bb	ab	bb	aa	ab	bb	aa	bb	bb	SI-1
J-S 31	aa	bb	bb	ab	bb	aa	ab	bc	aa	bb	bb	SI-1
J-S 32	aa	bb	bb	ab	bb	aa	bb	ab	aa	bb	bb	HY-1
J-S 33	aa	bb	bb	ab	bb	aa	bb	ab	nn	bb	bb	HY-1
J-S 34	aa	bb	bb	ab	bb	aa	bb	bb	an	bb	bb	SI-1, HY-1
J-S 35	aa	bb	bb	ab	bb	aa	bb	bc	aa	bb	bb	SI-1
J-S 36	aa	bb	bb	ab	bb	aa	bb	bc	an	bb	bb	SI-1
J-S 37	aa	bb	bb	ab	cc	aa	bb	bb	aa	bb	bb	GI-2
J-S 38	aa	bb	bb	ab	cc	aa	bb	bb	an	bb	bb	GI-2
J-S 39	aa	bb	bb	ab	cc	aa	bb	bb	nn	bb	bb	GI-2
J-S 40	aa	bb	bb	ab	cc	aa	bb	bc	aa	bb	bb	GI-2
J-S 41	aa	bb	bb	bb	bb	aa	aa	bb	aa	bb	bb	FU-2, HY-7
J-S 42	aa	bb	bb	bb	bb	aa	aa	bc	aa	bb	bb	FU-2
J-S 43	aa	bb	bb	bb	bb	aa	ab	bb	aa	bb	bb	GI-2
J-S 44	aa	bb	bb	bb	bb	aa	ab	bb	an	bb	bb	FU2, HY-1
J-S 45	aa	bb	bb	bb	bb	aa	ab	bb	nn	bb	bb	HY-1
J-S 46	aa	bb	bb	bb	bb	aa	ab	bc	aa	bb	bb	FU-2
J-S 47	aa	bb	bb	bb	bb	aa	ab	bc	nn	bb	bb	OK-6
J-S 48	aa	bb	bb	bb	bb	aa	ab	cc	aa	bb	bb	FU2
J-S 49	aa	bb	bb	bb	bb	aa	ab	cc	an	bb	bb	FU-2, HY-7
J-S 50	aa	bb	bb	bb	bb	aa	bb	bb	aa	bb	bb	GI-2, FU-2
J-S 51	aa	bb	bb	bb	bb	aa	bb	bb	an	bb	bb	FU-2, HY-1
J-S 52	aa	bb	bb	bb	bb	aa	bb	bc	aa	bb	bb	FU-2
J-S 53	aa	bb	bb	bb	bb	aa	bb	bc	an	bb	bb	FU-2
J-S 54	aa	bb	bb	bb	bb	aa	bb	cc	aa	bb	bb	SI-1
J-S 55	aa	bb	bb	bb	bb	aa	bb	cc	an	bb	bb	FU-2
J-S 56	aa	bb	bb	bb	bc	aa	ab	bc	aa	bb	bb	GI-2
J-S 57	aa	bb	bb	bb	bc	aa	bb	bb	aa	bb	bb	GI-2
J-S 58	aa	bb	bb	bb	cc	aa	bb	bb	aa	bb	bb	GI-2
J-S 59	aa	bb	bb	bb	cc	aa	bb	bb	an	bb	bb	GI-2
J-S 60	aa	bb	bb	bb	cc	aa	bb	bb	nn	bb	bb	GI-2
J-S 61	ab	bb	bb	aa	bb	aa	aa	bb	aa	bb	ab	$\mathrm{OH}-1$
J-S 62	ab	bb	bb	aa	bb	aa	aa	bb	an	bb	ab	OH-1
J-S 63	ab	bb	bb	aa	bb	aa	aa	bb	an	bb	bb	KA-5
J-S 64	ab	bb	bb	aa	bb	aa	aa	bb	nn	bb	bb	KA-5
J-S 65	ab	bb	bb	aa	bb	aa	aa	bc	aa	bb	aa	OH-1
J-S 66	ab	bb	bb	aa	bb	aa	aa	bc	an	bb	ab	$\mathrm{OH}-1$

APPENDIX 1. (continued)

MLG	lap1	mdh1	mdh3	mdh4	pgi1	pgi2	pgm1	pmi1	pmi2	tpi2	tpi3	Population code
J-S 67	ab	bb	bb	aa	bb	aa	aa	bc	an	bb	bb	KA-1
J-S 68	ab	bb	bb	aa	bb	aа	aa	cc	aa	bb	ab	OH-1
J-S 69	ab	bb	bb	ab	bb	aa	aa	bb	aa	bb	ab	OH-1
J-S 70	ab	bb	bb	ab	bb	aa	aa	bb	an	bb	aa	OH-1
J-S 71	ab	bb	bb	ab	bb	aa	aa	bc	an	bb	ab	OH-1
J-S 72	ab	bb	bb	ab	bb	aa	aa	bc	an	bb	bb	KA-2
J-S 73	ab	bb	bb	bb	bb	aa	aa	bb	aa	bb	aa	$\mathrm{OH}-1$
J-S 74	ab	bb	bb	bb	bb	aa	aa	bb	aa	bb	ab	OH-1
J-S 75	ab	bb	bb	bb	bb	aa	aa	bc	aa	bb	ab	OH-1
J-S 76	bb	bb	bb	aa	bb	aa	aa	bb	aa	bb	aa	$\mathrm{OH}-1$
J-S 77	bb	bb	bb	aa	bb	aa	aa	bc	aa	bb	aa	OH-1
J-S 78	bb	bb	bb	aa	bb	aa	aa	bc	an	bb	aa	OH-1
J-S 79	bb	bb	bb	aa	bb	aa	aa	cc	aa	bb	ab	OH-1
J-S 80	bb	bb	bb	ab	bb	aa	aa	bc	aa	bb	ab	OH-1
J-S 81	nn	bb	bb	bb	bb	aa	bb	bb	aa	bb	aa	OH-1
J-S 82	nn	bb	bb	bb	bb	aa	bb	bb	aa	bb	ac	GI-3
J-S 83	nn	bb	bb	bb	bb	aa	bb	bb	aa	bb	cc	GI-3
J-S 84	nn	bb	bb	bb	bb	aa	bb	bc	aa	bb	aa	GI-3
J-S 85	nn	bb	bb	bb	bb	aa	bb	bc	aa	bb	ac	GI-3
J-S 86	nn	bb	bb	bb	bb	aa	bb	bc	aa	bb	cc	GI-3
J-S 87	nn	bb	bb	bb	bb	aa	bb	cc	aa	bb	aa	GI-3
J-S 88	nn	bb	bb	bb	bb	aa	bb	cc	aa	bb	ac	GI-3

Appendix 2．Data matrix of absence（not shown）or presence（1）of the AFLP fragments in ACG－ CTA primer combination．

Genotype Taxa		Pop．Code		요 合	成 ${ }^{\circ}$		ํㅜㅇ		\％ 88	\bigcirc		88		ミN	セざロ		1	\％${ }_{\text {¢ }}^{\text {¢ }}$				\＃	$\stackrel{\sim}{7}$				
1	N．japonica	SAA	1	1				1	1	1			1		1									1	1	1	1
2		ноо	1	1				1	1	1			1		1		1	1	1	1				1	1	1	1
3		SAM	1	1				1	1	1			1		1		1	1	1	1					1	1	1
4		KIO	1	1				1	1	1			1		1		1	1	1	1				1	1	1	1
5		тов	1	11				1	1	1			1		1		1	1	1	1					1	1	1
6		ATT	1	1						1			1		1		1	1	1	1				1	1	1	1
7		TAO	1	1	1			1	1	1			1		1		1	1	1	1				1	1	1	1
8		AO－1	1	11	1			1	1	1		1	1		1	1	1	1	1	1				1	1	1	1
9		AK－1	1	1	1			1	1	1			1		1		1	1	1	1				1	1	1	1
10		YA－1	1	11				1	1	1		1	1		1	1	1	1	1	1				1	1	1	1
11		FS－1	1	11				1	1	11	1	1	1		1	1	1	1	1	1				1	1	1	1
12		FS－2	1	11				1	1	1	1	1	1		1	1	1	1	1	1				1	1	1	1
13		FS－3	1	11				1	1	11	1	1	1		1	1	1	1	1	1					1	1	1
14		IB－1	1	11				1	1	11	1	1	1		1	1	1	1	1	1			1		1	1	1
15		IB2－	1	1				1	1	11	1		1		1		1	1	1	1				1	1	1	1
16		TK－1	1	11					1	1			1		1		1	1	1	1					1	1	1
17		KN－1	1	1	1				1	11	1		1		1	1	1	1	1	1						1	1
18		NI－1	1	11				1	1	11	1	1	1		1		1	1	1	1					1	1	1
19		NI4	1	1				1	1	1	1	1	1		1	1	1	1	1	1				1	1	1	1
20		IK－1	1	1				1	1	1	1		1		1		1	1	1	1				1	1	1	1
21		SI－3	1	1	1				1	11	1		1		1		1	1	1				1	1	1	1	1
22		MI－2	1	11	111			1	1	11	1	1	1		1		1	1	1	1	1			1	1	1	1
23		WA－1	1	1	1				1	11	1		1		1	1	1	1	1	1	1			1	1	1	1
24		OK－2	1	1					1	11	1		1		1	1	1	1	1	1	1			1	1	1	1
25		OK－4	1	1	1				1	1			1		1		1	1	1	1				1	1	1	1
26		HI－10	1	1	11			1	1	1			1		1		1	1	1	1				1	1	1	1
27		KO－4	1	1	11					1			1		1		1	1	1	1	1			1	1	1	1
28		MY－5	1	1	1					1			1		1		1	1	1	1				1	1	1	1
29		MY－6	1	1	1					1			1		1		1	1	1	1				1	1	1	1
30	N．oguraensis	GI－4		1	1	1							1	1		1	1			1	1	1		1			
31		HY－8		1		1		11					1		1		1										
32		HI－2b		1		1		11				1	1		1	1	1					1					
33		HI－7		11	1	1		11					1		1		1		1	1		1			1		
34		FO－2		1		1		11					1		1		1					1				1	
35		MY－2		1	1			11	1				1		1		1					1				1	
36		MY－8		1		1	11	1	1	1			1		1		1		1	1		1			1	1	
37		Ko－1y		1		1		11					1		1		1					1				1	
38		Ko－2y		1		1		11					1		1		1					1				1	
39	N．ogu．var．akiensis	HHS	1	1		1	1	1	11	1			11		1	1	1	1				1			1	1	
40		KO－1	1	1		11	1	11	11				11		1		1										1
41		KO－2		1		11		11	11				1		1		1			1	1					1	
42		Ko－1r		1		1		11					1		1		1									1	
43	N．shimadai			1		1		11	1		1		1		1	1	1										
44	N．submersa	TG－1		1	1	1		1	11				11		1		1					1					
45		TG－2		1	1	1		11	11				11		1		1										
46	N．pumila	WAM		11	1				11				1	1		1	1								1		
47		KUT		1				11	11				1				1										
48		URUa		1				11	11			1	1	1			1								1		
49		TSC		1				11	11				1				1										
50		BEB		1				11	11				11				1										
51		NET		1				11	11		1	11	11	1		1	1								1		
52		NEN		11				11	11			1	1	1		1	1								1		
53		HAK		1				11	11			1	1				1										
54		AKT		1				11	11			1	1	1			1				1						
55		KWS		1				11	11	11	1	1	1			1	1										
56		ATO		1				11	11				1				1		1						1		
57	N．pum．var．ozeensis	URUb		1				11	11				1				1								1		
58		GM－1						1	1	1			1		1	1	1	1	1						1		
59		URUc		1				11	11				1				1				，				1		
60	N．subintegerrima	GI－1		1	1				1	11	1		1		1		1		1	1				1	1		
61		AI－1		1						1			1		1		1	1	1					1	1		
62		AI－2		1						11	1	1	1		1	1	1	1	1					1	1		
63		MI－1	1	1	1				1	1	1	1	1		1	1	1		1	1		1		1	1		
64		MI－3		1					1	1	1		11		1	1	1		1	1		1		1	1		
65	N．Iutea		1	11					11	1	1	1	1			1	1					1			1	1	
66	Barclaya longifolia		1	1	1	1			1			1					1									1	

Appendix 2. (continued)

Appendix 2. (continued)

APPENDIX 3. Data matrix of absence (not shown) or presence (1) of the AFLP fragments in ACACTA primer combination.

APPENDIX 3. (continued)

Fragment size (bp)																																							
Genotype																																							
1	1	11	11	11		1				1		1			1	1					1		1			1					1			1	1	1	11	1	1
2	1	11	11	11		1				1	1	1			1	1					1		1			1					1			1	1	1	11	1	1
3	1	11	11	11		1				1	1	1			1	1					1		1	1		1					1			1	1	1	11	1	1
4	1	11	11	11		11	1			1		1			1	1					1		1			1					1			1	1	1	1	1	1
5	1	11	11	11		1				1		1			1	1					1		1			1					1			1	1	1	11	11	1
6	1	11	11	11		11	1			1	1	1			1	1					1		1			1					1			1	1	1	11	11	1
7	1	11	11	11		1				1		1			1	1					1		1			1					1			1	1	1	11	11	1
8	1	11	11	11		1				1	1	1			1	1					1		1	1		1					1			1	1	1	1	1	1
9	1	11	11	11		1				1	1	1			1	1					1		1			1					1			1	1	1	11	11	1
10	1	11	11	11		1				1	1	1			1	1					1		1	1		1					1			1	1	1	11	11	1
11	1	11	11	11		1				1	1	1			1	1					1		1			1					1			1	1	1	11	1	1
12	1	11	11	11		1	1			1	1	1			1	1					1		1			1					1			1	1	1	11	11	1
13	1	11	11	11		1				1	1	1			1	1					1		1			1					1			1	1	1	11	11	1
14	1	11	11	11		1				1	1	1			1	1					1		1			1					1			1	1	1	11	11	1
15	1	11	11	11		1				1	1	1			1	1					1		1			1					1			1	1	1	1	1	1
16	1	11	11	11		1				1	1			1	1	1					1		1							1	1			1	1	1	1	1	1
17	1	11	11	11		1				1	1			1	1	1					1		1			1				1	1			1	1	1	1	1	1
18	1	11	11	11		1				1	1	1			1	1					1		1			1		1			1			1	1	1	1	11	1
19	1	11	11	11		1				1		1			1	1					1		1			1					1			1		1	1	11	1
20	1	11	11	11		1				1		1			1	1					1		1			1					1			1	1	1	1	11	1
21	1	11	11	11		1				1		1			1	1			1		1		1	1	11	1								1		1	1	1	1
22	1	11	11	11		1				1	1	1			1	1					1	1	1	1	11	1		1			1			1		1	1	1	1
23	1	11	11	11		1				1	1	1			1	1					1	1	1	1	11	1		1			1			1		1	1	1	1
24	1	11	11	11		1				1		1			1	1					1	1	1		11	1		1					1	1		1	1	1	1
25	1	11	11	11		1				1		1			1	1					1	1	1	1	11	1		1			1			1		1	1	1	1
26	1	11	11	11		11				1		1			1	1					1	1	1		11	1		1			1			1		1	1	1	1
27	1	11	11	11		1				1		1			1	1					1	1	1	1	11	1		1			1			1		1	1	1	1
28	1	11	11	11		1				1		1			1	1					1	1	1	1	11	1		1			1			1		1	1	1	1
29	1	11	1	11		1				1		1			1	1					1	1	1	1	11						1			1			1	1	1
30		11	1	1		1				1					1				1		1		1	1		1		1								1	1	1	1
31	1	11	11	11		1				1					1				1		1					1		1								1	1		1
32	1	11	1	1						1	1		1		1				1		1		1	1		1		1								1	1		1
33	1	11	1	1						1			1		1				1		1		1	1		1		1								1	1	1	1
34	1	11	1	1		1				1			1			1			1		1	1	1	1				1								1	1		1
35	1	11	1	1		1				1		1	1						1		1					1		1					1			1	1		1
36	1	11	11	11		11	1			1		1	1		1	1			1		1			1		1		1								1	1	1	1
37	1	11	11	11		1				1			1						1							11		1								1	1		1
38	1	11	1	1		1				1	1		1						1		1		1	1		1		1								1	1		1
39	1	11	1	1		1				1	1		1			1			1		1		1	1		1		1					1			1	1		1
40	1	11	1	1		1				1	1		1						1		1		1	1		1		1								1	1	1	1
41	1	11	1	1		1				1			1						1		1		1	1												1	1		1
42	1	11	1	1		11							1						1		1			1		1		1								1	1		1
43	1	11	1	11						1			1					1			1		1	1		1		1			1					1	1		1
44	1	11	1	11		11				1		1							1		1			1		1		1								1	1		1
45	1	11	$1 \quad 1$	11		11				1		1							1		1			1		1		1								1	1		1
46	1	11	1	1		1				1	1					1			1			1	11	1		1		1	1							1			1
47	1	11	1	1		1				1		1			1	1			1		1	1		1		1		1		1	1					1	1		1
48	1	11	1	1		1				1	1	1			1	1	1	1	1		1	1		1		1		1		1	11					1	1		1
49	1	11		1		1				1	1	1			1	1			1		1	1	1	1		1		1	1	1	1					1	1		1
50	1	11	1	1		1				1	1	1			1	1			1		1	1	1	1		1		1		1	1					1	1		1
51	1	11	1	1		1				1		1			1	1			1		1	1	1	1		1		1		1	1					1			1
52	1	11		1		1				1	1	1			1	1			1		1	1	1	1		1		1		1	1					1	1		1
53	1	11		1		1				1	1	1			1	1			1		1	1	1	1		1		1	1	1	1					1	1		1
54	1	11		1		1						1			1	1			1			1	1	1		1		1		1	1					1	1		1
55	1	11		1		1	1		11		1	1				1			1	1		1	1	1		1		1		1	1					1	1		1
56	1	11		1		1				1	1				1	1			1		1	1	11	1		1			1		1					1			1
57	1	11		1		1				1		1			1	1	1	1	1		1	1	1	1		1		1		1	11					1			1
58	1	11		11		1				1		1			1	1							1	1		1		1			1					1		1	
59	1	11		1		1				1	1	1			1	1	1	1	1		1	1	1	1		1		1		1	11					1			1
60		11	1	11		1		1		1		1			1	1			1		1	1	1	1				1							1	1	1		11
61		11		11		1				1		1			1	1			1		1	1	1	1				1								,	1		1
62		11		11						1		1	1		1	1			1		1	1		1				1						1	1	1	1		1
63		11	11	11						1	1	1			1	1					1	1	1	1		1		1			1			1	1	1	1		
64		11	1	11		11				1		1			1	1					1	1		1		1		1						1		1	1	1	
65	1	1		11	1		1	11	11		1	1		1	1	1			1	11	1	1		1		1		1			1					1	1	1	1
66			11												1									1			11	11				1	1					1	

Appendix 3. (continued)

Fragment size (bp)																																		
Genotype																																		
1		1	1	1			1	1	1						1		1									11	1	1				1	1	
2			1						1					1	1	1	1									11	1	1				1	1	
3			1				1		1						1		1									1	1	1				1	1	
4			1						1						1		1									11	1	1				1	1	
5		1	1	1			1	1	1						1		1									11	1	1				1	1	
6			1	1				1	1						1		1									1	1	1				1	1	
7			1				1		1						1											1	1	1				1	1	
8			1				1		1						1		1									11	1					1	1	
9			1				1		1					1	1		1									11	1					1	1	
10			1				1		1						1		1									11	1					1	1	
11			1	1			1	1	1						1	1	1									11	1					1	1	
12			1				1		1					1	1		1									1	1			1	1	1	1	
13			1						1						1		1									11	1					1	1	
14			1				1		1					1	1		1									1	1			1	1	1	1	
15			11				1		1						1		1									11	1			1	1	1	1	
16			11	1			1	1	1						1		1									1	1							
17			11				1		1						1		1									1	1					1	1	
18			1				1		1						1		1									1	1		1			1	1	
19			11				1	1	1						1		1									11	1					1	1	
20			11				1		1						1		1									11	1					1	1	
21		1	1						1						1		1									1	1							
22							1		1	1					1		1	1								1	1							
23			1				1		1	1					1		1	1								11								
24		1								1					1	1	1	1								11	1							
25			1				1	1	1	1					1		1									1	1							
26		1	1				1		1	1						1	1									11						1	1	
27			1				1	1	1	1					1		1									11	1							
28							1		1	1					1		1									11	1							
29		1					1	1	1						1		1										1	1						
30	1	1					1			1								1			1	1					1		1		1			
31			1				1			1							1	1								1			1					
32			11				1				1			1		1	1	1			1	1	1						1		1	1	1	
33			1				1							1	1			1									1		1		1			
34			11				1			1					1														1		1			
35		1	1				1			1																			1		1	1		
36			1				1			1																	1		1		1			
37			1		1		1			1					1		1	1					1	1		1	1		1					
38			1				1			1				1			1	1					1	1					1					
39		1					1			1	1				1	1	1	1			1	1					1		1		1			
40			11	1			1				1			1		1	1	1			1					1	1		1		1			
41			1				1										1	1								1	1		1		1			
42			1				1			1							1	1					1	1	1	1	1		1		1	1		
43			1				1			1							1	1					1	1		1	1		1					
44	1	1	1				1			1					1		1	1									1							
45	1	1	1				1			1					1	1	1	1									1							
46	1	1	1	1			1			1			1			1	1	1		1	1				1		1					1	1	
47	1		1				1			1			1				1	1		1			1	1										
48	1		1	1			1			1			1				1	1		1				1	1							1	1	
49	1		1				1			1			1				1	1		1			1	1									1	
50	1		11	1			1			11			1				1	1		1			1	1		1						1	1	
51	1		1				1			1			1				1	1		1			1	1								1	1	
52	1		11	1			1			1			1				1	1		1			1	1								1	1	
53	1		11	1			1			1			1				1	1		1			1	1								1	1	
54	1		1			1	1			1			1				1	1		1			1	1								1	1	
55	1		11	1			1	1		1					1		1	1				1			1			1				1	1	
56	1		1				1			1			1				1	1		1	1			1								1	1	
57	1		1				1			1			1				1	1						1	1									
58			1				1			1															1									
59	1		1				1			1			1				1	1						1	1							1	1	
60		1	11			1				1					1		1	1							1		1						11	
61			11			1				1					1	1	1	1							1	1	1					1	1	
62			11			1				1							1	1				11	1	1	1	1	1		1				11	
63			11							1				1			1	1	1	1					1		1					1	1	1
64		1	11							1				1			1	1									1					1	1	1
65	1			1		11				1				1		1	1								1		1					1	1	
66				1		1	1	1	11		1	11	11		1						1													

Appendix 3. (continued)

1		1		1		1	1		1					1		1		1	1		1	1	1			1			
2		1		1		1	1		1					1		1		1	1		1	1	1			1			
3		1		1		1	1		1					1		1		1	1		1		1			1			
4		1		1		1	1		1					1		1		1	1		1		1			1			1
5		1		1		1	1		1					1		1			1		1	1	1			1			
6		1		1		1	1		1					1		1		1	1		1	1	1			1			
7		1		1		1	1		1					1		1		1	1		1	1	1			1			
8		1		1		1	1		1					1		1		1	1		1	1	1			1			
9		1		1		1	1		1					1		1		1	1		1	1	1			1			1
10		1		1		1	1		1					1		1		1	1		1	1	1			1			
11		1		1		1	1		1	1	1			1		1	1	1	1		1	1	1			1			1
12		1		1		1	1		1					1		1		1	1		1	1	1			1			
13		1		1		1	1		1					1		1		1	1		1	1	1			1			
14		1		1		1	1		1					1		1		1	1		1	1	1			1			1
15		1		1		1	1		1					1		1		1	1		1	1	1			1			1
16		1		1		1	1		1					1		1		1	1		1	1	11			1			
17		1		1		1	1		1					1		1		1	1		1	1		1		1			
18		1		1		1	1		1					1		1		1	1		1	1	1			1			
19		1		1		1	1		1					1		1		1	1		1	1	1			1			
20		1		1		1	1		1					1		1		1	1		1	1	1			1			
21		1		1		1	1		1					1		1		1	1		1	1	1			1			1
22		1		1		1	1		1					1		1		1	1		1		1			1			1
23		1		1		1	1		1					1		1		1	1		1		1			1			1
24		1		1		1	1		1					1		1		1	1		1	1	1			1			1
25		1		1		1	1		1					1		1		1			1					1			1
26		1		1		1	1		1					1				1			1					1			1
27		1		1		1	1		1					1				1			1					1			1
28		1		1		1	1		1					1				1			1					1			1
29		1		1		1	1		1					1				1			1					1			1
30			1			1	1		1			1	1			1				1	1					1			
31		1					1									1					1		1			1			1
32		1	1			1	1		1		1	1	1			1				1	1		1			1			1
33							1				1			1		1				1	1	1	1			1			1
34		1					1				1					1					1	1	1			1			
35							1									1					1	1	1			1			
36							1									1				1	1		1			1		1	1
37											1					1				1	1		1			1			
38											1					1				1	1		1			1			
39		1	1			1	1		1	1	1					1			1		1		1			1		1	1
40			1			1	1		1		1	1	1			1				1	1		1			1			
41							1				1					1				1	1					1			
42											1					1				1	1		1			1		1	1
43																1				1	1					1	1	1	1
44		1		1												1				1	1		1		1	1			
45		1		1		1			1							1				1	1		1		1	1			
46				1		1			1			1	1	1	1	1		1		1	1		1		1	1			
47		1		1					1			1	1	1		1				1	1		1			1			
48				1		1			1			1	1	1		1				1	1		1		1	1	1		
49		1		1					1			1	1	1		1				1	1		1			1			1
50				1		1			1			1	1	1		1				1	1		1			1			1
51		1		1					1				1	1		1				1	1		1			1			
52		1		1		1			1				1	1		1				1	1		1			1			
53		1		1		1			1				1	1		1				1	1		1			1			
54				1					1				1	1		1				1			1			1			
55						11			1		1	1	1	1		1				1	1		1			11			1
56				1					1				1	1		1		1		1	1		1			11			
57				1										1		1				1	1		1			1	1		
58				1										1		1		1		1	1		1			1	1		
59				1					1			1	1	1		1				1	1		1			1	1		
60		1	1	1		1			1					1		11		1	1		1	1	1			1			
61		1				1	1		1					1		11		1	1		1		1				1		
62							1		1			1		1		11		1	1		1		1			1			1
63		11				1								1		11		1	1		1		1			1	1	1	1
64	1	1		1		1	1							1		11		1	1		1		1			1			
65		1											1		1				1		1		1			1			
66					1		1		1	1	1													1		1			

APPEndix 4. Data matrix of absence (not shown) or presence (1) of the AFLP fragments in ACACTG primer combination.

$\frac{\text { Genotype }}{1}$	Taxa	Pop. Code	Fragment size (bp)																									
	N. japonica	SAA	1	1	1	1	1	1	1	1	1		1						1	1		1	1	1	1		1	
2		HOO	1	1	1	1	1	1	1	1	1	1	1						1	1		1	1	1	1		1	
3		SAM	1	1	1			1	1	1	1		1					11	1	1		1	1	1	1		1	
4		KIO	1	1	1		11	1	11	11	1		1				1	11	1	1		1	1	1	1		1	
5		TOB	1	1	1		1	1	11	11	1	1	1					11	1	1		1	1		1	1	1	
6		ATT	1	1				1	1	11	1	1	1					11	1	1		1	1	1	1		1	
7		TAO	1	1	1			1	1	1	1		1					11	1	1		1	1	1	1		1	
8		AO-1	1	1	1			1	1	11	1		1					11	1	1		1	1	1	1		1	
9		AK-1	1	1	1			1	1	1	1		1					11	1	1		1	1	1	1	1	1	
10		YA-1	1	1	1			1	1	11	1		1					11	1	1		1	1	1	1		1	
11		FS-1	1	1	1			1	1	11	1		1					11	1	1		1	1	1	1		1	
12		FS-2	1	1				1	1	11	1		1					11	1	1		1	1	1	1		1	
13		FS-3	1	1				1	1	11	1		1					11	1	1		1	1	1	1		1	
14		IB-1		1				1	1	1	1		1					11	1	1		1	1	1	1		1	
15		IB2-	1	1				1	1	1	1		1					11	1	1		1	1	1	1		1	
16		TK-1	1	1				1		1	1		1					11	1	1		1	1	1	1		1	
17		KN-1	1	1				1	1	1	1		1					11	1	1		1	1	1	1		1	
18		NI-1	1	1	1		1	1	1		1		1					11	1	1		1	1	1	1		1	
19		NI4		1				1	1	1	1		1					11	1	1		1	1		1		1	
20		IK-1	1	1				1	1	1	1		1					11	1	1		1	1	1	1		1	
21		SI-3	1	1			1	1	1	1			1				1	11	1	1		1	1	1	1	1		
22		MI-2	1	1	11		1	1	1		1		1	1				11	1			1	1	1	1	1	1	
23		WA-1	1	1			1	1	1	1			1	1				11	1			1	1	1	1	1	1	
24		OK-2	1	1	1		1	1	1		1		1	1				1	1	1		1	1	1	1	1		
25		OK-4	1	1	1			1	1	1	1	1	1					11	1	1		1	1	1	1	1	1	
26		HI-10	1	1	1		1	1	1	11	1		1						1	1			1	1	1	1	1	
27		KO-4	,	1	1			1	1	1	1		1						1	1		1	1	1	1	1	1	
28		MY-5	1	1	1			1			1		1						1	1		1	1	1	1	1		
29		MY-6	1	1	1			1		1	1		1						1	1		1	1	1	1	1	1	
30	N. oguraensis	GI-4	1	1			1	1		1	1		1			1		1	1			1	1		1	1	1	
31		HY-8	1	1			1	1		1	1	1	1			1		11	1			1	1		1	1	1	
32		HI-2b	1	1			1	1		1	1		1			1	1	1	1		1	1	1		1	1	1	
33		HI-7	1	1			1	1	1	1	1		1			1		11	1			1	1		1	1		
34		FO-2	1	1			1	1			1		1			1		1	1		1	1	1	1	1	1	1	1
35		MY-2	1	1			1	1			1	1	1			1		11	1			1	1		1	1	1	
36		MY-8	1			1	1	1			1	1	1			1			1			1	1		1	1		
37		Ko-1y	1	1				1		1	1	1	1					1	1		1	1	1	1	1	1	1	
38		Ko-2y	1	1				1		1	1	1	1					11	1		1	1	1	1		1	1	
39	N. ogu. var. akiensis	HHS	1		1			1	1			1	1				1	1		1	1	1	1		1	1	1	
40		KO-1	1	1			1	1			1		1			1			1		1	1	1	1	1	1	1	1
41		KO-2	1	1			1	1			1		1			1			1		1	1	1	1	1	1	1	1
42		Ko-1r	1	1				1		1	1		1					11	1		1	1	1	1	1	1	1	
43	N. shimadai		1		1				1			1	1				1	1		1		1	1	1	1	1	1	
44	N. submersa	TG-1	1	1			1	1	1	1	1	1						11	1	1		1	1		1	1		
45		TG-2	1	1			1	1	1	1	1		1					11	1			1	1		1	1		
46	N. pumila	WAM	1	1	1				1		1	1	1	11	1	1	1	11	1	1		1	1	1	1		1	
47		KUT	1	1	1			1			1	1	1					1	1		1	1	1	1	1	1	1	
48		URUa		1	1			1		1			1	1	11	11	1	1	1		1	1	1	1	1	1		
49		TSC	1	1	1			1			1		1					1	1		1	1	1	1	1	1		
50		BEB	1	1	11		1	1			1	1	1					1	1		1	1	1	1	1	1	1	
51		NET	1	1	1			1			1		1					1	1		1	1	1	1	1	1	1	
52		NEN	1	1	1			1			1		1					1	1		1	1	1	1	1	1		
53		HAK		1	1			1			1		1					1	1		1	1	1	1	1	1	1	
54		AKT		1	11			1			1	1	1					1	1		1	1	1		1	1		
55		KWS		1	1			1	1	1			1			1	1	1	1			1	1		1	1	1	
56		ATO		1	1			1			1	1	1			11		11	1	1		1	1	1	1	1	1	
57	N. pum. var. ozeensis	URUb		1	1			1		1			1				1	11	1	11	1	1	1	1	1	1		
58		GM-1	1	1	1			1		1			1			1		11	1			1	11		1	1		
59		URUc		1	1			1		1			1				1	1	1		1	1	1	1	1	1		
60	N. subintegerrima	GI-1		1	1			1		1	1	1						1	1	1		1	1	1	1			
61		AI-1		1				1	1	11	1	1						11	1			1	1	1	1	1		
62		AI-2		1				1	1	1	1	11	1				1	1	1	1		1	1	1	1			
63		MI-1	1	1	1	1	1	1	1		1		1	1					1	1		1	1		1	1		
64		MI-3	1	1		1	1	1		1	1		1	1				1	1	1		1	1		1	1		
65	N. Iutea			1				1		1			11						1		1	1	11	1	1		1	
66	Barclaya longifolia					1				1							1	1					1			1	1	1

APPENDIX 4. (continued)

APPENDIX 4. (continued)

APPENDIX 4. (continued)

Fragment size (bp)																																				
Genotype	品	O Oి O			:ᄋ									$\stackrel{\sim}{\circ} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\underset{N}{2}}$			$\stackrel{10}{2} \underset{\sim}{\infty} \underset{\sim}{\infty}$			N No ôe o io					$\frac{1}{4}$	-	๗is	쇼	か.							
1	1		1			1				1		1								1					1					1	1	1				
2	1		1			1				1		1								1						1	1	1			1	1	1	1		
3	1		1			1				1		1								1					1	1				1	1	1	1			
4	1		1			1				1		1								1						1				1	1	1	1			
5	1		1		1	1				1		1								1						1				1	1	1	11	1		
6	1		1			1				1		1								1					1	1	1			1		1	1			
7	1		1			1				1		1								1					1	1	1			1	1	1	1			
8	1		1			1				1		1			11	1				1					1	1	1			1	1	1	1			
9	1		1			1				1		1			1	1				1					1	1	1			1		1	11	1		
10	1		1			1				1		1			1	1				1					1	1	1			1	1	1	1			
11	1		1			1				1		1		1	1	1				1						1	1			1	1	1	11	1		
12	1		1			1				1		1			1	1				1					1	1				1	1	1	11	1		
13	1		1			1				1		1			1	1	11	1	1	1					1	1	1			1	1	1	1			
14	1		1			1				1		1		1	1	1			1	1					1	1	1			1	1	1	11	1		
15	1		1			1				1		1		1	1	1		1	1	1						1				1		1	11	1		
16	1		1			1				1		1			1	1		1	1	1						1				1		1	1	1	1	
17	1		1			1				1		1		1	1	1			1	1						1				1		1	1	1		
18	1		1			1				1		1								1					1	1				1	1	1	1			
19	1		11			1				1		11	1		1	1				1					1	1				1	1	1	1			
20	1		1			1				1		1								1					1	1				1		1	1	1		
21			1			1				1		11	1	1	1	1				1					1	1	1			1		1	1	1		
22	1	1	1			1					1	11	1							1						1			1	1		1	1			
23	1	1	1			1				11	1	11			1	1				1						1	1		1	1		1	1			
24	1	1				1				11	1	11	1		1	1										1			1	1	1	1	1			
25			11			1				1		11								1					1	1	1			1	1		1			
26		1	1			1				1	1	1																			1		1			
27			11			1				1	1	1																			1		1			
28			1			1				1		1																			1		1			
29			11		1	1				1	1	1																			1		1			
30			1		11	1	1	1	1	11	1	1														1				1		1	1			
31	1		1		11	1	1			11	1	1														1				1			1			
32	1		1		11	1	1			1	1	1											1			1				1		1	1			
33			1		11		1				1												1		1	1				1		1	1			
34			1	1	11	1					1															1				1			1	1		
35	1		1		11	1	1			11	1	1											1		1	1				1			1			
36			1		11	1	1	1		11	1	11	1	1												1		1	1	1		1	1			
37			1		11	1	1	1		11	1	1			11	11					1				1	1				1		1	1			
38			1		11		1				1	1				11					1					1				1		1	1			
39	1		1		11		1			1	1	1														1				1		1	1			
40	1		1		11		1			11		1								1			1			1	1			1		1	1			
41	1		1		11	1	1		1	111	1	1											1			1	1			1		1	1			
42			1		11	1	1			11	1	1			11	11					1					1				1		1	1			
43			1		11	1	1			1	1	1			1	1										1				1		1	1			
44			1			11	1		1	11	1	1				11							1		1	1			1	1		1	1			
45					11	11	1			11	11	1			1								1		1	1			1	1		1	1			
46		1			1	1			1	111	1	1			1	1				1	1					1	1			1	1	1	1			
47		1	1	1	1	1				111	1									1	1					1	1			1		1	1		1	
48	1	1		1		1				111	1									1						1	1			1		1	1		1	
49		1	1			1				111	1	1								1	1					1	1			1		1	1		1	
50		1	1			1				111	1	1								1	1					1	1			1		1	1			
51	1	1	1		1	1				111	1	1								1	1					11	1			1		1	1			
52	1	1	1		1	1				111	1									1	1					1	1			1		1	1		1	
53		1	1		1	1				11	1									1	1						1			1		1	1		1	
54		1	1			1				111										1	1					1	1			1		1			1	
55	1	1		1		1		1	1	111	1	1			1	1				1	1		1		1		1			1		1	1			
56		1	1	1		1					1									11	1					1	1			1	1	1	1			
57		1		1	1	1				111	1	1								1						1	1			1		1	1			
58	1	1		1	1	1				111	1									1	1				1	1	1			1	1	1	1		1	
59		1		1	1	1			1	11	11	1								1						1	1			1		1	1		1	
60	111		1			1				11	1	1														1			1	1	1	1	1	1		
61						1				11		1														1	1		1	1	1	1	1			
62	1					1				11	1	1													1	1	1			1	1	1	1			
63		11			1	1					1	11													1	1	1		1	1	1	1	1			
64		11			1	1				11	1	11	1													1				1	1	1	1			
65			1			1	1			1		1	1		1	1						1		1		1			1			1	1			
66	1				1	1												11																		

Appendix 4. (continued)

Fragment size (bp)

Appendix 5. Data matrix of absence (not shown) or presence (1) of the AFLP fragments in ACGCTG primer combination.

Appendix 5. (continued)

APPENDIX 5. (continued)

Appendix 5. (continued)

APPENDIX 6. Pairwise genetic distance (substitutions/site) among 66 AFLP genotypes.

Genotype	Taxa	Pop. Code	1	2	3	4	5	6	7	8	9	10	11
1	N. japonica	SAA	---										
2		ноо	0.003	---									
3		SAM	0.006	0.006	-.-								
4		KıO	0.006	0.007	0.006	---							
5		тов	0.006	0.006	0.004	0.005	-.-						
6		ATT	0.006	0.006	0.005	0.006	0.005	---					
7		тAO	0.005	0.006	0.004	0.004	0.004	0.005	---				
8		AO-1	0.007	0.007	0.005	0.007	0.005	0.006	0.005	-.-			
9		AK-1	0.008	0.007	0.005	0.008	0.005	0.007	0.006	0.005	---		
10		YA-1	0.007	0.007	0.006	0.007	0.006	0.006	0.005	0.001	0.006	---	
11		FS-1	0.009	0.008	0.008	0.009	0.007	0.008	0.007	0.005	0.007	0.005	---
12		FS-2	0.009	0.008	0.008	0.009	0.007	0.007	0.008	0.006	0.008	0.006	0.005
13		FS-3	0.008	0.007	0.008	0.008	0.007	0.007	0.007	0.005	0.007	0.005	0.006
14		IB-1	0.010	0.009	0.008	0.010	0.008	0.008	0.008	0.006	0.007	0.006	0.005
15		IB2-	0.008	0.008	0.007	0.008	0.007	0.008	0.007	0.007	0.007	0.007	0.007
16		TK-1	0.011	0.010	0.009	0.010	0.008	0.009	0.009	0.009	0.010	0.009	0.010
17		KN-1	0.010	0.009	0.009	0.012	0.009	0.009	0.009	0.010	0.009	0.010	0.009
18		$\mathrm{NI}-1$	0.009	0.009	0.005	0.008	0.006	0.008	0.007	0.006	0.007	0.006	0.008
19		NI4	0.008	0.008	0.007	0.008	0.007	0.007	0.008	0.007	0.009	0.007	0.008
20		IK-1	0.007	0.008	0.007	0.007	0.007	0.008	0.006	0.007	0.007	0.007	0.007
21		SI-3	0.014	0.015	0.016	0.015	0.015	0.015	0.016	0.015	0.014	0.015	0.015
22		MI-2	0.016	0.015	0.014	0.015	0.014	0.015	0.015	0.015	0.015	0.015	0.015
23		WA-1	0.015	0.014	0.014	0.014	0.013	0.013	0.014	0.014	0.013	0.014	0.014
24		OK-2	0.017	0.018	0.018	0.016	0.017	0.018	0.018	0.018	0.017	0.017	0.017
25		OK-4	0.015	0.017	0.015	0.016	0.015	0.015	0.015	0.016	0.015	0.015	0.016
26		HI-10	0.015	0.015	0.015	0.014	0.013	0.015	0.015	0.016	0.015	0.016	0.016
27		KO-4	0.015	0.016	0.015	0.016	0.015	0.015	0.015	0.016	0.015	0.015	0.016
28		MY-5	0.017	0.017	0.016	0.017	0.016	0.017	0.017	0.017	0.017	0.017	0.017
29		MY-6	0.015	0.016	0.015	0.016	0.015	0.016	0.016	0.016	0.015	0.016	0.017
30	N. oguraensis	GI-4	0.039	0.040	0.038	0.039	0.038	0.040	0.039	0.039	0.037	0.040	0.040
31		HY-8	0.036	0.038	0.035	0.037	0.035	0.037	0.035	0.037	0.036	0.036	0.036
32		HI-2b	0.038	0.035	0.035	0.038	0.036	0.038	0.038	0.035	0.034	0.035	0.035
33		HI-7	0.037	0.036	0.036	0.038	0.035	0.038	0.036	0.036	0.036	0.036	0.037
34		FO-2	0.040	0.041	0.039	0.040	0.039	0.042	0.039	0.040	0.039	0.039	0.039
35		MY-2	0.040	0.041	0.041	0.041	0.039	0.042	0.039	0.042	0.039	0.041	0.041
36		MY-8	0.034	0.033	0.033	0.033	0.032	0.034	0.032	0.034	0.032	0.034	0.033
37		Ko-1y	0.038	0.039	0.038	0.038	0.036	0.039	0.039	0.036	0.036	0.036	0.037
38		Ko-2y	0.040	0.039	0.039	0.040	0.039	0.040	0.040	0.038	0.038	0.038	0.038
39	N. ogu. var. akiensis	HHS	0.038	0.037	0.036	0.038	0.036	0.038	0.038	0.036	0.036	0.035	0.036
40		KO-1	0.033	0.032	0.033	0.036	0.035	0.034	0.035	0.034	0.032	0.034	0.035
41		KO-2	0.036	0.037	0.037	0.038	0.038	0.038	0.038	0.037	0.038	0.037	0.037
42		Ko-1r	0.040	0.040	0.038	0.040	0.037	0.039	0.040	0.036	0.037	0.036	0.037
43	N. shimadai		0.042	0.042	0.040	0.040	0.039	0.043	0.041	0.039	0.040	0.039	0.040
44	N. submersa	TG-1	0.050	0.036	0.036	0.037	0.034	0.037	0.037	0.037	0.035	0.037	0.037
45		TG-2	0.036	0.053	0.035	0.037	0.034	0.036	0.036	0.036	0.035	0.036	0.036
46	N. pumila	WAM	0.041	0.038	0.050	0.041	0.038	0.039	0.039	0.038	0.039	0.038	0.036
47		KUT	0.036	0.034	0.033	0.052	0.032	0.034	0.032	0.034	0.033	0.034	0.033
48		URUa	0.036	0.033	0.034	0.036	0.056	0.034	0.034	0.033	0.035	0.034	0.034
49		TSC	0.034	0.032	0.032	0.036	0.033	0.055	0.033	0.032	0.034	0.033	0.033
50		BEB	0.035	0.032	0.034	0.037	0.033	0.034	0.054	0.034	0.034	0.034	0.032
51		NET	0.035	0.032	0.033	0.036	0.032	0.034	0.033	0.057	0.034	0.032	0.031
52		NEN	0.034	0.032	0.032	0.035	0.031	0.033	0.032	0.031	0.056	0.031	0.030
53		HAK	0.035	0.033	0.032	0.036	0.032	0.034	0.032	0.032	0.033	0.057	0.032
54		AKT	0.038	0.037	0.037	0.039	0.035	0.038	0.036	0.036	0.037	0.036	0.052
55		KWS	0.040	0.038	0.039	0.039	0.037	0.040	0.039	0.037	0.038	0.037	0.036
56		ATO	0.031	0.029	0.030	0.033	0.029	0.030	0.030	0.030	0.031	0.030	0.029
57	N. pum. var. ozeensis	URUb	0.036	0.035	0.035	0.036	0.034	0.035	0.036	0.035	0.037	0.036	0.035
58		GM-1	0.027	0.027	0.027	0.029	0.025	0.026	0.028	0.026	0.027	0.026	0.026
59		URUc	0.037	0.034	0.033	0.036	0.033	0.034	0.034	0.034	0.034	0.034	0.033
60	N. subintegerrima	GI-1	0.029	0.029	0.025	0.027	0.028	0.028	0.027	0.028	0.026	0.028	0.029
61		AI-1	0.029	0.026	0.025	0.027	0.027	0.027	0.026	0.026	0.025	0.027	0.028
62		AI-2	0.032	0.031	0.028	0.030	0.030	0.030	0.030	0.029	0.029	0.030	0.030
63		MI-1	0.033	0.032	0.029	0.033	0.032	0.032	0.032	0.031	0.030	0.032	0.032
64		MI-3	0.032	0.032	0.029	0.030	0.031	0.032	0.030	0.030	0.031	0.031	0.032
65	N. Iutea		0.047	0.043	0.042	0.046	0.044	0.042	0.045	0.043	0.041	0.042	0.043
66	Barclaya longifolia		0.097	0.100	0.092	0.092	0.092	0.093	0.095	0.092	0.094	0.092	0.096
Genotype			1	2	3	4	5	6	7	8	9	10	11

Appendix 6. (continued)

Genotype	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
1															
2															
3															
4															
5															
6															
7															
8															
9															
10															
11															
12	---														
13	0.006	---													
14	0.005	0.006	---												
15	0.006	0.007	0.003	---											
16	0.009	0.009	0.008	0.007	---										
17	0.009	0.009	0.009	0.009	0.009	---									
18	0.007	0.007	0.007	0.008	0.010	0.010	---								
19	0.008	0.008	0.009	0.009	0.011	0.009	0.009	--.							
20	0.007	0.008	0.008	0.007	0.010	0.008	0.008	0.007	---						
21	0.014	0.016	0.014	0.014	0.015	0.016	0.016	0.013	0.015	--					
22	0.015	0.015	0.014	0.014	0.015	0.018	0.012	0.014	0.015	0.012	---				
23	0.014	0.014	0.013	0.013	0.014	0.016	0.012	0.012	0.015	0.010	0.003	---			
24	0.017	0.018	0.017	0.015	0.018	0.018	0.016	0.015	0.017	0.012	0.010	0.008	---		
25	0.017	0.017	0.015	0.015	0.016	0.018	0.016	0.014	0.016	0.011	0.009	0.008	0.012	---	
26	0.015	0.016	0.015	0.014	0.018	0.019	0.016	0.016	0.016	0.016	0.012	0.012	0.014	0.010	---
27	0.016	0.017	0.016	0.015	0.016	0.017	0.016	0.014	0.015	0.013	0.011	0.011	0.012	0.007	0.007
28	0.017	0.018	0.017	0.016	0.017	0.018	0.017	0.015	0.016	0.015	0.013	0.012	0.013	0.008	0.008
29	0.016	0.018	0.017	0.016	0.017	0.018	0.017	0.015	0.016	0.013	0.013	0.012	0.014	0.007	0.009
30	0.040	0.040	0.040	0.040	0.044	0.041	0.039	0.038	0.040	0.039	0.039	0.038	0.041	0.040	0.039
31	0.036	0.037	0.036	0.036	0.036	0.038	0.034	0.035	0.036	0.034	0.034	0.033	0.036	0.034	0.036
32	0.035	0.037	0.035	0.036	0.038	0.039	0.033	0.037	0.038	0.036	0.035	0.036	0.039	0.038	0.039
33	0.036	0.037	0.036	0.036	0.036	0.039	0.036	0.036	0.037	0.035	0.036	0.036	0.040	0.034	0.038
34	0.040	0.041	0.039	0.039	0.041	0.041	0.038	0.040	0.040	0.039	0.040	0.041	0.041	0.038	0.041
35	0.042	0.042	0.040	0.040	0.043	0.042	0.040	0.039	0.041	0.039	0.039	0.040	0.041	0.038	0.042
36	0.033	0.034	0.033	0.032	0.037	0.035	0.033	0.031	0.034	0.029	0.030	0.030	0.031	0.029	0.031
37	0.038	0.037	0.039	0.038	0.039	0.039	0.038	0.037	0.038	0.036	0.039	0.039	0.040	0.038	0.040
38	0.038	0.040	0.039	0.039	0.040	0.040	0.039	0.039	0.040	0.036	0.040	0.039	0.040	0.038	0.041
39	0.037	0.037	0.036	0.035	0.038	0.038	0.036	0.037	0.039	0.035	0.038	0.037	0.037	0.037	0.037
40	0.034	0.036	0.035	0.034	0.037	0.035	0.034	0.035	0.034	0.034	0.036	0.035	0.038	0.034	0.039
41	0.037	0.038	0.038	0.037	0.040	0.039	0.038	0.038	0.036	0.036	0.040	0.039	0.039	0.037	0.041
42	0.038	0.038	0.039	0.039	0.039	0.039	0.037	0.037	0.039	0.037	0.038	0.038	0.040	0.039	0.040
43	0.041	0.040	0.041	0.040	0.042	0.043	0.039	0.040	0.042	0.040	0.041	0.041	0.043	0.040	0.041
44	0.036	0.037	0.037	0.036	0.038	0.038	0.036	0.034	0.037	0.037	0.038	0.037	0.040	0.038	0.038
45	0.036	0.036	0.038	0.037	0.038	0.038	0.036	0.035	0.037	0.036	0.036	0.036	0.039	0.036	0.037
46	0.039	0.038	0.038	0.039	0.040	0.037	0.038	0.040	0.040	0.042	0.040	0.038	0.043	0.041	0.041
47	0.036	0.034	0.036	0.034	0.035	0.034	0.033	0.035	0.033	0.037	0.034	0.034	0.038	0.035	0.036
48	0.036	0.034	0.037	0.035	0.037	0.035	0.033	0.035	0.035	0.037	0.036	0.035	0.039	0.040	0.037
49	0.034	0.033	0.035	0.034	0.035	0.033	0.033	0.035	0.032	0.037	0.035	0.035	0.039	0.037	0.037
50	0.035	0.033	0.036	0.035	0.035	0.033	0.033	0.035	0.034	0.038	0.034	0.034	0.039	0.037	0.037
51	0.034	0.032	0.034	0.034	0.034	0.032	0.033	0.033	0.032	0.038	0.034	0.034	0.038	0.037	0.037
52	0.033	0.031	0.033	0.034	0.033	0.032	0.031	0.032	0.033	0.038	0.034	0.034	0.038	0.038	0.038
53	0.035	0.033	0.035	0.034	0.035	0.033	0.032	0.034	0.033	0.038	0.035	0.035	0.039	0.037	0.037
54	0.038	0.036	0.039	0.038	0.039	0.037	0.037	0.037	0.036	0.041	0.037	0.038	0.041	0.040	0.040
55	0.048	0.037	0.040	0.040	0.041	0.039	0.037	0.039	0.040	0.041	0.039	0.038	0.043	0.044	0.041
56	0.031	0.059	0.031	0.032	0.032	0.032	0.030	0.031	0.030	0.032	0.031	0.031	0.037	0.031	0.033
57	0.038	0.036	0.048	0.037	0.038	0.036	0.036	0.036	0.035	0.037	0.038	0.037	0.040	0.038	0.038
58	0.028	0.028	0.030	0.060	0.032	0.030	0.027	0.027	0.028	0.030	0.030	0.029	0.032	0.032	0.033
59	0.036	0.034	0.037	0.036	0.051	0.035	0.034	0.035	0.035	0.036	0.036	0.035	0.040	0.038	0.036
60	0.029	0.029	0.029	0.028	0.028	0.060	0.027	0.028	0.028	0.024	0.022	0.022	0.025	0.026	0.029
61	0.030	0.027	0.029	0.029	0.029	0.032	0.065	0.027	0.029	0.026	0.023	0.022	0.025	0.026	0.026
62	0.031	0.030	0.031	0.031	0.031	0.034	0.028	0.061	0.030	0.026	0.023	0.023	0.027	0.028	0.030
63	0.031	0.032	0.032	0.031	0.034	0.034	0.031	0.031	0.054	0.027	0.021	0.022	0.025	0.027	0.030
64	0.031	0.031	0.033	0.032	0.033	0.034	0.030	0.027	0.032	0.069	0.022	0.023	0.026	0.025	0.028
65	0.041	0.041	0.044	0.045	0.044	0.045	0.042	0.044	0.046	0.046	0.042	0.043	0.047	0.047	0.046
66	0.098	0.095	0.093	0.096	0.093	0.098	0.094	0.095	0.098	0.094	0.096	0.016	0.098	0.094	0.097
Genotype	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26

Appendix 6. (continued)

Genotype	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
1															
2															
3															
4															
5															
6															
7															
8															
9															
10															
11															
12															
13															
14															
15															
16															
17															
18															
19															
20															
21															
22															
23															
24															
25															
26															
27	-.-														
28	0.003	.-													
29	0.004	0.006	---												
30	0.039	0.040	0.040	--											
31	0.036	0.037	0.037	0.019	---										
32	0.038	0.041	0.038	0.019	0.019	---									
33	0.037	0.039	0.035	0.019	0.016	0.015	---								
34	0.040	0.042	0.038	0.022	0.018	0.021	0.017	---							
35	0.041	0.043	0.042	0.017	0.014	0.018	0.013	0.017	---						
36	0.031	0.033	0.031	0.021	0.016	0.022	0.015	0.018	0.017	---					
37	0.038	0.041	0.038	0.021	0.021	0.021	0.017	0.019	0.016	0.020	---				
38	0.039	0.041	0.037	0.021	0.022	0.021	0.017	0.019	0.017	0.020	0.006	---			
39	0.036	0.036	0.035	0.021	0.023	0.018	0.019	0.022	0.019	0.023	0.021	0.021	---		
40	0.036	0.038	0.036	0.018	0.022	0.017	0.018	0.021	0.019	0.023	0.019	0.018	0.016	--	
41	0.038	0.040	0.037	0.018	0.020	0.021	0.016	0.019	0.015	0.021	0.016	0.016	0.019	0.009	--
42	0.038	0.041	0.039	0.022	0.022	0.021	0.020	0.022	0.019	0.022	0.007	0.009	0.022	0.020	0.017
43	0.040	0.041	0.039	0.022	0.025	0.023	0.022	0.024	0.023	0.026	0.016	0.018	0.019	0.022	0.021
44	0.038	0.039	0.039	0.026	0.027	0.029	0.023	0.030	0.023	0.027	0.020	0.019	0.027	0.027	0.026
45	0.037	0.037	0.037	0.026	0.028	0.028	0.024	0.032	0.025	0.029	0.024	0.023	0.028	0.026	0.027
46	0.041	0.042	0.042	0.042	0.042	0.045	0.043	0.048	0.045	0.042	0.041	0.041	0.040	0.038	0.042
47	0.036	0.036	0.037	0.037	0.035	0.040	0.038	0.040	0.039	0.034	0.036	0.036	0.042	0.038	0.038
48	0.037	0.036	0.038	0.038	0.038	0.039	0.042	0.045	0.042	0.038	0.040	0.039	0.043	0.037	0.040
49	0.035	0.035	0.037	0.037	0.034	0.039	0.038	0.041	0.039	0.034	0.036	0.035	0.040	0.036	0.037
50	0.036	0.037	0.038	0.040	0.036	0.039	0.040	0.042	0.042	0.036	0.038	0.039	0.042	0.037	0.040
51	0.036	0.036	0.037	0.039	0.036	0.039	0.040	0.042	0.041	0.036	0.038	0.038	0.041	0.038	0.039
52	0.036	0.036	0.037	0.039	0.036	0.037	0.040	0.041	0.041	0.037	0.038	0.038	0.040	0.036	0.039
53	0.035	0.036	0.037	0.038	0.035	0.038	0.040	0.041	0.041	0.037	0.038	0.037	0.042	0.037	0.039
54	0.038	0.038	0.040	0.039	0.037	0.041	0.041	0.044	0.041	0.038	0.039	0.038	0.044	0.040	0.040
55	0.041	0.041	0.043	0.038	0.039	0.037	0.042	0.045	0.042	0.038	0.040	0.041	0.039	0.038	0.042
56	0.032	0.032	0.033	0.037	0.035	0.037	0.036	0.041	0.038	0.035	0.036	0.035	0.039	0.033	0.036
57	0.037	0.036	0.037	0.040	0.037	0.043	0.041	0.044	0.041	0.037	0.038	0.037	0.043	0.040	0.039
58	0.032	0.032	0.030	0.040	0.036	0.040	0.035	0.042	0.038	0.032	0.036	0.035	0.041	0.037	0.038
59	0.036	0.036	0.038	0.038	0.037	0.039	0.040	0.043	0.041	0.036	0.038	0.037	0.042	0.038	0.040
60	0.026	0.026	0.028	0.041	0.041	0.038	0.041	0.043	0.046	0.037	0.042	0.042	0.040	0.039	0.043
61	0.027	0.026	0.029	0.041	0.039	0.040	0.038	0.042	0.044	0.037	0.041	0.042	0.038	0.038	0.042
62	0.028	0.027	0.031	0.041	0.041	0.037	0.042	0.044	0.045	0.039	0.043	0.044	0.040	0.039	0.042
63	0.029	0.027	0.031	0.039	0.040	0.040	0.043	0.045	0.046	0.036	0.047	0.046	0.042	0.041	0.045
64	0.026	0.025	0.027	0.037	0.036	0.040	0.038	0.042	0.041	0.032	0.042	0.041	0.040	0.039	0.041
65	0.047	0.048	0.049	0.052	0.053	0.052	0.053	0.057	0.056	0.049	0.054	0.055	0.052	0.051	0.057
66	0.096	0.095	0.098	0.105	0.106	0.109	0.110	0.112	0.114	0.107	0.110	0.109	0.110	0.107	0.110
Genotype	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41

Appendix 6. (continued)

Genotype	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56
1															
2															
3															
4															
5															
6															
7															
8															
9															
10															
11															
12															
13															
14															
15															
16															
17															
18															
19															
20															
21															
22															
23															
24															
25															
26															
27															
28															
29															
30															
31															
32															
33															
34															
35															
36															
37															
38															
39															
40															
41															
42	-.-														
43	0.016	---													
44	0.022	0.024	---												
45	0.024	0.028	0.007	---											
46	0.040	0.041	0.038	0.038	---										
47	0.035	0.039	0.032	0.032	0.021	---									
48	0.038	0.042	0.036	0.034	0.020	0.009	---								
49	0.034	0.039	0.032	0.031	0.019	0.004	0.010	---							
50	0.036	0.041	0.035	0.033	0.020	0.006	0.010	0.007	---						
51	0.037	0.041	0.033	0.032	0.020	0.003	0.009	0.004	0.005	---					
52	0.036	0.040	0.034	0.032	0.020	0.005	0.008	0.005	0.007	0.003	---				
53	0.037	0.042	0.033	0.033	0.021	0.003	0.008	0.004	0.006	0.004	0.004	---			
54	0.038	0.042	0.035	0.034	0.023	0.005	0.011	0.005	0.008	0.005	0.006	0.005	-.-		
55	0.040	0.039	0.038	0.037	0.026	0.016	0.016	0.018	0.017	0.017	0.016	0.015	0.018	---	
56	0.034	0.040	0.033	0.032	0.017	0.009	0.012	0.010	0.011	0.009	0.010	0.010	0.011	0.019	--
57	0.036	0.040	0.034	0.034	0.022	0.009	0.005	0.011	0.012	0.010	0.010	0.011	0.012	0.018	0.011
58	0.038	0.041	0.036	0.034	0.028	0.018	0.018	0.019	0.020	0.018	0.018	0.020	0.020	0.024	0.018
59	0.036	0.040	0.034	0.033	0.021	0.007	0.004	0.008	0.010	0.008	0.009	0.008	0.009	0.015	0.010
60	0.042	0.041	0.037	0.038	0.044	0.038	0.037	0.037	0.039	0.039	0.039	0.038	0.040	0.039	0.036
61	0.041	0.042	0.038	0.038	0.041	0.038	0.037	0.038	0.038	0.039	0.039	0.038	0.042	0.041	0.037
62	0.042	0.042	0.044	0.043	0.044	0.040	0.038	0.039	0.040	0.039	0.039	0.040	0.041	0.039	0.038
63	0.046	0.045	0.042	0.041	0.042	0.042	0.038	0.041	0.041	0.042	0.040	0.041	0.042	0.040	0.039
64	0.042	0.042	0.036	0.037	0.041	0.038	0.037	0.038	0.038	0.038	0.037	0.038	0.040	0.039	0.036
65	0.052	0.052	0.050	0.048	0.049	0.047	0.049	0.048	0.048	0.047	0.049	0.048	0.051	0.047	0.047
66	0.109	0.111	0.114	0.112	0.117	0.109	0.105	0.110	0.114	0.107	0.106	0.106	0.105	0.105	0.099
Genotype	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56

Appendix 6. (continued)

Genotype	57	58	59	60	61	62	63	64	65	66
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
21										
22										
23										
24										
25										
26										
27										
28										
29										
30										
31										
32										
33										
34										
35										
36										
37										
38										
39										
40										
41										
42										
43										
44										
45										
46										
47										
48										
49										
50										
51										
52										
53										
54										
55										
56										
57 .--										
58 0.016 ---										
59	0.003	0.017	---							
60	0.039	0.037	0.037	---						
61	0.040	0.037	0.037	0.012	-.-					
62	0.040	0.038	0.037	0.012	0.015	---				
63	0.041	0.041	0.040	0.023	0.025	0.022	---			
64	0.038	0.038	0.037	0.022	0.022	0.024	0.011	-.-		
65	0.049	0.049	0.046	0.044	0.041	0.046	0.043	0.047	---	
66	0.101	0.104	0.105	0.096	0.094	0.098	0.098	0.104	0.102	---
Genotype	57	58	59	60	61	62	63	64	65	66

[^0]: Values show means (\%). Sample size in parenthes.

