ArticlePDF Available

Reinstatement of the Genus Piofontia: A Phylogenomic-Based Study Reveals the Biphyletic Nature of Diplostephium (Asteraceae: Astereae)

Authors:

Abstract and Figures

A recent phylogenomic study has shown that Diplostephium in its broad sense is biphyletic. While one of the clades comprises 60 species distributed mainly in the Northern Andes, the clade that contains the generic type, Diplostephium ericoides, contains 48 species, and primarily inhabits the Central Andes. Here, I propose to reinstate the generic name Piofontia and transfer to it the species of Diplostephium in the Northern Andean clade. Piofontia consists, then, of 60 species of woody subshrubs, shrubs, and small trees inhabiting high Andean forests and pa ́ ramos of Costa Rica, Colombia, Venezuela, and Ecuador. A morphological description is provided for the genus Piofontia along with a species list with 60 new combinations. Dysaster cajamarcensis is shown to be a synonym of Diplostephium serratifolium. Finally, a brief discussion about the morphological evolution of South American Astereae is provided.
Content may be subject to copyright.
Systematic Botany (2018), 43(2): pp. 485496
© Copyright 2018 by the American Society of Plant Taxonomists
DOI 10.1600/036364418X697210
Date of publication June 21, 2018
Reinstatement of the Genus Piofontia: A Phylogenomic-based Study Reveals the Biphyletic
Nature of Diplostephium (Asteraceae: Astereae)
Oscar M. Vargas
Department of Ecology and Evolutionary Biology, University of Michigan, 830 N. University Avenue, Ann Arbor,
Michigan 48109, USA
Integrative Biology and Plant Resources Center, The University of Texas at Austin, Austin, Texas 78712, USA
(oscarvargash@gmail.com)
Communicating Editor: Chrissen E. C. Gemmill
AbstractA recent phylogenomic study has shown that Diplostephium in its broad sense is biphyletic. While one of the clades comprises 60 species
distributed mainly in the Northern Andes, the clade that contains the generic type, Diplostephium ericoides,contains48species,andprimarilyinhabitsthe
Central Andes. Here, I propose to reinstate the generic name Piofontia and transfer to it the species of Diplostephium in the Northern Andean clade. Piofontia
consists, then, of 60 species of woody subshrubs, shrubs, and small trees inhabiting high Andean forests and p´aramos of Costa Rica, Colombia, Venezuela,
and Ecuador. A morphological description is provided for the genus Piofontia along with a species list with 60 new combinations. Dysaster cajamarcensis is
shown to be a synonym of Diplostephium serratifolium. Finally, a brief discussion about the morphological evolution of South American Astereae is provided.
KeywordsAndes, South America, p´aramo.
Kunth (1820) proposed Diplostephium Kunth with a single
species, D. lavandulifolium Kunth (5D. ericoides (Lam.) Cab-
rera), and defined the genus with the following diagnostic
characteristics: branched shrubs with dense foliage, alternate
linear leaves, solitary capitula, hemispherical involucres with
numerous imbricate phyllaries, epaleate foveolate receptacles,
radiate heterogamous capitula, tubular hermaphrodite disk
florets, peripheral ray florets, and double pappus with a short
exterior row of scale-like bristles and an inner row of longer
barbellate bristles. Weddell (1855) reinterpreted Diplostephium,
adding a geographic component to his concept by defining the
genus as Andean shrubs of montane habitats with alternate
and often tomentose leaves, terminal solitary capitula on
branchlets or in a corymb, foveolate receptacles, and white or
purple rays. Weddells (1855) definition expanded the mor-
phological boundaries of Diplostephium and demarcated its
geographical distribution. Weddell (1855) also described 11
new taxa, transferred five species into the genus, and proposed a
subgeneric division of two groups: plants with solitary capitula
and plants with capitula borne in a corymb. Hieronymus (1894,
1896, 1900, 1905) added ten taxa to the genus, five of which are
now considered synonyms of previously described species
(Vargas 2011).
In the twentieth century, Blake described 28 new taxa for
Diplostephium and published two major revisions. In his first
revision, Blake (1922) proposed a subgeneric classification of
five series based on foliar and floral characters, partially fol-
lowing the subgeneric division proposed by Weddell (1855). In
the second revision, Blake (1928) recognized a total of 43
Diplostephium species but reduced the number of series to
three. Subsequently, Cuatrecasas (1943b, 1969) added nu-
merous names to Diplostephium and published two compre-
hensive studies of the genus. In his second work, Cuatrecasas
(1969) dealt only with the Colombian species and proposed a
generic subdivision of 12 series for Diplostephium consisting of
Blakes (1922) original five plus seven new series. Cuatrecasas
(1969) listed 53 species for Colombia and estimated a total of 90
species for the genus. Although some species have been added
to Diplostephium since 1969, Cuatrecasas(1969) study is the
most comprehensive taxonomic work of the genus to date. In
its recent circumscription (Vargas and Madri~
an 2006; Vargas
2011), Diplostephium s. l. comprises 111 species distributed in
the mountains of Central and South America in Costa Rica,
Colombia, Venezuela, Ecuador, Peru, Bolivia, and northern
Chile.
A recent phylogenomic study (Vargas et al. 2017) showed that
Diplostephium sensu Cuatrecasas (1969) is biphyletic, based on
a double-digest restriction site-associated DNA sequencing
(ddRAD) tree obtained by the authors (Fig. 1). A monophyletic
group of Diplostephium s. l. species, distributed mainly in the
Northern Andes, is sister to a clade that comprises Blakiella
Cuatrec., Hinterhubera Sch.Bip. ex Wedd., and Laestadia Kunth ex
Less. A second group of mainly Central Andean species,
Diplostephium s. s., forms a clade with Parastrephia quadrangularis
(Meyen) Cabrera. The Central Andean clade is nested in a clade
with Archibaccharis Heering, Aztecaster G.L.Nesom, Baccharis L.,
Exostigma Sancho, Floscaldasia Cuatrec., Heterothalamus Less.,
Laennecia Cass., Lagenophora Cass., and Westoniella Cuatrec. When
the Diplostephium s. l. species not sampled by Vargas et al. (2017)
are morphologically assigned to the two recovered clades (see
below), the Northern Andean and the Central Andean clades
contain 60 and 48 species, respectively.
Because the nomenclatural type of Diplostephium,D. ericoides
(Lam.) Cabrera, is part of the Central Andean clade, the correct
genericnameforthespeciescomprisingtheNorthernAndean
clade is Piofontia Cuatrec. Cuatrecasas (1943a) proposed Piofontia
as a monotypic genus consisting of P. colombiana Cuatrec. but
later (Cuatrecasas 1953) transferred P. colombiana into Diplo-
stephium as D. colombianum (Cuatrec.) Cuatrec. The previous
Cuatrecasasseries, erected primarily for the Colombian species,
are not recognized here because, for the most part, they do not
correspond to natural groups in either Piofontia and Diplo-
stephium. In addition to the monotypic series, the only mono-
phyletic series are Diplostephium ser. Denticulata, albeit with low
support (clade 1, Fig. 1), and Diplostephium ser. Schultziana if
Piofontia apiculata is included in the series (clade 2, Fig. 1).
Finally, I propose Dysaster cajamarcensis H.Rob. & V.A.Funk
as a taxonomic synonym of Diplostephium serratifolium Cuatrec.
based on morphology and the phylogeny of Vargas et al. (2017).
Taxonomic Treatment
PIOFONTIA Cuatrec. Caldasia 2: 5. 1943. TYPE:Piofontia colombiana
Cuatrec., Caldasia 2: 5. 1943.
Small trees, shrubs or subshrubs 0.110 m tall, woody,
branching sympodial by substitution with branches
485
terminated by capitulescences. Branches cylindrical, minutely
ribbed, tomentose or glabrous, glandular or eglandular, striate
when old; terminal shoots often tomentose. Leaves alternate
with phyllotaxis of five, petiolate, pseudopetiolate, or sessile,
often mucronate; lamina 3230 30.785.0 mm, linear, lan-
ceolate, ellipsoid, oblong, ovate, or obovate; margins entire,
denticulate, or serrate, membranous to coriaceous, usually
revolute, sometimes flat, often with adaxial and abaxial
Fig. 1. Cladogram of Diplostephium,Piofontia, and their allies obtained with nuclear double-digest restriction site-associated DNA sequencing (ddRAD)
by Vargas et al. (2017) using maximum likelihood. Edges with bootstrap support ,90 are dashed. Letters next to species indicate the subtribe to which the
genus belongs: B 5Baccharidinae, H 5Hinterhuberinae, L 5Lagenophorinae, and P 5Podocominae. 1) Indicates the Denticulata clade, and 2) indicates the
Schultziana clade (both defined in the main text). The section mark (§) indicates the type species of Diplostephium. The map shows the type localities for
the species of Diplostephium (diamonds) and Piofonta (triangles). Figure modified from Vargas et al. (2017).
SYSTEMATIC BOTANY [Volume 43486
surfaces of a different color; adaxial surface often lanate when
young and glabrous when old, glandular or eglandular, with
central vein impressed and canaliculate, secondary venation
usually conspicuous in leaves wider than 12 mm and tertiary
venation usually conspicuous in leaves wider than 15 mm;
abaxial surface often densely lanate, whitish, yellowish, or
ocherous, central vein prominent, with secondary and tertiary
venation impressed or inconspicuous.
Capitulescence of terminal solitary or multiple heads
arranged in corymbs, racemes, or umbels. Capitula heterog-
amous, radiate, rarely disciform; involucre 415 mm long,
315 mm diam, tubular, cupulate, campanulate, or subconical,
37 seriate; phyllaries numerous, imbricate, unequal,
0.512.0 30.42.8 mm, ovate to linear, semicoriaceous or
coriaceous, often dorsally lanate and colored towards the apex.
Ray florets 5140, with corolla 2.515.0 mm long, white to
purple; tube 16 mm long, usually papillose-pilose, rarely with
one or two lobes opposite to the limb; limb 0.512.0 3
0.42.0 mm, linear, oblong-elliptic, oblong-ovate, oblong-
obovate, with 34 veins; lobes (2)3(4), 0.10.8 mm long,
triangular and unequal; stigmatic branches 0.22.0 mm long,
linear or subulate with papillose margins; ovary 0.65.0 mm
long, glabrous or pilose, oblong, ovate, obovate, or oblong-
ellipsoid, ribbed, glandular or eglandular, always ovulate and
fertile; pappus biseriate, straw-colored, reddish, or purplish,
outer bristles 0.15.0 mm long, filiform and barbellate, interior
bristles 2.08.0 mm long, barbellate, often with flattened and
widened apex. Disk florets 3114, staminate, corollas actino-
morphic, 3.09.0 mm long, tubular, tubular-campanulate, or
tubular-infundibuliform, whitish, green, yellow, or purple,
usually papillose-pilose, 5-lobed; tube 2.06.0 mm long; throat
1.04.0 mm long, usually papillose-pilose; lobes triangular
0.42.6 mm long, usually with papillose apex; anthers
1.02.5 mm long, oblong, briefly auriculate at the base, apical
appendix membranous, triangular, and obtuse; stigmatic
branches 0.31.2 mm long, linear or lanceolate, exteriorly
papillose; ovary 0.87.0 mm long, linear or oblong, ribbed,
glabrous to pilose, glandular or eglandular; pappus biseriate,
straw-colored, reddish, or purplish, outer bristles always fi-
liform, usually barbellate, 0.14.5 mm long, interior bristles
38 mm long, usually barbellate, often with flattened and
widened apex. Receptacle 15 mm in diam, alveolate, often
muricate.
Piofontia currently consists of 60 species and is a major
component of the flora of the Northern Andes, the Sierra
Nevada of Santa Marta, and the Talamanca Cordillera. The
southern boundary of Piofontia is central Ecuador, near the
Huancabamba depression, which defines the southern bound-
ary of the Northern Andes (Weigend 2004; Luebert and Pliscoff
2006; Luebert and Weigend 2014). Most o f the species inhabit the
aramo ecosystem, but a clade of approximately 16 species,
which contains the species of Diplostephium ser. Denticulata sensu
Cuatrecasas (1969), occurs in the cloud forest (clade 1, Fig. 1).
I propose the following new combinations, taking into ac-
count the evidence discussed above. Morphological evidence
(Cuatrecasas 1969; Vargas and Madri~
an 2006) was employed
to place the species not sampled by Vargas et al. (2017) in
Piofontia or Diplostephium. Finally, I describe two clade names
within Piofontia to facilitate communication in future studies
in the genus.
1. Piofontia alveolata (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium alveolatum Cuatrec., Caldasia 2: 224. 1943.
TYPE:COLOMBIA. Boyac ´a: p ´aramo del Alto del Escobal,
entre Soat´a y Cocuy, 38003900 m, arbolito 24 m, Sep 15
1938, Cuatrecasas & Garc´
ıa-Barriga 1758 (holotype: COL!,
isotypes: BC, F!, P, US!).
2. Piofontia anactinota (Wedd.) O.M.Vargas, comb. nov.
Diplostephium anactinotum Wedd., Chlor. And. 1: 201.
1856. TYPE: COLOMBIA. Magdalena: Sierra Nevada de Santa
Marta, fr´utex, flores albi, 1843, Funck 390 (lectotype: P,
isotypes: G, P).
3. Piofontia antioquensis (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium antioquense Cuatrec., Proc. Biol. Soc. Wash.
74: 12. 1961. TYPE: COLOMBIA. Antioquia: Medell´
ın, monte
El Boquer´on, Alto de los Bald´
ıos, p´aramo 3150 m, bosque
andino fragmentario marginal, ´arbol 45 m, hoja cra-
si ´uscula, verde amarillenta oscura haz, blanquecina
env´es, inflorescencia blanquecina, borde de las br´acteas
involucrales algo pardusco, l´
ıgulas blancas, Apr 9 1958,
Cuatrecasas, Llano & Gutierrez 24226 (holotype: US!, iso-
types: B, F!, G, MEDEL, NY, P, US!).
4. Piofontia apiculata (S.F.Blake) O.M.Vargas, comb. nov.
Diplostephium apiculatum S.F.Blake, Proc. Biol. Soc. Wash.
49: 79. 1936. TYPE: COLOMBIA. Norte de Santander: P ´aramo
de Santurb´an, entre Tona y Mutiscu´a, 3900 m, matita
le~
nosa, l´
ıgulas blancas, fl ´osculas verdes, Jan 19 1927, Killip
& Smith 19571 (holotype: US!, isotypes: A, COL!, GH, NY).
5. Piofontia bicolor (S.F.Blake) O.M.Vargas, comb. nov.
Diplostephium bicolor S.F.Blake, Contr. U. S. Natl. Herb. 24:
85. 1922. TYPE: COLOMBIA. Cauca: Central Cordillera head
waters of R´
ıoPalo, Tierra Adentro, 25003000 m, small
tree 24 m, Jan 1906, Pittier 1084 (holotype: US!, isotypes:
GH, F!).
Diplostephium tabanense Cuatrec., Caldasia 2: 216. 1943. TYPE:
COLOMBIA. Nari~
no: P´aramo del T ´abano, alto de la cor-
dillera entre Pasto y El Encano, vert occid., 3200 m,
arbolito, Jan 11 1941, Cuatrecasas 11932 (holotype: COL!,
isotypes: BC, F!, US!).
6. Piofontia camargoana (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium camargoanum Cuatrec., Phytologia 23: 351.
1972. TYPE: COLOMBIA. Boyac´a: Arcabuco, alrededores de la
poblaci´on 27392850 m, Oct 20 1965, Huertas & Camargo
6309 (holotype: US!, isotype: COL!).
7. Piofontia cayambensis (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium cayambense Cuatrec., Brittonia 8: 183. 1956.
TYPE: ECUADOR. Napo-Pastaza: p´aramo NE Volc ´an Cayambe,
12,500 ft, woody Compositae on moist p´aramo and ravines
leading to alpine lake, Feb 10 1953, Prescott 329 (holotype:
NY).
8. Piofontia chrysotricha (S.D´
ıaz & B.L.Restrepo) O.M.Vargas,
comb. nov. Diplostephium chrysotrichum S.D´
ıaz & B.L.
Restrepo., Revista Acad. Colomb. Ci. Exact. 19: 243. 1994.
TYPE: COLOMBIA. Tolima: Cajamarca, corregimiento de
Anaime, P´aramo de los Valles, La Cascada, Hacia Santa
Helena, 3710 m, Arbolito 2.5 m alt, 3 cm di´am., l´
ıgulas
blancas, flores vino tinto, en turbera, hojas con olor a
mentol, pegajosas al tacto, Jun 1994, Restrepo 371 (holo-
type: COL!, isotype: US!).
9. Piofontia cinerascens (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium cinerascens Cuatrec., Caldasia 3: 422. 1945.
VARGAS: REINSTATEMENT OF PIOFONTIA 4872018]
TYPE: COLOMBIA. Valle del Cauca: Cordillera Occidental,
Los Farallones de Cali, filo de la cordillera, matorrales de
aramo en el cerro de La Torre, 4000 m, arbolito, hoja
verde claro, mate haz, blanquecina env´es, nervio medial
verdoso blanquecino, involucro viol´aceo sucio, l´
ıgulas
blancas, corolas centrales blanco verdosas, Oct 10 1944,
Cuatrecasas 17851 (holotype: VALLE, isotypes: COL!, F!, P,
US!).
9.1. Piofontia cinerascens subsp. puracensis (Cuatrec.) O.M.
Vargas, comb. nov. Diplostephium violaceum var. puracense
Cuatrec., Caldasia 3: 424. 1945. Diplostephium cinerascens
subsp. puracense (Cuatrec.) Cuatrec., Webbia 24: 138. 1969.
TYPE: COLOMBIA. Cauca: Cordillera Central, al sur del
Volc´an Purac´e, filo de la cordillera en San Francisco,
34003450 m, arbolito muy ramoso de hoja muy compacta
y redondeada, hoja verde vivo en la haz, blanco tomen-
toso en el env´es, involucro verdoso en la base, viol ´aceo en
el extremo superior, l´
ıgulas blancas, fl´osculos blanco-
verdosos, anteras viol´aceas, Aug 23 1943, Cuatrecasas
14602 (holotype: VALLE, isotypes: COL!, F!, P, US!).
Diplostephium cinerascens var. centrale Cuatrec., Caldasia 3: 423.
1945. TYPE: COLOMBIA. Cauca: Cordillera Central, cabe-
ceras del R´
ıo Palo, quebrada del R´
ıoL´opez, Alto del
Duende, matorrales y bosquecillo de p´aramo, 33003350 m,
arbolito, hoja verde gris´acea clara haz, blanquecina env ´es,
br´acteas involucrales viol´aceas, l´
ıgulas blancas, guasg ¨u´
ın,
Dic 1 1944, Cuatrecasas 18796 (lectotype: US!, isotypes:
A, COL!, F).
10. PIOFONTIA COLOMBIANA Cuatrec., Feddes Repert. Nov.
Regni Veg. 55: 153. 1953. Diplostephium colombianum
(Cuatrec.) Cuatrec., Caldasia 2: 5. 1943. TYPE: COLOMBIA.
Boyac´a: Sierra Nevada del Cocuy, alto valle de Las
Lagunillas, pendientes rocosas mas abajo de los arenales,
43004400 m, fr´utex achaparrado, l´
ıgulas blancas que al
secarse se vuelven rosado-amarillosas, Sep 12 1938, Cuatrecasas
&Garc
´
ıa-Barriga 1492 (holotype: COL!, isotypes: F!, US!).
11. Piofontia coriacea (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium coriaceum Cuatrec., Webbia 24: 123. 1969.
TYPE: COLOMBIA. Magdalena: Sierra Nevada de Santa
Marta, flanco occidental, p´aramo 3100 m, arbusto 3 m,
tomento amarillo-ferrug´
ıneo-p´alido, l´
ıgulas crema,
fl´osculos rojizos, Jan 30 1959, Romero-Casta~
neda 7162
(holotype: COL!, isotype: US!).
12. Piofontia costaricensis (S.F.Blake) O.M.Vargas, comb.
nov. Diplostephium costaricense S.F.Blake, Contr. U. S. Natl.
Herb. 24: 82. 1922. TYPE: COSTA RICA. San Jos´e: Cerro de la
Muerte, 3100 m, Jan 1987, Pittier 10459 (holotype: US!,
isotype: G).
13. Piofontia crassifolia (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium crassifolium Cuatrec, Bull. Torrey Bot. Club
80: 401. 1953. TYPE: COLOMBIA. Cesar: Sierra del Perij ´a,
10 km, 12 km al noreste de Manaure, 48 km al este de
Valledupar, 1 km de la frontera con Venezuela, p´aramo
3000 m, cap´
ıtulos blancos, Feb 5 1945, Grant 10865 (ho-
lotype: US!, isotypes: NY, VEN).
14. Piofontia cyparissias (Wedd.) O.M.Vargas, comb. nov.
Diplostephium cyparissias Wedd., Chlor. And. 1: 203.
1856. TYPE: COLOMBIA. Magdalena: Sierra Nevada de
Santa Marta, vertiente N, flores albi, [without date],
Funck 387 (holotype: P, isotypes: G, F! [fragment], US!
[fragment]).
15. Piofontia elliptica (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium ellipticum Cuatrec., Caldasia 2: 212. 1943.
TYPE: COLOMBIA. Norte de Santander: P ´aramo de Fontib ´on,
26002750 m, entre Pamplona y Chitag´a, arbolito, Oct 16
1941, Cuatrecasas, Schultes, &Smith 12336 (holotype: COL!,
isotype: F!, US!).
16. Piofontia eriophora (Wedd.) O.M.Vargas, comb. nov.
Diplostephium eriophorum Wedd., Chlor. And. 1: 206. 1856.
TYPE: COLOMBIA. Tolima: Monte Tolima, en el l´
ımite in-
ferior de la nieve, 1844, Goudot s.n. (holotype: P, isotypes:
F! [fragment], FI, G, GH, P).
17. Piofontia farallonensis (Cuatrec.) O.M.Vargas, comb.
nov. Diplostephium floribundum subsp. farallonense Cua-
trec., Caldasia 3: 423. 1945. Diplostephium farallonense
(Cuatrec.) Cuatrec., Webbia 24: 135. 1969. TYPE: COLOMBIA.
Valle del Cauca: Cordillera Occidental, Los Farallones de
Cali, filo de la cordillera, matorrales de p ´aramo en el cerro
de La Torre, 4000 m, arbolito, hoja cori ´acea, r´
ıgida, verde
claro haz, blanquecina env´es, involucro verdoso-
amarillento, l´
ıgulas blancas, fl ´osculos viol ´aceos, Oct 10
1944, Cuatrecasas 17855 (holotype: VALLE, isotype:
COL!, F).
18. Piofontia floribunda (Benth.) O.M.Vargas, comb. nov.
Linochilus floribundus Benth., Pl. Hartw. 203. 1845. Dip-
lostephium floribundum (Benth.) Wedd., Chlor. And. 1: 205.
1856. TYPE: COLOMBIA. Cauca: Popay´an, P´aramo de Gua-
nacas, [without date], Hartweg 1126 (holotype: NY, iso-
types: F!, K, LD, P).
Linochilus ochraceus Sch.Bip., as a synonym in Weddell Chl.
And. 1: 205. 1857. Nom. nud.
Diplostephium ochroleucum Klatt, Engl. Bot Jahrb. 8: 37. 1886.
Type: Colombia. Cauca: [illegible] von Paletar´a, 3000 m,
Feb 5 1884, Lehmann 3579 (holotype: K, isotype: US!).
Aster ochroleucus (Klatt) Kuntze Rev. Gen. Pl. 3: 131. 1898.
19. Piofontia fosbergii (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium fosbergii Cuatrec., Bull. Torrey Bot. Club 80:
403. 1953. TYPE: COLOMBIA. Meta: Cordillera Oriental, R´
ıo
Arroz arriba de la confluencia con la Quebrada del
Pedregal, m´argenes con matorrales, 3445 m, arbusto 3 m,
cap´
ıtulos pardo verdosos, Aug 29 1943, Fosberg 20912
(holotype: F!, isotype: US!).
20. Piofontia frontinensis (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium frontinense Cuatrec., Revista Acad. Colomb.
Ci. Exact. 18: 123. 1991. TYPE: COLOMBIA. Antioquia: Mpio.
Urrao, P´aramo de Frontino, Llano Grande and hill to
north, small areas of dense mossy forest intermixed with
open Espeletia p´aramo, 33203450 m, shrub 1.5 m, rays
white disk dull gray, foliage sticky-glandular, Mar 2 1989,
McDougal, Rold´an, & Betancur 4424 (holotype: US!).
21. Piofontia glutinosa (S.F.Blake) O.M.Vargas, comb. nov.
Diplostephium glutinosum S.F.Blake, Proc. Biol. Soc. Wash.
49: 78. 1936. TYPE: COLOMBIA. Santander: P´aramo de los
Colorados, arriba de La Baja, 39004100 m, frutex
30 cm, br ´acteas con manchas purp´ureas, l´
ıgulas blancas,
fl´osculos con tubo amarillo verdoso y l ´obulos rosados,
SYSTEMATIC BOTANY [Volume 43488
estilos rosados, Jan 27 1927, Killip & Smith 18440 (holo-
type: US!, isotypes: A, COL! GH, K, NY).
22. Piofontia grantii (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium grantii Cuatrec., Bull. Torrey Bot. Club 80:
403. 1953. TYPE: COLOMBIA. Cesar: Sierra del Perij´a, 10 km
este-noreste de Manaure, 46 km al este de Valledupar,
3 km de la frontera con Venezuela, 2550 m, arbusto 2.6 m,
hojas pardo amarillentas env´es, l´
ıgulas blancas, Feb 4
1947, Grant 10791 (holotype: F!, isotype: NY, US!).
23. Piofontia heterophylla (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium heterophyllum Cuatrec., Caldasia 2: 230. 1943.
TYPE: COLOMBIA. Cundinamarca: Macizo de Bogoa,
aramo de Cruz Verde, 34003500 m, ´arbolito acha-
parrado, 11.5 m, l´
ıgulas blancas, Sep 15 1940, Cuatrecasas
10457 (holotype: COL!, isotypes: BC, F!, G, P, US!).
24. Piofontia huertasii (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium huertasii Cuatrec., Webbia 24: 126. 1969.
TYPE: COLOMBIA. Cundinamarca: municipio de F´omeque,
aramo de Chingaza, finca la Laja, 3000 m, orillas del
camino, arbusto 2 m, hojas verdes opacas haz, estilos de
los fl´osculos del disco morados, Jan 101820 1965,
Huertas & Camargo 5951 (holotype: US!, isotype: COL!).
25. Piofontia inesiana (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium inesianum Cuatrec., Webbia 24: 192. 1969.
TYPE: COLOMBIA. Magdalena: Sierra Nevada de Santa
Marta, flanco occidental, 3140 m, arbusto 4 m, Jan 29 1959,
Romero-Casta~
neda 7127 (holotype: COL!, isotype: US!).
26. Piofontia jaramilloi (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium jaramilloi Cuatrec., Phytologia 31: 317. 1975.
TYPE: COLOMBIA. Boyac´a: Cerro Berl´
ın, between Arcabuco
and la Palma (borderline between Boyac ´a and Santander),
in degraded Andean Forest, 2900 m, frutex 1.53 m tall,
leaves coriaceus, thick, yellowish green dull above,
ochraceous below, inflorescences and involucres ochra-
ceous, ligules white, disc corollas brownish, Mar 28 1973,
Cuatrecasas, Garc´
ıa-Barriga & Jaramillo 28667 (holotype:
US!, isotype: COL!).
27. Piofontia jenesana (S.D´
ıaz & M.E.Morales) O.M.Vargas,
comb. nov. Diplostephium jenesanum S.D´
ıaz & M.E.
Morales, Revista Acad. Colomb. Ci. Exact. 26: 7. 2002.
TYPE: COLOMBIA. Boyac´a: municipio de Jenesano, 2500 m,
arbusto, hojas verde intenso, flores blancas, [without
date], Molano 14 (holotype: UPTC, isotype: COL!).
28. Piofontia juajibioyi (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium juajibioyi Cuatrec., Webbia 24: 140. 1969.
TYPE: COLOMBIA. Norte de Santander: entre Chitag´ayEl
Cerrito, P´aramo del Almorzadero, un poco abajo (al sur)
del punto m´as ´alto del p ´aramo, 3900 m, fr ´utex 1 m, hojas
verde haz, casi blancas env´es, involucro verde velloso,
l´
ıgulas blancas, estrechas, vilano violeta-rojizo, flores de
disco verdes con ´apices purp ´ureos, Dic 31 1959 Jan 1
1960, Barclay & Juajibioy 10388 (holotype: US!, isotypes:
COL!, F!, MO, U).
29. Piofontia julianii (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium juliani Cuatrec., Webbia 24: 127. 1969. TYPE:
VENEZUELA.T´achira, debajo del P´aramo de Tam´a, cerca
de la frontera con Colombia, faldas con bosque enano
ysubp´aramo, 27502950 m, shrubby vining, leaves
coriaceous, dark green above, buff brown below with
reticulate nerves, bracts brownish green, Jun 2023 1967,
Steyermark & Dunsterville 98616 (holotype: US!, isotype:
NY).
30. Piofontia lacunosa (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium lacunosum Cuatrec., Bull. Torrey Bot. Club
80: 406. 1953. TYPE: COLOMBIA. Boyac´a: Sierra Nevada del
Cocuy, alto valle de Las Lagunillas, 40004300 m, arbusto
23 m, Sep 12 1938, Cuatrecasas 1443 (holotype: F!, iso-
types: COL!, US!).
31. Piofontia leioclada (S.F.Blake) O.M.Vargas, comb. nov.
Diplostephium leiocladum S.F.Blake, Amer. J. Bot. 15: 62.
1928. TYPE: COLOMBIA. Caldas: Cordillera Occidental,
Cerro Tatam´a zona de matorral al borde del p´aramo,
33003500 m, arbusto, l´
ıgulas blancas, Oct 810 1922,
Pennell 10531 (holotype: US!, isotypes: GH, PH).
32. Piofontia micradenia (S.F.Blake) O.M.Vargas, comb.
nov. Diplostephium micradenium S.F.Blake, Amer. J. Bot.
15: 49. 1928. TYPE: COLOMBIA. Caldas: Cordillera Occi-
dental, Cerro Tatam´a, 33003500 m, matorrales en
subp´aramo, l´
ıgulas blancas, flores de disco pardo-
amarillas, Oct 8 1922, Pennell 10533 (holotype: US!,
isotype: GH).
33. Piofontia mutiscuana (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium mutiscuanum Cuatrec., Webbia 24: 117.
1969. TYPE: COLOMBIA. Norte de Santander: entre Mutiscua
y Pamplona, 3400 m, shrub 1012 ft, rays white, anthers
deep purple, pappus light brown, Feb 23 1927, Killip &
Smith 19708 (holotype: US!, isotypes: A, GH).
34. Piofontia nevadensis (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium nevadense Cuatrec., Brittonia 8: 182. 1956.
TYPE: COLOMBIA. Magdalena: Sierra Nevada de Santa
Marta, hasta 15,500 pies de altitud (4724 m), entre pe~
nas,
hasta el nivel de las nieves perpetuas, flor amarilla, Jan 13
1924, Wollaston 6 (holotype: K).
35. Piofontia oblongifolia (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium oblongifolium Cuatrec., Caldasia 2: 220.
1943. TYPE: COLOMBIA. Norte de Santander: cerro al noreste
de Pamplona, vertiente oriental, p´aramo entre matorrales
de bosque andino, 2770 m, arbolito, l´
ıgulas blancas, Sep 26
1940, Cuatrecasas & Garc´
ıa-Barriga 10238 (holotype: COL!,
isotypes: BC, F!, US!).
36. Piofontia obtusa (S.F.Blake) O.M.Vargas, comb. nov.
Diplostephium obtusum S.F.Blake, Contr. U. S. Natl. Herb.
24: 84. 1922. TYPE: VENEZUELA. Trujillo: P´aramo del Jab ´on,
30003200 m, Oct 2 1910, Jahn 24a (holotype: US!).
37. Piofontia ocanensis (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium ocanense Cuatrec., Brittonia 8: 182. 1956.
TYPE: COLOMBIA. Norte de Santander: entre Oca~
na y
Pamplona, 18781879, Kalbreyer 1199 (holotype: K).
38. Piofontia ochracea (Kunth) O.M.Vargas, comb. nov. Aster
ochraceus Kunth, Nov. Gen. Sp. Pl. 4: 94. 1820. Diplo-
stephium ochraceum (Kunth) Nees, Gen. Sp. Aster. 201.
1832. Tetramolopium ochraceum (Kunth.) DC., Prodr. 5: 262.
1836. TYPE: COLOMBIA. [erroneously cited as Ecuador.
Quito: monts de Quito, likely collected near Bogot´a,
Colombia], [without date], Humboldt & Bonpland s.n.
(holotype: P, F! [fragment]).
VARGAS: REINSTATEMENT OF PIOFONTIA 4892018]
Diplostephium denticulatum S.F.Blake, Contr. Gray Herb. 53: 25.
1918. TYPE: COLOMBIA. Cundinamarca: Macizo de Bogot´a:
Cerro de Guadalupe, 3000 m, Jul 1911, Apollinaire & Ar-
thur 11 (holotype: GH, isotype: US!).
39. Piofontia parvifolia (S.F.Blake) O.M.Vargas, comb. nov.
Diplostephium microphyllum Wedd., Chl. And. 1: 201. 1857.
Diplostephium parvifolium S.F.Blake, Contr. U. S. Natl.
Herb. 24: 74. 1922. TYPE: COLOMBIA [erroneously cited as
Venezuela]. Magdalena: Sierra Nevada de Santa Marta,
3000 m, arbustito, flores viol´aceas, [without date], Funck
388 (holotype: P, isotypes: GH [fragment], P [fragment]).
Linochilus microphyllus Sch.Bip., as a synonym in Wedd. Chl.
And. 1: 201. 1857. Nom. nud. Not Diplostephium micro-
phyllum (Vent.) Nees. Nom. illeg.
40. Piofontia perijaensis (S.D´
ıaz & G.P.M´endez) O.M.Vargas,
comb. nov. Diplostephium perijaense S.D´
ıaz & G.P.M´endez,
Revista Acad. Colomb. Ci. Exact. 21: 406. 1997. TYPE:
COLOMBIA. Cesar, Manaure, Serran´
ıa del Perij´a, camino
entre casa de vidrio y Cerro del Avi´on, 2900 m, 72°53W
10°N, arbolito de 5 m, hojas ser´
ıceo-ferrug´
ıneas por el
env´es, verde n´
ıtido por la haz, br´acteas verdes variegadas
con morado, l´
ıgulas blancas, fl ´osculos pajizos, Nov 6 1993,
Rangel, Franco, Rudas, Olmos, Pardo y Clavijo 11212 (ho-
lotype: COL!, isotype: COL!).
41. Piofontia phylicoidea (Kunth) O.M.Vargas, comb. nov.
Aster phylicoides Kunth, Nov. Gen. Sp. Pl. 4: 93. 1820.
Tetramolopium phylicoides (Kunth) DC., Prodr. 5: 262. 1836.
Diplostephium phylicoides (Kunth) Wedd., Chlor. And. 1:
205. 1856. TYPE: COLOMBIA. [errouneously cited as Mexico,
see note below], [without date], Humboldt & Bonpland s.n.
(holotype: P Herb. Bonpland, isotype: P Herb.
Bonpland, F! [fragment]).
Linochilus phylicoides Sch.Bip., as a synonym in Wedd. Chl.
And. 1: 205. 1857. Nom. nud.
Aster crassifolius Klatt, Abhandl. Natur. Gesell. Halle 15: 326.
1882. TYPE: COLOMBIA. [without specific locality and date],
Linden 1 (lectotype: MA, isotypes: BM, F! [fragment],
LIL).
Diplostephium umbelliferum S.F.Blake, Contr. U.S. Nat. Herb.
24: 80. pl. 26. 1922. TYPE: COLOMBIA. Cundinamarca: Cerro
de Guadalupe, 1917, Ariste-Joseph s.n. (holotype: US!).
42. Piofontia pittieri (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium pittieri Cuatrec., Caldasia 2: 221. 1943. TYPE:
COLOMBIA. Valle del Cauca: Cordillera Central en el
macizo del Huila, P´aramo de Buena Vista, 30003600 m,
Jan 1906, Pittier 1174 (holotype: US!, isotype: F!).
43. Piofontia rangelii (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium rangelii Cuatrec., Phytologia 49: 74. 1981.
TYPE: COLOMBIA. Magdalena: Sierra Nevada de Santa
Marta, transecto de Buritaca, Filo la Cumbre, 3850 m,
arbustillo 1 m, l´
ıgulas blancas con tintes viol´aceos. Hojas
blancas por el env´es, Aug 19 1977, Rangel & Cleef 994
(holotype: COL!, isotypes: COL!, U, US!).
44. Piofontia revoluta (S.F.Blake) O.M.Vargas, comb. nov.
Diplostephium revolutum S.F.Blake, Contr. U. S. Natl. Herb.
24: 78. 1922. TYPE: COLOMBIA. Cundinamarca: Bogot ´a, 1917,
Ariste-Joseph A233 (holotype: US!).
Diplostephium revolutum var. longifolium Cuatrec., Trab. Mus.
Nac. Ci. Nat., Ser. Bot. 33: 134. 1936. TYPE: COLOMBIA.
Tolima: Vertiente sur del Nevado del Tolima, Las
Mesetas, 3800 m, romero, Jun 13 1932, Cuatrecasas 2892
(holotype: MA).
Diplostephium revolutum var. rubrum Cuatrec., Caldasia 2: 236.
1943. TYPE: COLOMBIA. Boyac´a: P´aramo de la Rusia, ver-
tiente SE, Boca de Monte, 33003400 m, arbusto, hojas
pegajosas, copa densa verde clara, Aug 4 1940, Cuatrecasas
10416 (holotype: COL!, isotypes: BC, F!, U, US!).
Diplostephium revolutum f. macrocephalum Cuatrec., Caldasia 2:
236. 1943. TYPE: COLOMBIA.Santander:P´aramo del Almor-
zadero vertiente norte, 36003800 m, arbolito, l´
ıgulas
blancas, Nov 28 1941, Cuatrecasas 13513 (holotype: COL!,
isotypes: BC, F!, US!).
45. Piofontia rhododendroides (Hieron.) O.M.Vargas, comb.
nov. Diplostephium rhododendroides Hieron., Bot. Jahrb.
Syst. 21: 340. 1896. TYPE: COLOMBIA. Nari~
no: Azufral de
uquerres, Laguna Verde, Jan 1840, Stubel 429 (holotype:
US! [fragment from destroyed specimen in B], F! [photo]).
Ibid: Volc´an Azufral, 34003500 m, escamas rojo carm´
ın
brillante, Feb 10 1972, Mora 1878A (topotype: US!).
Diplostephium cochense Hieron., Bot. Jahrb. Syst. 21: 341. 1896.
Type: Colombia. Nari~
no: llanura del R´
ıo Cocha con el
frailej´on, Aug 1869, Stubel 353 (holotype: US! [fragment
from destroyed specimen in B]).
46. Piofontia rhomboidalis (Cuatrec.) O.M.Vargas, comb.
nov. Diplostephium rhomboidale Cuatrec., Webbia 24: 151.
1969. TYPE: COLOMBIA. Boyac´a, Sierra Nevada del Cocuy,
alto valle de Las Lagunillas, 40004300 m, arbusto 23m,
l´
ıgulas azafrandas, vilanos rojizos, Sep 12 1938, Cua-
trecasas & Garc´
ıa-Barriga 1450 (holotype: US!, isotypes:
COL!, F!, P).
47. Piofontia ritterbushii (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium ritterbushii Cuatrec., Phytologia 23: 350.
1972. TYPE: COLOMBIA. Huila: west slope below Pico Norte
of Nevado del Huila, 4200 m (range is 41504250 m), very
abundant, Jan 11 1970, Ritterbush s.n. (holotype: US!).
48. Piofontia romeroi (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium romeroi Cuatrec., Webbia 24: 173. 1969. TYPE:
COLOMBIA. Magdalena: Sierra Nevada de Santa Marta,
flanco occidental, 3180 m, arbolito 5 m, flores rojas, Jan 29
1959, Romero-Casta~
neda 7115 (holotype: COL!, isotypes:
MO, US!, VEN).
49. Piofontia rosmarinifolia (Benth.) O.M.Vargas, comb. nov.
Linochilus rosmarinifolius Benth., Pl. Hartw. 197. 1845.
Diplostephium rosmarinifolium (Benth.) Wedd., Chlor. And.
1: 202. 1856. TYPE: COLOMBIA. Cundinamarca: Bogot´a,
alrederores, [without date], Hartweg 1092 (holotype: K,
isotypes: F!, G, LD, NY, P, US!, W).
Diplostephium baccharideum Blake, Contr. U. S. Natl. Herb. 24:
77. 1922. TYPE: COLOMBIA. Cundinamarca: Bogot´a, Mon-
serrate, 1917, Aristhe-Joseph B34 (holotype: US!).
Diplostephium rosmarinifolium var. baccharideum (Blake) Cua-
trec., Trab. Mus. Nac. Ci. Nat., Ser. Bot. 33: 135. 1936.
50. Piofontia rupestris (Kunth) O.M.Vargas, comb. nov. Aster
rupestris Kunth, Nov. Gen. Sp. Pl. 4: 94. Table 334. 1820.
SYSTEMATIC BOTANY [Volume 43490
Tetramolopium rupestre (Kunth) Ness, Gen. Sp. Ast. 203.
1832. Diplostephium rupestre (Kunth) Wedd., Chlor. And.
1: 206. 1856. TYPE: ECUADOR. Rucu Pichincha, [without
date], Humboldt & Bonpland 3047 (holotype: P Herb.
Bonpl, isotype: P Herb. Bonpl).
Aster pichinchensis Willd. ex Nees, Gen. Sp. Ast. 203. 1832.
Nom. nud.
Diplostephium mutisii Cuatrec., Trab. Mus. Nac. Ci. Nat., Ser.
Bot. 29: 25. 1935. TYPE: COLOMBIA. Tolima: p´aramo del
Nevado del Tolima, vert. S y SE, 40004300 m, Jun 15 1932,
Cuatrecasas 2882 (holotype: MA).
51. Piofontia santamartae (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium santamartae Cuatrec., Phytologia 52: 174. 1982.
TYPE: COLOMBIA. Magdalena: Sierra Nevada de Santa Marta,
Transecto del R´
ıoBuritaca, 3000 m alt, arbolito 3 m,
br´acteas e involucro de color vino tinto, hojas haz verdosas
env´es amarillo p´alido, Aug 1977, Rangel & Cleef 928 (ho-
lotype: COL!, isotypes: COL!, US! [fragment]).
52. Piofontia saxatilis (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium saxatile Cuatrec., Proc. Biol. Soc. Wash. 74:
14. 1961. TYPE: COLOMBIA. Magdalena: Sierra Nevada de
Santa Marta, flanco suroriental, hoya del R´
ıo Donach´
ı
entre la Laguna Esacuriba y unos enormes cantos y
pe~
nascos, 7870 m, ´arbolito 26 m, hoja blanda haz verde
clara, env´es ceniciento, involucro viol´aceo, corolas
tubulosas amarillentas, Oct 6 1959, Cuatrecasas & Romero-
Casta~
neda 24620 (holotype: US!, isotypes: COL!, F!, G, NY,
P).
53. Piofontia schultzii (Wedd.) O.M.Vargas, comb. nov.
Diplostephium schultzii Wedd., Chlor. And. 1: 204. 1856.
TYPE: COLOMBIA. Tolima: Volc´an Tolima, 9200 toeses, 21 fl.
Pourpres, Jan 1843, Linden 901 (holotype: P, isotypes: BM,
F!, G, K, P, W, US! [fragment]).
Linochilus jodopappus Sch.Bip. ex Wedd., Chl. And. 1: 204. 1857.
Nom. nud.
54. Piofontia tachirensis (V.M.Badillo) O.M.Vargas, comb.
nov. Diplostephium tachirense V.M.Badillo, Bol. Soc. Venez.
Ci. Nat. 10: 305. 1946. TYPE: VENEZUELA.T´achira, P´aramo
de Tam´a, Jul 15 1944, Steyermark 57360 (holotype: VEN,
isotypes: F!, NY, US!).
55. Piofontia tamana (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium tamanum Cuatrec., Caldasia 2: 214. 1943.
TYPE: COLOMBIA. Norte de Santander: P´aramo de Tam´a,
alrededores de La Cueva, residuos del bosque andino
l´
ımite, 30003200 m, l´
ıgulas blancas, fl´osculos verdosos,
Oct 28 1941, Cuatrecasas, Schultes, & Smith 12710 (holo-
type: COL!, isotypes: F!, P, S, U).
56. Piofontia tenuifolia (Cuatrec.) O.M.Vargas, comb.
nov. Diplostephium tenuifolium Cuatrec., Caldasia 2: 211.
1943. TYPE: COLOMBIA.Boyac´a, Valle de la Uvita, El
Hatico (entre Soata y Cocuy), bosque andino y mator-
rales, 3350 m, ´arbol grande, Sep 15 1938, Cuatrecasas &
Garc´
ıa-Barriga 1793 (holotype: COL!, isotypes: F!, P,
US!).
57. Piofontia tergocana (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium tergocanum Cuatrec., Webbia 24: 175.
1969. TYPE: COLOMBIA.Magdalena:SierraNevadade
Santa Marta, en las cabeceras del R´
ıo Sevilla, entre
grandes piedras en la base la subida al segundo pico al
este de la cabecera de la hoya, flanco occidental del
pico, 3770 m, station 19,arbustode3m,olorde
Espeletia, tallos inferiores desnudos, hojas verdes
haz, blanco lanosas env´es , br ´acteas involucrales
purp ´ureas, vilanos de blanco a rosado, muy resinoso,
pegajoso, Jan 28 1959, Barclay & Juajibioy 6762 (holo-
type: US!).
58. Piofontia venezuelensis (Cuatrec.) O.M.Vargas, comb.
nov. Diplostephium venezuelense Cuatrec., Caldasia 2: 233.
1943. TYPE: VENEZUELA.M´erida, Tabay, 25003000 m,
arbusto de 25 m de altura, hojas arom´aticas, cabezuelas
amarillo ocre, Nov 18 1930, Gehriger 473 (holotype: VEN,
isotypes: G, MO, NY, F!, US!).
59. Piofontia violacea (Cuatrec.) O.M.Vargas, comb. nov.
Diplostephium violaceum Cuatrec., Caldasia 2: 232. 1943.
TYPE: COLOMBIA. Caldas: Cordillera Central, vertiente oc-
cidental, vert. SW del Nevado del Ruiz, Termales, 3400 m,
arbusto de 2 m, o ´arbol hasta 8 m, flores centrales vio-
aceas, l´
ıgulas blancas, romerillo,Jun 4 1940, Cuatrecasas
9229 (holotype: COL!, isotypes: P, F!, US!).
60. Piofontia weddellii (S.F.Blake) O.M.Vargas, comb. nov.
Diplostephium weddellii S.F.Blake, Contr. U. S. Natl. Herb.
24: 79. 1922. TYPE: COLOMBIA. Guajira: Sierra Nevada de
Santa Marta, prov. del Riohacha, 40004400 m, arbusto,
flores amarillas, Mar 1 1852, Schlim 806 (holotype: P,
isotypes: BM, F!, G, K).
Diplostephium sessiliflorum Wedd., Chlor. And. 1: 204. Nom.
illeg. 1856. Not D. sessiliflorum Spreng. 1826.
Denticulata new clade name. Node based definition: the clade
originating with the most common ancestor of Piofontia
antioquensis, P. camargoana, P. huertasii, P. jaramilloi, P.
jenesana, P. mutiscuana, P. oblongifolia, P. ochracea, P.
tachirensis, and P. tenuifolia (clade 1, in Fig, 1). Name
originally proposed by Blake (1922) and later redefined by
Cuatrecasas (1969).
Schultziana new clade name. Node based definition: the clade
originating with the most common ancestor of Piofontia
alveolata,P. apiculata, P. costaricensis, P. juajibioyi, P.
rhomboidalis, and P. schultzii (clade 2, Fig. 1). Name orig-
inally proposed by Cuatrecasas (1969).
Additional TaxaThe following taxa described by earlier
studies as species of Diplostephium also belong in Piofontia, but
combinations have not been made here because they will
become taxonomic synonyms of recognized species of Piofontia
in the systematic treatment of the genus for Colombia (Vargas
in prep.)
1. Diplostephium dentatum Cuatrec.
2. Diplostephium fernandez-alonsoi S.D´
ıaz.
3. Diplostephium floribundum subsp. aequatoriense Cuatrec.
4. Diplostephium floribundum subsp. llanganatense Cuatrec.
5. Diplostephium floribundum subsp. putumayense Cuatrec.
6. Diplostephium floribundum subsp. cundinamarcense Cuatrec.
7. Diplostephium tolimense Cuatrec.
A New Synonym for Diplostephium serratifoliumIn 2014,
Robinson and Funk (2014) erected the genus Dysaster H.Rob. &
V.A.Funk for a plant specimen with affinities to Diplostephium
(Robinson and Funk 2014: 35) but which they thought differed
VARGAS: REINSTATEMENT OF PIOFONTIA 4912018]
significantly from any species previously described in that
genus. Apparently, unknown to Funk and Robinson, a con-
specific from the same location (near Contumaz´a, Peru),
Diplostephium serratifolium Cuatrec., had been described by
Cuatrecasas (1982). Robinson and Funk (2014) focused their
diagnosis on the morphological features that, in their opinion,
supported the description of a new species and a genus: 1)
compressed achenes with only two ribs; 2) fully bisexual disk
florets with stigmatic lines; 3) involucral bracts narrowly
lanceolate, striped and pointy; 4) outer row of pappus dif-
ferentiated in short squamae; and 5) exserted inflorescence
with few heads borne by long peduncles. While all the
aforementioned characteristics match the description of D.
serratifolium made by Cuatrecasas (1982), these features are not
unique to Diplostephium serratifolium (5Dysaster cajamarcensis)
and therefore do not support the segregation of a new genus: 1)
the compression of the achenes is commonly not reported in
the description of new species and is mostly unknown in other
species of Diplostephium s. s., therefore it is premature to assign
this characteristic as diagnostic; 2) fertile ovaries in disk
flowers and stigmatic lines are also present in at least in D.
haenkei (DC.) Wedd. (Cuatrecasas 1982), and the state for this
character for numerous species is unknown; 3) striped narrow
involucre bracts are not uncommon in Diplostephium s. s. (e.g.
D. cajamarquillensis Cabr., D. callaensis Cuatrec.); 4) squamate-
like outer pappus is at least also present in D. ericoides and D.
azureum Cuatrec. and probably in other species too; and 5) long
peduncles are also present in D. wurdackii Cuatrec. Because of
the evidence explained above and the position of Diplostephium
serratifolium falling within the phylogenetic circumscription of
Diplostephium s. s. (Fig. 1), Dysaster cajamarcensis should be
considered a synonym of Diplostephium serratifolium.
DIPLOSTEPHIUM SERRATIFOLIUM Cuatrec. Phytologia 52: 176. 1982.
TYPE: PERU. Cajamarca: Contumaz´a, circa Contumaz´a,
2700 m, Jun 1960, Alza s.n. (holotype: LP, isotype: USM!,
US! [fragment, photo]).
Dysaster cajamarcensis H.Rob. & V.A.Funk. TYPE: PERU. Cajamarca:
Prov. Contumaz´a. 14 km S of Contumaz ´a on gravel road,
rocky slopes, western cordillera, evergreen forest, 2620 m,
Jul 1992, Stuessy, Crawford & Sagastegui 12686 (holotype:
US).
Artificial Key for the Identification of
Diplostephium
and
Piofontia
1. Ray corollas comparatively short, rarely long, 59(15) mm long. Subshrubs, shrubs, and small trees, 0.110.0 m tall, always with
determinate branches leading to a candelabrum-like branching pattern in which every branch is terminated by a capitulescence.
Leaves 0.323 cm long. Adaxial leaf surface usually eglandular or sparse-glandulose. Capitulescences of solitary capitula or with
up to 100 heads. Distribution: Costa Rica, Colombia, Venezuela, northern and central Ecuador (Azuay, Bolivar, Carchi,
Chimborazo, Cotopaxi, Imbabura, Napo, Pastaza, Pichincha, Tungurahua, Sucumbios) . . . .........................Piofontia
1. Ray corollas long, 822 mm long. Subshrubs and shrubs 0.23.0 m tall, with long indeterminate branches that bear short
branchlets topped with solitary capitula or a candelabrum-like branching pattern in which every branch is terminated by a
capitulescence. Leaves 0.28.0 cm long. Adaxial leaf surface usually eglandular or sometimes densely-glandulose. Capitulescences
comprised of solitary capitula or with up to 20 heads. Distribution: southern Colombia (Cauca, Huila, Nari~
no, Putumayo),
Ecuador, Peru, Bolivia, northern Chile (Arica y Parinacota, Tarapac´a, Antofagasta) . . . . . . . . . . . . . . . . . . . . . . . . . . . Diplostephium
Discussion
Despite the overlapping morphological characteristics
among species of Piofontia and Diplostephium (microphyllous
leaves, heterogamous capitula, ray florets with a 23-lobed
limb, rays white to purple, and double pappus) a combination
of morphological characters can separate these clades
(Table 1). Piofontia species are characterized by being sub-
shrubs (0.100.49 m tall) or shrubs (0.53.9 m tall) with leaves
0.34.0 cm long, to small trees (410 m tall) with leaves 423 cm
long (Fig. 2). Subshrubs and small shrubs in Piofontia have
solitary or few (,20) capitula per capitulescence (Fig. 2EG),
while taller shrubs and small trees always bear 20100 heads
per capitulescence (Fig. 2D). The branching pattern of Piofontia
is very consistent, with flowers occurring on terminal branches
determining their growth (Fig. 2E); typically, three or four
branches develop from the axillary buds close to the capit-
ulescence, continuing the vertical growth of the plant. This
architecture gives Piofontia species a characteristic candela-
brum branching pattern (Fig. 2AB). Ray corollas in Piofontia
are short or medium in length (Fig. 2DG), 59 mm long,
Table 1. Comparative aspects between Diplostephium and Piofontia.
Piofontia Diplostephium
Habit Subshrubs, shrubs, or small trees up to 10 m tall. Subshrubs, shrubs up to 3 m tall.
Branching pattern Candelabrum-like, every branch is terminated by a capitulescence. Candelabrum-like, or long indeterminate branches
bearing short branches topped by solitary capitula.
Capitulescence Subshrubs bearing mostly solitary capitula. Shrubs and trees with
multiple heads per capitulescence. Number of capitula increases
with plant size and leaf width, up to 100 heads per capitulescence.
Subshrubs bearing mostly solitary capitula.
Shrubs bearing up to 20 heads per capitulescence.
Ray corollas length 59(15) mm 822 mm
Distribution Northern Andes, Sierra Nevada de Santa Marta, and Talamanca
Cordillera; Costa Rica, Colombia, Venezuela, northern and central
Ecuador (Azuay, Bolivar, Carchi, Chimborazo, Cotopaxi,
Imbabura, Napo, Pastaza, Pichincha, Tungurahua, Sucumbios).
Central Andes and southern Northern Andes;
southern Colombia (Cauca, Huila, Nari~
no,
Putumayo), Ecuador, Peru, Bolivia, northern Chile
(Arica y Parinacota, Tarapac´a, Antofagasta).
Habitat P´aramo and high Andean forest. Dry puna, humid puna, p´aramo, and upper boundary
of the high Andean forest.
Number of species 60 48
SYSTEMATIC BOTANY [Volume 43492
relative to Diplostephium with only some species reaching
lengths of 915 mm.
Diplostephium species are subshrubs or shrubs up to 3 m tall
(Fig. 3); subshrubs and medium-sized shrubs have leaves
0.23.0 cm long; scandent and large-sized shrubs have leaves
48 cm long. Most species have solitary capitula (Fig. 3A,
CD), but scandent and large-sized shrubs exhibit up to 20
heads per capitulescence (Fig. 3B, E, F). A distinctive feature of
most Diplostephium species with solitary capitula is an archi-
tectural pattern in which long, indeterminate branches bear
short branchlets topped with solitary capitula (Fig. 3CD). Ray
corollas in Diplostephium are always long, 822 mm in length
Fig. 2. A. Piofontia oblongifolia.B.P. eriophora.C.P. apiculata.D.P. camargoana.E.P. schultzii.F.P. rupestris.G.P. frontinensis. Notice the candelabrum-like
branching pattern in B and the short and medium length ray corollas in DG.
VARGAS: REINSTATEMENT OF PIOFONTIA 4932018]
(Fig. 3DG). Diplostephium now comprises 48 species that
inhabit the puna and the humid puna (high yunga) in Peru,
Bolivia, and northern Chile, and the p´aramo in Ecuador and
southern Colombia (where its distribution overlaps with
Piofontia). Diplostephium taxonomy remains largely unstudied
since the last revision of the genus that included Peruvian
species (Blake 1928); a morphological study is necessary to
properly define the morphological boundaries of the genus.
The ddRAD phylogeny of Vargas et al. (2017) places Par-
astrephia quadrangularis as sister to Diplostephium meyenii
Fig. 3. A. Diplostephium meyenii.B.D. haenkei.C.D. hartwegii.D.D. gnioides.E.D. barclayanum.F.D.lechleri.G.D. oxapampanum. Notice the short branches
topped with solitary capitula in CD and the long ray corollas in DG.
SYSTEMATIC BOTANY [Volume 43494
Wedd. nested within Diplostephium. Even though this po-
sition suggests that Parastrephia Nutt. species should be
transferred to Diplostephium, the phylogenetic position of
Parastrephia in the Vargas et al. (2017) phylogeny may be
biased by the high indices of hybridization and introgression
found among P. quadrangularis and D. cinereum,D. meyenii,
and D. sp. nov. CAJ2 (Vargas et al. 2017). Simulations have
shown that gene flow can affect phylogenetic topologies,
producing support for erroneous inferences of species trees
(Leach´e et al. 2014). Therefore, it is possible that Parastrephia
is an independent lineage from Diplostephium as suggested
by the nuclear ribosomal phylogeny of Vargas et al. (2017).
Parastrephia comprises three species of densely branched
cupressiform shrubs distinguished by having sessile mi-
crophyllous leaves, disciform heads, yellow corollas, pis-
tillate flowers in one series with tubular or limbate corollas,
disc flowers functionally staminate and tubular, and re-
ceptacles epaleate (Nesom 1993; Nesom and Robinson 2007).
Extended sampling that includes a broader Parastrephia
sampling is needed to resolve its position relative to
Diplostephium.
Incompatibility between the traditional classification of
Astereae (Nesom and Robinson 2007) and molecular phy-
logenies (Noyes and Rieseberg 1999; Sancho and Karaman-
Castro 2008; Brouillet et al. 2009; Karaman-Castro and
Urbatsch 2009; Sancho et al. 2010; Vargas and Madri~
an
2012; Vargas et al. 2017) demonstrates morphological la-
bility in the tribe and calls for a revaluation of its sub-
division. These results suggest that it is possible that similar
morphologies among genera in the tribe are the product of
parallel evolution, confounding morphological classifica-
tion relative to the true phylogeny of the tribe. In the specific
case of Diplostephium and Piofontia, the morphological
tendency to present a reduced vegetative morphology with
increasing altitude (shrubs/subshrubs, microphyllous
leaves), is likely the result of convergent adaptation to the
physiological stress produced by lower temperatures and
daily climate oscillations in the high Andes (Meinzer et al.
1994). Alternatively, these overlapping characters may be
of plesiomorphic nature. Future phylogenetic studies in
Astereae should focus on sequencing numerous nuclear loci
to obtain a robust phylogeny of the tribe as chloroplast and
mitochondrial phylogenies are often misleading in cases of
recent and ancient hybridization (Vargas et al. 2017). Recent
studies (Lagomarsino et al. 2014; Uribe-Convers and Tank
2016; Vargas et al. 2017) demonstrate the utility of
employing multiple loci and phylogenomic approaches in
systematics studies to elucidate novel taxa in biodiversity
hotspots.
Acknowledgments. I thank Jordan Bemmels, Kanchi Ganshi, Edg-
ardo Ortiz, Beryl Simpson, and Greg Stull for providing helpful comments
in early versions of this paper. I am grateful to the following herbaria for
providing resources and access to their collection: Museo de Historia
Natural de la Universidad de los Andes (ANDES), The Field Museum (F),
Herbario Universidad de Pamplona (HECASA), Herbario Sur Peruano
(HSP), Herbario Universidad de Antioquia (HUA), the University of
Michigan Herbarium (MICH), Herbario de la Pontificia Universidad
Cat´olica de Quito (QCA), the Plant Resources Center at The University of
Texas at Austin (TEX), the United States National Herbarium at the
Smithsonian Institution (US), Herbario Universidad Nacional Mayor de
San Marcos (USM). This study was supported by The University of Texas at
Austin (Plant Biology Program Awards, the C. L. Lundell Chair of Sys-
tematic Botany, The Linda Escobar Award), the Garden Club of America
(2012 Award in Tropical Botany), the Smithsonian Institution (Cuatrecasas
Award), and the National Science Foundation (postdoctoral support FESD
1338694 and DEB 1240869).
Literature Cited
Blake, S. F. 1922. Key to the genus Diplostephium, with descriptions of new
species. Contributions from the United States National Herbarium 24:
6586.
Blake, S. F. 1928. Review of the genus Diplostephium.American Journal of
Botany 15: 4364.
Brouillet, L., T. K. Lowrey, L. E. Urbatsch, V. Karaman-Castro, G. Sancho,
S. J. Wagstaff, and J. C. Semple. 2009. Astereae. Pp. 589629 in Sys-
tematics, Evolution and Biogeography of Compositae eds. V. A. Funk, T.
Stuessy, and R. Bayer. Vienna: International Association of Plant
Taxonomists.
Cuatrecasas, J. 1943a. Estudios sobre plantas andinas IV. Caldasia 2: 59.
Cuatrecasas, J. 1943b. Estudios sobre plantas andinas V. Caldasia 2:
209240.
Cuatrecasas, J. 1953. Neue und bemerkenswerte andine Compositen.
Feddes Repertorium Specierum Novarum Regni Vegetabilis 55: 120153.
Cuatrecasas, J. 1969. Prima Flora Colombiana 3 CompositaeAstereae.
Webbia 3: 90194.
Cuatrecasas, J. 1982. Miscellaneous notes on Neotropical flora, XV. New
taxa in the Astereae. Phytologia 52: 166177.
Hieronymus, G. 1894. Plantae Lehmannianae in Columbia et Ecuador
collectae additis quibusdam ab aliis collecto ribus ex iisdem regionibus
allatis determinatae et descriptae. Compositae. Botanische Jahrbucher f¨ur
Systematik, Pflanzengeschichte und Pflanzengeographie 19: 4375.
Hieronymus, G. 1896. Plantae Stubelianae novae. Botanische Jahrbucher f ¨ur
Systematik, Pflanzengeschichte und Pflanzengeographie 21: 306378.
Hieronymus, G. 1900. Aloysius Sodiro, S. J.: Plantae ecuadorenses. II.
Compositae. Botanische Jahrbucher f ¨ur Systematik, Pflanzengeschichte
und Pflanzengeographie 29: 185.
Hieronymus, G. 1905. Plantae peruvianae a claro Constantino de Jelski
collectae. Compositae, quas determinavit et descripsit. Botanische
Jahrbucher f¨ur Systematik, Pflanzengeschichte und Pflanzengeographie 36:
458513.
Karaman-Castro, V. and L. E. Urbatsch. 2009. Phylogeny of Hinterhubera
group and related genera (Hinterhuberinae: Astereae) based on the
nrDNA ITS and ETS sequences. Systematic Botany 34: 805817.
Kunth, K. S. 1820. Diplostephium. Pp. 9697 in Nova Genera et Species
Plantarum 4, eds. A. von Humboldt, A. J. Bonpland, and K. S. Kunth.
Paris: Lutetiae Parisiorum.
Lagomarsino, L. P., A. Antonelli, N. Muchhala, A. Timmermann,
S. Mathews, and C. Davis. 2014. Phylogeny, classification, and fruit
evolution of the species-rich Neotropical bellflowers (Campanulaceae:
Lobelioideae). American Journal of Botany 101: 20972112.
Leach´e, A. D., R. B. Harris, B. Rannala, and Z. Yang. 2014. The influence of
gene flow on species tree estimation: A simulation study. Systematic
Biology 63: 1730.
Luebert, F. and P. Pliscoff. 2006. Sinopsis Bioclim´atica y Vegetaci´on de Chile.
Santiago, Chile: Editorial Universitaria.
Luebert, F. and M. Weigend. 2014. Phylogenetic insights into Andean plant
diversification. Frontiers in Ecology and Evolution 2: 117.
Meinzer, F. C., G. Goldstein, and P. W. Rundel. 1994. Comparative water
relations of tropical alpine plants. Pp. 6176 in Tropical Alpine Envi-
ronments Plant Form and Function, eds. P. W. Rundel, A. P. Smith, and
F. C. Meinzer. Cambridge: Cambridge University Press.
Nesom, G. L. 1993. Synopsis of Parastrephia (Asteraceae: Astereae). Phy-
tologia 75: 347357.
Nesom, G. L. and H. Robinson. 2007. Tribe Astereae. Pp. 284342 in The
families and genera of vascular plants vol. 8, eds. J. W. Kadereit and C.
Jeffrey. Berlin: Springer Verlag.
Noyes, R. D. and L. H. Rieseberg. 1999. ITS sequence data support a single
origin for North American Astereae (Asteraceae) and reflect deep
geographic divisions in Aster s. l. American Journal of Botany 86:
398412.
Robinson, H. and V. Funk. 2014. Dysaster cajamarcensis, a new shrubby
genus and species of Astereae (Asteraceae) from Peru. PhytoKeys 40:
3540.
Sancho, G., D. J. N. Hind, and J. F. Pruski. 2010. Systematics of Podocoma
(Asteraceae: Astereae): A generic reassessment. Botanical Journal of the
Linnean Society 163: 486513.
Sancho, G. and V. Karaman-Castro. 2008. A phylogenetic study in
American Podocominae (Asteraceae: Astereae) based on morpho-
logical and molecular data. Systematic Botany 33: 762775.
VARGAS: REINSTATEMENT OF PIOFONTIA 4952018]
Uribe-Convers, A. S. and D. C. Tank. 2016. Phylogenetic revision of the
genus Bartsia (Orobanchaceae): Disjunct distributions correlate to
independent lineages. Systematic Botany 41: 672684.
Vargas, O. M. 2011. A nomenclator of Diplostephium (Asteraceae: Astereae):
A list of species with their synonyms and distribution by country.
Lundellia 14: 3251.
Vargas, O. M. and S. Madri~
an. 2006. Clave para la identificaci´on de las
especies del g´enero Diplostephium (Asteraceae, Astereae) en Colombia.
Revista de la Academia Colombiana de Ciencias Exactas, F´
ısicas y Naturales
30: 489494.
Vargas, O. M. and S. Madri~
an. 2012. Preliminaryphylogeny ofDiplostephium
(Asteraceae): speciation rate and character evolution. Lundellia 15: 115.
Vargas, O. M., E. M. Ortiz, and B. B. Simpson. 2017. Conflicting phylo-
genomic signals reveal a pattern of reticulate evolution in a recent
high-Andean diversification (Asteraceae: Astereae: Diplostephium).
The New Phytologist 214: 17361750.
Weddell, H. 1855. Chloris Andina. Vol 1. Paris: Chez P. Bertrand.
Weigend, M. 2004. Additional observations on the biogeography of the
Amotape-Huancabamba zone in northern Peru: Defining the South-
Eastern limits. Revista Peruana de Biolog´
ıa11: 127134.
SYSTEMATIC BOTANY [Volume 43496
... To quantify the relative contributions of allopatric and parapatric speciation in the páramo, we used a comparative framework that combines phylogenetic, geographical, and ecological information. We applied this approach to Linochilus (Asteraceae: Astereae), a genus restricted to the páramo and the upper boundary of the cloud forest (Blake, 1928;Cuatrecasas, 1969;Vargas, 2011Vargas, , 2018Vargas, Ortiz & Simpson, 2017;Saldivia et al., 2019). Lichochilus' phylogeny was recently inferred using high-throughput sequencing (Vargas, Ortiz & Simpson, 2017), and a taxonomic monograph is almost complete for the genus by OMV. ...
... Lichochilus was recently segregated from Diplostephium because Diplostephium s.l. is biphyletic. Linochilus is a Northern Andean clade sister to a clade that comprises numerous genera including Baccharis and Diplostephium s.s., the latter with similar morphology and ecology primarily inhabiting high elevations in the Central Andes (Vargas, Ortiz & Simpson, 2017;Vargas, 2018;Saldivia et al., 2019). ...
... A phylogenetic study lead by the first author (Vargas, Ortiz & Simpson, 2017), used genome skimming and ddRAD sequencing, including 36 (57%) out of the 63 known species. Linochilus is distributed in the disjunct mountains of the Talamanca Cordillera (Costa Rica), the Sierra Nevada de Santa Marta (Colombia), and the Northern Andes (Colombia, Venezuela, and Ecuador), exhibiting a variety of woody habits from decumbent subshrubs only 10 cm tall to small trees 6 m tall (Cuatrecasas, 1969;Vargas, 2018). Growth form and leaf area of Linochilus species are associated with the habitat they occupy-shrubs and decumbent subshrubs with microphyllous leaves inhabit the open páramo, while small trees with broad leaves reside at lower elevations in the upper, more humid, edge of the Andean forest (Vargas & Madriñán, 2012). ...
Article
Full-text available
Elucidating how species accumulate in diversity hotspots is an ongoing debate in evolutionary biology. The páramo, in the Northern Andes, has remarkably high indices of plant diversity, endemicity, and diversification rates. A hypothesis for explaining such indices is that allopatric speciation is high in the páramo given its island-like distribution. An alternative hypothesis is that the altitudinal gradient of the Andean topography provides a variety of niches that drive vertical parapatric ecological speciation. A formal test for evaluating the relative roles of allopatric and parapatric ecological speciation is lacking. The main aim of our study is to test which kind of speciation is more common in an endemic páramo genus. We developed a framework incorporating phylogenetics, species’ distributions, and a morpho-ecological trait (leaf area) to compare sister species and infer whether allopatric or parapatric ecological divergence caused their speciation. We applied our framework to the species-rich genus Linochilus (63 spp.) and found that the majority of recent speciation events in it (12 events, 80%) have been driven by allopatric speciation, while a smaller fraction (one event, 6.7%) is attributed to parapatric ecological speciation; two pairs of sister species produced inconclusive results (13.3%). We conclude that páramo autochthonous ( in-situ ) diversification has been primarily driven by allopatric speciation.
... The country with the highest number of species is Colombia, with 63 species described (Vargas 2011). Although it is found in many ecosystems, species of this genus prefer highland conditions, such as open shrublands, grasslands, or upper montane forests (Weddell 1855;Cuatrecasas 1969;Vargas and Madriñán 2012;Vargas 2018). ...
... Species included in Linochilus can be differentiated from Diplostephium sensu stricto (s. s.) by the combination of characters as habit, branching pattern, number of capitula, and the length of corolla ray florets, although no character can be used on its own to distinguish between genera (Vargas 2018). ...
... The position of D. paposanum in Diplostephium sensu lato is supported by morphological characters, such as the shrubby and candelabrum-like habit, heterogamous heads with three to four series of phyllaries and alveolate receptacle, disk florets with ecaudate anthers and lanceolate style branches, ribbed and somewhat compressed cypselae with two different sizes of pappus bristles (Nesom and Robinson 2007;Vargas 2018). Additionally, this species can be placed morphologically in the group of Diplostephium sensu stricto because it is a small bush with up to ten capitula per main branch, all of them placed at the tip of short lateral branches near the apex, and ray flowers often longer than 10 mm. ...
Article
Full-text available
A new species, Diplostephium paposanum S.T.Ibáñez & Muñoz-Schick, sp. nov. , is described for Chile, extending the southern distribution of the genus. Its position within the genus was confirmed by morphological and molecular data, discussed here. The new species was found in a coastal environment, new to the genus, and is geographically far removed from the other Chilean species, which are from the Andes. The formation where it occurs, known as lomas, acts as a biodiversity refuge in hyperarid environments. The presence of D. paposanum in this environment contributes to the evidence of a floristic connection between the Atacama Desert and the Neotropical Andes.
... To quantify the relative contributions of allopatric and parapatric speciation in 106 the páramo, we propose a comparative framework that combines phylogenetic, geographical, and 107 ecological information. We applied this approach to Piofontia, a genus restricted to the páramo 108 and the upper boundary of the cloud forest (Blake 1928;Cuatrecasas 1969;Vargas 2011Vargas , 2018109 Vargas et al. 2017). ...
... We used Piofontia (Asteraceae) because of our recent comprehensive knowledge about 126 its phylogeny ( Vargas et al. 2017), distribution, and taxonomy of its species (Cuatrecasas 1969;127 Vargas 2011;Vargas 2018). Additionally, it is almost entirely restricted to the páramo, although 128 some species dwell in the upper boundary of the cloud forest due to a downslope colonization 129 event ( Vargas and Madriñán 2012). ...
... Additionally, it is almost entirely restricted to the páramo, although 128 some species dwell in the upper boundary of the cloud forest due to a downslope colonization 129 event ( Vargas and Madriñán 2012). The genus contains 63 species distributed in the disjunct 130 mountains of the Talamanca Cordillera (Costa Rica), the Sierra Nevada de Santa Marta 131 (Colombia), as well as the Northern Andes (Cuatrecasas 1969;Vargas 2018). Piofontia exhibits 132 a variety of woody habits ranging from decumbent subshrubs only 10 cm tall to small trees 6 m 133 tall. ...
Preprint
Full-text available
Elucidating how species accumulate in diversity hotspots is an ongoing debate in evolutionary biology. The paramo, in the Northern Andes, has remarkable high indices of plant diversity, endemicity, and diversification rates. A hypothesis for explaining such indices is that allopatric speciation is high in the paramo given its island-like distribution; an alternative hypothesis is that the altitudinal gradients of the Andean topography provides a variety of niches that drive vertical parapatric ecological speciation. A formal test for evaluating the relative roles of allopatric speciation and parapatric ecological divergence has not been carried out. The main aim of our study is to test which kind of speciation is more common in the paramo. We developed a framework incorporating phylogenetics, species' distributions, and a morpho-ecological trait (leaf area) to compare sister species and infer whether allopatry or parapatric ecological divergence caused their speciation. We applied our framework to the species-rich genus Piofontia (63 spp.) and found that the majority of speciation events in Piofontia , (80%) have been driven by allopatric speciation events, while a smaller fraction (13%) are attributed to parapatric ecological divergence; one event produced inconclusive results (7%). We conclude that paramo autochthonous diversification is primarily driven by allopatric speciation.
... only recovered by Baysian Inference) which includes only South American Andean genera, although without clear relationships. This Clade also includes Diplostephium Kunth in Humboldt et al. (1818: 75) and the recently reinstated genus Linochilus Bentham (1845: 197) segregated from Diplostephium (Vargas 2018, Saldivia et al. 2019), with which Pacifigeron shows clearer morphological affinities (see discussion). ...
... Based mainly on the cypselae morphology, specifically on the transversal symmetry and number of ribs, he concluded: "The direction of closest relationship of Pacifigeron appears to lie toward the Australasian region [Celmisia group] rather than South America [referring to Diplostephium]". In relation to the transversal symmetry (compression) of cypselae, Vargas (2018) pointed out that in Diplostephium this character is commonly not reported in the species' descriptions. However, regarding the number of ribs, Diplostephium and Linochilus possess cypselae generally with 2-5 conspicuous ribs (Cuatrecasas 1969, Nesom 1994a, while Pacifigeron has cypselae with 9-11 raised, vascularized, longitudinal ribs. ...
Article
Full-text available
This study reports, based on molecular phylogenetic analyses and a morphological assessment, the second species of Pacifigeron, an endemic genus of Rapa Island in French Polynesia. Detailed morphological and ecological descriptions, illustrations, IUCN Red List assessment, and a distributional map are provided. Our results support the exclusion of Pacifigeron from the Celmisia group and also allow the re-circumscription of the Celmisia group. The new species Pacifigeron indivisus can be differentiated from P. rapensis, among other characters, by its larger leaves, larger number of capitula per capitulescence, corollas lacking long uniseriate multicellular trichomes, style of the disc florets undivided, and absence of twin trichomes on the cypsela epidermis. Molecular data indicates that Pacifigeron is related to South American Andean genera rather than to the Celmisia group as was previously proposed. The Celmisia group is here re-circumscribed to include ca. 159 species distributed in Australasia within the following genera: Celmisia, Damnamenia, Olearia pro parte, Pachystegia, and Pleurophyllum. Given the taxonomic complexity and polyphyletic nature of Olearia, its taxonomy is briefly reviewed based on history, morphology, and phylogenetic evidence, which in turn allows delineation of its species composition within the Celmisia group. None of the Olearia species in the Celmisia group can be retained in Olearia since the type species, O. tomentosa, does not belong to the Celmisia group.
... On the other hand, the repeated temperature differentiation in the different clades is the result of the evolving topography, isolating species in valleys and mountains at different elevations. Geographical divergence is important in different Andean birds (Hazzi et al., 2018) and plants (Vargas, 2018;Vargas et al., 2020) and is reflected in the low mean geographical overlap between species and their relatively small ranges. Also, it can, in some cases, be concomitant with niche adaptation (Benham and Witt, 2016). ...
Chapter
Full-text available
Pimpinella species are annual, biennial, and perennial semibushy aromatic plants cultivated for folk medicine, pharmaceuticals, food, and spices. The karyology and genome size of 17 populations of 16 different Pimpinella species collected from different locations in Iran were analyzed for inter-specific karyotypic and genome size variations. For karyological studies, root tips were squashed and painted with a DAPI solution (1 mg/ml). For flow cytometric measurements, fresh leaves of the standard reference (Solanum lycopersicum cv. Stupick, 2C DNA = 1.96 pg) and the Pimpinella samples were stained with propidium iodide. We identified two ploidy levels: diploid (2x) and tetraploid (4x), as well as five metaphase chromosomal counts of 18, 20, 22, 24, and 40. 2n = 24 is reported for the first time in the Pimpinella genus, and the presence of a B-chromosome is reported for one species. The nuclear DNA content ranged from 2C = 2.48 to 2C = 5.50 pg, along with a wide range of genome sizes between 1212.72 and 2689.50 Mbp. The average monoploid genome size and the average value of 2C DNA/chromosome were not proportional to ploidy. There were considerable positive correlations between 2C DNA and total chromatin length and total chromosomal volume. The present study results enable us to classify the genus Pimpinella with a high degree of morphological variation in Iran. In addition, cytological studies demonstrate karyotypic differences between P. anthriscoides and other species of Pimpinella, which may be utilized as a novel identification key to affiliate into a distinct, new genus – Pseudopimpinella.
... On the other hand, the repeated temperature differentiation in the different clades is the result of the evolving topography, isolating species in valleys and mountains at different elevations. Geographical divergence is important in different Andean birds (Hazzi et al., 2018) and plants (Vargas, 2018;Vargas et al., 2020) and is reflected in the low mean geographical overlap between species and their relatively small ranges. Also, it can, in some cases, be concomitant with niche adaptation (Benham and Witt, 2016). ...
Article
Full-text available
The topographic gradients of the Tropical Andes may have triggered species divergence by different mechanisms. Topography separates species’ geographical ranges and offers climatic heterogeneity, which could potentially foster local adaptation to specific climatic conditions and result in narrowly distributed endemic species. Such a pattern is found in the Andean centered palm genus Aiphanes. To test the extent to which geographic barriers and climatic heterogeneity can explain distribution patterns in Aiphanes, we sampled 34 out of 36 currently recognized species in that genus and sequenced them by Sanger sequencing and/or sequence target capture sequencing. We generated Bayesian, likelihood, and species-tree phylogenies, with which we explored climatic trait evolution from current climatic occupation. We also estimated species distribution models to test the relative roles of geographical and climatic divergence in their evolution. We found that Aiphanes originated in the Miocene in Andean environments and possibly in mid-elevation habitats. Diversification is related to the occupation of the adjacent high and low elevation habitats tracking high annual precipitation and low precipitation seasonality (moist habitats). Different species in different clades repeatedly occupy all the different temperatures offered by the elevation gradient from 0 to 3,000 m in different geographically isolated areas. A pattern of conserved adaptation to moist environments is consistent among the clades. Our results stress the evolutionary roles of niche truncation of wide thermal tolerance by physical range fragmentation, coupled with water-related niche conservatism, to colonize the topographic gradient.
... Although the Northern Andes evolved as discontinuous segments during much of the Neogene, they have acted as a north-south corridor for species colonization (Luebert and Weigend, 2014) for a number of different plant lineages (Bacon et al., 2018a;Chacón et al., 2012;Hughes and Eastwood, 2006;Jabaily and Sytsma, 2013;Sanín et al., 2016Sanín et al., , 2017Vargas, 2018). Correspondingly, even though narrow endemism is common in the Northern Andes, there are numerous examples of mountain species (or species complexes) with large geographic ranges spanning across the tropical Andes, including highland palms such as Geonoma undata , Prestoea acuminata (Pichardo--Marcano et al., 2019), and Ceroxylon parvifrons, C. vogelianum, C. quindiuense (Sanín et al., 2016(Sanín et al., , 2017. ...
Article
Biological dispersal is increasingly seen as a primary driver of speciation across the tropical Andes. Similarly, growing evidence suggests that the Northern Andes cordilleras formed as disconnected segments, at least until the late Miocene. For montane species, this discontinuity can hinder dispersal to the different mountain segments. Hence, understanding which processes involved in mountain formation are related to species capacity to disperse across mountains is crucial to understanding Andean biogeography. Volcanic eruptions are known to affect biodiversity in different ways, but their role on topographic growth and species connectivity remains largely unknown. Species that are distributed in the different geographic units of the Andes can be informative with respect to how and when the different mountains have formed. The wax palms, genus Ceroxylon, comprise 13 strictly Andean species of which three species complexes are widely distributed in the tropical Andes, inhabiting cloud forests at elevations of 1400–3500 m. We sequenced 129 individuals of all but one described species using target sequence capture to reconstruct the phylogenetic history of Ceroxylon. We inferred chronograms using secondary calibrations and demographic modeling, which along with ancestral area reconstructions, allowed us to estimate the relative contribution of dispersal and speciation to explain the diversification history of Ceroxylon. Geological samples of ignimbritic rocks record a Plio-Pleistocene volcanic eruption of great magnitude that connected the three Colombian cordilleras by increasing topographic growth where a former lowland pass disconnected the northern mountain segments. The timing of this topographic change coincides with an increase in dispersal events to the Western and Central Cordilleras of Colombia from adjacent Andean cordilleras (i.e. the Andes outside of Colombia). Taken together, we determine that local topographic growth resulting from volcanic eruptions played a key role in augmenting mountain chain connectivity by uplift and valley filling, which favored dispersal throughout the Northern Andes. We can spatially and temporally link a biogeographical distribution pattern to a traceable geological event.
... (Robinson & Funk, 2012), Delilia Spreng. (Delprete, 1995), Diplostephium Kunth (Vargas, 2011(Vargas, , 2018, Espeletia Mutis ex Humb. & Bonpl. ...
Article
Full-text available
La familia Asteraceae está representada en la Flora de Ecuador por un total de 310 táxones endémicos. Están agrupadas en 4 subfamilias (Asteroideae, Barnadesioideae, Cichorioideae y Mutisioideae), 16 tribus y 89 géneros. Doscientas setenta y dos táxones (87,74%) restringen su hábitat a la región andina. Los niveles más altos de endemismos están asociados a los Andes, mayoritariamente desde el bosque andino alto hasta el páramo, y a las Islas Galápagos. Los géneros con mayor riqueza de endemismos son Mikania (26), Pentacalia (23), y Gynoxys (20). Tres géneros monotípicos son endémicos: Cyathomone, Idiopappus y Trigonopterum. Los géneros Darwiniothamnus, Kingianthus, Lecocarpus, y Scalesia también son endémicos. La diversidad de la familia se incrementa desde los 2000 m a 3000 m, alcanzando su mayor riqueza entre los 2900-3000 m, con dominancia de las plantas arbustivas (195 especies, 1 subespecie, 2 variedades) y herbáceas (97 especies). Ciento veinteseis especies tienen categoría de vulnerable, 90 están en peligro de extinción y 24 están en estado crítico de amenaza. Las temperaturas y precipitaciones medias anuales varían significativamente entre los sectores biogeográficos.
Chapter
Baccharis is a monophyletic genus characterized by functionally unisexual florets, generally distributed in distinct individuals (dioecy), but also including monoecious, gynodioecious, and polygamous species. The genus has not been revised taxonomically as a whole for nearly two centuries. Recent country- or dependent territory-level checklists are hardly comparable and mostly outdated. A comprehensive checklist on the diversity and distributions of Baccharis at generic, infrageneric, and specific levels, including putative hybrids, and adventitious occurrences is provided. Baccharis comprises 442 species classified into 47 sections and 7 subgenera. The genus is native in the Americas, from southeastern Canada and northwestern USA to Tierra del Fuego, with species native to the Falkland/Malvinas Islands, across most of the Caribbean islands and the Galápagos archipelago. Complete lists of species per country and territory are provided. Brazil (185 species, 114 endemics), Argentina (110 species, 25 endemics), and Bolivia (76 species, 22 endemic) are the richest countries for the genus. Four species are highlighted for occurring in more than ten countries or territories within their native range (B. dioica, B. pedunculata, B. trinervis, B. salicifolia), while at least 218 species are endemic to a single country or territory. The role of hybridization in the genus diversity, ecology, and evolution is still a neglected subject, and 38 putative hybrid taxa were described so far. Some species were spread outside the American continent by anthropogenic dispersals, and at least two have established naturalized alien populations: B. halimifolia in Europe and Oceania and B. spicata in Europe.
Article
Full-text available
Páramo, the most species-rich tropical mountain ecosystem, is relatively well-researched in terms of the diversity and evolutionary sources of its flora, yet we know very little about the diversification within this environment. This study aims to unravel the evolutionary history of Oritrophium, an endemic genus of alpine habitats in North and South America, with a disjunct and bi-modal distribution of its species diversity. We aim to disentangle the center of origin and radiation of the genus, and mechanisms structuring its genetic diversity at inter-and intra-specific level. We sampled 19 species (85% from the total) and extended the sampling at population level for the two widely distributed species, O. limnophilum and O. peruvianum, comprising 19 and 24 populations, respectively. Using nuclear ribosomal internal transcribed spacer (ITS) and trnL-trnF chloroplast DNA region, we reconstructed dated phylogenies to test the monophyly of the genus and unravel possible historical forces underlying its diversification. We also performed an ancestral area estimation to reconstruct the biogeographic history of the genus. At the population level, we constructed haplotype networks and run spatial analyses of molecular variance to explore possible mechanisms that operate on structuring the diversity at intraspecific level. Oritrophium resulted polyphyletic, with two species being closely related to Erigeron and three other species ambiguously related to Erigeron, Diplostephium, Linochilus, and/or Hinterhubera. The remaining 14 species formed a clade, Oritrophium s.s., that likely originated during the Early Pliocene in the Andes of northwestern Bolivia to southern Ecuador, the center of the genus' diversity. The group likely diversified with the emergence of the Páramo during the Late Pliocene and further dispersed mainly from South-to-North in the Pleistocene. This migration involved both, long-distance dispersal from the Central Andes to Mexico and gradual migration of the species along the Andes. Accordingly, Oritrophium s.s. appears as the first record of a long-distance dispersal from the Páramo of South America to North America. The dispersal pattern within South America was mirrored by the intraspecific population diversity and structure of the investigated species.
Article
Full-text available
We propose a new classification for the South American species of the genus Bartsia L. and relatives recently included in an expanded treatment of the genus Bellardia (L.) All. This new classification reflects their evolutionary history, and is based on morphological and molecular evidence, biogeographic hypotheses, and rates of diversification for these species. Additionally, we rearranged the current taxonomic classification of close relatives so that the current circumscriptions encompass only monophyletic groups. Some of these changes include the creation of a new genus, Neobartsia Uribe-Convers and Tank (47 spp.), as well as the reclassification of Bellardia latifolia (L.) Cuatrec. back to Parentucellia latifolia (L.) Caruel. These taxonomic changes are important for proper communication within the large Rhinantheae clade of Orobanchaceae, and for the interpretation of biogeographic patterns and diversification processes of these species.
Article
Full-text available
Andean orogeny is considered as one of the most important events for the developmentof current plant diversity in South America. We compare available phylogenetic studies anddivergence time estimates for plant lineages that may have diversified in response to Andeanorogeny. The influence of the Andes on plant diversification is separated into four major groups:The Andes as source of new high-elevation habitats, as a vicariant barrier, as a North-Southcorridor and as generator of new environmental conditions outside the Andes. Biogeographicalrelationships between the Andes and other regions are also considered. Divergence timeestimates indicate that high-elevation lineages originated and diversified during or after the majorphases of Andean uplift (Mid-Miocene to Pliocene), although there are some exceptions. Asexpected, Andean mid-elevation lineages tend to be older than high-elevation groups. Mostclades with disjunct distribution on both sides of the Andes diverged during Andean uplift.Inner-Andean clades also tend to have divergence time during or after Andean uplift. This isinterpreted as evidence of vicariance. Dispersal along the Andes has been shown to occur ineither direction, mostly dated after the Andean uplift. Divergence time estimates of plant groupsoutside the Andes encompass a wider range of ages, indicating that the Andes may not benecessarily the cause of these diversifications. The Andes are biogeographically related to allneighbouring areas, especially Central America, with floristic interchanges in both directionssince Early Miocene times. Direct biogeographical relationships between the Andes and otherdisjunct regions have also been shown in phylogenetic studies, especially with the easternBrazilian highlands and North America. The history of the Andean flora is complex and plantdiversification has been driven by a variety of processes, including environmental change,adaptation, and biotic interactions
Article
Full-text available
• The species-rich Neotropical genera Centropogon, Burmeistera, and Siphocampylus represent more than half of the ∼1200 species in the subfamily Lobelioideae (Campanulaceae). They exhibit remarkable morphological variation in floral morphology and habit. Limited taxon sampling and phylogenetic resolution, however, obscures our understanding of relationships between and within these genera and underscores our uncertainty of the systematic value of fruit type as a major diagnostic character.• We inferred a phylogeny from five plastid DNA regions (rpl32-trnL, ndhF-rpl32, rps16-trnK, trnG-trnG-trns, rbcL) using maximum-likelihood and Bayesian inference. Ancestral character reconstructions were applied to infer patterns of fruit evolution.• Our results demonstrate that the majority of species in the genera Centropogon, Burmeistera, and Siphocampylus together form a primarily mainland Neotropical clade, collectively termed the "centropogonids." Caribbean Siphocampylus, however, group with other Caribbean lobelioid species. We find high support for the monophyly of Burmeistera and the polyphyly of Centropogon and mainland Siphocampylus. The ancestral fruit type of the centropogonids is a capsule; berries have evolved independently multiple times.• Our plastid phylogeny greatly improves the phylogenetic resolution within Neotropical Lobelioideae and highlights the need for taxonomic revisions in the subfamily. Inference of ancestral character states identifies a dynamic pattern of fruit evolution within the centropogonids, emphasizing the difficulty of diagnosing broad taxonomic groups on the basis of fruit type. Finally, we identify that the centropogonids, Lysipomia, and Lobelia section Tupa form a Pan-Andean radiation with broad habitat diversity. This clade is a prime candidate for investigations of Neotropical biogeography and morphological evolution. © 2014 Botanical Society of America, Inc.
Article
Full-text available
Dysaster cajamarcensis is a spreading broad-leaved shrub named as a new genus and species of the tribe Astereae subtribe Hinterhuberinae collected in northern Peru. It has bisexual disc florets, disc style branches with strong stigmatic lines and hairy appendages, compressed achenes in both ray and disc florets, and papyraceous involucral bracts.
Article
Full-text available
Data from Loasaceae and Ribes (Grossulariaceae) obtained during field studies in Peru allow us to define the southeastern limit of the Amotape-Huancabamba Zone with remarkable precision. The limit runs in slightly southeasterly direction from NE of Otuzco (department La Libertad, province Otuzco, Río Chicama drainage system: S 07° 50,315´, W 078° 29,076´) to the mountain pass between Parcoy and Buldibuyo (department La Libertad, province Pataz, N of the Río Cajas: S 08° 04,619´, W 077° 25,457´). The plant groups typical of the Amotape Huancabamba Zone (N. triphylla group, N. ser. Alatae, Ribes andicola group, Nasa picta subsp. picta) find their southeastern distribution limit in the northern part of the province Pataz, and are replaced by their southern counterparts (N. poissoniana group, Ribes viscosum) immediately south of this pass height.
Article
Full-text available
Gene flow among populations or species and incomplete lineage sorting (ILS) are two evolutionary processes responsible for generating gene tree discordance and therefore hindering species tree estimation. Numerous studies have evaluated the impacts of ILS on species tree inference, yet the ramifications of gene flow on species trees remain less studied. Here, we simulate and analyze multilocus sequence data generated with ILS and gene flow to quantify their impacts on species tree inference. We characterize species tree estimation errors under various models of gene flow, such as the isolation-migration model, the n-island model, and gene flow between non-sister species or involving ancestral species, and species boundaries crossed by a single gene copy (allelic introgression) or by a single migrant individual. These patterns of gene flow are explored on species trees of different sizes (4 vs. 10 species), at different time scales (shallow vs. deep), and with different migration rates. Species trees are estimated with the multispecies coalescent model using Bayesian methods (BEST and *BEAST) and with a summary statistic approach (MPEST) that facilitates phylogenomic-scale analysis. Even in cases where the topology of the species tree is estimated with high accuracy, we find that gene flow can result in overestimates of population sizes (species tree dilation) and underestimates of species divergence times (species tree compression). Signatures of migration events remain present in the distribution of coalescent times for gene trees, and with sufficient data it is possible to identify those loci that have crossed species boundaries. These results highlight the need for careful sampling design in phylogeographic and species delimitation studies as gene flow, introgression, or incorrect sample assignments can bias the estimation of the species tree topology and of parameter estimates such as population sizes and divergence times.
Article
Full-text available
El género Diplostephium contiene ca. 100 especies de las cuales 63 se encuentran en Colombia. Se presenta una clave dicotómica para las especies de Diplostephium en Colombia con base en las series tratadas por Cuatrecasas para su clasificación. Se incluyen en estas divisiones aquellas especies sin serie asignada.
Article
High‐throughput sequencing is helping biologists to overcome the difficulties of inferring the phylogenies of recently diverged taxa. The present study analyzes the phylogenetic signal of genomic regions with different inheritance patterns using genome skimming and dd RAD ‐seq in a species‐rich Andean genus ( Diplostephium ) and its allies. We analyzed the complete nuclear ribosomal cistron, the complete chloroplast genome, a partial mitochondrial genome, and a nuclear‐dd RAD matrix separately with phylogenetic methods. We applied several approaches to understand the causes of incongruence among datasets, including simulations and the detection of introgression using the D ‐statistic ( ABBA ‐ BABA test). We found significant incongruence among the nuclear, chloroplast, and mitochondrial phylogenies. The strong signal of hybridization found by simulations and the D ‐statistic among genera and inside the main clades of Diplostephium indicate reticulate evolution as a main cause of phylogenetic incongruence. Our results add evidence for a major role of reticulate evolution in events of rapid diversification. Hybridization and introgression confound chloroplast and mitochondrial phylogenies in relation to the species tree as a result of the uniparental inheritance of these genomic regions. Practical implications regarding the prevalence of hybridization are discussed in relation to the phylogenetic method.
Article
Podocoma is a southern South American genus of perennial herbs with short-radiate capitula with two- to four-seriate ray florets and a two- to three-seriate pappus of scabridulous setae. The ray florets have corollas with narrow limbs. The rostrate cypsela of Podocoma is one of the most distinct features of the genus. Podocoma, with many of the endemic southern South American genera of Astereae, is included in subtribe Podocominae. Podocoma traditionally contained seven mainly Brazilian species (P. asperrima, P. bellidifolia, P. blanchetiana, P. hieracifolia, P. hirsuta, P. regnellii and P. spegazzinii), and its expansion to include two species of Conyza (C. notobellidiastrum and C. rivularis) was, perhaps, the most significant recent change in the generic concept of Podocoma. However, recent molecular- and morphology-based phylogenetic analyses do not support the inclusion of these two species in Podocoma. Morphological and anatomical studies were carried out in order to clarify the taxonomy of Podocoma and to delimit the genus and its species. On the basis of the results of these morphological and anatomical studies, and those from molecular- and morphology-based phylogenetic analyses, P. notobellidiastrum and P. rivularis are excluded from Podocoma and transferred to a new genus that is currently under description. Moreover, P. regnellii and P. asperrima are placed in synonymy with P. hirsuta and P. spegazzinii, respectively. Three species, P. bellidifolia, P. blanchetiana and P. hieracifolia, are recognized here as a complex of closely related species from a morphological point of view; however, they are treated separately. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 163, 486–513.