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Abstract
Background: The plant body of duckweed species has undergone reduction and simpli�cation from the
ancient Spirodela species towards more-derived Wol�a species. Among the �ve duckweed genera,
Wol�a members are rootless and represent the smallest and most-reduced species. However, we lack
detailed knowledge about their structure.

Results: We conducted a comprehensive study of the morphology and anatomy of Wol�a globosa, the
only Wol�a species in China. We �rst used X-ray microtomography imaging to reveal the three-
dimensional and internal structure of the W. globosa frond. This showed that new fronds rapidly budded
from the hollow reproductive pocket of the mother fronds and that several generations at various
developmental stages could coexist in a single W. globosa frond. Using light microscopy, we observed
that the meristem area of the W. globosa frond was located at the base of the reproductive pocket and
composed of undifferentiated cells that continued to produce new buds. A single epidermal layer
surrounded the W. globosa frond, and the mesophyll cells varied from small and dense palisade-like
parenchyma cells to large, vacuolated cells from the ventral to the dorsal part. Furthermore, W. globosa
fronds contained all the same organelles as other angiosperms; the most prominent organelles were
chloroplasts with abundant starch grains.

Conclusions: Our study revealed that the reproductive strategy of W. globosa plants enables the rapid
accumulation of biomass and the wide distribution of this species in various habitats. Despite their
reduced body plan and size, the simplicity of the W. globosa frond might be overestimated. We propose
that W. globosa plants are not only suitable for the study of structural reduction in higher plants, but also
an ideal system to explore fundamental developmental processes of higher plants that cannot be
addressed using other model plants.

Background
Duckweeds, aquatic monocotyledonous plants of the family Lemnaceae, include �ve genera (Spirodela,
Landoltia, Lemna, Wol�ella, and Wol�a) with variable morphology and living habits, propagating mostly
by vegetative reproduction (Les et al. 2002; Appenroth et al. 2013). Duckweeds have attracted attentions
for their economic value and potential to ameliorate resource limitations and environmental problems
(Appenroth et al. 2015). For example, duckweeds are widely used for standardized toxicity testing of
various water contaminants including nitrogen, phosphorus, metals, and numerous organic compounds
(Yang et al. 2018a; Ziegler et al. 2019). Duckweeds also possess good qualitative and quantitative
nutritional pro�les components without detectable anti-proliferative or cytotoxic effects and could serve
as a new source of human food (Sree et al. 2019). Duckweed-based expression systems with strictly
controlled formats have been developed to produce various recombinant proteins with relatively high
yield (Pavel et al. 2018; Heenatigala et al. 2020). Duckweeds also may be valuable feedstock for biofuel
production due to their high biomass and starch accumulation (Liu et al. 2018; Sun et al. 2020).
Furthermore, their rapid growth rate, ease of cultivation and transformation, direct contact with water, and
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ability to adapt to environmental changes make duckweeds suitable plant models and excellent materials
for physiological studies (Appenroth et al. 2015).

Duckweeds have undergone reduction and simpli�cation of the plant body from the ancient Spirodela
species towards the more-derived Wol�a species (Landolt 1986). Among the �ve duckweed genera,
Wol�a members are rootless and represent the smallest (0.5–1 mm) and most-reduced species; other
species including Spirodela, Landoltia, and Lemna are rooted and produce additional adventitious roots.
DNA content estimates also vary nearly thirteen-fold among duckweed species, ranging from S. polyrhiza
(158 Mbp) to W. arrhiza (1881Mbp) (Wang et al. 2011), and negatively correlate with body size (Cao et al.
2015; Wang and Messing 2015). The striking variation in body plan and size among duckweeds is one of
the most extreme examples of structural reduction in any families. However, we lack knowledge about the
mechanisms driving its occurrence within the plant kingdom.

The morphology varies distinctively among 11 species of Wol�a (12 subspecies) (Fig. 1), but little else is
known about their structure. Given its unique characteristics, we conducted a comprehensive study of the
morphology and anatomy of Wol�a globosa, the only Wol�a species in China. The �ndings provide a
foundation for future research on duckweed growth, development, physiology, and evolution. Biological
research on duckweeds is growing as their genomes are being sequenced. We hope to attract more
investigators and investors to join our efforts and realize the great potential of duckweed as a model
system for basic and applied research in plants.

Methods
Plants cultivation and identi�cation

W. globosa (5563) plants were collected from East Lake (N30°32′, E114°21′) at the city of Wuhan, Hubei
Province, China (no permission was required to collect such plant samples). Plants were sterilized in 0.1%
mercuric chloride for 2–3 min and then cultured in half-strength (1/2) SH medium at pH 5.5 containing
1% (w/v) sucrose and 0.8% (w/v) agar. Regenerated fronds of W. globosa were transferred to liquid 1/2
SH medium for longer preservation. Cultivation was conducted at 25 ± 1°C under white light of 85 μmol
m-2s-1 and 16 h/8 h day-night photoperiod. Wol�a fronds in good condition were selected for
experiments.

The identi�cation of W. globosa (5563) was conducted by Jingjing Yang and P.P.M. Heenatigala using
atpF-atpH barcode primers (Wang et al. 2010; Heenatigala et al. 2018). The identi�cation results were
submitted to the Rutgers Duckweed Stock Cooperative at the State University of New Jersey
(http://www.ruduckweed.org/register.html). W. globosa (5563) plants were preserved at the National
Aquatic Biological Resource Center.

3D structure observation of W, globosa frond by X-ray microtomography (MicroCT) imaging
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We �rst used MicroCT to explore the morphology and internal structure of the W. globosa frond. The
fronds were scanned at the MicroCT facility (Skyscan1267, Burker) and scans were obtained at a spatial
resolution of 3 μm (4032 × 2688 pixel �eld of view), with an electron acceleration energy of 85 kV and a
current of 100 μA. Detector exposure time was 750 ms, collecting 412 projections in “step and shoot”
mode with no averaging, resulting in a scan duration of 9 min per sample. Radiograph reconstruction was
carried out using NRecon reconstruction software (version 1.7.4.2, Bruker) with a beam hardening
correction of 15. Finally, the scanned area beyond the plant sample was removed and reconstructed into
3D volumes using a �ltered back-projection algorithm.

Light and electron microscope observation

For SEM, the fresh fronds were �xed in 2.5% glutaraldehyde in phosphate-buffered saline (PBS) buffer
(1M, pH 7.4) overnight at 4°C followed by a stepwise ethanol and tert butanol dehydration. Then samples
were dried using a freeze dryer (Hitachi ES-2030). The obtained specimens were examined with a
Scanning Electron Microscope (Hitachi S4800) at 30 KV.

For light and transmission electron microscopy (TEM), the samples were washed in PBS buffer after
�xing overnight at 4°C. Then samples were post-�xed with 1% OsO4 in PBS for 2 h at 4°C following
stepwise ethanol and acetone dehydration and in�ltration with Spurr’s epoxy resin. The treated samples
were embedded and polymerized in Spurr’s epoxy resin at 60°C for 48 h. Sections for light microscopy
were cut using a LEICA EM UC 7 instrument with a glass knife and stained with 1% toluidine blue. The
obtained specimens were photographed with an OLYMPUS BX53 camera. Ultra-thin sections (70 nm) for
TEM were also cut using a LEICA EM UC 7 instrument and double-stained with 2% uranyl acetate and
Sato’s lead citrate (28). The obtained specimens were examined with a transmission electron microscope
(Hitachi-7700) at 120 kV. 

Results
Morphology of the W. globosa frond

The three-dimensional (3D) volumes of the W. globosa frond are shown in Fig. 1 and Movies S1. The
oval-shaped W. globosa frond could be divided into dorsal, ventral, and lateral parts (Fig. 2 A1). There
was one big cavity in both the mother frond (MF) and daughter frond (DF1) named the reproductive
pocket (RpM and RpD, respectively) (Fig. 2 A2–A5). The MF had two visible daughter fronds (DF1 and
DF2), one (DF2) budding from the base of the RpM. The DF1 also had two new buds (GF1 and GF2) (Fig.
2 A3–A5). The empty RpM with the new bud (DF2) was exposed when the attached daughter frond (DF1)
was separated (Fig. 2 B2–B5). It was located at one end of the MF and opened when DF1 protruded from
the MF. Stomata were found only in the dorsal part of the frond; no stoma were found in the ventral and
lateral parts (Fig. 2 A1–A2, B1–B2). We further observed the structure of the X–Y, X–Z, and Z–Y axes at
two points on the dorsal part (Fig. 2 C1–C5). Stomata and substomatal cavities were clearly observed on
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the dorsal side (Fig. 2 C1–C3). The RpM was one empty pouch where new generations budded (Fig. 2
C4–C5).

We also observed the morphology of the W. globosa frond by scanning electron microscopy (SEM). We
found that the stomata were densely distributed on the dorsal surface with densities of 314.34 ± 46.99
/mm2 (Fig. 3 A–B). The guard cells, accessory guard cells, and epidermal cells made the entire stoma
form an unusual �ower-ring structure while the cells on the ventral and lateral parts were pentagonal (Fig.
3 C–D). The daughter frond (DF) was released from the RpM and connected with their MF by a stalk
structure (Fig. 3 E–F). The broken stalk connecting the MF and DF remained in the RpM when the DF was
released. The structure of the stalk was similar to the vascular tissue of plants and �lled with cavities.
The other end of the stalk structure was located near the RpD and the detachment left a visible scar when
the DF was released. The scar was similar in structure to the abscission layer (Fig. 3 H–I).

Light microscopy observation

The horizontal and vertical cross-sections of W. globosa are shown in Fig. 4. We found that the
developing DFs were produced from the meristematic area in the base of the RpM (Fig. 4 A–C). This
meristematic area was composed of some undifferentiated cells that continued to multiply, producing
new DFs. The RpM became larger with the growth of DFs and opened when they were released (Fig. 4 G).
Most chloroplasts were concentrated in the dorsal part (Fig. 4 D). The stomata were only found in the
upper epidermis (dorsal side), and prominent substomatal cavities could be observed distinctly from the
vertical cross-section. From the dorsal to ventral side, the mesophyll cells varied in size and changed from
small and dense palisade-like parenchyma cells to large and empty vacuolated cells with many
intercellular air spaces. Furthermore, the chloroplasts showed a developmental gradient from the
youngest to the oldest fronds. Compared with the MF, DFs were at an earlier differentiation stage and
mainly consisted of many dividing cells with larger nuclei (Fig. 4 E). The outermost layer of the MF was
composed of a single layer of epidermal cells containing annular distributed chloroplasts (Fig. 4 F).

Ultrastructure of the W. globosa frond

Despite its reduction in body plan and size, the W. globosa frond contains the same organelles as other
angiosperm plants (Fig. 5). The most prominent organelles were chloroplasts, which were mainly
distributed in the mesophyll cells of the upper epidermis (Fig. 5 A). There were no signi�cant differences
in the size and elaboration of the thylakoid system among chloroplasts. The photosynthetic membrane
system of these lens-shaped chloroplasts was well developed, and the individual grana were composed
of three to eight thylakoids (Fig. 5 B–C). Starch grains occurred in the chloroplasts of almost all the
palisade-like parenchyma cells but were more abundant in the chloroplasts of mature mesophyll cells
than in the meristematic area or the developing DFs (Fig. 5 D–E). There were also more mitochondria in
the meristematic area of the MF than the DFs, which had larger nuclei and smaller vacuoles (Fig. 5 F–G).
Microbodies were often, but not always, found in close association with the chloroplasts. Other
organelles such as Golgi, free ribosomes, and rough endoplasmic reticulum (RER) were not so prominent.
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The outermost cells of the RpM were mostly vacuolated and organelles were almost invisible (Fig. 5 H).
Furthermore, we found elaborate cell wall projections, which were classi�ed as transfer cells, in most
adjacent mature mesophyll cells. These transfer cells were ingrowths, increasing the area of the cell
membrane (Fig. 5 I).

Discussion
Most plant species require all the vegetative (shoot, stem, and root) and reproductive (�ower, fruit, and
seed) organs to complete their life cycle. These plants produce numerous branches through the growth of
the shoot apical meristem (SAM) and root apical meristem (RAM) (Weigel and Jurgens 2002). However,
the morphology of W. globosa does not �t traditional botanical descriptions. Our study revealed that W.
globosa normally budded new fronds from its unique meristematic area by vegetative propagation. The
meristematic area of W. globosa was located at the base of the RpM and was a collection of poorly
differentiated cells with the ability to divide; there were no morphologically strict divisions in the meristem
area. The dividing cells may perform different functions than the SAM in Arabidopsis thaliana, including
expression of some key genes involved in SAM activity and the distribution of auxin and cytokinin
(Zadnikova et al. 2014; Maugarny-Calès et al. 2018).

The new generations produced by vegetative propagation were called DFs or new buds as in a budding
yeast and were released horizontally from the RpM. Usually, several individuals at different
developmental stages coexisted in a single W. globosa frond. A single Wol�a frond can produce 11
daughter fronds on average and live for about 17 days on average (Bernard and Bernard 1990). Each bud
began to senescence on the 10th day of survival and the average life span was about 17 days (Bernard
and Bernard 1990). Our study also con�rmed the rapid propagation of Wol�a
from the structural perspective. This reproductive strategy enabled rapid accumulation of biomass in
Wol�a, which roughly doubled in 48 hours, and allows its wide distribution in various habitats around the
world (Ziegler et al. 2013). Wol�a seldom �ower under natural conditions, and no seed has been reported
so far. However, Wol�a �owers have been reported in the laboratory; the causes of its reduction of sexual
reproduction could be revealed in the future.

The reduction of the root in Wol�a is one of the most striking examples of structural reduction in the
plant kingdom. Duckweeds include �ve genera; members of Wol�a and Wol�ella are rootless, while
members of Spirodela, Landoltia, and Lemna produce either a single or few roots (Cao et al. 2016). There
is a reduction of the number of roots from Spirodela to Lemna and they disappear entirely in Wol�a.
Early studies suggested that duckweeds did not use their roots to acquire nutrients, and instead acquire
nutrients through their fronds (Gorham 1941; Muhonen et al.1983; Ice and Couch 1987; Meijer and Sutton
1987).

Echlin et al. (1981) found that most absorption of ions occurred in the root tip region of Lemna minor,
and observed a Casparian band structure in the endodermis of the root tip. They suggested that the root
of L. minor can not only absorb nutrients and water but also transport these to the frond. Kim (2007)
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carried out a detailed study of root development of S. polyrhiza and found a large number of
plasmodesmata between the cells of the root. They therefore concluded that the transport of metabolites
between the root and frond may rely on the symplastic pathway. The root of duckweeds plays an
important role in absorbing nutrients and maintaining their �oating lifestyle. For example, the density of
cells in the root tip of S. polyrhiza is high, such that it forms a pendulum-like structure to cope with water
�uctuations and stabilize the plant on the water surface. However, for the rootless Wol�a, White and
Wise (1998) suggested they stay a�oat and upright not by buoyancy but by surface tension. In their
opinion, if buoyancy kept Wol�a plants at the water’s surface, then they would sink late in the day as
their starch content reached a maximum. In our study, the dorsal part of W. globosa was always above
the water, and it was di�cult to submerge the plants or turn them over. In addition, most of the
chloroplasts, which were �lled with starch grains, were concentrated at the dorsal side. Previous studies
have shown that dormant individuals of Wol�a were full of starch grains and sank in the water. We
speculate that the content of starch grains affects the stable �oating of Wol�a. Furthermore, the loss of
the nutrient uptake and stabilization functions of the root in Wol�a may have allowed them to lose this
organ. Phylogenetic analysis using different molecular markers has con�rmed that duckweeds comprise
a single monophyletic clade (Tippery et al. 2015), suggesting that rootlessness has a single evolutionary
origin in Lemnoideae.

We also propose that Wol�a is a suitable model to study structural reduction in angiosperms and to
explore the cause of rootlessness. First, Wol�a is easy to cultivate, completes its life cycle in the lab, and
reproduces quickly. Second, Wol�a plants can be genetically transformed, as can the rooted Spirodela
and Lemna, allowing us to conduct genetic studies (Cantó-Pastor et al. 2015; Heenatigala et al. 2018;
Yang et al. 2018b). Wol�a species are the smallest �owering plants in the world, in both size and
morphological structures, containing one leaf, one stamen and one gynoecium, which represent the core
elements for angiosperms to complete their life cycle. Our study indicates that the simplicity of this
species has been overestimated, because Wol�a has all the same organelles as other angiosperms at
the ultrastructural level. Hillman (1961) pointed out that although the gross morphology and vegetative
reproduction of Lemnaceae are somewhat unusual, their anatomy, particularly the prominent air spaces
and reduced vascular structures, resembles that of many aquatic angiosperms. Anderson et al. (1973)
also pointed out that although Wol�a lacks vascular tissue, the range of tissue and cell types appears as
heterogeneous as in most leaves and varies considerably from meristematic to mature chlorenchymous
tissue. Not only is it suitable to study structural reduction, but Wol�a would also be an ideal system to
explore fundamental processes of angiosperm development that cannot be addressed using other model
plants.

Conclusions
This is the �rst comprehensive study of the morphology and anatomy of Wol�a globosa. Our study
revealed that the morphology of W. globosa did not �t the traditional botanical descriptions. The rootless
W. globosa budded new fronds from the unique meristematic area by vegetative propagation, and usually
several generations coexisted in a single frond. This reproductive strategy enabled their rapid
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accumulation of biomass and wide distribution in various habitats around the world. Despite their
reduction in body plan and size, W. globosa fronds contain the same organelles as other angiosperm
plants, and their simplicity might be overestimated. Finally, we propose that Wol�a plants are not only
suitable for the study of structural reduction in higher plants, but also an ideal system to explore the
fundamental developmental processes of higher plants that cannot be addressed using other model
plants.
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Figure 1

The morphology of 12 subspecies of Wol�a plants. Bar = 50 μm.

Figure 2

The 3D volumes of W. globosa fronds showing the mother frond with daughter fronds. DO- dorsal part,
VE- ventral part, LA- lateral part, MF- mother frond, RpM- reproductive pocket of the mother frond (MF),
RpD- reproductive pocket of the daughter frond, DF1- the �rst daughter frond of MF, DF2- the second
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daughter frond of MF, GF1- the �rst daughter frond of DF1, GF2- the second daughter frond of DF1-, S-
stoma, SS- substomatal cavity. Bar = 50 μm.

Figure 3

Scanning electron micrographs of W. globosa fronds. A, A single frond composed of mother frond (MF)
and daughter frond (DF). B, The frond was divided into dorsal (DO), ventral (VE) and lateral parts (LA). C–
D, Stomata (S) and epidermal cells on the dorsal part. E-G, The daughter frond produced from
reproductive pocket (RP) and connected with the mother frond by the stalk structure (ST). H–I, The
detachment of stalk (DE) and its magni�cation. Bars = 50 μm.
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Figure 4

Microscopic observations of W. globosa fronds. A, Light micrograph of vertical cross-sections of a W.
globosa frond showing mother frond (MF) and daughter fronds (DF, GF). B-C, Magni�cation of the
meristematic area (MA) showing the growing daughter frond in the reproductive pocket (RP). D, Light
micrograph of horizontal cross-section of a W. globosa frond showing mother frond and daughter fronds
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(DF1, DF2), vacuolated cells (VC) and substomatal cavity (SS). E-F, Magni�cation of daughter fronds
(DF1, DF2), epidermal cells (EC) and reproductive pocket (RP). Bars = 200 μm.
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