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Abstract

Chimonobambusa hirtinoda is a threatened species and only naturally distributed in Doupeng Mountain,
Duyun, Guizhou, China. Next-generation sequencing (NGS) is used obtained the complete chloroplast (cp)
genome sequence of C. hirtinoda, and then the sequence was assembled and analyze for phylogenetic
and evolutionary. We also analyzed comparing the cp genome among Chimonobambusa species with
previously published. The complete cp genome of C. hirtinoda has the total length of 139, 561 bp, 38.90%
GC content was detected. A total of 130 genes were founded in the cp genome, including 85 protein
coding genes, 37 tRNA genes, 8 rRNA. Some genes are missing and the introns occur lost in the cp
genome of C. hirtinoda. A total of 48 simple sequence repeat (SSR) were detected and by measuring the
codon usage frequency of amino acids, the A/U preference of the third nucleotide in the cp genome of C.
hirtinoda was obtained. Furthermore, phylogenetic analysis using complete cp sequences, matk gene
exhibited genetic relationship within the Chimonobambusa genus.

Background

Chimonobambusa genus, most of the bamboo shoots in autumn, which not only delicious, but also

contain various trace elements such as iron, sun, and zinc, and rich in nutrients’ 2, it become a favorite
food for people. Additionally, the material of the bamboo is rich in cellulose pulp fibers so that it is a high-
quality raw material for papermaking, which can be produced for bamboo handicrafts, bamboo plywood

and craft furniture, which has high economic, edible and cultural value®* 5,

Chimonobambusa hirtinoda, was listed in the red catalogue by IUCN in 2007 and rated as a national
endangered plant. At present, it is only naturally distributed in Doupeng Mountain, Duyun, Guizhou,
China® 7. However, in recent years, with the local government's development of tourism in Doupeng
mountain and the impact of natural environment, the living environment of C. hirtinoda has been
damaged and on the verge of extinction®. Thus, it is very necessary to protect the natural resources of C.
hirtinoda from all aspects. Most of the woody bamboos are mainly based on reproduction of the
rhizomes, with flowering period is not fixed such as some species only bloom once in a lifetime®. There is
a great deal of controversy in the division of the Bambusoideae because of their classification and
identification generally depend on the morphological characteristics of vegetative organs. Therefore, the
research from morphological identification to molecular perspective is of great significance to the
classification and evolutionary relationship of bamboo species.

The origin of chloroplast (cp) is generally believed to be obtained from cyanobacteria through
endosymbiosis'C. As the photosynthetic organelle of plant cells, chloroplast not only plays a key role in
photosynthesis, but also has important implications in plant physiology and development'" 12, The
structure of chloroplast genome is very conservative, which is usually composed of a large single-copy
(LSC) region, a small single-copy (SSC) region and two inverted repeat (IRs) region in opposite

directions'3. Therefore, chloroplast genomes have been widely used to as DNA barcodes to quickly
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identify species, provided useful phylogenetic studies and chloroplast haplotypes are used to analyze the
14,15,16

genetic diversity of species
There are many reports on the chloroplast genome of the Arundinariatae in the Bambusoideae ', but less
data available on Chimonobambusa genus. Thus, this study is the first time reported the chloroplast
genome of C. hirtinoda, including gene content, codon usage and compared with allied species. Besides
that, phylogenetic relationship was constructed based on previously published cp genomes of
Bambusoideae to clarify the taxonomic position of C. hirtinoda. These finding will provide valuable
genetic resources for further research on the phylogenetic location of C. hirtinoda and investigating
evolutionary relationships of the order Bambusoideae.

Results And Discussion

Assembly and annotation of the chloroplast genomes of
Chimonobambusa hirtinoda.

Assembly resulted in a whole cp genome sequence of C. hirtinoda with a length of 139, 561 bp (Fig. 1),
and consisted of an 83, 166-bp large single-copy region, a 12, 811-bp small single-copy region, and two
21,792-bp IR regions, respectively, comprising the typical quadripartite structure of terrestrial plants. The
cp genome of C. hirtinoda was annotated with 130 genes, including 85 protein coding genes, 37 tRNA
genes, and 8 rRNA genes (Table 1). Most of the 15 genes in the C. hirtinoda cp genome contain introns; of
these, 13 genes contain one intron (atpF, ndhA, ndhB, petB, petD, rpl2, rpl16, rps16, trnA-UGC, trnl-GAU,
trnK-UUU, trnL-UAA, trnV-UAC) and only gene cyf3includes two introns, while the intron of the gene clpP
was found to be deleted(Supplementary TableS1). Unusually, it was determined that the rps72 gene

contained two copies, and the three exons were spliced into a trans-splicing gene '8.
Table 1

Summary of the chloroplast genome of C. hirtinoda.
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Genome features  C. hirtinoda
Genome size (bp) 139,561
LSC size (bp) 83,166
SSC size (bp) 12,811

IR size (bp) 21,792

GC content (%) 38.9%

No. of genes 130

No. of PCGs 85

No. of tRNA 37

No. of rRNA 8

Note that the accD, ycf7, and ycf2 genes are missing in the cp genome of C. hirtinoda, and that the
introns in the genes clpP and rpoC17 have been lost. This phenomenon is consistent with previous
systematic evolutionary studies on the genome structure of plants in Poaceae '°. Such a phenomenon of
missing genes has also been reported in other plants 2023,

The total GC content found for the C. hirtinoda cp genome was 38.90%, The content for each the four
bases A, T, G, and C was 30.63%, 30.46%, 19.57%, and 19.33%, respectively (Table 2). The LSC region
(36.98%) and SSC region (33.21%) have much lower values than that in the IR region (44.23%), indicating
that distribution of the content in the cp genome is not uniform. This is probably because there are four
rRNAs in the IR region, which in turn makes the GC content higher in the IR region. These values were

similar to cp genome results previously reported for some Poaceae plants 24 2°.

Table 2

Base composition in the C. hirtinoda choloroplast genome.

Region Length(bp) A(%) T(%) G(%) C(%) GC(%)
LSC 83,166 31.24 31.78 1876 18.22 36.98
SSC 12,811 36.02 30.78 16.17 17.04 33.21
IRA 21,792 27.96 27.81 2119 23.04 4423
IRB 21,792 2796 2781 2119 23.04 44.23
Total genome 139,561 30.63 3046 19.57 19.33 38.90
CDS 60,531 29.63 30.85 21.20 183 39.53

Page 4/19



Repeat sequences and codon analysis.

SSR consists of approximately 10-bp-long base repeats and is widely used for exploring phylogenetic
evolution and for genetic diversity analysis 2629,

In total, 48 SSRs were detected in C. hirtinoda, including 27 mononucleotide versions, which accounted
for 56.25% of the total, mainly comprised of A or T. There were 4 dinucleotide repeats comprised of
AT/TA and TC/CT repeats, and 3 tri, 13 tetra, and 1penta-repeats shown (Fig. 2A). From the perspective of
SSR distribution, the vast majority of SSRs are found in the LSC area, with 38 (79%); in the IR region there
are 6 (13%) and in the SSC region there are 4 (8%), respectively (Fig. 2B). Previous research

reports suggest that the distribution of SSR numbers in each region and the differences among locations

in terms of GC content are related to the expansion or contraction of the IR boundary®°.

The REPuter program revealed that the cp genome of C. hirtinoda was identified with 61 repeats
consisting of 15 palindromic repeats, 19 forward and no reverse and complement repeats (Fig.3). We
notice that repeat analyses of three Chimonobambusa genus species showed a total of 61- 65 repeats,
and there is only one reverse in C. hejiangensis. Most of the repeat lengths between 30 to 100 bp and

almost all the repeat sequences were located in either IR or LSC region3' (Supplementary TableS2).

There were 20,180 codons identified in the coding region of C. hirtinoda (Fig. 4, Supplementary TableS3).
Among these, the codon AUU of Ille was most widely used, and the codon TER of UAG was least

often used, not counting the termination codons (817 and 19). Of those amino acids encoded by codons,
Leu had the highest presence with 2,170 and TER was lowest at 85. A relative synonymous codon usage
(RSCU) value greater than 1.0 means a codon is used more frequently 32. The RSCU values for 31 codons
exceeded 1 in the C. hirtinoda cp genome, and of these the third most frequent codon was A/U with 29
(93.55%), and the codons ending in C and G had values of 1 (3.23%) and 1, respectively (3.23%).

Comparative analysis of genome structure.

The nucleotide variability (Pi) values for of the three cp genomes found in the Chimonobambusa genus
species ranged from 0 to 0.021 with an average value of 0.000544, as found from analysis with the
software package DnaSP 5.10. In Figure 5 that there are clearly five high peaks in the two single-copy
regions, and the highest peak is in the trnT-trnE-trnY region of the LSC region. The Pi value for LSC and
SSC is significantly higher than that of the IR region. In the IR region, no highly different sequences are
found, and this is a highly conserved region. The sequences of these highly variable regions have also
been reported in other plants during examinations for species identification, phylogenetic analysis, and

population genetics research 3335,

The structural information for the complete cp genomes among three Chimonobambusa genus species
examined showed that those sequences in most regions were mostly conserved (Fig. 6). It can be seen

from Figure 6 that the LSC and SSC regions show a large degree of variation, far higher than for the IR
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region, and the noncoding region demonstrates higher variability than is found in the coding region. In
noncoding regions, 7-9k, 28-30k, 36k and other gene loci differ greatly. In the protein coding region, genes
poC2, ps19, ndhJ and other regions show high differences. However, the agreement between the tRNA
and rRNA regions is almost 100%. A similar phenomenon has also been reported by others®®.

IR contraction and expansion in the chloroplast genome.

There are four regions and four boundaries in the cp genome of plants. During the process of species
evolution, the stability of the two IR region sequences is ensured by the IR region of the chloroplast
genome expanding and contracting to some degree, and this adjustment becomes the main reason for

changes in chloroplast genome length37:38,

It can be seen from Figure 6 that the three Chimonobambusa genus chloroplast genomes were found to
highly similar in organization, gene content and gene order. The size of IR ranges fom 21, 797 bp (C.
tumidissinoda) to 21,835 bp (C. hejiangensis). The ndhH gene spans the IRa/SSC boundary and has a
duplication of 181-224 bp in the IRa region. The gene rps75is located in the IR region (Fig. 7).

No inversion or translocation is found in the six genome sequences by mauve alignment, and the
sequence is the same blocks, indicating that the cp genomes of the six species have not gene
rearrangements (Fig. 8)

Phylogenetic analysis.

We performed phylogenetic analysis with both the complete chloroplast genomes and matK gene and
observed complete chloroplast genome performed better to identify related species, consistent with
previous study®°. The maximum likehood (ML) analysis indicated 7 nodes with fully branch support
(100% bootstrap values), however the three Chimonobambusa genus with moderately supported
relationship as a result of less samples use, which supported C. hirtinoda to be closely related with C.
tumidissinoda with 62 % bootstrap value more than C. hejiangensis. The result of phylogenetic tree based
on matK gene showed that Chimonobambusa species clustered in one branch was consistent with the
phylogenetic tree constructed by the complete cp genome tree (Fig. 10).

Conclusions

This study mainly explored the chloroplast genome of C. hirtinoda and compared it with those of related
species within Chimonobambusa. These data provide useful genetic information that advances the
genetic research on Chimonobambusa. Through successfully assembling, annotating, and analyzing the
whole chloroplast genome sequence of C. hirtinoda, a phenomenon of genes loss was discovered. This
loss is probably associated with the rapid evolution of the Poaceae species and the extensive
rearrangements of chloroplast structures that took place during that process. The acquisition of these
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data, particularly in terms of SSR, will enhance the study of the phylogenetic relationships of
Chimonobambusa plants, cp genome variation among them, and the function of genes.

Comparative analysis of the Chimonobambusa species studied revealed that coding regions are more
conservative than noncoding regions in the cp chloroplast genome. Such a change in genetic structure
can reflect a relationship with the changes in species, but the mechanism that generates such variations
and the subsequent results need further study.

The Poaceae family is generally divided into two large evolutionary branches (BEP and PACCMAD),
among which the Bambusoideae, Pooideae, and Oryzoideae belong to the BEP branch. Panicoideae,
Arundinoideae, Chloridoideae, Aristidoideae, Arundinoideae, and Micrairoideae belong to the PACCMAD
branch. Here, the complete chloroplast genomes based phylogenetic tree (Fig. 10A) shows high values of
bootstrap support (only three values less than 80 %), and these species can be polymerized into two
clades and an outgroup with strong support. The genus Bambusa constitutes an isolated evolutionary
branch, becoming a monophyletic group, a conclusion that is consistent with previous reports 4°. Also,
the two phylogenetic trees revealed that C. hirtinoda, C. hejiangensis and C. tumidissinoda formed a
group that was closely related to the group. On the evolutionary subclade of the second branch, the genus
Ampelocalamus and C. longiusculus have a very close relationship.

Materials & Methods
Plant materials.

Four to six fresh leaf of native habitats are collected in Doupeng Mountain, Guizhou Province, China (N
26°22'32.55", E 107°22'9", altitude 1074.93 m). Those fresh leaf were dried with silica gel and stored at
the Natural Museum of Guizhou University (accession number: GACP) for further DNA extraction (Fig. 9).
The identification of the species by Professor Guanggian Gou, the director of Bamboo Research Institute
in college of life sciences, Guizhou University.

The collection and experiments of plant materials has complied with relevant guidelines and regulations
of Doupeng mountain virgin forest nature reserve.

DNA extraction, Chloroplast genome sequencing.

Total genomic DNAs were extracted from sample using the TIANGEN DNA extraction kit (TIANGEN
BIOTECH CO., Beijing, China) and the DNA concentration was detected using spectrophotometry, and total
DNA quality was detected via 1% agarose gel electrophoresis. All of the DNA obtained from C. hirtinoda
was sent to BGI (Wuhan, China. https://www.genomics.cn), and the total DNA was sequenced using an
lllumina sequencer with an HiSeq2500 system, with library type selected to be the De Novo

Sequencing <800 bp conventional library.
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Genome aassembly and annotation.

De novo assembly of the C. hirtinoda cp genome was performed in a GetOrganelle pipeline*’
(https://github.com/Kinggerm/GetOrganelle). Using the complete chloroplast genome of C. hejiangensis
(#MT884004) as a reference sequence, PGA (https://github.com/quxiaojian/PGA) annotated the
chloroplast genes of C. hirtinoda, followed by manual correction using the software Generous 10.0.5%2,
with uploading to NCBI after the sequence was confirmed to be correct. The GenBank accession number
of C. hirtinoda was OK046142.

Using the online software package Organellar Genome DRAW (OGDraw)*? (http://ogdraw.mpimp-
golm.mpg.de/index.shtml), a physical map of the chloroplast group was created.

Structural of the C. hirtinoda cp genome.

A simple repeat sequence (SSR) is also called a microsatellite. It can be detected using the identification
tool MISA** and REPuter*®, respectively. The number for the repeat parameter was set to at least 10, 5, 4,
3, 3 and 3 repeat units, from mononucleotide to hexanucleotide. The codon bias for the chloroplast
genome was analyzed using the software package CodonW1.4.2 (http://downloads.fyxm.net/CodonW-
76666.html).

Sequence divergence.

Determining the nucleotide diversity of the whole cp genome can make the identification of related
species more accurate and help to solve similar problems arising in the phylogenetic research 4647 In
order to compare the differences, three species of Chimonobambusa were selected, using C. hejiangensis
as the control. The software package MAFFT “8 was used to compare the whole cp genomes of the three
species, with results of the comparison manually truncated at both ends. Then the software package
DnaSP5.10 was used to calculate the Pi values between species sequences #°, The sliding window was
set to 600 and the step size was 200. The online program mVISTA®Y was used to compere three species,
using C. hejiangensis annotation as the reference. The software MAUVE®' provided rearrangements of

those gene sequences.

Phylogenetic analyses.

For 14 sequences of complete chloroplast genome sequences and matK gene of Bambusoideae species
and Hypolytrum nemorum (Cyperaceae: Hypolytrum) was selected as an outgroup for construction the
phylogenetic tree to identify the taxonomic position of the C. hirtinoda. All sequences were aligned using
the tool MAFFT and the maximum likelihood (ML) phylogenetic tree constructed using the software

package MEGA-X %2 and the bootstrap replicates parameter was set to 1,000.
Page 8/19


https://github.com/Kinggerm/GetOrganelle
https://github.com/quxiaojian/PGA
http://ogdraw.mpimp-golm.mpg.de/index.shtml
http://downloads.fyxm.net/CodonW-76666.html

Specimen collection statement.

The collection of fresh leaves obtained the permission of the nature reserve.
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Figure 1

Chloroplast genome map of C. hirtinoda. Different colors represent different functional genes groups.
Genes outside the circle indicate counterclockwise transcription, and genes inside the clockwise
transcription. The thick black line on the outer circle represents the two IR regions. The GC content is the
dark gray area within the ring.
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Information of chloroplast genome repeats of Chimonobambusa
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Sliding window analysis of Chimonobambusa genus complete chloroplast genome sequences. X-axis:
position of the midpoint of a window, Y-axis: nucleotide diversity of each window.
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from 50% to 100%. The horizontal axis shows the coordinates within the cp genome. Those are some
colors represents protein coding, intron, MRNA and conserved non-coding sequence, respectively.
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The chloroplast genomes of three Chimonobambusa species rearranged by the software MAUVE. Locally
collinear blocks (LCBs) are represented by the same color blocks connected by lines. The vertical line
indicates the degree of conservatism among position. The small red bar represents rRNA.
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Figure 9

Morphological characteristic of C. hirtinoda. (A) Habit; (B) nodal ridges; (C) rings of root thorns.
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Maximum likelihood phylogenetic tree based on the complete chloroplast genomes (A) and matK gene

(B).
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