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Abstract

Background

The identification of tropical African wood species based on microscopic im-

Núbia Rosa da Silva
KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University,
Ghent, Belgium
Institute of Mathematics and Computer Science, University of São Paulo, São Carlos,
Brazil E-mail: ∗nubia@ufcat.edu.br, nubiasrosa@gmail.com

Present address:FederalUniversityofCatalão, Catalão,Goiás, Brazil

V ictorDeklerck

RoyalBotanicGardensKew,Richmond, Surrey, UnitedKingdom

JanM.Baetens

KERMIT,DepartmentofDataAnalysisandMathematicalModelling,GhentUniversity,Ghent,Belgium

JanV andenBulcke

LaboratoryofWoodTechnology,DepartmentofEnvironment,GhentUniversity,Ghent,Belgium

MaaikeDeRidder

ServiceofWoodBiology,RoyalMuseumforCentralAfrica, Tervuren,Belgium

MélissaRousseau

ServiceofWoodBiology,RoyalMuseumforCentralAfrica, Tervuren,Belgium

OdemirMartinezBruno

SãoCarlosInstituteofPhysics, UniversityofSãoPaulo, SãoCarlos,Brazil

InstituteofMathematicsandComputerScience, UniversityofSãoPaulo, SãoCarlos,Brazil

HansBeeckman

ServiceofWoodBiology,RoyalMuseumforCentralAfrica, Tervuren,Belgium

JorisV anAcker

LaboratoryofWoodTechnology,DepartmentofEnvironment,GhentUniversity,Ghent,Belgium

BernardDeBaets

KERMIT,DepartmentofDataAnalysisandMathematicalModelling,GhentUniversity,Ghent,Belgium

JanV erwaeren

KERMIT,DepartmentofDataAnalysisandMathematicalModelling,GhentUniversity,Ghent,Belgium
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agery is a challenging problem due to the heterogeneous nature of the com-
position of wood combined with the vast number of candidate species. Image
classification methods that rely on machine learning can facilitate this identi-
fication, provided that sufficient training material is available. Despite the fact
that the three main anatomical sections contain information that is relevant
for species identification, current methods only rely on the transversal section.
Additionally, commonly used procedures for evaluating the performance of
these methods neglect the fact that multiple images often originate from the
same tree, leading to an overly optimistic estimate of the performance.
Results

We introduce a new image dataset containing microscopic images of the three
main anatomical sections of 77 Congolese wood species. A dedicated multi-
view image classification method is developed and obtains an accuracy (com-
puted using the naive but common approach) of 95%, outperforming the single-
view methods by a large margin. An in-depth analysis shows that naive ac-
curacy estimates can lead to a dramatic over-prediction, of up to 60%, of the
accuracy.
Conclusions

Additional images from the non-transversal sections can boost the performance
of machine-learning-based wood species identification methods. Additionally,
care should be taken when evaluating the performance of machine-learning-
based wood species identification methods to avoid an overestimation of the
performance.

Keywords wood species identification · wood anatomical cross-sections ·
texture analysis · machine vision · machine learning

1 Background

1.1 Illegal wood trade and wood species identification

Illegal logging is the most profitable natural resource crime and illegal wood
accounts for 10 to 30 percent of the total global trade in wood products [1,
2], and increasing up to 50 and 90 percent when focusing on Southeast Asia,
Central Africa, and South America [1]. The financial value of illegal logging is
estimated at US$52 to 157 billion dollars per year. There also is a high risk of
irreversible damage to ecosystems associated with the exploitation of highly
sought after, sometimes protected, species. To prevent the over-exploitation of
these species, protection measures are put in place, for example the Convention
on International Trade in Endangered Species of Wild Fauna and Flora [3].
In addition, policy measures (for example EUTR and U.S. Lacey Act) are
implemented in countries to counter the trade in illegal wood and to improve
forest law enforcement and governance [4].

To enforce these regulations and policy measures, wood species identifica-
tion techniques combined with robust datasets are needed. Wood species iden-
tification is currently mainly done via wood anatomical analysis and DART
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TOFMS, proven to be successful in routine controls, and there are other vi-
able techniques as well, for example DNA analysis and Near InfraRed spec-
troscopy [5–13]. Wood anatomical analysis is the most widely applied, readily
available and least expensive technique. Identification is possible via an anal-
ysis of tissue and cell features through hand lenses, light or electronic micro-
scopes or 2D or 3D scans and the IAWA list of microscopic features [14]. The
IAWA characteristics are based on patterns of anatomical features, such as ves-
sels, rays, parenchyma and fibres. The approach is usually sufficient to identify
the genus, but sometimes fails to determine the species [15,16]. Moreover, it
can be difficult to discern between closely related taxa.

1.2 Automated identification through wood anatomical images

Wood anatomical analysis is a complicated task that can take several years
to master and will always involve expert knowledge. Driven by the success of
automation of image recognition in other fields, several attempts have been
made to automate wood species identification using computer vision models
that use digital imagery of anatomical sections as input. The construction
of these models is mostly handled as a pattern recognition task in which:
(1) a representative dataset of labeled digital images is collected (the label is
the species); (2) a feature extraction procedure is applied; and (3) a machine
learning classification algorithm is trained to discriminate the species using
the features. The approaches found in literature mostly differ by the choices
that are made within each of these steps. We present an overview hereafter.

Martins et al. [17] used an image dataset that consisted of 112 species, a
rather large number compared to other studies, including both hardwood and
softwood species with a total of 2240 or approximately 20 images of micro-
scopic transversal images per species. The authors experimented with different
feature descriptors and concluded that Local Binary Patterns (LBP) as a fea-
ture (texture) descriptor combined with Support Vector Machines (SVMs) as
a classification algorithm yields the best performance. They reported an ac-
curacy of 86.0%. Filho et al. [18] composed an image dataset containing 41
Brazilian species with a total of 2942 macroscopic transversal images. They
adopted a strategy where first the image is divided in sub-images which are
then classified independently. A different feature extractor is applied to each
sub-image, resulting in separate feature vectors. Subsequently, a SVM (a prob-
abilistic variant is used) is trained on each feature vector. The class probabili-
ties that are predicted by the individual SVMs are aggregated through a fusion
rule to obtain a final prediction. For the 41 species they reached an accuracy
of 97.77%. Rosa da Silva et al. [19] used a dataset containing 1221 microscopic
images of 77 commercial wood species from the Democratic Republic of the
Congo. They used Local Phase Quantization (LPQ) as a feature descriptor
and linear discriminant analysis as a classifier, resulting in an accuracy of ap-
proximately 88% at species level. Ravindran et al. [20] composed a dataset
containing 2303 macroscopic images of 10 species from the Meliaceae fam-
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ily. They used (deep) convolutional neural networks (CNN) as a classifier. The
convolutional layers serve as data-driven feature extractors, obviating the need
for feature descriptors. They obtained an accuracy of 87.4%. Recently, Souza
et al. [21] used LBP in the construction of an automated recognition system
of Brazilian forest species. Forty six species were used in their analysis, with a
total of 1901 macroscopic images. An automatic recognition system based on
the concatenation of rotation-invariant LBP histograms and an SVM classi-
fier obtained an F1-score of 97.67%. This approach requires a large reference
dataset that captures all potential variability within a species [15]. However,
thanks to historical wood collections, there are many curated wood anatomical
slices available that can be used as a reference for the identification. Similarly,
Ravindran et al. [22] used CNNs to identify 12 self-defined classes based on
macroscopic imagery of transversal cross-sections of species that are common
in the United States. Using a training dataset containing 3126 images, they
obtained an accuracy of 97.7%. Along that line, Lens et al. [23] reported a sim-
ilar accuracy (over 98% using CNN) on 2240 microscopic images of transversal
cross-sections of 112 species.

The literature reviewed above illustrates that machine-vision-based wood
species identification systems can, in some cases, reliably identify wood species.
However, there is still room for improvement at several levels. First, the ma-
chine vision systems described in literature only use images of the transversal
anatomical plane. The tangential and radial anatomical planes can also in-
clude information that is relevant for the species identification. For example,
the height of the rays can be an important characteristic that can only be
seen on tangential and radial planes. To this date, image datasets that contain
imagery of the different anatomical planes are not generally available. To fill
this gap, we introduce a new multi-view dataset. Secondly, we propose to use
the taxonomy of the considered species to build a hierarchical classifier. For
classifiers that output a probability distribution over the species, the Bayesian
optimal decision criterion based on a hierarchical cost function can be used to
encode this hierarchy into the identification problem. Third, in most research,
cross-validation approaches are used to assess the performance of the devel-
oped systems. However, it is not always clear how cross-validation procedures
are applied. Most publications mention that traditional k-fold (possibly strat-
ified at the species level) is used. It is important to note that imagery datasets
often result from a limited number of distinct trees. When these images are
used in a traditional (random) k-fold cross-validation scheme, the performance
can be overestimated.

This potential shortcoming is also explicitly mentioned in [23] as a source of
potential underestimation of intra-species variability, where the authors state
that they were unable to trace back images to individual samples using the
dataset of [17]. In this work, we critically compare the performances obtained
using a traditional k-fold approach with those obtained using a leave-k-tree-out
approach. Therefore, the purpose of this paper is threefold. (1) We introduce
a new image dataset that contains images of the three anatomical planes of
77 Congolese wood species and propose a multi-view random forest model
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that can identify a specimen at the species level using images of the three
anatomical planes. We compare the performance of this multi-view approach
with the performance that is obtained when using only the transversal cross-
section. (2) We incorporate information on the higher taxonomic level (genus
and family) into the classification model by post-processing the probability
estimates of random forest models. (3) We study the influence of using a
leave-k-tree-out approach during cross-validation.

2 Results

2.1 Single-view versus multi-view classification

Performance of single-view classifiers. In this section, we discuss the ad-
vantages of multi-view classification approaches, a first batch of experiments
was performed using single-view classifiers and several data augmentation tech-
niques. From Table 1, it can be inferred that the transversal view is most
informative for identifying the species. Moreover, data augmentation helps to
boost the performance. It is clear that partitioning the original image into
four parts leads to an increase of the predictive performance from 0.56 to 0.75
where the size of the dataset is quadrupled replacing each 1000×1000 pixels
image by four 500×500 pixels images.

Table 1: Accuracies obtained using single-view classifiers.

Accuracy (± std)

Data augmentation technique Transversal Tangential Radial

500×500 0.75 (± 0.02) 0.69 (± 0.01) 0.54 (± 0.01)
500×500−OGRN 0.38 (± 0.02) 0.34 (± 0.01) 0.27 (± 0.01)
500×1000 0.71 (± 0.02) 0.71 (± 0.01) 0.52 (± 0.01)
1000×1000 0.56 (± 0.02) 0.42 (± 0.02) 0.42 (± 0.02)

Performance of multi-view classifiers. In a second batch of experiments,
the added value of using a multi-view model was investigated. Table 2 shows
the results of the MVRF model in terms of accuracy computed using 4-fold
cross-validation. From these results, it is clear that the addition of LPQ fea-
tures from additional anatomical planes leads to an improvement of the clas-
sification accuracy. The concatenation of features of the transversal plus tan-
gential outperforms transversal features only by a large margin, whereas the
addition of R only leads to minor improvements, possibly because the mag-
nifications used have not been sufficient to extract relevant details. Moreover,
the MVRF model shows a better performance as compared to the simple
concatenation of LPQ features. This result shows that both the additional in-
formation that is available in the different cross-sections and the type of model
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both contribute significantly to the performance. The best performance (0.95)
is obtained using the MVRF model.

In Figure 1, the influence of extending the features derived from the transver-
sal cross-section with those extracted from the tangential and radial cross-
sections is visualized per species. It can be seen here that for the eleven species
that exhibited the lowest accuracy, complementing the LPQ features of the
transversal cross-section with features from the tangential and radial cross-
sections improves the classification results significantly for all species (with
the exception of a small descrease for Afzelia bella).

Fig. 1: Illustration of the influence of using only features from the transversal
cross-sections and adding features from the tangential and radial cross-sections
for the eleven species with the lowest accuracy (based on the transversal cross-
section).

Gaining insight into the modes of failure. The results presented above
illustrate that the overall accuracy of the classification model improves when
features of additional cross-sections are added. Hereafter, we disentangle the
reasons for this. Figures 2 (a)–(d) show score plots obtained after performing
a principal component analysis (PCA) on the data matrix of the LPQ features
(data of all 77 species). Figures 2 (a) and (c) show the score plot in the PCA
space when only using transversal features and Figures 2 (b) and (d) show the
score plot in the PCA space computed using the concatenated feature space
transversal plus tangential. For the Afzelia species Afzelia africana and Afzelia
bipindensis shown in Figures 2 (a) and 2 (b), it can be seen that in both cases,
these species cannot easily be separated in the first two dimensions of the
principal component space. This is as expected as both species cannot easily
be distinguished by considering one or both cross-sections. On the other hand,
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Table 2: Comparison of the results using the cross-sections separately and the
random forest model. The first three columns respectively show the accuracy
obtained using a random forest model trained on the LPQ features of the
transversal images only (TV), a random forest model that uses the concatena-
tion of LPQ features of the transversal and tangential cross-sections (TV+TG)
and a random forest model that is obtained using the LPQ features from all
three sections (TV+TG+R).

Accuracy (± std)

TV TV+TG TV+TG+R MVRF

500×500 0.75 (± 0.02) 0.86 (± 0.02) 0.89 (± 0.02) 0.95 (± 0.01)
500×500−OGRN 0.38 (± 0.02) 0.48 (± 0.02) 0.51 (± 0.02) 0.62 (± 0.03)
500×1000 0.71 (± 0.02) 0.85 (± 0.02) 0.87 (± 0.02) 0.91 (± 0.02)
1000×1000 0.56 (± 0.02) 0.62 (± 0.04) 0.66 (± 0.03) 0.66 (± 0.02)

Figures 2 (c) and 2 (d) show the score plots of Entandrophragma candollei and
Entandrophragma utile. From these figures, it is clear that a better separation is
observed when the LPQ features of the tangential cross-section are added. One
of the main determinants to differentiate the two Entandrophragma species
is seen only on the tangential plane. This explains that, when adding the
features from the tangential cross-section, there is a better separation of the
two Entandrophragma species. This is not the case for the Afzelia species, for
which the tangential plane does not aid in the manual identification of these
two species.

A more complete (and more quantitative) view on the improved separabil-
ity due to the addition of information on the tangential cross-section is shown
in Figures 3 and 4. Figure 3 shows the confusion matrix for the classification of
all samples using only features of the transversal cross-section, while Figure 4
shows the confusion matrix for the classification using features of the transver-
sal plus tangential cross-sections. Moreover, the phylogenetic tree is added to
the left and top margins. It is clear that the highest values can be found at the
diagonal and no other clear patterns can be discerned. From a phylogenetic
point of view, no clear overall patterns can be observed in the confusion ma-
trix. However, this confusion matrix illustrates that, for instance, within the
Afzelia genus, there is quite some intra-genus confusion. A similar observation
can be made for the Cynometra genus. The latter confusion matrix (Figure 4)
is much cleaner, showing that the number of misclassifications decreases when
adding features from the tangential cross-section. However, here as well the
Cynometra genus has quite some inter-genus confusion.

2.2 Including genus and family information in the classification process

In a third batch of experiments, we investigated whether including informa-
tion on the phylogeny into the learning process can improve the accuracy.
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Fig. 2: 2D PCA-plot. Species Afzelia africana and Afzelia bipindensis using
only features of the transversal cross-section (a) and adding features of the
tangential cross-section (b). Species Entandrophragma candollei and Entan-
drophragma utile using only features of the transversal cross-section (c) and
adding features of the tangential cross-section (d).

Table 3 shows the results that were obtained. The first column (RF) shows
the accuracy obtained using the random forest classifier (1000×1000 pixels, so
without data augmentation) trained using only the features derived from the
transversal cross-section, using the species as a target. Moreover, this table
also shows the accuracy of this same model at the genus and family level. The
difference between these accuracies is rather small, implying that most of the
classification errors already exist at the family level. Moreover, these results
show that given a correct identification of the family, the probability that also
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Fig. 3: Confusion matrix for the 500×500 dataset using features of the transver-
sal cross-section.

the species will be identified correctly is 87.5%. The last row shows the average
hierarchical loss H-Loss = 1

n

∑

(y,ŷ) C(y, ŷ) (which is minimized by the cost-

sensitive algorithm), where the sum runs over all couples of observed labels y
and predicted labels ŷ and n is the number of test cases. This loss can be seen
as a hierarchical combination of the losses observed at the species, genus and
family levels (the range of this average loss is [0; 1.5]).
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Fig. 4: Confusion matrix for the 500×500 dataset using features of the transver-
sal plus tangential cross-section.

The second column shows the accuracies obtained using the cost-sensitive
classification algorithm. From this table, it can be seen that the traditional
random forest classifier consistently outperforms the cost-sensitive classifier.
Even when using the H-Loss, the traditional random forest classifier outper-
forms its cost-sensitive version. From these results, we can conclude that this
attempt to exploit the class hierarchy has a negative effect on the perfor-
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mance. Nevertheless, this negative result provides some insight into the wood
species identification problem. Most importantly, it shows that the posterior
distribution, which is estimated by the random forest classifier, is not very
informative, or is very poorly estimated. Even though the mode of the distri-
bution is quite informative (as the accuracy of the traditional classifier at the
species level is rather high), the estimates of probabilities for the remaining
classes are not very useful and seem hard to exploit to gain predictive power.
An explanation for this negative result, as well as a step towards a solution,
can be found in recent literature on distribution free uncertain quantification
or conformal prediction [24]. There, it is stated that there are no guarantees
that the voting mechanism of the RF classifier leads to valid estimates of the
class probabilities (in a frequentist sense). Conformal prediction approaches
can be used to calibrate these probability estimates to produce confidence
sets guaranteed to contain the ground truth with a user-specified probabil-
ity. Even though these approaches are compatible with our approach, they
require an additional (hold-out) dataset that is used in the calibration step.
Unfortunately, the limited size of our dataset impedes the application of these
approaches.

Table 3: Comparison of the accuracy of the random forest classifier (RF) with
the cost-sensitive random forest classifier at different hierarchical levels using
the transversal cross-section of the original dataset.

RF Cost-sensitive RF

Accuracy at species level 0.56 0.52
Accuracy at genus level 0.58 0.56
Accuracy at family level 0.64 0.63
H-Loss (lower is better) 0.635 0.683

2.3 Experiments using the leave-k-trees-out approach

In this last batch of experiments, for each species, all samples (images) from the
same tree were separated for the test set, making the training set completely
disjoint from the test set. In total, 165 samples from the original dataset were
used for testing and 640 samples for training. When comparing the results of
this leave-k-trees-out approach shown in Table 4 with the accuracy obtained
using the traditional cross-validation schemes, we observe a dramatic decrease.
This table clearly illustrates that the within tree variability is much smaller
than the between-trees variability. It should be noted, however, that the num-
ber of observations per species was limited and therefore, reducing the training
dataset to 165 samples will have an influence on the accuracy as well. Nev-
ertheless, it remains striking that the performance deteriorates that strongly,
which stresses the importance of performing this kind of cross-validation.
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Table 4: Comparison of the accuracy of the leave-k-trees-out approach, where
the test set is composed of images of trees that are not in the training set.
The experiments were performed using the concatenation of the features of
the three sections (TV+TG+R)) and the MVRF model.

Accuracy (± std)

TV+TG+R MVRF

500×500 0.27 (± 0.01) 0.23 (± 0.01)
500×500−OGRN 0.22 (± 0.01) 0.22 (± 0.01)
500×1000 0.28 (± 0.01) 0.25 (± 0.01)
1000×1000 0.30 (± 0.01) 0.28 (± 0.01)

In our case, as the pieces of wood were obtained at different times and re-
gions, there is large variability across the samples. Moreover, the small number
of samples per species is an important reason for the low accuracy. Figure 10 in
Supplementary Materials shows the selected samples for training and testing
for the species Lophira alata, where we can see quite some variability between
anatomical slices from the same species. This context reinforces the need for
a representative dataset, with the availability of many samples and data aug-
mentation operations.

3 Discussion

Identification analysis at the genus and family level is important because there
are many similarities between species belonging to the same genus, which may,
in some cases, explain misidentification. When using the multi-view random
forest model, of the 14 errors in the samples of the genus Afzelia, five were
predicted within the same genus. When considering the 10 misidentifications
of samples of the genus Cynometra, six samples were identified as being of an-
other species within the same genus. Considering the Entandrophragma genus,
six erroneously identified samples were within the same genus. Of the four
misidentifications of Afzelia bella, three were inside the same genus and from
the three misidentifications of Afzelia bipindensis, all were in the same family
and two were in the same genus.

Following this perspective, when examining the family level, the Fabaceae-
Caesalpiniaceae family shows 62 misidentifications of samples at the species
level, however, 19 of these are inside the own Fabaceae-Caesalpiniaceae family.
In the Ulmaceae family, of the 12 misidentifications of samples at the species
level, six misidentifications are inside the same family. The Meliaceae family
shows 31 misidentifications of samples at the species level, with 17 misidenti-
fications inside the Meliaceae family itself.

Exploring the Meliaceae family, out of the 10 species analyzed, three of
them achieved an accuracy of one hundred percent: Ekebergia capensis, Lep-
laea thompsonii and Lovoa trichilioides. The average accuracy, considering the
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10 analyzed species of the Meliaceae family, was 95% (species level). Within the
Entandrophragma and Khaya genus, we can see several misidentifications. En-
tandrophragma angolense, Entandrophragma candollei and Entandrophragma
utile are missclassified several times as Khaya. Two out of four misclassified
samples from Khaya anthotheca were misclassified as Entandrophragma. Three
out of six misclassified samples of Leplaea cedrata are misclassified as Entan-
drophragma utile and two out of four samples of Entandrophragma utile are
misclassified as Khaya anthotheca.

Deklerck et al. [8] used metabolome profiles collected using Direct Analysis
in Real Time (DARTTM ) ionization coupled with Time-of-Flight Mass Spec-
trometry (DART-TOFMS) to analyze 95 specimens. A random forest model
was used to perform the identification achieving an accuracy of 82.2%. They
show that Entandrophragma cylindricum and Entandrophragma utile have dif-
ferent chemical fingerprints and they can separate the species using DART-
TOFMS. In their work, Khaya anthotheca was sometimes misidentified as En-
tandrophragma candollei or Entandrophragma angolense, however was easily
distinguished otherwise. In addition, the DART-TOFMS analysis was not able
to accurately differentiate Entandrophragma candollei and Entandrophragma
angolense.

In the work of Muellner et al. [25], six species of the Meliaceae family
were identified using DNA barcoding reaching an accuracy of 67%. In Ravin-
dran et al. [20], 10 species of the Meliaceae family were identified based on
deep convolutional neural networks, achieving an accuracy of 87% at species
the level and an accuracy of 96% at the genus level. Kitin et al. [26] used
DART-TOFMS to study two species of Afzelia, Afzelia pachyloba and Afzelia
bipindensis. Although the two species are not easily separated using the IAWA
standard microscopic wood features, the results using DART-FORMS reached
an accuracy of 78%.

Although there are different identification methods with acceptable accu-
racies, so far there is no method that is fully effective for identifying all wood
species. Thus, one alternative is to use a combination of different methods,
such as DART-FORMS, texture analysis and machine learning.

4 Conclusions

The images obtained to perform the experiments were extracted from wood
samples collected at different time periods, which may have caused changes in
texture features obtained from images of the same species. Weather conditions
may affect the features of functional wood anatomy, such as vessel frequency
and the development of the water transport pathways, making the pattern
recognition task more complex.

The difficulty of obtaining wood samples is an important issue. In this way,
being able to use different cross-sections from the same sample enriches the
representativeness of each sample, improving the accuracy of the classification.
However, just concatenating the features of the cross-sections is not enough,



14 Núbia Rosa da Silva∗ et al.

as shown in the experiments. The need arises to create a model that is able
to contemplate the features extracted from the different cross-sections. This
way, this paper presented a random forest model that uses the out of bag
probabilities provided by three types of texture images, being obtained from
transversal, tangential and radial cross-section imagery. This approach showed
better results than using a random forest model alone, even if the three sections
are used in a concatenated way. The experiments showed that the results
improved substantially when using the proposed model.

5 Method

5.1 Compilation of a multi-view image dataset

Datasets that contain imagery of the three anatomical sections of wood sam-
ples are not readily available. To fill this gap, we introduce a new image dataset
containing images of the three anatomical planes of 77 Congolese species. Note
that this dataset is an extension of the dataset used in [19].

The wood samples were collected in the Democratic Republic of the Congo.
The wood anatomical slices were prepared by the Service of Wood Biology at
the Royal Museum for Central Africa (Tervuren, Belgium). The cross-sections
were cut with a sliding microtome, dehydrated in a graded ethanol series (50%,
75%, 96% and 100%) and fixed with Euparal. A light microscope (Olympus
BX60) in connection with a digital camera (Olympus UC30) and the image
analysis software package CellB (version 3.2, Olympus) were used for image
acquisition. A standard magnification of 2.5× the size of the sample was chosen
for all pictures. All acquired images are RGB images of 1000×1000 pixels. In
total, 805 wood slices belonging to 77 species, 58 genera and 25 families were
used in this study (see Tables 5 and 6 in Supplementary Materials). Only slices
with uniform texture, free of cracks and free of staining agents were chosen.

One wood slice generates three images, i.e., one image for each distinct
cross sectional surface of the tree trunk: transversal, tangential and radial, as
shown in Figure 5. The transversal anatomical section runs at right angles
to the main axis of the stem or the trunk. The tangential cross-section cuts
across the rays of a block of wood or a stem, while the radial cross-section
runs parallel to the rays. All together, 805× 3 = 2415 images were obtained.
Figure 6 shows samples from the three sections from five species of the genus
Afzelia.

5.2 Data augmentation

On average only 10 images were available (for each species), which is too few
for machine vision applications. Therefore, data augmentation was used to
increase the number of samples per species. A first data augmentation step
consisted of partitioning the original images (original size 1000×1000 pixels,
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Fig. 5: Image acquisition of wood transversal, tangential and radial cross-
sections of Afzelia pachyloba.

see Figure 7 (a)). Two options were explored: (1) dividing the original images
in half (Figure 7 (b)), and (2) dividing the images into four parts, resulting in
images of 500×500 pixels (Figure 7 (c)). In a second step, augmentation was
performed by filtering using a 2-D Gaussian smoothing kernel with a standard
deviation of 1, the creation of rotated versions by rotating the original images
90 degrees and the addition of salt-and-pepper noise with a density of 0.05
(Figure 7 (d)). All of these actions were performed on the three cross-sections.
To be able to investigate the influence of this data augmentation step, we
keep track of three datasets with images of different sizes: 1000×1000 pixels
(original), 500×1000 pixels (partitioned by dividing in half), 500×500 pixels
(partitioned by dividing into four parts) and 500×500−OGRN (partitioned
into four parts, being the first piece, original – O, the second, smoothed – G,
the third, rotated – R and the last one, noisy – N). The effect of the data
augmentation step on the feature representation of the images (for the species
Afzelia africana) is shown in Figure 9 in Supplementary Materials.



16 Núbia Rosa da Silva∗ et al.

Fig. 6: Samples of the wood image dataset showing in each column: transversal,
tangential and radial cross-sections. Each row shows a single species with the
three planes, being, from top to bottom: Afzelia africana, Afzelia bella, Afzelia
bipindensis, Afzelia cuanzensis and Afzelia pachyloba.
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(a) Original (b) 500×1000

1 2
3 4

(c) 500×500

1 2
3 4

(d) 500×500-OGRN

Fig. 7: Data augmentation procedure. Images from a sample of Afzelia
africana. (a) Original image. Original image divided in two parts (b) and four
parts (c). (d) Original image divided in four parts applying a 2-D Gaussian
smoothing kernel with standard deviation of 1 at the second piece, rotating
the third piece 90 degrees and adding salt-and-pepper noise with a density of
0.05 to the fourth piece.
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5.3 Image preprocessing and feature extraction

To prepare the image data for further analysis, the color images were trans-
formed into grayscale images and digitally enhanced using histogram stretch-
ing (1% saturation tolerance). Subsequently, features were extracted from the
preprocessed images. In this paper, Local Phase Quantization (LPQ) [27,28]
is used as texture feature descriptor, as in most studies involving wood species
identification [18,17,19,21]. In total, 256 LPQ features were used.

5.4 Image classification for species identification

5.4.1 Single-view classification

Most work on the development of machine learning models for the classification
of wood samples based on microscopic imagery relies on a single transversal
image of the sample. For that reason, we use this approach as a baseline. More
precisely, the random forest algorithm [29] was used to construct a classifier
that takes the LPQ features of a transversal image as input and makes a
prediction at species level. The forest it builds, is an ensemble of decision trees,
in our case 500 trees. The number of features (randomly) selected at each split
was set to 15. Two additional random forest classifiers were constructed, a
first classifier that takes the LPQ features of the radial image as input and a
second classifier that takes the features of the tangential image as input. All
classifiers were trained independently and evaluated using a cross-validation
scheme (see Section 2).

5.4.2 A multi-view random forest model (MVRF)

The images of the transversal, tangential and radial cross-sections of a wood
sample can be interpreted as multiple views of an object. Several options ex-
ist that allow to incorporate multi-view in a machine learning model. A first
(simple) approach that we explore consists of concatenating the LPQ feature
vectors of the three images. In this case the new feature space is the Carte-
sian product of the three original feature spaces. This approach has at least
three potential downsides: (1) the size of the feature space is tripled in a set-
ting that is already data-scarce; (2) the concatenation is agnostic to the fact
that the features originate from different images and (3) the concatenation is
agnostic to the classification problem at hand. To overcome these problems,
we propose a model architecture that extends the basic random forest model
and allows to combine the multiple views and is inspired on the stacking of
classifiers (see Figure 8 for a visualization of the architecture). In a first step
a separate random forest model is trained for each of the three views using a
training dataset. For each image in the training dataset, the 500 trees in each
random forest then each cast a vote for one of the q = 77 classes (the species).
Per image, the relative frequencies of these votes are subsequently combined
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into a vector (which is a proxy for the predicted class probabilities). The vec-
tors of the three views that are obtained in this way are then concatenated
to form a meta-feature vector. These meta-feature vectors form the inputs of
a meta-training dataset (the outputs are the species labels). Subsequently, a
multinomial logistic regression model is trained on this meta-dataset to pre-
dict the final species label. We conclude this paragraph with a subtle, but
important, implementation detail. To obtain the meta-training dataset during
training, only out-of-bag votes are used to compute the meta-vector of rel-
ative frequencies. Recall that due to the use of bootstrapping, each training
observation is used (on average) in only two out of three trees in a forest. As
only these trees are allowed to cast a vote, the meta-feature vector will not be
prone to overfitting. For allowing this stacking approach to work in practice,
the meta-feature vector must be representative for the meta-feature vector of
the test instances [30].
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Fig. 8: Visualization of the architecture of the multi-view random forest clas-
sifier, where n represents the number of training observations.

5.4.3 Leave-k-trees-out cross-validation

Traditionally, the performance of a classifier is assessed using a separate train-
ing set or k-fold cross-validation. The split between test and training set (or
the definition of the folds in case of k-fold cross-validation) is made using
a (stratified) random sampling scheme, with the aim of constructing a test
set that is independent from the training set. However, when working with
microscopic imagery of wood samples, and especially those originating from
historical collections, a single block of wood is often used to make several
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prepared microscopic slides. As a result, the images originate from the same
piece of wood and might show less biological variability as compared to images
from different pieces of wood. Moreover, they are often made in sequence and
therefore under more similar conditions as compared to slides that are pre-
pared during a period spread out in time, possibly by several lab technicians,
and so on. As a result, the image-to-image variability within one piece of wood
can be assumed to be smaller than the inter-tree variability. As such, when
using a stratified cross-validation scheme with stratification at the species level
(or stratified train-test split), images of the same piece of wood can end up
in both training and test sets. In this way, these sets cannot be considered
independent and performance estimates can be too optimistic. As an alter-
native, we propose a cross-validation scheme which we call ‘leave-k-trees-out
scheme’, in which all images that originate from the same tree are either in
the training or the test set. In our results section, we compare a traditional
cross-validation scheme (in particular the out-of-bag performance estimator of
the random forest classifier, which is almost identical to leave-one-image-out
cross-validation [31,32]) and the leave-k-trees-out scheme.

5.4.4 Including genus and family information in the classification process

In the methods described previously, the accuracy on a test set is used to eval-
uate the performance of a model. By definition, each misclassified instance
has the same influence on the final accuracy. In our (multi-class) species iden-
tification problem, it can be argued that this is too simplistic. For example,
consider a test instance with true label y and predicted label y′. The case
where y ̸= y′ but both labels belong to the same genus may be not such an
issue for some applications than the case where y and y′ belong to different
genera. Additionally, the cost associated with a misclassification may increase
further when y and y′ belong to different families. To generalize this example,
we define cost functions for which the cost is determined by the genus or family
distance between y and y′. We formally define this cost function as follows:

C(y, y′) =















0 , if y = y′ ,

1 , if y ̸= y′ and genus(y) = genus(y′) ,
1.25 , if genus(y) ̸= genus(y′) and family(y) = family(y′) ,
1.5 , otherwise,

(1)

where genus(y) and family(y) refer to the genus and the family of y, respec-
tively.

The random forest classifiers, described earlier, are originally designed to
optimize accuracy. However, several methods have been described in literature
that allow to learn cost-sensitive classifiers [33–35]. Moreover, as the cost func-
tion that we use is derived from a tree-like hierarchy on the labels, existing hi-
erarchical classification methods [36] can be used to solve our problem as well.
The methods that have been proposed in literature range from simple exten-
sions of traditional learning algorithms, for example relying on over-sampling
or threshold moving [37], to more complex dedicated hierarchical classification
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algorithms [38]. In this paper, we use an approach that is called a threshold
moving algorithm by [37], and essentially is a post-processing of the predicted
probability mass function over the classes, to obtain the prediction that min-
imizes the posterior predictive loss in a Bayesian framework [39].

As a starting point, we refer to p(y | x) as the posterior probability that
the label, i.e. the species name, of a test instance with a feature vector x is
equal to y. We now select the label y∗ that minimizes the expected value of C
under the posterior probability mass functions p(y | x):

y∗ = arg min
y′∈Y

∑

y∈Y

C(y, y′) p(y | x) , (2)

where Y is the label set. During the test phase, p(y | x) is not known but is
replaced with its estimator, obtained using the random forest classifier. This
approach does not require any modification of the random forest learner, as
it only relies on a post-processing of the estimated probabilities from a fitted
random forest model. When using the random forest classifier in the traditional
way, the class with the highest estimated probability is the predicted label.
Note that this estimator can still be obtained using the latter strategy by
modifying C such that C(y, y′) = 1 for any y ̸= y′.
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22 Núbia Rosa da Silva∗ et al.

6.5 Funding

São Paulo Research Foundation (FAPESP), with grant Nos.: 2011/01523-1,
2011/21467-9 and 2014/06208-5, National Council for Scientific and Techno-
logical Development (CNPq) with grant Nos.: 308449/2010-0, 484312/2013-8
and 312718/2018-7, World Forest ID project (DEFRA funded project 29084),
Belspo Brain 2.0, grant No B2/202/P2/SmartwoodID, Center for International
Forestry Research (CIFOR) and XI European Development Fund.

6.6 Authors’ contributions

NRDS contributed to the design and experiments of the work, the interpre-
tation of data and drafted the work; VD analyzed and interpreted the data
and results, contributed in writing the manuscript and revised it; JMB sub-
stantively contributed to the conception of the work and revised it; JVdB
substantively contributed to the conception of the work and revised it; MDR
and MR performed the acquisition of data; OMB substantively contributed
to the conception of the work and revised it; HB contributed to the acquisi-
tion of data, analyzed and interpreted the results and revised the manuscript;
JVA substantively contributed to the conception of the work and revised it;
BDB substantively contributed to the conception of the work, analysis and
substantively revised the manuscript; JV contributed to the conception and
design of the work, the interpretation of results, contributed in writing the
manuscript and substantively revised it. All authors read and approved the
final manuscript.

6.7 Corresponding author
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7 Supplementary Materials

7.1 Species, genera and families

Tables 5 and 6 show the species, genera and families of the wood samples used
in the experiments.
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7.2 2D PCA-plot

Figure 9 shows the 2D PCA-plot of the class Afzelia africana. As can be ob-
served, the characteristics of each image continue to be representative and
distinct even though the number of samples increases. When the images are
divided in two or four parts, the characteristics remain concentrated in the
same region. However, when applying the smoothing, noise and rotation op-
erations, the samples tend to spread out, making it difficult to identify them.
However, it is important to carry out these operations on the data because
they can represent real situations, since the wood samples can be obtained at
different times or in adverse situations, and different regions.
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Fig. 9: 2D PCA-plot of the class Afzelia africana for the original dataset, the
dataset of original images divided in two parts, the dataset of original images
divided in four parts and the dataset of original image divided in four parts
with noise and rotation.
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7.3 Variability of training and testing samples

Figure 10 shows samples of Lophira alata species to emphasize the variability
between samples from different wood samples.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 10: Samples of Lophira alata species. The first and second columns show
samples of the training set and the third and fourth columns show samples of
the test set for this species. (a)–(d) are transversal, (e)–(h) are tangential and
(i)–(l) are radial cross-sections.
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Table 5: Species, genera and families.

Species Genus Family

Afzelia africana Afzelia Fabaceae-Caesalpiniaceae
Afzelia bella Afzelia Fabaceae-Caesalpiniaceae
Afzelia bipindensis Afzelia Fabaceae-Caesalpiniaceae
Afzelia cuanzensis Afzelia Fabaceae-Caesalpiniaceae
Afzelia pachyloba Afzelia Fabaceae-Caesalpiniaceae
Albizia adianthifolia Albizia Fabaceae-Mimosaceae
Albizia antunesiana Albizia Fabaceae-Mimosaceae
Albizia ferruginea Albizia Fabaceae-Mimosaceae
Alstonia boonei Alstonia Apocynaceae
Amphimas ferrugineus Amphimas Fabaceae-Caesalpiniaceae
Amphimas pterocarpoides Amphimas Fabaceae-Caesalpiniaceae
Anthonotha macrophylla Anthonotha Fabaceae-Caesalpiniaceae
Antiaris toxicaria Antiaris Fabaceae-Caesalpiniaceae
Antrocaryon nannanii Antrocaryon Anacardiaceae
Autranella congolensis Autranella Sapotaceae
Beilschmiedia congolana Beilschmiedia Lauraceae
Brachystegia laurentii Brachystegia Fabaceae-Caesalpiniaceae
Canarium schweinfurthii Canarium Burseraceae
Ceiba pentandra Ceiba Bombacaceae
Celtis gomphophylla Celtis Ulmaceae
Chrysophyllum africanum Chrysophyllum Sapotaceae
Chrysophyllum lacourtianum Chrysophyllum Sapotaceae
Copaifera mildbraedii Copaifera Fabaceae-Caesalpiniaceae
Cordia platythyrsa Cordia Boraginaceae
Cynometra alexandri Cynometra Fabaceae-Caesalpiniaceae
Cynometra hankei Cynometra Fabaceae-Caesalpiniaceae
Diospyros crassiflora Diospyros Ebenaceae
Drypetes gossweileri Drypetes Euphorbiaceae
Ekebergia capensis Ekebergia Meliaceae
Entandrophragma angolense Entandrophragma Meliaceae
Entandrophragma candollei Entandrophragma Meliaceae
Entandrophragma cylindricum Entandrophragma Meliaceae
Entandrophragma utile Entandrophragma Meliaceae
Erythrophleum suaveolens Erythrophleum Fabaceae-Caesalpiniaceae
Ficus mucuso Ficus Moraceae
Funtumia africana Funtumia Apocynaceae
Gilbertiodendron dewevrei Gilbertiodendron Fabaceae-Caesalpiniaceae
Guibourtia arnoldiana Guibourtia Fabaceae-Caesalpiniaceae
Guibourtia demeusei Guibourtia Fabaceae-Caesalpiniaceae
Hallea stipulosa Hallea Rubiaceae
Holoptelea grandis Holoptelea Ulmaceae
Irvingia grandifolia Irvingia Irvingiaceae
Khaya anthotheca Khaya Meliaceae
Klainedoxa gabonensis Klainedoxa Irvingiaceae
Leplaea cedrata Leplaea Meliaceae
Leplaea laurentii Leplaea Meliaceae
Leplaea thompsonii Leplaea Meliaceae
Lophira alata Lophira Ochnaceae
Lovoa trichilioides Lovoa Meliaceae
Mammea africana Mammea Clusiaceae
Milicia excelsa Milicia Moraceae
Millettia laurentii Millettia Fabaceae-Papilionaceae
Morus mesozygia Morus Moraceae
Musanga cecropioides Musanga Moraceae
Nauclea diderrichii Nauclea Rubiaceae
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Table 6: Species, genera and families. (continued)

Species Genus Family

Nesogordonia dewevrei Nesogordonia Sterculiaceae
Nesogordonia kabingaensis Nesogordonia Sterculiaceae
Newtonia leucocarpa Newtonia Fabaceae-Mimosaceae
Ongokea gore Ongokea Olacaceae
Pentaclethra eetveldeana Pentaclethra Fabaceae-Mimosaceae
Pentaclethra macrophylla Pentaclethra Fabaceae-Mimosaceae
Pericopsis elata Pericopsis Fabaceae-Papilionaceae
Petersianthus macrocarpus Petersianthus Lecythidaceae
Piptadeniastrum africanum Piptadeniastrum Fabaceae-Mimosaceae
Pouteria aningeri Pouteria Sapotaceae
Prioria balsamifera Prioria Fabaceae-Caesalpiniaceae
Prioria oxyphylla Prioria Fabaceae-Caesalpiniaceae
Pterocarpus soyauxii Pterocarpus Fabaceae-Papilionaceae
Pterocarpus tinctorius Pterocarpus Fabaceae-Papilionaceae
Pycnanthus angolensis Pycnanthus Myristicaceae
Scorodophleus zenkeri Scorodophloeus Fabaceae-Caesalpiniaceae
Staudtia kamerunensis Staudtia Myristicaceae
Terminalia superba Terminalia Combretaceae
Tessmannia africana Tessmania Fabaceae-Caesalpiniaceae
Tieghemella heckelii Tieghemella Sapotaceae
Triplochiton scleroxylon Triplochiton Sterculiaceae
Zanthoxylum gilletii Zanthoxylum Rutaceae
Zanthoxylum lemairei Zanthoxylum Rutaceae


