
Page 1/23

Homopeptide and Homocodon Levels are Coupled
to GC/AT Bias Levels, Intrinsic Disorder Propensity
and other Factors Across Diverse Fungi
Yue Wang 

McGill University
Paul Harrison  (  paul.harrison@mcgill.ca )

McGill University

Research Article

Keywords: Homopeptides , proteome evolution , DNA , homopeptide frequencies

Posted Date: December 9th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-118390/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-118390/v1
mailto:paul.harrison@mcgill.ca
https://doi.org/10.21203/rs.3.rs-118390/v1
https://creativecommons.org/licenses/by/4.0/


Page 2/23

Abstract
Homopeptides (consecutive runs of one amino-acid type) are suggested to play important roles in
proteome evolution, since they are prone to expand/contract during DNA replication, recombination and
repair. It is currently not clear how homopeptide frequencies vary as organisms evolve, and which
genomic/proteomic traits drive variation. Thus, to gain insight, we analyzed how homopeptides and
homocodons (which are pure codon repeats) vary across 405 Dikarya, and probed how this variation is
linked to GC/AT bias amongst other factors. We observe that amino-acid homopeptide frequencies vary
diversely between clades (even close relatives), with the AT-rich Saccharomycotina trending distinctly. As
organisms evolve, homocodon and homopeptide numbers are majorly coupled to GC/AT-bias, with
medium GC/AT genomes having markedly fewer. Despite this, homopeptides tend to be more GC-rich
than other proteome areas, even in AT-rich organisms, indicating they absorb AT bias less or are
inherently more GC-rich. Furthermore, the purity of homopeptides (i.e., the degree one codon type
predominates in them) varies least for amino acids with GC/AT-balanced codon repertoires, with most
variation for arginine since it has only one AT-rich codon (out of six). The most frequent and most
variable homopeptide amino acids have greater intrinsic disorder propensity, and annotated intrinsic
disorder fractions are strongly correlated with homopeptide levels (unlike structured domain fractions,
which are anti-correlated). Poly-glutamine uniquely behaves as an evolutionarily very variable
homopeptide with a codon repertoire unbiased for GC/AT. In summary, homopeptide/homocodon levels
are coupled to or in�uenced by several factors, including GC/AT bias and amino-acid intrinsic disorder
propensity. 

Introduction
Homopeptides and homocodons (which are perfect codon repeats) are well known for their roles in
inherited human diseases, such as poly-CAG/poly-Gln in Huntington’s disease, and poly-Ala linked to
congenital developmental disorders [1]. The pathogenic mechanisms of these diseases are various. While
many diseases might be essentially caused by the aggregation propensity of certain types of
homopeptides [2,3], the soluble forms of proteins with longer mutant repeats could also be problematic by
competing with functional homopeptides in normal proteins for molecular interactions [4]. Homopeptides
and homocodons not exceeding certain length thresholds are prevalent and can be bene�cial for
eukaryotes [5]. About 15% of proteins in any eukaryotic proteome contain at least one stretch of ≥5
identical residues [6]. These homopeptide-containing proteins function diversely, especially in DNA/RNA
binding, signaling and regulation [7-9]. Homopeptides levels generally exceed those of other amino-acid
repeat types [10].

Nevertheless, the functions of widely prevalent homopeptides or homocodons are still largely unclear, and
most of them might not have essential roles but rather create diversities quickly in genomes which can be
selected on during evolution [11]. Homopeptide length polymorphisms are frequently found in different
individuals of a species, and even between different cell types or at different ages of an individual [12,13].
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Although phenotypic evolution is mostly modulated by cis-regulatory elements, homopeptide length
polymorphisms are also found linked to signi�cant morphological differences, e.g., in dogs [14]. Opposed
to the binary effect of single nucleotide polymorphisms, homopeptides length variations are proposed as
a “digital modulator” or “tuning knob” that acts through expansion and contraction between generations,
leading to greater phenotypic variability in a population [11]. Besides the high mutation rate of
homopeptides themselves, DNA substitution rate is also strongly correlated with the distance to
homopeptides and insertion/deletion mutations are frequently associated with homopeptides in their
�anks [15,16]. Thus, homopeptides may drive rapid divergence of proteins that contain them, through
creating more polymorphism.

Early studies found that eukaryotes have unique homopeptide distributions, i.e., their proteomes
prefer/tolerate homopeptides at different lengths for different amino acids [17]. For example, poly-Ser, -Ala,
-Glu, and -Gly ≥10 residues long are preferred in the Drosophila melanogaster proteome, while poly-Asn
and -Asp at all lengths and poly-Ser ≥20 residues are preferred in Saccharomyces cerevisiae, which is
less tolerant of poly-Gly, -Arg, -Pro [17]. It was suggested that amino-acid preferences in low-complexity
regions or homopeptides are largely driven by genome AT/GC bias, and are under selection pressures
[16,18].  Also, homopeptides are prone to accumulate in intrinsically disordered regions (IDRs) [10,19,20].

Previously, it was observed that a large-scale emergence of prion-like regions during Saccharomycetes
yeast evolution was caused by mutational trends that produced more poly-asparagine tracts [21].
Motivated by these �ndings, we hypothesized that the factors driving the evolution of homopeptides and
homocodons in general would also be discernible through analysis of their trends across a large diverse
fungal clade, i.e., the subkingdom Dikarya. We discovered that, over hundreds of millions of years of
fungal evolution, homopeptide and homocodon accumulation is coupled to or modulated by GC/AT bias,
intrinsic disorder propensity and other factors, such as the inherent design of the genetic code.

 

Results And Discussion
The evolutionary behaviour of homopeptides and homocodons (perfect codon repeats) is surveyed
across the fungal Dikarya sub-kingdom. In this survey, we had the following objectives:

 (i) To derive an overview of the variation in homopeptide frequencies, identifying any anomalous
behaviour in speci�c clades;

(ii) To examine how homopeptide frequencies are in�uenced by or coupled to genomic AT/GC bias, which
is the most basic compositional parameter typically studied in such analyses;

(iii) To examine how codon preferences in homocodons and homopeptides are affected by such AT/GC
bias, in doing so deriving a measure of homopeptide purity (i.e., the predominance of one speci�c codon
in homopeptides);
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(iv) To examine how proteomic homopeptide frequencies are in�uenced by intrinsic disorder and
structured domain content in proteins.

Homopeptide levels vary extensively across diverse fungi
The distribution of homopeptide frequencies (1.64–4.78%) in the 405 proteomes of Dikarya shows a
heavy-tailed right-skewed distribution. Nearly 70% of the distribution is in the small range 1.84–2.44%.
Only a few proteomes have homopeptide frequencies below this range, the rest varying from 2.44 % to
4.78% (Figure 1). This shows that while most proteomes have similar homopeptide fractions, there is a
bias towards homopeptide accumulation for values away from this peak.

We examined the trends in homopeptide frequencies across 405 Dikarya, and also examined other
various attributes, including GC content (Figure 2 and Suppl. Figure S1). Heat maps of the most abundant
homopeptides and homocodons (i.e., perfect codon repeats) were derived (Suppl. Figure S1). Subphyla
(and classes within the large subphylum Pezizomycotina) are analyzed in Figure 2, with details of
species names and prevalent amino-acid / codon types in Suppl. Figure S1. The lowest homopeptide
fractions are for Saccharomycotina and Taphrinomycotina, which are also low-GC and have the lowest
fractions of annotated IDRs (Figure 2). Obvious variations of homopeptide fractions tend to appear
between different clades, but homopeptides can also accumulate in individual species within a short
evolutionary time (Suppl. Figure S1). To show which homopeptides and homocodons predominate, they
are ranked in decreasing order of overall frequency (i.e., total fraction of amino acids or codons of that
type) in each proteome. Homopeptide and homocodon length distributions are characterised using
slopes from log-log plots as described in Materials and Methods. For these length distributions, darker
colours in heat map cells indicate more, long homopeptides or homocodons of a speci�c type. One can
see that generally there are more lighter cells for bands c and d (shorter homopeptides and homocodons)
where the overall homopeptide fraction is lower (darker in band a) (Suppl. Figure S1). Indeed, when we
examine the relationship between the log(length) distribution slopes and corresponding homopeptide
frequencies for each amino acid, we see that most exhibit correlations, some highly signi�cantly, most
notably glycine (Suppl. Figure S2). Thus, most amino acids tend to longer homopeptides when more
homopeptides are in a proteome.

The frequency ranking of homopeptides of different types of amino acids can also change within smaller
clades and genera (Suppl. Figure S1). Such changes even appear between different strains of the same
species. For example, among the six strains of budding yeast Saccharomyces cerevisiae, most of the top
ten homopeptides shift frequency ranking compared to the other strains. The lengths of homopeptides of
aliphatic hydrophobic residues, i.e., poly-Leu, poly-Ile, poly-Val, are generally short in all Dikarya species
(lighter cells in Suppl. Figure S1 heat maps), which may be due to the selection against protein
aggregation [17], and constraints of side-chain packing in protein domain hydrophobic cores.

The amino acids that vary the most in homopeptide amount are discerned from examining the standard
deviations for their ranking for homopeptide frequencies (Table 1). The top one third of the homopeptides



Page 5/23

that change the most across Dikarya are especially highlighted in Table 1. All but one of these are from
amino acids whose codon repertoire is biased for GC or AT (Table 1). However, poly-Gln speci�cally
stands out as encoded by a codon repertoire that has no overall GC/AT-bias, but it still greatly changes in
the frequency ranks across Dikarya (Table 1). 

Saccharomycotina have distinct behaviour for homopeptide
and homocodon evolution
Previous work on limited data sets indicated that the prevalent types of homopeptides are strongly
in�uenced by GC bias [22-24]. Here, we investigated the effect of GC/AT levels on homopeptide and
homocodon evolution on a large scale across Dikarya, and for Saccharomycotina in particular.
Saccharomycotina are mostly AT-rich while species in other subphyla are mostly GC-rich, which causes
homopeptide composition in Saccharomycotina to be distinct (Suppl. Figure S1, band c). The four
homopeptide types which drop most in the frequency ranks in Saccharomycotina are all for GC-rich
amino acids (Table 1), while the two types that rise the most in rank are poly-Asn and poly-Lys, which
have AT-rich codons (Suppl. Figure S1; Table 1). This result concurs with the discovery in an analysis of
prion-like proteins in Saccharomycotina that GC% in�uences the abundance of compositionally-biased
protein regions encoded by GC- or AT-rich codons [21].

Given that homopeptides behave differently in the AT-rich Saccharomycotina relative to other subphyla,
we investigated more closely how homopeptide and GC/AT trends are related.

Homopeptides tend to be GC-rich even for AT-rich genomes
It is obviously expected that the AT/GC level in coding regions outside of homopeptides/homocodons
and within them are positively correlated to each other (Figure 3a-b). To examine how different the AT/GC
levels within and outside homopeptides/homocodons are, we examined how the linear regressions
deviate from the y=x line for both homopeptides and homocodons. GC level tends to be higher within
homocodons in both AT- and GC-rich organisms, but for a large fraction of AT-rich species, homocodons
are more AT-rich than other proteome areas (Figure 3a). For homopeptides, however, there is an
underlying GC bias relative to outside of homopeptides even in AT-rich organisms (i.e., mainly the
Saccharomycotina) (Figure 3b). This is also evident in Table 1, where only one of the top ten overall most
frequent amino acids in homopeptides has an AT-biased codon repertoire, but �ve of them have a GC-
biased codon repertoire. This may be because GC level is easier to increase in
homocodons/homopeptides than AT level. Disease-causing homocodons such as CAG/GTC and
CGG/GCC, which are mostly GC-rich, are found to be particularly prone to expand in models and in
experiments, with a higher inherent slippage rate which is determined by propensity to form stable
mismatched secondary structures [25-27]. The two repeats (CAG and CGG) are able to encode seven
frequent homopeptide amino acids including Gln, Ser, Ala, etc., since the reading frame should not affect
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the inherent slippage rate. Also, GC-rich low-complexity regions (including homopeptides) are
recombination hotspots which may lead to increased homopeptide content [28].

Given these trends, we investigated the relationship between homocodon/homopeptide levels and GC- or
AT-bias across Dikarya.

Homocodon accumulation is strongly in�uenced by or
coupled to GC/AT bias
We probed the relationship between homopeptide and homocodon levels and GC/AT bias, across
proteomes (Figure 3c-f). Interestingly, the correlation between homocodon fraction and AT/GC content
splits into two directions from around 50% AT/GC (Figure 3c-d). This indicates that homocodon
abundance is positively correlated with the extremeness of AT/GC bias. Also, homocodon levels are lower
for proteomes that tend to medium GC/AT. Such a correlation is less strong for homopeptides but still
signi�cant (Figure 3e-f). We would expect there to be no major bars on homocodon formation simply
because a genome has medium GC/AT levels. Thus, general selection pressures or mutational biases
governing GC/AT bias are majorly coupled to homocodon formation and also strongly in�uence the
appearance of homopeptides.

The factors leading to the variation of genomic GC level during evolution are complicated, including both
mutational bias and natural selection [29]. When the global GC content switches due to events such as
horizontal gene transfer and biased gene conversion, the concentrations of tRNA with different
anticodons could quickly readjust to �t the new GC level, which would further drive the shift in codon
usage bias gradually from current abundant codons to new optimal codons [30-32]. The decrease of
concentrations of the previously optimal tRNAs could induce selective pressure or point mutations in
previous optimal homocodons, since homocodons demanding previous tRNAs would slow down
translation [33]. Also, the increase of the new optimal tRNA could in�uence expansion of corresponding
homocodons. On the other hand, homopeptide expansion is an e�cient way to increase local GC bias,
and point mutation rates are also higher in homopeptides, since they are generally located in regions
under less constraint, which both lead to faster GC level change, to be further selected on by the changed
tRNA concentrations [33]. AT/GC-biased regions also naturally accumulate homocodons more easily due
to a higher possibility of the same codons co-occurring within a biased region.

The results here imply that general selection pressures or mutational biases governing GC or AT bias
in�uence levels of homocodon and homopeptide formation. The opposite causation, i.e., that
homocodon levels are driving GC/AT bias, is not likely since homocodons are such a small percentage of
the proteome, although there may be a degree of feedback as newly formed homocodons accumulate
mutations. Despite this link, homopeptides tend to be more GC-rich than other areas of proteomes, even
in AT-rich organisms, indicating that they absorb AT bias trends less than other areas of the proteome, or
have an inherent tendency to higher GC content, as discussed above.
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Homocodon codon preferences are correlated with AT/GC
bias for many codons, but there are exceptions
It is known that the genomic GC level signi�cantly affects codon usage bias [34-36], and this is also
evident here in the varying rankings of homocodon frequencies across Dikarya (Suppl. Figure S1). To
probe this phenomenon, we analyzed the variation in codon preference for the �ve most common amino
acids that are encoded by two alternative codons (E, GAA/GAG; D, GAT/GAC; K, AAG/AAA; N, AAC/AAT; Q,
CAG/CAA). Not surprisingly, given the overall trends linked to AT/GC bias discussed above, the codon
types in homocodons also change according to the GC/AT-level in coding regions. The predominant
codon encoding poly-Glu in the clades of GC-rich species is GAG, but it switches to GAA in the AT-rich
Saccharomycotina (Suppl. Figure S3). Likewise, the predominant codon encoding poly-Asp switches from
GAC to GAT in Saccharomycotina (Suppl. Figure S3). Such switching has also been observed for
Drosophila species [37].

We further investigated the log-log plot slopes that indicate the length distributions of homocodons for
three different residue types that are encoded by two alternative codons, namely K, N and Q (Figure 4).
Less negative values indicate longer homocodons, and the overall density of the distributions in the
different subphyla shows the prevalence of either alternative codon. Exceptionally, the predominant
codon type for poly-Lys is always AAG, while its synonymous codon AAA only shows up a few times in
the top 20 frequency ranks even in AT-rich species (Figure 4a; Suppl. Figure S1). This might be due to
selection on poly-Lys at the protein level, and the inherent slippage di�culty of poly-AAA(K) during DNA
replication. On the other hand, for some amino acids both synonymous homocodons are highly frequent.
Poly-CAG(Q) and poly-CAA(Q) are both prevalent in Pezizomycotina (a GC-rich subphylum) and
Saccharomycotina (AT-rich) (Figure 4c). Poly-AAC(N) and poly-AAT(N) are both prevalent in
Saccharomycotina (Figure 4b; Suppl. Figure S1). The most striking distribution is of poly-AAG(K), which is
bimodal in Pezizomycotina (Figure 4a). This indicates that many species in Pezizomycotina have poly-
AAG(K) longer than the ordinary length of poly-AAG(K) in other clades. Thus, some homocodons have
codon preferences that appear not to follow the overall trends relating to GC/AT content.

Purity of homopeptides is modulated by GC/AT bias
Next, we set out to examine the bias of homopeptides for speci�c codons. To do this, we calculated
homopeptide purity. This is de�ned as the proportion of the most dominant codons in homopeptides,
which is in�uenced by the relative importance of synonymous point mutations versus the
expansions/contractions of homocodons (see Materials and Methods). We calculated the purity of
homopeptides for each amino-acid type (Table 1 and Table S1). The homopeptide purity of individual
amino acids varies from clade to clade (Table S1). As explained in Materials and Methods, homopeptide
purities will inherently be higher for amino acids with smaller codon repertoires, so we focussed on the
standard deviations of purity for analysis. However, poly-Arg in AT-rich species has only 1 of 6 Arg codons
is AT-biased, thus although poly-Arg can be encoded by codons with 6-fold degeneracy, they can be
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relatively pure in AT-rich species, most notably in Saccharomycotina (highlighted red in Table S1; the
arginine purity value for Saccharomycotina is an outlier). Because of this arginine-speci�c behaviour, its
homopeptide purity varies the most across Dikarya (i.e., it has the highest standard deviation of purity,
Table 1). In contrast, amino acids that vary the least in homopeptide purity (as evident from their overall
purity standard deviations, Table 1) have AT/GC-balanced codon repertoires. Thus, homopeptide purity
variation is directly related to the GC/AT balance of the codon repertoires of each amino acid.

Intrinsic disorder is an in�uencing factor on homopeptide
frequency
Homopeptides are prone to accumulate in intrinsically disordered regions (IDRs) [20][10,19]. This
phenomenon has however yet to be examined evolutionarily on a large scale. Thus, we investigated how
homopeptide accumulation and intrinsic disorder are related across Dikarya.

A scale of intrinsic disorder propensity (Pdiso) was derived from independent data, as described in
Materials and Methods (the scale is listed in Table 1). We �nd that Pdiso is an in�uencing factor in the
frequency of amino acids in homopeptides across Dikarya, since the mean frequency rank of amino
acids in homopeptides is correlated with it (Figure 5A). Also, the standard deviation of the frequency rank
is also correlated (to less extent) with Pdiso (Figure 5B). This indicates that amino acids with higher Pdiso

vary more from proteome to proteome as homopeptides. Signi�cant correlations are not found for amino-
acid hydrophobicity values (listed in Table 1). In addition, homopeptides generally are more prevalent in
annotated IDRs than in structured domains, and exhibit a greater variance of frequencies (Figure 5C). The
much narrower variance of homopeptide fractions for structured domains indicates that they are more
constrained for homopeptide formation, as organisms evolve.

Furthermore, homopeptide fraction is signi�cantly correlated with predicted IDR fraction across Dikarya
and also within each subphylum (Figure 6a, c), but anti-correlated with the total amount of structured
protein domains in a proteome (Figure 6b). This result builds on a previous observation that IDRs evolve
along with the expansion of homopeptides [19,20]. The trends in Figure 6a-b are understandable since,
although homopeptides are also common in structured regions, length variations of homopeptides
mostly occur in IDRs, thus the abundance of homopeptides largely affects the size of IDRs but not of
structured regions [38,39]. Indeed, the general prevalence of the individual amino-acid types in
homopeptides is mirrored by their prevalences in annotated intrinsic disorder, with the exception of
hydrophobic residues, particularly leucine and valine (Suppl. Figure S4). 

Previous research found that GC-richness is linked to increased protein disorder in a proteome [40]. Here,
GC level and IDR fraction have positive correlation, but not with the high signi�cance of homopeptide
levels versus IDR fractions; also, there is greater deviation from the regression line for AT-biased genomes,
particularly Saccharomycotina (Figure 6e). Indeed, four of the ten most common amino acids that form
homopeptides in annotated intrinsic disorder have GC-biased codon repertoires (P, A, G, R), �ve have
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AT/GC-even repertoires (S, E, D, Q, T), and only one AT-rich (K) (Figure S4D-E). Although homocodon
fraction is also positively correlated with IDR fraction, this is less signi�cant with more deviation
compared with the correlation between homopeptides and IDRs (Figure 6a, d), indicating that
homocodons are less characteristic of IDRs. Previously it was shown that the expansion of ‘�exible’ IDRs
(where disorder is conserved but amino-acid sequences are quickly evolving) is largely due to homocodon
slippage, but less so for sequence-conserved IDRs [41].

IDRs here are annotated with two algorithms. IDR annotations for regions rich in some amino acids such
as asparagine might be underestimated, considering its hydrophilicity and enrichment in S. cerevisiae
prion-forming domains, which are intrinsically disordered [42,43]. If so, the correlation of IDR and
homopeptides in Figure 6a would be more signi�cant and the correlation of IDR and GC level in Figure 6e
would be less.

Conclusions
Homopeptide and homocodon accumulation is in�uenced by the extremeness of GC/AT bias in coding
regions, and by the intrinsic disorder propensity of speci�c amino acid types. Medium-GC/AT organisms
have lower levels of homocodons/homopeptides, compared to those with extremer GC/AT bias. Even so,
homopeptides inherently tend to be more GC-rich than other proteome areas. This might be due to GC-rich
low-complexity regions (including homopeptides) being recombination hotspots, and also having
increased slippage rates during DNA replication, as discussed above. Also, the most common residues in
annotated intrinsic disorder tend have GC-rich or GC-even codon repertoires. Saccharomycotina have
behaviour distinct from other fungal subphyla, since they are an AT-rich clade, while all other large clades
are GC-rich (Figure 2). Saccharomycotina may have lower annotated IDR content because of de�ciencies
in the data sets on which the algorithms for IDR annotation are trained, although on average they do have
lower fractions of homopeptides, possibly because homopeptides tend to be inherently GC-rich, as noted
above (Figure 2).

Despite the overall trends involving GC/AT bias and intrinsic disorder, some amino acids have unique
behaviours. For example, polyglutamine levels are highly variable across Dikarya, yet it is encoded by a
GC/AT-balanced codon repertoire (CAG/CAA). We suggest that this variability is linked to glutamine
preferring to exist in IDRs, which are under less structural constraints [44], combined with its codon CAG
being one of the codons most prone to DNA slippage during replication [27]. Other residue-speci�c
behaviours are revealed for: lysine (codons: AAG/AAA), whose predominant codon overwhelmingly tends
to AAG in homopeptides; and arginine (codons: AGA/AGG/CGT/CGC/CGA/CGG), which demonstrates
high homopeptide purity in the AT-rich Saccharomycotina owing to it having only one AT-rich codon.

Materials And Methods

Proteome data
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In total, 405 Dikarya reference proteomes (and corresponding coding regions) were downloaded from
UniProt (www.uniprot.org) in July 2018 [45]. Dikarya provide a good set for analyzing the principles and
trends of proteome evolution, since they are comprised of the two main currently well-sampled fungal
phyla (Ascomycota and Basidiomycota), that contain hundreds of fungi of interest as pathogens, and
useful for food, biotechnology and laboratory research. Also, there are currently major genome-
sequencing initiatives underway to improve further the sampling of the phylogenetic tree of
Saccharomycotina (the Y1000+ project [46]), and of fungi generally (the 1000 Fungal Genomes project
[47]). Furthermore, our previous work on the evolution of prion and prion-like proteins which motivated the
present study was focused on fungi [21]. 

Dikarya phylogenetic analysis
Dikarya phylogeny was built from 18s rRNA gene sequences, which are a prominent fungal phylogenetic
marker [48]. The multiple sequence alignment (MSA) of the 18S rRNA gene was obtained from SILVA [49] in
March 2018, and reduced to the 405 Dikarya reference species. Based on the MSA, phylogenetic trees
were made with the maximum likelihood phylogeny program PhyML 3.0 [50], using aBayes branch
support and defaults for nucleotide sequences. Trees and associated data were depicted with ggplot2 [51]

and ggtree [52].

Homopeptide andhomocodon frequencies
Homopeptides or homocodons were de�ned as runs of consecutive single amino acids or codons
respectively. In this study, the minimum length of homopeptides and homocodons is three, and only
homocodons in coding regions were considered. The positions and lengths of homopeptides were found
and calculated for each proteome. The length distributions of homopeptides were further calculated in
log scale and made into log-log scatter plots for each of the most abundant 10 amino acids in
homopeptides (for example, Figure 7). The slopes of linear regressions were used to indicate the general
quantitative distributions of the homopeptides, i.e., a less steep slope indicated a greater number of long
homopeptides of the amino acid in the proteome. The length distributions for the twenty most abundant
homocodons were calculated in the same way as for homopeptides. Mean frequency ranks and standard
deviations of frequency rank were calculated to show the variation degree of frequency rankings of
homopeptides of all amino acid types among Dikarya (Table 1). 

Homopeptide purity
A homopeptide could be composed of different codons encoding the same amino acid. To measure the
extent to which homopeptides are encoded by a predominant codon, we calculated the ‘purity’ of
homopeptides for each type of amino acid X using the equation below:
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with the counts given by:
n = number of the predominant (most frequent) codons in one X-homopeptide
N = number of codons in all X-homopeptides

The purity of each amino acid is further scaled through dividing by the maximum purity across the 405
proteomes for amino acids which equal codon numbers. However, those encoded by codons with 6-fold
degeneracy will be generally less pure than those encoded by codons with less degeneracy. Thus, only the
overall variance of purity is comparable between different amino acid types (in Table 1).

GC/AT Content
GC/AT content is calculated for coding regions. GC/AT level within and outside of
homopeptides/homocodons are calculated separately for some analyses.

Intrinsic disorder
Positions of intrinsically disordered regions (IDRs) in each proteome were annotated by the default
DisoPred3 and IUPred2A programs [53,54]. Many IDR annotators are only available as webservers, which
cannot be used for the large-scale data here. IUPred and DisoPred are available standalone and have
been ranked in the top three in at least one assessment [55]. Combined use of multiple such programs
improves annotation [56]. Only IDRs ³ 30 residues long were considered, since typically an IDR of ³30
residues is classi�ed as a long IDR, roughly a third of eukaryotic proteins on average have such long
IDRs, the programs trained on long IDRs are less accurate for shorter IDRs [56]. We used the union set of
IUPred and DisoPred results after comparing the differences in their IDR annotations, since we did not
want to be restricted by any tendency of either program to under-annotate IDRs with speci�c
compositional traits. On average, only 5.6% of DisoPred results are not predicted by IUPred with a
proximity threshold of 10 amino acids. On average, 20.15% of IUPred prediction are not predicted by
DisoPred.

A scale indicating the propensity of amino-acid types to favour disorder or structure was calculated. The
fractions of each amino-acid type were derived for an IDR set from the DISPROT database [42] (version
7.0, reduced for redundancy as previously described [57]), and from the ASTRALSCOP40 protein domain
database [58] (version 2.06). For the latter, the sequences derived from the Protein Data Bank �le atom
records were used, to minimize inclusion of intrinsic disorder. The fractions for each amino acid in the
DISPROT set were then divided by the corresponding fractions in ASTRALSCOP. The logarithm of this
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ratio was calculated to make a propensity (termed Pdiso) that is positive for amino acids favouring
disorder and negative for those favouring structure. Table 1 lists the scale.

Structured domain annotations
Annotations of structured domains were made by mapping the ASTRALSCOP95 data set [58] onto
proteomes using BLASTP (e-value threshold =0.0001) [59]. Blast matches were sorted on increasing order
of e-value, and progressively de-selected from the list if they overlap a match of smaller e-value.
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Figure 1

Distribution of overall homopeptide fraction in the proteomes. Mean = 0.023, standard deviation = 0.004,
skewness = 2.004, kurtosis = 9.350.
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Figure 2

Schematic Dikarya phylogenetic tree with mean fractions of homopeptides, annotated IDRs and DNA GC
content. The values for sub-phyla, and classes within large subphylum Pezizomycotina are shown.
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Figure 3

Relationship between homopeptide / homocodon level and GC/AT level. (a) GC/AT level in homocodons
versus outside homocodons in coding regions. The red line shows the default where GC/AT levels outside
and inside homocodons are identical (y=x line). (b) GC/AT level in homopeptides versus outside
homopeptides. The y=x line is shown. (c) GC/AT-level outside homocodons versus the fraction of
homocodons, with separate linear regressions for GC-biased and AT-biased organisms. (d) GC/AT-level
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outside homopeptides versus the fraction of homopeptides, with separate linear regressions for GC-
biased and AT-biased organisms. (e) GC/AT-level in homocodons plotted versus the fraction of
homocodons, with separate linear regressions for GC-biased and AT-biased organisms. (f) GC/AT-level in
homopeptides plotted versus the fraction of homopeptides, with separate linear regressions for GC-
biased and AT-biased organisms. All correlations in parts (a)-(f) are signi�cant at P<0.05.

Figure 4
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Length distributions of two synonymous homocodons encoding poly-Lys, poly-Asn and poly-Gln from the
top-20 lists of homocodon frequencies. Histograms of the log-log plot slopes for lengths distributions are
plotted. They are binned in intervals of 0.5. The total areas of the histograms for each panel indicate the
total amount of each codon. The lines indicate the overall distribution within each panel. Less negative
values indicate longer homopeptides: (a) Comparison of Poly-AAG(K) and Poly-AAA(K); (b) Comparison
of Poly-AAC(N) and poly-AAT(N); (c) Comparison of Poly-CAG(Q) and poly-CAA(Q).

Figure 5

Intrinsic disorder propensity. The intrinsic disorder propensity (Pdiso ) of the amino acids is plotted
against (A) the mean frequency rank across proteomes of the amino acids in homopeptides (Pearson
correlation coe�cient R=0.69 (P=0.0008), and (B) the standard deviation of the frequency rank of the
amino acids in homopeptides (R=0.60, P=0.005). In part (C), histograms are depicted of the homopeptide
fractions of structured regions (annotations made using SCOP domains), and of the IUPred and
DISOPRED annotations, with the distribution of the overall homopeptide fractions in the proteomes for
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comparison. Also indicated on the plot as points are the homopeptide fractions for the ASTRALSCOP40
and DISPROT databases.

Figure 6

Relationship of homopeptide/homocodon fractions with intrinsic disorder, structured domains and GC
content. Scatter plots are drawn of: (a) homopeptide fraction versus annotated IDR fraction, with an
overall linear regression �tted. (b) homopeptide fraction versus fraction of structured domains, with an
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overall linear regression. (c) homopeptide fraction versus annotated IDR fraction, with linear regressions
�tted for each subphylum. P-values for correlations are <0.05, except for Wallemiomycotina. (d)
homocodon fraction versus annotated IDR fraction, with regressions for each subphylum (correlation P-
values are <0.05, except for Wallemio-, Taphrino- and Pucciniomycotina). (e) GC fraction in coding
regions versus annotated proteome IDR fraction.

Figure 7

Example of a log-log plot used in the analysis of homopeptide or homocodon distributions. The length
distributions are analyzed as log-log scale plots of the number of occurrences of a given homopeptide
length versus homopeptide length. The distributions are characterized as linear regressions, yielding a
calculated power-law relationship between homopeptide length and frequency for a given amino-acid
type.
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