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Abstract
Background: Gene arrangement in vertebrate mitochondrial genomes (mitogenomes) is relatively
conserved and fewer gene arrangement is discovered. In contrast, that in invertebrate mitogenomes is
relatively common. Although a gradually growing number of gene rearrangement in hermit crabs
(Paguridae) has been discovered, it is surprising that gene rearrangement in its close relatives, the
terrestrial hermit crab (Coenobitidae), was overlooked until 2018. So far, only few studies focused on the
phylogenetic studies of Anomura based on molecular evidences. Results: In the present study, the
complete mitogenome of a terrestrial hermit crab, Coenobita brevimanus, was sequenced, and large-scale
gene rearrangements were observed. The genomic features of this terrestrial hermit crab were different
from those of any other studied crabs. Five gene clusters (or genes) including eleven tRNAs and two
PCGs were found to be rearranged with respect to the pancrustacean ground pattern gene order, which
was characterized by multiple translocations and inversions. Two phylogenetic trees (ML and BI tree)
arrived at a similar topology based on the nucleotide sequences of the 13 concatenated PCGs.
Conclusions: We propose tandem duplication-random loss and recombination model to explain the large-
scale gene rearrangements in C. brevimanus mitogenome. The phylogenetic trees showed that all
Coenobitidae species clustered into one clade. The polyphyly of Paguroidea was well supported, whereas
the non-monophyly of Galatheoidea was not in consistence with previous �ndings. The phylogenetic
relationships of Pylochelidae, Lomidae, and Albuneidae were controversial.

Results And Discussion

Genome structure and composition
Although the newly determined complete mitogenome of C. brevimanus is almost identical with (98.6%
similarity) the published one (GenBank accession number KY352233), the authors mainly focused on the
phylogenetic analyses, while hardly described the mitogenome features [ 5 ]. Hence, we described the
complete mitogenome (MK310257) in detail and focused on the gene rearrangements and possible
rearrangement mechanisms. The sequence is 16,393 bp in length, almost the same length with that of
the published one (16,390 bp). It comprises 13 PCGs, 22 tRNAs, two rRNAs and one CR (Fig. 1, Table 2),
which is identical with that in most crabs [ 2 , 5 , 44 ]. The size of C. brevimanus mitogenome presented in
this study falls within the range of other Anomura mitogenomes from 14,632 bp in Pagurus lanuginosus
(LC222527) to 17,910 bp in Munida isos (NC_039112). The overall nucleotide composition is 27.7% A,
37.3% T, 20.7% G, and 14.3% C, respectively (Table 3). The AT-skew and GC-skew are -0.148 and 0.183,
respectively (Table 3), suggesting an obvious bias toward the use of Ts and Gs.

Fig. 1. Gene map of the Coenobita brevimanus mitogenome.

The mitogenome of C. brevimanus contains 13 PCGs, with a total length of 11,159 bp. Eight PCGs (COI,
COII, ND2, ATP8, ATP6, COIII, ND6 and Cyt b) are encoded on the heavy strand (H-strand), while the rest
(ND5, ND4, ND4L, ND1, and ND3) are encoded on the light strand (L-strand). Typically, the ND3 gene is
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encoded on the H-strand. Interestingly, it is inverted to the L-strand, which to our best knowledge, is a quite
rare phenomenon only occurring in Coenobitidae mitogenomes [ 5 ]. Totally, it encodes 3,708 amino
acids. The most frequently used amino acids are Leu (15.6%), Phe (9.0%), Ile (8.2%) and Val (7.6%), while
the least common amino acids are Cys (1.1%), Arg (1.6%), Gln (1.9%), and Asp (1.9%) (Fig. 2A). Relative
synonymous codon usage (RSCU) values for the third positions of the 13 PCGs is shown in Fig. 2B. The
usage of both two- and four-fold degenerate codons is biased toward the use of codons abundant in T or
A, in accord with other crabs. The AT content of the 13 PCGs is 63.7%. The AT-skew and GC-skew are
-0.221 and 0.041, respectively (Table 3).

Like most crab mitogenomes, the C. brevimanus mitogenome contains a set of 22 tRNA genes [ 2 , 45 , 46
]. In most crab mitogenomes, eight tRNAs are encoded on the L-strand and the other 14 tRNAs are
encoded on the H-strand [ 2 , 45 , 46 ]. However, the number of tRNAs encoding on the two strands is
equal (Fig. 1, Table 2). The tRNA genes range in size from 61 bp (Arg) to 70 bp (Gln) and the total length
of them is 1,457 bp (Tables 2, 3). It shows a moderate AT bias (67.4%), a slight skew of T versus A (AT-
skew = -0.009), and strong skew of G versus C (GC-skew = 0.145) (Table 3). The 16S rRNA is 1,410 bp
between ND1 and Val while 12S rRNA is 797 bp between Val and CR (Fig. 1, Table 2). The AT-skew (0.049
and 0.076, respectively) and GC-skew (0.052 and 0.036, respectively) of the two rRNA genes were both
positive (Table 3), indicating clearly that more As and Gs than Ts and Cs in rRNAs. The CR is located
between 12S rRNA and Ser1, with a slight AT bias (62.0%). The AT-skew and GC-skew is -0.031 and 0.042,
respectively (Table 3), indicating an obvious bias toward the use of Ts and Gs.

Fig. 2. Amino acid composition inC. brevimanus mitogenome (A); Relative synonymous codon usage in
C. brevimanus mitogenome (B).

Gene rearrangement
The gene arrangement in the complete mitogenome of C. brevimanus is shown in Fig. 3. Compared with
the gene order in ancestral crustaceans (the pancrutacean ground pattern) mitogenomes [ 47], the gene
order in C. brevimanus mitogenome undergoes a large-scale rearrangement. Totally, at least �ve gene
clusters (or genes) dramatically alter the typical order, involving eleven tRNA genes (G, A, S1, P, L1, I, Q, M,
W, C, Y), and two PCGs (ND3 and ND2). If not considering these gene arrangements, the gene order COI-
L2- COII- K- A- ATP8- ATP6- COIII- R- N- E- F- ND5- H- ND4- ND4L- T- ND6- Cyt b- S2- ND1-16S -V- 12S- CR
remains the same arrangement as that in ancestral crustaceans. Of these �ve gene rearrangements, G-
ND3- A- S1clusteris inverted from the downstream of COIII in the H-strand to downstream of the CR in the
L-strand (Fig. 3 ). A single P moves from the downstream of T to downstream of the S2 (Fig. 3 ). A single
L1 moves to the position between S1- A- ND3- Gcluster and Y- W- Q- C cluster, which is located
downstream the CR and forms a large-scale rearranged area (Fig. 3 ). I- Q- M- ND2 cluster is divided into
two sections, one (I, M and ND2) is shifted to downstream of K. The other (Q) is shifted to the end of
linear mitogenome (Fig. 3 ).The W- C- Y cluster order is changed into Y- W- C order, accompanied with W
and Y inversion (Fig. 3 ).
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How did this particular order of mitogenome emerge? Compared the four major common used
mechanisms mentioned above, here, we propose that TDRL and recombination model result in the
generation of the C. brevimanus mitogenome. Firstly, three gene clusters undergo a complete copy,
forming three dimeric blocks, (G- ND3- A- R- N- S1- E)- (G- ND3- A- R- N- S1- E) (Fig. 4A ), (I- Q- M- ND2)- (I- Q-
M- ND2) (Fig. 4A ), and (W- C- Y)- (W- C- Y) (Fig. 4A ). Consecutive copies are then followed by a random
loss of the duplicated genes. G- ND3- A- R- N- S1- E- G- ND3- A- R- N- S1- E, I- Q- M- ND2- I- Q- M- ND2, and W-
C- Y- W- C- Y (underline denotes the deleted gene). Then three new gene blocks are formed, G- ND3- R- N-
E- A- S1, Q- M- I- ND2, and Y- W- C (Fig. 4A). Tandem duplication followed by random loss has been widely
used to explain this type of translocation of mitochondrial genes [ 2, 48, 49], hence, we adopt TDRL model
to explain these three gene block rearrangements. Subsequently, the two new gene blocks undergo a
translocation. G- ND3- R- N- E- A- S1 block is translocated downstream to the CR, leaving R- N- E in the
original position. Q- M- I- ND2 block is translocated to the K and D junction (Fig. 4A). According to the
reported rearrangements [ 2, 45, 50], two independent recombination events seem to be the most
plausible explanation for these translocations. In the second step, four genes or gene clusters are
translocated (Fig. 4B). Q is translocated to the position of W and C junction (Fig. 4B ), P is translocated to
the downstream of S2 (Fig. 4B ), L1 is translocated to the downstream of S1 (Fig. 4B ), G- ND3- A- S1 order
is reversed to S1- A- ND3- G in the original position (Fig. 4B ). Also, recombination events appear to
account for these translocations. Finally, the ultimate gene arrangement of the C. brevimanus
mitogenome is shown in Fig. 4C.

Fig. 3. Gene rearrangements in C. brevimanus mitogenome. PCGs and CR are indicated with boxes, and
tRNAs are indicated with columns. Genes labeled above the diagram are encoded on the H-strand and
those below the diagram on the L-strand. The gene rearrangement steps are labeled with Figs. (A) The
ancestral gene arrangement of crustaceans; (B) The gene order in the C. brevimanus mitogenome.

Fig. 4. Inferred intermediate steps between the ancestral gene arrangement of crustaceans and C.
brevimanus mitogenome. (A) Duplication-loss and translocation in the ancestral mitogenome of
crustaceans. The duplicated gene block is boxed in dash and the lost genes are labeled with gray. (B)
Translocation. (C) The �nal gene order in the C. brevimanus mitogenome.

Phylogenetic analysis
To further investigate the phylogenetic relationships of Anomura and the position of C. brevimanus, two
phylogenetic trees (ML tree and BI tree) were constructed based on the nucleotide sequences of the 13
concatenated PCGs. In this study, both trees are largely congruent with each other; consequently, only the
BI topology is shown, but both the ML bootstrap values and BI posterior probabilities are shown (Fig. 5). It
is obvious that two C. brevimanus species cluster together and four Coenobita species form a clade. The
largest terrestrial crab, Birgus latro, has the closest relationship with Coenobita, and form a Coenobitidae
clade with high support value.
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The current phylogenetic analysis of Anomura recovers a polyphyletic Paguroidea similar to previous
studies [ 51-53], with the Coenobitidae + Diogenidae clade dissociates from the other paguroids
(Lithodidae + Paguridae + Pylochelidae). The Coenobitidae + Diogenidae clade (Coenobita +Birgus +
Clibanarius) is similar to what was reported by McLaughlin et al. [ 51 ] based on morphological
characters and by Tan et al. [ 5 ] based on the amino acid dataset of 13 PCGs. While the other paguroids
clade (Lithodidae + Paguridae + Pylochelidae) differs from most morphological results [ 51 , 54 , 55 ] and
Tan et al.’s [ 5 ] molecular result. In these studies, Lithodidae is excluded from Paguroidea and belongs to
a new superfamily Lithodoidea. The phylogenetic tree also recovers polyphyletic groups for Galatheoidea.
In this study, Galatheoidea consists of two clades: (Porcellanidae + Munidopsidae + Munididae) forms a
clade and dissociates from the single Chirostylidae clade. This result is consistent with Tan et al.’s [ 5 ]
phylogenetic relationship. However, in Tan et al.’s [ 5 ] opinion, they treat Chirostylidae as a new
superfamily (Chirostyloidea), while not the previous Galatheoidea [ 51, 56, 57]. Hence, Galatheoidea form
a monophyletic group in their �ndings [ 5].

In contrast to most other studies that places the Hippoidea in a basal position of Anomura [ 52, 58, 59],
both Tan et al. [ 5 ] and our result show Hippoidea at a non-basal position, in which Hippoidea is
represented by only a single Stemonopa insignis species and the nodal support is low (76% bootstrap
value), hence, its novel position is possibly driven by incomplete taxon sample, and should be treated
with some level of caution. Similar situations occur in the placement of families Pylochelidae, Lomidae,
and Albuneidae, in which the ML bootstrap values of these nodes are relatively low (74%, 77%, and 76%,
respectively). Single representative of these families possibly cause the relatively low supporting values.
As a result, further taxonomic sampling is needed to con�rm the validity of these phylogenetic placement
in future studies.

Fig. 5. Phylogenetic tree of Anomura species inferred from the 13 PCGsbased on Bayesian inference (BI)
and maximum likelihood(ML) analysis. * at each node indicates 100% supporting value and the number
indicates the maximum likelihood bootstrap value. The number after the species name is the GenBank
accession number. Superfamilies as recognized by McLaughlin et al. [ 51]
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Table 1. List of 38 Anomura species used in this paper
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Species Family Superfamily Length
(bp)

Accession
No.

Reference

Lithodes nintokuae Lithodidae Paguroidea 15731 NC_024202 unpublished

Paralithodes
camtschaticus

Lithodidae Paguroidea 16720 NC_020029 [12]

Paralithodes brevipes Lithodidae Paguroidea 16303 NC_021458 unpublished

Pagurus japonicus Paguridae Paguroidea 16401 LC222532 [13]

Pagurus �lholi Paguridae Paguroidea 15674 LC222528 [13]

Pagurus minutus Paguridae Paguroidea 14939 LC222533 [13]

Pagurus gracilipes Paguridae Paguroidea 16051 LC222534 [13]

Pagurus nigrofascia Paguridae Paguroidea 15423 MH756635 unpublished

Pagurus lanuginosus Paguridae Paguroidea 14632 LC222527 [13]

Pagurus maculosus Paguridae Paguroidea 15420 LC222524 [13]

Pagurus sp. Paguridae Paguroidea 14648 LC222535 [13]

Pagurus longicarpus Paguridae Paguroidea 15630 NC_003058 [14]

Pylocheles mortensenii Pylochelidae Paguroidea 15093 KY352242 [15]

Lomis hirta Lomidae Lomoidea 17239 KY352239 [15]

Aegla aff. longirostri Aeglidae Aegloidea 15387 MF457407 [15]

Kiwa tyleri Kiwaidae Kiwaoidea 16865 NC_034927 [33]

Gastroptychus roger Chirostylidae Galatheoidea 16504 KY352238 [15]

Gastroptychus
investigatoris

Chirostylidae Galatheoidea 16423 KY352237 [15]

Stemonopa insignis Albuneidae Hippoidea 15596 KY352240 [15]

Clibanarius
infraspinatus

Diogenidae Paguroidea 16504 NC_025776 [34]

Birgus latro Coenobitidae Paguroidea 16411 KY352241 [15]

Coenobita brevimanus Coenobitidae Paguroidea 16390 KY352233 [15]

Coenobita brevimanus Coenobitidae Paguroidea 16393 MK310257 This study

Coenobita perlatus Coenobitidae Paguroidea 16447 KY352234 [15]

Coenobita variabilis Coenobitidae Paguroidea 16421 KY352236 [15]
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Coenobita rugosus Coenobitidae Paguroidea 16427 KY352235 [15]

Petrolisthes haswelli Porcellanidae Galatheoidea 15348 NC_025572 [35]

Neopetrolisthes
maculatus

Porcellanidae Galatheoidea 15324 NC_020024 [36]

Shinkaia crosnieri Munidopsidae Galatheoidea 15182 NC_011013 [37]

Munida gregaria Munididae Galatheoidea 16326 NC_030255 [38]

Munida isos Munididae Galatheoidea 17910 NC_039112 [15]

Tubuca polita Ocypodidae Ocypodoidea 15672 MF457400 [15]

Tubuca capricornis Ocypodidae Ocypodoidea 15629 MF457401 [15]

Cranuca inversa Ocypodidae Ocypodoidea 15677 MF457405 [15]

Pachygrapsus
marmoratus

Grapsidae Grapsoidea 15406 MF457403 [15]

Cardisoma carnifex Gecarcinidae Grapsoidea 15597 MF461623 [15]

Epixanthus frontalis Oziidae Xanthoidea 15993 MF457404 [15]

Pilumnus vespertilio Pilumnidae Pilumnoidea 16222 MF457402 [15]

Table 2. Features of the mitochondrial genome of Coenobita brevimanus
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Gene Position Length

(bp)

Amino

acid

Start/Stop

codon

Anticodon Intergenic
region*

Strand

From To

COI 1 1539 1539 512 ATG/TAA -5 H

Leu(L2) 1535 1600 66 TAG 7 H

COII 1608 2297 690 229 ATG/TAG 9 H

Lys(K) 2307 2371 65 TTT 7 H

Met(M) 2379 2445 67 CAT 11 H

Ile(I) 2457 2522 66 GAT 16 H

ND2 2539 3574 1036 345 ATT/T 0 H

Asp(D) 3575 3639 65 GTC 0 H

ATP8 3640 3798 159 52 ATC/TAG -7 H

ATP6 3792 4466 675 224 GTG/TAA -1 H

COIII 4466 5257 792 263 ATG/TAA 15 H

Arg(R) 5273 5333 61 TCG 0 H

Asn(N) 5334 5399 66 GTT 5 H

Glu(E) 5405 5470 66 TTC 3 H

Phe(F) 5474 5538 65 GAA 13 L

ND5 5552 7249 1698 565 ATA/TAA 18 L

His(H) 7268 7334 67 GTG 48 L

ND4 7383 8723 1341 446 ATG/TAA -7 L

ND4L 8717 9001 285 94 TTG/TAA 20 L

Thr(T) 9022 9089 68 TGT 10 H

ND6 9100 9633 534 177 GTG/TAA -17 H

Cyt b 9617 10748 1132 377 ATA/T 0 H

Ser(S2) 10749 10814 66 TGA -1 H

Pro(P) 10814 10879 66 TGG 1 L

ND1 10881 11807 927 308 ATC/TAA 0 L

16S 11808 13217 1410 0 L
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Val(V) 13218 13285 68 TAC 0 L

12S 13286 14082 797 0 L

CR 14083 15459 1377 0 H

Ser(S1) 15460 15525 66 TCT 4 L

Ala(A) 15530 15593 64 TGC 16 L

ND3 15610 15960 351 116 ATG/TAG 0 L

Gly(G) 15961 16026 66 TCC 3 L

Leu(L1) 16030 16095 66 TAA -1 L

Tyr(Y) 16095 16161 67 GTA 5 H

Trp(W) 16167 16235 69 TCA 14 L

Gln(Q) 16250 16319 70 TTG 3 L

Cys(C) 16323 16389 67 GCA 0 L

*Intergenic region: non-coding bases between the feature on the same line and the line below, with a
negative number indicating an overlap.
Table 3. Composition and skewness of Coenobita brevimanus mitogenome
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A% T% G% C% A+T% AT-skew GC-skew Length(bp)

Mitogenome 27.7 37.3 20.7 14.3 65.0 -0.148 0.183 16393

PCGs 24.8 38.9 18.9 17.4 63.7 -0.221 0.041 11159

COI 20.7 40.7 24.4 14.2 61.4 -0.326 0.264 1539

COII 22.3 40.6 23.8 13.3 62.9 -0.291 0.283 690

ND2 18.4 47.1 21.6 12.8 65.5 -0.438 0.256 1036

ATP8 29.6 39.6 21.4 9.4 69.2 -0.145 0.390 159

ATP6 20.7 45.9 20.0 13.3 66.6 -0.378 0.201 675

COIII 19.8 42.7 22.9 14.6 62.5 -0.366 0.221 792

ND5 32.1 31.2 13.3 23.4 63.3 0.014 -0.275 1698

ND4 31.4 31.7 14.5 22.4 63.1 -0.005 -0.214 1341

ND4L 25.3 36.5 15.1 23.2 61.8 -0.181 -0.211 285

ND6 23.2 44.9 19.9 12.0 68.1 -0.319 0.248 534

Cyt b 19.7 44.2 21.2 14.9 63.9 -0.383 0.175 1132

ND1 29.3 34.4 14.9 21.4 63.7 -0.080 -0.179 927

ND3 28.8 33.3 14.0 23.9 62.1 -0.072 -0.261 351

tRNAs 33.4 34.1 18.6 13.9 67.4 -0.009 0.145 1457

16S 38.0 34.5 14.5 13.0 72.5 0.049 0.052 1410

12S 37.1 31.9 16.1 14.9 69.0 0.076 0.036 797

CR 30.1 31.9 19.8 18.2 62.0 -0.031 0.042 1377

Figures
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Figure 1

Gene map of the Coenobita brevimanus mitogenome.
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Figure 2

Amino acid composition in C. brevimanus mitogenome (A); Relative synonymous codon usage in C.
brevimanus mitogenome (B).
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Figure 3

Gene rearrangements in C. brevimanus mitogenome. PCGs and CR are indicated with boxes, and tRNAs
are indicated with columns. Genes labeled above the diagram are encoded on the H-strand and those
below the diagram on the L-strand. The gene rearrangement steps are labeled with Figs. (A) The ancestral
gene arrangement of crustaceans; (B) The gene order in the C. brevimanus mitogenome.
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Figure 4

Inferred intermediate steps between the ancestral gene arrangement of crustaceans and C. brevimanus
mitogenome. (A) Duplication-loss and translocation in the ancestral mitogenome of crustaceans. The
duplicated gene block is boxed in dash and the lost genes are labeled with gray. (B) Translocation. (C)
The �nal gene order in the C. brevimanus mitogenome.
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Figure 5

Phylogenetic tree of Anomura species inferred from the 13 PCGsbased on Bayesian inference (BI) and
maximum likelihood(ML) analysis. * at each node indicates 100% supporting value and the number
indicates the maximum likelihood bootstrap value. The number after the species name is the GenBank
accession number. Superfamilies as recognized by McLaughlin et al. [51]


