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Topological transitions in fluid lipid vesicles: activation energy and force fields

Matteo Bottacchiari, Mirko Gallo, Marco Bussoletti and Carlo Massimo Casciold]
Department of Mechanical and Aerospace Engineering,
Sapienza Universita di Roma, Rome, Italy
(Dated: April 29, 2022)

Topological transitions of fluid lipid membranes are fundamental processes for cell life. For ex-
ample, they are required for endo- and exocytosis or to enable neurotransmitters to cross the neural
synapses. Inspired by the idea that fusion and fission proteins could have evolved in Nature in order
to carry out a minimal work expenditure, we evaluate the minimal free energy pathway for the
transition between two spherical large unilamellar vesicles and a dumbbell-shaped one. To address
the problem, we propose and successfully use a Ginzburg-Landau type free energy, which allows us
to uniquely describe without interruptions the whole, full-scale topological change. We also compute
the force fields needed to overcome the involved energy barriers. The obtained forces are in excellent
agreement, in terms of intensity, scale, and spatial localization with experimental data on typical
fission protein systems, whereas they suggest the presence of additional features in fusion proteins.
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I. INTRODUCTION

In this work, we develop, numerically demonstrate, and
use a Ginzburg-Landau type free energy [I] to study
fission and fusion events of large unilamellar vesicles
(LUVs) formed by a fluid lipid bilayer. The traditional
approach to dealing with such systems is based on the
Canham-Helfrich description, whereby the membrane is
treated as a geometrical surface endowed with elastic
properties. In fact, most of the experimental results con-
cerning lipid bilayers are still today interpreted in light
of this celebrated model. Its main limitation consists
in the inability to account for topological changes, like
those associated with fusion and fission processes. The
main advantage of the approach we propose is indeed to
naturally handle topological transitions.

Topological transitions of fluid lipid membranes are in-
volved in most of the fundamental processes of cell life,
like endocytosis and exocytosis. An example of such
transformation is the merging of two membranes. This
is the case of vesicle-vesicle fusion or viral membrane fu-
sion. Indeed, viruses enveloped by a lipid bilayer, such
as HIV, Ebola virus, influenza, measles, rabies virus, and
SARS-CoV-2 can infect a target cell by fusion of their
membrane with the cell plasma membrane [2, B]. Vi-
ral infection can also occur via endocytosis, in which
the plasma membrane undergoes fission to internalize
the virus via an endosome. Therefore, another impor-
tant topological change is membrane fission, which is
also fundamental for cell division and therefore for life
[4, B]. Topological transitions of lipid membranes are
of great interest not only in biology and biophysics but
also in medicine and in the pharmaceutical industry. In-
deed, lipid-based nanoparticles are used for drug deliv-
ery, offering many advantages including biocompatibility,
bioavailability, self-assembly, and payload flexibility [6].
Micelles, closed lipid monolayers, are currently used in
mRNA-vaccines against COVID-19 and many other lipid
nanoparticle-mRNA applications are under clinical eval-
uation, e.g. for the treatment of cancer or genetic diseases
[7]. Regardless of the application, all these nanoparticles
are engineered to overcome the physiological barriers by
exploiting topological transitions [§].

As anticipated, fluid lipid membranes can be mechani-
cally described using the continuum approach initially in-
troduced in [9L10]. Such a classical elastic perspective de-
scribes a membrane as a two-dimensional surface I" with
an energy density depending on its principal curvatures.
An expansion of this density up to the second-order in
curvatures leads to the Canham-Helfrich Hamiltonian:

Ecyll zgk/F(M_mf dS+kG/FGdS. (1)

Here, the first term on the right-hand side is the bending
energy and the second one is the Gaussian energy. M is
the mean curvature of the surface, G its Gaussian cur-
vature, m a spontaneous mean curvature that the mem-
brane tends to adopt in absence of external forces, and

k and kg are called bending rigidity and Gaussian cur-
vature modulus, respectively. k can be experimentally
measured in different ways [11], whereas k¢ is more elu-
sive due to the celebrated Gauss-Bonnet (GB) theorem,

/ G dS =2mx(T) — / kg dl, (2)
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where x(T') is the Euler characteristic of I and k, is the
geodesic curvature of the surface boundary 9I'. In the
vesicles case, since they are compact surfaces without
boundary, the line integral vanishes, and x(I') becomes
equal to 2 — 2g, being g the genus of the surface. There-
fore, the Gaussian energy term remains constant as long
as no topological transitions occur, leading to the afore-
mentioned elusive behavior of kg. A stability argument
[12] shows that —2 < kg /k < 0 and in literature there is
evidence [I3HI5] that kg ~ —k. Because of the scale in-
variance of the Canham-Helfrich free energy, for a given
topology, vesicles shapes are dictated by their reduced
volume v = V/(m D3,/6), as well as by their reduced
spontaneous curvature mg = mDye, where D, = \/A/m
is the characteristic lenght of the vesicle under consider-
ation, having area A and volume V.

The Canham-Helfrich description is thought to hold for
vesicles with a characteristic length Dy, > 40 1. [16],
being [,,. the lipid bilayer thickness, which is usually
about 5 nm; otherwise, higher-order terms in the energy
density could make a significant contribution. There-
fore, equation describes vesicles larger than those sim-
ulated by means of coarse-grained molecular dynamics
(MD) and dissipative particle dynamics (DPD), which
have been the most widely used techniques for in silico
studies of topological transitions to date [I7H23]. These
computer simulations, which take into account the molec-
ular details of lipid bilayers, allow monitoring in time
morphological changes of small liposomes with a size be-
low 50 nm [24]. In many cases of interest, the vesicles
sizes are considerably larger and the characteristic time
of the process is so long to be inaccessible to atomistic
methods. These large-sized vesicles are the target of our
present study.

Most of our current understanding of membrane fusion
and fission events comes from experiments. Recently,
controlled fission of cell-sized vesicles by low densities
of membrane-bound proteins has been reported in [25].
Other examples of fission experiments can be found in
[26, 27], whereas, as regards fusion, merging of giant li-
posomes has been observed in [28430], the stalk interme-
diate in [31], and activation energies for small liposomes
fusion events have been measured in [32] [33] by means of
kinetic analysis.

In the context of a Ginzburg-Landau formulation, an
analog of the bending energy term was initially intro-
duced in [34436], leading to numerous applications, see,
e.g, [37H45]. Furthermore, in [40], it has been pointed out
that it is possible to retrieve topological information from
such models. However, all these works do not include in
the dynamics the Gaussian contribution to the free en-



ergy. As will be shown below, the inclusion of a new term
accounting for such a contribution is crucial to correctly
predict the physics of fusion and fission events. Indeed,
in accordance with the GB theorem, the new term al-
lows for the quantized energy jumps that significantly
contribute to the free energy barriers of topological tran-
sitions. From a strictly mathematical point of view, the
proposed free energy functional regularizes the Gaussian
term of the Canham-Helfrich Hamiltonian, allowing the
description of the process across the topological change.
Exploiting rare event techniques [47], we compute a
minimal energy pathway (MEP) [48H5I] and the free
energy barrier between two spherical vesicles and a
dumbbell-shaped one, a case recently observed in exper-
iments [25]. We also compute the force fields needed
to overcome these barriers in a straightforward manner,
uniquely accounting for the force component arising from
the Gaussian energy. These forces are necessary to bal-
ance the reaction resulting from the membrane (bending
and Gaussian) elasticity and incompressibility, see [52]
for a discussion on the difficulties in computing the bend-
ing forces using more classical approaches. The compu-
tation of the complete system of forces is expected to
pave the way for exploring how the protein machineries
effectively work across the full scale of vesicles.

RESULTS
Free energy functional

The classical Canham-Helfrich model succeeds in de-
scribing many aspects of the vesicle dynamics but rules
out the possibility of dealing with topological changes un-
less unphysical surgical operations are conceived to cut
and paste patches of the membrane. A viable alternative
to the sharp interface description is to employ a smooth
function defined on a domain € — the phase-field ¢(x) —
that discriminates between the inner and the outer envi-
ronment of the vesicle assuming the limiting values +1
in the two regions. The ¢(x) = 0 level set represents
the membrane midsurface I'. The transition between the
two limiting values takes place in a narrow region whose
width is controlled by a small parameter e. This region
will also be related to the thickness of the lipid bilayer.
The main advantage of describing the membrane with
such a field lies in the fact that it enables topological
modifications of the membrane, allowing to address the
problem of vesicle fusion and fission.

A free energy functional

El¢] = Epl¢] + Ecl¢], 3)
is associated with each field configuration, where
3
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Eg[¢] was already introduced in [34] to model the bend-
ing energy of the membrane, while Eg[¢] is the term pro-
posed here to account for the Gaussian contribution. In
Section[Methods] we show that the free energy functional
E[¢] recovers the Canham-Helfrich Hamiltonian, E[¢] ~
Ecg[T], in the sharp interface limit (A = €/D,. << 1).
Furthermore, lipid vesicles are subjected to geometrical
constraints on area and enclosed volume. Indeed, since
lipids are insoluble in water, the number of membrane
lipids is conserved. This fact, coupled with the obser-
vation that the membrane rupture tension is very small,
implies that the vesicle area A cannot substantially vary
at a fixed temperature. The volume V of the vesicle is in-
stead determined by the osmotic conditions. In order to
enforce the above constraints in this phase-field context,
we use suitable functionals A[¢] and V[¢] which recover
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Fig. 1 Free energy evolution example. The phase-field
Gaussian energy E¢ during a series of scissions of a pro-
late shape into several spheres. The energy jumps by —47k
for any division as prescribed by the Gauss-Bonnet theorem
(k = —kg). The fission process occurs due to the presence of a
spontaneous curvature m* & 0.42. Time evolution is given by
the Allen-Cahn gradient flow with M* = 8 (see Section [Meth]
for more details on the dynamics, the adopted numerical
scheme and dimensionless quantities). The inset shows the
total energy £ = Ep + E¢, which monotonically decreases in
time, revealing the stability of the scheme. This z-axial sym-
metric simulation has been carried out in a [0, 36] x [0, 440]
computational domain in the r* — z* plane with a 54 x 660
mesh, initial D}, = 1/\ &~ 109 and dt* = 4. There is no con-
straint on the area, which, at the end of the simulation, differs
from the initial value by approximately 6.9%. Volume is con-
served with a relative error smaller than 10~7 with respect to
its initial value.
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Fig. 2 The minimal free energy path. The MEP connecting two spheres of radius R* = 87.5 with a dumbbell shape,
k = —kg. The path consists of vesicles with constant area and volume and therefore with constant reduced volume v =~ 1/ V2.
There is no spontaneous curvature, m* = 0. This z-axial symmetric result is obtained with the string method and the new
free energy functional, using a [0, 96] x [—245, 245] computational domain in the r* — 2* plane with a grid of 144 x 735 nodes
per image, N = 100 images and 1/A ~ 247.5. As explained in the text, this setting leads to having Dy, &~ 206 nm. The
dimensionless quantities are however useful because, far from the moment in which the topology changes, the scale invariance
is expected to hold. a Six vesicle shapes along the minimal energy path, identified by their image number i = (N — 1)a; + 1,
being « the string parameter (equal arc-length parameterization). From right to left we can observe the fission process of
the dumbbell shape into two spheres, whereas from left to right the fusion process. b The free energy, equation , along
the path. Saddle point is placed between the images i = 14 and ¢ = 15 and consists of two spherical vesicles connected by
a catenoid-like neck. ¢ The bending and Gaussian energy contributions to the energy along the path. The inset shows the
effectiveness of the scheme in preserving vesicles area and volume. Reference values of area and volume are Aj = 1.924392-10°
and Vg = 5.615982 - 10°.

orem is discussed. Here, it is only worth saying that the
novel energy functional is able to properly capture the
Gaussian energy jumps due to topological transitions.

the vesicle area and volume, respectively, in the sharp
interface limit (see Section [Methods).

Throughout the paper, an asterisk will denote the di-
mensionless quantities obtained using e as the reference
length and 87k as the reference energy. The latter is
the bending energy of an isolated sphere. The typical
value of the bending rigidity is k£ = 20 kg7, with kp the
Boltzmann constant and 7' the temperature. Moreover,
henceforth we will assume kg = —k.

Minimal energy pathway

In the topological transition between two spherical
vesicles and a dumbbell-shaped one, which are two stable

As an illustrative example of the effectiveness of the
approach, Figure [1| shows the Gaussian energy during a
series of scissions of an unstable prolate shape into sev-
eral spheres due to the presence of a spontaneous curva-
ture, see also [53]. The evolution equation is described
in Section together with the adopted numeri-
cal scheme. In the same Section, the consistency of the
present phase-field approach with the Gauss-Bonnet the-

states, the system goes through a sequence of configura-
tions ¢4 (x) in the space of the phase-field, identifying
a path which we parameterize by the normalized arc-
length o € [0,1]. An MEP for this transition is a curve
on the energy landscape E[¢] connecting the two stable
states go—o(x) and ¢o—1(x), respectively, and such that
it is everywhere tangent to the gradient of the potential
(0¢a/0a < 6E[dq]/0¢), except at critical points [54]. An



initial guess of the path is discretized in a string made up
of N = 100 images corresponding to o; = (i—1)/(N —1).
The initial guess is relaxed towards the MEP by means
of the string method (see [47, [55] [56] and Section
suitably accounting for the constraints of constant
total surface area, equation , and enclosed volume,
equation . The obtained MEP goes through a saddle
point ¢, (x) for the free energy, determining the transi-
tion barriers AEg_,1 = Fl¢a,] — Flpa=0] and AEI_,O =
Elba,) — E[pa=1], for the forward and backward process,
respectively.

Figure [2 shows the computed MEP for membranes
with zero spontaneous curvature, m = 0. Since the
phase-field ¢ reaches its limiting values +1 with an accu-
racy of about 3% already at a distance of +3¢ from the
¢ = 0 membrane midsurface, we assume that [,y = 6e
represents the thickness of the diffuse interface. In Sec-
tion we show that the phase-field descrip-
tion recovers the Canham-Helfrich model in the limit
of small A\ o f,¢/Dye. Our numerical experiments,
reported in the Supplementary Information, point out
that this asymptotic behavior is already achieved when
Lo/ Dye >> (bme/Dye)max = 1/40, the latter being the
maximum thickness-to-curvature radius ratio for which
the Canham-Helfrich model is accepted [16]. Since the
relative distance between approaching membrane seg-
ments is relevant during the topological transition, it
is crucial that the diffuse interface width matches the
bilayer thickness. This requirement fixes the scale of
our system. Setting l,y = Iy, = 5nm, the configu-
rations shown in Figure 2h correspond to vesicles with
D,e ~ 206 nm, thus within the range of validity of the
asymptotic Canham-Helfrich model and well beyond the
current limits of atomistic approaches.

Figure Ph shows successive configurations along the
MEP. Increasing/decreasing « corresponds to moving
along the path in the direction of the fusion/fission (for-
ward /backward) process, respectively. Proceeding for-
ward, the two vesicles come closer to each other with-
out deforming, get in touch, and merge together form-
ing a narrow neck that expands until the final dumbbell-
shaped configuration is reached. As explained in the In-
troduction, the equilibrium states of a vesicle are deter-
mined by its reduced volume and reduced spontaneous
curvature, which, in the present case, are v = 1/v/2 and
mg = 0, respectively, where 1/+/2 is the only reduced vol-
ume compatible with a vesicle obtained from the fusion
of two spheres of the same radius. As shown in [57], with
these parameters, it is possible to reach two axisymmetric
configurations with the topology of a sphere, namely one
oblate-discocyte shape and one prolate-dumbbell shape.
The latter has the lowest energy and, in the present case,
is the equilibrium state assigned to the string as the final
configuration, ¢,—1(x).

Figure[2b shows the free energy profile along the MEP.
The free energy of the final configuration (prolate) is
El¢a=1]/(8mk) ~ 1.12, which is larger than the initial
energy E[¢o—0]/(87k) =1 of the two spheres. Both val-

ues are in excellent agreement with the data reported in
[57]. One may notice that the two-spheres configuration
possesses a sequence of neutral equilibrium states, corre-
sponding to rigid translations during which the two vesi-
cles approach/separate from each other (configurations 4
from 1 to 11, as also depicted in Fig. 2h). The saddle
point consists of two spheres connected by a small nar-
row neck and is located between configurations ¢ = 14
and ¢ = 15, with the latter having the highest energy
of the two, E[¢pa=n,]/(87k) = 1.45. It should be noticed
that such a configuration possesses the bending energy of
two spheres together with the Gaussian energy and the
topology of a single sphere. Hence, the forward and back-
ward free energy barriers are AE] ., /(87k) ~ 0.45 and

AEIAO/(&rk) ~ 0.33, respectively. Considering a bend-
ing rigidity k of order 20 kT [I1], it turns out that both
fusion and fission processes cannot take place sponta-
neously and require further agents in order to happen, in
addition to the elasticity and thermal fluctuations. These
agents are typically protein systems. Still, in Fig. 2p, it
is possible to observe a substantial asymmetry between
fusion and fission, with a much steeper energy increase
required to reach the transition state in the fusion pro-
cess.

The main plots in Fig. Pk provide the bending and
Gaussian contributions to the free energy along the MEP.
Apparently, the forward barrier AES _,1 is almost entirely
due to the Gaussian energy jump associated with the
topological change. On the other hand, the backward
barrier AE;r _,o builds up continuously with the progres-
sive deformation of the prolate shape to form the narrow
neck preceding the actual fission. The inset shows the
evolution of the area and enclosed volume along the MEP,
confirming that the constraints are perfectly satisfied at
each string image.

The formation of the catenoid-like neck [58] has also
been observed in the experiments [27]. Operationally, we
define the neck region as the z-chunk of the fused vesicle
where the local contribution to the Gaussian energy,

35 e /+Zdz/27rr1/1 dr (8)
16\/§ . G )

is positive. The Gaussian energy of the neck along the
MEP is shown in the top panel of Fig. [3] blue line.
Proceeding from left to right, E%%(Z)/(87k) sharply
increases to a value close to (though smaller than) 0.5
and subsequently decreases. According to the Canham-
Helfrich model, the sharp interface Gaussian energy of a
sphere is ESH/(87k) = —0.5. Given two initially disjoint
sharp spheres (ESH /(87k) = —1), a joining neck changes
the topology and reduces the energy to that of a single
sphere, ESH/(87k) = —0.5. There are two main reasons
why the present free energy provides a neck contribution
that is slightly smaller than 0.5: i) close to the transition
state, the curvature of the neck generatrix is compara-
ble with the finite thickness of the bilayer, so that the
sharp-interface model is inappropriate; ii) the value 0.5

EEFH(Z) = kg



is an upper limit for the sharp interface Gaussian energy
of the neck (see, e.g., the Gauss Map in [59]). Evidently,
E2e%(Z) is the main contribution to the forward barrier
AE],,/(8rk) ~ 0.45. Proceeding to the right along the
MEP, beyond the saddle point, E2%(Z) progressively
decreases, top panel of Fig. 3] blue line. Since, Fig. 2k,
in that region the total Gaussian energy remains overall
constant, Fg/(87k) = —0.5, the (Gaussian) energy lost
by the neck is redistributed to the remaining, dome-like
parts of the vesicle. Figure 3] top panel, orange line with
dots, also provides the neck Gaussian energy as a post-
processing based on the sharp interface Canham-Helfrich
energy, equation [T} computed considering the ¢ = 0 level
set as the membrane midsurface, see the Supplementary
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Fig. 3 Neck Gaussian energy. Top panel: normalized
Gaussian energy of the neck, E&™(Z)/(87k), equation (8],
along the MEP (blue line). The orange line with dots pro-
vides the neck Gaussian energy as a post-processing based on
the sharp interface Canham-Helfrich energy, equation [I} com-
puted considering the ¢ = 0 isoline as the membrane mid-
surface: E&'ey(2)/(8mk) = /1 — (r(Z)/Ry)?/2. The agree-
ment between the two curves progressively deteriorates when
getting closer to the saddle point, due to the increasing cur-
vature of the membrane generatrix. In this region, the finite
thickness of the bilayer plays a crucial role and is taken into
account by the phase-field. Bottom panel: three membrane
configurations sketching the upper (yellow) circular boundary
of the neck with its curvature radius r(Z) (yellow arrow), and
the osculating (red) circle to the vesicle cross section with the
cutting plane passing through the neck boundary and con-
taining both the surface normal and the tangent to the circle.
The radius R,, of the osculating circle is shown as a red arrow.
The position of each configuration along the MEP is denoted
by the corresponding symbol (triangle, star and rhombus).

Information for additional details.

Force fields

Figure [4] focuses on the region of the MEP where the
most relevant events associated with the topological tran-
sition take place, images i = 11, ..., 40. The contour
plots in the lower half panels of Fig. [f] provide the struc-
ture of the phase-field as a function of radius r* and axial
coordinate z*, with ¢ smoothly joining the inner region
¢ = 1 to the outer region ¢ = —1 through the layer of
dimensionless thickness £, = 6.

As explained in Section each image of the
string can be rendered a state of equilibrium by intro-
ducing a force field f = —0E/6¢pV ¢ that counterbal-
ances the membrane elastic reaction. Considering the
forward transition, 0 — 1, such force field from o = 0 to
o = a, can be interpreted as the external force needed
to drive the transition under quasi-static conditions, thus
spending the minimal work Wy_,1 = AES _1- Once the
critical state is overcome, the system can be left to evolve
spontaneously until it reaches the final equilibrium state
« = 1. Symmetric considerations hold for the backward
transition 1 — 0. The dimensionless vector fields f(x)
are depicted as arrows in each panel of Fig. [d] where,
for the sake of better readability, they are plotted only
on the ¢ = 0 isoline. The contour plots on the upper
part of each panel display the component of the force
normal to ¢-isolines. It should be noticed that the scale
of the arrows changes from panel to panel, at least for
the upper frames, ¢ = 11, ..., 14. For the forward pro-
cess, the latter are the configurations achieved just before
the critical state. In this region, the MEP is particularly
steep, requiring more intense forces, which result to be
strongly localized near the vesicles contact region. On
the contrary, the backward process requires a more dis-
tributed force field, as shown in images i = 15, ... , 40.
The arrows reverse their direction between configurations
i =14 and i = 15, showing that in this interval the force
field vanishes, confirming that the critical state occurs
somewhere between these two images.

Insights into the action of proteins from the MEP

The forces required for overcoming the fusion topo-
logical barrier are too strong to be directly exerted by
the sole mechanical action of proteins. For example, set-
ting k = 20kpT [1I], the resulting activation energy,
AE&_>1 ~ 226 kT, is associated with a very steep free
energy profile. Consistently with the present findings,
Deserno [60] suggests that fusion proteins, besides a me-
chanical action, may contribute to lowering the energy
barrier by locally modifying the Gaussian modulus in
the contact region of the approaching membranes. In-
deed, the introduction of a suitable, spatially dependent
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Fig. 4 Force fields along the MEP. Detailed views in the »* — z* plane of the vesicle configurations along the MEP. The
index ¢ = (N — 1)a; + 1 numbers the images on the string. Vectors, plotted for clarity only on the ¢ = 0 isoline, provide the
force field f = —0F/§¢V ¢ required to keep the vesicle in equilibrium in the given configuration, balancing the internal elastic
reaction. The contours in the upper part of each view show the normal component of the force, while those on the lower part
depict the field ¢. For a better visibility, vectors are scaled according to the reference arrow in each plot.

Gaussian modulus is expected to reduce the stiffness as-
sociated with the GB theorem, opening alternative routes
to the topological change. Our results show that this sce-
nario is actually possible since the forces associated with
the Gaussian energy are localized in the region of contact
between the two spheres and, therefore, it is reasonable
that a variation of kg in such a region could lower the ac-
tivation energy. For example, this situation is compatible
with the observation that influenza virus hemagglutinin
proteins, in addition to having an apposition activity,
are also able to perturb the membrane lipid bilayer by
insertion of their amphipathic fusion peptide [61]. Inter-
estingly, the present phase-field approach can be easily
adapted to the instance of a topological transition with
a spatially dependent Gaussian modulus, a case we leave
for a future work.

As anticipated, the forces at play during fission are
more distributed and less intense than for fusion. The
large region they act on, Fig.[4] is consistent with the co-
operation of several protein systems, like, e.g., in clathrin
mediated endocytosis, which involves clathrins polymer-
ization and the subsequent action of the constrictase dy-
namin [27]. One can estimate the minimal work the pro-
tein system needs to perform to induce the topological
change by comparing the free energy barrier AEI _o With
the protein work Wi_,o = fp Ar, where f, is the order of
magnitude of the protein force and Ar = 7,4, — 1o is the
change in vesicle radius at the neck, between the equilib-
rium prolate (r;,q.) and the saddle point configurations
(ro). Given the scale of the system described above, we
find Ar = 37.4nm which, from the barrier height, pro-
vides f, = 0.91k pN/kpT. Interestingly, for the values



of k proper of fluid lipid membranes, we obtain protein
forces in fairly good agreement with the experimental
estimates reported in [25], e.g. ~ 20pN for dynamin,
~ 65pN for ESCRT-III and ~ 80pN for FtsZ. For ex-
ample, by assuming k = 20kpT, we obtain a protein
constriction force f, of 18.2pN. For the same bending
rigidity, Fig. [5] shows, red curve with squares, the energy
needed to complete the fission process as a function of
the current neck radius r,, AE(r,) = E(r,) — E(ro)
(note that the fission proceeds from larger to smaller
neck radii, i.e. from right to left along the abscissa).
The corresponding image number ¢ along the MEP is
provided on the second abscissa axis on the top of the
frame. The slope of the plot, dAE/dr,,, orange line with
triangles, provides the estimate of the constriction force
(positive when constrictive). A plateau is apparent at
dAE /dr, ~ 20pN in the range of radii 16 < r,, < 21 nm.
Notably, it is known from the literature [62] that, e.g.,
dynamin polymerizes on tubules with radius between 10
and 30 nm, exherting forces of the order of 20 pN. In or-
der to facilitate comparison with published data, Fig.
also provides in blue, with dots, f, = AE(r,)/(rn —70)-

i
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Fig. 5 Proteins and constriction forces. Red curve with
squares: energy needed to complete the fission as a function
of the current neck radius r,, AE = E(rn) —E(r0) vs 7. The
second abscissa axis on top of the frame provides the image
number i along the MEP. Orange curve with triangles: esti-
mated constriction force (second ordinate axis on the right),
dAE/dry vs rn. Blue curve with dots: fp = AE(r,)/(rn—70)
vs rn. The vertical light blue band represents the range in
which dynamin polymerizes [62]. The horizontal light orange
strip depicts the value of dynamin constriction force measured
in experiments [25] [62].

DISCUSSION

We have provided an unprecedented description of the
full-scale process of topology change in the fusion/fission
process of two large unilamellar vesicles (LUVs) with an
approach that can be extended to deal with giant unil-
amellar vesicles (GUVs). The proposed free energy ac-
counts for the Canham-Helfrich Gaussian energy jumps

as prescribed by the GB theorem, and, far from the topo-
logical changes, recovers the Canham-Helfrich Hamilto-
nian itself in the limit of small bilayer thickness. How-
ever, during topological transitions, when the relative dis-
tance between approaching membrane segments becomes
comparable to the bilayer thickness, the scale invariance
of the asymptotic Canham-Helfrich Hamiltonian is bro-
ken. For such a reason, we defined the scale of our system
by matching the lipid bilayer thickness with the diffuse
interface width. From a mathematical standpoint, our
proposal should be interpreted as a rational way to regu-
larize the singularity, leading to a process that smoothly
matches the external solution before and after the tran-
sition, allowing the description of the whole process. The
free energy clearly misses the many molecular details as-
sociated with the dynamics of the lipids forming the bi-
layer. However, the correction due to such details is small
as compared to the energy barrier associated with the
full-scale evolution of the vesicle.

Naively, one may argue that proteins systems could
have evolved in Nature to overcome the large barrier that
stabilizes the vesicle topology by following a minimal en-
ergy pathway. Hence, by means of the new free energy
functional, we have evaluated the minimal free energy
path for the transition and extracted the force field able
to drive the process with minimal work expenditure. The
free energy profile we find show the strong asymmetry
between the fusion and the fission processes. For fusion,
the required force field is extremely intense and suggests
that proteins could locally modify the Gaussian modulus
during the topological change, a case that can finally be
addressed with the presented approach. On the contrary,
as regards fission, the obtained spatial scales and forces
are consistent with the experimental estimates for typi-
cal fission protein systems, like the ESCRT-III, FtsZ, and
dynamin.

Finally, it can be noted that the proposed approach
can naturally be coupled with hydrodynamics [63] [64]
to include the dynamics of external and internal aque-
ous environments. One may also stress that the Gaus-
sian energy functional can find a much broader scope,
e.g., as an indicator of the topological genus in the con-
text of cluster analysis [65], 66], or as a way to pro-
vide a barrier towards undesired /unphysical fusion pro-
cesses. A compelling example concerns emulsions where
surfactant-covered droplets behave much like lipid mi-
celles [67, [68], suggesting that the Gaussian energy could
play a role in the emulsification process.

METHODS
Sharp interface limit

An energy E[¢], equation (B)), is associated with each field
configuration and is such as to admit local minimizers of the

form
o) = 1(42), (9)

€



where d(-) is the signed distance function from the membrane
midsurface I'. We choose to define the signed distance such
that n = Vd computed on I' is equal to the inward-pointing
unit normal to the vesicle. Setting d*(x) = d(x)/¢, we also
require that limgx 1., ¢ = 1 and ¢ = 0 for d = 0. There-
fore, +1 are the values for the stable phases of the inside and
outside bulk and the level set ¢ = 0 identifies the membrane
midsurface. Physically, the free energy functional should re-
cover the Canham-Helfrich Hamiltonian, equation , in the
limit of small width-to-vesicle-extension ratio. Eg[¢] was al-
ready introduced in [34] to model the bending energy of the
membrane, while Eg[¢] is the new term proposed here to ac-
count for the Gaussian energy.

As anticipated, our purpose here is to show that, under the
general ansatz @ and in the sharp-interface limit (¢/Dye =
A << 1), minimizing the phase-field free energy functional
is equivalent to minimizing the Canham-Helfrich free energy.
Denoting with a prime the derivative done with respect to
d*(x), a direct computation leads to

Bolol =k 2o [ (r - -or) +

| 2 (10)
+ X(f’vn+ (1 —f2)\/§m)} v

35
E =
G[¢] 16\/
where we have denoted with a bar the dimensionless lengths
obtained by dividing by D,e. Therefore, in order to minimize
E =FEp+Eg, as A — 0, the leadmg order term fy of ¢(x) =

f(d* () = fo(d* (@) + 377 X' fi(d*()) must satisfy f5 =
(f& — 1) fo, which has the solutlon

f/4 [(V n)’ +n~V(?-n)} av, (11)

fo(d*(x)) = tanh <i$§)> (12)

Hence, € is actually related to the width of the interface.
Moreover, by repeating the computations done in [69] for
the bending energy alone, it is possible to show that, also
in the presence of the new Gaussian energy term, one finds
fi(d(x)) = 0 (see the Supplementary Information for the
whole computation). Therefore, given that v/2f5 = (1 — £3),
we are left with

Bslo —k—/f (V- m+2m)?dV + 00,  (13)

Eclg] =
3B [ ft

“16v2

[(6 1)’ +n-V(V-n)|dV + ON).
(14)
Denoting with ki1 and k2 the principal curvatures, we have
V-n=—(ki+k)=—-2M and n-Vk; = k2, with the result
that (V -n)? + n-V(V - n) = 2kik2 = 2G. Now, noticing
that for A — 0 one finds f§2(d(x)/\)/A 25> 2v/2/3 §(d()),
Ad() /A /N 2 8v/2/35 5(d(x)), where §(z) is the Dirac
delta function and W denotes a weak limit in the sense of

distributions, and getting back to dimensional variables, the
asymptotic behavior follows as

Blg) ~ 2t [

T

(M —m)*dS + kg/GdS, (15)
T

i.e., the phase-field energy functional reproduces the Canham-
Helfrich free energy in the sharp-interface limit (¢/Dye << 1).
It is worth noticing that the inclusion of the Gaussian en-
ergy, which is subdominant in A, preserves the hyperbolic
tangent form of the leading order solution together with
fi(d*(x)) = 0, as for the more standard model with the bend-
ing energy alone [34]. Since fi1(d*(x)) = 0, the desired expres-
sion of the bending energy is retained at order A™!, and the
accuracies O(\) and O(\?) are guaranteed in Egs. , ,
respectively. Furthermore, in our formulation, the phase-field
Gaussian energy @ has no singularities and actually depends
at most on derivatives of order two, as it is possible to see by
replacing V¢ - VV2¢ with V2|V¢[?>/2 — Hy : Hy in (7)),
where Hy is the Hessian matrix of the field. As regards the
incompressibility of the membrane, we impose the geometrical
constraints described in Section using the functionals

4\f /{
viel = [ (1;@ av, (1)

which respectively behave like the vesicle area and enclosed
volume in the sharp interface limit.

+ Vol (16)

Gauss-Bonnet theorem

Let’s assume that

$(z) = tanh (iig) (18)

where & € (Q, being Q a cylindrical domain of radius R
and height L in the ordinary three-dimensional space, and
d(-) the signed distance from an axisymmetric surface in
Q. This assumption leads to |V¢| = (1 — $?)/(ev/2), and,
moreover, we set h(¢) = [(1 — 452)/(6\/5)]4. Using the cylin-
drical coordinates system, it is possible to show by a di-
rect computation [46] that one of the two principal curva-
tures is k1 = —0r¢/(r|V¢|). Therefore, remembering that
V- -n = —(k + k2) and n - Vk; = k?, with n = Vd, equa-
tion can be rewritten as

Eclg] =

h(d)) kika dV =

/h S(nky)dV =

= kg——c¢

35
= 8\f3 —Vqs nkidV + Isn =
N I —|V¢|kz AV + Iga =
T8V Jo do ! o=
35 5 [TE/2 " dh 0
= —kg——=€’m dz dr + lsg =
G4\/§ —L/2 o do or o8
3 n [T ot = 0,2) — hiotr = R, 2)]
=kg——=€T h(¢p(r =20,2)) — h(op(r =R, 2))]dz+
44/2 —L/2
+ Isq ,
where
I ko2 63/ h(¢) k1 na - ndS
Q= — Q- .
¢ Gsﬁ o0 '



Supposing to have a single, connected, closed sur-
face, after letting Q invade R®, and considering relation
d(x) /N /N s 8v/2/35 §(d(x)) applied to h(¢), we ob-
tain

lim Ec[¢] =

= 2rka /*00 d(d(r=0,z2))dz =

— o0

= dnke (1—g),

recovering the Gauss-Bonnet theorem, equation , in the
axially-symmetric case. The last equality is justified by the
fact that the Dirac delta function counts the intersections of
the surface with the z-axis, which is equivalent to checking
whether the surface has a hole.

Numerical scheme

The numerics relies on FFT-based spectral differentia-
tion in cell-centered grids which provide high accuracy so-
lutions, with special regard to the estimate of the Gaus-
sian energy. The accuracy in evaluating the Gaussian en-
ergy, equation @, is shown in Table [1| for a sphere, a torus
and a straight cylinder. Given the axial-symmetry of these
shapes, all the computations are done in a [0,40] x [0, 40]
computational domain in the r* — z* plane with a grid
of 80 x 80 nodes. In evaluating the functional, we set
é(x*) = tanh((/r*2 + (z* — 20)2 — 10)/v/2) for the sphere,
#(x*) = tanh((y/(r* —20)2 + (2* — 20)2 — 10)/v/2) for the
torus and ¢(x*) = tanh((r* —10)/4/2) for the cylinder, which
are obtained imposing equation (12).

Table 1 Caussian energy computed values, kg = —k.
Shape E¢/8mk (exact) Eq/8mk (numerical)
Sphere —5.-1071 —5.000525 - 1071
Torus 0. —1.729446 - 1018
Cylinder 0. —9.860761 - 10732

The energy pathways of Section are obtained by
means of the string method, which is briefly described below.
The remaining simulations reported in this paper, i.e. the one
shown in Fig. [I] and those in the Supplementary Information,
are carried out using the Allen-Cahn dynamics

 _  E

where M is the mobility coefficient and 6E/5¢ is the func-
tional derivative of the augmented energy

Blg) = Blg] +
+2(Alg] - Ao) + ZM(AlG] ~ AP+ (a0
+ Bp(VI8] = Vo) + 5 Ma(VIg] — Vo)* .

Here, the additional terms added to the energy are needed
when constraining to Ag and V{ the vesicle area and
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volume (|17)), respectively. M;, Ms are two penalty constants,
whereas v and Ap are updated at each time step according
to the augmented Lagrangian method, [70]:

P = M A A, 21)
AP = A"+ Ma(VIE™) = Vo). (22)

Therefore v and Ap are estimates of the Lagrange multipliers
that improve at every time step. Starting from an assigned
initial condition, the Allen-Cahn dynamics causes the energy
to monotonically decrease in time until it reaches a critical
steady-state. The dimensionless time and mobility are t* =
t/Tr and M™* = 87T/<:MTR/63, respectively, with Tr a suitable
time scale.

With the help of the PETSc library [71], a Crank-Nicolson
time-stepping scheme is employed to integrate the Allen-Cahn
gradient flow, while a semi-implicit Euler single step scheme is
used to solve the more computationally demanding string dy-
namics. The explicit form of the functional derivative 6E/5¢
is given in the Supplementary Information together with some
numerical experiments carried out to validate the approach.

String method

The zero-temperature string method [47] is a technique for
computing free energy barriers and transition pathways on a
given energy landscape. The method proceeds by evolving in
time a string, namely a curve parameterized by « € [0,1]. For
each a the image of the string is a phase-field function ¢ ()
representing a membrane state.

Given an initial guess for the pathway connecting two local
minima, the string evolves in time following the dynamics

O SE\*
g;:_M(E) Va € [0, 1], (23)

where M is a mobility coefficient, §E/5¢, is the functional
derivative of evaluated on the image ¢ and (§E/5¢pq )™
is its component normal to the string. This last quantity
can be computed as (6E/6¢a)" = 6E/5¢a — (SE/5¢a ’7‘> T,
where 7 = 0a¢a/ (Oada \(%(%)1/2 is the unit tangent to the
string and (-|-) is the standard L2 inner product. In this
way, at steady state, the string converges to a minimal energy
path [54]. In order to eliminate the trouble of projecting the
functional derivative and in order to use the equal arc-length
parameterization, the string dynamics can be rewritten [56]
as

9o SE <
=—-M_—+X 1 24
En 5¢a+ T Ya € [0,1], (24)
where X = X\ + M<5E_’/5q5a |T> and A\ is a Lagrange multi-
plier for the purpose of enforcing the chosen parameterization
9o (Datba | Datpa)'/® = 0.
The algorithm follows the steps:

1. Evolution from ¢ to t + At of the discrete string, made
up of N images ¢;, with the dynamics
0¢; SE .
- M -
ot P

1,..,N.

Time integration is performed in wave number space
by means of the semi-implicit Euler single step scheme.
The evolved images at time ¢ + At are denoted as ¢;.



2. Computation of the arc lengths corresponding to the
evolved images:

30:()7

- - - ~ 1/2
Si = 8;_1+ <¢z — i1 | Pi — ¢h’—1> ,
i=1,..,N.

Thus, the evolved images have parameters a; = s;/sn.

3. Linear interpolation of the evolved images in order to
compute the new images at equal arcs a; = i/N. These
are the actual solutions at time t+ At. It is worth notic-
ing that linear interpolation conserves vesicles volume.

4. Go back to one and iterate until convergence.

Force fields computation

Given a membrane state, it is possible to compute the ex-
ternal force needed to balance the elastic force arising from
the energy of the membrane. For this purpose, let’s consider
an arbitrary and infinitesimal variation d¢ of the phase-field,
consistent with the area and volume constraints, if present.
This variation results in a spatial displacement dx of the field
lines. The displacement can be thought to occur in a vir-
tual time interval ¢, within which the field lines move with
a virtual velocity w such that 9¢/9t = —V¢ - u (null ma-
terial derivative condition). By integrating in time this last
equation from t to ¢t + §t, we are left with the first order ap-
proximation

6¢p=—-V¢ -udt=-Vo¢-ox. (25)
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Hence, the work performed by the external force field f to
deform the membrane is

/ f-oxdV =0F =
5B 55 (26)
—0pdV =— | —V¢- oxdV,
067 036"
and one can identify the force field
SE
== 2
f=-5,V0 (27)

thanks to the arbitrariness of dx.
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