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Simplified Expansions of Common Latitudes with Geodetic Latitude and 
Geocentric Latitude as Variables 

LI Xiaoyong1  LI Houpu1,*  LIU Guohui2  BIAN Shaofeng1  JIAO Chenchen1 

1 Naval University of Engineering, China 

2 Chart Information Center, Tianjin, China 

Abstract: Using the symbolic calculation program Mathematica, based on the power series expansions of common latitude with 
geodetic latitude as a variable, power series expansions of common latitude with geocentric latitude as variable are derived. The 
coefficients of the two groups of formulas are based on the ellipsoid eccentricity e and the ellipsoid third flattening n, which 
make the expansions more uniform. Taking CGCS2000 as an example, numerical analysis is applied to verify the accuracy and 
reliability of the derived power series expansions. By analyzing and calculating the truncation error of common latitude based 
on ellipsoidal eccentricity e and the third flattening n expansion to different orders, we obtain simplified practical formulas for 
common latitude that satisfy the requirement of geodesic accuracy. Moreover, we show that the practical formula derived has 
higher calculation efficiency and easier dissemination, enriches the theory of map projection, and provides a basis for better 
display of remote sensing images. 
Keywords: Map projection; Geodetic latitude; Geocentric latitude; Common latitude; Power series expansion; Computer 
algebra system 

1. Introduction 

In remote sensing surveying, it is necessary to use map projection to display remote sensing images more 
intuitively and scientifically on a plane [1,2]. Precise measurements are required to achieve accurate navigation 
and positioning, and tools such as maps and geographic coordinates are used to intuitively express the 
information obtained [3–5]. In surveying and mapping, we often calculate the six common latitudes and their 
transformations: geodetic latitude, geocentric latitude, reduced latitude, rectifying latitude, conformal latitude, 
and authalic latitude [6,7]. Given the continued application and research of map projections, more stringent 
requirements are required for accurate and efficient transformations between different projections. The key is 
to complete mutual transformation of important variables, such as common latitude, more efficiently to ensure 
high accuracy [8-12]. Much in-depth research has been conducted on this, leading to theories of latitude change. 
For example, Qihe et al. [13-15] derived and calculated the relations between common latitudes and the 
positive and negative solutions of common latitude functions. Some of these calculations involve an elliptic 
integral of the second kind, which cannot be obtained analytically, and some are expressed in the form of 
practical expansions [16].  

Because of historical factors and manual calculation, the formulas still have errors. With the development 
of computer algebra, Shaofeng et al. [17,18] derived power series expansions of common latitude with geodetic 
latitude as a variable. They obtained more uniform symbolic expressions in form, which are suitable for the 
Earth’s ellipsoid. Chenchen et al. [19] derived the symbolic expressions of the positive and negative solutions 
of common latitude with geocentric latitude as a variable and extended the power series of coefficients in the 
formula to more directly represent the relationship between common latitude and geocentric latitude. Houpu 
et al. [20-22] studied and derived the power series expansions of common latitude with naturalized latitude as 
a variable, as well as power series expressions of auxiliary latitude functions. To solve problems of elliptic 
integration of the second kind in latitude transformation, and make the forms neat and unified, the coefficients 
in the commonly used latitude expansion formula are often expressed as the power series form of the first 
eccentricity. To ensure the accuracy of latitude transformation, it is often expanded to 10e [23,24]. In this form, 
the coefficients of the expansion formula are complex and the convergence speed is slow. In addition, the 
formula is long and cannot express the relations between latitudes succinctly, which is not good for propagation. 

In recent years, the third flattening n has been applied to ellipsoidal geodesy, which has solved problems 
related to the calculation of meridian arc length, various auxiliary latitudes, and projection transformation 



 

 

[26,27]. Given this, with the help of the symbolic computation program Mathematica, we derive the common 
latitude expansions with geodetic latitude and geocentric latitude as variables. The coefficients in the formulas 
are expressed as a power series of ellipsoidal eccentricity e and the third flattening n. A comparative analysis 
shows that the coefficients of the power series expansion based on the third flattening n   are simpler and 
produce a neater and more compact result. In addition, CGCS2000 is used for numerical analysis to test the 
accuracy and reliability of the derived power series expansion [28]. By analyzing and calculating the truncation 
errors based on the e  and n  expanded to different orders, we obtain simplified practical formulas for the 
common latitude that satisfy the geodesy accuracy requirements. 

2. Generation and Definition of Third Flattening 

Previous reports [29] indicate that the third flattening n  often appears as an auxiliary parameter in the 
relation between latitudes. The geodetic latitude B   and the reduced latitude u   are related by 

2 1/2tan (1 ) tanu e B
   . By introducing the Lagrange conjugate series and using the auxiliary parameter 
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To simplify Equation (1), the coefficient in the formula is defined as the third flattening n , namely, 
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The third flattening n is numerically smaller than the ellipsoid eccentricity e, which means that the 
expansion formula with n converges faster. This is more attractive for calculating the power series expansion 
of common functions. 

3. Common Latitude Power Series Expansions with Geodetic Latitude as Variable 

Geodetic latitude is one of the most used earth-science latitudes in geodetic survey and map projection 
theory. To implement various projection features, five other types of auxiliary latitudes are used: geocentric 
latitude, reduced latitude, rectifying latitude, conformal latitude, and authalic latitude [30]. These are all 
functions of geodetic latitude. Practical applications often require the transformation between the five auxiliary 
latitudes and geodetic latitudes, which often involves complex power series expansion and the calculation of 
complex higher-order derivatives. Heretofore, most of these derivatives were obtained manually, which is a 
long, complicated process. Partial approximations were thus used to facilitate the derivation, which also led to 
the deviation of higher-order terms. With the help of the symbolic calculation capabilities of Mathematica, this 
problem can now be efficiently solved. The power series of the common latitude with geodetic latitude as a 
variable based on eccentricity e and the third flattening n are obtained as described below. 

 

3.1. Power Series Expansion of Rectifying Latitude with Geodetic Latitude as Variable 

According to the literature [31], the meridian arc length can be expressed as an elliptic integral  
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where M is the radius of curvature in the meridian at the calculation point. Assuming the constant term  
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then the definition of rectifying latitude  B  is 
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which cannot be solved by integration. The conventional solution is to expand the integrated function using 
Newton’s binomial theorem, transform the power form of trigonometric function into the double angle form, 
and then integrate term by term. This process is long and complicated, especially when high precision is 
required. In addition, higher orders are difficult to calculate and errors increase at these orders. However, using 
Mathematica (hereafter, other calculations also were completed with Mathematica but we do not repeat that 
fact further), the power series expansion of the rectifying latitude ( )B  can be expressed as 

   2 4 6 8 10sin 2 sin 4 sin 6 sin8 sin10 .B B B B B B B            (4) 

The coefficients in Equation (4) are expanded in terms of e up to 10e  and in terms of n up to 5n , which 
gives 
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3.2. Power Series Expansion of Authalic Latitude with Geodetic Latitude as Variable 

According to map projection theory, given the constant 
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the authalic latitude formula  B  with geodetic latitude as the variable is 
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The third flattening n  and the first eccentricity e  of the ellipsoid are related by 
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We expand this expression to 10e  and 5n , so the authalic latitude  B  is 
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The coefficients in Equation (6) are expanded in terms of e up to 10e  and in terms of n up to 5n , which 
gives  
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3.3. Power Series Expansion of Conformal Latitude with Geodetic Latitude as Variable 

According to the literature [32], the conformal latitude   can be defined as follows: 
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The power series expansion of the conformal latitude with geodetic latitude as the variable is 

   2 4 6 8 10sin 2 sin 4 sin 6 sin8 sin10 .B B B B B B B            (8) 

The coefficients in Equation (8) are expanded in terms of e up to 10e  and in terms of n up to 5n , which 
gives 
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3.4. Power Series Expansion of Reduced Latitude with Geodetic Latitude as Variable 

According to geodesy theory, the reduced latitude u  is related to the geodetic latitude B  by 

 
2tan 1 tan .u e B   (9) 

The power series expansion of reduced latitude with geodetic latitude as the variable is 
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The coefficients in Equation (10) are expanded in terms of e up to 10e  and in terms of n up to 5n , which 
gives 
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3.5. Power Series Expansion of Geocentric Latitude with Geodetic Latitude as Variable 

According to geodesy theory, the geocentric latitude   is related to the geodetic latitude B  by 

  2tan 1 tan .e B    (11) 

The power series expansion of reduced latitude with geodetic latitude as the variable is 
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The coefficients in Equation (12) are expanded in terms of e up to 10e  and in terms of n up to 5n , which gives 
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In sum, compared with the common latitude expansions based on eccentricity e, when the common 
latitude is expanded based on the third flatness n, the coefficients of the power series expansions of common 
latitude have fewer digits and are more concise. In particular, the coefficients of the rectifying latitude, 
geocentric latitude, and reduced latitude are greatly simplified and the number of terms is almost halved when 
expanded in a power series based on the third flattening n , which increases the efficiency of the calculation 
and allows the relationship between different latitudes to be expressed more intuitively. 

 

4. Common Latitude Power Series Expansions with Geocentric Latitude as 

Variable 

In related theories of geodesy and map projection, the geocentric latitude    is used as an auxiliary 
variable in addition to using the geodetic latitude B as the independent variable. We use geocentric latitude as 
the independent variable because it simplifies the theoretical problems of space geodesy, especially geometric 
problems. For example, in the ellipsoidal sundial projection, the projection from the ellipsoid onto the sphere 
is analyzed based on the geocentric latitude. Geocentric latitude also plays an important role in determining 
satellite orbit and measuring altitude. These problems often involve converting geocentric latitudes to other 
common latitudes [33]. Using Mathematica, the power series of the common latitude with geocentric latitude 
as a variable based on eccentricity e  and the third oblateness n  are expressed as detailed below. 
 



 

 

4.1. Power Series Expansion of Authalic Latitude with Geocentric Latitude as Variable 

According to map-projection theory, on an ellipsoid, the area of an arc-type trapezoid bounded by the 

equator, geocentric longitude of  , and two lines of longitude separated by one degree, which is the authalic 

latitude function, is generally expressed as 
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and   is the authalic latitude. The manual differentiation is bypassed, and the power series expansion 
formula of the authalic latitude with geocentric latitude as the variable is 
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The coefficients in Equation (15) are expanded in terms of e up to 10e  and in terms of n up to 5n , which gives 
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4.2. Power Series Expansion of Rectifying Latitude with Geocentric Latitude as Variable 

According to map-projection theory, the meridian arc length X   on an ellipsoid from the equator to 

geocentric latitude   is 
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Similarly, given that an arc with angle   and radius 2

0(1 )R a e k   is numerically equivalent to the 

meridian arc length, the rectifying latitude can be expressed as 
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where  
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and    is the rectifying latitude. The manual differentiation process is bypassed and the power series 
expansion formula for rectifying latitude with geocentric latitude as the variable is 
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The coefficients in Equation (18) are expanded in terms of e up to 10e  and in terms of n up to 5n , which gives 
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4.3. Power Series Expansion of Conformal Latitude with Geocentric Latitude as Variable 

According to map projection theory, the formula of isometric latitude q with geocentric latitude   as the 

variable is 
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If the earth is regarded as a sphere, then 0e  and   becomes the conformal latitude  : 

  =2arctan .
2

q
e
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Using Equations (19) and (20), the power series expansion of conformal latitude with geocentric 

latitude as the variable is 2 4 6 8 10( ) in2 in4 in6 sin8 in10 .s s s sc c c c c              (21) 

The coefficients in Equation (21) are expanded in terms of e up to 10e  and in terms of n up to 5n , which 
gives 
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4.4. Power Series Expansion of Reduced Latitude with Geocentric Latitude as Variable 

According to map projection theory, the relation between geocentric latitude and reduced latitude is  
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 (22) 

The difference between geocentric latitude and reduced latitude is small, so the expansions for reduced 
latitude are often used in practical calculations. The power series expansion of reduced latitude with geocentric 
latitude as the variable is 
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The coefficients in Equation (23) are expanded in terms of e up to 10e  and in terms of n up to 5n , which 
gives 
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4.5. Power Series Expansion of Geodetic Latitude with Geocentric Latitude as Variable 

According to Equation (9), the power series expansion of geodetic latitude with geocentric latitude as the 
variable is 

   2 4 6 8 10sin 2 sin 4 sin 6 sin8 sin10B n n n n n             (24) 

The coefficients in Equation (24) are expanded in terms of e up to 10e  and in terms of n up to 5n , which 
gives 
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5. Truncation Error and Accuracy Analysis 

The common latitude formulas with geodetic latitude and geocentric latitude as variables are expanded 
into a power series in terms of e up to 10e   and in terms of n up to 5n  , which are symbolic expressions 
appropriate for ellipsoids with different parameters. To verify the accuracy and reliability of these formulas, 
the calculation error of each expansion formula is analyzed by using CGCS2000(China Geodetic Coordinate 
System 2000) and the reference ellipsoid constant 6378137 ma  and 1/ 298.257222101mf  . 



 

 

Taking authalic latitude as an example, we choose the determined geodetic latitude 
0B  and insert it into 

Equation (1) to obtain the theoretical value for authalic latitude  0 B . Inserting the determined geodetic 

latitude 
0B   into Equation (3) gives the authalic latitude  1 B   in terms of the power series expansion of 

eccentricity e . The difference between  1 B  and  0 B  gives the error of Equation (3). Similarly, when 

geodetic latitude B  is the variable, we obtain the power series of expressions of geocentric latitude, reduced 

latitude, rectifying latitude, conformal latitude, and authalic latitude in terms of e up to 10e , and the calculation 

error   varies with geodetic latitude B  as shown in Figures 1–5, respectively. 

 
Figure 1. Calculation error  B  of geocentric 

latitude. 

 
Figure 2. Calculation error  u B  of reduced latitude. 

 
Figure 3. Calculation error  B  of rectifying latitude. 

 
Figure 4. Calculation error  B  of authalic latitude. 

 
Figure 5. Calculation error  B  of conformal latitude. 

Similarly, when the geodetic latitude B   is the variable, we obtain the power series of expressions of 

geocentric latitude, reduced latitude, rectifying latitude, conformal latitude, authalic latitude in terms of n up 

to 5n , and the calculation error   varies with geodetic latitude B  as shown in Figures 6–10. 

 
Figure 6. Calculation error  B  of geocentric 

latitude. 

 
Figure 7. Calculation error  u B  of reduced latitude.  

Figure 8. Calculation error  B  of rectifying latitude. 

 
Figure 9. Calculation error  B  of authalic latitude.  

Figure 10. Calculation error  B  of conformal latitude. 

Similarly, when geocentric latitude   is taken as the variable, we obtain the power series of expressions 

of geodetic latitude, reduced latitude, rectifying latitude, conformal latitude, authalic latitude in terms of e up 

to 10e , and the calculation error   varies with geodetic latitude B  as shown in Figures 11–15. 
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Figure 11. Calculation error  B   of geodetic 

latitude. 

 
Figure 12. Calculation error  u   of reduced 

latitude. 

 
Figure 13. Calculation error     of rectifying 

latitude. 

 
Figure 14. Calculation error     of authalic latitude. 

 
Figure 15. Calculation error     of conformal 

latitude. 

Similarly, when geocentric latitude   is taken as the variable, we obtain the power series of expressions 

of geodetic latitude, reduced latitude, rectifying latitude, conformal latitude, authalic latitude in terms of n up 

to 5n , and the calculation error   varies with geodetic latitude B  as shown in Figures 16–20. 

 

 
Figure 16. Calculation error  B   of geodetic 

latitude. 

 
Figure 17. Calculation error  u   of reduced 

latitude. 

 
Figure 18. Calculation error     of rectifying 

latitude. 

 
Figure 19. Calculation error     of authalic latitude.  

Figure 20. Calculation error     of conformal 

latitude. 

Figures 1–20 show that, when the power series of common latitude formulas with geodetic latitude and 

geocentric latitude as variables are expanded in terms of e up to 10e  or in terms of n up to 5n , the calculation 

errors oscillate as a function of geodetic latitude or geocentric latitude. The maximum calculation error of 

common latitude is less than 81.0 10  , which is greater than the accuracy required by geodesy. However, the 

corresponding power series formulas are complicated. According to the literature [34], the calculation accuracy 

of the expansion formula is related to the expansion order. We analyze the maximum error of the common 

latitude expansions with geodetic latitude or geocentric latitude as variables based on the ellipsoidal 

eccentricity and the third flattening, respectively. The results are given in Tables 1 and 2. 
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Table 1. Truncation error of common latitude expanded to different orders with geodetic latitude as the variable (units: arc 

seconds). 

  B   u B   B   B   B  

10e  2.56114×10−9 9.31323×10−10 1.42609×10−9 1.76893×10−8 1.45519×10−9 

8e  4.52972×10−8 1.63272×10−7 2.44094×10−7 2.2928×10−7 2.65311×10−7 

6e  8.10159×10−5 3.01542×10−5 4.58977×10−5 4.24962×10−5 1.47941×10−6 

4e  0.0151037 0.00590163 0.00913985 0.00833335 0.0107551 

5n  1.60071×10−10 1.16415×10−10 1.16415×10−10 1.76369×10−8 1.45519×10−10 

4n  4.51109×10−8 6.1118×10−10 2.76486×10−9 1.27475×10−8 2.08966×10−8 

3n  1.15433×10−5 4.10277×10−7 1.58537×10−6 1.11121×10−6 8.84886×10−6 

2n  0.00455778 0.000325557 0.00126153 0.000803024 0.00312175 

Table 2. Truncation errors of common latitude expanded to different orders with geocentric latitude as the variable (units: 

arc seconds). 

  B    u               

10e  2.61934×10−9 9.31323×10−10 9.74978×10−10 9.02219×10−10 1.01863×10−9 

8e  4.53001×10−7 1.63243×10−7 1.42056×10−7 1.35537×10−7 1.56637×10−7 

6e  8.10159×10−5 3.01542×10−5 2.25394×10−5 2.19159×10−5 2.53659×10−5 

4e  0.0151037 0.00590163 0.0035465 0.00367417 0.00392772 

5n  1.89175×10−10 1.16415×10−10 1.74623×10−10 1.16415×10−10 1.74623×10−10 

4n  4.52274×10−8 6.40284×10−10 7.01402×10−9 6.72298×10−9 5.52973×10−9 

3n  1.15434×10−5 4.0984×10−7 2.18944×10−6 2.0791×10−6 2.29341×10−6 

2n  0.00455778 0.000325912 0.00109875 0.000766065 0.00107432 

The results in Tables 1 and 2 show that the precision of commonly used latitude power series expansions 

is related to the expansion order. The greater the expansion order, the greater the corresponding precision, and 

the longer the expression. The accuracy of the expansion based on the third flatness is greater than that based 

on the common latitude power series expansion to 5n   and 10e  , 4n   and 8e  , 3n   and 6e  , or 2n   and 4e  , 

indicating the superiority of the third flattening for the power series expansion of latitude transformation theory. 

An analysis and comparison allow us to conclude that, when the expansion is based on ellipsoidal eccentricity 

power series to 6e  or on the third flattening to 3n , the error of the expansions of common latitude is less than 

10−4′′, which not only meets the requirements for geodesy but also greatly simplifies the expression. The 

practical expansions of common latitude with geodetic latitude and geocentric latitude as variables are thus 

obtained. 

When the geodetic latitude B  is taken as the variable, the practical, simplified expansion for rectifying 

latitude  , authalic latitude  , conformal latitude  , reduced latitude u , and geocentric latitude   are 
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When the geocentric latitude   is taken as the variable, the practical simplified expansion for rectifying 

latitude  , authalic latitude  , conformal latitude  , reduced latitude u , and geodetic latitude B  are 
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In conclusion, the use of Mathematica allows us to derive simplified, practical formulas for common 
latitude with geodetic latitude and geocentric latitude as variables. Equations (25) to (31) show that, when the 
power series is expanded based on the third flattening, it is more compact and its coefficients are simpler, 
which is consistent with the conclusions derived above. 

 

6. Conclusion 

In this paper, the symbolic computation program Mathematica is used to analyze the power series 

expansion for the common latitude with geodetic latitude and geocentric latitude as variables. The coefficients 

in the formulas are expressed as a power series in the third flattening n. Taking the CGCS2000 ellipsoid as an 

example, we analyze the accuracy of the power series expansions of common latitude and calculate the 

maximum error of expansions to different orders based on ellipsoid eccentricity e and the third flattening n. 

The results lead to the following conclusions: 

(1) The common latitude direct expansions with geocentric latitude as the variable are derived, and the 

power series expansions based on the ellipsoidal eccentricity e and the third flattening n are carried out, which 

extend map projection theory. 

(2) Compared with the power series expansions based on ellipsoid eccentricity e, the power series 

expansions based on the ellipsoid third flattening n are neater and more compact, and the coefficients are 

simpler. In addition, they converge better and are more accurate. This shows that the third flattening n is 

superior to the ellipsoidal eccentricity e in the coefficient expansion of common latitude expressions. 

(3) As the order of the power series expansions decreases, the expressions become simpler, but the 

corresponding truncation error increases. By analyzing truncation errors of different orders, we conclude that 

when the common latitude formulas are expanded to 6e  based on ellipsoidal eccentricity e or expanded to 3n  

based on the third flattening n, they not only satisfy the precision required by geodesy but also make the 

expression more concise. 
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