

Two novel species of Mesophoma gen. nov. from PR China and a potential biocontrol of the invasive weed Ageratina adenophora

Ai-Ling Yang

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan

Lin Chen

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan

Lu Cheng

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan **Jin-Peng Li**

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan

Zhao-Ying Zeng

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan

Han-Bo Zhang (Zhhb@ynu.edu.cn)

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan

Research Article

Keywords: Multi-locus phylogeny, Taxonomy, Didymellaceae, Ascomycota

Posted Date: May 5th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1592320/v1

License: 🐵 🛈 This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Abstract

During an investigation of the fungal pathogens associated with the invasive weed *Ageratina adenophora* from China, some interesting isolates were collected. Among them, a novel genus *Mesophoma* containing two novel species, *M. speciosa* and *M. ageratinae*, from healthy leaf, leaf spot, and roots of *Ag. adenophora* was found. Phylogenetic analysis of the combined the internal transcribed spacer (ITS), large nuclear subunit ribosomal DNA (LSU), the RNA polymerase II second largest subunit (*rpb2*), and the partial β-tubulin (*tub2*) sequences showed that *M. speciosa* and *M. ageratinae* each formed a distinct clade, separating from all genera previously described in Didymellaceae. Combined morphological characters allowed us to describe them as novel species belonging to a novel genus *Mesophoma*. The full descriptions, illustrations, and a phylogenetic tree showing the position of *M. speciosa* and *M. ageratinae* were provided in this study. The potential for these strains to be developed into a biocontrol for the spread of the invasive weed *Ag. adenophora* was also discussed.

Introduction

Didymellaceae was established by de Gruyter et al. in 2009. It is one of the largest families in the fungal kingdom, which again belongs to the largest Dothideomycetes order, Pleosporales (Pleosporomycetidae, Dothideomycetes, Pezizomycotina, Ascomycota). This family is extremely species-rich and more than 5 400 species belonging to at least 37 genera have been recorded (Hou et al. 2020a; Hou et al. 2020b; Phukhamsakda et al. 2020; Crous et al. 2021).

Didymellaceae previously only included three main genera, viz. *Ascochyta* Lib., *Didymella* Speg., and *Phoma* Fr., as well as several related phoma-like genera (De Gruyter et al. 2009). The phoma-like circumscription is a pervasive and general concept, including species that produce pycnidia with aseptate, hyaline conidia occurring on herbaceous stems. The previously broad and ambiguous concept of the genus *Phoma* and the host-orientated nomenclature, together with the wide host range and occurrence, often resulted in incorrect taxonomic placements.

After more than 50 years of studying this group of fungi, Boerema and co-workers proposed that Phoma should be divided into nine sections, later studies showed five of them: *Macrospora* Fuckel, *Peyronellaea* Goid., *Phoma, Phyllostictoides* (Desm.) Keissl. and *Sclerophomella* Höhn in Didymellaceae (De Gruyter et al. 2009; De Gruyter et al. 2013).

In 2010, Aveskamp et al. established the genus *Boeremia*, redefined the genera *Epicoccum* Link and *Stagonosporopsis* Died, and confirmed two sexual genera, namely *Leptosphaerulina* McAlpine and *Macroventuria* Aa. Despite these studies, the polyphyly of *Ascochyta*, *Didymella* and *Phoma* remained unresolved (Aveskamp et al. 2010).

In a further study, Chen et al. provided an updated understanding of the taxonomy and evolution of Didymellaceae by including the *rpb2* locus in a four-locus phylogenetic analysis. The study revealed 17 well-supported monophyletic clades, leading to the introduction of nine genera. (Chen et al. 2015).

Subsequently, several additional genera have been introduced (Chen et al. 2017), such as *Briansuttonomyces* Crous, *Neomicrosphaeropsis* Thambug and *Pseudoascochyta* Valenz.-Lopez from plant materials (Crous and Groenewald 2016; Crous et al. 2016). After that, Valenzuela-Lopez et al. added six genera into the family based on clinical specimens and several reference species of *Phoma* from prior studies were also confirmed (Aveskamp et al. 2010; Valenzuela-Lopez et al. 2018).

In 2020, the family was expanded and added 9 well-defined genera, *Vandijckomycella* Hernández-Restrepo (Hou et al. 2020a), *Dimorphoma, Ectodidymella, Longididymella, Macroascochyta, Paramicrosphaeropsis, Pseudopeyronellaea, Sclerotiophoma* (Hou et al. 2020b) and *Anthodidymella* (Phukhamsakda et al. 2020). Crous introduced the genus *Neoscirrhia* from *Sasa veitchii* diseased stem and the genus *Nothomicrosphaeropsis* from *Welwitschia mirabilis* dead leaves (Crous et al. 2021).

The Didymellaceae includes plant pathogens, opportunists, endophytes, and saprobes from a wide range of substrates, such as asbestos, cement, crockery (Aveskamp et al. 2008), soil, oceans and their fauna, glaciers, and even deep-sea sediments (Zucconi et al. 1996; Yarden 2014; Zhang et al. 2014; Chen et al. 2017; Hou et al. 2020a). More than 50% of the species in this family have been reported as plant pathogens, causing great losses to a wide range of economic crops (Aveskamp et al. 2008).

Ageratina adenophora (Spreng.) R.M.King & H.Rob. (Compositae) is a perennial herb native to Central America, and has invaded more than 40 countries worldwide in tropical to temperate regions (Poudel et al. 2019). Since the first record in China in the 1940s, the plant has been widely distributed in the provinces of Yunnan, Sichuan, Guizhou, Guangxi and Tibet, and it has continuously spread east- and northward with clear invasive history records (Wang and Wang 2006). There is evidence that *Ag. adenophora* can be infected by fungal

pathogens in introduced ranges(Zhou et al. 2010; Poudel et al. 2019). To determine if the fungal pathogens of *Ag. adenophora* accumulated in the introduced ranges can be developed into a biocontrol to slow down its invasion, the foliar fungi have been intensely investigated for decades (Zhou et al. 2010; Mei et al. 2014; Fang et al. 2019)

Our recent study indicates that *Ag. adenophora* accumulates diverse foliar pathogens from neighbors (horizontally transmitted); however, a dominant pathogen but unclassified OTU (OTU515) belonging to the plant pathogen-rich family Didymellaceae does not occur on surrounding native plants (Chen et al. 2020). Interestingly, the ITS locus of this group is highly concurrent with those found in fungal DNA extracted from *Ag. adenophora* seeds (Fang et al. 2021), suggesteing that this fungus may co-spread with *Ag. adenophora* in a seed-borne manner (vertically transmitted). These fungi were previously classified as *Allophoma cylindrispora* based on ITS locus by using the UNITE database (Fang et al. 2021), however, the further phylogenetic analysis of the multiple loci showed that these fungi formed a distinct clade. Therefore, it remains to be determined for the phylogenetic position for these pathogens. In this study, combined morphological characters allowed us to describe them as novel species belonging to a novel genus. Here we provided their descriptions and illustrations based on these newly recovered isolates. In addition, their phylogenetic positions were determined by combining sequences of the internal transcribed spacer (ITS), the large subunit nuclear ribosomal RNA gene (LSU rRNA), the RNA polymerase II second largest subunit (*rpb2*), and the partial β -tubulin (*tub2*). We also discussed the potential for these strains to be developed into a biocontrol for the spread of the invasive weed.

Materials & Methods

Sampling and isolation

From 2015 to 2017, we sampled healthy, diseased and rotten leaves and roots of the invasive plant *Ageratina adenophora* (Spreng.) R.M.King & H.Rob. in Yunnan Province, Pu 'er, Dali, Kunming. These plant samples were placed into sterile self-sealing plastic bags. All the samples were transported to the lab and stored at 4 °C until processing.

Endophytic fungi were isolated by incubating surface-disinfected tissue segments according to the method described by Arnold and Lutzoni (2007). The healthy leaves were rinsed with tap water and then surface sterilized (0.5% sodium hypochlorite for 2 min s and 75% ethanol for 2 min and rinsed with sterile water 3 times). For the isolation of leaf spot fungi, healthy leaf tissues and the margins of diseased tissues of each leaf spot were cut into 6 mm² sections. Meanwhile, for the isolation of healthy and rotten leaves fungi, leaf tissues were cut into 6 mm² sections.

The roots were rinsed with tap water and then surface sterilized (0.5% sodium hypochlorite for 5 min s and 75% ethanol for 5 min and rinsed with sterile water 3 times). Sterilized root tissues were cut into 2mm sections.

The disinfected fragments above were subsequently plated onto potato dextrose agar (PDA; 200 g potato, 20 g glucose, 18 g agar, 1 L distilled water) and incubated at ambient temperature for 6–8 days or until mycelia growing from the leaf fragments were observed. A total of 213 Didymellaceae strains were collected.

The pure strains were incubated on PDA, oatmeal agar (OA, 40 g oatmeal, 18 g agar, 1 L distilled wate) and malt extract agar (MEA; 30 g malt powder, 3 g peptone, 18 g agar, 1 L distilled water) at 28°C. Morphological observations were conducted on cultures growing on PDA, OA and MEA after incubation at 28°C for one week. Observation was performed using an Olympus BX51 microscope (Olympus, Tokyo, Japan), and sterile water was used as a mounting medium for microscopy.

Pure cultures were deposited in the China General Microbiological Culture Collection (CGMCC), Guangdong Microbial Culture Collection Center (GDMCC).

DNA extraction, amplification and sequencing

Total genomic DNA was extracted from the fresh mycelia using the CTAB method (Murray and Thompson 1980). The internal transcribed spacer (ITS) was amplified with ITS4 and ITS5 primers (White et al. 1990). LR7 and LR5 (Vilgalys and Hester 1990) were used for large nuclear subunit ribosomal DNA (LSU) amplification; Btub2Fd and Btub4Rd (Woudenberg et al. 2009) for the partial β -tubulin (*tub2*) region, and RPB2-5F2 (Sung et al. 2007) and fRPB2-7cR (Liu et al. 1999) for the RNA polymerase II second largest subunit (*rpb2*). Amplification was performed in a 50 µl reaction volume, which contained 1.0 µL DNA template, 1.0 µL of each forward and reverses primers, 25 µL 2 × MasterMix (Tsingke Biological technology Co. Ltd. Beijing, China) and 22 µL dd H₂O. Amplicons for each locus were generated following

the protocols listed in the previous method (Chen et al. 2017). The sequences were deposited in GenBank database at the National Center for Biotechnology Information (NCBI) and the accession numbers are listed in Table 1.

Phylogenetic analysis

The ITS sequences generated in this study were used as queries to search similar DNA sequences in GenBank using BLAST. The results indicated that the new taxa had the highest ITS sequence similarity to Didymellaceae spp. Therefore, we selected 89 strains representing 74 species belonging to 37 genera in Didymellaceae and retrieved their respective ITS, LSU, *rpb2* and *tub2* sequences from GenBank (Table 1). We also retrieved GenBank accessions from *Leptosphaeria doliolum* (Pers.) Ces. & De Not. (CBS 505.75) of Pleosporales as outgroup for phylogenetic analyses. All sequences analyzed in this study were listed in Table 1. All nucleotide sequences generated from different primer pairs were used to generate consensus sequences by Seq-Man v.7.0.0 (DNASTAR, Madison, WI) and were aligned through BioEdit v.7.0 (Hall 1999). Manual gap adjustments were done to improve the alignment and ambiguously aligned regions were also excluded. Then, the combined sequence alignment was converted to a NEXUS file using ClustalX 1.83 (Higgins 1994).

Maximum-likelihood (ML) analysis was computed using RAxML (Stamatakis 2006) with the PHY files generated with CLUSTAL_X version 1.83 (Thompson et al. 1997), using the GTR-GAMMA model. ML bootstrap proportions (MLBPs) were computed with 1000 replicates. Bayesian (BI) analyses were performed on MrBayes v.3.2.1 (Ronquist et al. 2012) based on the models selected by the MrModeltest according to the protocol described by Chen et al. (Chen et al. 2017) The best-fit models of evolution for the four loci tested (GTR + I + G for ITS, LSU, *rpb2* and *tub2*) were estimated by MrModeltest v. 2.3.

Metropolis-coupled Markov chain Monte Carlo (MCMCMC) searches were run for 5000 000 generations, sampling every100th generation. Two independent analyses with four chains each (one cold and three heated) were run until the average standard deviation of the split frequencies dropped below 0.01. The initial 25% of the generations of MCMC sampling were discarded as burn-in. The refinement of the phylogenetic tree was used for estimating BI posterior probability (BIPP) values. The tree was viewed in FigTree version 1.4 (Rambaut 2012)

Results

Phylogenetic analysis

The final alignment comprised 2052 base pairs with combined sequences of ITS 425bp, LSU 754bp, *rpb2* 589bp and *tub2* 284bp. The combined dataset was analyzed by using BI and ML methods. The topology of the tree was shown in Fig. 1, with the Bayesian posterior probabilities (≥ 0.8) and ML bootstrap support ($\geq 50\%$) indicated for respective clades (Fig. 1). In this tree, 37 known genera were clustered as 37 unique clades.

We found that our strains formed an independent lineage in Didymellaceae, being clearly separated from other genera. Besides, strains were separated into two clades with 1.00 Bayesian posterior probability and 100% ml bootstrap support. Combined with morphological differences, we determined that our strains were two novel species of *Mesophoma*. The *Mesophoma* is close to *Allophoma* Qian Chen & L. Cai, *Heterophoma* Qian Chen & L. Cai and *Boeremia, Stagonosporopsis*. while distant from *Epicoccum*. The descriptions and illustrations based on these newly recovered isolates were provided as follows.

Taxonomy

Mesophoma H.B. Zhang, A.L. Yang & L. Chen, gen. nov.

Etymology

Greek,. (Meso-) meaning middle, between, intermediate, or moderate. - phoma, referring to the genus Phoma

MycoBank: MB 843556

Type species. Mesophoma speciosa H.B. Zhang et al.

Conidiomata pycnidial, solitary or aggregated, globose to subglobose, black or brown-yellowish, covered with hyphae, superficial or immersed. Ostiole single, slightly papillate. Pycnidial wall consisting of 2–6 layers of cells of textura angularis. Conidiogenous cells phialidic, hyaline, smooth-walled, ampulliform to doliiform. Conidia oblong to cylindrical, obovoid, sometimes slightly curved to reniform, aseptate, smooth, thin-walled, guttulate, hyaline.

Mesophoma speciosa H.B. Zhang, A.L. Yang & L. Chen, sp. nov.

Etymology: Latin, speciosa, meaning splendid, referring to its elegant appearance

MycoBank: MB 843557

Conidiomata pycnidial, solitary or aggregated, globose to subglobose, black or brown-yellowish, covered with hyphae, superficial or semimmersed, $79-156 \times 63-168 \mu m$. Ostiole single, slightly papillate. Pycnidial wall consisting of 4–6 layers of cells of textura angularis. Conidiogenous cells phialidic, hyaline, smooth-walled, ampulliform to doliiform, $5-7 \times 8-10 \mu m$. Conidia oblong to cylindrical, obovoid, sometimes slightly curved to reniform, aseptate, smooth, thin-walled, guttulate, hyaline, $3-6 \times 1-2 \mu m$, aggregated in cream masses (Fig. 2).

Cultural characteristics: Colonies on PDA, 84–95 mm diam after 7 d, margin regular, aerial mycelia felted, white to grey. Colonies on OA, 62–67 mm diam after 7 d, margin regular, aerial mycelia felted, grey to reddish brown. Colonies on MEA, 56–69 mm diam after 7 d, margin regular, aerial mycelia felted, black to grey. NaOH (1mol/L) spot test negative on OA (Fig. 2).

Distribution: The Lancang county, Yunnan Province, China.

Habitat: Living in leaf spot of Ageratina adenophora.

Holotype: CGMCC 3.20982, isolated from leaf spots of *Ageratina adenophora* (Spreng.) R.M. King & H. Rob., 20August 2017, H.B. Zhang, preserved by lyophilization (a metabolically inactive state) in the State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan. GenBank: ITS 0N124744, LSU 0N124751, *rpb2* 0N156007 and *tub2* 0N113859.

Note The new species *M. speciosa* is genetically distinct from the other genera and *M. ageratinae* in genus of *Mesophoma*. Morphologically *M. speciosa* can be distinguished from them in having smaller conidia and 0 septum, larger conidiogenous cells.

Mesophoma ageratinae H.B. Zhang, A.L. Yang & L. Chen, sp. nov.

Etymology: Latin, ageratinae, referring to the host Ageratina adenophora.

MycoBank: MB 843558

Conidiomata pycnidial, scatteredor aggregated, globose to subglobose, black or yellow, covered with hyphae, superficialor (semi-) immersed, $65-214 \times 51-223 \mu m$. Ostiole single, slightly papillate. Pycnidial wall consisting of 3-5 layers of cells of textura angularis. Conidiogenous cells phialidic, ampulliform to doliiform, hyaline, smooth, $5-7 \times 6-8 \mu m$. Conidia oblong to cylindrical, obovoid, sometimes slightly curved, or reniform, smooth, thin-walled, guttulate, hyaline, aseptate, $3-5 \times 1-2 \mu m$, aggregated in cream masses (Fig. 2).

Cultural characteristics: Colonies on PDA, 84–85 mm diam after 7 d, margin regular, aerial mycelia felted, white to grey. Colonies on OA, 62–67 mm diam after 7 d, margin regular, aerial mycelia felted, grey to leaden-black. Colonies on MEA, 48–50 mm diam after 7 d, margin regular, aerial mycelia felted, grey to leaden-black. NaOH (1mol/L) spot test negative on OA (Fig. 2).

Distribution: Kunming county, Yunnan Province, China.

Habitat: Living in leaf spot of Ageratina adenophora.

Holotype: CGMCC 3.20981, isolated from leaf spots of *Ageratina adenophora* (Spreng.) R.M. King & H. Rob., 22August 2017, H.B. Zhang, preserved by lyophilization (a metabolically inactive state) in the State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan. GenBank: ITS ON124745, LSU ON124752, *rpb2* ON156008 and *tub2* ON113860.

Note Phylogenetically, *M. ageratinae* forms a clade separated from all species previously described. Morphologically, *M. ageratinae* also can be distinguished from them in having smaller and thinner conidia and 0 septum, larger conidiogenous cells.

Discussion

The ITS, LSU, *rpb2* and *tub2* locus in phylogenetic analyses of phoma-like taxa has revealed a largely improved phylogeny of Didymellaceae in several previous studies, and the recent segregation of this particular genus (*Phoma*) has resulted in a large number of

new genera. Those genera were mainly established based on the *rpb2* marker. In this study, we obtained a series of isolates, which are grouped into a novel genus *Mesophoma* based on the phylogenetic analysis of concatenated sequences at 4 markers (Valenzuela-Lopez et al. 2018; Jayasiri et al. 2019)

The novel genus *Mesophoma* phylogenetically formed a distinct clade, which separates from all genera previously described in the Didymellaceae (Fig. 1). Although these two novel species of the genus, *M. speciosa* and *M. ageratinae* are close to these genera, such as *Allophoma, Heterophoma, Boeremia and Stagonosporopsis*, they distinguished from them by morphology. Conidia of *M. speciosa* and *M. ageratinae* ($3-6 \times 1-2 \mu m$, $3-5 \times 1-2 \mu m$) are much smaller and thinner than *Stagonosporopsis* and *Boeremia* ($3.5-10 \times 1.5-3.5 \mu m$, $2.5-12 \times 2-4 \mu m$) (Fig. 2–3) (Aveskamp et al. 2010). Conidiogenous cells of *M. speciosa* and *M. ageratinae* ($5-7 \times 8-10 \mu m$, $5-7 \times 6-7 \mu m$) are much larger than *Allophoma* ($3-4.5 \times 3.5-4.5 \mu m$) (Fig. 2–3) (Chen et al. 2015). Conidia of Heterphoma are 0-1(-2) septate while that of *M. ageratinae* and *M. ageratinae* almost all 0 septate(Fig. 2–3) (Chen et al. 2015).

Phylogenetic analysis showed that *M. ageratinae* and *M. ageratinae* formed two distinct clades (Fig. 1). Pycnidia of *M. ageratinae* are larger than that of *M. ageratinae*, with average size of $127 \times 121 \mu m vs 115 \times 116 \mu m$ (Fig. 2–3). Conidia of *M. ageratinae* are thinner than *M. ageratinae*, with average size of $4 \times 2 \mu m vs 4 \times 1 \mu m$ (Fig. 2–3). Therefore, we identified them as two novel species belonging to novel genus *Mesophoma*.

These two species including seven strains were found in the investigation of fungi from the healthy, diseased and rotten leaves and roots of the invasive plant *Ag. adenophora*. In our recently investigation of fungi associated with *Ag. adenophora*, we also found that these fungi belonging to Didymellaceae family may be co-spread with the host through seeds (and thus can be vertically transmitted) (Fang et al. 2021), because *Ag. adenophora* disperses minute asexual seeds primarily by wind and water. In addition, we isolated two strains of *Epicoccum* from this family, A68 and K16; disease experiment verified that these two strains were pathogenic to not only *Ag. adenophora* but also most to Cucurbita plants including *Cucumis melo* and *Cucurbita moschata*. Nonetheless, two strains (Y122, S188?) from the novel genus *Mesophoma* were only pathogenic to *Ag. adenophora*, not to Cucurbita plants, as well as most tested native plant species. These data suggested that these newly reported strains might be host-specific pathogens of *Ag. Adenophora*, and thus could be candidates for biocontrol of *Ag. adenophora*.

Declarations

Funding information

This work was funded by the National Natural Science Foundation of China (grant nos. 31770585 and 31970013).

Acknowledgments

The authors express gratitude to Dr Rafael F. Castañeda Ruiz for serving as pre-submission reviewers.

Contributions

Z.H.B. and Y.Z.F. designed the research and project outline. Y.A.L., C.L., Z.Z.Y. performed isolation and phylogenetic analysis. C. Lu. and L.J.P performed the disease experiment. Y.A.L. performed morphological analyses of the strain and prepared the figures and tables. Y.A.L. collaborated with C.L. for supervision of the study and preparation of the manuscript. All authors read and approved the final manuscript

Conflict of interest

The authors declare that there are no conflicts of interest.

References

- 1. Arnold AE, and Lutzoni F. (2007). Diversity and host range of foliar fungal endophytes: Are tropical leaves biodiversity hotspots? Ecology **88**:541–549.
- 2. Aveskamp MM, De Gruyter J, and Crous PW. (2008). Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Diversity **31**:1–18.
- 3. Aveskamp MM, de Gruyter J, Woudenberg JHC, Verkley GJM, and Crous PW. (2010). Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera. Studies in Mycology:1–60.

- Chen L, Zhou J, Zeng T, Miao Y-F, Mei L, Yao G-B, Fang K, Dong X-F, Sha T, Yang M-Z, Li T, Zhao Z-W, and Zhang H-B. (2020). Quantifying the sharing of foliar fungal pathogens by the invasive plant Ageratina adenophora and its neighbours. New Phytologist 227:1493–1504.
- 5. Chen Q, Hou LW, Duan WJ, Crous PW, and Cai L. (2017). Didymellaceae revisited. Studies in Mycology:105–159.
- 6. Chen Q, Jiang JR, Zhang GZ, Cai L, and Crous PW. (2015). Resolving the Phoma enigma. Studies in Mycology:137-217.
- 7. Crous PW, and Groenewald JZ. (2016). They seldom occur alone. Fungal Biology 120:1392–1415.
- 8. Crous PW, Hernandez-Restrepo M, Schumacher RK, Cowan DA, Maggs-Kolling G, Marais E, Wingfield MJ, Yilmaz N, Adan OCG, Akulov A, Duarte EA, Berraf-Tebbal A, Bulgakov TS, Carnegie AJ, de Beer ZW, Decock C, Dijksterhuis J, Duong TA, Eichmeier A, Hien LT, Houbraken J, Khanh TN, Liem NV, Lombard L, Lutzoni FM, Miadlikowska JM, Nel WJ, Pascoe IG, Roets F, Roux J, Samson RA, Shen M, Spetik M, Thangavel R, Thanh HM, Thao LD, van Nieuwenhuijzen EJ, Zhang JQ, Zhang Y, Zhao LL, and Groenewald JZ. (2021). New and Interesting Fungi. 4. Fungal Syst Evol 7:255–343.
- 9. Crous PW, Wingfiel MJ, Burgess TI, Hardy GESJ, Crane C, Barrett S, Cano-Lira JF, Le Roux JJ, Thangavel R, Guarro J, Stchigel AM, Martin MP, Alfredo DS, Barber PA, Barreto RW, Baseia IG, Cano-Canals J, Cheewangkoon R, Ferreira RJ, Gene J, Lechat C, Moreno G, Roets F, Shivas RG, Sousa JO, Tan YP, Wiederhold NP, Abell SE, Accioly T, Albizu JL, Alves JL, Antoniolli ZI, Aplin N, Araujo J, Arzanlou M, Bezerra JDP, Bouchara JP, Carlavilla JR, Castillo A, Castroagudin VL, Ceresini PC, Claridge GF, Coelho G, Coimbra VRM, Costa LA, da Cunha KC, da Silva SS, Daniel R, de Beer ZW, Duenas M, Edwards J, Enwistle P, Fiuza PO, Fournier J, Garcia D, Gibertoni TB, Giraud S, Guevara-Suarez M, Gusmao LFP, Haituk S, Heykoop M, Hirooka Y, Hofmann TA, Houbraken J, Hughes DP, Kautmanova I, Koppel O, Koukol O, Larsson E, Latha KPD, Lee DH, Lisboa DO, Lisboa WS, Lopez-Villalba A, Maciel JLN, Manimohan P, Manjon JL, Marincowitz S, Marney TS, Meijer M, Miller AN, Olariaga I, Paiva LM, Piepenbring M, Poveda-Molero JC, Raj KNA, Raja HA, Rougeron A, Salcedo I, Samadi R, Santos TAB, Scarlett K, Seifert KA, Shuttleworth LA, Silva GA, Silva M, Siqueira JPZ, Souza-Motta CM, Stephenson SL, Sutton DA, Tamakeaw N, Telleria MT, Valenzuela-Lopez N, Viljoen A, Visagie CM, Vizzini A, Wartchow F, Wingfield BD, Yurchenko E, Zamora JC, and Groenewald JZ. (2016). Fungal Planet description sheets: 469–557. Persoonia **37**:218–403.
- 10. De Gruyter J, Aveskamp MM, Woudenberg JHC, Verkley GJM, Groenewald JZ, and Crous PW. (2009). Molecular phylogeny of Phoma and allied anamorph genera: Towards a reclassification of the Phoma complex. Mycological Research **113**:508–519.
- 11. De Gruyter J, Woudenberg JHC, Aveskamp MM, Verkley GJM, Groenewald JZ, and Crous PW. (2013). Redisposition of phoma-like anamorphs in Pleosporales. Studies in Mycology:1–36.
- 12. Fang K, Miao Y-F, Chen L, Zhou J, Yang Z-P, Dong X-F, and Zhang H-B. (2019). Tissue-Specific and Geographical Variation in Endophytic Fungi of Ageratina adenophora and Fungal Associations With the Environment. Frontiers in Microbiology **10**.
- 13. Fang K, Zhou J, Chen L, Li Y-X, Yang A-L, Dong X-F, and Zhang H-B. (2021). Virulence and community dynamics of fungal species with vertical and horizontal transmission on a plant with multiple infections. Plos Pathogens **17**.
- 14. Hall T. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series **41**:95–98.
- Higgins DG. (1994). CLUSTAL V: multiple alignment of DNA and protein sequences. Methods in molecular biology (Clifton, N.J.) 25:307–318.
- Hou L, Hernandez-Restrepo M, Groenewald JZ, Cai L, and Crous PW. (2020a). Citizen science project reveals high diversity in Didymellaceae (Pleosporales, Dothideomycetes). MycoKeys 65:49–99.
- 17. Hou LW, Groenewald JZ, Pfenning LH, Yarden O, Crous PW, and Cai L. (2020b). The phoma-like dilemma. Stud Mycol 96:309–396.
- Jayasiri SC, Hyde KD, Jones EBG, McKenzie EHC, Jeewon R, Phillips AJL, Bhat DJ, Wanasinghe DN, Liu JK, Lu YZ, Kang JC, Xu J, and Karunarathna SC. (2019). Diversity, morphology and molecular phylogeny of Dothideomycetes on decaying wild seed pods and fruits. Mycosphere 10:1-186.
- 19. Liu YJJ, Whelen S, and Benjamin DH. (1999). Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerase II subunit. Molecular Biology and Evolution **16**:1799–1808.
- 20. Mei L, Zhu M, Zhang D-Z, Wang Y-Z, Guo J, and Zhang H-B. (2014). Geographical and Temporal Changes of Foliar Fungal Endophytes Associated with the Invasive Plant Ageratina adenophora. Microbial Ecology **67**:402–409.
- 21. Murray MG, and Thompson WF. (1980). RAPID ISOLATION OF HIGH MOLECULAR-WEIGHT PLANT DNA. Nucleic Acids Research 8:4321-4325.
- 22. Phukhamsakda C, McKenzie EHC, Phillips AJL, Gareth Jones EB, Jayarama Bhat D, Stadler M, Bhunjun CS, Wanasinghe DN, Thongbai B, Camporesi E, Ertz D, Jayawardena RS, Perera RH, Ekanayake AH, Tibpromma S, Doilom M, Xu J, and Hyde KD. (2020).

Microfungi associated with Clematis (Ranunculaceae) with an integrated approach to delimiting species boundaries. Fungal Diversity **102**:1-203.

- 23. Poudel AS, Jha PK, Shrestha BB, and Muniappan R. (2019). Biology and management of the invasive weed Ageratina adenophora (Asteraceae): current state of knowledge and future research needs. Weed Research **59**:79–92.
- 24. Rambaut A. (2012). FigTree v1.4.2. Program Distributed by the Author. Available from: http://tree.bio.ed.ac.uk /software/figtree/2012.
- Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, and Huelsenbeck JP. (2012). MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology 61:539– 542.
- 26. Stamatakis A. (2006). RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics **22**:2688–2690.
- Sung G-H, Sung J-M, Hywel-Jones NL, and Spatafora JW. (2007). A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): Identification of localized incongruence using a combinational bootstrap approach. Molecular Phylogenetics and Evolution 44:1204– 1223.
- 28. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, and Higgins DG. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research **25**:4876–4882.
- 29. Valenzuela-Lopez N, Cano-Lira JF, Guarro J, Sutton DA, Wiederhold N, Crous PW, and Stchigel AM. (2018). Coelomycetous Dothideomycetes with emphasis on the families Cucurbitariaceae and Didymellaceae. Studies in Mycology:1–69.
- 30. Vilgalys R, and Hester M. (1990). RAPID GENETIC IDENTIFICATION AND MAPPING OF ENZYMATICALLY AMPLIFIED RIBOSOMAL DNA FROM SEVERAL CRYPTOCOCCUS SPECIES. Journal of Bacteriology **172**:4238–4246.
- 31. Wang R, and Wang Y-Z. (2006). Invasion dynamics and potential spread of the invasive alien plant species Ageratina adenophora (Asteraceae) in China. Diversity and Distributions **12**:397–408.
- 32. White TJ, Bruns T, Lee S, and Taylor J. (1990). 38 AMPLIFICATION AND DIRECT SEQUENCING OF FUNGAL RIBOSOMAL RNA GENES FOR PHYLOGENETICS. Pages 315–322 *in* M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White, editors. PCR Protocols. Academic Press, San Diego.
- 33. Woudenberg JHC, Aveskamp MM, de Gruyter J, Spiers AG, and Crous PW. (2009). Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype. Persoonia **22**:56–62.
- 34. Yarden O. (2014). Fungal association with sessile marine invertebrates. Frontiers in Microbiology 5.
- 35. Zhang X-y, Tang G-I, Xu X-y, Nong X-h, and Qi S-H. (2014). Insights into Deep-Sea Sediment Fungal Communities from the East Indian Ocean Using Targeted Environmental Sequencing Combined with Traditional Cultivation. Plos One **9**.
- 36. Zhou Z-X, Jiang H, Yang C, Yang M-Z, and Zhang H-B. (2010). Microbial community on healthy and diseased leaves of an invasive plant Eupatorium adenophorum in Southwest China. Journal of Microbiology **48**:139–145.
- 37. Zucconi L, Pagano S, Fenice M, Selbmann L, Tosi S, and Onofri S. (1996). Growth temperature preferences of fungal strains from Victoria Land, Antarctica. Polar Biology **16**:53–61.

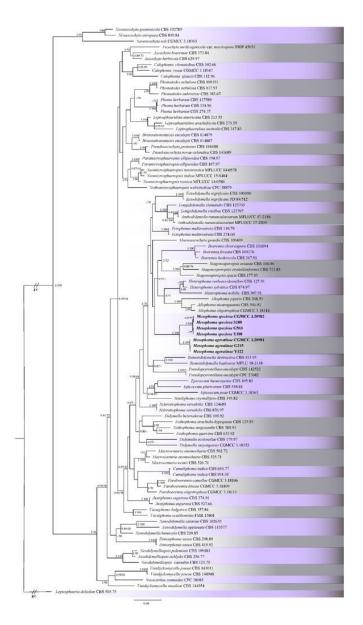
Tables

Table 1 Isolates used in this study and their GenBank accession numbers. New taxa are indicated in bold

Species	Strain	Host, substrate	Country	GenBank accession numbers				
	number			LSU	ITS	rpb2	tub2	
Mesophoma speciosa	CGMCC 3.20982	<i>Ageratina adenophora</i> , diseased leaf	China	ON124751	ON124744	ON156007	ON113859	
Mesophoma speciosa	S188	<i>Ageratina adenophora,</i> root	China	ON124755	ON124748	ON156011	ON113863	
Mesophoma speciosa	G503	<i>Ageratina adenophora</i> , diseased leaf	China	ON124754	ON124747	ON156010	ON113862	
Mesophoma speciosa	Y188	<i>Ageratina adenophora</i> ,dead leaf	China	ON124757	ON124750	ON156013	ON113865	
Mesophoma ageratinae	CGMCC 3.20981	<i>Ageratina adenophora</i> , diseased leaf	China	ON124752	ON124745	ON156008	ON113860	
Mesophoma ageratinae	G215	<i>Ageratina adenophora</i> , diseased leaf	China	ON124753	ON124746	ON156009	ON113861	
Mesophoma ageratinae	Y122	<i>Ageratina adenophora</i> , healthy leaf	China	ON124756	ON124749	ON156012	ON113864	
Allophoma piperis	CBS 268.93	Peperomia pereskiifolia	Netherlands	GU238129	GU237816	KT389554	GU237644	
Allophoma nicaraguensis	CBS 506.91	Coffea arabica	Nicaragua	GU238058	GU237876	KT389551	GU237596	
Allophoma oligotrophica	CGMCC 3.18114	Air	China	KY742194	KY742040	KY742128	KY742282	
Heterophoma nobilis	CBS 507.91	Dictamnus albus	Netherlands	GU238065	GU237877	KT389638	GU237603	
Heterophoma verbasci-densiflori	CBS 127.93	Verbascum densiflorum	Netherlands	GU238120	GU237774	_	GU237639	
Heterophoma sylvatica	CBS 874.97	Melampyrum pratense	Netherlands	GU238148	GU237907	_	GU237662	
Boeremia diversispora	CBS 101194	Phaseolus vulgaris	Netherlands	GU237929	GU237716	KT389564	GU237491	
Boeremia hedericola	CBS 367.91	Hedera helix	Netherlands	GU237949	GU237842	KT389579	GU237511	
Boeremia foveata	CBS 109176	Solanum tuberosum	Bulgaria	GU237946	GU237742	KT389578	GU237508	
Stagonosporopsis actaeae	CBS 106.96	Actaea spicata	Netherlands	GU238166	GU237734	KT389672	GU237671	
Stagonosporopsis crystalliniformis	CBS 713.85	Lycopersicon esculentum	Colombia	GU238178	GU237903	KT389675	GU237683	
Stagonosporopsis ajacis	CBS 177.93	<i>Delphinium</i> sp.	Kenya	GU238168	GU237791	KT389673	GU237673	
Epicoccum huancayense	CBS 105.80	<i>Solanum</i> sp.	Peru	GU238084	GU237732	KT389630	GU237615	

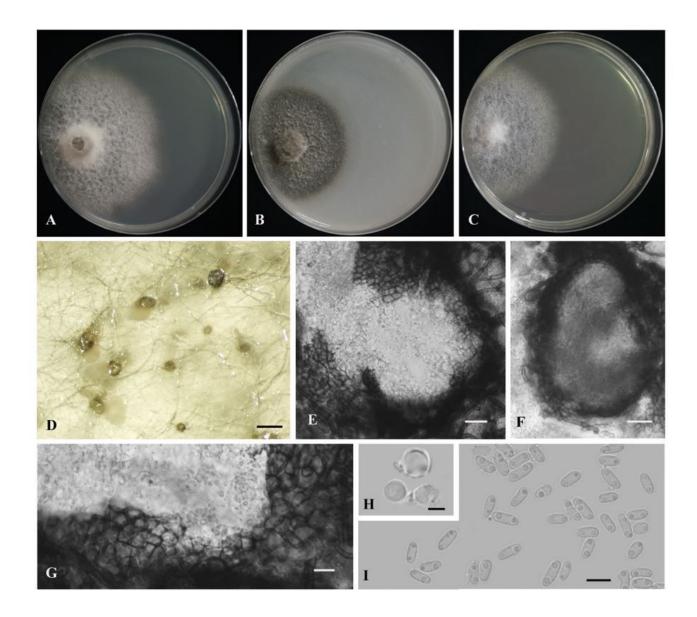
Species	Strain	Host, substrate	Country	GenBank accession numbers			
	number			LSU	ITS	rpb2	tub2
Epicoccum plurivorum	CBS 558.81	<i>Setaria</i> sp.	New Zealand	GU238132	GU237888	KT389634	GU237647
Epicoccum poae	CGMCC 3.18363	Poa annua	USA	KY742267	KY742113	KY742182	KY742355
Didymella acetosellae	CBS 179.97	Rumex hydrolapathum	Netherlands	GU238034	GU237793	KP330415	GU237575
Didymella suiyangensis	CGMCC 3.18352	Air	China	KY742243	KY742089	KY742168	KY742330
Didymella heteroderae	CBS 109.92	Undefined food material	Netherlands	GU238002	FJ426983	KT389601	FJ427098
Macroventuria anomochaeta	CBS 502.72	Medicago sativa	South Africa	GU237985	GU237873	_	GU237545
Macroventuria anomochaeta	CBS 525.71	Decayed canvas	South Africa	GU237984	GU237881	GU456346	GU237544
Macroventuria wentii	CBS 526.71	Plant litter	USA	GU237986	GU237884	KT389642	GU237546
Paraboeremia camellae	CGMCC 3.18106	<i>Camellia</i> sp.	China	KX829042	KX829034	KX829050	KX829058
Paraboeremia litseae	CGMCC 3.18109	<i>Litsea</i> sp.	China	KX829037	KX829029	KX829045	KX829053
Paraboeremia oligotrophica	CGMCC 3.18111	Carbonatite	China	KX829039	KX829031	KX829047	KX829055
Nothophoma anigozanthi	CBS 381.91	Anigozanthus maugleisii	Netherlands	GU238039	GU237852	KT389655	GU237580
Nothophoma quercina	CBS 633.92	<i>Quercus</i> sp.	Ukraine	EU754127	GU237900	KT389657	GU237609
Nothophoma arachidis- hypogaeae	CBS 125.93	Arachis hypogaea	India	GU238043	GU237771	KT389656	GU237583
Ascochyta boeremae	CBS 373.84	Pisum sativum	Australia	KT389698	KT389481	KT389560	KT389775
Ascochyta herbicola	CBS 629.97	Water	USA	GU238083	GU237898	KP330421	GU237614
Ascochyta medicaginicola var. macrospora	BRIP 45051	Medicago sativa	Australia	KY742198	KY742044	KY742132	KY742286
Briansuttonomyces eucalypti	CBS 114879	<i>Eucalyptus</i> sp.	South Africa	KU728519	KU728479	_	KU728595
Briansuttonomyces eucalypti	CBS 114887	<i>Eucalyptus</i> sp.	South Africa	KU728520	KU728480	_	KU728596

Species	Strain	Host, substrate	Country	GenBank accession numbers			
	number			LSU	ITS	rpb2	tub2
Pseudoascochyta novae-zelandiea	CBS 141689	Cordyline australis	New Zealand	LT592893	LT592892	LT592895	LT592894
Pseudoascochyta pratensis	CBS 141688	Soil	Spain	LT223131	LT223130	LT223133	LT223132
Leptosphaerulina americana	CBS 213.55	Trifolium pratense	USA	GU237981	GU237799	KT389641	GU237539
Leptosphaerulina arachidicola	CBS 275.59	Arachis hypogaea	Taiwan, China	GU237983	GU237820	_	GU237543
Leptosphaerulina australis	CBS 317.83	Eugenia aromatica	Indonesia	EU754166	GU237829	GU371790	GU237540
Phoma herbarum	CBS 127589	Polytrichum juniperinum	USA	KT389757	KT389539	KT389664	KT389838
Phoma herbarum	CBS 274.37	Picea excelsa	UK	KT389754	KT389537	KT389662	KT389835
Phoma herbarum	CBS 134.96	<i>Delphinium</i> sp.	Netherlands	KT389753	KT389535	KT389661	KT389834
Phomatodes aubrietiae	CBS 383.67	Aubrietia hybrida cv. Superbissima	Netherlands	GU238044	GU237854	_	GU237584
Phomatodes nebulosa	CBS 100191	Thlaspi arvense	Poland	KP330446	KP330434	KT389666	KP330390
Phomatodes nebulosa	CBS 117.93	Mercurialis perennis	Netherlands	GU238114	GU237757	KP330425	GU237633
Neomicrosphaeropsis italica	MFLUCC 15-0484	<i>Tamarix</i> sp.	Italy	KU729853	KU900319	KU695539	KX453298
Neomicrosphaeropsis rossica	MFLUCC 14-0586	Tamarix ramosissima	Russia	KU729855	KU752192	_	_
Neomicrosphaeropsis novorossica	MFLUCC 14-0578	Tamarix ramosissima	Russia	KX198710	KX198709	_	_
Calophoma glaucii	CBS 112.96	Dicentra sp.	Netherlands	GU238077	GU237750	_	GU237610
Calophoma clematidina	CBS 102.66	<i>Clematis</i> sp.	UK	FJ515630	FJ426988	KT389587	FJ427099
Calophoma rosae	CGMCC 3.18347	<i>Rosa</i> sp.	China	KY742203	KY742049	KY742135	KY742291
Neodidymelliopsis polemonii	CBS 109181	Polemonium caeruleum	Netherlands	GU238133	GU237746	KP330427	GU237648
Neodidymelliopsis cannabis	CBS 121.75	Urtica dioica	Netherlands	GU237972	GU237761	_	GU237535

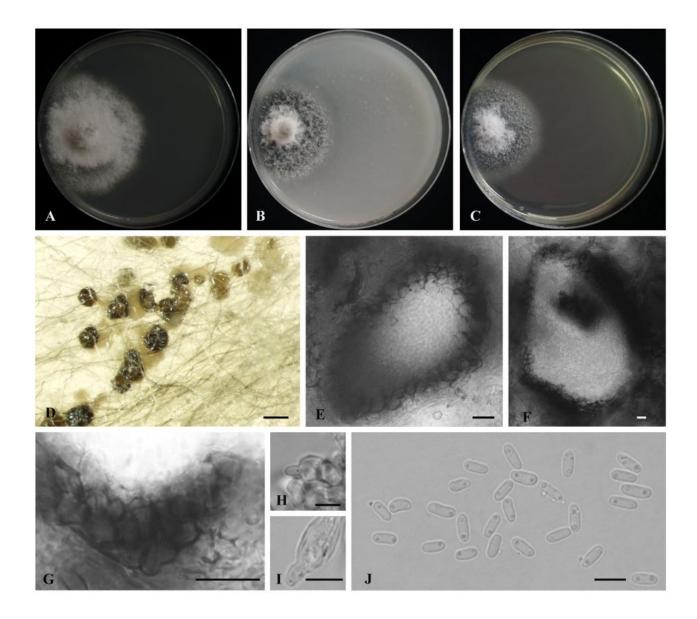

Species	Strain	Host, substrate	Country	GenBank accession numbers				
	number			LSU	ITS	rpb2	tub2	
Neodidymelliopsis achlydis	CBS 256.77	Achlys triphylla	Canada	KT389749	KT389531	_	KT389829	
Xenodidymella applanata	CBS 115577	Rubus idaeus	Sweden	KT389762	KT389546	KT389688	KT389850	
Xenodidymella catariae	CBS 102635	Nepeta cataria	Netherlands	GU237962	GU237727	KP330404	GU237524	
Xenodidymella humicola	CBS 220.85	<i>Franseria</i> sp.	USA	GU238086	GU237800	KP330422	GU237617	
Neoascochyta europaea	CBS 819.84	Hordeum vulgare	Germany	KT389728	KT389510	KT389645	KT389808	
Neoascochyta graminicola	CBS 102789	Lolium perenne	New Zealand	KT389736	KT389518	KT389649	KT389816	
Neoascochyta Soli	CGMCC 3.18365	Soil	China	KY742275	KY742121	_	KY742363	
Ectophoma multirostrata	CBS 110.79	Cucumis sativus	Netherlands	GU238110	FJ427030	LT623264	FJ427140	
Ectophoma multirostrata	CBS 274.60	Soil	Maharashtra	GU238111	FJ427031	LT623265	FJ427141	
Cumuliphoma indica	CBS 654.77	Unknown	India	GU238122	FJ427043	LT623261	FJ427153	
Cumuliphoma indica	CBS 991.95	Soil	Papua New Guinea	GU238121	FJ427044	LT623262	FJ427154	
Juxtiphoma eupyrena	CBS527.66	Wheat field soil	Germany	GU238073	FJ427000	LT623269	FJ427111	
Juxtiphoma eupyrena	CBS 374.91	Solanum tuberosum	The Netherlands	GU238072	FJ426999	LT623268	FJ427110	
Remotididymella bauhiniae	MFLU 18- 2118	Bauhinia	Thaland	MK347954	MK347737	MK434914	MK412884	
Remotididymella destructiva	CBS 133.93	Solanum lycopersicon	Guadeloupe	GU238064	GU237779	LT623257	GU237602	
Vacuiphoma bulgarica	CBS 357.84	Trachystemon orientale	Bulgaria	GU238050	GU237837	LT623256	GU237589	
Vacuiphoma oculihominis	FMR 13801	Human superficial	USA	LN907451	LT592954	LT593093	LT593023	
Similiphoma crystallifera	CBS 193.82	Chamaespartium sagittale	Austria	GU238060	GU237797	LT623267	GU237598	

Species	Strain	Host, substrate	Country	GenBank acc			
	number			LSU	ITS	rpb2	tub2
Vandijckomycella joseae	CBS 144948	Garden soil	The Netherlands	MN823440	MN823589	MN824614	MN824763
Vandijckomycella joseae	CBS 143011	Garden soil	The Netherlands	MN823441	MN823590	MN824615	MN824764
Vandijckomycella snoekiae	CBS 144954	Garden soil	The Netherlands	MN823442	MN823591	MN824616	MN824765
Longididymella clematidis	CBS 123705	Clematis ligusticifolia	USA	FJ515634	FJ515593	MT018076	FJ515611
Longididymella vitalbae	CBS 123707	Clematis vitalba	Switzerland	MH874853	MH863321	MT018075	FJ515613
Sclerotiophoma versabilis	CBS 124689	Human toenail	Denmark	MN943723	MN973517	MT018123	MT005617
Sclerotiophoma versabilis	CBS 876.97	<i>Silene</i> sp.	The Netherlands	GU238152	GU237909	MT018124	GU237664
Paramicrosphaeropsis ellipsoidea	CBS 197.97	Quercus ilex	Spain	MN943780	MN973574	MT018224	MT005680
Paramicrosphaeropsis ellipsoidea	CBS 194.97	Quercus ilex	Spain	MN943781	MN973575	MT018225	MT005681
Ectodidymella nigrificans	CBS 100190	Brassica napus	Germany	GU237967	GU237708	MT018078	GU237530
Ectodidymella nigrificans	PD 84/512	Crucifer	The Netherlands	GU237966	GU237919	MT018077	GU237529
Pseudopeyronellaea eucalypti	CBS 142522	Eucalyptus pellita	Malaysia	KY979810	KY979755	KY979848	KY979921
Pseudopeyronellaea eucalypti	CPC 27682	Eucalyptus pellita	Malaysia	KY979811	KY979756	KY979849	KY979922
Dimorphoma saxea	CBS 298.89	Limestone	Germany	MH873865	MH862175	MT018299	GU237654
Dimorphoma saxea	CBS 419.92	Corroded mediterranean marble	Germany	MH874030	MH862364	KP330429	MT005727
Macroascochyta grandis	CBS 100409	<i>Tradescantia</i> sp.	New Zealand	GU238057	GU237712	MT018063	GU237593
Anthodidymella ranunculacearum	MFLUCC 17-2184	Clematis vitalba	Italy	MT214550	MT310597	MT394681	-
Anthodidymella ranunculacearum	MFLUCC 17-2209	Clematis vitalba	Italy	MT214551	MT310598	_	_

Species	Strain number	Host, substrate	,,		cession numbers			
	number	Substitute		LSU	ITS	rpb2	tub2	
Neoscirrhia osmundae	CPC 38085	Sasa veitchii	Netherlands	MW883822	MW883430	MW890066	MW890135	
Nothomicrosphaeropsis welwitschiae	CPC 38879	Welwitschia mirabilis	Namibia	MW883826	MW883434	MW890067	MW890138	
Leptosphaeria doliolum	CBS 505.75	Urtica dioica	Netherlands	GQ387576	JF740205	KT389640	JF740144	


CBS: Westerdijk Fungal Biodiversity Institute (formerly CBSKNAW), Utrecht, The Netherlands; CGMCC: China General Microbiological Culture Collection, Beijing, China; BRIP: Plant Pathology Herbarium, Department of Employment, Economic, Development and Innovation, Queensland, Australia; MFLUCC: Mae Fah Luang University Culture Collection, Chiang Rai, Thailand; FMR, Facultat de Medicina, Universitat Rovira i Virgili, Reus, Spain;LC: Cai's personal collection deposited in laboratory, housed at CAS, China; YMF: Herbarium of the Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, Yunnan, P.R. China; CPC: Culture collection of Pedro Crous housed at the CBS.

Figures


Figure 1

Phylogenetic tree derived from Bayesian analysis based on combined LSU, ITS, *rpb2* and *tub2* sequences of 89 strains representing species in Didymellaceae. The numbers above branches represent Bayesian posterior probabilities (left) and maximum-likelihood bootstrap percentages (right). Bootstrap percentages over 50% and significant Bayesian posterior probability (0.8) are shown on the respective branches. Some branches were shortened to fit them to the page – these are indicated by two diagonal lines with the number of times a branch was shortened indicated next to the lines. New taxa introduced in this study are formatted in bold. The tree was rooted to *Leptosphaeria doliolum* (CBS 505.75).

Figure 2

M. speciosa (CGMCC 3.20982, holotype). A. Colony on PDA (front). B. Colony on OA (front). C. Colony on MEA (front). D. Pycnidia forming on OA. E-F. Pycnidium. G. Section of pycnidial wall. H. Conidiogenous cells. I. Conidia. Scale bars: D = 200 µm; E-F = 20 µm; G-I = 5 µm.

Figure 3

M. ageratinae (CGMCC 3.20981, holotype). A. Colony on PDA (front). B. Colony on OA (front). C. Colony on MEA (front). D. Pycnidia forming on OA. E-F. Pycnidium. G. Section of pycnidial wall. H-I. Conidiogenous cells. J. Conidia. Scale bars: D = 200 µm; E-G = 10 µm; H-J = 5 µm.