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Abstract

Background
The present study aimed to investigate the relationship between �uoride concentration and mineral
distribution within the dentinal lesion body.

Materials and Methods
Remineralization of arti�cial deep dentinal lesions with various levels of �uoride was studied using
scanning electron microscope, microhardness tests and polarized light microscope. Human molars were
exposed to demineralization at pH 5.0 for two weeks. Then they were divided into different groups for
remineralization with different �uoride concentrations (0.1–10.0 ppm) for 1, 2, 3 and 4 weeks.

Results
The results indicated a proportional relationship between �uoride concentration and dentinal lesion
remineralization from 0.1–10.0 ppm. In the present study the formation of a well-remineralized surface
layer inhibited remineralization at the lesion front. On the other hand the lesion front remineralization was
found to be independent from �uoride concentration.

Conclusions
Our results stated that for effective remineralization of dentinal lesions to the innermost part, �uoride
levels from 1.0–5.0 ppm have the highest e�ciency.

Background
In the last few decades enamel remineralization has been a major subject of numerous studies [1–11].
The role of different �uoride concentrations in calcium-phosphate containing remineralizing solutions
[12–16], toothpastes, varnishes, gels and dentifrices [17–22], glass ionomer cements [23–25], bonding
agents [26], composites [27, 28], chewing gums [29, 30] and slow-release devices [31–33] in
remineralizing incipient and advanced natural as well as arti�cial enamel lesions [3, 9, 34–36] is well-
documented in the literature.

The thermodynamic driving forces and kinetic factors involved in enamel lesion formation have been
intensively investigated and analysed in situ and in vitro [37–50]. Moreover, remineralizing such lesions
with various concentrations and forms of �uoride (sodium �uoride, stannous �uoride,
mono�uorophosphate sodium, acidulated phosphate �uoride, amine �uoride, silver �uoride and silicate
�uoride) to enhance remineralization has also been extensively studied [10, 51–58].
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Relatively few studies have tested the remineralization phenomenon in dentin together with the effect of
�uoride on remineralizing dentinal lesions. Although remineralizing dentin with �uoride containing
remineralizing solutions follows the same general physicochemical principles of enamel
biomineralization, such a process is more complicated in dentin than in enamel due to the compositional
and ultrastructural differences between both tissues. Dentin is composed of 20 wt% organic matrix while
in enamel it is about only 1 wt%. 90% of the organic phase in dentin is made up of collagen (mainly type
I) while the remaining 10% are of non-collagenous components. In enamel proteins form the major
portion of the small inorganic phase. Moreover, the presence of dentin tubules, their orientation, numbers
and diameters in�uence dentin permeability and affect the diffusion process. Not only the volume but
also the composition of the inorganic phase is different in dentin and enamel, 70 wt% in dentin and 96
wt% in enamel. The small dimensions of dentin crystallites, the proportions of carbonate and magnesium
ions incorporated in the hydroxyapatite lattice, their crystallinity and composition with dentin porosity
complicate the remineralizing process even more. In addition to these differences, dentin of
mesenchymal origin is a biologically active tissue that forms one complex with the pulp through their
histological, structural and chemical interactions, unlike the ectodermal acellular enamel which is a
biologically inert tissue.

The role of �uoride in enamel remineralization is of a particular interest for preventive measures. In
addition, these preventive purposes were also the driving forces behind remineralizing dentinal lesions for
the sake of arresting dentin root caries [59–64], while remineralizing coronal dentinal lesions is of a
curative importance and has its clinical implications in repairing deep dentinal carious lesions under
dental �llings. Such deep dentinal lesions are prone to remineralization under certain conditions which
favour crystal growth on partially demineralized dentin [65–77].

It is generally accepted that dentin is capable of remineralization but the distribution of mineral ions in
the presence of �uoride within the lesion body and the depth at which the lesion can still be remineralized
are not well clari�ed at present. The purpose of this study was to determine the level of �uoride which
could enhance the remineralization of a dentinal lesion.

The role of �uoride in remineralizing the lesion surface, body and front is to be studied together with the
possible in�uence of the dense surface mineralized layer on remineralizing the lesion body and/or front.
In this paper we aimed to test the hypotheses that �uoride is capable of remineralizing the dentinal lesion
front and thus it is e�cient in decreasing the lesion depth.

Materials And Methods

Sample Preparation:
Seventy-�ve extracted human third molars were obtained from an oral surgeon’s private clinic and used
within 5 months of extraction. After extraction teeth were immediately stored at room temperature in
distilled water to which sodium-azide was added to prevent bacterial growth. All teeth were clinically
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sound and they were carefully observed for caries, abrasions or any mechanical traumas. Teeth were
cleaned with a tooth brush and sometimes with a scalpel to remove the periodontal ligament and
intercrestal bone remnants and rinsed under running tap water. They were embedded individually in
transparent cold-curing methylmethacrylate (Technovit 4004, Kulzer GmbH, Wehrheim, Germany). To
expose deep-coronal dentin, the occlusal half of each tooth was cut using a slow speed water-cooled
diamond saw (Isomet, Beuhler, Illinois, USA). Dentin exposed surfaces were then polished �at with water
proof silicon carbide abrasive paper (P500-grit) with Leco VP 100 (GmbH, Neuss, Germany).
Subsequently they were polished using wet polishing paper with a silicone paste of polycrystalline
diamonds of size 9 µm (DAP-7, Struers, Copenhagen, Denmark).

Lesion Formation:
Dentin surfaces and the surrounding Technovit were coated with two coats of nail varnish (Keyte GmbH,
München, Germany) to avoid the penetration of the solution into any marginal gaps that could exist
between the tooth and the acrylate, whilst leaving two windows of exposed deep-coronal dentin per tooth.
Adhesive paper was cut into 2x5 mm² pieces and attached to the dentin surfaces before applying the nail
varnish to standardize the windows’ sizes. The samples were then kept in air for about half an hour to dry
the nail varnish and after the removal of the adhesive paper they were immersed in the demineralizing
solution (40 ml per sample). The demineralization solution contained 50 mM acetic acid, 2.2 mM
CaCl2.2H2O, 2.2 mM KHPO4, 1 mM NaNa3, 2 M KOH. No �uoride was added to the demineralizing
solution. The pH was adjusted to 5.0 with drops of KOH and was measured throughout the
demineralizing period (two weeks with gentle shaking (Müller Schüttler, München, Germany) at 37°C. The
demineralizing solution was refreshed weekly to avoid changes of the solution’s pH of more than half a
pH unit.

Remineralization:
After arti�cial lesion formation the samples were washed with distilled water and divided into six groups
(n = 12 per group). Each group was transferred to a �ask containing 1 l of remineralizing solution
composed of 20 mM HEPES, 1.5 nmM CaCl2.2H2O, 0.9 mM KHPO4, 130 mM KCl, and 3.08 mM sodium-
azide with the pH adjusted to 7 with KOH. Different �uoride concentrations were used for each group 0,
0.1, 0.5, 1.0, 5.0 and 10.0 ppm as NaF. Again, remineralization was performed with shaking at 37.0°C.
After the �rst week the pH of the solutions was measured to be 7.2 for all groups, three samples were
taken from each group and kept in Ringer solution until and during the processing period which always
began on the same day, the solutions were refreshed, and the �asks were returned to the shaker once
again. The same procedure was repeated every week for four weeks. The experimental groups are shown
in Table 1.
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Table 1
After lesion formation samples were divided into groups to be

remineralized with various �uoride concentrations for
different periods of time.

                  Time

Group

Week 1 Week 2 Week 3 Week 4

A (F = 0.0 ppm) A1 A2 A3 A4

B (F = 0.1 ppm) B1 B2 B3 B4

C (F = 0.5 ppm) C1 C2 C3 C4

D (F = 1.0 ppm) D1 D2 D3 D4

E (F = 5.0 ppm) E1 E2 E3 E4

F (F = 10 ppm) F1 F2 F3 F4

Samples For Lesion Assessment:
The teeth were cut perpendicularly to the two windows at the dentin surface with a thin diamond blade on
a saw microtome (Leica SP 1600, GmbH, Nußloch, Germany) under tap water into thin (120 µm) and
thick (280 µm) sections. Each section was then polished �at with wet silicon carbide abrasive paper (800-
grit) to obtain a plano-parallel slice of 110 µm and 250 µm thickness. Thin slices were used for imbibition
in quinoline (Quinoline 22650, Fluka Chemie GmbH, Hamburg, Germany). They were then mounted for
microscopic examination. Lesion depth was measured along a vertical line perpendicular to the tooth
surface extending from a point at the lesion surface to a point at the non-demineralized surface
throughout the lesion body to the inner most border of the lesion. The thick samples were divided into two
groups. The �rst was taken for microhardness testing and the second was prepared for the
morphological evaluation in a Field Emission Scanning Electron Microscope (FE-SEM).

Analytical Tools:

Microscopy:
Quinoline with polarized light (Axioskope 2, MAT, Carl Zeiss Jena GmbH, Göttingen, Germany) was used
for the visual qualitative analysis of the lesions before and after remineralization. Digital images were
taken with the image analysis software Axiovision (Rel. 4.4, SP2, Carl Zeiss Jena GmbH, Göttingen,
Germany) for Polarized Light Microscope (PLM).

Microhardness:
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Testing the microhardness of the remineralized dentin was performed with a Vickers pyramid diamond
indenter at 500 mN/mm² and an automatic microhardness tester Fischerscope H100C (Helmut Fischer
GmbH, Sindel�ngen, Germany). Two lines were made per lesion in which each line was composed of 4–6
points which were spaced by 50–70 µm. Each line extended vertically through the lesion from a point just
beneath the lesion bottom up to the surface to determine Cross Surface Micro-Hardness (CSMH)
throughout the lesion.

FE-SEM:
To obtain information on the morphology of the mineral depositions a FE-SEM was used. Samples were
immersed in 50% alcohol for 20 min, then in 70%, 80% and 90% alcohol each for twenty minutes. Finally,
they were kept overnight in 96% alcohol. Samples were immersed in Hexamethyldisilazane for 10 min
and air dried at room temperature according to Perdigao et al. (1995) [78]. Then liquid nitrogen (-70°) was
used for each sample for few seconds to facilitate the fracture before using a scalpel to initiate a crack
from the pulpal side. Each sample was then �xed on the SEM sample holder with carbon paste. Gold
sputtering was done for 1 min, with 1.0 kV, 0.3 mbar and 40 mA (Edwards Sputter Coater S15OB, Sussex,
UK). Pictures where then made with a Leo FE-SEM (Leo DSM 982, Carl-Zeiss NTS GmbH, Oberkochen,
Germany).

Throughout the whole experimental procedure care was taken to avoid sample drying and dentin
desiccation particularly after lesion was formed with the exception of the SEM samples were drying was
mandatory.

Results
Lesion depth before and after remineralization with various �uoride concentrations after 1, 2, 3 and 4
weeks was measured by polarized light microscope (PLM) and is shown in Table 2.
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Table 2
Lesion depth before remineralization (BR) and

after remineralization (AR) in each group (Mean 
± SD) as observed with the polarized light

microscope.
F level (ppm) Time (days) Lesion depth (µm)

BR ≈0.0 14 210 ± 10

AR 0.0 7

14

195 ± 10

200 ± 15

0.1 7

14

165 ± 20

168 ± 20

0.5 7

14

170 ± 10

165 ± 15

1.0 7

14

169 ± 15

167 ± 15

5.0 7

14

165 ± 10

163 ± 20

10.0 7

14

170 ± 30

169 ± 20

Lesions which were remineralized without any �uoride additions to the remineralizing solution (group A)
showed no decrease in lesion depth either microscopically determined or with the microhardness pro�les.
Moreover, no changes were observed in the dentin hardness throughout the lesion even after 4 weeks (A4)
of remineralization except for the surface layer where the Vickers indentations showed higher values. The
surface values were equal to and sometimes even exceeded the values of sound dentin in the third (A3)
and fourth week (A4) (Diagram 1). Table 3 shows the mean values of the Cross Surface Micro-Hardness
(CSMH) per group.

Diagram 1: Microhardness representative pro�les for groups A4 (0.0 ppm �uoride, week 4) and E4 (5.0
ppm �uoride, week 4). Note the low microhardness values measured within the lesion body without
�uoride in comparison with the high values when �uoride is added to the remineralizing solution (5.0
ppm).

Table 3: The mean microhardness values measured with the Vickers indenter throughout the lesion per
group. The average of the surface layer at week 4 for each group is given. 
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Time

Group

Week
1

Week
2

Week
3

Week
4

CSMH values at the
lesion surface at
week4

A 6.023 15.012 10.110 9.192 88.079

B 5.533 16.091 19.073 18.212 16.714

C 5.045 23.784 22.998 23.719 21.926

D 7.013 29.109 28.534 28.113 27.152

E 9.942 28.075 36.159 36.991 56.166

F 10.554 10.962 15.382 11.987 79.688

FE-SEM pictures of the surface of the control group (A) showed well-mineralized intertubular dentine with
some mineral precipitates at the surface. Peritubular dentin was also seen with tubules’ diameters within
the normal range (1.5–2.5 µm), decreased or even occluded. Intertubular dentin at the fracture surface
was more mineralized in group A3 than in A2 as shown in Figs. 1 and 2.

With the presence of �uoride ions in the remineralizing solution (0.1, 0.5 and 1.0 ppm) the distribution of
minerals and the pattern of remineralization changed. After one week there were no differences between
the groups B1, C1 and D1 and the control group A1 in any of the used analytical tools except that the
lesion depth was decreased by 40 µm in the �rst three groups although the decrease was not constant in
all samples and was not affected by differences in the �uoride concentrations. However, the SEM pictures
of groups B2, C2 and D2 showed much more surface mineralization with well-remineralized intertubular
dentin and prominent thick peritubular dentin, and many of the dentin tubules were occluded as in Fig. 3.
Crystalline precipitates were also observed at the surface. The upper most surface layer of the fractured
side appeared morphologically to be more mineralized than the remainder of the lesion body although the
lesion body was also mineralized to the extent that borders of the dentin tubules within the lesion were
not very distinguishable (Fig. 4). Although the hardness tests did not demonstrate an increased hardness
of the surface of these lesions, they showed an improved hardness in the lesion body in comparison with
the control group. After the fourth week the hardness values were also increased at the surface but did
not exceed the normal values.

PLM showed banding near the surface and within lesion body in groups B, C and D (Fig. 5). The banding
seen with the PLM and the improved hardness measured by the Vickers indenter were strongly related to
the �uoride concentration (D > C > B). Increasing the remineralization time also enhanced these effects
(3rd week > 2nd week). After the �rst week there was no further decrease in lesion depth throughout the
experimental period for all groups. Groups E and F had better hardness values from the �rst week (E1 and
F1). Moreover, an apparent surface layer appeared in the PLM, especially during the last two weeks (E3,
E4, F3 and F4). Although the hardness measurement with the Vickers indenter did not show higher values
at the surface in groups E and F, the SEM pictures were full of precipitates that occluded the dentin
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tubules which were clearly surrounded with peritubular dentin and hyper-mineralized areas as in Figs. 6
and 7. The hyper-mineralized areas were not continuous in group E while they formed a dense hyper-
mineralized layer in group F. Mineral precipitates were also found at the fracture side within the lesion
body in both groups (Fig. 8).

Discussion
In the 90s, caries researchers such as ten Cate and Arends had focused on the effects of �uoride on
dentin de- and remineralization in addition to their known studies of its effects on both phenomena in
enamel. Ten Cate demonstrated that dentin has a much higher uptake capacity for �uoride than enamel
[15,16], while Arends showed the ability of both bovine and human dentin to ‘over-remineralize’
[27,65]. However, in our study the remineralizing solution without �uoride addition did not contribute at all
in remineralizing the lesion body together with its front. Moreover, a well-remineralized surface layer can
still be formed even without �uoride and without observing a signi�cant remineralization within the lesion
body or decrease in lesion depth. These results were partially in agreement with Kawasaki et al., (2000)
who found that a surface layer was formed even without �uoride addition although this case showed a
better overall remineralization than lesions which were remineralized in the presence of high �uoride
levels (10 ppm). The difference in mineral distribution within the lesion in both studies can be due to the
differences in the study’s design and materials and methods so that a direct comparison between both
studies cannot be made. First because his results were relative to other types of lesions in that study and
second because the methods of evaluation used in the two experiments are not comparable because
mineral deposition can occur within the lesion without contributing to its hardness [79]. In addition,
differences in the structure and behaviour between crown and root dentin due to differences in their
development have been suggested by Goldberg and Smith (2004) [80]. Furthermore, the volume of the
remineralizing solution per sample in the mentioned study was much smaller than ours which in return
affects the remineralization rate. 

In our experiment increasing the volume of demineralizing solution, demineralization duration, solution
stirring and refreshment probably resulted in an increased demineralization rate [81], and increased lesion
depth with increased baseline mineral loss [82].

The increase in mineral loss increases the concentration gradient after putting the sample into a
remineralization solution which in turn increases the initial remineralization rate [6,55]. 

According to Fick’s �rst and second laws the �ux of a material across a membrane is a function of both
the concentration gradient (thermodynamic factor) as well as the diffusion coe�cient (kinetic
parameter). The rate of transport is faster when the concentration gradient is steeper [83]. The diffusion
of mineral ions into and through the lesion is the rate limiting step for remineralization [56,84]. Rapid
precipitation of ions at the �rst reactive mineral surfaces leads to fast removal of the ions from the
solution which retards any mineral deposition deep in the lesion [84]. In this case fast precipitation at the
surface of the lesion will prevent ions from reaching the innermost part of the lesion because of the sharp
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reduction of the thermodynamic force at the beginning and the blockage of pores at lesion surface later
in the process [1,35]. Therefore, ion precipitation can be also considered to be a rate limiting factor in the
remineralization process where faster diffusion means faster precipitation at the surface which in return
forms a dense mineralized surface layer which inhibits further diffusion.

In the presence of �uoride, the overall remineralization pattern showed by FE-SEM, PLM and through the
microhardness measurements changed in terms of mineral distribution within the lesion. Low levels of
�uoride (0.1, 0.5 and 1.0 ppm) resulted in signi�cant remineralization although this was not apparent in
the �rst week. Remineralization occurred at the lesion front as detected by decreased lesion depth under
PLM. The higher hardness values which were evident throughout the lesion correlated well with the
banding of the same lesions under PLM. No attempts were made to analyse the mineral bands shown in
the microscope although some references suggest that �uoride is responsible for this lamination
phenomenon in dentin [85,86] and the total double refraction in water for enamel was correlated well with
its mineral content [43]. Mineralized inter- and peritubular dentin with the decreased in diameter or
partially or totally occluded dentin tubules were clearly visible in FE-SEM pictures. According to the SEM
and PLM pictures the remineralization in the three groups (B, C and D) was enhanced with increasing the
remineralization time (4th week > 3rd week > 2nd week). In the present study, no attempts were made to
compare directly between the three used methodologies since the information obtained from each
quanti�es a different physical property related to the tissue [43]. When �uoride was added to the
remineralizing solution at higher concentrations (5.0 and 10.0 ppm) the SEM pictures revealed an
obvious well-mineralized dentinal surface with dense precipitates accumulated in and on the inter- and
intra-tubular dentin as well as partially or totally occluded dentin tubules. We tried to measure the
thickness of the hyper-mineralized surface layer depending on its morphology for both groups (E and F)
from the fractured side. There were always differences in the measurements so that we could not
estimate its thickness but we concluded that the hyper-mineralized surface layer in groups E2 and E3 was
not continuous because there were differences in its thickness within the same sample. Based on the
SEM and PLM pictures and the microhardness values of groups E2, E3 and E4 we hypothesize that the
non-continuous surface layer in these groups could not inhibit the diffusion process into the lesion or
prevent lesion body remineralization. Our results are in agreement with Arends et al., (1990) [27] who
found that the lesion front could be remineralized even after the formation of a hypermineralized surface
layer using 5.0 ppm �uoride. A mineralized surface layer does not always prevent the deposition of
minerals elsewhere in the lesion (Damen et al., 1998) [68]. In comparison remineralization behaviour in
groups F2, F3 and F4 were similar to the control groups in which a hyper-mineralized surface layer was
formed without evident remineralization in the lesion body. This possible inhibitory effect of a
hypermineralized �uoridated surface layer on the remineralization of the lesion front was stated by
Kawasaki et al., (2000) [70].

No attempts were made to qualify the precipitated crystallites in and on the lesion surface. According to
the literature, under conditions where �uoride levels are low and the pH is higher than 4.5,
�uorohydroxyapatite10 or even �uoroapatite [87] have the highest probability to form. 
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Our results were very much similar to those found in literature regarding remineralization of the lesion
front. In the absence of �uoride, remineralization did not appear to take place at the lesion front and the
lesion depth did not decrease [61,69,70]. Limited decrease in lesion depth after �uoride addition to the
remineralizing solution was also previously documented [15,27,35,56,61,63,65,84]. Various levels of
�uoride (0.1-10.0 ppm) dramatically affected the surface mineralization. The surface remineralization
was proportional to both �uoride concentration and duration of remineralization [27,65].

We concluded from our results that incorporation of relatively small amounts of �uoride in the
remineralizing process (0.5, 1.0 and 5.0 ppm) has the highest bene�cial effect on dentinal lesion
remineralization because such concentrations seem to be high enough to maintain a gradient at the
lesion front, thus activating the thermodynamic driving force throughout the whole lesion. On the other
hand, they are low enough to keep a constant diffusion rate to the innermost part of the lesion, thus
controlling the kinetic of the precipitation process at least until the appearance of other inhibitory factors
which spontaneously stop the process.

Such inhibitory factors could be:

1. The concentration gradient is not strong enough to maintain effective thermodynamics.

2. The rapid precipitation of ions at the �rst reactive surface areas of the dentinal crystallites which in
turn blocks the lesion pores at the surface [1,35,70,84].

3. The limited capacity of the dentinal front to remineralize, which is -most probably- due to the
physical presence and chemical composition of the remaining organic phase where both properties
can strongly restrict crystal growth [69,76,88,89]. Hence, remineralization in this deepest area of the
lesion is always limited and independent of �uoride concentrations.

Therefore, we suggest that neither number of available sites for remineralization alone [63] nor diffusion
of ions solely [56] is completely responsible for controlling the remineralization phenomenon at dentinal
lesion front.

Conclusion

The present study indicates:
1. The in�uence of �uoride concentration in determining the rate as well as the pattern of mineral

deposition in dentinal lesion.

2. The independence of lesion front remineralization from �uoride concentration which could be due to
its limited capacity for remineralization.

Abbreviations
FE-SEM



Page 12/25

Field Emission Scanning Electron Microscope
CSMH
Cross Surface Micro Hardness
PLM
Polarized Light Microscope
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Diagram 1
Diagram 1 is available in the Supplementary Files section.

Figures

Figure 1

Fractured side from the upper most surface of the lesion from the control group at the second week (A2)
(x10000). Note the remineralized inter- and peri-tubular dentin.
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Figure 2

Fractured side from the upper most surface of the lesion from the control group at the third week (A3)
(x10000). Note the hyper-mineralized inter- and peri-tubular dentin.
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Figure 3

The surface of a remineralized lesion from group B2 (0.1 ppm �uoride, 2 weeks). Note the well-
remineralized inter- and peri-tubular dentin (x5000).
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Figure 4

Fractured side of a lesion from group B3 shows clearly the remineralized intertubular and peritubular
dentin as well as remineralization within the dentin tubules (x3000).
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Figure 5

Remineralized dentinal lesion from group C3 (0.5 ppm �uoride, 3 weeks) with Polarized light microscope
(x10). Note the remineralization band within the lesion (arrows). The method of lesion depth measuring is
shown.
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Figure 6

The occluded tubules at the surface of a sample from group E3 (5.0 ppm �uoride, 3 weeks) (x5000).
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Figure 7

Hyper-mineralized inter-tubular dentin and thick peri-tubular dentin at the surface of a sample from group
F2 (10.0 ppm �uoride, 2 weeks) (x10000).
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Figure 8

Remineralized precipitates (arrows) within the dentin tubules of the lesion body, the sample is from group
E2 (5.0 ppm �uoride, 2 weeks) (x5000).
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