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Abstract
Ornamental �sh are becoming increasingly popular, but the lack of knowledge regarding their various
diseases is a major challenge. Skin diseases commonly found in freshwater �sh include black spot
disease (BSD), which is characterized by melanin deposits around the metacercariae of some trematode
species. Since BSD remains poorly understood, this study describes an outbreak of BSD in Etroplus
maculatus raised in outdoor ponds at a Brazilian �sh farm. Metacercariae samples were collected,
examined, and subjected to molecular phylogenetic analysis. The parasites were conspeci�c to an
unnamed species, Crassiphiala lineage 5, recently found in Brazilian birds (Megaceryle torquata).
Sequences obtained for longifurcate cercariae of the planorbid snail Biomphalaria straminea from the
same region were identical to our metacercariae of Crassiphiala sp. These results suggest that
Biompahalaria snails are likely an intermediate host of this parasite on farms where E. maculatus was
found to be infected. We provide the �rst molecular evidence that Crassiphiala are the causative agents
of BSD in �sh from Brazil. Combatting snails and preventing access of �sh-eating birds to outdoor ponds
are strategies to control this disease in ornamental �sh farms.

1. Introduction
The aquaculture industry in Brazil focuses mainly on �sh products for human consumption. However, the
pet industry is growing steadily, and ornamental �sh are now the fourth most popular pet in the country
Rezende et al., 2021; Valenti et al., 2021;). Freshwater ornamental �sh farming occurs mainly in
southeastern Brazil, especially in the states of São Paulo and Minas Gerais (Faria, 2016; Valenti et al.,
2021).

Among the diseases commonly reported in freshwater �sh are black spot disease (BSD), which is mainly
caused by parasitism by members of the family Diplostomidae (Lane and Morris, 2000; Niewiadomska,
2002), but also by some species of Heterophyidae (Sándor et al., 2017; Denis et al., 2019; Du�ot et al.,
2021). The name of this disease alludes to the macroscopic aspect of infected animals, where melanin
produced by melanomacrophages is deposited around the encysted metacercariae. (Bush et al., 2001;
Thatcher, 2006; Denis et al., 2019). This alteration also results in an unpleasant appearance of �sh reared
for ornamental purposes and contributes to rejection by consumers, which can be detrimental to
businesses (Lane and Morris, 2000).

We aimed to identify the etiological agent of BSD in Etroplus maculatus, a farmed ornamental �sh
species in Brazil.

2. Material And Methods

2.1. Fish sampling and parasitological examinations
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An outbreak of BSD was observed in E. maculatus raised in outdoor tanks at a Brazilian �sh farm. A total
of 13 live �sh (mean weight of 3 g) were collected and immediately transported to diagnostic laboratory.
Fish were kept in aquaria, fed commercial �sh food, and processed for parasitological analysis.

2.2. Parasitological examinations
For metacercariae recovery, the �sh were euthanized by immersion in a benzocaine solution (250 mg/L).
The �sh integuments (skin and �ns) were examined under a stereomicroscope, the metacercariae were
counted, and cysts were removed using metal needles. These were mounted between glass and
coverslips. Larvae were mechanically excystized and mounted as described above or killed in 70 ºC water,
and �xed in 10% formalin. Specimens were stained with alum acetocarmine, dehydrated in a crescent
ethanol series, diaphanized in beechwood creosote, and mounted between slides and coverslips with
Canada balsam. Parasite preparations were examined under a light microscope (Leica DM500) and
photographed using a Leica ICC50 HD digital camera. The dimensions of the cyst and larvae were
obtained from the photographs and represented in micrometers (µm).

We attempted to obtain the adult stage of the parasite for speci�c taxonomic identi�cation by orally
inoculating four young chickens (Gallus dosmeticus) and two jirds (Meriones unguiculatus). They were
forced to swallow a solution containing 20 encysted metacercariae removed from E. maculata. The
vertebrates were kept under laboratory conditions with ad libitum access to water and food. Fecal
samples were examined using the spontaneous sedimentation technique to evaluate infection success.

Animals were euthanized and necropsied 12 days post-infection to detect adult parasites in their
intestines. The use of vertebrate animals in the experiments followed the protocol approved by the Local
Ethics Committee in Animal Experimentation (CEUA-UFMG, protocol 68/2017).

2.3 Molecular analyses
Samples of encysted metacercariae were �xed in ethanol 95% and stored at -20°C until use. Partial
regions of the 28S (primers Dig12 and 1500R), ITS (primers D1 and D2), and cox1 (primers JB3 and COI-R
Trema) genes were ampli�ed by PCR, using previously described conditions (Galazzo et al., 2002; Tkach
et al., 2003; Miura et al., 2005). Additionally, cercariae previously found in Biomphalaria straminea in the
same geographic area (Lopez-Hernandez et al., 2019) were sequenced using the same region of cox1 to
evaluate the similarity to E. maculatus.

Sequence data were edited using Chromas Pro software (Technelysium Pty Ltd, Australia), and the
contigs were used for similarity searches in the Basic Alignment Search Tool (BLAST). Alignments were
constructed using MEGA X (Kumar et al., 2018), and sequences of the closest genera available in
GenBank were included. The evolutionary models used in the phylogenetic analysis were determined
using the Bayesian information criterion in MEGA X and outgroup selections were based on phylogenies
published by Achatz et al. (2019). Phylogenetic analyses were performed using maximum likelihood and
Bayesian inference methods. The maximum likelihood trees were generated in MEGA X (bootstrap test
with 1000 repetitions). Bayesian inference analyses were performed in MrBayes v.3.2.6 (Ronquist et al.,
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2012) using Markov Monte Carlo chain searches in two simultaneous runs of four chains per 1,000,000
generations and sampling every 100 generations. The �rst 25% of the examined trees were discarded as
'burn-in'.

3. Results And Discussion
Morphological and molecular data on metacercariae involved in BSD in E. maculatus revealed the
presence of a species of the genus Crassiphiala Van Haitsma, 1925 (Diplostomidae: Crassiphialinae). A
total of 144 metacercariae were counted in the 13 specimens evaluated, with a mean infection intensity
of 11 ± 8 (3–32) metacercariae/�sh. Macroscopically, cysts were found in the teguments and �ns (Fig.
1), and they were covered by a dark melanin deposit produced by melanomacrophages. The resulting
black spots were 0.5 mm in size (Fig. 2 A, B). 

Morphologically, the cysts were small, oval to spherical, measuring 337 ± 19 (310–366) µm × 339 ± 27
(295–383) µm, with a resistant wall, 33 ± 8 (26–47) µm thick, containing an oval internal cyst, 218 ± 6
(212–224) µm thick, with a thin tick membrane (Fig. 2C). Excysted larvae were very small, with a body
bipartite, 409 ± 71 (303–454) µm (Figure 2D, E). The forebody was elongated to oval, 216 ± 37 (163–245)
µm × 101 ± 16 (89–125) µm. The hind body was oval, 194 ± 35 (141–219) µm × 149 ± 12 (135–163) µm.
The oral sucker was subterminal with an oval shape of 36 ± 3 (32–38) µm × 36 ± 5 (29–41) µm. The
pharynx muscle was spherical, measuring 25 ± 3 (22–28) µm × 26 ± 2 (24–29) µm. The ventral sucker
was transversely oval, measuring 33 × 45 µm. The holdfast organ was transversely oval, occupying 50%
of the forebody, which was a differential trait related to the species of Crassiphiala. Attempts to obtain
adults from vertebrates for morphological identi�cation were unsuccessful.

Sequences of 28S (1227 bp), ITS (1200 bp), and mitochondrial cox1 (799 bp) were obtained for E.
maculatus metacercariae. High identity with Crassiphiala was veri�ed, 97.6–99.8% using the 28S gene.
Phylogenetic analysis of 28S and ITS sequences revealed that the parasite grouped in well-supported
clades containing Crassiphiala spp. (Fig 3). Based on 28S, 100% similarity was found with Crassiphiala
sp. lineage 5 (MN200261). This sequence information was recovered from Megaceryle torquata in the
Brazilian Pantanal (Achatz et al., 2019). Based on ITS, 100% similarity was veri�ed for cercariae found in
Biomphalaria straminea in Belo Horizonte, Brazil (MN179277).

Analysis of cox1 resulted in a trimmed alignment containing 372 bp and two species/lineages of the
genus Crassiphiala. New sequences were also obtained for the same region of cox1 in a longifurcated
cercaria (Strigeid cercaria) previously reported in B. straminea from the same geographical area (López-
Hernández et al., 2019). Phylogenetic analysis revealed both larval isolates were from the same clade as
Crassiphiala sp. lineage 5 (Achatz et al., 2019). The combination of this information suggests that the
isolates of Crassiphiala are conspeci�c. However, the species differs from Crassiphiala sp. lineage 2
(molecular similarity: 92.6–93.6%). Comparison of cox1 sequences of the barcode region (for cercariae
from B. straminea) con�rmed the link with Crassiphiala sp. lineage 5 (96.8–97.0% similarity with M.
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torquata isolates). Relatively low similarities (82.7–87.7%) were found with the other four
lineages/species of Crassiphiala.

The involvement of diplostomid species in �sh BSD around different parts of the world is well known
(Thatcher 2006; Flores-Lopes 2014; Barrilli et al., 2021). However, no studies have identi�ed the etiological
agent and other hosts involved in the parasitic life cycle (Denis et al., 2019; Kohl et al., 2019; Charo-Karisa
et al., 2021; Duft et al., 2021). Our data suggest that an unnamed species linked to Crassiphiala sp.
lineage 5 is involved in E. maculata BSD. The present study is the �rst report of BSD caused by a
Crassiphiala species in a farmed ornamental �sh. 

Species of Crassiphiala are intestinal parasites of king�shers in the adult stage (Achatz et al., 2019), and
are identi�ed here as causative agents of BSD. This disease is characterized by parasitic invasion and
encysting in various �sh organs, usually the skin and muscle, where they are externally visible as black
spots (Hoffman 1955; Achatz et al. 2019). The complete life cycle is known only for Crassiphiala
bulboglossa. Adult parasites were found in king�shers, and neascus-like melanized metacercariae were
found encysted in the �sh skin (Hoffman, 1956). 

The genus Crassiphiala was only recently discovered in South America after two molecular
lineages/species were found in king�shers (M. torquata) (Achatz et al.2019). Speci�c identi�cation of
this parasite requires detailed morphological characterization of the adult stages for a formal taxonomic
description as a new species of Crassiphiala. We attempted to obtain the adult stage, but no worms were
found in the young chickens tested. Future helminthological studies are required to identify the adult
stage of the parasite in E. maculatus.

Our study identi�ed larval stages that were previously found in B. straminea from the same geographical
area, and identi�ed them as Crassiphialinae gen. sp. (López-Hernández et al., 2019); they were
molecularly linked to the metacercariae found in E. maculatus. This planorbid snail is widely distributed
and adapted to human-made aquatic environments. Their presence in outdoor ponds represents a risk for
BSD and other �sh diseases caused by trematodes that present piscivorous birds as de�nitive hosts.
Field studies on �sh farms are needed to de�nitively determine this snail as a vector of Crassiphiala. 
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Figure 1

Specimen of mandarin �sh,Etroplus maculatus, representing the “black spot disease” (arrows) caused by
metacercariae of Crassiphiala sp.

Figure 2
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Metacercariae of Crassiphiala sp. found in mandarin �sh, Etroplus maculatus. Encysted metacercaria (A).
Detail of the larva inside the cyst (B). Excysted metacercaria alive (C) and after staining (D), showing the
large tribocytic organ (arrow), a distinctive morphological trait of the genus.

Figure 3

Phylogenetic relationships between Crassiphiala sp. (in bold) found in mandarin �sh,Etroplus maculatus,
and other species of Diplostomidae. Phylogenetic trees were inferred from sequences of genes 28S (A),
ITS (B), and cox1 (C), which were analyzed by Bayesian inference and maximum likelihood methods.


