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Abstract
This study proposes a novel framework for �sh species classi�cation that combines FRCNN (Faster
Region-based Convolutional Neural Network), VGG16 (Visual Geometry Group 16), and SPPNet (Spatial
Pyramid Pooling network). The proposed FRCNN-VGG16-SPPNet framework combines the strengths of
FRCNN's fast object detection and localization, VGG16's convenient transfer learning and fast
classi�cation performance, and SPPNet's image processing �exibility and robustness in handling input
images of any size. First, FRCNN is used to detect and extract target objects from images containing
multiple objects. Subsequently, photos of various �sh species at different scales are fed into VGG16-
SPPNet, which performs basic feature extraction using transfer learning theory. SPPNet further processes
the input images by performing pooling operations of different scales. Finally, VGG16 identi�es important
features to perform object classi�cation. The proposed framework achieves higher accuracy compared to
traditional single VGG16 models, particularly in classifying objects of different sizes, with an accuracy
rate of 0.9318, which is 26% higher than traditional single VGG16 models. The proposed framework is
e�cient, convenient, reliable, and robust for object classi�cation and has potential for various
applications in image recognition and classi�cation.

1 Introduction
Fish are an essential food source for millions of people worldwide, particularly for coastal communities.
However, over�shing, illegal �shing, and other human activities are threatening the sustainability of
marine �sh stocks[1, 2]. As a result, the United Nations has included SDG 14 among the Sustainable
Development Goals (SDGs) to conserve and sustainably use marine resources[3, 4]. Achieving SDG 14 is
critical to the health of ocean ecosystems, the livelihoods of those who depend on them, and the global
economy[5]. Sustainable �sheries management is crucial to prevent over�shing and promote the long-
term sustainability of marine �sh stocks. This includes setting appropriate catch limits, reducing bycatch,
implementing effective monitoring and enforcement measures, and establishing marine protected areas
(MPAs)[6, 7]. Sustainable �sheries management can also enhance the economic bene�ts associated with
�sheries by ensuring their long-term sustainability. According to the Food and Agriculture Organization
(FAO), the total value of global �sh production was estimated at USD 401 billion in 2016[8], and the
�sheries sector employed more than 50 million people[9]. Implementing sustainable �sh-eries
management practices can ensure the long-term sustainability of the �sheries sector and support the
livelihoods of those who depend on it. Preventing over�shing and im-plementing sustainable �sheries
management practices are important means of achieving SDG 14 and promoting the long-term
sustainability of marine �sh stocks[10]. Govern-ments, �sheries managers, and other stakeholders must
work together to implement these measures to ensure a sustainable future for our oceans and the people
who depend on them. Taiwan is an island country surrounded by the sea on all sides, with a tropical and
subtropical climate. It has rich marine ecology and is also an important habitat for many marine
organisms, creating considerable biological resources. As the public gradually pays more attention to the
concept of environmental protection and ecological symbiosis, marine conservation has become a public
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affair that requires the participation of all citi-zens to maintain it. Therefore, the purpose of this research
is to establish a novel, fast, convenient, and accurate �sh identi�cation framework. This will allow
citizens to identify and record �sh species through the framework while �shing for leisure, thereby
promot-ing the conservation of marine biodiversity.

In recent years, the rapid development of computer vision, deep learning, and infor-mation technology has
led to the use of AI technology in �sh species classi�cation[11, 12]. Researchers are committed to
developing novel classi�cation models, which can be cate-gorized into three types: machine learning-
based, deep learning-based, or hybrid methods.

Machine learning-based methods typically employ supervised and unsupervised learning[13]. In �sh
species classi�cation, supervised learning methods use labeled image datasets to train a model to
identify �sh species. This approach requires human selection of �sh features, human experience, and
knowledge, and has a high requirement for data quality. While this method has high interpretability and
makes it easier to understand how the model makes predictions, it also requires manual feature
extraction, which is la-bor-intensive, and the selection of features can affect the performance of the
model. Com-monly used algorithms include Support Vector Machine (SVM)[14–17], Arti�cial Neural
Network (ANN)[18, 19], Decision Tree (DT)[17, 20], Random Forest (RF)[16, 17, 21], K-Nearest Neighbors
(KNN)[16, 17, 22], and Logistic Regression[16, 23].

Deep learning methods are a type of machine learning method based on neural net-works, which
automatically learn features for classi�cation. Compared with machine learning, deep learning requires
more data and more powerful computing capabilities. However, it has the advantage of automatic feature
extraction, reducing manual work and enabling the handling of more complex features. Its disadvantage
is higher black-box na-ture, making it di�cult to understand the internal workings of the model, and it
requires more computing resources. Commonly used models include VGG16[24, 25], AlexNet[26, 27],
GoogleNet[12, 28], ResNet50[29–31], MobileNet[29, 32], and Mask Re-gion-based Convolutional Neural
Network (Mask R-CNN)[33–35]. These methods are all classi�cation models derived from CNN. By using
transfer learning, the training of the model can be signi�cantly accelerated, and its accuracy can be
improved.

Hybrid classi�cation methods refer to methods that combine machine learning and deep learning
techniques, fully utilizing their respective advantages and avoiding their disadvantages to improve the
accuracy and e�ciency of �sh species classi�cation. Ma-chine learning methods are usually suitable for
small samples and low-dimensional data, while deep learning methods are suitable for large samples
and high-dimensional data. Therefore, this hybrid method can handle various �sh species classi�cation
problems. Commonly used algorithms include CNN-SVM[36–38], CNN-KNN[30, 37, 39], CNN-ANN[40].

As it is obvious, deep learning and transfer learning techniques are the current re-search focus in �sh
species classi�cation. Fine-tuning pre-trained models has been found to be an effective approach in
adapting to new classi�cation tasks. VGG16, a classic con-volutional neural network model, achieved
outstanding performance in the ImageNet image classi�cation competition and has been widely applied
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in various image classi�ca-tion tasks[41–46], Therefore, VGG16 was selected as the backbone
framework in this study. However, irrelevant features in images can affect classi�cation accuracy. Ideally,
limiting images to only contain relevant target object information can improve model performance.
Furthermore, pre-trained models are �xed in terms of input image size, two issues arise: the potential loss
of important information due to scaling, and the signi�cant computa-tion and storage resources required
to handle a large number of images of varying sizes. which limits their application range. As the
proposed classi�cation framework in this study aims to provide public access, image sources are limited
and their sizes are incon-sistent. To address these issues, the Faster Region-based Convolutional Neural
Network (FRCNN) was introduced for �sh detection and localization in raw images, and the Spa-tial
Pyramid Pooling network (SPPNet), which incorporates a Spatial Pyramid Pooling (SPP) layer, was
utilized to process input images of arbitrary sizes and generate �xed-size feature representations. This
approach can avoid image distortion or information loss caused by image resizing. Therefore, a novel,
convenient, and highly accurate hybrid clas-si�cation model, FRCNN-VGG16-SPPNet, was proposed in
this study.

2 Dataset And Methods

2.1 Imagery Collection and Preprocess
In this study, we utilized image data from �ve prevalent marine �sh species in Tai-wan as the source for
training and testing a classi�cation model. A total of 345 images was collected, including Pomadasys
argenteus, Mugil cephalus, Acanthopagrus latus, Carangoides hedlandensis, and Caranx sexfasciatus (as
shown in Fig. 1). Each species had approximately 54–75 images collected. The images were sourced
from databases such as FishBase[47] and ImageNet[48].

To effectively address the issue of imbalanced data and enhance the ability to recog-nize minority
categories, as well as increase the diversity of training samples, improve the generalization and stability
of the classi�er, and prevent over�tting[49], we adopted the Image Augmentation technique[50] to perform
operations such as �ipping, rotation, scal-ing, translation, cropping, adjusting contrast, brightness, and
adding noise to the original images to generate similar but not identical images (as shown in Fig. 2). After
the image augmentation, a total of 1,690 images was obtained, the number of images for each �sh
species ranged from 270 to 370 (as shown in Table 1). In this study, 80% of the image da-tasets for each
�sh species was used for model training, while the remaining 20% was used for model validation.
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Table 1
Sample sizes used for the proposed classi�cation model

Species Number of Collected

Images

Total Number of Images after Augmentation

Pomadasys argenteus 54 270

Mugil cephalus 71 350

Acanthopagrus latus 74 355

Carangoides hedlandensis 71 345

Caranx sexfasciatus 75 370

Total 345 1,690

2.2 Proposed FRCNN-VGG16-SPPNet Framwork
CNN is a type of deep learning-based neural network[51] that is widely used in image recognition,
computer vision, and natural language processing[52]. The main feature of CNN is that they can
automatically learn and extract relevant features from raw data, such as images, without the need for
manual feature engineering. The architecture of CNN consists of convolutional layers, pooling layers, and
fully connected layers. CNN has achieved state-of-the-art performance in various computer vision tasks,
such as image classi�cation, object detection, and segmentation. In this study, the three highly
performing image detection, classi�cation, and recognition techniques integrated - FRCNN, VGG16, and
SPPNet - are all derived from CNN[52–54].

FRCNN, a state-of-the-art CNN-based object detection model that uses a Region Proposal Network (RPN)
to generate region proposals and a subsequent FRCNN network to perform object classi�cation and
bounding box regression[55]. FRCNN has several advantages over previous object detection methods
such as its ability to accurately detect and classify objects in images with high variability and clutter, and
its relatively fast training and inference time. FRCNN has been applied to a wide range of applications,
including pedestrian detection, face detection, vehicle detection, and object recognition in natural scenes.
In addition, FRCNN has been shown to be effective in detecting and classifying objects in various �eld
imagery, such as satellite, aerial, medical, biological imagery. One of the key bene�ts of FRCNN is its
ability to handle a large number of object classes, making it suitable for applications with many different
types of objects. Furthermore, FRCNN can be used in real-time applications, such as video surveillance
and autonomous driving, due to its fast processing speed.

VGG16, a deep CNN model that has achieved leading-edge results in various image classi�cation tasks. It
has several advantages over other image classi�cation models, including its deep architecture, which
allows it to learn highly complex and abstract features from input images. VGG16 has also been shown
to have good generalization performance, meaning that it can accurately classify images from previously
unseen classes[56]. VGG16 has been applied to a wide range of image classi�cation tasks. The success
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of VGG16 in �sh species classi�cation has important applications in the �eld of marine biology and
�sheries management, where accurate identi�cation and monitoring of �sh populations is critical for
conservation and sustainable �sheries practices. Its ability to learn highly complex features from images
has made it a popular choice for these types of applications. Another advantage of VGG16 is its
availability in popular deep learning libraries such as Keras, TensorFlow, and matlab, making it easy to
implement and train for a wide range of image classi�cation tasks. Furthermore, the pre-trained weights
of the VGG16 model can be used for transfer learning, where the model can be �ne-tuned on a smaller
dataset for a speci�c classi�cation task.

SPPNet, or Spatial Pyramid Pooling Network, was proposed to address the problem of varying input sizes
in image classi�cation tasks. SPPNet has several advantages over traditional CNN model, including its
ability to handle input images of varying sizes without the need for cropping or resizing[57]. This is
achieved by using spatial pyramid pooling layers that allow the model to extract features at multiple
scales and resolutions, making it more robust to changes in input image sizes. SPPNet has been applied
to various image classi�cation tasks, including object recognition, facial recognition, and scene
understanding. In particular, SPPNet has been used in image classi�cation tasks where input images
have varying sizes or where a large number of features need to be extracted from the input images. Its
ability to handle varying input sizes and extract features at multiple scales has made it a popular choice
for these types of applications. Another advantage of SPPNet is its ability to reduce the number of
parameters in the model without sacri�cing accuracy. This is achieved by using spatial pyramid pooling
layers to extract features, which allows the model to learn from a smaller number of parameters while still
achieving high accuracy. This makes SPPNet a more e�cient and scalable model compared to traditional
CNN model.

Without a doubt, each of the aforementioned image recognition algorithms has its own advantages and
applicable conditions. The purpose of this study is to propose a fast, �exible, and accuracy �sh species
classi�cation framework that is not limited by the image size of transfer learning node. Therefore, a
hybrid model, FRCNN-VGG16-SPPNet, was constructed by utilizing the advantages of the three CNN-
based algorithms. Firstly, the outstanding object detection and positioning characteristics of FRCNN were
used to search for �sh in photos and crop the �sh images with the most suitable rectangular size based
on their shape and size. These cropped images were then inputted into the VGG16 image classi�er, which
removed non-essential object information, presenting the �sh as the main subject to improve
classi�cation speed and accuracy. As VGG16 is a pre-trained model, good classi�cation accuracy can still
be achieved even with a small number of sample images, using the theory of transfer learning. Therefore,
VGG16 is fed with the images extracted by FRCNN for the basic feature extraction of �sh species. Finally,
because the input image size of VGG16 was set to 224x244 RGB images, while the size of the images
captured in the FRCNN stage was inconsistent, SPPNet was set before the fully connected layer. The
input image was divided into multiple scales by the spatial pyramid pooling layer, and each scale image
was pooled to obtain a �xed-size feature vector. In this way, different sized images can obtain the same
size of feature vectors, reducing the CNN network's sensitivity to image size and improving the network's
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generalization performance. Figure 3 and Table 2 present the work�ow and hyperparameters of the
FRCNN-VGG16-SPPNet framework.

Table 2
Hyperparameters of proposed
FRCNN-VGG16-SPPNet model

Parameters Value

Kernel size of CNN 3×3

Batch size 32

Epochs 200

Optimizer sgd

momentum 0.5

decay 1e-7

nesterov False

2.3 Experimental Equipment and Assessment Indicators
The experiments were processed on a desktop computer equipped with Intel Core i7-9700F processor with
32 GB RAM, Nvidia RTX 2070 SUPER graphical card, Ubuntu 20.04. The model veri�cation process was
divided into training and independent testing. The proposed FRCNN-VGG16-SPPNet method’s
classi�cation performance was compared with the single VGG16 model employing classic evaluation
indicators, such as Accuracy, Precision, Recall, and F1Score. The relevant assessment indicators are
expressed as follows[58] (Fig. 4, Equations (1) to (4)):

3 Dataset And Methods
To evaluate the effectiveness of the proposed FRCNN-VGG16-SPPNet model, this study compares it with
the widely used single VGG16 model and assesses its performance using metrics such as Confusion
Matrix, Precision, Recall, F1-Score, Accuracy, and Learning Curves. Figure 5 illustrates the Confusion

Accuracy = (1)
TP + TN

TP + FP + FN + TN

Precision = (2)
TP

TP + FP

Recall = (3)
TP

TP + FN

F1Score = 2 × (4)
Precision × Recall

Precision + Recall
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Matrix for both models, while Table 3 presents the performance of VGG16 and FRCNN-VGG16-SPPNet for
each species during the training stage. The FRCNN-VGG16-SPPNet model exhibits superior training
results, with Precision, Recall, F1-Score, and Accuracy all reaching 0.9993, compared to the single VGG16
model, which obtains Precision, Recall, F1-Score, and Accuracy of 0.9754, 0.9748, 0.9747, and 0.9749,
respectively. The �ndings demonstrate that both models demonstrate excellent data �tting ability,
however, FRCNN-VGG16-SPPNet's overall performance exceeds that of the single VGG16 model by
approximately 2.06%.

Table 3
Performance evaluation indicators for model training

Method Species Precision Recall F1-Score Accuracy

VGG16 Pomadasys argenteus 0.9811 0.9630 0.9720 -

Mugil cephalus 0.9824 0.9964 0.9894 -

Acanthopagrus latus 0.9790 0.9859 0.9825 -

Carangoides hedlandensis 0.9416 0.9928 0.9665 -

Caranx sexfasciatus 0.9928 0.9358 0.9635 -

All 0.9754 0.9748 0.9747 0.9749

The proposed

FRCNN-VGG16-SPPNet

Pomadasys argenteus 1.0000 1.0000 1.0000 -

Mugil cephalus 1.0000 1.0000 1.0000 -

Acanthopagrus latus 1.0000 1.0000 1.0000 -

Carangoides hedlandensis 1.0000 0.9964 0.9982 -

Caranx sexfasciatus 0.9966 1.0000 0.9983 -

All 0.9993 0.9993 0.9993 0.9993

A robust classi�cation model is characterized by its ability to produce accurate and reliable predictions
that generalize well to new data. In addition to classi�cation accuracy, generalizability is a critical
attribute of a reliable model, whereby it is capable of performing well on data that it has not encountered
during the training phase. To evaluate a model's reliability, consistency in performance during training
and validation is an important indicator. Typically, a model's training accuracy will exceed its validation
accuracy, but a large discrepancy may indicate over�tting, which could result in overestimation and
erroneous predictions. To assess a model's generalizability, independent testing using unseen data is an
essential step in machine learning model development and evaluation, which enables unbiased
evaluation of the model's performance.

Independent testing is a critical component in model validation, as it serves to con�rm the model's
generalization capacity, i.e., its ability to perform well on novel and unseen data. Furthermore,
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independent testing can mitigate data leakage concerns and diminish model selection errors. In the
absence of an independent testing dataset, the validity of the validation outcomes may be compromised,
leading to over�tting or under�tting. Notably, Table 4 demonstrates that the proposed FRCNN-VGG16-
SPPNet exhibited superior testing results, with Precision, Recall, F1-Score, and Accuracy reaching 0.9382,
0.9260, 0.9294, and 0.9318, respectively. Conversely, the single VGG16 model obtained only 0.7430,
0.7350, 0.7323, and 0.7396, respectively. Upon further comparison of the training and testing results of
the classi�cation models, it was observed that the VGG16 model demonstrated a signi�cant variation in
Precision, Recall, F1-Score, and Accuracy, ranging from 0.2324 to 0.2424. Conversely, the proposed
FRCNN-VGG16-SPPNet model exhibited a notably narrower range of differences, from 0.0611 to 0.0733,
indicative of a comparatively consistent performance and superior generalization ability. Notably, these
�ndings show that the VGG16 model may be subject to over�tting, while the proposed FRCNN-VGG16-
SPPNet model offers enhanced robustness, reliability and stability.

Table 4
Performance validation indicators for model testing

Method Species Precision Recall F1-Score Accuracy

VGG16 Pomadasys argenteus 0.6735 0.6111 0.6408 -

Mugil cephalus 0.8684 0.9429 0.9041 -

Acanthopagrus latus 0.6782 0.8310 0.7468 -

Carangoides hedlandensis 0.6486 0.6957 0.6713 -

Caranx sexfasciatus 0.8462 0.5946 0.6984 -

All 0.7430 0.7350 0.7323 0.7396

The proposed

FRCNN-VGG16-SPPNet

Pomadasys argenteus 1.0000 0.8113 0.8958 -

Mugil cephalus 0.9333 1.0000 0.9655 -

Acanthopagrus latus 0.9577 0.9577 0.9577 -

Carangoides hedlandensis 0.8553 0.9420 0.8966 -

Caranx sexfasciatus 0.9444 0.9189 0.9315 -

All 0.9382 0.9260 0.9294 0.9318

Table 5 presents the performance improvement rates of the proposed hybrid model in comparison to the
conventional approach of utilizing only VGG16 for classi�cation. The metrics used to evaluate the
performance include Precision, Recall, F1-Score, and Accuracy, which were observed to have improved by
26.27%, 25.99%, 26.92%, and 25.99%, respectively. The results highlight the superiority of the proposed
hybrid model over the traditional method. Figure 6 and Fig. 7 provide a graphical representation of the
learning curves of the two models. The proposed FRCNN-VGG16-SPPNet model demonstrates consistent
training and testing results, indicating its stability and generalizability. Moreover, the model exhibits a fast



Page 10/20

convergence rate with a commendable classi�cation accuracy. These �ndings suggest that the proposed
FRCNN-VGG16-SPPNet model is capable of effective �sh species classi�cation.

In conclusion, the results of the study a�rm the superior performance of the proposed hybrid model over
the conventional VGG16 approach. The �ndings provide empirical support for the potential of the FRCNN-
VGG16-SPPNet model as a robust tool for accurate �sh species classi�cation.

Table 5
Improvement rate for the proposed FRCNN-VGG16-SPPNet model

Method Species FRCNN-VGG16-SPPNet

Improvement Rate (%)

Precision Recall F1-Score Accuracy

VGG16 Pomadasys

argenteus

48.48 32.76 39.79 -

Mugil

cephalus

7.47 6.06 6.79 --

Acanthopagrus

latus

41.21 15.25 28.24 -

Carangoides

hedlandensis

31.87 35.40 33.56  

Caranx

sexfasciatus

11.60 54.54 33.38 -

All 26.27 25.99 26.92 25.99

Improvement Rate (%) =

(The proposed FRCNN-VGG16-SPPNet model - VGG16 model) / VGG16 model×100

The performance evaluation of a classi�cation model is in�uenced by a multitude of factors, while the
model's design is tailored to the speci�c requirements of its users. The aim of this study is to develop a
model architecture that is convenient, reliable, stable, and highly accurate, for use on mobile devices in
�sh species recognition by both the general public and marine conservationists. Two major factors that
signi�cantly affect the classi�cation accuracy of machine learning models are data quality and feature
selection/extraction. Poor data quality, including data skewness, noise, imbalanced samples, and missing
values, can negatively impact model training and hinder the learning of effective features and patterns
from the data. Thus, it is necessary to perform data preprocessing and cleaning to improve data quality
prior to model training. Additionally, feature selection and extraction are critical factors that directly
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in�uence the model's classi�cation ability. The ability to select and extract effective features can enhance
the model's classi�cation performance, whereas inappropriate feature selection or failure to extract
crucial features from the data can result in poor classi�cation outcomes. Appropriate methods for feature
selection and extraction must be chosen based on the data's characteristics to enhance the model's
classi�cation ability.

In this study, we propose the FRCNN-VGG16-SPPNet framework, which integrates algorithms with unique
advantages in image object detection and localization, classi�cation, and feature vector transformation.
FRCNN and SPPNet play crucial roles in this framework and provide a multiplying effect that effectively
enhances the performance of conventional single VGG16 models. FRCNN automatically detects �sh in
images containing other objects and crops images centered on the �sh, signi�cantly improving the
image's recognizability and reducing the complexity of model training and classi�cation. SPPNet's
Spatial Pyramid Pooling can transform images of various sizes into feature vectors of the same size,
addressing the �xed input image size issue in VGG16 Transfer Learning technology and enabling
effective processing of images of different sizes, which is more convenient for model developers and
users.

Based on the research analysis presented in this chapter, it is evident that the proposed FRCNN-VGG16-
SPPNet framework can highlight the image features of target objects, handle images of different sizes,
and exhibit exceptional classi�cation performance.

4 Conclusions
Hybrid methods are currently a prominent approach for image classi�cation, whereby the strengths of
different algorithms are combined to enhance classi�cation performance. In this study, the �ndings
provide compelling evidence to support this assertion. Speci�cally, the study proposes a classi�cation
framework that has been successfully deployed in government departments in Taiwan. Users can
conveniently upload images to a cloud server via their mobile devices for computation and subsequently
obtain the results of �sh species classi�cation. Notably, the study focuses on the overall performance of
the classi�cation model and does not analyze differences in individual �sh species classi�cation
accuracy. Nevertheless, the primary factor that potentially causes differences may stem from the quality
of the images, given that the images used in the study were obtained from diverse internet sources that
can vary in quality.

The framework proposed in this study can serve as a reference for other object classi�cation tasks.
Furthermore, future studies will explore the performance of different pre-trained models and incorporate
novel object detection and localization methods such as YOLOv8 to develop new approaches continually
for the classi�cation model. Overall, the present study contributes to the existing body of knowledge on
image classi�cation by highlighting the advantages of hybrid methods and presenting a practical
classi�cation framework that can be used in real-world applications.
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Figures

Figure 1

Fish species selected for classi�cation
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Figure 2

Augmentation for raw image
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Figure 3

Architecture of proposed FRCNN-VGG16-SPPNet model
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Figure 4

Confusion matrix for binary classi�cation

Figure 5

Confusion Matrix for FRCNN-VGG16-SPPNet (a) and single VGG16 model (b)
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Figure 6

Learning curves for single VGG16 model

Figure 7

Learning curves for the proposed FRCNN-VGG16-SPPNet model


