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Abstract

The Internet of Things (IoT) has revolutionized the functionality and efficiency
of distributed cyber-physical systems, such as city-wide water treatment systems.
However, with increased connectivity comes the risk of cybersecurity threats. In
this research, we propose an Intrusion Detection System (IDS) for securing the
Secure Water Treatment (SWaT) dataset using a 1D Convolutional Neural Net-
work (CNN) model enhanced with a Gated Recurrent Unit (GRU). The proposed
method outperforms existing methods by achieving 99.68% accuracy and F1 score
of 0.9869. The paper also explores dimensionality reduction methods, includ-
ing Autoencoders, Generalized Eigenvalue Decomposition (GED), and Principal
Component Analysis (PCA). The research findings highlight the importance of
balancing dimensionality reduction with the need for accurate intrusion detec-
tion. It is found that PCA provided better performance compared to the other
techniques, as reducing the input dimension by 90.2% resulted in only a 2.8%
and 2.6% decrease in the accuracy and F1 score, respectively.
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1 Introduction

The Internet of Things (IoT) is a technology that enables the connection of every-day
devices, such as appliances, vehicles, and industrial equipment, to the internet. This
allows these devices to communicate with one another and with other systems, and to
be controlled and monitored remotely. The increased connectivity provided by IoT has
had a significant impact on industrial control systems, which were previously closed
off from the outside world.

In the past, industrial control systems (ICS) were primarily used to control and
monitor industrial processes within a single facility or on a small scale. With the
advent of IoT, however, these systems can now be connected to the internet, enabling
remote monitoring and control. This allows for city-wide or nation-wide distributed
systems to work collaboratively and efficiently, with the ability to share information
and coordinate actions across different locations.

Although connectivity has many benefits, it also brings the danger of cyberattacks.
An attacker can access the communication channel and control the system and imple-
ment an attack. The attack may have various effects from simply unavailability of
service to catastrophic system failure. As industrial control systems become connected
to the internet, they become more vulnerable to cyberattacks.

There are examples of cyberattacks targeting industrial control systems (ICS) in
recent years. In 2000, a former employee maliciously commanded SCADA (Supervisory
Control and Data Acquisition) radio-controlled sewage [1]. He caused hundreds of
thousands of raw sewages to spill out around various parts of the city in Australia.

One of the most well-known examples of an ICS cyberattack is the Stuxnet worm
[2], which was discovered in 2010. The worm specifically targeted the software used to
control industrial processes at an Iranian nuclear facility. The attack caused physical
damage to the centrifuges used to enrich uranium, setting back the facility’s operations.

In 2015 a malicious cyberattacks were targeted the Ukraine power grid [3], causing
widespread power outages across the country. The attackers used spear-phishing emails
to gain access to the network, and then used malware to disrupt the operations of the
power plants.

WannaCry ransomware attack affected thousands of computers including industrial
control plants [4]. Triton malware [5], which specifically targeted the industrial control
systems used to operate critical infrastructure, was discovered in 2017. The malware
manipulated the Triconex Safety Instrumented System (SIS) controllers, which are
used to monitor and control industrial processes in facilities such as oil refineries and
chemical plants. Although the full extent of damage caused by these attacks are not
publicized, the attacks demonstrate the potential consequences of a successful cyber-
attack on industrial control systems, which can include physical damage, disruption
of operations, and even fatalities.



Attacks on ICS can range from simple disruptions of service to catastrophic failures
that can have major physical consequences. Given the potential consequences of a
successful attack, it is important to take the necessary steps to protect industrial
control systems especially critical infrastructure. Therefore, organizations that deploy
ToT-enabled industrial control systems need to be aware of these security risks and
take appropriate measures to protect against them. This includes implementing robust
security protocols, monitoring for and responding to potential security threats, and
providing employee education and training to raise awareness of security risks. One
common practice of protecting ICS is the use of intrusion detection systems (IDS).
Re-searchers have proposed various IDSs to identify and detect intrusions and help
secure cyber-physical systems. However, the efficiency and effectiveness of IDSs can
be improved through feature selection and feature reduction algorithms.

In this research, we propose a method for securing the Secure Water Treatment
(SWaT) dataset by implementing an IDS using a one-dimensional Convolutional
Neural Network (CNN) model enhanced with a Gated Recurrent Unit (GRU). Addi-
tionally, we explore various dimensionality reduction techniques, such as autoencoders,
Generalized Eigenvalue Decomposition (GED), and Principal Component Analysis
(PCA). The goal of the paper is to determine the optimal feature subset that can
improve the efficiency of the model without compromising its accuracy. In light of
above, the contributions of the paper are as follows:

® A novel IDS approach based on a 1D CNN model enhanced with a GRU is achieved
for securing the SWaT dataset, which outperforms traditional IDS methods in terms
of accuracy and robustness.

® The impacts of dimensionality reduction techniques are evaluated.

® Insights have been provided into the trade-off between feature reduction and
detection accuracy.

® The importance of balancing feature reduction and detection accuracy is demon-
strated for effective intrusion detection in cyber-physical systems.

The rest of this paper is organized as follows. Section 2 gives brief background
information of SWaT dataset, GRU, and CNN along with the related works. The pro-
posed method and implementation details are explained in Section 3. The experimental
result and discussion are presented in section 4 followed by a conclusion in Section 5.

2 Material & Methods

2.1 Secure Water Treatment (SWaT) dataset

The Secure Water Treatment (SWaT) dataset [6], which is widely used as a testbed for
water treatment, is used in this experiment. The SWaT system produces filtered water
at a rate of 5 gallons per hour and was designed under the supervision of Singapore’s
Public Utility Board. It contains six stages labelled as P1 through P6 as shown in
Figure 1. Each stage is operated by a PLC (e.g. PLC 1 controls stage P1) using a
distributed control strategy.

The system can be divided into two levels: Level 0 and Level 1. At Level 0, Pro-
grammable Logic Controllers (PLCs) acquire data from local sensors such as an acidity
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Fig. 1 The process flowchart of SWaT system.

analyzer, water level sensor, and flow meter, and handle the actuators such as valves
and pumps. At Level 1, the PLCs communicate with each other using a separate net-
work, which connects all six stages to the Supervisory Control and Data Acquisition
(SCADA) system.

PLC 1 controls the flow of raw water by opening or closing the valves connected to
the inlet and outlet of the raw water tank in Stage 1. After chemical dosing in Stage 2,
the water is fed to Stage 3 for the Ultra Filtration (UF). From there, the UF feed pump
forwards the water to the Reverse Osmosis (RO) feed tank in Stage 4. Before entering
the RO process, the water passes through an ultraviolet (UV) de-chlorinator to remove
any free chlorine. In Stage 5, the RO process removes inorganic impurities from the
de-chlorinated water. The filtered water produced by the RO process is stored in the
permeating tank in Stage 6 for distribution, and Stage 6 also handles the cleaning of
the UF membranes through the backwash process.

The dataset comprises 11 days of total attack duration, with the first seven days
being attack-free. It contains 946,722 samples and 51 attributes. Attacks were imple-
mented in Level 1, where Programmable Logic Controllers (PLCs) communicate with
the SCADA system. In this level, the data packets are manipulated, and malicious

PLC 2

PLC3

PLC 6



messages are transmitted to the SCADA system. The attack duration varied from a
few minutes to a few hours.

2.2 Related Work

Rule-based anomaly detection is a widely used method for identifying unusual activity
in a system based on predefined rules. These rules can be based on patterns and
characteristics of known malicious activity, and if a known pattern is observed, it is
considered an anomaly. The rules can also be based on the normal behavior of the
system, such as setting threshold values for specific parameters. If these values are
exceeded or not met, an alarm is triggered.

Adepu and Mathur [7] proposed a novel method for distributed attack detection
by utilizing process invariants derived from Piping and Instrumentation Diagrams
(P&IDs) based on physical properties of the system. The authors applied this method
to a SWaT system, which has chemical processes as well, but due to the nonlinearity
of these processes, only physical invariants were used. Although the method does
not produce any false alarms, it fails to identify some attack types like denial of
service. Furthermore, the process of deriving the invariants is currently a manual
process, which may limit the scalability of the method. Future research should focus
on automating this process to improve the overall performance of the method.

Another example of rule-based anomaly detection is Logical Analysis of Data
(LAD) which was implemented by Das et al. [8]. This method allows for near-real-time
processing with low computational power, making it an efficient and cost-effective way
to detect some types of cyberattacks. However, it is important to note that reliance
on predefined rules alone can be circumvented [9], highlighting the need to supple-
ment rule-based methods with other security measures such as behavioral analysis and
machine learning. Al-Dhaheri et. al [10] proposed hybrid intrusion detection system.
Rule-based IDS that checks limits and safety values, model-based monitoring that
implements physical model, and data-driven approach for non-linear modelling.

Aboah et al. [11] proposed a neural network with a one-class objective function
(NN-One-class) which improves the detection performance compared to some of the
previous methods. However, the training time can be quite extensive, taking up to 110
minutes with an NVIDIA Tesla T4 GPU and a RAM of 32GB. Given the complexity
of the data, this represents a significant amount of resources.

Kravchik and Shabtai [12] proposed a 1D Convolutional Neural Network (CNN)
to identify cyberattacks on the SWaT dataset. They implemented dedicated anomaly
detectors for each stage of the SWaT system to improve the performance. The results
showed that independent analysis of each stage outperforms a single model for the
whole system. However, as the stages of the SWaT system are dependent on each other,
it is important to also investigate the inter-stage dependencies in order to further
improve the performance of the detection system.

Zhou et. al. [13] suggested to use temporal and spatial correlation as temporal
correlation alone is not beneficial for high dimensional data. They have implemented
Graph Attention Network (GAT) with Multihead Dynamic Attention (MDA). The
implementation leverages of relationship between various sensors thanks to MDA.



Nedeljkovic and Jakovljevic [14] implemented semi-supervised IDS by using CNN-
based auto regression. They applied Finite Impulse Response (FIR) filter to remove
high frequency noise.

Dillon et. al [15] showed that design knowledge increases the efficiency of the IDS.
One reason behind that is when data consist of binary values and analogue ones,
machine learning algorithms can be biased towards binary ones and ignore them.
Experimental results show a 5% increase in the detection by using design knowledge.

There are also research papers that implement dimension reduction. Li et. al. [16]
proposed a method called ”end-to-end anomaly detection” for detecting anomalies
using a digital twin. The proposed method uses a multidimensional deconvolutional
network and attention mechanism with PCA to detect anomalies quickly in real-
time. However, the performance of the method, F1=0.94, is not acceptable for critical
infrastructure. Alimi et al. [17] applied PCA to various supervised learning algo-
rithms. They achieved the best performance for the SWaT dataset with the J48
decision tree classifier, however, the F1 score was 0.814. Priyanga et al. [18] proposed
a hyper-graph-based anomaly detection technique. The proposed algorithm involves
two phases: dimensionality reduction using enhanced principal component analysis
(EPCA) and anomaly detection with HG-based convolution neural network (CNN).
El-Nour et al. proposed framework [19] involving two isolation forest models and PCA.
Although these methods implemented dimensionality reduction algorithms, they do
not emphasize on dimensionality reduction. This article explores the limitations of cur-
rent dimensionality reduction methods and discusses the importance of dimensionality
reduction.

2.3 Convolutional Neural Network and Gated Recurrent Unit

The SWaT dataset contains time-series data that represents the state of an industrial
control system at different points in time. To analyze this type of data, a 1D Con-
volutional Neural Network (CNN) can be used to identify patterns and anomalies in
the data. Additionally, a Gated Recurrent Unit (GRU) can be used to capture the
temporal dependencies between the sensor readings. By combining these two tech-
niques, a more powerful hybrid model can be developed that captures both the local
features and the long-term dependencies of the data. This can lead to better detection
of anomalies and ultimately improve reliability and security.

2.4 Dimensionality Reduction Techniques

In machine learning, dimensionality reduction is a common technique used to reduce
the number of features in a dataset. Feature reduction techniques can help to reduce
the complexity of a dataset, remove noise, and improve the efficiency of machine
learning algorithms. We have explored the most common dimensionality reduction
techniques including Principal Component Analysis (PCA), Generalized Eigenvalue
Decomposition (GED), and Autoencoders.



2.4.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a commonly used statistical technique for
dimensionality reduction in data analysis and machine learning. The main goal of
PCA is to identify patterns and structure in high-dimensional data by reducing the
number of variables and retaining the most important information.

Once the principal components are identified, data can be projected onto a lower-
dimensional subspace by selecting a subset of the principal components. This new
subspace retains the most important information from the original high-dimensional
dataset while reducing the number of variables.

2.4.2 Generalized Eigenvalue Decomposition (GED)

Generalized Eigenvalue Decomposition (GED) is a dimension reduction technique
that is used to reduce the dimensionality of high-dimensional data while preserving
the information contained in the original data. GED finds a linear transformation of
the original data that maximizes the ratio of between-class variance to within-class
variance.

2.4.3 Autoencoders

An autoencoder is a neural network that can be used for dimensionality reduction
by compressing high-dimensional data into a lower-dimensional latent representation
as shown in Figure 2. The autoencoder consists of an encoder that maps the input
data to the latent layer, a bottleneck layer that represents the compressed data, and a
decoder that reconstructs the original data from the latent representation. By training
the network to minimize the difference between the input and reconstructed output,
the network learns to identify the most important features in the data and discard the
less important ones.

The size of the latent space is an important consideration when designing an
autoencoder, as it determines how much information will be retained after compres-
sion. If the latent space is too small, the autoencoder may lose important information
and result in the poor reconstruction of the input data. On the other hand, if the
latent space is too large, the autoencoder may overfit and memorize the training data,
resulting in poor generalization to new data.

3 Proposed Method and Experiment
3.1 Proposed Method

In this research, a novel approach has been employed to enhance the performance of
the one-dimensional convolutional neural network (1D CNN) combined with GRU.
The proposed approach aims to enhance performance by utilizing the strengths of both
1D CNN and GRU. This integration allows for the learning of spatial and temporal
features of input data, facilitating the capturing of complex patterns in time-series
data.
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Fig. 2 The architecture of the autoencoder used in this experiment.

The proposed 1D CNN model consists of three convolutional layers, each with a
filter size of 16 and a kernel size of 5, 3, and 2 respectively as shown in Figure 3a. The
filter size refers to the number of filters or feature maps used in each convolutional
layer. The kernel size, on the other hand, refers to the size of the convolutional filter
or window that is moved across the input sequence to extract features. A smaller
kernel size allows the network to capture more local features, while a larger kernel size
captures more global features.

After the three convolutional layers, the output feature maps from each layer are
concatenated into a single tensor. The purpose of this is to combine the features
learned at different levels of abstraction into a single representation.

The concatenated tensor is then fed into a max pooling layer, which reduces the
spatial dimensions of the tensor by taking the maximum value within a specified
window. This helps to extract the most salient features from the input sequence while
reducing the computational cost of the network.

Batch normalization is then applied to normalize the output of the previous layer,
which helps to speed up training and improve the generalization of the model. Finally,
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Fig. 3 a) The architecture 1D CNN block used in the experiment along with b) the whole architecture
including GRU layers.

the ReLU activation function is applied elementwise to the output of the batch nor-
malization layer, which introduces non-linearity to the model and helps to extract
more complex features.

As shown in Figure 3b, after the two blocks of the CNN, the output is fed into GRU
layers, which can capture longer-term dependencies in the input sequence. Finally, the
output of the GRU layer is passed through a dense layer, which produces the final
output of the model.

3.2 Parameter Selection and Experimental Setup

In order to achieve optimal performance of the proposed method, it is important to
carefully tune its hyperparameters. Hyperparameters are settings that are not learned
during training but are set before training and can have a significant impact on the
performance of the model.

The number of epochs is an important hyperparameter that determines the number
of times the entire dataset is used to train the model. In this research, we conducted
an epoch analysis to determine the optimal number of epochs for training the 1D



CNN-GRU model on the SWaT dataset. We trained the model for different numbers
of epochs ranging from 1 to 100 and evaluated its performance.

Figure 4 illustrates the trends of validation loss and accuracy as a function of the
number of epochs. The optimal epoch number is located at epoch number 10, where
the minimum validation loss and maximum validation accuracy intersect.
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Fig. 4 Determining the optimal number of epochs for model training using validation loss and

accuracy.

Other hyperparameters such as batch size, learning rate, and optimizer can signif-
icantly impact the performance of a deep-learning model. Therefore, it is important
to optimize these hyperparameters to achieve the best possible performance. In this
study, we chose a batch size of 32, a learning rate of 0.001, and the Adam optimizer
based on their effectiveness in previous studies and our experimentation on the SWaT

dataset.

4 Results and Discussion

The proposed method is compared with the state-of-the-art techniques on the SWaT
dataset to demonstrate its effectiveness. Additionally, the results of our dimensionality
reduction analysis using PCA, GED, and autoencoders are presented to show the
impact of feature reduction on the performance of the intrusion detection system.
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4.1 Evaluation Method

The proper testing of an Intrusion Detection System (IDS) is a crucial step in eval-
uating its effectiveness. To ensure the accuracy and reliability of the proposed IDS
model, we conducted a comprehensive analysis of its performance.

Our proposed model employs a binary classifier to differentiate between authentic
messages and potential attacks. As a result, there are four possible outcomes: false
negative, false positive, true negative, and true positive. A true positive occurs when
an attack is correctly identified by the system, while a true negative occurs when an
authentic message is correctly accepted as such. In contrast, a false positive occurs
when an authentic message is labeled as an attack, and a false negative occurs when
an attack is labeled as an authentic message.

To assess the performance of our proposed IDS model, we calculated the values
for FN, FP, TN, and TP. These values provide important insights into the system’s
ac-curacy and effectiveness in detecting potential attacks. Additionally, we calculated
several key metrics such as accuracy, precision, and recall values.

The accuracy metric evaluates the percentage of correct predictions made by the
model, whereas the precision metric assesses the percentage of true positives among all
positive predictions. Recall metric evaluates the percentage of true positives detected
by the system among all actual attacks. By considering all of these metrics, we
can assess the overall performance of the IDS model and determine its efficiency in
detecting potential attacks.

Accuracy = (TP +TN)/(TP+TN + FP+ FN) (1)

Precision is a performance metric used in evaluating the effectiveness of an Intru-
sion Detection System (IDS). Specifically, precision evaluates the percentage of true
positive predictions made by the system out of all positive predictions. It provides
an important measure of the system’s ability to accurately identify potential attacks
while minimizing the number of false positives.

Precision =TP/(TP + FN) (2)

Recall (also known as sensitivity or detection rate) is a performance metric used
in evaluating the effectiveness of an IDS. Specifically, recall measures the percentage
of true positive predictions made by the system out of all actual positive cases.

Sensitivity(Recall) = TP/(TP + FN) (3)

The F1 score is defined as the harmonic mean of recall and precision, where a
higher score indicates better performance. By taking the harmonic mean, the F1 score
places more emphasis on the lower of the two metrics, meaning that a model with
high precision but low recall (or vice versa) will have a lower F1 score than a model
with both high recall and high precision.

F1 = (2% (Precision * Recall))/(Precision + Recall) (4)
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4.2 Comparison with the State-of-the-art Techniques

As many researchers use this dataset, it serves as a common benchmark for evalu-
ating and comparing the performance of different methods. The proposed method is
compared with other state-of-the-art methods.

Table 1 presents the performance metrics for the proposed method along with other
State-of-the art proposals. There is a trade-off between Precision and Recall. These
two metrics measure different aspects of a classifier’s performance, and optimizing one
metric often comes at the expense of the other.

Table 1 The comparison of methods that use the SWaT dataset.

Reference Accuracy F1 Precision  Recall
CNN-GRU-SDA [20] - 0.91 0.99 0.85

CNN-FIR [14] 97.846 0.902 0.988 0.830
1D ONN [12] 97.195 0.871 0.968 0.791
NN-PCA [21] 97.408 0.885 0.911 0.860
Monitoring System [10] - 0.925 1 0.861
STAE-AD [22] - 0.880 0.960 0.815
NN-one class [11] - 0.870 0.940 0.820

EPCA-HG-CNN [18] 98.02 0.9805 0.9771 0.9839
Digital-twin [16] - 90.59 0.923 0.961
DIF [19] 97.375 0.882 0.935 0.835

1D CNN-GRU (This Paper) 0.9968 0.9869 0.9855 0.9882

*Best results are bold.

The Table 1 depicts that some models achieved high Precision scores but lower
Recall scores (e.g., CNN-FIR), while others achieved higher Recall scores but lower
Preci-sion scores (e.g., EPCA-HG-CNN). The proposed CNN-GRU model achieved
the best overall performance, achieving an impressive accuracy score of 0.9968, F1
score of 0.9869, precision of 0.9855, and recall of 0.9882.

4.3 Analysis of Dimensionality Reduction Techniques

Dimensionality reduction is a commonly used technique in machine learning for reduc-
ing the number of features in a dataset. It helps in reducing the complexity of the
dataset, removes noise, and improves efficiency. In this research, we explored the effec-
tiveness of three commonly used dimensionality reduction techniques: Generalized
Eigenvalue Decomposition (GED), Autoencoders, and Principal Component Analysis
(PCA) for improving the performance of the proposed IDS.

4.3.1 Generalized Eigenvalue Decomposition

The magnitude of the eigenvalues obtained through GED can provide important
information about the quality of the dimensionality reduction. Figure 5 presents the
Magnitudes of eigenvalues for eigenvectors.

Table 2 presents experimental results for GED. The accuracy increases from 0.9692
for 5 eigenvectors to 0.9950 for 25 eigenvectors. Similarly, the F1 score consistently in-
creases from 0.8681 to 0.9793. The precision of the IDS also increases as the number

12



of eigenvectors increases, with the highest precision of 0.9843 achieved with 20 eigen-
vectors. The recall of the IDS is highest for 25 eigenvectors with a value of 0.9781,
indicating that the IDS with 25 eigenvectors is better at detecting true positive cases.
The true positive (TP) values increase with the number of eigenvectors, while the false
negative (FN) values decrease, indicating that the IDS is more capable of detecting
true positive cases with a higher number of eigenvectors. However, the false positive
(FP) values slightly increase as the number of eigenvectors increases, which suggests
that increasing the number of eigenvectors may result in a higher rate of false alarms.
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Fig. 5 The magnitudes of eigenvalues for eigenvectors.

4.3.2 Autoencoder

Choosing the appropriate number of latent layers can be a challenging task, and it often
requires experimentation and tuning to find the optimal number for a given problem.
Typically, the number of latent layers is determined by balancing the trade-off between
model complexity and performance on the validation set.
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Table 2 The performance analysis of generalized eigenvalue decomposition.

# of Eigenvectors  Accuracy F1 Precision Recall TP TN FP FN
5 0.9692 0.8681  0.8993 0.8391 9122 78092 1021 1749
10 0.9927 0.9700  0.9687 0.9713 10559 78772 341 312
15 0.9947 0.9781 0.9834 0.9727 10575 78935 178 296
20 0.9949 0.9789  0.9843 0.9735 10583 78945 168 288
25 0.9950 0.9793  0.9805 0.9781 10633 78901 212 238

Table 3 presents the performance analysis of an autoencoder with different numbers
of latent layers (n). The accuracy of the model increases with the number of latent
layers, reaching its highest value of 0.9965 with 25 latent layers. Similarly, the F1
score, precision, and recall increase with the number of latent layers, with the highest
values being 0.9855, 0.9823, and 0.9881, respectively, for 25 latent layers.

Table 3 The performance analysis of autoencoder.

# of Latent Layer (n) Accuracy F1 Precision Recall TP TN FP FN
5 0.9849 0.9479  0.9868 0.8864 9637 78984 129 1234
10 0.9932 0.9714  0.9918 0.9518 10347 79028 85 524
15 0.9926 0.9685  0.9926 0.9455 10279 79036 77 592
20 0.9921 0.9665  0.9887 0.9452 10275 78996 117 596
25 0.9965 0.9855  0.9823 0.9881 10742 78925 188 129

4.3.3 Principal Component Analysis

PCA aims to retain the most important information from the original high-dimensional
dataset while reducing the number of variables. The number of principal components
that should be retained depends on the amount of variance they explain. Figure 6
shows the variance of each principal component and accumulated one. It is observed
that the first principal component explains the most variance, followed by the second
and third principal components. As more principal components are added, the amount
of explained variance gradually decreases. In this specific case, it seems that retaining
the first 5 principal components can capture a significant amount of the variation in
the data, as they explain over 99.5% of the variance.

Table 4 depicts the performance analysis of the proposed method using PCA for
different numbers of components. The result shows that the performance of the intru-
sion detection model does not degrade significantly even when the number of principal
components is reduced by 90.2%. Specifically, when the number of principal com-
ponents is reduced to 5, the model achieves an accuracy of 0.9909 and an F1 score
of 0.9613. When the number of principal components is increased to 20, the model
achieves an accuracy of 0.9969 and an F1 score of 0.9873.

The analysis reveals an interesting trend regarding the trade-off between true posi-
tive and false negative values. As the number of components increases, the true positive
values consistently increase while the false negative values decrease. This finding sug-
gests that the proposed method becomes more capable of correctly detecting positive
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Fig. 6 The variance of PCA components.
Table 4 The performance analysis of PCA.
# of Component  Accuracy F1 Precision Recall TP TN FP FN
5 0.9909 0.9613  0.9892 0.9351 10165 79002 111 706
10 0.9967 0.9863  0.9857 0.9869 10729 78957 156 142
15 0.9967 0.9862  0.9839 0.9886 10747 78937 176 124
20 0.9969 0.9873  0.9832 0.9915 10778 78929 184 93
25 0.9961 0.9839  0.9781 0.9898 10760 78873 240 111

cases as the number of components increases. In contrast, the false positive values
remain relatively low across all component numbers, indicating that the pro-posed
method can maintain a low rate of false alarms even with an increased number of
components.

4.4 Discussion and Future Work

Our findings, summarized in Table 5, suggest that carefully balancing dimensionality
reduction with the need for accurate intrusion detection is critical for achieving opti-
mal performance. It is found that PCA was the most effective dimension reduction
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technique among the three methods evaluated, as it resulted in the best balance be-
tween number of dimension and accuracy. PCA can slightly improve accuracy and F1
score of CNN-GRU architecture with 20 components. On the other hand, reducing the
input features by 90.2% using PCA resulted in only a 2.6% decrease in the F1 score
of the intrusion detection system. When the number of components is decreased, pure
CNN-GRU model outperforms all experimented dimensionality reduction methods.
This suggests that there may be trade-offs between reducing dimensionality and main-
taining accuracy, and that each situation may require a different approach depending
on the specific goals and constraints of the system being used. Overall, the findings
suggest that careful consideration and testing of different dimensionality reduction
techniques is necessary for optimization.

Table 5 The comparison of the dimensionality reduction techniques with 1D CNN-GRU.

Method Accuracy F1 Precision  Recall TP TN FP FN

1D CNN-GRU  0.9968 0.9869  0.9855 0.9882 10743 78955 158 128

Autoencoder 0.9965 0.9855  0.9823 0.9881 10742 78925 188 129

GED 0.9950 0.9793  0.9805 0.9781 10633 78901 212 238
PCA 0.9969 0.9873  0.9832 0.9915 10778 78929 184 93

Although successful results are observed, there is some room to improve the current
system. The method was evaluated offline. Future work could explore the feasibility
of implementing the proposed method in real time to provide continuous monitoring
and early detection of potential cyberattacks on critical infrastructure systems.

While this research focused on the SWaT dataset, future work could explore the
effectiveness of the proposed method on other datasets related to critical infrastruc-
ture, such as power grids or transportation systems. This would provide insights into
the generalizability of the proposed method.

5 Conclusion

This research investigates the use of a 1D CNN and GRU model on the SWaT dataset.
The main aim of the research is to improve the performance of the model by utilizing
the complementary strengths of both models. The results demonstrate that combining
the 1D CNN and GRU models can significantly enhance the accuracy of the model.
Moreover, the study highlights the importance of dimensionality reduction, indicating
that the selection of relevant features can significantly affect the performance of the
model.
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