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Abstract
Background: Temozolomide (TMZ), as the first-line chemotherapeutic agent for the treatment of
glioblastoma multiforme (GBM), often fails to improve the prognosis of GBM patients due to the quick
development of resistance. The need for more effective management of GBM is urgent. The aim of this
study is to evaluate the efficacy of combined therapy with TMZ and amlexanox, a selective inhibitor of
inhibitor of nuclear factor kappa-B kinase subunit epsilon (IKBKE), for GBM. Methods: in vitro, cell
viability assay, apoptosis analysis, western blot, migration and invasion assay were used. In vivo,
intracranial tumor models were constructed and the immunohistochemistry were used. Results: We found
that combined treatment resulted in significant induction of cellular apoptosis and the inhibition of cell
viability, migration and invasion in primary glioma cell and in the human glioma cell line, U87 MG. TMZ
enhanced expression of phosphoration of adenosine 5‘-monophosphate-activated protein kinase (p-
AMPK) and amlexanox led to reduction of IKBKE, with no impact on p-AMPK. Furthermore, we
demonstrated that, compared to other groups treated with each component alone, TMZ combined with
amlexanox effectively inhibited phosphorylation of protein kinase B (AKT) and mammalian target of
rapamycin (mTOR). In addition, the combination treatment also clearly reduced in vivo tumor volume and
prolonged median survival time in the xenograft mouse model. Conclusion: These results suggest that
amlexanox sensitized primary glioma cell and U87 MG cell to TMZ at least partially though the
suppression of IKBKE activation and the attenuation of AKT activation. Overall, combined treatment with
TMZ and amlexanox may provide a promising possibility for improving the prognosis of glioblastoma
patients in clinical practice.

Background
Glioblastoma multiforme (GBM), which accounts for more than 60-70% of all gliomas, is the most
aggressive and most deadly primary brain tumor in adults [1, 2]. Over the past decades, although there
has been progress regarding human GBM treatment, currently including maximal surgical resection
followed by chemotherapy and/or radiotherapy, the prognosis of patients diagnosed with GBM remains
extremely grim, with a median survival of approximately 14.6 months and a 5-year survival rate of only
9.8% [3, 4]. Thus, there is an overwhelming need for more efficacious therapeutic approaches for this
malignancy.

Temozolomide (TMZ), a novel oral alkylating agent, is the drug that is most frequently used against
malignant glioma, with broad-spectrum antitumor activity [5]. Although TMZ is considered the most
promising chemotherapeutic drug against GBM, most patients suffer from tumor recurrence within 7
months due to the development of resistance [6]. Accumulating evidence demonstrates that the
activation of protein kinase B (AKT) is responsible for the evolution of resistance in different types of
cancers [7-9]. AKT phosphorylates several substrates associated with various cellular processes, such as
cell growth, survival and metabolism [10, 11]. Interestingly, AKT activation is be enhanced by TMZ
treatment, which in turn attenuates TMZ-induced apoptosis [12, 13]. Recently, AKT is reported to be
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phosphorylated by inhibitor of nuclear factor kappa-B kinase subunit epsilon (IKBKE, also known as IKKε
and IKKi) in breast cancer [14], non-small-cell cancer (NSCLC) [15], and other cells or tissues [16].

Amlexanox, a selective IKBKE inhibitor, has been approved for the treatment of aphthous ulcers and
asthma without clear molecular mechanism [17, 18]. Amlexanox is also effective for the treatment of
obesity and type 2 diabetes [19, 20]. Moreover, the potential potency of inhibition in GBM cell lines was
recently demonstrated [21]. Here, we hypothesize that amlexanox can attenuate the chemoresistance of
human GBM cells to TMZ by inhibiting the activation of IKBKE and AKT.

In this study, we demonstrated that the combination of TMZ and amlexanox augmented the effects in
primary GBM cells and human GBM cells in vitro. Furthermore, the efficacy of the combination was
confirmed in vivo in a xenograft mouse model. These results suggest the possibility of TMZ combined
with amlexanox for the treatment of GBM.

Materials And Methods
Chemical and reagents

Anti-IKBKE (#3416P), anti-phospho-AKT (Ser473, #4058S), and anti-AMPK (#5831S) antibodies were
purchased from Cell Signaling Technology, Inc (Shanghai China). Anti-mTOR (#35373), anti-phospho-
mTOR (Ser2448, #11221), and anti-caspase-3 (#27525) antibodies were purchased from Signalway
Antibody (College Park, MD, USA). Anti-AKT (#A18675), anti-Bcl2 (#A19693), and anti-Bax (#A7626)
antibodies were purchased from ABclonal (Boston, MA, USA). Anti-phospho-AMPK (Ser172, # ARG51678)
antibody was purchased from Arigo (Taiwan, China). Goat anti-mouse IgG-HRP, goat anti-rabbit IgG-HRP
and GAPDH antibodies were purchased from Utibody (Tianjin, China). Amlexanox was purchased from
Selleck.cn (Shanghai, China), and TMZ was purchased from Solarbio Science & Technology (Shanghai,
China). Both components were dissolved in dimethyl sulfoxide (DMSO) (Louis, MO, USA) to prepare a
stock concentration of 100 mM (TMZ) and 500 mM (amlexanox), respectively, and stored at -20°C.

Cell culture

The GBM cell line (U87 MG) was kindly provided by professor Chunsheng Kang, and was maintained in
Dulbecco's modified Eagle's medium (DMEM, HyClone, Logan, UT, USA) supplemented with 10% fetal
bovine serum (FBS, Gibco, Thermo Fisher Scientific, Inc., Waltham, MA, USA) and 100 U/mL
penicillin/streptomycin (Solarbio Science & Technology, Co., Ltd., Shanghai, China), and cultured in a 95%
humidified atmosphere with 5% CO2 at 37°C.

Primary human glioblastoma cells

After obtaining informed consent, fresh tumor samples, classified as grade IV of astrocytoma based on
the World Health Organization (WHO), were obtained from a patient undergoing surgical treatment at
Tianjin Medical University General Hospital. Within 1 h of removal, a part of the resected tissues was
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washed and enzymatically digested with collagenase at 37°C for 1 h.. Then, the undigested tissues were
removed through centrifugation, and the rest of the sample was mixed with F12 (Gibco, Thermo Fisher
Scientific, Inc.) medium supplemented with 10% FBS and 100 U/mL penicillin/streptomycin and
maintained at 37°C in a 5% CO2 incubator.

Cell viability assay

The Cell Counting Kit-8 (CCK-8) assay (Dojindo EU GmbH, Beijing, China) was used to evaluate cell
viability. In brief, both cells (U87 MG cell and primary GBM cell) in the log growth phase were seeded in
96-well plates at the density of 3×103 cells per well and incubated overnight in 200µl DMEM media. Then,
the cells were treated with designated concentration of TMZ or amlexanox alone or both for 24, 48, 72 h
and compared with negative control (NC) treated with DMSO. After incubation, 10 µl CCK-8 was added to
each well according to the manufacturer’s instructions, and the cells were incubated for 2 h at 37°C.
Finally, the OD value was determined at 450 nm (OD450) by a microplate reader (Synergy2, BioTek, VT,
USA).

Colony formation assay

The assay included four groups: NC, TMZ, Amlexanox, and TMZ+amlexanox group. In brief, five hundred
U87 MG or primary GBM cells were seeded in six-well plates. After incubation overnight, both cell types
were treated with DMSO, desired concentration of TMZ and amlexanox, alone or in combination, and the
medium was changed once every 5 days for 2 weeks. When cells in colony were almost more than 50
cells, methanol and crystal violet were used to fix and stain cell colonies, and colonies with more than 50
cells were counted by using an inverted microscope (Olympus, Japan). The number of colony in each
group was statistically analyzed.

Apoptosis assay

As the same groups as colony formation assay, there were four groups in this assay. Annexin V-
fluorescein isothiocyanate (FITC)/propidium iodide (PI) apoptosis kit (Dojindo EU GmbH, Beijing, China)
was used to detected apoptosis cells. In brief, both U87 MG and primary GBM cells (1-1.5×105 cells/well)
in the log growth phase were plated in six-well plates. After treated with DMSO, desired concentration of
TMZ and amlexanox, alone or in combination, for 48 h, both cells were harvested through trypsinization
without EDTA and washed with ice-cold phosphate-buffered saline (PBS). Next, cells were re-suspended
in 500 µl binding solution containing 5 µl annexin-V and 5 µl PI according to manufacturer’s instruction.
After incubating for 15 min at room temperature, cells apoptosis was immediately analyzed by a
FACScan flow cytometer (BD Biosciences), and further statistical analysis of apoptotic cells was
conducted using FlowJo software.

Western blotting
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Similarly, this assay were also divided into four groups: NC, TMZ, Amlexanox, and TMZ+amlexanox
group. In brief, U87 MG and primary GBM cells were seeded in 10cm dishes (Falcon) and cultured
overnight. After treated with DMSO, desired concentrations of TMZ and/or amlexanox for 48 h, cells were
harvested and lysed in RIPA buffer (Beijing Solarbio Science & Technology Co., Ltd.) supplemented with a
protease inhibitor mixture (APExBIO, USA). Then cells lysed fully were collected and centrifuged at 12000
r/min for 15 min. Supernatants were moved into another tube, and concentrations of the total proteins
were determined using the bicinchoninic acid (BCA) assay kit (Thermo Fisher Scientific, Inc.) based on the
manufacturer’s instructions. Equivalent amounts of proteins were separated by 6, 10 or 12% SDS-PAGE
gels and then transferred to polyvinylidene fluoride (PVDF) membranes (Billerica, MA, USA). After
blocking in 5% skim milk at 37°C for 1 h, the membranes were incubated with primary antibodies
overnight at 4°C against rabbit anti-Bcl2 (1:1000 dilution), rabbit anti-Bax (1:1000 dilution), rabbit anti-
active Casespase-3 (1:1000 dilution), rabbit anti-IKBKE (1:1000 dilution), rabbit anti-AKT (1:1000 dilution),
rabbit anti-phospho-AKT (1:1000 dilution), rabbit anti-AMPK (1:1000 dilution), rabbit anti-phospho-AMPK
(1:1000 dilution), rabbit anti-mTOR (1:1000 dilution), rabbit anti-pospho-mTOR (1:1000 dilution), followed
by incubation with corresponding HRP-conjugated second antibodies (1:10000 dilution) for 1 h at room
temperature. GAPDH was considered an internal reference for loading. Antigen-bound antibodies were
detected using the SuperSignal West Pico Plus Chemiluminescent Substrate (Thermo Fisher Scientific,
USA).

Migration assay

To assess the migration ability of U87 MG and primary GBM cells after treatment for 48 h, scratch wound
healing assay was conducted. Groups were the same as above. In brief, treated cells (3× 105 cells/well)
were seeded into six-well plates; when the cells reached 80-90% confluence in a monolayer, scratch
wounds were made using a 200 µL pipette tip. Then, cell debris was removed, and a microscope was
used to confirm the uniform scratch width of every group. After incubation at 0, 12 and 24 h, five different
fields of each well were measured and photographed using a phase-contrast microscope. In addition,
Transwell filters with 8-µm pores (Corning Costar, NY, USA) (without Matrigel) were also used to evaluate
the migration ability of treated cells. The assay was conducted as described in a previous report [21].

Invasion assay

The invasion capacity of treated U87 MG and primary GBM cells was evaluated using Transwell assay
with inserts of 8-µm pore size. The groups were also the same as above. In brief, after treated for 48 h,
cells were resuspended in 200 µL serum-free DMEM, then seeded into the upper chamber covered with
Matrigel (BD Bioscience), diluted with serum-free DMEM, and incubated for 24 h at 37°C. After removing
non-invading cells with cotton swabs from the top well , the bottom cells were fixed in 5% methanol,
stained with 0.1% crystal violet, and then three independent 200x regions were photographed randomly
for each insert.

Immunohistochemistry (IHC) and hematoxylin-eosin (HE) staining



Page 7/20

For histological analysis, the tissues were fixed in 4% formaldehyde for IHC and HE analysis. For IHC
staining, the slides (5 µm) were dewaxed using xylene and rehydrated using graded alcohols. Antigen
retrieval was performed with sodium citrate (pH=6) buffer at 92-99°C for 15 min, and then the slides were
cooled at room temperature. Slides were washed three times for 5 min in PBS and incubated with 3%
H2O2 for 30 min to block endogenous peroxidases. The slides were blocked using 1% BSA for 30 min at
room temperature. Next, slides were incubated at 4°C overnight with primary antibodies against rabbit
anti-IKBKE (1:100 dilution), rabbit anti-phospho-AKT (1:100 dilution), rabbit anti-phospho-AMPK (1:100
dilution), rabbit anti-pospho-mTOR (1:100 dilution) before being incubated using biotin-labeled secondary
antibody (1:100 dilution) for 1 h at 37°C and incubated again with diaminobenzidine (DAB) (Solarbio
Science & Technology, Beijing, China). Finally, slides were counterstained using hematoxylin and
mounted. For HE analysis, slides (µm) were dewaxed and rehydrated as the same as IHC staining assay.
Then the nuclei were attained using hematoxylin. After rinsed in running tap water, the sections were
stained with eosin. Finally, the slides were dehydrated.

Xenograft models

All mouse experiments were conducted according to protocols approved by the Tianjin Medical University
Animal Care and Use Committee and followed guidelines for animal welfare. Female BALB/c-nude mice
(4 weeks old, approximately 12 g) were purchased from Beijing HFK Bioscience Co., Ltd. To establish an
intracranial tumor model, primary GBM cells (5×104 cells) infected with luciferase-encoding lentivirus
were stereotactically injected into the right hemisphere. A burr hole was located at a point situated 2 mm
lateral from bregma and between bregma and fonticuli minor with a syringe under stereotactic guidance.
Seven days after injection, the mice were divided randomly into 4 groups with 15 mice in each group: NC,
TMZ alone, amlexanox alone and combination (TMZ and amlexanox) grorp. The NC group was treated
with DMSO, and the treated groups were intraperitoneally given amlexanox alone (100 mg/kg, TMZ alone
(5 mg/kg) or TMZ (5 mg/kg) and amlexanox (100 mg/kg), respectively, for 5 days. After 2 days without
injections, the same dosing regimen was continuously repeated. Tumor growth was measured once every
week using BLI at a designated time with the IVIS Spectrum Live Imaging System (PerkinElmer, USA).
After 4 weeks post-injection, 3 mice in each group were sacrificed, and the brains were extracted and fixed
in 10% formalin then embedded in paraffin for HE and IHC. The remaining mice were used for survival
analysis.

Statistical analysis:

All experimental data are represented as the mean ±Standard deviation (SD). Statistical analysis was
performed using GraphPad Prism 6 software. One-way analysis of variance (ANOVA) was carried out to
assess differences between multiple groups. The Kaplan-Meier method was used to evaluate difference
in survival among the groups. P < 0.05 was regarded as statistically significant.

Results
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Amlexanox enhanced the induced-TMZ suppression of GBM cell proliferation.

To evaluate the effect of the association with TMZ and amlexanox on cell viability, the CCK-8 assay was
conducted. U87 MG and primary GBM cells were treated with different doses of TMZ, amlexanox, alone
or both for 24, 48, and 72 h. As expected, the inhibition of proliferation in both cell types was gradually
amplified with an increased concentration of either agent alone (Fig 1a), which was consistent with
previous studies [21, 4]. Moreover, the proliferation of cells treated with the combination, whether U87 MG
or primary GBM cells, was efficaciously attenuated (Fig 1a). In addition, the 48 h IC50 values for TMZ and
amlexanox in U87 MG cells were 400 µM and 300 µM, respectively, which were reduced to 200 µM and
150 µM with the combination treatment. Similarly, the IC50 value of either component alone was higher
than that of the combination treatment in primary GBM cells. Based on IC50 values in our study, the
concentrations of 100 µM for TMZ and 50 µM for amlexanox, were used in the subsequent experiments.
Next, the colony formation ability of U87 MG and primary GBM cells was determined. The colony
formation analysis showed that the colony formation numbers were significantly decreased in cells with
the combination treatment compared to cells treated with either agent alone (Fig 1b, c).

Amlexanox promoted TMZ-induced apoptosis of GBM cells.

Apoptosis is one of the main mechanism by which TMZ acts [22, 23]. To evaluate whether amlexanox
can enhance TMZ-induced apoptosis, an annexin V-FITC assay was conducted. As shown in Fig 2a, the
percentage of apoptotic cells was significantly increased in U87 MG cells with the combination treatment
compared to cells treated with either drug alone, which was consistent with the findings in primary GBM
cells. Furthermore, the effect of the combination on apoptosis was validated through a western blot
assay in which changes in apoptosis-related proteins were induced. The activation of proapoptotic
proteins, Bax and caspase-3 were higher in both cells treated with the combination than that in cells
treated with either drug alone (Fig 2b). The expression of antiapoptotic protein Bcl-2 was decreased in the
combination group, in both U87 MG and primary GBM cells, compared to that in cells treated with each
drug alone. These results suggest the possibility that amlexanox enhanced TMZ-induced antiproliferative
activity by promoting apoptosis.

Amlexanox augmented the TMZ-induced inhibition of migration and invasion in GBM cells.

Migration and invasion are the primary characteristics of GBM cells. To evaluate the effect of TMZ
combined with amlexanox on the migration and invasion of U87 MG and primary GBM cells, the wound
healing and transwell assays were conducted. Results of wound healing assay showed that the inhibition
of cellular migration in combination group was more apparent compared to that in other groups treated
with a single drug (Fig 3a,b), which was in accordance with the results of the Transwell migration assay
(without Matrigel) (Fig 3c,d). For the Transwell assay (with Matrigel), the results indicated that after
different treatments for 24 h, amlexanox efficaciously augmented TMZ-induced inhibition of invasion in
U87 MG and primary GBM cells (Fig 3e,f).

TMZ combined with amlexanox effectively decreased the activation of AKT.
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TMZ treatment has been suggested to increase the activation of AKT, which in turn results in resistance
to TMZ [12]. Moreover, the IκB kinase, IKBKE, is affirmed to be responsible for activating AKT [16, 14]. To
investigate whether the amlexanox-mediated inhibition of IKBKE can attenuate the TMZ-induced
activation of AKT, the alteration of relevant proteins was measured following treatment of TMZ and
amlexanox, alone or both in U87 MG and primary GBM cells. The effect of TMZ or amlexanox alone on
the IKBKE and AKT signaling pathways was first evaluated. After treatment with the designated dose of
either agent for 48 h in U87 MG and primary GBM cells, results were showed as Fig 4. The western blot
assay indicated that TMZ induced the activation of AKT and AMPK and decreased the phosphorylation
of mTOR; the activation of IKBKE was decreased after amlexanox treatment, which was consistent with
previous studies [14, 21, 23]. After treating U87 MG and primary GBM cells with both agents, the results
showed that TMZ combined with amlexanox resulted in enhanced reduction of p-AKT and p-mTOR.
Taking together, these results show that after treatment with TMZ alone, the slightly decreased level of p-
mTOR may be due to TMZ-induced activation of AMPK, but AKT was activated at the same time, which
may have resulted in the resistance of GBM cells to TMZ. However, amlexanox reversed the TMZ-
mediated expression of p-AKT by inhibiting IKBKE activation, which may be part of the mechanism by
which amlexanox can sensitize GBM cells to TMZ treatment.

Combination of TMZ and amlexanox inhibited the growth of tumors in xenograft models.

To evaluate the efficacy of combining TMZ and amlexanox in vivo, intracranial tumor models were
constructed with primary GBM cells expressing a luciferase reporter to further validate the findings above.
Results were shown as Fig 5a, b, c. The volume of intracranial tumors in the group treated with
amlexanox alone or TMZ alone was modestly reduced, and the survival (24 days or 25.5 days) was
slightly improved compared with the results from the control group (21 days). However, there were
significant reduction of tumor burden and improvement of survival (31 days) in the combination group
compared to that in amlexanox alone group or TMZ alone group. The median survival in the TMZ and
amlexanox co-treatment group was longer than that in the control, amlexanox alone and TMZ alone
groups. The results of HE assay also indicated that the volume of tumor in the combined group was
decreased more obviously than that in other groups (Fig 5d). Moreover, the molecular mechanism was
assessed by IHC staining assay (Fig 5d). Results showed that, compared to treatment with control,
amlexanox alone or TMZ alone, treatment of TMZ with amlexanox obviously reduced the levels of p-AKT
and p-mTOR. Overall, these results suggested that amlexanox was able to penetrate the blood-brain
barrier in vivo and enhance TMZ-induced inhibition of tumor growth though indirectly decreased
expression of p-AKT and p-mTOR.

Discussion
In the present study, we demonstrated that amlexanox enhanced the sensitization of GBM cells to TMZ in
vitro and in vivo. As far as we know, this study was the first to use primary GBM cell, which maintained
important histopathological and molecular characteristics of primary GBM tumor, to evaluate the effect
of the combination of TMZ with amlexanox.
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TMZ is a common chemotherapeutic drug, and the induction of DNA adducts is primary mechanism of
exerting cellular toxicity [24]. Though the administration of TMZ has improved the prognosis of GBM
patients, resistance against TMZ was quickly developed [9]. The overexpression of O6-methylguanine-
DNA-methyltransferase (MGMT) is one of the main resistance mechanisms for repairing O6-
methylguanine, which is an important TMZ-induced lesion resulting in breakage of DNA double-strand
and subsequent apoptosis [6, 5]. In addition, immune escape after TMZ treatment[25], dysfunction of the
DNA mismatch repair (MMR) system [1], as well as abnormal expression of nuclear factor erythroid 2-
related factor 2 (Nrf2) [26] and high expression of ATP-binding cassette (ABC) membrane transporters[2],
were also demonstrated to be involved in resistance development. However, what greatly interested us is
the activation of AKT, which is involved various cellular processes, such as proliferation, cell growth and
survival [14]. A growing number of studies have proved that the activation of AKT is associated with
resistance to TMZ treatment [27]. Moreover, administration of TMZ for GBM was proved to induce AKT
activation [12, 13, 4, 28]. Given that the above factors resulted in decreased TMZ-induced cellular toxicity,
it is impractical to treat GBM patients with a single agent. Therefore, in this study, we conducted a series
of assays to evaluate the effect of a combination of TMZ and an inhibitor, amlexanox, in the treatment of
human GBM cell line and primary GBM cell.

Results of the present study showed that TMZ combined with amlexanox not only effectively inhibited
proliferation, invasion and migration, which were the main challenges in the treatment of GBM, but also
greatly promoted cellular apoptosis in human GBM cell line and primary GBM cell. The upregulated
expression of Bax and caspase-3 validated the occurrence of apoptosis. Moreover, western blot assays
suggested that TMZ treatment induced AMPK phosphorylation, which contributed to apoptosis via p-
mTOR inhibition [23]. To better understand the potential mechanism of amlexanox enhancing TMZ-
induced cellular toxicity, the relevant proteins were examined following treatment of U87 MG and primary
GBM cells with either agent alone or combination. It was revealed that amlexanox treatment induced the
reduction of IKBKE activation, subsequently reversed TMZ-mediated expression of p-AKT, and enhanced
the suppression of p-mTOR. These results indicated that amlexanox attenuated the chemoresistance of
GBM cells to TMZ partially through amlexanox-induced inhibition of IKBKE, which resulted in the
repression of TMZ-induced AKT activation. In addition, TMZ combined with amlexanox efficaciously
reduced the tumor volume and improved the survival of mice in the xenograft model in vivo. To date, a
growing number of studies have focused on the inhibition of the AKT signaling pathway with combined
administration in GBM and other tumors [7, 29-34]. Zhiyun Yu and his colleagues suggested that TMZ
combined with NVP-BEZ235 synergistically inhibited GBM cell proliferation though downregulating
AKT/mTOR signaling pathway [4], which was similar to our findings. However, in our study, the primary
GBM cell, which are more similar in histopathological and molecular characteristics to primary GBM
tumors, were used to evaluate the effect of combination treatment. Nevertheless, it is undeniable that
there are some limitations to our study. Only one kind of GBM cell line or primary GBM cell was used. If
more cell lines and primary GBM cells were used, the results would be more convincing. Additionally,
more assays should be conducted to further validate that the inhibition of AKT signaling pathway was
induced by amlexanox, which enhanced TMZ-induced cellular toxicity. The side effect was always the
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issue that should be concerned when it comes to treatment with new combination in GBM patients. More
assays should be conducted to evaluate the side effect when nude mice were managed with combination
of TMZ and amlexanox in present study.

Conclusion
In conclusion, we have demonstrated that amlexanox can enhance TMZ-induced cellular toxicity; the
mechanism occurs partially through that the downregulated activation of IKBKE induced by amlexanox
reverses TMZ-induced activation of AKT, suggesting that the combination of TMZ and amlexanox is a
possible treatment for GBM patients.
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Figure 1

TMZ combined with amlexanox effectively inhibited proliferation of U87 MG and primary GBM cells. (a)
The results of CCK-8 assay. U87 MG were treated with TMZ in the concentration of 0, 50, 100, 200, 400,
800µM, and primary GBM cells were treated with amlexanox in the concentration of 0, 50, 100, 150, 200,
250µM. (b, c) Representative images of the colony forming assay (left) and statistical analysis in the
form of histogram (right) after exposure to TMZ (100 µM), amlexanox (50 µM), or both for two weeks.
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The data presented are shown as the means ±SED. Three experiments were performed independently. (*p
< 0.05, **p < 0.01, ***p < 0.005)

Figure 2

Amlexanox prompted TMZ-induced apoptosis in U87 MG and primary GBM cells. (a) Representative
images of apoptosis (left) and quantified results in histograms (right) for U87 MG and primary GBM cells
after treatment with TMZ (100 µM), amlexanox (50 µM), or combination for 72 h. (b) The levels of
expression of Bcl2, Bax and active caspase-3 were measured by western blotting. The data presented
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here are shown as the mean ± SED. Three experiments were performed independently. ( *P < 0.05, **p <
0.01, ***p < 0.005, and ****p < 0.001)

Figure 3

Combined treatment of TMZ with amlexanox efficaciously inhibited the migration and invasion of U87
MG and primary GBM cells. (a) Representative images of the wound healing assay for each cell type after
0, 12 and 24 h seeding. (b) The data of the wound healing assay were quantified and shown as a
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histogram. (c) Representative images of both cell types were captured after 24 seeding in the Transwell
assay (without Matrigel). (d) The results of both cell types from the Transwell assay (without Matrigel)
were quantified and are shown in a histogram. (e) Representative images of both cell types were captured
after 24 seeding in the Transwell assay (with Matrigel). (f) The results of both cell types from the
Transwell assay (with Matrigel) were quantified and are shown in a histogram. Three experiments were
performed independently.(**p < 0.01, ***p < 0.005, and ****p < 0.001)

Figure 4

Amlexanox sensitized U87 MG and primary GBM cells to TMZ partially through inhibition of AKT
activation. After treatment with TMZ and/or amlexanox for 48 h, the cells were harvested, and western
blotting was conducted to detect the expression of relevant proteins.
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Figure 5

Amlexanox treatment sensitized orthotopic intracranial tumors of primary GBM cell to TMZ. (a)
Representative images of the bioluminescence (BLI) of intracranial tumor models were captured on days
7, 14, 21, and 28. (b) Quantified analysis of these bioluminescence images for each group. (c) Survival
analysis of the mice in each group. (d) Representative images of HE staining of full-brain sections and
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representative images of the IHC staining assay for IKBKE, p-AKT, p-mTOR, and p-AMPK. (×200
magnification) (**p < 0.01, ***p < 0.005, and ****p < 0.001)


