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Abstract
Global warming has caused many species to become endangered or even extinct. Describing and predicting how
species will respond to global warming is one of the hot topics in the field of biodiversity research. Species
distribution modeling predicts the potential distribution of species based on species occurrence records. However, it
remains ambiguous how the accuracy of the distribution data impacts on the prediction results. To address this
question, we used the endangered plant species Litsea auriculata (Lauraceae) as a case study. By collecting and
assembling six different datasets of Litsea auriculata, we used MaxEnt model to perform species distribution
modeling and then conducted comparative analyses. The results show that the distribution of Litsea auriculata is
mainly in the Dabie Mountain region, southwestern Hubei and northern Zhejiang, and that mean diurnal
temperature range (bio2) and temperature annual range (bio7) play important roles in the distribution of Litsea
auriculata. Compared with the correct data, the dataset including misidentified specimens leads to a larger and
expanded range in the predicted distribution area, whereas the species modeling based on the correct but
incomplete data predicts a smaller and contracted range. According to the analysis of the local protection status of
Litsea auriculata, we found that only about 23.38% of this species is located within nature reserves, so there is a
large conservation gap. Our study suggests that the accurate distribution data is important for species modeling,
and incomplete and incorrect data normally gives rise to misleading prediction results. In addition, our study also
revealed the distribution characteristics and conservation gaps of Litsea auriculata, laying the foundation for the
development of rational conservation strategies for this species.

1 Introduction
With global warming, populations of many species have been lost and fragmented, leading to an endangered
status and even extinction of species (Power et al. 2019; Chase et al. 2020; Richards et al. 2020). A large number of
species have become adapted to new distribution areas by modifying the pre-existing community composition and
hence the ecosystem function (Babcock et al. 2019; Román-Palacios et al. 2020; Nielsen et al. 2021).
Understanding the impact of future climate change on species potential habitats is important for the development
of species conservation strategies (Austin et al. 2011; Hole et al. 2011; Moitz & Agudo 2013).

Species Distribution Models (SDMs) attempt to associate the distribution information of species with the
corresponding environmental variables, establish models and predict the potential distribution of species in a
certain area under specific spatial and temporal conditions in the future, which can quantify the regional and local
distribution of species abundance at different scales (Guisan and Thuiller 2005; Araujo and Peterson 2012). SDMs
mainly include a Generalized Linear Model (GLM), Classification and Regression Tree (CART), Random Forest (RF),
Maximum Entropy (MaxEnt) etc. (Guo et al. 2020). The MaxEnt is one of the SDMs, based on extant species
occurrence records and environmental data. It has the advantage of great accuracy, small sample size requirement,
and good stability, and thus has become a widely used modeling approach (Wisz et al. 2008; Fitzpatrick et al. 2013;
Merow et al. 2013; Morales et al. 2017; Wu et al. 2022). In recent years, there has been a steady increase in the
literature on SDMs using the MaxEnt as a keyword in the Web of Science (Fig. 1). The use of SDMs makes it
possible to predict the potential distribution of species in new space or time (Liu et al. 2022), and thus provides an
important reference for species conservation.

SDMs are based on distribution site data and environmental factor data, so uncertainty in the location of species
sampling sites will inevitably increase the uncertainty of modeling results (Guo et al. 2020). Specimen data have
become an important data source for SDM predictions (Meineke et al. 2018). More than 3,000 herbaria in the world
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have collected over 400 million plant specimens (Thiers 2020). With the rapid digitization of plant specimens
worldwide, specimen data have widely been used for different purposes, e.g. taxonomy, biogeography, phenology,
and SDMs (Jaca et al. 2018; Jukonienė et al. 2018; Cámara-Leret et al. 2020; Meineke et al. 2018). However, it is
worth pointing out that the herbarium collections and digitized specimens contain samples of cultivated plants far
from their natural range as well as mis-identified material. There is a lack of quantitative description and research
on how these misidentified and non-native specimen data have affected the results of SDMs.

Litsea auriculata is a deciduous tree species of the family Lauraceae. This species is characterized by scale-like
exfoliating bark, large and auriculate leaves, long petioles, black ovoid fruits, and a cup-shaped receptacle. It has
important economic and medicinal value, its wood has been used for furniture, while the fruits and roots have been
employed as a traditional Chinese medicine (TCM) (Yang and Huang 1982). Litsea auriculata is sporadically
distributed in a few mountainous areas at 500 − 1500m in Zhejiang, Anhui, Henan etc., and was listed as vulnerably
endangered because of habitat loss and fragmentation (Fu and Jin 1992; Qin et al. 2017). As a result, it is
important to investigate the conservation status of Litsea auriculata and identify any conservation gaps.

Species distribution modeling (SDM) should be based on complete sampling of accurately identified specimens,
which is essential for understanding the suitable distribution area of species and for formulating reasonable
conservation strategies (Costa et al. 2015; Fei and Yu 2016). Geng et al. (2017) conducted a study on community
genetics and ecological niche modeling of Litsea auriculata, and predicted ecological niche shifts under different
climate changes based on data from three populations in Tianmu Mountain of Zhejiang, Dabie Mountain of Anhui
and Henan, and found that the habitat showed a trend towards contraction and decline in east-central China.
However, the sampling range of this study is obviously inadequate, especially for the marginal areas of its
distribution range. Based on specimens and literature data, Yang et al. (2018) documented the distribution of the
species in Chun'an and Tiantai Counties in Zhejiang, Huoshan and She Counties in Anhui, Yingshan County and
Shennongjia forest area in Hubei; Geng et al. (2017) did not include these localities. In addition, the Chinese Virtual
Herbarium (abbreviated as CVH), the largest digitized herbarium data source, contains misidentified and cultivated
specimens. However, it remains unclear how the incomplete sampling, misidentified and cultivated specimen data
impact on the distribution modeling of this species.

In this study, we collected and collated six different datasets of Litsea auriculata and predicted each dataset using
the MaxEnt, and compared the differences of the species distribution modeling results based on these different
datasets. By doing this, we plan to answer the following three questions: 1) what are the impacts of misidentified
and cultivated specimen data on the results of SDMs? 2) what are the differences between SDM results of
inadequate sampling and complete and accurate datasets? 3) identify the conservation gap of the species based
on our new species modeling results and indicate what action needs to be taken to conserve the species?

 

2 Materials and Methods

2.1 Data collection and processing

2.1.1 Distribution data of Litsea auriculata
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The distribution data of Litsea auriculata were obtained from the Chinese Virtual Herbarium (CVH,
https://www.cvh.ac.cn/), National Specimen Information Infrastructure (NSII,
http://www.nsii.org.cn/2017/home.php), authoritative regional floras, and published papers (Sun 2014; Geng et al.
2017). We annotated the data source of each distribution record to generate different datasets. The distribution
records were cross-checked for spelling errors. All the specimen records were visually identified by the
corresponding author (Yong Yang), and the misidentified and cultivated records were labeled. Then, the collected
data were further processed and separated into six datasets (see Table S1): dataset 1 (correct) including all the
correctly identified records from herbarium specimens and literature; dataset 2 (cultivated) containing correctly
identified and cultivated specimens; dataset 3 (misidentified) encompassing correctly identified and misidentified
specimens but excluding cultivated specimens; dataset 4 (specimen) including only correctly identified specimens;
dataset 5 (population) was collected from the literature, contained field population investigations (correctly
identified but incomplete); dataset 6 (including all different sources) included all the distribution records of
population investigations and herbarium data (correctly identified, misidentified and cultivated). We used Google
Maps (http://maps.google.cn/) to obtain the geographic coordinates of the distribution records. We removed
duplicate specimens and redundant records within the different datasets, before MaxEnt analysis and imported the
distribution data into ArcGIS 10.2 to eliminate duplicate points, i.e., only one of the distribution records within 10 km
was retained (Zhou et al. 2021).

2.1.2 Environment variable data
Altogether 19 environmental variable data at 2.5′ resolution were downloaded from WorldClim
(https://www.worldclim.org/) (see Table S2), including current climatic data (1970–2000) and future climate
predictions. The future climatic data were based on the climate model of the Beijing Climate Center Climate System
Model Version 1.1 (BCC-CSM 1.1), which was constructed under RCP 2.6, RCP 4.5, and RCP 8.5 for 2050 (average
value over the period 2041–2060) and 2070 (average value over the period 2061–2080) for the three representative
concentration pathways (RCPs) (Luo et al. 2009).

The climate layers were extracted using the software ArcGIS 10.2, and the extracted layers were converted to the
ASCII format. In order to avoid influencing the final assessment of the model of high correlations between
environmental variables (Luo et al. 2017), we conducted Pearson correlation analyses of 19 climatic variables for
each period using the cor function of R software, and the climatic factors with r<|0.85| that were more closely
related to species distribution were retained (Yan et al. 2017; Zhu et al. 2019). Finally, we performed principal
component analyses (PCA) on the variables under current climatic conditions to identify the key drivers influencing
the distribution of Litsea auriculata.

2.2 Potential distribution prediction using MaxEnt
Firstly, we imported the six distribution datasets (.CSV format) and climatic data (.ASCII format) for each period into
MaxEnt 3.4.1 software for species ecological niche simulation. Secondly, different procedures for simulating the
potential distribution were performed for datasets with different sample sizes. For data sets with fewer than 25
coordinate points, the Jackknife method was used for simulation evaluation. For species modeling, one of the
coordinates was removed and the model was built based on the remaining n-1 coordinates, so that n models could
be built and the optimal model selected for the MaxEnt ecological niche simulation. For data sets with more than
25 available coordinate points, 75% of the species distribution data was set as the training set and 25% as the test
set, the number of operational iterations was set to 10, and the rest was used as default values (Pearson et al. 2007;
Zhou et al. 2021). The area under curves (AUC) with receiver operator characteristic (ROC) was used to evaluate the



Page 5/21

reliability of the simulation results (Guo et al. 2019). The range of AUC values was 0 to 1, the closer to 1 indicating
the higher reliability of the simulation. The simulation result was considered to be very accurate when the AUC
value was between 0.9 and 1, accurate when the AUC was 0.8 − 0.9, average when the AUC was between 0.7 and
0.8, and unreliable when the AUC result was less than 0.7 (Elith et al. 2016; Jiang et al. 2016). Finally, the simulation
results of MaxEnt were entered into ArcGIS 10.2 software and transformed into raster layers for visualization, and
the natural breaks method was selected to calculate the fitness index P. Based on previous studies, P>0.75 was
used as a hotspot for species survival (Shi et al. 2022), and the proportion of the area in different distribution data
types was calculated.

2.3 Calculating hotspots in protected areas
To describe and evaluate the local conservation status of Litsea auriculata, we assembled 2569 nature reserves
(including 440 national nature reserves and 2,129 provincial and county nature reserves) established during 1956 − 
2021 (Zhang et al. 2015). In ArcGIS 10.2, the base map data of China's nature reserves superimposed on the
samples were used to calculate the area of the contemporary hotspot area located within the reserve, and to
evaluate the protection efficiency of Litsea auriculata.

3 Results

3.1 Current distribution pattern of Litsea auriculata
Six distribution datasets were assembled in this study. Dataset 4 contains 16 records, and was based on herbarium
specimen data from CVH and NSII. Dataset 5 was collected from the literature, and contained 9 records. Dataset 1
was an integration of dataset 4 and dataset 5, and consisted of a total of 18 records after removing duplicate
records. Both dataset 2 and dataset 3 were assembled using specimen data from CVH and NSII, each containing 22
records. Dataset 6 was an integration of dataset 2, dataset 3, dataset 4, and dataset 5, and contained a total of 26
records after deleting duplicate records.

According to the correct and complete dataset (dataset 1), Litsea auriculata was distributed in Dabie Shan at the
border of Henan and Anhui, Qingliang Mountain at the border of Anhui and Zhejiang, Daming Mountain in Zhejiang,
and Nanzhao County of Henan and Shennongjia forestry district in Hubei (Fig. 2). This species was introduced to
botanical gardens outside its native range for the purpose of ex situ conservation, e.g. Ming Xiaoling Mausoleum in
Jiangsu, Hangzhou Botanical Garden in Zhejiang, Lushan Botanical Garden in Jiangxi, and Kunming Botanical
Garden in Yunnan (Fig. 2). Wrong identification records expanded the distribution range of the species, e.g. Chongyi
County in Jiangxi, Fengkai County in Guangdong, Jiangshan County in Zhejiang, and Sandu Shui Autonomous
County of Guizhou (Fig. 2).

The six datasets were screened for environmental variables based on Pearson correlation analyses. The results
show that dataset 1 and dataset 3 each retained six climate factors in the final MaxEnt model analyses. The
remaining datasets retained five climate factors in the final model analysis, respectively (Table 1).
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Table 1
Screened environmental variables of different datasets for the final MaxEnt model analysis. Details of climate

variables see Table S2.
Type bio1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

datase
1

  *   *     *       *       *     *  

datase
2

      *   * *               *     *  

datase
3

      * *   *   *           *     *  

datase
4

    * *     *       *             *  

datase
5

* *   *                     *     *  

datase
6

      *   * *               *     *  

 
 
 
 

3.2 Spatial pattern and driving factors of potential distribution
areas of various data
Based on the assembled distribution datasets and environmental data, the potential geographical distribution area
of this species was simulated using the optimal MaxEnt model. The results show that the AUC value of the
simulated curves of all six datasets was greater than 0.994, indicating that the prediction results of the model are
very reliable (see Table S3).

The potential distribution patterns based upon different datasets were significantly different under current climatic
condition. The suitable areas predicted for Litsea auriculata based on the correct dataset (dataset 1) were mainly
distributed in Dabie Mountain, Huangshan Mountain and southwestern Hubei, and a small area in Zhejiang
(Fig. 3a). Under-sampled datasets predicted distribution areas showing minor differences from the correct dataset
(dataset 1). Compared with the predicted result of dataset 1, the extent of the fitness zone based upon the
specimen dataset (dataset 4) extended in easterly and westerly directions and shrunk in the middle part (Fig. 3d),
while the suitable area based upon the population dataset (dataset 5) shrunk gradually from the periphery to the
middle (Fig. 3e). The difference between the suitable areas based upon the inaccurate dataset (datasets 2, 3 & 6)
and the correct dataset (dataset 1) was rather obvious, and the potential distribution areas based upon these three
datasets were widely distributed and extended in all directions, throughout the middle and lower reaches of the
Yangtze River (Fig. 3b,c,f). Besides, under the 2050s and 2070s RCP 2.6/4.5/8.5 climate scenarios, the suitable
areas based upon these different datasets were basically consistent with those under contemporary conditions (see
Figure S1).

The predicted hotspot areas based upon different datasets showed distinct trends under various climatic
conditions (Fig. 4). The correct but incomplete datasets (datasets 4 & 5) displayed minor differences from the
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correct dataset (dataset 1), ranging from 0.01–0.54%. The largest hotspot area anomaly was under the 2050s RCP
2.6 condition, where the population dataset (dataset 5) differs from the correct dataset (dataset 1) by 0.54% with an
area of 51,900 km². The smallest hotspot area occurred under multiple climate scenarios, the suitable area based
on the specimen dataset (dataset 4) differed from that based on the correct dataset (dataset 1) by 0.01% with only
1,000 km² under the 2050s RCP 4.5/8.5 climatic conditions. The same result appears in the 2070s RCP 8.5, with the
specimen dataset (dataset 4) and population dataset (dataset 5) differing by 1,000 km² from the correct dataset
(dataset 1).

The incorrect dataset (datasets 2, 3 & 6) and the correct dataset (dataset 1), on the other hand, exhibited a large
difference of 0.03%−0.88%. The largest hot spot area discrepancy value occurred in the misidentified dataset
(dataset 3) for the 2070s RCP 8.5 with 0.88% and an area of 82,600 km². The smallest area gap of 2,900 km²
occurred in all datasets (dataset 6) under 2050s RCP 2.6. In addition, the maximum hotspot area difference in all
climatic environments occurred in the predicted fitness zones of the misidentified dataset (dataset 3), except for
2070s RCP 2.6 which materialized in the cultivated dataset (dataset 2) (Table 2).

 
Table 2

The proportion of hotspot areas in different datasets (hotspots/selected regions).
Type Present 2050s 2070s

RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5

dataset 1 0.16% 0.70% 0.14% 0.07% 0.39% 0.15% 0.08%

dataset 2 0.30% 0.29% 0.30% 0.31% 0.92% 0.25% 0.18%

dataset 3 0.42% 0.92% 0.50% 0.57% 0.91% 0.46% 0.96%

dataset 4 0.09% 0.48% 0.13% 0.08% 0.12% 0.12% 0.07%

dataset 5 0.11% 0.16% 0.07% 0.10% 0.11% 0.12% 0.07%

dataset 6 0.38% 0.67% 0.47% 0.30% 0.53% 0.43% 0.19%

3.3 PCA of Litsea auriculata different datasets under current
climatic condition
The contribution of environmental variables varied when conducting PCA studies based on different datasets under
current climatic condition (see Table S4). Mean diurnal temperature range (bio2) and temperature annual range
(bio7) played a decisive role in the correct dataset (dataset 1) of Litsea auriculata (Fig. 5a). bio7 and Isothermality
(bio3) had the largest impact on the specimen dataset (dataset 4) prediction (Fig. 5d), while bio2 and precipitation
seasonality (bio15) determined the distribution of the population dataset (dataset 5) (Fig. 5e). In the incorrect
datasets (datasets 2, 3 & 6), the two most important determinants for the distribution of cultivated (dataset 2) and
all recorded datasets (dataset 6) were bio7 and temperature seasonality (bio4) (Fig. 5b,d), while the distribution of
the misidentified dataset (dataset 3) was limited by mean temperature of the driest quarter (bio9) and bio7
(Fig. 5c).

3.4 Distribution and conversation status of Litsea auriculata using
different datasets under current climatic condition
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Under contemporary climatic conditions, the hotspots and protection status predicted based on the different
datasets displayed great discrepancies. The hotspots based on the correct dataset (dataset 1) were mainly
distributed in Dabie and Huangshan Mountains, with small stands in southwestern Hubei and Zhejiang. The total
area was 15,400 km², of which 3,600 km² (23.38%) was located in nature reserves (Fig. 6a).

The range of hotspots predicted by the inaccurate dataset (datasets 2, 3 & 6) displayed a certain degree of
expansion compared with the correct dataset (dataset 1). The hotspots of the cultivated dataset (dataset 2) were
concentrated in the Dabie and Huangshan Mountains, with a small area in Hunan, a total area of 28,800 km², of
which 2,600 km² (9.03%) was in a protected area (Fig. 6b). The range of hotspots predicted by the inclusive dataset
(dataset 6) was similar to that of the cultivated dataset, with additional distribution areas in southwestern Zhejiang;
the total area of the hotspot range was 36,500 km², only 3,300 km² (9.04%) was located in a protected area
(Fig. 6c). The misidentified dataset (dataset 3) predicted the largest hotspot area of 40,400 km², which formed a
dense area in southwestern Hubei and northwestern Hunan compared with the cultivated dataset, and extended
outwards from the Dabie and Huangshan Mountains, with only 5,300 km² (13.18%) located in a protected area
(Fig. 6f).

The distribution range of hotspot regions predicted by the correct but incomplete dataset (datasets 4 & 5) was
similar to the correct dataset (dataset 1), and showed an overall contraction. The hotspot areas of the population
dataset (dataset 4) contracted towards the central area of the correct dataset (dataset 1), possessed a total area of
11,500 km²with only 1,800 km²(15.65%) in nature reserves (Fig. 6e). Species modeling based on the specimen
dataset (dataset 5) showed a shrinking trend in the hotspots and a scattered occurrence in southwestern Hubei, the
total area covering ca. 8,600 km² with only 1,700 km² (19.77%) hotspot area in nature reserves (Fig. 6d).

 
Table 3

The hotspot areas, area and proportion of the hotspots in nature reserves
according to species modeling using different datasets under contemporary

climatic conditions. (Unit: km²)
Type Hotspot areas Predicted areas in nature reserves Proportion

dataset 1 15,400 3,600 23.38%

dataset 2 28,800 2,600 9.03%

dataset 3 40,400 5,300 13.18%

dataset 4 11,500 1,800 15.65%

dataset 5 8,600 1,700 19.77%

dataset 6 36,500 3,300 9.04%

4 Discussion

4.1 Importance of accurate identification and complete species
distribution records for species modeling
Distribution data is the basis for species modeling predictions. Kadmon et al. (2004) conducted a comparative
study on the distribution modeling of 149 woody plant species in Israel, which revealed that data biases can reduce
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the accuracy of species modeling, the same conclusion was found by Kramer-Schadt et al. (2013). Raes & ter
Steege (2007) performed a null model test on species modeling and found that modeling with incorrect distribution
data showed significantly different results from the correct data set, demonstrating the impact of data bias on
species modeling, which was further corroborated by Wolmarans et al. (2010) and Chen et al. (2015). In this study,
we compared predictions based on distribution records containing cultivated/misidentified records (datasets 2, 3 &
6) with those based on correctly identified and complete natural distribution records (dataset 1). Our results indicate
that the dataset containing misidentified specimens can result in expansion of the fitness areas, thus significantly
reducing the accuracy of the model. We compared the prediction results based on the distribution dataset
containing cultivated records with those of the correctly identified complete natural distribution records, and found
that the suitable distribution area expands greatly from the center to the surrounding area. This indicates that the
modeling accuracy decreases with increasingly biased data. Our comparative study of species modeling results
based on incomplete natural distribution records (datasets 4 & 5) and correctly identified, complete natural
distribution records (dataset 1) suggests that the suitable area showed a conspicuous contraction trend with a very
narrow distribution. Species modeling predictions based on such misidentified and inaccurate specimen data can
arrive at misleading conclusions.

With the rapid development of digital cameras, computers, and internet information technology, a large number of
herbarium specimens throughout the world have been digitized and are available for biodiversity studies (Meineke
et al. 2018; Davis 2023). By June 2023, 0.24 billion specimens had been included in the Global Biodiversity
Information Facility (GBIF, https://www.gbif.org/) and 11.59 millions of specimen data deposited in the Australian
Biological Atlas / Atlas of Living Australia (ALA, https://www.ala.org.au/). The National Plant Specimen Resource
Center (NPSRC, http://www.cvh.ac.cn/), the largest digital plant specimen integration platform in China, has
collected 8.27 million digitized plant specimens. National Specimen Information Infrastructure (NSII) contains
about 16.45 million digital plant specimens. These digitized specimens have become important sources for
research in ecology, biogeography, phenology, and conservation biology (Merow et al. 2016; Nualart et al. 2017;
Jones and Daehler 2018; Herbling 2022; Yang et al. 2022; Lee et al. 2022; Davis 2023). However, over 50% of the
herbarium specimens were not correctly identified (Goodwin et al. 2015). Digitized specimens thus contain lots of
identification errors and cultivated records, and are the main source of erroneous data in species modeling.
Incorrect distribution information often leads to severe range deviations and obscures the true species model (Orr et
al. 2021). As a result, it is necessary to remove and correct the misidentified records and cultivated records before
conducting species model predictions.

Because published floras record older data and often contain incomplete information, the integration of floras
cannot resolve the problem of data completeness. In this study, we found that the Flora of China records the
distribution of Litsea auriculata in Tianmu Mountain and Tiantai Mountain in Zhejiang and She County in Anhui
(Yang and Huang 1982), and misses many other distribution localities. Our new inventory in this study has added
the records of Litsea auriculata in Hubei and Henan, and Chun'an County in Zhejiang. The Flora of Anhui is
comprehensive at the county level, but remains ambiguous regarding the distribution below the county level. The
Jiangxi Seed Plant List contains an incorrect record of Litsea auriculata, which originates from misidentified
digitized specimens (Liu et al. 2010). The distribution information in these botanical catalogs is fragmentary and
cannot be used directly for species modeling, and needs to be verified and integrated. Only when complete and
accurate data are available we can obtain valuable research results, which can help understand the distribution
characteristics of species and provide important references for biodiversity conservation.
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Specimens comprise the primary source of species distribution data, and should be correctly identified by
taxonomists before utilization. Correct identification is fundamental not only for species distribution modeling, but
also for biodiversity conservation. However, taxonomy as a traditional discipline is handicapped in the assessment
and evaluation system of many different research institutions (Ma 2014). Most research funding has been
deployed in more fashionable and advanced research areas, e.g. genome sequencing, making it difficult to train
traditional taxonomists. As a result, no taxonomists work in the herbaria to correct the misidentified specimens. To
overcome this drawback, it is necessary to promote traditional taxonomy and maintain a permanent taxonomic
research team.

4.2 Potential distribution and conservation assessment based on
accurate identification and complete dataset of Litsea auriculata
In this study, we established a reliable potential distribution area for Litsea auriculata based on an accurately
identified and complete dataset (dataset 1). The modeling results show that, compared with other plants of the
Lauraceae family (Zheng et al. 2018), the distribution range of this species is generally northerly and is currently
located mainly on montane forest slopes in the mid-latitudes of central-eastern China. The predicted distribution is
similar to the distribution characteristics of gymnosperm species (Tang et al. 2006; Xie et al. 2021). With global
warming in the future, the suitable distribution area of Litsea auriculata will tend to contract, and eventually
decrease in the central-eastern part of China, which corroborates a previous study (Geng et al. 2017). The predicted
hotspot areas using accurately identified and complete datasets (dataset 1) under the contemporary climate shifted
southwards compared to Geng et al. (2017). This difference may be caused by the bias of distribution data, as
Geng et al. (2017) did not fully record the distribution of the species in southern regions such as Anhui and
Zhejiang.

The potential distribution trend of Litsea auriculata shows a clear mismatch with subtropical broadleaved
evergreen forest plants. Previous studies have suggested that subtropical broadleaved evergreen forest species will
expand northwards and eastwards under future climatic conditions (Hu et al. 2017; Lim et al. 2018; Wu et al. 2016).
The potential distribution ranges of Litsea auriculata do not vary significantly across time, with an overall range of
only 0.09%−0.54%, the only local expansion and contraction occurring in some mountains and plains at the edges
of the subtropical broadleaved evergreen forests. Coincidentally, a similar pattern was also found in a study of the
genus Cinnamomum (Zhou et al. 2021). In addition, as in many gymnosperms, Litsea auriculata may have survived
by elevational shifts during the late Quaternary glacial oscillations (Cun and Wang 2015).

The survival of Litsea auriculata is at least partially attributable to its habitat dilemma. Previous studies have
shown that the genetic structure of Litsea auriculata continues to diverge and expand, forming small-scale
populations (Sun 2014). Increased random genetic variation, high levels of inbreeding and reduced gene numbers,
combined with a progressively warmer climate, have led to a dramatic decline in the distribution area of this species
(Geng et al. 2017). In our study, the predicted results based on an accurately identified and complete dataset
(dataset 1) for hotspot areas of Litsea auriculata under contemporary climatic conditions show that the species
continues to spread in all directions in the future, with increased fragmentation, a gradual reduction in living space,
and a further decrease in area, which is consistent with the results of previous studies. Besides, the narrow and
concentrated distribution area has increased the threat level of Litsea auriculata (Qin et al. 2017), and irreversible
damage will occur if these small areas are disturbed.
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Species distribution models can suggest the chances of survival of endangered plants and facilitate the
development of targeted in situ conservation measures (Aguilar-Soto et al. 2015). In this paper, habitat prediction in
combination with an analysis of Chinese nature reserves, indicates that only 23.38% of Litsea auriculata is currently
located in nature reserves, so a large conservation gap remains. The areas outside the nature reserves are mainly
located in southern Anhui, west-central and east-central Zhejiang. These areas have suffered from severe
deforestation, habitat loss and habitat fragmentation (Wei and Jiang 2012), which may have lead to a significant
decrease in the number and population size of Litsea auriculata. The area of the species within the nature reserve
will gradually shrink under future warming scenarios, and may even deviate excessively from the reserve in the
2070s RCP 2.6 scenario (Table 4), thus greatly increasing the threat level. Therefore, in the face of such a situation,
a protected area should be established for Litsea auriculata, and special staff should be assigned to protect the
forest land, prohibit indiscriminate logging practices, and reduce human interference. According to previous studies,
we found that a large number of threatened gymnosperms also survive in the distribution area of Litsea auriculata
(Lü et al. 2018; Xie et al. 2021), so it is crucial to strengthen the protection of these areas for other threatened plants
as well. In addition, because the genetic differentiation among populations of Litsea auriculata is large and gene
flow is low (Sun 2014), it would be beneficial to increase the level of genetic diversity of Litsea auriculata if a
sufficient number of individuals within all populations could be selected for intensive translocation and
conservation.

Table 4
Predicted hotspot area of Litsea auriculata based on correct dataset

(dataset 1) and area located within the protected area. (Unit: km²)
Period Hotspot areas Nature reserves areas Proportion

Current 15,400 1,700 23.38%

2050s RCP2.6 67,300 6,400 9.06%

2050s RCP4.5 13,500 2,200 16.30%

2050s RCP8.5 6,700 1,300 19.40%

2070s RCP2.6 37,500 2,900 7.73%

2070s RCP4.5 14,400 2,300 15.97%

2070s RCP8.5 7,700 1,200 15.58%

5 Conclusion
It remains ambiguous how the identification errors, cultivated collections and data incompleteness impact on
species distribution modeling. We assembled six datasets and made a comparative study here. We show that
misidentification, cultivated specimen data, and data incompleteness all have significant impacts on species
modeling prediction results. We identified new areas of potential distribution of Litsea auriculata based on correctly
identified and more complete datasets, revealed that the current main distribution range of Litsea auriculata is
located in the mountainous areas of the middle and lower reaches of the Yangtze River, with a tendency to
contraction in future climate change scenarios. In addition, our assessment of the conservation status of Litsea
auriculata, reveals that currently about 23.38% of the suitable areas for the species have been protected in nature
reserves, so there are still relatively large conservation gaps. The resulting information can be used to support
management, conservation, and recovery plans for Litsea auriculata.
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Figures

Figure 1
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Web of Science changes in the literature of SDMs studies using MaxEnt in the database

Figure 2

Distribution of Litsea auriculata according to different datasets (dataset 1 consisting of dataset 4 and dataset 5;
dataset 6 including dataset 1, dataset 2, and dataset 3)
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Figure 3

Potential distribution patterns of Litsea auriculata under current climatic conditions. (a) dataset 1; (b) dataset 2; (c)
dataset 3; (d) dataset 4; (e) dataset 5; (f) dataset 6.
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Figure 4

Projected hotspot regions of Litsea auriculata based upon different datasets under the 2050s and 2070s RCP
2.6/4.5/8.5 climate scenarios. (a) dataset 1; (b) dataset 2; (c) dataset 3; (d) dataset 4; (e) dataset 5; (f) dataset 6.
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Figure 5

PCA of Litsea auriculata under current climatic condition. (a) dataset 1; (b) dataset 2; (c) dataset 3; (d) dataset 4; (e)
dataset 5; (f) dataset 6. The bar chart represents the contribution of variables.
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Figure 6

Hotspots located in all protected areas under current climate condition. (a) dataset 1; (b) dataset 2; (c) dataset 3; (d)
dataset 4; (e) dataset 5; (f) dataset 6.
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