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Abstract
Background: The inverted repeat-lacking clade (IRLC) of Fabaceae is characterized by loss of an IR region in plastomes. Both
the loss of an IR region and the life history may have affected the evolution of the plastomes in the clade. Nevertheless, few
studies have been done to test the impact explicitly. Wisteria , an important member of IRLC and has a disjunct distribution
between eastern Asia and eastern North America, has confused interspecific relationships and biogeography, which need to
elucidate in depth.
Results: The plastome of six newly sequenced Wisteria species and a Millettia japonica ranged from 130,116
to 132,547 bp. Phylogenetic analyses recognized two major clades in IRLC: Glycyrrhiza - Millettia - Wisteria clade and a clade
containing the remaining genera. North American Wisteria species and Asian species formed reciprocal clades. Within Asian
clade, each of the two Japanese species was sister to a species in the Asian continent. A ~16kb inversion from ndh F to ycf 1 in
all IRLC species. Wisteria and Millettia japonica have two intron of rps 12 gene but all other IRLC species just have one.
Synonymous substitution rates ( d S ) of protein coding genes were higher in the IRLC species than non-IRLC species. Woody
species have lower substitutions rates than herbs. Wisteria may have originated in East Asia by the boundary of Oligocene and
Miocene and the eastern Asian-eastern North American disjunction formed in the Late Miocene, while two vicariance events
formed the disjunct distributions between the Asian continent and the Japanese islands in the Quaternary.
Conclusions: In the
IRLC clade, Wisteria , Milletia japonica and Glycyrrhiza form a clade to the remaining genera, most of which are herbaceous.
Both the loss of one IR region and the herbaceous habit elevated mutation rates of the plastomes. Multiple vicariance events
between eastern Asia and eastern North America, and between the Asian continent and the Japanese Islands may have
promoted speciation of Wisteria since the Late Miocene. Plastomes contain rich genetic diversity for studying genetic structure
and migration of populations in response to climatic changes, which benefits conservation of rare and endangered species.

Background
The plastomes of most vascular plants usually have a conservative quartile structure with a large single-copy (LSC) region and
a small single-copy (SSC) region separated by two inverted repeat (IR) regions [1-5]. They are about 150 kb in size and contain
around 114 unique genes, including four rRNA genes, 30 tRNA genes, and 80 protein genes [6]. Comparative analyses of
plastomes have identified some unique features, such as large segment inversion [7], high frequency of repeats [8], gene gain
and loss events (including pseudogenization) [9], and expansion or contraction of IRs [10]. The IR region varies greatly among
plant lineages, which may have affected the stability of chloroplast structure resulting in an elevated variation of single copy
regions [11, 12]. One of the most notable changes of the IR region is the loss of a repeat in a lineage of Fabaceae, namely the
inverted-repeat-lacking clade (IRLC), which has been supported by various molecular systematic studies [15-21].

The IRLC clade is composed of seven tribes, (Carmichaelieae, Cicereae, Galegeae, Hedysareae, Trifolieae, Vicieae and
Wisterieae), about 37 genera and 2000 species [13-19]. Some plastomes in IRLC have recently been sequenced and analyzed
[15, 20-23] revealing important evolutionary patterns: the loss of rps16 gene, accD gene and one intron of clpP [24], multiple
sequence inversions [21, 25, 26], gene transfers to the nucleus [15, 27, 28], and elevated mutation rates in the IRLC clade [12].
Most of the genera in the IRLC clade are herbaceous, while a few are woody shrubs or lianas including Caragana, Carmichaelia
R. Br., and Wisteria Nutt.. Such life history characteristics have been recognized as an important factor affecting mutation rates
with significantly lower rates in woody plants than in herbaceous ones [29, 30]. Therefore, the IRLC clade is a good model
system for understanding the impact of both the loss of one IR region and the life history traits on the evolution of plastomes.

Wisteria, one of the most romanticized and spectacular garden plants, has been widely cultivated around the world. Species of
Wisteria are woody, deciduous lianas, and bear odd pinnate compound leaves, pendulous racemes, typical papilionaceous
corolla in purple, violet or white [31-33]. Wisteria composed of 6-8 species with a disjunct distribution in Eastern Asian and
Eastern North American temperate deciduous forest [16, 21, 34-38]. Wisteria frutescens (L.) Poir. occurs in eastern USA; W.
sinensis (Sims) Sweet, W. villosa Rehder, W. venusta Rehder & E. H. Wilson., and W. brevidentata Rehder (sometimes considered
to be a variant of W. sinensis) are native to China; whereas W. floribunda (Willd.) DC. and W. brachybotrys Siebold & Zucc. are
endemic to Japan [39]. Millettia japonica, a close relative of Wisteria, has been recently treated as Wisteriopsis japonica
(Siebold & Zucc.) J. Compton & Schrire [19, 40]. Previous studies support the reciprocal monophyly of eastern Asian and
eastern North American species, but the interspecific relationships of Asian species have not been resolved [37], largely due to
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the small amount of data. Plastomes have been widely used in phylogenetic studies of closely related species [1, 4, 9, 41].
Within Wisteria, plastomes of W. sinensis and W. floribunda have been reported before [42]. Thus, we obtained plastomes from
other species of Wisteria for generating a robust phylogeny of the genus.

The objectives of the study were 1) exploring the impact of the loss of an IR and life history traits on the evolution of plastomes
in the IRLC clade, 2) resolving phylogenetic relationships of the IRLC clade and Wisteria, and 3) examining the implications of
the phylogeny for the systematics and biogeography of Wisteria.

Results
Size, content, and arrangement of plastomes

After the low-quality reads and adaptor sequences were filtered out, 20,453,560–28,744,390 clean reads were obtained for six
Wisteria and Millettia japonica. The NOVOPlasty assembly produced a long contig representing the whole plastome. These
seven newly sequenced plastomes ranged from 130,116 to 132,547 bp in length, and the GC contents were from 34.20% to
34.50% (Fig. S1; Table 1). All plastomes contained 110 unique genes arranged in same order, with 76 protein-coding genes, 30
tRNA genes, and four rRNA genes (Table 1), and there was a single inverted repeat. In all seven sequences, ten protein-coding
genes (atpF, clpP, ndhA, ndhB, petB, petD, rps12, rpl2, rpl16, rpoC1) and six tRNA genes (trnA-UGC, trnG-UCC, trnI-GAU, trnK-UUU,
trnL-UAA, trnV-UAC) possessed a single intron, whereas two genes (rps12, and ycf3) contained two introns (Table S3). All seven
sequenced species had one intron in clpP gene, which was not absent in Glycyrrhiza glabra. For rps12 gene, Wisteria had 2
introns, whereas G. glabra just had one. All seven plastome sequences have been submitted to the GenBank (accession
numbers: MN311163, MN311167-MN311171; Table 1).

Gene rearrangements were not found in Glycyrrhiza glabra, Millettia japonica, Wisteria sinensis, Caragana kozlowii Kom.,
Carmichaelia australis R. Br., Astragalus mongholicus Bunge, Cicer arietinum L., or Medicago truncatula Gaertn.. On the
contrary, large segments of the plastomes were either reversed and lost in Trifolium subterraneum L., Pisum sativum L., Lens
culinaris Medik., Lathyrus sativus L. and Vicia faba L., (Fig. 1). In addition, plastome structure did not change among species of
Wisteria (Fig. S2). The MISA analysis identified a total of 540 SSRs across the six Wisteria plastomes. The number of SSRs
ranged from 81 (W. villosa) to 99 (W. floribunda). Mono-nucleotide SSRs (A/T/G) took the largest percentage, followed by di-
nucleotide SSRs (AG/AT/TA/TC) (Fig. 2A). The combined total of tri-, tetra-, penta- and hexa-nucleotide SSRs was no more than
15%. Besides, only W. floribunda and W. venusta contained hexa-nucleotide SSRs, and W. frutescens did not have penta-
nucleotide SSRs (Table S4).

The forward, palindromic and reverse repeats were detected in W. floribunda, W. venusta and W. villosa, while only forward and
palindromic repeats were found in W. brachybotrys, W. frutescens and W. sinensis (Fig. 2B, Table S4). The total number of
repeats ranged from 43 (W. villosa) to 70 (W. venusta) and most repeats were in no-coding regions (82.09%-87.14%, except
65.85% for W. villosa). Among the six plastomes of Wisteria, the proportion of forward repetition was the highest, ranging from
31 in W. villosa to 65 found in W. venusta (Fig. 2C, Table S5).

In Wisteria, nucleotide diversities (Pi) of all genes, intergenic spacers, and introns ranged from 0.0008 (ndhD) to 0.04648 (trnN-
ycf1) (Table S6). There were seven hypervariable regions with Pi greater than 0.025 including trnN-ycf1, rpl33-rps18, trnS-trnG,
ndhF-trnH, rps18, clpP-psbB, and rps8-rpl14 (Fig. 3).

Phylogenetic relationships

The matrix of 28 plastome CDS sequences was 71,545 bp in length. In both the ML and BI trees Glycyrrhiza glabra, Millettia
japonica and Wisteria formed a clade (BS = 90, PP = 0.5), which was sister to the remaining genera. M. japonica was the closest
taxon to Wisteria (BS = 1, PP = 1). Caragana was sister to (Astragalus + Carmichaelia), they then were sister to the  clade
containing Cicer L., Medicago, Trifolium, Pisum L., Lathyrus, Lens Mill. and Vicia (BS = 1, PP = 1).



Page 4/16

The interspecific relationships of Wisteria were well resolved (BS = 100, PP = 1 for all nodes, Fig. 4). Wisteria frutescens was
sister to the clade of Asian species (BS = 1, PP = 1). There were two subclades within the Asian clade (BS = 1, PP = 1): W.
brachybotrys and W. venusta, and the other three species. Two individuals of W. floribunda formed a clade, which was sister of
W. sinensis and W. villosa (BS = 1, PP = 1). However, relationship between W. villosa and W. sinensis was still unresolved.

Substitution rates

The mean dS of SC genes was 0.022 ± 0.001 in the IRLC pairs and 0.009 ± 0.000 in the non-IRLC pairs. For IR genes, they were
0.014 ± 0.003 and 0.002 ± 0.000 respectively. All herbaceous pairs had significant higher dS than the woody pairs (P < 0.01).
The herbaceous pairs in the IRLC had 2.07-fold dS in SC region than woody pairs, whose average dS of the SC genes was 0.010
± 0.000 (Table S2).

Divergence time estimation

The estimated divergence time of IRLC was 40.11 (35.73–44.36) Ma (node c, Fig. 5, Table 2). The stem age and crown age of
Wisteria were 23.85 (23.26–24.86) Ma and 8.66 (2.40–17.38) Ma, respectively (node d, node 2). Then, the clade of W.
brachybotrys and W. venusta was separated from other Asian wisteria at 2.22 (0.75–5.67) Ma (node 3), and the split of these
two species at 0.06 (0.00–0.23) Ma (node 6). The crown age of W. floribunda, W. sinensis and W. villosa was estimated to be
0.87 (0.25–2.15) Ma (node 4). The crown ages of other genera in IRLC were listed in Table 2.

Ancestral area reconstruction

The result of BMM analysis indicated that the most recent common ancestor (MRCA) of Wisteria was distributed in China with
33.57% probability, in Japan with 33.22% probability, meanwhile, in eastern North America with 12.22% probability (Fig. 5).
There may be a dispersal event from China to eastern North America, then followed by a vicariance event, with the probability of
12.78%. For Asian wisterias, the ancestral range was indistinct, with 37.09% chance in China, a 31.18% chance in Japan and
31.43% probability in China and Japan. Vicariance events were also identified between W. brachybotrys and W. venusta with
37.83% probability, between W. floribunda and W. sinensis-W. villosa with 34.26% probability.

Discussion
Phylogenetic relationships among IRLC and within Wisteria

Previous studies have employed some plastid and nuclear sequences to determine the phylogeny of legume family, however,
the phylogenetic relationships among IRLC taxa have not been resolved satisfactorily [16, 34-36]. In this study, The IRLC
contained two strongly supported subclades (BS = 100, PP = 1; Fig. 4). Glycyrrhiza was the basal group of the IRLC in the matK
gene tree [16], or formed a clade with Vicioid species (such as Cicer, Medicago, Trifolium and Pisum) in the nuclear ribosomal
ITS/5.8S trees [35]. Our result is consistent with Wang et al. in that Wisteria, M. japonica and G. glabra form a clade (BS = 90,
PP = 0.5; Fig. 4), which is sister to the remaining genera [42, 62]. Millettia japonica has a similar phenotype with Wisteria, and
was initially described as Wisteria japonica Siebold & Zucc. Recently, it was recognized as a separate genus Wisteriopsis J.
Compton & Schrire [19]. In addition, Caragana and (Astragalus + Carmichaelia) form a clade, which is sister to the clade of the
remaining seven genera (Fig. 4). This is consistent with previous research based on matK gene [38].

Our plastome sequence data provide strong support for the monophyly of Wisteria and for the sister relationship of the
American W. frutescens and the Asian species (Fig. 4). Furthermore, The Japanese W. floribunda and W. brachybotrys are not
sister species, instead they form sister relationships with W. sinensis and W. venusta, respectively. Wisteria brachybotrys and W.
venusta have been considered as conspecific by Valder [39], or different species because of different ovule numbers and floral
structures [31, 40]. However, the divergence time estimation show that they diverged very recently (0.06 Ma). Additional
sampling of multiple populations of the two species is needed to test the species boundary. In previous research, the
phylogenetic relationships among W. sinensis, W. villosa and W. floribunda were not resolved [37], most likely due to the small
amount of data. Here the two W. floribunda from Japan and Korea form a clade sister to the unresolved clade of W. sinensis
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and W. villosa. Leaf pubescence, pedicel length, and flower size of W. sinensis and W. villosa are highly variable and even
overlap, thus it is unreliable to distinguish them using the so-called diagnostic characteristics [39, 63]. This suggests that future
studies on population genetics should be used to test whether they represent two separately evolving lineages or species.

Plastome evolution in the IRLC clade

Plastomes have experienced various evolutionary changes in plants, one of which is the loss of one copy of the IR in the IRLC
clade of Fabaceae, which may disrupt the gene stability and increase the rates of substitution in single copy regions [8, 12, 15,
18, 64-66]. The plastomes of six species of Wisteria and Millettia japonica have a single IR region (Fig. S1), and share similar
size (130,116 to 132,547 bp), overall structure, gene order and content (Table 1). In addition, compared to the non-IRLC lineages
of Fabaceae, the IRLC plastomes contain the traditional LSC and IR region plus a reversed SSC (a ~16kb inversion from ndhF to
ycf1). However, the loss of one IR region may not be the major driving force for the genomic changes in the IRLC [15], because
gene orders from Glycyrrhiza glabra to Medicago truncatula are consistent and have not experienced much rearrangement
compared with non-IRLC members (Fig. 1). The gene order rearrangements appear to be associated with the herbaceous life
history since the woody genera in the IRLC clade did not show the rearrangements (Fig. 1). Short generation time with great
opportunities for recombination may have led to the structural changes in the herbaceous genera [29]. The localized
hypermutation in Vicia, Lens, Lathyrus, Pisum and Trifolium (Fig. 1) may be due to the existence of a large number of repeat
sequences [15, 28]. Lens, Trifoium and Vicia have 9% repetitive DNA on average, however, G. glabra has 4.1%, Wisteria has
around 3% and Lotus japonica just has 2.4% [15].

We estimated the synonymous rates of SC for the IRLC species pairs and relative taxa in Fabaceae and the results show that
the difference was about 7 times for IR regions, whereas 2.4 times for SC regions. And herbaceous pairs have significant higher
ds than wood pairs. The loss of an IR region may have disrupted the stability of the plastome leading to the higher substitution
rates in IR genes [1, 12]. The impact may be further enhanced by life history in the herbaceous genera.

Structural rearrangement and gene/intron loss (including pseudogenization) may be correlated with increases in the rate of
molecular evolution [30]. In the IRLC, the rps16-accD-psaI-ycf4 region shows a higher rate of transfers, substitutions, or losses of
genes [15]. For example, ycf4 gene shows an acceleration in Millettioids, Robinioids, and the IRLC than in other legumes,
especially 20-fold in Lathyrus. Plastome gene losses are rare in photosynthetic species, the lost gene may have been transferred
to the nuclear genome or substituted by a nuclear gene [28]. The loss of rps16 in all IRLC species may be compensated by dual
targeting of mitochondrial ribosomal protein S16, which is encoded by a nuclear gene [28]. The accD gene functioning in plant
development and possessing recombinationally active repeats has been transferred to the nucleus in two Trifolium species [20,
25, 67, 68]. Pisum and Lathyrus have lost ycf4 and psaI gene, respectively, which can attribute directly to hypermutation of ycf4
and its neighboring genes [28]. Some intron losses may also have occurred with the origin of the IRLC clade [8]. For example,
most angiosperms have two introns in the rps12 gene, whereas the IRLC species (except Wisteria and Millettia japonica) just
have one, which indicates that the loss of this intron occurred subsequent to the loss of one copy of the IR [21]. There is a loss
of intron 1 of clpP in all IRLC species, while the intron 2 of clpP is lost only in Glycyrrhiza glabra (Fig. 4).

Biogeography of Wisteria

Our results show that Wisteria has originated at 23.85 (23.26–24.86) Ma (node d, Fig. 5), which is much earlier than a previous
estimate of 13.4 (9.7–17.5) Ma [37]. Lacking samples of Callerya may result in the older estimated age of Wisteria. Wang et al.
believed that Wisteria may have a more northern distribution in Neogene and the diversification in this genus had taken placed
in the middle Miocene [69]. We inferred the ancestral area of Wisteria as Eastern Asia with a high probability (78.10%). However,
it is equally likely that ancestral area of Wisteria may be in China (33.57%) or Japan (33.22%). A subsequent dispersal to
eastern North America and a vicariance event has produced the disjunct distribution at 8.66 (2.40–17.38) Ma (Fig. 5). The result
is consistent with Li et al., and supports the “out of Asia” hypothesis for the majority of eastern Asian and eastern North
American disjunct plant genera [37, 70]. Fossils of Wisteria have been found in Asia and Europe indicating a wide distribution
until middle Miocene [69]. The Bering land bridge is likely the migratory pathway for Wisteria because it accommodated many
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temperate components in the middle Tertiary and later times, whereas North Atlantic land bridge disconnected at that time [71-
73].

Eastern Asia is the center of species diversity for Wisteria. The diversification time of Asian wisterias might be 2.22 (0.75-5.67)
Ma in Pleistocene. Climatic oscillations of the Quaternary at around 2 million years ago have deeply affected plant distribution
and genetic structure [74, 75]. Asian wisteria is native in ‘Sino-Japanese Floristic Region’, which has never been directly
impacted by extensive ice sheets [76-78]. But drastic climate and environmental changes, such as sea-level fluctuations,
promoted fragmentation of species ranges, population isolation and variation, thereby providing opportunities for allopatric
speciation through selection or genetic drift [79]. Albeit with a limited sampling of population of the Asian species of Wisteria,
the sister relationships of the Japanese and Asian continental species support the significant role the allopatry has played in
the generation of biological diversity in Asia [80].

Conclusions
In this study, we compared the plastome variation inside and outside the IRLC clade at both the generic and species levels. Our
results suggest that several genomic and substitution rate changes might happened after the loss of an inverted repeat
disrupting the genomic stability and may be further affected by life history traits of the taxa. The plastid data provide a
satisfactory resolution for relationships of the IRLC clade and support the sister relationship of eastern Asian and eastern North
American species. A dispersal of Asian populations to North America and a subsequent vicariance event might have formed the
disjunction in the late Miocene. Allopatric speciation of Wisteria between the Japanese Islands and the Asian continent in the
Quaternary increased the species richness of eastern Asian in comparison with eastern North America. Abundant molecular
markers can be developed based on plastome sequence data and useful for future studies on species identification, molecular
phylogenetics and population genetics of Wisteria.

Methods
Plant Samples, DNA extraction and Sequencing

Twenty-eight species were included in the study representing all tribes and 13 genera of the IRLC clade and outgroups Robinia
L. and Lotus L.. Within Wisteria, six species from China, Japan and USA were included. Collection information was provided in
Table 1. Pan Li did the final identification of the samples and representative voucher specimens are currently deposited at the
Herbarium of Zhejiang University (HZU) and Herbarium Institute of Botany, CAS (PE). This study did not involve endangered
species. No specific collecting permits required for the collection of plant materials. Research on these plant comply with
institutional, national, or international guidelines.

Total genomic DNAs were extracted from 3 mg of dried leaf samples using DNA Plantzol Reagent (Invitrogen) according to the
manufacturer’s instructions. The quality of the DNA products was assessed using 1.2% agarose gel electrophoresis. Short-insert
(800 bp) paired-end libraries were generated by using a Genomic DNA Sample Prep Kit (Illumina) according to the
manufacturer’s protocol. Genomic DNA from each species was indexed by tags and pooled together in one lane of a HiSeqTM X-
Ten (Illumina, San Diego, California, USA) for sequencing at Beijing Genomics Institute (BGI, Shenzhen, China).

Genome Assembly and Annotation

All seven plastome sequences were assembled in NOVOPlasty 2.6.3 with the matK sequence of Wisteria sinensis (AF142732)
as seed and the complete plastome sequence of W. sinensis (KT200359) as reference [43]. Whole sequences were assembled
using MAFFT v7 in Geneious 10.2.3 (http://www.geneious.com) [44], then annotated with Glycyrrhiza glabra L. (KF201590) as
reference, followed by verifying the start and stop codons manually. In addition, tRNAscan-SE was used to confirm the tRNA
genes with default parameters [45]. Finally, the circular maps of the plastomes were drawn using the OrganellarGenome DRAW
(ORDRAW) [46], followed by manual editing.

Plastome comparison and hotspot regions identification

http://www.geneious.com/


Page 7/16

In order to examine plastome structure rearrangements in the IRLC clade, whole-genome alignment of 13 IRLC genera (Table S1)
was performed in Mauve alignment in Geneious 10.2.3 with Lotus japonicus (Regel) K. Larsen (NC_002694) as the reference
[47]. Shuffle-LAGAN mode on mVISTA (http://genome.lbl.gov/vista/mvista/submit.shtml) was used to compare six Wisteria
species [48].

To determine the position and size of repeat sequences, REPUTER [49] was used to find the whole direct (forward), inverted
(palindromic), complement and reverse repeats in six Wisteria plastomes. The minimal repeat size was set to 30 bp and the
sequence identity was > 90%. The SSRs were detected using MISA [50] with thresholds of 10, 5, 4, 3, 3, and 3 for mono-, di-, tri-,
tetra-, penta-, and hexa-nucleotides, respectively. Nucleotide variability (Pi) of the regions was evaluated in DNASP v5.10 [51].

Phylogenetic analyses

Akaike Information Criterion (AIC) in jModelTest v2.1.4 was used to determine the optimal nucleotide substitution model for the
protein coding genes [52]. Maximum likelihood (ML) analysis was performed in RAxML-HPC v8.2.8 on CIPRES Science Gateway
website with 1000 bootstrap replicates [53, 54]. Bayesian analysis was also constructed using MrBayes as implemented on
XSEDE 3.2.6 with two independent Markov Chain Monte Carlo chains for 10,000,000 generations and sampling every 1000
generations [55]. The first 25% of calculated trees were discard as burn-in and the remaining trees were used to construct a
consensus tree to estimate the posterior probability (PP). Tracer 1.7 was used to make sure that the likelihood scores have
reached the plateau [56].

Estimation of nucleotide substitution rates

In order to investigate the difference of mutation in and outside of the IRLC clade, 10 pairs of plastomes from the same genus
(Vicia L., Lathyrus L., Trifolium L., Astragalus L., Medicago L., Caragana Fabr., Wisteria, Glycine Willd., Vigna Savi, Dalbergia L.
f.) of Fabaceae were chosen to estimate the substitution rates (Table S1). Synonymous substitution rates (dS) were estimated
for each CDS via MEGA 7.0 [57]. We also compared the differences between herbs and woody species pairs. Since the dataset
did not conform to the normal distribution, a wilcoxon.test in R package was used to test the significance.

Estimation of divergence time

Divergence times were estimated in BEAST v1.10.4 with the optimal model selected by jModelTest v2.1.4 [58]. We used three
secondary calibration points from previous study and one Wisteria fossil record to calibrate four nodes: (a) 56 ±0.9 Ma of the
Hologalegina crown clade; (b) 48.3±1 Ma for Lotus and Robinia; (c) 39 ±1 Ma for the crown age of IRLC clade from and (d) the
early Miocene for the Wisteria crown age (Offset = 23, M = 1, S = 0.5) based on fossil leaflets of Wisteria fallax (Nathorst) Tanai
et Onoe found in in Abkhazia in the Caucasus (Republic of Georgia) [59, 60]. The monophyly of each group was constrained by
the topology of the ML phylogenetic tree (see before). An uncorrelated lognormal relaxed clock and a Yule speciation prior were
chosen. Then, MCMC was run for 300 million generations, with sampling every 1000 generations. The log file was analyzed in
Tracer v1.7.1 to check convergence; ESS values for all parameters were at least 200 [56]. Finally, the maximum clade credibility
tree was calculated using TreeAnnotator 2.4.4 with 1% trees as burn-in. FigTree v1.4.3
(http://tree.bio.ed.ac.uk/software/figtree/) was used to visualize tree with node ages.

Reconstruction of ancestral regions

To infer the ancestral area of Wisteria, Bayesian Binary MCMC (BBM) analysis was performed in RASP v3.2 [61]. A ML tree was
used as the input tree file. Three areas of endemism were defined following the distribution of each species: (A) China; (B)
Japan; and (C) eastern North America. Maximum areas were set to 3. Because close taxa of Wisteria (such as Millettia japonica,
Callerya Endl., Afgekia Craib) were not found in North America, we set the distribution of outgroup in China and Japan. The
among-site rate variation was GAMMA + G, the run was done for 10000000 generations, and sampled every 100 generations.

Abbreviations

http://genome.lbl.gov/vista/mvista/submit.shtml
http://tree.bio.ed.ac.uk/software/figtree/
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LSC: Large single-copy region; SSC: Small-copy region; IR: Invert repeat; ITS: Internal transcribed spacer of ribosomal DNA; IRLC:
Inverted repeat-lacking clade; SSR: simple sequence repeats; ML: Maximum Likelihood; BI: Bayesian Inference; BS: Bootstap;
PP: posterior probability; MCMC: Markov Chain Monte Carlo; ESS: Effective Sample Size; MRCA: Most recent common ancestor
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Table 1 The basic characteristics of six Wisteria species and Millettia japonica plastomes.
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sequences repeats (SSRs) and repeat types within Wisteria. Table S5. Genetic diversity information for each sequence region of
Wisteria. Table S6. Divergence time estimates in millions of years (Ma) before for selected nodes (44.3 KB).

Additional file 2: Figure S1. Gene map of six Wisteria and Millettia japonica plastomes (1.72 MB).

Additional file 2: Figure S2. MAUVE alignment of Wisteria plastomes. Within each of the alignment, local collinear blocks are
represented by blocks of the same color connected by lines (4.22 MB).

Additional file 2: Figure S3. Sequence identity plots among six Wisteria plastomes. CNS: conserved non-coding sequences; UTR:
untranslated regions (1.15 MB).

Figures

Figure 1

Mauve alignment of IRLC species using Lotus japonicus as reference. The local collinear blocks are represented by blocks of
the same color connected by lines.
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Figure 2

The length, type, and number of simple sequence repeats (SSRs) and repeated sequences of six Wisteria plastomes: (a)
Number of SSRs in different types, (b) Frequency of repeat types, (c) Frequency of repeat types.

Figure 3

Nucleotide variability (Pi) values of candidate regions among six Wisteria plastomes. The blue point indicate the hotspot.
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Figure 4

Phylogenetic relationships of IRLC taxa inferred from Maximum Likelihood (ML) and Bayesian Inference (BI) analyses of the 74
protein coding genes. ML topology shown with ML bootstrap support value/Bayesian posterior probability given at each node.
Nodes with 100 ML bootstrap support value/1.0 Bayesian posterior probability are marked as asterisk. The loss of
genes/introns is marked on the branch.
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Figure 5

Phylogenetic chronogram and distribution range of IRLC species as inferred from Beast analyses based on four calibration
points (nodes a-d). The divergence times for selected nodes are shown in Table S6.
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