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Abstract

Recovering the dense 3D structure of a scene from its images has been a
long-standing goal in computer vision. Recent years have seen attempts of
encoding richer priors into the geometry-based pipelines with the introduction
of learning based methods. We argue that the form of 3D supervision required
by such methods is too onerous, is not naturally available, and it is therefore
of both practical and scientific interest to pursue solutions that do not rely on
such 3D supervision.

In this thesis, we attempt to bridge the worlds of geometric modeling and deep
learning – how to use geometric constraints for obtaining supervisory signal
for the task of reconstructing and representing the 3D world efficiently. We
first present an unsupervised learning based approach for 3D reconstruction,
based on a novel robust photometric consistency objective, the output of which
is a 3D point cloud. When trained with our proposed learning objective,
deep multi-view stereo models produce significantly better 3D reconstructions.
The proposed objective allows implicitly overcoming lighting changes and
occlusions across multiple views.

In order to represent the reconstructions efficiently, we draw inspiration from
Larry Roberts’ famous Blocks World of 1965. We introduce a deep learning
framework that enables representing 3D point clouds as an assembly of blocks
giving way to a lightweight representation with a several orders of magnitude
reduction in memory. We describe how geometric relationships between points
and surfaces along with physical priors can be utilized to provide supervisory
signal for training deep models. We also present a synthetic-to-real transfer
learning setup with a differentiable matching loss that facilitates supervised
learning of such blocks world representations.
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Chapter 1

Introduction

1.1 Motivation

Reconstructing 3D scenes from photographs has been among the earliest recognized goals
in Computer Vision, keeping researchers occupied for decades. With applications ranging
from mapping and navigation for robotics to 3D printing, augmented and mixed reality,
video games, or cultural heritage archival, the interest in this task is only growing. We are
now finally at a point where our methods are slowly becoming mature enough to operate in
the real world, evolving from the controlled lab environments.

There exists a vast body of work on multi-view stereo reconstruction with increasingly
accurate results at scale. The dominant line of attack has relied on leveraging stereopsis,
or more specifically epipolar geometry, which expresses geometric relationships between
points in 3D, their projections on to 2D images, and the camera positions and configurations.
We are now seeing how such techniques can be married with tools from machine learning
to produce improved results.

The advent of deep learning has brought immense success to computer vision tasks
with an increasing reliance on obtaining direct supervision for training neural networks to
yield impressive results. However, this paradigm of supervised learning is not a friendly
one for 3D inference as the acquisition, labeling and processing of 3D data is expensive,
painstaking and not easily scalable. This is also reflected in the size of 3D datasets which
contain orders of magnitude lower number of examples than their 2D counterparts. Going
forward, an important obstacle in the way for our learning techniques to scale to more
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1. Introduction

diverse scenarios is this onerous requirement of supervision. Bypassing the need for explicit
3D supervision can enable 3D learning techniques to enjoy success similar to 2D.

An important aspect of reconstruction is the choice of representation for the produced
3D geometry. The reconstructions that stereo techniques produce are often represented as
dense point clouds before processing them to other forms such as meshes or voxel grids.
While these are easy to incorporate in the processing pipelines, such dense representations
(eg. millions of points in a 3D point cloud) are often an overkill for the task at hand.
For many tasks such as building maps of regions, one might prefer a more lightweight
representation that can capture the underlying shapes of structures to a certain degree
of approximation without enforcing fine granularity. This is akin to human reasoning
which relies on exploiting repeating structures in visual patterns to obtain compositional
representations — eg. a chair is made of 4 legs which resemble 4 vertical blocks.

This thesis addresses the challenges regarding learning based 3D reconstruction and
obtaining sufficient representations of scenes while relaxing the requirement for having
explicit 3D supervision.

1.2 Overview of Contributions

This thesis offers the following contributions to the research community:

1. A framework to learn multi-view stereopsis in an unsupervised manner, using only
images from novel views as supervisory signal.

2. A robust multi-view photometric consistency loss for learning unsupervised depth
prediction that allows implicitly overcoming lighting changes and occlusions across
training views.

3. Demonstration on how the proposed learning scheme can be used to fine-tune other
supervised learning models in addition to being a standalone trained model that
generalizes well to new datasets.

4. An unsupervised learning framework for learning compositional representations of
3D shapes by encoding 3D point clouds as collections of geometric primitive shapes
by posing this as a primitive fitting task.

5. A technique for programmatically generating a synthetic dataset of man-made build-
ings composed of simple parameterized shapes that can be used for supervised

2



1. Introduction

learning of primitive fitting models.

6. A synthetic-to-real transfer learning formulation for primitive fitting, specific to the
case of man-made buildings, that includes a differentiable matching loss utilizing the
Hungarian optimal assignment algorithm.

1.3 Thesis Outline

This thesis will be organized as follows. In Chapter 2, we introduce an unsupervised
learning scheme which enables training of deep multi-view stereo models resulting in 3D
reconstructions by implicitly overcoming lighting changes and occlusions across multiple
views. We show quantitative and qualitative results on multiple real datasets along with
extensive ablation studies. In Chapter 3, we present a learning based model for representing
dense 3D point clouds as collections of primitive shapes leading to a compact and sufficient
representation of shapes. We describe methods to learn such a model with and without
supervision and show results on synthetic and real data. In Chapter 4, we provide concluding
remarks and highlight some important open problems for future work.
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Chapter 2

Unsupervised Multi-View Stereopsis

In this chapter, we present a learning based approach for multi-view stereopsis (MVS).
While current deep MVS methods achieve impressive results, they crucially rely on ground
truth 3D training data, and acquisition of such precise 3D geometry for supervision is a
major hurdle. Our framework instead leverages photometric consistency between multiple
views as supervisory signal for learning depth prediction in a wide baseline MVS setup.
However, naively applying photo consistency constraints is undesirable due to occlusion and
lighting changes across views. To overcome this, we propose a robust loss formulation that:
a) enforces first order consistency and b) for each point, selectively enforces consistency
with some views, thus implicitly handling occlusions. We demonstrate our ability to learn
MVS without 3D supervision using a real dataset, and show that each component of our
proposed robust loss results in a significant improvement. We qualitatively observe that our
reconstructions are often more complete than the acquired ground truth, further showing
the merits of this approach. Lastly, our learned model generalizes to novel settings, and
our approach allows adaptation of existing CNNs to datasets without ground-truth 3D by
unsupervised finetuning.

2.1 Motivation

Recovering the dense 3D structure of a scene from its images has been a long-standing
goal in computer vision. Several approaches over the years have tackled this multi-view
stereopsis (MVS) task by leveraging the underlying geometric and photometric constraints
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2. Unsupervised Multi-View Stereopsis

– a point in one image projects on to another along the epipolar line, and the correct match
is photometrically consistent. While operationalizing this insight has led to remarkable
successes, these purely geometry based methods reason about each scene independently,
and are unable to implicitly capture and leverage generic priors about the world e.g.,

surfaces tend to be flat, and therefore sometimes perform poorly when signal is sparse e.g.,

textureless surfaces.

To overcome these limitations, an emergent line of work has focused on learning based
solutions for the MVS task, typically training CNNs to extract and incorporate information
across views. While these methods yield impressive performance, they crucially rely on
ground-truth 3D data during the learning phase. We argue that this form of supervision is
too onerous, is not naturally available, and it is therefore of both practical and scientific
interest to pursue solutions that do not rely on such 3D supervision.

We build upon these recent learning-based MVS approaches that present CNN architec-
tures with geometric inductive biases, but with salient differences in the form of supervision
used to train these CNNs. Instead of relying on ground-truth 3D supervision, we present a
framework for learning multi-view stereopsis in an unsupervised manner, relying only on
a training dataset of multi-view images. Our insight that enables the use of this form of
supervision is akin to the one used in classical methods – that the correct geometry would
yield photometrically consistent reprojections, and we can therefore train our CNN by
minimizing the reprojection error.

While similar reprojection losses have been successfully used by recent approaches
for other tasks e.g., monocular depth estimation, we note that naively applying them for
learning MVS is not sufficient. This is because different available images may capture
different visible aspects of the scene. A particular point (pixel) therefore need not be
photometrically consistent with all other views, but rather only those where it is not
occluded. Reasoning about occlusion explicitly to recover geometry, however, presents a
chicken-and-egg problem, as estimates of occlusion depend on geometry and vice-versa.
To circumvent this, we note that while a correct estimate of geometry need not imply
photometric consistency with all views, it should imply consistency with at least some

views. Further, the lighting changes across views in an MVS setup are also significant,
thereby making enforcing consistency only in pixel space undesirable, and our insight is to
additionally enforce gradient-based consistency. We present a robust reprojection loss that
enables us to capture these two insights, and allow learning MVS with the desired form
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2. Unsupervised Multi-View Stereopsis

of supervision. Our simple, intuitive formulation allows handling occlusions without ever
explicitly modeling them. Our setup and sample outputs are depicted in Figure 2.1. Our
model, trained without 3D supervision, takes a collection of images as input and predicts
per-image depth maps, which are then combined to obtain a dense 3D model.

Figure 2.1: Our model consumes a collection of calibrated images of a scene from multiple
views and produces depth maps for every such view. We show that this depth prediction
model can be trained in an unsupervised manner using our robust photo consistency loss.
The predicted depth maps are then fused together into a consistent 3D reconstruction which
closely resembles and often improves upon the sensor scanned model. Left to Right: Input
images, predicted depth maps, our fused 3D reconstruction, ground truth 3D scan.

2.2 Related Work

Multi-view Stereo Reconstruction. There is a long and rich history of work on MVS.
We only discuss representative works here and refer the interested readers to [11, 46]
for excellent surveys. There are four main stages in an MVS pipeline: view selection,
propagation scheme, patch matching and depth map fusion. Schemes for aggregating
multiple views for each pixel have been studied in [12, 16, 28, 28, 43, 58], and our
formulation can be seen as integrating some of these ideas via a loss function during
training.

The seminal work of PatchMatch[4] based stereo matching replaced the classical seed-
and-expand[10, 16] propagation schemes. PatchMatch has since been used for multi-view
stereo[12, 43, 58] in combination with iterative evidence propagation schemes, estimation
of depth and normals. Depth map fusion[22, 25, 43, 47, 54] combines individual depth
maps into a single point cloud while ensuring the resulting points are consistent among
multiple views and incorrect estimates are removed. Depth representations continue to
dominate MVS benchmarks [2, 45] and methods seeking depth images as output thus
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2. Unsupervised Multi-View Stereopsis

decouple the MVS problem into more tractable pieces.

Learning based MVS. The robustness of features learned using CNNs makes them a
natural fit for the third step of MVS: matching image patches. CNN features have been
used for stereo matching [19, 55] while simultaneously using metric learning to define the
notion of similarity [18]. These approaches require a series of post-processing steps [20]
to finally produce pairwise disparity maps. There are relatively fewer works that focus on
learning all steps of the MVS pipeline. Volumetric representations encode surface visibility
from different views naturally which has been demonstrated in [27, 29]. These methods
suffer from the common drawbacks of this choice of representation making it unclear how
they can be scaled to more diverse and large-scale scenes. In [31], a cost volume is created
using CNN features and disparity values are obtained by regression using a differentiable
soft argmin operation. Combining the merits of above methods and borrowing insights
from classical approaches, recent works [23, 50, 53] produce depth images for multiple
views and fuse them to obtain a 3D reconstruction. Crucially, all of the above methods have
relied on access to 3D supervision and our work relaxes this requirement.

Unsupervised depth estimation. With a similar motivation of reducing the requirement
of supervision, several recent monocular [13, 15, 38] or binocular stereo based [59] depth
prediction methods have leveraged photometric consistency losses. As supervision signal,
these rely on images from stereo pairs [13, 15, 38] or monocular videos [52, 60] during
training. As means for visibility reasoning, the network is made to predict an explainabil-
ity [60], invalidation [57] mask or by incorporating a probabilistic model of observation
confidence [35]. These methods operate on a narrow baseline setup with limited visual
variations between frames used during training, and therefore do not suffer significantly due
to occlusions and lighting changes. As we aim to leverage photometric losses for learning
in an MVS setup, we require a robust formulation that can handle these challenges.
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2. Unsupervised Multi-View Stereopsis

2.3 Approach

Figure 2.2: The multi-view stereo setup. Given a set of images of a scene (left), the goal
of multi-view image based 3D reconstruction is to estimate the most likely 3D shape that
explains those images under the assumptions of known viewpoints. Image taken from [11].

The goal in the MVS setup is to reconstruct the dense 3D structure of a scene given a
set of input images, where the associated intrinsics and extrinsics for these views are known
– these parameters can typically be estimated via a preceding Structure-from-Motion (Sfm)
step (see Figure 2.2). While there are several formulations of the MVS problem focused on
different 3D representations [10, 11, 29], we focus here on depth-based MVS setup. We
therefore infer the per-pixel depth map associated with each input, and the dense 3D scene
is then obtained via back-projecting these depth maps into a combined point cloud.

We leverage a learning based system for the step of predicting a depth map, and learn
a CNN that takes as input an image with associated neighboring views, and predicts a
per-pixel depth map for the central image. Unlike previous learning based MVS methods
which also adopt a similar methodology, we only rely on the available multi-view images
as supervisory signal, but do not require a ground-truth 3D scene. Towards leveraging
this supervision, we build upon insights from classical methods, and note that the accurate
geometry prediction for a point (image pixel) should yield photometrically consistent
predictions when projected onto other views. We operationalize this insight and use a
photometric consistency loss to train our depth prediction CNN, penalizing discrepancy
between pixel intensities in original and available novel views. However, we note that
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Figure 2.3: Overview of our network. We take as input N images of a scene. Image
features are generated using a CNN. Using differentiable homography, a cost volume is
constructed by warping image features over a range of depth values. The cost volume is
then refined using a 3D U-Net style CNN. The final output is a depth map at a downsized
resolution. Details of the network architecture can be found in the supplemental.

the assumption of photometric consistency is not always true. The same point is not
necessarily visible across all views. Additionally, lighting changes across views would lead
to further discrepancy between pixel intensities. To account for possible lighting changes,
we add a first-order consistency term in the photometric loss and therefore also ensure that
gradients match in addition to intensities. We then implicitly deal with possible occlusions
by proposing a robust photometric loss, which enforces that a point should be consistent
with some, but not necessarily all views.

We describe the architecture of the CNN used to infer depth in Section 2.3.1, and present
in Section 2.3.2 the vanilla version of photometric loss that can be used to learn this CNN
in an unsupervised manner. We then present our robust photometric loss in Section 2.3.3,
and describe the overall learning setup, additional priors and implementation details in
Section 2.3.5. While we primarily focus on the learning of the depth prediction CNN in
this section, we briefly summarize how the learned CNN is integrated in a standard MVS
setup at inference in Section 2.3.6.

10



2. Unsupervised Multi-View Stereopsis

2.3.1 Network Architecture

The unsupervised learning framework we propose is agnostic to network architecture. Here,
we adopt the model proposed in [53] as a representative network architecture while noting
that similar architectures have also been proposed in [23, 50]. The network takes as input
N images, extracts features using a CNN, creates a plane-sweep based cost volume and
infers a depth map for every reference image. A sketch of the architecture is given in Figure
2.3.

Every input image is first passed through a feature extraction network having shared
weights for all images. For this network, we use use an 8-layer CNN having batch-
normalization and ReLU after every convolution operation till the penultimate layer. The
last layer produces a 32 channel downsized feature map for every image. Using the
differentiable homography formulation, the feature maps are warped into different fronto-
parallel planes of the reference camera at 128 depth values to form one cost volume per
non-reference image. The homography between the ith feature map and the reference image
feature map at a candidate depth d is given by Hi(d) as below.

Hi(d) = Ki ·Ri ·
(
I−

(tref − ti) · nTref
d

)
·RT

ref ·KT
ref . (2.1)

Here K,R, t, n represent the camera intrinsics, rotations, translations and principle axis
of the reference camera respectively.

All such cost volumes are aggregated into a single volume using a variance-based cost
metric. Note that MVSNet uses 256 depth values for the cost volume during training. In
our experiments, we find the model trained with coarser depth resolution to work better,
which is potentially due to insufficient regularization when allowed to predict in high depth
ranges. This reduction does play a role in the output reconstruction quality, but we leave
this optimization for future work since our contributions hold nonetheless.

In order to refine the cost volume and incorporate smooth variations of the depth values,
we use a three layer 3D U-Net. An initial estimate of the predicted depth map can be
obtained by performing a soft argmin operation along the depth channel. Unlike the
winner − take− all approach which requires the non-differentiable argmax operation,
such a soft aggregation of volumes allows for sub-pixel accuracies while being amenable to
training due to its differentiability. Thus, in spite of the discretization of depth value for
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constructing the cost volume, the resulting depth map follows a continuous distribution.
Thus, the expected value along the depth direction is obtained by the weighted sum (by
probability) over all hypotheses and can be computed as:

D =
dmax∑
d=dmin

d×P(d) (2.2)

Here, P is the pixel-wise winner− take− all probability volume and P(d) represents the
probability estimations for all pixels at a candidate depth d.

The resulting probability distribution which the output volume represents is likely to
be containing outliers and would not necessarily contain a single peak. To account for
this, a notion of depth estimate quality is established wherein the quality of estimate at any
pixel is defined to be the sum of the probabilities over the four nearest depth hypotheses.
This estimate is then filtered at a threshold of 0.8 and applied as a mask to the output
volume. The predicted depth map is then concatenated to the reference image and passed
through a four-layer CNN to output a depth residual map. The final depth map is obtained
by adding the residual map to the initial estimated depth map. For complete details of
the hyperparameters, we refer the reader to the MVSNet[53] paper and it’s corresponding
supplemental.

The emphasis of our work is on a way to train such CNNs in an unsupervised manner
using a robust photometric loss, as described in the following sections.

2.3.2 Learning via Photometric Consistency

We now describe how our depth prediction network can be trained effectively without
requiring ground truth depth maps. The central idea is to use a warping-based view
synthesis loss, that has been quite effective in the stereo and monocular depth prediction
tasks [39, 60] though hasn’t been explored for unstructured multi-view scenarios. Given
an input image Is, and additional neighboring views, our CNN outputs a depth map Ds.
During training, we also have access to M additional novel views of the same scene {Imv },
and use these to supervise the predicted depth Ds.

For a particular pair of views (Is, Imv ) with associated intrinsic/relative extrinsic (K,T )
parameters, the predicted depth map Ds allows us to “inverse-warp” the novel view to the
source frame using a spatial transformer network [24] followed by differentiable bilinear
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sampling to yield Î is. For a pixel u in the source image Is, we can obtain its coordinate in
the novel view with the warp:

û = K T (Ds(u) ·K−1 u) (2.3)

The warped image can then be obtained by bilinear sampling from the novel view image
around the warped coordinates:

Îms (u) = Imv (û) (2.4)

Alongside the warped image, a binary validity mask V m
s is also generated, indicating

“valid” pixels in the synthesized view as some pixels project outside the image boundaries
in the novel view. As previously done in context of learning monocular depth estimation
[60], we can then formulate a photo-consistency objective specifying that the warped image
should match the source image. In our scenario of a multi-view system, this can naively be
extended to an inverse-warping of all M novel views to the reference view, with the loss
being:

Lphoto =
M∑
m

||(Is − Îms )� V m
s || (2.5)

This loss allows us to learn a depth prediction CNN without ground-truth 3D, but
there are several issues with this formulation e.g., inability to account for occlusion and
lighting changes. While similar re-projection losses have been successfully used in datasets
like KITTI[14] for monocular or stereo reconstruction, there is minimal disocclusion and
lighting change across views in these datasets. However in MVS datasets, self-occlusion,
reflection and shadows (see Figure 2.4) are a much bigger concern. We therefore extend
this photometric loss and propose a more robust formulation appropriate for our setup.

Due to low baselines in datasets like KITTI, and consistent lighting between the different
views, this loss works reasonable well for the monocular or stereo depth prediction setup in
such datasets.

2.3.3 Robust Photometric Consistency

Our proposed robust photometric loss formulation is based on two simple observations –
image gradients are more invariant to lighting changes than intensities, and that a point
need only be photometrically consistent with some (and not all) novel views.
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Figure 2.4: Some neighboring pairs from DTU MVS dataset. Note that despite the same
light setting, there are several local variations caused by reflections and shadows. There are
also complex objects which lead to abundant self-occlusion.

Figure 2.5: For a set of images of a scene, a given point in a source image may not be
visible across all other views.
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Figure 2.6: Visualization of the robust pixel-wise aggregation loss used for training. The
predicted depth map from the network, along with the reference image are used to warp and
calculate a loss map for each of M non-reference neighboring views, as given in eqn 2.6.
These M loss maps are then concatenated into a volume of dimension H ×W ×M , where
H and W are the image dimensions. This volume is used to perform a pixel-wise selection
to pick the K “best” (lowest loss) values, along the 3rd dimension of the volume (i.e. over
the M loss maps), using which we take the mean to compute our robust photometric loss.
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The first modification we make in fact leverages insights developed over many years
of MVS research [12], where a number of conventional approaches have found that a
matching cost based on both the absolute image intensity and the difference of image
gradients works much better than just the former. We also found that due to the large
variations in pixel intensities between images, it is important to take a huber loss for the
absolute image difference term. The inverse-warping based photometric loss of eqn 2.5 is
therefore modified to reflect this:

Lphoto =
M∑
m=1

||(Is − Îs)� V m
s ||ε + ||(∇Is −∇Îms )� V m

s || (2.6)

We refer to this as a first-order consistency loss.

We next address the issues raised by occlusion of the 3D structure in the different
images. The loss formulations discussed above enforce that each pixel in the source image
should be photometrically consistent with all other views. As shown in Fig 2.5, this is
undesirable as a particular point may only be visible in a subset of novel views due to
occlusion.

Our key insight is to enforce per-pixel photo-consistency with only top-K (out of M )
views. Let Lm(u) denote the first-order consistency loss for a particular pixel u w.r.t a novel
view I im. Our final robust photometric loss can be formulated as:

Lphoto =
∑
u

min
m1,···mK
mi 6=mj

V
mk
s (u)>0

∑
mk

Lmk(u) (2.7)

The above equation simply states that for each pixel u, among the views where the pixel
projection is valid, we compute a loss using the best K disjoint views. An illustration of
this is shown in Fig 2.6. To implement this robust photometric loss, we inverse-warp the M
novel-view images to the reference image and compute a per-pixel first order consistency
“loss-map”. All M loss-maps are then stacked up into a 3D loss volume of dimensions
W ×H ×M . For each pixel, we find the K least value entries with valid mask, and sum
them to obtain a pixel-level consistency loss.
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2.3.4 Learning Objective

While minimizing the photometric consistency loss obtained by view synthesis is our
primary objective, we make use of two additional ingredients in the loss objective to im-
prove model performance. We augment our robust photometric loss with two additional
losses, namely image-patch level structured similarity loss (LSSIM ) and an image-aware
smoothness loss (LSmooth), as suggested by [39] for monocular depth prediction task, on
the depth map’s gradients. The smoothness loss enforces an edge-dependent smoothness
prior on the predicted disparity maps. The SSIM loss is a higher order reconstruction
loss on the warped images, but as it is based on larger image patches, we do not ap-
ply our pixel-wise selection approach for the robust photometric loss here. Instead, the
two neighboring views with the highest view selection score are used to calculate SSIM loss.

SSIM: We take cues from recent works[15, 39, 60] showing the effectiveness of per-
ceptual losses for evaluating the quality of image predictions. Similarly, we also use the
structured similarity (SSIM) as a loss term for training. The SSIM similarity betwen two
image patches is given by :

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σx + σy + c2)
(2.8)

Here, µ and σ are the local mean and variance respectively. We compute µx, µy, σx, σy
using average pooling and set c1 = 0.012 and c2 = 0.032. Since higher values of SSIM are
desirable, we minimize its distance to 1 which is the highest attainable similarity value.
The SSIM loss for an image pair then becomes :

LSSIM =
∑
ij

[
1− SSIM(I ijs , Î

ij
s )
]
M ij

s (2.9)

Here, M ij
s is a mask which excludes all pixels whose projections after inverse warping

lie outside the source image. As observed in [39], ignoring such regions improves depth
predictions around the boundaries. We apply the SSIM loss only between the reference
image and two nearest images ranked by view selection score.

Depth Smoothness loss: In order to encourage smoother gradient changes and allow
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sharp depth discontinues at pixels corresponding to sharp changes in the image, it is
important to regularize the depth estimates. Similar to [39], we add an L1 penalty on the
depth gradients.

LSmooth =
∑
ij

||∇xD
ij||e−||∇xIij || + ||∇yD

ij||e−||∇yIij || (2.10)

2.3.5 Learning Setup

During training, the input to our depth prediction network comprises of a source image and
N = 2 additional views. However, we enforce the photometric consistency using a larger
set of views (M = 6, K = 3). This allows us to extract supervisory signal from a larger set
of images, while only requiring a smaller set at inference.

Our final end-to-end unsupervised learning objective is a weighted combination of the
losses described previously:

L =
∑

αLphoto + βLSSIM + γLSmooth (2.11)

For all our experiments, we use α = 0.8 , β = 0.2 and γ = 0.0067. The network is
trained with ADAM[32] optimizer, learning rate of 0.001 and a 1st moment decay factor of
0.95. We use Tensorflow [3] to implement our learning pipeline. As also noted by [53], the
high GPU memory requirements of the network imply that it is efficient to use a smaller
image resolution and coarser depth steps at training, while a higher setting can be used for
evaluation. We note the image resolutions used in the Experiments section 2.4.

2.3.6 Inference using Learned Depth Prediction

At test time, we take a set of images of a 3D scene, and predict the depth map of each
image through our network. This is done by passing one reference image and 2 neighboring
images through the network, which are chosen on the basis of the camera baselines or a
view selection score if available. The set of depth images are then fused to form the point
cloud. We use Fusibile [12], an open source utility, for the point cloud fusion.

18



2. Unsupervised Multi-View Stereopsis

2.4 Experiments

We now describe the evaluation of our proposed models. The primary dataset of evaluation
is the DTU MVS dataset [26]. In section 2.4.1 we describe the DTU dataset and our
training and evaluation setup, and discuss our results, qualitatively and quantatively. Next,
we perform rigorous ablation studies on the effects of various components of the robust
loss function we propose (Section 2.5). We also show in Section 2.4.2 that our method can
allow us to adapt pretrained models to datasets without using ground-truth, by finetuning
using our robust photometric consistency loss. Lastly, we demonstrate the generalization of
our model to another dataset without finetuning (Section 2.4.3).

2.4.1 Benchmarking on DTU

The DTU MVS dataset contains scans of 124 different scenes with 3D structure and high-
resolution RGB images captured using a robotic arm. For each scene, there are 49 images
whose camera poses are known with high accuracy. We use the same train-val-test split as
used in SurfaceNet [27] and MVSNet [53].

As in MVSNet, for a given reference image of one scan, its neighboring images for input
to the network (N) are selected using a view-selection score [56], which uses the sparse
point cloud and camera baselines to pick the most suitable neighboring views for a given
reference view. We similarly use neighboring M views during training for self-supervision
with the top-K loss.

We evaluate our models on the test split of the DTU dataset[26] using the officially
prescribed metrics:

• Accuracy : The mean distance of the reconstructed points from the ground truth.
• Completion : The mean distance of the ground truth points to the reconstruction.
• Overall : the mean of accuracy and completion.

Additionally, we report the percentage metric and f-score (which measures the overall
accuracy and completeness of the point cloud) as used in the Tanks and Temples benchmark
[36].
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Training Setup

For training, we scale the DTU images to 640× 512 resolution. All of our networks are
trained with N = 3, such that during each iteration, one reference view and 2 novel views
are used for predicting a depth map. For our top-K aggregation based robust photometric
loss, we use M = 6 and K = 3. Thus, 6 neighboring views are used to calculate the
photometric loss volume, and per pixel the best 3 are selected. We later discuss the effect
of varying K.

For evaluation on the test set, depth maps are generated at image resolution 640× 512.
The dmin and dmax for the plane sweep volume generation in the network is set to 425mm

and 935mm respectively.

Quantitative Results

We quantitatively evaluate three unsupervised models, namely:
• Photometric: This model uses a combination of the naive photometric image recon-

struction loss as in Equation 2.5, along with SSIM and Smooth loss.
• Photometric + first order loss: We replace the naive photometric loss with our

proposed first order gradient consistency loss of Equation 2.6, which makes the
network much more robust to local lighting variations (denoted as Photometric + G
in Table 2.1).

• Robust: Our best model, which combines both the first order gradient consistency
loss and the top-K view aggregation scheme.

To place our results in context, in addition to the unsupervised photometric setting,
we compare our models against two classical methods (Furukawa et. al. and Tola et al.)
[10, 48] , and two more recent deep learning methods that are fully-supervised, SurfaceNet
[27] and MVSNet [53]. To the best of our knowledge, we are not aware of any other
existing deep-learning based models that learn this task in an unsupervised manner.

We find that for our model, the one with the robust loss, significantly outperforms the
variants without it across all metrics. In order to characterize the performance of our model,
we further compute the percentage metrics for distance thresholds up to 10mm and report
the f-score plot in Figure 2.13. As reported in Table 2.1, while our model struggles at a
high resolution (< 1mm), we outperform all other methods (except the fully-supervised
MVSNet model) on increasing resolutions. This indicates that while some classical methods
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are more accurate compared to ours in very low thresholds, our approach produces fewer
outliers. The quantitative results from Table 2.1 and qualitative visualizations of the errors
in Figure 2.8 show that our robust model leads to higher quality reconstructions. Figure 2.14
shows superior performance of our model in low-texture regions.

Table 2.1: Quantitative results on DTU’s evaluation set [2]. We evaluate two classical MVS
methods (top), two learning based MVS methods (bottom) and three unsupervised methods
(naive photometric baseline and two variants of our robust formulation) using both the
distance metric [2] (lower is better), and the percentage metric [36] (higher is better) with
respectively 1mm, 2mm and 3mm thresholds.

Mean Distance (mm) Percentage (<1mm)
Acc. Comp. Overall Acc. Comp. f-score

Furu [10] 0.612 0.939 0.775 69.37 57.97 63.16
Tola [48] 0.343 1.190 0.766 88.96 53.88 67.12

Photometric 1.565 1.378 1.472 46.90 42.16 44.40
Ours (Photometric+G) 1.069 1.020 1.045 55.98 45.24 50.04

Ours (Robust: G + top-K) 0.881 1.073 0.977 61.54 44.98 51.98
SurfaceNet[27] 0.450 1.043 0.746 75.73 59.09 66.38
MVSNet[53] 0.444 0.741 0.592 82.93 62.71 71.42

Percentage (<2mm) Percentage (<3mm)
Acc. Comp. Overall Acc. Comp. f-score

Furu [10] 77.30 64.06 70.06 79.77 66.27 72.40
Tola [48] 92.35 60.01 72.75 93.46 62.29 74.76

Photometric 71.68 55.90 62.82 81.92 60.56 69.64
Ours (Photometric+G) 81.11 60.70 69.43 87.03 64.36 74.00

Ours (Robust: G + top-K) 85.15 61.08 71.13 89.47 64.26 74.80
SurfaceNet[27] 79.44 63.87 70.81 80.50 66.54 72.86
MVSNet[53] 88.58 68.70 77.38 89.85 70.11 78.76

The DTU dataset’s evaluation script measures the reconstruction quality in terms of
accuracy and completeness while also reporting their median values and variances. We
list these results for two classical (top), two supervised learning based (bottom), and three
unsupervised learning (middle) methods in Table 2.2. As noted by [53], SurfaceNet[27]
used their own script for evaluation. However, we use the released DTU evaluation
benchmark scheme for reporting results from all the methods.

Additionally, we show the comparison of two components of the percentage metric,
precision and recall, that make up the f-score reported in the main paper, in Figure 2.7.
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Table 2.2: Quantitative results on the DTU’s evaluation set [2]. We evaluate two classical
MVS methods (top), two learning based MVS methods (middle) and three variants of our
unsupervised method using the distance metrics. For all columns, lower is better.

Accuracy Completeness Overall
Mean Median Variance Mean Median Variance

Furu [10] 0.612 0.324 1.249 0.939 0.463 3.392 0.775
Tola [48] 0.343 0.210 0.385 1.190 0.492 5.319 0.766

Photometric 1.565 1.041 3.683 1.378 0.694 4.964 1.472
Ours(Photometric+G) 1.069 0.759 1.883 1.020 0.595 2.779 1.045

Ours(Robust: G + top-K) 0.881 0.673 1.075 1.073 0.617 3.418 0.977
SurfaceNet[27] 0.450 0.254 1.270 1.043 0.285 5.594 0.746
MVSNet[53] 0.444 0.307 0.436 0.741 0.399 2.501 0.592

Qualitative Results

Qualitative results for the remaining 17 instances of the DTU test set are presented in
Figures 2.8, 2.9, 2.10.

2.4.2 Fine-tuning on ETH3D

We also test the effectiveness of the robust consistency formulation as a means of fine-tuning
pretrained models on unseen datasets without available annotations. For this, we evaluate
our method on the recent ETH3D benchmark[44] which is divided into low-res and high-res

scenes, and provides ground truth depth maps for MVS training of supervised techniques.
On the low-res many view dataset of the ETH3D benchmark, we compare results of a
pretrained MVSNet model with one that is fine-tuned on the train split of ETH3D. For
fusion of depth maps, we run Fusibile[12] with identical hyperparameters for each.

Experiment details and Results

The results in Table 2.3 demonstrate that fine-tuning with our proposed loss, in the absence
of available 3D ground truth annotations, improves performance.
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Table 2.3: Effect of fine-tuning on the low-res many view ETH3D dataset. All metrics are
represented as (%) and higher is better.

Method F1 score Accuracy Completeness

Pretrained MVSNet 16.91 17.51 19.59
Fine-tuned MVSNet 17.31 18.31 19.68

2.4.3 Generalization on Tanks and Temples

We perform an experiment to check the generalization ability of our network. Since the
network has explicitly been trained to match image correspondences rather than memorize
scene priors, our hypothesis is that it should generalize well to completely unseen data. We
select the Tanks and Temples dataset for this purpose, which contains high-res images of
outdoor scenes of large objects. We use our model trained on DTU on images from this
dataset, without any fine-tuning. We downscale the images to 832× 512 resolution and use
256 depth intervals for the plane-sweep volume. The results are visualized in Figure 2.11.
More extensive results are provided in the supplemental. However, we do note that the
very high depth range of scenes in open-world datasets like Tanks and Temples are not
amenable to the current deep architectures for MVS, as they all rely on some sort of volume
formulation. Thus to sample depths at a finer resolution for higher quality reconstructions
becomes extremely computationally expensive, and is perhaps a promising direction for
future work.

2.5 Ablation Studies

This section analyzes the influence of several design choices involved in our system, and
further highlights the importance of the robust losses in our training setup.

2.5.1 Top-K Selection Frequency

In order to characterize the top-K choice selection, we visualize the frequency with which
pixels from different views are selected for photo-consistency. We run the trained model on
the training and validation datasets for 50 iterations and store frequency counts of top-K
operations which are shown in Figure 2.12. We can observe two things: 1) A view’s
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selection frequency is directly proportional to its view selection score. This validates that
the view-selection criterion used for picking image sets for training corresponds directly
to photo-consistency, 2) More than 50% of selections are from views ranked lower than 2
which explains why adding the flexibility of accumulating evidence from additional images
leads to better

2.5.2 Top-K Selection Threshold.

We ablate the effect of varying K in our robust loss formulation. As can be seen from
Table 2.5, using K = 3 i.e. 50% of the non-reference images has a substantially better
validation accuracy. Note that for validation, we use accuracies against the ground truth
depth maps. We report percentages of pixels where the absolute difference in depth values
is under 3%.

Table 2.4: Ablation study of models with various combinations of loss functions, in terms of
validation accuracy against ground truth depth maps of DTU MVS datasets. B signifies the
naive baseline photometric loss, as given in eqn. 2.5. G is the first order gradient consistent
loss. Our robust model is a combination of G, SSIM, Smooth and top-K aggregation.

Loss used L1 error % < 1mm % < 3mm

B + SSIM 6.57 30.93 55.07

B + Smooth 5.92 42.52 63.05

B + Smooth
+ SSIM (our baseline) 4.98 49.37 72.92

G + Smooth + SSIM 5.33 61.92 77.29

G+Smooth+SSIM
w/ top k (our robust) 4.06 65.33 81.08

Table 2.5: Performance comparison as the K in our robust photo-consistency loss varies.
Results for using best 25%, 50% and 100% of warping losses per-pixel.

Method (M=6) K=1 K=3 K=6

Validation Accuracy (%) 75.59 81.08 77.99
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2.5.3 Impact of Loss Terms

We perform ablations to analyze the different components of our robust photometric loss.
Although our models are trained in an unsupervised manner, we use the ground truth depth
maps of the validation set of DTU to evaluate their performances. In particular, we evaluate
the methods on 3 metrics : 1) Absolute difference between predicted and ground truth
depths (in mm, lower is better) 2) Percentage of predicted depths within 1mm of ground
truth (higher is better) 3) Percentage of predicted depths within 3mm of ground truth. The
detailed quantitative results are provided in Table 2.4. We observe that both the proposed
modifications over the naive baseline yield significant improvements.

2.6 Discussion

We presented an unsupervised learning based approach for multi-view stereopsis, and
proposed robust photometric losses to learn effectively in this setting. This is however, only
an initial attempt, and further efforts are required to realize the potential of unsupervised
methods for this task. We are however optimistic, as an unsupervised approach is more
scalable as large amounts of training data can be more easily acquired. In addition, as our
experiments demonstrated, these unsupervised methods can be used in conjunction with,
and further allow us to improve over supervised methods, thereby allowing us to leverage
both, the benefits of supervision along with the scalability of unsupervised methods. Lastly,
we also hope that the proposed robust photometric loss formulation would be more broadly
applicable for unsupervised 3D prediction approaches.
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Figure 2.7: Percentage metrics on the DTU datasets as proposed in [36]. The f-scores
reported in Table 2.1 are computed using precision and recall which are displayed here.
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Figure 2.8: Left to right: a) Ground truth 3D scan, b) result with baseline photo-loss, c)
result with robust photo-loss, d) result using a supervised approach (MVSNet [53]), e-g)
corresponding error maps. For the error maps, points marked blue/green are masked out
in evaluation. Magnitude of error is represented by variation from white-red in increasing
order. Note how our method reconstructs areas not captured by the ground truth scan- doors
and walls for the building in last row, complete face of statue in third row. Best viewed in
color.
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Ground truth Ours (Baseline) Ours (Robust) MVSNet 
(Supervised)

Ours (Baseline) Ours (Robust) MVSNet 
(Supervised)

Figure 2.9: Predictions for the remaining instances of the DTU test set. Left to right: a)
Ground truth 3D scan, b) result with baseline photo-loss, c) result with robust photo-loss,
d) result using a supervised approach (MVSNet [53]), e-g) corresponding error maps. For
the error maps, points marked blue/green are masked out in evaluation. Magnitude of error
is represented by variation from white-red in increasing order. Best viewed in color.
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Ground truth Ours (Baseline) Ours (Robust) MVSNet 
(Supervised)

Ours (Baseline) Ours (Robust) MVSNet 
(Supervised)

Figure 2.10: Predictions for the remaining instances of the DTU test set. Left to right: a)
Ground truth 3D scan, b) result with baseline photo-loss, c) result with robust photo-loss,
d) result using a supervised approach (MVSNet [53]), e-g) corresponding error maps. For
the error maps, points marked blue/green are masked out in evaluation. Magnitude of error
is represented by variation from white-red in increasing order. Best viewed in color.
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2. Unsupervised Multi-View Stereopsis

Figure 2.11: Generalization result of our robust model on the Tanks and Temples[36]
dataset. Without any finetuning, our robust model provides reasonable reconstructions.
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2. Unsupervised Multi-View Stereopsis

Figure 2.12: Frequency with which pixels from differently ranked images are picked as
valid contributors to the top-K photo-loss. The input images are ranked based on the view
selection scores as detailed in Section 2.4.1.
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2. Unsupervised Multi-View Stereopsis

Figure 2.13: Comparison of different models on the DTU’s evaluation set [2] using the
F-score metric proposed in [36]. We see that our model trained with robust loss consistently
outperforms the baseline and several classical methods.
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2. Unsupervised Multi-View Stereopsis

Figure 2.14: An example of how our proposed technique improves completeness over
other methods in low-texture regions. Our result is a smooth dense reconstruction with
significantly fewer holes or missing regions.
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Chapter 3

Learning Blocks World Representation

In the previous chapter, we demonstrated how we can learn to reconstruct 3D scenes in the
form of dense point clouds without using any 3D supervision. The resulting reconstructions
often contain millions of points that can be interpreted as a dense sampling of the 3D
surface. Given the extent of repeating patterns in our visual world, it is natural to ask if such
an expensive representation is always needed. Often the representations of data are task
dependent and what we seek is a sufficient representation that is not necessarily densely
complete and detailed. There is a rich history of work on representing shapes as collections
of simpler entities, called visual primitives, dating several decades back starting with the
work of Binford in 1971 that introduced generalized cylinders[6]. Even earlier in 1965,
Larry Roberts proposed the famous Blocks World[42] which was an attempt at complete
scene understanding in a toy world composed of only textureless polyhedral shapes referred
to as blocks. More recently, learning based methods[49] have been used for obtaining such
volumetric representations. We refer interested readers to [17, 49] for an excellent survey
of previous work.

How can we represent our 3D reconstructions parsimoniously? How can prior knowl-
edge of the scene structure and its regularities be exploited to obtain an abstract, parameter-
ized model of the scene? These are the questions that motivate the task of primitive fitting

to point clouds. The primitive fitting task involves the use of a 3D point cloud as input with
the goal of producing as output a collection of primitive shapes that best fit the input points.
In line with the principle of parsimony, we seek to obtain the best fit using the least number
of primitives. Such a system can be used for obtaining a decomposition of a scene into
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its constituent objects or of an object into its constituent parts. It may also be used as a
regularizing constraint for 3D reconstructions to increase completeness. We might expect
some tasks such as recognition or synthesis to also benefit from such representations.

More specifically, in this chapter we introduce learning based techniques that consume
3D point clouds and produce as output a variable number of parameterized shapes that best
represent the points. For the scope of this thesis, we limit the range of shapes to be rigid
transforming cuboids and the input point clouds to be from man-made structures such as
airplanes, chairs, tables, and buildings.

3.1 Motivation

Unlike images in 2D, there is no single 3D representation that works best for all scenarios.
However, for the reconstructions produced by MVS methods, there are some distinct
advantages of a primitive based representation over polygonal meshes. We enumerate some
of them below.

1. Incorporating prior knowledge. Depending on the task, we might want to inject
specific rules and exploit regularities in the man-made structures. Dealing with
simple geometric primitives allows us to explicitly encode a number of structural
priors into our learning scheme in the form of constraints.

2. Parsimonious representation. Primitive based representations contain orders of
magnitude lower number of parameters than the dense point clouds or polygonal
meshes which often have millions of points against the few dozen for primitives.

3. Symbolic representation. The assembly of primitives into objects and consequently
of objects to form a scene provides a symbolic representation that is easy to manipu-
late and operate on enabling high-level reasoning such as visibility, etc.

3.2 Challenges

There are three closely entangled sub-problems that make the task of primitive fitting
challenging. They are:

1. How many primitives to use?

2. Which primitives to use?
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3. How to determine the best fit?

Seen as such, the task is akin to model selection. At its core, it demands learning the
arrangement of a variable number of primitives while simultaneously determining the types,
counts, shapes and locations of them. This can be seen as a hierarchical process wherein the
complex structure is partitioned into sub-structures for which we determine the appropriate
primitives and their fit. For the purpose of this thesis, we assume the input point clouds to
be pre-segmented objects from a scene. The primitive fitting is conducted on individual
objects and the resulting models can then be projected back into the scene as shown in
Figure 3.14 and Figure 3.15.

3.3 Unsupervised Primitive Fitting

We formulate the problem of obtaining a blocks representation of a output structure O,
given a set of input points P as that of predicting (up to) M distinct shapes (parts) which
are then composed to assemble the final shape. Towards this, we learn an encoder-decoder
style model fθ, parameterized by θ, which consumes 3D point clouds, represented as a
collection of (x, y, z) coordinates, and outputs a primitive based representation. We do
not have any annotations for the primitives that best represent the underlying surface from
which the input points can be thought to be sampled from. Hence the task of learning such a
model is an unsupervised one. While there is no direct supervision on the parameters on the
primitive shapes, we can measure the goodness of fit of the complete assembled structure
to the available point set and use this estimate as a guiding signal to train the model. This
insight suggests that we would be optimizing for M parameter settings that would represent
shapes which are the most likely surfaces containing the available input points P .

3.3.1 Parameterized Shape Representation

The output structure O is represented as an assembly of M primitive shapes. We follow
the representation scheme suggested in [49]. Each primitive shape (block) is encoded
as a vector of length 10 and is of the form (z, t, q) where z represents the dimensions of
the shape in a canonical frame and (t, q) represent the spatial tranformation (translation,
orientation). In 3D, z is a 3-tuple denoting the dimensions of the block (height, width,
breadth), t is a 3-tuple denoting the coordinates of the center of the block (x, y, z) and q is a
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4-tuple encoding the orientation as a unit-quaternion. As demonstrated in [30], the choice of
quaternions to represent orientation is motivated by the ease of mapping arbitrary 4-tuples
to valid rotations by normalizing them to unit length. This poses a simpler optimization
problem than the orthonormalization required by rotation matrices, while also avoiding
the wrap-around issue with Euler angles. The structure O predicted by the model fθ can
therefore be written as below.

fθ(P ) = {(zm, tm, qm)|m = 1, . . . ,M} (3.1)

This representation explicitly models the compositionality of sub-structures and exploits
the independence of the shape formation (z) and shape placement (t, q). There is a natural
interpretation to the training signal that follows from the entanglement of the parameters —
should the dimensions of the shape be altered or simply its placement such the resulting fit
improves.

3.3.2 Network Architecture

The design of a neural network that operates directly on 3D point clouds is challenging for
a number of reasons. First, a point cloud is an unordered set, which means permutations
of the points do not change the geometry they represent. This necessitates the design of
a feature extractor and a loss function that are permutation invariant. Second, there is no
clear definition of local neighbourhoods in point clouds, making it difficult to apply any
convolutional operation. Third, the number of input points can vary drastically. Taking these
into account, we build our encoder model inspired by the recently proposed PointNet[41]
architecture. The PointNet model includes two spatial transformer sub-networks called
T-Net which provide invariance under tranformations like rotation and translation. Such
spatial invariance is desirable for tasks like classification or shape recognition, wherein
rotating a point cloud does not change its object class identity. However, for our task of
regression, we want the network to be sensitive to all changes in the input and learn to make
predictions accordingly. Hence we remove this spatial transformer component and let the
network be sensitive to spatial changes in the input.
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Figure 3.1: Two candidate choices for a decoder which would predict the final shape
parameters from the point cloud feature representation produced by the encoder model.

Figure 3.2: A sketch of our model architecture that consumes a 3D point cloud as input and
produces a variable number of parameterized primitive shapes as output.

We experiment with two choices for a decoder — MLP (a sequence of fully connected
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layers) and LSTM[21] based. The comparison of the two models is shown in Figure 3.1.
In the case of the MLP decoder, we predict the probability of existence of a primitive, pm,
along with the shape parameters to allow us to model variable counts of primitives. The
predicted probability pm is treated as the parameter of a Bernoulli distribution according
to which the predicted shape is sampled (used). During training, the gradients of this
distribution parameter are computed using the REINFORCE algorithm[51] as described in
[49]. On the other hand, the LSTM decoder outputs a stopping probability which can be
thresholded to determine the number of predictions to make.

3.3.3 Learning Objective

In order to train the model described above, we would like to define a differentiable loss
function L((zm, tm, qm), P ) between the predicted structure (zm, tm, qm) and the input
point set P . This is challenging because the two 3D representations the loss function is
to operate on are different — one is a 3D point cloud and the other is a collection of 3D
blocks. To overcome this, we leverage the fact that the point cloud is a discrete sampling
of the underlying 3D surfaces and hence a geometric fit between the two representations
would imply high fidelity reconstruction of the true underlying surface. This allows us to
define some complimentary losses which together capture the goodness of fit by minimizing
the discrepancy between the predicted and ground-truth shape. The Surface Distance Loss

enforces the predicted structure to contain the input point set by minimizing the geometric
distance of every point to its nearest surface. The Chamfer Distance Loss, on the other
hand, enforces a similarity between the input point set and a discrete uniform sampling of
the predicted structure. Additionally, the Intersection Loss encourages predicted primitives
to be non-overlapping. For dealing with variable number of primitives, we incorporate the
Parsimony Loss.

Surface Distance Loss. Given a set of points and a collection of blocks, the surface loss
computes the L2 distance between each point and the nearest surface of the nearest block.
With the choice of primitive parameterization, such a loss can be computed efficiently in
the form of a distance field as described in [49]. For an origin-centered block, the distance
field dist(·; z) can be computed by,

dist(p; z)2 = (|px| − w)2+ + (|py| − h)2+ + (|pz| − d)2+ (3.2)
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where z ≡ (w, h, d) denotes the extent of the block in the three dimensions. If we denote
the rotation and translation of the block by R and t respectively, then the distance field at
a point p w.r.t. the transformed block is the same as that at a point p′ w.r.t. the canonical
origin-centered block where p′ = R−1(p− t). This observation allows us to transform all
the input points P to the canonical frame of an origin centered block and easily compute
distances to all sides of block. The final loss is thus defined as the loss over all points.

SD(O,P ′) =
N∑
i=1

min
Om∈O

dist(p′i;Om) (3.3)

Chamfer Distance Loss. We would like our predicted output structure O to be such
that a discrete uniform sampling of its surfaces would generate a point cloud that closely
resembles the input point cloud P . For this we use the permutation invariant Chamfer
distance loss introduced in [9]. In order to uniformly sample points on the surfaces of
the predicted structure, we build upon the observation described above for obtaining
transformed points. Similarly, we can first sample points p on a block in the canonical
origin-centered reference frame and then apply the predicted rotation and translation
transformations to the sampled points to obtain a point cloud P ′ in the same reference frame
as the input points P . The distance between these two point sets is then given as below.

CD(P, P ′) =
1

|P |
∑
x∈P

min
y∈P ′
‖x− y‖2 +

1

|P ′|
∑
y∈P ′

min
x∈P
‖y − x‖2 (3.4)

CD (3.4) calculates the average closest point distance between the output point cloud P
and the ground truth point cloud P ′. We use the symmetric version of CD where the first
term forces output points to lie close to ground truth points and the second term ensures the
ground truth point cloud is covered by the output point cloud. Note that P and P ′ need not
be the same size to calculate CD.

In order to facilitate gradient computation of the predicted parameters under this loss,
we use the reparameterization trick[34] which decouples the parameters from random sam-
pling. Similar to [49], this is done by sampling u ∼ [−1, 1] and then scaling the coordinate
by multiplying with it to obtain an intermediate value. For example, in order to sample
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the x-coordinate, instead of randomly picking a value x ∼ [−w,w], we now use x = uw

which allows us to compute ∂x
∂w

and enables training.

Figure 3.3: An illustration of collision detection using the Separating Axis Theorem. Images
taken from [1].

Intersection Loss. We would like to obtain a parsimonious primitive configuration that
is physically plausible and reasonable. A key constraint to enforce towards this goal is to
have the predicted structure contain non-overlapping shapes. This constraint can be posed
as a collision avoidance objective. For our purposes, we use the Separating Axis Theorem
(SAT)[8] for detecting intersections between pairs of blocks (cuboids). The theorem is
stated below.

Theorem 3.3.1 (Separating Axis Theorem) Two nonintersecting convex polyhedra can

be separated by a plane that is either parallel to a face of one of the polyhedra or that

contains an edge from each of the polyhedra.

Examination of the intersections of the projections of the polyhedra on lines that are
perpendicular to the planes is both a necessary and sufficient condition to determine if two
convex polyhedra are intersecting. The polyhedra would be intersecting if and only if the
minimal intervals containing their projections onto one of the axes intersect. Such an axis
is called a separating axis. Hence, the collision/overlap detection amounts to processing
each of the potential separating axes one by one by projecting the blocks onto an axis
and testing the intersection of the minimal intervals containing the projections. In 3D, we
have separating planes that separate the bounding volumes and are perpendicular to their
corresponding separating axes. We can stop the tests early if a separating axis is found.
We implement the intersection loss as a pairwise collision detection scheme and relax the
hard choices of selecting minimum intervals to be a soft operation which makes the overall
formulation differentiable.
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Parsimony Reward. In order to encourage the MLP decoder model to use fewer
primitives to describe the shape, we add an additional parsimony reward when computing
the gradients for predicted probabilities using REINFORCE as described above. For
the LSTM based decoder, we simply add the reward scaled inversely by the number of
predictions made by the model such that fewer predictions (≥ 1) are rewarded.

3.3.4 Implementation Details

We perform our experiments primarily using proprietary aerial scans of buildings and using
the ShapeNet[7] dataset. In both cases, we use point clouds with 2048 points as input;
points are either upsampled or downsampled as needed in order to obtain the fixed size.
All experiments used the Adam[33] optimizer with an exponential learning rate schedule
starting from 0.003 and scaling by 0.75 times every 75 epochs. All our models were trained
to predict up to 20 primitive shapes. We found it challenging to accurately train the counting
aspect of the model i.e. variable number of primitives. In our experiments, the models
would often collapse to not use any primitives (fixed by setting minimum to 1) or by using
all primitives, with no strong signal of parsimony. Tuning the parsimony reward led to
some success, but we observed better results by predicting a fixed number of primitives
and consequently pruning the ones overlapping with others (more than 50% overlap) in a
post-processing step.
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3.3.5 Results on ShapeNet Dataset

Figure 3.4: Representing airplanes from the ShapeNet dataset with primitives.

Figure 3.5: Representing chairs from the ShapeNet dataset with primitives.

Figure 3.6: Representing tables from the ShapeNet dataset with primitives.

We picked 500 models each for the airplane, chair and table classes of the ShapeNet
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dataset for training and sample points uniformly on the mesh surfaces to obtain point
clouds. There is no ground truth model available for these scans for comparison of our
results and hence we present qualitative results here. Note that while we have access to the
synthetic CAD models, their decomposition into shape primitives (blocks) is unavailable.
We show qualitative results on unseen instances of these classes in Figure 3.4, Figure 3.5,
Figure 3.6.

3.4 Supervised Sim-to-Real Approach

For a class of man-made structures such as buildings, we, in fact, possess much stronger
structural priors which can help significantly reduce the search space for learning primitive
fitting. For example, buildings are often located on planar surfaces which means we need
not predict complete 3D rotations but can instead get by with only in-plane rotations. As
a result, unlike the 4-vector quaternion used for representing rotation earlier, we can now
represent rotation as a single scalar value which is the deviation from an in-plane axis. This
is permitted due to the symmetry of the primitive shape we consider which is a cuboid.

The regularities in such structures can be captured programmatically to a reasonable
extent enabling us to simulate buildings with code. We show next how such simulations can
be used to create large scale training data for models to be trained in a supervised fashion.
Such supervised training can also help the models learn counting more effectively.

3.4.1 Synthetic Data Generation

We follow a simple technique based on recursive sub-division to simulate buildings pro-
grammatically as illustrated in Figure 3.7. We start with a fixed sized rectangular region and
repeatedly divide it into sub-regions by sampling random points within it. A few iterations
of such divisions lead to a configuration of non-overlapping rectangles. A subset of these
rectangles are sampled and adjacent rectangles with completely shared edges are merged
together producing a layout as shown. In order to capture non-rectangular structures, some
of the boundary rectangles are replaced with a triangular or elliptical shape of appropriate
dimensions. In order to emulate real sensor noise, we distort the edges of the complete
layout with Gaussian noise. The layout up to this point is entirely in 2D.

We next assign heights to the regions such that the same elevation is assigned to an
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entire region. Just like the boundaries, we also distort the elevations values with some
Gaussian noise to emulate sensor noise. This gives us a 2.5 height map of a building which
can be projected to a 3D point cloud as shown in Figure 3.8. For this projection, we first
copy all elevated points to the terrain and add some Gaussian noise to distort them. Next,
we interpolate sides using Poisson reconstruction and sample points uniformly. The final
point cloud is obtained after aggressive downsampling. Examples of the resulting 3D point
clouds are shown in Figure 3.9. We note that while the eventual point clouds represent
non-cuboidal structures, the ground truth values we regress to are still the parameters of the
original rectangles along with their corresponding elevation.

Figure 3.7: An illustration of the synthetic data generation process.

46



3. Learning Blocks World Representation

Figure 3.8: An illustration of a synthetically generated 2.5D depth map, its projection in
3D and the set of 3D primitive shapes (cuboids) that are the ground truth parsimonious
representation to learn.

Figure 3.9: Examples of some 3D point clouds generated synthetically by sampling points
uniformly on the surfaces of the primitive block shapes.

47



3. Learning Blocks World Representation

3.4.2 Network Architecture

The network architecture is same as the one described in the previous section for unsuper-
vised learning. For the experiments here, we use the model with the LSTM decoder.

3.4.3 Learning Objective

The goal of the learning objective is similar to the one previously described. However, since
we now have access to the correct ground truth counts and parameter values, we can use
these during training and have the network regress to the true values directly, bypassing
the indirect geometric relationships. We jointly optimize two loss terms, for counting and
fitting. Since the LSTM outputs a stopping probability, we use the cross-entropy loss to
train the model for true stopping time steps. The parameter predictions of the network are
trained using the matching loss. During training we use all primitives predicted by the
network as per ground truth counts and not the counts predicted. This helps attain more
stable training.

Matching Loss. The model predicts a set of parameters that represent a variable
number of primitive shapes which may or may not be as many as those in the ground truth.
Additionally, since we care only about the assembled shape (placing all primitives together)
and not individual placements in isolation, we need a mechanism for determining one to
one correspondences between the predictions and ground truth.

Figure 3.10: The optimal assignment problem.
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As shown in Figure 3.10, the optimal assignment problems involves finding one-to-one
correspondences between two sets of items by ranking all choices using some scoring
function. Note that the two sets need not be of the same size and we may then only include
matches according to the size of the smaller of the two sets. A classical technique for
solving this problem in polynomial time is the Hungarian matching algorithm[37] which
finds an one-to-one mapping between two sets. In its natural form, the Hungarian algorithm
is non-differentiable and hence cannot be directly used for training a deep network. We
can, however, get around the non-differentiability by first computing the cost matrix of
all possible assignments in a differentiable manner and then using the optimal assignment
mappings to index into the cost matrix. The loss value used during training is thus only for
the optimal matches and the remaining entries do not contribute to the learning gradient. For
simplicity, we use the L1 norm distance between the ground truth and predicted parameters
to compute the loss value.

3.4.4 Results on Synthetic Scans

Figure 3.11 shows some qualitative results of the trained model on a held out test set of
1000 synthetically generated scans. We can see that the model learns to precisely fit varying
number of primitives to the input point cloud.

Figure 3.11: Qualitative results of the trained model on a held out test set of synthetically
generated scans.
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3.4.5 Results on Real Aerial Scans

The proprietary aerial scans dataset consists of 250 real scans of buildings that are segmented
out from their surrounding.

Figure 3.12: Qualitative transfer learning results of the trained model on some proprietary
real world aerial scans.
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Figure 3.13: Qualitative transfer learning results of the trained model on some proprietary
real world aerial scans.

Figure 3.14: Putting all results together to form a region level map.
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Figure 3.15: Putting all results together to form a region level map.

There is no ground truth model available for these scans for comparison of our results
and hence we present qualitative results in Figure 3.12 and Figure 3.13. We observe that
the model captures the spread of the buildings to an impressive extent and uses reasonable
numbers of primitive shapes for the construction. We can place all resulting models back in
the original world coordinates to form a compact region level map as shown in Figure 3.14
and Figure 3.15.
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3.5 Discussion

Figure 3.16: Some failure modes of the model when encountering challenging structures
different from training data.

As can seen from the results in Figure 3.16 of some challenging real world scans,
the network struggles to model complicated structures which are often composed of non-
cuboidal base shapes. This is a limitation of the simplistic assumption made here of using
only cuboids as the building blocks. Learning to leverage a larger library of primitive
shapes (like the geons[5]) might enable better modeling of non-regular shapes. Also, the
distribution of synthetic data used during training does not seem to sufficiently reveal the
idiosyncracies revealed by real data. This mismatch of the data distributions is another
reason for the model not being able to model the shape to a satisfactory level.
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Chapter 4

Conclusion and Open Problems

In this thesis, we introduced techniques for leveraging geometry in the form of priors to
enable learning based 3D reconstruction and consequently parsimonious representation.
We first presented an unsupervised learning based approach for multi-view stereo recon-
struction which utilized a novel robust photometric consistency objective to learn without
access to 3D supervision. The proposed objective allows implicitly overcoming lighting
changes and occlusions across training views, producing reasonably accurate depth maps.
Next, we introduced an approach for representing complex 3D structures as collections of
parameterized primitive shapes. We showed how such compositional representations can be
learned in an unsupervised way by optimizing geometric fits. For certain man-made regular
structures, we demonstrate how a synthetic-to-real supervised transfer learning approach
can be utilized to encode priors efficiently.

While these are encouraging steps towards the goal of unsupervised learning of models
for reconstructing and parsing the 3D world, this is only an initial attempt and further
efforts are required to realize the potential of unsupervised methods for these tasks. We
are however optimistic, as an unsupervised approach is more scalable as large amounts of
training data can be more easily acquired. In addition, as our experiments demonstrated,
these unsupervised methods can be used in conjunction with, and further allow us to improve
over supervised methods, thereby allowing us to leverage both, the benefits of supervision
along with the scalability of unsupervised methods. We also hope that the proposed loss
formulations would be more broadly applicable for unsupervised 3D prediction approaches.
We discuss some of the open problems below and highlight potentially interesting directions
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for future work.

1. The promise of unsupervised learning is that we can exploit potentially infinite troves
of data in order to learn stronger models. However, not sufficient data is publicly
available in a form suitable to the models we used. Our MVS model assumed
known camera parameters and, more importantly, the range of depth values of the
scene of interest. Such assumptions prevent us from scaling the technique to free-
form unstructured visual data. A better comparison benchmark would be when
unsupervised methods are given access to significantly more data than the supervised
methods. Curation of such a dataset and consequently training models at scale might
reveal interesting characteristics of the unsupervised setup.

2. We restricted ourselves to learn blocks world representations where a block was
defined to be strictly a cuboid. Our visual world is of course much richer and a larger
library of primitive shapes is need in order to sufficiently represent it. Additionally,
the inputs to the models we proposed assume the scene to be segmented apriori. Such
precise segmentation is an open challenge in itself making it crucial to relax this
assumption in future work.

3. While humans do not have access to ‘ground truth’ 3D models of the world, our
visual learning systems function alongside our ability to conduct motor actions and
interact with our environments to build mental models of the world over time. We
often move and sense objects across a variety of positions, orientations and in a wide
array of lighting conditions and locations. Such rich 3D data is currently unavailable
in our benchmarking datasets. Learning visual representations by means of active
exploration of the world is an exciting direction. While there has been some work on
learning curiosity-driven agents[40] in the deep reinforcement learning literature, we
are yet to it coupled with geometry for the tasks discussed in this thesis.
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