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Abstract

In this paper, we consider an equivalence between the existence of a weak
solution of Neumann problem to the Poisson equation and the Helmholtz
decomposition of LY () which is a variable exponent Lebesgue space in a
general domain Q of R? Furthermore we consider an equivalence between

the existence of a weak solution to the Stokes problem and the Helmholtz-type
decomposition of W} 7()(Q) which is a variable exponent Sobolev space in a
bounded domain Q with a C*!-boundary. We use the equivalent relation with
W=mr0) version (m > 0) of the J. L. Lions lemma in the author’s previous

paper.
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1. INTRODUCTION

Many mathematical and physical scientists are interested in the Helmholtz decompo-
sition of the Lebesgue space LP(2) (1 < p < oo) into the direct sum of certain closed
subspaces in theoretical hydrodynamics. More precisely, let 2 C R? (d > 2) be a domain.
Define

D(Q,div0) = {v € C () ; diveo = 0 in Q}.
We denote
H,(2) = the closure of D(£2,div0) in L”(2)
and
G,(Q) = {w € LP(Q); w = V for some m € W,5P(Q)}.

We consider the validity of the Helmholtz decomposition

LP(Q2) = Hp(2) ® G,(9), (1.1)
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where @ denotes the direct sum operation. In other words, an arbitrary vector u € L?()
can be uniquely expressed as the form

u=v+w, veEH,N) and we G,(N).

Galdi [14] showed that when € is a general domain of R? (d > 2), the validity of (1.1) is
equivalent to the unique resolubility of a generalized Neumann problem for the Poisson
equation in 2, that is, for any given u € LP(f2), to find a unique (up to an additive
constant) function 7 : 2 — R such that

S Dl’p(Q)a
fn(vﬂ —u)-Vedr=0 for all p € D' (Q),

where D*?(Q) = {r € L .(); Vr € LP(2)} and p/ is the conjugate exponent of p, that
is, o = p/(p — 1). If p = 2, employing the Hilbert structure of the space L?, one can
prove (1.1) for any domain 2 (cf. [14, Theorem 1.1 in Chapter III]). So the generalized
Neumann problem (1.2) with p = 2 has a unique (up to an additive constant) solution in
an arbitrary domain. On the other hand, if p # 2, it is well-known that the solvability
of the generalized Neumann problem (1.2) depends on the shape of 2 and the regularity
of Q. Therefore, the Helmholtz decomposition (1.1) also depends on the shape of 2
and the regularity of 2. For smooth bounded domain €2, the decomposition (1.1) holds,
see Fujiwara and Morimoto [13], and if € is either a bounded or an exterior domain of
C'-class, the decomposition (1.1) holds, see Simader and Sohr [17] and Simader et al.
[16].

The purposes of this paper is to derive the equivalence between the existence of a
weak solution for the Neumann problem to the Poisson equation in a variable exponent
Lebesgue-Sobolev space and the Helmholtz decomposition of a variable exponent Lebesgue
space L) (Q) in a general domain Q2 of R? (d > 2). Furthermore, we show the equivalence
between the existence of a unique weak solution for the homogeneous Stokes problem and
the Helmholtz-type decomposition of a variable exponent Sobolev space W(l,’p (')(Q) in a
bounded domain €2 in R? (d > 2) with a C%'-boundary. Fortunately, since we know the
equivalent conditions with the J. L. Lions lemma (Aramaki [4, 3]), we fully use these
conditions. In this case, since we know the well-posedness of the Stokes problem, the
Helmholtz-type decomposition is true.

The paper is organized as follows. In Section 2, we give some preliminaries. In Section
3, we show that the Helmholtz decomposition of L”(')(Q) is equivalent to the unique
(up to a constant) solvability of the Neumann problem for the Laplace operator in a
general domain. In Section 4, we consider a relation between the unique solvability for
the homogeneous Stokes problem and the Helmholtz-type decomposition of Wa* ) ()
in a bounded domain with a C%!-boundary. Section 5 is devoted to well-posedness of
inhomogeneous Stokes problem using the result of Section 4.

(1.2)

2. PRELIMINARIES

Throughout this paper, we only consider vector spaces of real valued functions over R.
For any normed space B, we denote B by the boldface character B. Hereafter, we use
this character to denote vectors and vector-valued functions, and we denote the standard
inner product of vectors @ = (ai,...,aq) and b = (by,...,bs) in R? by a-b = Zf=1 a;b;
and |a| = (a - a)'/?. Occasionally, we also use the same character for matrix values
functions. Moreover, for the dual space B* of B (resp. B* of B), we denote the duality
bracket between B* and B (resp. B* and B) by (-,-)p~,B (resp. {-,*)B*.B)-

In this section, we recall some well-known results on variable exponent Lebesgue-
Sobolev spaces. See Diening et al. [8], Fan and Zhang [10], Kov4cik and Récosnik [15]
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and references therein for more detail. Throughout this section, let 2 be a domain in R¢
with a Lipschitz-continuous boundary I' = 92 and € is locally on the same side of 0.
For a real valued function p € C(£2), define

p" =supp(z) and p~ = inf p(z).
zeQ €N

Let
C+( ) ={peCQ);1<p <p*<oo}

From now on, let p € C(2). For any measurable function v on €, a modular py.) is
defined by

o) = [ fu@)Pds
The variable exponent Lebesgue space is defined by
LPO(Q) = {u;u: Q2 — R is a measurable function satisfying p,(,(u) < co}

equipped with the Luxemburg norm

ull ooy = imf {)\ s U g (;) £ 1}.

Then LP)(Q) is a Banach space. We also define, for any integer m > 0,
wm™PO(Q) = {u € LPO(Q); 8% € LPO(Q) for |a| < m},

where a = (o, . ..,qq) is a multi-index, |a| = Z?=1 a;, 0% = 0f* --- 03¢ and 9; = 0/0x;,
endowed with the norm

||u||Wmm<->(Q) = Z ||6au||Lp(->(Q)-

o] <m
Of course, Wo?0)(Q) = L)(Q). Define
WO (Q) = the closure of the set of W0 (Q)-functions

with compact support in (2.

The following three propositions are well known (see Fan et al. [11], Wei and Chen [18],
Fan and Zhao [12], Zhao et al. [20], Yiicedag [19]).

Proposition 2.1. Let p € C(Q) and let u,u, € L’V(Q) (n=1,2,...). Then we have
(1) lullzoor gy < L(=1,> 1) <= pyy(w) < 1(=1,> 1).

ais = ¥
(i) flullzror@) > 1= lullfpo @) < Poey (@) < lullfp q)-

+ -
(iif) [Jul| oy @) < 1= ||U||I£p<->(g) < ppy(w) < ”““i»(»(ﬂ)'

(iv) limyse0 [[ttn — ull o0y (@) = 0 <= limy 00 pp() (Un — 1) = 0.
(V) ltnll oy @) = 00 as n — 00 <= py()(un) — 00 as n — co.

The following proposition is a generalized Holder inequality.

Proposition 2.2. Let p € C (). For any u € LPY)(Q) and v € L O(Q), we have

1 1
[ wlds < (L + =) Wl ol < 2l ol

where p'(+) is the conjugate exponent of p(-), that is, ﬁ + zﬁ =
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Define

dp(z) "
Py =4 i p(@) <d,
oo ifp(x) > d.

Proposition 2.3. Let p € C.(Q) and m > 0 be an integer. Then we have the following.

(i) The spaces LPO(Q) and W™PO(Q) are separable and reflevive Banach spaces.

(ii) If q(-) € CL(Q) and satisfies q(x) < p(x) for all x € Q, then W™PO)(Q) —
Wm™40)(Q), where < means that the embedding is continuous.

(iii) If g(z) € C() satisfies that q(z) < p*(z) for all x € Q, then the embedding
Whr0)(Q) < LIO(Q) is compact.

We say that a real valued measurable function p belongs to P'°8(f2) if p has the log-
Hélder continuity in €, that is, p : 2 — R satisfies that there exists a constant Clog(p) > 0
such that

Ciog(p)
Ip(@) — )| < 112 +11/|x —p frellaye

We also write P'%(Q) = {p € P'%(Q); 1 < p~ < pt < o0}

Proposition 2.4. Ifp € Pfg(Q) and m > 0 is an integer, then D(Q) := C§°(2) is dense
in WoP0(Q).

For the proof, see [8, Corollary 11.2.4].
We denote the dual space of W) (Q) by W—m#()(Q) and define

Wr9(Q,div0) = {v € W™ (Q); dive =0 in 0},

which is clearly a closed subspace of Wg**(Q).
Furthermore, we define

WPO(Q) = { f e WP, / fdz = o} if m > 0 (integer),
Q
and if m = 0, Wg*0(Q) = 12O(Q) = L2Y(Q), where

o@ = {re ro@; [ az=o}.
We also define
D(Q) = {feD(Q); /Qfdx:O}.

Next we consider the trace. Let { be a domain of R? with a Lipschitz-continuous
boundary I' and p € ’P_lfg(Q). Since W20 (Q) ¢ W2l(Q), the trace u|r to I' of any

loc

function u in WP0)(Q) is well defined as a function in L} (T'). We define
Te(WPO(Q)) = {f; f is the trace to T of a function F € W?0)(Q)}
equipped with the norm

“f”’n-(wl,p(.)(n)) = inf{”anl,p()(Q) H Fe Wl,p()(ﬂ) Satisfying F|F= f on F}
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for f € Te(W'*0)(Q)). Then Tr(W*)(Q)) is a Banach space. More precisely, see [8,
Chapter 12]. We note that Wol’p(')(Q) = {F € Wtr0O)(Q); F‘Fz 0}, in the later we also
write F’r= gby F=gonT.

In the previous paper [4, 3], we derived W~™P()_version of the J. L. Lions lemma and
the equivalent relations.

Theorem 2.5. Let ) be a bounded domain of R¢ with a Lipschitz-continuous boundary
' and Q be locally on the same side of T', and let m > 0 be a integer and p € 'Pﬂfg(ﬂ).
Then the following (a), (b), ...and (f) are equivalent.

(a) Classical J. L. Lions lemma: If f € W—™"120)(Q) satisfies Vf € W—™"120)(Q),
then f € W—m20)(Q).

(b) The Necas inequality: there exists a constant Co = Co(m,p,2) such that

I Flw-mecr i@y < Colll Fllw-m-100r) + IV Fllyg-m-r00q)) for all f € W™PO(Q).

(¢) The operator grad has a closed range: grad (W20 (Q)/R) is a closed subspace of
W—m—l,p(-)(Q)'

(d) A coarse version of the de Rham theorem: for any h € W™™"0(Q), there exists

a unique [r] € W—™PO(Q)/R, where [r] denotes the class in W—™P0)(Q)/R with the
representative m, such that h =V in W™™"*0(Q) if and only if

(B, Oy s ) w0y = 0 Jor all v € W09, div 0).

(e) The operator div is surjective: the operator
div : w5t O @) — Wt O(@)

is continuous and surjective. In addition, if f € D(R), then there exists u; € D(Q) such
that divuy = f in Q.

Consequently, for any f € Wom v (')(Q), there exists a unique

[us] € Wi 0O (Q) /Ker div
where Ker div = Wi 0(Q, div0) and [u;] denotes the class in Wi (Q) /Ker div
with the representative wy, such that divuy = f in Q. Therefore, the operator
div : Wit 0(Q) /Ker div — W O()

s continuous and bijective. Hence, by the Banach open mapping theorem, there exists a
constant Cy, = Cy(m, p(-), ) > 0 such that

”[uf]HW{,"H‘P'(')(Q)/Kerdiv = Cl”f“wm,p’(~)(g) f07‘ all f = Wgn,p (')(Q).

(f) The J. L. Lions lemma: if f € D'(Q) satisfies Vf € W™ 20(Q), then we can
find that f € W—™P0(Q).

Remark 2.6. When p(-) = const. = 2 and m = 0, Amrouche et al. [1] derived this
theorem in L2-framework in the classical J. L. Lions lemma in the sense that f € H=1(Q)
and Vf € H () implies f € L*(Q). Aramaki [7] derived an improvement to the case
where p(-) = const. = p (1 < p < o0) and m = 0. Theorem 2.5 is an improvement of
these works to the Sobolev space with a variable exponent which was derived by [4, 3].
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Remark 2.7. When p(-) = p = const., since we can prove that the classical Necas
inequality (b) (cf. [2, Theorem 2.3]) directly, consequently if Q2 is a bounded domain

with a Lipschitz-continuous boundary, then all of (a)-(f) are true in this case. For general
integer . > 0 and p = p(-) € P%(Q), the author of [4] showed the above equivalence. For
the case where m =0 and p € Pfg(ﬂ), since the Necas inequality holds (cf. [8, Theorem
14.3.18]), all of (a)-(f) are true for the case m = 0. Furthermore, the author of [3] proved
directly that the J. L. Lions lemma (f) holds, so all of (a)-(f) are true for general integer

m > 0.

3. EQUIVALENCE BETWEEN THE HELMHOLTZ DECOMPOSITION OF LP()(Q) AND THE
NEUMANN PROBLEM FOR THE POISSON EQUATION

In this section, we assume that €2 is a general domain of R? (d > 2) and p € ’Pﬂr"g(ﬂ).

3.1. The Helmholtz decomposition of L?)(Q). Let
D(Q,div0) = {u € CP(Q); dive = 0in Q}
and define two spaces
H,y(Q) = the closure of D(Q,div0) in L*"(Q),
G, () = {we L’V (Q); w = Vr for some = € WP (Q)}.

ocC

Then we have the following lemma.

Lemma 3.1. (i) The two spaces Hp.)(Q2) and Gy () are closed subspaces of LPY(Q).

(i) Hp) () = Gpy(Q)* and so Hy (N = Gy()(Q). Here, for any subspace B
of a reflexive Banach space X, B: denotes the polar subspace, that is, B+ = {f €
X*; (f,v)x+x =0 for allv € B}.

Proof. (i) Since clearly Hp)(2) is a closed subspace of LPY(Q), it suffices to show that
G,()(2) is a closed subspaces of LPO(Q). Let w, € G,()(9) and w, - w in LPO(Q) as

n — 0o. Then there exists m, € Wlif(')((l) such that w, = V7, in Q. We can choose

a sequence of bounded domains {€2}32, with Lipschitz-continuous boundaries such that
91CQQC---,QkCQand Uzozlgk=ﬂ.
Fix €, and for every n € N, define

1
(1)
¢/ = ——— Tpd.
" || Jo, "

Then we see that
/ . ¥ TS
1931
By the Poincaré inequality (cf. [8, Theorem 8.2.4 (b)]),

(T + c0) = (T + )| o3y < CEONV T — V|| 1or 0y
< C()|w, — wm”Lp(-)(Q) — 0 asn,m — 0.
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Hence there exists 70 € LPO(Q) such that m, + c&) — 71 in LPO(Q;). For any
p € C3° (), we have

(w, ‘P)'D’(Q),’D(Q) = w - pdz

n—oo

=—lim [ (m +cM)divpd
1931

= —/ 7Vdiv pdz
Q1

= (VW(I), ‘P)'D'(Q),'D(Q)'

Thereby w = V() a.e. in Q;.

For €5, similarly if we define a constant cg) by sz (mn + c@)dw = 0, then there exists
7 ¢ LPO)(Qy) such that w = Va® ae. in Q. Hence V(7 — 7)) = 0 in Oy, so
72 =7 4 c ae. in Q; with a constant ¢ = ¢(Q,Q). If we redefine 7(® by 7(® — ¢,
then we can see that 7 € LP0)(Qy,) and write 7® = 7(1) a.e. in Q.

Repeating this procedure, we may assume that for any k& € N, there exists 7¥) ¢
LPO)(Q) such that w = Va® ae. in Q and 7% = 7%*! a.e. in Q4 for any [ € N. For
ae. x € Q, define w(z) = 7®(z) for z € Q. Then the function 7 is well-defined in
Qand 7 € L{;(;)(Q). Since Vrr = w € L*Y(Q), we see that 7 € WI})C’I’(')(Q). Therefore,
w e G,,(.)(Q).

(ii) First we show that Hp)(2)* C Gp)(Q). Let u € Hyy()*t. Then u €
LPO(Q)(C Lie()) and

(u,v)L,,:(.)(Q)7L,,<.)(Q) = / u - vdz = 0 for all v € D(Q,div0).
Q

By [14, Lemma 1.1, p. 105], there exists a function 7 € W2 (Q) such that w = V.
By the Poincaré inequality (cf. [8, Corollary 8.2.6]), we see that m € W'licp (')(Q), =)
u € pr(.)(ﬂ).

Since H,(.y(€2) is a closed subspace of a reflexive Banach space L”(')(Q), we see that
Gy ()(Q)* C Hyp) () = Hy(y ().

Conversely, let u € H.)(2). Then there exists a sequence {u;} C D(£,div0) such
that w; — u in LPO(Q). For any h € Gp()(9), there exists a function 7 € W'li‘fl(')(Q)
such that h = V7 in Q. Hence

/u]hd.’E:/uJV’R’de:—/(le’u,])Wd.’E:O
Q Q Q

Letting j — oo, we have
/ u - hdz =0 for all h € Gp(,(),
Q

that is, u € Gpl(.)(Q)J‘, so H,y(Q) C Gp;(,)(Q)l. Hence H () = Gp/(.)(Q)'L. This
implies the conclusions of (ii). O
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Definition 3.2. We say the Helmholtz decomposition of LF*)(Q) holds if
LPO(Q) = Hp(y(Q) ® Gy (Q) (direct sum), (3.1)

that is, any u € LPV(Q) is uniquely written by u = w + v, where w € H,,(Q) and
vE G,,(.)(Q).

3.2. The Neumann problem for the Poisson equation. Define a space
D'*0(Q) = {r € LL(Q); Vr € L") (Q)}

equipped with the semi-norm ||| p1s0) () = V7|l ooy (cf. [8, Definition 12.2.1]).

We consider the following Neumann problem for the Poisson equation: for given u €
LPY)(Q), to find a unique (up to an additive constant) function = : & — R such that
7 € DY) (Q) and

/(V'Ir —u) - Vdz = 0 for all ¢ € DY'O(Q). (3.2)
Q

Remark 3.3. If 2 and u are regular, then the definition (3.2) means that

Ar =divu in Q,
Z=u-n ondf,

where m is the unit outer normal vector to I'.
We have the following theorem.

Theorem 3.4. Let Q be a general domain of R (d > 2) and p € PY5(Q). Then the
Helmholtz decomposition (3.1) holds if and only if the Neumann problem (3.2) is uniquely
solvable (up to an additive constant) for any u € LPO(Q).

Proof. Step 1. We show that if the Neumann problem (3.2) is solvable uniquely (up to an
additive constant) for any u € LP*)(Q), then the Helmholtz decomposition (3.1) holds.
Let u € LPY(Q). By the hypothesis, there exists a unique (up to an additive constant)
7 € DY?0)(Q) such that

/ (Vr —u) - Vpdz = 0 for all o € DY'O(Q). (3.3)
Q

Define w = u — V7. For any v € Gy (,(f), there exists 7’ € Wlifl(')(Q) with v = V7' €
LPO(Q), so 7' € D' )(Q). Hence it follows from (3.3) that

/ w - vdz =0 for all v € Gp(,)(),
Q

s0 w € Gy(y()*. By Lemma 3.1 (ii), we see that w € Hp()(2). Thus we can write
u=w + Vr, where w € Hp(.(Q), Vr e G,,(.)(Q).

For the uniqueness of representation, let w = V, where w € H,,(f2) and 7 €
WP (Q). Since Gy () = Hp((9),

loc
/ V- Vpdr = / w - Vodr =0 for all ¢ € Dlm’(-)(Q).
Q Q

By the uniqueness (up to an additive constant) of the solution for the Neumann problem
(3.2), we have m = const., so w = 0.
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Step 2. Conversely we assume that the Helmholtz decomposition (3.1) of LF*)(€) holds.
Let w € LPY(Q). Then it follows from (3.1) that uw = w; + w,, where w, € G,»(Q)
and wy, € Hpy(2). By the definition of Gp()(£2), we can write w; = V7 for some
7 € DWPO(Q).

Since wy € Hp()(Q) = Gy()()*, we have

/ ws - Vpdz = 0 for all ¢ € DYP'O(Q).
Q

Hence
/ (Vr—u) - Vodr = — / wsy - Vdz = 0 for all ¢ € DY'O(Q).
Q Q

For u € L*Y(Q), wy = V7 is determined uniquely, so 7 is unique (up to an additive
constant). a

Remark 3.5. When p(-) = p = const., Theorem 3.4 was proved by [14, Lemma 1.2]. If
Q is a bounded domain with a C'-boundary and p € P°5(Q), it follows from Aramaki [5]
that the Helmholtz decomposition (3.1) holds. Therefore, when (2 is a bounded domain
with a C'-boundary, for any u € L")(Q), the Neumann problem (3.2) has a unique (up to
an additive constant) solution 7 € D**()(Q). This is an extension of the result of Diening
et al. [9, Theorem 4.2] in which the authors assumed that (2 is a bounded domain with a
C*'-boundary.

4. A RELATION BETWEEN THE STOKES PROBLEM AND THE HELMHOLTZ-TYPE
DECOMPOSITION OF W 3% ()

In this section, when 2 is a bounded domain of R? (d > 2) with a C"!-boundary I" and
pE ’P_lfg(ﬁ), we can derive that if the homogeneous Stokes problem is well-posed, then
the Helmholtz-type decomposition of W(l,’p (')(Q) holds. We prove this by the method of
functional analysis. Conversely, when € is bounded domain of R% (d > 2) with a C*-
boundary T, if we assume the Helmholtz-type decomposition of W§” (')(Q) holds, then we
can prove the well-posedness of the homogeneous Stokes problem.

4.1. The Stokes problem. Assume that  is a bounded domain of R? (d > 2) with
a C'-boundary T and p € P'®*(Q). For given f € W*0)(Q), g € LPO(Q) and h €
Te(W20)(Q)), we consider the following inhomogeneous Stokes problem: to find (u, ) €
W0(Q) x L2(Q) such that
—Au+Vr=f inQ,
divu =g in €, (4.1)
{ u=nh on I

The compatibility condition becomes

/gdwz/h-nda, (4.2)
Q 1y

where do is the surface measure on I' induced by the Lebesgue measure dzx.
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Definition 4.1. We say that (u,7) € W0 (Q) x Lﬁ(')(Q) is a weak solution of (4.1) if
u satisfies that divu = ¢ in Q, w = h on I and

/QV'u, - Vwdzr — /deivwdx = (f,w)w_l,p(,)(Q)’wé,pr(.)(m (4.3)

for all w € W79 (Q).
In particular, when g = 0 and h = 0 in (4.1), we call the problem (4.1) a homogeneous
Stokes problem.

The authors of [8, Theorem 14.2.2 and Remark 14.2.28] derived the following theorem.

Theorem 4.2. Let  be a bounded domain of R? (d > 2) with a C'-boundary T, and
let p € 'Pfg(ﬁ). If f € W O(Q), g € LPO(Q) and h € Te(WP)(Q)) satisfy the
compatibility condition (4.2), then the problem (4.1) has a unique weak solution (u,m) €
wirO(Q) x Lg(')(Q), and there exists a constant C > 0 depending only on p,d and
such that

||U||w1»r<~>(n) ¥ ||7r"LP(')(Q) n C(||f||w—1,p<.)(9) T ”g“LP(')(Q) o ||h||mw1m<~>(n)))' (4.4)
We call that the problem (4.1) is well-posed if the conclusions of Theorem 4.2 hold.

4.2. The Helmholtz-type decomposition of W;* (')(Q). Assume that Q is a bounded
domain of R? (d > 2) with a C'-boundary T and p € P*%(Q0). Define two spaces.

Vip)(@) = W (Q,div0) = {v € WP(Q); dive = 0 in Q},
Gip()(Q) = {v = (-A)"'Vg; g € LPV(Q)}.
Here v = (—A)~'Vq means that v is a unique weak solution for the Poisson equation
with the Dirichlet boundary condition
—Av=Vgq in (),
v=0 on I
Actually, for given f € W~70)(Q), the problem

—Av=Ff inQ,
{ v=0 onT. (4.5)

has a unique weak solution v € Wy” (')(Q), that is, v satisfies that
/QVv - Vwdz — <f’w>w-1-P<'>(Q),w},"’"')(n) =0 for all w € Wi (Q),

and there exists s positive constant C' depending only on p,d and €2 such that

[vllwre0@) < CllFllw-120()- (4.6)
For the proof, see Aramaki [6, Theorem 6.1] in which the author uses a variational in-
equality, or [8, Remark 14.1.23| in which the authors use the Newton potential.

It follows from Theorem 4.2 that we can derive the following Helmholtz-type decom-
position of W% (Q).
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Theorem 4.3. Assume that Q is a bounded domain of R? (d > 2) with a C*'-boundary
T and p € P%(Q). If the homogeneous Stokes problem (4.1) with g = 0 and h = 0 is
well-posed, then the following Helmholtz-type decomposition of Wlp ) (Q) holds:

WO (Q) = Vi1,0)(Q) ® Gip)(Q)  (direct sum). (4.7)

Proof. Step 1. We can see that the spaces V'1,)(Q2) and G1p(.)(€2) are closed subspaces
of WP (')(Q) and Vip)(2) N Gipy(2) = {0}. Indeed, clearly V1,(2) is a closed
subspace of W) (). We show that Gi () is a closed subspace of WP (). Let
vn = (—A)"'Vg, with ¢, € LPO(Q), and v, — v in WeP?(Q) as n — co. Then
—Av, = Vg, - —Av in W0 (Q), so {Vg,} is a Cauchy sequence in W~170)(Q).
Hence there exists g € W™?)(Q) such that Vg, — g in W~*0(Q). From Theorem
2.5 (c) with m = 0, V(L*0)(9)/R) is a closed subspace of W~?0)(Q). Thus there exists
q € Lﬁ(')(Q) such that g = Vgq. Therefore, —Av = V¢ in W‘l”’(')(Q) andv=0onT,
that is, v = (—A)~'Vaq.
We show that V1 ,)(2)NG1p)(Q2) = {0}. Ifv = (-A)Vqge Vip() () NG1p(82),
then divev = 0 in Q. Hence (v, —q) satisfies
—Av+V(—¢)=0 inQ,
divv =0 in Q,
{ v=20 on T,
that is, (v, —q) is a weak solution of (4.1) with f = 0,9 = 0 and h = 0. By the uniqueness
of solution (Theorem 4.2), we have v = 0. Hence, we can get V1 () (Q)NG1((2) = {0}.
Step 2. We claim that V' 5()(Q2) ® G1,p()(€2) is dense in WP O(Q). It suffices to show
that if L € W~ 0(Q) (i.e., L is a continuous linear functional on W " (')(Q)) satisfies

(L, w>W_1’pl(,)(Q)’Wé,p(~)(9) =0foral we Vl’p(.)(Q) &b Gl,p(.)(Q), (4.8)

then L = 0. From a coarse version of the de Rham theorem (Theorem 2.5 (d) with m = 0),
there exists 7 € Lg'(')(Q) such that L = Vr in W™70(Q). If we define v = (—A)~Vr,
then v € Wi (Q) and —Av = V7 in W 0(Q). For any ¢ € LPO(Q), since
w = (—A)"1Vq € Gy, that is, w € W3 (Q2) and —Aw = Vg, we have

0=(L, 'w)w—l,p'(-)(n) w0 (@)

VT, W) 10000, wirO ()
—Av,w)

v, —Aw)

v, Vq)

=
(= w170 (@) w0 ()
= WP O (@),w-10 @)
= w5 O @),w-1e0 @)
—(div v, Q>Lp’(-)(g),Lp(->(Q)-

Since ¢ is an arbitrary function in LPO)(Q), we have divo = 0in Q, so v € V() N
G1y()(2) = {0} by Step 1. Thereby, we have v =0,s0 L = V7 =0

Step 3. Vip)(2) @ G1p()(9) is closed in Wé’p(')(Q). Indeed, let w, = v, + Wy, v, €
Vip() (), w, € Gip(y(Q) and u, — u in W5PO(Q). We show that u € V() &
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G1)(Q). Since w, € G1p)(£2), we can write —Aw, = Vg, for some g, € Lg(')(ﬂ).
Put f, = —Au, € W *0(Q). Then (vn,qn) € W(l,’p(')(Q) 4 Lg(')(Q) is a weak solution

of
—Av, + Vg, = f, in Q,
divv, =0in ,
v,=0onT.

By (4.4), we have
||’Un||wlm(~>(n) £ ”qn”LP(')(Q) < C”fnuw—lm(')(n)-

Since u,, — u in Wé’p(')(ﬂ), we see that {f,} is bounded in W*0(Q), so {v,} is
bounded in W*9)(Q) and {g,} is bounded in LPO)(Q). Since {Vgq, = f, + Av,} is
bounded in W0 (Q), we see that {w, = (—A)"'Vg,} is also bounded in Wé’p(')(Q).
Passing to a subsequence, we may assume that v, — v, w, — w weakly in W(I,’p (')(Q),
@n — q weakly in LPO)(Q) and V¢, — Vq weakly in W70 (Q). Since Lg(')(ﬂ) is a closed
subspace of LPO)(Q), it is weakly closed, so ¢ € LE?(Q). Since divv, = 0 in , we have
divo = 01in Q, so v € V,)(R). Since wp, = (—A)"'Vg, —» w = (—=A)"'Vq weakly
in W0 (Q), we have w € G1,5()(2). Therefore, we have u = v+ w € V,y() &
G109 ().

From Step 2 and Step 3, the conclusion Theorem 4.3 holds. O

We consider the converse of Theorem 4.3.

Theorem 4.4. Assume that Q is a bounded domain with a C*-boundary T' and suppose
that the Helmholtz-type decomposition (4.7) holds. Then for f € W1PO(Q), there exists
a unique weak solution (u,m) € Wy? (')(Q) X Lg(')(Q) for the homogeneous Stokes problem
(4.1) with g = 0 and h = 0. Furthermore, there exists a constant C > 0 depending only
on p,d and Q such that

||u||wlvp(->(n) + ||“||LP<->(Q) - C||f||w—1m(~>(n)- (4.9)

Proof. For f € W~0)(Q), the problem (4.5) has a unique weak solution v € W 3" (')(Q)
and there exists a constant C' > 0 depending only on p,d and 2 such that the estimate
(4.6) holds. By the Helmholtz-type decomposition (4.7), we can uniquely write

v=u+w with u € V,()(Q),w € G1,)(Q),
and
”“”W},v?(')(m < C||v||W1,,,(.)(m. (4.10)
Since w € G1p()(Q), there exists 7 € LE9(Q) such that —Aw = Vr in W170(Q).

Hence we have

—Au+Vr=—-Av=Ff inQ,
divu =0 in Q,
u=0 on I

Thus (u,7) is a weak solution for the homogeneous Stokes problem (4.1) with g = 0 and
h=0.
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If f =0, then —Au = V(—7). Hence u = (—A)"'V(—7) € Gip)(R). Since
u € Wé’p(')(ﬂ) satisfies divu = 0 in Q, we see that u € V1 ,,)(€2), so u = 0 in Q from

(4.7). Thus V7 = 0. Since 7 € Lg(')(Q), we have 7 = 0 in Q. This implies the uniqueness
of a weak solution.

We show the estimate (4.9). If (u,7) € Wy* (@) x Lg(')(Q) is a weak solution of the
homogeneous Stokes problem (4.1) with ¢ = 0 and h = 0, then

/QVu - Vdr — /erdlv pdr = <f"p>W—l»ﬂ')(a),w(‘,""("(a) (4.11)

for all o € Wy” I(')(Q). Since the projection W” ¢ () = Vip»)() is linear and
bounded, it follows from (4.6) and (4.10) that

”’u’“Wé’p(')(Q) < C”””w(l)-l’(')(g) < Cl“f”W—l'P(')(Q)' (4.12)

From (4.11), we can write
/Q ndiv pdz = /Q Vu - Vodz — (£, ) 100y who' 0y for all @ € W™ O(Q).

For any v € L#O(Q), ¥ — ¢y € Lgl(')(Q), where

7).
= — dzx.
=1 ¥

By Theorem 2.5 (¢) with m = 0, the divergence operator div : W* I(')(Q) [V ip() () —
Lg’(')(ﬂ) is a topological bijection. Hence there exists ¢ € W” I(')(Q) such that dive =
¥ — ¢y and there exists a constant Cy > 0 such that

Il . < Callt = sl (@13
Since
”[‘p]“Wé'l"(‘)(g)/vl'p,(') = ll'lf{”(p Ey v”w(l’vp'(‘)(g) V€ Vl,p’(') (Q)}

is achieved, we can replace the left-hand side of (4.13) with [l¢],, Therefore,

Lo () ()"
o (@)
using the Holder inequality (Proposition 2.2), we have

1
Il 0y < O (nwnm.)(m v | |w|dx||1||u,f«.>(m)

2
< Gl llrerey + 77 19 ooy L oo @y 1L oo )

1€2]
< GsllYl oy -

Since 7 € L2(Q), we see that

/Qm[)dlelw(w—cw)dx:Lwdivgodx.
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Hence using the Holder inequality, the duality and (4.12), we have

/ mpdx / Vu-Vpdz
Q Q
& 2||Vu||LP<'>(n)”V‘P“LP’(')(Q) + “f”W_I’P(')(Q)”(p”W‘l)rPI(')(Q)

S C4“f“W_1'P(‘)(Q)||‘pllwém’(‘)(g)
S C3C4“f||w~1m(-)(g)”w”[,p’(-)(n)-

S + I<f) ‘p>W_1’p(‘)(Q),Wé’p,(')(ﬂ)|

Thus we have
[ ——— {] / wdx‘ € IPOQ), ¥l o < 1}

< C3C| f w100 (-
So we get the estimate (4.9). O
From Theorem 4.3 and Theorem 4.4, we get the following corollary.

Corollary 4.5. Assume that Q is a bounded domain of R? (d > 2) with a CY'-boundary
Iandp € ’Pfg(ﬂ). Then the homogeneous Stokes problem (4.1) with g =0 and h =0 is
well-posed if and only if the Helmholtz-type decomposition (4.7) of W (')(Q) holds.

5. INHOMOGENEOUS STOKES PROBLEM

In this section, assume that € is a bounded domain of R (d > 2) with a C*-boundary T
We consider the inhomogeneous Stokes problem (4.1), where f € W70 (Q), g € LPO(Q)
and h € Tr(W*0)(Q)) satisfy the compatibility condition (4.2).

Lemma 5.1. Let Q be a _bounded domain of R% (d > 2) with a Lipschitz-continuous
boundary T and p € PYE(Q). Assume that g € LPO(Q) and h € Te(WPO(Q)) satisfy
the compatibility condition (4.2). Then there exists w € WP)(Q) such that

divw=g 1inQ,
{ w=h on T (5.1)

Furthermore, there ezists a constant C' > 0 depending only on p,d and 2 such that
||’w||w1m<->(n) = C(”g”LP(')(Q) + ”h”mwlﬂ’(')(m))- (5.2)

Proof. By definition of Tr(W*")(Q)), there exists wo € WP (Q) such that wo = h
on I' and [|wolly1r0 @) < CllA[lmwrrre) q))- It follows from the Green theorem and the
compatibility condition (4.2) that

/divwodx=/wo-nda=/h-nda=/gdx.
Q r r Q

Hence divwy — g € Lg(’)(ﬂ). From Theorem 2.5 (e) with m = 0, we see that div :
WP (Q)/V 1,0(Q) = L5 () is a topological bijection. So there exists w;, € WP ()
such that divw; = divw, — g in 2 and there exists a constant C; > 0 such that

Ifwilllwreo @) v, @ < Cilldivwo = gl Lo @)

< C2(”9”LP(')(Q) T ||h]|n(wlm(->(n)))-
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Since ||[wl]llwtl).p(-)(Q)/Vlvp(.)(Q) = inf{|lwi + wlly1r0 @)W € Vg ()} is achieved, we
can assume that

lwillyyiee) gy < Calllgllzeey @) + 1Rl mewree @y))-

Put w = wy — w;. Then we see that divw = ¢ in 2 and w =wy = h on I', and
||w||W(1)~v<->(Q) = “wO”Wl*P(')(Q) + ”wl”Wl‘P(‘)(Q) < C(llgllzeor ) + ||h||Tr(W1"’(')(Q)))'
This completes the proof. [l

Finally we have the following theorem.

Theorem 5.2. Let Q be a bounded domain of R? (d > 2) with a C'-boundary T, and let
pE ’Pfg(ﬁ). Assume that the Helmholtz-type decomposition (4.7) holds. Then for f €
wP0(Q), g € LPO(Q) and h € Te(W'PO(Q)) satisfying the compatibility condition
(4.2), then the inhomogeneous Stokes problem (4.1) has a unique weak solution (u, ) €
wirO(Q) x Lg(')(Q). Furthermore, the estimate (4.4) holds.

Proof. By Lemma, 5.1, there exists w € W'*0)(Q) such that divw = ¢ in Q and w = h
on I'; and the estimate (5.2) holds. If we put v = u — w, we can see that the problem
(4.1) is reduced to

—Av+Vr=f+Aw inQ,

divv=0 in Q, (5.3)

v=0 on I

Since f + Aw € W0(Q), it follows from Theorem 4.4 that the problem (5.3) has a
unique weak solution (v,7) € Wy” Q) x LS(')(Q), and

[vllwiro @) + I7lle @) < CIF + Awlly-100()
< Cilllf llw-100 () + wllwiro ). (5-4)

If we put w = v + w, we can see that (u,7) € W0 (Q) x Lg(')(Q) is a unique weak
solution of (4.1). The estimate (4.4) follows form (5.2) and (5.4). O

Remark 5.3. Theorem 5.2 insists that when Q is bounded domain with a C'-boundary
(weaker than the regularity of Theorem 4.2), if we further assume that the Helmholtz-
type decomposition (4.7) holds, then the same conclusion as Theorem 4.2 holds. By our
recognition, this result is new.
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