On Equivalent Relations with the Helmholtz-Type Decomposition in a Variable Exponent Sobolev Space

Junichi Aramaki

Division of Science, Faculty of Science and Engineering, Tokyo Denki University Hatoyama-machi, Saitama 350-0394, Japan

Abstract

In this paper, we consider an equivalence between the existence of a weak solution of Neumann problem to the Poisson equation and the Helmholtz decomposition of $L^{p(\cdot)}(\Omega)$ which is a variable exponent Lebesgue space in a general domain Ω of \mathbb{R}^d . Furthermore we consider an equivalence between the existence of a weak solution to the Stokes problem and the Helmholtz-type decomposition of $W_0^{1,p(\cdot)}(\Omega)$ which is a variable exponent Sobolev space in a bounded domain Ω with a $C^{1,1}$ -boundary. We use the equivalent relation with $W^{-m,p(\cdot)}$ -version $(m \ge 0)$ of the J. L. Lions lemma in the author's previous paper.

Keywords. Neumann problem, Stokes problem, Helmholtz decomposition, J. L. Lions lemma.

2010 Mathematics Subject Classification. 35A01, 35D30, 35J62, 35Q61, 35A15.

1. INTRODUCTION

Many mathematical and physical scientists are interested in the Helmholtz decomposition of the Lebesgue space $L^p(\Omega)$ (1 into the direct sum of certain closed $subspaces in theoretical hydrodynamics. More precisely, let <math>\Omega \subset \mathbb{R}^d$ $(d \ge 2)$ be a domain. Define

$$\mathcal{D}(\Omega, \operatorname{div} 0) = \{ \boldsymbol{v} \in \boldsymbol{C}_0^{\infty}(\Omega) \, ; \, \operatorname{div} \boldsymbol{v} = 0 \, \operatorname{in} \, \Omega \}.$$

We denote

$$\boldsymbol{H}_p(\Omega) = \text{ the closure of } \boldsymbol{\mathcal{D}}(\Omega, \operatorname{div} 0) \text{ in } \boldsymbol{L}^p(\Omega)$$

and

$$\boldsymbol{G}_p(\Omega) = \{ \boldsymbol{w} \in \boldsymbol{L}^p(\Omega); \boldsymbol{w} = \boldsymbol{\nabla}\pi \text{ for some } \pi \in W^{1,p}_{\mathrm{loc}}(\Omega) \}.$$

We consider the validity of the Helmholtz decomposition

$$\boldsymbol{L}^{p}(\Omega) = \boldsymbol{H}_{p}(\Omega) \oplus \boldsymbol{G}_{p}(\Omega), \qquad (1.1)$$

where \oplus denotes the direct sum operation. In other words, an arbitrary vector $\boldsymbol{u} \in \boldsymbol{L}^{p}(\Omega)$ can be uniquely expressed as the form

$$\boldsymbol{u} = \boldsymbol{v} + \boldsymbol{w}, \quad \boldsymbol{v} \in \boldsymbol{H}_p(\Omega) \text{ and } \boldsymbol{w} \in \boldsymbol{G}_p(\Omega).$$

Galdi [14] showed that when Ω is a general domain of \mathbb{R}^d $(d \ge 2)$, the validity of (1.1) is equivalent to the unique resolubility of a generalized Neumann problem for the Poisson equation in Ω , that is, for any given $\boldsymbol{u} \in \boldsymbol{L}^p(\Omega)$, to find a unique (up to an additive constant) function $\pi: \Omega \to \mathbb{R}$ such that

$$\begin{cases} \pi \in D^{1,p}(\Omega), \\ \int_{\Omega} (\boldsymbol{\nabla} \pi - \boldsymbol{u}) \cdot \boldsymbol{\nabla} \varphi d\boldsymbol{x} = 0 \quad \text{for all } \varphi \in D^{1,p'}(\Omega), \end{cases}$$
(1.2)

where $D^{1,p}(\Omega) = \{\pi \in L^1_{loc}(\Omega); \nabla \pi \in L^p(\Omega)\}$ and p' is the conjugate exponent of p, that is, p' = p/(p-1). If p = 2, employing the Hilbert structure of the space L^2 , one can prove (1.1) for any domain Ω (cf. [14, Theorem 1.1 in Chapter III]). So the generalized Neumann problem (1.2) with p = 2 has a unique (up to an additive constant) solution in an arbitrary domain. On the other hand, if $p \neq 2$, it is well-known that the solvability of the generalized Neumann problem (1.2) depends on the shape of Ω and the regularity of Ω . Therefore, the Helmholtz decomposition (1.1) also depends on the shape of Ω and the regularity of Ω . For smooth bounded domain Ω , the decomposition (1.1) holds, see Fujiwara and Morimoto [13], and if Ω is either a bounded or an exterior domain of C^1 -class, the decomposition (1.1) holds, see Simader and Sohr [17] and Simader et al. [16].

The purposes of this paper is to derive the equivalence between the existence of a weak solution for the Neumann problem to the Poisson equation in a variable exponent Lebesgue-Sobolev space and the Helmholtz decomposition of a variable exponent Lebesgue space $\mathbf{L}^{p(\cdot)}(\Omega)$ in a general domain Ω of \mathbb{R}^d $(d \geq 2)$. Furthermore, we show the equivalence between the existence of a unique weak solution for the homogeneous Stokes problem and the Helmholtz-type decomposition of a variable exponent Sobolev space $\mathbf{W}_0^{1,p(\cdot)}(\Omega)$ in a bounded domain Ω in \mathbb{R}^d $(d \geq 2)$ with a $C^{1,1}$ -boundary. Fortunately, since we know the equivalent conditions with the J. L. Lions lemma (Aramaki [4, 3]), we fully use these conditions. In this case, since we know the well-posedness of the Stokes problem, the Helmholtz-type decomposition is true.

The paper is organized as follows. In Section 2, we give some preliminaries. In Section 3, we show that the Helmholtz decomposition of $\boldsymbol{L}^{p(\cdot)}(\Omega)$ is equivalent to the unique (up to a constant) solvability of the Neumann problem for the Laplace operator in a general domain. In Section 4, we consider a relation between the unique solvability for the homogeneous Stokes problem and the Helmholtz-type decomposition of $\boldsymbol{W}_0^{1,p(\cdot)}(\Omega)$ in a bounded domain with a $C^{1,1}$ -boundary. Section 5 is devoted to well-posedness of inhomogeneous Stokes problem using the result of Section 4.

2. Preliminaries

Throughout this paper, we only consider vector spaces of real valued functions over \mathbb{R} . For any normed space B, we denote B^d by the boldface character B. Hereafter, we use this character to denote vectors and vector-valued functions, and we denote the standard inner product of vectors $\mathbf{a} = (a_1, \ldots, a_d)$ and $\mathbf{b} = (b_1, \ldots, b_d)$ in \mathbb{R}^d by $\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^d a_i b_i$ and $|\mathbf{a}| = (\mathbf{a} \cdot \mathbf{a})^{1/2}$. Occasionally, we also use the same character for matrix values functions. Moreover, for the dual space B^* of B (resp. B^* of B), we denote the duality bracket between B^* and B (resp. B^* and B) by $\langle \cdot, \cdot \rangle_{B^*,B}$ (resp. $\langle \cdot, \cdot \rangle_{B^*,B}$).

In this section, we recall some well-known results on variable exponent Lebesgue-Sobolev spaces. See Diening et al. [8], Fan and Zhang [10], Kováčik and Rácosník [15] and references therein for more detail. Throughout this section, let Ω be a domain in \mathbb{R}^d with a Lipschitz-continuous boundary $\Gamma = \partial \Omega$ and Ω is locally on the same side of $\partial \Omega$. For a real valued function $p \in C(\Omega)$, define

$$p^+ = \sup_{x \in \Omega} p(x)$$
 and $p^- = \inf_{x \in \Omega} p(x)$

Let

$$C_{+}(\Omega) = \{ p \in C(\Omega); 1 < p^{-} \le p^{+} < \infty \}$$

From now on, let $p \in C_+(\Omega)$. For any measurable function u on Ω , a modular $\rho_{p(\cdot)}$ is defined by

$$\rho_{p(\cdot)}(u) = \int_{\Omega} |u(x)|^{p(x)} dx.$$

The variable exponent Lebesgue space is defined by

 $L^{p(\cdot)}(\Omega) = \{u; u: \Omega \to \mathbb{R} \text{ is a measurable function satisfying } \rho_{p(\cdot)}(u) < \infty \}$

equipped with the Luxemburg norm

$$\|u\|_{L^{p(\cdot)}(\Omega)} = \inf\left\{\lambda > 0; \rho_{p(\cdot)}\left(\frac{u}{\lambda}\right) \le 1\right\}.$$

Then $L^{p(\cdot)}(\Omega)$ is a Banach space. We also define, for any integer $m \geq 0$,

$$W^{m,p(\cdot)}(\Omega) = \{ u \in L^{p(\cdot)}(\Omega); \partial^{\alpha} u \in L^{p(\cdot)}(\Omega) \text{ for } |\alpha| \le m \}$$

where $\alpha = (\alpha_1, \ldots, \alpha_d)$ is a multi-index, $|\alpha| = \sum_{i=1}^d \alpha_i, \ \partial^{\alpha} = \partial_1^{\alpha_1} \cdots \partial_d^{\alpha_d}$ and $\partial_i = \partial/\partial x_i$, endowed with the norm

$$\|u\|_{W^{m,p(\cdot)}(\Omega)} = \sum_{|\alpha| \le m} \|\partial^{\alpha} u\|_{L^{p(\cdot)}(\Omega)}.$$

Of course, $W^{0,p(\cdot)}(\Omega) = L^{p(\cdot)}(\Omega)$. Define

 $W_0^{m,p(\cdot)}(\Omega) =$ the closure of the set of $W^{m,p(\cdot)}(\Omega)$ -functions

with compact support in Ω .

The following three propositions are well known (see Fan et al. [11], Wei and Chen [18], Fan and Zhao [12], Zhao et al. [20], Yücedağ [19]).

Proposition 2.1. Let $p \in C_+(\Omega)$ and let $u, u_n \in L^{p(\cdot)}(\Omega)$ (n = 1, 2, ...). Then we have (i) $||u||_{L^{p(\cdot)}(\Omega)} < 1(=1,>1) \iff \rho_{p(\cdot)}(u) < 1(=1,>1).$

(ii)
$$\|u\|_{L^{p(\cdot)}(\Omega)} > 1 \Longrightarrow \|u\|_{L^{p(\cdot)}(\Omega)}^{p^-} \le \rho_{p(\cdot)}(u) \le \|u\|_{L^{p(\cdot)}(\Omega)}^{p^+}$$

- $\begin{aligned} (\text{ii}) & \|u\|_{L^{p(\cdot)}(\Omega)} > 1 \Longrightarrow \|u\|_{L^{p(\cdot)}(\Omega)} \le \rho_{p(\cdot)}(u) \le \|u\|_{L^{p(\cdot)}(\Omega)}^{r}. \\ (\text{iii}) & \|u\|_{L^{p(\cdot)}(\Omega)} < 1 \Longrightarrow \|u\|_{L^{p(\cdot)}(\Omega)}^{p^{+}} \le \rho_{p(\cdot)}(u) \le \|u\|_{L^{p(\cdot)}(\Omega)}^{p^{-}}. \\ (\text{iv}) & \lim_{n \to \infty} \|u_n u\|_{L^{p(\cdot)}(\Omega)} = 0 \Longleftrightarrow \lim_{n \to \infty} \rho_{p(\cdot)}(u_n u) = 0. \end{aligned}$
- (v) $||u_n||_{L^{p(\cdot)}(\Omega)} \to \infty \text{ as } n \to \infty \iff \rho_{p(\cdot)}(u_n) \to \infty \text{ as } n \to \infty.$

The following proposition is a generalized Hölder inequality.

Proposition 2.2. Let $p \in C_{+}(\Omega)$. For any $u \in L^{p(\cdot)}(\Omega)$ and $v \in L^{p'(\cdot)}(\Omega)$, we have

$$\int_{\Omega} |uv| dx \le \left(\frac{1}{p^{-}} + \frac{1}{(p')^{-}}\right) \|u\|_{L^{p(\cdot)}(\Omega)} \|v\|_{L^{p'(\cdot)}(\Omega)} \le 2\|u\|_{L^{p(\cdot)}(\Omega)} \|v\|_{L^{p'(\cdot)}(\Omega)},$$

where $p'(\cdot)$ is the conjugate exponent of $p(\cdot)$, that is, $\frac{1}{p(x)} + \frac{1}{p'(x)} = 1$.

Define

$$p^*(x) = \begin{cases} \frac{dp(x)}{d-p(x)} & \text{if } p(x) < d, \\ \infty & \text{if } p(x) \ge d. \end{cases}$$

Proposition 2.3. Let $p \in C_+(\Omega)$ and $m \ge 0$ be an integer. Then we have the following. (i) The spaces $L^{p(\cdot)}(\Omega)$ and $W^{m,p(\cdot)}(\Omega)$ are separable and reflexive Banach spaces.

(ii) If $q(\cdot) \in C_{+}(\Omega)$ and satisfies $q(x) \leq p(x)$ for all $x \in \Omega$, then $W^{m,p(\cdot)}(\Omega) \hookrightarrow W^{m,q(\cdot)}(\Omega)$, where \hookrightarrow means that the embedding is continuous.

(iii) If $q(x) \in C_+(\Omega)$ satisfies that $q(x) < p^*(x)$ for all $x \in \Omega$, then the embedding $W^{1,p(\cdot)}(\Omega) \hookrightarrow L^{q(\cdot)}(\Omega)$ is compact.

We say that a real valued measurable function p belongs to $\mathcal{P}^{\log}(\Omega)$ if p has the log-Hölder continuity in Ω , that is, $p: \Omega \to \mathbb{R}$ satisfies that there exists a constant $C_{\log}(p) > 0$ such that

$$|p(x) - p(y)| \le \frac{C_{\log}(p)}{\log(e + 1/|x - y|)} \text{ for all } x, y \in \Omega.$$

We also write $\mathcal{P}^{\log}_{+}(\Omega) = \{ p \in \mathcal{P}^{\log}(\Omega) ; 1 < p^{-} \leq p^{+} < \infty \}.$

Proposition 2.4. If $p \in \mathcal{P}^{\log}_{+}(\Omega)$ and $m \geq 0$ is an integer, then $\mathcal{D}(\Omega) := C_{0}^{\infty}(\Omega)$ is dense in $W_{0}^{m,p(\cdot)}(\Omega)$.

For the proof, see [8, Corollary 11.2.4].

We denote the dual space of $W_0^{m,p(\cdot)}(\Omega)$ by $W^{-m,p'(\cdot)}(\Omega)$ and define

$$oldsymbol{W}_0^{m,p(\cdot)}(\Omega,\operatorname{div} 0) = \{oldsymbol{v}\in oldsymbol{W}_0^{m,p(\cdot)}(\Omega)\,;\,\operatorname{div}oldsymbol{v}=0\,\,\mathrm{in}\,\,\Omega\},$$

which is clearly a closed subspace of $\boldsymbol{W}_{0}^{m,p(\cdot)}(\Omega)$.

Furthermore, we define

$$\dot{W}_{0}^{m,p(\cdot)}(\Omega) = \left\{ f \in W_{0}^{m,p(\cdot)}(\Omega) \, ; \, \int_{\Omega} f dx = 0 \right\} \text{ if } m > 0 \text{ (integer)},$$

and if m = 0, $\dot{W}_0^{m,p(\cdot)}(\Omega) = \dot{L}^{p(\cdot)}(\Omega) = L_0^{p(\cdot)}(\Omega)$, where

$$L_0^{p(\cdot)}(\Omega) = \left\{ f \in L^{p(\cdot)}(\Omega) \, ; \, \int_\Omega f dx = 0 \right\}.$$

We also define

$$\dot{\mathcal{D}}(\Omega) = \left\{ f \in \mathcal{D}(\Omega) \, ; \, \int_{\Omega} f dx = 0 \right\}.$$

Next we consider the trace. Let Ω be a domain of \mathbb{R}^d with a Lipschitz-continuous boundary Γ and $p \in \mathcal{P}^{\log}_+(\overline{\Omega})$. Since $W^{1,p(\cdot)}(\Omega) \subset W^{1,1}_{\text{loc}}(\Omega)$, the trace $u|_{\Gamma}$ to Γ of any function u in $W^{1,p(\cdot)}(\Omega)$ is well defined as a function in $L^1_{\text{loc}}(\Gamma)$. We define

$$\operatorname{Tr}(W^{1,p(\cdot)}(\Omega)) = \{f; f \text{ is the trace to } \Gamma \text{ of a function } F \in W^{1,p(\cdot)}(\Omega)\}$$

equipped with the norm

$$\|f\|_{\mathrm{Tr}(W^{1,p(\cdot)}(\Omega))} = \inf\{\|F\|_{W^{1,p(\cdot)}(\Omega)}; F \in W^{1,p(\cdot)}(\Omega) \text{ satisfying } F|_{\Gamma} = f \text{ on } \Gamma\}$$

552

for $f \in \operatorname{Tr}(W^{1,p(\cdot)}(\Omega))$. Then $\operatorname{Tr}(W^{1,p(\cdot)}(\Omega))$ is a Banach space. More precisely, see [8, Chapter 12]. We note that $W_0^{1,p(\cdot)}(\Omega) = \{F \in W^{1,p(\cdot)}(\Omega); F|_{\Gamma} = 0\}$, in the later we also write $F|_{\Gamma} = g$ by F = g on Γ .

In the previous paper [4, 3], we derived $W^{-m,p(\cdot)}$ -version of the J. L. Lions lemma and the equivalent relations.

Theorem 2.5. Let Ω be a bounded domain of \mathbb{R}^d with a Lipschitz-continuous boundary Γ and Ω be locally on the same side of Γ , and let $m \geq 0$ be a integer and $p \in \mathcal{P}^{\log}_{+}(\Omega)$. Then the following (a), (b), ... and (f) are equivalent.

(a) Classical J. L. Lions lemma: If $f \in W^{-m-1,p(\cdot)}(\Omega)$ satisfies $\nabla f \in W^{-m-1,p(\cdot)}(\Omega)$, then $f \in W^{-m,p(\cdot)}(\Omega)$.

(b) The Nečas inequality: there exists a constant $C_0 = C_0(m, p, \Omega)$ such that

 $\|f\|_{W^{-m,p(\cdot)}(\Omega)} \le C_0(\|f\|_{W^{-m-1,p(\cdot)}(\Omega)} + \|\nabla f\|_{W^{-m-1,p(\cdot)}(\Omega)}) \text{ for all } f \in W^{-m,p(\cdot)}(\Omega).$

(c) The operator grad has a closed range: grad $(W^{-m,p(\cdot)}(\Omega)/\mathbb{R})$ is a closed subspace of $W^{-m-1,p(\cdot)}(\Omega)$.

(d) A coarse version of the de Rham theorem: for any $\mathbf{h} \in \mathbf{W}^{-m-1,p(\cdot)}(\Omega)$, there exists a unique $[\pi] \in W^{-m,p(\cdot)}(\Omega)/\mathbb{R}$, where $[\pi]$ denotes the class in $W^{-m,p(\cdot)}(\Omega)/\mathbb{R}$ with the representative π , such that $\mathbf{h} = \nabla \pi$ in $\mathbf{W}^{-m-1,p(\cdot)}(\Omega)$ if and only if

 $\langle \boldsymbol{h}, \boldsymbol{v} \rangle_{\boldsymbol{W}^{-m-1, p(\cdot)}(\Omega), \boldsymbol{W}_{0}^{m+1, p'(\cdot)}(\Omega)} = 0 \text{ for all } \boldsymbol{v} \in \boldsymbol{W}_{0}^{m+1, p'(\cdot)}(\Omega, \operatorname{div} 0).$

(e) The operator div is surjective: the operator

div :
$$\boldsymbol{W}_0^{m+1,p'(\cdot)}(\Omega) \to \dot{W}_0^{m,p'(\cdot)}(\Omega)$$

is continuous and surjective. In addition, if $f \in \mathcal{D}(\Omega)$, then there exists $u_f \in \mathcal{D}(\Omega)$ such that div $u_f = f$ in Ω .

Consequently, for any $f \in \dot{W}_0^{m,p'(\cdot)}(\Omega)$, there exists a unique

$$[\boldsymbol{u}_f] \in \boldsymbol{W}_0^{m+1,p'(\cdot)}(\Omega)/\operatorname{Ker}\operatorname{div}$$

where $\operatorname{Ker} \operatorname{div} = W_0^{m+1,p'(\cdot)}(\Omega, \operatorname{div} 0)$ and $[u_f]$ denotes the class in $W_0^{m+1,p'(\cdot)}(\Omega)/\operatorname{Ker} \operatorname{div}$ with the representative u_f , such that $\operatorname{div} u_f = f$ in Ω . Therefore, the operator

div :
$$W_0^{m+1,p'(\cdot)}(\Omega)/\operatorname{Ker}\operatorname{div} \to \dot{W}_0^{m,p'(\cdot)}(\Omega)$$

is continuous and bijective. Hence, by the Banach open mapping theorem, there exists a constant $C_1 = C_1(m, p(\cdot), \Omega) > 0$ such that

 $\|[\boldsymbol{u}_f]\|_{\boldsymbol{W}_0^{m+1,p'(\cdot)}(\Omega)/\mathbf{Ker\,div}} \leq C_1 \|f\|_{W^{m,p'(\cdot)}(\Omega)} \text{ for all } f \in \dot{W}_0^{m,p'(\cdot)}(\Omega).$

(f) The J. L. Lions lemma: if $f \in \mathcal{D}'(\Omega)$ satisfies $\nabla f \in W^{-m-1,p(\cdot)}(\Omega)$, then we can find that $f \in W^{-m,p(\cdot)}(\Omega)$.

Remark 2.6. When $p(\cdot) = \text{const.} = 2$ and m = 0, Amrouche et al. [1] derived this theorem in L^2 -framework in the classical J. L. Lions lemma in the sense that $f \in H^{-1}(\Omega)$ and $\nabla f \in H^{-1}(\Omega)$ implies $f \in L^2(\Omega)$. Aramaki [7] derived an improvement to the case where $p(\cdot) = \text{const.} = p$ (1 and <math>m = 0. Theorem 2.5 is an improvement of these works to the Sobolev space with a variable exponent which was derived by [4, 3].

Remark 2.7. When $p(\cdot) = p = \text{const.}$, since we can prove that the classical Nečas inequality (b) (cf. [2, Theorem 2.3]) directly, consequently if Ω is a bounded domain with a Lipschitz-continuous boundary, then all of (a)-(f) are true in this case. For general integer $m \ge 0$ and $p = p(\cdot) \in \mathcal{P}_+^{\log}(\Omega)$, the author of [4] showed the above equivalence. For the case where m = 0 and $p \in \mathcal{P}_+^{\log}(\Omega)$, since the Nečas inequality holds (cf. [8, Theorem 14.3.18]), all of (a)-(f) are true for the case m = 0. Furthermore, the author of [3] proved directly that the J. L. Lions lemma (f) holds, so all of (a)-(f) are true for general integer $m \ge 0$.

3. Equivalence between the Helmholtz decomposition of $L^{p(\cdot)}(\Omega)$ and the Neumann problem for the Poisson equation

In this section, we assume that Ω is a general domain of \mathbb{R}^d $(d \ge 2)$ and $p \in \mathcal{P}^{\log}_+(\Omega)$.

3.1. The Helmholtz decomposition of $L^{p(\cdot)}(\Omega)$. Let

$$\mathcal{D}(\Omega, \operatorname{div} 0) = \{ \boldsymbol{u} \in \boldsymbol{C}_0^{\infty}(\Omega) ; \operatorname{div} \boldsymbol{u} = 0 \text{ in } \Omega \}$$

and define two spaces

$$\begin{aligned} \boldsymbol{H}_{p(\cdot)}(\Omega) &= \text{ the closure of } \boldsymbol{\mathcal{D}}(\Omega, \operatorname{div} 0) \text{ in } \boldsymbol{L}^{p(\cdot)}(\Omega), \\ \boldsymbol{G}_{p(\cdot)}(\Omega) &= \{ \boldsymbol{w} \in \boldsymbol{L}^{p(\cdot)}(\Omega) ; \, \boldsymbol{w} = \boldsymbol{\nabla}\pi \text{ for some } \pi \in W^{1,p(\cdot)}_{\operatorname{loc}}(\Omega) \} \end{aligned}$$

Then we have the following lemma.

Lemma 3.1. (i) The two spaces $H_{p(\cdot)}(\Omega)$ and $G_{p(\cdot)}(\Omega)$ are closed subspaces of $L^{p(\cdot)}(\Omega)$. (ii) $H_{p(\cdot)}(\Omega) = G_{p'(\cdot)}(\Omega)^{\perp}$ and so $H_{p(\cdot)}(\Omega)^{\perp} = G_{p'(\cdot)}(\Omega)$. Here, for any subspace B of a reflexive Banach space X, B^{\perp} denotes the polar subspace, that is, $B^{\perp} = \{f \in X^*; \langle f, v \rangle_{X^*, X} = 0 \text{ for all } v \in B\}.$

Proof. (i) Since clearly $\boldsymbol{H}_{p(\cdot)}(\Omega)$ is a closed subspace of $\boldsymbol{L}^{p(\cdot)}(\Omega)$, it suffices to show that $\boldsymbol{G}_{p(\cdot)}(\Omega)$ is a closed subspaces of $\boldsymbol{L}^{p(\cdot)}(\Omega)$. Let $\boldsymbol{w}_n \in \boldsymbol{G}_{p(\cdot)}(\Omega)$ and $\boldsymbol{w}_n \to \boldsymbol{w}$ in $\boldsymbol{L}^{p(\cdot)}(\Omega)$ as $n \to \infty$. Then there exists $\pi_n \in W^{1,p(\cdot)}_{loc}(\Omega)$ such that $\boldsymbol{w}_n = \boldsymbol{\nabla}\pi_n$ in Ω . We can choose a sequence of bounded domains $\{\Omega_k\}_{k=1}^{\infty}$ with Lipschitz-continuous boundaries such that $\Omega_1 \subset \Omega_2 \subset \cdots, \overline{\Omega_k} \subset \Omega$ and $\bigcup_{k=1}^{\infty} \Omega_k = \Omega$.

Fix Ω_1 and for every $n \in \mathbb{N}$, define

$$c_n^{(1)} = -\frac{1}{|\Omega_1|} \int_{\Omega_1} \pi_n dx.$$

Then we see that

$$\int_{\Omega_1} (\pi_n + c_n^{(1)}) dx = 0$$

By the Poincaré inequality (cf. [8, Theorem 8.2.4 (b)]),

$$\begin{aligned} \|(\pi_n + c_n^{(1)}) - (\pi_m + c_m^{(1)})\|_{\boldsymbol{L}^{p(\cdot)}(\Omega_1)} &\leq C(\Omega_1) \|\boldsymbol{\nabla}\pi_n - \boldsymbol{\nabla}\pi_m\|_{\boldsymbol{L}^{p(\cdot)}(\Omega_1)} \\ &\leq C(\Omega_1) \|\boldsymbol{w}_n - \boldsymbol{w}_m\|_{\boldsymbol{L}^{p(\cdot)}(\Omega)} \to 0 \text{ as } n, m \to \infty. \end{aligned}$$

Hence there exists $\pi^{(1)} \in L^{p(\cdot)}(\Omega)$ such that $\pi_n + c_n^{(1)} \to \pi^{(1)}$ in $L^{p(\cdot)}(\Omega_1)$. For any $\varphi \in C_0^{\infty}(\Omega_1)$, we have

$$\begin{split} \langle \boldsymbol{w}, \boldsymbol{\varphi} \rangle_{\boldsymbol{\mathcal{D}}'(\Omega), \boldsymbol{\mathcal{D}}(\Omega)} &= \int_{\Omega_1} \boldsymbol{w} \cdot \boldsymbol{\varphi} dx \\ &= \lim_{n \to \infty} \int_{\Omega_1} \boldsymbol{\nabla} \pi_n \cdot \boldsymbol{\varphi} dx \\ &= -\lim_{n \to \infty} \int_{\Omega_1} (\pi_n + c_n^{(1)}) \mathrm{div} \, \boldsymbol{\varphi} dx \\ &= -\int_{\Omega_1} \pi^{(1)} \mathrm{div} \, \boldsymbol{\varphi} dx \\ &= \langle \boldsymbol{\nabla} \pi^{(1)}, \boldsymbol{\varphi} \rangle_{\boldsymbol{\mathcal{D}}'(\Omega), \boldsymbol{\mathcal{D}}(\Omega)}. \end{split}$$

Thereby $\boldsymbol{w} = \boldsymbol{\nabla} \pi^{(1)}$ a.e. in Ω_1 .

For Ω_2 , similarly if we define a constant $c_n^{(2)}$ by $\int_{\Omega_2} (\pi_n + c_n^{(2)}) dx = 0$, then there exists $\pi^{(2)} \in L^{p(\cdot)}(\Omega_2)$ such that $\boldsymbol{w} = \boldsymbol{\nabla}\pi^{(2)}$ a.e. in Ω_2 . Hence $\boldsymbol{\nabla}(\pi^{(1)} - \pi^{(2)}) = 0$ in Ω_1 , so $\pi^{(2)} = \pi^{(1)} + c$ a.e. in Ω_1 with a constant $c = c(\Omega_1, \Omega_2)$. If we redefine $\pi^{(2)}$ by $\pi^{(2)} - c$, then we can see that $\pi^{(2)} \in L^{p(\cdot)}(\Omega_2)$ and write $\pi^{(2)} = \pi^{(1)}$ a.e. in Ω_1 .

Repeating this procedure, we may assume that for any $k \in \mathbb{N}$, there exists $\pi^{(k)} \in L^{p(\cdot)}(\Omega_k)$ such that $\boldsymbol{w} = \boldsymbol{\nabla}\pi^{(k)}$ a.e. in Ω_k and $\pi^k = \pi^{k+l}$ a.e. in Ω_k for any $l \in \mathbb{N}$. For a.e. $x \in \Omega$, define $\pi(x) = \pi^{(k)}(x)$ for $x \in \Omega_k$. Then the function π is well-defined in Ω and $\pi \in L^{p(\cdot)}_{\text{loc}}(\Omega)$. Since $\boldsymbol{\nabla}\pi = \boldsymbol{w} \in L^{p(\cdot)}(\Omega)$, we see that $\pi \in W^{1,p(\cdot)}_{\text{loc}}(\Omega)$. Therefore, $\boldsymbol{w} \in \boldsymbol{G}_{p(\cdot)}(\Omega)$.

(ii) First we show that $\boldsymbol{H}_{p(\cdot)}(\Omega)^{\perp} \subset \boldsymbol{G}_{p'(\cdot)}(\Omega)$. Let $\boldsymbol{u} \in \boldsymbol{H}_{p(\cdot)}(\Omega)^{\perp}$. Then $\boldsymbol{u} \in \boldsymbol{L}^{p'(\cdot)}(\Omega)(\subset \boldsymbol{L}^{1}_{\mathrm{loc}}(\Omega))$ and

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle_{\boldsymbol{L}^{\boldsymbol{p}'(\cdot)}(\Omega), \boldsymbol{L}^{\boldsymbol{p}(\cdot)}(\Omega)} = \int_{\Omega} \boldsymbol{u} \cdot \boldsymbol{v} dx = 0 ext{ for all } \boldsymbol{v} \in \boldsymbol{\mathcal{D}}(\Omega, \operatorname{div} 0).$$

By [14, Lemma 1.1, p. 105], there exists a function $\pi \in W^{1,1}_{\text{loc}}(\Omega)$ such that $\boldsymbol{u} = \boldsymbol{\nabla}\pi$. By the Poincaré inequality (cf. [8, Corollary 8.2.6]), we see that $\pi \in W^{1,p'(\cdot)}_{\text{loc}}(\Omega)$, so $\boldsymbol{u} \in \boldsymbol{G}_{p'(\cdot)}(\Omega)$.

Since $\boldsymbol{H}_{p(\cdot)}(\Omega)$ is a closed subspace of a reflexive Banach space $\boldsymbol{L}^{p(\cdot)}(\Omega)$, we see that $\boldsymbol{G}_{p'(\cdot)}(\Omega)^{\perp} \subset \boldsymbol{H}_{p(\cdot)}(\Omega)^{\perp\perp} = \boldsymbol{H}_{p(\cdot)}(\Omega)$.

Conversely, let $\boldsymbol{u} \in \boldsymbol{H}_{p(\cdot)}(\Omega)$. Then there exists a sequence $\{\boldsymbol{u}_j\} \subset \mathcal{D}(\Omega, \operatorname{div} 0)$ such that $\boldsymbol{u}_j \to \boldsymbol{u}$ in $\boldsymbol{L}^{p(\cdot)}(\Omega)$. For any $\boldsymbol{h} \in \boldsymbol{G}_{p'(\cdot)}(\Omega)$, there exists a function $\pi \in W^{1,p'(\cdot)}_{\operatorname{loc}}(\Omega)$ such that $\boldsymbol{h} = \boldsymbol{\nabla} \pi$ in Ω . Hence

$$\int_{\Omega} \boldsymbol{u}_j \cdot \boldsymbol{h} dx = \int_{\Omega} \boldsymbol{u}_j \cdot \boldsymbol{\nabla} \pi dx = -\int_{\Omega} (\operatorname{div} \boldsymbol{u}_j) \pi dx = 0.$$

Letting $j \to \infty$, we have

$$\int_{\Omega} \boldsymbol{u} \cdot \boldsymbol{h} dx = 0 \text{ for all } \boldsymbol{h} \in \boldsymbol{G}_{p'(\cdot)}(\Omega),$$

that is, $\boldsymbol{u} \in \boldsymbol{G}_{p'(\cdot)}(\Omega)^{\perp}$, so $\boldsymbol{H}_{p(\cdot)}(\Omega) \subset \boldsymbol{G}_{p'(\cdot)}(\Omega)^{\perp}$. Hence $\boldsymbol{H}_{p(\cdot)}(\Omega) = \boldsymbol{G}_{p'(\cdot)}(\Omega)^{\perp}$. This implies the conclusions of (ii).

Definition 3.2. We say the Helmholtz decomposition of $L^{p(\cdot)}(\Omega)$ holds if

$$\boldsymbol{L}^{p(\cdot)}(\Omega) = \boldsymbol{H}_{p(\cdot)}(\Omega) \oplus \boldsymbol{G}_{p(\cdot)}(\Omega) \text{ (direct sum)}, \tag{3.1}$$

that is, any $\boldsymbol{u} \in \boldsymbol{L}^{p(\cdot)}(\Omega)$ is uniquely written by $\boldsymbol{u} = \boldsymbol{w} + \boldsymbol{v}$, where $\boldsymbol{w} \in \boldsymbol{H}_{p(\cdot)}(\Omega)$ and $\boldsymbol{v} \in \boldsymbol{G}_{p(\cdot)}(\Omega)$.

3.2. The Neumann problem for the Poisson equation. Define a space

$$D^{1,p(\cdot)}(\Omega) = \{ \pi \in L^1_{\text{loc}}(\Omega); \nabla \pi \in \boldsymbol{L}^{p(\cdot)}(\Omega) \}$$

equipped with the semi-norm $\|\pi\|_{D^{1,p(\cdot)}(\Omega)} = \|\nabla\pi\|_{L^{p(\cdot)}(\Omega)}$ (cf. [8, Definition 12.2.1]).

We consider the following Neumann problem for the Poisson equation: for given $\boldsymbol{u} \in L^{p(\cdot)}(\Omega)$, to find a unique (up to an additive constant) function $\pi : \Omega \to \mathbb{R}$ such that $\pi \in D^{1,p(\cdot)}(\Omega)$ and

$$\int_{\Omega} (\boldsymbol{\nabla} \pi - \boldsymbol{u}) \cdot \boldsymbol{\nabla} \varphi dx = 0 \text{ for all } \varphi \in D^{1, p'(\cdot)}(\Omega).$$
(3.2)

Remark 3.3. If Ω and u are regular, then the definition (3.2) means that

$$\begin{cases} \Delta \pi = \operatorname{div} \boldsymbol{u} & \text{in } \Omega, \\ \frac{\partial \pi}{\partial \boldsymbol{n}} = \boldsymbol{u} \cdot \boldsymbol{n} & \text{on } \partial \Omega \end{cases}$$

where \boldsymbol{n} is the unit outer normal vector to Γ .

We have the following theorem.

Theorem 3.4. Let Ω be a general domain of \mathbb{R}^d $(d \geq 2)$ and $p \in \mathcal{P}^{\log}_+(\Omega)$. Then the Helmholtz decomposition (3.1) holds if and only if the Neumann problem (3.2) is uniquely solvable (up to an additive constant) for any $\boldsymbol{u} \in \boldsymbol{L}^{p(\cdot)}(\Omega)$.

Proof. Step 1. We show that if the Neumann problem (3.2) is solvable uniquely (up to an additive constant) for any $\boldsymbol{u} \in \boldsymbol{L}^{p(\cdot)}(\Omega)$, then the Helmholtz decomposition (3.1) holds. Let $\boldsymbol{u} \in \boldsymbol{L}^{p(\cdot)}(\Omega)$. By the hypothesis, there exists a unique (up to an additive constant) $\pi \in D^{1,p(\cdot)}(\Omega)$ such that

$$\int_{\Omega} (\boldsymbol{\nabla} \pi - \boldsymbol{u}) \cdot \boldsymbol{\nabla} \varphi dx = 0 \text{ for all } \varphi \in D^{1, p'(\cdot)}(\Omega).$$
(3.3)

Define $\boldsymbol{w} = \boldsymbol{u} - \boldsymbol{\nabla} \pi$. For any $\boldsymbol{v} \in \boldsymbol{G}_{p'(\cdot)}(\Omega)$, there exists $\pi' \in W^{1,p'(\cdot)}_{\text{loc}}(\Omega)$ with $\boldsymbol{v} = \boldsymbol{\nabla} \pi' \in \boldsymbol{L}^{p'(\cdot)}(\Omega)$, so $\pi' \in D^{1,p'(\cdot)}(\Omega)$. Hence it follows from (3.3) that

$$\int_{\Omega} \boldsymbol{w} \cdot \boldsymbol{v} dx = 0 \text{ for all } \boldsymbol{v} \in \boldsymbol{G}_{p'(\cdot)}(\Omega),$$

so $\boldsymbol{w} \in \boldsymbol{G}_{p'(\cdot)}(\Omega)^{\perp}$. By Lemma 3.1 (ii), we see that $\boldsymbol{w} \in \boldsymbol{H}_{p(\cdot)}(\Omega)$. Thus we can write $\boldsymbol{u} = \boldsymbol{w} + \boldsymbol{\nabla} \pi$, where $\boldsymbol{w} \in \boldsymbol{H}_{p(\cdot)}(\Omega), \boldsymbol{\nabla} \pi \in \boldsymbol{G}_{p(\cdot)}(\Omega)$.

For the uniqueness of representation, let $\boldsymbol{w} = \boldsymbol{\nabla} \pi$, where $\boldsymbol{w} \in \boldsymbol{H}_{p(\cdot)}(\Omega)$ and $\pi \in W_{loc}^{1,p(\cdot)}(\Omega)$. Since $\boldsymbol{G}_{p'(\cdot)}(\Omega)^{\perp} = \boldsymbol{H}_{p(\cdot)}(\Omega)$,

$$\int_{\Omega} \boldsymbol{\nabla} \pi \cdot \boldsymbol{\nabla} \varphi dx = \int_{\Omega} \boldsymbol{w} \cdot \boldsymbol{\nabla} \varphi dx = 0 \text{ for all } \varphi \in D^{1,p'(\cdot)}(\Omega).$$

By the uniqueness (up to an additive constant) of the solution for the Neumann problem (3.2), we have $\pi = \text{const.}$, so $\boldsymbol{w} = \boldsymbol{0}$.

Step 2. Conversely we assume that the Helmholtz decomposition (3.1) of $\boldsymbol{L}^{p(\cdot)}(\Omega)$ holds. Let $\boldsymbol{u} \in \boldsymbol{L}^{p(\cdot)}(\Omega)$. Then it follows from (3.1) that $\boldsymbol{u} = \boldsymbol{w}_1 + \boldsymbol{w}_2$, where $\boldsymbol{w}_1 \in \boldsymbol{G}_{p(\cdot)}(\Omega)$ and $\boldsymbol{w}_2 \in \boldsymbol{H}_{p(\cdot)}(\Omega)$. By the definition of $\boldsymbol{G}_{p(\cdot)}(\Omega)$, we can write $\boldsymbol{w}_1 = \boldsymbol{\nabla}\pi$ for some $\pi \in D^{1,p(\cdot)}(\Omega)$.

Since $\boldsymbol{w}_2 \in \boldsymbol{H}_{p(\cdot)}(\Omega) = \boldsymbol{G}_{p'(\cdot)}(\Omega)^{\perp}$, we have

$$\int_{\Omega} \boldsymbol{w}_2 \cdot \boldsymbol{\nabla} \varphi dx = 0 \text{ for all } \varphi \in D^{1, p'(\cdot)}(\Omega).$$

Hence

$$\int_{\Omega} (\boldsymbol{\nabla} \pi - \boldsymbol{u}) \cdot \boldsymbol{\nabla} \varphi dx = -\int_{\Omega} \boldsymbol{w}_2 \cdot \boldsymbol{\nabla} \varphi dx = 0 \text{ for all } \varphi \in D^{1,p'(\cdot)}(\Omega).$$

For $\boldsymbol{u} \in \boldsymbol{L}^{p(\cdot)}(\Omega)$, $\boldsymbol{w}_1 = \boldsymbol{\nabla}\pi$ is determined uniquely, so π is unique (up to an additive constant).

Remark 3.5. When $p(\cdot) = p = \text{const.}$, Theorem 3.4 was proved by [14, Lemma 1.2]. If Ω is a bounded domain with a C^1 -boundary and $p \in \mathcal{P}^{\log}_+(\Omega)$, it follows from Aramaki [5] that the Helmholtz decomposition (3.1) holds. Therefore, when Ω is a bounded domain with a C^1 -boundary, for any $\boldsymbol{u} \in \boldsymbol{L}^{p(\cdot)}(\Omega)$, the Neumann problem (3.2) has a unique (up to an additive constant) solution $\pi \in D^{1,p(\cdot)}(\Omega)$. This is an extension of the result of Diening et al. [9, Theorem 4.2] in which the authors assumed that Ω is a bounded domain with a $C^{1,1}$ -boundary.

4. A relation between the Stokes problem and the Helmholtz-type decomposition of $\boldsymbol{W}_{0}^{1,p(\cdot)}(\Omega)$

In this section, when Ω is a bounded domain of \mathbb{R}^d $(d \geq 2)$ with a $C^{1,1}$ -boundary Γ and $p \in \mathcal{P}^{\log}_+(\overline{\Omega})$, we can derive that if the homogeneous Stokes problem is well-posed, then the Helmholtz-type decomposition of $W_0^{1,p(\cdot)}(\Omega)$ holds. We prove this by the method of functional analysis. Conversely, when Ω is bounded domain of \mathbb{R}^d $(d \geq 2)$ with a C^1 -boundary Γ , if we assume the Helmholtz-type decomposition of $W_0^{1,p(\cdot)}(\Omega)$ holds, then we can prove the well-posedness of the homogeneous Stokes problem.

4.1. The Stokes problem. Assume that Ω is a bounded domain of \mathbb{R}^d $(d \geq 2)$ with a C^1 -boundary Γ and $p \in \mathcal{P}^{\log}_+(\overline{\Omega})$. For given $\mathbf{f} \in \mathbf{W}^{-1,p(\cdot)}(\Omega)$, $g \in L^{p(\cdot)}(\Omega)$ and $\mathbf{h} \in$ $\operatorname{Tr}(\mathbf{W}^{1,p(\cdot)}(\Omega))$, we consider the following inhomogeneous Stokes problem: to find $(\mathbf{u},\pi) \in$ $\mathbf{W}^{1,p(\cdot)}(\Omega) \times L_0^{p(\cdot)}(\Omega)$ such that

$$\begin{cases} -\Delta \boldsymbol{u} + \boldsymbol{\nabla} \boldsymbol{\pi} = \boldsymbol{f} & \text{in } \Omega, \\ \operatorname{div} \boldsymbol{u} = \boldsymbol{g} & \text{in } \Omega, \\ \boldsymbol{u} = \boldsymbol{h} & \text{on } \Gamma. \end{cases}$$
(4.1)

The compatibility condition becomes

$$\int_{\Omega} g dx = \int_{\Gamma} \boldsymbol{h} \cdot \boldsymbol{n} d\sigma, \qquad (4.2)$$

where $d\sigma$ is the surface measure on Γ induced by the Lebesgue measure dx.

Definition 4.1. We say that $(\boldsymbol{u}, \pi) \in \boldsymbol{W}^{1,p(\cdot)}(\Omega) \times L_0^{p(\cdot)}(\Omega)$ is a weak solution of (4.1) if \boldsymbol{u} satisfies that div $\boldsymbol{u} = g$ in Ω , $\boldsymbol{u} = \boldsymbol{h}$ on Γ and

$$\int_{\Omega} \nabla \boldsymbol{u} \cdot \nabla \boldsymbol{w} dx - \int_{\Omega} \pi \operatorname{div} \boldsymbol{w} dx = \langle \boldsymbol{f}, \boldsymbol{w} \rangle_{\boldsymbol{W}^{-1, p(\cdot)}(\Omega), \boldsymbol{W}_{0}^{1, p'(\cdot)}(\Omega)}$$
(4.3)

for all $\boldsymbol{w} \in \boldsymbol{W}_0^{1,p'(\cdot)}(\Omega)$.

In particular, when g = 0 and h = 0 in (4.1), we call the problem (4.1) a homogeneous Stokes problem.

The authors of [8, Theorem 14.2.2 and Remark 14.2.28] derived the following theorem.

Theorem 4.2. Let Ω be a bounded domain of \mathbb{R}^d $(d \geq 2)$ with a $C^{1,1}$ -boundary Γ , and let $p \in \mathcal{P}^{\log}_+(\overline{\Omega})$. If $\mathbf{f} \in \mathbf{W}^{-1,p(\cdot)}(\Omega)$, $g \in L^{p(\cdot)}(\Omega)$ and $\mathbf{h} \in \operatorname{Tr}(\mathbf{W}^{1,p(\cdot)}(\Omega))$ satisfy the compatibility condition (4.2), then the problem (4.1) has a unique weak solution $(\mathbf{u}, \pi) \in$ $\mathbf{W}^{1,p(\cdot)}(\Omega) \times L^{p(\cdot)}_0(\Omega)$, and there exists a constant C > 0 depending only on p, d and Ω such that

$$\|\boldsymbol{u}\|_{\boldsymbol{W}^{1,p(\cdot)}(\Omega)} + \|\pi\|_{L^{p(\cdot)}(\Omega)} \le C(\|\boldsymbol{f}\|_{\boldsymbol{W}^{-1,p(\cdot)}(\Omega)} + \|g\|_{L^{p(\cdot)}(\Omega)} + \|\boldsymbol{h}\|_{\mathrm{Tr}(\boldsymbol{W}^{1,p(\cdot)}(\Omega))}).$$
(4.4)

We call that the problem (4.1) is well-posed if the conclusions of Theorem 4.2 hold.

4.2. The Helmholtz-type decomposition of $W_0^{1,p(\cdot)}(\Omega)$. Assume that Ω is a bounded domain of \mathbb{R}^d $(d \geq 2)$ with a C^1 -boundary Γ and $p \in \mathcal{P}_+^{\log}(\overline{\Omega})$. Define two spaces.

$$\begin{split} \boldsymbol{V}_{1,p(\cdot)}(\Omega) &= \boldsymbol{W}_0^{1,p(\cdot)}(\Omega, \operatorname{div} 0) = \{ \boldsymbol{v} \in \boldsymbol{W}_0^{1,p(\cdot)}(\Omega) \, ; \, \operatorname{div} \boldsymbol{v} = 0 \text{ in } \Omega \}, \\ \boldsymbol{G}_{1,p(\cdot)}(\Omega) &= \{ \boldsymbol{v} = (-\Delta)^{-1} \boldsymbol{\nabla} q \, ; \, q \in L^{p(\cdot)}(\Omega) \}. \end{split}$$

Here $\boldsymbol{v} = (-\Delta)^{-1} \boldsymbol{\nabla} q$ means that \boldsymbol{v} is a unique weak solution for the Poisson equation with the Dirichlet boundary condition

$$\begin{cases} -\Delta \boldsymbol{v} = \boldsymbol{\nabla} q & \text{in } \Omega, \\ \boldsymbol{v} = \boldsymbol{0} & \text{on } \Gamma. \end{cases}$$

Actually, for given $\boldsymbol{f} \in \boldsymbol{W}^{-1,p(\cdot)}(\Omega)$, the problem

$$\begin{cases} -\Delta \boldsymbol{v} = \boldsymbol{f} & \text{in } \Omega, \\ \boldsymbol{v} = \boldsymbol{0} & \text{on } \Gamma. \end{cases}$$
(4.5)

has a unique weak solution $\boldsymbol{v} \in \boldsymbol{W}_0^{1,p(\cdot)}(\Omega)$, that is, \boldsymbol{v} satisfies that

$$\int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{w} dx - \langle \boldsymbol{f}, \boldsymbol{w} \rangle_{\boldsymbol{W}^{-1, p(\cdot)}(\Omega), \boldsymbol{W}_{0}^{1, p'(\cdot)}(\Omega)} = 0 \text{ for all } \boldsymbol{w} \in \boldsymbol{W}_{0}^{1, p'(\cdot)}(\Omega),$$

and there exists a positive constant C depending only on p, d and Ω such that

$$\|\boldsymbol{v}\|_{\boldsymbol{W}^{1,p(\cdot)}(\Omega)} \le C \|\boldsymbol{f}\|_{\boldsymbol{W}^{-1,p(\cdot)}(\Omega)}.$$
(4.6)

For the proof, see Aramaki [6, Theorem 6.1] in which the author uses a variational inequality, or [8, Remark 14.1.23] in which the authors use the Newton potential.

It follows from Theorem 4.2 that we can derive the following Helmholtz-type decomposition of $W_0^{1,p(\cdot)}(\Omega)$.

Theorem 4.3. Assume that Ω is a bounded domain of \mathbb{R}^d $(d \geq 2)$ with a $C^{1,1}$ -boundary Γ and $p \in \mathcal{P}^{\log}_{+}(\overline{\Omega})$. If the homogeneous Stokes problem (4.1) with g = 0 and h = 0 is well-posed, then the following Helmholtz-type decomposition of $W_0^{1,p(\cdot)}(\Omega)$ holds:

$$\boldsymbol{W}_{0}^{1,p(\cdot)}(\Omega) = \boldsymbol{V}_{1,p(\cdot)}(\Omega) \oplus \boldsymbol{G}_{1,p(\cdot)}(\Omega) \quad (direct \ sum).$$

$$(4.7)$$

Proof. Step 1. We can see that the spaces $V_{1,p(\cdot)}(\Omega)$ and $G_{1,p(\cdot)}(\Omega)$ are closed subspaces of $W_0^{1,p(\cdot)}(\Omega)$ and $V_{1,p(\cdot)}(\Omega) \cap G_{1,p(\cdot)}(\Omega) = \{0\}$. Indeed, clearly $V_{1,p(\cdot)}(\Omega)$ is a closed subspace of $W_0^{1,p(\cdot)}(\Omega)$. We show that $G_{1,p(\cdot)}(\Omega)$ is a closed subspace of $W_0^{1,p(\cdot)}(\Omega)$. Let $v_n = (-\Delta)^{-1} \nabla q_n$ with $q_n \in L^{p(\cdot)}(\Omega)$, and $v_n \to v$ in $W_0^{1,p(\cdot)}(\Omega)$ as $n \to \infty$. Then $-\Delta v_n = \nabla q_n \to -\Delta v$ in $W^{-1,p(\cdot)}(\Omega)$, so $\{\nabla q_n\}$ is a Cauchy sequence in $W^{-1,p(\cdot)}(\Omega)$. Hence there exists $g \in W^{-1,p(\cdot)}(\Omega)$ such that $\nabla q_n \to g$ in $W^{-1,p(\cdot)}(\Omega)$. From Theorem 2.5 (c) with m = 0, $\nabla(L^{p(\cdot)}(\Omega)/\mathbb{R})$ is a closed subspace of $W^{-1,p(\cdot)}(\Omega)$. Thus there exists $q \in L_0^{p(\cdot)}(\Omega)$ such that $g = \nabla q$. Therefore, $-\Delta v = \nabla q$ in $W^{-1,p(\cdot)}(\Omega)$ and v = 0 on Γ , that is, $v = (-\Delta)^{-1} \nabla q$.

We show that $V_{1,p(\cdot)}(\Omega) \cap G_{1,p(\cdot)}(\Omega) = \{0\}$. If $\boldsymbol{v} = (-\Delta)^{-1} \nabla q \in V_{1,p(\cdot)}(\Omega) \cap G_{1,p(\cdot)}(\Omega)$, then div $\boldsymbol{v} = 0$ in Ω . Hence $(\boldsymbol{v}, -q)$ satisfies

$$\begin{cases} -\Delta \boldsymbol{v} + \boldsymbol{\nabla}(-q) = \boldsymbol{0} & \text{in } \Omega, \\ \operatorname{div} \boldsymbol{v} = \boldsymbol{0} & \operatorname{in } \Omega, \\ \boldsymbol{v} = \boldsymbol{0} & \text{on } \Gamma, \end{cases}$$

that is, $(\boldsymbol{v}, -q)$ is a weak solution of (4.1) with $\boldsymbol{f} = \boldsymbol{0}, g = 0$ and $\boldsymbol{h} = \boldsymbol{0}$. By the uniqueness of solution (Theorem 4.2), we have $\boldsymbol{v} = \boldsymbol{0}$. Hence, we can get $\boldsymbol{V}_{1,p'(\cdot)}(\Omega) \cap \boldsymbol{G}_{1,p'(\cdot)}(\Omega) = \{\boldsymbol{0}\}$.

Step 2. We claim that $V_{1,p(\cdot)}(\Omega) \oplus G_{1,p(\cdot)}(\Omega)$ is dense in $W_0^{1,p(\cdot)}(\Omega)$. It suffices to show that if $L \in W^{-1,p'(\cdot)}(\Omega)$ (i.e., L is a continuous linear functional on $W_0^{1,p(\cdot)}(\Omega)$) satisfies

$$\langle \boldsymbol{L}, \boldsymbol{w} \rangle_{\boldsymbol{W}^{-1,p'(\cdot)}(\Omega), \boldsymbol{W}_{0}^{1,p(\cdot)}(\Omega)} = 0 \text{ for all } \boldsymbol{w} \in \boldsymbol{V}_{1,p(\cdot)}(\Omega) \oplus \boldsymbol{G}_{1,p(\cdot)}(\Omega),$$
(4.8)

then $\boldsymbol{L} = \boldsymbol{0}$. From a coarse version of the de Rham theorem (Theorem 2.5 (d) with m = 0), there exists $\pi \in L_0^{p'(\cdot)}(\Omega)$ such that $\boldsymbol{L} = \boldsymbol{\nabla}\pi$ in $\boldsymbol{W}^{-1,p'(\cdot)}(\Omega)$. If we define $\boldsymbol{v} = (-\Delta)^{-1}\boldsymbol{\nabla}\pi$, then $\boldsymbol{v} \in \boldsymbol{W}_0^{1,p'(\cdot)}(\Omega)$ and $-\Delta \boldsymbol{v} = \boldsymbol{\nabla}\pi$ in $\boldsymbol{W}^{-1,p'(\cdot)}(\Omega)$. For any $q \in L^{p(\cdot)}(\Omega)$, since $\boldsymbol{w} := (-\Delta)^{-1}\boldsymbol{\nabla}q \in \boldsymbol{G}_{1,p(\cdot)}$, that is, $\boldsymbol{w} \in \boldsymbol{W}_0^{1,p(\cdot)}(\Omega)$ and $-\Delta \boldsymbol{w} = \boldsymbol{\nabla}q$, we have

$$0 = \langle \boldsymbol{L}, \boldsymbol{w} \rangle_{\boldsymbol{W}^{-1, p'(\cdot)}(\Omega), \boldsymbol{W}_{0}^{1, p(\cdot)}(\Omega)}$$

= $\langle \boldsymbol{\nabla} \pi, \boldsymbol{w} \rangle_{\boldsymbol{W}^{-1, p'(\cdot)}(\Omega), \boldsymbol{W}_{0}^{1, p(\cdot)}(\Omega)}$
= $\langle -\Delta \boldsymbol{v}, \boldsymbol{w} \rangle_{\boldsymbol{W}^{-1, p'(\cdot)}(\Omega), \boldsymbol{W}_{0}^{1, p(\cdot)}(\Omega)}$
= $\langle \boldsymbol{v}, -\Delta \boldsymbol{w} \rangle_{\boldsymbol{W}_{0}^{1, p'(\cdot)}(\Omega), \boldsymbol{W}^{-1, p(\cdot)}(\Omega)}$
= $\langle \boldsymbol{v}, \boldsymbol{\nabla} q \rangle_{\boldsymbol{W}_{0}^{1, p'(\cdot)}(\Omega), \boldsymbol{W}^{-1, p(\cdot)}(\Omega)}$
= $-\langle \operatorname{div} \boldsymbol{v}, q \rangle_{L^{p'(\cdot)}(\Omega), L^{p(\cdot)}(\Omega)}$.

Since q is an arbitrary function in $L^{p(\cdot)}(\Omega)$, we have div $\boldsymbol{v} = 0$ in Ω , so $\boldsymbol{v} \in \boldsymbol{V}_{1,p'(\cdot)}(\Omega) \cap \boldsymbol{G}_{1,p'(\cdot)}(\Omega) = \{\mathbf{0}\}$ by Step 1. Thereby, we have $\boldsymbol{v} = \mathbf{0}$, so $\boldsymbol{L} = \boldsymbol{\nabla}\pi = \mathbf{0}$.

Step 3. $V_{1,p(\cdot)}(\Omega) \oplus G_{1,p(\cdot)}(\Omega)$ is closed in $W_0^{1,p(\cdot)}(\Omega)$. Indeed, let $u_n = v_n + w_n, v_n \in V_{1,p(\cdot)}(\Omega), w_n \in G_{1,p(\cdot)}(\Omega)$ and $u_n \to u$ in $W_0^{1,p(\cdot)}(\Omega)$. We show that $u \in V_{1,p(\cdot)}(\Omega) \oplus V_{1,p(\cdot)}(\Omega)$

 $G_{1,p(\cdot)}(\Omega)$. Since $\boldsymbol{w}_n \in G_{1,p(\cdot)}(\Omega)$, we can write $-\Delta \boldsymbol{w}_n = \boldsymbol{\nabla} q_n$ for some $q_n \in \boldsymbol{L}_0^{p(\cdot)}(\Omega)$. Put $\boldsymbol{f}_n = -\Delta \boldsymbol{u}_n \in \boldsymbol{W}^{-1,p(\cdot)}(\Omega)$. Then $(\boldsymbol{v}_n, q_n) \in \boldsymbol{W}_0^{1,p(\cdot)}(\Omega) \times L_0^{p(\cdot)}(\Omega)$ is a weak solution of

$$\left\{ egin{array}{ll} -\Delta oldsymbol{v}_n + oldsymbol{
array} q_n = oldsymbol{f}_n \ {
m in} \ \Omega, \ {
m div} \, oldsymbol{v}_n = 0 \ {
m in} \ \Omega, \ oldsymbol{v}_n = oldsymbol{0} \ {
m on} \ \Gamma. \end{array}
ight.$$

By (4.4), we have

$$\|\boldsymbol{v}_n\|_{\boldsymbol{W}^{1,p(\cdot)}(\Omega)} + \|q_n\|_{L^{p(\cdot)}(\Omega)} \le C \|\boldsymbol{f}_n\|_{\boldsymbol{W}^{-1,p(\cdot)}(\Omega)}$$

Since $\boldsymbol{u}_n \to \boldsymbol{u}$ in $\boldsymbol{W}_0^{1,p(\cdot)}(\Omega)$, we see that $\{\boldsymbol{f}_n\}$ is bounded in $\boldsymbol{W}^{-1,p(\cdot)}(\Omega)$, so $\{\boldsymbol{v}_n\}$ is bounded in $\boldsymbol{W}^{1,p(\cdot)}(\Omega)$ and $\{q_n\}$ is bounded in $L^{p(\cdot)}(\Omega)$. Since $\{\boldsymbol{\nabla} q_n = \boldsymbol{f}_n + \Delta \boldsymbol{v}_n\}$ is bounded in $\boldsymbol{W}^{-1,p(\cdot)}(\Omega)$, we see that $\{\boldsymbol{w}_n = (-\Delta)^{-1}\boldsymbol{\nabla} q_n\}$ is also bounded in $\boldsymbol{W}_0^{1,p(\cdot)}(\Omega)$. Passing to a subsequence, we may assume that $\boldsymbol{v}_n \to \boldsymbol{v}, \boldsymbol{w}_n \to \boldsymbol{w}$ weakly in $\boldsymbol{W}_0^{1,p(\cdot)}(\Omega)$, $q_n \to q$ weakly in $L^{p(\cdot)}(\Omega)$ and $\boldsymbol{\nabla} q_n \to \boldsymbol{\nabla} q$ weakly in $\boldsymbol{W}^{-1,p(\cdot)}(\Omega)$. Since $L_0^{p(\cdot)}(\Omega)$ is a closed subspace of $L^{p(\cdot)}(\Omega)$, it is weakly closed, so $q \in L_0^{p(\cdot)}(\Omega)$. Since div $\boldsymbol{v}_n = 0$ in Ω , we have div $\boldsymbol{v} = 0$ in Ω , so $\boldsymbol{v} \in \boldsymbol{V}_{1,p(\cdot)}(\Omega)$. Since $\boldsymbol{w}_n = (-\Delta)^{-1}\boldsymbol{\nabla} q_n \to \boldsymbol{w} = (-\Delta)^{-1}\boldsymbol{\nabla} q$ weakly in $\boldsymbol{W}_0^{1,p(\cdot)}(\Omega)$, we have $\boldsymbol{w} \in \boldsymbol{G}_{1,p(\cdot)}(\Omega)$. Therefore, we have $\boldsymbol{u} = \boldsymbol{v} + \boldsymbol{w} \in \boldsymbol{V}_{1,p(\cdot)}(\Omega) \oplus$ $\boldsymbol{G}_{1,p(\cdot)}(\Omega)$.

From Step 2 and Step 3, the conclusion Theorem 4.3 holds.

We consider the converse of Theorem 4.3.

Theorem 4.4. Assume that Ω is a bounded domain with a C^1 -boundary Γ and suppose that the Helmholtz-type decomposition (4.7) holds. Then for $\mathbf{f} \in \mathbf{W}^{-1,p(\cdot)}(\Omega)$, there exists a unique weak solution $(\mathbf{u}, \pi) \in \mathbf{W}_0^{1,p(\cdot)}(\Omega) \times L_0^{p(\cdot)}(\Omega)$ for the homogeneous Stokes problem (4.1) with g = 0 and $\mathbf{h} = \mathbf{0}$. Furthermore, there exists a constant C > 0 depending only on p, d and Ω such that

$$\|\boldsymbol{u}\|_{\boldsymbol{W}^{1,p(\cdot)}(\Omega)} + \|\pi\|_{L^{p(\cdot)}(\Omega)} \le C \|\boldsymbol{f}\|_{\boldsymbol{W}^{-1,p(\cdot)}(\Omega)}.$$
(4.9)

Proof. For $f \in W^{-1,p(\cdot)}(\Omega)$, the problem (4.5) has a unique weak solution $v \in W_0^{1,p(\cdot)}(\Omega)$ and there exists a constant C > 0 depending only on p, d and Ω such that the estimate (4.6) holds. By the Helmholtz-type decomposition (4.7), we can uniquely write

$$\boldsymbol{v} = \boldsymbol{u} + \boldsymbol{w} ext{ with } \boldsymbol{u} \in \boldsymbol{V}_{1, p(\cdot)}(\Omega), \boldsymbol{w} \in \boldsymbol{G}_{1, p(\cdot)}(\Omega),$$

and

$$\|\boldsymbol{u}\|_{\boldsymbol{W}_{0}^{1,p(\cdot)}(\Omega)} \leq C \|\boldsymbol{v}\|_{\boldsymbol{W}^{1,p(\cdot)}(\Omega)}.$$
(4.10)

Since $\boldsymbol{w} \in \boldsymbol{G}_{1,p(\cdot)}(\Omega)$, there exists $\pi \in L_0^{p(\cdot)}(\Omega)$ such that $-\Delta \boldsymbol{w} = \boldsymbol{\nabla} \pi$ in $\boldsymbol{W}^{-1,p(\cdot)}(\Omega)$. Hence we have

$$\left\{ egin{array}{ll} -\Delta oldsymbol{u}+oldsymbol{
array}\pi=-\Deltaoldsymbol{v}=oldsymbol{f} & ext{in }\Omega, \ \operatorname{div}oldsymbol{u}=0 & ext{in }\Omega, \ oldsymbol{u}=oldsymbol{0} & ext{on }\Gamma \end{array}
ight.$$

Thus (\boldsymbol{u}, π) is a weak solution for the homogeneous Stokes problem (4.1) with g = 0 and $\boldsymbol{h} = \boldsymbol{0}$.

If $\boldsymbol{f} = \boldsymbol{0}$, then $-\Delta \boldsymbol{u} = \boldsymbol{\nabla}(-\pi)$. Hence $\boldsymbol{u} = (-\Delta)^{-1}\boldsymbol{\nabla}(-\pi) \in \boldsymbol{G}_{1,p(\cdot)}(\Omega)$. Since $\boldsymbol{u} \in \boldsymbol{W}_0^{1,p(\cdot)}(\Omega)$ satisfies div $\boldsymbol{u} = 0$ in Ω , we see that $\boldsymbol{u} \in \boldsymbol{V}_{1,p(\cdot)}(\Omega)$, so $\boldsymbol{u} = \boldsymbol{0}$ in Ω from (4.7). Thus $\boldsymbol{\nabla}\pi = \boldsymbol{0}$. Since $\pi \in L_0^{p(\cdot)}(\Omega)$, we have $\pi = 0$ in Ω . This implies the uniqueness of a weak solution.

We show the estimate (4.9). If $(\boldsymbol{u},\pi) \in \boldsymbol{W}_{0}^{1,p(\cdot)}(\Omega) \times L_{0}^{p(\cdot)}(\Omega)$ is a weak solution of the homogeneous Stokes problem (4.1) with g = 0 and $\boldsymbol{h} = \boldsymbol{0}$, then

$$\int_{\Omega} \nabla \boldsymbol{u} \cdot \nabla \boldsymbol{\varphi} d\boldsymbol{x} - \int_{\Omega} \pi \operatorname{div} \boldsymbol{\varphi} d\boldsymbol{x} = \left\langle \boldsymbol{f}, \boldsymbol{\varphi} \right\rangle_{\boldsymbol{W}^{-1, p(\cdot)}(\Omega), \boldsymbol{W}_{0}^{1, p'(\cdot)}(\Omega)}$$
(4.11)

for all $\varphi \in W_0^{1,p'(\cdot)}(\Omega)$. Since the projection $W_0^{1,p(\cdot)}(\Omega) \to V_{1,p(\cdot)}(\Omega)$ is linear and bounded, it follows from (4.6) and (4.10) that

$$\|\boldsymbol{u}\|_{\boldsymbol{W}_{0}^{1,p(\cdot)}(\Omega)} \leq C \|\boldsymbol{v}\|_{\boldsymbol{W}_{0}^{1,p(\cdot)}(\Omega)} \leq C_{1} \|\boldsymbol{f}\|_{\boldsymbol{W}^{-1,p(\cdot)}(\Omega)}.$$
(4.12)

From (4.11), we can write

$$\int_{\Omega} \pi \operatorname{div} \boldsymbol{\varphi} dx = \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{\varphi} dx - \left\langle \boldsymbol{f}, \boldsymbol{\varphi} \right\rangle_{\boldsymbol{W}^{-1, p(\cdot)}(\Omega), \boldsymbol{W}_{0}^{1, p'(\cdot)}(\Omega)} \text{ for all } \boldsymbol{\varphi} \in \boldsymbol{W}_{0}^{1, p'(\cdot)}(\Omega).$$

For any $\psi \in L^{p'(\cdot)}(\Omega), \ \psi - c_{\psi} \in L_0^{p'(\cdot)}(\Omega)$, where

$$c_{\psi} = rac{1}{|\Omega|} \int_{\Omega} \psi dx.$$

By Theorem 2.5 (e) with m = 0, the divergence operator div : $\mathbf{W}_{0}^{1,p'(\cdot)}(\Omega)/\mathbf{V}_{1,p'(\cdot)}(\Omega) \rightarrow L_{0}^{p'(\cdot)}(\Omega)$ is a topological bijection. Hence there exists $\boldsymbol{\varphi} \in \mathbf{W}_{0}^{1,p'(\cdot)}(\Omega)$ such that div $\boldsymbol{\varphi} = \boldsymbol{\psi} - c_{\boldsymbol{\psi}}$ and there exists a constant $C_{2} > 0$ such that

$$\|[\varphi]\|_{W_0^{1,p'(\cdot)}(\Omega)/V_{1,p'(\cdot)}} \le C_2 \|\psi - c_{\psi}\|_{L^{p'(\cdot)}(\Omega)}.$$
(4.13)

Since

$$\|[\boldsymbol{\varphi}]\|_{\boldsymbol{W}_{0}^{1,p'(\cdot)}(\Omega)/\boldsymbol{V}_{1,p'(\cdot)}} = \inf\{\|\boldsymbol{\varphi}+\boldsymbol{v}\|_{\boldsymbol{W}_{0}^{1,p'(\cdot)}(\Omega)}; \, \boldsymbol{v} \in \boldsymbol{V}_{1,p'(\cdot)}(\Omega)\}$$

is achieved, we can replace the left-hand side of (4.13) with $\|\varphi\|_{W_0^{1,p'(\cdot)}(\Omega)}$. Therefore, using the Hölder inequality (Proposition 2.2), we have

$$\begin{split} \|\varphi\|_{W_{0}^{1,p'(\cdot)}(\Omega)} &\leq C_{2} \left(\|\psi\|_{L^{p'(\cdot)}(\Omega)} + \frac{1}{|\Omega|} \int_{\Omega} |\psi| dx \|1\|_{L^{p'(\cdot)}(\Omega)} \right) \\ &\leq C_{2} (\|\psi\|_{L^{p'(\cdot)}(\Omega)} + \frac{2}{|\Omega|} \|\psi\|_{L^{p'(\cdot)}(\Omega)} \|1\|_{L^{p(\cdot)}(\Omega)} \|1\|_{L^{p'(\cdot)}(\Omega)}) \\ &\leq C_{3} \|\psi\|_{L^{p'(\cdot)}(\Omega)}. \end{split}$$

Since $\pi \in L_0^{p(\cdot)}(\Omega)$, we see that

$$\int_{\Omega} \pi \psi dx = \int_{\Omega} \pi (\psi - c_{\psi}) dx = \int_{\Omega} \pi \operatorname{div} \varphi dx.$$

Hence using the Hölder inequality, the duality and (4.12), we have

$$\begin{split} \left| \int_{\Omega} \pi \psi dx \right| &\leq \left| \int_{\Omega} \nabla \boldsymbol{u} \cdot \nabla \varphi dx \right| + \left| \langle \boldsymbol{f}, \varphi \rangle_{\boldsymbol{W}^{-1, p(\cdot)}(\Omega), \boldsymbol{W}_{0}^{1, p'(\cdot)}(\Omega)} \right| \\ &\leq 2 \| \nabla \boldsymbol{u} \|_{\boldsymbol{L}^{p(\cdot)}(\Omega)} \| \nabla \varphi \|_{\boldsymbol{L}^{p'(\cdot)}(\Omega)} + \| \boldsymbol{f} \|_{\boldsymbol{W}^{-1, p(\cdot)}(\Omega)} \| \varphi \|_{\boldsymbol{W}_{0}^{1, p'(\cdot)}(\Omega)} \\ &\leq C_{4} \| \boldsymbol{f} \|_{\boldsymbol{W}^{-1, p(\cdot)}(\Omega)} \| \varphi \|_{\boldsymbol{W}_{0}^{1, p'(\cdot)}(\Omega)} \\ &\leq C_{3} C_{4} \| \boldsymbol{f} \|_{\boldsymbol{W}^{-1, p(\cdot)}(\Omega)} \| \psi \|_{\boldsymbol{L}^{p'(\cdot)}(\Omega)}. \end{split}$$

Thus we have

$$\begin{aligned} \|\pi\|_{L^{p(\cdot)}(\Omega)} &= \sup\left\{ \left| \int_{\Omega} \pi \psi dx \right| ; \psi \in L^{p'(\cdot)}(\Omega), \|\psi\|_{L^{p'(\cdot)}(\Omega)} \leq 1 \right\} \\ &\leq C_3 C_4 \|\boldsymbol{f}\|_{\boldsymbol{W}^{-1,p(\cdot)}(\Omega)}. \end{aligned}$$

So we get the estimate (4.9).

From Theorem 4.3 and Theorem 4.4, we get the following corollary.

Corollary 4.5. Assume that Ω is a bounded domain of \mathbb{R}^d $(d \geq 2)$ with a $C^{1,1}$ -boundary Γ and $p \in \mathcal{P}^{\log}_+(\Omega)$. Then the homogeneous Stokes problem (4.1) with g = 0 and h = 0 is well-posed if and only if the Helmholtz-type decomposition (4.7) of $W^{1,p(\cdot)}_0(\Omega)$ holds.

5. INHOMOGENEOUS STOKES PROBLEM

In this section, assume that Ω is a bounded domain of \mathbb{R}^d $(d \geq 2)$ with a C^1 -boundary Γ . We consider the inhomogeneous Stokes problem (4.1), where $\mathbf{f} \in \mathbf{W}^{-1,p(\cdot)}(\Omega), g \in L^{p(\cdot)}(\Omega)$ and $\mathbf{h} \in \operatorname{Tr}(\mathbf{W}^{1,p(\cdot)}(\Omega))$ satisfy the compatibility condition (4.2).

Lemma 5.1. Let Ω be a bounded domain of \mathbb{R}^d $(d \geq 2)$ with a Lipschitz-continuous boundary Γ and $p \in \mathcal{P}^{\log}_+(\overline{\Omega})$. Assume that $g \in L^{p(\cdot)}(\Omega)$ and $\mathbf{h} \in \text{Tr}(\mathbf{W}^{1,p(\cdot)}(\Omega))$ satisfy the compatibility condition (4.2). Then there exists $\mathbf{w} \in \mathbf{W}^{1,p(\cdot)}(\Omega)$ such that

$$\begin{cases} \operatorname{div} \boldsymbol{w} = g & \text{in } \Omega, \\ \boldsymbol{w} = \boldsymbol{h} & \text{on } \Gamma. \end{cases}$$
(5.1)

Furthermore, there exists a constant C > 0 depending only on p, d and Ω such that

$$\|\boldsymbol{w}\|_{\boldsymbol{W}^{1,p(\cdot)}(\Omega)} \leq C(\|\boldsymbol{g}\|_{L^{p(\cdot)}(\Omega)} + \|\boldsymbol{h}\|_{\operatorname{Tr}(\boldsymbol{W}^{1,p(\cdot)}(\Omega))}).$$
(5.2)

Proof. By definition of $\operatorname{Tr}(\boldsymbol{W}^{1,p(\cdot)}(\Omega))$, there exists $\boldsymbol{w}_0 \in \boldsymbol{W}^{1,p(\cdot)}(\Omega)$ such that $\boldsymbol{w}_0 = \boldsymbol{h}$ on Γ and $\|\boldsymbol{w}_0\|_{\boldsymbol{W}^{1,p(\cdot)}(\Omega)} \leq C \|\boldsymbol{h}\|_{\operatorname{Tr}(\boldsymbol{W}^{1,p(\cdot)}(\Omega))}$. It follows from the Green theorem and the compatibility condition (4.2) that

$$\int_{\Omega} \operatorname{div} \boldsymbol{w}_0 dx = \int_{\Gamma} \boldsymbol{w}_0 \cdot \boldsymbol{n} d\sigma = \int_{\Gamma} \boldsymbol{h} \cdot \boldsymbol{n} d\sigma = \int_{\Omega} g dx$$

Hence div $\boldsymbol{w}_0 - g \in L_0^{p(\cdot)}(\Omega)$. From Theorem 2.5 (e) with m = 0, we see that div : $\boldsymbol{W}_0^{1,p(\cdot)}(\Omega)/\boldsymbol{V}_{1,p(\cdot)}(\Omega) \to L_0^{p(\cdot)}(\Omega)$ is a topological bijection. So there exists $\boldsymbol{w}_1 \in \boldsymbol{W}_0^{1,p(\cdot)}(\Omega)$ such that div $\boldsymbol{w}_1 = \operatorname{div} \boldsymbol{w}_0 - g$ in Ω and there exists a constant $C_1 > 0$ such that

$$\begin{split} \|[\boldsymbol{w}_1]\|_{\boldsymbol{W}_0^{1,p(\cdot)}(\Omega)/\boldsymbol{V}_{1,p(\cdot)}(\Omega)} &\leq C_1 \|\operatorname{div} \boldsymbol{w}_0 - g\|_{L^{p(\cdot)}(\Omega)} \\ &\leq C_2(\|g\|_{L^{p(\cdot)}(\Omega)} + \|\boldsymbol{h}\|_{\operatorname{Tr}(\boldsymbol{W}^{1,p(\cdot)}(\Omega))}). \end{split}$$

Since $\|[\boldsymbol{w}_1]\|_{\boldsymbol{W}_0^{1,p(\cdot)}(\Omega)/\boldsymbol{V}_{1,p(\cdot)}(\Omega)} = \inf\{\|\boldsymbol{w}_1 + \boldsymbol{w}\|_{\boldsymbol{W}^{1,p(\cdot)}(\Omega)}; \boldsymbol{w} \in \boldsymbol{V}_{1,p(\cdot)}(\Omega)\}$ is achieved, we can assume that

$$\|\boldsymbol{w}_1\|_{\boldsymbol{W}_0^{1,p(\cdot)}(\Omega)} \leq C_2(\|g\|_{L^{p(\cdot)}(\Omega)} + \|\boldsymbol{h}\|_{\mathrm{Tr}(\boldsymbol{W}^{1,p(\cdot)}(\Omega))}).$$

Put $\boldsymbol{w} = \boldsymbol{w}_0 - \boldsymbol{w}_1$. Then we see that div $\boldsymbol{w} = g$ in Ω and $\boldsymbol{w} = \boldsymbol{w}_0 = \boldsymbol{h}$ on Γ , and

$$\|\boldsymbol{w}\|_{\boldsymbol{W}_{0}^{1,p(\cdot)}(\Omega)} \leq \|\boldsymbol{w}_{0}\|_{\boldsymbol{W}^{1,p(\cdot)}(\Omega)} + \|\boldsymbol{w}_{1}\|_{\boldsymbol{W}^{1,p(\cdot)}(\Omega)} \leq C(\|g\|_{L^{p(\cdot)}(\Omega)} + \|\boldsymbol{h}\|_{\mathrm{Tr}(\boldsymbol{W}^{1,p(\cdot)}(\Omega))})$$

This completes the proof.

Finally we have the following theorem.

Theorem 5.2. Let Ω be a bounded domain of \mathbb{R}^d $(d \geq 2)$ with a C^1 -boundary Γ , and let $p \in \mathcal{P}^{\log}_+(\overline{\Omega})$. Assume that the Helmholtz-type decomposition (4.7) holds. Then for $\mathbf{f} \in \mathbf{W}^{-1,p(\cdot)}(\Omega)$, $g \in L^{p(\cdot)}(\Omega)$ and $\mathbf{h} \in \operatorname{Tr}(\mathbf{W}^{1,p(\cdot)}(\Omega))$ satisfying the compatibility condition (4.2), then the inhomogeneous Stokes problem (4.1) has a unique weak solution $(\mathbf{u},\pi) \in \mathbf{W}^{1,p(\cdot)}(\Omega) \times L_0^{p(\cdot)}(\Omega)$. Furthermore, the estimate (4.4) holds.

Proof. By Lemma 5.1, there exists $\boldsymbol{w} \in \boldsymbol{W}^{1,p(\cdot)}(\Omega)$ such that div $\boldsymbol{w} = g$ in Ω and $\boldsymbol{w} = \boldsymbol{h}$ on Γ , and the estimate (5.2) holds. If we put $\boldsymbol{v} = \boldsymbol{u} - \boldsymbol{w}$, we can see that the problem (4.1) is reduced to

$$\begin{cases} -\Delta \boldsymbol{v} + \boldsymbol{\nabla} \boldsymbol{\pi} = \boldsymbol{f} + \Delta \boldsymbol{w} & \text{in } \Omega, \\ \operatorname{div} \boldsymbol{v} = 0 & \operatorname{in } \Omega, \\ \boldsymbol{v} = \boldsymbol{0} & \operatorname{on } \Gamma. \end{cases}$$
(5.3)

Since $\boldsymbol{f} + \Delta \boldsymbol{w} \in \boldsymbol{W}^{-1,p(\cdot)}(\Omega)$, it follows from Theorem 4.4 that the problem (5.3) has a unique weak solution $(\boldsymbol{v}, \pi) \in \boldsymbol{W}_0^{1,p(\cdot)}(\Omega) \times L_0^{p(\cdot)}(\Omega)$, and

$$\|\boldsymbol{v}\|_{\boldsymbol{W}^{1,p(\cdot)}(\Omega)} + \|\pi\|_{L^{p(\cdot)}(\Omega)} \leq C \|\boldsymbol{f} + \Delta \boldsymbol{w}\|_{\boldsymbol{W}^{-1,p(\cdot)}(\Omega)} \leq C_1(\|\boldsymbol{f}\|_{\boldsymbol{W}^{-1,p(\cdot)}(\Omega)} + \|\boldsymbol{w}\|_{\boldsymbol{W}^{1,p(\cdot)}(\Omega)}).$$
(5.4)

If we put $\boldsymbol{u} = \boldsymbol{v} + \boldsymbol{w}$, we can see that $(\boldsymbol{u}, \pi) \in \boldsymbol{W}^{1,p(\cdot)}(\Omega) \times L_0^{p(\cdot)}(\Omega)$ is a unique weak solution of (4.1). The estimate (4.4) follows form (5.2) and (5.4).

Remark 5.3. Theorem 5.2 insists that when Ω is bounded domain with a C^1 -boundary (weaker than the regularity of Theorem 4.2), if we further assume that the Helmholtz-type decomposition (4.7) holds, then the same conclusion as Theorem 4.2 holds. By our recognition, this result is new.

References

- [1] Amrouche, C., Ciarlet, P. G., and Mardare, C., 2015, "On a lemma of Jacques-Louis Lion and its relation to other fundamental results," J. Math. Pure Appl., 104, pp. 207-226.
- [2] Amrouche C., and Girault G.,1994, "Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension," Czechoslovak Math. J., 44, pp. 109-140.
- [3] Aramaki, J., "A remark on the J. L. Lions lemma and its applications in a variable exponent Sobolev space," J. Math. Study, (To appear).

- [4] Aramaki, J., 2022, "Equivalent relations with the J. L. Lions lemma in a variable exponent Sobolev space and their applications," J. Math. Study, 55(3), pp. 281-305.
- [5] Aramaki, J., 2022, "An extension of a variational inequality in the Simader-Sohr theorem to a variational exponent Sobolev space and applications: The Neumann case," Global J. Pure Appl. Math., 18(1), pp. 245-271.
- [6] Aramaki, J., 2022, "An extension of a variational inequality in the Simader theorem to a variational exponent Sobolev space and applications: The Dirichlet case," Int. J. Anal. Appl., 20(13), pp. 1-35.
- [7] Aramaki, J., 2021, "On the J. L. Lions lemma and its applications to the Maxwell-Stokes type problem and the Korn inequality," Commun. Math. Res., 37(2), pp. 209-235.
- [8] Diening, L., Harjulehto, P., Hästö, P., and Růžička, M., 2017, Lebesgue and Sobolev Spaces with Variable Exponent, in Springer Lecture Notes in Math., Springer, Berlin.
- [9] Diening, L., Lengeler, D., and Růžička, M., 2011, "The Stokes and Poisson problem in variable exponent spaces," Complex Var. Elliptic Equ., 56(7-9), pp. 789-811.
- [10] Fan, X. L., and Zhang, Q. H., 2003, "Existence of solutions for *p*(*x*)-Laplacian Dirichlet problem," Nonlinear Anal., 52, pp. 1843-1852.
- [11] Fan, X. L., Zhang, Q., and Zhao, D., 2015, "Eigenvalues of *p*(*x*)-Laplacian Dirichlet problem," J. Math. Anal. Appl., 302, pp. 306-317.
- [12] Fan, X. L., and Zhao, D., 2001, "On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$," J. Math. Anal. Appl., 263, pp. 424-446.
- [13] Fujiwara, D., and Morimoto, H., 1977, "An *L_r*-theorem of the Helmholtz decomposition of vector fields," J. Fac. Sci. Univ. Tokyo, Sec. I 24, pp. 685-700.
- [14] Galdi, G. P., 1994, An introduction to the Mathematical Theory of the Navier-Stokes Equations. Linearized Steady Problem, Vol. 38 of Tracts in Natural Philosophy, Springer, New York.
- [15] Kováčik, O., and Rákosník, J., 1991, "On spaces $L^{p(x)}(\Omega)$ and $W^{k,p(x)}(\Omega)$," Czechoslovak Math. J., 41(116), pp. 592-618.
- [16] Simader, C. G., and Sohr, H., 1992, A new approach to the Helmholtz decomposition and the Neumann problem in L^q-spaces for bounded and exterior domains, In: Galdi, G. P. (ed.) Mathematical Problems Relating to the Navier-Stokes Equations. Series on Advances in Mathematics for Applied Sciences, Vol. 11, pp. 1-35. World Scientific, Singapore.
- [17] Simader, C. G., Sohr, H., and Varnborn, W., 2014, "Necessary and sufficient conditions for the existence of Helmholtz decompositions in general domains," Ann. Univ. Ferrara, 60, pp. 245-262.
- [18] Wei, Z., and Chen, Z., 2012, "Existence results for the p(x)-Laplacian with nonlinear boundary condition," Applied Math., Article ID 727398.
- [19] Yücedağ, Z., 2015 "Solutions of nonlinear problems involving *p*(*x*)-Laplacian operator," Adv. Nonlinear Anal., 4(4), pp. 1-9.
- [20] Zhao, D., Qing, W. J., and Fan, X. L., 1996, "On generalized Orlicz space $L^{p(x)}(\Omega)$," J. Gansu Sci., 9(2), pp. 1-7, (in Chinese).