

Research Journal of Pharmaceutical, Biological and Chemical

Sciences

Pentacyclic Triterpenoids and Steroids from Voacanga megacarpa.

Allan Patrick G Macabeo^{1*}, Katherine Yasmin M Garcia¹, Claire Francis S de Guzman¹, Warren S Vidar³, and Scott G Franzblau⁴.

¹Organic Synthesis Laboratory, Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., 1015 Manila, Philippines.

²Faculty of Pharmacy and Graduate School, University of Santo Tomas, Espana Blvd., 1015 Manila, Philippines

³Chemistry Department, College of Humanities and Sciences, De la Salle Health Sciences Institute, Gov. Mangubat Ave., Dasmarinas City, 4114 Cavite, Philippines.

⁴Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, Illinois USA 60612-7231.

ABSTRACT

Chromatographic purification of the crude DCM-methanolic extract of the Philippine endemic medicinal plant, *Voacanga megacarpa*, afforded a 1:1 mixture of lupeol acetate (**1**) and β -amyrin acetate (**1**), and a 1:1 mixture of stigmasterol (**3**) and β -sitosterol (**4**). The compounds were identified through analysis of their NMR spectroscopic data and by comparison with reported literature data. This is the first report on the isolation and identification of these compounds from *V. megacarpa*. The crude DCM-methanolic and alkaloid extracts, and fractions (**1** and **2**) showed moderate inhibitory activity against *Mycobacterium tuberculosis* H₃₇Rv (MIC₅₀ = 64 µg/mL).

Keywords: Voacanga megacarpa, triterpenoids, steroids, lupeol acetate, β -amyrin acetate, stigmasterol, β -sitosterol, antitubercular.

*Corresponding author

6(2)

INTRODUCTION

The Voacanga Thouars, (family Apocynaceae) is a small taxon comprised of twelve species. The genus is distributed in tropical Africa followed by Malesia. The Philippine indigenous Voacanga species (V. megacarpa and V. globosa) are trees, up to 15-25 m high, in secondary forest or scrub. Both plant species are characterized with white corolla and the stamens are inserted [1]. Voacanga megacarpa Merr. is found in the lowland forests of Camarines Sur province. The calyces of V. megacarpa are almost free and the lobes are much longer than the tube. The corolla lobes are elliptic, rounded to emarginated at apex and the tubes 22-40 mm long. The leaves and the decoction of the bark are traditionally used as analgesic and local anaesthetics [1-2]. Preliminary studies reported the identification of two monoterpenoid indole alkaloids namely, vobtusine and voacamine [1]. So far, no studies describing the biological activities of V. megacarpa have been reported. The alkaloids of a related endemic Philippine species, V. globosa, have shown antituberculosis and anticholinesterase activity [3].

As part of our continued interest in exploring the antitubercular activity of Philippine medicinal plants [4-13], we herein disclose the first isolation and identification of a mixture of the triterpenoids lupeol acetate (1) and β -amyrin acetate (2), and mixture of the sterols, stigmasterol (3) and β -sitosterol (4) from the leaves of *V. megacarpa* (Figure 1).

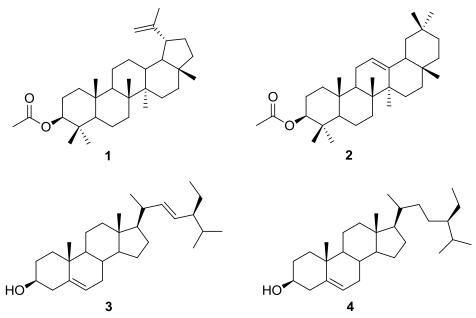


Figure 1: Triterpenoids and steroids from V. megacarpa.

MATERIALS AND METHODS

General

NMR spectra were recorded on a Bruker Avance 300 (300.13 MHz) spectrometer using the solvent peak as internal reference (CDCl₃: δ H 7.26; δ C: 77.0). Normal-phase column chromatography was performed with silica gel 60 (Merck Art. 1.07734.1000 and 1.09385.1000). Thin-layer chromatography was performed on aluminum plates coated by silica gel 60 HF₂₅₄ (Merck Art. 1.07739.1000). The plates were visualized by fluorescence quenching under UV (254 nm and 356 nm) and by spraying with vanillin-sulfuric acid, followed by warming.

Plant Material

The leaves of *Voacanga megacarpa* were collected from Mt. Buhi, Camarines Sur, Philippines on April, 2013. The plant sample (PNH #37975) was authenticated by Mr. Noe Gapas of the Botanical Division, Philippine National Museum in Intramuros, Manila where a voucher specimen was also deposited.

March – April

2015

RJPBCS

6(2)

Page No. 433

Extraction and Isolation

The ground, air-dried leaves *V. megacarpa* (4.9 kg) were extracted with DCM-MeOH (1:1, 47.5 L, 3x overnight) and the percolates were concentrated using a rotary evaporator at 40 $^{\circ}$ C. The crude extract (208.3 g) obtained after concentration was subjected to acid-base extraction to yield the alkaloid extract (129.3 g). The crude alkaloid extract was subjected to vacuum liquid chromatography using gradient elution (10% increment) of EtOAc-MeOH afforded six fractions. Chromatographic purification (3x) of the fraction eluted with 10% MeOH in EtOAc (fraction 1) using 1% MeOH in hexane yielded the compound mixtures **2** & **3** (1:1, 67.6 mg) and **4** & **5** (1:1, 61.1 mg).

Lupeol acetate (1) [14]: ¹H NMR (CDCl₃, 300 MHz) δ (ppm): 4.68 (H-29 β), 4.56 (H-29 α), 4.48 (H-3), 2.37(H-19), 2.03(COC<u>H₃</u>), 1.69(H-30), 1.03(H-26), 0.94(H-27), 0.85(H-25), 0.84(H-24), 0.83(H-23), 0.78 (H-28). **β-amyrin acetate (2)** [15]: 5.13 (H-12), 4.54 (H-3 α), 2.04 (COC<u>H₃</u>), 1.27 (H-27), 1.03 (H-23), 0.99 (H-24), 0.89 (H-25), 0.86 (H-28). 0.82 (H-29), 0.80 (H-30), 0.78 (H-26). White powder (67.6 mg).

Stigmasterol (3) and β -**Sitosterol (4)** [16]: ¹H NMR (CDCl₃, 300 MHz) δ (ppm): 3.20 (H-3), 5.26 (H-6), 5.19(H-23), 4.68 (H-22), 3.63 (H-3), 2.38 (H-20), 1.8-2.0, 1.35-1.62, 0.91-1.05, 0.69-0.89. White amorphous powder (61.1 mg).

Antituberculosis Activity

Fraction 6

Rifampin

Microplate Alamar Blue Assay (MABA). The method given in reference [17] was used for testing *Mycobacterium tuberculosis* H_{37} Rv susceptibility. The standard TB drug rifampin (RMP) was used as positive drug control. MIC₅₀ is defined as the minimum concentration of test sample that exhibited greater or equal to 50% inhibition against the test organism.

incgucuipu.		
Test Sample	% inhibition at 64 μg/mL	Minimum Inhibitory Concentration (MIC ₅₀)
Crude Extract	55	64
Alkaloid Extract	51	64
Organic Extract	7	> 64
Fraction 1	53	64
Fraction 2	65	64
Fraction 3	49	> 64
Fraction 4	17	> 64
Fraction 5	0	> 64

Table 1: % Inhibition and minimum inhibitory concentration of the extracts, fractions and compounds from V. megacarpa.

RESULTS AND DISCUSSION

The crude DCM-methanolic and alkaloid extracts of *V. megacarpa* exhibited moderate inhibitory activity against *M. tuberculosis* H_{37} Rv. Vacuum liquid chromatography yielded two fractions (1 and 2) with MIC₅₀ of 64 µg/mL. Chromatographic purification of fraction one afforded a mixture of the triterpenoids, lupeol acetate (1) and β -amyrin acetate (2), and a mixture of the sterols, stigmasterol (3) and β -sitosterol (4). The structure of these compounds were deduced based on their ¹H NMR spectral data and confirmed by comparison of their NMR spectroscopic data with reported literature data [14-16].

This is the first report on the identification of these compounds from *V. megacarpa*. Literature survey of other alkaloid-containing Apocynaceae genera viz. *Alstonia* and *Tabernaemontana* [18-19] indicates the characteristic presence of lupane and oleanene triterpenoids such as **1** and **2**, respectively.

15

99%

6(2)

> 64

0.098

CONCLUSION

This study underscored the isolation and identification of metabolites **1-4** from *V. megacarpa*. Antitubercular screening of extracts and fractions indicated moderate inhibitory activity.

REFERENCES

- [1] Macabeo APG, Alejandro GJD, Hallare AV, Vidar WS, Villaflores OB. Phcog Rev 2009; 3(5): 132-142.
- [2] Wong SK, Lim YY, Chan E. Pharmacog Comm 2013;3: 1-11.
- [3] Macabeo APG, Vidar WS, Wan B, Franzblau SG, Chen X, Decker M, Heilmann J, Aguinaldo AM, Cordell GA. Eur J Med Chem 2011; 46: 3118-3223.
- [4] Macabeo APG, Krohn K, Gehle D, Read RW, Brophy JJ, Cordell GA, Franzblau SG, Aguinaldo AM. Phytochem 2005; 66: 1158-1162.
- [5] Aguinaldo AM, Dalangin-Mallari V, Macabeo APG, Byrne LT, Yamauchi T, Abe F, Franzblau SG. Int J Antimicrob Agents 2007; 27: 744-746.
- [6] Paragas EM, Gehle D, Krohn K, Franzblau SG, Macabeo APG. Res J Pharm Biol Chem Sci 2014;5(6): 856-859.
- [7] Macabeo APG, Lee CA. Pharmacog J 2014; 6: 49-52.
- [8] Macabeo APG, Lopez ADC, Schmidt S, Heilmann J, Dahse HM, Franzblau SG, Alejandro GJD. Rec Nat Prod 2014; 8(1): 41-45.
- [9] Macabeo APG, Martinez FPA, Kurtan T, Toth L, Mandi A, Schmidt S, Heilmann J, Alejandro GJD, Dahse HM, Franzblau SG. J Nat Prod 2014; 77(12): 2711-2715.
- [10] Macabeo APG, Tudla FA, Krohn K, Franzblau SG. Asian Pacific J Trop Med 2012;5(10): 777-780.
- [11] Panlilio B, Macabeo APG, Knorn M, Kohls P, Richomme P, Kouam SF, Gehle D, Krohn K, Franzblau SG, Zhang Q, Aguinaldo AM. Phytochem Lett 2012;5: 682-684.
- [12] Macabeo APG, Avila JA, Alejandro GJD, Franzblau SG, Kouam SF, Hussain H, Krohn K. Nat Prod Comm 2012;7(6): 779-780.
- [13] Lirio S, Macabeo APG, Knorn M, Kohls P, Wang Y, Franzblau SG, Aguinaldo AM. J Ethnopharmacol 2014;154: 471-474.
- [14] Rasoanaivo LH, Wadouachi A, Andriamampianina TT, Andriamalala SG, Razafindrakoto EJB, Raharisololalao A, Randimbivololona F. J Pharmacog Phytochem 2014;3(1): 68-72.
- [15] Ahmad MZ, Ali M, Mir SR. Asian J Biomed Pharm Sci 2013;3(18): 23-28.
- [16] Kamboj A, Saluja AK. Int J Pharm Pharm Sci 2011;3(1): 94-96.
- [17] Collins L, Franzblau, SG. Antimicrob Agents Chemother 1997; 41: 1004-1009.
- [18] Ismail KM. Biswas PK, Khaleque A, Fritz H, Besch E. Bangladesh J Sci Industrial Res 1999;34(2): 188-193.
- [19] Monnerat CS, de Souza JJ, Mathias L, Braz-Filho R, Vieira IJC. J Braz Chem Soc 2005;16(6B): 1331-1335.