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Abstract

An algorithm to detect poor quality ECGs collected
in low-resource environments is described (and was en-
tered in the PhysioNet/Computing in Cardiology Chal-
lenge 2011 ’Improving the quality of ECGs collected us-
ing mobile phones’). The algorithm is based on previ-
ously published signal quality metrics, with some novel
additions, designed for intensive care monitoring. The
algorithms have been adapted for use on short (10s) 12-
lead ECGs. The metrics quantify spectral energy distribu-
tion, higher order moments and inter-channel and inter-
algorithm agreement. Six metrics are produced for each
channel (72 features in all) and presented to machine
learning algorithms for training on the provided labeled
data (Set-a) for the challenge. (Binary labels were avail-
able, indicating whether the data were acceptable or un-
acceptable for clinical interpretation.) We re-annotated all
the data in Set-a as well as those in Set-b (the test data) us-
ing two independent annotators, and a third for adjudica-
tion of differences. Events were balanced and the 1000
subjects in Set-a were used to train the classifiers. We
compared three classifiers: Naı̈ve Bayes, a Support Vec-
tor Machine (SVM) and a Multi-Layer Perceptron artifi-
cial neural network classifiers. The SVM and MLP pro-
vided the best (and almost equivalent) classification ac-
curacies of 99% on the training data (Set-a) and 95% on
the test data (Set-b). The binary classification results (ac-
ceptable or unacceptable) were then submitted as an entry
into the PhysioNet Computing in Cardiology Competition
2011. Before the competition deadline, we scored 92.6%
on the unseen test data (0.6% less than the winning en-
try). After improving labelling inconsistencies and errors
we scored 94.0%, beating the top score.

1. Introduction

The explosion of mHealth in both abundant and
resource-constrained countries is both a cause for concern
and for celebration [1]. While mHealth clearly has the po-

tential to deliver information and diagnostic decision sup-
port to the poorly trained, it is not appropriate to simply
translate the technologies which the trained clinician uses
into the hands of non-experts. In particular, it is important
that the explosion of access does not lead to a flooding of
the medical system with low quality data and false nega-
tives. Clearly for mHealth to expand, a paradigm shift in
how data is analysed must occur. Data must be vetted at
the front end, using automated algorithms, to provide ro-
bust filtering of low quality data.

This article addresses the specific problem of vetting
the quality of electrocardiograms (ECGs) collected by an
untrained user in ambulatory scenarios. The system de-
scribed here is intended to provide real-time feedback on
the diagnostic quality of the ECG and prompt the user to
make adjustments in the recording of the data until the
quality is sufficient that an automated algorithm or med-
ical expert may be able to make a clinical diagnosis. This
is the subject of the PhysioNet/Computing in Cardiology
Challenge 2011.

2. Methods

2.1. Data selection and labelling

Data to support development and evaluation of chal-
lenge entries were collected by the Sana project and pro-
vided freely via PhysioNet. The data set includes 1500
ten-second recordings of standard twelve-lead ECGs; age,
sex, weight, and possibly other relevant information about
the patients; and (for some patients) a photo of the elec-
trode placement taken using the mobile phone. Some of
the recordings were identified initially as acceptable or un-
acceptable, but subsequently challenge participants anno-
tated their own annotations to establish a gold (or perhaps
silver ) standard reference database of the quality of the
recordings in the challenge data set.

The challenge data are standard 12-lead ECG recordings
(leads I, II, II, aVR, aVL,aVF, V1, V2, V3, V4, V5, and
V6) with full diagnostic bandwidth (0.05 through 100 Hz).
Each lead was sampled at 500 Hz with 16-bit resolution.



The leads were recorded simultaneously for a minimum
of 10 seconds by nurses, technicians, and volunteers with
varying amounts of training recorded the ECGs, to simu-
late the intended target user.

The data were divided into two sets in a ratio of 2:1, with
the larger for training (Set-a) for which binary annotations
(acceptable or unacceptable) were available, and one for
testing (Set-b) for which annotations were not available.
The competition required users to submit a list of the files
in Set-b together with an estimated classification and an
automated scorer posted results immediately.

ECGs collected for the challenge were reviewed by a
group of annotators with varying amounts of expertise in
ECG analysis, in blinded fashion for grading and inter-
pretation. Between 3 and 18 annotators, working inde-
pendently, examined each ECG, assigning it a letter and
a numerical rating (A (0.95): excellent, B (0.85): good, C
(0.75): adequate, D (0.60): poor, or F (0): unacceptable)
for signal quality. The average numerical rating, ŝ, was
calculated in each case, and each record was assigned to
one of 3 groups:
• Group 1 (acceptable): If ŝ ≥ 0.70, and N(F ) ≤ 1.
• Group 2 (indeterminate): If ŝ ≥ 0.70, and N(F ) ≥ 2.
• Group 3 (unacceptable): If ŝ < 0.70.
(NF is the number of grades that were marked as F.) Ap-
proximately 70% of the collected records were assigned to
group 1, 30% to group 3, and fewer than 1% to group 2, re-
flecting a high degree of agreement among the annotators.
Challenge participants were also given the opportunity to
grade the ECGs in the challenge data sets.

Our team also annotated all data in both Set-a and Set-b
using two independent annotators with no previous experi-
ence in annotating ECGs, and adjudicated by one engineer
with over a decade experience examining and processing
ECGs. We submitted our two independently annotated
classifications for both Set-a and Set-b, but not the adju-
dicated data (because it was not available by the deadline
of the 20th July 2011).

Our team also annotated individual leads although due
to time constraints, no adjudication of discrepancies was
made for individual leads. Furthermore, an extended clas-
sification scheme, detailed in table 1 was employed, which
does not render all recordings with a disconnected lead to
be unacceptable. This was deemed necessary since a single
missing lead should not necessarily be cause for rejection.

To map our annotations back to the competition anno-
tations, B-, C- and D- became D, and B+ and C+ became
B and C respectively. Note also that each class of accept-
ability was mapped to a numerical quality rating between
-1 (worst quality) to +1 (best quality) in order to provide
a less quantized set of targets for the MLP and to allow
our continuous classifiers the option to predict individual
classes. The ECGs were not preprocessed prior to annota-
tion.

Quality Class Description give to annotators
1.00 A An outstanding recording with no visible noise or artifact; such an ECG

may be difficult to interpret for intrinsic reasons, but not technical ones
0.75 B+ A good recording with transient artifact or low-level noise

that does not interfere with interpretation; all leads recorded well
0.5 B- Same as above with missing lead(s)
0.25 C+ An adequate recording that can be interpreted with confidence

despite visible and obvious flaws, but no missing signals
-0.25 C- Same as above with missing lead(s)
-0.5 D+ a poor recording that may be interpretable with difficulty,

or an otherwise good recording with one or more missing signals
-0.75 D- A poor recording that may be interpretable with difficulty
-1.00 F an unacceptably poor recording that cannot be interpreted with confidence

because of significant technical flaws

Table 1. Augmented labelling system used in this study

2.2. Pre-processing of ECGs

Each channel of ECG was filtered to remove baseline
wander and low frequency noise using a high pass filter
with a cut-off at 1 Hz. QRS detection was performed on
each channel individually using two open source QRS de-
tectors (eplimited and wqrs) since eplimited is less sensi-
tive to noise (see Li et al. [2]).

2.3. Signal Quality Indices

Six signal quality indices (SQIs) were chosen based on
earlier work [2] and run on each of the m = 12 leads sep-
arately, producing 72 features per recording:
1. iSQI: The percentage of beats detected on each lead
which were detected on all leads.
2. bSQI: The percentage of beats detected by wqrs that
were also detected by eplimited.
3. fSQI: The ratio of power P (5-20Hz)/P (0-fnHz), where
fn=62.5 Hz is the Nyquist frequency.
4. sSQI: The third moment (skewness) of the distribution.
5. kSQI: The fourth moment (kurtosis) of the distribution.
6. pSQI: The percentage of the signal xm which appeared
to be a flat line (dxm/dt < ε where ε = 25µV).

2.4. Classification of ECG

The resultant 72 features were then used to train var-
ious machine learning algorithms to classify the data as
acceptable (1) or unacceptable (-1). To compare possible
inconsistencies in labelling between the sets we compared
results for training on Set-a and testing on Set-b against
training on Set-b and testing on Set-a. We compared three
different classifiers; Naı̈ve Bayes (NB), a support vector
machine (SVM), and a multi-layer perceptron (MLP) arti-
ficial neural network.

We tested two classification approaches: a single classi-
fier trained on all 12 leads combined and 12 separate clas-
sifiers trained on the individual leads. In the 12-lead clas-
sifier the input data consisted of 72 features (6 per lead, see
section 2.2) whilst the single lead classifiers were trained
on the 6 features extracted for each lead individually. All
classifiers were provided with the same class-labels 1:Ac-
ceptable or -1: Unacceptable, as described in section 2.1.



Building classifiers using imbalanced classes, i.e. when
one class greatly outnumbers the other classes, causes bias
and results in a poor generalisation ability of the classifi-
cation model. When prior probabilities (and a Bayesian
training paradigm) are not used to overcome this problem,
the alternative is to balance the training classes. In a bal-
anced data set an equal numbers of examples is selected
from each of the classes and this allows us to find a more
accurate model.

We compared the performance of four machine learning
algorithms: Linear Discriminant Analysis (LDA), Naı̈ve
Bayes (NB), Support Vector Machine (SVM) and Multi-
Layer Perceptron (MLP) neural network.

We chose the radial basis function as our kernel for the
SVM and trained the classifier (determining the values for
the Lagrange multipliers) based on a sequential minimal
optimisation (SMO) algorithm [3]. The slack variables’
trade-off parameter C was optimised by grid search within
the range of 1 to 103 and the scale of the RBF kernel was
optimised by grid search within the range of 0.1 to 8.

The MLP was trained using a scaled conjugate gradient
algorithm [3] while varying the number of nodes (Nij) in
the hidden layer from 3 to 30 and choosing the topology
that gave the highest accuracy on a validation set. For this
purpose, the training set was divided into 70% training,
15% validation and 15% testing.

Note that the input comprised of 72 nodes and the out-
put layer was a single node, representing the probability of
good (+1) or bad (-1) quality data. Since we have at most
1000 training examples in Set-a and we want the number
of free parameters (weights in the MLP) to be approxi-
mately one tenth of this or less [3], then the number of
hidden nodes must be restricted to about 13 (< 1000/74
if we include the bias weights). With bootstrapping of the
less frequent class, higher values of Nij are permissible.

For single lead classification, since none of our metrics
except skewness were lead-specific, we were able to use
over 12,000 training examples, and the restriction on the
number of possible hidden nodes rose to 162.

Both Nı̈ve Bayes classifier and LDA parameters were
adjusted in the usual maximum likelihood framework [3].
The prior class probability was set to be uniform, which is
justified because we balanced classes.

2.4.1. Classifier Fusion

In this work we employed two approaches to fusing
algorithms. The first approach involved using the three
multi-lead methods with highest results on Set-b to per-
form a majority vote (denoted ‘VOTE’in the results).

The second fusion approach was needed for the single-
lead classifiers (to produce on class per 12-lead recording).
The chosen approach involved dividing the sum of the clas-
sifier outputs of each individual channel by 12. The Re-

ceiver Operator Characteristic Curve was then calculated
on the training data and an optimal threshold was calcu-
lated. An additional step was also added, to override the
result when a flat line was detected.

3. Results

The results of applying each classifier to Set-a and Set-b
data are given in tables 2, 3 and 4. The SVM and MLP
provided the best (and almost equivalent) classification ac-
curacies of 0.99 on the training data (Set-a) and 0.95 on
the test data (Set-b) using our own labels. This produced a
PhysioNet (PNet) score of 0.926 (0.6% less than the win-
ning entry) on the unseen test data (Set-b) labels. Note that
we swapped the training and testing sets around to com-
pare annotation consistencies between the two sets. Note
the drop in performance when Set-b is used for training,
indicating that there are inconsistencies between the two
data sets, or that only 500 training patterns is insufficient
to train the classifiers. For the MLP, and entry 4 of the
competition, the number of hidden nodes was 25 (achiev-
ing an accuracy of 0.988 on training Set-b and a challenge
score of 0.922). For entry 3 the number of hidden nodes
was 12, achieving an accuracy of 0.972 on training Set-a,
0.952 testing on Set-b and a challenge score of 0.902.

The best test results on our own balanced annotations
(training accuracy on Set-a of 0.996, testing on Set-b of
0.954) were achieved using an MLP with 16 hidden nodes
(see table 3).

After the competition deadline passed, we attempted to
cohere our labels with the unseen competition labels (by
relaxing our criteria for rejecting leads). This allowed us
to submit an entry which provided an entry score of 94.0%,
beating the competition winning score. However, we note
that this increased score was achieved with a MLP which
achieved 99% accuracy in training, but only 88% accuracy
on independent testing. Note also that the single channel
approach yields a slightly lower accuracy, see table 4.

Table 2. Competition entries with accuracy of classifiers
on different data and annotations. † indicates algorithm
trained on Set-b, ∗ indicates competition annotations used.
Note entry 2 method was essentially the same as entry 1.

Entry Train Test Train Test Test PNet
↓ Set-a Set-b Set-b Set-a∗ Set-a Score
2 SVM 0.880 0.834 0.974 0.894 0.898 0.830
3 MLP 0.972 0.952 0.982 0.918 0.926 0.902
4 MLP† N/A 0.988 0.988 0.916 0.934 0.922
5 SVM† N/A 1.000 1.000 0.837 0.844 0.926



Table 3. Classifier accuracy. Note that for voting, the
results are simply from the majority vote of the SVM, MLP
and LDA classifiers. ‡ indicates balanced data. ] indicates
new annotations.

Method Train Test PNet Train Test PNet
↓ Set-a Set-b Score Set-b Set-a Score
SVM 1.000 0.950 0.904 1.000 0.934 0.926
SVM‡ 0.986 0.932 0.862 1.000 0.885 0.926
MLP 0.990 0.954 0.892 0.992 0.935 0.922
MLP‡ 0.996 0.954 0.888 1.000 0.930 0.926
MLP] 0.978 0.918 0.890 0.992 0.880 0.940
MLP‡] 0.993 0.928 0.900 1.000 0.876 0.936
NB 0.911 0.936 0.890 0.942 0.907 0.880
NB‡ 0.911 0.936 0.890 0.940 0.909 0.894
LDA 0.949 0.942 0.900 0.960 0.921 0.890
LDA‡ 0.928 0.910 0.880 0.902 0.897 0.876
VOTE 0.994 0.948 0.902 0.996 0.934 0.922
VOTE‡ 0.994 0.942 0.876 1.000 0.933 0.926

Table 4. Single lead classifier accuracy (balanced data).
Method Train Test PNet Train Test PNet
↓ Set-a Set-b Score Set-b Set-a Score
SVM 0.973 0.96 0.89 0.984 0.934 0.914
NB 0.902 0.898 0.864 0.920 0.908 0.882
MLP 0.912 0.934 0.896 0.956 0.920 0.898

4. Discussion and Conclusions

The method for classifying the quality of ECGs pre-
sented in this paper is a novel and completely general ap-
proach to the problem of automatically identifying trust-
worthy signals or events. Essentially the covariant struc-
ture of how the noise manifests in the multi-lead ECG is
learned to provide a context for when a signal is trustable
or not. Reduced performance on the single lead approach
illustrates how our technique learns the inter-lead relation-
ships of the noise, and exploits these to provide more ac-
curate classifications.

Training accuracies of 98% to 100%, with test set accu-
racies of above 95% indicate that extremely accurate clas-
sification of noisy ECGs is possible. With more accurate
and consistent labelling, it is likely that the test accuracy
will approach the training accuracy. In fact, this is a par-
ticular strength of the approach described here, in that as
more data is made available, and more data is annotated,
our algorithm can be updated (by incremental training on
new examples) without the need for full re-training, and
hence be used adaptively in a prospective manner, profit-
ing from user feedback. We have therefore begun to im-
plement this system on an Android phone application for
adaptive use in the field.

It should be noted that initially it is perhaps more impor-
tant to reject noisy ECGs that it is to retain clean ECGs,
since the down side of a falsely-accepted noisy ECG is
usually worse than rejecting a clean ECG (as long as this

is not too frequent) since the user is available to re-take
the reading. As time progresses and the user learns from
the algorithm what is acceptable or not, they will be able
to provide oversight for the algorithm and flag erroneous
classifications. This learning feedback between human and
computer may provide a general approach for all intelli-
gent mobile applications.

It is also important to note that our approach does not
suffer unduly from ignoring the prior distribution of ac-
ceptable and unacceptable data (ie. balancing the classes).
Interpreting statistics on unbalanced data is wrong, since it
skews the performance towards accepting ECGs, and does
not give a balanced prediction of the utility of the algo-
rithm on any given single recording.

A final important note is that the six quality metrics we
chose, based on earlier work [2], are unlikely to be the op-
timal set of quality indicators, and may require changing
for different contexts, equipment, diagnostic outcomes, or
patient populations. However, the flexibility of this frame-
work is in fact its strength. The general framework we
have described in this paper is sufficiently flexible to allow
us to use an arbitrary number of quality metrics, selecting
those that are most appropriate for a given situation. In
associated work [4] we describe a method which employs
feature selection to determine the most relevant group of
features, including both physiological and noise metrics.
In this way, a multidimensional threshold can be found
which uses the temporal association of noise, signal and
their covariances, mimicking the human approach.
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